* gdbtypes.h (TYPE_OBJFILE_OWNED, TYPE_OWNER): New macros.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *,
105 struct gdbarch *, CORE_ADDR *);
106
107 static struct value *make_array_descriptor (struct type *, struct value *,
108 struct gdbarch *, CORE_ADDR *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 struct block *, const char *,
112 domain_enum, struct objfile *, int);
113
114 static int is_nonfunction (struct ada_symbol_info *, int);
115
116 static void add_defn_to_vec (struct obstack *, struct symbol *,
117 struct block *);
118
119 static int num_defns_collected (struct obstack *);
120
121 static struct ada_symbol_info *defns_collected (struct obstack *, int);
122
123 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
124 *, const char *, int,
125 domain_enum, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
156 int, int, int *);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (char *, struct value *,
169 struct type *);
170
171 static struct type *to_static_fixed_type (struct type *);
172 static struct type *static_unwrap_type (struct type *type);
173
174 static struct value *unwrap_value (struct value *);
175
176 static struct type *packed_array_type (struct type *, long *);
177
178 static struct type *decode_packed_array_type (struct type *);
179
180 static struct value *decode_packed_array (struct value *);
181
182 static struct value *value_subscript_packed (struct value *, int,
183 struct value **);
184
185 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
186
187 static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
189
190 static struct value *get_var_value (char *, char *);
191
192 static int lesseq_defined_than (struct symbol *, struct symbol *);
193
194 static int equiv_types (struct type *, struct type *);
195
196 static int is_name_suffix (const char *);
197
198 static int wild_match (const char *, int, const char *);
199
200 static struct value *ada_coerce_ref (struct value *);
201
202 static LONGEST pos_atr (struct value *);
203
204 static struct value *value_pos_atr (struct type *, struct value *);
205
206 static struct value *value_val_atr (struct type *, struct value *);
207
208 static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
210
211 static struct value *ada_search_struct_field (char *, struct value *, int,
212 struct type *);
213
214 static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
217 static int find_struct_field (char *, struct type *, int,
218 struct type **, int *, int *, int *, int *);
219
220 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
221 struct value *);
222
223 static struct value *ada_to_fixed_value (struct value *);
224
225 static int ada_resolve_function (struct ada_symbol_info *, int,
226 struct value **, int, const char *,
227 struct type *);
228
229 static struct value *ada_coerce_to_simple_array (struct value *);
230
231 static int ada_is_direct_array_type (struct type *);
232
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
235
236 static void check_size (const struct type *);
237
238 static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241 static struct value *assign_aggregate (struct value *, struct value *,
242 struct expression *, int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268 \f
269
270
271 /* Maximum-sized dynamic type. */
272 static unsigned int varsize_limit;
273
274 /* FIXME: brobecker/2003-09-17: No longer a const because it is
275 returned by a function that does not return a const char *. */
276 static char *ada_completer_word_break_characters =
277 #ifdef VMS
278 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
279 #else
280 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
281 #endif
282
283 /* The name of the symbol to use to get the name of the main subprogram. */
284 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
285 = "__gnat_ada_main_program_name";
286
287 /* Limit on the number of warnings to raise per expression evaluation. */
288 static int warning_limit = 2;
289
290 /* Number of warning messages issued; reset to 0 by cleanups after
291 expression evaluation. */
292 static int warnings_issued = 0;
293
294 static const char *known_runtime_file_name_patterns[] = {
295 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
296 };
297
298 static const char *known_auxiliary_function_name_patterns[] = {
299 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
300 };
301
302 /* Space for allocating results of ada_lookup_symbol_list. */
303 static struct obstack symbol_list_obstack;
304
305 /* Utilities */
306
307 /* Given DECODED_NAME a string holding a symbol name in its
308 decoded form (ie using the Ada dotted notation), returns
309 its unqualified name. */
310
311 static const char *
312 ada_unqualified_name (const char *decoded_name)
313 {
314 const char *result = strrchr (decoded_name, '.');
315
316 if (result != NULL)
317 result++; /* Skip the dot... */
318 else
319 result = decoded_name;
320
321 return result;
322 }
323
324 /* Return a string starting with '<', followed by STR, and '>'.
325 The result is good until the next call. */
326
327 static char *
328 add_angle_brackets (const char *str)
329 {
330 static char *result = NULL;
331
332 xfree (result);
333 result = xstrprintf ("<%s>", str);
334 return result;
335 }
336
337 static char *
338 ada_get_gdb_completer_word_break_characters (void)
339 {
340 return ada_completer_word_break_characters;
341 }
342
343 /* Print an array element index using the Ada syntax. */
344
345 static void
346 ada_print_array_index (struct value *index_value, struct ui_file *stream,
347 const struct value_print_options *options)
348 {
349 LA_VALUE_PRINT (index_value, stream, options);
350 fprintf_filtered (stream, " => ");
351 }
352
353 /* Read the string located at ADDR from the inferior and store the
354 result into BUF. */
355
356 static void
357 extract_string (CORE_ADDR addr, char *buf)
358 {
359 int char_index = 0;
360
361 /* Loop, reading one byte at a time, until we reach the '\000'
362 end-of-string marker. */
363 do
364 {
365 target_read_memory (addr + char_index * sizeof (char),
366 buf + char_index * sizeof (char), sizeof (char));
367 char_index++;
368 }
369 while (buf[char_index - 1] != '\000');
370 }
371
372 /* Assuming VECT points to an array of *SIZE objects of size
373 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
374 updating *SIZE as necessary and returning the (new) array. */
375
376 void *
377 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
378 {
379 if (*size < min_size)
380 {
381 *size *= 2;
382 if (*size < min_size)
383 *size = min_size;
384 vect = xrealloc (vect, *size * element_size);
385 }
386 return vect;
387 }
388
389 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
390 suffix of FIELD_NAME beginning "___". */
391
392 static int
393 field_name_match (const char *field_name, const char *target)
394 {
395 int len = strlen (target);
396 return
397 (strncmp (field_name, target, len) == 0
398 && (field_name[len] == '\0'
399 || (strncmp (field_name + len, "___", 3) == 0
400 && strcmp (field_name + strlen (field_name) - 6,
401 "___XVN") != 0)));
402 }
403
404
405 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
406 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
407 and return its index. This function also handles fields whose name
408 have ___ suffixes because the compiler sometimes alters their name
409 by adding such a suffix to represent fields with certain constraints.
410 If the field could not be found, return a negative number if
411 MAYBE_MISSING is set. Otherwise raise an error. */
412
413 int
414 ada_get_field_index (const struct type *type, const char *field_name,
415 int maybe_missing)
416 {
417 int fieldno;
418 struct type *struct_type = check_typedef ((struct type *) type);
419
420 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
421 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
422 return fieldno;
423
424 if (!maybe_missing)
425 error (_("Unable to find field %s in struct %s. Aborting"),
426 field_name, TYPE_NAME (struct_type));
427
428 return -1;
429 }
430
431 /* The length of the prefix of NAME prior to any "___" suffix. */
432
433 int
434 ada_name_prefix_len (const char *name)
435 {
436 if (name == NULL)
437 return 0;
438 else
439 {
440 const char *p = strstr (name, "___");
441 if (p == NULL)
442 return strlen (name);
443 else
444 return p - name;
445 }
446 }
447
448 /* Return non-zero if SUFFIX is a suffix of STR.
449 Return zero if STR is null. */
450
451 static int
452 is_suffix (const char *str, const char *suffix)
453 {
454 int len1, len2;
455 if (str == NULL)
456 return 0;
457 len1 = strlen (str);
458 len2 = strlen (suffix);
459 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
460 }
461
462 /* The contents of value VAL, treated as a value of type TYPE. The
463 result is an lval in memory if VAL is. */
464
465 static struct value *
466 coerce_unspec_val_to_type (struct value *val, struct type *type)
467 {
468 type = ada_check_typedef (type);
469 if (value_type (val) == type)
470 return val;
471 else
472 {
473 struct value *result;
474
475 /* Make sure that the object size is not unreasonable before
476 trying to allocate some memory for it. */
477 check_size (type);
478
479 result = allocate_value (type);
480 set_value_component_location (result, val);
481 set_value_bitsize (result, value_bitsize (val));
482 set_value_bitpos (result, value_bitpos (val));
483 set_value_address (result, value_address (val));
484 if (value_lazy (val)
485 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
486 set_value_lazy (result, 1);
487 else
488 memcpy (value_contents_raw (result), value_contents (val),
489 TYPE_LENGTH (type));
490 return result;
491 }
492 }
493
494 static const gdb_byte *
495 cond_offset_host (const gdb_byte *valaddr, long offset)
496 {
497 if (valaddr == NULL)
498 return NULL;
499 else
500 return valaddr + offset;
501 }
502
503 static CORE_ADDR
504 cond_offset_target (CORE_ADDR address, long offset)
505 {
506 if (address == 0)
507 return 0;
508 else
509 return address + offset;
510 }
511
512 /* Issue a warning (as for the definition of warning in utils.c, but
513 with exactly one argument rather than ...), unless the limit on the
514 number of warnings has passed during the evaluation of the current
515 expression. */
516
517 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
518 provided by "complaint". */
519 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
520
521 static void
522 lim_warning (const char *format, ...)
523 {
524 va_list args;
525 va_start (args, format);
526
527 warnings_issued += 1;
528 if (warnings_issued <= warning_limit)
529 vwarning (format, args);
530
531 va_end (args);
532 }
533
534 /* Issue an error if the size of an object of type T is unreasonable,
535 i.e. if it would be a bad idea to allocate a value of this type in
536 GDB. */
537
538 static void
539 check_size (const struct type *type)
540 {
541 if (TYPE_LENGTH (type) > varsize_limit)
542 error (_("object size is larger than varsize-limit"));
543 }
544
545
546 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
547 gdbtypes.h, but some of the necessary definitions in that file
548 seem to have gone missing. */
549
550 /* Maximum value of a SIZE-byte signed integer type. */
551 static LONGEST
552 max_of_size (int size)
553 {
554 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
555 return top_bit | (top_bit - 1);
556 }
557
558 /* Minimum value of a SIZE-byte signed integer type. */
559 static LONGEST
560 min_of_size (int size)
561 {
562 return -max_of_size (size) - 1;
563 }
564
565 /* Maximum value of a SIZE-byte unsigned integer type. */
566 static ULONGEST
567 umax_of_size (int size)
568 {
569 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
570 return top_bit | (top_bit - 1);
571 }
572
573 /* Maximum value of integral type T, as a signed quantity. */
574 static LONGEST
575 max_of_type (struct type *t)
576 {
577 if (TYPE_UNSIGNED (t))
578 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
579 else
580 return max_of_size (TYPE_LENGTH (t));
581 }
582
583 /* Minimum value of integral type T, as a signed quantity. */
584 static LONGEST
585 min_of_type (struct type *t)
586 {
587 if (TYPE_UNSIGNED (t))
588 return 0;
589 else
590 return min_of_size (TYPE_LENGTH (t));
591 }
592
593 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
594 static LONGEST
595 discrete_type_high_bound (struct type *type)
596 {
597 switch (TYPE_CODE (type))
598 {
599 case TYPE_CODE_RANGE:
600 return TYPE_HIGH_BOUND (type);
601 case TYPE_CODE_ENUM:
602 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
603 case TYPE_CODE_BOOL:
604 return 1;
605 case TYPE_CODE_CHAR:
606 case TYPE_CODE_INT:
607 return max_of_type (type);
608 default:
609 error (_("Unexpected type in discrete_type_high_bound."));
610 }
611 }
612
613 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
614 static LONGEST
615 discrete_type_low_bound (struct type *type)
616 {
617 switch (TYPE_CODE (type))
618 {
619 case TYPE_CODE_RANGE:
620 return TYPE_LOW_BOUND (type);
621 case TYPE_CODE_ENUM:
622 return TYPE_FIELD_BITPOS (type, 0);
623 case TYPE_CODE_BOOL:
624 return 0;
625 case TYPE_CODE_CHAR:
626 case TYPE_CODE_INT:
627 return min_of_type (type);
628 default:
629 error (_("Unexpected type in discrete_type_low_bound."));
630 }
631 }
632
633 /* The identity on non-range types. For range types, the underlying
634 non-range scalar type. */
635
636 static struct type *
637 base_type (struct type *type)
638 {
639 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
640 {
641 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
642 return type;
643 type = TYPE_TARGET_TYPE (type);
644 }
645 return type;
646 }
647 \f
648
649 /* Language Selection */
650
651 /* If the main program is in Ada, return language_ada, otherwise return LANG
652 (the main program is in Ada iif the adainit symbol is found).
653
654 MAIN_PST is not used. */
655
656 enum language
657 ada_update_initial_language (enum language lang,
658 struct partial_symtab *main_pst)
659 {
660 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
661 (struct objfile *) NULL) != NULL)
662 return language_ada;
663
664 return lang;
665 }
666
667 /* If the main procedure is written in Ada, then return its name.
668 The result is good until the next call. Return NULL if the main
669 procedure doesn't appear to be in Ada. */
670
671 char *
672 ada_main_name (void)
673 {
674 struct minimal_symbol *msym;
675 static char *main_program_name = NULL;
676
677 /* For Ada, the name of the main procedure is stored in a specific
678 string constant, generated by the binder. Look for that symbol,
679 extract its address, and then read that string. If we didn't find
680 that string, then most probably the main procedure is not written
681 in Ada. */
682 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
683
684 if (msym != NULL)
685 {
686 CORE_ADDR main_program_name_addr;
687 int err_code;
688
689 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
690 if (main_program_name_addr == 0)
691 error (_("Invalid address for Ada main program name."));
692
693 xfree (main_program_name);
694 target_read_string (main_program_name_addr, &main_program_name,
695 1024, &err_code);
696
697 if (err_code != 0)
698 return NULL;
699 return main_program_name;
700 }
701
702 /* The main procedure doesn't seem to be in Ada. */
703 return NULL;
704 }
705 \f
706 /* Symbols */
707
708 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
709 of NULLs. */
710
711 const struct ada_opname_map ada_opname_table[] = {
712 {"Oadd", "\"+\"", BINOP_ADD},
713 {"Osubtract", "\"-\"", BINOP_SUB},
714 {"Omultiply", "\"*\"", BINOP_MUL},
715 {"Odivide", "\"/\"", BINOP_DIV},
716 {"Omod", "\"mod\"", BINOP_MOD},
717 {"Orem", "\"rem\"", BINOP_REM},
718 {"Oexpon", "\"**\"", BINOP_EXP},
719 {"Olt", "\"<\"", BINOP_LESS},
720 {"Ole", "\"<=\"", BINOP_LEQ},
721 {"Ogt", "\">\"", BINOP_GTR},
722 {"Oge", "\">=\"", BINOP_GEQ},
723 {"Oeq", "\"=\"", BINOP_EQUAL},
724 {"One", "\"/=\"", BINOP_NOTEQUAL},
725 {"Oand", "\"and\"", BINOP_BITWISE_AND},
726 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
727 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
728 {"Oconcat", "\"&\"", BINOP_CONCAT},
729 {"Oabs", "\"abs\"", UNOP_ABS},
730 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
731 {"Oadd", "\"+\"", UNOP_PLUS},
732 {"Osubtract", "\"-\"", UNOP_NEG},
733 {NULL, NULL}
734 };
735
736 /* The "encoded" form of DECODED, according to GNAT conventions.
737 The result is valid until the next call to ada_encode. */
738
739 char *
740 ada_encode (const char *decoded)
741 {
742 static char *encoding_buffer = NULL;
743 static size_t encoding_buffer_size = 0;
744 const char *p;
745 int k;
746
747 if (decoded == NULL)
748 return NULL;
749
750 GROW_VECT (encoding_buffer, encoding_buffer_size,
751 2 * strlen (decoded) + 10);
752
753 k = 0;
754 for (p = decoded; *p != '\0'; p += 1)
755 {
756 if (*p == '.')
757 {
758 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
759 k += 2;
760 }
761 else if (*p == '"')
762 {
763 const struct ada_opname_map *mapping;
764
765 for (mapping = ada_opname_table;
766 mapping->encoded != NULL
767 && strncmp (mapping->decoded, p,
768 strlen (mapping->decoded)) != 0; mapping += 1)
769 ;
770 if (mapping->encoded == NULL)
771 error (_("invalid Ada operator name: %s"), p);
772 strcpy (encoding_buffer + k, mapping->encoded);
773 k += strlen (mapping->encoded);
774 break;
775 }
776 else
777 {
778 encoding_buffer[k] = *p;
779 k += 1;
780 }
781 }
782
783 encoding_buffer[k] = '\0';
784 return encoding_buffer;
785 }
786
787 /* Return NAME folded to lower case, or, if surrounded by single
788 quotes, unfolded, but with the quotes stripped away. Result good
789 to next call. */
790
791 char *
792 ada_fold_name (const char *name)
793 {
794 static char *fold_buffer = NULL;
795 static size_t fold_buffer_size = 0;
796
797 int len = strlen (name);
798 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
799
800 if (name[0] == '\'')
801 {
802 strncpy (fold_buffer, name + 1, len - 2);
803 fold_buffer[len - 2] = '\000';
804 }
805 else
806 {
807 int i;
808 for (i = 0; i <= len; i += 1)
809 fold_buffer[i] = tolower (name[i]);
810 }
811
812 return fold_buffer;
813 }
814
815 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
816
817 static int
818 is_lower_alphanum (const char c)
819 {
820 return (isdigit (c) || (isalpha (c) && islower (c)));
821 }
822
823 /* Remove either of these suffixes:
824 . .{DIGIT}+
825 . ${DIGIT}+
826 . ___{DIGIT}+
827 . __{DIGIT}+.
828 These are suffixes introduced by the compiler for entities such as
829 nested subprogram for instance, in order to avoid name clashes.
830 They do not serve any purpose for the debugger. */
831
832 static void
833 ada_remove_trailing_digits (const char *encoded, int *len)
834 {
835 if (*len > 1 && isdigit (encoded[*len - 1]))
836 {
837 int i = *len - 2;
838 while (i > 0 && isdigit (encoded[i]))
839 i--;
840 if (i >= 0 && encoded[i] == '.')
841 *len = i;
842 else if (i >= 0 && encoded[i] == '$')
843 *len = i;
844 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
845 *len = i - 2;
846 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
847 *len = i - 1;
848 }
849 }
850
851 /* Remove the suffix introduced by the compiler for protected object
852 subprograms. */
853
854 static void
855 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
856 {
857 /* Remove trailing N. */
858
859 /* Protected entry subprograms are broken into two
860 separate subprograms: The first one is unprotected, and has
861 a 'N' suffix; the second is the protected version, and has
862 the 'P' suffix. The second calls the first one after handling
863 the protection. Since the P subprograms are internally generated,
864 we leave these names undecoded, giving the user a clue that this
865 entity is internal. */
866
867 if (*len > 1
868 && encoded[*len - 1] == 'N'
869 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
870 *len = *len - 1;
871 }
872
873 /* If ENCODED follows the GNAT entity encoding conventions, then return
874 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
875 replaced by ENCODED.
876
877 The resulting string is valid until the next call of ada_decode.
878 If the string is unchanged by decoding, the original string pointer
879 is returned. */
880
881 const char *
882 ada_decode (const char *encoded)
883 {
884 int i, j;
885 int len0;
886 const char *p;
887 char *decoded;
888 int at_start_name;
889 static char *decoding_buffer = NULL;
890 static size_t decoding_buffer_size = 0;
891
892 /* The name of the Ada main procedure starts with "_ada_".
893 This prefix is not part of the decoded name, so skip this part
894 if we see this prefix. */
895 if (strncmp (encoded, "_ada_", 5) == 0)
896 encoded += 5;
897
898 /* If the name starts with '_', then it is not a properly encoded
899 name, so do not attempt to decode it. Similarly, if the name
900 starts with '<', the name should not be decoded. */
901 if (encoded[0] == '_' || encoded[0] == '<')
902 goto Suppress;
903
904 len0 = strlen (encoded);
905
906 ada_remove_trailing_digits (encoded, &len0);
907 ada_remove_po_subprogram_suffix (encoded, &len0);
908
909 /* Remove the ___X.* suffix if present. Do not forget to verify that
910 the suffix is located before the current "end" of ENCODED. We want
911 to avoid re-matching parts of ENCODED that have previously been
912 marked as discarded (by decrementing LEN0). */
913 p = strstr (encoded, "___");
914 if (p != NULL && p - encoded < len0 - 3)
915 {
916 if (p[3] == 'X')
917 len0 = p - encoded;
918 else
919 goto Suppress;
920 }
921
922 /* Remove any trailing TKB suffix. It tells us that this symbol
923 is for the body of a task, but that information does not actually
924 appear in the decoded name. */
925
926 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
927 len0 -= 3;
928
929 /* Remove trailing "B" suffixes. */
930 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
931
932 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
933 len0 -= 1;
934
935 /* Make decoded big enough for possible expansion by operator name. */
936
937 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
938 decoded = decoding_buffer;
939
940 /* Remove trailing __{digit}+ or trailing ${digit}+. */
941
942 if (len0 > 1 && isdigit (encoded[len0 - 1]))
943 {
944 i = len0 - 2;
945 while ((i >= 0 && isdigit (encoded[i]))
946 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
947 i -= 1;
948 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
949 len0 = i - 1;
950 else if (encoded[i] == '$')
951 len0 = i;
952 }
953
954 /* The first few characters that are not alphabetic are not part
955 of any encoding we use, so we can copy them over verbatim. */
956
957 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
958 decoded[j] = encoded[i];
959
960 at_start_name = 1;
961 while (i < len0)
962 {
963 /* Is this a symbol function? */
964 if (at_start_name && encoded[i] == 'O')
965 {
966 int k;
967 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
968 {
969 int op_len = strlen (ada_opname_table[k].encoded);
970 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
971 op_len - 1) == 0)
972 && !isalnum (encoded[i + op_len]))
973 {
974 strcpy (decoded + j, ada_opname_table[k].decoded);
975 at_start_name = 0;
976 i += op_len;
977 j += strlen (ada_opname_table[k].decoded);
978 break;
979 }
980 }
981 if (ada_opname_table[k].encoded != NULL)
982 continue;
983 }
984 at_start_name = 0;
985
986 /* Replace "TK__" with "__", which will eventually be translated
987 into "." (just below). */
988
989 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
990 i += 2;
991
992 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
993 be translated into "." (just below). These are internal names
994 generated for anonymous blocks inside which our symbol is nested. */
995
996 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
997 && encoded [i+2] == 'B' && encoded [i+3] == '_'
998 && isdigit (encoded [i+4]))
999 {
1000 int k = i + 5;
1001
1002 while (k < len0 && isdigit (encoded[k]))
1003 k++; /* Skip any extra digit. */
1004
1005 /* Double-check that the "__B_{DIGITS}+" sequence we found
1006 is indeed followed by "__". */
1007 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1008 i = k;
1009 }
1010
1011 /* Remove _E{DIGITS}+[sb] */
1012
1013 /* Just as for protected object subprograms, there are 2 categories
1014 of subprograms created by the compiler for each entry. The first
1015 one implements the actual entry code, and has a suffix following
1016 the convention above; the second one implements the barrier and
1017 uses the same convention as above, except that the 'E' is replaced
1018 by a 'B'.
1019
1020 Just as above, we do not decode the name of barrier functions
1021 to give the user a clue that the code he is debugging has been
1022 internally generated. */
1023
1024 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1025 && isdigit (encoded[i+2]))
1026 {
1027 int k = i + 3;
1028
1029 while (k < len0 && isdigit (encoded[k]))
1030 k++;
1031
1032 if (k < len0
1033 && (encoded[k] == 'b' || encoded[k] == 's'))
1034 {
1035 k++;
1036 /* Just as an extra precaution, make sure that if this
1037 suffix is followed by anything else, it is a '_'.
1038 Otherwise, we matched this sequence by accident. */
1039 if (k == len0
1040 || (k < len0 && encoded[k] == '_'))
1041 i = k;
1042 }
1043 }
1044
1045 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1046 the GNAT front-end in protected object subprograms. */
1047
1048 if (i < len0 + 3
1049 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1050 {
1051 /* Backtrack a bit up until we reach either the begining of
1052 the encoded name, or "__". Make sure that we only find
1053 digits or lowercase characters. */
1054 const char *ptr = encoded + i - 1;
1055
1056 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1057 ptr--;
1058 if (ptr < encoded
1059 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1060 i++;
1061 }
1062
1063 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1064 {
1065 /* This is a X[bn]* sequence not separated from the previous
1066 part of the name with a non-alpha-numeric character (in other
1067 words, immediately following an alpha-numeric character), then
1068 verify that it is placed at the end of the encoded name. If
1069 not, then the encoding is not valid and we should abort the
1070 decoding. Otherwise, just skip it, it is used in body-nested
1071 package names. */
1072 do
1073 i += 1;
1074 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1075 if (i < len0)
1076 goto Suppress;
1077 }
1078 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1079 {
1080 /* Replace '__' by '.'. */
1081 decoded[j] = '.';
1082 at_start_name = 1;
1083 i += 2;
1084 j += 1;
1085 }
1086 else
1087 {
1088 /* It's a character part of the decoded name, so just copy it
1089 over. */
1090 decoded[j] = encoded[i];
1091 i += 1;
1092 j += 1;
1093 }
1094 }
1095 decoded[j] = '\000';
1096
1097 /* Decoded names should never contain any uppercase character.
1098 Double-check this, and abort the decoding if we find one. */
1099
1100 for (i = 0; decoded[i] != '\0'; i += 1)
1101 if (isupper (decoded[i]) || decoded[i] == ' ')
1102 goto Suppress;
1103
1104 if (strcmp (decoded, encoded) == 0)
1105 return encoded;
1106 else
1107 return decoded;
1108
1109 Suppress:
1110 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1111 decoded = decoding_buffer;
1112 if (encoded[0] == '<')
1113 strcpy (decoded, encoded);
1114 else
1115 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1116 return decoded;
1117
1118 }
1119
1120 /* Table for keeping permanent unique copies of decoded names. Once
1121 allocated, names in this table are never released. While this is a
1122 storage leak, it should not be significant unless there are massive
1123 changes in the set of decoded names in successive versions of a
1124 symbol table loaded during a single session. */
1125 static struct htab *decoded_names_store;
1126
1127 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1128 in the language-specific part of GSYMBOL, if it has not been
1129 previously computed. Tries to save the decoded name in the same
1130 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1131 in any case, the decoded symbol has a lifetime at least that of
1132 GSYMBOL).
1133 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1134 const, but nevertheless modified to a semantically equivalent form
1135 when a decoded name is cached in it.
1136 */
1137
1138 char *
1139 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1140 {
1141 char **resultp =
1142 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1143 if (*resultp == NULL)
1144 {
1145 const char *decoded = ada_decode (gsymbol->name);
1146 if (gsymbol->obj_section != NULL)
1147 {
1148 struct objfile *objf = gsymbol->obj_section->objfile;
1149 *resultp = obsavestring (decoded, strlen (decoded),
1150 &objf->objfile_obstack);
1151 }
1152 /* Sometimes, we can't find a corresponding objfile, in which
1153 case, we put the result on the heap. Since we only decode
1154 when needed, we hope this usually does not cause a
1155 significant memory leak (FIXME). */
1156 if (*resultp == NULL)
1157 {
1158 char **slot = (char **) htab_find_slot (decoded_names_store,
1159 decoded, INSERT);
1160 if (*slot == NULL)
1161 *slot = xstrdup (decoded);
1162 *resultp = *slot;
1163 }
1164 }
1165
1166 return *resultp;
1167 }
1168
1169 static char *
1170 ada_la_decode (const char *encoded, int options)
1171 {
1172 return xstrdup (ada_decode (encoded));
1173 }
1174
1175 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1176 suffixes that encode debugging information or leading _ada_ on
1177 SYM_NAME (see is_name_suffix commentary for the debugging
1178 information that is ignored). If WILD, then NAME need only match a
1179 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1180 either argument is NULL. */
1181
1182 static int
1183 ada_match_name (const char *sym_name, const char *name, int wild)
1184 {
1185 if (sym_name == NULL || name == NULL)
1186 return 0;
1187 else if (wild)
1188 return wild_match (name, strlen (name), sym_name);
1189 else
1190 {
1191 int len_name = strlen (name);
1192 return (strncmp (sym_name, name, len_name) == 0
1193 && is_name_suffix (sym_name + len_name))
1194 || (strncmp (sym_name, "_ada_", 5) == 0
1195 && strncmp (sym_name + 5, name, len_name) == 0
1196 && is_name_suffix (sym_name + len_name + 5));
1197 }
1198 }
1199 \f
1200
1201 /* Arrays */
1202
1203 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1204
1205 static char *bound_name[] = {
1206 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1207 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1208 };
1209
1210 /* Maximum number of array dimensions we are prepared to handle. */
1211
1212 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1213
1214 /* Like modify_field, but allows bitpos > wordlength. */
1215
1216 static void
1217 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1218 {
1219 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1220 }
1221
1222
1223 /* The desc_* routines return primitive portions of array descriptors
1224 (fat pointers). */
1225
1226 /* The descriptor or array type, if any, indicated by TYPE; removes
1227 level of indirection, if needed. */
1228
1229 static struct type *
1230 desc_base_type (struct type *type)
1231 {
1232 if (type == NULL)
1233 return NULL;
1234 type = ada_check_typedef (type);
1235 if (type != NULL
1236 && (TYPE_CODE (type) == TYPE_CODE_PTR
1237 || TYPE_CODE (type) == TYPE_CODE_REF))
1238 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1239 else
1240 return type;
1241 }
1242
1243 /* True iff TYPE indicates a "thin" array pointer type. */
1244
1245 static int
1246 is_thin_pntr (struct type *type)
1247 {
1248 return
1249 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1250 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1251 }
1252
1253 /* The descriptor type for thin pointer type TYPE. */
1254
1255 static struct type *
1256 thin_descriptor_type (struct type *type)
1257 {
1258 struct type *base_type = desc_base_type (type);
1259 if (base_type == NULL)
1260 return NULL;
1261 if (is_suffix (ada_type_name (base_type), "___XVE"))
1262 return base_type;
1263 else
1264 {
1265 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1266 if (alt_type == NULL)
1267 return base_type;
1268 else
1269 return alt_type;
1270 }
1271 }
1272
1273 /* A pointer to the array data for thin-pointer value VAL. */
1274
1275 static struct value *
1276 thin_data_pntr (struct value *val)
1277 {
1278 struct type *type = value_type (val);
1279 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1280 data_type = lookup_pointer_type (data_type);
1281
1282 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1283 return value_cast (data_type, value_copy (val));
1284 else
1285 return value_from_longest (data_type, value_address (val));
1286 }
1287
1288 /* True iff TYPE indicates a "thick" array pointer type. */
1289
1290 static int
1291 is_thick_pntr (struct type *type)
1292 {
1293 type = desc_base_type (type);
1294 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1295 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1296 }
1297
1298 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1299 pointer to one, the type of its bounds data; otherwise, NULL. */
1300
1301 static struct type *
1302 desc_bounds_type (struct type *type)
1303 {
1304 struct type *r;
1305
1306 type = desc_base_type (type);
1307
1308 if (type == NULL)
1309 return NULL;
1310 else if (is_thin_pntr (type))
1311 {
1312 type = thin_descriptor_type (type);
1313 if (type == NULL)
1314 return NULL;
1315 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1316 if (r != NULL)
1317 return ada_check_typedef (r);
1318 }
1319 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1320 {
1321 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1322 if (r != NULL)
1323 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1324 }
1325 return NULL;
1326 }
1327
1328 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1329 one, a pointer to its bounds data. Otherwise NULL. */
1330
1331 static struct value *
1332 desc_bounds (struct value *arr)
1333 {
1334 struct type *type = ada_check_typedef (value_type (arr));
1335 if (is_thin_pntr (type))
1336 {
1337 struct type *bounds_type =
1338 desc_bounds_type (thin_descriptor_type (type));
1339 LONGEST addr;
1340
1341 if (bounds_type == NULL)
1342 error (_("Bad GNAT array descriptor"));
1343
1344 /* NOTE: The following calculation is not really kosher, but
1345 since desc_type is an XVE-encoded type (and shouldn't be),
1346 the correct calculation is a real pain. FIXME (and fix GCC). */
1347 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1348 addr = value_as_long (arr);
1349 else
1350 addr = value_address (arr);
1351
1352 return
1353 value_from_longest (lookup_pointer_type (bounds_type),
1354 addr - TYPE_LENGTH (bounds_type));
1355 }
1356
1357 else if (is_thick_pntr (type))
1358 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1359 _("Bad GNAT array descriptor"));
1360 else
1361 return NULL;
1362 }
1363
1364 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1365 position of the field containing the address of the bounds data. */
1366
1367 static int
1368 fat_pntr_bounds_bitpos (struct type *type)
1369 {
1370 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1371 }
1372
1373 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1374 size of the field containing the address of the bounds data. */
1375
1376 static int
1377 fat_pntr_bounds_bitsize (struct type *type)
1378 {
1379 type = desc_base_type (type);
1380
1381 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1382 return TYPE_FIELD_BITSIZE (type, 1);
1383 else
1384 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1385 }
1386
1387 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1388 pointer to one, the type of its array data (a array-with-no-bounds type);
1389 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1390 data. */
1391
1392 static struct type *
1393 desc_data_target_type (struct type *type)
1394 {
1395 type = desc_base_type (type);
1396
1397 /* NOTE: The following is bogus; see comment in desc_bounds. */
1398 if (is_thin_pntr (type))
1399 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1400 else if (is_thick_pntr (type))
1401 {
1402 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1403
1404 if (data_type
1405 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1406 return TYPE_TARGET_TYPE (data_type);
1407 }
1408
1409 return NULL;
1410 }
1411
1412 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1413 its array data. */
1414
1415 static struct value *
1416 desc_data (struct value *arr)
1417 {
1418 struct type *type = value_type (arr);
1419 if (is_thin_pntr (type))
1420 return thin_data_pntr (arr);
1421 else if (is_thick_pntr (type))
1422 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1423 _("Bad GNAT array descriptor"));
1424 else
1425 return NULL;
1426 }
1427
1428
1429 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1430 position of the field containing the address of the data. */
1431
1432 static int
1433 fat_pntr_data_bitpos (struct type *type)
1434 {
1435 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1436 }
1437
1438 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1439 size of the field containing the address of the data. */
1440
1441 static int
1442 fat_pntr_data_bitsize (struct type *type)
1443 {
1444 type = desc_base_type (type);
1445
1446 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1447 return TYPE_FIELD_BITSIZE (type, 0);
1448 else
1449 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1450 }
1451
1452 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1453 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1454 bound, if WHICH is 1. The first bound is I=1. */
1455
1456 static struct value *
1457 desc_one_bound (struct value *bounds, int i, int which)
1458 {
1459 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1460 _("Bad GNAT array descriptor bounds"));
1461 }
1462
1463 /* If BOUNDS is an array-bounds structure type, return the bit position
1464 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1465 bound, if WHICH is 1. The first bound is I=1. */
1466
1467 static int
1468 desc_bound_bitpos (struct type *type, int i, int which)
1469 {
1470 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1471 }
1472
1473 /* If BOUNDS is an array-bounds structure type, return the bit field size
1474 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1475 bound, if WHICH is 1. The first bound is I=1. */
1476
1477 static int
1478 desc_bound_bitsize (struct type *type, int i, int which)
1479 {
1480 type = desc_base_type (type);
1481
1482 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1483 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1484 else
1485 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1486 }
1487
1488 /* If TYPE is the type of an array-bounds structure, the type of its
1489 Ith bound (numbering from 1). Otherwise, NULL. */
1490
1491 static struct type *
1492 desc_index_type (struct type *type, int i)
1493 {
1494 type = desc_base_type (type);
1495
1496 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1497 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1498 else
1499 return NULL;
1500 }
1501
1502 /* The number of index positions in the array-bounds type TYPE.
1503 Return 0 if TYPE is NULL. */
1504
1505 static int
1506 desc_arity (struct type *type)
1507 {
1508 type = desc_base_type (type);
1509
1510 if (type != NULL)
1511 return TYPE_NFIELDS (type) / 2;
1512 return 0;
1513 }
1514
1515 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1516 an array descriptor type (representing an unconstrained array
1517 type). */
1518
1519 static int
1520 ada_is_direct_array_type (struct type *type)
1521 {
1522 if (type == NULL)
1523 return 0;
1524 type = ada_check_typedef (type);
1525 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1526 || ada_is_array_descriptor_type (type));
1527 }
1528
1529 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1530 * to one. */
1531
1532 static int
1533 ada_is_array_type (struct type *type)
1534 {
1535 while (type != NULL
1536 && (TYPE_CODE (type) == TYPE_CODE_PTR
1537 || TYPE_CODE (type) == TYPE_CODE_REF))
1538 type = TYPE_TARGET_TYPE (type);
1539 return ada_is_direct_array_type (type);
1540 }
1541
1542 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1543
1544 int
1545 ada_is_simple_array_type (struct type *type)
1546 {
1547 if (type == NULL)
1548 return 0;
1549 type = ada_check_typedef (type);
1550 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1551 || (TYPE_CODE (type) == TYPE_CODE_PTR
1552 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1553 }
1554
1555 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1556
1557 int
1558 ada_is_array_descriptor_type (struct type *type)
1559 {
1560 struct type *data_type = desc_data_target_type (type);
1561
1562 if (type == NULL)
1563 return 0;
1564 type = ada_check_typedef (type);
1565 return (data_type != NULL
1566 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1567 && desc_arity (desc_bounds_type (type)) > 0);
1568 }
1569
1570 /* Non-zero iff type is a partially mal-formed GNAT array
1571 descriptor. FIXME: This is to compensate for some problems with
1572 debugging output from GNAT. Re-examine periodically to see if it
1573 is still needed. */
1574
1575 int
1576 ada_is_bogus_array_descriptor (struct type *type)
1577 {
1578 return
1579 type != NULL
1580 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1581 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1582 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1583 && !ada_is_array_descriptor_type (type);
1584 }
1585
1586
1587 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1588 (fat pointer) returns the type of the array data described---specifically,
1589 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1590 in from the descriptor; otherwise, they are left unspecified. If
1591 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1592 returns NULL. The result is simply the type of ARR if ARR is not
1593 a descriptor. */
1594 struct type *
1595 ada_type_of_array (struct value *arr, int bounds)
1596 {
1597 if (ada_is_packed_array_type (value_type (arr)))
1598 return decode_packed_array_type (value_type (arr));
1599
1600 if (!ada_is_array_descriptor_type (value_type (arr)))
1601 return value_type (arr);
1602
1603 if (!bounds)
1604 return
1605 ada_check_typedef (desc_data_target_type (value_type (arr)));
1606 else
1607 {
1608 struct type *elt_type;
1609 int arity;
1610 struct value *descriptor;
1611
1612 elt_type = ada_array_element_type (value_type (arr), -1);
1613 arity = ada_array_arity (value_type (arr));
1614
1615 if (elt_type == NULL || arity == 0)
1616 return ada_check_typedef (value_type (arr));
1617
1618 descriptor = desc_bounds (arr);
1619 if (value_as_long (descriptor) == 0)
1620 return NULL;
1621 while (arity > 0)
1622 {
1623 struct type *range_type = alloc_type_copy (value_type (arr));
1624 struct type *array_type = alloc_type_copy (value_type (arr));
1625 struct value *low = desc_one_bound (descriptor, arity, 0);
1626 struct value *high = desc_one_bound (descriptor, arity, 1);
1627 arity -= 1;
1628
1629 create_range_type (range_type, value_type (low),
1630 longest_to_int (value_as_long (low)),
1631 longest_to_int (value_as_long (high)));
1632 elt_type = create_array_type (array_type, elt_type, range_type);
1633 }
1634
1635 return lookup_pointer_type (elt_type);
1636 }
1637 }
1638
1639 /* If ARR does not represent an array, returns ARR unchanged.
