common/
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static void modify_general_field (struct type *, char *, LONGEST, int, int);
70
71 static struct type *desc_base_type (struct type *);
72
73 static struct type *desc_bounds_type (struct type *);
74
75 static struct value *desc_bounds (struct value *);
76
77 static int fat_pntr_bounds_bitpos (struct type *);
78
79 static int fat_pntr_bounds_bitsize (struct type *);
80
81 static struct type *desc_data_target_type (struct type *);
82
83 static struct value *desc_data (struct value *);
84
85 static int fat_pntr_data_bitpos (struct type *);
86
87 static int fat_pntr_data_bitsize (struct type *);
88
89 static struct value *desc_one_bound (struct value *, int, int);
90
91 static int desc_bound_bitpos (struct type *, int, int);
92
93 static int desc_bound_bitsize (struct type *, int, int);
94
95 static struct type *desc_index_type (struct type *, int);
96
97 static int desc_arity (struct type *);
98
99 static int ada_type_match (struct type *, struct type *, int);
100
101 static int ada_args_match (struct symbol *, struct value **, int);
102
103 static struct value *ensure_lval (struct value *,
104 struct gdbarch *, CORE_ADDR *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *,
107 struct gdbarch *, CORE_ADDR *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 struct block *, const char *,
111 domain_enum, struct objfile *, int);
112
113 static int is_nonfunction (struct ada_symbol_info *, int);
114
115 static void add_defn_to_vec (struct obstack *, struct symbol *,
116 struct block *);
117
118 static int num_defns_collected (struct obstack *);
119
120 static struct ada_symbol_info *defns_collected (struct obstack *, int);
121
122 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
123 *, const char *, int,
124 domain_enum, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (char *, struct value *,
171 struct type *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static struct value *get_var_value (char *, char *);
199
200 static int lesseq_defined_than (struct symbol *, struct symbol *);
201
202 static int equiv_types (struct type *, struct type *);
203
204 static int is_name_suffix (const char *);
205
206 static int wild_match (const char *, int, const char *);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
231 static struct value *ada_to_fixed_value (struct value *);
232
233 static int ada_resolve_function (struct ada_symbol_info *, int,
234 struct value **, int, const char *,
235 struct type *);
236
237 static struct value *ada_coerce_to_simple_array (struct value *);
238
239 static int ada_is_direct_array_type (struct type *);
240
241 static void ada_language_arch_info (struct gdbarch *,
242 struct language_arch_info *);
243
244 static void check_size (const struct type *);
245
246 static struct value *ada_index_struct_field (int, struct value *, int,
247 struct type *);
248
249 static struct value *assign_aggregate (struct value *, struct value *,
250 struct expression *, int *, enum noside);
251
252 static void aggregate_assign_from_choices (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *,
255 int, LONGEST, LONGEST);
256
257 static void aggregate_assign_positional (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int *, int,
260 LONGEST, LONGEST);
261
262
263 static void aggregate_assign_others (struct value *, struct value *,
264 struct expression *,
265 int *, LONGEST *, int, LONGEST, LONGEST);
266
267
268 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
269
270
271 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
272 int *, enum noside);
273
274 static void ada_forward_operator_length (struct expression *, int, int *,
275 int *);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Utilities */
314
315 /* Given DECODED_NAME a string holding a symbol name in its
316 decoded form (ie using the Ada dotted notation), returns
317 its unqualified name. */
318
319 static const char *
320 ada_unqualified_name (const char *decoded_name)
321 {
322 const char *result = strrchr (decoded_name, '.');
323
324 if (result != NULL)
325 result++; /* Skip the dot... */
326 else
327 result = decoded_name;
328
329 return result;
330 }
331
332 /* Return a string starting with '<', followed by STR, and '>'.
333 The result is good until the next call. */
334
335 static char *
336 add_angle_brackets (const char *str)
337 {
338 static char *result = NULL;
339
340 xfree (result);
341 result = xstrprintf ("<%s>", str);
342 return result;
343 }
344
345 static char *
346 ada_get_gdb_completer_word_break_characters (void)
347 {
348 return ada_completer_word_break_characters;
349 }
350
351 /* Print an array element index using the Ada syntax. */
352
353 static void
354 ada_print_array_index (struct value *index_value, struct ui_file *stream,
355 const struct value_print_options *options)
356 {
357 LA_VALUE_PRINT (index_value, stream, options);
358 fprintf_filtered (stream, " => ");
359 }
360
361 /* Assuming VECT points to an array of *SIZE objects of size
362 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
363 updating *SIZE as necessary and returning the (new) array. */
364
365 void *
366 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
367 {
368 if (*size < min_size)
369 {
370 *size *= 2;
371 if (*size < min_size)
372 *size = min_size;
373 vect = xrealloc (vect, *size * element_size);
374 }
375 return vect;
376 }
377
378 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
379 suffix of FIELD_NAME beginning "___". */
380
381 static int
382 field_name_match (const char *field_name, const char *target)
383 {
384 int len = strlen (target);
385 return
386 (strncmp (field_name, target, len) == 0
387 && (field_name[len] == '\0'
388 || (strncmp (field_name + len, "___", 3) == 0
389 && strcmp (field_name + strlen (field_name) - 6,
390 "___XVN") != 0)));
391 }
392
393
394 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
395 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
396 and return its index. This function also handles fields whose name
397 have ___ suffixes because the compiler sometimes alters their name
398 by adding such a suffix to represent fields with certain constraints.
399 If the field could not be found, return a negative number if
400 MAYBE_MISSING is set. Otherwise raise an error. */
401
402 int
403 ada_get_field_index (const struct type *type, const char *field_name,
404 int maybe_missing)
405 {
406 int fieldno;
407 struct type *struct_type = check_typedef ((struct type *) type);
408
409 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
410 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
411 return fieldno;
412
413 if (!maybe_missing)
414 error (_("Unable to find field %s in struct %s. Aborting"),
415 field_name, TYPE_NAME (struct_type));
416
417 return -1;
418 }
419
420 /* The length of the prefix of NAME prior to any "___" suffix. */
421
422 int
423 ada_name_prefix_len (const char *name)
424 {
425 if (name == NULL)
426 return 0;
427 else
428 {
429 const char *p = strstr (name, "___");
430 if (p == NULL)
431 return strlen (name);
432 else
433 return p - name;
434 }
435 }
436
437 /* Return non-zero if SUFFIX is a suffix of STR.
438 Return zero if STR is null. */
439
440 static int
441 is_suffix (const char *str, const char *suffix)
442 {
443 int len1, len2;
444 if (str == NULL)
445 return 0;
446 len1 = strlen (str);
447 len2 = strlen (suffix);
448 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
449 }
450
451 /* The contents of value VAL, treated as a value of type TYPE. The
452 result is an lval in memory if VAL is. */
453
454 static struct value *
455 coerce_unspec_val_to_type (struct value *val, struct type *type)
456 {
457 type = ada_check_typedef (type);
458 if (value_type (val) == type)
459 return val;
460 else
461 {
462 struct value *result;
463
464 /* Make sure that the object size is not unreasonable before
465 trying to allocate some memory for it. */
466 check_size (type);
467
468 result = allocate_value (type);
469 set_value_component_location (result, val);
470 set_value_bitsize (result, value_bitsize (val));
471 set_value_bitpos (result, value_bitpos (val));
472 set_value_address (result, value_address (val));
473 if (value_lazy (val)
474 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
475 set_value_lazy (result, 1);
476 else
477 memcpy (value_contents_raw (result), value_contents (val),
478 TYPE_LENGTH (type));
479 return result;
480 }
481 }
482
483 static const gdb_byte *
484 cond_offset_host (const gdb_byte *valaddr, long offset)
485 {
486 if (valaddr == NULL)
487 return NULL;
488 else
489 return valaddr + offset;
490 }
491
492 static CORE_ADDR
493 cond_offset_target (CORE_ADDR address, long offset)
494 {
495 if (address == 0)
496 return 0;
497 else
498 return address + offset;
499 }
500
501 /* Issue a warning (as for the definition of warning in utils.c, but
502 with exactly one argument rather than ...), unless the limit on the
503 number of warnings has passed during the evaluation of the current
504 expression. */
505
506 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
507 provided by "complaint". */
508 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
509
510 static void
511 lim_warning (const char *format, ...)
512 {
513 va_list args;
514 va_start (args, format);
515
516 warnings_issued += 1;
517 if (warnings_issued <= warning_limit)
518 vwarning (format, args);
519
520 va_end (args);
521 }
522
523 /* Issue an error if the size of an object of type T is unreasonable,
524 i.e. if it would be a bad idea to allocate a value of this type in
525 GDB. */
526
527 static void
528 check_size (const struct type *type)
529 {
530 if (TYPE_LENGTH (type) > varsize_limit)
531 error (_("object size is larger than varsize-limit"));
532 }
533
534
535 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
536 gdbtypes.h, but some of the necessary definitions in that file
537 seem to have gone missing. */
538
539 /* Maximum value of a SIZE-byte signed integer type. */
540 static LONGEST
541 max_of_size (int size)
542 {
543 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
544 return top_bit | (top_bit - 1);
545 }
546
547 /* Minimum value of a SIZE-byte signed integer type. */
548 static LONGEST
549 min_of_size (int size)
550 {
551 return -max_of_size (size) - 1;
552 }
553
554 /* Maximum value of a SIZE-byte unsigned integer type. */
555 static ULONGEST
556 umax_of_size (int size)
557 {
558 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
559 return top_bit | (top_bit - 1);
560 }
561
562 /* Maximum value of integral type T, as a signed quantity. */
563 static LONGEST
564 max_of_type (struct type *t)
565 {
566 if (TYPE_UNSIGNED (t))
567 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
568 else
569 return max_of_size (TYPE_LENGTH (t));
570 }
571
572 /* Minimum value of integral type T, as a signed quantity. */
573 static LONGEST
574 min_of_type (struct type *t)
575 {
576 if (TYPE_UNSIGNED (t))
577 return 0;
578 else
579 return min_of_size (TYPE_LENGTH (t));
580 }
581
582 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
583 LONGEST
584 ada_discrete_type_high_bound (struct type *type)
585 {
586 switch (TYPE_CODE (type))
587 {
588 case TYPE_CODE_RANGE:
589 return TYPE_HIGH_BOUND (type);
590 case TYPE_CODE_ENUM:
591 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
592 case TYPE_CODE_BOOL:
593 return 1;
594 case TYPE_CODE_CHAR:
595 case TYPE_CODE_INT:
596 return max_of_type (type);
597 default:
598 error (_("Unexpected type in ada_discrete_type_high_bound."));
599 }
600 }
601
602 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
603 LONGEST
604 ada_discrete_type_low_bound (struct type *type)
605 {
606 switch (TYPE_CODE (type))
607 {
608 case TYPE_CODE_RANGE:
609 return TYPE_LOW_BOUND (type);
610 case TYPE_CODE_ENUM:
611 return TYPE_FIELD_BITPOS (type, 0);
612 case TYPE_CODE_BOOL:
613 return 0;
614 case TYPE_CODE_CHAR:
615 case TYPE_CODE_INT:
616 return min_of_type (type);
617 default:
618 error (_("Unexpected type in ada_discrete_type_low_bound."));
619 }
620 }
621
622 /* The identity on non-range types. For range types, the underlying
623 non-range scalar type. */
624
625 static struct type *
626 base_type (struct type *type)
627 {
628 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
629 {
630 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
631 return type;
632 type = TYPE_TARGET_TYPE (type);
633 }
634 return type;
635 }
636 \f
637
638 /* Language Selection */
639
640 /* If the main program is in Ada, return language_ada, otherwise return LANG
641 (the main program is in Ada iif the adainit symbol is found).
642
643 MAIN_PST is not used. */
644
645 enum language
646 ada_update_initial_language (enum language lang,
647 struct partial_symtab *main_pst)
648 {
649 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
650 (struct objfile *) NULL) != NULL)
651 return language_ada;
652
653 return lang;
654 }
655
656 /* If the main procedure is written in Ada, then return its name.
657 The result is good until the next call. Return NULL if the main
658 procedure doesn't appear to be in Ada. */
659
660 char *
661 ada_main_name (void)
662 {
663 struct minimal_symbol *msym;
664 static char *main_program_name = NULL;
665
666 /* For Ada, the name of the main procedure is stored in a specific
667 string constant, generated by the binder. Look for that symbol,
668 extract its address, and then read that string. If we didn't find
669 that string, then most probably the main procedure is not written
670 in Ada. */
671 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
672
673 if (msym != NULL)
674 {
675 CORE_ADDR main_program_name_addr;
676 int err_code;
677
678 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
679 if (main_program_name_addr == 0)
680 error (_("Invalid address for Ada main program name."));
681
682 xfree (main_program_name);
683 target_read_string (main_program_name_addr, &main_program_name,
684 1024, &err_code);
685
686 if (err_code != 0)
687 return NULL;
688 return main_program_name;
689 }
690
691 /* The main procedure doesn't seem to be in Ada. */
692 return NULL;
693 }
694 \f
695 /* Symbols */
696
697 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
698 of NULLs. */
699
700 const struct ada_opname_map ada_opname_table[] = {
701 {"Oadd", "\"+\"", BINOP_ADD},
702 {"Osubtract", "\"-\"", BINOP_SUB},
703 {"Omultiply", "\"*\"", BINOP_MUL},
704 {"Odivide", "\"/\"", BINOP_DIV},
705 {"Omod", "\"mod\"", BINOP_MOD},
706 {"Orem", "\"rem\"", BINOP_REM},
707 {"Oexpon", "\"**\"", BINOP_EXP},
708 {"Olt", "\"<\"", BINOP_LESS},
709 {"Ole", "\"<=\"", BINOP_LEQ},
710 {"Ogt", "\">\"", BINOP_GTR},
711 {"Oge", "\">=\"", BINOP_GEQ},
712 {"Oeq", "\"=\"", BINOP_EQUAL},
713 {"One", "\"/=\"", BINOP_NOTEQUAL},
714 {"Oand", "\"and\"", BINOP_BITWISE_AND},
715 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
716 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
717 {"Oconcat", "\"&\"", BINOP_CONCAT},
718 {"Oabs", "\"abs\"", UNOP_ABS},
719 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
720 {"Oadd", "\"+\"", UNOP_PLUS},
721 {"Osubtract", "\"-\"", UNOP_NEG},
722 {NULL, NULL}
723 };
724
725 /* The "encoded" form of DECODED, according to GNAT conventions.
726 The result is valid until the next call to ada_encode. */
727
728 char *
729 ada_encode (const char *decoded)
730 {
731 static char *encoding_buffer = NULL;
732 static size_t encoding_buffer_size = 0;
733 const char *p;
734 int k;
735
736 if (decoded == NULL)
737 return NULL;
738
739 GROW_VECT (encoding_buffer, encoding_buffer_size,
740 2 * strlen (decoded) + 10);
741
742 k = 0;
743 for (p = decoded; *p != '\0'; p += 1)
744 {
745 if (*p == '.')
746 {
747 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
748 k += 2;
749 }
750 else if (*p == '"')
751 {
752 const struct ada_opname_map *mapping;
753
754 for (mapping = ada_opname_table;
755 mapping->encoded != NULL
756 && strncmp (mapping->decoded, p,
757 strlen (mapping->decoded)) != 0; mapping += 1)
758 ;
759 if (mapping->encoded == NULL)
760 error (_("invalid Ada operator name: %s"), p);
761 strcpy (encoding_buffer + k, mapping->encoded);
762 k += strlen (mapping->encoded);
763 break;
764 }
765 else
766 {
767 encoding_buffer[k] = *p;
768 k += 1;
769 }
770 }
771
772 encoding_buffer[k] = '\0';
773 return encoding_buffer;
774 }
775
776 /* Return NAME folded to lower case, or, if surrounded by single
777 quotes, unfolded, but with the quotes stripped away. Result good
778 to next call. */
779
780 char *
781 ada_fold_name (const char *name)
782 {
783 static char *fold_buffer = NULL;
784 static size_t fold_buffer_size = 0;
785
786 int len = strlen (name);
787 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
788
789 if (name[0] == '\'')
790 {
791 strncpy (fold_buffer, name + 1, len - 2);
792 fold_buffer[len - 2] = '\000';
793 }
794 else
795 {
796 int i;
797 for (i = 0; i <= len; i += 1)
798 fold_buffer[i] = tolower (name[i]);
799 }
800
801 return fold_buffer;
802 }
803
804 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
805
806 static int
807 is_lower_alphanum (const char c)
808 {
809 return (isdigit (c) || (isalpha (c) && islower (c)));
810 }
811
812 /* Remove either of these suffixes:
813 . .{DIGIT}+
814 . ${DIGIT}+
815 . ___{DIGIT}+
816 . __{DIGIT}+.
817 These are suffixes introduced by the compiler for entities such as
818 nested subprogram for instance, in order to avoid name clashes.
819 They do not serve any purpose for the debugger. */
820
821 static void
822 ada_remove_trailing_digits (const char *encoded, int *len)
823 {
824 if (*len > 1 && isdigit (encoded[*len - 1]))
825 {
826 int i = *len - 2;
827 while (i > 0 && isdigit (encoded[i]))
828 i--;
829 if (i >= 0 && encoded[i] == '.')
830 *len = i;
831 else if (i >= 0 && encoded[i] == '$')
832 *len = i;
833 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
834 *len = i - 2;
835 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
836 *len = i - 1;
837 }
838 }
839
840 /* Remove the suffix introduced by the compiler for protected object
841 subprograms. */
842
843 static void
844 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
845 {
846 /* Remove trailing N. */
847
848 /* Protected entry subprograms are broken into two
849 separate subprograms: The first one is unprotected, and has
850 a 'N' suffix; the second is the protected version, and has
851 the 'P' suffix. The second calls the first one after handling
852 the protection. Since the P subprograms are internally generated,
853 we leave these names undecoded, giving the user a clue that this
854 entity is internal. */
855
856 if (*len > 1
857 && encoded[*len - 1] == 'N'
858 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
859 *len = *len - 1;
860 }
861
862 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
863
864 static void
865 ada_remove_Xbn_suffix (const char *encoded, int *len)
866 {
867 int i = *len - 1;
868
869 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
870 i--;
871
872 if (encoded[i] != 'X')
873 return;
874
875 if (i == 0)
876 return;
877
878 if (isalnum (encoded[i-1]))
879 *len = i;
880 }
881
882 /* If ENCODED follows the GNAT entity encoding conventions, then return
883 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
884 replaced by ENCODED.
885
886 The resulting string is valid until the next call of ada_decode.
887 If the string is unchanged by decoding, the original string pointer
888 is returned. */
889
890 const char *
891 ada_decode (const char *encoded)
892 {
893 int i, j;
894 int len0;
895 const char *p;
896 char *decoded;
897 int at_start_name;
898 static char *decoding_buffer = NULL;
899 static size_t decoding_buffer_size = 0;
900
901 /* The name of the Ada main procedure starts with "_ada_".
902 This prefix is not part of the decoded name, so skip this part
903 if we see this prefix. */
904 if (strncmp (encoded, "_ada_", 5) == 0)
905 encoded += 5;
906
907 /* If the name starts with '_', then it is not a properly encoded
908 name, so do not attempt to decode it. Similarly, if the name
909 starts with '<', the name should not be decoded. */
910 if (encoded[0] == '_' || encoded[0] == '<')
911 goto Suppress;
912
913 len0 = strlen (encoded);
914
915 ada_remove_trailing_digits (encoded, &len0);
916 ada_remove_po_subprogram_suffix (encoded, &len0);
917
918 /* Remove the ___X.* suffix if present. Do not forget to verify that
919 the suffix is located before the current "end" of ENCODED. We want
920 to avoid re-matching parts of ENCODED that have previously been
921 marked as discarded (by decrementing LEN0). */
922 p = strstr (encoded, "___");
923 if (p != NULL && p - encoded < len0 - 3)
924 {
925 if (p[3] == 'X')
926 len0 = p - encoded;
927 else
928 goto Suppress;
929 }
930
931 /* Remove any trailing TKB suffix. It tells us that this symbol
932 is for the body of a task, but that information does not actually
933 appear in the decoded name. */
934
935 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
936 len0 -= 3;
937
938 /* Remove any trailing TB suffix. The TB suffix is slightly different
939 from the TKB suffix because it is used for non-anonymous task
940 bodies. */
941
942 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
943 len0 -= 2;
944
945 /* Remove trailing "B" suffixes. */
946 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
947
948 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
949 len0 -= 1;
950
951 /* Make decoded big enough for possible expansion by operator name. */
952
953 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
954 decoded = decoding_buffer;
955
956 /* Remove trailing __{digit}+ or trailing ${digit}+. */
957
958 if (len0 > 1 && isdigit (encoded[len0 - 1]))
959 {
960 i = len0 - 2;
961 while ((i >= 0 && isdigit (encoded[i]))
962 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
963 i -= 1;
964 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
965 len0 = i - 1;
966 else if (encoded[i] == '$')
967 len0 = i;
968 }
969
970 /* The first few characters that are not alphabetic are not part
971 of any encoding we use, so we can copy them over verbatim. */
972
973 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
974 decoded[j] = encoded[i];
975
976 at_start_name = 1;
977 while (i < len0)
978 {
979 /* Is this a symbol function? */
980 if (at_start_name && encoded[i] == 'O')
981 {
982 int k;
983 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
984 {
985 int op_len = strlen (ada_opname_table[k].encoded);
986 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
987 op_len - 1) == 0)
988 && !isalnum (encoded[i + op_len]))
989 {
990 strcpy (decoded + j, ada_opname_table[k].decoded);
991 at_start_name = 0;
992 i += op_len;
993 j += strlen (ada_opname_table[k].decoded);
994 break;
995 }
996 }
997 if (ada_opname_table[k].encoded != NULL)
998 continue;
999 }
1000 at_start_name = 0;
1001
1002 /* Replace "TK__" with "__", which will eventually be translated
1003 into "." (just below). */
1004
1005 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1006 i += 2;
1007
1008 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1009 be translated into "." (just below). These are internal names
1010 generated for anonymous blocks inside which our symbol is nested. */
1011
1012 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1013 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1014 && isdigit (encoded [i+4]))
1015 {
1016 int k = i + 5;
1017
1018 while (k < len0 && isdigit (encoded[k]))
1019 k++; /* Skip any extra digit. */
1020
1021 /* Double-check that the "__B_{DIGITS}+" sequence we found
1022 is indeed followed by "__". */
1023 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1024 i = k;
1025 }
1026
1027 /* Remove _E{DIGITS}+[sb] */
1028
1029 /* Just as for protected object subprograms, there are 2 categories
1030 of subprograms created by the compiler for each entry. The first
1031 one implements the actual entry code, and has a suffix following
1032 the convention above; the second one implements the barrier and
1033 uses the same convention as above, except that the 'E' is replaced
1034 by a 'B'.
1035
1036 Just as above, we do not decode the name of barrier functions
1037 to give the user a clue that the code he is debugging has been
1038 internally generated. */
1039
1040 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1041 && isdigit (encoded[i+2]))
1042 {
1043 int k = i + 3;
1044
1045 while (k < len0 && isdigit (encoded[k]))
1046 k++;
1047
1048 if (k < len0
1049 && (encoded[k] == 'b' || encoded[k] == 's'))
1050 {
1051 k++;
1052 /* Just as an extra precaution, make sure that if this
1053 suffix is followed by anything else, it is a '_'.
1054 Otherwise, we matched this sequence by accident. */
1055 if (k == len0
1056 || (k < len0 && encoded[k] == '_'))
1057 i = k;
1058 }
1059 }
1060
1061 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1062 the GNAT front-end in protected object subprograms. */
1063
1064 if (i < len0 + 3
1065 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1066 {
1067 /* Backtrack a bit up until we reach either the begining of
1068 the encoded name, or "__". Make sure that we only find
1069 digits or lowercase characters. */
1070 const char *ptr = encoded + i - 1;
1071
1072 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1073 ptr--;
1074 if (ptr < encoded
1075 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1076 i++;
1077 }
1078
1079 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1080 {
1081 /* This is a X[bn]* sequence not separated from the previous
1082 part of the name with a non-alpha-numeric character (in other
1083 words, immediately following an alpha-numeric character), then
1084 verify that it is placed at the end of the encoded name. If
1085 not, then the encoding is not valid and we should abort the
1086 decoding. Otherwise, just skip it, it is used in body-nested
1087 package names. */
1088 do
1089 i += 1;
1090 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1091 if (i < len0)
1092 goto Suppress;
1093 }
1094 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1095 {
1096 /* Replace '__' by '.'. */
1097 decoded[j] = '.';
1098 at_start_name = 1;
1099 i += 2;
1100 j += 1;
1101 }
1102 else
1103 {
1104 /* It's a character part of the decoded name, so just copy it
1105 over. */
1106 decoded[j] = encoded[i];
1107 i += 1;
1108 j += 1;
1109 }
1110 }
1111 decoded[j] = '\000';
1112
1113 /* Decoded names should never contain any uppercase character.
1114 Double-check this, and abort the decoding if we find one. */
1115
1116 for (i = 0; decoded[i] != '\0'; i += 1)
1117 if (isupper (decoded[i]) || decoded[i] == ' ')
1118 goto Suppress;
1119
1120 if (strcmp (decoded, encoded) == 0)
1121 return encoded;
1122 else
1123 return decoded;
1124
1125 Suppress:
1126 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1127 decoded = decoding_buffer;
1128 if (encoded[0] == '<')
1129 strcpy (decoded, encoded);
1130 else
1131 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1132 return decoded;
1133
1134 }
1135
1136 /* Table for keeping permanent unique copies of decoded names. Once
1137 allocated, names in this table are never released. While this is a
1138 storage leak, it should not be significant unless there are massive
1139 changes in the set of decoded names in successive versions of a
1140 symbol table loaded during a single session. */
1141 static struct htab *decoded_names_store;
1142
1143 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1144 in the language-specific part of GSYMBOL, if it has not been
1145 previously computed. Tries to save the decoded name in the same
1146 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1147 in any case, the decoded symbol has a lifetime at least that of
1148 GSYMBOL).
1149 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1150 const, but nevertheless modified to a semantically equivalent form
1151 when a decoded name is cached in it.
1152 */
1153
1154 char *
1155 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1156 {
1157 char **resultp =
1158 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1159 if (*resultp == NULL)
1160 {
1161 const char *decoded = ada_decode (gsymbol->name);
1162 if (gsymbol->obj_section != NULL)
1163 {
1164 struct objfile *objf = gsymbol->obj_section->objfile;
1165 *resultp = obsavestring (decoded, strlen (decoded),
1166 &objf->objfile_obstack);
1167 }
1168 /* Sometimes, we can't find a corresponding objfile, in which
1169 case, we put the result on the heap. Since we only decode
1170 when needed, we hope this usually does not cause a
1171 significant memory leak (FIXME). */
1172 if (*resultp == NULL)
1173 {
1174 char **slot = (char **) htab_find_slot (decoded_names_store,
1175 decoded, INSERT);
1176 if (*slot == NULL)
1177 *slot = xstrdup (decoded);
1178 *resultp = *slot;
1179 }
1180 }
1181
1182 return *resultp;
1183 }
1184
1185 static char *
1186 ada_la_decode (const char *encoded, int options)
1187 {
1188 return xstrdup (ada_decode (encoded));
1189 }
1190
1191 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1192 suffixes that encode debugging information or leading _ada_ on
1193 SYM_NAME (see is_name_suffix commentary for the debugging
1194 information that is ignored). If WILD, then NAME need only match a
1195 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1196 either argument is NULL. */
1197
1198 static int
1199 ada_match_name (const char *sym_name, const char *name, int wild)
1200 {
1201 if (sym_name == NULL || name == NULL)
1202 return 0;
1203 else if (wild)
1204 return wild_match (name, strlen (name), sym_name);
1205 else
1206 {
1207 int len_name = strlen (name);
1208 return (strncmp (sym_name, name, len_name) == 0
1209 && is_name_suffix (sym_name + len_name))
1210 || (strncmp (sym_name, "_ada_", 5) == 0
1211 && strncmp (sym_name + 5, name, len_name) == 0
1212 && is_name_suffix (sym_name + len_name + 5));
1213 }
1214 }
1215 \f
1216
1217 /* Arrays */
1218
1219 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1220
1221 static char *bound_name[] = {
1222 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1223 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1224 };
1225
1226 /* Maximum number of array dimensions we are prepared to handle. */
1227
1228 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1229
1230 /* Like modify_field, but allows bitpos > wordlength. */
1231
1232 static void
1233 modify_general_field (struct type *type, char *addr,
1234 LONGEST fieldval, int bitpos, int bitsize)
1235 {
1236 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1237 }
1238
1239
1240 /* The desc_* routines return primitive portions of array descriptors
1241 (fat pointers). */
1242
1243 /* The descriptor or array type, if any, indicated by TYPE; removes
1244 level of indirection, if needed. */
1245
1246 static struct type *
1247 desc_base_type (struct type *type)
1248 {
1249 if (type == NULL)
1250 return NULL;
1251 type = ada_check_typedef (type);
1252 if (type != NULL
1253 && (TYPE_CODE (type) == TYPE_CODE_PTR
1254 || TYPE_CODE (type) == TYPE_CODE_REF))
1255 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1256 else
1257 return type;
1258 }
1259
1260 /* True iff TYPE indicates a "thin" array pointer type. */
1261
1262 static int
1263 is_thin_pntr (struct type *type)
1264 {
1265 return
1266 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1267 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1268 }
1269
1270 /* The descriptor type for thin pointer type TYPE. */
1271
1272 static struct type *
1273 thin_descriptor_type (struct type *type)
1274 {
1275 struct type *base_type = desc_base_type (type);
1276 if (base_type == NULL)
1277 return NULL;
1278 if (is_suffix (ada_type_name (base_type), "___XVE"))
1279 return base_type;
1280 else
1281 {
1282 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1283 if (alt_type == NULL)
1284 return base_type;
1285 else
1286 return alt_type;
1287 }
1288 }
1289
1290 /* A pointer to the array data for thin-pointer value VAL. */
1291
1292 static struct value *
1293 thin_data_pntr (struct value *val)
1294 {
1295 struct type *type = value_type (val);
1296 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1297 data_type = lookup_pointer_type (data_type);
1298
1299 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1300 return value_cast (data_type, value_copy (val));
1301 else
1302 return value_from_longest (data_type, value_address (val));
1303 }
1304
1305 /* True iff TYPE indicates a "thick" array pointer type. */
1306
1307 static int
1308 is_thick_pntr (struct type *type)
1309 {
1310 type = desc_base_type (type);
1311 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1312 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1313 }
1314
1315 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1316 pointer to one, the type of its bounds data; otherwise, NULL. */
1317
1318 static struct type *
1319 desc_bounds_type (struct type *type)
1320 {
1321 struct type *r;
1322
1323 type = desc_base_type (type);
1324
1325 if (type == NULL)
1326 return NULL;
1327 else if (is_thin_pntr (type))
1328 {
1329 type = thin_descriptor_type (type);
1330 if (type == NULL)
1331 return NULL;
1332 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1333 if (r != NULL)
1334 return ada_check_typedef (r);
1335 }
1336 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1337 {
1338 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1339 if (r != NULL)
1340 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1341 }
1342 return NULL;
1343 }
1344
1345 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1346 one, a pointer to its bounds data. Otherwise NULL. */
1347
1348 static struct value *
1349 desc_bounds (struct value *arr)
1350 {
1351 struct type *type = ada_check_typedef (value_type (arr));
1352 if (is_thin_pntr (type))
1353 {
1354 struct type *bounds_type =
1355 desc_bounds_type (thin_descriptor_type (type));
1356 LONGEST addr;
1357
1358 if (bounds_type == NULL)
1359 error (_("Bad GNAT array descriptor"));
1360
1361 /* NOTE: The following calculation is not really kosher, but
1362 since desc_type is an XVE-encoded type (and shouldn't be),
1363 the correct calculation is a real pain. FIXME (and fix GCC). */
1364 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1365 addr = value_as_long (arr);
1366 else
1367 addr = value_address (arr);
1368
1369 return
1370 value_from_longest (lookup_pointer_type (bounds_type),
1371 addr - TYPE_LENGTH (bounds_type));
1372 }
1373
1374 else if (is_thick_pntr (type))
1375 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1376 _("Bad GNAT array descriptor"));
1377 else
1378 return NULL;
1379 }
1380
1381 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1382 position of the field containing the address of the bounds data. */
1383
1384 static int
1385 fat_pntr_bounds_bitpos (struct type *type)
1386 {
1387 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1388 }
1389
1390 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1391 size of the field containing the address of the bounds data. */
1392
1393 static int
1394 fat_pntr_bounds_bitsize (struct type *type)
1395 {
1396 type = desc_base_type (type);
1397
1398 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1399 return TYPE_FIELD_BITSIZE (type, 1);
1400 else
1401 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1402 }
1403
1404 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1405 pointer to one, the type of its array data (a array-with-no-bounds type);
1406 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1407 data. */
1408
1409 static struct type *
1410 desc_data_target_type (struct type *type)
1411 {
1412 type = desc_base_type (type);
1413
1414 /* NOTE: The following is bogus; see comment in desc_bounds. */
1415 if (is_thin_pntr (type))
1416 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1417 else if (is_thick_pntr (type))
1418 {
1419 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1420
1421 if (data_type
1422 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1423 return TYPE_TARGET_TYPE (data_type);
1424 }
1425
1426 return NULL;
1427 }
1428
1429 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1430 its array data. */
1431
1432 static struct value *
1433 desc_data (struct value *arr)
1434 {
1435 struct type *type = value_type (arr);
1436 if (is_thin_pntr (type))
1437 return thin_data_pntr (arr);
1438 else if (is_thick_pntr (type))
1439 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1440 _("Bad GNAT array descriptor"));
1441 else
1442 return NULL;
1443 }
1444
1445
1446 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1447 position of the field containing the address of the data. */
1448
1449 static int
1450 fat_pntr_data_bitpos (struct type *type)
1451 {
1452 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1453 }
1454
1455 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1456 size of the field containing the address of the data. */
1457
1458 static int
1459 fat_pntr_data_bitsize (struct type *type)
1460 {
1461 type = desc_base_type (type);
1462
1463 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1464 return TYPE_FIELD_BITSIZE (type, 0);
1465 else
1466 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1467 }
1468
1469 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1470 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1471 bound, if WHICH is 1. The first bound is I=1. */
1472
1473 static struct value *
1474 desc_one_bound (struct value *bounds, int i, int which)
1475 {
1476 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1477 _("Bad GNAT array descriptor bounds"));
1478 }
1479
1480 /* If BOUNDS is an array-bounds structure type, return the bit position
1481 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1482 bound, if WHICH is 1. The first bound is I=1. */
1483
1484 static int
1485 desc_bound_bitpos (struct type *type, int i, int which)
1486 {
1487 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1488 }
1489
1490 /* If BOUNDS is an array-bounds structure type, return the bit field size
1491 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1492 bound, if WHICH is 1. The first bound is I=1. */
1493
1494 static int
1495 desc_bound_bitsize (struct type *type, int i, int which)
1496 {
1497 type = desc_base_type (type);
1498
1499 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1500 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1501 else
1502 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1503 }
1504
1505 /* If TYPE is the type of an array-bounds structure, the type of its
1506 Ith bound (numbering from 1). Otherwise, NULL. */
1507
1508 static struct type *
1509 desc_index_type (struct type *type, int i)
1510 {
1511 type = desc_base_type (type);
1512
1513 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1514 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1515 else
1516 return NULL;
1517 }
1518
1519 /* The number of index positions in the array-bounds type TYPE.
1520 Return 0 if TYPE is NULL. */
1521
1522 static int
1523 desc_arity (struct type *type)
1524 {
1525 type = desc_base_type (type);
1526
1527 if (type != NULL)
1528 return TYPE_NFIELDS (type) / 2;
1529 return 0;
1530 }
1531
1532 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1533 an array descriptor type (representing an unconstrained array
1534 type). */
1535
1536 static int
1537 ada_is_direct_array_type (struct type *type)
1538 {
1539 if (type == NULL)
1540 return 0;
1541 type = ada_check_typedef (type);
1542 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1543 || ada_is_array_descriptor_type (type));
1544 }
1545
1546 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1547 * to one. */
1548
1549 static int
1550 ada_is_array_type (struct type *type)
1551 {
1552 while (type != NULL
1553 && (TYPE_CODE (type) == TYPE_CODE_PTR
1554 || TYPE_CODE (type) == TYPE_CODE_REF))
1555 type = TYPE_TARGET_TYPE (type);
1556 return ada_is_direct_array_type (type);
1557 }
1558
1559 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1560
1561 int
1562 ada_is_simple_array_type (struct type *type)
1563 {
1564 if (type == NULL)
1565 return 0;
1566 type = ada_check_typedef (type);
1567 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1568 || (TYPE_CODE (type) == TYPE_CODE_PTR
1569 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1570 }
1571
1572 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1573
1574 int
1575 ada_is_array_descriptor_type (struct type *type)
1576 {
1577 struct type *data_type = desc_data_target_type (type);
1578
1579 if (type == NULL)
1580 return 0;
1581 type = ada_check_typedef (type);
1582 return (data_type != NULL
1583 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1584 && desc_arity (desc_bounds_type (type)) > 0);
1585 }
1586
1587 /* Non-zero iff type is a partially mal-formed GNAT array
1588 descriptor. FIXME: This is to compensate for some problems with
1589 debugging output from GNAT. Re-examine periodically to see if it
1590 is still needed. */
1591
1592 int
1593 ada_is_bogus_array_descriptor (struct type *type)
1594 {
1595 return
1596 type != NULL
1597 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1598 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1599 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1600 && !ada_is_array_descriptor_type (type);
1601 }
1602
1603
1604 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1605 (fat pointer) returns the type of the array data described---specifically,
1606 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1607 in from the descriptor; otherwise, they are left unspecified. If
1608 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1609 returns NULL. The result is simply the type of ARR if ARR is not
1610 a descriptor. */
1611 struct type *
1612 ada_type_of_array (struct value *arr, int bounds)
1613 {
1614 if (ada_is_constrained_packed_array_type (value_type (arr)))
1615 return decode_constrained_packed_array_type (value_type (arr));
1616
1617 if (!ada_is_array_descriptor_type (value_type (arr)))
1618 return value_type (arr);
1619
1620 if (!bounds)
1621 {
1622 struct type *array_type =
1623 ada_check_typedef (desc_data_target_type (value_type (arr)));
1624
1625 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1626 TYPE_FIELD_BITSIZE (array_type, 0) =
1627 decode_packed_array_bitsize (value_type (arr));
1628
1629 return array_type;
1630 }
1631 else
1632 {
1633 struct type *elt_type;
1634 int arity;
1635 struct value *descriptor;
1636
1637 elt_type = ada_array_element_type (value_type (arr), -1);
1638 arity = ada_array_arity (value_type (arr));
1639
1640 if (elt_type == NULL || arity == 0)
1641 return ada_check_typedef (value_type (arr));
1642
1643 descriptor = desc_bounds (arr);
1644 if (value_as_long (descriptor) == 0)
1645 return NULL;
1646 while (arity > 0)
1647 {
1648 struct type *range_type = alloc_type_copy (value_type (arr));
1649 struct type *array_type = alloc_type_copy (value_type (arr));
1650 struct value *low = desc_one_bound (descriptor, arity, 0);
1651 struct value *high = desc_one_bound (descriptor, arity, 1);
1652 arity -= 1;
1653
1654 create_range_type (range_type, value_type (low),
1655 longest_to_int (value_as_long (low)),
1656 longest_to_int (value_as_long (high)));
1657 elt_type = create_array_type (array_type, elt_type, range_type);
1658
1659 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1660 TYPE_FIELD_BITSIZE (elt_type, 0) =
1661 decode_packed_array_bitsize (value_type (arr));
1662 }
1663
1664 return lookup_pointer_type (elt_type);
1665 }
1666 }
1667
1668 /* If ARR does not represent an array, returns ARR unchanged.
1669 Otherwise, returns either a standard GDB array with bounds set
1670 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1671 GDB array. Returns NULL if ARR is a null fat pointer. */
1672
1673 struct value *
1674 ada_coerce_to_simple_array_ptr (struct value *arr)
1675 {
1676 if (ada_is_array_descriptor_type (value_type (arr)))
1677 {
1678 struct type *arrType = ada_type_of_array (arr, 1);
1679 if (arrType == NULL)
1680 return NULL;
1681 return value_cast (arrType, value_copy (desc_data (arr)));
1682 }
1683 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1684 return decode_constrained_packed_array (arr);
1685 else
1686 return arr;
1687 }
1688
1689 /* If ARR does not represent an array, returns ARR unchanged.