1640 Otherwise, returns either a standard GDB array with bounds set
1641 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1642 GDB array. Returns NULL if ARR is a null fat pointer. */
1643
1644 struct value *
1645 ada_coerce_to_simple_array_ptr (struct value *arr)
1646 {
1647 if (ada_is_array_descriptor_type (value_type (arr)))
1648 {
1649 struct type *arrType = ada_type_of_array (arr, 1);
1650 if (arrType == NULL)
1651 return NULL;
1652 return value_cast (arrType, value_copy (desc_data (arr)));
1653 }
1654 else if (ada_is_packed_array_type (value_type (arr)))
1655 return decode_packed_array (arr);
1656 else
1657 return arr;
1658 }
1659
1660 /* If ARR does not represent an array, returns ARR unchanged.
1661 Otherwise, returns a standard GDB array describing ARR (which may
1662 be ARR itself if it already is in the proper form). */
1663
1664 static struct value *
1665 ada_coerce_to_simple_array (struct value *arr)
1666 {
1667 if (ada_is_array_descriptor_type (value_type (arr)))
1668 {
1669 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1670 if (arrVal == NULL)
1671 error (_("Bounds unavailable for null array pointer."));
1672 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1673 return value_ind (arrVal);
1674 }
1675 else if (ada_is_packed_array_type (value_type (arr)))
1676 return decode_packed_array (arr);
1677 else
1678 return arr;
1679 }
1680
1681 /* If TYPE represents a GNAT array type, return it translated to an
1682 ordinary GDB array type (possibly with BITSIZE fields indicating
1683 packing). For other types, is the identity. */
1684
1685 struct type *
1686 ada_coerce_to_simple_array_type (struct type *type)
1687 {
1688 if (ada_is_packed_array_type (type))
1689 return decode_packed_array_type (type);
1690
1691 if (ada_is_array_descriptor_type (type))
1692 return ada_check_typedef (desc_data_target_type (type));
1693
1694 return type;
1695 }
1696
1697 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1698
1699 int
1700 ada_is_packed_array_type (struct type *type)
1701 {
1702 if (type == NULL)
1703 return 0;
1704 type = desc_base_type (type);
1705 type = ada_check_typedef (type);
1706 return
1707 ada_type_name (type) != NULL
1708 && strstr (ada_type_name (type), "___XP") != NULL;
1709 }
1710
1711 /* Given that TYPE is a standard GDB array type with all bounds filled
1712 in, and that the element size of its ultimate scalar constituents
1713 (that is, either its elements, or, if it is an array of arrays, its
1714 elements' elements, etc.) is *ELT_BITS, return an identical type,
1715 but with the bit sizes of its elements (and those of any
1716 constituent arrays) recorded in the BITSIZE components of its
1717 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1718 in bits. */
1719
1720 static struct type *
1721 packed_array_type (struct type *type, long *elt_bits)
1722 {
1723 struct type *new_elt_type;
1724 struct type *new_type;
1725 LONGEST low_bound, high_bound;
1726
1727 type = ada_check_typedef (type);
1728 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1729 return type;
1730
1731 new_type = alloc_type_copy (type);
1732 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1733 elt_bits);
1734 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1735 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1736 TYPE_NAME (new_type) = ada_type_name (type);
1737
1738 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1739 &low_bound, &high_bound) < 0)
1740 low_bound = high_bound = 0;
1741 if (high_bound < low_bound)
1742 *elt_bits = TYPE_LENGTH (new_type) = 0;
1743 else
1744 {
1745 *elt_bits *= (high_bound - low_bound + 1);
1746 TYPE_LENGTH (new_type) =
1747 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1748 }
1749
1750 TYPE_FIXED_INSTANCE (new_type) = 1;
1751 return new_type;
1752 }
1753
1754 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1755
1756 static struct type *
1757 decode_packed_array_type (struct type *type)
1758 {
1759 struct symbol *sym;
1760 struct block **blocks;
1761 char *raw_name = ada_type_name (ada_check_typedef (type));
1762 char *name;
1763 char *tail;
1764 struct type *shadow_type;
1765 long bits;
1766 int i, n;
1767
1768 if (!raw_name)
1769 raw_name = ada_type_name (desc_base_type (type));
1770
1771 if (!raw_name)
1772 return NULL;
1773
1774 name = (char *) alloca (strlen (raw_name) + 1);
1775 tail = strstr (raw_name, "___XP");
1776 type = desc_base_type (type);
1777
1778 memcpy (name, raw_name, tail - raw_name);
1779 name[tail - raw_name] = '\000';
1780
1781 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1782 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1783 {
1784 lim_warning (_("could not find bounds information on packed array"));
1785 return NULL;
1786 }
1787 shadow_type = SYMBOL_TYPE (sym);
1788 CHECK_TYPEDEF (shadow_type);
1789
1790 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1791 {
1792 lim_warning (_("could not understand bounds information on packed array"));
1793 return NULL;
1794 }
1795
1796 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1797 {
1798 lim_warning
1799 (_("could not understand bit size information on packed array"));
1800 return NULL;
1801 }
1802
1803 return packed_array_type (shadow_type, &bits);
1804 }
1805
1806 /* Given that ARR is a struct value *indicating a GNAT packed array,
1807 returns a simple array that denotes that array. Its type is a
1808 standard GDB array type except that the BITSIZEs of the array
1809 target types are set to the number of bits in each element, and the
1810 type length is set appropriately. */
1811
1812 static struct value *
1813 decode_packed_array (struct value *arr)
1814 {
1815 struct type *type;
1816
1817 arr = ada_coerce_ref (arr);
1818
1819 /* If our value is a pointer, then dererence it. Make sure that
1820 this operation does not cause the target type to be fixed, as
1821 this would indirectly cause this array to be decoded. The rest
1822 of the routine assumes that the array hasn't been decoded yet,
1823 so we use the basic "value_ind" routine to perform the dereferencing,
1824 as opposed to using "ada_value_ind". */
1825 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1826 arr = value_ind (arr);
1827
1828 type = decode_packed_array_type (value_type (arr));
1829 if (type == NULL)
1830 {
1831 error (_("can't unpack array"));
1832 return NULL;
1833 }
1834
1835 if (gdbarch_bits_big_endian (current_gdbarch)
1836 && ada_is_modular_type (value_type (arr)))
1837 {
1838 /* This is a (right-justified) modular type representing a packed
1839 array with no wrapper. In order to interpret the value through
1840 the (left-justified) packed array type we just built, we must
1841 first left-justify it. */
1842 int bit_size, bit_pos;
1843 ULONGEST mod;
1844
1845 mod = ada_modulus (value_type (arr)) - 1;
1846 bit_size = 0;
1847 while (mod > 0)
1848 {
1849 bit_size += 1;
1850 mod >>= 1;
1851 }
1852 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1853 arr = ada_value_primitive_packed_val (arr, NULL,
1854 bit_pos / HOST_CHAR_BIT,
1855 bit_pos % HOST_CHAR_BIT,
1856 bit_size,
1857 type);
1858 }
1859
1860 return coerce_unspec_val_to_type (arr, type);
1861 }
1862
1863
1864 /* The value of the element of packed array ARR at the ARITY indices
1865 given in IND. ARR must be a simple array. */
1866
1867 static struct value *
1868 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1869 {
1870 int i;
1871 int bits, elt_off, bit_off;
1872 long elt_total_bit_offset;
1873 struct type *elt_type;
1874 struct value *v;
1875
1876 bits = 0;
1877 elt_total_bit_offset = 0;
1878 elt_type = ada_check_typedef (value_type (arr));
1879 for (i = 0; i < arity; i += 1)
1880 {
1881 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1882 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1883 error
1884 (_("attempt to do packed indexing of something other than a packed array"));
1885 else
1886 {
1887 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1888 LONGEST lowerbound, upperbound;
1889 LONGEST idx;
1890
1891 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1892 {
1893 lim_warning (_("don't know bounds of array"));
1894 lowerbound = upperbound = 0;
1895 }
1896
1897 idx = pos_atr (ind[i]);
1898 if (idx < lowerbound || idx > upperbound)
1899 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1900 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1901 elt_total_bit_offset += (idx - lowerbound) * bits;
1902 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1903 }
1904 }
1905 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1906 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1907
1908 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1909 bits, elt_type);
1910 return v;
1911 }
1912
1913 /* Non-zero iff TYPE includes negative integer values. */
1914
1915 static int
1916 has_negatives (struct type *type)
1917 {
1918 switch (TYPE_CODE (type))
1919 {
1920 default:
1921 return 0;
1922 case TYPE_CODE_INT:
1923 return !TYPE_UNSIGNED (type);
1924 case TYPE_CODE_RANGE:
1925 return TYPE_LOW_BOUND (type) < 0;
1926 }
1927 }
1928
1929
1930 /* Create a new value of type TYPE from the contents of OBJ starting
1931 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1932 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1933 assigning through the result will set the field fetched from.
1934 VALADDR is ignored unless OBJ is NULL, in which case,
1935 VALADDR+OFFSET must address the start of storage containing the
1936 packed value. The value returned in this case is never an lval.
1937 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1938
1939 struct value *
1940 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1941 long offset, int bit_offset, int bit_size,
1942 struct type *type)
1943 {
1944 struct value *v;
1945 int src, /* Index into the source area */
1946 targ, /* Index into the target area */
1947 srcBitsLeft, /* Number of source bits left to move */
1948 nsrc, ntarg, /* Number of source and target bytes */
1949 unusedLS, /* Number of bits in next significant
1950 byte of source that are unused */
1951 accumSize; /* Number of meaningful bits in accum */
1952 unsigned char *bytes; /* First byte containing data to unpack */
1953 unsigned char *unpacked;
1954 unsigned long accum; /* Staging area for bits being transferred */
1955 unsigned char sign;
1956 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1957 /* Transmit bytes from least to most significant; delta is the direction
1958 the indices move. */
1959 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
1960
1961 type = ada_check_typedef (type);
1962
1963 if (obj == NULL)
1964 {
1965 v = allocate_value (type);
1966 bytes = (unsigned char *) (valaddr + offset);
1967 }
1968 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
1969 {
1970 v = value_at (type,
1971 value_address (obj) + offset);
1972 bytes = (unsigned char *) alloca (len);
1973 read_memory (value_address (v), bytes, len);
1974 }
1975 else
1976 {
1977 v = allocate_value (type);
1978 bytes = (unsigned char *) value_contents (obj) + offset;
1979 }
1980
1981 if (obj != NULL)
1982 {
1983 CORE_ADDR new_addr;
1984 set_value_component_location (v, obj);
1985 new_addr = value_address (obj) + offset;
1986 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1987 set_value_bitsize (v, bit_size);
1988 if (value_bitpos (v) >= HOST_CHAR_BIT)
1989 {
1990 ++new_addr;
1991 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1992 }
1993 set_value_address (v, new_addr);
1994 }
1995 else
1996 set_value_bitsize (v, bit_size);
1997 unpacked = (unsigned char *) value_contents (v);
1998
1999 srcBitsLeft = bit_size;
2000 nsrc = len;
2001 ntarg = TYPE_LENGTH (type);
2002 sign = 0;
2003 if (bit_size == 0)
2004 {
2005 memset (unpacked, 0, TYPE_LENGTH (type));
2006 return v;
2007 }
2008 else if (gdbarch_bits_big_endian (current_gdbarch))
2009 {
2010 src = len - 1;
2011 if (has_negatives (type)
2012 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2013 sign = ~0;
2014
2015 unusedLS =
2016 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2017 % HOST_CHAR_BIT;
2018
2019 switch (TYPE_CODE (type))
2020 {
2021 case TYPE_CODE_ARRAY:
2022 case TYPE_CODE_UNION:
2023 case TYPE_CODE_STRUCT:
2024 /* Non-scalar values must be aligned at a byte boundary... */
2025 accumSize =
2026 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2027 /* ... And are placed at the beginning (most-significant) bytes
2028 of the target. */
2029 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2030 ntarg = targ + 1;
2031 break;
2032 default:
2033 accumSize = 0;
2034 targ = TYPE_LENGTH (type) - 1;
2035 break;
2036 }
2037 }
2038 else
2039 {
2040 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2041
2042 src = targ = 0;
2043 unusedLS = bit_offset;
2044 accumSize = 0;
2045
2046 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2047 sign = ~0;
2048 }
2049
2050 accum = 0;
2051 while (nsrc > 0)
2052 {
2053 /* Mask for removing bits of the next source byte that are not
2054 part of the value. */
2055 unsigned int unusedMSMask =
2056 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2057 1;
2058 /* Sign-extend bits for this byte. */
2059 unsigned int signMask = sign & ~unusedMSMask;
2060 accum |=
2061 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2062 accumSize += HOST_CHAR_BIT - unusedLS;
2063 if (accumSize >= HOST_CHAR_BIT)
2064 {
2065 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2066 accumSize -= HOST_CHAR_BIT;
2067 accum >>= HOST_CHAR_BIT;
2068 ntarg -= 1;
2069 targ += delta;
2070 }
2071 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2072 unusedLS = 0;
2073 nsrc -= 1;
2074 src += delta;
2075 }
2076 while (ntarg > 0)
2077 {
2078 accum |= sign << accumSize;
2079 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2080 accumSize -= HOST_CHAR_BIT;
2081 accum >>= HOST_CHAR_BIT;
2082 ntarg -= 1;
2083 targ += delta;
2084 }
2085
2086 return v;
2087 }
2088
2089 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2090 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2091 not overlap. */
2092 static void
2093 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2094 int src_offset, int n)
2095 {
2096 unsigned int accum, mask;
2097 int accum_bits, chunk_size;
2098
2099 target += targ_offset / HOST_CHAR_BIT;
2100 targ_offset %= HOST_CHAR_BIT;
2101 source += src_offset / HOST_CHAR_BIT;
2102 src_offset %= HOST_CHAR_BIT;
2103 if (gdbarch_bits_big_endian (current_gdbarch))
2104 {
2105 accum = (unsigned char) *source;
2106 source += 1;
2107 accum_bits = HOST_CHAR_BIT - src_offset;
2108
2109 while (n > 0)
2110 {
2111 int unused_right;
2112 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2113 accum_bits += HOST_CHAR_BIT;
2114 source += 1;
2115 chunk_size = HOST_CHAR_BIT - targ_offset;
2116 if (chunk_size > n)
2117 chunk_size = n;
2118 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2119 mask = ((1 << chunk_size) - 1) << unused_right;
2120 *target =
2121 (*target & ~mask)
2122 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2123 n -= chunk_size;
2124 accum_bits -= chunk_size;
2125 target += 1;
2126 targ_offset = 0;
2127 }
2128 }
2129 else
2130 {
2131 accum = (unsigned char) *source >> src_offset;
2132 source += 1;
2133 accum_bits = HOST_CHAR_BIT - src_offset;
2134
2135 while (n > 0)
2136 {
2137 accum = accum + ((unsigned char) *source << accum_bits);
2138 accum_bits += HOST_CHAR_BIT;
2139 source += 1;
2140 chunk_size = HOST_CHAR_BIT - targ_offset;
2141 if (chunk_size > n)
2142 chunk_size = n;
2143 mask = ((1 << chunk_size) - 1) << targ_offset;
2144 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2145 n -= chunk_size;
2146 accum_bits -= chunk_size;
2147 accum >>= chunk_size;
2148 target += 1;
2149 targ_offset = 0;
2150 }
2151 }
2152 }
2153
2154 /* Store the contents of FROMVAL into the location of TOVAL.
2155 Return a new value with the location of TOVAL and contents of
2156 FROMVAL. Handles assignment into packed fields that have
2157 floating-point or non-scalar types. */
2158
2159 static struct value *
2160 ada_value_assign (struct value *toval, struct value *fromval)
2161 {
2162 struct type *type = value_type (toval);
2163 int bits = value_bitsize (toval);
2164
2165 toval = ada_coerce_ref (toval);
2166 fromval = ada_coerce_ref (fromval);
2167
2168 if (ada_is_direct_array_type (value_type (toval)))
2169 toval = ada_coerce_to_simple_array (toval);
2170 if (ada_is_direct_array_type (value_type (fromval)))
2171 fromval = ada_coerce_to_simple_array (fromval);
2172
2173 if (!deprecated_value_modifiable (toval))
2174 error (_("Left operand of assignment is not a modifiable lvalue."));
2175
2176 if (VALUE_LVAL (toval) == lval_memory
2177 && bits > 0
2178 && (TYPE_CODE (type) == TYPE_CODE_FLT
2179 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2180 {
2181 int len = (value_bitpos (toval)
2182 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2183 int from_size;
2184 char *buffer = (char *) alloca (len);
2185 struct value *val;
2186 CORE_ADDR to_addr = value_address (toval);
2187
2188 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2189 fromval = value_cast (type, fromval);
2190
2191 read_memory (to_addr, buffer, len);
2192 from_size = value_bitsize (fromval);
2193 if (from_size == 0)
2194 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2195 if (gdbarch_bits_big_endian (current_gdbarch))
2196 move_bits (buffer, value_bitpos (toval),
2197 value_contents (fromval), from_size - bits, bits);
2198 else
2199 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2200 0, bits);
2201 write_memory (to_addr, buffer, len);
2202 if (deprecated_memory_changed_hook)
2203 deprecated_memory_changed_hook (to_addr, len);
2204
2205 val = value_copy (toval);
2206 memcpy (value_contents_raw (val), value_contents (fromval),
2207 TYPE_LENGTH (type));
2208 deprecated_set_value_type (val, type);
2209
2210 return val;
2211 }
2212
2213 return value_assign (toval, fromval);
2214 }
2215
2216
2217 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2218 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2219 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2220 * COMPONENT, and not the inferior's memory. The current contents
2221 * of COMPONENT are ignored. */
2222 static void
2223 value_assign_to_component (struct value *container, struct value *component,
2224 struct value *val)
2225 {
2226 LONGEST offset_in_container =
2227 (LONGEST) (value_address (component) - value_address (container));
2228 int bit_offset_in_container =
2229 value_bitpos (component) - value_bitpos (container);
2230 int bits;
2231
2232 val = value_cast (value_type (component), val);
2233
2234 if (value_bitsize (component) == 0)
2235 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2236 else
2237 bits = value_bitsize (component);
2238
2239 if (gdbarch_bits_big_endian (current_gdbarch))
2240 move_bits (value_contents_writeable (container) + offset_in_container,
2241 value_bitpos (container) + bit_offset_in_container,
2242 value_contents (val),
2243 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2244 bits);
2245 else
2246 move_bits (value_contents_writeable (container) + offset_in_container,
2247 value_bitpos (container) + bit_offset_in_container,
2248 value_contents (val), 0, bits);
2249 }
2250
2251 /* The value of the element of array ARR at the ARITY indices given in IND.
2252 ARR may be either a simple array, GNAT array descriptor, or pointer
2253 thereto. */
2254
2255 struct value *
2256 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2257 {
2258 int k;
2259 struct value *elt;
2260 struct type *elt_type;
2261
2262 elt = ada_coerce_to_simple_array (arr);
2263
2264 elt_type = ada_check_typedef (value_type (elt));
2265 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2266 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2267 return value_subscript_packed (elt, arity, ind);
2268
2269 for (k = 0; k < arity; k += 1)
2270 {
2271 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2272 error (_("too many subscripts (%d expected)"), k);
2273 elt = value_subscript (elt, pos_atr (ind[k]));
2274 }
2275 return elt;
2276 }
2277
2278 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2279 value of the element of *ARR at the ARITY indices given in
2280 IND. Does not read the entire array into memory. */
2281
2282 static struct value *
2283 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2284 struct value **ind)
2285 {
2286 int k;
2287
2288 for (k = 0; k < arity; k += 1)
2289 {
2290 LONGEST lwb, upb;
2291
2292 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2293 error (_("too many subscripts (%d expected)"), k);
2294 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2295 value_copy (arr));
2296 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2297 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2298 type = TYPE_TARGET_TYPE (type);
2299 }
2300
2301 return value_ind (arr);
2302 }
2303
2304 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2305 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2306 elements starting at index LOW. The lower bound of this array is LOW, as
2307 per Ada rules. */
2308 static struct value *
2309 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2310 int low, int high)
2311 {
2312 CORE_ADDR base = value_as_address (array_ptr)
2313 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2314 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2315 struct type *index_type =
2316 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2317 low, high);
2318 struct type *slice_type =
2319 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2320 return value_at_lazy (slice_type, base);
2321 }
2322
2323
2324 static struct value *
2325 ada_value_slice (struct value *array, int low, int high)
2326 {
2327 struct type *type = value_type (array);
2328 struct type *index_type =
2329 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2330 struct type *slice_type =
2331 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2332 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2333 }
2334
2335 /* If type is a record type in the form of a standard GNAT array
2336 descriptor, returns the number of dimensions for type. If arr is a
2337 simple array, returns the number of "array of"s that prefix its
2338 type designation. Otherwise, returns 0. */
2339
2340 int
2341 ada_array_arity (struct type *type)
2342 {
2343 int arity;
2344
2345 if (type == NULL)
2346 return 0;
2347
2348 type = desc_base_type (type);
2349
2350 arity = 0;
2351 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2352 return desc_arity (desc_bounds_type (type));
2353 else
2354 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2355 {
2356 arity += 1;
2357 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2358 }
2359
2360 return arity;
2361 }
2362
2363 /* If TYPE is a record type in the form of a standard GNAT array
2364 descriptor or a simple array type, returns the element type for
2365 TYPE after indexing by NINDICES indices, or by all indices if
2366 NINDICES is -1. Otherwise, returns NULL. */
2367
2368 struct type *
2369 ada_array_element_type (struct type *type, int nindices)
2370 {
2371 type = desc_base_type (type);
2372
2373 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2374 {
2375 int k;
2376 struct type *p_array_type;
2377
2378 p_array_type = desc_data_target_type (type);
2379
2380 k = ada_array_arity (type);
2381 if (k == 0)
2382 return NULL;
2383
2384 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2385 if (nindices >= 0 && k > nindices)
2386 k = nindices;
2387 while (k > 0 && p_array_type != NULL)
2388 {
2389 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2390 k -= 1;
2391 }
2392 return p_array_type;
2393 }
2394 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2395 {
2396 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2397 {
2398 type = TYPE_TARGET_TYPE (type);
2399 nindices -= 1;
2400 }
2401 return type;
2402 }
2403
2404 return NULL;
2405 }
2406
2407 /* The type of nth index in arrays of given type (n numbering from 1).
2408 Does not examine memory. Throws an error if N is invalid or TYPE
2409 is not an array type. NAME is the name of the Ada attribute being
2410 evaluated ('range, 'first, 'last, or 'length); it is used in building
2411 the error message. */
2412
2413 static struct type *
2414 ada_index_type (struct type *type, int n, const char *name)
2415 {
2416 struct type *result_type;
2417
2418 type = desc_base_type (type);
2419
2420 if (n < 0 || n > ada_array_arity (type))
2421 error (_("invalid dimension number to '%s"), name);
2422
2423 if (ada_is_simple_array_type (type))
2424 {
2425 int i;
2426
2427 for (i = 1; i < n; i += 1)
2428 type = TYPE_TARGET_TYPE (type);
2429 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2430 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2431 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2432 perhaps stabsread.c would make more sense. */
2433 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2434 result_type = NULL;
2435 }
2436 else
2437 {
2438 result_type = desc_index_type (desc_bounds_type (type), n);
2439 if (result_type == NULL)
2440 error (_("attempt to take bound of something that is not an array"));
2441 }
2442
2443 return result_type;
2444 }
2445
2446 /* Given that arr is an array type, returns the lower bound of the
2447 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2448 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2449 array-descriptor type. It works for other arrays with bounds supplied
2450 by run-time quantities other than discriminants. */
2451
2452 static LONGEST
2453 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2454 {
2455 struct type *type, *elt_type, *index_type_desc, *index_type;
2456 LONGEST retval;
2457 int i;
2458
2459 gdb_assert (which == 0 || which == 1);
2460
2461 if (ada_is_packed_array_type (arr_type))
2462 arr_type = decode_packed_array_type (arr_type);
2463
2464 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2465 return (LONGEST) - which;
2466
2467 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2468 type = TYPE_TARGET_TYPE (arr_type);
2469 else
2470 type = arr_type;
2471
2472 elt_type = type;
2473 for (i = n; i > 1; i--)
2474 elt_type = TYPE_TARGET_TYPE (type);
2475
2476 index_type_desc = ada_find_parallel_type (type, "___XA");
2477 if (index_type_desc != NULL)
2478 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2479 NULL, TYPE_INDEX_TYPE (elt_type));
2480 else
2481 index_type = TYPE_INDEX_TYPE (elt_type);
2482
2483 switch (TYPE_CODE (index_type))
2484 {
2485 case TYPE_CODE_RANGE:
2486 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2487 : TYPE_HIGH_BOUND (index_type);
2488 break;
2489 case TYPE_CODE_ENUM:
2490 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2491 : TYPE_FIELD_BITPOS (index_type,
2492 TYPE_NFIELDS (index_type) - 1);
2493 break;
2494 default:
2495 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2496 }
2497
2498 return retval;
2499 }
2500
2501 /* Given that arr is an array value, returns the lower bound of the
2502 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2503 WHICH is 1. This routine will also work for arrays with bounds
2504 supplied by run-time quantities other than discriminants. */
2505
2506 static LONGEST
2507 ada_array_bound (struct value *arr, int n, int which)
2508 {
2509 struct type *arr_type = value_type (arr);
2510
2511 if (ada_is_packed_array_type (arr_type))
2512 return ada_array_bound (decode_packed_array (arr), n, which);
2513 else if (ada_is_simple_array_type (arr_type))
2514 return ada_array_bound_from_type (arr_type, n, which);
2515 else
2516 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2517 }
2518
2519 /* Given that arr is an array value, returns the length of the
2520 nth index. This routine will also work for arrays with bounds
2521 supplied by run-time quantities other than discriminants.
2522 Does not work for arrays indexed by enumeration types with representation
2523 clauses at the moment. */
2524
2525 static LONGEST
2526 ada_array_length (struct value *arr, int n)
2527 {
2528 struct type *arr_type = ada_check_typedef (value_type (arr));
2529
2530 if (ada_is_packed_array_type (arr_type))
2531 return ada_array_length (decode_packed_array (arr), n);
2532
2533 if (ada_is_simple_array_type (arr_type))
2534 return (ada_array_bound_from_type (arr_type, n, 1)
2535 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2536 else
2537 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2538 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2539 }
2540
2541 /* An empty array whose type is that of ARR_TYPE (an array type),
2542 with bounds LOW to LOW-1. */
2543
2544 static struct value *
2545 empty_array (struct type *arr_type, int low)
2546 {
2547 struct type *index_type =
2548 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2549 low, low - 1);
2550 struct type *elt_type = ada_array_element_type (arr_type, 1);
2551 return allocate_value (create_array_type (NULL, elt_type, index_type));
2552 }
2553 \f
2554
2555 /* Name resolution */
2556
2557 /* The "decoded" name for the user-definable Ada operator corresponding
2558 to OP. */
2559
2560 static const char *
2561 ada_decoded_op_name (enum exp_opcode op)
2562 {
2563 int i;
2564
2565 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2566 {
2567 if (ada_opname_table[i].op == op)
2568 return ada_opname_table[i].decoded;
2569 }
2570 error (_("Could not find operator name for opcode"));
2571 }
2572
2573
2574 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2575 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2576 undefined namespace) and converts operators that are
2577 user-defined into appropriate function calls. If CONTEXT_TYPE is
2578 non-null, it provides a preferred result type [at the moment, only
2579 type void has any effect---causing procedures to be preferred over
2580 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2581 return type is preferred. May change (expand) *EXP. */
2582
2583 static void
2584 resolve (struct expression **expp, int void_context_p)
2585 {
2586 struct type *context_type = NULL;
2587 int pc = 0;
2588
2589 if (void_context_p)
2590 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2591
2592 resolve_subexp (expp, &pc, 1, context_type);
2593 }
2594
2595 /* Resolve the operator of the subexpression beginning at
2596 position *POS of *EXPP. "Resolving" consists of replacing
2597 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2598 with their resolutions, replacing built-in operators with
2599 function calls to user-defined operators, where appropriate, and,
2600 when DEPROCEDURE_P is non-zero, converting function-valued variables
2601 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2602 are as in ada_resolve, above. */
2603
2604 static struct value *
2605 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2606 struct type *context_type)
2607 {
2608 int pc = *pos;
2609 int i;
2610 struct expression *exp; /* Convenience: == *expp. */
2611 enum exp_opcode op = (*expp)->elts[pc].opcode;
2612 struct value **argvec; /* Vector of operand types (alloca'ed). */
2613 int nargs; /* Number of operands. */
2614 int oplen;
2615
2616 argvec = NULL;
2617 nargs = 0;
2618 exp = *expp;
2619
2620 /* Pass one: resolve operands, saving their types and updating *pos,
2621 if needed. */
2622 switch (op)
2623 {
2624 case OP_FUNCALL:
2625 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2626 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2627 *pos += 7;
2628 else
2629 {
2630 *pos += 3;
2631 resolve_subexp (expp, pos, 0, NULL);
2632 }
2633 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2634 break;
2635
2636 case UNOP_ADDR:
2637 *pos += 1;
2638 resolve_subexp (expp, pos, 0, NULL);
2639 break;
2640
2641 case UNOP_QUAL:
2642 *pos += 3;
2643 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2644 break;
2645
2646 case OP_ATR_MODULUS:
2647 case OP_ATR_SIZE:
2648 case OP_ATR_TAG:
2649 case OP_ATR_FIRST:
2650 case OP_ATR_LAST:
2651 case OP_ATR_LENGTH:
2652 case OP_ATR_POS:
2653 case OP_ATR_VAL:
2654 case OP_ATR_MIN:
2655 case OP_ATR_MAX:
2656 case TERNOP_IN_RANGE:
2657 case BINOP_IN_BOUNDS:
2658 case UNOP_IN_RANGE:
2659 case OP_AGGREGATE:
2660 case OP_OTHERS:
2661 case OP_CHOICES:
2662 case OP_POSITIONAL:
2663 case OP_DISCRETE_RANGE:
2664 case OP_NAME:
2665 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2666 *pos += oplen;
2667 break;
2668
2669 case BINOP_ASSIGN:
2670 {
2671 struct value *arg1;
2672
2673 *pos += 1;
2674 arg1 = resolve_subexp (expp, pos, 0, NULL);
2675 if (arg1 == NULL)
2676 resolve_subexp (expp, pos, 1, NULL);
2677 else
2678 resolve_subexp (expp, pos, 1, value_type (arg1));
2679 break;
2680 }
2681
2682 case UNOP_CAST:
2683 *pos += 3;
2684 nargs = 1;
2685 break;
2686
2687 case BINOP_ADD:
2688 case BINOP_SUB:
2689 case BINOP_MUL:
2690 case BINOP_DIV:
2691 case BINOP_REM:
2692 case BINOP_MOD:
2693 case BINOP_EXP:
2694 case BINOP_CONCAT:
2695 case BINOP_LOGICAL_AND:
2696 case BINOP_LOGICAL_OR:
2697 case BINOP_BITWISE_AND:
2698 case BINOP_BITWISE_IOR:
2699 case BINOP_BITWISE_XOR:
2700
2701 case BINOP_EQUAL:
2702 case BINOP_NOTEQUAL:
2703 case BINOP_LESS:
2704 case BINOP_GTR:
2705 case BINOP_LEQ:
2706 case BINOP_GEQ:
2707
2708 case BINOP_REPEAT:
2709 case BINOP_SUBSCRIPT:
2710 case BINOP_COMMA:
2711 *pos += 1;
2712 nargs = 2;
2713 break;
2714
2715 case UNOP_NEG:
2716 case UNOP_PLUS:
2717 case UNOP_LOGICAL_NOT:
2718 case UNOP_ABS:
2719 case UNOP_IND:
2720 *pos += 1;
2721 nargs = 1;
2722 break;
2723
2724 case OP_LONG:
2725 case OP_DOUBLE:
2726 case OP_VAR_VALUE:
2727 *pos += 4;
2728 break;
2729
2730 case OP_TYPE:
2731 case OP_BOOL:
2732 case OP_LAST:
2733 case OP_INTERNALVAR:
2734 *pos += 3;
2735 break;
2736
2737 case UNOP_MEMVAL:
2738 *pos += 3;
2739 nargs = 1;
2740 break;
2741
2742 case OP_REGISTER:
2743 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2744 break;
2745
2746 case STRUCTOP_STRUCT:
2747 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2748 nargs = 1;
2749 break;
2750
2751 case TERNOP_SLICE:
2752 *pos += 1;
2753 nargs = 3;
2754 break;
2755
2756 case OP_STRING:
2757 break;
2758
2759 default:
2760 error (_("Unexpected operator during name resolution"));
2761 }
2762
2763 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2764 for (i = 0; i < nargs; i += 1)
2765 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2766 argvec[i] = NULL;
2767 exp = *expp;
2768
2769 /* Pass two: perform any resolution on principal operator. */
2770 switch (op)
2771 {
2772 default:
2773 break;
2774
2775 case OP_VAR_VALUE:
2776 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2777 {
2778 struct ada_symbol_info *candidates;
2779 int n_candidates;
2780
2781 n_candidates =
2782 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2783 (exp->elts[pc + 2].symbol),
2784 exp->elts[pc + 1].block, VAR_DOMAIN,
2785 &candidates);
2786
2787 if (n_candidates > 1)
2788 {
2789 /* Types tend to get re-introduced locally, so if there
2790 are any local symbols that are not types, first filter
2791 out all types. */
2792 int j;
2793 for (j = 0; j < n_candidates; j += 1)
2794 switch (SYMBOL_CLASS (candidates[j].sym))
2795 {
2796 case LOC_REGISTER:
2797 case LOC_ARG:
2798 case LOC_REF_ARG:
2799 case LOC_REGPARM_ADDR:
2800 case LOC_LOCAL:
2801 case LOC_COMPUTED:
2802 goto FoundNonType;
2803 default:
2804 break;
2805 }
2806 FoundNonType:
2807 if (j < n_candidates)
2808 {
2809 j = 0;
2810 while (j < n_candidates)
2811 {
2812 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2813 {
2814 candidates[j] = candidates[n_candidates - 1];
2815 n_candidates -= 1;
2816 }
2817 else
2818 j += 1;
2819 }
2820 }
2821 }
2822
2823 if (n_candidates == 0)
2824 error (_("No definition found for %s"),
2825 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2826 else if (n_candidates == 1)
2827 i = 0;
2828 else if (deprocedure_p
2829 && !is_nonfunction (candidates, n_candidates))
2830 {
2831 i = ada_resolve_function
2832 (candidates, n_candidates, NULL, 0,
2833 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2834 context_type);
2835 if (i < 0)
2836 error (_("Could not find a match for %s"),
2837 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2838 }
2839 else
2840 {
2841 printf_filtered (_("Multiple matches for %s\n"),
2842 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2843 user_select_syms (candidates, n_candidates, 1);
2844 i = 0;
2845 }
2846
2847 exp->elts[pc + 1].block = candidates[i].block;
2848 exp->elts[pc + 2].symbol = candidates[i].sym;
2849 if (innermost_block == NULL
2850 || contained_in (candidates[i].block, innermost_block))
2851 innermost_block = candidates[i].block;
2852 }
2853
2854 if (deprocedure_p
2855 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2856 == TYPE_CODE_FUNC))
2857 {
2858 replace_operator_with_call (expp, pc, 0, 0,
2859 exp->elts[pc + 2].symbol,
2860 exp->elts[pc + 1].block);
2861 exp = *expp;
2862 }
2863 break;
2864
2865 case OP_FUNCALL:
2866 {
2867 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2868 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2869 {
2870 struct ada_symbol_info *candidates;
2871 int n_candidates;
2872
2873 n_candidates =
2874 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2875 (exp->elts[pc + 5].symbol),
2876 exp->elts[pc + 4].block, VAR_DOMAIN,
2877 &candidates);
2878 if (n_candidates == 1)
2879 i = 0;
2880 else
2881 {
2882 i = ada_resolve_function
2883 (candidates, n_candidates,
2884 argvec, nargs,
2885 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2886 context_type);
2887 if (i < 0)
2888 error (_("Could not find a match for %s"),
2889 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2890 }
2891
2892 exp->elts[pc + 4].block = candidates[i].block;
2893 exp->elts[pc + 5].symbol = candidates[i].sym;
2894 if (innermost_block == NULL
2895 || contained_in (candidates[i].block, innermost_block))
2896 innermost_block = candidates[i].block;
2897 }
2898 }
2899 break;
2900 case BINOP_ADD:
2901 case BINOP_SUB:
2902 case BINOP_MUL:
2903 case BINOP_DIV:
2904 case BINOP_REM:
2905 case BINOP_MOD:
2906 case BINOP_CONCAT:
2907 case BINOP_BITWISE_AND:
2908 case BINOP_BITWISE_IOR:
2909 case BINOP_BITWISE_XOR:
2910 case BINOP_EQUAL:
2911 case BINOP_NOTEQUAL:
2912 case BINOP_LESS:
2913 case BINOP_GTR:
2914 case BINOP_LEQ:
2915 case BINOP_GEQ:
2916 case BINOP_EXP:
2917 case UNOP_NEG:
2918 case UNOP_PLUS:
2919 case UNOP_LOGICAL_NOT:
2920 case UNOP_ABS:
2921 if (possible_user_operator_p (op, argvec))
2922 {
2923 struct ada_symbol_info *candidates;
2924 int n_candidates;
2925
2926 n_candidates =
2927 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2928 (struct block *) NULL, VAR_DOMAIN,
2929 &candidates);
2930 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2931 ada_decoded_op_name (op), NULL);
2932 if (i < 0)
2933 break;
2934
2935 replace_operator_with_call (expp, pc, nargs, 1,
2936 candidates[i].sym, candidates[i].block);
2937 exp = *expp;
2938 }
2939 break;
2940
2941 case OP_TYPE:
2942 case OP_REGISTER:
2943 return NULL;
2944 }
2945
2946 *pos = pc;
2947 return evaluate_subexp_type (exp, pos);
2948 }
2949
2950 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2951 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2952 a non-pointer. A type of 'void' (which is never a valid expression type)
2953 by convention matches anything. */
2954 /* The term "match" here is rather loose. The match is heuristic and
2955 liberal. FIXME: TOO liberal, in fact. */
2956
2957 static int
2958 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2959 {
2960 ftype = ada_check_typedef (ftype);
2961 atype = ada_check_typedef (atype);
2962
2963 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2964 ftype = TYPE_TARGET_TYPE (ftype);
2965 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2966 atype = TYPE_TARGET_TYPE (atype);
2967
2968 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2969 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2970 return 1;
2971
2972 switch (TYPE_CODE (ftype))
2973 {
2974 default:
2975 return 1;
2976 case TYPE_CODE_PTR:
2977 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2978 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2979 TYPE_TARGET_TYPE (atype), 0);
2980 else
2981 return (may_deref
2982 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2983 case TYPE_CODE_INT:
2984 case TYPE_CODE_ENUM:
2985 case TYPE_CODE_RANGE:
2986 switch (TYPE_CODE (atype))
2987 {
2988 case TYPE_CODE_INT:
2989 case TYPE_CODE_ENUM:
2990 case TYPE_CODE_RANGE:
2991 return 1;
2992 default:
2993 return 0;
2994 }
2995
2996 case TYPE_CODE_ARRAY:
2997 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2998 || ada_is_array_descriptor_type (atype));
2999
3000 case TYPE_CODE_STRUCT:
3001 if (ada_is_array_descriptor_type (ftype))
3002 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3003 || ada_is_array_descriptor_type (atype));
3004 else
3005 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3006 && !ada_is_array_descriptor_type (atype));
3007
3008 case TYPE_CODE_UNION:
3009 case TYPE_CODE_FLT:
3010 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3011 }
3012 }
3013
3014 /* Return non-zero if the formals of FUNC "sufficiently match" the
3015 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3016 may also be an enumeral, in which case it is treated as a 0-
3017 argument function. */
3018
3019 static int
3020 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3021 {
3022 int i;
3023 struct type *func_type = SYMBOL_TYPE (func);
3024
3025 if (SYMBOL_CLASS (func) == LOC_CONST
3026 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3027 return (n_actuals == 0);
3028 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3029 return 0;
3030
3031 if (TYPE_NFIELDS (func_type) != n_actuals)
3032 return 0;
3033
3034 for (i = 0; i < n_actuals; i += 1)
3035 {
3036 if (actuals[i] == NULL)
3037 return 0;
3038 else
3039 {
3040 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3041 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3042
3043 if (!ada_type_match (ftype, atype, 1))
3044 return 0;
3045 }
3046 }
3047 return 1;
3048 }
3049
3050 /* False iff function type FUNC_TYPE definitely does not produce a value
3051 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3052 FUNC_TYPE is not a valid function type with a non-null return type
3053 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3054
3055 static int
3056 return_match (struct type *func_type, struct type *context_type)
3057 {
3058 struct type *return_type;
3059
3060 if (func_type == NULL)
3061 return 1;
3062
3063 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3064 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3065 else
3066 return_type = base_type (func_type);
3067 if (return_type == NULL)
3068 return 1;
3069
3070 context_type = base_type (context_type);
3071
3072 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3073 return context_type == NULL || return_type == context_type;
3074 else if (context_type == NULL)
3075 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3076 else
3077 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3078 }
3079
3080
3081 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3082 function (if any) that matches the types of the NARGS arguments in
3083 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3084 that returns that type, then eliminate matches that don't. If
3085 CONTEXT_TYPE is void and there is at least one match that does not
3086 return void, eliminate all matches that do.