1690 Otherwise, returns a standard GDB array describing ARR (which may
1691 be ARR itself if it already is in the proper form). */
1692
1693 static struct value *
1694 ada_coerce_to_simple_array (struct value *arr)
1695 {
1696 if (ada_is_array_descriptor_type (value_type (arr)))
1697 {
1698 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1699 if (arrVal == NULL)
1700 error (_("Bounds unavailable for null array pointer."));
1701 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1702 return value_ind (arrVal);
1703 }
1704 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1705 return decode_constrained_packed_array (arr);
1706 else
1707 return arr;
1708 }
1709
1710 /* If TYPE represents a GNAT array type, return it translated to an
1711 ordinary GDB array type (possibly with BITSIZE fields indicating
1712 packing). For other types, is the identity. */
1713
1714 struct type *
1715 ada_coerce_to_simple_array_type (struct type *type)
1716 {
1717 if (ada_is_constrained_packed_array_type (type))
1718 return decode_constrained_packed_array_type (type);
1719
1720 if (ada_is_array_descriptor_type (type))
1721 return ada_check_typedef (desc_data_target_type (type));
1722
1723 return type;
1724 }
1725
1726 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1727
1728 static int
1729 ada_is_packed_array_type (struct type *type)
1730 {
1731 if (type == NULL)
1732 return 0;
1733 type = desc_base_type (type);
1734 type = ada_check_typedef (type);
1735 return
1736 ada_type_name (type) != NULL
1737 && strstr (ada_type_name (type), "___XP") != NULL;
1738 }
1739
1740 /* Non-zero iff TYPE represents a standard GNAT constrained
1741 packed-array type. */
1742
1743 int
1744 ada_is_constrained_packed_array_type (struct type *type)
1745 {
1746 return ada_is_packed_array_type (type)
1747 && !ada_is_array_descriptor_type (type);
1748 }
1749
1750 /* Non-zero iff TYPE represents an array descriptor for a
1751 unconstrained packed-array type. */
1752
1753 static int
1754 ada_is_unconstrained_packed_array_type (struct type *type)
1755 {
1756 return ada_is_packed_array_type (type)
1757 && ada_is_array_descriptor_type (type);
1758 }
1759
1760 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1761 return the size of its elements in bits. */
1762
1763 static long
1764 decode_packed_array_bitsize (struct type *type)
1765 {
1766 char *raw_name = ada_type_name (ada_check_typedef (type));
1767 char *tail;
1768 long bits;
1769
1770 if (!raw_name)
1771 raw_name = ada_type_name (desc_base_type (type));
1772
1773 if (!raw_name)
1774 return 0;
1775
1776 tail = strstr (raw_name, "___XP");
1777
1778 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1779 {
1780 lim_warning
1781 (_("could not understand bit size information on packed array"));
1782 return 0;
1783 }
1784
1785 return bits;
1786 }
1787
1788 /* Given that TYPE is a standard GDB array type with all bounds filled
1789 in, and that the element size of its ultimate scalar constituents
1790 (that is, either its elements, or, if it is an array of arrays, its
1791 elements' elements, etc.) is *ELT_BITS, return an identical type,
1792 but with the bit sizes of its elements (and those of any
1793 constituent arrays) recorded in the BITSIZE components of its
1794 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1795 in bits. */
1796
1797 static struct type *
1798 constrained_packed_array_type (struct type *type, long *elt_bits)
1799 {
1800 struct type *new_elt_type;
1801 struct type *new_type;
1802 LONGEST low_bound, high_bound;
1803
1804 type = ada_check_typedef (type);
1805 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1806 return type;
1807
1808 new_type = alloc_type_copy (type);
1809 new_elt_type =
1810 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1811 elt_bits);
1812 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1813 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1814 TYPE_NAME (new_type) = ada_type_name (type);
1815
1816 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1817 &low_bound, &high_bound) < 0)
1818 low_bound = high_bound = 0;
1819 if (high_bound < low_bound)
1820 *elt_bits = TYPE_LENGTH (new_type) = 0;
1821 else
1822 {
1823 *elt_bits *= (high_bound - low_bound + 1);
1824 TYPE_LENGTH (new_type) =
1825 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1826 }
1827
1828 TYPE_FIXED_INSTANCE (new_type) = 1;
1829 return new_type;
1830 }
1831
1832 /* The array type encoded by TYPE, where
1833 ada_is_constrained_packed_array_type (TYPE). */
1834
1835 static struct type *
1836 decode_constrained_packed_array_type (struct type *type)
1837 {
1838 struct symbol *sym;
1839 struct block **blocks;
1840 char *raw_name = ada_type_name (ada_check_typedef (type));
1841 char *name;
1842 char *tail;
1843 struct type *shadow_type;
1844 long bits;
1845 int i, n;
1846
1847 if (!raw_name)
1848 raw_name = ada_type_name (desc_base_type (type));
1849
1850 if (!raw_name)
1851 return NULL;
1852
1853 name = (char *) alloca (strlen (raw_name) + 1);
1854 tail = strstr (raw_name, "___XP");
1855 type = desc_base_type (type);
1856
1857 memcpy (name, raw_name, tail - raw_name);
1858 name[tail - raw_name] = '\000';
1859
1860 shadow_type = ada_find_parallel_type_with_name (type, name);
1861
1862 if (shadow_type == NULL)
1863 {
1864 lim_warning (_("could not find bounds information on packed array"));
1865 return NULL;
1866 }
1867 CHECK_TYPEDEF (shadow_type);
1868
1869 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1870 {
1871 lim_warning (_("could not understand bounds information on packed array"));
1872 return NULL;
1873 }
1874
1875 bits = decode_packed_array_bitsize (type);
1876 return constrained_packed_array_type (shadow_type, &bits);
1877 }
1878
1879 /* Given that ARR is a struct value *indicating a GNAT constrained packed
1880 array, returns a simple array that denotes that array. Its type is a
1881 standard GDB array type except that the BITSIZEs of the array
1882 target types are set to the number of bits in each element, and the
1883 type length is set appropriately. */
1884
1885 static struct value *
1886 decode_constrained_packed_array (struct value *arr)
1887 {
1888 struct type *type;
1889
1890 arr = ada_coerce_ref (arr);
1891
1892 /* If our value is a pointer, then dererence it. Make sure that
1893 this operation does not cause the target type to be fixed, as
1894 this would indirectly cause this array to be decoded. The rest
1895 of the routine assumes that the array hasn't been decoded yet,
1896 so we use the basic "value_ind" routine to perform the dereferencing,
1897 as opposed to using "ada_value_ind". */
1898 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1899 arr = value_ind (arr);
1900
1901 type = decode_constrained_packed_array_type (value_type (arr));
1902 if (type == NULL)
1903 {
1904 error (_("can't unpack array"));
1905 return NULL;
1906 }
1907
1908 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1909 && ada_is_modular_type (value_type (arr)))
1910 {
1911 /* This is a (right-justified) modular type representing a packed
1912 array with no wrapper. In order to interpret the value through
1913 the (left-justified) packed array type we just built, we must
1914 first left-justify it. */
1915 int bit_size, bit_pos;
1916 ULONGEST mod;
1917
1918 mod = ada_modulus (value_type (arr)) - 1;
1919 bit_size = 0;
1920 while (mod > 0)
1921 {
1922 bit_size += 1;
1923 mod >>= 1;
1924 }
1925 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1926 arr = ada_value_primitive_packed_val (arr, NULL,
1927 bit_pos / HOST_CHAR_BIT,
1928 bit_pos % HOST_CHAR_BIT,
1929 bit_size,
1930 type);
1931 }
1932
1933 return coerce_unspec_val_to_type (arr, type);
1934 }
1935
1936
1937 /* The value of the element of packed array ARR at the ARITY indices
1938 given in IND. ARR must be a simple array. */
1939
1940 static struct value *
1941 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1942 {
1943 int i;
1944 int bits, elt_off, bit_off;
1945 long elt_total_bit_offset;
1946 struct type *elt_type;
1947 struct value *v;
1948
1949 bits = 0;
1950 elt_total_bit_offset = 0;
1951 elt_type = ada_check_typedef (value_type (arr));
1952 for (i = 0; i < arity; i += 1)
1953 {
1954 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1955 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1956 error
1957 (_("attempt to do packed indexing of something other than a packed array"));
1958 else
1959 {
1960 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1961 LONGEST lowerbound, upperbound;
1962 LONGEST idx;
1963
1964 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1965 {
1966 lim_warning (_("don't know bounds of array"));
1967 lowerbound = upperbound = 0;
1968 }
1969
1970 idx = pos_atr (ind[i]);
1971 if (idx < lowerbound || idx > upperbound)
1972 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1973 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1974 elt_total_bit_offset += (idx - lowerbound) * bits;
1975 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1976 }
1977 }
1978 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1979 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1980
1981 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1982 bits, elt_type);
1983 return v;
1984 }
1985
1986 /* Non-zero iff TYPE includes negative integer values. */
1987
1988 static int
1989 has_negatives (struct type *type)
1990 {
1991 switch (TYPE_CODE (type))
1992 {
1993 default:
1994 return 0;
1995 case TYPE_CODE_INT:
1996 return !TYPE_UNSIGNED (type);
1997 case TYPE_CODE_RANGE:
1998 return TYPE_LOW_BOUND (type) < 0;
1999 }
2000 }
2001
2002
2003 /* Create a new value of type TYPE from the contents of OBJ starting
2004 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2005 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2006 assigning through the result will set the field fetched from.
2007 VALADDR is ignored unless OBJ is NULL, in which case,
2008 VALADDR+OFFSET must address the start of storage containing the
2009 packed value. The value returned in this case is never an lval.
2010 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2011
2012 struct value *
2013 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2014 long offset, int bit_offset, int bit_size,
2015 struct type *type)
2016 {
2017 struct value *v;
2018 int src, /* Index into the source area */
2019 targ, /* Index into the target area */
2020 srcBitsLeft, /* Number of source bits left to move */
2021 nsrc, ntarg, /* Number of source and target bytes */
2022 unusedLS, /* Number of bits in next significant
2023 byte of source that are unused */
2024 accumSize; /* Number of meaningful bits in accum */
2025 unsigned char *bytes; /* First byte containing data to unpack */
2026 unsigned char *unpacked;
2027 unsigned long accum; /* Staging area for bits being transferred */
2028 unsigned char sign;
2029 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2030 /* Transmit bytes from least to most significant; delta is the direction
2031 the indices move. */
2032 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2033
2034 type = ada_check_typedef (type);
2035
2036 if (obj == NULL)
2037 {
2038 v = allocate_value (type);
2039 bytes = (unsigned char *) (valaddr + offset);
2040 }
2041 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2042 {
2043 v = value_at (type,
2044 value_address (obj) + offset);
2045 bytes = (unsigned char *) alloca (len);
2046 read_memory (value_address (v), bytes, len);
2047 }
2048 else
2049 {
2050 v = allocate_value (type);
2051 bytes = (unsigned char *) value_contents (obj) + offset;
2052 }
2053
2054 if (obj != NULL)
2055 {
2056 CORE_ADDR new_addr;
2057 set_value_component_location (v, obj);
2058 new_addr = value_address (obj) + offset;
2059 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2060 set_value_bitsize (v, bit_size);
2061 if (value_bitpos (v) >= HOST_CHAR_BIT)
2062 {
2063 ++new_addr;
2064 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2065 }
2066 set_value_address (v, new_addr);
2067 }
2068 else
2069 set_value_bitsize (v, bit_size);
2070 unpacked = (unsigned char *) value_contents (v);
2071
2072 srcBitsLeft = bit_size;
2073 nsrc = len;
2074 ntarg = TYPE_LENGTH (type);
2075 sign = 0;
2076 if (bit_size == 0)
2077 {
2078 memset (unpacked, 0, TYPE_LENGTH (type));
2079 return v;
2080 }
2081 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2082 {
2083 src = len - 1;
2084 if (has_negatives (type)
2085 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2086 sign = ~0;
2087
2088 unusedLS =
2089 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2090 % HOST_CHAR_BIT;
2091
2092 switch (TYPE_CODE (type))
2093 {
2094 case TYPE_CODE_ARRAY:
2095 case TYPE_CODE_UNION:
2096 case TYPE_CODE_STRUCT:
2097 /* Non-scalar values must be aligned at a byte boundary... */
2098 accumSize =
2099 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2100 /* ... And are placed at the beginning (most-significant) bytes
2101 of the target. */
2102 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2103 ntarg = targ + 1;
2104 break;
2105 default:
2106 accumSize = 0;
2107 targ = TYPE_LENGTH (type) - 1;
2108 break;
2109 }
2110 }
2111 else
2112 {
2113 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2114
2115 src = targ = 0;
2116 unusedLS = bit_offset;
2117 accumSize = 0;
2118
2119 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2120 sign = ~0;
2121 }
2122
2123 accum = 0;
2124 while (nsrc > 0)
2125 {
2126 /* Mask for removing bits of the next source byte that are not
2127 part of the value. */
2128 unsigned int unusedMSMask =
2129 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2130 1;
2131 /* Sign-extend bits for this byte. */
2132 unsigned int signMask = sign & ~unusedMSMask;
2133 accum |=
2134 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2135 accumSize += HOST_CHAR_BIT - unusedLS;
2136 if (accumSize >= HOST_CHAR_BIT)
2137 {
2138 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2139 accumSize -= HOST_CHAR_BIT;
2140 accum >>= HOST_CHAR_BIT;
2141 ntarg -= 1;
2142 targ += delta;
2143 }
2144 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2145 unusedLS = 0;
2146 nsrc -= 1;
2147 src += delta;
2148 }
2149 while (ntarg > 0)
2150 {
2151 accum |= sign << accumSize;
2152 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2153 accumSize -= HOST_CHAR_BIT;
2154 accum >>= HOST_CHAR_BIT;
2155 ntarg -= 1;
2156 targ += delta;
2157 }
2158
2159 return v;
2160 }
2161
2162 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2163 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2164 not overlap. */
2165 static void
2166 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2167 int src_offset, int n, int bits_big_endian_p)
2168 {
2169 unsigned int accum, mask;
2170 int accum_bits, chunk_size;
2171
2172 target += targ_offset / HOST_CHAR_BIT;
2173 targ_offset %= HOST_CHAR_BIT;
2174 source += src_offset / HOST_CHAR_BIT;
2175 src_offset %= HOST_CHAR_BIT;
2176 if (bits_big_endian_p)
2177 {
2178 accum = (unsigned char) *source;
2179 source += 1;
2180 accum_bits = HOST_CHAR_BIT - src_offset;
2181
2182 while (n > 0)
2183 {
2184 int unused_right;
2185 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2186 accum_bits += HOST_CHAR_BIT;
2187 source += 1;
2188 chunk_size = HOST_CHAR_BIT - targ_offset;
2189 if (chunk_size > n)
2190 chunk_size = n;
2191 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2192 mask = ((1 << chunk_size) - 1) << unused_right;
2193 *target =
2194 (*target & ~mask)
2195 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2196 n -= chunk_size;
2197 accum_bits -= chunk_size;
2198 target += 1;
2199 targ_offset = 0;
2200 }
2201 }
2202 else
2203 {
2204 accum = (unsigned char) *source >> src_offset;
2205 source += 1;
2206 accum_bits = HOST_CHAR_BIT - src_offset;
2207
2208 while (n > 0)
2209 {
2210 accum = accum + ((unsigned char) *source << accum_bits);
2211 accum_bits += HOST_CHAR_BIT;
2212 source += 1;
2213 chunk_size = HOST_CHAR_BIT - targ_offset;
2214 if (chunk_size > n)
2215 chunk_size = n;
2216 mask = ((1 << chunk_size) - 1) << targ_offset;
2217 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2218 n -= chunk_size;
2219 accum_bits -= chunk_size;
2220 accum >>= chunk_size;
2221 target += 1;
2222 targ_offset = 0;
2223 }
2224 }
2225 }
2226
2227 /* Store the contents of FROMVAL into the location of TOVAL.
2228 Return a new value with the location of TOVAL and contents of
2229 FROMVAL. Handles assignment into packed fields that have
2230 floating-point or non-scalar types. */
2231
2232 static struct value *
2233 ada_value_assign (struct value *toval, struct value *fromval)
2234 {
2235 struct type *type = value_type (toval);
2236 int bits = value_bitsize (toval);
2237
2238 toval = ada_coerce_ref (toval);
2239 fromval = ada_coerce_ref (fromval);
2240
2241 if (ada_is_direct_array_type (value_type (toval)))
2242 toval = ada_coerce_to_simple_array (toval);
2243 if (ada_is_direct_array_type (value_type (fromval)))
2244 fromval = ada_coerce_to_simple_array (fromval);
2245
2246 if (!deprecated_value_modifiable (toval))
2247 error (_("Left operand of assignment is not a modifiable lvalue."));
2248
2249 if (VALUE_LVAL (toval) == lval_memory
2250 && bits > 0
2251 && (TYPE_CODE (type) == TYPE_CODE_FLT
2252 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2253 {
2254 int len = (value_bitpos (toval)
2255 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2256 int from_size;
2257 char *buffer = (char *) alloca (len);
2258 struct value *val;
2259 CORE_ADDR to_addr = value_address (toval);
2260
2261 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2262 fromval = value_cast (type, fromval);
2263
2264 read_memory (to_addr, buffer, len);
2265 from_size = value_bitsize (fromval);
2266 if (from_size == 0)
2267 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2268 if (gdbarch_bits_big_endian (get_type_arch (type)))
2269 move_bits (buffer, value_bitpos (toval),
2270 value_contents (fromval), from_size - bits, bits, 1);
2271 else
2272 move_bits (buffer, value_bitpos (toval),
2273 value_contents (fromval), 0, bits, 0);
2274 write_memory (to_addr, buffer, len);
2275 observer_notify_memory_changed (to_addr, len, buffer);
2276
2277 val = value_copy (toval);
2278 memcpy (value_contents_raw (val), value_contents (fromval),
2279 TYPE_LENGTH (type));
2280 deprecated_set_value_type (val, type);
2281
2282 return val;
2283 }
2284
2285 return value_assign (toval, fromval);
2286 }
2287
2288
2289 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2290 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2291 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2292 * COMPONENT, and not the inferior's memory. The current contents
2293 * of COMPONENT are ignored. */
2294 static void
2295 value_assign_to_component (struct value *container, struct value *component,
2296 struct value *val)
2297 {
2298 LONGEST offset_in_container =
2299 (LONGEST) (value_address (component) - value_address (container));
2300 int bit_offset_in_container =
2301 value_bitpos (component) - value_bitpos (container);
2302 int bits;
2303
2304 val = value_cast (value_type (component), val);
2305
2306 if (value_bitsize (component) == 0)
2307 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2308 else
2309 bits = value_bitsize (component);
2310
2311 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2312 move_bits (value_contents_writeable (container) + offset_in_container,
2313 value_bitpos (container) + bit_offset_in_container,
2314 value_contents (val),
2315 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2316 bits, 1);
2317 else
2318 move_bits (value_contents_writeable (container) + offset_in_container,
2319 value_bitpos (container) + bit_offset_in_container,
2320 value_contents (val), 0, bits, 0);
2321 }
2322
2323 /* The value of the element of array ARR at the ARITY indices given in IND.
2324 ARR may be either a simple array, GNAT array descriptor, or pointer
2325 thereto. */
2326
2327 struct value *
2328 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2329 {
2330 int k;
2331 struct value *elt;
2332 struct type *elt_type;
2333
2334 elt = ada_coerce_to_simple_array (arr);
2335
2336 elt_type = ada_check_typedef (value_type (elt));
2337 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2338 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2339 return value_subscript_packed (elt, arity, ind);
2340
2341 for (k = 0; k < arity; k += 1)
2342 {
2343 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2344 error (_("too many subscripts (%d expected)"), k);
2345 elt = value_subscript (elt, pos_atr (ind[k]));
2346 }
2347 return elt;
2348 }
2349
2350 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2351 value of the element of *ARR at the ARITY indices given in
2352 IND. Does not read the entire array into memory. */
2353
2354 static struct value *
2355 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2356 struct value **ind)
2357 {
2358 int k;
2359
2360 for (k = 0; k < arity; k += 1)
2361 {
2362 LONGEST lwb, upb;
2363
2364 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2365 error (_("too many subscripts (%d expected)"), k);
2366 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2367 value_copy (arr));
2368 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2369 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2370 type = TYPE_TARGET_TYPE (type);
2371 }
2372
2373 return value_ind (arr);
2374 }
2375
2376 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2377 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2378 elements starting at index LOW. The lower bound of this array is LOW, as
2379 per Ada rules. */
2380 static struct value *
2381 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2382 int low, int high)
2383 {
2384 CORE_ADDR base = value_as_address (array_ptr)
2385 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2386 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2387 struct type *index_type =
2388 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2389 low, high);
2390 struct type *slice_type =
2391 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2392 return value_at_lazy (slice_type, base);
2393 }
2394
2395
2396 static struct value *
2397 ada_value_slice (struct value *array, int low, int high)
2398 {
2399 struct type *type = value_type (array);
2400 struct type *index_type =
2401 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2402 struct type *slice_type =
2403 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2404 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2405 }
2406
2407 /* If type is a record type in the form of a standard GNAT array
2408 descriptor, returns the number of dimensions for type. If arr is a
2409 simple array, returns the number of "array of"s that prefix its
2410 type designation. Otherwise, returns 0. */
2411
2412 int
2413 ada_array_arity (struct type *type)
2414 {
2415 int arity;
2416
2417 if (type == NULL)
2418 return 0;
2419
2420 type = desc_base_type (type);
2421
2422 arity = 0;
2423 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2424 return desc_arity (desc_bounds_type (type));
2425 else
2426 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2427 {
2428 arity += 1;
2429 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2430 }
2431
2432 return arity;
2433 }
2434
2435 /* If TYPE is a record type in the form of a standard GNAT array
2436 descriptor or a simple array type, returns the element type for
2437 TYPE after indexing by NINDICES indices, or by all indices if
2438 NINDICES is -1. Otherwise, returns NULL. */
2439
2440 struct type *
2441 ada_array_element_type (struct type *type, int nindices)
2442 {
2443 type = desc_base_type (type);
2444
2445 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2446 {
2447 int k;
2448 struct type *p_array_type;
2449
2450 p_array_type = desc_data_target_type (type);
2451
2452 k = ada_array_arity (type);
2453 if (k == 0)
2454 return NULL;
2455
2456 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2457 if (nindices >= 0 && k > nindices)
2458 k = nindices;
2459 while (k > 0 && p_array_type != NULL)
2460 {
2461 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2462 k -= 1;
2463 }
2464 return p_array_type;
2465 }
2466 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2467 {
2468 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2469 {
2470 type = TYPE_TARGET_TYPE (type);
2471 nindices -= 1;
2472 }
2473 return type;
2474 }
2475
2476 return NULL;
2477 }
2478
2479 /* The type of nth index in arrays of given type (n numbering from 1).
2480 Does not examine memory. Throws an error if N is invalid or TYPE
2481 is not an array type. NAME is the name of the Ada attribute being
2482 evaluated ('range, 'first, 'last, or 'length); it is used in building
2483 the error message. */
2484
2485 static struct type *
2486 ada_index_type (struct type *type, int n, const char *name)
2487 {
2488 struct type *result_type;
2489
2490 type = desc_base_type (type);
2491
2492 if (n < 0 || n > ada_array_arity (type))
2493 error (_("invalid dimension number to '%s"), name);
2494
2495 if (ada_is_simple_array_type (type))
2496 {
2497 int i;
2498
2499 for (i = 1; i < n; i += 1)
2500 type = TYPE_TARGET_TYPE (type);
2501 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2502 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2503 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2504 perhaps stabsread.c would make more sense. */
2505 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2506 result_type = NULL;
2507 }
2508 else
2509 {
2510 result_type = desc_index_type (desc_bounds_type (type), n);
2511 if (result_type == NULL)
2512 error (_("attempt to take bound of something that is not an array"));
2513 }
2514
2515 return result_type;
2516 }
2517
2518 /* Given that arr is an array type, returns the lower bound of the
2519 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2520 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2521 array-descriptor type. It works for other arrays with bounds supplied
2522 by run-time quantities other than discriminants. */
2523
2524 static LONGEST
2525 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2526 {
2527 struct type *type, *elt_type, *index_type_desc, *index_type;
2528 int i;
2529
2530 gdb_assert (which == 0 || which == 1);
2531
2532 if (ada_is_constrained_packed_array_type (arr_type))
2533 arr_type = decode_constrained_packed_array_type (arr_type);
2534
2535 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2536 return (LONGEST) - which;
2537
2538 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2539 type = TYPE_TARGET_TYPE (arr_type);
2540 else
2541 type = arr_type;
2542
2543 elt_type = type;
2544 for (i = n; i > 1; i--)
2545 elt_type = TYPE_TARGET_TYPE (type);
2546
2547 index_type_desc = ada_find_parallel_type (type, "___XA");
2548 if (index_type_desc != NULL)
2549 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2550 NULL, TYPE_INDEX_TYPE (elt_type));
2551 else
2552 index_type = TYPE_INDEX_TYPE (elt_type);
2553
2554 return
2555 (LONGEST) (which == 0
2556 ? ada_discrete_type_low_bound (index_type)
2557 : ada_discrete_type_high_bound (index_type));
2558 }
2559
2560 /* Given that arr is an array value, returns the lower bound of the
2561 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2562 WHICH is 1. This routine will also work for arrays with bounds
2563 supplied by run-time quantities other than discriminants. */
2564
2565 static LONGEST
2566 ada_array_bound (struct value *arr, int n, int which)
2567 {
2568 struct type *arr_type = value_type (arr);
2569
2570 if (ada_is_constrained_packed_array_type (arr_type))
2571 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2572 else if (ada_is_simple_array_type (arr_type))
2573 return ada_array_bound_from_type (arr_type, n, which);
2574 else
2575 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2576 }
2577
2578 /* Given that arr is an array value, returns the length of the
2579 nth index. This routine will also work for arrays with bounds
2580 supplied by run-time quantities other than discriminants.
2581 Does not work for arrays indexed by enumeration types with representation
2582 clauses at the moment. */
2583
2584 static LONGEST
2585 ada_array_length (struct value *arr, int n)
2586 {
2587 struct type *arr_type = ada_check_typedef (value_type (arr));
2588
2589 if (ada_is_constrained_packed_array_type (arr_type))
2590 return ada_array_length (decode_constrained_packed_array (arr), n);
2591
2592 if (ada_is_simple_array_type (arr_type))
2593 return (ada_array_bound_from_type (arr_type, n, 1)
2594 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2595 else
2596 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2597 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2598 }
2599
2600 /* An empty array whose type is that of ARR_TYPE (an array type),
2601 with bounds LOW to LOW-1. */
2602
2603 static struct value *
2604 empty_array (struct type *arr_type, int low)
2605 {
2606 struct type *index_type =
2607 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2608 low, low - 1);
2609 struct type *elt_type = ada_array_element_type (arr_type, 1);
2610 return allocate_value (create_array_type (NULL, elt_type, index_type));
2611 }
2612 \f
2613
2614 /* Name resolution */
2615
2616 /* The "decoded" name for the user-definable Ada operator corresponding
2617 to OP. */
2618
2619 static const char *
2620 ada_decoded_op_name (enum exp_opcode op)
2621 {
2622 int i;
2623
2624 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2625 {
2626 if (ada_opname_table[i].op == op)
2627 return ada_opname_table[i].decoded;
2628 }
2629 error (_("Could not find operator name for opcode"));
2630 }
2631
2632
2633 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2634 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2635 undefined namespace) and converts operators that are
2636 user-defined into appropriate function calls. If CONTEXT_TYPE is
2637 non-null, it provides a preferred result type [at the moment, only
2638 type void has any effect---causing procedures to be preferred over
2639 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2640 return type is preferred. May change (expand) *EXP. */
2641
2642 static void
2643 resolve (struct expression **expp, int void_context_p)
2644 {
2645 struct type *context_type = NULL;
2646 int pc = 0;
2647
2648 if (void_context_p)
2649 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2650
2651 resolve_subexp (expp, &pc, 1, context_type);
2652 }
2653
2654 /* Resolve the operator of the subexpression beginning at
2655 position *POS of *EXPP. "Resolving" consists of replacing
2656 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2657 with their resolutions, replacing built-in operators with
2658 function calls to user-defined operators, where appropriate, and,
2659 when DEPROCEDURE_P is non-zero, converting function-valued variables
2660 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2661 are as in ada_resolve, above. */
2662
2663 static struct value *
2664 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2665 struct type *context_type)
2666 {
2667 int pc = *pos;
2668 int i;
2669 struct expression *exp; /* Convenience: == *expp. */
2670 enum exp_opcode op = (*expp)->elts[pc].opcode;
2671 struct value **argvec; /* Vector of operand types (alloca'ed). */
2672 int nargs; /* Number of operands. */
2673 int oplen;
2674
2675 argvec = NULL;
2676 nargs = 0;
2677 exp = *expp;
2678
2679 /* Pass one: resolve operands, saving their types and updating *pos,
2680 if needed. */
2681 switch (op)
2682 {
2683 case OP_FUNCALL:
2684 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2685 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2686 *pos += 7;
2687 else
2688 {
2689 *pos += 3;
2690 resolve_subexp (expp, pos, 0, NULL);
2691 }
2692 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2693 break;
2694
2695 case UNOP_ADDR:
2696 *pos += 1;
2697 resolve_subexp (expp, pos, 0, NULL);
2698 break;
2699
2700 case UNOP_QUAL:
2701 *pos += 3;
2702 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2703 break;
2704
2705 case OP_ATR_MODULUS:
2706 case OP_ATR_SIZE:
2707 case OP_ATR_TAG:
2708 case OP_ATR_FIRST:
2709 case OP_ATR_LAST:
2710 case OP_ATR_LENGTH:
2711 case OP_ATR_POS:
2712 case OP_ATR_VAL:
2713 case OP_ATR_MIN:
2714 case OP_ATR_MAX:
2715 case TERNOP_IN_RANGE:
2716 case BINOP_IN_BOUNDS:
2717 case UNOP_IN_RANGE:
2718 case OP_AGGREGATE:
2719 case OP_OTHERS:
2720 case OP_CHOICES:
2721 case OP_POSITIONAL:
2722 case OP_DISCRETE_RANGE:
2723 case OP_NAME:
2724 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2725 *pos += oplen;
2726 break;
2727
2728 case BINOP_ASSIGN:
2729 {
2730 struct value *arg1;
2731
2732 *pos += 1;
2733 arg1 = resolve_subexp (expp, pos, 0, NULL);
2734 if (arg1 == NULL)
2735 resolve_subexp (expp, pos, 1, NULL);
2736 else
2737 resolve_subexp (expp, pos, 1, value_type (arg1));
2738 break;
2739 }
2740
2741 case UNOP_CAST:
2742 *pos += 3;
2743 nargs = 1;
2744 break;
2745
2746 case BINOP_ADD:
2747 case BINOP_SUB:
2748 case BINOP_MUL:
2749 case BINOP_DIV:
2750 case BINOP_REM:
2751 case BINOP_MOD:
2752 case BINOP_EXP:
2753 case BINOP_CONCAT:
2754 case BINOP_LOGICAL_AND:
2755 case BINOP_LOGICAL_OR:
2756 case BINOP_BITWISE_AND:
2757 case BINOP_BITWISE_IOR:
2758 case BINOP_BITWISE_XOR:
2759
2760 case BINOP_EQUAL:
2761 case BINOP_NOTEQUAL:
2762 case BINOP_LESS:
2763 case BINOP_GTR:
2764 case BINOP_LEQ:
2765 case BINOP_GEQ:
2766
2767 case BINOP_REPEAT:
2768 case BINOP_SUBSCRIPT:
2769 case BINOP_COMMA:
2770 *pos += 1;
2771 nargs = 2;
2772 break;
2773
2774 case UNOP_NEG:
2775 case UNOP_PLUS:
2776 case UNOP_LOGICAL_NOT:
2777 case UNOP_ABS:
2778 case UNOP_IND:
2779 *pos += 1;
2780 nargs = 1;
2781 break;
2782
2783 case OP_LONG:
2784 case OP_DOUBLE:
2785 case OP_VAR_VALUE:
2786 *pos += 4;
2787 break;
2788
2789 case OP_TYPE:
2790 case OP_BOOL:
2791 case OP_LAST:
2792 case OP_INTERNALVAR:
2793 *pos += 3;
2794 break;
2795
2796 case UNOP_MEMVAL:
2797 *pos += 3;
2798 nargs = 1;
2799 break;
2800
2801 case OP_REGISTER:
2802 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2803 break;
2804
2805 case STRUCTOP_STRUCT:
2806 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2807 nargs = 1;
2808 break;
2809
2810 case TERNOP_SLICE:
2811 *pos += 1;
2812 nargs = 3;
2813 break;
2814
2815 case OP_STRING:
2816 break;
2817
2818 default:
2819 error (_("Unexpected operator during name resolution"));
2820 }
2821
2822 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2823 for (i = 0; i < nargs; i += 1)
2824 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2825 argvec[i] = NULL;
2826 exp = *expp;
2827
2828 /* Pass two: perform any resolution on principal operator. */
2829 switch (op)
2830 {
2831 default:
2832 break;
2833
2834 case OP_VAR_VALUE:
2835 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2836 {
2837 struct ada_symbol_info *candidates;
2838 int n_candidates;
2839
2840 n_candidates =
2841 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2842 (exp->elts[pc + 2].symbol),
2843 exp->elts[pc + 1].block, VAR_DOMAIN,
2844 &candidates);
2845
2846 if (n_candidates > 1)
2847 {
2848 /* Types tend to get re-introduced locally, so if there
2849 are any local symbols that are not types, first filter
2850 out all types. */
2851 int j;
2852 for (j = 0; j < n_candidates; j += 1)
2853 switch (SYMBOL_CLASS (candidates[j].sym))
2854 {
2855 case LOC_REGISTER:
2856 case LOC_ARG:
2857 case LOC_REF_ARG:
2858 case LOC_REGPARM_ADDR:
2859 case LOC_LOCAL:
2860 case LOC_COMPUTED:
2861 goto FoundNonType;
2862 default:
2863 break;
2864 }
2865 FoundNonType:
2866 if (j < n_candidates)
2867 {
2868 j = 0;
2869 while (j < n_candidates)
2870 {
2871 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2872 {
2873 candidates[j] = candidates[n_candidates - 1];
2874 n_candidates -= 1;
2875 }
2876 else
2877 j += 1;
2878 }
2879 }
2880 }
2881
2882 if (n_candidates == 0)
2883 error (_("No definition found for %s"),
2884 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2885 else if (n_candidates == 1)
2886 i = 0;
2887 else if (deprocedure_p
2888 && !is_nonfunction (candidates, n_candidates))
2889 {
2890 i = ada_resolve_function
2891 (candidates, n_candidates, NULL, 0,
2892 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2893 context_type);
2894 if (i < 0)
2895 error (_("Could not find a match for %s"),
2896 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2897 }
2898 else
2899 {
2900 printf_filtered (_("Multiple matches for %s\n"),
2901 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2902 user_select_syms (candidates, n_candidates, 1);
2903 i = 0;
2904 }
2905
2906 exp->elts[pc + 1].block = candidates[i].block;
2907 exp->elts[pc + 2].symbol = candidates[i].sym;
2908 if (innermost_block == NULL
2909 || contained_in (candidates[i].block, innermost_block))
2910 innermost_block = candidates[i].block;
2911 }
2912
2913 if (deprocedure_p
2914 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2915 == TYPE_CODE_FUNC))
2916 {
2917 replace_operator_with_call (expp, pc, 0, 0,
2918 exp->elts[pc + 2].symbol,
2919 exp->elts[pc + 1].block);
2920 exp = *expp;
2921 }
2922 break;
2923
2924 case OP_FUNCALL:
2925 {
2926 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2927 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2928 {
2929 struct ada_symbol_info *candidates;
2930 int n_candidates;
2931
2932 n_candidates =
2933 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2934 (exp->elts[pc + 5].symbol),
2935 exp->elts[pc + 4].block, VAR_DOMAIN,
2936 &candidates);
2937 if (n_candidates == 1)
2938 i = 0;
2939 else
2940 {
2941 i = ada_resolve_function
2942 (candidates, n_candidates,
2943 argvec, nargs,
2944 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2945 context_type);
2946 if (i < 0)
2947 error (_("Could not find a match for %s"),
2948 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2949 }
2950
2951 exp->elts[pc + 4].block = candidates[i].block;
2952 exp->elts[pc + 5].symbol = candidates[i].sym;
2953 if (innermost_block == NULL
2954 || contained_in (candidates[i].block, innermost_block))
2955 innermost_block = candidates[i].block;
2956 }
2957 }
2958 break;
2959 case BINOP_ADD:
2960 case BINOP_SUB:
2961 case BINOP_MUL:
2962 case BINOP_DIV:
2963 case BINOP_REM:
2964 case BINOP_MOD:
2965 case BINOP_CONCAT:
2966 case BINOP_BITWISE_AND:
2967 case BINOP_BITWISE_IOR:
2968 case BINOP_BITWISE_XOR:
2969 case BINOP_EQUAL:
2970 case BINOP_NOTEQUAL:
2971 case BINOP_LESS:
2972 case BINOP_GTR:
2973 case BINOP_LEQ:
2974 case BINOP_GEQ:
2975 case BINOP_EXP:
2976 case UNOP_NEG:
2977 case UNOP_PLUS:
2978 case UNOP_LOGICAL_NOT:
2979 case UNOP_ABS:
2980 if (possible_user_operator_p (op, argvec))
2981 {
2982 struct ada_symbol_info *candidates;
2983 int n_candidates;
2984
2985 n_candidates =
2986 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2987 (struct block *) NULL, VAR_DOMAIN,
2988 &candidates);
2989 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2990 ada_decoded_op_name (op), NULL);
2991 if (i < 0)
2992 break;
2993
2994 replace_operator_with_call (expp, pc, nargs, 1,
2995 candidates[i].sym, candidates[i].block);
2996 exp = *expp;
2997 }
2998 break;
2999
3000 case OP_TYPE:
3001 case OP_REGISTER:
3002 return NULL;
3003 }
3004
3005 *pos = pc;
3006 return evaluate_subexp_type (exp, pos);
3007 }
3008
3009 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3010 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3011 a non-pointer. */
3012 /* The term "match" here is rather loose. The match is heuristic and
3013 liberal. */
3014
3015 static int
3016 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3017 {
3018 ftype = ada_check_typedef (ftype);
3019 atype = ada_check_typedef (atype);
3020
3021 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3022 ftype = TYPE_TARGET_TYPE (ftype);
3023 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3024 atype = TYPE_TARGET_TYPE (atype);
3025
3026 switch (TYPE_CODE (ftype))
3027 {
3028 default:
3029 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3030 case TYPE_CODE_PTR:
3031 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3032 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3033 TYPE_TARGET_TYPE (atype), 0);
3034 else
3035 return (may_deref
3036 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3037 case TYPE_CODE_INT:
3038 case TYPE_CODE_ENUM:
3039 case TYPE_CODE_RANGE:
3040 switch (TYPE_CODE (atype))
3041 {
3042 case TYPE_CODE_INT:
3043 case TYPE_CODE_ENUM:
3044 case TYPE_CODE_RANGE:
3045 return 1;
3046 default:
3047 return 0;
3048 }
3049
3050 case TYPE_CODE_ARRAY:
3051 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3052 || ada_is_array_descriptor_type (atype));
3053
3054 case TYPE_CODE_STRUCT:
3055 if (ada_is_array_descriptor_type (ftype))
3056 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3057 || ada_is_array_descriptor_type (atype));
3058 else
3059 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3060 && !ada_is_array_descriptor_type (atype));
3061
3062 case TYPE_CODE_UNION:
3063 case TYPE_CODE_FLT:
3064 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3065 }
3066 }
3067
3068 /* Return non-zero if the formals of FUNC "sufficiently match" the
3069 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3070 may also be an enumeral, in which case it is treated as a 0-
3071 argument function. */
3072
3073 static int
3074 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3075 {
3076 int i;
3077 struct type *func_type = SYMBOL_TYPE (func);
3078
3079 if (SYMBOL_CLASS (func) == LOC_CONST
3080 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3081 return (n_actuals == 0);
3082 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3083 return 0;
3084
3085 if (TYPE_NFIELDS (func_type) != n_actuals)
3086 return 0;
3087
3088 for (i = 0; i < n_actuals; i += 1)
3089 {
3090 if (actuals[i] == NULL)
3091 return 0;
3092 else
3093 {
3094 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3095 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3096
3097 if (!ada_type_match (ftype, atype, 1))
3098 return 0;
3099 }
3100 }
3101 return 1;
3102 }
3103
3104 /* False iff function type FUNC_TYPE definitely does not produce a value
3105 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3106 FUNC_TYPE is not a valid function type with a non-null return type
3107 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3108
3109 static int
3110 return_match (struct type *func_type, struct type *context_type)
3111 {
3112 struct type *return_type;
3113
3114 if (func_type == NULL)
3115 return 1;
3116
3117 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3118 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3119 else
3120 return_type = base_type (func_type);
3121 if (return_type == NULL)
3122 return 1;
3123
3124 context_type = base_type (context_type);
3125
3126 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3127 return context_type == NULL || return_type == context_type;
3128 else if (context_type == NULL)
3129 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3130 else
3131 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3132 }
3133
3134
3135 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3136 function (if any) that matches the types of the NARGS arguments in
3137 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3138 that returns that type, then eliminate matches that don't. If
3139 CONTEXT_TYPE is void and there is at least one match that does not
3140 return void, eliminate all matches that do.