3087
3088 Asks the user if there is more than one match remaining. Returns -1
3089 if there is no such symbol or none is selected. NAME is used
3090 solely for messages. May re-arrange and modify SYMS in
3091 the process; the index returned is for the modified vector. */
3092
3093 static int
3094 ada_resolve_function (struct ada_symbol_info syms[],
3095 int nsyms, struct value **args, int nargs,
3096 const char *name, struct type *context_type)
3097 {
3098 int fallback;
3099 int k;
3100 int m; /* Number of hits */
3101
3102 m = 0;
3103 /* In the first pass of the loop, we only accept functions matching
3104 context_type. If none are found, we add a second pass of the loop
3105 where every function is accepted. */
3106 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3107 {
3108 for (k = 0; k < nsyms; k += 1)
3109 {
3110 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3111
3112 if (ada_args_match (syms[k].sym, args, nargs)
3113 && (fallback || return_match (type, context_type)))
3114 {
3115 syms[m] = syms[k];
3116 m += 1;
3117 }
3118 }
3119 }
3120
3121 if (m == 0)
3122 return -1;
3123 else if (m > 1)
3124 {
3125 printf_filtered (_("Multiple matches for %s\n"), name);
3126 user_select_syms (syms, m, 1);
3127 return 0;
3128 }
3129 return 0;
3130 }
3131
3132 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3133 in a listing of choices during disambiguation (see sort_choices, below).
3134 The idea is that overloadings of a subprogram name from the
3135 same package should sort in their source order. We settle for ordering
3136 such symbols by their trailing number (__N or $N). */
3137
3138 static int
3139 encoded_ordered_before (char *N0, char *N1)
3140 {
3141 if (N1 == NULL)
3142 return 0;
3143 else if (N0 == NULL)
3144 return 1;
3145 else
3146 {
3147 int k0, k1;
3148 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3149 ;
3150 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3151 ;
3152 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3153 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3154 {
3155 int n0, n1;
3156 n0 = k0;
3157 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3158 n0 -= 1;
3159 n1 = k1;
3160 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3161 n1 -= 1;
3162 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3163 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3164 }
3165 return (strcmp (N0, N1) < 0);
3166 }
3167 }
3168
3169 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3170 encoded names. */
3171
3172 static void
3173 sort_choices (struct ada_symbol_info syms[], int nsyms)
3174 {
3175 int i;
3176 for (i = 1; i < nsyms; i += 1)
3177 {
3178 struct ada_symbol_info sym = syms[i];
3179 int j;
3180
3181 for (j = i - 1; j >= 0; j -= 1)
3182 {
3183 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3184 SYMBOL_LINKAGE_NAME (sym.sym)))
3185 break;
3186 syms[j + 1] = syms[j];
3187 }
3188 syms[j + 1] = sym;
3189 }
3190 }
3191
3192 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3193 by asking the user (if necessary), returning the number selected,
3194 and setting the first elements of SYMS items. Error if no symbols
3195 selected. */
3196
3197 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3198 to be re-integrated one of these days. */
3199
3200 int
3201 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3202 {
3203 int i;
3204 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3205 int n_chosen;
3206 int first_choice = (max_results == 1) ? 1 : 2;
3207 const char *select_mode = multiple_symbols_select_mode ();
3208
3209 if (max_results < 1)
3210 error (_("Request to select 0 symbols!"));
3211 if (nsyms <= 1)
3212 return nsyms;
3213
3214 if (select_mode == multiple_symbols_cancel)
3215 error (_("\
3216 canceled because the command is ambiguous\n\
3217 See set/show multiple-symbol."));
3218
3219 /* If select_mode is "all", then return all possible symbols.
3220 Only do that if more than one symbol can be selected, of course.
3221 Otherwise, display the menu as usual. */
3222 if (select_mode == multiple_symbols_all && max_results > 1)
3223 return nsyms;
3224
3225 printf_unfiltered (_("[0] cancel\n"));
3226 if (max_results > 1)
3227 printf_unfiltered (_("[1] all\n"));
3228
3229 sort_choices (syms, nsyms);
3230
3231 for (i = 0; i < nsyms; i += 1)
3232 {
3233 if (syms[i].sym == NULL)
3234 continue;
3235
3236 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3237 {
3238 struct symtab_and_line sal =
3239 find_function_start_sal (syms[i].sym, 1);
3240 if (sal.symtab == NULL)
3241 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3242 i + first_choice,
3243 SYMBOL_PRINT_NAME (syms[i].sym),
3244 sal.line);
3245 else
3246 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3247 SYMBOL_PRINT_NAME (syms[i].sym),
3248 sal.symtab->filename, sal.line);
3249 continue;
3250 }
3251 else
3252 {
3253 int is_enumeral =
3254 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3255 && SYMBOL_TYPE (syms[i].sym) != NULL
3256 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3257 struct symtab *symtab = syms[i].sym->symtab;
3258
3259 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3260 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3261 i + first_choice,
3262 SYMBOL_PRINT_NAME (syms[i].sym),
3263 symtab->filename, SYMBOL_LINE (syms[i].sym));
3264 else if (is_enumeral
3265 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3266 {
3267 printf_unfiltered (("[%d] "), i + first_choice);
3268 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3269 gdb_stdout, -1, 0);
3270 printf_unfiltered (_("'(%s) (enumeral)\n"),
3271 SYMBOL_PRINT_NAME (syms[i].sym));
3272 }
3273 else if (symtab != NULL)
3274 printf_unfiltered (is_enumeral
3275 ? _("[%d] %s in %s (enumeral)\n")
3276 : _("[%d] %s at %s:?\n"),
3277 i + first_choice,
3278 SYMBOL_PRINT_NAME (syms[i].sym),
3279 symtab->filename);
3280 else
3281 printf_unfiltered (is_enumeral
3282 ? _("[%d] %s (enumeral)\n")
3283 : _("[%d] %s at ?\n"),
3284 i + first_choice,
3285 SYMBOL_PRINT_NAME (syms[i].sym));
3286 }
3287 }
3288
3289 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3290 "overload-choice");
3291
3292 for (i = 0; i < n_chosen; i += 1)
3293 syms[i] = syms[chosen[i]];
3294
3295 return n_chosen;
3296 }
3297
3298 /* Read and validate a set of numeric choices from the user in the
3299 range 0 .. N_CHOICES-1. Place the results in increasing
3300 order in CHOICES[0 .. N-1], and return N.
3301
3302 The user types choices as a sequence of numbers on one line
3303 separated by blanks, encoding them as follows:
3304
3305 + A choice of 0 means to cancel the selection, throwing an error.
3306 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3307 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3308
3309 The user is not allowed to choose more than MAX_RESULTS values.
3310
3311 ANNOTATION_SUFFIX, if present, is used to annotate the input
3312 prompts (for use with the -f switch). */
3313
3314 int
3315 get_selections (int *choices, int n_choices, int max_results,
3316 int is_all_choice, char *annotation_suffix)
3317 {
3318 char *args;
3319 char *prompt;
3320 int n_chosen;
3321 int first_choice = is_all_choice ? 2 : 1;
3322
3323 prompt = getenv ("PS2");
3324 if (prompt == NULL)
3325 prompt = "> ";
3326
3327 args = command_line_input (prompt, 0, annotation_suffix);
3328
3329 if (args == NULL)
3330 error_no_arg (_("one or more choice numbers"));
3331
3332 n_chosen = 0;
3333
3334 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3335 order, as given in args. Choices are validated. */
3336 while (1)
3337 {
3338 char *args2;
3339 int choice, j;
3340
3341 while (isspace (*args))
3342 args += 1;
3343 if (*args == '\0' && n_chosen == 0)
3344 error_no_arg (_("one or more choice numbers"));
3345 else if (*args == '\0')
3346 break;
3347
3348 choice = strtol (args, &args2, 10);
3349 if (args == args2 || choice < 0
3350 || choice > n_choices + first_choice - 1)
3351 error (_("Argument must be choice number"));
3352 args = args2;
3353
3354 if (choice == 0)
3355 error (_("cancelled"));
3356
3357 if (choice < first_choice)
3358 {
3359 n_chosen = n_choices;
3360 for (j = 0; j < n_choices; j += 1)
3361 choices[j] = j;
3362 break;
3363 }
3364 choice -= first_choice;
3365
3366 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3367 {
3368 }
3369
3370 if (j < 0 || choice != choices[j])
3371 {
3372 int k;
3373 for (k = n_chosen - 1; k > j; k -= 1)
3374 choices[k + 1] = choices[k];
3375 choices[j + 1] = choice;
3376 n_chosen += 1;
3377 }
3378 }
3379
3380 if (n_chosen > max_results)
3381 error (_("Select no more than %d of the above"), max_results);
3382
3383 return n_chosen;
3384 }
3385
3386 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3387 on the function identified by SYM and BLOCK, and taking NARGS
3388 arguments. Update *EXPP as needed to hold more space. */
3389
3390 static void
3391 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3392 int oplen, struct symbol *sym,
3393 struct block *block)
3394 {
3395 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3396 symbol, -oplen for operator being replaced). */
3397 struct expression *newexp = (struct expression *)
3398 xmalloc (sizeof (struct expression)
3399 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3400 struct expression *exp = *expp;
3401
3402 newexp->nelts = exp->nelts + 7 - oplen;
3403 newexp->language_defn = exp->language_defn;
3404 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3405 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3406 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3407
3408 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3409 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3410
3411 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3412 newexp->elts[pc + 4].block = block;
3413 newexp->elts[pc + 5].symbol = sym;
3414
3415 *expp = newexp;
3416 xfree (exp);
3417 }
3418
3419 /* Type-class predicates */
3420
3421 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3422 or FLOAT). */
3423
3424 static int
3425 numeric_type_p (struct type *type)
3426 {
3427 if (type == NULL)
3428 return 0;
3429 else
3430 {
3431 switch (TYPE_CODE (type))
3432 {
3433 case TYPE_CODE_INT:
3434 case TYPE_CODE_FLT:
3435 return 1;
3436 case TYPE_CODE_RANGE:
3437 return (type == TYPE_TARGET_TYPE (type)
3438 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3439 default:
3440 return 0;
3441 }
3442 }
3443 }
3444
3445 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3446
3447 static int
3448 integer_type_p (struct type *type)
3449 {
3450 if (type == NULL)
3451 return 0;
3452 else
3453 {
3454 switch (TYPE_CODE (type))
3455 {
3456 case TYPE_CODE_INT:
3457 return 1;
3458 case TYPE_CODE_RANGE:
3459 return (type == TYPE_TARGET_TYPE (type)
3460 || integer_type_p (TYPE_TARGET_TYPE (type)));
3461 default:
3462 return 0;
3463 }
3464 }
3465 }
3466
3467 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3468
3469 static int
3470 scalar_type_p (struct type *type)
3471 {
3472 if (type == NULL)
3473 return 0;
3474 else
3475 {
3476 switch (TYPE_CODE (type))
3477 {
3478 case TYPE_CODE_INT:
3479 case TYPE_CODE_RANGE:
3480 case TYPE_CODE_ENUM:
3481 case TYPE_CODE_FLT:
3482 return 1;
3483 default:
3484 return 0;
3485 }
3486 }
3487 }
3488
3489 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3490
3491 static int
3492 discrete_type_p (struct type *type)
3493 {
3494 if (type == NULL)
3495 return 0;
3496 else
3497 {
3498 switch (TYPE_CODE (type))
3499 {
3500 case TYPE_CODE_INT:
3501 case TYPE_CODE_RANGE:
3502 case TYPE_CODE_ENUM:
3503 return 1;
3504 default:
3505 return 0;
3506 }
3507 }
3508 }
3509
3510 /* Returns non-zero if OP with operands in the vector ARGS could be
3511 a user-defined function. Errs on the side of pre-defined operators
3512 (i.e., result 0). */
3513
3514 static int
3515 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3516 {
3517 struct type *type0 =
3518 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3519 struct type *type1 =
3520 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3521
3522 if (type0 == NULL)
3523 return 0;
3524
3525 switch (op)
3526 {
3527 default:
3528 return 0;
3529
3530 case BINOP_ADD:
3531 case BINOP_SUB:
3532 case BINOP_MUL:
3533 case BINOP_DIV:
3534 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3535
3536 case BINOP_REM:
3537 case BINOP_MOD:
3538 case BINOP_BITWISE_AND:
3539 case BINOP_BITWISE_IOR:
3540 case BINOP_BITWISE_XOR:
3541 return (!(integer_type_p (type0) && integer_type_p (type1)));
3542
3543 case BINOP_EQUAL:
3544 case BINOP_NOTEQUAL:
3545 case BINOP_LESS:
3546 case BINOP_GTR:
3547 case BINOP_LEQ:
3548 case BINOP_GEQ:
3549 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3550
3551 case BINOP_CONCAT:
3552 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3553
3554 case BINOP_EXP:
3555 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3556
3557 case UNOP_NEG:
3558 case UNOP_PLUS:
3559 case UNOP_LOGICAL_NOT:
3560 case UNOP_ABS:
3561 return (!numeric_type_p (type0));
3562
3563 }
3564 }
3565 \f
3566 /* Renaming */
3567
3568 /* NOTES:
3569
3570 1. In the following, we assume that a renaming type's name may
3571 have an ___XD suffix. It would be nice if this went away at some
3572 point.
3573 2. We handle both the (old) purely type-based representation of
3574 renamings and the (new) variable-based encoding. At some point,
3575 it is devoutly to be hoped that the former goes away
3576 (FIXME: hilfinger-2007-07-09).
3577 3. Subprogram renamings are not implemented, although the XRS
3578 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3579
3580 /* If SYM encodes a renaming,
3581
3582 <renaming> renames <renamed entity>,
3583
3584 sets *LEN to the length of the renamed entity's name,
3585 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3586 the string describing the subcomponent selected from the renamed
3587 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3588 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3589 are undefined). Otherwise, returns a value indicating the category
3590 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3591 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3592 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3593 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3594 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3595 may be NULL, in which case they are not assigned.
3596
3597 [Currently, however, GCC does not generate subprogram renamings.] */
3598
3599 enum ada_renaming_category
3600 ada_parse_renaming (struct symbol *sym,
3601 const char **renamed_entity, int *len,
3602 const char **renaming_expr)
3603 {
3604 enum ada_renaming_category kind;
3605 const char *info;
3606 const char *suffix;
3607
3608 if (sym == NULL)
3609 return ADA_NOT_RENAMING;
3610 switch (SYMBOL_CLASS (sym))
3611 {
3612 default:
3613 return ADA_NOT_RENAMING;
3614 case LOC_TYPEDEF:
3615 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3616 renamed_entity, len, renaming_expr);
3617 case LOC_LOCAL:
3618 case LOC_STATIC:
3619 case LOC_COMPUTED:
3620 case LOC_OPTIMIZED_OUT:
3621 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3622 if (info == NULL)
3623 return ADA_NOT_RENAMING;
3624 switch (info[5])
3625 {
3626 case '_':
3627 kind = ADA_OBJECT_RENAMING;
3628 info += 6;
3629 break;
3630 case 'E':
3631 kind = ADA_EXCEPTION_RENAMING;
3632 info += 7;
3633 break;
3634 case 'P':
3635 kind = ADA_PACKAGE_RENAMING;
3636 info += 7;
3637 break;
3638 case 'S':
3639 kind = ADA_SUBPROGRAM_RENAMING;
3640 info += 7;
3641 break;
3642 default:
3643 return ADA_NOT_RENAMING;
3644 }
3645 }
3646
3647 if (renamed_entity != NULL)
3648 *renamed_entity = info;
3649 suffix = strstr (info, "___XE");
3650 if (suffix == NULL || suffix == info)
3651 return ADA_NOT_RENAMING;
3652 if (len != NULL)
3653 *len = strlen (info) - strlen (suffix);
3654 suffix += 5;
3655 if (renaming_expr != NULL)
3656 *renaming_expr = suffix;
3657 return kind;
3658 }
3659
3660 /* Assuming TYPE encodes a renaming according to the old encoding in
3661 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3662 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3663 ADA_NOT_RENAMING otherwise. */
3664 static enum ada_renaming_category
3665 parse_old_style_renaming (struct type *type,
3666 const char **renamed_entity, int *len,
3667 const char **renaming_expr)
3668 {
3669 enum ada_renaming_category kind;
3670 const char *name;
3671 const char *info;
3672 const char *suffix;
3673
3674 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3675 || TYPE_NFIELDS (type) != 1)
3676 return ADA_NOT_RENAMING;
3677
3678 name = type_name_no_tag (type);
3679 if (name == NULL)
3680 return ADA_NOT_RENAMING;
3681
3682 name = strstr (name, "___XR");
3683 if (name == NULL)
3684 return ADA_NOT_RENAMING;
3685 switch (name[5])
3686 {
3687 case '\0':
3688 case '_':
3689 kind = ADA_OBJECT_RENAMING;
3690 break;
3691 case 'E':
3692 kind = ADA_EXCEPTION_RENAMING;
3693 break;
3694 case 'P':
3695 kind = ADA_PACKAGE_RENAMING;
3696 break;
3697 case 'S':
3698 kind = ADA_SUBPROGRAM_RENAMING;
3699 break;
3700 default:
3701 return ADA_NOT_RENAMING;
3702 }
3703
3704 info = TYPE_FIELD_NAME (type, 0);
3705 if (info == NULL)
3706 return ADA_NOT_RENAMING;
3707 if (renamed_entity != NULL)
3708 *renamed_entity = info;
3709 suffix = strstr (info, "___XE");
3710 if (renaming_expr != NULL)
3711 *renaming_expr = suffix + 5;
3712 if (suffix == NULL || suffix == info)
3713 return ADA_NOT_RENAMING;
3714 if (len != NULL)
3715 *len = suffix - info;
3716 return kind;
3717 }
3718
3719 \f
3720
3721 /* Evaluation: Function Calls */
3722
3723 /* Return an lvalue containing the value VAL. This is the identity on
3724 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3725 on the stack, using and updating *SP as the stack pointer, and
3726 returning an lvalue whose value_address points to the copy. */
3727
3728 static struct value *
3729 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3730 {
3731 if (! VALUE_LVAL (val))
3732 {
3733 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3734
3735 /* The following is taken from the structure-return code in
3736 call_function_by_hand. FIXME: Therefore, some refactoring seems
3737 indicated. */
3738 if (gdbarch_inner_than (gdbarch, 1, 2))
3739 {
3740 /* Stack grows downward. Align SP and value_address (val) after
3741 reserving sufficient space. */
3742 *sp -= len;
3743 if (gdbarch_frame_align_p (gdbarch))
3744 *sp = gdbarch_frame_align (gdbarch, *sp);
3745 set_value_address (val, *sp);
3746 }
3747 else
3748 {
3749 /* Stack grows upward. Align the frame, allocate space, and
3750 then again, re-align the frame. */
3751 if (gdbarch_frame_align_p (gdbarch))
3752 *sp = gdbarch_frame_align (gdbarch, *sp);
3753 set_value_address (val, *sp);
3754 *sp += len;
3755 if (gdbarch_frame_align_p (gdbarch))
3756 *sp = gdbarch_frame_align (gdbarch, *sp);
3757 }
3758 VALUE_LVAL (val) = lval_memory;
3759
3760 write_memory (value_address (val), value_contents_raw (val), len);
3761 }
3762
3763 return val;
3764 }
3765
3766 /* Return the value ACTUAL, converted to be an appropriate value for a
3767 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3768 allocating any necessary descriptors (fat pointers), or copies of
3769 values not residing in memory, updating it as needed. */
3770
3771 struct value *
3772 ada_convert_actual (struct value *actual, struct type *formal_type0,
3773 struct gdbarch *gdbarch, CORE_ADDR *sp)
3774 {
3775 struct type *actual_type = ada_check_typedef (value_type (actual));
3776 struct type *formal_type = ada_check_typedef (formal_type0);
3777 struct type *formal_target =
3778 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3779 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3780 struct type *actual_target =
3781 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3782 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3783
3784 if (ada_is_array_descriptor_type (formal_target)
3785 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3786 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3787 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3788 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3789 {
3790 struct value *result;
3791 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3792 && ada_is_array_descriptor_type (actual_target))
3793 result = desc_data (actual);
3794 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3795 {
3796 if (VALUE_LVAL (actual) != lval_memory)
3797 {
3798 struct value *val;
3799 actual_type = ada_check_typedef (value_type (actual));
3800 val = allocate_value (actual_type);
3801 memcpy ((char *) value_contents_raw (val),
3802 (char *) value_contents (actual),
3803 TYPE_LENGTH (actual_type));
3804 actual = ensure_lval (val, gdbarch, sp);
3805 }
3806 result = value_addr (actual);
3807 }
3808 else
3809 return actual;
3810 return value_cast_pointers (formal_type, result);
3811 }
3812 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3813 return ada_value_ind (actual);
3814
3815 return actual;
3816 }
3817
3818
3819 /* Push a descriptor of type TYPE for array value ARR on the stack at
3820 *SP, updating *SP to reflect the new descriptor. Return either
3821 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3822 to-descriptor type rather than a descriptor type), a struct value *
3823 representing a pointer to this descriptor. */
3824
3825 static struct value *
3826 make_array_descriptor (struct type *type, struct value *arr,
3827 struct gdbarch *gdbarch, CORE_ADDR *sp)
3828 {
3829 struct type *bounds_type = desc_bounds_type (type);
3830 struct type *desc_type = desc_base_type (type);
3831 struct value *descriptor = allocate_value (desc_type);
3832 struct value *bounds = allocate_value (bounds_type);
3833 int i;
3834
3835 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3836 {
3837 modify_general_field (value_contents_writeable (bounds),
3838 ada_array_bound (arr, i, 0),
3839 desc_bound_bitpos (bounds_type, i, 0),
3840 desc_bound_bitsize (bounds_type, i, 0));
3841 modify_general_field (value_contents_writeable (bounds),
3842 ada_array_bound (arr, i, 1),
3843 desc_bound_bitpos (bounds_type, i, 1),
3844 desc_bound_bitsize (bounds_type, i, 1));
3845 }
3846
3847 bounds = ensure_lval (bounds, gdbarch, sp);
3848
3849 modify_general_field (value_contents_writeable (descriptor),
3850 value_address (ensure_lval (arr, gdbarch, sp)),
3851 fat_pntr_data_bitpos (desc_type),
3852 fat_pntr_data_bitsize (desc_type));
3853
3854 modify_general_field (value_contents_writeable (descriptor),
3855 value_address (bounds),
3856 fat_pntr_bounds_bitpos (desc_type),
3857 fat_pntr_bounds_bitsize (desc_type));
3858
3859 descriptor = ensure_lval (descriptor, gdbarch, sp);
3860
3861 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3862 return value_addr (descriptor);
3863 else
3864 return descriptor;
3865 }
3866 \f
3867 /* Dummy definitions for an experimental caching module that is not
3868 * used in the public sources. */
3869
3870 static int
3871 lookup_cached_symbol (const char *name, domain_enum namespace,
3872 struct symbol **sym, struct block **block)
3873 {
3874 return 0;
3875 }
3876
3877 static void
3878 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3879 struct block *block)
3880 {
3881 }
3882 \f
3883 /* Symbol Lookup */
3884
3885 /* Return the result of a standard (literal, C-like) lookup of NAME in
3886 given DOMAIN, visible from lexical block BLOCK. */
3887
3888 static struct symbol *
3889 standard_lookup (const char *name, const struct block *block,
3890 domain_enum domain)
3891 {
3892 struct symbol *sym;
3893
3894 if (lookup_cached_symbol (name, domain, &sym, NULL))
3895 return sym;
3896 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3897 cache_symbol (name, domain, sym, block_found);
3898 return sym;
3899 }
3900
3901
3902 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3903 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3904 since they contend in overloading in the same way. */
3905 static int
3906 is_nonfunction (struct ada_symbol_info syms[], int n)
3907 {
3908 int i;
3909
3910 for (i = 0; i < n; i += 1)
3911 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3912 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3913 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3914 return 1;
3915
3916 return 0;
3917 }
3918
3919 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3920 struct types. Otherwise, they may not. */
3921
3922 static int
3923 equiv_types (struct type *type0, struct type *type1)
3924 {
3925 if (type0 == type1)
3926 return 1;
3927 if (type0 == NULL || type1 == NULL
3928 || TYPE_CODE (type0) != TYPE_CODE (type1))
3929 return 0;
3930 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3931 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3932 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3933 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3934 return 1;
3935
3936 return 0;
3937 }
3938
3939 /* True iff SYM0 represents the same entity as SYM1, or one that is
3940 no more defined than that of SYM1. */
3941
3942 static int
3943 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3944 {
3945 if (sym0 == sym1)
3946 return 1;
3947 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3948 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3949 return 0;
3950
3951 switch (SYMBOL_CLASS (sym0))
3952 {
3953 case LOC_UNDEF:
3954 return 1;
3955 case LOC_TYPEDEF:
3956 {
3957 struct type *type0 = SYMBOL_TYPE (sym0);
3958 struct type *type1 = SYMBOL_TYPE (sym1);
3959 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3960 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3961 int len0 = strlen (name0);
3962 return
3963 TYPE_CODE (type0) == TYPE_CODE (type1)
3964 && (equiv_types (type0, type1)
3965 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3966 && strncmp (name1 + len0, "___XV", 5) == 0));
3967 }
3968 case LOC_CONST:
3969 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3970 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3971 default:
3972 return 0;
3973 }
3974 }
3975
3976 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3977 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3978
3979 static void
3980 add_defn_to_vec (struct obstack *obstackp,
3981 struct symbol *sym,
3982 struct block *block)
3983 {
3984 int i;
3985 size_t tmp;
3986 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3987
3988 /* Do not try to complete stub types, as the debugger is probably
3989 already scanning all symbols matching a certain name at the
3990 time when this function is called. Trying to replace the stub
3991 type by its associated full type will cause us to restart a scan
3992 which may lead to an infinite recursion. Instead, the client
3993 collecting the matching symbols will end up collecting several
3994 matches, with at least one of them complete. It can then filter
3995 out the stub ones if needed. */
3996
3997 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3998 {
3999 if (lesseq_defined_than (sym, prevDefns[i].sym))
4000 return;
4001 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4002 {
4003 prevDefns[i].sym = sym;
4004 prevDefns[i].block = block;
4005 return;
4006 }
4007 }
4008
4009 {
4010 struct ada_symbol_info info;
4011
4012 info.sym = sym;
4013 info.block = block;
4014 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4015 }
4016 }
4017
4018 /* Number of ada_symbol_info structures currently collected in
4019 current vector in *OBSTACKP. */
4020
4021 static int
4022 num_defns_collected (struct obstack *obstackp)
4023 {
4024 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4025 }
4026
4027 /* Vector of ada_symbol_info structures currently collected in current
4028 vector in *OBSTACKP. If FINISH, close off the vector and return
4029 its final address. */
4030
4031 static struct ada_symbol_info *
4032 defns_collected (struct obstack *obstackp, int finish)
4033 {
4034 if (finish)
4035 return obstack_finish (obstackp);
4036 else
4037 return (struct ada_symbol_info *) obstack_base (obstackp);
4038 }
4039
4040 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4041 Check the global symbols if GLOBAL, the static symbols if not.
4042 Do wild-card match if WILD. */
4043
4044 static struct partial_symbol *
4045 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4046 int global, domain_enum namespace, int wild)
4047 {
4048 struct partial_symbol **start;
4049 int name_len = strlen (name);
4050 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4051 int i;
4052
4053 if (length == 0)
4054 {
4055 return (NULL);
4056 }
4057
4058 start = (global ?
4059 pst->objfile->global_psymbols.list + pst->globals_offset :
4060 pst->objfile->static_psymbols.list + pst->statics_offset);
4061
4062 if (wild)
4063 {
4064 for (i = 0; i < length; i += 1)
4065 {
4066 struct partial_symbol *psym = start[i];
4067
4068 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4069 SYMBOL_DOMAIN (psym), namespace)
4070 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4071 return psym;
4072 }
4073 return NULL;
4074 }
4075 else
4076 {
4077 if (global)
4078 {
4079 int U;
4080 i = 0;
4081 U = length - 1;
4082 while (U - i > 4)
4083 {
4084 int M = (U + i) >> 1;
4085 struct partial_symbol *psym = start[M];
4086 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4087 i = M + 1;
4088 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4089 U = M - 1;
4090 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4091 i = M + 1;
4092 else
4093 U = M;
4094 }
4095 }
4096 else
4097 i = 0;
4098
4099 while (i < length)
4100 {
4101 struct partial_symbol *psym = start[i];
4102
4103 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4104 SYMBOL_DOMAIN (psym), namespace))
4105 {
4106 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4107
4108 if (cmp < 0)
4109 {
4110 if (global)
4111 break;
4112 }
4113 else if (cmp == 0
4114 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4115 + name_len))
4116 return psym;
4117 }
4118 i += 1;
4119 }
4120
4121 if (global)
4122 {
4123 int U;
4124 i = 0;
4125 U = length - 1;
4126 while (U - i > 4)
4127 {
4128 int M = (U + i) >> 1;
4129 struct partial_symbol *psym = start[M];
4130 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4131 i = M + 1;
4132 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4133 U = M - 1;
4134 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4135 i = M + 1;
4136 else
4137 U = M;
4138 }
4139 }
4140 else
4141 i = 0;
4142
4143 while (i < length)
4144 {
4145 struct partial_symbol *psym = start[i];
4146
4147 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4148 SYMBOL_DOMAIN (psym), namespace))
4149 {
4150 int cmp;
4151
4152 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4153 if (cmp == 0)
4154 {
4155 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4156 if (cmp == 0)
4157 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4158 name_len);
4159 }
4160
4161 if (cmp < 0)
4162 {
4163 if (global)
4164 break;
4165 }
4166 else if (cmp == 0
4167 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4168 + name_len + 5))
4169 return psym;
4170 }
4171 i += 1;
4172 }
4173 }
4174 return NULL;
4175 }
4176
4177 /* Return a minimal symbol matching NAME according to Ada decoding
4178 rules. Returns NULL if there is no such minimal symbol. Names
4179 prefixed with "standard__" are handled specially: "standard__" is
4180 first stripped off, and only static and global symbols are searched. */
4181
4182 struct minimal_symbol *
4183 ada_lookup_simple_minsym (const char *name)
4184 {
4185 struct objfile *objfile;
4186 struct minimal_symbol *msymbol;
4187 int wild_match;
4188
4189 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4190 {
4191 name += sizeof ("standard__") - 1;
4192 wild_match = 0;
4193 }
4194 else
4195 wild_match = (strstr (name, "__") == NULL);
4196
4197 ALL_MSYMBOLS (objfile, msymbol)
4198 {
4199 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4200 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4201 return msymbol;
4202 }
4203
4204 return NULL;
4205 }
4206
4207 /* For all subprograms that statically enclose the subprogram of the
4208 selected frame, add symbols matching identifier NAME in DOMAIN
4209 and their blocks to the list of data in OBSTACKP, as for
4210 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4211 wildcard prefix. */
4212
4213 static void
4214 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4215 const char *name, domain_enum namespace,
4216 int wild_match)
4217 {
4218 }
4219
4220 /* True if TYPE is definitely an artificial type supplied to a symbol
4221 for which no debugging information was given in the symbol file. */
4222
4223 static int
4224 is_nondebugging_type (struct type *type)
4225 {
4226 char *name = ada_type_name (type);
4227 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4228 }
4229
4230 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4231 duplicate other symbols in the list (The only case I know of where
4232 this happens is when object files containing stabs-in-ecoff are
4233 linked with files containing ordinary ecoff debugging symbols (or no
4234 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4235 Returns the number of items in the modified list. */
4236
4237 static int
4238 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4239 {
4240 int i, j;
4241
4242 i = 0;
4243 while (i < nsyms)
4244 {
4245 int remove = 0;
4246
4247 /* If two symbols have the same name and one of them is a stub type,
4248 the get rid of the stub. */
4249
4250 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4251 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4252 {
4253 for (j = 0; j < nsyms; j++)
4254 {
4255 if (j != i
4256 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4257 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4258 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4259 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4260 remove = 1;
4261 }
4262 }
4263
4264 /* Two symbols with the same name, same class and same address
4265 should be identical. */
4266
4267 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4268 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4269 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4270 {
4271 for (j = 0; j < nsyms; j += 1)
4272 {
4273 if (i != j
4274 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4275 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4276 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4277 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4278 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4279 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4280 remove = 1;
4281 }
4282 }
4283
4284 if (remove)
4285 {
4286 for (j = i + 1; j < nsyms; j += 1)
4287 syms[j - 1] = syms[j];
4288 nsyms -= 1;
4289 }
4290
4291 i += 1;
4292 }
4293 return nsyms;
4294 }
4295
4296 /* Given a type that corresponds to a renaming entity, use the type name
4297 to extract the scope (package name or function name, fully qualified,
4298 and following the GNAT encoding convention) where this renaming has been
4299 defined. The string returned needs to be deallocated after use. */
4300
4301 static char *
4302 xget_renaming_scope (struct type *renaming_type)
4303 {
4304 /* The renaming types adhere to the following convention:
4305 <scope>__<rename>___<XR extension>.
4306 So, to extract the scope, we search for the "___XR" extension,
4307 and then backtrack until we find the first "__". */
4308
4309 const char *name = type_name_no_tag (renaming_type);
4310 char *suffix = strstr (name, "___XR");
4311 char *last;
4312 int scope_len;
4313 char *scope;
4314
4315 /* Now, backtrack a bit until we find the first "__". Start looking
4316 at suffix - 3, as the <rename> part is at least one character long. */
4317
4318 for (last = suffix - 3; last > name; last--)
4319 if (last[0] == '_' && last[1] == '_')
4320 break;
4321
4322 /* Make a copy of scope and return it. */
4323
4324 scope_len = last - name;
4325 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4326
4327 strncpy (scope, name, scope_len);
4328 scope[scope_len] = '\0';
4329
4330 return scope;
4331 }
4332
4333 /* Return nonzero if NAME corresponds to a package name. */
4334
4335 static int
4336 is_package_name (const char *name)
4337 {
4338 /* Here, We take advantage of the fact that no symbols are generated
4339 for packages, while symbols are generated for each function.
4340 So the condition for NAME represent a package becomes equivalent
4341 to NAME not existing in our list of symbols. There is only one
4342 small complication with library-level functions (see below). */
4343
4344 char *fun_name;
4345
4346 /* If it is a function that has not been defined at library level,
4347 then we should be able to look it up in the symbols. */
4348 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4349 return 0;
4350
4351 /* Library-level function names start with "_ada_". See if function
4352 "_ada_" followed by NAME can be found. */
4353
4354 /* Do a quick check that NAME does not contain "__", since library-level
4355 functions names cannot contain "__" in them. */
4356 if (strstr (name, "__") != NULL)
4357 return 0;
4358
4359 fun_name = xstrprintf ("_ada_%s", name);
4360
4361 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4362 }
4363
4364 /* Return nonzero if SYM corresponds to a renaming entity that is
4365 not visible from FUNCTION_NAME. */
4366
4367 static int
4368 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4369 {
4370 char *scope;
4371
4372 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4373 return 0;
4374
4375 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4376
4377 make_cleanup (xfree, scope);
4378
4379 /* If the rename has been defined in a package, then it is visible. */
4380 if (is_package_name (scope))
4381 return 0;
4382
4383 /* Check that the rename is in the current function scope by checking
4384 that its name starts with SCOPE. */
4385
4386 /* If the function name starts with "_ada_", it means that it is
4387 a library-level function. Strip this prefix before doing the
4388 comparison, as the encoding for the renaming does not contain
4389 this prefix. */
4390 if (strncmp (function_name, "_ada_", 5) == 0)
4391 function_name += 5;
4392
4393 return (strncmp (function_name, scope, strlen (scope)) != 0);
4394 }
4395
4396 /* Remove entries from SYMS that corresponds to a renaming entity that
4397 is not visible from the function associated with CURRENT_BLOCK or
4398 that is superfluous due to the presence of more specific renaming
4399 information. Places surviving symbols in the initial entries of
4400 SYMS and returns the number of surviving symbols.
4401
4402 Rationale:
4403 First, in cases where an object renaming is implemented as a
4404 reference variable, GNAT may produce both the actual reference
4405 variable and the renaming encoding. In this case, we discard the
4406 latter.
4407
4408 Second, GNAT emits a type following a specified encoding for each renaming
4409 entity. Unfortunately, STABS currently does not support the definition
4410 of types that are local to a given lexical block, so all renamings types
4411 are emitted at library level. As a consequence, if an application
4412 contains two renaming entities using the same name, and a user tries to
4413 print the value of one of these entities, the result of the ada symbol
4414 lookup will also contain the wrong renaming type.
4415
4416 This function partially covers for this limitation by attempting to
4417 remove from the SYMS list renaming symbols that should be visible
4418 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4419 method with the current information available. The implementation
4420 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4421
4422 - When the user tries to print a rename in a function while there
4423 is another rename entity defined in a package: Normally, the
4424 rename in the function has precedence over the rename in the
4425 package, so the latter should be removed from the list. This is
4426 currently not the case.
4427
4428 - This function will incorrectly remove valid renames if
4429 the CURRENT_BLOCK corresponds to a function which symbol name
4430 has been changed by an "Export" pragma. As a consequence,
4431 the user will be unable to print such rename entities. */
4432
4433 static int
4434 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4435 int nsyms, const struct block *current_block)
4436 {
4437 struct symbol *current_function;
4438 char *current_function_name;
4439 int i;
4440 int is_new_style_renaming;
4441
4442 /* If there is both a renaming foo___XR... encoded as a variable and
4443 a simple variable foo in the same block, discard the latter.
4444 First, zero out such symbols, then compress. */
4445 is_new_style_renaming = 0;
4446 for (i = 0; i < nsyms; i += 1)
4447 {
4448 struct symbol *sym = syms[i].sym;
4449 struct block *block = syms[i].block;
4450 const char *name;
4451 const char *suffix;
4452
4453 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4454 continue;
4455 name = SYMBOL_LINKAGE_NAME (sym);
4456 suffix = strstr (name, "___XR");
4457
4458 if (suffix != NULL)
4459 {
4460 int name_len = suffix - name;
4461 int j;
4462 is_new_style_renaming = 1;
4463 for (j = 0; j < nsyms; j += 1)
4464 if (i != j && syms[j].sym != NULL
4465 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4466 name_len) == 0
4467 && block == syms[j].block)
4468 syms[j].sym = NULL;
4469 }
4470 }
4471 if (is_new_style_renaming)
4472 {
4473 int j, k;
4474
4475 for (j = k = 0; j < nsyms; j += 1)
4476 if (syms[j].sym != NULL)
4477 {
4478 syms[k] = syms[j];
4479 k += 1;
4480 }
4481 return k;
4482 }
4483
4484 /* Extract the function name associated to CURRENT_BLOCK.