3141
3142 Asks the user if there is more than one match remaining. Returns -1
3143 if there is no such symbol or none is selected. NAME is used
3144 solely for messages. May re-arrange and modify SYMS in
3145 the process; the index returned is for the modified vector. */
3146
3147 static int
3148 ada_resolve_function (struct ada_symbol_info syms[],
3149 int nsyms, struct value **args, int nargs,
3150 const char *name, struct type *context_type)
3151 {
3152 int fallback;
3153 int k;
3154 int m; /* Number of hits */
3155
3156 m = 0;
3157 /* In the first pass of the loop, we only accept functions matching
3158 context_type. If none are found, we add a second pass of the loop
3159 where every function is accepted. */
3160 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3161 {
3162 for (k = 0; k < nsyms; k += 1)
3163 {
3164 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3165
3166 if (ada_args_match (syms[k].sym, args, nargs)
3167 && (fallback || return_match (type, context_type)))
3168 {
3169 syms[m] = syms[k];
3170 m += 1;
3171 }
3172 }
3173 }
3174
3175 if (m == 0)
3176 return -1;
3177 else if (m > 1)
3178 {
3179 printf_filtered (_("Multiple matches for %s\n"), name);
3180 user_select_syms (syms, m, 1);
3181 return 0;
3182 }
3183 return 0;
3184 }
3185
3186 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3187 in a listing of choices during disambiguation (see sort_choices, below).
3188 The idea is that overloadings of a subprogram name from the
3189 same package should sort in their source order. We settle for ordering
3190 such symbols by their trailing number (__N or $N). */
3191
3192 static int
3193 encoded_ordered_before (char *N0, char *N1)
3194 {
3195 if (N1 == NULL)
3196 return 0;
3197 else if (N0 == NULL)
3198 return 1;
3199 else
3200 {
3201 int k0, k1;
3202 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3203 ;
3204 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3205 ;
3206 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3207 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3208 {
3209 int n0, n1;
3210 n0 = k0;
3211 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3212 n0 -= 1;
3213 n1 = k1;
3214 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3215 n1 -= 1;
3216 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3217 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3218 }
3219 return (strcmp (N0, N1) < 0);
3220 }
3221 }
3222
3223 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3224 encoded names. */
3225
3226 static void
3227 sort_choices (struct ada_symbol_info syms[], int nsyms)
3228 {
3229 int i;
3230 for (i = 1; i < nsyms; i += 1)
3231 {
3232 struct ada_symbol_info sym = syms[i];
3233 int j;
3234
3235 for (j = i - 1; j >= 0; j -= 1)
3236 {
3237 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3238 SYMBOL_LINKAGE_NAME (sym.sym)))
3239 break;
3240 syms[j + 1] = syms[j];
3241 }
3242 syms[j + 1] = sym;
3243 }
3244 }
3245
3246 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3247 by asking the user (if necessary), returning the number selected,
3248 and setting the first elements of SYMS items. Error if no symbols
3249 selected. */
3250
3251 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3252 to be re-integrated one of these days. */
3253
3254 int
3255 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3256 {
3257 int i;
3258 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3259 int n_chosen;
3260 int first_choice = (max_results == 1) ? 1 : 2;
3261 const char *select_mode = multiple_symbols_select_mode ();
3262
3263 if (max_results < 1)
3264 error (_("Request to select 0 symbols!"));
3265 if (nsyms <= 1)
3266 return nsyms;
3267
3268 if (select_mode == multiple_symbols_cancel)
3269 error (_("\
3270 canceled because the command is ambiguous\n\
3271 See set/show multiple-symbol."));
3272
3273 /* If select_mode is "all", then return all possible symbols.
3274 Only do that if more than one symbol can be selected, of course.
3275 Otherwise, display the menu as usual. */
3276 if (select_mode == multiple_symbols_all && max_results > 1)
3277 return nsyms;
3278
3279 printf_unfiltered (_("[0] cancel\n"));
3280 if (max_results > 1)
3281 printf_unfiltered (_("[1] all\n"));
3282
3283 sort_choices (syms, nsyms);
3284
3285 for (i = 0; i < nsyms; i += 1)
3286 {
3287 if (syms[i].sym == NULL)
3288 continue;
3289
3290 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3291 {
3292 struct symtab_and_line sal =
3293 find_function_start_sal (syms[i].sym, 1);
3294 if (sal.symtab == NULL)
3295 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3296 i + first_choice,
3297 SYMBOL_PRINT_NAME (syms[i].sym),
3298 sal.line);
3299 else
3300 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3301 SYMBOL_PRINT_NAME (syms[i].sym),
3302 sal.symtab->filename, sal.line);
3303 continue;
3304 }
3305 else
3306 {
3307 int is_enumeral =
3308 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3309 && SYMBOL_TYPE (syms[i].sym) != NULL
3310 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3311 struct symtab *symtab = syms[i].sym->symtab;
3312
3313 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3314 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3315 i + first_choice,
3316 SYMBOL_PRINT_NAME (syms[i].sym),
3317 symtab->filename, SYMBOL_LINE (syms[i].sym));
3318 else if (is_enumeral
3319 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3320 {
3321 printf_unfiltered (("[%d] "), i + first_choice);
3322 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3323 gdb_stdout, -1, 0);
3324 printf_unfiltered (_("'(%s) (enumeral)\n"),
3325 SYMBOL_PRINT_NAME (syms[i].sym));
3326 }
3327 else if (symtab != NULL)
3328 printf_unfiltered (is_enumeral
3329 ? _("[%d] %s in %s (enumeral)\n")
3330 : _("[%d] %s at %s:?\n"),
3331 i + first_choice,
3332 SYMBOL_PRINT_NAME (syms[i].sym),
3333 symtab->filename);
3334 else
3335 printf_unfiltered (is_enumeral
3336 ? _("[%d] %s (enumeral)\n")
3337 : _("[%d] %s at ?\n"),
3338 i + first_choice,
3339 SYMBOL_PRINT_NAME (syms[i].sym));
3340 }
3341 }
3342
3343 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3344 "overload-choice");
3345
3346 for (i = 0; i < n_chosen; i += 1)
3347 syms[i] = syms[chosen[i]];
3348
3349 return n_chosen;
3350 }
3351
3352 /* Read and validate a set of numeric choices from the user in the
3353 range 0 .. N_CHOICES-1. Place the results in increasing
3354 order in CHOICES[0 .. N-1], and return N.
3355
3356 The user types choices as a sequence of numbers on one line
3357 separated by blanks, encoding them as follows:
3358
3359 + A choice of 0 means to cancel the selection, throwing an error.
3360 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3361 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3362
3363 The user is not allowed to choose more than MAX_RESULTS values.
3364
3365 ANNOTATION_SUFFIX, if present, is used to annotate the input
3366 prompts (for use with the -f switch). */
3367
3368 int
3369 get_selections (int *choices, int n_choices, int max_results,
3370 int is_all_choice, char *annotation_suffix)
3371 {
3372 char *args;
3373 char *prompt;
3374 int n_chosen;
3375 int first_choice = is_all_choice ? 2 : 1;
3376
3377 prompt = getenv ("PS2");
3378 if (prompt == NULL)
3379 prompt = "> ";
3380
3381 args = command_line_input (prompt, 0, annotation_suffix);
3382
3383 if (args == NULL)
3384 error_no_arg (_("one or more choice numbers"));
3385
3386 n_chosen = 0;
3387
3388 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3389 order, as given in args. Choices are validated. */
3390 while (1)
3391 {
3392 char *args2;
3393 int choice, j;
3394
3395 while (isspace (*args))
3396 args += 1;
3397 if (*args == '\0' && n_chosen == 0)
3398 error_no_arg (_("one or more choice numbers"));
3399 else if (*args == '\0')
3400 break;
3401
3402 choice = strtol (args, &args2, 10);
3403 if (args == args2 || choice < 0
3404 || choice > n_choices + first_choice - 1)
3405 error (_("Argument must be choice number"));
3406 args = args2;
3407
3408 if (choice == 0)
3409 error (_("cancelled"));
3410
3411 if (choice < first_choice)
3412 {
3413 n_chosen = n_choices;
3414 for (j = 0; j < n_choices; j += 1)
3415 choices[j] = j;
3416 break;
3417 }
3418 choice -= first_choice;
3419
3420 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3421 {
3422 }
3423
3424 if (j < 0 || choice != choices[j])
3425 {
3426 int k;
3427 for (k = n_chosen - 1; k > j; k -= 1)
3428 choices[k + 1] = choices[k];
3429 choices[j + 1] = choice;
3430 n_chosen += 1;
3431 }
3432 }
3433
3434 if (n_chosen > max_results)
3435 error (_("Select no more than %d of the above"), max_results);
3436
3437 return n_chosen;
3438 }
3439
3440 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3441 on the function identified by SYM and BLOCK, and taking NARGS
3442 arguments. Update *EXPP as needed to hold more space. */
3443
3444 static void
3445 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3446 int oplen, struct symbol *sym,
3447 struct block *block)
3448 {
3449 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3450 symbol, -oplen for operator being replaced). */
3451 struct expression *newexp = (struct expression *)
3452 xmalloc (sizeof (struct expression)
3453 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3454 struct expression *exp = *expp;
3455
3456 newexp->nelts = exp->nelts + 7 - oplen;
3457 newexp->language_defn = exp->language_defn;
3458 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3459 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3460 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3461
3462 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3463 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3464
3465 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3466 newexp->elts[pc + 4].block = block;
3467 newexp->elts[pc + 5].symbol = sym;
3468
3469 *expp = newexp;
3470 xfree (exp);
3471 }
3472
3473 /* Type-class predicates */
3474
3475 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3476 or FLOAT). */
3477
3478 static int
3479 numeric_type_p (struct type *type)
3480 {
3481 if (type == NULL)
3482 return 0;
3483 else
3484 {
3485 switch (TYPE_CODE (type))
3486 {
3487 case TYPE_CODE_INT:
3488 case TYPE_CODE_FLT:
3489 return 1;
3490 case TYPE_CODE_RANGE:
3491 return (type == TYPE_TARGET_TYPE (type)
3492 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3493 default:
3494 return 0;
3495 }
3496 }
3497 }
3498
3499 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3500
3501 static int
3502 integer_type_p (struct type *type)
3503 {
3504 if (type == NULL)
3505 return 0;
3506 else
3507 {
3508 switch (TYPE_CODE (type))
3509 {
3510 case TYPE_CODE_INT:
3511 return 1;
3512 case TYPE_CODE_RANGE:
3513 return (type == TYPE_TARGET_TYPE (type)
3514 || integer_type_p (TYPE_TARGET_TYPE (type)));
3515 default:
3516 return 0;
3517 }
3518 }
3519 }
3520
3521 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3522
3523 static int
3524 scalar_type_p (struct type *type)
3525 {
3526 if (type == NULL)
3527 return 0;
3528 else
3529 {
3530 switch (TYPE_CODE (type))
3531 {
3532 case TYPE_CODE_INT:
3533 case TYPE_CODE_RANGE:
3534 case TYPE_CODE_ENUM:
3535 case TYPE_CODE_FLT:
3536 return 1;
3537 default:
3538 return 0;
3539 }
3540 }
3541 }
3542
3543 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3544
3545 static int
3546 discrete_type_p (struct type *type)
3547 {
3548 if (type == NULL)
3549 return 0;
3550 else
3551 {
3552 switch (TYPE_CODE (type))
3553 {
3554 case TYPE_CODE_INT:
3555 case TYPE_CODE_RANGE:
3556 case TYPE_CODE_ENUM:
3557 case TYPE_CODE_BOOL:
3558 return 1;
3559 default:
3560 return 0;
3561 }
3562 }
3563 }
3564
3565 /* Returns non-zero if OP with operands in the vector ARGS could be
3566 a user-defined function. Errs on the side of pre-defined operators
3567 (i.e., result 0). */
3568
3569 static int
3570 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3571 {
3572 struct type *type0 =
3573 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3574 struct type *type1 =
3575 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3576
3577 if (type0 == NULL)
3578 return 0;
3579
3580 switch (op)
3581 {
3582 default:
3583 return 0;
3584
3585 case BINOP_ADD:
3586 case BINOP_SUB:
3587 case BINOP_MUL:
3588 case BINOP_DIV:
3589 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3590
3591 case BINOP_REM:
3592 case BINOP_MOD:
3593 case BINOP_BITWISE_AND:
3594 case BINOP_BITWISE_IOR:
3595 case BINOP_BITWISE_XOR:
3596 return (!(integer_type_p (type0) && integer_type_p (type1)));
3597
3598 case BINOP_EQUAL:
3599 case BINOP_NOTEQUAL:
3600 case BINOP_LESS:
3601 case BINOP_GTR:
3602 case BINOP_LEQ:
3603 case BINOP_GEQ:
3604 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3605
3606 case BINOP_CONCAT:
3607 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3608
3609 case BINOP_EXP:
3610 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3611
3612 case UNOP_NEG:
3613 case UNOP_PLUS:
3614 case UNOP_LOGICAL_NOT:
3615 case UNOP_ABS:
3616 return (!numeric_type_p (type0));
3617
3618 }
3619 }
3620 \f
3621 /* Renaming */
3622
3623 /* NOTES:
3624
3625 1. In the following, we assume that a renaming type's name may
3626 have an ___XD suffix. It would be nice if this went away at some
3627 point.
3628 2. We handle both the (old) purely type-based representation of
3629 renamings and the (new) variable-based encoding. At some point,
3630 it is devoutly to be hoped that the former goes away
3631 (FIXME: hilfinger-2007-07-09).
3632 3. Subprogram renamings are not implemented, although the XRS
3633 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3634
3635 /* If SYM encodes a renaming,
3636
3637 <renaming> renames <renamed entity>,
3638
3639 sets *LEN to the length of the renamed entity's name,
3640 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3641 the string describing the subcomponent selected from the renamed
3642 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3643 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3644 are undefined). Otherwise, returns a value indicating the category
3645 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3646 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3647 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3648 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3649 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3650 may be NULL, in which case they are not assigned.
3651
3652 [Currently, however, GCC does not generate subprogram renamings.] */
3653
3654 enum ada_renaming_category
3655 ada_parse_renaming (struct symbol *sym,
3656 const char **renamed_entity, int *len,
3657 const char **renaming_expr)
3658 {
3659 enum ada_renaming_category kind;
3660 const char *info;
3661 const char *suffix;
3662
3663 if (sym == NULL)
3664 return ADA_NOT_RENAMING;
3665 switch (SYMBOL_CLASS (sym))
3666 {
3667 default:
3668 return ADA_NOT_RENAMING;
3669 case LOC_TYPEDEF:
3670 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3671 renamed_entity, len, renaming_expr);
3672 case LOC_LOCAL:
3673 case LOC_STATIC:
3674 case LOC_COMPUTED:
3675 case LOC_OPTIMIZED_OUT:
3676 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3677 if (info == NULL)
3678 return ADA_NOT_RENAMING;
3679 switch (info[5])
3680 {
3681 case '_':
3682 kind = ADA_OBJECT_RENAMING;
3683 info += 6;
3684 break;
3685 case 'E':
3686 kind = ADA_EXCEPTION_RENAMING;
3687 info += 7;
3688 break;
3689 case 'P':
3690 kind = ADA_PACKAGE_RENAMING;
3691 info += 7;
3692 break;
3693 case 'S':
3694 kind = ADA_SUBPROGRAM_RENAMING;
3695 info += 7;
3696 break;
3697 default:
3698 return ADA_NOT_RENAMING;
3699 }
3700 }
3701
3702 if (renamed_entity != NULL)
3703 *renamed_entity = info;
3704 suffix = strstr (info, "___XE");
3705 if (suffix == NULL || suffix == info)
3706 return ADA_NOT_RENAMING;
3707 if (len != NULL)
3708 *len = strlen (info) - strlen (suffix);
3709 suffix += 5;
3710 if (renaming_expr != NULL)
3711 *renaming_expr = suffix;
3712 return kind;
3713 }
3714
3715 /* Assuming TYPE encodes a renaming according to the old encoding in
3716 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3717 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3718 ADA_NOT_RENAMING otherwise. */
3719 static enum ada_renaming_category
3720 parse_old_style_renaming (struct type *type,
3721 const char **renamed_entity, int *len,
3722 const char **renaming_expr)
3723 {
3724 enum ada_renaming_category kind;
3725 const char *name;
3726 const char *info;
3727 const char *suffix;
3728
3729 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3730 || TYPE_NFIELDS (type) != 1)
3731 return ADA_NOT_RENAMING;
3732
3733 name = type_name_no_tag (type);
3734 if (name == NULL)
3735 return ADA_NOT_RENAMING;
3736
3737 name = strstr (name, "___XR");
3738 if (name == NULL)
3739 return ADA_NOT_RENAMING;
3740 switch (name[5])
3741 {
3742 case '\0':
3743 case '_':
3744 kind = ADA_OBJECT_RENAMING;
3745 break;
3746 case 'E':
3747 kind = ADA_EXCEPTION_RENAMING;
3748 break;
3749 case 'P':
3750 kind = ADA_PACKAGE_RENAMING;
3751 break;
3752 case 'S':
3753 kind = ADA_SUBPROGRAM_RENAMING;
3754 break;
3755 default:
3756 return ADA_NOT_RENAMING;
3757 }
3758
3759 info = TYPE_FIELD_NAME (type, 0);
3760 if (info == NULL)
3761 return ADA_NOT_RENAMING;
3762 if (renamed_entity != NULL)
3763 *renamed_entity = info;
3764 suffix = strstr (info, "___XE");
3765 if (renaming_expr != NULL)
3766 *renaming_expr = suffix + 5;
3767 if (suffix == NULL || suffix == info)
3768 return ADA_NOT_RENAMING;
3769 if (len != NULL)
3770 *len = suffix - info;
3771 return kind;
3772 }
3773
3774 \f
3775
3776 /* Evaluation: Function Calls */
3777
3778 /* Return an lvalue containing the value VAL. This is the identity on
3779 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3780 on the stack, using and updating *SP as the stack pointer, and
3781 returning an lvalue whose value_address points to the copy. */
3782
3783 static struct value *
3784 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3785 {
3786 if (! VALUE_LVAL (val))
3787 {
3788 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3789
3790 /* The following is taken from the structure-return code in
3791 call_function_by_hand. FIXME: Therefore, some refactoring seems
3792 indicated. */
3793 if (gdbarch_inner_than (gdbarch, 1, 2))
3794 {
3795 /* Stack grows downward. Align SP and value_address (val) after
3796 reserving sufficient space. */
3797 *sp -= len;
3798 if (gdbarch_frame_align_p (gdbarch))
3799 *sp = gdbarch_frame_align (gdbarch, *sp);
3800 set_value_address (val, *sp);
3801 }
3802 else
3803 {
3804 /* Stack grows upward. Align the frame, allocate space, and
3805 then again, re-align the frame. */
3806 if (gdbarch_frame_align_p (gdbarch))
3807 *sp = gdbarch_frame_align (gdbarch, *sp);
3808 set_value_address (val, *sp);
3809 *sp += len;
3810 if (gdbarch_frame_align_p (gdbarch))
3811 *sp = gdbarch_frame_align (gdbarch, *sp);
3812 }
3813 VALUE_LVAL (val) = lval_memory;
3814
3815 write_memory (value_address (val), value_contents_raw (val), len);
3816 }
3817
3818 return val;
3819 }
3820
3821 /* Return the value ACTUAL, converted to be an appropriate value for a
3822 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3823 allocating any necessary descriptors (fat pointers), or copies of
3824 values not residing in memory, updating it as needed. */
3825
3826 struct value *
3827 ada_convert_actual (struct value *actual, struct type *formal_type0,
3828 struct gdbarch *gdbarch, CORE_ADDR *sp)
3829 {
3830 struct type *actual_type = ada_check_typedef (value_type (actual));
3831 struct type *formal_type = ada_check_typedef (formal_type0);
3832 struct type *formal_target =
3833 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3834 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3835 struct type *actual_target =
3836 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3837 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3838
3839 if (ada_is_array_descriptor_type (formal_target)
3840 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3841 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3842 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3843 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3844 {
3845 struct value *result;
3846 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3847 && ada_is_array_descriptor_type (actual_target))
3848 result = desc_data (actual);
3849 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3850 {
3851 if (VALUE_LVAL (actual) != lval_memory)
3852 {
3853 struct value *val;
3854 actual_type = ada_check_typedef (value_type (actual));
3855 val = allocate_value (actual_type);
3856 memcpy ((char *) value_contents_raw (val),
3857 (char *) value_contents (actual),
3858 TYPE_LENGTH (actual_type));
3859 actual = ensure_lval (val, gdbarch, sp);
3860 }
3861 result = value_addr (actual);
3862 }
3863 else
3864 return actual;
3865 return value_cast_pointers (formal_type, result);
3866 }
3867 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3868 return ada_value_ind (actual);
3869
3870 return actual;
3871 }
3872
3873
3874 /* Push a descriptor of type TYPE for array value ARR on the stack at
3875 *SP, updating *SP to reflect the new descriptor. Return either
3876 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3877 to-descriptor type rather than a descriptor type), a struct value *
3878 representing a pointer to this descriptor. */
3879
3880 static struct value *
3881 make_array_descriptor (struct type *type, struct value *arr,
3882 struct gdbarch *gdbarch, CORE_ADDR *sp)
3883 {
3884 struct type *bounds_type = desc_bounds_type (type);
3885 struct type *desc_type = desc_base_type (type);
3886 struct value *descriptor = allocate_value (desc_type);
3887 struct value *bounds = allocate_value (bounds_type);
3888 int i;
3889
3890 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3891 {
3892 modify_general_field (value_type (bounds),
3893 value_contents_writeable (bounds),
3894 ada_array_bound (arr, i, 0),
3895 desc_bound_bitpos (bounds_type, i, 0),
3896 desc_bound_bitsize (bounds_type, i, 0));
3897 modify_general_field (value_type (bounds),
3898 value_contents_writeable (bounds),
3899 ada_array_bound (arr, i, 1),
3900 desc_bound_bitpos (bounds_type, i, 1),
3901 desc_bound_bitsize (bounds_type, i, 1));
3902 }
3903
3904 bounds = ensure_lval (bounds, gdbarch, sp);
3905
3906 modify_general_field (value_type (descriptor),
3907 value_contents_writeable (descriptor),
3908 value_address (ensure_lval (arr, gdbarch, sp)),
3909 fat_pntr_data_bitpos (desc_type),
3910 fat_pntr_data_bitsize (desc_type));
3911
3912 modify_general_field (value_type (descriptor),
3913 value_contents_writeable (descriptor),
3914 value_address (bounds),
3915 fat_pntr_bounds_bitpos (desc_type),
3916 fat_pntr_bounds_bitsize (desc_type));
3917
3918 descriptor = ensure_lval (descriptor, gdbarch, sp);
3919
3920 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3921 return value_addr (descriptor);
3922 else
3923 return descriptor;
3924 }
3925 \f
3926 /* Dummy definitions for an experimental caching module that is not
3927 * used in the public sources. */
3928
3929 static int
3930 lookup_cached_symbol (const char *name, domain_enum namespace,
3931 struct symbol **sym, struct block **block)
3932 {
3933 return 0;
3934 }
3935
3936 static void
3937 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3938 struct block *block)
3939 {
3940 }
3941 \f
3942 /* Symbol Lookup */
3943
3944 /* Return the result of a standard (literal, C-like) lookup of NAME in
3945 given DOMAIN, visible from lexical block BLOCK. */
3946
3947 static struct symbol *
3948 standard_lookup (const char *name, const struct block *block,
3949 domain_enum domain)
3950 {
3951 struct symbol *sym;
3952
3953 if (lookup_cached_symbol (name, domain, &sym, NULL))
3954 return sym;
3955 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3956 cache_symbol (name, domain, sym, block_found);
3957 return sym;
3958 }
3959
3960
3961 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3962 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3963 since they contend in overloading in the same way. */
3964 static int
3965 is_nonfunction (struct ada_symbol_info syms[], int n)
3966 {
3967 int i;
3968
3969 for (i = 0; i < n; i += 1)
3970 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3971 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3972 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3973 return 1;
3974
3975 return 0;
3976 }
3977
3978 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3979 struct types. Otherwise, they may not. */
3980
3981 static int
3982 equiv_types (struct type *type0, struct type *type1)
3983 {
3984 if (type0 == type1)
3985 return 1;
3986 if (type0 == NULL || type1 == NULL
3987 || TYPE_CODE (type0) != TYPE_CODE (type1))
3988 return 0;
3989 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3990 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3991 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3992 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3993 return 1;
3994
3995 return 0;
3996 }
3997
3998 /* True iff SYM0 represents the same entity as SYM1, or one that is
3999 no more defined than that of SYM1. */
4000
4001 static int
4002 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4003 {
4004 if (sym0 == sym1)
4005 return 1;
4006 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4007 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4008 return 0;
4009
4010 switch (SYMBOL_CLASS (sym0))
4011 {
4012 case LOC_UNDEF:
4013 return 1;
4014 case LOC_TYPEDEF:
4015 {
4016 struct type *type0 = SYMBOL_TYPE (sym0);
4017 struct type *type1 = SYMBOL_TYPE (sym1);
4018 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4019 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4020 int len0 = strlen (name0);
4021 return
4022 TYPE_CODE (type0) == TYPE_CODE (type1)
4023 && (equiv_types (type0, type1)
4024 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4025 && strncmp (name1 + len0, "___XV", 5) == 0));
4026 }
4027 case LOC_CONST:
4028 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4029 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4030 default:
4031 return 0;
4032 }
4033 }
4034
4035 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4036 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4037
4038 static void
4039 add_defn_to_vec (struct obstack *obstackp,
4040 struct symbol *sym,
4041 struct block *block)
4042 {
4043 int i;
4044 size_t tmp;
4045 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4046
4047 /* Do not try to complete stub types, as the debugger is probably
4048 already scanning all symbols matching a certain name at the
4049 time when this function is called. Trying to replace the stub
4050 type by its associated full type will cause us to restart a scan
4051 which may lead to an infinite recursion. Instead, the client
4052 collecting the matching symbols will end up collecting several
4053 matches, with at least one of them complete. It can then filter
4054 out the stub ones if needed. */
4055
4056 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4057 {
4058 if (lesseq_defined_than (sym, prevDefns[i].sym))
4059 return;
4060 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4061 {
4062 prevDefns[i].sym = sym;
4063 prevDefns[i].block = block;
4064 return;
4065 }
4066 }
4067
4068 {
4069 struct ada_symbol_info info;
4070
4071 info.sym = sym;
4072 info.block = block;
4073 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4074 }
4075 }
4076
4077 /* Number of ada_symbol_info structures currently collected in
4078 current vector in *OBSTACKP. */
4079
4080 static int
4081 num_defns_collected (struct obstack *obstackp)
4082 {
4083 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4084 }
4085
4086 /* Vector of ada_symbol_info structures currently collected in current
4087 vector in *OBSTACKP. If FINISH, close off the vector and return
4088 its final address. */
4089
4090 static struct ada_symbol_info *
4091 defns_collected (struct obstack *obstackp, int finish)
4092 {
4093 if (finish)
4094 return obstack_finish (obstackp);
4095 else
4096 return (struct ada_symbol_info *) obstack_base (obstackp);
4097 }
4098
4099 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4100 Check the global symbols if GLOBAL, the static symbols if not.
4101 Do wild-card match if WILD. */
4102
4103 static struct partial_symbol *
4104 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4105 int global, domain_enum namespace, int wild)
4106 {
4107 struct partial_symbol **start;
4108 int name_len = strlen (name);
4109 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4110 int i;
4111
4112 if (length == 0)
4113 {
4114 return (NULL);
4115 }
4116
4117 start = (global ?
4118 pst->objfile->global_psymbols.list + pst->globals_offset :
4119 pst->objfile->static_psymbols.list + pst->statics_offset);
4120
4121 if (wild)
4122 {
4123 for (i = 0; i < length; i += 1)
4124 {
4125 struct partial_symbol *psym = start[i];
4126
4127 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4128 SYMBOL_DOMAIN (psym), namespace)
4129 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4130 return psym;
4131 }
4132 return NULL;
4133 }
4134 else
4135 {
4136 if (global)
4137 {
4138 int U;
4139 i = 0;
4140 U = length - 1;
4141 while (U - i > 4)
4142 {
4143 int M = (U + i) >> 1;
4144 struct partial_symbol *psym = start[M];
4145 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4146 i = M + 1;
4147 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4148 U = M - 1;
4149 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4150 i = M + 1;
4151 else
4152 U = M;
4153 }
4154 }
4155 else
4156 i = 0;
4157
4158 while (i < length)
4159 {
4160 struct partial_symbol *psym = start[i];
4161
4162 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4163 SYMBOL_DOMAIN (psym), namespace))
4164 {
4165 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4166
4167 if (cmp < 0)
4168 {
4169 if (global)
4170 break;
4171 }
4172 else if (cmp == 0
4173 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4174 + name_len))
4175 return psym;
4176 }
4177 i += 1;
4178 }
4179
4180 if (global)
4181 {
4182 int U;
4183 i = 0;
4184 U = length - 1;
4185 while (U - i > 4)
4186 {
4187 int M = (U + i) >> 1;
4188 struct partial_symbol *psym = start[M];
4189 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4190 i = M + 1;
4191 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4192 U = M - 1;
4193 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4194 i = M + 1;
4195 else
4196 U = M;
4197 }
4198 }
4199 else
4200 i = 0;
4201
4202 while (i < length)
4203 {
4204 struct partial_symbol *psym = start[i];
4205
4206 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4207 SYMBOL_DOMAIN (psym), namespace))
4208 {
4209 int cmp;
4210
4211 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4212 if (cmp == 0)
4213 {
4214 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4215 if (cmp == 0)
4216 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4217 name_len);
4218 }
4219
4220 if (cmp < 0)
4221 {
4222 if (global)
4223 break;
4224 }
4225 else if (cmp == 0
4226 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4227 + name_len + 5))
4228 return psym;
4229 }
4230 i += 1;
4231 }
4232 }
4233 return NULL;
4234 }
4235
4236 /* Return a minimal symbol matching NAME according to Ada decoding
4237 rules. Returns NULL if there is no such minimal symbol. Names
4238 prefixed with "standard__" are handled specially: "standard__" is
4239 first stripped off, and only static and global symbols are searched. */
4240
4241 struct minimal_symbol *
4242 ada_lookup_simple_minsym (const char *name)
4243 {
4244 struct objfile *objfile;
4245 struct minimal_symbol *msymbol;
4246 int wild_match;
4247
4248 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4249 {
4250 name += sizeof ("standard__") - 1;
4251 wild_match = 0;
4252 }
4253 else
4254 wild_match = (strstr (name, "__") == NULL);
4255
4256 ALL_MSYMBOLS (objfile, msymbol)
4257 {
4258 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4259 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4260 return msymbol;
4261 }
4262
4263 return NULL;
4264 }
4265
4266 /* For all subprograms that statically enclose the subprogram of the
4267 selected frame, add symbols matching identifier NAME in DOMAIN
4268 and their blocks to the list of data in OBSTACKP, as for
4269 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4270 wildcard prefix. */
4271
4272 static void
4273 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4274 const char *name, domain_enum namespace,
4275 int wild_match)
4276 {
4277 }
4278
4279 /* True if TYPE is definitely an artificial type supplied to a symbol
4280 for which no debugging information was given in the symbol file. */
4281
4282 static int
4283 is_nondebugging_type (struct type *type)
4284 {
4285 char *name = ada_type_name (type);
4286 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4287 }
4288
4289 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4290 duplicate other symbols in the list (The only case I know of where
4291 this happens is when object files containing stabs-in-ecoff are
4292 linked with files containing ordinary ecoff debugging symbols (or no
4293 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4294 Returns the number of items in the modified list. */
4295
4296 static int
4297 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4298 {
4299 int i, j;
4300
4301 i = 0;
4302 while (i < nsyms)
4303 {
4304 int remove = 0;
4305
4306 /* If two symbols have the same name and one of them is a stub type,
4307 the get rid of the stub. */
4308
4309 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4310 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4311 {
4312 for (j = 0; j < nsyms; j++)
4313 {
4314 if (j != i
4315 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4316 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4317 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4318 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4319 remove = 1;
4320 }
4321 }
4322
4323 /* Two symbols with the same name, same class and same address
4324 should be identical. */
4325
4326 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4327 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4328 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4329 {
4330 for (j = 0; j < nsyms; j += 1)
4331 {
4332 if (i != j
4333 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4334 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4335 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4336 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4337 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4338 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4339 remove = 1;
4340 }
4341 }
4342
4343 if (remove)
4344 {
4345 for (j = i + 1; j < nsyms; j += 1)
4346 syms[j - 1] = syms[j];
4347 nsyms -= 1;
4348 }
4349
4350 i += 1;
4351 }
4352 return nsyms;
4353 }
4354
4355 /* Given a type that corresponds to a renaming entity, use the type name
4356 to extract the scope (package name or function name, fully qualified,
4357 and following the GNAT encoding convention) where this renaming has been
4358 defined. The string returned needs to be deallocated after use. */
4359
4360 static char *
4361 xget_renaming_scope (struct type *renaming_type)
4362 {
4363 /* The renaming types adhere to the following convention:
4364 <scope>__<rename>___<XR extension>.
4365 So, to extract the scope, we search for the "___XR" extension,
4366 and then backtrack until we find the first "__". */
4367
4368 const char *name = type_name_no_tag (renaming_type);
4369 char *suffix = strstr (name, "___XR");
4370 char *last;
4371 int scope_len;
4372 char *scope;
4373
4374 /* Now, backtrack a bit until we find the first "__". Start looking
4375 at suffix - 3, as the <rename> part is at least one character long. */
4376
4377 for (last = suffix - 3; last > name; last--)
4378 if (last[0] == '_' && last[1] == '_')
4379 break;
4380
4381 /* Make a copy of scope and return it. */
4382
4383 scope_len = last - name;
4384 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4385
4386 strncpy (scope, name, scope_len);
4387 scope[scope_len] = '\0';
4388
4389 return scope;
4390 }
4391
4392 /* Return nonzero if NAME corresponds to a package name. */
4393
4394 static int
4395 is_package_name (const char *name)
4396 {
4397 /* Here, We take advantage of the fact that no symbols are generated
4398 for packages, while symbols are generated for each function.
4399 So the condition for NAME represent a package becomes equivalent
4400 to NAME not existing in our list of symbols. There is only one
4401 small complication with library-level functions (see below). */
4402
4403 char *fun_name;
4404
4405 /* If it is a function that has not been defined at library level,
4406 then we should be able to look it up in the symbols. */
4407 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4408 return 0;
4409
4410 /* Library-level function names start with "_ada_". See if function
4411 "_ada_" followed by NAME can be found. */
4412
4413 /* Do a quick check that NAME does not contain "__", since library-level
4414 functions names cannot contain "__" in them. */
4415 if (strstr (name, "__") != NULL)
4416 return 0;
4417
4418 fun_name = xstrprintf ("_ada_%s", name);
4419
4420 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4421 }
4422
4423 /* Return nonzero if SYM corresponds to a renaming entity that is
4424 not visible from FUNCTION_NAME. */
4425
4426 static int
4427 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4428 {
4429 char *scope;
4430
4431 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4432 return 0;
4433
4434 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4435
4436 make_cleanup (xfree, scope);
4437
4438 /* If the rename has been defined in a package, then it is visible. */
4439 if (is_package_name (scope))
4440 return 0;
4441
4442 /* Check that the rename is in the current function scope by checking
4443 that its name starts with SCOPE. */
4444
4445 /* If the function name starts with "_ada_", it means that it is
4446 a library-level function. Strip this prefix before doing the
4447 comparison, as the encoding for the renaming does not contain
4448 this prefix. */
4449 if (strncmp (function_name, "_ada_", 5) == 0)
4450 function_name += 5;
4451
4452 return (strncmp (function_name, scope, strlen (scope)) != 0);
4453 }
4454
4455 /* Remove entries from SYMS that corresponds to a renaming entity that
4456 is not visible from the function associated with CURRENT_BLOCK or
4457 that is superfluous due to the presence of more specific renaming
4458 information. Places surviving symbols in the initial entries of
4459 SYMS and returns the number of surviving symbols.
4460
4461 Rationale:
4462 First, in cases where an object renaming is implemented as a
4463 reference variable, GNAT may produce both the actual reference
4464 variable and the renaming encoding. In this case, we discard the
4465 latter.
4466
4467 Second, GNAT emits a type following a specified encoding for each renaming
4468 entity. Unfortunately, STABS currently does not support the definition
4469 of types that are local to a given lexical block, so all renamings types
4470 are emitted at library level. As a consequence, if an application
4471 contains two renaming entities using the same name, and a user tries to
4472 print the value of one of these entities, the result of the ada symbol
4473 lookup will also contain the wrong renaming type.
4474
4475 This function partially covers for this limitation by attempting to
4476 remove from the SYMS list renaming symbols that should be visible
4477 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4478 method with the current information available. The implementation
4479 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4480
4481 - When the user tries to print a rename in a function while there
4482 is another rename entity defined in a package: Normally, the
4483 rename in the function has precedence over the rename in the
4484 package, so the latter should be removed from the list. This is
4485 currently not the case.
4486
4487 - This function will incorrectly remove valid renames if
4488 the CURRENT_BLOCK corresponds to a function which symbol name
4489 has been changed by an "Export" pragma. As a consequence,
4490 the user will be unable to print such rename entities. */
4491
4492 static int
4493 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4494 int nsyms, const struct block *current_block)
4495 {
4496 struct symbol *current_function;
4497 char *current_function_name;
4498 int i;
4499 int is_new_style_renaming;
4500
4501 /* If there is both a renaming foo___XR... encoded as a variable and
4502 a simple variable foo in the same block, discard the latter.
4503 First, zero out such symbols, then compress. */
4504 is_new_style_renaming = 0;
4505 for (i = 0; i < nsyms; i += 1)
4506 {
4507 struct symbol *sym = syms[i].sym;
4508 struct block *block = syms[i].block;
4509 const char *name;
4510 const char *suffix;
4511
4512 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4513 continue;
4514 name = SYMBOL_LINKAGE_NAME (sym);
4515 suffix = strstr (name, "___XR");
4516
4517 if (suffix != NULL)
4518 {
4519 int name_len = suffix - name;
4520 int j;
4521 is_new_style_renaming = 1;
4522 for (j = 0; j < nsyms; j += 1)
4523 if (i != j && syms[j].sym != NULL
4524 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4525 name_len) == 0
4526 && block == syms[j].block)
4527 syms[j].sym = NULL;
4528 }
4529 }
4530 if (is_new_style_renaming)
4531 {
4532 int j, k;
4533
4534 for (j = k = 0; j < nsyms; j += 1)
4535 if (syms[j].sym != NULL)
4536 {
4537 syms[k] = syms[j];
4538 k += 1;
4539 }
4540 return k;
4541 }
4542
4543 /* Extract the function name associated to CURRENT_BLOCK.
4544 Abort if unable to do so. */
4545
4546 if (current_block == NULL)
4547 return nsyms;
4548
4549 current_function = block_linkage_function (current_block);
4550 if (current_function == NULL)
4551 return nsyms;
4552
4553 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4554 if (current_function_name == NULL)
4555 return nsyms;
4556
4557 /* Check each of the symbols, and remove it from the list if it is
4558 a type corresponding to a renaming that is out of the scope of
4559 the current block. */
4560
4561 i = 0;
4562 while (i < nsyms)
4563 {
4564 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4565 == ADA_OBJECT_RENAMING
4566 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4567 {
4568 int j;
4569 for (j = i + 1; j < nsyms; j += 1)
4570 syms[j - 1] = syms[j];
4571 nsyms -= 1;
4572 }
4573 else
4574 i += 1;
4575 }
4576
4577 return nsyms;
4578 }
4579
4580 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4581 whose name and domain match NAME and DOMAIN respectively.
4582 If no match was found, then extend the search to "enclosing"
4583 routines (in other words, if we're inside a nested function,
4584 search the symbols defined inside the enclosing functions).
4585
4586 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4587
4588 static void
4589 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4590 struct block *block, domain_enum domain,
4591 int wild_match)
4592 {
4593 int block_depth = 0;
4594
4595 while (block != NULL)
4596 {
4597 block_depth += 1;
4598 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4599
4600 /* If we found a non-function match, assume that's the one. */
4601 if (is_nonfunction (defns_collected (obstackp, 0),
4602 num_defns_collected (obstackp)))
4603 return;
4604
4605 block = BLOCK_SUPERBLOCK (block);
4606 }
4607
4608 /* If no luck so far, try to find NAME as a local symbol in some lexically
4609 enclosing subprogram. */
4610 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4611 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4612 }
4613
4614 /* Add to OBSTACKP all non-local symbols whose name and domain match
4615 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4616 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4617
4618 static void
4619 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4620 domain_enum domain, int global,
4621 int wild_match)
4622 {
4623 struct objfile *objfile;
4624 struct partial_symtab *ps;
4625
4626 ALL_PSYMTABS (objfile, ps)
4627 {
4628 QUIT;
4629 if (ps->readin
4630 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4631 {
4632 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4633 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4634
4635 if (s == NULL || !s->primary)
4636 continue;
4637 ada_add_block_symbols (obstackp,
4638 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4639 name, domain, objfile, wild_match);
4640 }
4641 }
4642 }
4643
4644 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4645 scope and in global scopes, returning the number of matches. Sets
4646 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4647 indicating the symbols found and the blocks and symbol tables (if
4648 any) in which they were found. This vector are transient---good only to
4649 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4650 symbol match within the nest of blocks whose innermost member is BLOCK0,
4651 is the one match returned (no other matches in that or
4652 enclosing blocks is returned). If there are any matches in or
4653 surrounding BLOCK0, then these alone are returned. Otherwise, the
4654 search extends to global and file-scope (static) symbol tables.
4655 Names prefixed with "standard__" are handled specially: "standard__"
4656 is first stripped off, and only static and global symbols are searched. */
4657
4658 int
4659 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4660 domain_enum namespace,
4661 struct ada_symbol_info **results)
4662 {
4663 struct symbol *sym;
4664 struct block *block;
4665 const char *name;
4666 int wild_match;
4667 int cacheIfUnique;
4668 int ndefns;
4669
4670 obstack_free (&symbol_list_obstack, NULL);
4671 obstack_init (&symbol_list_obstack);
4672
4673 cacheIfUnique = 0;
4674
4675 /* Search specified block and its superiors. */
4676
4677 wild_match = (strstr (name0, "__") == NULL);
4678 name = name0;
4679 block = (struct block *) block0; /* FIXME: No cast ought to be
4680 needed, but adding const will
4681 have a cascade effect. */
4682
4683 /* Special case: If the user specifies a symbol name inside package
4684 Standard, do a non-wild matching of the symbol name without
4685 the "standard__" prefix. This was primarily introduced in order
4686 to allow the user to specifically access the standard exceptions
4687 using, for instance, Standard.Constraint_Error when Constraint_Error
4688 is ambiguous (due to the user defining its own Constraint_Error
4689 entity inside its program). */
4690 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4691 {
4692 wild_match = 0;
4693 block = NULL;
4694 name = name0 + sizeof ("standard__") - 1;
4695 }
4696
4697 /* Check the non-global symbols. If we have ANY match, then we're done. */
4698
4699 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4700 wild_match);
4701 if (num_defns_collected (&symbol_list_obstack) > 0)
4702 goto done;
4703
4704 /* No non-global symbols found. Check our cache to see if we have
4705 already performed this search before. If we have, then return
4706 the same result. */
4707
4708 cacheIfUnique = 1;
4709 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4710 {
4711 if (sym != NULL)
4712 add_defn_to_vec (&symbol_list_obstack, sym, block);
4713 goto done;
4714 }
4715
4716 /* Search symbols from all global blocks. */
4717
4718 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4719 wild_match);
4720
4721 /* Now add symbols from all per-file blocks if we've gotten no hits
4722 (not strictly correct, but perhaps better than an error). */
4723
4724 if (num_defns_collected (&symbol_list_obstack) == 0)
4725 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4726 wild_match);
4727
4728 done:
4729 ndefns = num_defns_collected (&symbol_list_obstack);
4730 *results = defns_collected (&symbol_list_obstack, 1);
4731
4732 ndefns = remove_extra_symbols (*results, ndefns);
4733
4734 if (ndefns == 0)
4735 cache_symbol (name0, namespace, NULL, NULL);
4736
4737 if (ndefns == 1 && cacheIfUnique)
4738 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4739
4740 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4741
4742 return ndefns;
4743 }
4744
4745 struct symbol *
4746 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4747 domain_enum namespace, struct block **block_found)
4748 {
4749 struct ada_symbol_info *candidates;
4750 int n_candidates;
4751
4752 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4753
4754 if (n_candidates == 0)
4755 return NULL;
4756
4757 if (block_found != NULL)
4758 *block_found = candidates[0].block;
4759
4760 return fixup_symbol_section (candidates[0].sym, NULL);
4761 }
4762
4763 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4764 scope and in global scopes, or NULL if none. NAME is folded and
4765 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4766 choosing the first symbol if there are multiple choices.
4767 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4768 table in which the symbol was found (in both cases, these
4769 assignments occur only if the pointers are non-null). */
4770 struct symbol *
4771 ada_lookup_symbol (const char *name, const struct block *block0,
4772 domain_enum namespace, int *is_a_field_of_this)
4773 {
4774 if (is_a_field_of_this != NULL)
4775 *is_a_field_of_this = 0;
4776
4777 return
4778 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4779 block0, namespace, NULL);
4780 }
4781
4782 static struct symbol *
4783 ada_lookup_symbol_nonlocal (const char *name,
4784 const char *linkage_name,
4785 const struct block *block,
4786 const domain_enum domain)
4787 {
4788 if (linkage_name == NULL)
4789 linkage_name = name;
4790 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4791 NULL);
4792 }
4793
4794
4795 /* True iff STR is a possible encoded suffix of a normal Ada name
4796 that is to be ignored for matching purposes. Suffixes of parallel
4797 names (e.g., XVE) are not included here. Currently, the possible suffixes
4798 are given by any of the regular expressions:
4799
4800 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4801 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4802 _E[0-9]+[bs]$ [protected object entry suffixes]
4803 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4804
4805 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4806 match is performed. This sequence is used to differentiate homonyms,
4807 is an optional part of a valid name suffix. */
4808
4809 static int
4810 is_name_suffix (const char *str)
4811 {
4812 int k;
4813 const char *matching;
4814 const int len = strlen (str);
4815
4816 /* Skip optional leading __[0-9]+. */
4817
4818 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4819 {
4820 str += 3;
4821 while (isdigit (str[0]))
4822 str += 1;
4823 }
4824
4825 /* [.$][0-9]+ */
4826
4827 if (str[0] == '.' || str[0] == '$')
4828 {
4829 matching = str + 1;
4830 while (isdigit (matching[0]))
4831 matching += 1;
4832 if (matching[0] == '\0')
4833 return 1;
4834 }
4835
4836 /* ___[0-9]+ */
4837
4838 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4839 {
4840 matching = str + 3;
4841 while (isdigit (matching[0]))
4842 matching += 1;
4843 if (matching[0] == '\0')
4844 return 1;
4845 }
4846
4847 #if 0
4848 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4849 with a N at the end. Unfortunately, the compiler uses the same
4850 convention for other internal types it creates. So treating
4851 all entity names that end with an "N" as a name suffix causes
4852 some regressions. For instance, consider the case of an enumerated
4853 type. To support the 'Image attribute, it creates an array whose
4854 name ends with N.
4855 Having a single character like this as a suffix carrying some
4856 information is a bit risky. Perhaps we should change the encoding
4857 to be something like "_N" instead. In the meantime, do not do
4858 the following check. */
4859 /* Protected Object Subprograms */
4860 if (len == 1 && str [0] == 'N')
4861 return 1;
4862 #endif
4863
4864 /* _E[0-9]+[bs]$ */
4865 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4866 {
4867 matching = str + 3;
4868 while (isdigit (matching[0]))
4869 matching += 1;
4870 if ((matching[0] == 'b' || matching[0] == 's')
4871 && matching [1] == '\0')
4872 return 1;
4873 }
4874
4875 /* ??? We should not modify STR directly, as we are doing below. This
4876 is fine in this case, but may become problematic later if we find
4877 that this alternative did not work, and want to try matching
4878 another one from the begining of STR. Since we modified it, we
4879 won't be able to find the begining of the string anymore! */
4880 if (str[0] == 'X')
4881 {
4882 str += 1;
4883 while (str[0] != '_' && str[0] != '\0')
4884 {
4885 if (str[0] != 'n' && str[0] != 'b')
4886 return 0;
4887 str += 1;
4888 }
4889 }
4890
4891 if (str[0] == '\000')
4892 return 1;
4893
4894 if (str[0] == '_')
4895 {
4896 if (str[1] != '_' || str[2] == '\000')
4897 return 0;
4898 if (str[2] == '_')
4899 {
4900 if (strcmp (str + 3, "JM") == 0)
4901 return 1;
4902 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4903 the LJM suffix in favor of the JM one. But we will
4904 still accept LJM as a valid suffix for a reasonable
4905 amount of time, just to allow ourselves to debug programs
4906 compiled using an older version of GNAT. */
4907 if (strcmp (str + 3, "LJM") == 0)
4908 return 1;
4909 if (str[3] != 'X')
4910 return 0;
4911 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4912 || str[4] == 'U' || str[4] == 'P')
4913 return 1;
4914 if (str[4] == 'R' && str[5] != 'T')
4915 return 1;
4916 return 0;
4917 }
4918 if (!isdigit (str[2]))
4919 return 0;
4920 for (k = 3; str[k] != '\0'; k += 1)
4921 if (!isdigit (str[k]) && str[k] != '_')
4922 return 0;
4923 return 1;
4924 }
4925 if (str[0] == '$' && isdigit (str[1]))
4926 {
4927 for (k = 2; str[k] != '\0'; k += 1)
4928 if (!isdigit (str[k]) && str[k] != '_')
4929 return 0;
4930 return 1;
4931 }
4932 return 0;
4933 }
4934
4935 /* Return non-zero if the string starting at NAME and ending before
4936 NAME_END contains no capital letters. */
4937
4938 static int
4939 is_valid_name_for_wild_match (const char *name0)
4940 {
4941 const char *decoded_name = ada_decode (name0);
4942 int i;
4943
4944 /* If the decoded name starts with an angle bracket, it means that
4945 NAME0 does not follow the GNAT encoding format. It should then
4946 not be allowed as a possible wild match. */
4947 if (decoded_name[0] == '<')
4948 return 0;
4949
4950 for (i=0; decoded_name[i] != '\0'; i++)
4951 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4952 return 0;
4953
4954 return 1;
4955 }
4956
4957 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4958 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4959 informational suffixes of NAME (i.e., for which is_name_suffix is
4960 true). */
4961
4962 static int
4963 wild_match (const char *patn0, int patn_len, const char *name0)
4964 {
4965 char* match;
4966 const char* start;
4967 start = name0;
4968 while (1)
4969 {
4970 match = strstr (start, patn0);
4971 if (match == NULL)
4972 return 0;
4973 if ((match == name0
4974 || match[-1] == '.'
4975 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4976 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4977 && is_name_suffix (match + patn_len))
4978 return (match == name0 || is_valid_name_for_wild_match (name0));
4979 start = match + 1;
4980 }
4981 }
4982
4983 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4984 vector *defn_symbols, updating the list of symbols in OBSTACKP
4985 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4986 OBJFILE is the section containing BLOCK.
4987 SYMTAB is recorded with each symbol added. */
4988
4989 static void
4990 ada_add_block_symbols (struct obstack *obstackp,
4991 struct block *block, const char *name,
4992 domain_enum domain, struct objfile *objfile,
4993 int wild)
4994 {
4995 struct dict_iterator iter;
4996 int name_len = strlen (name);
4997 /* A matching argument symbol, if any. */
4998 struct symbol *arg_sym;
4999 /* Set true when we find a matching non-argument symbol. */
5000 int found_sym;
5001 struct symbol *sym;
5002
5003 arg_sym = NULL;
5004 found_sym = 0;
5005 if (wild)
5006 {
5007 struct symbol *sym;
5008 ALL_BLOCK_SYMBOLS (block, iter, sym)
5009 {
5010 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5011 SYMBOL_DOMAIN (sym), domain)
5012 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5013 {
5014 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5015 continue;
5016 else if (SYMBOL_IS_ARGUMENT (sym))
5017 arg_sym = sym;
5018 else
5019 {
5020 found_sym = 1;
5021 add_defn_to_vec (obstackp,
5022 fixup_symbol_section (sym, objfile),
5023 block);
5024 }
5025 }
5026 }
5027 }
5028 else
5029 {
5030 ALL_BLOCK_SYMBOLS (block, iter, sym)
5031 {
5032 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5033 SYMBOL_DOMAIN (sym), domain))
5034 {
5035 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5036 if (cmp == 0
5037 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5038 {
5039 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5040 {
5041 if (SYMBOL_IS_ARGUMENT (sym))
5042 arg_sym = sym;
5043 else
5044 {
5045 found_sym = 1;
5046 add_defn_to_vec (obstackp,
5047 fixup_symbol_section (sym, objfile),
5048 block);
5049 }
5050 }
5051 }
5052 }
5053 }
5054 }
5055
5056 if (!found_sym && arg_sym != NULL)
5057 {
5058 add_defn_to_vec (obstackp,
5059 fixup_symbol_section (arg_sym, objfile),
5060 block);
5061 }
5062
5063 if (!wild)
5064 {
5065 arg_sym = NULL;
5066 found_sym = 0;
5067
5068 ALL_BLOCK_SYMBOLS (block, iter, sym)
5069 {
5070 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5071 SYMBOL_DOMAIN (sym), domain))
5072 {
5073 int cmp;
5074
5075 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5076 if (cmp == 0)
5077 {
5078 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5079 if (cmp == 0)
5080 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5081 name_len);
5082 }
5083
5084 if (cmp == 0
5085 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5086 {
5087 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5088 {
5089 if (SYMBOL_IS_ARGUMENT (sym))
5090 arg_sym = sym;
5091 else
5092 {
5093 found_sym = 1;
5094 add_defn_to_vec (obstackp,
5095 fixup_symbol_section (sym, objfile),
5096 block);
5097 }
5098 }
5099 }
5100 }
5101 }
5102
5103 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5104 They aren't parameters, right? */
5105 if (!found_sym && arg_sym != NULL)
5106 {
5107 add_defn_to_vec (obstackp,
5108 fixup_symbol_section (arg_sym, objfile),
5109 block);
5110 }
5111 }
5112 }
5113 \f
5114
5115 /* Symbol Completion */
5116
5117 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5118 name in a form that's appropriate for the completion. The result
5119 does not need to be deallocated, but is only good until the next call.
5120
5121 TEXT_LEN is equal to the length of TEXT.
5122 Perform a wild match if WILD_MATCH is set.
5123 ENCODED should be set if TEXT represents the start of a symbol name
5124 in its encoded form. */
5125
5126 static const char *
5127 symbol_completion_match (const char *sym_name,
5128 const char *text, int text_len,
5129 int wild_match, int encoded)
5130 {
5131 char *result;
5132 const int verbatim_match = (text[0] == '<');
5133 int match = 0;
5134
5135 if (verbatim_match)
5136 {
5137 /* Strip the leading angle bracket. */
5138 text = text + 1;
5139 text_len--;
5140 }
5141
5142 /* First, test against the fully qualified name of the symbol. */
5143
5144 if (strncmp (sym_name, text, text_len) == 0)
5145 match = 1;
5146
5147 if (match && !encoded)
5148 {
5149 /* One needed check before declaring a positive match is to verify
5150 that iff we are doing a verbatim match, the decoded version
5151 of the symbol name starts with '<'. Otherwise, this symbol name
5152 is not a suitable completion. */
5153 const char *sym_name_copy = sym_name;
5154 int has_angle_bracket;
5155
5156 sym_name = ada_decode (sym_name);
5157 has_angle_bracket = (sym_name[0] == '<');
5158 match = (has_angle_bracket == verbatim_match);
5159 sym_name = sym_name_copy;
5160 }
5161
5162 if (match && !verbatim_match)
5163 {
5164 /* When doing non-verbatim match, another check that needs to
5165 be done is to verify that the potentially matching symbol name
5166 does not include capital letters, because the ada-mode would
5167 not be able to understand these symbol names without the
5168 angle bracket notation. */
5169 const char *tmp;
5170
5171 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5172 if (*tmp != '\0')
5173 match = 0;
5174 }
5175
5176 /* Second: Try wild matching... */
5177
5178 if (!match && wild_match)
5179 {
5180 /* Since we are doing wild matching, this means that TEXT
5181 may represent an unqualified symbol name. We therefore must
5182 also compare TEXT against the unqualified name of the symbol. */
5183 sym_name = ada_unqualified_name (ada_decode (sym_name));
5184
5185 if (strncmp (sym_name, text, text_len) == 0)
5186 match = 1;
5187 }
5188
5189 /* Finally: If we found a mach, prepare the result to return. */
5190
5191 if (!match)
5192 return NULL;
5193
5194 if (verbatim_match)
5195 sym_name = add_angle_brackets (sym_name);
5196
5197 if (!encoded)
5198 sym_name = ada_decode (sym_name);
5199
5200 return sym_name;
5201 }
5202
5203 typedef char *char_ptr;
5204 DEF_VEC_P (char_ptr);
5205
5206 /* A companion function to ada_make_symbol_completion_list().
5207 Check if SYM_NAME represents a symbol which name would be suitable
5208 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5209 it is appended at the end of the given string vector SV.
5210
5211 ORIG_TEXT is the string original string from the user command
5212 that needs to be completed. WORD is the entire command on which
5213 completion should be performed. These two parameters are used to
5214 determine which part of the symbol name should be added to the
5215 completion vector.
5216 if WILD_MATCH is set, then wild matching is performed.
5217 ENCODED should be set if TEXT represents a symbol name in its
5218 encoded formed (in which case the completion should also be
5219 encoded). */
5220
5221 static void
5222 symbol_completion_add (VEC(char_ptr) **sv,
5223 const char *sym_name,
5224 const char *text, int text_len,
5225 const char *orig_text, const char *word,
5226 int wild_match, int encoded)
5227 {
5228 const char *match = symbol_completion_match (sym_name, text, text_len,
5229 wild_match, encoded);
5230 char *completion;
5231
5232 if (match == NULL)
5233 return;
5234
5235 /* We found a match, so add the appropriate completion to the given
5236 string vector. */
5237
5238 if (word == orig_text)
5239 {
5240 completion = xmalloc (strlen (match) + 5);
5241 strcpy (completion, match);
5242 }
5243 else if (word > orig_text)
5244 {
5245 /* Return some portion of sym_name. */
5246 completion = xmalloc (strlen (match) + 5);
5247 strcpy (completion, match + (word - orig_text));
5248 }
5249 else
5250 {
5251 /* Return some of ORIG_TEXT plus sym_name. */
5252 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5253 strncpy (completion, word, orig_text - word);
5254 completion[orig_text - word] = '\0';
5255 strcat (completion, match);
5256 }
5257
5258 VEC_safe_push (char_ptr, *sv, completion);
5259 }
5260
5261 /* Return a list of possible symbol names completing TEXT0. The list
5262 is NULL terminated. WORD is the entire command on which completion
5263 is made. */
5264
5265 static char **
5266 ada_make_symbol_completion_list (char *text0, char *word)
5267 {
5268 char *text;
5269 int text_len;
5270 int wild_match;
5271 int encoded;
5272 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5273 struct symbol *sym;
5274 struct symtab *s;
5275 struct partial_symtab *ps;
5276 struct minimal_symbol *msymbol;
5277 struct objfile *objfile;
5278 struct block *b, *surrounding_static_block = 0;
5279 int i;
5280 struct dict_iterator iter;
5281
5282 if (text0[0] == '<')
5283 {
5284 text = xstrdup (text0);
5285 make_cleanup (xfree, text);
5286 text_len = strlen (text);
5287 wild_match = 0;
5288 encoded = 1;
5289 }
5290 else
5291 {
5292 text = xstrdup (ada_encode (text0));
5293 make_cleanup (xfree, text);
5294 text_len = strlen (text);
5295 for (i = 0; i < text_len; i++)
5296 text[i] = tolower (text[i]);
5297
5298 encoded = (strstr (text0, "__") != NULL);
5299 /* If the name contains a ".", then the user is entering a fully
5300 qualified entity name, and the match must not be done in wild
5301 mode. Similarly, if the user wants to complete what looks like
5302 an encoded name, the match must not be done in wild mode. */
5303 wild_match = (strchr (text0, '.') == NULL && !encoded);
5304 }
5305
5306 /* First, look at the partial symtab symbols. */
5307 ALL_PSYMTABS (objfile, ps)
5308 {
5309 struct partial_symbol **psym;
5310
5311 /* If the psymtab's been read in we'll get it when we search
5312 through the blockvector. */
5313 if (ps->readin)
5314 continue;
5315
5316 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5317 psym < (objfile->global_psymbols.list + ps->globals_offset
5318 + ps->n_global_syms); psym++)
5319 {
5320 QUIT;
5321 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5322 text, text_len, text0, word,
5323 wild_match, encoded);
5324 }
5325
5326 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5327 psym < (objfile->static_psymbols.list + ps->statics_offset
5328 + ps->n_static_syms); psym++)
5329 {
5330 QUIT;
5331 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5332 text, text_len, text0, word,
5333 wild_match, encoded);
5334 }
5335 }
5336
5337 /* At this point scan through the misc symbol vectors and add each
5338 symbol you find to the list. Eventually we want to ignore
5339 anything that isn't a text symbol (everything else will be
5340 handled by the psymtab code above). */
5341
5342 ALL_MSYMBOLS (objfile, msymbol)
5343 {
5344 QUIT;
5345 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5346 text, text_len, text0, word, wild_match, encoded);
5347 }
5348
5349 /* Search upwards from currently selected frame (so that we can
5350 complete on local vars. */
5351
5352 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5353 {
5354 if (!BLOCK_SUPERBLOCK (b))
5355 surrounding_static_block = b; /* For elmin of dups */
5356
5357 ALL_BLOCK_SYMBOLS (b, iter, sym)
5358 {
5359 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5360 text, text_len, text0, word,
5361 wild_match, encoded);
5362 }
5363 }
5364
5365 /* Go through the symtabs and check the externs and statics for
5366 symbols which match. */
5367
5368 ALL_SYMTABS (objfile, s)
5369 {
5370 QUIT;
5371 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5372 ALL_BLOCK_SYMBOLS (b, iter, sym)
5373 {
5374 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5375 text, text_len, text0, word,
5376 wild_match, encoded);
5377 }
5378 }
5379
5380 ALL_SYMTABS (objfile, s)
5381 {
5382 QUIT;
5383 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5384 /* Don't do this block twice. */
5385 if (b == surrounding_static_block)
5386 continue;
5387 ALL_BLOCK_SYMBOLS (b, iter, sym)
5388 {
5389 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5390 text, text_len, text0, word,
5391 wild_match, encoded);
5392 }
5393 }
5394
5395 /* Append the closing NULL entry. */
5396 VEC_safe_push (char_ptr, completions, NULL);
5397
5398 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5399 return the copy. It's unfortunate that we have to make a copy
5400 of an array that we're about to destroy, but there is nothing much
5401 we can do about it. Fortunately, it's typically not a very large
5402 array. */
5403 {
5404 const size_t completions_size =
5405 VEC_length (char_ptr, completions) * sizeof (char *);
5406 char **result = malloc (completions_size);
5407
5408 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5409
5410 VEC_free (char_ptr, completions);
5411 return result;
5412 }
5413 }
5414
5415 /* Field Access */
5416
5417 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5418 for tagged types. */
5419
5420 static int
5421 ada_is_dispatch_table_ptr_type (struct type *type)
5422 {
5423 char *name;
5424
5425 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5426 return 0;
5427
5428 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5429 if (name == NULL)
5430 return 0;
5431
5432 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5433 }
5434
5435 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5436 to be invisible to users. */
5437
5438 int
5439 ada_is_ignored_field (struct type *type, int field_num)
5440 {
5441 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5442 return 1;
5443
5444 /* Check the name of that field. */
5445 {
5446 const char *name = TYPE_FIELD_NAME (type, field_num);
5447
5448 /* Anonymous field names should not be printed.
5449 brobecker/2007-02-20: I don't think this can actually happen
5450 but we don't want to print the value of annonymous fields anyway. */
5451 if (name == NULL)
5452 return 1;
5453
5454 /* A field named "_parent" is internally generated by GNAT for
5455 tagged types, and should not be printed either. */
5456 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5457 return 1;
5458 }
5459
5460 /* If this is the dispatch table of a tagged type, then ignore. */
5461 if (ada_is_tagged_type (type, 1)
5462 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5463 return 1;
5464
5465 /* Not a special field, so it should not be ignored. */
5466 return 0;
5467 }
5468
5469 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5470 pointer or reference type whose ultimate target has a tag field. */
5471
5472 int
5473 ada_is_tagged_type (struct type *type, int refok)
5474 {
5475 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5476 }
5477
5478 /* True iff TYPE represents the type of X'Tag */
5479
5480 int
5481 ada_is_tag_type (struct type *type)
5482 {
5483 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5484 return 0;
5485 else
5486 {
5487 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5488 return (name != NULL
5489 && strcmp (name, "ada__tags__dispatch_table") == 0);
5490 }
5491 }
5492
5493 /* The type of the tag on VAL. */
5494
5495 struct type *
5496 ada_tag_type (struct value *val)
5497 {
5498 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5499 }
5500
5501 /* The value of the tag on VAL. */
5502
5503 struct value *
5504 ada_value_tag (struct value *val)
5505 {
5506 return ada_value_struct_elt (val, "_tag", 0);
5507 }
5508
5509 /* The value of the tag on the object of type TYPE whose contents are
5510 saved at VALADDR, if it is non-null, or is at memory address
5511 ADDRESS. */
5512
5513 static struct value *
5514 value_tag_from_contents_and_address (struct type *type,
5515 const gdb_byte *valaddr,
5516 CORE_ADDR address)
5517 {
5518 int tag_byte_offset, dummy1, dummy2;
5519 struct type *tag_type;
5520 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5521 NULL, NULL, NULL))
5522 {
5523 const gdb_byte *valaddr1 = ((valaddr == NULL)
5524 ? NULL
5525 : valaddr + tag_byte_offset);
5526 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5527
5528 return value_from_contents_and_address (tag_type, valaddr1, address1);
5529 }
5530 return NULL;
5531 }
5532
5533 static struct type *
5534 type_from_tag (struct value *tag)
5535 {
5536 const char *type_name = ada_tag_name (tag);
5537 if (type_name != NULL)
5538 return ada_find_any_type (ada_encode (type_name));
5539 return NULL;
5540 }
5541
5542 struct tag_args
5543 {
5544 struct value *tag;
5545 char *name;
5546 };
5547
5548
5549 static int ada_tag_name_1 (void *);
5550 static int ada_tag_name_2 (struct tag_args *);
5551
5552 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5553 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5554 The value stored in ARGS->name is valid until the next call to
5555 ada_tag_name_1. */
5556
5557 static int
5558 ada_tag_name_1 (void *args0)
5559 {
5560 struct tag_args *args = (struct tag_args *) args0;
5561 static char name[1024];
5562 char *p;
5563 struct value *val;
5564 args->name = NULL;
5565 val = ada_value_struct_elt (args->tag, "tsd", 1);
5566 if (val == NULL)
5567 return ada_tag_name_2 (args);
5568 val = ada_value_struct_elt (val, "expanded_name", 1);
5569 if (val == NULL)
5570 return 0;
5571 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5572 for (p = name; *p != '\0'; p += 1)
5573 if (isalpha (*p))
5574 *p = tolower (*p);
5575 args->name = name;
5576 return 0;
5577 }
5578
5579 /* Utility function for ada_tag_name_1 that tries the second
5580 representation for the dispatch table (in which there is no
5581 explicit 'tsd' field in the referent of the tag pointer, and instead
5582 the tsd pointer is stored just before the dispatch table. */
5583
5584 static int
5585 ada_tag_name_2 (struct tag_args *args)
5586 {
5587 struct type *info_type;
5588 static char name[1024];
5589 char *p;
5590 struct value *val, *valp;
5591
5592 args->name = NULL;
5593 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5594 if (info_type == NULL)
5595 return 0;
5596 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5597 valp = value_cast (info_type, args->tag);
5598 if (valp == NULL)
5599 return 0;
5600 val = value_ind (value_ptradd (valp, -1));
5601 if (val == NULL)
5602 return 0;
5603 val = ada_value_struct_elt (val, "expanded_name", 1);
5604 if (val == NULL)
5605 return 0;
5606 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5607 for (p = name; *p != '\0'; p += 1)
5608 if (isalpha (*p))
5609 *p = tolower (*p);
5610 args->name = name;
5611 return 0;
5612 }
5613
5614 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5615 * a C string. */
5616
5617 const char *
5618 ada_tag_name (struct value *tag)
5619 {
5620 struct tag_args args;
5621 if (!ada_is_tag_type (value_type (tag)))
5622 return NULL;
5623 args.tag = tag;
5624 args.name = NULL;
5625 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5626 return args.name;
5627 }
5628
5629 /* The parent type of TYPE, or NULL if none. */
5630
5631 struct type *
5632 ada_parent_type (struct type *type)
5633 {
5634 int i;
5635
5636 type = ada_check_typedef (type);
5637
5638 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5639 return NULL;
5640
5641 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5642 if (ada_is_parent_field (type, i))
5643 {
5644 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5645
5646 /* If the _parent field is a pointer, then dereference it. */
5647 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5648 parent_type = TYPE_TARGET_TYPE (parent_type);
5649 /* If there is a parallel XVS type, get the actual base type. */
5650 parent_type = ada_get_base_type (parent_type);
5651
5652 return ada_check_typedef (parent_type);
5653 }
5654
5655 return NULL;
5656 }
5657
5658 /* True iff field number FIELD_NUM of structure type TYPE contains the
5659 parent-type (inherited) fields of a derived type. Assumes TYPE is
5660 a structure type with at least FIELD_NUM+1 fields. */
5661
5662 int
5663 ada_is_parent_field (struct type *type, int field_num)
5664 {
5665 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5666 return (name != NULL
5667 && (strncmp (name, "PARENT", 6) == 0
5668 || strncmp (name, "_parent", 7) == 0));
5669 }
5670
5671 /* True iff field number FIELD_NUM of structure type TYPE is a
5672 transparent wrapper field (which should be silently traversed when doing
5673 field selection and flattened when printing). Assumes TYPE is a
5674 structure type with at least FIELD_NUM+1 fields. Such fields are always
5675 structures. */
5676
5677 int
5678 ada_is_wrapper_field (struct type *type, int field_num)
5679 {
5680 const char *name = TYPE_FIELD_NAME (type, field_num);
5681 return (name != NULL
5682 && (strncmp (name, "PARENT", 6) == 0
5683 || strcmp (name, "REP") == 0
5684 || strncmp (name, "_parent", 7) == 0
5685 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5686 }
5687
5688 /* True iff field number FIELD_NUM of structure or union type TYPE
5689 is a variant wrapper. Assumes TYPE is a structure type with at least
5690 FIELD_NUM+1 fields. */
5691
5692 int
5693 ada_is_variant_part (struct type *type, int field_num)
5694 {
5695 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5696 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5697 || (is_dynamic_field (type, field_num)
5698 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5699 == TYPE_CODE_UNION)));
5700 }
5701
5702 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5703 whose discriminants are contained in the record type OUTER_TYPE,
5704 returns the type of the controlling discriminant for the variant.
5705 May return NULL if the type could not be found. */
5706
5707 struct type *
5708 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5709 {
5710 char *name = ada_variant_discrim_name (var_type);
5711 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5712 }
5713
5714 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5715 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5716 represents a 'when others' clause; otherwise 0. */
5717
5718 int
5719 ada_is_others_clause (struct type *type, int field_num)
5720 {
5721 const char *name = TYPE_FIELD_NAME (type, field_num);
5722 return (name != NULL && name[0] == 'O');
5723 }
5724
5725 /* Assuming that TYPE0 is the type of the variant part of a record,
5726 returns the name of the discriminant controlling the variant.
5727 The value is valid until the next call to ada_variant_discrim_name. */
5728
5729 char *
5730 ada_variant_discrim_name (struct type *type0)
5731 {
5732 static char *result = NULL;
5733 static size_t result_len = 0;
5734 struct type *type;
5735 const char *name;
5736 const char *discrim_end;
5737 const char *discrim_start;
5738
5739 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5740 type = TYPE_TARGET_TYPE (type0);
5741 else
5742 type = type0;
5743
5744 name = ada_type_name (type);
5745
5746 if (name == NULL || name[0] == '\000')
5747 return "";
5748
5749 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5750 discrim_end -= 1)
5751 {
5752 if (strncmp (discrim_end, "___XVN", 6) == 0)
5753 break;
5754 }
5755 if (discrim_end == name)
5756 return "";
5757
5758 for (discrim_start = discrim_end; discrim_start != name + 3;
5759 discrim_start -= 1)
5760 {
5761 if (discrim_start == name + 1)
5762 return "";
5763 if ((discrim_start > name + 3
5764 && strncmp (discrim_start - 3, "___", 3) == 0)
5765 || discrim_start[-1] == '.')
5766 break;
5767 }
5768
5769 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5770 strncpy (result, discrim_start, discrim_end - discrim_start);
5771 result[discrim_end - discrim_start] = '\0';
5772 return result;
5773 }
5774
5775 /* Scan STR for a subtype-encoded number, beginning at position K.
5776 Put the position of the character just past the number scanned in
5777 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5778 Return 1 if there was a valid number at the given position, and 0
5779 otherwise. A "subtype-encoded" number consists of the absolute value
5780 in decimal, followed by the letter 'm' to indicate a negative number.
5781 Assumes 0m does not occur. */
5782
5783 int
5784 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5785 {
5786 ULONGEST RU;
5787
5788 if (!isdigit (str[k]))
5789 return 0;
5790
5791 /* Do it the hard way so as not to make any assumption about
5792 the relationship of unsigned long (%lu scan format code) and
5793 LONGEST. */
5794 RU = 0;
5795 while (isdigit (str[k]))
5796 {
5797 RU = RU * 10 + (str[k] - '0');
5798 k += 1;
5799 }
5800
5801 if (str[k] == 'm')
5802 {
5803 if (R != NULL)
5804 *R = (-(LONGEST) (RU - 1)) - 1;
5805 k += 1;
5806 }
5807 else if (R != NULL)
5808 *R = (LONGEST) RU;
5809
5810 /* NOTE on the above: Technically, C does not say what the results of
5811 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5812 number representable as a LONGEST (although either would probably work
5813 in most implementations). When RU>0, the locution in the then branch
5814 above is always equivalent to the negative of RU. */
5815
5816 if (new_k != NULL)
5817 *new_k = k;
5818 return 1;
5819 }
5820
5821 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5822 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5823 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5824
5825 int
5826 ada_in_variant (LONGEST val, struct type *type, int field_num)
5827 {
5828 const char *name = TYPE_FIELD_NAME (type, field_num);
5829 int p;
5830
5831 p = 0;
5832 while (1)
5833 {
5834 switch (name[p])
5835 {
5836 case '\0':
5837 return 0;
5838 case 'S':
5839 {
5840 LONGEST W;
5841 if (!ada_scan_number (name, p + 1, &W, &p))
5842 return 0;
5843 if (val == W)
5844 return 1;
5845 break;
5846 }
5847 case 'R':
5848 {
5849 LONGEST L, U;
5850 if (!ada_scan_number (name, p + 1, &L, &p)
5851 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5852 return 0;
5853 if (val >= L && val <= U)
5854 return 1;
5855 break;
5856 }
5857 case 'O':
5858 return 1;
5859 default:
5860 return 0;
5861 }
5862 }
5863 }
5864
5865 /* FIXME: Lots of redundancy below. Try to consolidate. */
5866
5867 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5868 ARG_TYPE, extract and return the value of one of its (non-static)
5869 fields. FIELDNO says which field. Differs from value_primitive_field
5870 only in that it can handle packed values of arbitrary type. */
5871
5872 static struct value *
5873 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5874 struct type *arg_type)
5875 {
5876 struct type *type;
5877
5878 arg_type = ada_check_typedef (arg_type);
5879 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5880
5881 /* Handle packed fields. */
5882
5883 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5884 {
5885 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5886 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5887
5888 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5889 offset + bit_pos / 8,
5890 bit_pos % 8, bit_size, type);
5891 }
5892 else
5893 return value_primitive_field (arg1, offset, fieldno, arg_type);
5894 }
5895
5896 /* Find field with name NAME in object of type TYPE. If found,
5897 set the following for each argument that is non-null:
5898 - *FIELD_TYPE_P to the field's type;
5899 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5900 an object of that type;
5901 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5902 - *BIT_SIZE_P to its size in bits if the field is packed, and
5903 0 otherwise;
5904 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5905 fields up to but not including the desired field, or by the total
5906 number of fields if not found. A NULL value of NAME never
5907 matches; the function just counts visible fields in this case.
5908
5909 Returns 1 if found, 0 otherwise. */
5910
5911 static int
5912 find_struct_field (char *name, struct type *type, int offset,
5913 struct type **field_type_p,
5914 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5915 int *index_p)
5916 {
5917 int i;
5918
5919 type = ada_check_typedef (type);
5920
5921 if (field_type_p != NULL)
5922 *field_type_p = NULL;
5923 if (byte_offset_p != NULL)
5924 *byte_offset_p = 0;
5925 if (bit_offset_p != NULL)
5926 *bit_offset_p = 0;
5927 if (bit_size_p != NULL)
5928 *bit_size_p = 0;
5929
5930 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5931 {
5932 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5933 int fld_offset = offset + bit_pos / 8;
5934 char *t_field_name = TYPE_FIELD_NAME (type, i);
5935
5936 if (t_field_name == NULL)
5937 continue;
5938
5939 else if (name != NULL && field_name_match (t_field_name, name))
5940 {
5941 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5942 if (field_type_p != NULL)
5943 *field_type_p = TYPE_FIELD_TYPE (type, i);
5944 if (byte_offset_p != NULL)
5945 *byte_offset_p = fld_offset;
5946 if (bit_offset_p != NULL)
5947 *bit_offset_p = bit_pos % 8;
5948 if (bit_size_p != NULL)
5949 *bit_size_p = bit_size;
5950 return 1;
5951 }
5952 else if (ada_is_wrapper_field (type, i))
5953 {
5954 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5955 field_type_p, byte_offset_p, bit_offset_p,
5956 bit_size_p, index_p))
5957 return 1;
5958 }
5959 else if (ada_is_variant_part (type, i))
5960 {
5961 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5962 fixed type?? */
5963 int j;
5964 struct type *field_type
5965 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5966
5967 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5968 {
5969 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5970 fld_offset
5971 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5972 field_type_p, byte_offset_p,
5973 bit_offset_p, bit_size_p, index_p))
5974 return 1;
5975 }
5976 }
5977 else if (index_p != NULL)
5978 *index_p += 1;
5979 }
5980 return 0;
5981 }
5982
5983 /* Number of user-visible fields in record type TYPE. */
5984
5985 static int
5986 num_visible_fields (struct type *type)
5987 {
5988 int n;
5989 n = 0;
5990 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5991 return n;
5992 }
5993
5994 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5995 and search in it assuming it has (class) type TYPE.