4485 Abort if unable to do so. */
4486
4487 if (current_block == NULL)
4488 return nsyms;
4489
4490 current_function = block_linkage_function (current_block);
4491 if (current_function == NULL)
4492 return nsyms;
4493
4494 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4495 if (current_function_name == NULL)
4496 return nsyms;
4497
4498 /* Check each of the symbols, and remove it from the list if it is
4499 a type corresponding to a renaming that is out of the scope of
4500 the current block. */
4501
4502 i = 0;
4503 while (i < nsyms)
4504 {
4505 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4506 == ADA_OBJECT_RENAMING
4507 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4508 {
4509 int j;
4510 for (j = i + 1; j < nsyms; j += 1)
4511 syms[j - 1] = syms[j];
4512 nsyms -= 1;
4513 }
4514 else
4515 i += 1;
4516 }
4517
4518 return nsyms;
4519 }
4520
4521 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4522 whose name and domain match NAME and DOMAIN respectively.
4523 If no match was found, then extend the search to "enclosing"
4524 routines (in other words, if we're inside a nested function,
4525 search the symbols defined inside the enclosing functions).
4526
4527 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4528
4529 static void
4530 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4531 struct block *block, domain_enum domain,
4532 int wild_match)
4533 {
4534 int block_depth = 0;
4535
4536 while (block != NULL)
4537 {
4538 block_depth += 1;
4539 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4540
4541 /* If we found a non-function match, assume that's the one. */
4542 if (is_nonfunction (defns_collected (obstackp, 0),
4543 num_defns_collected (obstackp)))
4544 return;
4545
4546 block = BLOCK_SUPERBLOCK (block);
4547 }
4548
4549 /* If no luck so far, try to find NAME as a local symbol in some lexically
4550 enclosing subprogram. */
4551 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4552 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4553 }
4554
4555 /* Add to OBSTACKP all non-local symbols whose name and domain match
4556 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4557 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4558
4559 static void
4560 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4561 domain_enum domain, int global,
4562 int wild_match)
4563 {
4564 struct objfile *objfile;
4565 struct partial_symtab *ps;
4566
4567 ALL_PSYMTABS (objfile, ps)
4568 {
4569 QUIT;
4570 if (ps->readin
4571 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4572 {
4573 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4574 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4575
4576 if (s == NULL || !s->primary)
4577 continue;
4578 ada_add_block_symbols (obstackp,
4579 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4580 name, domain, objfile, wild_match);
4581 }
4582 }
4583 }
4584
4585 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4586 scope and in global scopes, returning the number of matches. Sets
4587 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4588 indicating the symbols found and the blocks and symbol tables (if
4589 any) in which they were found. This vector are transient---good only to
4590 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4591 symbol match within the nest of blocks whose innermost member is BLOCK0,
4592 is the one match returned (no other matches in that or
4593 enclosing blocks is returned). If there are any matches in or
4594 surrounding BLOCK0, then these alone are returned. Otherwise, the
4595 search extends to global and file-scope (static) symbol tables.
4596 Names prefixed with "standard__" are handled specially: "standard__"
4597 is first stripped off, and only static and global symbols are searched. */
4598
4599 int
4600 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4601 domain_enum namespace,
4602 struct ada_symbol_info **results)
4603 {
4604 struct symbol *sym;
4605 struct block *block;
4606 const char *name;
4607 int wild_match;
4608 int cacheIfUnique;
4609 int ndefns;
4610
4611 obstack_free (&symbol_list_obstack, NULL);
4612 obstack_init (&symbol_list_obstack);
4613
4614 cacheIfUnique = 0;
4615
4616 /* Search specified block and its superiors. */
4617
4618 wild_match = (strstr (name0, "__") == NULL);
4619 name = name0;
4620 block = (struct block *) block0; /* FIXME: No cast ought to be
4621 needed, but adding const will
4622 have a cascade effect. */
4623
4624 /* Special case: If the user specifies a symbol name inside package
4625 Standard, do a non-wild matching of the symbol name without
4626 the "standard__" prefix. This was primarily introduced in order
4627 to allow the user to specifically access the standard exceptions
4628 using, for instance, Standard.Constraint_Error when Constraint_Error
4629 is ambiguous (due to the user defining its own Constraint_Error
4630 entity inside its program). */
4631 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4632 {
4633 wild_match = 0;
4634 block = NULL;
4635 name = name0 + sizeof ("standard__") - 1;
4636 }
4637
4638 /* Check the non-global symbols. If we have ANY match, then we're done. */
4639
4640 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4641 wild_match);
4642 if (num_defns_collected (&symbol_list_obstack) > 0)
4643 goto done;
4644
4645 /* No non-global symbols found. Check our cache to see if we have
4646 already performed this search before. If we have, then return
4647 the same result. */
4648
4649 cacheIfUnique = 1;
4650 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4651 {
4652 if (sym != NULL)
4653 add_defn_to_vec (&symbol_list_obstack, sym, block);
4654 goto done;
4655 }
4656
4657 /* Search symbols from all global blocks. */
4658
4659 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4660 wild_match);
4661
4662 /* Now add symbols from all per-file blocks if we've gotten no hits
4663 (not strictly correct, but perhaps better than an error). */
4664
4665 if (num_defns_collected (&symbol_list_obstack) == 0)
4666 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4667 wild_match);
4668
4669 done:
4670 ndefns = num_defns_collected (&symbol_list_obstack);
4671 *results = defns_collected (&symbol_list_obstack, 1);
4672
4673 ndefns = remove_extra_symbols (*results, ndefns);
4674
4675 if (ndefns == 0)
4676 cache_symbol (name0, namespace, NULL, NULL);
4677
4678 if (ndefns == 1 && cacheIfUnique)
4679 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4680
4681 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4682
4683 return ndefns;
4684 }
4685
4686 struct symbol *
4687 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4688 domain_enum namespace, struct block **block_found)
4689 {
4690 struct ada_symbol_info *candidates;
4691 int n_candidates;
4692
4693 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4694
4695 if (n_candidates == 0)
4696 return NULL;
4697
4698 if (block_found != NULL)
4699 *block_found = candidates[0].block;
4700
4701 return fixup_symbol_section (candidates[0].sym, NULL);
4702 }
4703
4704 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4705 scope and in global scopes, or NULL if none. NAME is folded and
4706 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4707 choosing the first symbol if there are multiple choices.
4708 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4709 table in which the symbol was found (in both cases, these
4710 assignments occur only if the pointers are non-null). */
4711 struct symbol *
4712 ada_lookup_symbol (const char *name, const struct block *block0,
4713 domain_enum namespace, int *is_a_field_of_this)
4714 {
4715 if (is_a_field_of_this != NULL)
4716 *is_a_field_of_this = 0;
4717
4718 return
4719 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4720 block0, namespace, NULL);
4721 }
4722
4723 static struct symbol *
4724 ada_lookup_symbol_nonlocal (const char *name,
4725 const char *linkage_name,
4726 const struct block *block,
4727 const domain_enum domain)
4728 {
4729 if (linkage_name == NULL)
4730 linkage_name = name;
4731 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4732 NULL);
4733 }
4734
4735
4736 /* True iff STR is a possible encoded suffix of a normal Ada name
4737 that is to be ignored for matching purposes. Suffixes of parallel
4738 names (e.g., XVE) are not included here. Currently, the possible suffixes
4739 are given by any of the regular expressions:
4740
4741 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4742 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4743 _E[0-9]+[bs]$ [protected object entry suffixes]
4744 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4745
4746 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4747 match is performed. This sequence is used to differentiate homonyms,
4748 is an optional part of a valid name suffix. */
4749
4750 static int
4751 is_name_suffix (const char *str)
4752 {
4753 int k;
4754 const char *matching;
4755 const int len = strlen (str);
4756
4757 /* Skip optional leading __[0-9]+. */
4758
4759 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4760 {
4761 str += 3;
4762 while (isdigit (str[0]))
4763 str += 1;
4764 }
4765
4766 /* [.$][0-9]+ */
4767
4768 if (str[0] == '.' || str[0] == '$')
4769 {
4770 matching = str + 1;
4771 while (isdigit (matching[0]))
4772 matching += 1;
4773 if (matching[0] == '\0')
4774 return 1;
4775 }
4776
4777 /* ___[0-9]+ */
4778
4779 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4780 {
4781 matching = str + 3;
4782 while (isdigit (matching[0]))
4783 matching += 1;
4784 if (matching[0] == '\0')
4785 return 1;
4786 }
4787
4788 #if 0
4789 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4790 with a N at the end. Unfortunately, the compiler uses the same
4791 convention for other internal types it creates. So treating
4792 all entity names that end with an "N" as a name suffix causes
4793 some regressions. For instance, consider the case of an enumerated
4794 type. To support the 'Image attribute, it creates an array whose
4795 name ends with N.
4796 Having a single character like this as a suffix carrying some
4797 information is a bit risky. Perhaps we should change the encoding
4798 to be something like "_N" instead. In the meantime, do not do
4799 the following check. */
4800 /* Protected Object Subprograms */
4801 if (len == 1 && str [0] == 'N')
4802 return 1;
4803 #endif
4804
4805 /* _E[0-9]+[bs]$ */
4806 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4807 {
4808 matching = str + 3;
4809 while (isdigit (matching[0]))
4810 matching += 1;
4811 if ((matching[0] == 'b' || matching[0] == 's')
4812 && matching [1] == '\0')
4813 return 1;
4814 }
4815
4816 /* ??? We should not modify STR directly, as we are doing below. This
4817 is fine in this case, but may become problematic later if we find
4818 that this alternative did not work, and want to try matching
4819 another one from the begining of STR. Since we modified it, we
4820 won't be able to find the begining of the string anymore! */
4821 if (str[0] == 'X')
4822 {
4823 str += 1;
4824 while (str[0] != '_' && str[0] != '\0')
4825 {
4826 if (str[0] != 'n' && str[0] != 'b')
4827 return 0;
4828 str += 1;
4829 }
4830 }
4831
4832 if (str[0] == '\000')
4833 return 1;
4834
4835 if (str[0] == '_')
4836 {
4837 if (str[1] != '_' || str[2] == '\000')
4838 return 0;
4839 if (str[2] == '_')
4840 {
4841 if (strcmp (str + 3, "JM") == 0)
4842 return 1;
4843 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4844 the LJM suffix in favor of the JM one. But we will
4845 still accept LJM as a valid suffix for a reasonable
4846 amount of time, just to allow ourselves to debug programs
4847 compiled using an older version of GNAT. */
4848 if (strcmp (str + 3, "LJM") == 0)
4849 return 1;
4850 if (str[3] != 'X')
4851 return 0;
4852 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4853 || str[4] == 'U' || str[4] == 'P')
4854 return 1;
4855 if (str[4] == 'R' && str[5] != 'T')
4856 return 1;
4857 return 0;
4858 }
4859 if (!isdigit (str[2]))
4860 return 0;
4861 for (k = 3; str[k] != '\0'; k += 1)
4862 if (!isdigit (str[k]) && str[k] != '_')
4863 return 0;
4864 return 1;
4865 }
4866 if (str[0] == '$' && isdigit (str[1]))
4867 {
4868 for (k = 2; str[k] != '\0'; k += 1)
4869 if (!isdigit (str[k]) && str[k] != '_')
4870 return 0;
4871 return 1;
4872 }
4873 return 0;
4874 }
4875
4876 /* Return non-zero if the string starting at NAME and ending before
4877 NAME_END contains no capital letters. */
4878
4879 static int
4880 is_valid_name_for_wild_match (const char *name0)
4881 {
4882 const char *decoded_name = ada_decode (name0);
4883 int i;
4884
4885 /* If the decoded name starts with an angle bracket, it means that
4886 NAME0 does not follow the GNAT encoding format. It should then
4887 not be allowed as a possible wild match. */
4888 if (decoded_name[0] == '<')
4889 return 0;
4890
4891 for (i=0; decoded_name[i] != '\0'; i++)
4892 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4893 return 0;
4894
4895 return 1;
4896 }
4897
4898 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4899 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4900 informational suffixes of NAME (i.e., for which is_name_suffix is
4901 true). */
4902
4903 static int
4904 wild_match (const char *patn0, int patn_len, const char *name0)
4905 {
4906 char* match;
4907 const char* start;
4908 start = name0;
4909 while (1)
4910 {
4911 match = strstr (start, patn0);
4912 if (match == NULL)
4913 return 0;
4914 if ((match == name0
4915 || match[-1] == '.'
4916 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4917 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4918 && is_name_suffix (match + patn_len))
4919 return (match == name0 || is_valid_name_for_wild_match (name0));
4920 start = match + 1;
4921 }
4922 }
4923
4924 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4925 vector *defn_symbols, updating the list of symbols in OBSTACKP
4926 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4927 OBJFILE is the section containing BLOCK.
4928 SYMTAB is recorded with each symbol added. */
4929
4930 static void
4931 ada_add_block_symbols (struct obstack *obstackp,
4932 struct block *block, const char *name,
4933 domain_enum domain, struct objfile *objfile,
4934 int wild)
4935 {
4936 struct dict_iterator iter;
4937 int name_len = strlen (name);
4938 /* A matching argument symbol, if any. */
4939 struct symbol *arg_sym;
4940 /* Set true when we find a matching non-argument symbol. */
4941 int found_sym;
4942 struct symbol *sym;
4943
4944 arg_sym = NULL;
4945 found_sym = 0;
4946 if (wild)
4947 {
4948 struct symbol *sym;
4949 ALL_BLOCK_SYMBOLS (block, iter, sym)
4950 {
4951 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4952 SYMBOL_DOMAIN (sym), domain)
4953 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4954 {
4955 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4956 continue;
4957 else if (SYMBOL_IS_ARGUMENT (sym))
4958 arg_sym = sym;
4959 else
4960 {
4961 found_sym = 1;
4962 add_defn_to_vec (obstackp,
4963 fixup_symbol_section (sym, objfile),
4964 block);
4965 }
4966 }
4967 }
4968 }
4969 else
4970 {
4971 ALL_BLOCK_SYMBOLS (block, iter, sym)
4972 {
4973 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4974 SYMBOL_DOMAIN (sym), domain))
4975 {
4976 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4977 if (cmp == 0
4978 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4979 {
4980 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4981 {
4982 if (SYMBOL_IS_ARGUMENT (sym))
4983 arg_sym = sym;
4984 else
4985 {
4986 found_sym = 1;
4987 add_defn_to_vec (obstackp,
4988 fixup_symbol_section (sym, objfile),
4989 block);
4990 }
4991 }
4992 }
4993 }
4994 }
4995 }
4996
4997 if (!found_sym && arg_sym != NULL)
4998 {
4999 add_defn_to_vec (obstackp,
5000 fixup_symbol_section (arg_sym, objfile),
5001 block);
5002 }
5003
5004 if (!wild)
5005 {
5006 arg_sym = NULL;
5007 found_sym = 0;
5008
5009 ALL_BLOCK_SYMBOLS (block, iter, sym)
5010 {
5011 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5012 SYMBOL_DOMAIN (sym), domain))
5013 {
5014 int cmp;
5015
5016 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5017 if (cmp == 0)
5018 {
5019 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5020 if (cmp == 0)
5021 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5022 name_len);
5023 }
5024
5025 if (cmp == 0
5026 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5027 {
5028 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5029 {
5030 if (SYMBOL_IS_ARGUMENT (sym))
5031 arg_sym = sym;
5032 else
5033 {
5034 found_sym = 1;
5035 add_defn_to_vec (obstackp,
5036 fixup_symbol_section (sym, objfile),
5037 block);
5038 }
5039 }
5040 }
5041 }
5042 }
5043
5044 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5045 They aren't parameters, right? */
5046 if (!found_sym && arg_sym != NULL)
5047 {
5048 add_defn_to_vec (obstackp,
5049 fixup_symbol_section (arg_sym, objfile),
5050 block);
5051 }
5052 }
5053 }
5054 \f
5055
5056 /* Symbol Completion */
5057
5058 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5059 name in a form that's appropriate for the completion. The result
5060 does not need to be deallocated, but is only good until the next call.
5061
5062 TEXT_LEN is equal to the length of TEXT.
5063 Perform a wild match if WILD_MATCH is set.
5064 ENCODED should be set if TEXT represents the start of a symbol name
5065 in its encoded form. */
5066
5067 static const char *
5068 symbol_completion_match (const char *sym_name,
5069 const char *text, int text_len,
5070 int wild_match, int encoded)
5071 {
5072 char *result;
5073 const int verbatim_match = (text[0] == '<');
5074 int match = 0;
5075
5076 if (verbatim_match)
5077 {
5078 /* Strip the leading angle bracket. */
5079 text = text + 1;
5080 text_len--;
5081 }
5082
5083 /* First, test against the fully qualified name of the symbol. */
5084
5085 if (strncmp (sym_name, text, text_len) == 0)
5086 match = 1;
5087
5088 if (match && !encoded)
5089 {
5090 /* One needed check before declaring a positive match is to verify
5091 that iff we are doing a verbatim match, the decoded version
5092 of the symbol name starts with '<'. Otherwise, this symbol name
5093 is not a suitable completion. */
5094 const char *sym_name_copy = sym_name;
5095 int has_angle_bracket;
5096
5097 sym_name = ada_decode (sym_name);
5098 has_angle_bracket = (sym_name[0] == '<');
5099 match = (has_angle_bracket == verbatim_match);
5100 sym_name = sym_name_copy;
5101 }
5102
5103 if (match && !verbatim_match)
5104 {
5105 /* When doing non-verbatim match, another check that needs to
5106 be done is to verify that the potentially matching symbol name
5107 does not include capital letters, because the ada-mode would
5108 not be able to understand these symbol names without the
5109 angle bracket notation. */
5110 const char *tmp;
5111
5112 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5113 if (*tmp != '\0')
5114 match = 0;
5115 }
5116
5117 /* Second: Try wild matching... */
5118
5119 if (!match && wild_match)
5120 {
5121 /* Since we are doing wild matching, this means that TEXT
5122 may represent an unqualified symbol name. We therefore must
5123 also compare TEXT against the unqualified name of the symbol. */
5124 sym_name = ada_unqualified_name (ada_decode (sym_name));
5125
5126 if (strncmp (sym_name, text, text_len) == 0)
5127 match = 1;
5128 }
5129
5130 /* Finally: If we found a mach, prepare the result to return. */
5131
5132 if (!match)
5133 return NULL;
5134
5135 if (verbatim_match)
5136 sym_name = add_angle_brackets (sym_name);
5137
5138 if (!encoded)
5139 sym_name = ada_decode (sym_name);
5140
5141 return sym_name;
5142 }
5143
5144 typedef char *char_ptr;
5145 DEF_VEC_P (char_ptr);
5146
5147 /* A companion function to ada_make_symbol_completion_list().
5148 Check if SYM_NAME represents a symbol which name would be suitable
5149 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5150 it is appended at the end of the given string vector SV.
5151
5152 ORIG_TEXT is the string original string from the user command
5153 that needs to be completed. WORD is the entire command on which
5154 completion should be performed. These two parameters are used to
5155 determine which part of the symbol name should be added to the
5156 completion vector.
5157 if WILD_MATCH is set, then wild matching is performed.
5158 ENCODED should be set if TEXT represents a symbol name in its
5159 encoded formed (in which case the completion should also be
5160 encoded). */
5161
5162 static void
5163 symbol_completion_add (VEC(char_ptr) **sv,
5164 const char *sym_name,
5165 const char *text, int text_len,
5166 const char *orig_text, const char *word,
5167 int wild_match, int encoded)
5168 {
5169 const char *match = symbol_completion_match (sym_name, text, text_len,
5170 wild_match, encoded);
5171 char *completion;
5172
5173 if (match == NULL)
5174 return;
5175
5176 /* We found a match, so add the appropriate completion to the given
5177 string vector. */
5178
5179 if (word == orig_text)
5180 {
5181 completion = xmalloc (strlen (match) + 5);
5182 strcpy (completion, match);
5183 }
5184 else if (word > orig_text)
5185 {
5186 /* Return some portion of sym_name. */
5187 completion = xmalloc (strlen (match) + 5);
5188 strcpy (completion, match + (word - orig_text));
5189 }
5190 else
5191 {
5192 /* Return some of ORIG_TEXT plus sym_name. */
5193 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5194 strncpy (completion, word, orig_text - word);
5195 completion[orig_text - word] = '\0';
5196 strcat (completion, match);
5197 }
5198
5199 VEC_safe_push (char_ptr, *sv, completion);
5200 }
5201
5202 /* Return a list of possible symbol names completing TEXT0. The list
5203 is NULL terminated. WORD is the entire command on which completion
5204 is made. */
5205
5206 static char **
5207 ada_make_symbol_completion_list (char *text0, char *word)
5208 {
5209 char *text;
5210 int text_len;
5211 int wild_match;
5212 int encoded;
5213 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5214 struct symbol *sym;
5215 struct symtab *s;
5216 struct partial_symtab *ps;
5217 struct minimal_symbol *msymbol;
5218 struct objfile *objfile;
5219 struct block *b, *surrounding_static_block = 0;
5220 int i;
5221 struct dict_iterator iter;
5222
5223 if (text0[0] == '<')
5224 {
5225 text = xstrdup (text0);
5226 make_cleanup (xfree, text);
5227 text_len = strlen (text);
5228 wild_match = 0;
5229 encoded = 1;
5230 }
5231 else
5232 {
5233 text = xstrdup (ada_encode (text0));
5234 make_cleanup (xfree, text);
5235 text_len = strlen (text);
5236 for (i = 0; i < text_len; i++)
5237 text[i] = tolower (text[i]);
5238
5239 encoded = (strstr (text0, "__") != NULL);
5240 /* If the name contains a ".", then the user is entering a fully
5241 qualified entity name, and the match must not be done in wild
5242 mode. Similarly, if the user wants to complete what looks like
5243 an encoded name, the match must not be done in wild mode. */
5244 wild_match = (strchr (text0, '.') == NULL && !encoded);
5245 }
5246
5247 /* First, look at the partial symtab symbols. */
5248 ALL_PSYMTABS (objfile, ps)
5249 {
5250 struct partial_symbol **psym;
5251
5252 /* If the psymtab's been read in we'll get it when we search
5253 through the blockvector. */
5254 if (ps->readin)
5255 continue;
5256
5257 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5258 psym < (objfile->global_psymbols.list + ps->globals_offset
5259 + ps->n_global_syms); psym++)
5260 {
5261 QUIT;
5262 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5263 text, text_len, text0, word,
5264 wild_match, encoded);
5265 }
5266
5267 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5268 psym < (objfile->static_psymbols.list + ps->statics_offset
5269 + ps->n_static_syms); psym++)
5270 {
5271 QUIT;
5272 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5273 text, text_len, text0, word,
5274 wild_match, encoded);
5275 }
5276 }
5277
5278 /* At this point scan through the misc symbol vectors and add each
5279 symbol you find to the list. Eventually we want to ignore
5280 anything that isn't a text symbol (everything else will be
5281 handled by the psymtab code above). */
5282
5283 ALL_MSYMBOLS (objfile, msymbol)
5284 {
5285 QUIT;
5286 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5287 text, text_len, text0, word, wild_match, encoded);
5288 }
5289
5290 /* Search upwards from currently selected frame (so that we can
5291 complete on local vars. */
5292
5293 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5294 {
5295 if (!BLOCK_SUPERBLOCK (b))
5296 surrounding_static_block = b; /* For elmin of dups */
5297
5298 ALL_BLOCK_SYMBOLS (b, iter, sym)
5299 {
5300 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5301 text, text_len, text0, word,
5302 wild_match, encoded);
5303 }
5304 }
5305
5306 /* Go through the symtabs and check the externs and statics for
5307 symbols which match. */
5308
5309 ALL_SYMTABS (objfile, s)
5310 {
5311 QUIT;
5312 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5313 ALL_BLOCK_SYMBOLS (b, iter, sym)
5314 {
5315 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5316 text, text_len, text0, word,
5317 wild_match, encoded);
5318 }
5319 }
5320
5321 ALL_SYMTABS (objfile, s)
5322 {
5323 QUIT;
5324 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5325 /* Don't do this block twice. */
5326 if (b == surrounding_static_block)
5327 continue;
5328 ALL_BLOCK_SYMBOLS (b, iter, sym)
5329 {
5330 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5331 text, text_len, text0, word,
5332 wild_match, encoded);
5333 }
5334 }
5335
5336 /* Append the closing NULL entry. */
5337 VEC_safe_push (char_ptr, completions, NULL);
5338
5339 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5340 return the copy. It's unfortunate that we have to make a copy
5341 of an array that we're about to destroy, but there is nothing much
5342 we can do about it. Fortunately, it's typically not a very large
5343 array. */
5344 {
5345 const size_t completions_size =
5346 VEC_length (char_ptr, completions) * sizeof (char *);
5347 char **result = malloc (completions_size);
5348
5349 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5350
5351 VEC_free (char_ptr, completions);
5352 return result;
5353 }
5354 }
5355
5356 /* Field Access */
5357
5358 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5359 for tagged types. */
5360
5361 static int
5362 ada_is_dispatch_table_ptr_type (struct type *type)
5363 {
5364 char *name;
5365
5366 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5367 return 0;
5368
5369 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5370 if (name == NULL)
5371 return 0;
5372
5373 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5374 }
5375
5376 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5377 to be invisible to users. */
5378
5379 int
5380 ada_is_ignored_field (struct type *type, int field_num)
5381 {
5382 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5383 return 1;
5384
5385 /* Check the name of that field. */
5386 {
5387 const char *name = TYPE_FIELD_NAME (type, field_num);
5388
5389 /* Anonymous field names should not be printed.
5390 brobecker/2007-02-20: I don't think this can actually happen
5391 but we don't want to print the value of annonymous fields anyway. */
5392 if (name == NULL)
5393 return 1;
5394
5395 /* A field named "_parent" is internally generated by GNAT for
5396 tagged types, and should not be printed either. */
5397 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5398 return 1;
5399 }
5400
5401 /* If this is the dispatch table of a tagged type, then ignore. */
5402 if (ada_is_tagged_type (type, 1)
5403 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5404 return 1;
5405
5406 /* Not a special field, so it should not be ignored. */
5407 return 0;
5408 }
5409
5410 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5411 pointer or reference type whose ultimate target has a tag field. */
5412
5413 int
5414 ada_is_tagged_type (struct type *type, int refok)
5415 {
5416 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5417 }
5418
5419 /* True iff TYPE represents the type of X'Tag */
5420
5421 int
5422 ada_is_tag_type (struct type *type)
5423 {
5424 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5425 return 0;
5426 else
5427 {
5428 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5429 return (name != NULL
5430 && strcmp (name, "ada__tags__dispatch_table") == 0);
5431 }
5432 }
5433
5434 /* The type of the tag on VAL. */
5435
5436 struct type *
5437 ada_tag_type (struct value *val)
5438 {
5439 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5440 }
5441
5442 /* The value of the tag on VAL. */
5443
5444 struct value *
5445 ada_value_tag (struct value *val)
5446 {
5447 return ada_value_struct_elt (val, "_tag", 0);
5448 }
5449
5450 /* The value of the tag on the object of type TYPE whose contents are
5451 saved at VALADDR, if it is non-null, or is at memory address
5452 ADDRESS. */
5453
5454 static struct value *
5455 value_tag_from_contents_and_address (struct type *type,
5456 const gdb_byte *valaddr,
5457 CORE_ADDR address)
5458 {
5459 int tag_byte_offset, dummy1, dummy2;
5460 struct type *tag_type;
5461 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5462 NULL, NULL, NULL))
5463 {
5464 const gdb_byte *valaddr1 = ((valaddr == NULL)
5465 ? NULL
5466 : valaddr + tag_byte_offset);
5467 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5468
5469 return value_from_contents_and_address (tag_type, valaddr1, address1);
5470 }
5471 return NULL;
5472 }
5473
5474 static struct type *
5475 type_from_tag (struct value *tag)
5476 {
5477 const char *type_name = ada_tag_name (tag);
5478 if (type_name != NULL)
5479 return ada_find_any_type (ada_encode (type_name));
5480 return NULL;
5481 }
5482
5483 struct tag_args
5484 {
5485 struct value *tag;
5486 char *name;
5487 };
5488
5489
5490 static int ada_tag_name_1 (void *);
5491 static int ada_tag_name_2 (struct tag_args *);
5492
5493 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5494 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5495 The value stored in ARGS->name is valid until the next call to
5496 ada_tag_name_1. */
5497
5498 static int
5499 ada_tag_name_1 (void *args0)
5500 {
5501 struct tag_args *args = (struct tag_args *) args0;
5502 static char name[1024];
5503 char *p;
5504 struct value *val;
5505 args->name = NULL;
5506 val = ada_value_struct_elt (args->tag, "tsd", 1);
5507 if (val == NULL)
5508 return ada_tag_name_2 (args);
5509 val = ada_value_struct_elt (val, "expanded_name", 1);
5510 if (val == NULL)
5511 return 0;
5512 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5513 for (p = name; *p != '\0'; p += 1)
5514 if (isalpha (*p))
5515 *p = tolower (*p);
5516 args->name = name;
5517 return 0;
5518 }
5519
5520 /* Utility function for ada_tag_name_1 that tries the second
5521 representation for the dispatch table (in which there is no
5522 explicit 'tsd' field in the referent of the tag pointer, and instead
5523 the tsd pointer is stored just before the dispatch table. */
5524
5525 static int
5526 ada_tag_name_2 (struct tag_args *args)
5527 {
5528 struct type *info_type;
5529 static char name[1024];
5530 char *p;
5531 struct value *val, *valp;
5532
5533 args->name = NULL;
5534 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5535 if (info_type == NULL)
5536 return 0;
5537 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5538 valp = value_cast (info_type, args->tag);
5539 if (valp == NULL)
5540 return 0;
5541 val = value_ind (value_ptradd (valp, -1));
5542 if (val == NULL)
5543 return 0;
5544 val = ada_value_struct_elt (val, "expanded_name", 1);
5545 if (val == NULL)
5546 return 0;
5547 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5548 for (p = name; *p != '\0'; p += 1)
5549 if (isalpha (*p))
5550 *p = tolower (*p);
5551 args->name = name;
5552 return 0;
5553 }
5554
5555 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5556 * a C string. */
5557
5558 const char *
5559 ada_tag_name (struct value *tag)
5560 {
5561 struct tag_args args;
5562 if (!ada_is_tag_type (value_type (tag)))
5563 return NULL;
5564 args.tag = tag;
5565 args.name = NULL;
5566 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5567 return args.name;
5568 }
5569
5570 /* The parent type of TYPE, or NULL if none. */
5571
5572 struct type *
5573 ada_parent_type (struct type *type)
5574 {
5575 int i;
5576
5577 type = ada_check_typedef (type);
5578
5579 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5580 return NULL;
5581
5582 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5583 if (ada_is_parent_field (type, i))
5584 {
5585 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5586
5587 /* If the _parent field is a pointer, then dereference it. */
5588 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5589 parent_type = TYPE_TARGET_TYPE (parent_type);
5590 /* If there is a parallel XVS type, get the actual base type. */
5591 parent_type = ada_get_base_type (parent_type);
5592
5593 return ada_check_typedef (parent_type);
5594 }
5595
5596 return NULL;
5597 }
5598
5599 /* True iff field number FIELD_NUM of structure type TYPE contains the
5600 parent-type (inherited) fields of a derived type. Assumes TYPE is
5601 a structure type with at least FIELD_NUM+1 fields. */
5602
5603 int
5604 ada_is_parent_field (struct type *type, int field_num)
5605 {
5606 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5607 return (name != NULL
5608 && (strncmp (name, "PARENT", 6) == 0
5609 || strncmp (name, "_parent", 7) == 0));
5610 }
5611
5612 /* True iff field number FIELD_NUM of structure type TYPE is a
5613 transparent wrapper field (which should be silently traversed when doing
5614 field selection and flattened when printing). Assumes TYPE is a
5615 structure type with at least FIELD_NUM+1 fields. Such fields are always
5616 structures. */
5617
5618 int
5619 ada_is_wrapper_field (struct type *type, int field_num)
5620 {
5621 const char *name = TYPE_FIELD_NAME (type, field_num);
5622 return (name != NULL
5623 && (strncmp (name, "PARENT", 6) == 0
5624 || strcmp (name, "REP") == 0
5625 || strncmp (name, "_parent", 7) == 0
5626 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5627 }
5628
5629 /* True iff field number FIELD_NUM of structure or union type TYPE
5630 is a variant wrapper. Assumes TYPE is a structure type with at least
5631 FIELD_NUM+1 fields. */
5632
5633 int
5634 ada_is_variant_part (struct type *type, int field_num)
5635 {
5636 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5637 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5638 || (is_dynamic_field (type, field_num)
5639 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5640 == TYPE_CODE_UNION)));
5641 }
5642
5643 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5644 whose discriminants are contained in the record type OUTER_TYPE,
5645 returns the type of the controlling discriminant for the variant.
5646 May return NULL if the type could not be found. */
5647
5648 struct type *
5649 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5650 {
5651 char *name = ada_variant_discrim_name (var_type);
5652 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5653 }
5654
5655 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5656 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5657 represents a 'when others' clause; otherwise 0. */
5658
5659 int
5660 ada_is_others_clause (struct type *type, int field_num)
5661 {
5662 const char *name = TYPE_FIELD_NAME (type, field_num);
5663 return (name != NULL && name[0] == 'O');
5664 }
5665
5666 /* Assuming that TYPE0 is the type of the variant part of a record,
5667 returns the name of the discriminant controlling the variant.
5668 The value is valid until the next call to ada_variant_discrim_name. */
5669
5670 char *
5671 ada_variant_discrim_name (struct type *type0)
5672 {
5673 static char *result = NULL;
5674 static size_t result_len = 0;
5675 struct type *type;
5676 const char *name;
5677 const char *discrim_end;
5678 const char *discrim_start;
5679
5680 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5681 type = TYPE_TARGET_TYPE (type0);
5682 else
5683 type = type0;
5684
5685 name = ada_type_name (type);
5686
5687 if (name == NULL || name[0] == '\000')
5688 return "";
5689
5690 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5691 discrim_end -= 1)
5692 {
5693 if (strncmp (discrim_end, "___XVN", 6) == 0)
5694 break;
5695 }
5696 if (discrim_end == name)
5697 return "";
5698
5699 for (discrim_start = discrim_end; discrim_start != name + 3;
5700 discrim_start -= 1)
5701 {
5702 if (discrim_start == name + 1)
5703 return "";
5704 if ((discrim_start > name + 3
5705 && strncmp (discrim_start - 3, "___", 3) == 0)
5706 || discrim_start[-1] == '.')
5707 break;
5708 }
5709
5710 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5711 strncpy (result, discrim_start, discrim_end - discrim_start);
5712 result[discrim_end - discrim_start] = '\0';
5713 return result;
5714 }
5715
5716 /* Scan STR for a subtype-encoded number, beginning at position K.
5717 Put the position of the character just past the number scanned in
5718 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5719 Return 1 if there was a valid number at the given position, and 0
5720 otherwise. A "subtype-encoded" number consists of the absolute value
5721 in decimal, followed by the letter 'm' to indicate a negative number.
5722 Assumes 0m does not occur. */
5723
5724 int
5725 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5726 {
5727 ULONGEST RU;
5728
5729 if (!isdigit (str[k]))
5730 return 0;
5731
5732 /* Do it the hard way so as not to make any assumption about
5733 the relationship of unsigned long (%lu scan format code) and
5734 LONGEST. */
5735 RU = 0;
5736 while (isdigit (str[k]))
5737 {
5738 RU = RU * 10 + (str[k] - '0');
5739 k += 1;
5740 }
5741
5742 if (str[k] == 'm')
5743 {
5744 if (R != NULL)
5745 *R = (-(LONGEST) (RU - 1)) - 1;
5746 k += 1;
5747 }
5748 else if (R != NULL)
5749 *R = (LONGEST) RU;
5750
5751 /* NOTE on the above: Technically, C does not say what the results of
5752 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5753 number representable as a LONGEST (although either would probably work
5754 in most implementations). When RU>0, the locution in the then branch
5755 above is always equivalent to the negative of RU. */
5756
5757 if (new_k != NULL)
5758 *new_k = k;
5759 return 1;
5760 }
5761
5762 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5763 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5764 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5765
5766 int
5767 ada_in_variant (LONGEST val, struct type *type, int field_num)
5768 {
5769 const char *name = TYPE_FIELD_NAME (type, field_num);
5770 int p;
5771
5772 p = 0;
5773 while (1)
5774 {
5775 switch (name[p])
5776 {
5777 case '\0':
5778 return 0;
5779 case 'S':
5780 {
5781 LONGEST W;
5782 if (!ada_scan_number (name, p + 1, &W, &p))
5783 return 0;
5784 if (val == W)
5785 return 1;
5786 break;
5787 }
5788 case 'R':
5789 {
5790 LONGEST L, U;
5791 if (!ada_scan_number (name, p + 1, &L, &p)
5792 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5793 return 0;
5794 if (val >= L && val <= U)
5795 return 1;
5796 break;
5797 }
5798 case 'O':
5799 return 1;
5800 default:
5801 return 0;
5802 }
5803 }
5804 }
5805
5806 /* FIXME: Lots of redundancy below. Try to consolidate. */
5807
5808 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5809 ARG_TYPE, extract and return the value of one of its (non-static)
5810 fields. FIELDNO says which field. Differs from value_primitive_field
5811 only in that it can handle packed values of arbitrary type. */
5812
5813 static struct value *
5814 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5815 struct type *arg_type)
5816 {
5817 struct type *type;
5818
5819 arg_type = ada_check_typedef (arg_type);
5820 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5821
5822 /* Handle packed fields. */
5823
5824 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5825 {
5826 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5827 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5828
5829 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5830 offset + bit_pos / 8,
5831 bit_pos % 8, bit_size, type);
5832 }
5833 else
5834 return value_primitive_field (arg1, offset, fieldno, arg_type);
5835 }
5836
5837 /* Find field with name NAME in object of type TYPE. If found,
5838 set the following for each argument that is non-null:
5839 - *FIELD_TYPE_P to the field's type;
5840 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5841 an object of that type;
5842 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5843 - *BIT_SIZE_P to its size in bits if the field is packed, and
5844 0 otherwise;
5845 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5846 fields up to but not including the desired field, or by the total
5847 number of fields if not found. A NULL value of NAME never
5848 matches; the function just counts visible fields in this case.
5849
5850 Returns 1 if found, 0 otherwise. */
5851
5852 static int
5853 find_struct_field (char *name, struct type *type, int offset,
5854 struct type **field_type_p,
5855 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5856 int *index_p)
5857 {
5858 int i;
5859
5860 type = ada_check_typedef (type);
5861
5862 if (field_type_p != NULL)
5863 *field_type_p = NULL;
5864 if (byte_offset_p != NULL)
5865 *byte_offset_p = 0;
5866 if (bit_offset_p != NULL)
5867 *bit_offset_p = 0;
5868 if (bit_size_p != NULL)
5869 *bit_size_p = 0;
5870
5871 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5872 {
5873 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5874 int fld_offset = offset + bit_pos / 8;
5875 char *t_field_name = TYPE_FIELD_NAME (type, i);
5876
5877 if (t_field_name == NULL)
5878 continue;
5879
5880 else if (name != NULL && field_name_match (t_field_name, name))
5881 {
5882 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5883 if (field_type_p != NULL)
5884 *field_type_p = TYPE_FIELD_TYPE (type, i);
5885 if (byte_offset_p != NULL)
5886 *byte_offset_p = fld_offset;
5887 if (bit_offset_p != NULL)
5888 *bit_offset_p = bit_pos % 8;
5889 if (bit_size_p != NULL)
5890 *bit_size_p = bit_size;
5891 return 1;
5892 }
5893 else if (ada_is_wrapper_field (type, i))
5894 {
5895 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5896 field_type_p, byte_offset_p, bit_offset_p,
5897 bit_size_p, index_p))
5898 return 1;
5899 }
5900 else if (ada_is_variant_part (type, i))
5901 {
5902 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5903 fixed type?? */
5904 int j;
5905 struct type *field_type
5906 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5907
5908 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5909 {
5910 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5911 fld_offset
5912 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5913 field_type_p, byte_offset_p,
5914 bit_offset_p, bit_size_p, index_p))
5915 return 1;
5916 }
5917 }
5918 else if (index_p != NULL)
5919 *index_p += 1;
5920 }
5921 return 0;
5922 }
5923
5924 /* Number of user-visible fields in record type TYPE. */
5925
5926 static int
5927 num_visible_fields (struct type *type)
5928 {
5929 int n;
5930 n = 0;
5931 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5932 return n;
5933 }
5934
5935 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5936 and search in it assuming it has (class) type TYPE.