5996 If found, return value, else return NULL.
5997
5998 Searches recursively through wrapper fields (e.g., '_parent'). */
5999
6000 static struct value *
6001 ada_search_struct_field (char *name, struct value *arg, int offset,
6002 struct type *type)
6003 {
6004 int i;
6005 type = ada_check_typedef (type);
6006
6007 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6008 {
6009 char *t_field_name = TYPE_FIELD_NAME (type, i);
6010
6011 if (t_field_name == NULL)
6012 continue;
6013
6014 else if (field_name_match (t_field_name, name))
6015 return ada_value_primitive_field (arg, offset, i, type);
6016
6017 else if (ada_is_wrapper_field (type, i))
6018 {
6019 struct value *v = /* Do not let indent join lines here. */
6020 ada_search_struct_field (name, arg,
6021 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6022 TYPE_FIELD_TYPE (type, i));
6023 if (v != NULL)
6024 return v;
6025 }
6026
6027 else if (ada_is_variant_part (type, i))
6028 {
6029 /* PNH: Do we ever get here? See find_struct_field. */
6030 int j;
6031 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6032 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6033
6034 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6035 {
6036 struct value *v = ada_search_struct_field /* Force line break. */
6037 (name, arg,
6038 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6039 TYPE_FIELD_TYPE (field_type, j));
6040 if (v != NULL)
6041 return v;
6042 }
6043 }
6044 }
6045 return NULL;
6046 }
6047
6048 static struct value *ada_index_struct_field_1 (int *, struct value *,
6049 int, struct type *);
6050
6051
6052 /* Return field #INDEX in ARG, where the index is that returned by
6053 * find_struct_field through its INDEX_P argument. Adjust the address
6054 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6055 * If found, return value, else return NULL. */
6056
6057 static struct value *
6058 ada_index_struct_field (int index, struct value *arg, int offset,
6059 struct type *type)
6060 {
6061 return ada_index_struct_field_1 (&index, arg, offset, type);
6062 }
6063
6064
6065 /* Auxiliary function for ada_index_struct_field. Like
6066 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6067 * *INDEX_P. */
6068
6069 static struct value *
6070 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6071 struct type *type)
6072 {
6073 int i;
6074 type = ada_check_typedef (type);
6075
6076 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6077 {
6078 if (TYPE_FIELD_NAME (type, i) == NULL)
6079 continue;
6080 else if (ada_is_wrapper_field (type, i))
6081 {
6082 struct value *v = /* Do not let indent join lines here. */
6083 ada_index_struct_field_1 (index_p, arg,
6084 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6085 TYPE_FIELD_TYPE (type, i));
6086 if (v != NULL)
6087 return v;
6088 }
6089
6090 else if (ada_is_variant_part (type, i))
6091 {
6092 /* PNH: Do we ever get here? See ada_search_struct_field,
6093 find_struct_field. */
6094 error (_("Cannot assign this kind of variant record"));
6095 }
6096 else if (*index_p == 0)
6097 return ada_value_primitive_field (arg, offset, i, type);
6098 else
6099 *index_p -= 1;
6100 }
6101 return NULL;
6102 }
6103
6104 /* Given ARG, a value of type (pointer or reference to a)*
6105 structure/union, extract the component named NAME from the ultimate
6106 target structure/union and return it as a value with its
6107 appropriate type.
6108
6109 The routine searches for NAME among all members of the structure itself
6110 and (recursively) among all members of any wrapper members
6111 (e.g., '_parent').
6112
6113 If NO_ERR, then simply return NULL in case of error, rather than
6114 calling error. */
6115
6116 struct value *
6117 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6118 {
6119 struct type *t, *t1;
6120 struct value *v;
6121
6122 v = NULL;
6123 t1 = t = ada_check_typedef (value_type (arg));
6124 if (TYPE_CODE (t) == TYPE_CODE_REF)
6125 {
6126 t1 = TYPE_TARGET_TYPE (t);
6127 if (t1 == NULL)
6128 goto BadValue;
6129 t1 = ada_check_typedef (t1);
6130 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6131 {
6132 arg = coerce_ref (arg);
6133 t = t1;
6134 }
6135 }
6136
6137 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6138 {
6139 t1 = TYPE_TARGET_TYPE (t);
6140 if (t1 == NULL)
6141 goto BadValue;
6142 t1 = ada_check_typedef (t1);
6143 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6144 {
6145 arg = value_ind (arg);
6146 t = t1;
6147 }
6148 else
6149 break;
6150 }
6151
6152 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6153 goto BadValue;
6154
6155 if (t1 == t)
6156 v = ada_search_struct_field (name, arg, 0, t);
6157 else
6158 {
6159 int bit_offset, bit_size, byte_offset;
6160 struct type *field_type;
6161 CORE_ADDR address;
6162
6163 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6164 address = value_as_address (arg);
6165 else
6166 address = unpack_pointer (t, value_contents (arg));
6167
6168 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6169 if (find_struct_field (name, t1, 0,
6170 &field_type, &byte_offset, &bit_offset,
6171 &bit_size, NULL))
6172 {
6173 if (bit_size != 0)
6174 {
6175 if (TYPE_CODE (t) == TYPE_CODE_REF)
6176 arg = ada_coerce_ref (arg);
6177 else
6178 arg = ada_value_ind (arg);
6179 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6180 bit_offset, bit_size,
6181 field_type);
6182 }
6183 else
6184 v = value_at_lazy (field_type, address + byte_offset);
6185 }
6186 }
6187
6188 if (v != NULL || no_err)
6189 return v;
6190 else
6191 error (_("There is no member named %s."), name);
6192
6193 BadValue:
6194 if (no_err)
6195 return NULL;
6196 else
6197 error (_("Attempt to extract a component of a value that is not a record."));
6198 }
6199
6200 /* Given a type TYPE, look up the type of the component of type named NAME.
6201 If DISPP is non-null, add its byte displacement from the beginning of a
6202 structure (pointed to by a value) of type TYPE to *DISPP (does not
6203 work for packed fields).
6204
6205 Matches any field whose name has NAME as a prefix, possibly
6206 followed by "___".
6207
6208 TYPE can be either a struct or union. If REFOK, TYPE may also
6209 be a (pointer or reference)+ to a struct or union, and the
6210 ultimate target type will be searched.
6211
6212 Looks recursively into variant clauses and parent types.
6213
6214 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6215 TYPE is not a type of the right kind. */
6216
6217 static struct type *
6218 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6219 int noerr, int *dispp)
6220 {
6221 int i;
6222
6223 if (name == NULL)
6224 goto BadName;
6225
6226 if (refok && type != NULL)
6227 while (1)
6228 {
6229 type = ada_check_typedef (type);
6230 if (TYPE_CODE (type) != TYPE_CODE_PTR
6231 && TYPE_CODE (type) != TYPE_CODE_REF)
6232 break;
6233 type = TYPE_TARGET_TYPE (type);
6234 }
6235
6236 if (type == NULL
6237 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6238 && TYPE_CODE (type) != TYPE_CODE_UNION))
6239 {
6240 if (noerr)
6241 return NULL;
6242 else
6243 {
6244 target_terminal_ours ();
6245 gdb_flush (gdb_stdout);
6246 if (type == NULL)
6247 error (_("Type (null) is not a structure or union type"));
6248 else
6249 {
6250 /* XXX: type_sprint */
6251 fprintf_unfiltered (gdb_stderr, _("Type "));
6252 type_print (type, "", gdb_stderr, -1);
6253 error (_(" is not a structure or union type"));
6254 }
6255 }
6256 }
6257
6258 type = to_static_fixed_type (type);
6259
6260 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6261 {
6262 char *t_field_name = TYPE_FIELD_NAME (type, i);
6263 struct type *t;
6264 int disp;
6265
6266 if (t_field_name == NULL)
6267 continue;
6268
6269 else if (field_name_match (t_field_name, name))
6270 {
6271 if (dispp != NULL)
6272 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6273 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6274 }
6275
6276 else if (ada_is_wrapper_field (type, i))
6277 {
6278 disp = 0;
6279 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6280 0, 1, &disp);
6281 if (t != NULL)
6282 {
6283 if (dispp != NULL)
6284 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6285 return t;
6286 }
6287 }
6288
6289 else if (ada_is_variant_part (type, i))
6290 {
6291 int j;
6292 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6293
6294 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6295 {
6296 /* FIXME pnh 2008/01/26: We check for a field that is
6297 NOT wrapped in a struct, since the compiler sometimes
6298 generates these for unchecked variant types. Revisit
6299 if the compiler changes this practice. */
6300 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6301 disp = 0;
6302 if (v_field_name != NULL
6303 && field_name_match (v_field_name, name))
6304 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6305 else
6306 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6307 name, 0, 1, &disp);
6308
6309 if (t != NULL)
6310 {
6311 if (dispp != NULL)
6312 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6313 return t;
6314 }
6315 }
6316 }
6317
6318 }
6319
6320 BadName:
6321 if (!noerr)
6322 {
6323 target_terminal_ours ();
6324 gdb_flush (gdb_stdout);
6325 if (name == NULL)
6326 {
6327 /* XXX: type_sprint */
6328 fprintf_unfiltered (gdb_stderr, _("Type "));
6329 type_print (type, "", gdb_stderr, -1);
6330 error (_(" has no component named <null>"));
6331 }
6332 else
6333 {
6334 /* XXX: type_sprint */
6335 fprintf_unfiltered (gdb_stderr, _("Type "));
6336 type_print (type, "", gdb_stderr, -1);
6337 error (_(" has no component named %s"), name);
6338 }
6339 }
6340
6341 return NULL;
6342 }
6343
6344 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6345 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6346 represents an unchecked union (that is, the variant part of a
6347 record that is named in an Unchecked_Union pragma). */
6348
6349 static int
6350 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6351 {
6352 char *discrim_name = ada_variant_discrim_name (var_type);
6353 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6354 == NULL);
6355 }
6356
6357
6358 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6359 within a value of type OUTER_TYPE that is stored in GDB at
6360 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6361 numbering from 0) is applicable. Returns -1 if none are. */
6362
6363 int
6364 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6365 const gdb_byte *outer_valaddr)
6366 {
6367 int others_clause;
6368 int i;
6369 char *discrim_name = ada_variant_discrim_name (var_type);
6370 struct value *outer;
6371 struct value *discrim;
6372 LONGEST discrim_val;
6373
6374 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6375 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6376 if (discrim == NULL)
6377 return -1;
6378 discrim_val = value_as_long (discrim);
6379
6380 others_clause = -1;
6381 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6382 {
6383 if (ada_is_others_clause (var_type, i))
6384 others_clause = i;
6385 else if (ada_in_variant (discrim_val, var_type, i))
6386 return i;
6387 }
6388
6389 return others_clause;
6390 }
6391 \f
6392
6393
6394 /* Dynamic-Sized Records */
6395
6396 /* Strategy: The type ostensibly attached to a value with dynamic size
6397 (i.e., a size that is not statically recorded in the debugging
6398 data) does not accurately reflect the size or layout of the value.
6399 Our strategy is to convert these values to values with accurate,
6400 conventional types that are constructed on the fly. */
6401
6402 /* There is a subtle and tricky problem here. In general, we cannot
6403 determine the size of dynamic records without its data. However,
6404 the 'struct value' data structure, which GDB uses to represent
6405 quantities in the inferior process (the target), requires the size
6406 of the type at the time of its allocation in order to reserve space
6407 for GDB's internal copy of the data. That's why the
6408 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6409 rather than struct value*s.
6410
6411 However, GDB's internal history variables ($1, $2, etc.) are
6412 struct value*s containing internal copies of the data that are not, in
6413 general, the same as the data at their corresponding addresses in
6414 the target. Fortunately, the types we give to these values are all
6415 conventional, fixed-size types (as per the strategy described
6416 above), so that we don't usually have to perform the
6417 'to_fixed_xxx_type' conversions to look at their values.
6418 Unfortunately, there is one exception: if one of the internal
6419 history variables is an array whose elements are unconstrained
6420 records, then we will need to create distinct fixed types for each
6421 element selected. */
6422
6423 /* The upshot of all of this is that many routines take a (type, host
6424 address, target address) triple as arguments to represent a value.
6425 The host address, if non-null, is supposed to contain an internal
6426 copy of the relevant data; otherwise, the program is to consult the
6427 target at the target address. */
6428
6429 /* Assuming that VAL0 represents a pointer value, the result of
6430 dereferencing it. Differs from value_ind in its treatment of
6431 dynamic-sized types. */
6432
6433 struct value *
6434 ada_value_ind (struct value *val0)
6435 {
6436 struct value *val = unwrap_value (value_ind (val0));
6437 return ada_to_fixed_value (val);
6438 }
6439
6440 /* The value resulting from dereferencing any "reference to"
6441 qualifiers on VAL0. */
6442
6443 static struct value *
6444 ada_coerce_ref (struct value *val0)
6445 {
6446 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6447 {
6448 struct value *val = val0;
6449 val = coerce_ref (val);
6450 val = unwrap_value (val);
6451 return ada_to_fixed_value (val);
6452 }
6453 else
6454 return val0;
6455 }
6456
6457 /* Return OFF rounded upward if necessary to a multiple of
6458 ALIGNMENT (a power of 2). */
6459
6460 static unsigned int
6461 align_value (unsigned int off, unsigned int alignment)
6462 {
6463 return (off + alignment - 1) & ~(alignment - 1);
6464 }
6465
6466 /* Return the bit alignment required for field #F of template type TYPE. */
6467
6468 static unsigned int
6469 field_alignment (struct type *type, int f)
6470 {
6471 const char *name = TYPE_FIELD_NAME (type, f);
6472 int len;
6473 int align_offset;
6474
6475 /* The field name should never be null, unless the debugging information
6476 is somehow malformed. In this case, we assume the field does not
6477 require any alignment. */
6478 if (name == NULL)
6479 return 1;
6480
6481 len = strlen (name);
6482
6483 if (!isdigit (name[len - 1]))
6484 return 1;
6485
6486 if (isdigit (name[len - 2]))
6487 align_offset = len - 2;
6488 else
6489 align_offset = len - 1;
6490
6491 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6492 return TARGET_CHAR_BIT;
6493
6494 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6495 }
6496
6497 /* Find a symbol named NAME. Ignores ambiguity. */
6498
6499 struct symbol *
6500 ada_find_any_symbol (const char *name)
6501 {
6502 struct symbol *sym;
6503
6504 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6505 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6506 return sym;
6507
6508 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6509 return sym;
6510 }
6511
6512 /* Find a type named NAME. Ignores ambiguity. This routine will look
6513 solely for types defined by debug info, it will not search the GDB
6514 primitive types. */
6515
6516 struct type *
6517 ada_find_any_type (const char *name)
6518 {
6519 struct symbol *sym = ada_find_any_symbol (name);
6520
6521 if (sym != NULL)
6522 return SYMBOL_TYPE (sym);
6523
6524 return NULL;
6525 }
6526
6527 /* Given NAME and an associated BLOCK, search all symbols for
6528 NAME suffixed with "___XR", which is the ``renaming'' symbol
6529 associated to NAME. Return this symbol if found, return
6530 NULL otherwise. */
6531
6532 struct symbol *
6533 ada_find_renaming_symbol (const char *name, struct block *block)
6534 {
6535 struct symbol *sym;
6536
6537 sym = find_old_style_renaming_symbol (name, block);
6538
6539 if (sym != NULL)
6540 return sym;
6541
6542 /* Not right yet. FIXME pnh 7/20/2007. */
6543 sym = ada_find_any_symbol (name);
6544 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6545 return sym;
6546 else
6547 return NULL;
6548 }
6549
6550 static struct symbol *
6551 find_old_style_renaming_symbol (const char *name, struct block *block)
6552 {
6553 const struct symbol *function_sym = block_linkage_function (block);
6554 char *rename;
6555
6556 if (function_sym != NULL)
6557 {
6558 /* If the symbol is defined inside a function, NAME is not fully
6559 qualified. This means we need to prepend the function name
6560 as well as adding the ``___XR'' suffix to build the name of
6561 the associated renaming symbol. */
6562 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6563 /* Function names sometimes contain suffixes used
6564 for instance to qualify nested subprograms. When building
6565 the XR type name, we need to make sure that this suffix is
6566 not included. So do not include any suffix in the function
6567 name length below. */
6568 int function_name_len = ada_name_prefix_len (function_name);
6569 const int rename_len = function_name_len + 2 /* "__" */
6570 + strlen (name) + 6 /* "___XR\0" */ ;
6571
6572 /* Strip the suffix if necessary. */
6573 ada_remove_trailing_digits (function_name, &function_name_len);
6574 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6575 ada_remove_Xbn_suffix (function_name, &function_name_len);
6576
6577 /* Library-level functions are a special case, as GNAT adds
6578 a ``_ada_'' prefix to the function name to avoid namespace
6579 pollution. However, the renaming symbols themselves do not
6580 have this prefix, so we need to skip this prefix if present. */
6581 if (function_name_len > 5 /* "_ada_" */
6582 && strstr (function_name, "_ada_") == function_name)
6583 {
6584 function_name += 5;
6585 function_name_len -= 5;
6586 }
6587
6588 rename = (char *) alloca (rename_len * sizeof (char));
6589 strncpy (rename, function_name, function_name_len);
6590 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6591 "__%s___XR", name);
6592 }
6593 else
6594 {
6595 const int rename_len = strlen (name) + 6;
6596 rename = (char *) alloca (rename_len * sizeof (char));
6597 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6598 }
6599
6600 return ada_find_any_symbol (rename);
6601 }
6602
6603 /* Because of GNAT encoding conventions, several GDB symbols may match a
6604 given type name. If the type denoted by TYPE0 is to be preferred to
6605 that of TYPE1 for purposes of type printing, return non-zero;
6606 otherwise return 0. */
6607
6608 int
6609 ada_prefer_type (struct type *type0, struct type *type1)
6610 {
6611 if (type1 == NULL)
6612 return 1;
6613 else if (type0 == NULL)
6614 return 0;
6615 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6616 return 1;
6617 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6618 return 0;
6619 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6620 return 1;
6621 else if (ada_is_constrained_packed_array_type (type0))
6622 return 1;
6623 else if (ada_is_array_descriptor_type (type0)
6624 && !ada_is_array_descriptor_type (type1))
6625 return 1;
6626 else
6627 {
6628 const char *type0_name = type_name_no_tag (type0);
6629 const char *type1_name = type_name_no_tag (type1);
6630
6631 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6632 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6633 return 1;
6634 }
6635 return 0;
6636 }
6637
6638 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6639 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6640
6641 char *
6642 ada_type_name (struct type *type)
6643 {
6644 if (type == NULL)
6645 return NULL;
6646 else if (TYPE_NAME (type) != NULL)
6647 return TYPE_NAME (type);
6648 else
6649 return TYPE_TAG_NAME (type);
6650 }
6651
6652 /* Search the list of "descriptive" types associated to TYPE for a type
6653 whose name is NAME. */
6654
6655 static struct type *
6656 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6657 {
6658 struct type *result;
6659
6660 /* If there no descriptive-type info, then there is no parallel type
6661 to be found. */
6662 if (!HAVE_GNAT_AUX_INFO (type))
6663 return NULL;
6664
6665 result = TYPE_DESCRIPTIVE_TYPE (type);
6666 while (result != NULL)
6667 {
6668 char *result_name = ada_type_name (result);
6669
6670 if (result_name == NULL)
6671 {
6672 warning (_("unexpected null name on descriptive type"));
6673 return NULL;
6674 }
6675
6676 /* If the names match, stop. */
6677 if (strcmp (result_name, name) == 0)
6678 break;
6679
6680 /* Otherwise, look at the next item on the list, if any. */
6681 if (HAVE_GNAT_AUX_INFO (result))
6682 result = TYPE_DESCRIPTIVE_TYPE (result);
6683 else
6684 result = NULL;
6685 }
6686
6687 /* If we didn't find a match, see whether this is a packed array. With
6688 older compilers, the descriptive type information is either absent or
6689 irrelevant when it comes to packed arrays so the above lookup fails.
6690 Fall back to using a parallel lookup by name in this case. */
6691 if (result == NULL && ada_is_constrained_packed_array_type (type))
6692 return ada_find_any_type (name);
6693
6694 return result;
6695 }
6696
6697 /* Find a parallel type to TYPE with the specified NAME, using the
6698 descriptive type taken from the debugging information, if available,
6699 and otherwise using the (slower) name-based method. */
6700
6701 static struct type *
6702 ada_find_parallel_type_with_name (struct type *type, const char *name)
6703 {
6704 struct type *result = NULL;
6705
6706 if (HAVE_GNAT_AUX_INFO (type))
6707 result = find_parallel_type_by_descriptive_type (type, name);
6708 else
6709 result = ada_find_any_type (name);
6710
6711 return result;
6712 }
6713
6714 /* Same as above, but specify the name of the parallel type by appending
6715 SUFFIX to the name of TYPE. */
6716
6717 struct type *
6718 ada_find_parallel_type (struct type *type, const char *suffix)
6719 {
6720 char *name, *typename = ada_type_name (type);
6721 int len;
6722
6723 if (typename == NULL)
6724 return NULL;
6725
6726 len = strlen (typename);
6727
6728 name = (char *) alloca (len + strlen (suffix) + 1);
6729
6730 strcpy (name, typename);
6731 strcpy (name + len, suffix);
6732
6733 return ada_find_parallel_type_with_name (type, name);
6734 }
6735
6736 /* If TYPE is a variable-size record type, return the corresponding template
6737 type describing its fields. Otherwise, return NULL. */
6738
6739 static struct type *
6740 dynamic_template_type (struct type *type)
6741 {
6742 type = ada_check_typedef (type);
6743
6744 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6745 || ada_type_name (type) == NULL)
6746 return NULL;
6747 else
6748 {
6749 int len = strlen (ada_type_name (type));
6750 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6751 return type;
6752 else
6753 return ada_find_parallel_type (type, "___XVE");
6754 }
6755 }
6756
6757 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6758 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6759
6760 static int
6761 is_dynamic_field (struct type *templ_type, int field_num)
6762 {
6763 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6764 return name != NULL
6765 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6766 && strstr (name, "___XVL") != NULL;
6767 }
6768
6769 /* The index of the variant field of TYPE, or -1 if TYPE does not
6770 represent a variant record type. */
6771
6772 static int
6773 variant_field_index (struct type *type)
6774 {
6775 int f;
6776
6777 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6778 return -1;
6779
6780 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6781 {
6782 if (ada_is_variant_part (type, f))
6783 return f;
6784 }
6785 return -1;
6786 }
6787
6788 /* A record type with no fields. */
6789
6790 static struct type *
6791 empty_record (struct type *template)
6792 {
6793 struct type *type = alloc_type_copy (template);
6794 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6795 TYPE_NFIELDS (type) = 0;
6796 TYPE_FIELDS (type) = NULL;
6797 INIT_CPLUS_SPECIFIC (type);
6798 TYPE_NAME (type) = "<empty>";
6799 TYPE_TAG_NAME (type) = NULL;
6800 TYPE_LENGTH (type) = 0;
6801 return type;
6802 }
6803
6804 /* An ordinary record type (with fixed-length fields) that describes
6805 the value of type TYPE at VALADDR or ADDRESS (see comments at
6806 the beginning of this section) VAL according to GNAT conventions.
6807 DVAL0 should describe the (portion of a) record that contains any
6808 necessary discriminants. It should be NULL if value_type (VAL) is
6809 an outer-level type (i.e., as opposed to a branch of a variant.) A
6810 variant field (unless unchecked) is replaced by a particular branch
6811 of the variant.
6812
6813 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6814 length are not statically known are discarded. As a consequence,
6815 VALADDR, ADDRESS and DVAL0 are ignored.
6816
6817 NOTE: Limitations: For now, we assume that dynamic fields and
6818 variants occupy whole numbers of bytes. However, they need not be
6819 byte-aligned. */
6820
6821 struct type *
6822 ada_template_to_fixed_record_type_1 (struct type *type,
6823 const gdb_byte *valaddr,
6824 CORE_ADDR address, struct value *dval0,
6825 int keep_dynamic_fields)
6826 {
6827 struct value *mark = value_mark ();
6828 struct value *dval;
6829 struct type *rtype;
6830 int nfields, bit_len;
6831 int variant_field;
6832 long off;
6833 int fld_bit_len, bit_incr;
6834 int f;
6835
6836 /* Compute the number of fields in this record type that are going
6837 to be processed: unless keep_dynamic_fields, this includes only
6838 fields whose position and length are static will be processed. */
6839 if (keep_dynamic_fields)
6840 nfields = TYPE_NFIELDS (type);
6841 else
6842 {
6843 nfields = 0;
6844 while (nfields < TYPE_NFIELDS (type)
6845 && !ada_is_variant_part (type, nfields)
6846 && !is_dynamic_field (type, nfields))
6847 nfields++;
6848 }
6849
6850 rtype = alloc_type_copy (type);
6851 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6852 INIT_CPLUS_SPECIFIC (rtype);
6853 TYPE_NFIELDS (rtype) = nfields;
6854 TYPE_FIELDS (rtype) = (struct field *)
6855 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6856 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6857 TYPE_NAME (rtype) = ada_type_name (type);
6858 TYPE_TAG_NAME (rtype) = NULL;
6859 TYPE_FIXED_INSTANCE (rtype) = 1;
6860
6861 off = 0;
6862 bit_len = 0;
6863 variant_field = -1;
6864
6865 for (f = 0; f < nfields; f += 1)
6866 {
6867 off = align_value (off, field_alignment (type, f))
6868 + TYPE_FIELD_BITPOS (type, f);
6869 TYPE_FIELD_BITPOS (rtype, f) = off;
6870 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6871
6872 if (ada_is_variant_part (type, f))
6873 {
6874 variant_field = f;
6875 fld_bit_len = bit_incr = 0;
6876 }
6877 else if (is_dynamic_field (type, f))
6878 {
6879 const gdb_byte *field_valaddr = valaddr;
6880 CORE_ADDR field_address = address;
6881 struct type *field_type =
6882 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6883
6884 if (dval0 == NULL)
6885 {
6886 /* rtype's length is computed based on the run-time
6887 value of discriminants. If the discriminants are not
6888 initialized, the type size may be completely bogus and
6889 GDB may fail to allocate a value for it. So check the
6890 size first before creating the value. */
6891 check_size (rtype);
6892 dval = value_from_contents_and_address (rtype, valaddr, address);
6893 }
6894 else
6895 dval = dval0;
6896
6897 /* If the type referenced by this field is an aligner type, we need
6898 to unwrap that aligner type, because its size might not be set.
6899 Keeping the aligner type would cause us to compute the wrong
6900 size for this field, impacting the offset of the all the fields
6901 that follow this one. */
6902 if (ada_is_aligner_type (field_type))
6903 {
6904 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6905
6906 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6907 field_address = cond_offset_target (field_address, field_offset);
6908 field_type = ada_aligned_type (field_type);
6909 }
6910
6911 field_valaddr = cond_offset_host (field_valaddr,
6912 off / TARGET_CHAR_BIT);
6913 field_address = cond_offset_target (field_address,
6914 off / TARGET_CHAR_BIT);
6915
6916 /* Get the fixed type of the field. Note that, in this case,
6917 we do not want to get the real type out of the tag: if
6918 the current field is the parent part of a tagged record,
6919 we will get the tag of the object. Clearly wrong: the real
6920 type of the parent is not the real type of the child. We
6921 would end up in an infinite loop. */
6922 field_type = ada_get_base_type (field_type);
6923 field_type = ada_to_fixed_type (field_type, field_valaddr,
6924 field_address, dval, 0);
6925
6926 TYPE_FIELD_TYPE (rtype, f) = field_type;
6927 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6928 bit_incr = fld_bit_len =
6929 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6930 }
6931 else
6932 {
6933 struct type *field_type = TYPE_FIELD_TYPE (type, f);
6934
6935 TYPE_FIELD_TYPE (rtype, f) = field_type;
6936 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6937 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6938 bit_incr = fld_bit_len =
6939 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6940 else
6941 bit_incr = fld_bit_len =
6942 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
6943 }
6944 if (off + fld_bit_len > bit_len)
6945 bit_len = off + fld_bit_len;
6946 off += bit_incr;
6947 TYPE_LENGTH (rtype) =
6948 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6949 }
6950
6951 /* We handle the variant part, if any, at the end because of certain
6952 odd cases in which it is re-ordered so as NOT to be the last field of
6953 the record. This can happen in the presence of representation
6954 clauses. */
6955 if (variant_field >= 0)
6956 {
6957 struct type *branch_type;
6958
6959 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6960
6961 if (dval0 == NULL)
6962 dval = value_from_contents_and_address (rtype, valaddr, address);
6963 else
6964 dval = dval0;
6965
6966 branch_type =
6967 to_fixed_variant_branch_type
6968 (TYPE_FIELD_TYPE (type, variant_field),
6969 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6970 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6971 if (branch_type == NULL)
6972 {
6973 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6974 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6975 TYPE_NFIELDS (rtype) -= 1;
6976 }
6977 else
6978 {
6979 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6980 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6981 fld_bit_len =
6982 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6983 TARGET_CHAR_BIT;
6984 if (off + fld_bit_len > bit_len)
6985 bit_len = off + fld_bit_len;
6986 TYPE_LENGTH (rtype) =
6987 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6988 }
6989 }
6990
6991 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6992 should contain the alignment of that record, which should be a strictly
6993 positive value. If null or negative, then something is wrong, most
6994 probably in the debug info. In that case, we don't round up the size
6995 of the resulting type. If this record is not part of another structure,
6996 the current RTYPE length might be good enough for our purposes. */
6997 if (TYPE_LENGTH (type) <= 0)
6998 {
6999 if (TYPE_NAME (rtype))
7000 warning (_("Invalid type size for `%s' detected: %d."),
7001 TYPE_NAME (rtype), TYPE_LENGTH (type));
7002 else
7003 warning (_("Invalid type size for <unnamed> detected: %d."),
7004 TYPE_LENGTH (type));
7005 }
7006 else
7007 {
7008 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7009 TYPE_LENGTH (type));
7010 }
7011
7012 value_free_to_mark (mark);
7013 if (TYPE_LENGTH (rtype) > varsize_limit)
7014 error (_("record type with dynamic size is larger than varsize-limit"));
7015 return rtype;
7016 }
7017
7018 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7019 of 1. */
7020
7021 static struct type *
7022 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7023 CORE_ADDR address, struct value *dval0)
7024 {
7025 return ada_template_to_fixed_record_type_1 (type, valaddr,
7026 address, dval0, 1);
7027 }
7028
7029 /* An ordinary record type in which ___XVL-convention fields and
7030 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7031 static approximations, containing all possible fields. Uses
7032 no runtime values. Useless for use in values, but that's OK,
7033 since the results are used only for type determinations. Works on both
7034 structs and unions. Representation note: to save space, we memorize
7035 the result of this function in the TYPE_TARGET_TYPE of the
7036 template type. */
7037
7038 static struct type *
7039 template_to_static_fixed_type (struct type *type0)
7040 {
7041 struct type *type;
7042 int nfields;
7043 int f;
7044
7045 if (TYPE_TARGET_TYPE (type0) != NULL)
7046 return TYPE_TARGET_TYPE (type0);
7047
7048 nfields = TYPE_NFIELDS (type0);
7049 type = type0;
7050
7051 for (f = 0; f < nfields; f += 1)
7052 {
7053 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7054 struct type *new_type;
7055
7056 if (is_dynamic_field (type0, f))
7057 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7058 else
7059 new_type = static_unwrap_type (field_type);
7060 if (type == type0 && new_type != field_type)
7061 {
7062 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7063 TYPE_CODE (type) = TYPE_CODE (type0);
7064 INIT_CPLUS_SPECIFIC (type);
7065 TYPE_NFIELDS (type) = nfields;
7066 TYPE_FIELDS (type) = (struct field *)
7067 TYPE_ALLOC (type, nfields * sizeof (struct field));
7068 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7069 sizeof (struct field) * nfields);
7070 TYPE_NAME (type) = ada_type_name (type0);
7071 TYPE_TAG_NAME (type) = NULL;
7072 TYPE_FIXED_INSTANCE (type) = 1;
7073 TYPE_LENGTH (type) = 0;
7074 }
7075 TYPE_FIELD_TYPE (type, f) = new_type;
7076 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7077 }
7078 return type;
7079 }
7080
7081 /* Given an object of type TYPE whose contents are at VALADDR and
7082 whose address in memory is ADDRESS, returns a revision of TYPE,
7083 which should be a non-dynamic-sized record, in which the variant
7084 part, if any, is replaced with the appropriate branch. Looks
7085 for discriminant values in DVAL0, which can be NULL if the record
7086 contains the necessary discriminant values. */
7087
7088 static struct type *
7089 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7090 CORE_ADDR address, struct value *dval0)
7091 {
7092 struct value *mark = value_mark ();
7093 struct value *dval;
7094 struct type *rtype;
7095 struct type *branch_type;
7096 int nfields = TYPE_NFIELDS (type);
7097 int variant_field = variant_field_index (type);
7098
7099 if (variant_field == -1)
7100 return type;
7101
7102 if (dval0 == NULL)
7103 dval = value_from_contents_and_address (type, valaddr, address);
7104 else
7105 dval = dval0;
7106
7107 rtype = alloc_type_copy (type);
7108 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7109 INIT_CPLUS_SPECIFIC (rtype);
7110 TYPE_NFIELDS (rtype) = nfields;
7111 TYPE_FIELDS (rtype) =
7112 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7113 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7114 sizeof (struct field) * nfields);
7115 TYPE_NAME (rtype) = ada_type_name (type);
7116 TYPE_TAG_NAME (rtype) = NULL;
7117 TYPE_FIXED_INSTANCE (rtype) = 1;
7118 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7119
7120 branch_type = to_fixed_variant_branch_type
7121 (TYPE_FIELD_TYPE (type, variant_field),
7122 cond_offset_host (valaddr,
7123 TYPE_FIELD_BITPOS (type, variant_field)
7124 / TARGET_CHAR_BIT),
7125 cond_offset_target (address,
7126 TYPE_FIELD_BITPOS (type, variant_field)
7127 / TARGET_CHAR_BIT), dval);
7128 if (branch_type == NULL)
7129 {
7130 int f;
7131 for (f = variant_field + 1; f < nfields; f += 1)
7132 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7133 TYPE_NFIELDS (rtype) -= 1;
7134 }
7135 else
7136 {
7137 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7138 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7139 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7140 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7141 }
7142 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7143
7144 value_free_to_mark (mark);
7145 return rtype;
7146 }
7147
7148 /* An ordinary record type (with fixed-length fields) that describes
7149 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7150 beginning of this section]. Any necessary discriminants' values
7151 should be in DVAL, a record value; it may be NULL if the object
7152 at ADDR itself contains any necessary discriminant values.
7153 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7154 values from the record are needed. Except in the case that DVAL,
7155 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7156 unchecked) is replaced by a particular branch of the variant.
7157
7158 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7159 is questionable and may be removed. It can arise during the
7160 processing of an unconstrained-array-of-record type where all the
7161 variant branches have exactly the same size. This is because in
7162 such cases, the compiler does not bother to use the XVS convention
7163 when encoding the record. I am currently dubious of this
7164 shortcut and suspect the compiler should be altered. FIXME. */
7165
7166 static struct type *
7167 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7168 CORE_ADDR address, struct value *dval)
7169 {
7170 struct type *templ_type;
7171
7172 if (TYPE_FIXED_INSTANCE (type0))
7173 return type0;
7174
7175 templ_type = dynamic_template_type (type0);
7176
7177 if (templ_type != NULL)
7178 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7179 else if (variant_field_index (type0) >= 0)
7180 {
7181 if (dval == NULL && valaddr == NULL && address == 0)
7182 return type0;
7183 return to_record_with_fixed_variant_part (type0, valaddr, address,
7184 dval);
7185 }
7186 else
7187 {
7188 TYPE_FIXED_INSTANCE (type0) = 1;
7189 return type0;
7190 }
7191
7192 }
7193
7194 /* An ordinary record type (with fixed-length fields) that describes
7195 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7196 union type. Any necessary discriminants' values should be in DVAL,
7197 a record value. That is, this routine selects the appropriate
7198 branch of the union at ADDR according to the discriminant value
7199 indicated in the union's type name. Returns VAR_TYPE0 itself if
7200 it represents a variant subject to a pragma Unchecked_Union. */
7201
7202 static struct type *
7203 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7204 CORE_ADDR address, struct value *dval)
7205 {
7206 int which;
7207 struct type *templ_type;
7208 struct type *var_type;
7209
7210 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7211 var_type = TYPE_TARGET_TYPE (var_type0);
7212 else
7213 var_type = var_type0;
7214
7215 templ_type = ada_find_parallel_type (var_type, "___XVU");
7216
7217 if (templ_type != NULL)
7218 var_type = templ_type;
7219
7220 if (is_unchecked_variant (var_type, value_type (dval)))
7221 return var_type0;
7222 which =
7223 ada_which_variant_applies (var_type,
7224 value_type (dval), value_contents (dval));
7225
7226 if (which < 0)
7227 return empty_record (var_type);
7228 else if (is_dynamic_field (var_type, which))
7229 return to_fixed_record_type
7230 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7231 valaddr, address, dval);
7232 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7233 return
7234 to_fixed_record_type
7235 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7236 else
7237 return TYPE_FIELD_TYPE (var_type, which);
7238 }
7239
7240 /* Assuming that TYPE0 is an array type describing the type of a value
7241 at ADDR, and that DVAL describes a record containing any
7242 discriminants used in TYPE0, returns a type for the value that
7243 contains no dynamic components (that is, no components whose sizes
7244 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7245 true, gives an error message if the resulting type's size is over
7246 varsize_limit. */
7247
7248 static struct type *
7249 to_fixed_array_type (struct type *type0, struct value *dval,
7250 int ignore_too_big)
7251 {
7252 struct type *index_type_desc;
7253 struct type *result;
7254 int constrained_packed_array_p;
7255
7256 if (TYPE_FIXED_INSTANCE (type0))
7257 return type0;
7258
7259 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7260 if (constrained_packed_array_p)
7261 type0 = decode_constrained_packed_array_type (type0);
7262
7263 index_type_desc = ada_find_parallel_type (type0, "___XA");
7264 if (index_type_desc == NULL)
7265 {
7266 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7267 /* NOTE: elt_type---the fixed version of elt_type0---should never
7268 depend on the contents of the array in properly constructed
7269 debugging data. */
7270 /* Create a fixed version of the array element type.
7271 We're not providing the address of an element here,
7272 and thus the actual object value cannot be inspected to do
7273 the conversion. This should not be a problem, since arrays of
7274 unconstrained objects are not allowed. In particular, all
7275 the elements of an array of a tagged type should all be of
7276 the same type specified in the debugging info. No need to
7277 consult the object tag. */
7278 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7279
7280 /* Make sure we always create a new array type when dealing with
7281 packed array types, since we're going to fix-up the array
7282 type length and element bitsize a little further down. */
7283 if (elt_type0 == elt_type && !constrained_packed_array_p)
7284 result = type0;
7285 else
7286 result = create_array_type (alloc_type_copy (type0),
7287 elt_type, TYPE_INDEX_TYPE (type0));
7288 }
7289 else
7290 {
7291 int i;
7292 struct type *elt_type0;
7293
7294 elt_type0 = type0;
7295 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7296 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7297
7298 /* NOTE: result---the fixed version of elt_type0---should never
7299 depend on the contents of the array in properly constructed
7300 debugging data. */
7301 /* Create a fixed version of the array element type.
7302 We're not providing the address of an element here,
7303 and thus the actual object value cannot be inspected to do
7304 the conversion. This should not be a problem, since arrays of
7305 unconstrained objects are not allowed. In particular, all
7306 the elements of an array of a tagged type should all be of
7307 the same type specified in the debugging info. No need to
7308 consult the object tag. */
7309 result =
7310 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7311
7312 elt_type0 = type0;
7313 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7314 {
7315 struct type *range_type =
7316 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7317 dval, TYPE_INDEX_TYPE (elt_type0));
7318 result = create_array_type (alloc_type_copy (elt_type0),
7319 result, range_type);
7320 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7321 }
7322 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7323 error (_("array type with dynamic size is larger than varsize-limit"));
7324 }
7325
7326 if (constrained_packed_array_p)
7327 {
7328 /* So far, the resulting type has been created as if the original
7329 type was a regular (non-packed) array type. As a result, the
7330 bitsize of the array elements needs to be set again, and the array
7331 length needs to be recomputed based on that bitsize. */
7332 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7333 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7334
7335 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7336 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7337 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7338 TYPE_LENGTH (result)++;
7339 }
7340
7341 TYPE_FIXED_INSTANCE (result) = 1;
7342 return result;
7343 }
7344
7345
7346 /* A standard type (containing no dynamically sized components)
7347 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7348 DVAL describes a record containing any discriminants used in TYPE0,
7349 and may be NULL if there are none, or if the object of type TYPE at
7350 ADDRESS or in VALADDR contains these discriminants.
7351
7352 If CHECK_TAG is not null, in the case of tagged types, this function
7353 attempts to locate the object's tag and use it to compute the actual
7354 type. However, when ADDRESS is null, we cannot use it to determine the
7355 location of the tag, and therefore compute the tagged type's actual type.
7356 So we return the tagged type without consulting the tag. */
7357
7358 static struct type *
7359 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7360 CORE_ADDR address, struct value *dval, int check_tag)
7361 {
7362 type = ada_check_typedef (type);
7363 switch (TYPE_CODE (type))
7364 {
7365 default:
7366 return type;
7367 case TYPE_CODE_STRUCT:
7368 {
7369 struct type *static_type = to_static_fixed_type (type);
7370 struct type *fixed_record_type =
7371 to_fixed_record_type (type, valaddr, address, NULL);
7372 /* If STATIC_TYPE is a tagged type and we know the object's address,
7373 then we can determine its tag, and compute the object's actual
7374 type from there. Note that we have to use the fixed record
7375 type (the parent part of the record may have dynamic fields
7376 and the way the location of _tag is expressed may depend on
7377 them). */
7378
7379 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7380 {
7381 struct type *real_type =
7382 type_from_tag (value_tag_from_contents_and_address
7383 (fixed_record_type,
7384 valaddr,
7385 address));
7386 if (real_type != NULL)
7387 return to_fixed_record_type (real_type, valaddr, address, NULL);
7388 }
7389
7390 /* Check to see if there is a parallel ___XVZ variable.
7391 If there is, then it provides the actual size of our type. */
7392 else if (ada_type_name (fixed_record_type) != NULL)
7393 {
7394 char *name = ada_type_name (fixed_record_type);
7395 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7396 int xvz_found = 0;
7397 LONGEST size;
7398
7399 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7400 size = get_int_var_value (xvz_name, &xvz_found);
7401 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7402 {
7403 fixed_record_type = copy_type (fixed_record_type);
7404 TYPE_LENGTH (fixed_record_type) = size;
7405
7406 /* The FIXED_RECORD_TYPE may have be a stub. We have
7407 observed this when the debugging info is STABS, and
7408 apparently it is something that is hard to fix.
7409
7410 In practice, we don't need the actual type definition
7411 at all, because the presence of the XVZ variable allows us
7412 to assume that there must be a XVS type as well, which we
7413 should be able to use later, when we need the actual type
7414 definition.
7415
7416 In the meantime, pretend that the "fixed" type we are
7417 returning is NOT a stub, because this can cause trouble
7418 when using this type to create new types targeting it.
7419 Indeed, the associated creation routines often check
7420 whether the target type is a stub and will try to replace
7421 it, thus using a type with the wrong size. This, in turn,
7422 might cause the new type to have the wrong size too.
7423 Consider the case of an array, for instance, where the size
7424 of the array is computed from the number of elements in
7425 our array multiplied by the size of its element. */
7426 TYPE_STUB (fixed_record_type) = 0;
7427 }
7428 }
7429 return fixed_record_type;
7430 }
7431 case TYPE_CODE_ARRAY:
7432 return to_fixed_array_type (type, dval, 1);
7433 case TYPE_CODE_UNION:
7434 if (dval == NULL)
7435 return type;
7436 else
7437 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7438 }
7439 }
7440
7441 /* The same as ada_to_fixed_type_1, except that it preserves the type
7442 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7443 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7444
7445 struct type *
7446 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7447 CORE_ADDR address, struct value *dval, int check_tag)
7448
7449 {
7450 struct type *fixed_type =
7451 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7452
7453 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7454 && TYPE_TARGET_TYPE (type) == fixed_type)
7455 return type;
7456
7457 return fixed_type;
7458 }
7459
7460 /* A standard (static-sized) type corresponding as well as possible to
7461 TYPE0, but based on no runtime data. */
7462
7463 static struct type *
7464 to_static_fixed_type (struct type *type0)
7465 {
7466 struct type *type;
7467
7468 if (type0 == NULL)
7469 return NULL;
7470
7471 if (TYPE_FIXED_INSTANCE (type0))
7472 return type0;
7473
7474 type0 = ada_check_typedef (type0);
7475
7476 switch (TYPE_CODE (type0))
7477 {
7478 default:
7479 return type0;
7480 case TYPE_CODE_STRUCT:
7481 type = dynamic_template_type (type0);
7482 if (type != NULL)
7483 return template_to_static_fixed_type (type);
7484 else
7485 return template_to_static_fixed_type (type0);
7486 case TYPE_CODE_UNION:
7487 type = ada_find_parallel_type (type0, "___XVU");
7488 if (type != NULL)
7489 return template_to_static_fixed_type (type);
7490 else
7491 return template_to_static_fixed_type (type0);
7492 }
7493 }
7494
7495 /* A static approximation of TYPE with all type wrappers removed. */
7496
7497 static struct type *
7498 static_unwrap_type (struct type *type)
7499 {
7500 if (ada_is_aligner_type (type))
7501 {
7502 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7503 if (ada_type_name (type1) == NULL)
7504 TYPE_NAME (type1) = ada_type_name (type);
7505
7506 return static_unwrap_type (type1);
7507 }
7508 else
7509 {
7510 struct type *raw_real_type = ada_get_base_type (type);
7511 if (raw_real_type == type)
7512 return type;
7513 else
7514 return to_static_fixed_type (raw_real_type);
7515 }
7516 }
7517
7518 /* In some cases, incomplete and private types require
7519 cross-references that are not resolved as records (for example,
7520 type Foo;
7521 type FooP is access Foo;
7522 V: FooP;
7523 type Foo is array ...;
7524 ). In these cases, since there is no mechanism for producing
7525 cross-references to such types, we instead substitute for FooP a
7526 stub enumeration type that is nowhere resolved, and whose tag is
7527 the name of the actual type. Call these types "non-record stubs". */
7528
7529 /* A type equivalent to TYPE that is not a non-record stub, if one
7530 exists, otherwise TYPE. */
7531
7532 struct type *
7533 ada_check_typedef (struct type *type)
7534 {
7535 if (type == NULL)
7536 return NULL;
7537
7538 CHECK_TYPEDEF (type);
7539 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7540 || !TYPE_STUB (type)
7541 || TYPE_TAG_NAME (type) == NULL)
7542 return type;
7543 else
7544 {
7545 char *name = TYPE_TAG_NAME (type);
7546 struct type *type1 = ada_find_any_type (name);
7547 return (type1 == NULL) ? type : type1;
7548 }
7549 }
7550
7551 /* A value representing the data at VALADDR/ADDRESS as described by
7552 type TYPE0, but with a standard (static-sized) type that correctly
7553 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7554 type, then return VAL0 [this feature is simply to avoid redundant
7555 creation of struct values]. */
7556
7557 static struct value *
7558 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7559 struct value *val0)
7560 {
7561 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7562 if (type == type0 && val0 != NULL)
7563 return val0;
7564 else
7565 return value_from_contents_and_address (type, 0, address);
7566 }
7567
7568 /* A value representing VAL, but with a standard (static-sized) type
7569 that correctly describes it. Does not necessarily create a new
7570 value. */
7571
7572 static struct value *
7573 ada_to_fixed_value (struct value *val)
7574 {
7575 return ada_to_fixed_value_create (value_type (val),
7576 value_address (val),
7577 val);
7578 }
7579 \f
7580
7581 /* Attributes */
7582
7583 /* Table mapping attribute numbers to names.
7584 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7585
7586 static const char *attribute_names[] = {
7587 "<?>",
7588
7589 "first",
7590 "last",
7591 "length",
7592 "image",
7593 "max",
7594 "min",
7595 "modulus",
7596 "pos",
7597 "size",
7598 "tag",
7599 "val",
7600 0
7601 };
7602
7603 const char *
7604 ada_attribute_name (enum exp_opcode n)
7605 {
7606 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7607 return attribute_names[n - OP_ATR_FIRST + 1];
7608 else
7609 return attribute_names[0];
7610 }
7611
7612 /* Evaluate the 'POS attribute applied to ARG. */
7613
7614 static LONGEST
7615 pos_atr (struct value *arg)
7616 {
7617 struct value *val = coerce_ref (arg);
7618 struct type *type = value_type (val);
7619
7620 if (!discrete_type_p (type))
7621 error (_("'POS only defined on discrete types"));
7622
7623 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7624 {
7625 int i;
7626 LONGEST v = value_as_long (val);
7627
7628 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7629 {
7630 if (v == TYPE_FIELD_BITPOS (type, i))
7631 return i;
7632 }
7633 error (_("enumeration value is invalid: can't find 'POS"));
7634 }
7635 else
7636 return value_as_long (val);
7637 }
7638
7639 static struct value *
7640 value_pos_atr (struct type *type, struct value *arg)
7641 {
7642 return value_from_longest (type, pos_atr (arg));
7643 }
7644
7645 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7646
7647 static struct value *
7648 value_val_atr (struct type *type, struct value *arg)
7649 {
7650 if (!discrete_type_p (type))
7651 error (_("'VAL only defined on discrete types"));
7652 if (!integer_type_p (value_type (arg)))
7653 error (_("'VAL requires integral argument"));
7654
7655 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7656 {
7657 long pos = value_as_long (arg);
7658 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7659 error (_("argument to 'VAL out of range"));
7660 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7661 }
7662 else
7663 return value_from_longest (type, value_as_long (arg));
7664 }
7665 \f
7666
7667 /* Evaluation */
7668
7669 /* True if TYPE appears to be an Ada character type.
7670 [At the moment, this is true only for Character and Wide_Character;
7671 It is a heuristic test that could stand improvement]. */
7672
7673 int
7674 ada_is_character_type (struct type *type)
7675 {
7676 const char *name;
7677
7678 /* If the type code says it's a character, then assume it really is,
7679 and don't check any further. */
7680 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7681 return 1;
7682
7683 /* Otherwise, assume it's a character type iff it is a discrete type
7684 with a known character type name. */
7685 name = ada_type_name (type);
7686 return (name != NULL
7687 && (TYPE_CODE (type) == TYPE_CODE_INT
7688 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7689 && (strcmp (name, "character") == 0
7690 || strcmp (name, "wide_character") == 0
7691 || strcmp (name, "wide_wide_character") == 0
7692 || strcmp (name, "unsigned char") == 0));
7693 }
7694
7695 /* True if TYPE appears to be an Ada string type. */
7696
7697 int
7698 ada_is_string_type (struct type *type)
7699 {
7700 type = ada_check_typedef (type);
7701 if (type != NULL
7702 && TYPE_CODE (type) != TYPE_CODE_PTR
7703 && (ada_is_simple_array_type (type)
7704 || ada_is_array_descriptor_type (type))
7705 && ada_array_arity (type) == 1)
7706 {
7707 struct type *elttype = ada_array_element_type (type, 1);
7708
7709 return ada_is_character_type (elttype);
7710 }
7711 else
7712 return 0;
7713 }
7714
7715 /* The compiler sometimes provides a parallel XVS type for a given
7716 PAD type. Normally, it is safe to follow the PAD type directly,
7717 but older versions of the compiler have a bug that causes the offset
7718 of its "F" field to be wrong. Following that field in that case
7719 would lead to incorrect results, but this can be worked around
7720 by ignoring the PAD type and using the associated XVS type instead.
7721
7722 Set to True if the debugger should trust the contents of PAD types.
7723 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7724 static int trust_pad_over_xvs = 1;
7725
7726 /* True if TYPE is a struct type introduced by the compiler to force the
7727 alignment of a value. Such types have a single field with a
7728 distinctive name. */
7729
7730 int
7731 ada_is_aligner_type (struct type *type)
7732 {
7733 type = ada_check_typedef (type);
7734
7735 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
7736 return 0;
7737
7738 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7739 && TYPE_NFIELDS (type) == 1
7740 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7741 }
7742
7743 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7744 the parallel type. */
7745
7746 struct type *
7747 ada_get_base_type (struct type *raw_type)
7748 {
7749 struct type *real_type_namer;
7750 struct type *raw_real_type;
7751
7752 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7753 return raw_type;
7754
7755 if (ada_is_aligner_type (raw_type))
7756 /* The encoding specifies that we should always use the aligner type.
7757 So, even if this aligner type has an associated XVS type, we should
7758 simply ignore it.
7759
7760 According to the compiler gurus, an XVS type parallel to an aligner
7761 type may exist because of a stabs limitation. In stabs, aligner
7762 types are empty because the field has a variable-sized type, and
7763 thus cannot actually be used as an aligner type. As a result,
7764 we need the associated parallel XVS type to decode the type.
7765 Since the policy in the compiler is to not change the internal
7766 representation based on the debugging info format, we sometimes
7767 end up having a redundant XVS type parallel to the aligner type. */
7768 return raw_type;
7769
7770 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7771 if (real_type_namer == NULL
7772 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7773 || TYPE_NFIELDS (real_type_namer) != 1)
7774 return raw_type;
7775
7776 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7777 {
7778 /* This is an older encoding form where the base type needs to be
7779 looked up by name. We prefer the newer enconding because it is
7780 more efficient. */
7781 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7782 if (raw_real_type == NULL)
7783 return raw_type;
7784 else
7785 return raw_real_type;
7786 }
7787
7788 /* The field in our XVS type is a reference to the base type. */
7789 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
7790 }
7791
7792 /* The type of value designated by TYPE, with all aligners removed. */
7793
7794 struct type *
7795 ada_aligned_type (struct type *type)
7796 {
7797 if (ada_is_aligner_type (type))
7798 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7799 else
7800 return ada_get_base_type (type);
7801 }
7802
7803
7804 /* The address of the aligned value in an object at address VALADDR
7805 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7806
7807 const gdb_byte *
7808 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7809 {
7810 if (ada_is_aligner_type (type))
7811 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7812 valaddr +
7813 TYPE_FIELD_BITPOS (type,
7814 0) / TARGET_CHAR_BIT);
7815 else
7816 return valaddr;
7817 }
7818
7819
7820
7821 /* The printed representation of an enumeration literal with encoded
7822 name NAME. The value is good to the next call of ada_enum_name. */
7823 const char *
7824 ada_enum_name (const char *name)
7825 {
7826 static char *result;
7827 static size_t result_len = 0;
7828 char *tmp;
7829
7830 /* First, unqualify the enumeration name:
7831 1. Search for the last '.' character. If we find one, then skip
7832 all the preceeding characters, the unqualified name starts
7833 right after that dot.
7834 2. Otherwise, we may be debugging on a target where the compiler
7835 translates dots into "__". Search forward for double underscores,
7836 but stop searching when we hit an overloading suffix, which is
7837 of the form "__" followed by digits. */
7838
7839 tmp = strrchr (name, '.');
7840 if (tmp != NULL)
7841 name = tmp + 1;
7842 else
7843 {
7844 while ((tmp = strstr (name, "__")) != NULL)
7845 {
7846 if (isdigit (tmp[2]))
7847 break;
7848 else
7849 name = tmp + 2;
7850 }
7851 }
7852
7853 if (name[0] == 'Q')
7854 {
7855 int v;
7856 if (name[1] == 'U' || name[1] == 'W')
7857 {
7858 if (sscanf (name + 2, "%x", &v) != 1)
7859 return name;
7860 }
7861 else
7862 return name;
7863
7864 GROW_VECT (result, result_len, 16);
7865 if (isascii (v) && isprint (v))
7866 xsnprintf (result, result_len, "'%c'", v);
7867 else if (name[1] == 'U')
7868 xsnprintf (result, result_len, "[\"%02x\"]", v);
7869 else
7870 xsnprintf (result, result_len, "[\"%04x\"]", v);
7871
7872 return result;
7873 }
7874 else
7875 {
7876 tmp = strstr (name, "__");
7877 if (tmp == NULL)
7878 tmp = strstr (name, "$");
7879 if (tmp != NULL)
7880 {
7881 GROW_VECT (result, result_len, tmp - name + 1);
7882 strncpy (result, name, tmp - name);
7883 result[tmp - name] = '\0';
7884 return result;
7885 }
7886
7887 return name;
7888 }
7889 }
7890
7891 /* Evaluate the subexpression of EXP starting at *POS as for
7892 evaluate_type, updating *POS to point just past the evaluated
7893 expression. */
7894
7895 static struct value *
7896 evaluate_subexp_type (struct expression *exp, int *pos)
7897 {
7898 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7899 }
7900
7901 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7902 value it wraps. */
7903
7904 static struct value *
7905 unwrap_value (struct value *val)
7906 {
7907 struct type *type = ada_check_typedef (value_type (val));
7908 if (ada_is_aligner_type (type))
7909 {
7910 struct value *v = ada_value_struct_elt (val, "F", 0);
7911 struct type *val_type = ada_check_typedef (value_type (v));
7912 if (ada_type_name (val_type) == NULL)
7913 TYPE_NAME (val_type) = ada_type_name (type);
7914
7915 return unwrap_value (v);
7916 }
7917 else
7918 {
7919 struct type *raw_real_type =
7920 ada_check_typedef (ada_get_base_type (type));
7921
7922 /* If there is no parallel XVS or XVE type, then the value is
7923 already unwrapped. Return it without further modification. */
7924 if ((type == raw_real_type)
7925 && ada_find_parallel_type (type, "___XVE") == NULL)
7926 return val;
7927
7928 return
7929 coerce_unspec_val_to_type
7930 (val, ada_to_fixed_type (raw_real_type, 0,
7931 value_address (val),
7932 NULL, 1));
7933 }
7934 }
7935
7936 static struct value *
7937 cast_to_fixed (struct type *type, struct value *arg)
7938 {
7939 LONGEST val;
7940
7941 if (type == value_type (arg))
7942 return arg;
7943 else if (ada_is_fixed_point_type (value_type (arg)))
7944 val = ada_float_to_fixed (type,
7945 ada_fixed_to_float (value_type (arg),
7946 value_as_long (arg)));
7947 else
7948 {
7949 DOUBLEST argd = value_as_double (arg);
7950 val = ada_float_to_fixed (type, argd);
7951 }
7952
7953 return value_from_longest (type, val);
7954 }
7955
7956 static struct value *
7957 cast_from_fixed (struct type *type, struct value *arg)
7958 {
7959 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7960 value_as_long (arg));
7961 return value_from_double (type, val);
7962 }
7963
7964 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7965 return the converted value. */
7966
7967 static struct value *
7968 coerce_for_assign (struct type *type, struct value *val)
7969 {
7970 struct type *type2 = value_type (val);
7971 if (type == type2)
7972 return val;
7973
7974 type2 = ada_check_typedef (type2);
7975 type = ada_check_typedef (type);
7976
7977 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7978 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7979 {
7980 val = ada_value_ind (val);
7981 type2 = value_type (val);
7982 }
7983
7984 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7985 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7986 {
7987 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7988 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7989 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7990 error (_("Incompatible types in assignment"));
7991 deprecated_set_value_type (val, type);
7992 }
7993 return val;
7994 }
7995
7996 static struct value *
7997 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7998 {
7999 struct value *val;
8000 struct type *type1, *type2;
8001 LONGEST v, v1, v2;
8002
8003 arg1 = coerce_ref (arg1);
8004 arg2 = coerce_ref (arg2);
8005 type1 = base_type (ada_check_typedef (value_type (arg1)));
8006 type2 = base_type (ada_check_typedef (value_type (arg2)));
8007
8008 if (TYPE_CODE (type1) != TYPE_CODE_INT
8009 || TYPE_CODE (type2) != TYPE_CODE_INT)
8010 return value_binop (arg1, arg2, op);
8011
8012 switch (op)
8013 {
8014 case BINOP_MOD:
8015 case BINOP_DIV:
8016 case BINOP_REM:
8017 break;
8018 default:
8019 return value_binop (arg1, arg2, op);
8020 }
8021
8022 v2 = value_as_long (arg2);
8023 if (v2 == 0)
8024 error (_("second operand of %s must not be zero."), op_string (op));
8025
8026 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8027 return value_binop (arg1, arg2, op);
8028
8029 v1 = value_as_long (arg1);
8030 switch (op)
8031 {
8032 case BINOP_DIV:
8033 v = v1 / v2;
8034 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8035 v += v > 0 ? -1 : 1;
8036 break;
8037 case BINOP_REM:
8038 v = v1 % v2;
8039 if (v * v1 < 0)
8040 v -= v2;
8041 break;
8042 default:
8043 /* Should not reach this point. */
8044 v = 0;
8045 }
8046
8047 val = allocate_value (type1);
8048 store_unsigned_integer (value_contents_raw (val),
8049 TYPE_LENGTH (value_type (val)),
8050 gdbarch_byte_order (get_type_arch (type1)), v);
8051 return val;
8052 }
8053
8054 static int
8055 ada_value_equal (struct value *arg1, struct value *arg2)
8056 {
8057 if (ada_is_direct_array_type (value_type (arg1))
8058 || ada_is_direct_array_type (value_type (arg2)))
8059 {
8060 /* Automatically dereference any array reference before
8061 we attempt to perform the comparison. */
8062 arg1 = ada_coerce_ref (arg1);
8063 arg2 = ada_coerce_ref (arg2);
8064
8065 arg1 = ada_coerce_to_simple_array (arg1);
8066 arg2 = ada_coerce_to_simple_array (arg2);
8067 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8068 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8069 error (_("Attempt to compare array with non-array"));
8070 /* FIXME: The following works only for types whose
8071 representations use all bits (no padding or undefined bits)
8072 and do not have user-defined equality. */
8073 return
8074 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8075 && memcmp (value_contents (arg1), value_contents (arg2),
8076 TYPE_LENGTH (value_type (arg1))) == 0;
8077 }
8078 return value_equal (arg1, arg2);
8079 }
8080
8081 /* Total number of component associations in the aggregate starting at
8082 index PC in EXP. Assumes that index PC is the start of an
8083 OP_AGGREGATE. */
8084
8085 static int
8086 num_component_specs (struct expression *exp, int pc)
8087 {
8088 int n, m, i;
8089 m = exp->elts[pc + 1].longconst;
8090 pc += 3;
8091 n = 0;
8092 for (i = 0; i < m; i += 1)
8093 {
8094 switch (exp->elts[pc].opcode)
8095 {
8096 default:
8097 n += 1;
8098 break;
8099 case OP_CHOICES:
8100 n += exp->elts[pc + 1].longconst;
8101 break;
8102 }
8103 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8104 }
8105 return n;
8106 }
8107
8108 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8109 component of LHS (a simple array or a record), updating *POS past
8110 the expression, assuming that LHS is contained in CONTAINER. Does
8111 not modify the inferior's memory, nor does it modify LHS (unless
8112 LHS == CONTAINER). */
8113
8114 static void
8115 assign_component (struct value *container, struct value *lhs, LONGEST index,
8116 struct expression *exp, int *pos)
8117 {
8118 struct value *mark = value_mark ();
8119 struct value *elt;
8120 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8121 {
8122 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8123 struct value *index_val = value_from_longest (index_type, index);
8124 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8125 }
8126 else
8127 {
8128 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8129 elt = ada_to_fixed_value (unwrap_value (elt));
8130 }
8131
8132 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8133 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8134 else
8135 value_assign_to_component (container, elt,
8136 ada_evaluate_subexp (NULL, exp, pos,
8137 EVAL_NORMAL));
8138
8139 value_free_to_mark (mark);
8140 }
8141
8142 /* Assuming that LHS represents an lvalue having a record or array
8143 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8144 of that aggregate's value to LHS, advancing *POS past the
8145 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8146 lvalue containing LHS (possibly LHS itself). Does not modify
8147 the inferior's memory, nor does it modify the contents of
8148 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8149
8150 static struct value *
8151 assign_aggregate (struct value *container,
8152 struct value *lhs, struct expression *exp,
8153 int *pos, enum noside noside)
8154 {
8155 struct type *lhs_type;
8156 int n = exp->elts[*pos+1].longconst;
8157 LONGEST low_index, high_index;
8158 int num_specs;
8159 LONGEST *indices;
8160 int max_indices, num_indices;
8161 int is_array_aggregate;
8162 int i;
8163 struct value *mark = value_mark ();
8164
8165 *pos += 3;
8166 if (noside != EVAL_NORMAL)
8167 {
8168 int i;
8169 for (i = 0; i < n; i += 1)
8170 ada_evaluate_subexp (NULL, exp, pos, noside);
8171 return container;
8172 }
8173
8174 container = ada_coerce_ref (container);
8175 if (ada_is_direct_array_type (value_type (container)))
8176 container = ada_coerce_to_simple_array (container);
8177 lhs = ada_coerce_ref (lhs);
8178 if (!deprecated_value_modifiable (lhs))
8179 error (_("Left operand of assignment is not a modifiable lvalue."));
8180
8181 lhs_type = value_type (lhs);
8182 if (ada_is_direct_array_type (lhs_type))
8183 {
8184 lhs = ada_coerce_to_simple_array (lhs);
8185 lhs_type = value_type (lhs);
8186 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8187 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8188 is_array_aggregate = 1;
8189 }
8190 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8191 {
8192 low_index = 0;
8193 high_index = num_visible_fields (lhs_type) - 1;
8194 is_array_aggregate = 0;
8195 }
8196 else
8197 error (_("Left-hand side must be array or record."));
8198
8199 num_specs = num_component_specs (exp, *pos - 3);
8200 max_indices = 4 * num_specs + 4;
8201 indices = alloca (max_indices * sizeof (indices[0]));
8202 indices[0] = indices[1] = low_index - 1;
8203 indices[2] = indices[3] = high_index + 1;
8204 num_indices = 4;
8205
8206 for (i = 0; i < n; i += 1)
8207 {
8208 switch (exp->elts[*pos].opcode)
8209 {
8210 case OP_CHOICES:
8211 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8212 &num_indices, max_indices,
8213 low_index, high_index);
8214 break;
8215 case OP_POSITIONAL:
8216 aggregate_assign_positional (container, lhs, exp, pos, indices,
8217 &num_indices, max_indices,
8218 low_index, high_index);
8219 break;
8220 case OP_OTHERS:
8221 if (i != n-1)
8222 error (_("Misplaced 'others' clause"));
8223 aggregate_assign_others (container, lhs, exp, pos, indices,
8224 num_indices, low_index, high_index);
8225 break;
8226 default:
8227 error (_("Internal error: bad aggregate clause"));
8228 }
8229 }
8230
8231 return container;
8232 }
8233
8234 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8235 construct at *POS, updating *POS past the construct, given that
8236 the positions are relative to lower bound LOW, where HIGH is the
8237 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8238 updating *NUM_INDICES as needed. CONTAINER is as for
8239 assign_aggregate. */
8240 static void
8241 aggregate_assign_positional (struct value *container,
8242 struct value *lhs, struct expression *exp,
8243 int *pos, LONGEST *indices, int *num_indices,
8244 int max_indices, LONGEST low, LONGEST high)
8245 {
8246 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8247
8248 if (ind - 1 == high)
8249 warning (_("Extra components in aggregate ignored."));
8250 if (ind <= high)
8251 {
8252 add_component_interval (ind, ind, indices, num_indices, max_indices);
8253 *pos += 3;
8254 assign_component (container, lhs, ind, exp, pos);
8255 }
8256 else
8257 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8258 }
8259
8260 /* Assign into the components of LHS indexed by the OP_CHOICES
8261 construct at *POS, updating *POS past the construct, given that
8262 the allowable indices are LOW..HIGH. Record the indices assigned
8263 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8264 needed. CONTAINER is as for assign_aggregate. */
8265 static void
8266 aggregate_assign_from_choices (struct value *container,
8267 struct value *lhs, struct expression *exp,
8268 int *pos, LONGEST *indices, int *num_indices,
8269 int max_indices, LONGEST low, LONGEST high)
8270 {
8271 int j;
8272 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8273 int choice_pos, expr_pc;
8274 int is_array = ada_is_direct_array_type (value_type (lhs));
8275
8276 choice_pos = *pos += 3;
8277
8278 for (j = 0; j < n_choices; j += 1)
8279 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8280 expr_pc = *pos;
8281 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8282
8283 for (j = 0; j < n_choices; j += 1)
8284 {
8285 LONGEST lower, upper;
8286 enum exp_opcode op = exp->elts[choice_pos].opcode;
8287 if (op == OP_DISCRETE_RANGE)
8288 {
8289 choice_pos += 1;
8290 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8291 EVAL_NORMAL));
8292 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8293 EVAL_NORMAL));
8294 }
8295 else if (is_array)
8296 {
8297 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8298 EVAL_NORMAL));
8299 upper = lower;
8300 }
8301 else
8302 {
8303 int ind;
8304 char *name;
8305 switch (op)
8306 {
8307 case OP_NAME:
8308 name = &exp->elts[choice_pos + 2].string;
8309 break;
8310 case OP_VAR_VALUE:
8311 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8312 break;
8313 default:
8314 error (_("Invalid record component association."));
8315 }
8316 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8317 ind = 0;
8318 if (! find_struct_field (name, value_type (lhs), 0,
8319 NULL, NULL, NULL, NULL, &ind))
8320 error (_("Unknown component name: %s."), name);
8321 lower = upper = ind;
8322 }
8323
8324 if (lower <= upper && (lower < low || upper > high))
8325 error (_("Index in component association out of bounds."));
8326
8327 add_component_interval (lower, upper, indices, num_indices,
8328 max_indices);
8329 while (lower <= upper)
8330 {
8331 int pos1;
8332 pos1 = expr_pc;
8333 assign_component (container, lhs, lower, exp, &pos1);
8334 lower += 1;
8335 }
8336 }
8337 }
8338
8339 /* Assign the value of the expression in the OP_OTHERS construct in
8340 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8341 have not been previously assigned. The index intervals already assigned
8342 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8343 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8344 static void
8345 aggregate_assign_others (struct value *container,
8346 struct value *lhs, struct expression *exp,
8347 int *pos, LONGEST *indices, int num_indices,
8348 LONGEST low, LONGEST high)
8349 {
8350 int i;
8351 int expr_pc = *pos+1;
8352
8353 for (i = 0; i < num_indices - 2; i += 2)
8354 {
8355 LONGEST ind;
8356 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8357 {
8358 int pos;
8359 pos = expr_pc;
8360 assign_component (container, lhs, ind, exp, &pos);
8361 }
8362 }
8363 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8364 }
8365
8366 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8367 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8368 modifying *SIZE as needed. It is an error if *SIZE exceeds
8369 MAX_SIZE. The resulting intervals do not overlap. */
8370 static void
8371 add_component_interval (LONGEST low, LONGEST high,
8372 LONGEST* indices, int *size, int max_size)
8373 {
8374 int i, j;
8375 for (i = 0; i < *size; i += 2) {
8376 if (high >= indices[i] && low <= indices[i + 1])
8377 {
8378 int kh;
8379 for (kh = i + 2; kh < *size; kh += 2)
8380 if (high < indices[kh])
8381 break;
8382 if (low < indices[i])
8383 indices[i] = low;
8384 indices[i + 1] = indices[kh - 1];
8385 if (high > indices[i + 1])
8386 indices[i + 1] = high;
8387 memcpy (indices + i + 2, indices + kh, *size - kh);
8388 *size -= kh - i - 2;
8389 return;
8390 }
8391 else if (high < indices[i])
8392 break;
8393 }
8394
8395 if (*size == max_size)
8396 error (_("Internal error: miscounted aggregate components."));
8397 *size += 2;
8398 for (j = *size-1; j >= i+2; j -= 1)
8399 indices[j] = indices[j - 2];
8400 indices[i] = low;
8401 indices[i + 1] = high;
8402 }
8403
8404 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8405 is different. */
8406
8407 static struct value *
8408 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8409 {
8410 if (type == ada_check_typedef (value_type (arg2)))
8411 return arg2;
8412
8413 if (ada_is_fixed_point_type (type))
8414 return (cast_to_fixed (type, arg2));
8415
8416 if (ada_is_fixed_point_type (value_type (arg2)))
8417 return cast_from_fixed (type, arg2);
8418
8419 return value_cast (type, arg2);
8420 }
8421
8422 /* Evaluating Ada expressions, and printing their result.
8423 ------------------------------------------------------
8424
8425 1. Introduction:
8426 ----------------
8427
8428 We usually evaluate an Ada expression in order to print its value.
8429 We also evaluate an expression in order to print its type, which
8430 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8431 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8432 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8433 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8434 similar.
8435
8436 Evaluating expressions is a little more complicated for Ada entities
8437 than it is for entities in languages such as C. The main reason for
8438 this is that Ada provides types whose definition might be dynamic.
8439 One example of such types is variant records. Or another example
8440 would be an array whose bounds can only be known at run time.
8441
8442 The following description is a general guide as to what should be
8443 done (and what should NOT be done) in order to evaluate an expression
8444 involving such types, and when. This does not cover how the semantic
8445 information is encoded by GNAT as this is covered separatly. For the
8446 document used as the reference for the GNAT encoding, see exp_dbug.ads
8447 in the GNAT sources.
8448
8449 Ideally, we should embed each part of this description next to its
8450 associated code. Unfortunately, the amount of code is so vast right
8451 now that it's hard to see whether the code handling a particular
8452 situation might be duplicated or not. One day, when the code is
8453 cleaned up, this guide might become redundant with the comments
8454 inserted in the code, and we might want to remove it.
8455
8456 2. ``Fixing'' an Entity, the Simple Case:
8457 -----------------------------------------
8458
8459 When evaluating Ada expressions, the tricky issue is that they may
8460 reference entities whose type contents and size are not statically
8461 known. Consider for instance a variant record:
8462
8463 type Rec (Empty : Boolean := True) is record
8464 case Empty is
8465 when True => null;
8466 when False => Value : Integer;
8467 end case;
8468 end record;
8469 Yes : Rec := (Empty => False, Value => 1);
8470 No : Rec := (empty => True);
8471
8472 The size and contents of that record depends on the value of the
8473 descriminant (Rec.Empty). At this point, neither the debugging
8474 information nor the associated type structure in GDB are able to
8475 express such dynamic types. So what the debugger does is to create
8476 "fixed" versions of the type that applies to the specific object.
8477 We also informally refer to this opperation as "fixing" an object,
8478 which means creating its associated fixed type.
8479
8480 Example: when printing the value of variable "Yes" above, its fixed
8481 type would look like this:
8482
8483 type Rec is record
8484 Empty : Boolean;
8485 Value : Integer;
8486 end record;
8487
8488 On the other hand, if we printed the value of "No", its fixed type
8489 would become:
8490
8491 type Rec is record
8492 Empty : Boolean;
8493 end record;
8494
8495 Things become a little more complicated when trying to fix an entity
8496 with a dynamic type that directly contains another dynamic type,
8497 such as an array of variant records, for instance. There are
8498 two possible cases: Arrays, and records.
8499
8500 3. ``Fixing'' Arrays:
8501 ---------------------
8502
8503 The type structure in GDB describes an array in terms of its bounds,
8504 and the type of its elements. By design, all elements in the array
8505 have the same type and we cannot represent an array of variant elements
8506 using the current type structure in GDB. When fixing an array,
8507 we cannot fix the array element, as we would potentially need one
8508 fixed type per element of the array. As a result, the best we can do
8509 when fixing an array is to produce an array whose bounds and size
8510 are correct (allowing us to read it from memory), but without having
8511 touched its element type. Fixing each element will be done later,
8512 when (if) necessary.
8513
8514 Arrays are a little simpler to handle than records, because the same
8515 amount of memory is allocated for each element of the array, even if
8516 the amount of space actually used by each element differs from element
8517 to element. Consider for instance the following array of type Rec:
8518
8519 type Rec_Array is array (1 .. 2) of Rec;
8520
8521 The actual amount of memory occupied by each element might be different
8522 from element to element, depending on the value of their discriminant.
8523 But the amount of space reserved for each element in the array remains
8524 fixed regardless. So we simply need to compute that size using
8525 the debugging information available, from which we can then determine
8526 the array size (we multiply the number of elements of the array by
8527 the size of each element).
8528
8529 The simplest case is when we have an array of a constrained element
8530 type. For instance, consider the following type declarations:
8531
8532 type Bounded_String (Max_Size : Integer) is
8533 Length : Integer;
8534 Buffer : String (1 .. Max_Size);
8535 end record;
8536 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8537
8538 In this case, the compiler describes the array as an array of
8539 variable-size elements (identified by its XVS suffix) for which
8540 the size can be read in the parallel XVZ variable.
8541
8542 In the case of an array of an unconstrained element type, the compiler
8543 wraps the array element inside a private PAD type. This type should not
8544 be shown to the user, and must be "unwrap"'ed before printing. Note
8545 that we also use the adjective "aligner" in our code to designate
8546 these wrapper types.
8547
8548 In some cases, the size allocated for each element is statically
8549 known. In that case, the PAD type already has the correct size,
8550 and the array element should remain unfixed.
8551
8552 But there are cases when this size is not statically known.
8553 For instance, assuming that "Five" is an integer variable:
8554
8555 type Dynamic is array (1 .. Five) of Integer;
8556 type Wrapper (Has_Length : Boolean := False) is record
8557 Data : Dynamic;
8558 case Has_Length is
8559 when True => Length : Integer;
8560 when False => null;
8561 end case;
8562 end record;
8563 type Wrapper_Array is array (1 .. 2) of Wrapper;
8564
8565 Hello : Wrapper_Array := (others => (Has_Length => True,
8566 Data => (others => 17),
8567 Length => 1));
8568
8569
8570 The debugging info would describe variable Hello as being an
8571 array of a PAD type. The size of that PAD type is not statically
8572 known, but can be determined using a parallel XVZ variable.
8573 In that case, a copy of the PAD type with the correct size should
8574 be used for the fixed array.
8575
8576 3. ``Fixing'' record type objects:
8577 ----------------------------------
8578
8579 Things are slightly different from arrays in the case of dynamic
8580 record types. In this case, in order to compute the associated
8581 fixed type, we need to determine the size and offset of each of
8582 its components. This, in turn, requires us to compute the fixed
8583 type of each of these components.
8584
8585 Consider for instance the example:
8586
8587 type Bounded_String (Max_Size : Natural) is record
8588 Str : String (1 .. Max_Size);
8589 Length : Natural;
8590 end record;
8591 My_String : Bounded_String (Max_Size => 10);
8592
8593 In that case, the position of field "Length" depends on the size
8594 of field Str, which itself depends on the value of the Max_Size
8595 discriminant. In order to fix the type of variable My_String,
8596 we need to fix the type of field Str. Therefore, fixing a variant
8597 record requires us to fix each of its components.
8598
8599 However, if a component does not have a dynamic size, the component
8600 should not be fixed. In particular, fields that use a PAD type
8601 should not fixed. Here is an example where this might happen
8602 (assuming type Rec above):
8603
8604 type Container (Big : Boolean) is record
8605 First : Rec;
8606 After : Integer;
8607 case Big is
8608 when True => Another : Integer;
8609 when False => null;
8610 end case;
8611 end record;
8612 My_Container : Container := (Big => False,
8613 First => (Empty => True),
8614 After => 42);
8615
8616 In that example, the compiler creates a PAD type for component First,
8617 whose size is constant, and then positions the component After just
8618 right after it. The offset of component After is therefore constant
8619 in this case.
8620
8621 The debugger computes the position of each field based on an algorithm
8622 that uses, among other things, the actual position and size of the field
8623 preceding it. Let's now imagine that the user is trying to print
8624 the value of My_Container. If the type fixing was recursive, we would
8625 end up computing the offset of field After based on the size of the
8626 fixed version of field First. And since in our example First has
8627 only one actual field, the size of the fixed type is actually smaller
8628 than the amount of space allocated to that field, and thus we would
8629 compute the wrong offset of field After.
8630
8631 To make things more complicated, we need to watch out for dynamic
8632 components of variant records (identified by the ___XVL suffix in
8633 the component name). Even if the target type is a PAD type, the size
8634 of that type might not be statically known. So the PAD type needs
8635 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8636 we might end up with the wrong size for our component. This can be
8637 observed with the following type declarations:
8638
8639 type Octal is new Integer range 0 .. 7;
8640 type Octal_Array is array (Positive range <>) of Octal;
8641 pragma Pack (Octal_Array);
8642
8643 type Octal_Buffer (Size : Positive) is record
8644 Buffer : Octal_Array (1 .. Size);
8645 Length : Integer;
8646 end record;
8647
8648 In that case, Buffer is a PAD type whose size is unset and needs
8649 to be computed by fixing the unwrapped type.
8650
8651 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8652 ----------------------------------------------------------
8653
8654 Lastly, when should the sub-elements of an entity that remained unfixed
8655 thus far, be actually fixed?
8656
8657 The answer is: Only when referencing that element. For instance
8658 when selecting one component of a record, this specific component
8659 should be fixed at that point in time. Or when printing the value
8660 of a record, each component should be fixed before its value gets
8661 printed. Similarly for arrays, the element of the array should be
8662 fixed when printing each element of the array, or when extracting
8663 one element out of that array. On the other hand, fixing should
8664 not be performed on the elements when taking a slice of an array!