5937 If found, return value, else return NULL.
5938
5939 Searches recursively through wrapper fields (e.g., '_parent'). */
5940
5941 static struct value *
5942 ada_search_struct_field (char *name, struct value *arg, int offset,
5943 struct type *type)
5944 {
5945 int i;
5946 type = ada_check_typedef (type);
5947
5948 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5949 {
5950 char *t_field_name = TYPE_FIELD_NAME (type, i);
5951
5952 if (t_field_name == NULL)
5953 continue;
5954
5955 else if (field_name_match (t_field_name, name))
5956 return ada_value_primitive_field (arg, offset, i, type);
5957
5958 else if (ada_is_wrapper_field (type, i))
5959 {
5960 struct value *v = /* Do not let indent join lines here. */
5961 ada_search_struct_field (name, arg,
5962 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5963 TYPE_FIELD_TYPE (type, i));
5964 if (v != NULL)
5965 return v;
5966 }
5967
5968 else if (ada_is_variant_part (type, i))
5969 {
5970 /* PNH: Do we ever get here? See find_struct_field. */
5971 int j;
5972 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5973 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5974
5975 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5976 {
5977 struct value *v = ada_search_struct_field /* Force line break. */
5978 (name, arg,
5979 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5980 TYPE_FIELD_TYPE (field_type, j));
5981 if (v != NULL)
5982 return v;
5983 }
5984 }
5985 }
5986 return NULL;
5987 }
5988
5989 static struct value *ada_index_struct_field_1 (int *, struct value *,
5990 int, struct type *);
5991
5992
5993 /* Return field #INDEX in ARG, where the index is that returned by
5994 * find_struct_field through its INDEX_P argument. Adjust the address
5995 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5996 * If found, return value, else return NULL. */
5997
5998 static struct value *
5999 ada_index_struct_field (int index, struct value *arg, int offset,
6000 struct type *type)
6001 {
6002 return ada_index_struct_field_1 (&index, arg, offset, type);
6003 }
6004
6005
6006 /* Auxiliary function for ada_index_struct_field. Like
6007 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6008 * *INDEX_P. */
6009
6010 static struct value *
6011 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6012 struct type *type)
6013 {
6014 int i;
6015 type = ada_check_typedef (type);
6016
6017 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6018 {
6019 if (TYPE_FIELD_NAME (type, i) == NULL)
6020 continue;
6021 else if (ada_is_wrapper_field (type, i))
6022 {
6023 struct value *v = /* Do not let indent join lines here. */
6024 ada_index_struct_field_1 (index_p, arg,
6025 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6026 TYPE_FIELD_TYPE (type, i));
6027 if (v != NULL)
6028 return v;
6029 }
6030
6031 else if (ada_is_variant_part (type, i))
6032 {
6033 /* PNH: Do we ever get here? See ada_search_struct_field,
6034 find_struct_field. */
6035 error (_("Cannot assign this kind of variant record"));
6036 }
6037 else if (*index_p == 0)
6038 return ada_value_primitive_field (arg, offset, i, type);
6039 else
6040 *index_p -= 1;
6041 }
6042 return NULL;
6043 }
6044
6045 /* Given ARG, a value of type (pointer or reference to a)*
6046 structure/union, extract the component named NAME from the ultimate
6047 target structure/union and return it as a value with its
6048 appropriate type.
6049
6050 The routine searches for NAME among all members of the structure itself
6051 and (recursively) among all members of any wrapper members
6052 (e.g., '_parent').
6053
6054 If NO_ERR, then simply return NULL in case of error, rather than
6055 calling error. */
6056
6057 struct value *
6058 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6059 {
6060 struct type *t, *t1;
6061 struct value *v;
6062
6063 v = NULL;
6064 t1 = t = ada_check_typedef (value_type (arg));
6065 if (TYPE_CODE (t) == TYPE_CODE_REF)
6066 {
6067 t1 = TYPE_TARGET_TYPE (t);
6068 if (t1 == NULL)
6069 goto BadValue;
6070 t1 = ada_check_typedef (t1);
6071 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6072 {
6073 arg = coerce_ref (arg);
6074 t = t1;
6075 }
6076 }
6077
6078 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6079 {
6080 t1 = TYPE_TARGET_TYPE (t);
6081 if (t1 == NULL)
6082 goto BadValue;
6083 t1 = ada_check_typedef (t1);
6084 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6085 {
6086 arg = value_ind (arg);
6087 t = t1;
6088 }
6089 else
6090 break;
6091 }
6092
6093 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6094 goto BadValue;
6095
6096 if (t1 == t)
6097 v = ada_search_struct_field (name, arg, 0, t);
6098 else
6099 {
6100 int bit_offset, bit_size, byte_offset;
6101 struct type *field_type;
6102 CORE_ADDR address;
6103
6104 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6105 address = value_as_address (arg);
6106 else
6107 address = unpack_pointer (t, value_contents (arg));
6108
6109 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6110 if (find_struct_field (name, t1, 0,
6111 &field_type, &byte_offset, &bit_offset,
6112 &bit_size, NULL))
6113 {
6114 if (bit_size != 0)
6115 {
6116 if (TYPE_CODE (t) == TYPE_CODE_REF)
6117 arg = ada_coerce_ref (arg);
6118 else
6119 arg = ada_value_ind (arg);
6120 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6121 bit_offset, bit_size,
6122 field_type);
6123 }
6124 else
6125 v = value_at_lazy (field_type, address + byte_offset);
6126 }
6127 }
6128
6129 if (v != NULL || no_err)
6130 return v;
6131 else
6132 error (_("There is no member named %s."), name);
6133
6134 BadValue:
6135 if (no_err)
6136 return NULL;
6137 else
6138 error (_("Attempt to extract a component of a value that is not a record."));
6139 }
6140
6141 /* Given a type TYPE, look up the type of the component of type named NAME.
6142 If DISPP is non-null, add its byte displacement from the beginning of a
6143 structure (pointed to by a value) of type TYPE to *DISPP (does not
6144 work for packed fields).
6145
6146 Matches any field whose name has NAME as a prefix, possibly
6147 followed by "___".
6148
6149 TYPE can be either a struct or union. If REFOK, TYPE may also
6150 be a (pointer or reference)+ to a struct or union, and the
6151 ultimate target type will be searched.
6152
6153 Looks recursively into variant clauses and parent types.
6154
6155 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6156 TYPE is not a type of the right kind. */
6157
6158 static struct type *
6159 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6160 int noerr, int *dispp)
6161 {
6162 int i;
6163
6164 if (name == NULL)
6165 goto BadName;
6166
6167 if (refok && type != NULL)
6168 while (1)
6169 {
6170 type = ada_check_typedef (type);
6171 if (TYPE_CODE (type) != TYPE_CODE_PTR
6172 && TYPE_CODE (type) != TYPE_CODE_REF)
6173 break;
6174 type = TYPE_TARGET_TYPE (type);
6175 }
6176
6177 if (type == NULL
6178 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6179 && TYPE_CODE (type) != TYPE_CODE_UNION))
6180 {
6181 if (noerr)
6182 return NULL;
6183 else
6184 {
6185 target_terminal_ours ();
6186 gdb_flush (gdb_stdout);
6187 if (type == NULL)
6188 error (_("Type (null) is not a structure or union type"));
6189 else
6190 {
6191 /* XXX: type_sprint */
6192 fprintf_unfiltered (gdb_stderr, _("Type "));
6193 type_print (type, "", gdb_stderr, -1);
6194 error (_(" is not a structure or union type"));
6195 }
6196 }
6197 }
6198
6199 type = to_static_fixed_type (type);
6200
6201 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6202 {
6203 char *t_field_name = TYPE_FIELD_NAME (type, i);
6204 struct type *t;
6205 int disp;
6206
6207 if (t_field_name == NULL)
6208 continue;
6209
6210 else if (field_name_match (t_field_name, name))
6211 {
6212 if (dispp != NULL)
6213 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6214 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6215 }
6216
6217 else if (ada_is_wrapper_field (type, i))
6218 {
6219 disp = 0;
6220 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6221 0, 1, &disp);
6222 if (t != NULL)
6223 {
6224 if (dispp != NULL)
6225 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6226 return t;
6227 }
6228 }
6229
6230 else if (ada_is_variant_part (type, i))
6231 {
6232 int j;
6233 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6234
6235 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6236 {
6237 /* FIXME pnh 2008/01/26: We check for a field that is
6238 NOT wrapped in a struct, since the compiler sometimes
6239 generates these for unchecked variant types. Revisit
6240 if the compiler changes this practice. */
6241 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6242 disp = 0;
6243 if (v_field_name != NULL
6244 && field_name_match (v_field_name, name))
6245 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6246 else
6247 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6248 name, 0, 1, &disp);
6249
6250 if (t != NULL)
6251 {
6252 if (dispp != NULL)
6253 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6254 return t;
6255 }
6256 }
6257 }
6258
6259 }
6260
6261 BadName:
6262 if (!noerr)
6263 {
6264 target_terminal_ours ();
6265 gdb_flush (gdb_stdout);
6266 if (name == NULL)
6267 {
6268 /* XXX: type_sprint */
6269 fprintf_unfiltered (gdb_stderr, _("Type "));
6270 type_print (type, "", gdb_stderr, -1);
6271 error (_(" has no component named <null>"));
6272 }
6273 else
6274 {
6275 /* XXX: type_sprint */
6276 fprintf_unfiltered (gdb_stderr, _("Type "));
6277 type_print (type, "", gdb_stderr, -1);
6278 error (_(" has no component named %s"), name);
6279 }
6280 }
6281
6282 return NULL;
6283 }
6284
6285 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6286 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6287 represents an unchecked union (that is, the variant part of a
6288 record that is named in an Unchecked_Union pragma). */
6289
6290 static int
6291 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6292 {
6293 char *discrim_name = ada_variant_discrim_name (var_type);
6294 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6295 == NULL);
6296 }
6297
6298
6299 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6300 within a value of type OUTER_TYPE that is stored in GDB at
6301 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6302 numbering from 0) is applicable. Returns -1 if none are. */
6303
6304 int
6305 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6306 const gdb_byte *outer_valaddr)
6307 {
6308 int others_clause;
6309 int i;
6310 char *discrim_name = ada_variant_discrim_name (var_type);
6311 struct value *outer;
6312 struct value *discrim;
6313 LONGEST discrim_val;
6314
6315 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6316 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6317 if (discrim == NULL)
6318 return -1;
6319 discrim_val = value_as_long (discrim);
6320
6321 others_clause = -1;
6322 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6323 {
6324 if (ada_is_others_clause (var_type, i))
6325 others_clause = i;
6326 else if (ada_in_variant (discrim_val, var_type, i))
6327 return i;
6328 }
6329
6330 return others_clause;
6331 }
6332 \f
6333
6334
6335 /* Dynamic-Sized Records */
6336
6337 /* Strategy: The type ostensibly attached to a value with dynamic size
6338 (i.e., a size that is not statically recorded in the debugging
6339 data) does not accurately reflect the size or layout of the value.
6340 Our strategy is to convert these values to values with accurate,
6341 conventional types that are constructed on the fly. */
6342
6343 /* There is a subtle and tricky problem here. In general, we cannot
6344 determine the size of dynamic records without its data. However,
6345 the 'struct value' data structure, which GDB uses to represent
6346 quantities in the inferior process (the target), requires the size
6347 of the type at the time of its allocation in order to reserve space
6348 for GDB's internal copy of the data. That's why the
6349 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6350 rather than struct value*s.
6351
6352 However, GDB's internal history variables ($1, $2, etc.) are
6353 struct value*s containing internal copies of the data that are not, in
6354 general, the same as the data at their corresponding addresses in
6355 the target. Fortunately, the types we give to these values are all
6356 conventional, fixed-size types (as per the strategy described
6357 above), so that we don't usually have to perform the
6358 'to_fixed_xxx_type' conversions to look at their values.
6359 Unfortunately, there is one exception: if one of the internal
6360 history variables is an array whose elements are unconstrained
6361 records, then we will need to create distinct fixed types for each
6362 element selected. */
6363
6364 /* The upshot of all of this is that many routines take a (type, host
6365 address, target address) triple as arguments to represent a value.
6366 The host address, if non-null, is supposed to contain an internal
6367 copy of the relevant data; otherwise, the program is to consult the
6368 target at the target address. */
6369
6370 /* Assuming that VAL0 represents a pointer value, the result of
6371 dereferencing it. Differs from value_ind in its treatment of
6372 dynamic-sized types. */
6373
6374 struct value *
6375 ada_value_ind (struct value *val0)
6376 {
6377 struct value *val = unwrap_value (value_ind (val0));
6378 return ada_to_fixed_value (val);
6379 }
6380
6381 /* The value resulting from dereferencing any "reference to"
6382 qualifiers on VAL0. */
6383
6384 static struct value *
6385 ada_coerce_ref (struct value *val0)
6386 {
6387 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6388 {
6389 struct value *val = val0;
6390 val = coerce_ref (val);
6391 val = unwrap_value (val);
6392 return ada_to_fixed_value (val);
6393 }
6394 else
6395 return val0;
6396 }
6397
6398 /* Return OFF rounded upward if necessary to a multiple of
6399 ALIGNMENT (a power of 2). */
6400
6401 static unsigned int
6402 align_value (unsigned int off, unsigned int alignment)
6403 {
6404 return (off + alignment - 1) & ~(alignment - 1);
6405 }
6406
6407 /* Return the bit alignment required for field #F of template type TYPE. */
6408
6409 static unsigned int
6410 field_alignment (struct type *type, int f)
6411 {
6412 const char *name = TYPE_FIELD_NAME (type, f);
6413 int len;
6414 int align_offset;
6415
6416 /* The field name should never be null, unless the debugging information
6417 is somehow malformed. In this case, we assume the field does not
6418 require any alignment. */
6419 if (name == NULL)
6420 return 1;
6421
6422 len = strlen (name);
6423
6424 if (!isdigit (name[len - 1]))
6425 return 1;
6426
6427 if (isdigit (name[len - 2]))
6428 align_offset = len - 2;
6429 else
6430 align_offset = len - 1;
6431
6432 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6433 return TARGET_CHAR_BIT;
6434
6435 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6436 }
6437
6438 /* Find a symbol named NAME. Ignores ambiguity. */
6439
6440 struct symbol *
6441 ada_find_any_symbol (const char *name)
6442 {
6443 struct symbol *sym;
6444
6445 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6446 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6447 return sym;
6448
6449 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6450 return sym;
6451 }
6452
6453 /* Find a type named NAME. Ignores ambiguity. This routine will look
6454 solely for types defined by debug info, it will not search the GDB
6455 primitive types. */
6456
6457 struct type *
6458 ada_find_any_type (const char *name)
6459 {
6460 struct symbol *sym = ada_find_any_symbol (name);
6461
6462 if (sym != NULL)
6463 return SYMBOL_TYPE (sym);
6464
6465 return NULL;
6466 }
6467
6468 /* Given NAME and an associated BLOCK, search all symbols for
6469 NAME suffixed with "___XR", which is the ``renaming'' symbol
6470 associated to NAME. Return this symbol if found, return
6471 NULL otherwise. */
6472
6473 struct symbol *
6474 ada_find_renaming_symbol (const char *name, struct block *block)
6475 {
6476 struct symbol *sym;
6477
6478 sym = find_old_style_renaming_symbol (name, block);
6479
6480 if (sym != NULL)
6481 return sym;
6482
6483 /* Not right yet. FIXME pnh 7/20/2007. */
6484 sym = ada_find_any_symbol (name);
6485 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6486 return sym;
6487 else
6488 return NULL;
6489 }
6490
6491 static struct symbol *
6492 find_old_style_renaming_symbol (const char *name, struct block *block)
6493 {
6494 const struct symbol *function_sym = block_linkage_function (block);
6495 char *rename;
6496
6497 if (function_sym != NULL)
6498 {
6499 /* If the symbol is defined inside a function, NAME is not fully
6500 qualified. This means we need to prepend the function name
6501 as well as adding the ``___XR'' suffix to build the name of
6502 the associated renaming symbol. */
6503 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6504 /* Function names sometimes contain suffixes used
6505 for instance to qualify nested subprograms. When building
6506 the XR type name, we need to make sure that this suffix is
6507 not included. So do not include any suffix in the function
6508 name length below. */
6509 const int function_name_len = ada_name_prefix_len (function_name);
6510 const int rename_len = function_name_len + 2 /* "__" */
6511 + strlen (name) + 6 /* "___XR\0" */ ;
6512
6513 /* Strip the suffix if necessary. */
6514 function_name[function_name_len] = '\0';
6515
6516 /* Library-level functions are a special case, as GNAT adds
6517 a ``_ada_'' prefix to the function name to avoid namespace
6518 pollution. However, the renaming symbols themselves do not
6519 have this prefix, so we need to skip this prefix if present. */
6520 if (function_name_len > 5 /* "_ada_" */
6521 && strstr (function_name, "_ada_") == function_name)
6522 function_name = function_name + 5;
6523
6524 rename = (char *) alloca (rename_len * sizeof (char));
6525 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6526 function_name, name);
6527 }
6528 else
6529 {
6530 const int rename_len = strlen (name) + 6;
6531 rename = (char *) alloca (rename_len * sizeof (char));
6532 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6533 }
6534
6535 return ada_find_any_symbol (rename);
6536 }
6537
6538 /* Because of GNAT encoding conventions, several GDB symbols may match a
6539 given type name. If the type denoted by TYPE0 is to be preferred to
6540 that of TYPE1 for purposes of type printing, return non-zero;
6541 otherwise return 0. */
6542
6543 int
6544 ada_prefer_type (struct type *type0, struct type *type1)
6545 {
6546 if (type1 == NULL)
6547 return 1;
6548 else if (type0 == NULL)
6549 return 0;
6550 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6551 return 1;
6552 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6553 return 0;
6554 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6555 return 1;
6556 else if (ada_is_packed_array_type (type0))
6557 return 1;
6558 else if (ada_is_array_descriptor_type (type0)
6559 && !ada_is_array_descriptor_type (type1))
6560 return 1;
6561 else
6562 {
6563 const char *type0_name = type_name_no_tag (type0);
6564 const char *type1_name = type_name_no_tag (type1);
6565
6566 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6567 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6568 return 1;
6569 }
6570 return 0;
6571 }
6572
6573 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6574 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6575
6576 char *
6577 ada_type_name (struct type *type)
6578 {
6579 if (type == NULL)
6580 return NULL;
6581 else if (TYPE_NAME (type) != NULL)
6582 return TYPE_NAME (type);
6583 else
6584 return TYPE_TAG_NAME (type);
6585 }
6586
6587 /* Find a parallel type to TYPE whose name is formed by appending
6588 SUFFIX to the name of TYPE. */
6589
6590 struct type *
6591 ada_find_parallel_type (struct type *type, const char *suffix)
6592 {
6593 static char *name;
6594 static size_t name_len = 0;
6595 int len;
6596 char *typename = ada_type_name (type);
6597
6598 if (typename == NULL)
6599 return NULL;
6600
6601 len = strlen (typename);
6602
6603 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6604
6605 strcpy (name, typename);
6606 strcpy (name + len, suffix);
6607
6608 return ada_find_any_type (name);
6609 }
6610
6611
6612 /* If TYPE is a variable-size record type, return the corresponding template
6613 type describing its fields. Otherwise, return NULL. */
6614
6615 static struct type *
6616 dynamic_template_type (struct type *type)
6617 {
6618 type = ada_check_typedef (type);
6619
6620 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6621 || ada_type_name (type) == NULL)
6622 return NULL;
6623 else
6624 {
6625 int len = strlen (ada_type_name (type));
6626 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6627 return type;
6628 else
6629 return ada_find_parallel_type (type, "___XVE");
6630 }
6631 }
6632
6633 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6634 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6635
6636 static int
6637 is_dynamic_field (struct type *templ_type, int field_num)
6638 {
6639 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6640 return name != NULL
6641 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6642 && strstr (name, "___XVL") != NULL;
6643 }
6644
6645 /* The index of the variant field of TYPE, or -1 if TYPE does not
6646 represent a variant record type. */
6647
6648 static int
6649 variant_field_index (struct type *type)
6650 {
6651 int f;
6652
6653 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6654 return -1;
6655
6656 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6657 {
6658 if (ada_is_variant_part (type, f))
6659 return f;
6660 }
6661 return -1;
6662 }
6663
6664 /* A record type with no fields. */
6665
6666 static struct type *
6667 empty_record (struct type *template)
6668 {
6669 struct type *type = alloc_type_copy (template);
6670 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6671 TYPE_NFIELDS (type) = 0;
6672 TYPE_FIELDS (type) = NULL;
6673 INIT_CPLUS_SPECIFIC (type);
6674 TYPE_NAME (type) = "<empty>";
6675 TYPE_TAG_NAME (type) = NULL;
6676 TYPE_LENGTH (type) = 0;
6677 return type;
6678 }
6679
6680 /* An ordinary record type (with fixed-length fields) that describes
6681 the value of type TYPE at VALADDR or ADDRESS (see comments at
6682 the beginning of this section) VAL according to GNAT conventions.
6683 DVAL0 should describe the (portion of a) record that contains any
6684 necessary discriminants. It should be NULL if value_type (VAL) is
6685 an outer-level type (i.e., as opposed to a branch of a variant.) A
6686 variant field (unless unchecked) is replaced by a particular branch
6687 of the variant.
6688
6689 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6690 length are not statically known are discarded. As a consequence,
6691 VALADDR, ADDRESS and DVAL0 are ignored.
6692
6693 NOTE: Limitations: For now, we assume that dynamic fields and
6694 variants occupy whole numbers of bytes. However, they need not be
6695 byte-aligned. */
6696
6697 struct type *
6698 ada_template_to_fixed_record_type_1 (struct type *type,
6699 const gdb_byte *valaddr,
6700 CORE_ADDR address, struct value *dval0,
6701 int keep_dynamic_fields)
6702 {
6703 struct value *mark = value_mark ();
6704 struct value *dval;
6705 struct type *rtype;
6706 int nfields, bit_len;
6707 int variant_field;
6708 long off;
6709 int fld_bit_len, bit_incr;
6710 int f;
6711
6712 /* Compute the number of fields in this record type that are going
6713 to be processed: unless keep_dynamic_fields, this includes only
6714 fields whose position and length are static will be processed. */
6715 if (keep_dynamic_fields)
6716 nfields = TYPE_NFIELDS (type);
6717 else
6718 {
6719 nfields = 0;
6720 while (nfields < TYPE_NFIELDS (type)
6721 && !ada_is_variant_part (type, nfields)
6722 && !is_dynamic_field (type, nfields))
6723 nfields++;
6724 }
6725
6726 rtype = alloc_type_copy (type);
6727 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6728 INIT_CPLUS_SPECIFIC (rtype);
6729 TYPE_NFIELDS (rtype) = nfields;
6730 TYPE_FIELDS (rtype) = (struct field *)
6731 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6732 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6733 TYPE_NAME (rtype) = ada_type_name (type);
6734 TYPE_TAG_NAME (rtype) = NULL;
6735 TYPE_FIXED_INSTANCE (rtype) = 1;
6736
6737 off = 0;
6738 bit_len = 0;
6739 variant_field = -1;
6740
6741 for (f = 0; f < nfields; f += 1)
6742 {
6743 off = align_value (off, field_alignment (type, f))
6744 + TYPE_FIELD_BITPOS (type, f);
6745 TYPE_FIELD_BITPOS (rtype, f) = off;
6746 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6747
6748 if (ada_is_variant_part (type, f))
6749 {
6750 variant_field = f;
6751 fld_bit_len = bit_incr = 0;
6752 }
6753 else if (is_dynamic_field (type, f))
6754 {
6755 const gdb_byte *field_valaddr = valaddr;
6756 CORE_ADDR field_address = address;
6757 struct type *field_type =
6758 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6759
6760 if (dval0 == NULL)
6761 {
6762 /* rtype's length is computed based on the run-time
6763 value of discriminants. If the discriminants are not
6764 initialized, the type size may be completely bogus and
6765 GDB may fail to allocate a value for it. So check the
6766 size first before creating the value. */
6767 check_size (rtype);
6768 dval = value_from_contents_and_address (rtype, valaddr, address);
6769 }
6770 else
6771 dval = dval0;
6772
6773 /* If the type referenced by this field is an aligner type, we need
6774 to unwrap that aligner type, because its size might not be set.
6775 Keeping the aligner type would cause us to compute the wrong
6776 size for this field, impacting the offset of the all the fields
6777 that follow this one. */
6778 if (ada_is_aligner_type (field_type))
6779 {
6780 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6781
6782 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6783 field_address = cond_offset_target (field_address, field_offset);
6784 field_type = ada_aligned_type (field_type);
6785 }
6786
6787 field_valaddr = cond_offset_host (field_valaddr,
6788 off / TARGET_CHAR_BIT);
6789 field_address = cond_offset_target (field_address,
6790 off / TARGET_CHAR_BIT);
6791
6792 /* Get the fixed type of the field. Note that, in this case,
6793 we do not want to get the real type out of the tag: if
6794 the current field is the parent part of a tagged record,
6795 we will get the tag of the object. Clearly wrong: the real
6796 type of the parent is not the real type of the child. We
6797 would end up in an infinite loop. */
6798 field_type = ada_get_base_type (field_type);
6799 field_type = ada_to_fixed_type (field_type, field_valaddr,
6800 field_address, dval, 0);
6801
6802 TYPE_FIELD_TYPE (rtype, f) = field_type;
6803 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6804 bit_incr = fld_bit_len =
6805 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6806 }
6807 else
6808 {
6809 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6810 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6811 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6812 bit_incr = fld_bit_len =
6813 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6814 else
6815 bit_incr = fld_bit_len =
6816 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6817 }
6818 if (off + fld_bit_len > bit_len)
6819 bit_len = off + fld_bit_len;
6820 off += bit_incr;
6821 TYPE_LENGTH (rtype) =
6822 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6823 }
6824
6825 /* We handle the variant part, if any, at the end because of certain
6826 odd cases in which it is re-ordered so as NOT to be the last field of
6827 the record. This can happen in the presence of representation
6828 clauses. */
6829 if (variant_field >= 0)
6830 {
6831 struct type *branch_type;
6832
6833 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6834
6835 if (dval0 == NULL)
6836 dval = value_from_contents_and_address (rtype, valaddr, address);
6837 else
6838 dval = dval0;
6839
6840 branch_type =
6841 to_fixed_variant_branch_type
6842 (TYPE_FIELD_TYPE (type, variant_field),
6843 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6844 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6845 if (branch_type == NULL)
6846 {
6847 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6848 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6849 TYPE_NFIELDS (rtype) -= 1;
6850 }
6851 else
6852 {
6853 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6854 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6855 fld_bit_len =
6856 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6857 TARGET_CHAR_BIT;
6858 if (off + fld_bit_len > bit_len)
6859 bit_len = off + fld_bit_len;
6860 TYPE_LENGTH (rtype) =
6861 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6862 }
6863 }
6864
6865 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6866 should contain the alignment of that record, which should be a strictly
6867 positive value. If null or negative, then something is wrong, most
6868 probably in the debug info. In that case, we don't round up the size
6869 of the resulting type. If this record is not part of another structure,
6870 the current RTYPE length might be good enough for our purposes. */
6871 if (TYPE_LENGTH (type) <= 0)
6872 {
6873 if (TYPE_NAME (rtype))
6874 warning (_("Invalid type size for `%s' detected: %d."),
6875 TYPE_NAME (rtype), TYPE_LENGTH (type));
6876 else
6877 warning (_("Invalid type size for <unnamed> detected: %d."),
6878 TYPE_LENGTH (type));
6879 }
6880 else
6881 {
6882 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6883 TYPE_LENGTH (type));
6884 }
6885
6886 value_free_to_mark (mark);
6887 if (TYPE_LENGTH (rtype) > varsize_limit)
6888 error (_("record type with dynamic size is larger than varsize-limit"));
6889 return rtype;
6890 }
6891
6892 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6893 of 1. */
6894
6895 static struct type *
6896 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6897 CORE_ADDR address, struct value *dval0)
6898 {
6899 return ada_template_to_fixed_record_type_1 (type, valaddr,
6900 address, dval0, 1);
6901 }
6902
6903 /* An ordinary record type in which ___XVL-convention fields and
6904 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6905 static approximations, containing all possible fields. Uses
6906 no runtime values. Useless for use in values, but that's OK,
6907 since the results are used only for type determinations. Works on both
6908 structs and unions. Representation note: to save space, we memorize
6909 the result of this function in the TYPE_TARGET_TYPE of the
6910 template type. */
6911
6912 static struct type *
6913 template_to_static_fixed_type (struct type *type0)
6914 {
6915 struct type *type;
6916 int nfields;
6917 int f;
6918
6919 if (TYPE_TARGET_TYPE (type0) != NULL)
6920 return TYPE_TARGET_TYPE (type0);
6921
6922 nfields = TYPE_NFIELDS (type0);
6923 type = type0;
6924
6925 for (f = 0; f < nfields; f += 1)
6926 {
6927 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6928 struct type *new_type;
6929
6930 if (is_dynamic_field (type0, f))
6931 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6932 else
6933 new_type = static_unwrap_type (field_type);
6934 if (type == type0 && new_type != field_type)
6935 {
6936 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
6937 TYPE_CODE (type) = TYPE_CODE (type0);
6938 INIT_CPLUS_SPECIFIC (type);
6939 TYPE_NFIELDS (type) = nfields;
6940 TYPE_FIELDS (type) = (struct field *)
6941 TYPE_ALLOC (type, nfields * sizeof (struct field));
6942 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6943 sizeof (struct field) * nfields);
6944 TYPE_NAME (type) = ada_type_name (type0);
6945 TYPE_TAG_NAME (type) = NULL;
6946 TYPE_FIXED_INSTANCE (type) = 1;
6947 TYPE_LENGTH (type) = 0;
6948 }
6949 TYPE_FIELD_TYPE (type, f) = new_type;
6950 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6951 }
6952 return type;
6953 }
6954
6955 /* Given an object of type TYPE whose contents are at VALADDR and
6956 whose address in memory is ADDRESS, returns a revision of TYPE,
6957 which should be a non-dynamic-sized record, in which the variant
6958 part, if any, is replaced with the appropriate branch. Looks
6959 for discriminant values in DVAL0, which can be NULL if the record
6960 contains the necessary discriminant values. */
6961
6962 static struct type *
6963 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6964 CORE_ADDR address, struct value *dval0)
6965 {
6966 struct value *mark = value_mark ();
6967 struct value *dval;
6968 struct type *rtype;
6969 struct type *branch_type;
6970 int nfields = TYPE_NFIELDS (type);
6971 int variant_field = variant_field_index (type);
6972
6973 if (variant_field == -1)
6974 return type;
6975
6976 if (dval0 == NULL)
6977 dval = value_from_contents_and_address (type, valaddr, address);
6978 else
6979 dval = dval0;
6980
6981 rtype = alloc_type_copy (type);
6982 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6983 INIT_CPLUS_SPECIFIC (rtype);
6984 TYPE_NFIELDS (rtype) = nfields;
6985 TYPE_FIELDS (rtype) =
6986 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6987 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6988 sizeof (struct field) * nfields);
6989 TYPE_NAME (rtype) = ada_type_name (type);
6990 TYPE_TAG_NAME (rtype) = NULL;
6991 TYPE_FIXED_INSTANCE (rtype) = 1;
6992 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6993
6994 branch_type = to_fixed_variant_branch_type
6995 (TYPE_FIELD_TYPE (type, variant_field),
6996 cond_offset_host (valaddr,
6997 TYPE_FIELD_BITPOS (type, variant_field)
6998 / TARGET_CHAR_BIT),
6999 cond_offset_target (address,
7000 TYPE_FIELD_BITPOS (type, variant_field)
7001 / TARGET_CHAR_BIT), dval);
7002 if (branch_type == NULL)
7003 {
7004 int f;
7005 for (f = variant_field + 1; f < nfields; f += 1)
7006 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7007 TYPE_NFIELDS (rtype) -= 1;
7008 }
7009 else
7010 {
7011 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7012 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7013 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7014 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7015 }
7016 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7017
7018 value_free_to_mark (mark);
7019 return rtype;
7020 }
7021
7022 /* An ordinary record type (with fixed-length fields) that describes
7023 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7024 beginning of this section]. Any necessary discriminants' values
7025 should be in DVAL, a record value; it may be NULL if the object
7026 at ADDR itself contains any necessary discriminant values.
7027 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7028 values from the record are needed. Except in the case that DVAL,
7029 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7030 unchecked) is replaced by a particular branch of the variant.
7031
7032 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7033 is questionable and may be removed. It can arise during the
7034 processing of an unconstrained-array-of-record type where all the
7035 variant branches have exactly the same size. This is because in
7036 such cases, the compiler does not bother to use the XVS convention
7037 when encoding the record. I am currently dubious of this
7038 shortcut and suspect the compiler should be altered. FIXME. */
7039
7040 static struct type *
7041 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7042 CORE_ADDR address, struct value *dval)
7043 {
7044 struct type *templ_type;
7045
7046 if (TYPE_FIXED_INSTANCE (type0))
7047 return type0;
7048
7049 templ_type = dynamic_template_type (type0);
7050
7051 if (templ_type != NULL)
7052 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7053 else if (variant_field_index (type0) >= 0)
7054 {
7055 if (dval == NULL && valaddr == NULL && address == 0)
7056 return type0;
7057 return to_record_with_fixed_variant_part (type0, valaddr, address,
7058 dval);
7059 }
7060 else
7061 {
7062 TYPE_FIXED_INSTANCE (type0) = 1;
7063 return type0;
7064 }
7065
7066 }
7067
7068 /* An ordinary record type (with fixed-length fields) that describes
7069 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7070 union type. Any necessary discriminants' values should be in DVAL,
7071 a record value. That is, this routine selects the appropriate
7072 branch of the union at ADDR according to the discriminant value
7073 indicated in the union's type name. Returns VAR_TYPE0 itself if
7074 it represents a variant subject to a pragma Unchecked_Union. */
7075
7076 static struct type *
7077 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7078 CORE_ADDR address, struct value *dval)
7079 {
7080 int which;
7081 struct type *templ_type;
7082 struct type *var_type;
7083
7084 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7085 var_type = TYPE_TARGET_TYPE (var_type0);
7086 else
7087 var_type = var_type0;
7088
7089 templ_type = ada_find_parallel_type (var_type, "___XVU");
7090
7091 if (templ_type != NULL)
7092 var_type = templ_type;
7093
7094 if (is_unchecked_variant (var_type, value_type (dval)))
7095 return var_type0;
7096 which =
7097 ada_which_variant_applies (var_type,
7098 value_type (dval), value_contents (dval));
7099
7100 if (which < 0)
7101 return empty_record (var_type);
7102 else if (is_dynamic_field (var_type, which))
7103 return to_fixed_record_type
7104 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7105 valaddr, address, dval);
7106 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7107 return
7108 to_fixed_record_type
7109 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7110 else
7111 return TYPE_FIELD_TYPE (var_type, which);
7112 }
7113
7114 /* Assuming that TYPE0 is an array type describing the type of a value
7115 at ADDR, and that DVAL describes a record containing any
7116 discriminants used in TYPE0, returns a type for the value that
7117 contains no dynamic components (that is, no components whose sizes
7118 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7119 true, gives an error message if the resulting type's size is over
7120 varsize_limit. */
7121
7122 static struct type *
7123 to_fixed_array_type (struct type *type0, struct value *dval,
7124 int ignore_too_big)
7125 {
7126 struct type *index_type_desc;
7127 struct type *result;
7128 int packed_array_p;
7129
7130 if (TYPE_FIXED_INSTANCE (type0))
7131 return type0;
7132
7133 packed_array_p = ada_is_packed_array_type (type0);
7134 if (packed_array_p)
7135 type0 = decode_packed_array_type (type0);
7136
7137 index_type_desc = ada_find_parallel_type (type0, "___XA");
7138 if (index_type_desc == NULL)
7139 {
7140 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7141 /* NOTE: elt_type---the fixed version of elt_type0---should never
7142 depend on the contents of the array in properly constructed
7143 debugging data. */
7144 /* Create a fixed version of the array element type.
7145 We're not providing the address of an element here,
7146 and thus the actual object value cannot be inspected to do
7147 the conversion. This should not be a problem, since arrays of
7148 unconstrained objects are not allowed. In particular, all
7149 the elements of an array of a tagged type should all be of
7150 the same type specified in the debugging info. No need to
7151 consult the object tag. */
7152 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7153
7154 /* Make sure we always create a new array type when dealing with
7155 packed array types, since we're going to fix-up the array
7156 type length and element bitsize a little further down. */
7157 if (elt_type0 == elt_type && !packed_array_p)
7158 result = type0;
7159 else
7160 result = create_array_type (alloc_type_copy (type0),
7161 elt_type, TYPE_INDEX_TYPE (type0));
7162 }
7163 else
7164 {
7165 int i;
7166 struct type *elt_type0;
7167
7168 elt_type0 = type0;
7169 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7170 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7171
7172 /* NOTE: result---the fixed version of elt_type0---should never
7173 depend on the contents of the array in properly constructed
7174 debugging data. */
7175 /* Create a fixed version of the array element type.
7176 We're not providing the address of an element here,
7177 and thus the actual object value cannot be inspected to do
7178 the conversion. This should not be a problem, since arrays of
7179 unconstrained objects are not allowed. In particular, all
7180 the elements of an array of a tagged type should all be of
7181 the same type specified in the debugging info. No need to
7182 consult the object tag. */
7183 result =
7184 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7185
7186 elt_type0 = type0;
7187 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7188 {
7189 struct type *range_type =
7190 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7191 dval, TYPE_INDEX_TYPE (elt_type0));
7192 result = create_array_type (alloc_type_copy (elt_type0),
7193 result, range_type);
7194 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7195 }
7196 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7197 error (_("array type with dynamic size is larger than varsize-limit"));
7198 }
7199
7200 if (packed_array_p)
7201 {
7202 /* So far, the resulting type has been created as if the original
7203 type was a regular (non-packed) array type. As a result, the
7204 bitsize of the array elements needs to be set again, and the array
7205 length needs to be recomputed based on that bitsize. */
7206 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7207 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7208
7209 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7210 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7211 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7212 TYPE_LENGTH (result)++;
7213 }
7214
7215 TYPE_FIXED_INSTANCE (result) = 1;
7216 return result;
7217 }
7218
7219
7220 /* A standard type (containing no dynamically sized components)
7221 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7222 DVAL describes a record containing any discriminants used in TYPE0,
7223 and may be NULL if there are none, or if the object of type TYPE at
7224 ADDRESS or in VALADDR contains these discriminants.
7225
7226 If CHECK_TAG is not null, in the case of tagged types, this function
7227 attempts to locate the object's tag and use it to compute the actual
7228 type. However, when ADDRESS is null, we cannot use it to determine the
7229 location of the tag, and therefore compute the tagged type's actual type.
7230 So we return the tagged type without consulting the tag. */
7231
7232 static struct type *
7233 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7234 CORE_ADDR address, struct value *dval, int check_tag)
7235 {
7236 type = ada_check_typedef (type);
7237 switch (TYPE_CODE (type))
7238 {
7239 default:
7240 return type;
7241 case TYPE_CODE_STRUCT:
7242 {
7243 struct type *static_type = to_static_fixed_type (type);
7244 struct type *fixed_record_type =
7245 to_fixed_record_type (type, valaddr, address, NULL);
7246 /* If STATIC_TYPE is a tagged type and we know the object's address,
7247 then we can determine its tag, and compute the object's actual
7248 type from there. Note that we have to use the fixed record
7249 type (the parent part of the record may have dynamic fields
7250 and the way the location of _tag is expressed may depend on
7251 them). */
7252
7253 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7254 {
7255 struct type *real_type =
7256 type_from_tag (value_tag_from_contents_and_address
7257 (fixed_record_type,
7258 valaddr,
7259 address));
7260 if (real_type != NULL)
7261 return to_fixed_record_type (real_type, valaddr, address, NULL);
7262 }
7263
7264 /* Check to see if there is a parallel ___XVZ variable.