8665
8666 Note that one of the side-effects of miscomputing the offset and
8667 size of each field is that we end up also miscomputing the size
8668 of the containing type. This can have adverse results when computing
8669 the value of an entity. GDB fetches the value of an entity based
8670 on the size of its type, and thus a wrong size causes GDB to fetch
8671 the wrong amount of memory. In the case where the computed size is
8672 too small, GDB fetches too little data to print the value of our
8673 entiry. Results in this case as unpredicatble, as we usually read
8674 past the buffer containing the data =:-o. */
8675
8676 /* Implement the evaluate_exp routine in the exp_descriptor structure
8677 for the Ada language. */
8678
8679 static struct value *
8680 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8681 int *pos, enum noside noside)
8682 {
8683 enum exp_opcode op;
8684 int tem, tem2, tem3;
8685 int pc;
8686 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8687 struct type *type;
8688 int nargs, oplen;
8689 struct value **argvec;
8690
8691 pc = *pos;
8692 *pos += 1;
8693 op = exp->elts[pc].opcode;
8694
8695 switch (op)
8696 {
8697 default:
8698 *pos -= 1;
8699 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8700 arg1 = unwrap_value (arg1);
8701
8702 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8703 then we need to perform the conversion manually, because
8704 evaluate_subexp_standard doesn't do it. This conversion is
8705 necessary in Ada because the different kinds of float/fixed
8706 types in Ada have different representations.
8707
8708 Similarly, we need to perform the conversion from OP_LONG
8709 ourselves. */
8710 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8711 arg1 = ada_value_cast (expect_type, arg1, noside);
8712
8713 return arg1;
8714
8715 case OP_STRING:
8716 {
8717 struct value *result;
8718 *pos -= 1;
8719 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8720 /* The result type will have code OP_STRING, bashed there from
8721 OP_ARRAY. Bash it back. */
8722 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8723 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8724 return result;
8725 }
8726
8727 case UNOP_CAST:
8728 (*pos) += 2;
8729 type = exp->elts[pc + 1].type;
8730 arg1 = evaluate_subexp (type, exp, pos, noside);
8731 if (noside == EVAL_SKIP)
8732 goto nosideret;
8733 arg1 = ada_value_cast (type, arg1, noside);
8734 return arg1;
8735
8736 case UNOP_QUAL:
8737 (*pos) += 2;
8738 type = exp->elts[pc + 1].type;
8739 return ada_evaluate_subexp (type, exp, pos, noside);
8740
8741 case BINOP_ASSIGN:
8742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8743 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8744 {
8745 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8746 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8747 return arg1;
8748 return ada_value_assign (arg1, arg1);
8749 }
8750 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8751 except if the lhs of our assignment is a convenience variable.
8752 In the case of assigning to a convenience variable, the lhs
8753 should be exactly the result of the evaluation of the rhs. */
8754 type = value_type (arg1);
8755 if (VALUE_LVAL (arg1) == lval_internalvar)
8756 type = NULL;
8757 arg2 = evaluate_subexp (type, exp, pos, noside);
8758 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8759 return arg1;
8760 if (ada_is_fixed_point_type (value_type (arg1)))
8761 arg2 = cast_to_fixed (value_type (arg1), arg2);
8762 else if (ada_is_fixed_point_type (value_type (arg2)))
8763 error
8764 (_("Fixed-point values must be assigned to fixed-point variables"));
8765 else
8766 arg2 = coerce_for_assign (value_type (arg1), arg2);
8767 return ada_value_assign (arg1, arg2);
8768
8769 case BINOP_ADD:
8770 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8771 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8772 if (noside == EVAL_SKIP)
8773 goto nosideret;
8774 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8775 return (value_from_longest
8776 (value_type (arg1),
8777 value_as_long (arg1) + value_as_long (arg2)));
8778 if ((ada_is_fixed_point_type (value_type (arg1))
8779 || ada_is_fixed_point_type (value_type (arg2)))
8780 && value_type (arg1) != value_type (arg2))
8781 error (_("Operands of fixed-point addition must have the same type"));
8782 /* Do the addition, and cast the result to the type of the first
8783 argument. We cannot cast the result to a reference type, so if
8784 ARG1 is a reference type, find its underlying type. */
8785 type = value_type (arg1);
8786 while (TYPE_CODE (type) == TYPE_CODE_REF)
8787 type = TYPE_TARGET_TYPE (type);
8788 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8789 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8790
8791 case BINOP_SUB:
8792 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8793 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8794 if (noside == EVAL_SKIP)
8795 goto nosideret;
8796 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8797 return (value_from_longest
8798 (value_type (arg1),
8799 value_as_long (arg1) - value_as_long (arg2)));
8800 if ((ada_is_fixed_point_type (value_type (arg1))
8801 || ada_is_fixed_point_type (value_type (arg2)))
8802 && value_type (arg1) != value_type (arg2))
8803 error (_("Operands of fixed-point subtraction must have the same type"));
8804 /* Do the substraction, and cast the result to the type of the first
8805 argument. We cannot cast the result to a reference type, so if
8806 ARG1 is a reference type, find its underlying type. */
8807 type = value_type (arg1);
8808 while (TYPE_CODE (type) == TYPE_CODE_REF)
8809 type = TYPE_TARGET_TYPE (type);
8810 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8811 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8812
8813 case BINOP_MUL:
8814 case BINOP_DIV:
8815 case BINOP_REM:
8816 case BINOP_MOD:
8817 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8818 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8819 if (noside == EVAL_SKIP)
8820 goto nosideret;
8821 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8822 {
8823 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8824 return value_zero (value_type (arg1), not_lval);
8825 }
8826 else
8827 {
8828 type = builtin_type (exp->gdbarch)->builtin_double;
8829 if (ada_is_fixed_point_type (value_type (arg1)))
8830 arg1 = cast_from_fixed (type, arg1);
8831 if (ada_is_fixed_point_type (value_type (arg2)))
8832 arg2 = cast_from_fixed (type, arg2);
8833 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8834 return ada_value_binop (arg1, arg2, op);
8835 }
8836
8837 case BINOP_EQUAL:
8838 case BINOP_NOTEQUAL:
8839 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8840 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8841 if (noside == EVAL_SKIP)
8842 goto nosideret;
8843 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8844 tem = 0;
8845 else
8846 {
8847 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8848 tem = ada_value_equal (arg1, arg2);
8849 }
8850 if (op == BINOP_NOTEQUAL)
8851 tem = !tem;
8852 type = language_bool_type (exp->language_defn, exp->gdbarch);
8853 return value_from_longest (type, (LONGEST) tem);
8854
8855 case UNOP_NEG:
8856 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8857 if (noside == EVAL_SKIP)
8858 goto nosideret;
8859 else if (ada_is_fixed_point_type (value_type (arg1)))
8860 return value_cast (value_type (arg1), value_neg (arg1));
8861 else
8862 {
8863 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8864 return value_neg (arg1);
8865 }
8866
8867 case BINOP_LOGICAL_AND:
8868 case BINOP_LOGICAL_OR:
8869 case UNOP_LOGICAL_NOT:
8870 {
8871 struct value *val;
8872
8873 *pos -= 1;
8874 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8875 type = language_bool_type (exp->language_defn, exp->gdbarch);
8876 return value_cast (type, val);
8877 }
8878
8879 case BINOP_BITWISE_AND:
8880 case BINOP_BITWISE_IOR:
8881 case BINOP_BITWISE_XOR:
8882 {
8883 struct value *val;
8884
8885 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8886 *pos = pc;
8887 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8888
8889 return value_cast (value_type (arg1), val);
8890 }
8891
8892 case OP_VAR_VALUE:
8893 *pos -= 1;
8894
8895 if (noside == EVAL_SKIP)
8896 {
8897 *pos += 4;
8898 goto nosideret;
8899 }
8900 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8901 /* Only encountered when an unresolved symbol occurs in a
8902 context other than a function call, in which case, it is
8903 invalid. */
8904 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8905 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8906 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8907 {
8908 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8909 if (ada_is_tagged_type (type, 0))
8910 {
8911 /* Tagged types are a little special in the fact that the real
8912 type is dynamic and can only be determined by inspecting the
8913 object's tag. This means that we need to get the object's
8914 value first (EVAL_NORMAL) and then extract the actual object
8915 type from its tag.
8916
8917 Note that we cannot skip the final step where we extract
8918 the object type from its tag, because the EVAL_NORMAL phase
8919 results in dynamic components being resolved into fixed ones.
8920 This can cause problems when trying to print the type
8921 description of tagged types whose parent has a dynamic size:
8922 We use the type name of the "_parent" component in order
8923 to print the name of the ancestor type in the type description.
8924 If that component had a dynamic size, the resolution into
8925 a fixed type would result in the loss of that type name,
8926 thus preventing us from printing the name of the ancestor
8927 type in the type description. */
8928 struct type *actual_type;
8929
8930 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8931 actual_type = type_from_tag (ada_value_tag (arg1));
8932 if (actual_type == NULL)
8933 /* If, for some reason, we were unable to determine
8934 the actual type from the tag, then use the static
8935 approximation that we just computed as a fallback.
8936 This can happen if the debugging information is
8937 incomplete, for instance. */
8938 actual_type = type;
8939
8940 return value_zero (actual_type, not_lval);
8941 }
8942
8943 *pos += 4;
8944 return value_zero
8945 (to_static_fixed_type
8946 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8947 not_lval);
8948 }
8949 else
8950 {
8951 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8952 arg1 = unwrap_value (arg1);
8953 return ada_to_fixed_value (arg1);
8954 }
8955
8956 case OP_FUNCALL:
8957 (*pos) += 2;
8958
8959 /* Allocate arg vector, including space for the function to be
8960 called in argvec[0] and a terminating NULL. */
8961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8962 argvec =
8963 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8964
8965 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8966 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8967 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8968 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8969 else
8970 {
8971 for (tem = 0; tem <= nargs; tem += 1)
8972 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8973 argvec[tem] = 0;
8974
8975 if (noside == EVAL_SKIP)
8976 goto nosideret;
8977 }
8978
8979 if (ada_is_constrained_packed_array_type
8980 (desc_base_type (value_type (argvec[0]))))
8981 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8982 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8983 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8984 /* This is a packed array that has already been fixed, and
8985 therefore already coerced to a simple array. Nothing further
8986 to do. */
8987 ;
8988 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8989 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8990 && VALUE_LVAL (argvec[0]) == lval_memory))
8991 argvec[0] = value_addr (argvec[0]);
8992
8993 type = ada_check_typedef (value_type (argvec[0]));
8994 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8995 {
8996 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8997 {
8998 case TYPE_CODE_FUNC:
8999 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9000 break;
9001 case TYPE_CODE_ARRAY:
9002 break;
9003 case TYPE_CODE_STRUCT:
9004 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9005 argvec[0] = ada_value_ind (argvec[0]);
9006 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9007 break;
9008 default:
9009 error (_("cannot subscript or call something of type `%s'"),
9010 ada_type_name (value_type (argvec[0])));
9011 break;
9012 }
9013 }
9014
9015 switch (TYPE_CODE (type))
9016 {
9017 case TYPE_CODE_FUNC:
9018 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9019 return allocate_value (TYPE_TARGET_TYPE (type));
9020 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9021 case TYPE_CODE_STRUCT:
9022 {
9023 int arity;
9024
9025 arity = ada_array_arity (type);
9026 type = ada_array_element_type (type, nargs);
9027 if (type == NULL)
9028 error (_("cannot subscript or call a record"));
9029 if (arity != nargs)
9030 error (_("wrong number of subscripts; expecting %d"), arity);
9031 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9032 return value_zero (ada_aligned_type (type), lval_memory);
9033 return
9034 unwrap_value (ada_value_subscript
9035 (argvec[0], nargs, argvec + 1));
9036 }
9037 case TYPE_CODE_ARRAY:
9038 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9039 {
9040 type = ada_array_element_type (type, nargs);
9041 if (type == NULL)
9042 error (_("element type of array unknown"));
9043 else
9044 return value_zero (ada_aligned_type (type), lval_memory);
9045 }
9046 return
9047 unwrap_value (ada_value_subscript
9048 (ada_coerce_to_simple_array (argvec[0]),
9049 nargs, argvec + 1));
9050 case TYPE_CODE_PTR: /* Pointer to array */
9051 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9052 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9053 {
9054 type = ada_array_element_type (type, nargs);
9055 if (type == NULL)
9056 error (_("element type of array unknown"));
9057 else
9058 return value_zero (ada_aligned_type (type), lval_memory);
9059 }
9060 return
9061 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9062 nargs, argvec + 1));
9063
9064 default:
9065 error (_("Attempt to index or call something other than an "
9066 "array or function"));
9067 }
9068
9069 case TERNOP_SLICE:
9070 {
9071 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9072 struct value *low_bound_val =
9073 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9074 struct value *high_bound_val =
9075 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9076 LONGEST low_bound;
9077 LONGEST high_bound;
9078 low_bound_val = coerce_ref (low_bound_val);
9079 high_bound_val = coerce_ref (high_bound_val);
9080 low_bound = pos_atr (low_bound_val);
9081 high_bound = pos_atr (high_bound_val);
9082
9083 if (noside == EVAL_SKIP)
9084 goto nosideret;
9085
9086 /* If this is a reference to an aligner type, then remove all
9087 the aligners. */
9088 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9089 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9090 TYPE_TARGET_TYPE (value_type (array)) =
9091 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9092
9093 if (ada_is_constrained_packed_array_type (value_type (array)))
9094 error (_("cannot slice a packed array"));
9095
9096 /* If this is a reference to an array or an array lvalue,
9097 convert to a pointer. */
9098 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9099 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9100 && VALUE_LVAL (array) == lval_memory))
9101 array = value_addr (array);
9102
9103 if (noside == EVAL_AVOID_SIDE_EFFECTS
9104 && ada_is_array_descriptor_type (ada_check_typedef
9105 (value_type (array))))
9106 return empty_array (ada_type_of_array (array, 0), low_bound);
9107
9108 array = ada_coerce_to_simple_array_ptr (array);
9109
9110 /* If we have more than one level of pointer indirection,
9111 dereference the value until we get only one level. */
9112 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9113 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9114 == TYPE_CODE_PTR))
9115 array = value_ind (array);
9116
9117 /* Make sure we really do have an array type before going further,
9118 to avoid a SEGV when trying to get the index type or the target
9119 type later down the road if the debug info generated by
9120 the compiler is incorrect or incomplete. */
9121 if (!ada_is_simple_array_type (value_type (array)))
9122 error (_("cannot take slice of non-array"));
9123
9124 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9125 {
9126 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9127 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9128 low_bound);
9129 else
9130 {
9131 struct type *arr_type0 =
9132 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9133 NULL, 1);
9134 return ada_value_slice_from_ptr (array, arr_type0,
9135 longest_to_int (low_bound),
9136 longest_to_int (high_bound));
9137 }
9138 }
9139 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9140 return array;
9141 else if (high_bound < low_bound)
9142 return empty_array (value_type (array), low_bound);
9143 else
9144 return ada_value_slice (array, longest_to_int (low_bound),
9145 longest_to_int (high_bound));
9146 }
9147
9148 case UNOP_IN_RANGE:
9149 (*pos) += 2;
9150 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9151 type = check_typedef (exp->elts[pc + 1].type);
9152
9153 if (noside == EVAL_SKIP)
9154 goto nosideret;
9155
9156 switch (TYPE_CODE (type))
9157 {
9158 default:
9159 lim_warning (_("Membership test incompletely implemented; "
9160 "always returns true"));
9161 type = language_bool_type (exp->language_defn, exp->gdbarch);
9162 return value_from_longest (type, (LONGEST) 1);
9163
9164 case TYPE_CODE_RANGE:
9165 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9166 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9167 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9168 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9169 type = language_bool_type (exp->language_defn, exp->gdbarch);
9170 return
9171 value_from_longest (type,
9172 (value_less (arg1, arg3)
9173 || value_equal (arg1, arg3))
9174 && (value_less (arg2, arg1)
9175 || value_equal (arg2, arg1)));
9176 }
9177
9178 case BINOP_IN_BOUNDS:
9179 (*pos) += 2;
9180 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9181 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9182
9183 if (noside == EVAL_SKIP)
9184 goto nosideret;
9185
9186 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9187 {
9188 type = language_bool_type (exp->language_defn, exp->gdbarch);
9189 return value_zero (type, not_lval);
9190 }
9191
9192 tem = longest_to_int (exp->elts[pc + 1].longconst);
9193
9194 type = ada_index_type (value_type (arg2), tem, "range");
9195 if (!type)
9196 type = value_type (arg1);
9197
9198 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9199 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9200
9201 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9202 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9203 type = language_bool_type (exp->language_defn, exp->gdbarch);
9204 return
9205 value_from_longest (type,
9206 (value_less (arg1, arg3)
9207 || value_equal (arg1, arg3))
9208 && (value_less (arg2, arg1)
9209 || value_equal (arg2, arg1)));
9210
9211 case TERNOP_IN_RANGE:
9212 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9213 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9214 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9215
9216 if (noside == EVAL_SKIP)
9217 goto nosideret;
9218
9219 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9220 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9221 type = language_bool_type (exp->language_defn, exp->gdbarch);
9222 return
9223 value_from_longest (type,
9224 (value_less (arg1, arg3)
9225 || value_equal (arg1, arg3))
9226 && (value_less (arg2, arg1)
9227 || value_equal (arg2, arg1)));
9228
9229 case OP_ATR_FIRST:
9230 case OP_ATR_LAST:
9231 case OP_ATR_LENGTH:
9232 {
9233 struct type *type_arg;
9234 if (exp->elts[*pos].opcode == OP_TYPE)
9235 {
9236 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9237 arg1 = NULL;
9238 type_arg = check_typedef (exp->elts[pc + 2].type);
9239 }
9240 else
9241 {
9242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9243 type_arg = NULL;
9244 }
9245
9246 if (exp->elts[*pos].opcode != OP_LONG)
9247 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9248 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9249 *pos += 4;
9250
9251 if (noside == EVAL_SKIP)
9252 goto nosideret;
9253
9254 if (type_arg == NULL)
9255 {
9256 arg1 = ada_coerce_ref (arg1);
9257
9258 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9259 arg1 = ada_coerce_to_simple_array (arg1);
9260
9261 type = ada_index_type (value_type (arg1), tem,
9262 ada_attribute_name (op));
9263 if (type == NULL)
9264 type = builtin_type (exp->gdbarch)->builtin_int;
9265
9266 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9267 return allocate_value (type);
9268
9269 switch (op)
9270 {
9271 default: /* Should never happen. */
9272 error (_("unexpected attribute encountered"));
9273 case OP_ATR_FIRST:
9274 return value_from_longest
9275 (type, ada_array_bound (arg1, tem, 0));
9276 case OP_ATR_LAST:
9277 return value_from_longest
9278 (type, ada_array_bound (arg1, tem, 1));
9279 case OP_ATR_LENGTH:
9280 return value_from_longest
9281 (type, ada_array_length (arg1, tem));
9282 }
9283 }
9284 else if (discrete_type_p (type_arg))
9285 {
9286 struct type *range_type;
9287 char *name = ada_type_name (type_arg);
9288 range_type = NULL;
9289 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9290 range_type = to_fixed_range_type (name, NULL, type_arg);
9291 if (range_type == NULL)
9292 range_type = type_arg;
9293 switch (op)
9294 {
9295 default:
9296 error (_("unexpected attribute encountered"));
9297 case OP_ATR_FIRST:
9298 return value_from_longest
9299 (range_type, ada_discrete_type_low_bound (range_type));
9300 case OP_ATR_LAST:
9301 return value_from_longest
9302 (range_type, ada_discrete_type_high_bound (range_type));
9303 case OP_ATR_LENGTH:
9304 error (_("the 'length attribute applies only to array types"));
9305 }
9306 }
9307 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9308 error (_("unimplemented type attribute"));
9309 else
9310 {
9311 LONGEST low, high;
9312
9313 if (ada_is_constrained_packed_array_type (type_arg))
9314 type_arg = decode_constrained_packed_array_type (type_arg);
9315
9316 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9317 if (type == NULL)
9318 type = builtin_type (exp->gdbarch)->builtin_int;
9319
9320 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9321 return allocate_value (type);
9322
9323 switch (op)
9324 {
9325 default:
9326 error (_("unexpected attribute encountered"));
9327 case OP_ATR_FIRST:
9328 low = ada_array_bound_from_type (type_arg, tem, 0);
9329 return value_from_longest (type, low);
9330 case OP_ATR_LAST:
9331 high = ada_array_bound_from_type (type_arg, tem, 1);
9332 return value_from_longest (type, high);
9333 case OP_ATR_LENGTH:
9334 low = ada_array_bound_from_type (type_arg, tem, 0);
9335 high = ada_array_bound_from_type (type_arg, tem, 1);
9336 return value_from_longest (type, high - low + 1);
9337 }
9338 }
9339 }
9340
9341 case OP_ATR_TAG:
9342 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9343 if (noside == EVAL_SKIP)
9344 goto nosideret;
9345
9346 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9347 return value_zero (ada_tag_type (arg1), not_lval);
9348
9349 return ada_value_tag (arg1);
9350
9351 case OP_ATR_MIN:
9352 case OP_ATR_MAX:
9353 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9354 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9355 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9356 if (noside == EVAL_SKIP)
9357 goto nosideret;
9358 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9359 return value_zero (value_type (arg1), not_lval);
9360 else
9361 {
9362 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9363 return value_binop (arg1, arg2,
9364 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9365 }
9366
9367 case OP_ATR_MODULUS:
9368 {
9369 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9370 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9371
9372 if (noside == EVAL_SKIP)
9373 goto nosideret;
9374
9375 if (!ada_is_modular_type (type_arg))
9376 error (_("'modulus must be applied to modular type"));
9377
9378 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9379 ada_modulus (type_arg));
9380 }
9381
9382
9383 case OP_ATR_POS:
9384 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9385 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9386 if (noside == EVAL_SKIP)
9387 goto nosideret;
9388 type = builtin_type (exp->gdbarch)->builtin_int;
9389 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9390 return value_zero (type, not_lval);
9391 else
9392 return value_pos_atr (type, arg1);
9393
9394 case OP_ATR_SIZE:
9395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9396 type = value_type (arg1);
9397
9398 /* If the argument is a reference, then dereference its type, since
9399 the user is really asking for the size of the actual object,
9400 not the size of the pointer. */
9401 if (TYPE_CODE (type) == TYPE_CODE_REF)
9402 type = TYPE_TARGET_TYPE (type);
9403
9404 if (noside == EVAL_SKIP)
9405 goto nosideret;
9406 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9407 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9408 else
9409 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9410 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9411
9412 case OP_ATR_VAL:
9413 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9415 type = exp->elts[pc + 2].type;
9416 if (noside == EVAL_SKIP)
9417 goto nosideret;
9418 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9419 return value_zero (type, not_lval);
9420 else
9421 return value_val_atr (type, arg1);
9422
9423 case BINOP_EXP:
9424 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9425 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9426 if (noside == EVAL_SKIP)
9427 goto nosideret;
9428 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9429 return value_zero (value_type (arg1), not_lval);
9430 else
9431 {
9432 /* For integer exponentiation operations,
9433 only promote the first argument. */
9434 if (is_integral_type (value_type (arg2)))
9435 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9436 else
9437 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9438
9439 return value_binop (arg1, arg2, op);
9440 }
9441
9442 case UNOP_PLUS:
9443 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9444 if (noside == EVAL_SKIP)
9445 goto nosideret;
9446 else
9447 return arg1;
9448
9449 case UNOP_ABS:
9450 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9451 if (noside == EVAL_SKIP)
9452 goto nosideret;
9453 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9454 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9455 return value_neg (arg1);
9456 else
9457 return arg1;
9458
9459 case UNOP_IND:
9460 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9461 if (noside == EVAL_SKIP)
9462 goto nosideret;
9463 type = ada_check_typedef (value_type (arg1));
9464 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9465 {
9466 if (ada_is_array_descriptor_type (type))
9467 /* GDB allows dereferencing GNAT array descriptors. */
9468 {
9469 struct type *arrType = ada_type_of_array (arg1, 0);
9470 if (arrType == NULL)
9471 error (_("Attempt to dereference null array pointer."));
9472 return value_at_lazy (arrType, 0);
9473 }
9474 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9475 || TYPE_CODE (type) == TYPE_CODE_REF
9476 /* In C you can dereference an array to get the 1st elt. */
9477 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9478 {
9479 type = to_static_fixed_type
9480 (ada_aligned_type
9481 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9482 check_size (type);
9483 return value_zero (type, lval_memory);
9484 }
9485 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9486 {
9487 /* GDB allows dereferencing an int. */
9488 if (expect_type == NULL)
9489 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9490 lval_memory);
9491 else
9492 {
9493 expect_type =
9494 to_static_fixed_type (ada_aligned_type (expect_type));
9495 return value_zero (expect_type, lval_memory);
9496 }
9497 }
9498 else
9499 error (_("Attempt to take contents of a non-pointer value."));
9500 }
9501 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9502 type = ada_check_typedef (value_type (arg1));
9503
9504 if (TYPE_CODE (type) == TYPE_CODE_INT)
9505 /* GDB allows dereferencing an int. If we were given
9506 the expect_type, then use that as the target type.
9507 Otherwise, assume that the target type is an int. */
9508 {
9509 if (expect_type != NULL)
9510 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9511 arg1));
9512 else
9513 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9514 (CORE_ADDR) value_as_address (arg1));
9515 }
9516
9517 if (ada_is_array_descriptor_type (type))
9518 /* GDB allows dereferencing GNAT array descriptors. */
9519 return ada_coerce_to_simple_array (arg1);
9520 else
9521 return ada_value_ind (arg1);
9522
9523 case STRUCTOP_STRUCT:
9524 tem = longest_to_int (exp->elts[pc + 1].longconst);
9525 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9526 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9527 if (noside == EVAL_SKIP)
9528 goto nosideret;
9529 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9530 {
9531 struct type *type1 = value_type (arg1);
9532 if (ada_is_tagged_type (type1, 1))
9533 {
9534 type = ada_lookup_struct_elt_type (type1,
9535 &exp->elts[pc + 2].string,
9536 1, 1, NULL);
9537 if (type == NULL)
9538 /* In this case, we assume that the field COULD exist
9539 in some extension of the type. Return an object of
9540 "type" void, which will match any formal
9541 (see ada_type_match). */
9542 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9543 lval_memory);
9544 }
9545 else
9546 type =
9547 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9548 0, NULL);
9549
9550 return value_zero (ada_aligned_type (type), lval_memory);
9551 }
9552 else
9553 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9554 arg1 = unwrap_value (arg1);
9555 return ada_to_fixed_value (arg1);
9556
9557 case OP_TYPE:
9558 /* The value is not supposed to be used. This is here to make it
9559 easier to accommodate expressions that contain types. */
9560 (*pos) += 2;
9561 if (noside == EVAL_SKIP)
9562 goto nosideret;
9563 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9564 return allocate_value (exp->elts[pc + 1].type);
9565 else
9566 error (_("Attempt to use a type name as an expression"));
9567
9568 case OP_AGGREGATE:
9569 case OP_CHOICES:
9570 case OP_OTHERS:
9571 case OP_DISCRETE_RANGE:
9572 case OP_POSITIONAL:
9573 case OP_NAME:
9574 if (noside == EVAL_NORMAL)
9575 switch (op)
9576 {
9577 case OP_NAME:
9578 error (_("Undefined name, ambiguous name, or renaming used in "
9579 "component association: %s."), &exp->elts[pc+2].string);
9580 case OP_AGGREGATE:
9581 error (_("Aggregates only allowed on the right of an assignment"));
9582 default:
9583 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9584 }
9585
9586 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9587 *pos += oplen - 1;
9588 for (tem = 0; tem < nargs; tem += 1)
9589 ada_evaluate_subexp (NULL, exp, pos, noside);
9590 goto nosideret;
9591 }
9592
9593 nosideret:
9594 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9595 }
9596 \f
9597
9598 /* Fixed point */
9599
9600 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9601 type name that encodes the 'small and 'delta information.
9602 Otherwise, return NULL. */
9603
9604 static const char *
9605 fixed_type_info (struct type *type)
9606 {
9607 const char *name = ada_type_name (type);
9608 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9609
9610 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9611 {
9612 const char *tail = strstr (name, "___XF_");
9613 if (tail == NULL)
9614 return NULL;
9615 else
9616 return tail + 5;
9617 }
9618 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9619 return fixed_type_info (TYPE_TARGET_TYPE (type));
9620 else
9621 return NULL;
9622 }
9623
9624 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9625
9626 int
9627 ada_is_fixed_point_type (struct type *type)
9628 {
9629 return fixed_type_info (type) != NULL;
9630 }
9631
9632 /* Return non-zero iff TYPE represents a System.Address type. */
9633
9634 int
9635 ada_is_system_address_type (struct type *type)
9636 {
9637 return (TYPE_NAME (type)
9638 && strcmp (TYPE_NAME (type), "system__address") == 0);
9639 }
9640
9641 /* Assuming that TYPE is the representation of an Ada fixed-point
9642 type, return its delta, or -1 if the type is malformed and the
9643 delta cannot be determined. */
9644
9645 DOUBLEST
9646 ada_delta (struct type *type)
9647 {
9648 const char *encoding = fixed_type_info (type);
9649 DOUBLEST num, den;
9650
9651 /* Strictly speaking, num and den are encoded as integer. However,
9652 they may not fit into a long, and they will have to be converted
9653 to DOUBLEST anyway. So scan them as DOUBLEST. */
9654 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9655 &num, &den) < 2)
9656 return -1.0;
9657 else
9658 return num / den;
9659 }
9660
9661 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9662 factor ('SMALL value) associated with the type. */
9663
9664 static DOUBLEST
9665 scaling_factor (struct type *type)
9666 {
9667 const char *encoding = fixed_type_info (type);
9668 DOUBLEST num0, den0, num1, den1;
9669 int n;
9670
9671 /* Strictly speaking, num's and den's are encoded as integer. However,
9672 they may not fit into a long, and they will have to be converted
9673 to DOUBLEST anyway. So scan them as DOUBLEST. */
9674 n = sscanf (encoding,
9675 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9676 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9677 &num0, &den0, &num1, &den1);
9678
9679 if (n < 2)
9680 return 1.0;
9681 else if (n == 4)
9682 return num1 / den1;
9683 else
9684 return num0 / den0;
9685 }
9686
9687
9688 /* Assuming that X is the representation of a value of fixed-point
9689 type TYPE, return its floating-point equivalent. */
9690
9691 DOUBLEST
9692 ada_fixed_to_float (struct type *type, LONGEST x)
9693 {
9694 return (DOUBLEST) x *scaling_factor (type);
9695 }
9696
9697 /* The representation of a fixed-point value of type TYPE
9698 corresponding to the value X. */
9699
9700 LONGEST
9701 ada_float_to_fixed (struct type *type, DOUBLEST x)
9702 {
9703 return (LONGEST) (x / scaling_factor (type) + 0.5);
9704 }
9705
9706 \f
9707
9708 /* Range types */
9709
9710 /* Scan STR beginning at position K for a discriminant name, and
9711 return the value of that discriminant field of DVAL in *PX. If
9712 PNEW_K is not null, put the position of the character beyond the
9713 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9714 not alter *PX and *PNEW_K if unsuccessful. */
9715
9716 static int
9717 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9718 int *pnew_k)
9719 {
9720 static char *bound_buffer = NULL;
9721 static size_t bound_buffer_len = 0;
9722 char *bound;
9723 char *pend;
9724 struct value *bound_val;
9725
9726 if (dval == NULL || str == NULL || str[k] == '\0')
9727 return 0;
9728
9729 pend = strstr (str + k, "__");
9730 if (pend == NULL)
9731 {
9732 bound = str + k;
9733 k += strlen (bound);
9734 }
9735 else
9736 {
9737 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9738 bound = bound_buffer;
9739 strncpy (bound_buffer, str + k, pend - (str + k));
9740 bound[pend - (str + k)] = '\0';
9741 k = pend - str;
9742 }
9743
9744 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9745 if (bound_val == NULL)
9746 return 0;
9747
9748 *px = value_as_long (bound_val);
9749 if (pnew_k != NULL)
9750 *pnew_k = k;
9751 return 1;
9752 }
9753
9754 /* Value of variable named NAME in the current environment. If
9755 no such variable found, then if ERR_MSG is null, returns 0, and
9756 otherwise causes an error with message ERR_MSG. */
9757
9758 static struct value *
9759 get_var_value (char *name, char *err_msg)
9760 {
9761 struct ada_symbol_info *syms;
9762 int nsyms;
9763
9764 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9765 &syms);
9766
9767 if (nsyms != 1)
9768 {
9769 if (err_msg == NULL)
9770 return 0;
9771 else
9772 error (("%s"), err_msg);
9773 }
9774
9775 return value_of_variable (syms[0].sym, syms[0].block);
9776 }
9777
9778 /* Value of integer variable named NAME in the current environment. If
9779 no such variable found, returns 0, and sets *FLAG to 0. If
9780 successful, sets *FLAG to 1. */
9781
9782 LONGEST
9783 get_int_var_value (char *name, int *flag)
9784 {
9785 struct value *var_val = get_var_value (name, 0);
9786
9787 if (var_val == 0)
9788 {
9789 if (flag != NULL)
9790 *flag = 0;
9791 return 0;
9792 }
9793 else
9794 {
9795 if (flag != NULL)
9796 *flag = 1;
9797 return value_as_long (var_val);
9798 }
9799 }
9800
9801
9802 /* Return a range type whose base type is that of the range type named
9803 NAME in the current environment, and whose bounds are calculated
9804 from NAME according to the GNAT range encoding conventions.
9805 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9806 corresponding range type from debug information; fall back to using it
9807 if symbol lookup fails. If a new type must be created, allocate it
9808 like ORIG_TYPE was. The bounds information, in general, is encoded
9809 in NAME, the base type given in the named range type. */
9810
9811 static struct type *
9812 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9813 {
9814 struct type *raw_type = ada_find_any_type (name);
9815 struct type *base_type;
9816 char *subtype_info;
9817
9818 /* Fall back to the original type if symbol lookup failed. */
9819 if (raw_type == NULL)
9820 raw_type = orig_type;
9821
9822 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9823 base_type = TYPE_TARGET_TYPE (raw_type);
9824 else
9825 base_type = raw_type;
9826
9827 subtype_info = strstr (name, "___XD");
9828 if (subtype_info == NULL)
9829 {
9830 LONGEST L = ada_discrete_type_low_bound (raw_type);
9831 LONGEST U = ada_discrete_type_high_bound (raw_type);
9832 if (L < INT_MIN || U > INT_MAX)
9833 return raw_type;
9834 else
9835 return create_range_type (alloc_type_copy (orig_type), raw_type,
9836 ada_discrete_type_low_bound (raw_type),
9837 ada_discrete_type_high_bound (raw_type));
9838 }
9839 else
9840 {
9841 static char *name_buf = NULL;
9842 static size_t name_len = 0;
9843 int prefix_len = subtype_info - name;
9844 LONGEST L, U;
9845 struct type *type;
9846 char *bounds_str;
9847 int n;
9848
9849 GROW_VECT (name_buf, name_len, prefix_len + 5);
9850 strncpy (name_buf, name, prefix_len);
9851 name_buf[prefix_len] = '\0';
9852
9853 subtype_info += 5;
9854 bounds_str = strchr (subtype_info, '_');
9855 n = 1;
9856
9857 if (*subtype_info == 'L')
9858 {
9859 if (!ada_scan_number (bounds_str, n, &L, &n)
9860 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9861 return raw_type;
9862 if (bounds_str[n] == '_')
9863 n += 2;
9864 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9865 n += 1;
9866 subtype_info += 1;
9867 }
9868 else
9869 {
9870 int ok;
9871 strcpy (name_buf + prefix_len, "___L");
9872 L = get_int_var_value (name_buf, &ok);
9873 if (!ok)
9874 {
9875 lim_warning (_("Unknown lower bound, using 1."));
9876 L = 1;
9877 }
9878 }
9879
9880 if (*subtype_info == 'U')
9881 {
9882 if (!ada_scan_number (bounds_str, n, &U, &n)
9883 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9884 return raw_type;
9885 }
9886 else
9887 {
9888 int ok;
9889 strcpy (name_buf + prefix_len, "___U");
9890 U = get_int_var_value (name_buf, &ok);
9891 if (!ok)
9892 {
9893 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9894 U = L;
9895 }
9896 }
9897
9898 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
9899 TYPE_NAME (type) = name;
9900 return type;
9901 }
9902 }
9903
9904 /* True iff NAME is the name of a range type. */
9905
9906 int
9907 ada_is_range_type_name (const char *name)
9908 {
9909 return (name != NULL && strstr (name, "___XD"));
9910 }
9911 \f
9912
9913 /* Modular types */
9914
9915 /* True iff TYPE is an Ada modular type. */
9916
9917 int
9918 ada_is_modular_type (struct type *type)
9919 {
9920 struct type *subranged_type = base_type (type);
9921
9922 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9923 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9924 && TYPE_UNSIGNED (subranged_type));
9925 }
9926
9927 /* Try to determine the lower and upper bounds of the given modular type
9928 using the type name only. Return non-zero and set L and U as the lower
9929 and upper bounds (respectively) if successful. */
9930
9931 int
9932 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9933 {
9934 char *name = ada_type_name (type);
9935 char *suffix;
9936 int k;
9937 LONGEST U;
9938
9939 if (name == NULL)
9940 return 0;
9941
9942 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9943 we are looking for static bounds, which means an __XDLU suffix.
9944 Moreover, we know that the lower bound of modular types is always
9945 zero, so the actual suffix should start with "__XDLU_0__", and
9946 then be followed by the upper bound value. */
9947 suffix = strstr (name, "__XDLU_0__");
9948 if (suffix == NULL)
9949 return 0;
9950 k = 10;
9951 if (!ada_scan_number (suffix, k, &U, NULL))
9952 return 0;
9953
9954 *modulus = (ULONGEST) U + 1;
9955 return 1;
9956 }
9957
9958 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9959
9960 ULONGEST
9961 ada_modulus (struct type *type)
9962 {
9963 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9964 }
9965 \f
9966
9967 /* Ada exception catchpoint support:
9968 ---------------------------------
9969
9970 We support 3 kinds of exception catchpoints:
9971 . catchpoints on Ada exceptions
9972 . catchpoints on unhandled Ada exceptions
9973 . catchpoints on failed assertions
9974
9975 Exceptions raised during failed assertions, or unhandled exceptions
9976 could perfectly be caught with the general catchpoint on Ada exceptions.
9977 However, we can easily differentiate these two special cases, and having
9978 the option to distinguish these two cases from the rest can be useful
9979 to zero-in on certain situations.
9980
9981 Exception catchpoints are a specialized form of breakpoint,
9982 since they rely on inserting breakpoints inside known routines
9983 of the GNAT runtime. The implementation therefore uses a standard
9984 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9985 of breakpoint_ops.
9986
9987 Support in the runtime for exception catchpoints have been changed
9988 a few times already, and these changes affect the implementation
9989 of these catchpoints. In order to be able to support several
9990 variants of the runtime, we use a sniffer that will determine
9991 the runtime variant used by the program being debugged.
9992
9993 At this time, we do not support the use of conditions on Ada exception
9994 catchpoints. The COND and COND_STRING fields are therefore set
9995 to NULL (most of the time, see below).
9996
9997 Conditions where EXP_STRING, COND, and COND_STRING are used:
9998
9999 When a user specifies the name of a specific exception in the case
10000 of catchpoints on Ada exceptions, we store the name of that exception
10001 in the EXP_STRING. We then translate this request into an actual
10002 condition stored in COND_STRING, and then parse it into an expression
10003 stored in COND. */
10004
10005 /* The different types of catchpoints that we introduced for catching
10006 Ada exceptions. */
10007
10008 enum exception_catchpoint_kind
10009 {
10010 ex_catch_exception,
10011 ex_catch_exception_unhandled,
10012 ex_catch_assert
10013 };
10014
10015 /* Ada's standard exceptions. */
10016
10017 static char *standard_exc[] = {
10018 "constraint_error",
10019 "program_error",
10020 "storage_error",
10021 "tasking_error"
10022 };
10023
10024 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10025
10026 /* A structure that describes how to support exception catchpoints
10027 for a given executable. */
10028
10029 struct exception_support_info
10030 {
10031 /* The name of the symbol to break on in order to insert
10032 a catchpoint on exceptions. */
10033 const char *catch_exception_sym;
10034
10035 /* The name of the symbol to break on in order to insert
10036 a catchpoint on unhandled exceptions. */
10037 const char *catch_exception_unhandled_sym;
10038
10039 /* The name of the symbol to break on in order to insert
10040 a catchpoint on failed assertions. */
10041 const char *catch_assert_sym;
10042
10043 /* Assuming that the inferior just triggered an unhandled exception
10044 catchpoint, this function is responsible for returning the address
10045 in inferior memory where the name of that exception is stored.
10046 Return zero if the address could not be computed. */
10047 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10048 };
10049
10050 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10051 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10052
10053 /* The following exception support info structure describes how to
10054 implement exception catchpoints with the latest version of the
10055 Ada runtime (as of 2007-03-06). */
10056
10057 static const struct exception_support_info default_exception_support_info =
10058 {
10059 "__gnat_debug_raise_exception", /* catch_exception_sym */
10060 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10061 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10062 ada_unhandled_exception_name_addr
10063 };
10064
10065 /* The following exception support info structure describes how to
10066 implement exception catchpoints with a slightly older version
10067 of the Ada runtime. */
10068
10069 static const struct exception_support_info exception_support_info_fallback =
10070 {
10071 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10072 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10073 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10074 ada_unhandled_exception_name_addr_from_raise
10075 };
10076
10077 /* For each executable, we sniff which exception info structure to use
10078 and cache it in the following global variable. */
10079
10080 static const struct exception_support_info *exception_info = NULL;
10081
10082 /* Inspect the Ada runtime and determine which exception info structure
10083 should be used to provide support for exception catchpoints.
10084
10085 This function will always set exception_info, or raise an error. */
10086
10087 static void
10088 ada_exception_support_info_sniffer (void)
10089 {
10090 struct symbol *sym;
10091
10092 /* If the exception info is already known, then no need to recompute it. */
10093 if (exception_info != NULL)
10094 return;
10095
10096 /* Check the latest (default) exception support info. */
10097 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10098 NULL, VAR_DOMAIN);
10099 if (sym != NULL)
10100 {
10101 exception_info = &default_exception_support_info;
10102 return;
10103 }
10104
10105 /* Try our fallback exception suport info. */
10106 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10107 NULL, VAR_DOMAIN);
10108 if (sym != NULL)
10109 {
10110 exception_info = &exception_support_info_fallback;
10111 return;
10112 }
10113
10114 /* Sometimes, it is normal for us to not be able to find the routine
10115 we are looking for. This happens when the program is linked with
10116 the shared version of the GNAT runtime, and the program has not been
10117 started yet. Inform the user of these two possible causes if
10118 applicable. */
10119
10120 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10121 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10122
10123 /* If the symbol does not exist, then check that the program is
10124 already started, to make sure that shared libraries have been
10125 loaded. If it is not started, this may mean that the symbol is
10126 in a shared library. */
10127
10128 if (ptid_get_pid (inferior_ptid) == 0)
10129 error (_("Unable to insert catchpoint. Try to start the program first."));
10130
10131 /* At this point, we know that we are debugging an Ada program and
10132 that the inferior has been started, but we still are not able to
10133 find the run-time symbols. That can mean that we are in
10134 configurable run time mode, or that a-except as been optimized
10135 out by the linker... In any case, at this point it is not worth
10136 supporting this feature. */
10137
10138 error (_("Cannot insert catchpoints in this configuration."));
10139 }
10140
10141 /* An observer of "executable_changed" events.
10142 Its role is to clear certain cached values that need to be recomputed
10143 each time a new executable is loaded by GDB. */
10144
10145 static void
10146 ada_executable_changed_observer (void)
10147 {
10148 /* If the executable changed, then it is possible that the Ada runtime
10149 is different. So we need to invalidate the exception support info
10150 cache. */
10151 exception_info = NULL;
10152 }
10153
10154 /* True iff FRAME is very likely to be that of a function that is
10155 part of the runtime system. This is all very heuristic, but is
10156 intended to be used as advice as to what frames are uninteresting
10157 to most users. */
10158
10159 static int
10160 is_known_support_routine (struct frame_info *frame)
10161 {
10162 struct symtab_and_line sal;
10163 char *func_name;
10164 enum language func_lang;
10165 int i;
10166
10167 /* If this code does not have any debugging information (no symtab),
10168 This cannot be any user code. */
10169
10170 find_frame_sal (frame, &sal);
10171 if (sal.symtab == NULL)
10172 return 1;
10173
10174 /* If there is a symtab, but the associated source file cannot be
10175 located, then assume this is not user code: Selecting a frame
10176 for which we cannot display the code would not be very helpful
10177 for the user. This should also take care of case such as VxWorks
10178 where the kernel has some debugging info provided for a few units. */
10179
10180 if (symtab_to_fullname (sal.symtab) == NULL)
10181 return 1;
10182
10183 /* Check the unit filename againt the Ada runtime file naming.
10184 We also check the name of the objfile against the name of some
10185 known system libraries that sometimes come with debugging info
10186 too. */
10187
10188 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10189 {
10190 re_comp (known_runtime_file_name_patterns[i]);
10191 if (re_exec (sal.symtab->filename))
10192 return 1;
10193 if (sal.symtab->objfile != NULL
10194 && re_exec (sal.symtab->objfile->name))
10195 return 1;
10196 }
10197
10198 /* Check whether the function is a GNAT-generated entity. */
10199
10200 find_frame_funname (frame, &func_name, &func_lang);
10201 if (func_name == NULL)
10202 return 1;
10203
10204 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10205 {
10206 re_comp (known_auxiliary_function_name_patterns[i]);
10207 if (re_exec (func_name))
10208 return 1;
10209 }
10210
10211 return 0;
10212 }
10213
10214 /* Find the first frame that contains debugging information and that is not
10215 part of the Ada run-time, starting from FI and moving upward. */
10216
10217 void
10218 ada_find_printable_frame (struct frame_info *fi)
10219 {
10220 for (; fi != NULL; fi = get_prev_frame (fi))
10221 {
10222 if (!is_known_support_routine (fi))
10223 {
10224 select_frame (fi);
10225 break;
10226 }
10227 }
10228
10229 }
10230
10231 /* Assuming that the inferior just triggered an unhandled exception
10232 catchpoint, return the address in inferior memory where the name
10233 of the exception is stored.
10234
10235 Return zero if the address could not be computed. */
10236
10237 static CORE_ADDR
10238 ada_unhandled_exception_name_addr (void)
10239 {
10240 return parse_and_eval_address ("e.full_name");
10241 }
10242
10243 /* Same as ada_unhandled_exception_name_addr, except that this function
10244 should be used when the inferior uses an older version of the runtime,
10245 where the exception name needs to be extracted from a specific frame
10246 several frames up in the callstack. */
10247
10248 static CORE_ADDR
10249 ada_unhandled_exception_name_addr_from_raise (void)
10250 {
10251 int frame_level;
10252 struct frame_info *fi;
10253
10254 /* To determine the name of this exception, we need to select
10255 the frame corresponding to RAISE_SYM_NAME. This frame is
10256 at least 3 levels up, so we simply skip the first 3 frames
10257 without checking the name of their associated function. */
10258 fi = get_current_frame ();
10259 for (frame_level = 0; frame_level < 3; frame_level += 1)
10260 if (fi != NULL)
10261 fi = get_prev_frame (fi);
10262
10263 while (fi != NULL)
10264 {
10265 char *func_name;
10266 enum language func_lang;
10267
10268 find_frame_funname (fi, &func_name, &func_lang);
10269 if (func_name != NULL
10270 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10271 break; /* We found the frame we were looking for... */
10272 fi = get_prev_frame (fi);
10273 }
10274
10275 if (fi == NULL)
10276 return 0;
10277
10278 select_frame (fi);
10279 return parse_and_eval_address ("id.full_name");
10280 }
10281
10282 /* Assuming the inferior just triggered an Ada exception catchpoint
10283 (of any type), return the address in inferior memory where the name
10284 of the exception is stored, if applicable.
10285
10286 Return zero if the address could not be computed, or if not relevant. */
10287
10288 static CORE_ADDR
10289 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10290 struct breakpoint *b)
10291 {
10292 switch (ex)
10293 {
10294 case ex_catch_exception:
10295 return (parse_and_eval_address ("e.full_name"));
10296 break;
10297
10298 case ex_catch_exception_unhandled:
10299 return exception_info->unhandled_exception_name_addr ();
10300 break;
10301
10302 case ex_catch_assert:
10303 return 0; /* Exception name is not relevant in this case. */
10304 break;
10305
10306 default:
10307 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10308 break;
10309 }
10310
10311 return 0; /* Should never be reached. */
10312 }
10313
10314 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10315 any error that ada_exception_name_addr_1 might cause to be thrown.
10316 When an error is intercepted, a warning with the error message is printed,
10317 and zero is returned. */
10318
10319 static CORE_ADDR
10320 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10321 struct breakpoint *b)
10322 {
10323 struct gdb_exception e;
10324 CORE_ADDR result = 0;
10325
10326 TRY_CATCH (e, RETURN_MASK_ERROR)
10327 {
10328 result = ada_exception_name_addr_1 (ex, b);
10329 }
10330
10331 if (e.reason < 0)
10332 {
10333 warning (_("failed to get exception name: %s"), e.message);
10334 return 0;
10335 }
10336
10337 return result;
10338 }
10339
10340 /* Implement the PRINT_IT method in the breakpoint_ops structure
10341 for all exception catchpoint kinds. */
10342
10343 static enum print_stop_action
10344 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10345 {
10346 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10347 char exception_name[256];
10348
10349 if (addr != 0)
10350 {
10351 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10352 exception_name [sizeof (exception_name) - 1] = '\0';
10353 }
10354
10355 ada_find_printable_frame (get_current_frame ());
10356
10357 annotate_catchpoint (b->number);
10358 switch (ex)
10359 {
10360 case ex_catch_exception:
10361 if (addr != 0)
10362 printf_filtered (_("\nCatchpoint %d, %s at "),
10363 b->number, exception_name);
10364 else
10365 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10366 break;
10367 case ex_catch_exception_unhandled:
10368 if (addr != 0)
10369 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10370 b->number, exception_name);
10371 else
10372 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10373 b->number);
10374 break;
10375 case ex_catch_assert:
10376 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10377 b->number);
10378 break;
10379 }
10380
10381 return PRINT_SRC_AND_LOC;
10382 }
10383
10384 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10385 for all exception catchpoint kinds. */
10386
10387 static void
10388 print_one_exception (enum exception_catchpoint_kind ex,
10389 struct breakpoint *b, struct bp_location **last_loc)
10390 {
10391 struct value_print_options opts;
10392
10393 get_user_print_options (&opts);
10394 if (opts.addressprint)
10395 {
10396 annotate_field (4);
10397 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10398 }
10399
10400 annotate_field (5);
10401 *last_loc = b->loc;
10402 switch (ex)
10403 {
10404 case ex_catch_exception:
10405 if (b->exp_string != NULL)
10406 {
10407 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10408
10409 ui_out_field_string (uiout, "what", msg);
10410 xfree (msg);
10411 }
10412 else
10413 ui_out_field_string (uiout, "what", "all Ada exceptions");
10414
10415 break;
10416
10417 case ex_catch_exception_unhandled:
10418 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10419 break;
10420
10421 case ex_catch_assert:
10422 ui_out_field_string (uiout, "what", "failed Ada assertions");
10423 break;
10424
10425 default:
10426 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10427 break;
10428 }
10429 }
10430
10431 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10432 for all exception catchpoint kinds. */
10433
10434 static void
10435 print_mention_exception (enum exception_catchpoint_kind ex,
10436 struct breakpoint *b)
10437 {
10438 switch (ex)
10439 {
10440 case ex_catch_exception:
10441 if (b->exp_string != NULL)
10442 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10443 b->number, b->exp_string);
10444 else
10445 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10446
10447 break;
10448
10449 case ex_catch_exception_unhandled:
10450 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10451 b->number);
10452 break;
10453
10454 case ex_catch_assert:
10455 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10456 break;
10457
10458 default:
10459 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10460 break;
10461 }
10462 }
10463
10464 /* Virtual table for "catch exception" breakpoints. */
10465
10466 static enum print_stop_action
10467 print_it_catch_exception (struct breakpoint *b)
10468 {
10469 return print_it_exception (ex_catch_exception, b);
10470 }
10471
10472 static void
10473 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10474 {
10475 print_one_exception (ex_catch_exception, b, last_loc);
10476 }
10477
10478 static void
10479 print_mention_catch_exception (struct breakpoint *b)
10480 {
10481 print_mention_exception (ex_catch_exception, b);
10482 }
10483
10484 static struct breakpoint_ops catch_exception_breakpoint_ops =
10485 {
10486 NULL, /* insert */
10487 NULL, /* remove */
10488 NULL, /* breakpoint_hit */
10489 print_it_catch_exception,
10490 print_one_catch_exception,
10491 print_mention_catch_exception
10492 };
10493
10494 /* Virtual table for "catch exception unhandled" breakpoints. */
10495
10496 static enum print_stop_action
10497 print_it_catch_exception_unhandled (struct breakpoint *b)
10498 {
10499 return print_it_exception (ex_catch_exception_unhandled, b);
10500 }
10501
10502 static void
10503 print_one_catch_exception_unhandled (struct breakpoint *b,
10504 struct bp_location **last_loc)
10505 {
10506 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10507 }
10508
10509 static void
10510 print_mention_catch_exception_unhandled (struct breakpoint *b)
10511 {
10512 print_mention_exception (ex_catch_exception_unhandled, b);
10513 }
10514
10515 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10516 NULL, /* insert */
10517 NULL, /* remove */
10518 NULL, /* breakpoint_hit */
10519 print_it_catch_exception_unhandled,
10520 print_one_catch_exception_unhandled,
10521 print_mention_catch_exception_unhandled
10522 };
10523
10524 /* Virtual table for "catch assert" breakpoints. */
10525
10526 static enum print_stop_action
10527 print_it_catch_assert (struct breakpoint *b)
10528 {
10529 return print_it_exception (ex_catch_assert, b);
10530 }
10531
10532 static void
10533 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10534 {
10535 print_one_exception (ex_catch_assert, b, last_loc);
10536 }
10537
10538 static void
10539 print_mention_catch_assert (struct breakpoint *b)
10540 {
10541 print_mention_exception (ex_catch_assert, b);
10542 }
10543
10544 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10545 NULL, /* insert */
10546 NULL, /* remove */
10547 NULL, /* breakpoint_hit */
10548 print_it_catch_assert,
10549 print_one_catch_assert,
10550 print_mention_catch_assert
10551 };
10552
10553 /* Return non-zero if B is an Ada exception catchpoint. */
10554
10555 int
10556 ada_exception_catchpoint_p (struct breakpoint *b)
10557 {
10558 return (b->ops == &catch_exception_breakpoint_ops
10559 || b->ops == &catch_exception_unhandled_breakpoint_ops
10560 || b->ops == &catch_assert_breakpoint_ops);
10561 }
10562
10563 /* Return a newly allocated copy of the first space-separated token
10564 in ARGSP, and then adjust ARGSP to point immediately after that
10565 token.
10566
10567 Return NULL if ARGPS does not contain any more tokens. */
10568
10569 static char *
10570 ada_get_next_arg (char **argsp)
10571 {
10572 char *args = *argsp;
10573 char *end;
10574 char *result;
10575
10576 /* Skip any leading white space. */
10577
10578 while (isspace (*args))
10579 args++;
10580
10581 if (args[0] == '\0')
10582 return NULL; /* No more arguments. */
10583
10584 /* Find the end of the current argument. */
10585
10586 end = args;
10587 while (*end != '\0' && !isspace (*end))
10588 end++;
10589
10590 /* Adjust ARGSP to point to the start of the next argument. */
10591
10592 *argsp = end;
10593
10594 /* Make a copy of the current argument and return it. */
10595
10596 result = xmalloc (end - args + 1);
10597 strncpy (result, args, end - args);
10598 result[end - args] = '\0';
10599
10600 return result;
10601 }
10602
10603 /* Split the arguments specified in a "catch exception" command.
10604 Set EX to the appropriate catchpoint type.
10605 Set EXP_STRING to the name of the specific exception if
10606 specified by the user. */
10607
10608 static void
10609 catch_ada_exception_command_split (char *args,
10610 enum exception_catchpoint_kind *ex,
10611 char **exp_string)
10612 {
10613 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10614 char *exception_name;
10615
10616 exception_name = ada_get_next_arg (&args);
10617 make_cleanup (xfree, exception_name);
10618
10619 /* Check that we do not have any more arguments. Anything else
10620 is unexpected. */
10621
10622 while (isspace (*args))
10623 args++;
10624
10625 if (args[0] != '\0')
10626 error (_("Junk at end of expression"));
10627
10628 discard_cleanups (old_chain);
10629
10630 if (exception_name == NULL)
10631 {
10632 /* Catch all exceptions. */
10633 *ex = ex_catch_exception;
10634 *exp_string = NULL;
10635 }
10636 else if (strcmp (exception_name, "unhandled") == 0)
10637 {
10638 /* Catch unhandled exceptions. */
10639 *ex = ex_catch_exception_unhandled;
10640 *exp_string = NULL;
10641 }
10642 else
10643 {
10644 /* Catch a specific exception. */
10645 *ex = ex_catch_exception;
10646 *exp_string = exception_name;
10647 }
10648 }
10649
10650 /* Return the name of the symbol on which we should break in order to
10651 implement a catchpoint of the EX kind. */
10652
10653 static const char *
10654 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10655 {
10656 gdb_assert (exception_info != NULL);
10657
10658 switch (ex)
10659 {
10660 case ex_catch_exception:
10661 return (exception_info->catch_exception_sym);
10662 break;
10663 case ex_catch_exception_unhandled:
10664 return (exception_info->catch_exception_unhandled_sym);
10665 break;
10666 case ex_catch_assert:
10667 return (exception_info->catch_assert_sym);
10668 break;
10669 default:
10670 internal_error (__FILE__, __LINE__,
10671 _("unexpected catchpoint kind (%d)"), ex);
10672 }
10673 }
10674
10675 /* Return the breakpoint ops "virtual table" used for catchpoints
10676 of the EX kind. */
10677
10678 static struct breakpoint_ops *
10679 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10680 {
10681 switch (ex)
10682 {
10683 case ex_catch_exception:
10684 return (&catch_exception_breakpoint_ops);
10685 break;
10686 case ex_catch_exception_unhandled:
10687 return (&catch_exception_unhandled_breakpoint_ops);
10688 break;
10689 case ex_catch_assert:
10690 return (&catch_assert_breakpoint_ops);
10691 break;
10692 default:
10693 internal_error (__FILE__, __LINE__,
10694 _("unexpected catchpoint kind (%d)"), ex);
10695 }
10696 }
10697
10698 /* Return the condition that will be used to match the current exception
10699 being raised with the exception that the user wants to catch. This
10700 assumes that this condition is used when the inferior just triggered
10701 an exception catchpoint.
10702
10703 The string returned is a newly allocated string that needs to be
10704 deallocated later. */
10705
10706 static char *
10707 ada_exception_catchpoint_cond_string (const char *exp_string)
10708 {
10709 int i;
10710
10711 /* The standard exceptions are a special case. They are defined in
10712 runtime units that have been compiled without debugging info; if
10713 EXP_STRING is the not-fully-qualified name of a standard
10714 exception (e.g. "constraint_error") then, during the evaluation
10715 of the condition expression, the symbol lookup on this name would
10716 *not* return this standard exception. The catchpoint condition
10717 may then be set only on user-defined exceptions which have the
10718 same not-fully-qualified name (e.g. my_package.constraint_error).
10719
10720 To avoid this unexcepted behavior, these standard exceptions are
10721 systematically prefixed by "standard". This means that "catch
10722 exception constraint_error" is rewritten into "catch exception
10723 standard.constraint_error".
10724
10725 If an exception named contraint_error is defined in another package of
10726 the inferior program, then the only way to specify this exception as a
10727 breakpoint condition is to use its fully-qualified named:
10728 e.g. my_package.constraint_error. */
10729
10730 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10731 {
10732 if (strcmp (standard_exc [i], exp_string) == 0)
10733 {
10734 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10735 exp_string);
10736 }
10737 }
10738 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10739 }
10740
10741 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10742
10743 static struct expression *
10744 ada_parse_catchpoint_condition (char *cond_string,
10745 struct symtab_and_line sal)
10746 {
10747 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10748 }
10749
10750 /* Return the symtab_and_line that should be used to insert an exception
10751 catchpoint of the TYPE kind.
10752
10753 EX_STRING should contain the name of a specific exception
10754 that the catchpoint should catch, or NULL otherwise.
10755
10756 The idea behind all the remaining parameters is that their names match
10757 the name of certain fields in the breakpoint structure that are used to
10758 handle exception catchpoints. This function returns the value to which
10759 these fields should be set, depending on the type of catchpoint we need
10760 to create.
10761
10762 If COND and COND_STRING are both non-NULL, any value they might
10763 hold will be free'ed, and then replaced by newly allocated ones.
10764 These parameters are left untouched otherwise. */
10765
10766 static struct symtab_and_line
10767 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10768 char **addr_string, char **cond_string,
10769 struct expression **cond, struct breakpoint_ops **ops)
10770 {
10771 const char *sym_name;
10772 struct symbol *sym;
10773 struct symtab_and_line sal;
10774
10775 /* First, find out which exception support info to use. */
10776 ada_exception_support_info_sniffer ();
10777
10778 /* Then lookup the function on which we will break in order to catch
10779 the Ada exceptions requested by the user. */
10780
10781 sym_name = ada_exception_sym_name (ex);
10782 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10783
10784 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10785 that should be compiled with debugging information. As a result, we
10786 expect to find that symbol in the symtabs. If we don't find it, then
10787 the target most likely does not support Ada exceptions, or we cannot
10788 insert exception breakpoints yet, because the GNAT runtime hasn't been
10789 loaded yet. */
10790
10791 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10792 in such a way that no debugging information is produced for the symbol
10793 we are looking for. In this case, we could search the minimal symbols
10794 as a fall-back mechanism. This would still be operating in degraded
10795 mode, however, as we would still be missing the debugging information
10796 that is needed in order to extract the name of the exception being
10797 raised (this name is printed in the catchpoint message, and is also
10798 used when trying to catch a specific exception). We do not handle
10799 this case for now. */
10800
10801 if (sym == NULL)
10802 error (_("Unable to break on '%s' in this configuration."), sym_name);
10803
10804 /* Make sure that the symbol we found corresponds to a function. */
10805 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10806 error (_("Symbol \"%s\" is not a function (class = %d)"),
10807 sym_name, SYMBOL_CLASS (sym));
10808
10809 sal = find_function_start_sal (sym, 1);
10810
10811 /* Set ADDR_STRING. */
10812
10813 *addr_string = xstrdup (sym_name);
10814
10815 /* Set the COND and COND_STRING (if not NULL). */
10816
10817 if (cond_string != NULL && cond != NULL)
10818 {
10819 if (*cond_string != NULL)
10820 {
10821 xfree (*cond_string);
10822 *cond_string = NULL;
10823 }
10824 if (*cond != NULL)
10825 {
10826 xfree (*cond);
10827 *cond = NULL;
10828 }
10829 if (exp_string != NULL)
10830 {
10831 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10832 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10833 }
10834 }
10835
10836 /* Set OPS. */
10837 *ops = ada_exception_breakpoint_ops (ex);
10838
10839 return sal;
10840 }
10841
10842 /* Parse the arguments (ARGS) of the "catch exception" command.
10843
10844 Set TYPE to the appropriate exception catchpoint type.
10845 If the user asked the catchpoint to catch only a specific
10846 exception, then save the exception name in ADDR_STRING.
10847
10848 See ada_exception_sal for a description of all the remaining
10849 function arguments of this function. */
10850
10851 struct symtab_and_line
10852 ada_decode_exception_location (char *args, char **addr_string,
10853 char **exp_string, char **cond_string,
10854 struct expression **cond,
10855 struct breakpoint_ops **ops)
10856 {
10857 enum exception_catchpoint_kind ex;
10858
10859 catch_ada_exception_command_split (args, &ex, exp_string);
10860 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10861 cond, ops);
10862 }
10863
10864 struct symtab_and_line
10865 ada_decode_assert_location (char *args, char **addr_string,
10866 struct breakpoint_ops **ops)
10867 {
10868 /* Check that no argument where provided at the end of the command. */
10869
10870 if (args != NULL)
10871 {
10872 while (isspace (*args))
10873 args++;
10874 if (*args != '\0')
10875 error (_("Junk at end of arguments."));
10876 }
10877
10878 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10879 ops);
10880 }
10881
10882 /* Operators */
10883 /* Information about operators given special treatment in functions
10884 below. */
10885 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10886
10887 #define ADA_OPERATORS \
10888 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10889 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10890 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10891 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10892 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10893 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10894 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10895 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10896 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10897 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10898 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10899 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10900 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10901 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10902 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10903 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10904 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10905 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10906 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10907
10908 static void
10909 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10910 {
10911 switch (exp->elts[pc - 1].opcode)
10912 {
10913 default:
10914 operator_length_standard (exp, pc, oplenp, argsp);
10915 break;
10916
10917 #define OP_DEFN(op, len, args, binop) \
10918 case op: *oplenp = len; *argsp = args; break;
10919 ADA_OPERATORS;
10920 #undef OP_DEFN
10921
10922 case OP_AGGREGATE:
10923 *oplenp = 3;
10924 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10925 break;
10926
10927 case OP_CHOICES:
10928 *oplenp = 3;
10929 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10930 break;
10931 }
10932 }
10933
10934 static char *
10935 ada_op_name (enum exp_opcode opcode)
10936 {
10937 switch (opcode)
10938 {
10939 default:
10940 return op_name_standard (opcode);
10941
10942 #define OP_DEFN(op, len, args, binop) case op: return #op;
10943 ADA_OPERATORS;
10944 #undef OP_DEFN
10945
10946 case OP_AGGREGATE:
10947 return "OP_AGGREGATE";
10948 case OP_CHOICES:
10949 return "OP_CHOICES";
10950 case OP_NAME:
10951 return "OP_NAME";
10952 }
10953 }
10954
10955 /* As for operator_length, but assumes PC is pointing at the first
10956 element of the operator, and gives meaningful results only for the
10957 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10958
10959 static void
10960 ada_forward_operator_length (struct expression *exp, int pc,
10961 int *oplenp, int *argsp)
10962 {
10963 switch (exp->elts[pc].opcode)
10964 {
10965 default:
10966 *oplenp = *argsp = 0;
10967 break;
10968
10969 #define OP_DEFN(op, len, args, binop) \
10970 case op: *oplenp = len; *argsp = args; break;
10971 ADA_OPERATORS;
10972 #undef OP_DEFN
10973
10974 case OP_AGGREGATE:
10975 *oplenp = 3;
10976 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10977 break;
10978
10979 case OP_CHOICES:
10980 *oplenp = 3;
10981 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10982 break;
10983
10984 case OP_STRING:
10985 case OP_NAME:
10986 {
10987 int len = longest_to_int (exp->elts[pc + 1].longconst);
10988 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10989 *argsp = 0;
10990 break;
10991 }
10992 }
10993 }
10994
10995 static int
10996 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10997 {
10998 enum exp_opcode op = exp->elts[elt].opcode;
10999 int oplen, nargs;
11000 int pc = elt;
11001 int i;
11002
11003 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11004
11005 switch (op)
11006 {
11007 /* Ada attributes ('Foo). */
11008 case OP_ATR_FIRST:
11009 case OP_ATR_LAST:
11010 case OP_ATR_LENGTH:
11011 case OP_ATR_IMAGE:
11012 case OP_ATR_MAX:
11013 case OP_ATR_MIN:
11014 case OP_ATR_MODULUS:
11015 case OP_ATR_POS:
11016 case OP_ATR_SIZE:
11017 case OP_ATR_TAG:
11018 case OP_ATR_VAL:
11019 break;
11020
11021 case UNOP_IN_RANGE:
11022 case UNOP_QUAL:
11023 /* XXX: gdb_sprint_host_address, type_sprint */
11024 fprintf_filtered (stream, _("Type @"));
11025 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11026 fprintf_filtered (stream, " (");
11027 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11028 fprintf_filtered (stream, ")");
11029 break;
11030 case BINOP_IN_BOUNDS:
11031 fprintf_filtered (stream, " (%d)",
11032 longest_to_int (exp->elts[pc + 2].longconst));
11033 break;
11034 case TERNOP_IN_RANGE:
11035 break;
11036
11037 case OP_AGGREGATE:
11038 case OP_OTHERS:
11039 case OP_DISCRETE_RANGE:
11040 case OP_POSITIONAL:
11041 case OP_CHOICES:
11042 break;
11043
11044 case OP_NAME:
11045 case OP_STRING:
11046 {
11047 char *name = &exp->elts[elt + 2].string;
11048 int len = longest_to_int (exp->elts[elt + 1].longconst);
11049 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11050 break;
11051 }
11052
11053 default:
11054 return dump_subexp_body_standard (exp, stream, elt);
11055 }
11056
11057 elt += oplen;
11058 for (i = 0; i < nargs; i += 1)
11059 elt = dump_subexp (exp, stream, elt);
11060
11061 return elt;
11062 }
11063
11064 /* The Ada extension of print_subexp (q.v.). */
11065
11066 static void
11067 ada_print_subexp (struct expression *exp, int *pos,
11068 struct ui_file *stream, enum precedence prec)
11069 {
11070 int oplen, nargs, i;
11071 int pc = *pos;
11072 enum exp_opcode op = exp->elts[pc].opcode;
11073
11074 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11075
11076 *pos += oplen;
11077 switch (op)
11078 {
11079 default:
11080 *pos -= oplen;
11081 print_subexp_standard (exp, pos, stream, prec);
11082 return;
11083
11084 case OP_VAR_VALUE:
11085 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11086 return;
11087
11088 case BINOP_IN_BOUNDS:
11089 /* XXX: sprint_subexp */
11090 print_subexp (exp, pos, stream, PREC_SUFFIX);
11091 fputs_filtered (" in ", stream);
11092 print_subexp (exp, pos, stream, PREC_SUFFIX);
11093 fputs_filtered ("'range", stream);
11094 if (exp->elts[pc + 1].longconst > 1)
11095 fprintf_filtered (stream, "(%ld)",
11096 (long) exp->elts[pc + 1].longconst);
11097 return;
11098
11099 case TERNOP_IN_RANGE:
11100 if (prec >= PREC_EQUAL)
11101 fputs_filtered ("(", stream);
11102 /* XXX: sprint_subexp */
11103 print_subexp (exp, pos, stream, PREC_SUFFIX);
11104 fputs_filtered (" in ", stream);
11105 print_subexp (exp, pos, stream, PREC_EQUAL);
11106 fputs_filtered (" .. ", stream);
11107 print_subexp (exp, pos, stream, PREC_EQUAL);
11108 if (prec >= PREC_EQUAL)
11109 fputs_filtered (")", stream);
11110 return;
11111
11112 case OP_ATR_FIRST:
11113 case OP_ATR_LAST:
11114 case OP_ATR_LENGTH:
11115 case OP_ATR_IMAGE:
11116 case OP_ATR_MAX:
11117 case OP_ATR_MIN:
11118 case OP_ATR_MODULUS:
11119 case OP_ATR_POS:
11120 case OP_ATR_SIZE:
11121 case OP_ATR_TAG:
11122 case OP_ATR_VAL:
11123 if (exp->elts[*pos].opcode == OP_TYPE)
11124 {
11125 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11126 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11127 *pos += 3;
11128 }
11129 else
11130 print_subexp (exp, pos, stream, PREC_SUFFIX);
11131 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11132 if (nargs > 1)
11133 {
11134 int tem;
11135 for (tem = 1; tem < nargs; tem += 1)
11136 {
11137 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11138 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11139 }
11140 fputs_filtered (")", stream);
11141 }
11142 return;
11143
11144 case UNOP_QUAL:
11145 type_print (exp->elts[pc + 1].type, "", stream, 0);
11146 fputs_filtered ("'(", stream);
11147 print_subexp (exp, pos, stream, PREC_PREFIX);
11148 fputs_filtered (")", stream);
11149 return;
11150
11151 case UNOP_IN_RANGE:
11152 /* XXX: sprint_subexp */
11153 print_subexp (exp, pos, stream, PREC_SUFFIX);
11154 fputs_filtered (" in ", stream);
11155 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11156 return;
11157
11158 case OP_DISCRETE_RANGE:
11159 print_subexp (exp, pos, stream, PREC_SUFFIX);
11160 fputs_filtered ("..", stream);
11161 print_subexp (exp, pos, stream, PREC_SUFFIX);
11162 return;
11163
11164 case OP_OTHERS:
11165 fputs_filtered ("others => ", stream);
11166 print_subexp (exp, pos, stream, PREC_SUFFIX);
11167 return;
11168
11169 case OP_CHOICES:
11170 for (i = 0; i < nargs-1; i += 1)
11171 {
11172 if (i > 0)
11173 fputs_filtered ("|", stream);
11174 print_subexp (exp, pos, stream, PREC_SUFFIX);
11175 }
11176 fputs_filtered (" => ", stream);
11177 print_subexp (exp, pos, stream, PREC_SUFFIX);
11178 return;
11179
11180 case OP_POSITIONAL:
11181 print_subexp (exp, pos, stream, PREC_SUFFIX);
11182 return;
11183
11184 case OP_AGGREGATE:
11185 fputs_filtered ("(", stream);
11186 for (i = 0; i < nargs; i += 1)
11187 {
11188 if (i > 0)
11189 fputs_filtered (", ", stream);
11190 print_subexp (exp, pos, stream, PREC_SUFFIX);
11191 }
11192 fputs_filtered (")", stream);
11193 return;
11194 }
11195 }
11196
11197 /* Table mapping opcodes into strings for printing operators
11198 and precedences of the operators. */
11199
11200 static const struct op_print ada_op_print_tab[] = {
11201 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11202 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11203 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11204 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11205 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11206 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11207 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11208 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11209 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11210 {">=", BINOP_GEQ, PREC_ORDER, 0},
11211 {">", BINOP_GTR, PREC_ORDER, 0},
11212 {"<", BINOP_LESS, PREC_ORDER, 0},
11213 {">>", BINOP_RSH, PREC_SHIFT, 0},
11214 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11215 {"+", BINOP_ADD, PREC_ADD, 0},
11216 {"-", BINOP_SUB, PREC_ADD, 0},
11217 {"&", BINOP_CONCAT, PREC_ADD, 0},
11218 {"*", BINOP_MUL, PREC_MUL, 0},
11219 {"/", BINOP_DIV, PREC_MUL, 0},
11220 {"rem", BINOP_REM, PREC_MUL, 0},
11221 {"mod", BINOP_MOD, PREC_MUL, 0},
11222 {"**", BINOP_EXP, PREC_REPEAT, 0},
11223 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11224 {"-", UNOP_NEG, PREC_PREFIX, 0},
11225 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11226 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11227 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11228 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11229 {".all", UNOP_IND, PREC_SUFFIX, 1},
11230 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11231 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11232 {NULL, 0, 0, 0}
11233 };
11234 \f
11235 enum ada_primitive_types {
11236 ada_primitive_type_int,
11237 ada_primitive_type_long,
11238 ada_primitive_type_short,
11239 ada_primitive_type_char,
11240 ada_primitive_type_float,
11241 ada_primitive_type_double,
11242 ada_primitive_type_void,
11243 ada_primitive_type_long_long,
11244 ada_primitive_type_long_double,
11245 ada_primitive_type_natural,
11246 ada_primitive_type_positive,
11247 ada_primitive_type_system_address,
11248 nr_ada_primitive_types
11249 };
11250
11251 static void
11252 ada_language_arch_info (struct gdbarch *gdbarch,
11253 struct language_arch_info *lai)
11254 {
11255 const struct builtin_type *builtin = builtin_type (gdbarch);
11256 lai->primitive_type_vector
11257 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11258 struct type *);
11259
11260 lai->primitive_type_vector [ada_primitive_type_int]
11261 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11262 0, "integer");
11263 lai->primitive_type_vector [ada_primitive_type_long]
11264 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11265 0, "long_integer");
11266 lai->primitive_type_vector [ada_primitive_type_short]
11267 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11268 0, "short_integer");
11269 lai->string_char_type
11270 = lai->primitive_type_vector [ada_primitive_type_char]
11271 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11272 lai->primitive_type_vector [ada_primitive_type_float]
11273 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11274 "float", NULL);
11275 lai->primitive_type_vector [ada_primitive_type_double]
11276 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11277 "long_float", NULL);
11278 lai->primitive_type_vector [ada_primitive_type_long_long]
11279 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11280 0, "long_long_integer");
11281 lai->primitive_type_vector [ada_primitive_type_long_double]
11282 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11283 "long_long_float", NULL);
11284 lai->primitive_type_vector [ada_primitive_type_natural]
11285 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11286 0, "natural");
11287 lai->primitive_type_vector [ada_primitive_type_positive]
11288 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11289 0, "positive");
11290 lai->primitive_type_vector [ada_primitive_type_void]
11291 = builtin->builtin_void;
11292
11293 lai->primitive_type_vector [ada_primitive_type_system_address]
11294 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11295 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11296 = "system__address";
11297
11298 lai->bool_type_symbol = NULL;
11299 lai->bool_type_default = builtin->builtin_bool;
11300 }
11301 \f
11302 /* Language vector */
11303
11304 /* Not really used, but needed in the ada_language_defn. */
11305
11306 static void
11307 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11308 {
11309 ada_emit_char (c, type, stream, quoter, 1);
11310 }
11311
11312 static int
11313 parse (void)
11314 {
11315 warnings_issued = 0;
11316 return ada_parse ();
11317 }
11318
11319 static const struct exp_descriptor ada_exp_descriptor = {
11320 ada_print_subexp,
11321 ada_operator_length,
11322 ada_op_name,
11323 ada_dump_subexp_body,
11324 ada_evaluate_subexp
11325 };
11326
11327 const struct language_defn ada_language_defn = {
11328 "ada", /* Language name */
11329 language_ada,
11330 range_check_off,
11331 type_check_off,
11332 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11333 that's not quite what this means. */
11334 array_row_major,
11335 macro_expansion_no,
11336 &ada_exp_descriptor,
11337 parse,
11338 ada_error,
11339 resolve,
11340 ada_printchar, /* Print a character constant */
11341 ada_printstr, /* Function to print string constant */
11342 emit_char, /* Function to print single char (not used) */
11343 ada_print_type, /* Print a type using appropriate syntax */
11344 default_print_typedef, /* Print a typedef using appropriate syntax */
11345 ada_val_print, /* Print a value using appropriate syntax */
11346 ada_value_print, /* Print a top-level value */
11347 NULL, /* Language specific skip_trampoline */
11348 NULL, /* name_of_this */
11349 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11350 basic_lookup_transparent_type, /* lookup_transparent_type */
11351 ada_la_decode, /* Language specific symbol demangler */
11352 NULL, /* Language specific class_name_from_physname */
11353 ada_op_print_tab, /* expression operators for printing */
11354 0, /* c-style arrays */
11355 1, /* String lower bound */
11356 ada_get_gdb_completer_word_break_characters,
11357 ada_make_symbol_completion_list,
11358 ada_language_arch_info,
11359 ada_print_array_index,
11360 default_pass_by_reference,
11361 c_get_string,
11362 LANG_MAGIC
11363 };
11364
11365 /* Provide a prototype to silence -Wmissing-prototypes. */
11366 extern initialize_file_ftype _initialize_ada_language;
11367
11368 /* Command-list for the "set/show ada" prefix command. */
11369 static struct cmd_list_element *set_ada_list;
11370 static struct cmd_list_element *show_ada_list;
11371
11372 /* Implement the "set ada" prefix command. */
11373
11374 static void
11375 set_ada_command (char *arg, int from_tty)
11376 {
11377 printf_unfiltered (_(\
11378 "\"set ada\" must be followed by the name of a setting.\n"));
11379 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11380 }
11381
11382 /* Implement the "show ada" prefix command. */
11383
11384 static void
11385 show_ada_command (char *args, int from_tty)
11386 {
11387 cmd_show_list (show_ada_list, from_tty, "");
11388 }
11389
11390 void
11391 _initialize_ada_language (void)
11392 {
11393 add_language (&ada_language_defn);
11394
11395 add_prefix_cmd ("ada", no_class, set_ada_command,
11396 _("Prefix command for changing Ada-specfic settings"),
11397 &set_ada_list, "set ada ", 0, &setlist);
11398
11399 add_prefix_cmd ("ada", no_class, show_ada_command,
11400 _("Generic command for showing Ada-specific settings."),
11401 &show_ada_list, "show ada ", 0, &showlist);
11402
11403 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11404 &trust_pad_over_xvs, _("\
11405 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11406 Show whether an optimization trusting PAD types over XVS types is activated"),
11407 _("\
11408 This is related to the encoding used by the GNAT compiler. The debugger\n\
11409 should normally trust the contents of PAD types, but certain older versions\n\
11410 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11411 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11412 work around this bug. It is always safe to turn this option \"off\", but\n\
11413 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11414 this option to \"off\" unless necessary."),
11415 NULL, NULL, &set_ada_list, &show_ada_list);
11416
11417 varsize_limit = 65536;
11418
11419 obstack_init (&symbol_list_obstack);
11420
11421 decoded_names_store = htab_create_alloc
11422 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11423 NULL, xcalloc, xfree);
11424
11425 observer_attach_executable_changed (ada_executable_changed_observer);
11426 }
This page took 0.44414 seconds and 4 git commands to generate.