7265 If there is, then it provides the actual size of our type. */
7266 else if (ada_type_name (fixed_record_type) != NULL)
7267 {
7268 char *name = ada_type_name (fixed_record_type);
7269 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7270 int xvz_found = 0;
7271 LONGEST size;
7272
7273 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7274 size = get_int_var_value (xvz_name, &xvz_found);
7275 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7276 {
7277 fixed_record_type = copy_type (fixed_record_type);
7278 TYPE_LENGTH (fixed_record_type) = size;
7279
7280 /* The FIXED_RECORD_TYPE may have be a stub. We have
7281 observed this when the debugging info is STABS, and
7282 apparently it is something that is hard to fix.
7283
7284 In practice, we don't need the actual type definition
7285 at all, because the presence of the XVZ variable allows us
7286 to assume that there must be a XVS type as well, which we
7287 should be able to use later, when we need the actual type
7288 definition.
7289
7290 In the meantime, pretend that the "fixed" type we are
7291 returning is NOT a stub, because this can cause trouble
7292 when using this type to create new types targeting it.
7293 Indeed, the associated creation routines often check
7294 whether the target type is a stub and will try to replace
7295 it, thus using a type with the wrong size. This, in turn,
7296 might cause the new type to have the wrong size too.
7297 Consider the case of an array, for instance, where the size
7298 of the array is computed from the number of elements in
7299 our array multiplied by the size of its element. */
7300 TYPE_STUB (fixed_record_type) = 0;
7301 }
7302 }
7303 return fixed_record_type;
7304 }
7305 case TYPE_CODE_ARRAY:
7306 return to_fixed_array_type (type, dval, 1);
7307 case TYPE_CODE_UNION:
7308 if (dval == NULL)
7309 return type;
7310 else
7311 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7312 }
7313 }
7314
7315 /* The same as ada_to_fixed_type_1, except that it preserves the type
7316 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7317 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7318
7319 struct type *
7320 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7321 CORE_ADDR address, struct value *dval, int check_tag)
7322
7323 {
7324 struct type *fixed_type =
7325 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7326
7327 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7328 && TYPE_TARGET_TYPE (type) == fixed_type)
7329 return type;
7330
7331 return fixed_type;
7332 }
7333
7334 /* A standard (static-sized) type corresponding as well as possible to
7335 TYPE0, but based on no runtime data. */
7336
7337 static struct type *
7338 to_static_fixed_type (struct type *type0)
7339 {
7340 struct type *type;
7341
7342 if (type0 == NULL)
7343 return NULL;
7344
7345 if (TYPE_FIXED_INSTANCE (type0))
7346 return type0;
7347
7348 type0 = ada_check_typedef (type0);
7349
7350 switch (TYPE_CODE (type0))
7351 {
7352 default:
7353 return type0;
7354 case TYPE_CODE_STRUCT:
7355 type = dynamic_template_type (type0);
7356 if (type != NULL)
7357 return template_to_static_fixed_type (type);
7358 else
7359 return template_to_static_fixed_type (type0);
7360 case TYPE_CODE_UNION:
7361 type = ada_find_parallel_type (type0, "___XVU");
7362 if (type != NULL)
7363 return template_to_static_fixed_type (type);
7364 else
7365 return template_to_static_fixed_type (type0);
7366 }
7367 }
7368
7369 /* A static approximation of TYPE with all type wrappers removed. */
7370
7371 static struct type *
7372 static_unwrap_type (struct type *type)
7373 {
7374 if (ada_is_aligner_type (type))
7375 {
7376 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7377 if (ada_type_name (type1) == NULL)
7378 TYPE_NAME (type1) = ada_type_name (type);
7379
7380 return static_unwrap_type (type1);
7381 }
7382 else
7383 {
7384 struct type *raw_real_type = ada_get_base_type (type);
7385 if (raw_real_type == type)
7386 return type;
7387 else
7388 return to_static_fixed_type (raw_real_type);
7389 }
7390 }
7391
7392 /* In some cases, incomplete and private types require
7393 cross-references that are not resolved as records (for example,
7394 type Foo;
7395 type FooP is access Foo;
7396 V: FooP;
7397 type Foo is array ...;
7398 ). In these cases, since there is no mechanism for producing
7399 cross-references to such types, we instead substitute for FooP a
7400 stub enumeration type that is nowhere resolved, and whose tag is
7401 the name of the actual type. Call these types "non-record stubs". */
7402
7403 /* A type equivalent to TYPE that is not a non-record stub, if one
7404 exists, otherwise TYPE. */
7405
7406 struct type *
7407 ada_check_typedef (struct type *type)
7408 {
7409 if (type == NULL)
7410 return NULL;
7411
7412 CHECK_TYPEDEF (type);
7413 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7414 || !TYPE_STUB (type)
7415 || TYPE_TAG_NAME (type) == NULL)
7416 return type;
7417 else
7418 {
7419 char *name = TYPE_TAG_NAME (type);
7420 struct type *type1 = ada_find_any_type (name);
7421 return (type1 == NULL) ? type : type1;
7422 }
7423 }
7424
7425 /* A value representing the data at VALADDR/ADDRESS as described by
7426 type TYPE0, but with a standard (static-sized) type that correctly
7427 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7428 type, then return VAL0 [this feature is simply to avoid redundant
7429 creation of struct values]. */
7430
7431 static struct value *
7432 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7433 struct value *val0)
7434 {
7435 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7436 if (type == type0 && val0 != NULL)
7437 return val0;
7438 else
7439 return value_from_contents_and_address (type, 0, address);
7440 }
7441
7442 /* A value representing VAL, but with a standard (static-sized) type
7443 that correctly describes it. Does not necessarily create a new
7444 value. */
7445
7446 static struct value *
7447 ada_to_fixed_value (struct value *val)
7448 {
7449 return ada_to_fixed_value_create (value_type (val),
7450 value_address (val),
7451 val);
7452 }
7453
7454 /* A value representing VAL, but with a standard (static-sized) type
7455 chosen to approximate the real type of VAL as well as possible, but
7456 without consulting any runtime values. For Ada dynamic-sized
7457 types, therefore, the type of the result is likely to be inaccurate. */
7458
7459 static struct value *
7460 ada_to_static_fixed_value (struct value *val)
7461 {
7462 struct type *type =
7463 to_static_fixed_type (static_unwrap_type (value_type (val)));
7464 if (type == value_type (val))
7465 return val;
7466 else
7467 return coerce_unspec_val_to_type (val, type);
7468 }
7469 \f
7470
7471 /* Attributes */
7472
7473 /* Table mapping attribute numbers to names.
7474 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7475
7476 static const char *attribute_names[] = {
7477 "<?>",
7478
7479 "first",
7480 "last",
7481 "length",
7482 "image",
7483 "max",
7484 "min",
7485 "modulus",
7486 "pos",
7487 "size",
7488 "tag",
7489 "val",
7490 0
7491 };
7492
7493 const char *
7494 ada_attribute_name (enum exp_opcode n)
7495 {
7496 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7497 return attribute_names[n - OP_ATR_FIRST + 1];
7498 else
7499 return attribute_names[0];
7500 }
7501
7502 /* Evaluate the 'POS attribute applied to ARG. */
7503
7504 static LONGEST
7505 pos_atr (struct value *arg)
7506 {
7507 struct value *val = coerce_ref (arg);
7508 struct type *type = value_type (val);
7509
7510 if (!discrete_type_p (type))
7511 error (_("'POS only defined on discrete types"));
7512
7513 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7514 {
7515 int i;
7516 LONGEST v = value_as_long (val);
7517
7518 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7519 {
7520 if (v == TYPE_FIELD_BITPOS (type, i))
7521 return i;
7522 }
7523 error (_("enumeration value is invalid: can't find 'POS"));
7524 }
7525 else
7526 return value_as_long (val);
7527 }
7528
7529 static struct value *
7530 value_pos_atr (struct type *type, struct value *arg)
7531 {
7532 return value_from_longest (type, pos_atr (arg));
7533 }
7534
7535 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7536
7537 static struct value *
7538 value_val_atr (struct type *type, struct value *arg)
7539 {
7540 if (!discrete_type_p (type))
7541 error (_("'VAL only defined on discrete types"));
7542 if (!integer_type_p (value_type (arg)))
7543 error (_("'VAL requires integral argument"));
7544
7545 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7546 {
7547 long pos = value_as_long (arg);
7548 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7549 error (_("argument to 'VAL out of range"));
7550 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7551 }
7552 else
7553 return value_from_longest (type, value_as_long (arg));
7554 }
7555 \f
7556
7557 /* Evaluation */
7558
7559 /* True if TYPE appears to be an Ada character type.
7560 [At the moment, this is true only for Character and Wide_Character;
7561 It is a heuristic test that could stand improvement]. */
7562
7563 int
7564 ada_is_character_type (struct type *type)
7565 {
7566 const char *name;
7567
7568 /* If the type code says it's a character, then assume it really is,
7569 and don't check any further. */
7570 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7571 return 1;
7572
7573 /* Otherwise, assume it's a character type iff it is a discrete type
7574 with a known character type name. */
7575 name = ada_type_name (type);
7576 return (name != NULL
7577 && (TYPE_CODE (type) == TYPE_CODE_INT
7578 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7579 && (strcmp (name, "character") == 0
7580 || strcmp (name, "wide_character") == 0
7581 || strcmp (name, "wide_wide_character") == 0
7582 || strcmp (name, "unsigned char") == 0));
7583 }
7584
7585 /* True if TYPE appears to be an Ada string type. */
7586
7587 int
7588 ada_is_string_type (struct type *type)
7589 {
7590 type = ada_check_typedef (type);
7591 if (type != NULL
7592 && TYPE_CODE (type) != TYPE_CODE_PTR
7593 && (ada_is_simple_array_type (type)
7594 || ada_is_array_descriptor_type (type))
7595 && ada_array_arity (type) == 1)
7596 {
7597 struct type *elttype = ada_array_element_type (type, 1);
7598
7599 return ada_is_character_type (elttype);
7600 }
7601 else
7602 return 0;
7603 }
7604
7605
7606 /* True if TYPE is a struct type introduced by the compiler to force the
7607 alignment of a value. Such types have a single field with a
7608 distinctive name. */
7609
7610 int
7611 ada_is_aligner_type (struct type *type)
7612 {
7613 type = ada_check_typedef (type);
7614
7615 /* If we can find a parallel XVS type, then the XVS type should
7616 be used instead of this type. And hence, this is not an aligner
7617 type. */
7618 if (ada_find_parallel_type (type, "___XVS") != NULL)
7619 return 0;
7620
7621 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7622 && TYPE_NFIELDS (type) == 1
7623 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7624 }
7625
7626 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7627 the parallel type. */
7628
7629 struct type *
7630 ada_get_base_type (struct type *raw_type)
7631 {
7632 struct type *real_type_namer;
7633 struct type *raw_real_type;
7634
7635 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7636 return raw_type;
7637
7638 if (ada_is_aligner_type (raw_type))
7639 /* The encoding specifies that we should always use the aligner type.
7640 So, even if this aligner type has an associated XVS type, we should
7641 simply ignore it.
7642
7643 According to the compiler gurus, an XVS type parallel to an aligner
7644 type may exist because of a stabs limitation. In stabs, aligner
7645 types are empty because the field has a variable-sized type, and
7646 thus cannot actually be used as an aligner type. As a result,
7647 we need the associated parallel XVS type to decode the type.
7648 Since the policy in the compiler is to not change the internal
7649 representation based on the debugging info format, we sometimes
7650 end up having a redundant XVS type parallel to the aligner type. */
7651 return raw_type;
7652
7653 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7654 if (real_type_namer == NULL
7655 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7656 || TYPE_NFIELDS (real_type_namer) != 1)
7657 return raw_type;
7658
7659 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7660 if (raw_real_type == NULL)
7661 return raw_type;
7662 else
7663 return raw_real_type;
7664 }
7665
7666 /* The type of value designated by TYPE, with all aligners removed. */
7667
7668 struct type *
7669 ada_aligned_type (struct type *type)
7670 {
7671 if (ada_is_aligner_type (type))
7672 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7673 else
7674 return ada_get_base_type (type);
7675 }
7676
7677
7678 /* The address of the aligned value in an object at address VALADDR
7679 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7680
7681 const gdb_byte *
7682 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7683 {
7684 if (ada_is_aligner_type (type))
7685 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7686 valaddr +
7687 TYPE_FIELD_BITPOS (type,
7688 0) / TARGET_CHAR_BIT);
7689 else
7690 return valaddr;
7691 }
7692
7693
7694
7695 /* The printed representation of an enumeration literal with encoded
7696 name NAME. The value is good to the next call of ada_enum_name. */
7697 const char *
7698 ada_enum_name (const char *name)
7699 {
7700 static char *result;
7701 static size_t result_len = 0;
7702 char *tmp;
7703
7704 /* First, unqualify the enumeration name:
7705 1. Search for the last '.' character. If we find one, then skip
7706 all the preceeding characters, the unqualified name starts
7707 right after that dot.
7708 2. Otherwise, we may be debugging on a target where the compiler
7709 translates dots into "__". Search forward for double underscores,
7710 but stop searching when we hit an overloading suffix, which is
7711 of the form "__" followed by digits. */
7712
7713 tmp = strrchr (name, '.');
7714 if (tmp != NULL)
7715 name = tmp + 1;
7716 else
7717 {
7718 while ((tmp = strstr (name, "__")) != NULL)
7719 {
7720 if (isdigit (tmp[2]))
7721 break;
7722 else
7723 name = tmp + 2;
7724 }
7725 }
7726
7727 if (name[0] == 'Q')
7728 {
7729 int v;
7730 if (name[1] == 'U' || name[1] == 'W')
7731 {
7732 if (sscanf (name + 2, "%x", &v) != 1)
7733 return name;
7734 }
7735 else
7736 return name;
7737
7738 GROW_VECT (result, result_len, 16);
7739 if (isascii (v) && isprint (v))
7740 xsnprintf (result, result_len, "'%c'", v);
7741 else if (name[1] == 'U')
7742 xsnprintf (result, result_len, "[\"%02x\"]", v);
7743 else
7744 xsnprintf (result, result_len, "[\"%04x\"]", v);
7745
7746 return result;
7747 }
7748 else
7749 {
7750 tmp = strstr (name, "__");
7751 if (tmp == NULL)
7752 tmp = strstr (name, "$");
7753 if (tmp != NULL)
7754 {
7755 GROW_VECT (result, result_len, tmp - name + 1);
7756 strncpy (result, name, tmp - name);
7757 result[tmp - name] = '\0';
7758 return result;
7759 }
7760
7761 return name;
7762 }
7763 }
7764
7765 /* Evaluate the subexpression of EXP starting at *POS as for
7766 evaluate_type, updating *POS to point just past the evaluated
7767 expression. */
7768
7769 static struct value *
7770 evaluate_subexp_type (struct expression *exp, int *pos)
7771 {
7772 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7773 }
7774
7775 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7776 value it wraps. */
7777
7778 static struct value *
7779 unwrap_value (struct value *val)
7780 {
7781 struct type *type = ada_check_typedef (value_type (val));
7782 if (ada_is_aligner_type (type))
7783 {
7784 struct value *v = ada_value_struct_elt (val, "F", 0);
7785 struct type *val_type = ada_check_typedef (value_type (v));
7786 if (ada_type_name (val_type) == NULL)
7787 TYPE_NAME (val_type) = ada_type_name (type);
7788
7789 return unwrap_value (v);
7790 }
7791 else
7792 {
7793 struct type *raw_real_type =
7794 ada_check_typedef (ada_get_base_type (type));
7795
7796 if (type == raw_real_type)
7797 return val;
7798
7799 return
7800 coerce_unspec_val_to_type
7801 (val, ada_to_fixed_type (raw_real_type, 0,
7802 value_address (val),
7803 NULL, 1));
7804 }
7805 }
7806
7807 static struct value *
7808 cast_to_fixed (struct type *type, struct value *arg)
7809 {
7810 LONGEST val;
7811
7812 if (type == value_type (arg))
7813 return arg;
7814 else if (ada_is_fixed_point_type (value_type (arg)))
7815 val = ada_float_to_fixed (type,
7816 ada_fixed_to_float (value_type (arg),
7817 value_as_long (arg)));
7818 else
7819 {
7820 DOUBLEST argd = value_as_double (arg);
7821 val = ada_float_to_fixed (type, argd);
7822 }
7823
7824 return value_from_longest (type, val);
7825 }
7826
7827 static struct value *
7828 cast_from_fixed (struct type *type, struct value *arg)
7829 {
7830 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7831 value_as_long (arg));
7832 return value_from_double (type, val);
7833 }
7834
7835 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7836 return the converted value. */
7837
7838 static struct value *
7839 coerce_for_assign (struct type *type, struct value *val)
7840 {
7841 struct type *type2 = value_type (val);
7842 if (type == type2)
7843 return val;
7844
7845 type2 = ada_check_typedef (type2);
7846 type = ada_check_typedef (type);
7847
7848 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7849 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7850 {
7851 val = ada_value_ind (val);
7852 type2 = value_type (val);
7853 }
7854
7855 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7856 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7857 {
7858 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7859 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7860 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7861 error (_("Incompatible types in assignment"));
7862 deprecated_set_value_type (val, type);
7863 }
7864 return val;
7865 }
7866
7867 static struct value *
7868 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7869 {
7870 struct value *val;
7871 struct type *type1, *type2;
7872 LONGEST v, v1, v2;
7873
7874 arg1 = coerce_ref (arg1);
7875 arg2 = coerce_ref (arg2);
7876 type1 = base_type (ada_check_typedef (value_type (arg1)));
7877 type2 = base_type (ada_check_typedef (value_type (arg2)));
7878
7879 if (TYPE_CODE (type1) != TYPE_CODE_INT
7880 || TYPE_CODE (type2) != TYPE_CODE_INT)
7881 return value_binop (arg1, arg2, op);
7882
7883 switch (op)
7884 {
7885 case BINOP_MOD:
7886 case BINOP_DIV:
7887 case BINOP_REM:
7888 break;
7889 default:
7890 return value_binop (arg1, arg2, op);
7891 }
7892
7893 v2 = value_as_long (arg2);
7894 if (v2 == 0)
7895 error (_("second operand of %s must not be zero."), op_string (op));
7896
7897 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7898 return value_binop (arg1, arg2, op);
7899
7900 v1 = value_as_long (arg1);
7901 switch (op)
7902 {
7903 case BINOP_DIV:
7904 v = v1 / v2;
7905 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7906 v += v > 0 ? -1 : 1;
7907 break;
7908 case BINOP_REM:
7909 v = v1 % v2;
7910 if (v * v1 < 0)
7911 v -= v2;
7912 break;
7913 default:
7914 /* Should not reach this point. */
7915 v = 0;
7916 }
7917
7918 val = allocate_value (type1);
7919 store_unsigned_integer (value_contents_raw (val),
7920 TYPE_LENGTH (value_type (val)), v);
7921 return val;
7922 }
7923
7924 static int
7925 ada_value_equal (struct value *arg1, struct value *arg2)
7926 {
7927 if (ada_is_direct_array_type (value_type (arg1))
7928 || ada_is_direct_array_type (value_type (arg2)))
7929 {
7930 /* Automatically dereference any array reference before
7931 we attempt to perform the comparison. */
7932 arg1 = ada_coerce_ref (arg1);
7933 arg2 = ada_coerce_ref (arg2);
7934
7935 arg1 = ada_coerce_to_simple_array (arg1);
7936 arg2 = ada_coerce_to_simple_array (arg2);
7937 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7938 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7939 error (_("Attempt to compare array with non-array"));
7940 /* FIXME: The following works only for types whose
7941 representations use all bits (no padding or undefined bits)
7942 and do not have user-defined equality. */
7943 return
7944 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7945 && memcmp (value_contents (arg1), value_contents (arg2),
7946 TYPE_LENGTH (value_type (arg1))) == 0;
7947 }
7948 return value_equal (arg1, arg2);
7949 }
7950
7951 /* Total number of component associations in the aggregate starting at
7952 index PC in EXP. Assumes that index PC is the start of an
7953 OP_AGGREGATE. */
7954
7955 static int
7956 num_component_specs (struct expression *exp, int pc)
7957 {
7958 int n, m, i;
7959 m = exp->elts[pc + 1].longconst;
7960 pc += 3;
7961 n = 0;
7962 for (i = 0; i < m; i += 1)
7963 {
7964 switch (exp->elts[pc].opcode)
7965 {
7966 default:
7967 n += 1;
7968 break;
7969 case OP_CHOICES:
7970 n += exp->elts[pc + 1].longconst;
7971 break;
7972 }
7973 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7974 }
7975 return n;
7976 }
7977
7978 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7979 component of LHS (a simple array or a record), updating *POS past
7980 the expression, assuming that LHS is contained in CONTAINER. Does
7981 not modify the inferior's memory, nor does it modify LHS (unless
7982 LHS == CONTAINER). */
7983
7984 static void
7985 assign_component (struct value *container, struct value *lhs, LONGEST index,
7986 struct expression *exp, int *pos)
7987 {
7988 struct value *mark = value_mark ();
7989 struct value *elt;
7990 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7991 {
7992 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
7993 struct value *index_val = value_from_longest (index_type, index);
7994 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7995 }
7996 else
7997 {
7998 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7999 elt = ada_to_fixed_value (unwrap_value (elt));
8000 }
8001
8002 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8003 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8004 else
8005 value_assign_to_component (container, elt,
8006 ada_evaluate_subexp (NULL, exp, pos,
8007 EVAL_NORMAL));
8008
8009 value_free_to_mark (mark);
8010 }
8011
8012 /* Assuming that LHS represents an lvalue having a record or array
8013 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8014 of that aggregate's value to LHS, advancing *POS past the
8015 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8016 lvalue containing LHS (possibly LHS itself). Does not modify
8017 the inferior's memory, nor does it modify the contents of
8018 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8019
8020 static struct value *
8021 assign_aggregate (struct value *container,
8022 struct value *lhs, struct expression *exp,
8023 int *pos, enum noside noside)
8024 {
8025 struct type *lhs_type;
8026 int n = exp->elts[*pos+1].longconst;
8027 LONGEST low_index, high_index;
8028 int num_specs;
8029 LONGEST *indices;
8030 int max_indices, num_indices;
8031 int is_array_aggregate;
8032 int i;
8033 struct value *mark = value_mark ();
8034
8035 *pos += 3;
8036 if (noside != EVAL_NORMAL)
8037 {
8038 int i;
8039 for (i = 0; i < n; i += 1)
8040 ada_evaluate_subexp (NULL, exp, pos, noside);
8041 return container;
8042 }
8043
8044 container = ada_coerce_ref (container);
8045 if (ada_is_direct_array_type (value_type (container)))
8046 container = ada_coerce_to_simple_array (container);
8047 lhs = ada_coerce_ref (lhs);
8048 if (!deprecated_value_modifiable (lhs))
8049 error (_("Left operand of assignment is not a modifiable lvalue."));
8050
8051 lhs_type = value_type (lhs);
8052 if (ada_is_direct_array_type (lhs_type))
8053 {
8054 lhs = ada_coerce_to_simple_array (lhs);
8055 lhs_type = value_type (lhs);
8056 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8057 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8058 is_array_aggregate = 1;
8059 }
8060 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8061 {
8062 low_index = 0;
8063 high_index = num_visible_fields (lhs_type) - 1;
8064 is_array_aggregate = 0;
8065 }
8066 else
8067 error (_("Left-hand side must be array or record."));
8068
8069 num_specs = num_component_specs (exp, *pos - 3);
8070 max_indices = 4 * num_specs + 4;
8071 indices = alloca (max_indices * sizeof (indices[0]));
8072 indices[0] = indices[1] = low_index - 1;
8073 indices[2] = indices[3] = high_index + 1;
8074 num_indices = 4;
8075
8076 for (i = 0; i < n; i += 1)
8077 {
8078 switch (exp->elts[*pos].opcode)
8079 {
8080 case OP_CHOICES:
8081 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8082 &num_indices, max_indices,
8083 low_index, high_index);
8084 break;
8085 case OP_POSITIONAL:
8086 aggregate_assign_positional (container, lhs, exp, pos, indices,
8087 &num_indices, max_indices,
8088 low_index, high_index);
8089 break;
8090 case OP_OTHERS:
8091 if (i != n-1)
8092 error (_("Misplaced 'others' clause"));
8093 aggregate_assign_others (container, lhs, exp, pos, indices,
8094 num_indices, low_index, high_index);
8095 break;
8096 default:
8097 error (_("Internal error: bad aggregate clause"));
8098 }
8099 }
8100
8101 return container;
8102 }
8103
8104 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8105 construct at *POS, updating *POS past the construct, given that
8106 the positions are relative to lower bound LOW, where HIGH is the
8107 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8108 updating *NUM_INDICES as needed. CONTAINER is as for
8109 assign_aggregate. */
8110 static void
8111 aggregate_assign_positional (struct value *container,
8112 struct value *lhs, struct expression *exp,
8113 int *pos, LONGEST *indices, int *num_indices,
8114 int max_indices, LONGEST low, LONGEST high)
8115 {
8116 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8117
8118 if (ind - 1 == high)
8119 warning (_("Extra components in aggregate ignored."));
8120 if (ind <= high)
8121 {
8122 add_component_interval (ind, ind, indices, num_indices, max_indices);
8123 *pos += 3;
8124 assign_component (container, lhs, ind, exp, pos);
8125 }
8126 else
8127 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8128 }
8129
8130 /* Assign into the components of LHS indexed by the OP_CHOICES
8131 construct at *POS, updating *POS past the construct, given that
8132 the allowable indices are LOW..HIGH. Record the indices assigned
8133 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8134 needed. CONTAINER is as for assign_aggregate. */
8135 static void
8136 aggregate_assign_from_choices (struct value *container,
8137 struct value *lhs, struct expression *exp,
8138 int *pos, LONGEST *indices, int *num_indices,
8139 int max_indices, LONGEST low, LONGEST high)
8140 {
8141 int j;
8142 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8143 int choice_pos, expr_pc;
8144 int is_array = ada_is_direct_array_type (value_type (lhs));
8145
8146 choice_pos = *pos += 3;
8147
8148 for (j = 0; j < n_choices; j += 1)
8149 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8150 expr_pc = *pos;
8151 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8152
8153 for (j = 0; j < n_choices; j += 1)
8154 {
8155 LONGEST lower, upper;
8156 enum exp_opcode op = exp->elts[choice_pos].opcode;
8157 if (op == OP_DISCRETE_RANGE)
8158 {
8159 choice_pos += 1;
8160 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8161 EVAL_NORMAL));
8162 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8163 EVAL_NORMAL));
8164 }
8165 else if (is_array)
8166 {
8167 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8168 EVAL_NORMAL));
8169 upper = lower;
8170 }
8171 else
8172 {
8173 int ind;
8174 char *name;
8175 switch (op)
8176 {
8177 case OP_NAME:
8178 name = &exp->elts[choice_pos + 2].string;
8179 break;
8180 case OP_VAR_VALUE:
8181 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8182 break;
8183 default:
8184 error (_("Invalid record component association."));
8185 }
8186 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8187 ind = 0;
8188 if (! find_struct_field (name, value_type (lhs), 0,
8189 NULL, NULL, NULL, NULL, &ind))
8190 error (_("Unknown component name: %s."), name);
8191 lower = upper = ind;
8192 }
8193
8194 if (lower <= upper && (lower < low || upper > high))
8195 error (_("Index in component association out of bounds."));
8196
8197 add_component_interval (lower, upper, indices, num_indices,
8198 max_indices);
8199 while (lower <= upper)
8200 {
8201 int pos1;
8202 pos1 = expr_pc;
8203 assign_component (container, lhs, lower, exp, &pos1);
8204 lower += 1;
8205 }
8206 }
8207 }
8208
8209 /* Assign the value of the expression in the OP_OTHERS construct in
8210 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8211 have not been previously assigned. The index intervals already assigned
8212 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8213 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8214 static void
8215 aggregate_assign_others (struct value *container,
8216 struct value *lhs, struct expression *exp,
8217 int *pos, LONGEST *indices, int num_indices,
8218 LONGEST low, LONGEST high)
8219 {
8220 int i;
8221 int expr_pc = *pos+1;
8222
8223 for (i = 0; i < num_indices - 2; i += 2)
8224 {
8225 LONGEST ind;
8226 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8227 {
8228 int pos;
8229 pos = expr_pc;
8230 assign_component (container, lhs, ind, exp, &pos);
8231 }
8232 }
8233 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8234 }
8235
8236 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8237 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8238 modifying *SIZE as needed. It is an error if *SIZE exceeds
8239 MAX_SIZE. The resulting intervals do not overlap. */
8240 static void
8241 add_component_interval (LONGEST low, LONGEST high,
8242 LONGEST* indices, int *size, int max_size)
8243 {
8244 int i, j;
8245 for (i = 0; i < *size; i += 2) {
8246 if (high >= indices[i] && low <= indices[i + 1])
8247 {
8248 int kh;
8249 for (kh = i + 2; kh < *size; kh += 2)
8250 if (high < indices[kh])
8251 break;
8252 if (low < indices[i])
8253 indices[i] = low;
8254 indices[i + 1] = indices[kh - 1];
8255 if (high > indices[i + 1])
8256 indices[i + 1] = high;
8257 memcpy (indices + i + 2, indices + kh, *size - kh);
8258 *size -= kh - i - 2;
8259 return;
8260 }
8261 else if (high < indices[i])
8262 break;
8263 }
8264
8265 if (*size == max_size)
8266 error (_("Internal error: miscounted aggregate components."));
8267 *size += 2;
8268 for (j = *size-1; j >= i+2; j -= 1)
8269 indices[j] = indices[j - 2];
8270 indices[i] = low;
8271 indices[i + 1] = high;
8272 }
8273
8274 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8275 is different. */
8276
8277 static struct value *
8278 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8279 {
8280 if (type == ada_check_typedef (value_type (arg2)))
8281 return arg2;
8282
8283 if (ada_is_fixed_point_type (type))
8284 return (cast_to_fixed (type, arg2));
8285
8286 if (ada_is_fixed_point_type (value_type (arg2)))
8287 return cast_from_fixed (type, arg2);
8288
8289 return value_cast (type, arg2);
8290 }
8291
8292 /* Evaluating Ada expressions, and printing their result.
8293 ------------------------------------------------------
8294
8295 We usually evaluate an Ada expression in order to print its value.
8296 We also evaluate an expression in order to print its type, which
8297 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8298 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8299 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8300 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8301 similar.
8302
8303 Evaluating expressions is a little more complicated for Ada entities
8304 than it is for entities in languages such as C. The main reason for
8305 this is that Ada provides types whose definition might be dynamic.
8306 One example of such types is variant records. Or another example
8307 would be an array whose bounds can only be known at run time.
8308
8309 The following description is a general guide as to what should be
8310 done (and what should NOT be done) in order to evaluate an expression
8311 involving such types, and when. This does not cover how the semantic
8312 information is encoded by GNAT as this is covered separatly. For the
8313 document used as the reference for the GNAT encoding, see exp_dbug.ads
8314 in the GNAT sources.
8315
8316 Ideally, we should embed each part of this description next to its
8317 associated code. Unfortunately, the amount of code is so vast right
8318 now that it's hard to see whether the code handling a particular
8319 situation might be duplicated or not. One day, when the code is
8320 cleaned up, this guide might become redundant with the comments
8321 inserted in the code, and we might want to remove it.
8322
8323 When evaluating Ada expressions, the tricky issue is that they may
8324 reference entities whose type contents and size are not statically
8325 known. Consider for instance a variant record:
8326
8327 type Rec (Empty : Boolean := True) is record
8328 case Empty is
8329 when True => null;
8330 when False => Value : Integer;
8331 end case;
8332 end record;
8333 Yes : Rec := (Empty => False, Value => 1);
8334 No : Rec := (empty => True);
8335
8336 The size and contents of that record depends on the value of the
8337 descriminant (Rec.Empty). At this point, neither the debugging
8338 information nor the associated type structure in GDB are able to
8339 express such dynamic types. So what the debugger does is to create
8340 "fixed" versions of the type that applies to the specific object.
8341 We also informally refer to this opperation as "fixing" an object,
8342 which means creating its associated fixed type.
8343
8344 Example: when printing the value of variable "Yes" above, its fixed
8345 type would look like this:
8346
8347 type Rec is record
8348 Empty : Boolean;
8349 Value : Integer;
8350 end record;
8351
8352 On the other hand, if we printed the value of "No", its fixed type
8353 would become:
8354
8355 type Rec is record
8356 Empty : Boolean;
8357 end record;
8358
8359 Things become a little more complicated when trying to fix an entity
8360 with a dynamic type that directly contains another dynamic type,
8361 such as an array of variant records, for instance. There are
8362 two possible cases: Arrays, and records.
8363
8364 Arrays are a little simpler to handle, because the same amount of
8365 memory is allocated for each element of the array, even if the amount
8366 of space used by each element changes from element to element.
8367 Consider for instance the following array of type Rec:
8368
8369 type Rec_Array is array (1 .. 2) of Rec;
8370
8371 The type structure in GDB describes an array in terms of its
8372 bounds, and the type of its elements. By design, all elements
8373 in the array have the same type. So we cannot use a fixed type
8374 for the array elements in this case, since the fixed type depends
8375 on the actual value of each element.
8376
8377 Fortunately, what happens in practice is that each element of
8378 the array has the same size, which is the maximum size that
8379 might be needed in order to hold an object of the element type.
8380 And the compiler shows it in the debugging information by wrapping
8381 the array element inside a private PAD type. This type should not
8382 be shown to the user, and must be "unwrap"'ed before printing. Note
8383 that we also use the adjective "aligner" in our code to designate
8384 these wrapper types.
8385
8386 These wrapper types should have a constant size, which is the size
8387 of each element of the array. In the case when the size is statically
8388 known, the PAD type will already have the right size, and the array
8389 element type should remain unfixed. But there are cases when
8390 this size is not statically known. For instance, assuming that
8391 "Five" is an integer variable:
8392
8393 type Dynamic is array (1 .. Five) of Integer;
8394 type Wrapper (Has_Length : Boolean := False) is record
8395 Data : Dynamic;
8396 case Has_Length is
8397 when True => Length : Integer;
8398 when False => null;
8399 end case;
8400 end record;
8401 type Wrapper_Array is array (1 .. 2) of Wrapper;
8402
8403 Hello : Wrapper_Array := (others => (Has_Length => True,
8404 Data => (others => 17),
8405 Length => 1));
8406
8407
8408 The debugging info would describe variable Hello as being an
8409 array of a PAD type. The size of that PAD type is not statically
8410 known, but can be determined using a parallel XVZ variable.
8411 In that case, a copy of the PAD type with the correct size should
8412 be used for the fixed array.
8413
8414 However, things are slightly different in the case of dynamic
8415 record types. In this case, in order to compute the associated
8416 fixed type, we need to determine the size and offset of each of
8417 its components. This, in turn, requires us to compute the fixed
8418 type of each of these components.
8419
8420 Consider for instance the example:
8421
8422 type Bounded_String (Max_Size : Natural) is record
8423 Str : String (1 .. Max_Size);
8424 Length : Natural;
8425 end record;
8426 My_String : Bounded_String (Max_Size => 10);
8427
8428 In that case, the position of field "Length" depends on the size
8429 of field Str, which itself depends on the value of the Max_Size
8430 discriminant. In order to fix the type of variable My_String,
8431 we need to fix the type of field Str. Therefore, fixing a variant
8432 record requires us to fix each of its components.
8433
8434 However, if a component does not have a dynamic size, the component
8435 should not be fixed. In particular, fields that use a PAD type
8436 should not fixed. Here is an example where this might happen
8437 (assuming type Rec above):
8438
8439 type Container (Big : Boolean) is record
8440 First : Rec;
8441 After : Integer;
8442 case Big is
8443 when True => Another : Integer;
8444 when False => null;
8445 end case;
8446 end record;
8447 My_Container : Container := (Big => False,
8448 First => (Empty => True),
8449 After => 42);
8450
8451 In that example, the compiler creates a PAD type for component First,
8452 whose size is constant, and then positions the component After just
8453 right after it. The offset of component After is therefore constant
8454 in this case.
8455
8456 The debugger computes the position of each field based on an algorithm
8457 that uses, among other things, the actual position and size of the field
8458 preceding it. Let's now imagine that the user is trying to print the
8459 value of My_Container. If the type fixing was recursive, we would
8460 end up computing the offset of field After based on the size of the
8461 fixed version of field First. And since in our example First has
8462 only one actual field, the size of the fixed type is actually smaller
8463 than the amount of space allocated to that field, and thus we would
8464 compute the wrong offset of field After.
8465
8466 Unfortunately, we need to watch out for dynamic components of variant
8467 records (identified by the ___XVL suffix in the component name).
8468 Even if the target type is a PAD type, the size of that type might
8469 not be statically known. So the PAD type needs to be unwrapped and
8470 the resulting type needs to be fixed. Otherwise, we might end up
8471 with the wrong size for our component. This can be observed with
8472 the following type declarations:
8473
8474 type Octal is new Integer range 0 .. 7;
8475 type Octal_Array is array (Positive range <>) of Octal;
8476 pragma Pack (Octal_Array);
8477
8478 type Octal_Buffer (Size : Positive) is record
8479 Buffer : Octal_Array (1 .. Size);
8480 Length : Integer;
8481 end record;
8482
8483 In that case, Buffer is a PAD type whose size is unset and needs
8484 to be computed by fixing the unwrapped type.
8485
8486 Lastly, when should the sub-elements of a type that remained unfixed
8487 thus far, be actually fixed?
8488
8489 The answer is: Only when referencing that element. For instance
8490 when selecting one component of a record, this specific component
8491 should be fixed at that point in time. Or when printing the value
8492 of a record, each component should be fixed before its value gets
8493 printed. Similarly for arrays, the element of the array should be
8494 fixed when printing each element of the array, or when extracting
8495 one element out of that array. On the other hand, fixing should
8496 not be performed on the elements when taking a slice of an array!
8497
8498 Note that one of the side-effects of miscomputing the offset and
8499 size of each field is that we end up also miscomputing the size
8500 of the containing type. This can have adverse results when computing
8501 the value of an entity. GDB fetches the value of an entity based
8502 on the size of its type, and thus a wrong size causes GDB to fetch
8503 the wrong amount of memory. In the case where the computed size is
8504 too small, GDB fetches too little data to print the value of our
8505 entiry. Results in this case as unpredicatble, as we usually read
8506 past the buffer containing the data =:-o. */
8507
8508 /* Implement the evaluate_exp routine in the exp_descriptor structure
8509 for the Ada language. */
8510
8511 static struct value *
8512 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8513 int *pos, enum noside noside)
8514 {
8515 enum exp_opcode op;
8516 int tem, tem2, tem3;
8517 int pc;
8518 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8519 struct type *type;
8520 int nargs, oplen;
8521 struct value **argvec;
8522
8523 pc = *pos;
8524 *pos += 1;
8525 op = exp->elts[pc].opcode;
8526
8527 switch (op)
8528 {
8529 default:
8530 *pos -= 1;
8531 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8532 arg1 = unwrap_value (arg1);
8533
8534 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8535 then we need to perform the conversion manually, because
8536 evaluate_subexp_standard doesn't do it. This conversion is
8537 necessary in Ada because the different kinds of float/fixed
8538 types in Ada have different representations.
8539
8540 Similarly, we need to perform the conversion from OP_LONG
8541 ourselves. */
8542 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8543 arg1 = ada_value_cast (expect_type, arg1, noside);
8544
8545 return arg1;
8546
8547 case OP_STRING:
8548 {
8549 struct value *result;
8550 *pos -= 1;
8551 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8552 /* The result type will have code OP_STRING, bashed there from
8553 OP_ARRAY. Bash it back. */
8554 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8555 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8556 return result;
8557 }
8558
8559 case UNOP_CAST:
8560 (*pos) += 2;
8561 type = exp->elts[pc + 1].type;
8562 arg1 = evaluate_subexp (type, exp, pos, noside);
8563 if (noside == EVAL_SKIP)
8564 goto nosideret;
8565 arg1 = ada_value_cast (type, arg1, noside);
8566 return arg1;
8567
8568 case UNOP_QUAL:
8569 (*pos) += 2;
8570 type = exp->elts[pc + 1].type;
8571 return ada_evaluate_subexp (type, exp, pos, noside);
8572
8573 case BINOP_ASSIGN:
8574 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8575 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8576 {
8577 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8578 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8579 return arg1;
8580 return ada_value_assign (arg1, arg1);
8581 }
8582 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8583 except if the lhs of our assignment is a convenience variable.
8584 In the case of assigning to a convenience variable, the lhs
8585 should be exactly the result of the evaluation of the rhs. */
8586 type = value_type (arg1);
8587 if (VALUE_LVAL (arg1) == lval_internalvar)
8588 type = NULL;
8589 arg2 = evaluate_subexp (type, exp, pos, noside);
8590 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8591 return arg1;
8592 if (ada_is_fixed_point_type (value_type (arg1)))
8593 arg2 = cast_to_fixed (value_type (arg1), arg2);
8594 else if (ada_is_fixed_point_type (value_type (arg2)))
8595 error
8596 (_("Fixed-point values must be assigned to fixed-point variables"));
8597 else
8598 arg2 = coerce_for_assign (value_type (arg1), arg2);
8599 return ada_value_assign (arg1, arg2);
8600
8601 case BINOP_ADD:
8602 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8603 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8604 if (noside == EVAL_SKIP)
8605 goto nosideret;
8606 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8607 return (value_from_longest
8608 (value_type (arg1),
8609 value_as_long (arg1) + value_as_long (arg2)));
8610 if ((ada_is_fixed_point_type (value_type (arg1))
8611 || ada_is_fixed_point_type (value_type (arg2)))
8612 && value_type (arg1) != value_type (arg2))
8613 error (_("Operands of fixed-point addition must have the same type"));
8614 /* Do the addition, and cast the result to the type of the first
8615 argument. We cannot cast the result to a reference type, so if
8616 ARG1 is a reference type, find its underlying type. */
8617 type = value_type (arg1);
8618 while (TYPE_CODE (type) == TYPE_CODE_REF)
8619 type = TYPE_TARGET_TYPE (type);
8620 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8621 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8622
8623 case BINOP_SUB:
8624 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8625 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8626 if (noside == EVAL_SKIP)
8627 goto nosideret;
8628 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8629 return (value_from_longest
8630 (value_type (arg1),
8631 value_as_long (arg1) - value_as_long (arg2)));
8632 if ((ada_is_fixed_point_type (value_type (arg1))
8633 || ada_is_fixed_point_type (value_type (arg2)))
8634 && value_type (arg1) != value_type (arg2))
8635 error (_("Operands of fixed-point subtraction must have the same type"));
8636 /* Do the substraction, and cast the result to the type of the first
8637 argument. We cannot cast the result to a reference type, so if
8638 ARG1 is a reference type, find its underlying type. */
8639 type = value_type (arg1);
8640 while (TYPE_CODE (type) == TYPE_CODE_REF)
8641 type = TYPE_TARGET_TYPE (type);
8642 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8643 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8644
8645 case BINOP_MUL:
8646 case BINOP_DIV:
8647 case BINOP_REM:
8648 case BINOP_MOD:
8649 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8650 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8651 if (noside == EVAL_SKIP)
8652 goto nosideret;
8653 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8654 {
8655 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8656 return value_zero (value_type (arg1), not_lval);
8657 }
8658 else
8659 {
8660 type = builtin_type (exp->gdbarch)->builtin_double;
8661 if (ada_is_fixed_point_type (value_type (arg1)))
8662 arg1 = cast_from_fixed (type, arg1);
8663 if (ada_is_fixed_point_type (value_type (arg2)))
8664 arg2 = cast_from_fixed (type, arg2);
8665 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8666 return ada_value_binop (arg1, arg2, op);
8667 }
8668
8669 case BINOP_EQUAL:
8670 case BINOP_NOTEQUAL:
8671 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8672 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8673 if (noside == EVAL_SKIP)
8674 goto nosideret;
8675 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8676 tem = 0;
8677 else
8678 {
8679 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8680 tem = ada_value_equal (arg1, arg2);
8681 }
8682 if (op == BINOP_NOTEQUAL)
8683 tem = !tem;
8684 type = language_bool_type (exp->language_defn, exp->gdbarch);
8685 return value_from_longest (type, (LONGEST) tem);
8686
8687 case UNOP_NEG:
8688 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8689 if (noside == EVAL_SKIP)
8690 goto nosideret;
8691 else if (ada_is_fixed_point_type (value_type (arg1)))
8692 return value_cast (value_type (arg1), value_neg (arg1));
8693 else
8694 {
8695 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8696 return value_neg (arg1);
8697 }
8698
8699 case BINOP_LOGICAL_AND:
8700 case BINOP_LOGICAL_OR:
8701 case UNOP_LOGICAL_NOT:
8702 {
8703 struct value *val;
8704
8705 *pos -= 1;
8706 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8707 type = language_bool_type (exp->language_defn, exp->gdbarch);
8708 return value_cast (type, val);
8709 }
8710
8711 case BINOP_BITWISE_AND:
8712 case BINOP_BITWISE_IOR:
8713 case BINOP_BITWISE_XOR:
8714 {
8715 struct value *val;
8716
8717 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8718 *pos = pc;
8719 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8720
8721 return value_cast (value_type (arg1), val);
8722 }
8723
8724 case OP_VAR_VALUE:
8725 *pos -= 1;
8726
8727 if (noside == EVAL_SKIP)
8728 {
8729 *pos += 4;
8730 goto nosideret;
8731 }
8732 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8733 /* Only encountered when an unresolved symbol occurs in a
8734 context other than a function call, in which case, it is
8735 invalid. */
8736 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8737 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8738 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8739 {
8740 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8741 if (ada_is_tagged_type (type, 0))
8742 {
8743 /* Tagged types are a little special in the fact that the real
8744 type is dynamic and can only be determined by inspecting the
8745 object's tag. This means that we need to get the object's
8746 value first (EVAL_NORMAL) and then extract the actual object
8747 type from its tag.
8748
8749 Note that we cannot skip the final step where we extract
8750 the object type from its tag, because the EVAL_NORMAL phase
8751 results in dynamic components being resolved into fixed ones.
8752 This can cause problems when trying to print the type
8753 description of tagged types whose parent has a dynamic size:
8754 We use the type name of the "_parent" component in order
8755 to print the name of the ancestor type in the type description.
8756 If that component had a dynamic size, the resolution into
8757 a fixed type would result in the loss of that type name,
8758 thus preventing us from printing the name of the ancestor
8759 type in the type description. */
8760 struct type *actual_type;
8761
8762 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8763 actual_type = type_from_tag (ada_value_tag (arg1));
8764 if (actual_type == NULL)
8765 /* If, for some reason, we were unable to determine
8766 the actual type from the tag, then use the static
8767 approximation that we just computed as a fallback.
8768 This can happen if the debugging information is
8769 incomplete, for instance. */
8770 actual_type = type;
8771
8772 return value_zero (actual_type, not_lval);
8773 }
8774
8775 *pos += 4;
8776 return value_zero
8777 (to_static_fixed_type
8778 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8779 not_lval);
8780 }
8781 else
8782 {
8783 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8784 arg1 = unwrap_value (arg1);
8785 return ada_to_fixed_value (arg1);
8786 }
8787
8788 case OP_FUNCALL:
8789 (*pos) += 2;
8790
8791 /* Allocate arg vector, including space for the function to be
8792 called in argvec[0] and a terminating NULL. */
8793 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8794 argvec =
8795 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8796
8797 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8798 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8799 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8800 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8801 else
8802 {
8803 for (tem = 0; tem <= nargs; tem += 1)
8804 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8805 argvec[tem] = 0;
8806
8807 if (noside == EVAL_SKIP)
8808 goto nosideret;
8809 }
8810
8811 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8812 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8813 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8814 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8815 /* This is a packed array that has already been fixed, and
8816 therefore already coerced to a simple array. Nothing further
8817 to do. */
8818 ;
8819 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8820 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8821 && VALUE_LVAL (argvec[0]) == lval_memory))
8822 argvec[0] = value_addr (argvec[0]);
8823
8824 type = ada_check_typedef (value_type (argvec[0]));
8825 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8826 {
8827 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8828 {
8829 case TYPE_CODE_FUNC:
8830 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8831 break;
8832 case TYPE_CODE_ARRAY:
8833 break;
8834 case TYPE_CODE_STRUCT:
8835 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8836 argvec[0] = ada_value_ind (argvec[0]);
8837 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8838 break;
8839 default:
8840 error (_("cannot subscript or call something of type `%s'"),
8841 ada_type_name (value_type (argvec[0])));
8842 break;
8843 }
8844 }
8845
8846 switch (TYPE_CODE (type))
8847 {
8848 case TYPE_CODE_FUNC:
8849 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8850 return allocate_value (TYPE_TARGET_TYPE (type));
8851 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8852 case TYPE_CODE_STRUCT:
8853 {
8854 int arity;
8855
8856 arity = ada_array_arity (type);
8857 type = ada_array_element_type (type, nargs);
8858 if (type == NULL)
8859 error (_("cannot subscript or call a record"));
8860 if (arity != nargs)
8861 error (_("wrong number of subscripts; expecting %d"), arity);
8862 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8863 return value_zero (ada_aligned_type (type), lval_memory);
8864 return
8865 unwrap_value (ada_value_subscript
8866 (argvec[0], nargs, argvec + 1));
8867 }
8868 case TYPE_CODE_ARRAY:
8869 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8870 {
8871 type = ada_array_element_type (type, nargs);
8872 if (type == NULL)
8873 error (_("element type of array unknown"));
8874 else
8875 return value_zero (ada_aligned_type (type), lval_memory);
8876 }
8877 return
8878 unwrap_value (ada_value_subscript
8879 (ada_coerce_to_simple_array (argvec[0]),
8880 nargs, argvec + 1));
8881 case TYPE_CODE_PTR: /* Pointer to array */
8882 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8883 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8884 {
8885 type = ada_array_element_type (type, nargs);
8886 if (type == NULL)
8887 error (_("element type of array unknown"));
8888 else
8889 return value_zero (ada_aligned_type (type), lval_memory);
8890 }
8891 return
8892 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8893 nargs, argvec + 1));
8894
8895 default:
8896 error (_("Attempt to index or call something other than an "
8897 "array or function"));
8898 }
8899
8900 case TERNOP_SLICE:
8901 {
8902 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8903 struct value *low_bound_val =
8904 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8905 struct value *high_bound_val =
8906 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8907 LONGEST low_bound;
8908 LONGEST high_bound;
8909 low_bound_val = coerce_ref (low_bound_val);
8910 high_bound_val = coerce_ref (high_bound_val);
8911 low_bound = pos_atr (low_bound_val);
8912 high_bound = pos_atr (high_bound_val);
8913
8914 if (noside == EVAL_SKIP)
8915 goto nosideret;
8916
8917 /* If this is a reference to an aligner type, then remove all
8918 the aligners. */
8919 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8920 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8921 TYPE_TARGET_TYPE (value_type (array)) =
8922 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8923
8924 if (ada_is_packed_array_type (value_type (array)))
8925 error (_("cannot slice a packed array"));
8926
8927 /* If this is a reference to an array or an array lvalue,
8928 convert to a pointer. */
8929 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8930 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8931 && VALUE_LVAL (array) == lval_memory))
8932 array = value_addr (array);
8933
8934 if (noside == EVAL_AVOID_SIDE_EFFECTS
8935 && ada_is_array_descriptor_type (ada_check_typedef
8936 (value_type (array))))
8937 return empty_array (ada_type_of_array (array, 0), low_bound);
8938
8939 array = ada_coerce_to_simple_array_ptr (array);
8940
8941 /* If we have more than one level of pointer indirection,
8942 dereference the value until we get only one level. */
8943 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8944 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8945 == TYPE_CODE_PTR))
8946 array = value_ind (array);
8947
8948 /* Make sure we really do have an array type before going further,
8949 to avoid a SEGV when trying to get the index type or the target
8950 type later down the road if the debug info generated by
8951 the compiler is incorrect or incomplete. */
8952 if (!ada_is_simple_array_type (value_type (array)))
8953 error (_("cannot take slice of non-array"));
8954
8955 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8956 {
8957 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8958 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8959 low_bound);
8960 else
8961 {
8962 struct type *arr_type0 =
8963 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8964 NULL, 1);
8965 return ada_value_slice_from_ptr (array, arr_type0,
8966 longest_to_int (low_bound),
8967 longest_to_int (high_bound));
8968 }
8969 }
8970 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8971 return array;
8972 else if (high_bound < low_bound)
8973 return empty_array (value_type (array), low_bound);
8974 else
8975 return ada_value_slice (array, longest_to_int (low_bound),
8976 longest_to_int (high_bound));
8977 }
8978
8979 case UNOP_IN_RANGE:
8980 (*pos) += 2;
8981 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8982 type = check_typedef (exp->elts[pc + 1].type);
8983
8984 if (noside == EVAL_SKIP)
8985 goto nosideret;
8986
8987 switch (TYPE_CODE (type))
8988 {
8989 default:
8990 lim_warning (_("Membership test incompletely implemented; "
8991 "always returns true"));
8992 type = language_bool_type (exp->language_defn, exp->gdbarch);
8993 return value_from_longest (type, (LONGEST) 1);
8994
8995 case TYPE_CODE_RANGE:
8996 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8997 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
8998 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8999 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9000 type = language_bool_type (exp->language_defn, exp->gdbarch);
9001 return
9002 value_from_longest (type,
9003 (value_less (arg1, arg3)
9004 || value_equal (arg1, arg3))
9005 && (value_less (arg2, arg1)
9006 || value_equal (arg2, arg1)));
9007 }
9008
9009 case BINOP_IN_BOUNDS:
9010 (*pos) += 2;
9011 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9012 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9013
9014 if (noside == EVAL_SKIP)
9015 goto nosideret;
9016
9017 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9018 {
9019 type = language_bool_type (exp->language_defn, exp->gdbarch);
9020 return value_zero (type, not_lval);
9021 }
9022
9023 tem = longest_to_int (exp->elts[pc + 1].longconst);
9024
9025 type = ada_index_type (value_type (arg2), tem, "range");
9026 if (!type)
9027 type = value_type (arg1);
9028
9029 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9030 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9031
9032 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9033 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9034 type = language_bool_type (exp->language_defn, exp->gdbarch);
9035 return
9036 value_from_longest (type,
9037 (value_less (arg1, arg3)
9038 || value_equal (arg1, arg3))
9039 && (value_less (arg2, arg1)
9040 || value_equal (arg2, arg1)));
9041
9042 case TERNOP_IN_RANGE:
9043 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9044 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9045 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9046
9047 if (noside == EVAL_SKIP)
9048 goto nosideret;
9049
9050 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9051 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9052 type = language_bool_type (exp->language_defn, exp->gdbarch);
9053 return
9054 value_from_longest (type,
9055 (value_less (arg1, arg3)
9056 || value_equal (arg1, arg3))
9057 && (value_less (arg2, arg1)
9058 || value_equal (arg2, arg1)));
9059
9060 case OP_ATR_FIRST:
9061 case OP_ATR_LAST:
9062 case OP_ATR_LENGTH:
9063 {
9064 struct type *type_arg;
9065 if (exp->elts[*pos].opcode == OP_TYPE)
9066 {
9067 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9068 arg1 = NULL;
9069 type_arg = check_typedef (exp->elts[pc + 2].type);
9070 }
9071 else
9072 {
9073 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9074 type_arg = NULL;
9075 }
9076
9077 if (exp->elts[*pos].opcode != OP_LONG)
9078 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9079 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9080 *pos += 4;
9081
9082 if (noside == EVAL_SKIP)
9083 goto nosideret;
9084
9085 if (type_arg == NULL)
9086 {
9087 arg1 = ada_coerce_ref (arg1);
9088
9089 if (ada_is_packed_array_type (value_type (arg1)))
9090 arg1 = ada_coerce_to_simple_array (arg1);
9091
9092 type = ada_index_type (value_type (arg1), tem,
9093 ada_attribute_name (op));
9094 if (type == NULL)
9095 type = builtin_type (exp->gdbarch)->builtin_int;
9096
9097 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9098 return allocate_value (type);
9099
9100 switch (op)
9101 {
9102 default: /* Should never happen. */
9103 error (_("unexpected attribute encountered"));
9104 case OP_ATR_FIRST:
9105 return value_from_longest
9106 (type, ada_array_bound (arg1, tem, 0));
9107 case OP_ATR_LAST:
9108 return value_from_longest
9109 (type, ada_array_bound (arg1, tem, 1));
9110 case OP_ATR_LENGTH:
9111 return value_from_longest
9112 (type, ada_array_length (arg1, tem));
9113 }
9114 }
9115 else if (discrete_type_p (type_arg))
9116 {
9117 struct type *range_type;
9118 char *name = ada_type_name (type_arg);
9119 range_type = NULL;
9120 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9121 range_type = to_fixed_range_type (name, NULL, type_arg);
9122 if (range_type == NULL)
9123 range_type = type_arg;
9124 switch (op)
9125 {
9126 default:
9127 error (_("unexpected attribute encountered"));
9128 case OP_ATR_FIRST:
9129 return value_from_longest
9130 (range_type, discrete_type_low_bound (range_type));
9131 case OP_ATR_LAST:
9132 return value_from_longest
9133 (range_type, discrete_type_high_bound (range_type));
9134 case OP_ATR_LENGTH:
9135 error (_("the 'length attribute applies only to array types"));
9136 }
9137 }
9138 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9139 error (_("unimplemented type attribute"));
9140 else
9141 {
9142 LONGEST low, high;
9143
9144 if (ada_is_packed_array_type (type_arg))
9145 type_arg = decode_packed_array_type (type_arg);
9146
9147 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9148 if (type == NULL)
9149 type = builtin_type (exp->gdbarch)->builtin_int;
9150
9151 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9152 return allocate_value (type);
9153
9154 switch (op)
9155 {
9156 default:
9157 error (_("unexpected attribute encountered"));
9158 case OP_ATR_FIRST:
9159 low = ada_array_bound_from_type (type_arg, tem, 0);
9160 return value_from_longest (type, low);
9161 case OP_ATR_LAST:
9162 high = ada_array_bound_from_type (type_arg, tem, 1);
9163 return value_from_longest (type, high);
9164 case OP_ATR_LENGTH:
9165 low = ada_array_bound_from_type (type_arg, tem, 0);
9166 high = ada_array_bound_from_type (type_arg, tem, 1);
9167 return value_from_longest (type, high - low + 1);
9168 }
9169 }
9170 }
9171
9172 case OP_ATR_TAG:
9173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9174 if (noside == EVAL_SKIP)
9175 goto nosideret;
9176
9177 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9178 return value_zero (ada_tag_type (arg1), not_lval);
9179
9180 return ada_value_tag (arg1);
9181
9182 case OP_ATR_MIN:
9183 case OP_ATR_MAX:
9184 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9185 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9186 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9187 if (noside == EVAL_SKIP)
9188 goto nosideret;
9189 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9190 return value_zero (value_type (arg1), not_lval);
9191 else
9192 {
9193 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9194 return value_binop (arg1, arg2,
9195 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9196 }
9197
9198 case OP_ATR_MODULUS:
9199 {
9200 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9201 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9202
9203 if (noside == EVAL_SKIP)
9204 goto nosideret;
9205
9206 if (!ada_is_modular_type (type_arg))
9207 error (_("'modulus must be applied to modular type"));
9208
9209 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9210 ada_modulus (type_arg));
9211 }
9212
9213
9214 case OP_ATR_POS:
9215 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9216 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9217 if (noside == EVAL_SKIP)
9218 goto nosideret;
9219 type = builtin_type (exp->gdbarch)->builtin_int;
9220 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9221 return value_zero (type, not_lval);
9222 else
9223 return value_pos_atr (type, arg1);
9224
9225 case OP_ATR_SIZE:
9226 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9227 type = value_type (arg1);
9228
9229 /* If the argument is a reference, then dereference its type, since
9230 the user is really asking for the size of the actual object,
9231 not the size of the pointer. */
9232 if (TYPE_CODE (type) == TYPE_CODE_REF)
9233 type = TYPE_TARGET_TYPE (type);
9234
9235 if (noside == EVAL_SKIP)
9236 goto nosideret;
9237 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9238 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9239 else
9240 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9241 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9242
9243 case OP_ATR_VAL:
9244 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9245 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9246 type = exp->elts[pc + 2].type;
9247 if (noside == EVAL_SKIP)
9248 goto nosideret;
9249 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9250 return value_zero (type, not_lval);
9251 else
9252 return value_val_atr (type, arg1);
9253
9254 case BINOP_EXP:
9255 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9256 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9257 if (noside == EVAL_SKIP)
9258 goto nosideret;
9259 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9260 return value_zero (value_type (arg1), not_lval);
9261 else
9262 {
9263 /* For integer exponentiation operations,
9264 only promote the first argument. */
9265 if (is_integral_type (value_type (arg2)))
9266 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9267 else
9268 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9269
9270 return value_binop (arg1, arg2, op);
9271 }
9272
9273 case UNOP_PLUS:
9274 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9275 if (noside == EVAL_SKIP)
9276 goto nosideret;
9277 else
9278 return arg1;
9279
9280 case UNOP_ABS:
9281 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9282 if (noside == EVAL_SKIP)
9283 goto nosideret;
9284 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9285 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9286 return value_neg (arg1);
9287 else
9288 return arg1;
9289
9290 case UNOP_IND:
9291 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9292 if (noside == EVAL_SKIP)
9293 goto nosideret;
9294 type = ada_check_typedef (value_type (arg1));
9295 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9296 {
9297 if (ada_is_array_descriptor_type (type))
9298 /* GDB allows dereferencing GNAT array descriptors. */
9299 {
9300 struct type *arrType = ada_type_of_array (arg1, 0);
9301 if (arrType == NULL)
9302 error (_("Attempt to dereference null array pointer."));
9303 return value_at_lazy (arrType, 0);
9304 }
9305 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9306 || TYPE_CODE (type) == TYPE_CODE_REF
9307 /* In C you can dereference an array to get the 1st elt. */
9308 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9309 {
9310 type = to_static_fixed_type
9311 (ada_aligned_type
9312 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9313 check_size (type);
9314 return value_zero (type, lval_memory);
9315 }
9316 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9317 {
9318 /* GDB allows dereferencing an int. */
9319 if (expect_type == NULL)
9320 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9321 lval_memory);
9322 else
9323 {
9324 expect_type =
9325 to_static_fixed_type (ada_aligned_type (expect_type));
9326 return value_zero (expect_type, lval_memory);
9327 }
9328 }
9329 else
9330 error (_("Attempt to take contents of a non-pointer value."));
9331 }
9332 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9333 type = ada_check_typedef (value_type (arg1));
9334
9335 if (TYPE_CODE (type) == TYPE_CODE_INT)
9336 /* GDB allows dereferencing an int. If we were given
9337 the expect_type, then use that as the target type.
9338 Otherwise, assume that the target type is an int. */
9339 {
9340 if (expect_type != NULL)
9341 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9342 arg1));
9343 else
9344 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9345 (CORE_ADDR) value_as_address (arg1));
9346 }
9347
9348 if (ada_is_array_descriptor_type (type))
9349 /* GDB allows dereferencing GNAT array descriptors. */
9350 return ada_coerce_to_simple_array (arg1);
9351 else
9352 return ada_value_ind (arg1);
9353
9354 case STRUCTOP_STRUCT:
9355 tem = longest_to_int (exp->elts[pc + 1].longconst);
9356 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9357 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9358 if (noside == EVAL_SKIP)
9359 goto nosideret;
9360 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9361 {
9362 struct type *type1 = value_type (arg1);
9363 if (ada_is_tagged_type (type1, 1))
9364 {
9365 type = ada_lookup_struct_elt_type (type1,
9366 &exp->elts[pc + 2].string,
9367 1, 1, NULL);
9368 if (type == NULL)
9369 /* In this case, we assume that the field COULD exist
9370 in some extension of the type. Return an object of
9371 "type" void, which will match any formal
9372 (see ada_type_match). */
9373 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9374 lval_memory);
9375 }
9376 else
9377 type =
9378 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9379 0, NULL);
9380
9381 return value_zero (ada_aligned_type (type), lval_memory);
9382 }
9383 else
9384 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9385 arg1 = unwrap_value (arg1);
9386 return ada_to_fixed_value (arg1);
9387
9388 case OP_TYPE:
9389 /* The value is not supposed to be used. This is here to make it
9390 easier to accommodate expressions that contain types. */
9391 (*pos) += 2;
9392 if (noside == EVAL_SKIP)
9393 goto nosideret;
9394 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9395 return allocate_value (exp->elts[pc + 1].type);
9396 else
9397 error (_("Attempt to use a type name as an expression"));
9398
9399 case OP_AGGREGATE:
9400 case OP_CHOICES:
9401 case OP_OTHERS:
9402 case OP_DISCRETE_RANGE:
9403 case OP_POSITIONAL:
9404 case OP_NAME:
9405 if (noside == EVAL_NORMAL)
9406 switch (op)
9407 {
9408 case OP_NAME:
9409 error (_("Undefined name, ambiguous name, or renaming used in "
9410 "component association: %s."), &exp->elts[pc+2].string);
9411 case OP_AGGREGATE:
9412 error (_("Aggregates only allowed on the right of an assignment"));
9413 default:
9414 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9415 }
9416
9417 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9418 *pos += oplen - 1;
9419 for (tem = 0; tem < nargs; tem += 1)
9420 ada_evaluate_subexp (NULL, exp, pos, noside);
9421 goto nosideret;
9422 }
9423
9424 nosideret:
9425 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9426 }
9427 \f
9428
9429 /* Fixed point */
9430
9431 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9432 type name that encodes the 'small and 'delta information.
9433 Otherwise, return NULL. */
9434
9435 static const char *
9436 fixed_type_info (struct type *type)
9437 {
9438 const char *name = ada_type_name (type);
9439 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9440
9441 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9442 {
9443 const char *tail = strstr (name, "___XF_");
9444 if (tail == NULL)
9445 return NULL;
9446 else
9447 return tail + 5;
9448 }
9449 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9450 return fixed_type_info (TYPE_TARGET_TYPE (type));
9451 else
9452 return NULL;
9453 }
9454
9455 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9456
9457 int
9458 ada_is_fixed_point_type (struct type *type)
9459 {
9460 return fixed_type_info (type) != NULL;
9461 }
9462
9463 /* Return non-zero iff TYPE represents a System.Address type. */
9464
9465 int
9466 ada_is_system_address_type (struct type *type)
9467 {
9468 return (TYPE_NAME (type)
9469 && strcmp (TYPE_NAME (type), "system__address") == 0);
9470 }
9471
9472 /* Assuming that TYPE is the representation of an Ada fixed-point
9473 type, return its delta, or -1 if the type is malformed and the
9474 delta cannot be determined. */
9475
9476 DOUBLEST
9477 ada_delta (struct type *type)
9478 {
9479 const char *encoding = fixed_type_info (type);
9480 DOUBLEST num, den;
9481
9482 /* Strictly speaking, num and den are encoded as integer. However,
9483 they may not fit into a long, and they will have to be converted
9484 to DOUBLEST anyway. So scan them as DOUBLEST. */
9485 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9486 &num, &den) < 2)
9487 return -1.0;
9488 else
9489 return num / den;
9490 }
9491
9492 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9493 factor ('SMALL value) associated with the type. */
9494
9495 static DOUBLEST
9496 scaling_factor (struct type *type)
9497 {
9498 const char *encoding = fixed_type_info (type);
9499 DOUBLEST num0, den0, num1, den1;
9500 int n;
9501
9502 /* Strictly speaking, num's and den's are encoded as integer. However,
9503 they may not fit into a long, and they will have to be converted
9504 to DOUBLEST anyway. So scan them as DOUBLEST. */
9505 n = sscanf (encoding,
9506 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9507 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9508 &num0, &den0, &num1, &den1);
9509
9510 if (n < 2)
9511 return 1.0;
9512 else if (n == 4)
9513 return num1 / den1;
9514 else
9515 return num0 / den0;
9516 }
9517
9518
9519 /* Assuming that X is the representation of a value of fixed-point
9520 type TYPE, return its floating-point equivalent. */
9521
9522 DOUBLEST
9523 ada_fixed_to_float (struct type *type, LONGEST x)
9524 {
9525 return (DOUBLEST) x *scaling_factor (type);
9526 }
9527
9528 /* The representation of a fixed-point value of type TYPE
9529 corresponding to the value X. */
9530
9531 LONGEST
9532 ada_float_to_fixed (struct type *type, DOUBLEST x)
9533 {
9534 return (LONGEST) (x / scaling_factor (type) + 0.5);
9535 }
9536
9537
9538 /* VAX floating formats */
9539
9540 /* Non-zero iff TYPE represents one of the special VAX floating-point
9541 types. */
9542
9543 int
9544 ada_is_vax_floating_type (struct type *type)
9545 {
9546 int name_len =
9547 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9548 return
9549 name_len > 6
9550 && (TYPE_CODE (type) == TYPE_CODE_INT
9551 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9552 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9553 }
9554
9555 /* The type of special VAX floating-point type this is, assuming
9556 ada_is_vax_floating_point. */
9557
9558 int
9559 ada_vax_float_type_suffix (struct type *type)
9560 {
9561 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9562 }
9563
9564 /* A value representing the special debugging function that outputs
9565 VAX floating-point values of the type represented by TYPE. Assumes
9566 ada_is_vax_floating_type (TYPE). */
9567
9568 struct value *
9569 ada_vax_float_print_function (struct type *type)
9570 {
9571 switch (ada_vax_float_type_suffix (type))
9572 {
9573 case 'F':
9574 return get_var_value ("DEBUG_STRING_F", 0);
9575 case 'D':
9576 return get_var_value ("DEBUG_STRING_D", 0);
9577 case 'G':
9578 return get_var_value ("DEBUG_STRING_G", 0);
9579 default:
9580 error (_("invalid VAX floating-point type"));
9581 }
9582 }
9583 \f
9584
9585 /* Range types */
9586
9587 /* Scan STR beginning at position K for a discriminant name, and
9588 return the value of that discriminant field of DVAL in *PX. If
9589 PNEW_K is not null, put the position of the character beyond the
9590 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9591 not alter *PX and *PNEW_K if unsuccessful. */
9592
9593 static int
9594 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9595 int *pnew_k)
9596 {
9597 static char *bound_buffer = NULL;
9598 static size_t bound_buffer_len = 0;
9599 char *bound;
9600 char *pend;
9601 struct value *bound_val;
9602
9603 if (dval == NULL || str == NULL || str[k] == '\0')
9604 return 0;
9605
9606 pend = strstr (str + k, "__");
9607 if (pend == NULL)
9608 {
9609 bound = str + k;
9610 k += strlen (bound);
9611 }
9612 else
9613 {
9614 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9615 bound = bound_buffer;
9616 strncpy (bound_buffer, str + k, pend - (str + k));
9617 bound[pend - (str + k)] = '\0';
9618 k = pend - str;
9619 }
9620
9621 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9622 if (bound_val == NULL)
9623 return 0;
9624
9625 *px = value_as_long (bound_val);
9626 if (pnew_k != NULL)
9627 *pnew_k = k;
9628 return 1;
9629 }
9630
9631 /* Value of variable named NAME in the current environment. If
9632 no such variable found, then if ERR_MSG is null, returns 0, and
9633 otherwise causes an error with message ERR_MSG. */
9634
9635 static struct value *
9636 get_var_value (char *name, char *err_msg)
9637 {
9638 struct ada_symbol_info *syms;
9639 int nsyms;
9640
9641 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9642 &syms);
9643
9644 if (nsyms != 1)
9645 {
9646 if (err_msg == NULL)
9647 return 0;
9648 else
9649 error (("%s"), err_msg);
9650 }
9651
9652 return value_of_variable (syms[0].sym, syms[0].block);
9653 }
9654
9655 /* Value of integer variable named NAME in the current environment. If
9656 no such variable found, returns 0, and sets *FLAG to 0. If
9657 successful, sets *FLAG to 1. */
9658
9659 LONGEST
9660 get_int_var_value (char *name, int *flag)
9661 {
9662 struct value *var_val = get_var_value (name, 0);
9663
9664 if (var_val == 0)
9665 {
9666 if (flag != NULL)
9667 *flag = 0;
9668 return 0;
9669 }
9670 else
9671 {
9672 if (flag != NULL)
9673 *flag = 1;
9674 return value_as_long (var_val);
9675 }
9676 }
9677
9678
9679 /* Return a range type whose base type is that of the range type named
9680 NAME in the current environment, and whose bounds are calculated
9681 from NAME according to the GNAT range encoding conventions.
9682 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9683 corresponding range type from debug information; fall back to using it
9684 if symbol lookup fails. If a new type must be created, allocate it
9685 like ORIG_TYPE was. The bounds information, in general, is encoded
9686 in NAME, the base type given in the named range type. */
9687
9688 static struct type *
9689 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9690 {
9691 struct type *raw_type = ada_find_any_type (name);
9692 struct type *base_type;
9693 char *subtype_info;
9694
9695 /* Fall back to the original type if symbol lookup failed. */
9696 if (raw_type == NULL)
9697 raw_type = orig_type;
9698
9699 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9700 base_type = TYPE_TARGET_TYPE (raw_type);
9701 else
9702 base_type = raw_type;
9703
9704 subtype_info = strstr (name, "___XD");
9705 if (subtype_info == NULL)
9706 {
9707 LONGEST L = discrete_type_low_bound (raw_type);
9708 LONGEST U = discrete_type_high_bound (raw_type);
9709 if (L < INT_MIN || U > INT_MAX)
9710 return raw_type;
9711 else
9712 return create_range_type (alloc_type_copy (orig_type), raw_type,
9713 discrete_type_low_bound (raw_type),
9714 discrete_type_high_bound (raw_type));
9715 }
9716 else
9717 {
9718 static char *name_buf = NULL;
9719 static size_t name_len = 0;
9720 int prefix_len = subtype_info - name;
9721 LONGEST L, U;
9722 struct type *type;
9723 char *bounds_str;
9724 int n;
9725
9726 GROW_VECT (name_buf, name_len, prefix_len + 5);
9727 strncpy (name_buf, name, prefix_len);
9728 name_buf[prefix_len] = '\0';
9729
9730 subtype_info += 5;
9731 bounds_str = strchr (subtype_info, '_');
9732 n = 1;
9733
9734 if (*subtype_info == 'L')
9735 {
9736 if (!ada_scan_number (bounds_str, n, &L, &n)
9737 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9738 return raw_type;
9739 if (bounds_str[n] == '_')
9740 n += 2;
9741 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9742 n += 1;
9743 subtype_info += 1;
9744 }
9745 else
9746 {
9747 int ok;
9748 strcpy (name_buf + prefix_len, "___L");
9749 L = get_int_var_value (name_buf, &ok);
9750 if (!ok)
9751 {
9752 lim_warning (_("Unknown lower bound, using 1."));
9753 L = 1;
9754 }
9755 }
9756
9757 if (*subtype_info == 'U')
9758 {
9759 if (!ada_scan_number (bounds_str, n, &U, &n)
9760 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9761 return raw_type;
9762 }
9763 else
9764 {
9765 int ok;
9766 strcpy (name_buf + prefix_len, "___U");
9767 U = get_int_var_value (name_buf, &ok);
9768 if (!ok)
9769 {
9770 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9771 U = L;
9772 }
9773 }
9774
9775 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
9776 TYPE_NAME (type) = name;
9777 return type;
9778 }
9779 }
9780
9781 /* True iff NAME is the name of a range type. */
9782
9783 int
9784 ada_is_range_type_name (const char *name)
9785 {
9786 return (name != NULL && strstr (name, "___XD"));
9787 }
9788 \f
9789
9790 /* Modular types */
9791
9792 /* True iff TYPE is an Ada modular type. */
9793
9794 int
9795 ada_is_modular_type (struct type *type)
9796 {
9797 struct type *subranged_type = base_type (type);
9798
9799 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9800 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9801 && TYPE_UNSIGNED (subranged_type));
9802 }
9803
9804 /* Try to determine the lower and upper bounds of the given modular type
9805 using the type name only. Return non-zero and set L and U as the lower
9806 and upper bounds (respectively) if successful. */
9807
9808 int
9809 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9810 {
9811 char *name = ada_type_name (type);
9812 char *suffix;
9813 int k;
9814 LONGEST U;
9815
9816 if (name == NULL)
9817 return 0;
9818
9819 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9820 we are looking for static bounds, which means an __XDLU suffix.
9821 Moreover, we know that the lower bound of modular types is always
9822 zero, so the actual suffix should start with "__XDLU_0__", and
9823 then be followed by the upper bound value. */
9824 suffix = strstr (name, "__XDLU_0__");
9825 if (suffix == NULL)
9826 return 0;
9827 k = 10;
9828 if (!ada_scan_number (suffix, k, &U, NULL))
9829 return 0;
9830
9831 *modulus = (ULONGEST) U + 1;
9832 return 1;
9833 }
9834
9835 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9836
9837 ULONGEST
9838 ada_modulus (struct type *type)
9839 {
9840 ULONGEST modulus;
9841
9842 /* Normally, the modulus of a modular type is equal to the value of
9843 its upper bound + 1. However, the upper bound is currently stored
9844 as an int, which is not always big enough to hold the actual bound
9845 value. To workaround this, try to take advantage of the encoding
9846 that GNAT uses with with discrete types. To avoid some unnecessary
9847 parsing, we do this only when the size of TYPE is greater than
9848 the size of the field holding the bound. */
9849 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9850 && ada_modulus_from_name (type, &modulus))
9851 return modulus;
9852
9853 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9854 }
9855 \f
9856
9857 /* Ada exception catchpoint support:
9858 ---------------------------------
9859
9860 We support 3 kinds of exception catchpoints:
9861 . catchpoints on Ada exceptions
9862 . catchpoints on unhandled Ada exceptions
9863 . catchpoints on failed assertions
9864
9865 Exceptions raised during failed assertions, or unhandled exceptions
9866 could perfectly be caught with the general catchpoint on Ada exceptions.
9867 However, we can easily differentiate these two special cases, and having
9868 the option to distinguish these two cases from the rest can be useful
9869 to zero-in on certain situations.
9870
9871 Exception catchpoints are a specialized form of breakpoint,
9872 since they rely on inserting breakpoints inside known routines
9873 of the GNAT runtime. The implementation therefore uses a standard
9874 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9875 of breakpoint_ops.
9876
9877 Support in the runtime for exception catchpoints have been changed
9878 a few times already, and these changes affect the implementation
9879 of these catchpoints. In order to be able to support several
9880 variants of the runtime, we use a sniffer that will determine
9881 the runtime variant used by the program being debugged.
9882
9883 At this time, we do not support the use of conditions on Ada exception
9884 catchpoints. The COND and COND_STRING fields are therefore set
9885 to NULL (most of the time, see below).
9886
9887 Conditions where EXP_STRING, COND, and COND_STRING are used:
9888
9889 When a user specifies the name of a specific exception in the case
9890 of catchpoints on Ada exceptions, we store the name of that exception
9891 in the EXP_STRING. We then translate this request into an actual
9892 condition stored in COND_STRING, and then parse it into an expression
9893 stored in COND. */
9894
9895 /* The different types of catchpoints that we introduced for catching
9896 Ada exceptions. */
9897
9898 enum exception_catchpoint_kind
9899 {
9900 ex_catch_exception,
9901 ex_catch_exception_unhandled,
9902 ex_catch_assert
9903 };
9904
9905 /* Ada's standard exceptions. */
9906
9907 static char *standard_exc[] = {
9908 "constraint_error",
9909 "program_error",
9910 "storage_error",
9911 "tasking_error"
9912 };
9913
9914 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9915
9916 /* A structure that describes how to support exception catchpoints
9917 for a given executable. */
9918
9919 struct exception_support_info
9920 {
9921 /* The name of the symbol to break on in order to insert
9922 a catchpoint on exceptions. */
9923 const char *catch_exception_sym;
9924
9925 /* The name of the symbol to break on in order to insert
9926 a catchpoint on unhandled exceptions. */
9927 const char *catch_exception_unhandled_sym;
9928
9929 /* The name of the symbol to break on in order to insert
9930 a catchpoint on failed assertions. */
9931 const char *catch_assert_sym;
9932
9933 /* Assuming that the inferior just triggered an unhandled exception
9934 catchpoint, this function is responsible for returning the address
9935 in inferior memory where the name of that exception is stored.
9936 Return zero if the address could not be computed. */
9937 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9938 };
9939
9940 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9941 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9942
9943 /* The following exception support info structure describes how to
9944 implement exception catchpoints with the latest version of the
9945 Ada runtime (as of 2007-03-06). */
9946
9947 static const struct exception_support_info default_exception_support_info =
9948 {
9949 "__gnat_debug_raise_exception", /* catch_exception_sym */
9950 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9951 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9952 ada_unhandled_exception_name_addr
9953 };
9954
9955 /* The following exception support info structure describes how to
9956 implement exception catchpoints with a slightly older version
9957 of the Ada runtime. */
9958
9959 static const struct exception_support_info exception_support_info_fallback =
9960 {
9961 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9962 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9963 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9964 ada_unhandled_exception_name_addr_from_raise
9965 };
9966
9967 /* For each executable, we sniff which exception info structure to use
9968 and cache it in the following global variable. */
9969
9970 static const struct exception_support_info *exception_info = NULL;
9971
9972 /* Inspect the Ada runtime and determine which exception info structure
9973 should be used to provide support for exception catchpoints.
9974
9975 This function will always set exception_info, or raise an error. */
9976
9977 static void
9978 ada_exception_support_info_sniffer (void)
9979 {
9980 struct symbol *sym;
9981
9982 /* If the exception info is already known, then no need to recompute it. */
9983 if (exception_info != NULL)
9984 return;
9985
9986 /* Check the latest (default) exception support info. */
9987 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9988 NULL, VAR_DOMAIN);
9989 if (sym != NULL)
9990 {
9991 exception_info = &default_exception_support_info;
9992 return;
9993 }
9994
9995 /* Try our fallback exception suport info. */
9996 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9997 NULL, VAR_DOMAIN);
9998 if (sym != NULL)
9999 {
10000 exception_info = &exception_support_info_fallback;
10001 return;
10002 }
10003
10004 /* Sometimes, it is normal for us to not be able to find the routine
10005 we are looking for. This happens when the program is linked with
10006 the shared version of the GNAT runtime, and the program has not been
10007 started yet. Inform the user of these two possible causes if
10008 applicable. */
10009
10010 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10011 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10012
10013 /* If the symbol does not exist, then check that the program is
10014 already started, to make sure that shared libraries have been
10015 loaded. If it is not started, this may mean that the symbol is
10016 in a shared library. */
10017
10018 if (ptid_get_pid (inferior_ptid) == 0)
10019 error (_("Unable to insert catchpoint. Try to start the program first."));
10020
10021 /* At this point, we know that we are debugging an Ada program and
10022 that the inferior has been started, but we still are not able to
10023 find the run-time symbols. That can mean that we are in
10024 configurable run time mode, or that a-except as been optimized
10025 out by the linker... In any case, at this point it is not worth
10026 supporting this feature. */
10027
10028 error (_("Cannot insert catchpoints in this configuration."));
10029 }
10030
10031 /* An observer of "executable_changed" events.
10032 Its role is to clear certain cached values that need to be recomputed
10033 each time a new executable is loaded by GDB. */
10034
10035 static void
10036 ada_executable_changed_observer (void)
10037 {
10038 /* If the executable changed, then it is possible that the Ada runtime
10039 is different. So we need to invalidate the exception support info
10040 cache. */
10041 exception_info = NULL;
10042 }
10043
10044 /* Return the name of the function at PC, NULL if could not find it.
10045 This function only checks the debugging information, not the symbol
10046 table. */
10047
10048 static char *
10049 function_name_from_pc (CORE_ADDR pc)
10050 {
10051 char *func_name;
10052
10053 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10054 return NULL;
10055
10056 return func_name;
10057 }
10058
10059 /* True iff FRAME is very likely to be that of a function that is
10060 part of the runtime system. This is all very heuristic, but is
10061 intended to be used as advice as to what frames are uninteresting
10062 to most users. */
10063
10064 static int
10065 is_known_support_routine (struct frame_info *frame)
10066 {
10067 struct symtab_and_line sal;
10068 char *func_name;
10069 int i;
10070
10071 /* If this code does not have any debugging information (no symtab),
10072 This cannot be any user code. */
10073
10074 find_frame_sal (frame, &sal);
10075 if (sal.symtab == NULL)
10076 return 1;
10077
10078 /* If there is a symtab, but the associated source file cannot be
10079 located, then assume this is not user code: Selecting a frame
10080 for which we cannot display the code would not be very helpful
10081 for the user. This should also take care of case such as VxWorks
10082 where the kernel has some debugging info provided for a few units. */
10083
10084 if (symtab_to_fullname (sal.symtab) == NULL)
10085 return 1;
10086
10087 /* Check the unit filename againt the Ada runtime file naming.
10088 We also check the name of the objfile against the name of some
10089 known system libraries that sometimes come with debugging info
10090 too. */
10091
10092 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10093 {
10094 re_comp (known_runtime_file_name_patterns[i]);
10095 if (re_exec (sal.symtab->filename))
10096 return 1;
10097 if (sal.symtab->objfile != NULL
10098 && re_exec (sal.symtab->objfile->name))
10099 return 1;
10100 }
10101
10102 /* Check whether the function is a GNAT-generated entity. */
10103
10104 func_name = function_name_from_pc (get_frame_address_in_block (frame));
10105 if (func_name == NULL)
10106 return 1;
10107
10108 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10109 {
10110 re_comp (known_auxiliary_function_name_patterns[i]);
10111 if (re_exec (func_name))
10112 return 1;
10113 }
10114
10115 return 0;
10116 }
10117
10118 /* Find the first frame that contains debugging information and that is not
10119 part of the Ada run-time, starting from FI and moving upward. */
10120
10121 void
10122 ada_find_printable_frame (struct frame_info *fi)
10123 {
10124 for (; fi != NULL; fi = get_prev_frame (fi))
10125 {
10126 if (!is_known_support_routine (fi))
10127 {
10128 select_frame (fi);
10129 break;
10130 }
10131 }
10132
10133 }
10134
10135 /* Assuming that the inferior just triggered an unhandled exception
10136 catchpoint, return the address in inferior memory where the name
10137 of the exception is stored.
10138
10139 Return zero if the address could not be computed. */
10140
10141 static CORE_ADDR
10142 ada_unhandled_exception_name_addr (void)
10143 {
10144 return parse_and_eval_address ("e.full_name");
10145 }
10146
10147 /* Same as ada_unhandled_exception_name_addr, except that this function
10148 should be used when the inferior uses an older version of the runtime,
10149 where the exception name needs to be extracted from a specific frame
10150 several frames up in the callstack. */
10151
10152 static CORE_ADDR
10153 ada_unhandled_exception_name_addr_from_raise (void)
10154 {
10155 int frame_level;
10156 struct frame_info *fi;
10157
10158 /* To determine the name of this exception, we need to select
10159 the frame corresponding to RAISE_SYM_NAME. This frame is
10160 at least 3 levels up, so we simply skip the first 3 frames
10161 without checking the name of their associated function. */
10162 fi = get_current_frame ();
10163 for (frame_level = 0; frame_level < 3; frame_level += 1)
10164 if (fi != NULL)
10165 fi = get_prev_frame (fi);
10166
10167 while (fi != NULL)
10168 {
10169 const char *func_name =
10170 function_name_from_pc (get_frame_address_in_block (fi));
10171 if (func_name != NULL
10172 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10173 break; /* We found the frame we were looking for... */
10174 fi = get_prev_frame (fi);
10175 }
10176
10177 if (fi == NULL)
10178 return 0;
10179
10180 select_frame (fi);
10181 return parse_and_eval_address ("id.full_name");
10182 }
10183
10184 /* Assuming the inferior just triggered an Ada exception catchpoint
10185 (of any type), return the address in inferior memory where the name
10186 of the exception is stored, if applicable.
10187
10188 Return zero if the address could not be computed, or if not relevant. */
10189
10190 static CORE_ADDR
10191 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10192 struct breakpoint *b)
10193 {
10194 switch (ex)
10195 {
10196 case ex_catch_exception:
10197 return (parse_and_eval_address ("e.full_name"));
10198 break;
10199
10200 case ex_catch_exception_unhandled:
10201 return exception_info->unhandled_exception_name_addr ();
10202 break;
10203
10204 case ex_catch_assert:
10205 return 0; /* Exception name is not relevant in this case. */
10206 break;
10207
10208 default:
10209 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10210 break;
10211 }
10212
10213 return 0; /* Should never be reached. */
10214 }
10215
10216 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10217 any error that ada_exception_name_addr_1 might cause to be thrown.
10218 When an error is intercepted, a warning with the error message is printed,
10219 and zero is returned. */
10220
10221 static CORE_ADDR
10222 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10223 struct breakpoint *b)
10224 {
10225 struct gdb_exception e;
10226 CORE_ADDR result = 0;
10227
10228 TRY_CATCH (e, RETURN_MASK_ERROR)
10229 {
10230 result = ada_exception_name_addr_1 (ex, b);
10231 }
10232
10233 if (e.reason < 0)
10234 {
10235 warning (_("failed to get exception name: %s"), e.message);
10236 return 0;
10237 }
10238
10239 return result;
10240 }
10241
10242 /* Implement the PRINT_IT method in the breakpoint_ops structure
10243 for all exception catchpoint kinds. */
10244
10245 static enum print_stop_action
10246 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10247 {
10248 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10249 char exception_name[256];
10250
10251 if (addr != 0)
10252 {
10253 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10254 exception_name [sizeof (exception_name) - 1] = '\0';
10255 }
10256
10257 ada_find_printable_frame (get_current_frame ());
10258
10259 annotate_catchpoint (b->number);
10260 switch (ex)
10261 {
10262 case ex_catch_exception:
10263 if (addr != 0)
10264 printf_filtered (_("\nCatchpoint %d, %s at "),
10265 b->number, exception_name);
10266 else
10267 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10268 break;
10269 case ex_catch_exception_unhandled:
10270 if (addr != 0)
10271 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10272 b->number, exception_name);
10273 else
10274 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10275 b->number);
10276 break;
10277 case ex_catch_assert:
10278 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10279 b->number);
10280 break;
10281 }
10282
10283 return PRINT_SRC_AND_LOC;
10284 }
10285
10286 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10287 for all exception catchpoint kinds. */
10288
10289 static void
10290 print_one_exception (enum exception_catchpoint_kind ex,
10291 struct breakpoint *b, CORE_ADDR *last_addr)
10292 {
10293 struct value_print_options opts;
10294
10295 get_user_print_options (&opts);
10296 if (opts.addressprint)
10297 {
10298 annotate_field (4);
10299 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10300 }
10301
10302 annotate_field (5);
10303 *last_addr = b->loc->address;
10304 switch (ex)
10305 {
10306 case ex_catch_exception:
10307 if (b->exp_string != NULL)
10308 {
10309 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10310
10311 ui_out_field_string (uiout, "what", msg);
10312 xfree (msg);
10313 }
10314 else
10315 ui_out_field_string (uiout, "what", "all Ada exceptions");
10316
10317 break;
10318
10319 case ex_catch_exception_unhandled:
10320 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10321 break;
10322
10323 case ex_catch_assert:
10324 ui_out_field_string (uiout, "what", "failed Ada assertions");
10325 break;
10326
10327 default:
10328 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10329 break;
10330 }
10331 }
10332
10333 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10334 for all exception catchpoint kinds. */
10335
10336 static void
10337 print_mention_exception (enum exception_catchpoint_kind ex,
10338 struct breakpoint *b)
10339 {
10340 switch (ex)
10341 {
10342 case ex_catch_exception:
10343 if (b->exp_string != NULL)
10344 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10345 b->number, b->exp_string);
10346 else
10347 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10348
10349 break;
10350
10351 case ex_catch_exception_unhandled:
10352 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10353 b->number);
10354 break;
10355
10356 case ex_catch_assert:
10357 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10358 break;
10359
10360 default:
10361 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10362 break;
10363 }
10364 }
10365
10366 /* Virtual table for "catch exception" breakpoints. */
10367
10368 static enum print_stop_action
10369 print_it_catch_exception (struct breakpoint *b)
10370 {
10371 return print_it_exception (ex_catch_exception, b);
10372 }
10373
10374 static void
10375 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10376 {
10377 print_one_exception (ex_catch_exception, b, last_addr);
10378 }
10379
10380 static void
10381 print_mention_catch_exception (struct breakpoint *b)
10382 {
10383 print_mention_exception (ex_catch_exception, b);
10384 }
10385
10386 static struct breakpoint_ops catch_exception_breakpoint_ops =
10387 {
10388 NULL, /* insert */
10389 NULL, /* remove */
10390 NULL, /* breakpoint_hit */
10391 print_it_catch_exception,
10392 print_one_catch_exception,
10393 print_mention_catch_exception
10394 };
10395
10396 /* Virtual table for "catch exception unhandled" breakpoints. */
10397
10398 static enum print_stop_action
10399 print_it_catch_exception_unhandled (struct breakpoint *b)
10400 {
10401 return print_it_exception (ex_catch_exception_unhandled, b);
10402 }
10403
10404 static void
10405 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10406 {
10407 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10408 }
10409
10410 static void
10411 print_mention_catch_exception_unhandled (struct breakpoint *b)
10412 {
10413 print_mention_exception (ex_catch_exception_unhandled, b);
10414 }
10415
10416 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10417 NULL, /* insert */
10418 NULL, /* remove */
10419 NULL, /* breakpoint_hit */
10420 print_it_catch_exception_unhandled,
10421 print_one_catch_exception_unhandled,
10422 print_mention_catch_exception_unhandled
10423 };
10424
10425 /* Virtual table for "catch assert" breakpoints. */
10426
10427 static enum print_stop_action
10428 print_it_catch_assert (struct breakpoint *b)
10429 {
10430 return print_it_exception (ex_catch_assert, b);
10431 }
10432
10433 static void
10434 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10435 {
10436 print_one_exception (ex_catch_assert, b, last_addr);
10437 }
10438
10439 static void
10440 print_mention_catch_assert (struct breakpoint *b)
10441 {
10442 print_mention_exception (ex_catch_assert, b);
10443 }
10444
10445 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10446 NULL, /* insert */
10447 NULL, /* remove */
10448 NULL, /* breakpoint_hit */
10449 print_it_catch_assert,
10450 print_one_catch_assert,
10451 print_mention_catch_assert
10452 };
10453
10454 /* Return non-zero if B is an Ada exception catchpoint. */
10455
10456 int
10457 ada_exception_catchpoint_p (struct breakpoint *b)
10458 {
10459 return (b->ops == &catch_exception_breakpoint_ops
10460 || b->ops == &catch_exception_unhandled_breakpoint_ops
10461 || b->ops == &catch_assert_breakpoint_ops);
10462 }
10463
10464 /* Return a newly allocated copy of the first space-separated token
10465 in ARGSP, and then adjust ARGSP to point immediately after that
10466 token.
10467
10468 Return NULL if ARGPS does not contain any more tokens. */
10469
10470 static char *
10471 ada_get_next_arg (char **argsp)
10472 {
10473 char *args = *argsp;
10474 char *end;
10475 char *result;
10476
10477 /* Skip any leading white space. */
10478
10479 while (isspace (*args))
10480 args++;
10481
10482 if (args[0] == '\0')
10483 return NULL; /* No more arguments. */
10484
10485 /* Find the end of the current argument. */
10486
10487 end = args;
10488 while (*end != '\0' && !isspace (*end))
10489 end++;
10490
10491 /* Adjust ARGSP to point to the start of the next argument. */
10492
10493 *argsp = end;
10494
10495 /* Make a copy of the current argument and return it. */
10496
10497 result = xmalloc (end - args + 1);
10498 strncpy (result, args, end - args);
10499 result[end - args] = '\0';
10500
10501 return result;
10502 }
10503
10504 /* Split the arguments specified in a "catch exception" command.
10505 Set EX to the appropriate catchpoint type.
10506 Set EXP_STRING to the name of the specific exception if
10507 specified by the user. */
10508
10509 static void
10510 catch_ada_exception_command_split (char *args,
10511 enum exception_catchpoint_kind *ex,
10512 char **exp_string)
10513 {
10514 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10515 char *exception_name;
10516
10517 exception_name = ada_get_next_arg (&args);
10518 make_cleanup (xfree, exception_name);
10519
10520 /* Check that we do not have any more arguments. Anything else
10521 is unexpected. */
10522
10523 while (isspace (*args))
10524 args++;
10525
10526 if (args[0] != '\0')
10527 error (_("Junk at end of expression"));
10528
10529 discard_cleanups (old_chain);
10530
10531 if (exception_name == NULL)
10532 {
10533 /* Catch all exceptions. */
10534 *ex = ex_catch_exception;
10535 *exp_string = NULL;
10536 }
10537 else if (strcmp (exception_name, "unhandled") == 0)
10538 {
10539 /* Catch unhandled exceptions. */
10540 *ex = ex_catch_exception_unhandled;
10541 *exp_string = NULL;
10542 }
10543 else
10544 {
10545 /* Catch a specific exception. */
10546 *ex = ex_catch_exception;
10547 *exp_string = exception_name;
10548 }
10549 }
10550
10551 /* Return the name of the symbol on which we should break in order to
10552 implement a catchpoint of the EX kind. */
10553
10554 static const char *
10555 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10556 {
10557 gdb_assert (exception_info != NULL);
10558
10559 switch (ex)
10560 {
10561 case ex_catch_exception:
10562 return (exception_info->catch_exception_sym);
10563 break;
10564 case ex_catch_exception_unhandled:
10565 return (exception_info->catch_exception_unhandled_sym);
10566 break;
10567 case ex_catch_assert:
10568 return (exception_info->catch_assert_sym);
10569 break;
10570 default:
10571 internal_error (__FILE__, __LINE__,
10572 _("unexpected catchpoint kind (%d)"), ex);
10573 }
10574 }
10575
10576 /* Return the breakpoint ops "virtual table" used for catchpoints
10577 of the EX kind. */
10578
10579 static struct breakpoint_ops *
10580 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10581 {
10582 switch (ex)
10583 {
10584 case ex_catch_exception:
10585 return (&catch_exception_breakpoint_ops);
10586 break;
10587 case ex_catch_exception_unhandled:
10588 return (&catch_exception_unhandled_breakpoint_ops);
10589 break;
10590 case ex_catch_assert:
10591 return (&catch_assert_breakpoint_ops);
10592 break;
10593 default:
10594 internal_error (__FILE__, __LINE__,
10595 _("unexpected catchpoint kind (%d)"), ex);
10596 }
10597 }
10598
10599 /* Return the condition that will be used to match the current exception
10600 being raised with the exception that the user wants to catch. This
10601 assumes that this condition is used when the inferior just triggered
10602 an exception catchpoint.
10603
10604 The string returned is a newly allocated string that needs to be
10605 deallocated later. */
10606
10607 static char *
10608 ada_exception_catchpoint_cond_string (const char *exp_string)
10609 {
10610 int i;
10611
10612 /* The standard exceptions are a special case. They are defined in
10613 runtime units that have been compiled without debugging info; if
10614 EXP_STRING is the not-fully-qualified name of a standard
10615 exception (e.g. "constraint_error") then, during the evaluation
10616 of the condition expression, the symbol lookup on this name would
10617 *not* return this standard exception. The catchpoint condition
10618 may then be set only on user-defined exceptions which have the
10619 same not-fully-qualified name (e.g. my_package.constraint_error).
10620
10621 To avoid this unexcepted behavior, these standard exceptions are
10622 systematically prefixed by "standard". This means that "catch
10623 exception constraint_error" is rewritten into "catch exception
10624 standard.constraint_error".
10625
10626 If an exception named contraint_error is defined in another package of
10627 the inferior program, then the only way to specify this exception as a
10628 breakpoint condition is to use its fully-qualified named:
10629 e.g. my_package.constraint_error. */
10630
10631 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10632 {
10633 if (strcmp (standard_exc [i], exp_string) == 0)
10634 {
10635 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10636 exp_string);
10637 }
10638 }
10639 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10640 }
10641
10642 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10643
10644 static struct expression *
10645 ada_parse_catchpoint_condition (char *cond_string,
10646 struct symtab_and_line sal)
10647 {
10648 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10649 }
10650
10651 /* Return the symtab_and_line that should be used to insert an exception
10652 catchpoint of the TYPE kind.
10653
10654 EX_STRING should contain the name of a specific exception
10655 that the catchpoint should catch, or NULL otherwise.
10656
10657 The idea behind all the remaining parameters is that their names match
10658 the name of certain fields in the breakpoint structure that are used to
10659 handle exception catchpoints. This function returns the value to which
10660 these fields should be set, depending on the type of catchpoint we need
10661 to create.
10662
10663 If COND and COND_STRING are both non-NULL, any value they might
10664 hold will be free'ed, and then replaced by newly allocated ones.
10665 These parameters are left untouched otherwise. */
10666
10667 static struct symtab_and_line
10668 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10669 char **addr_string, char **cond_string,
10670 struct expression **cond, struct breakpoint_ops **ops)
10671 {
10672 const char *sym_name;
10673 struct symbol *sym;
10674 struct symtab_and_line sal;
10675
10676 /* First, find out which exception support info to use. */
10677 ada_exception_support_info_sniffer ();
10678
10679 /* Then lookup the function on which we will break in order to catch
10680 the Ada exceptions requested by the user. */
10681
10682 sym_name = ada_exception_sym_name (ex);
10683 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10684
10685 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10686 that should be compiled with debugging information. As a result, we
10687 expect to find that symbol in the symtabs. If we don't find it, then
10688 the target most likely does not support Ada exceptions, or we cannot
10689 insert exception breakpoints yet, because the GNAT runtime hasn't been
10690 loaded yet. */
10691
10692 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10693 in such a way that no debugging information is produced for the symbol
10694 we are looking for. In this case, we could search the minimal symbols
10695 as a fall-back mechanism. This would still be operating in degraded
10696 mode, however, as we would still be missing the debugging information
10697 that is needed in order to extract the name of the exception being
10698 raised (this name is printed in the catchpoint message, and is also
10699 used when trying to catch a specific exception). We do not handle
10700 this case for now. */
10701
10702 if (sym == NULL)
10703 error (_("Unable to break on '%s' in this configuration."), sym_name);
10704
10705 /* Make sure that the symbol we found corresponds to a function. */
10706 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10707 error (_("Symbol \"%s\" is not a function (class = %d)"),
10708 sym_name, SYMBOL_CLASS (sym));
10709
10710 sal = find_function_start_sal (sym, 1);
10711
10712 /* Set ADDR_STRING. */
10713
10714 *addr_string = xstrdup (sym_name);
10715
10716 /* Set the COND and COND_STRING (if not NULL). */
10717
10718 if (cond_string != NULL && cond != NULL)
10719 {
10720 if (*cond_string != NULL)
10721 {
10722 xfree (*cond_string);
10723 *cond_string = NULL;
10724 }
10725 if (*cond != NULL)
10726 {
10727 xfree (*cond);
10728 *cond = NULL;
10729 }
10730 if (exp_string != NULL)
10731 {
10732 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10733 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10734 }
10735 }
10736
10737 /* Set OPS. */
10738 *ops = ada_exception_breakpoint_ops (ex);
10739
10740 return sal;
10741 }
10742
10743 /* Parse the arguments (ARGS) of the "catch exception" command.
10744
10745 Set TYPE to the appropriate exception catchpoint type.
10746 If the user asked the catchpoint to catch only a specific
10747 exception, then save the exception name in ADDR_STRING.
10748
10749 See ada_exception_sal for a description of all the remaining
10750 function arguments of this function. */
10751
10752 struct symtab_and_line
10753 ada_decode_exception_location (char *args, char **addr_string,
10754 char **exp_string, char **cond_string,
10755 struct expression **cond,
10756 struct breakpoint_ops **ops)
10757 {
10758 enum exception_catchpoint_kind ex;
10759
10760 catch_ada_exception_command_split (args, &ex, exp_string);
10761 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10762 cond, ops);
10763 }
10764
10765 struct symtab_and_line
10766 ada_decode_assert_location (char *args, char **addr_string,
10767 struct breakpoint_ops **ops)
10768 {
10769 /* Check that no argument where provided at the end of the command. */
10770
10771 if (args != NULL)
10772 {
10773 while (isspace (*args))
10774 args++;
10775 if (*args != '\0')
10776 error (_("Junk at end of arguments."));
10777 }
10778
10779 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10780 ops);
10781 }
10782
10783 /* Operators */
10784 /* Information about operators given special treatment in functions
10785 below. */
10786 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10787
10788 #define ADA_OPERATORS \
10789 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10790 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10791 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10792 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10793 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10794 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10795 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10796 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10797 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10798 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10799 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10800 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10801 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10802 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10803 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10804 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10805 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10806 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10807 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10808
10809 static void
10810 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10811 {
10812 switch (exp->elts[pc - 1].opcode)
10813 {
10814 default:
10815 operator_length_standard (exp, pc, oplenp, argsp);
10816 break;
10817
10818 #define OP_DEFN(op, len, args, binop) \
10819 case op: *oplenp = len; *argsp = args; break;
10820 ADA_OPERATORS;
10821 #undef OP_DEFN
10822
10823 case OP_AGGREGATE:
10824 *oplenp = 3;
10825 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10826 break;
10827
10828 case OP_CHOICES:
10829 *oplenp = 3;
10830 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10831 break;
10832 }
10833 }
10834
10835 static char *
10836 ada_op_name (enum exp_opcode opcode)
10837 {
10838 switch (opcode)
10839 {
10840 default:
10841 return op_name_standard (opcode);
10842
10843 #define OP_DEFN(op, len, args, binop) case op: return #op;
10844 ADA_OPERATORS;
10845 #undef OP_DEFN
10846
10847 case OP_AGGREGATE:
10848 return "OP_AGGREGATE";
10849 case OP_CHOICES:
10850 return "OP_CHOICES";
10851 case OP_NAME:
10852 return "OP_NAME";
10853 }
10854 }
10855
10856 /* As for operator_length, but assumes PC is pointing at the first
10857 element of the operator, and gives meaningful results only for the
10858 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10859
10860 static void
10861 ada_forward_operator_length (struct expression *exp, int pc,
10862 int *oplenp, int *argsp)
10863 {
10864 switch (exp->elts[pc].opcode)
10865 {
10866 default:
10867 *oplenp = *argsp = 0;
10868 break;
10869
10870 #define OP_DEFN(op, len, args, binop) \
10871 case op: *oplenp = len; *argsp = args; break;
10872 ADA_OPERATORS;
10873 #undef OP_DEFN
10874
10875 case OP_AGGREGATE:
10876 *oplenp = 3;
10877 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10878 break;
10879
10880 case OP_CHOICES:
10881 *oplenp = 3;
10882 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10883 break;
10884
10885 case OP_STRING:
10886 case OP_NAME:
10887 {
10888 int len = longest_to_int (exp->elts[pc + 1].longconst);
10889 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10890 *argsp = 0;
10891 break;
10892 }
10893 }
10894 }
10895
10896 static int
10897 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10898 {
10899 enum exp_opcode op = exp->elts[elt].opcode;
10900 int oplen, nargs;
10901 int pc = elt;
10902 int i;
10903
10904 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10905
10906 switch (op)
10907 {
10908 /* Ada attributes ('Foo). */
10909 case OP_ATR_FIRST:
10910 case OP_ATR_LAST:
10911 case OP_ATR_LENGTH:
10912 case OP_ATR_IMAGE:
10913 case OP_ATR_MAX:
10914 case OP_ATR_MIN:
10915 case OP_ATR_MODULUS:
10916 case OP_ATR_POS:
10917 case OP_ATR_SIZE:
10918 case OP_ATR_TAG:
10919 case OP_ATR_VAL:
10920 break;
10921
10922 case UNOP_IN_RANGE:
10923 case UNOP_QUAL:
10924 /* XXX: gdb_sprint_host_address, type_sprint */
10925 fprintf_filtered (stream, _("Type @"));
10926 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10927 fprintf_filtered (stream, " (");
10928 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10929 fprintf_filtered (stream, ")");
10930 break;
10931 case BINOP_IN_BOUNDS:
10932 fprintf_filtered (stream, " (%d)",
10933 longest_to_int (exp->elts[pc + 2].longconst));
10934 break;
10935 case TERNOP_IN_RANGE:
10936 break;
10937
10938 case OP_AGGREGATE:
10939 case OP_OTHERS:
10940 case OP_DISCRETE_RANGE:
10941 case OP_POSITIONAL:
10942 case OP_CHOICES:
10943 break;
10944
10945 case OP_NAME:
10946 case OP_STRING:
10947 {
10948 char *name = &exp->elts[elt + 2].string;
10949 int len = longest_to_int (exp->elts[elt + 1].longconst);
10950 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10951 break;
10952 }
10953
10954 default:
10955 return dump_subexp_body_standard (exp, stream, elt);
10956 }
10957
10958 elt += oplen;
10959 for (i = 0; i < nargs; i += 1)
10960 elt = dump_subexp (exp, stream, elt);
10961
10962 return elt;
10963 }
10964
10965 /* The Ada extension of print_subexp (q.v.). */
10966
10967 static void
10968 ada_print_subexp (struct expression *exp, int *pos,
10969 struct ui_file *stream, enum precedence prec)
10970 {
10971 int oplen, nargs, i;
10972 int pc = *pos;
10973 enum exp_opcode op = exp->elts[pc].opcode;
10974
10975 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10976
10977 *pos += oplen;
10978 switch (op)
10979 {
10980 default:
10981 *pos -= oplen;
10982 print_subexp_standard (exp, pos, stream, prec);
10983 return;
10984
10985 case OP_VAR_VALUE:
10986 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10987 return;
10988
10989 case BINOP_IN_BOUNDS:
10990 /* XXX: sprint_subexp */
10991 print_subexp (exp, pos, stream, PREC_SUFFIX);
10992 fputs_filtered (" in ", stream);
10993 print_subexp (exp, pos, stream, PREC_SUFFIX);
10994 fputs_filtered ("'range", stream);
10995 if (exp->elts[pc + 1].longconst > 1)
10996 fprintf_filtered (stream, "(%ld)",
10997 (long) exp->elts[pc + 1].longconst);
10998 return;
10999
11000 case TERNOP_IN_RANGE:
11001 if (prec >= PREC_EQUAL)
11002 fputs_filtered ("(", stream);
11003 /* XXX: sprint_subexp */
11004 print_subexp (exp, pos, stream, PREC_SUFFIX);
11005 fputs_filtered (" in ", stream);
11006 print_subexp (exp, pos, stream, PREC_EQUAL);
11007 fputs_filtered (" .. ", stream);
11008 print_subexp (exp, pos, stream, PREC_EQUAL);
11009 if (prec >= PREC_EQUAL)
11010 fputs_filtered (")", stream);
11011 return;
11012
11013 case OP_ATR_FIRST:
11014 case OP_ATR_LAST:
11015 case OP_ATR_LENGTH:
11016 case OP_ATR_IMAGE:
11017 case OP_ATR_MAX:
11018 case OP_ATR_MIN:
11019 case OP_ATR_MODULUS:
11020 case OP_ATR_POS:
11021 case OP_ATR_SIZE:
11022 case OP_ATR_TAG:
11023 case OP_ATR_VAL:
11024 if (exp->elts[*pos].opcode == OP_TYPE)
11025 {
11026 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11027 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11028 *pos += 3;
11029 }
11030 else
11031 print_subexp (exp, pos, stream, PREC_SUFFIX);
11032 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11033 if (nargs > 1)
11034 {
11035 int tem;
11036 for (tem = 1; tem < nargs; tem += 1)
11037 {
11038 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11039 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11040 }
11041 fputs_filtered (")", stream);
11042 }
11043 return;
11044
11045 case UNOP_QUAL:
11046 type_print (exp->elts[pc + 1].type, "", stream, 0);
11047 fputs_filtered ("'(", stream);
11048 print_subexp (exp, pos, stream, PREC_PREFIX);
11049 fputs_filtered (")", stream);
11050 return;
11051
11052 case UNOP_IN_RANGE:
11053 /* XXX: sprint_subexp */
11054 print_subexp (exp, pos, stream, PREC_SUFFIX);
11055 fputs_filtered (" in ", stream);
11056 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11057 return;
11058
11059 case OP_DISCRETE_RANGE:
11060 print_subexp (exp, pos, stream, PREC_SUFFIX);
11061 fputs_filtered ("..", stream);
11062 print_subexp (exp, pos, stream, PREC_SUFFIX);
11063 return;
11064
11065 case OP_OTHERS:
11066 fputs_filtered ("others => ", stream);
11067 print_subexp (exp, pos, stream, PREC_SUFFIX);
11068 return;
11069
11070 case OP_CHOICES:
11071 for (i = 0; i < nargs-1; i += 1)
11072 {
11073 if (i > 0)
11074 fputs_filtered ("|", stream);
11075 print_subexp (exp, pos, stream, PREC_SUFFIX);
11076 }
11077 fputs_filtered (" => ", stream);
11078 print_subexp (exp, pos, stream, PREC_SUFFIX);
11079 return;
11080
11081 case OP_POSITIONAL:
11082 print_subexp (exp, pos, stream, PREC_SUFFIX);
11083 return;
11084
11085 case OP_AGGREGATE:
11086 fputs_filtered ("(", stream);
11087 for (i = 0; i < nargs; i += 1)
11088 {
11089 if (i > 0)
11090 fputs_filtered (", ", stream);
11091 print_subexp (exp, pos, stream, PREC_SUFFIX);
11092 }
11093 fputs_filtered (")", stream);
11094 return;
11095 }
11096 }
11097
11098 /* Table mapping opcodes into strings for printing operators
11099 and precedences of the operators. */
11100
11101 static const struct op_print ada_op_print_tab[] = {
11102 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11103 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11104 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11105 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11106 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11107 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11108 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11109 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11110 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11111 {">=", BINOP_GEQ, PREC_ORDER, 0},
11112 {">", BINOP_GTR, PREC_ORDER, 0},
11113 {"<", BINOP_LESS, PREC_ORDER, 0},
11114 {">>", BINOP_RSH, PREC_SHIFT, 0},
11115 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11116 {"+", BINOP_ADD, PREC_ADD, 0},
11117 {"-", BINOP_SUB, PREC_ADD, 0},
11118 {"&", BINOP_CONCAT, PREC_ADD, 0},
11119 {"*", BINOP_MUL, PREC_MUL, 0},
11120 {"/", BINOP_DIV, PREC_MUL, 0},
11121 {"rem", BINOP_REM, PREC_MUL, 0},
11122 {"mod", BINOP_MOD, PREC_MUL, 0},
11123 {"**", BINOP_EXP, PREC_REPEAT, 0},
11124 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11125 {"-", UNOP_NEG, PREC_PREFIX, 0},
11126 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11127 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11128 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11129 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11130 {".all", UNOP_IND, PREC_SUFFIX, 1},
11131 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11132 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11133 {NULL, 0, 0, 0}
11134 };
11135 \f
11136 enum ada_primitive_types {
11137 ada_primitive_type_int,
11138 ada_primitive_type_long,
11139 ada_primitive_type_short,
11140 ada_primitive_type_char,
11141 ada_primitive_type_float,
11142 ada_primitive_type_double,
11143 ada_primitive_type_void,
11144 ada_primitive_type_long_long,
11145 ada_primitive_type_long_double,
11146 ada_primitive_type_natural,
11147 ada_primitive_type_positive,
11148 ada_primitive_type_system_address,
11149 nr_ada_primitive_types
11150 };
11151
11152 static void
11153 ada_language_arch_info (struct gdbarch *gdbarch,
11154 struct language_arch_info *lai)
11155 {
11156 const struct builtin_type *builtin = builtin_type (gdbarch);
11157 lai->primitive_type_vector
11158 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11159 struct type *);
11160
11161 lai->primitive_type_vector [ada_primitive_type_int]
11162 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11163 0, "integer");
11164 lai->primitive_type_vector [ada_primitive_type_long]
11165 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11166 0, "long_integer");
11167 lai->primitive_type_vector [ada_primitive_type_short]
11168 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11169 0, "short_integer");
11170 lai->string_char_type
11171 = lai->primitive_type_vector [ada_primitive_type_char]
11172 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11173 lai->primitive_type_vector [ada_primitive_type_float]
11174 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11175 "float", NULL);
11176 lai->primitive_type_vector [ada_primitive_type_double]
11177 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11178 "long_float", NULL);
11179 lai->primitive_type_vector [ada_primitive_type_long_long]
11180 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11181 0, "long_long_integer");
11182 lai->primitive_type_vector [ada_primitive_type_long_double]
11183 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11184 "long_long_float", NULL);
11185 lai->primitive_type_vector [ada_primitive_type_natural]
11186 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11187 0, "natural");
11188 lai->primitive_type_vector [ada_primitive_type_positive]
11189 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11190 0, "positive");
11191 lai->primitive_type_vector [ada_primitive_type_void]
11192 = builtin->builtin_void;
11193
11194 lai->primitive_type_vector [ada_primitive_type_system_address]
11195 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11196 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11197 = "system__address";
11198
11199 lai->bool_type_symbol = NULL;
11200 lai->bool_type_default = builtin->builtin_bool;
11201 }
11202 \f
11203 /* Language vector */
11204
11205 /* Not really used, but needed in the ada_language_defn. */
11206
11207 static void
11208 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11209 {
11210 ada_emit_char (c, type, stream, quoter, 1);
11211 }
11212
11213 static int
11214 parse (void)
11215 {
11216 warnings_issued = 0;
11217 return ada_parse ();
11218 }
11219
11220 static const struct exp_descriptor ada_exp_descriptor = {
11221 ada_print_subexp,
11222 ada_operator_length,
11223 ada_op_name,
11224 ada_dump_subexp_body,
11225 ada_evaluate_subexp
11226 };
11227
11228 const struct language_defn ada_language_defn = {
11229 "ada", /* Language name */
11230 language_ada,
11231 range_check_off,
11232 type_check_off,
11233 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11234 that's not quite what this means. */
11235 array_row_major,
11236 macro_expansion_no,
11237 &ada_exp_descriptor,
11238 parse,
11239 ada_error,
11240 resolve,
11241 ada_printchar, /* Print a character constant */
11242 ada_printstr, /* Function to print string constant */
11243 emit_char, /* Function to print single char (not used) */
11244 ada_print_type, /* Print a type using appropriate syntax */
11245 default_print_typedef, /* Print a typedef using appropriate syntax */
11246 ada_val_print, /* Print a value using appropriate syntax */
11247 ada_value_print, /* Print a top-level value */
11248 NULL, /* Language specific skip_trampoline */
11249 NULL, /* name_of_this */
11250 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11251 basic_lookup_transparent_type, /* lookup_transparent_type */
11252 ada_la_decode, /* Language specific symbol demangler */
11253 NULL, /* Language specific class_name_from_physname */
11254 ada_op_print_tab, /* expression operators for printing */
11255 0, /* c-style arrays */
11256 1, /* String lower bound */
11257 ada_get_gdb_completer_word_break_characters,
11258 ada_make_symbol_completion_list,
11259 ada_language_arch_info,
11260 ada_print_array_index,
11261 default_pass_by_reference,
11262 c_get_string,
11263 LANG_MAGIC
11264 };
11265
11266 /* Provide a prototype to silence -Wmissing-prototypes. */
11267 extern initialize_file_ftype _initialize_ada_language;
11268
11269 void
11270 _initialize_ada_language (void)
11271 {
11272 add_language (&ada_language_defn);
11273
11274 varsize_limit = 65536;
11275
11276 obstack_init (&symbol_list_obstack);
11277
11278 decoded_names_store = htab_create_alloc
11279 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11280 NULL, xcalloc, xfree);
11281
11282 observer_attach_executable_changed (ada_executable_changed_observer);
11283 }
This page took 0.373099 seconds and 4 git commands to generate.