*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58
59 #ifndef ADA_RETAIN_DOTS
60 #define ADA_RETAIN_DOTS 0
61 #endif
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
120
121 static int is_nonfunction (struct ada_symbol_info *, int);
122
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
125
126 static int num_defns_collected (struct obstack *);
127
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
129
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
132 domain_enum, int);
133
134 static struct symtab *symtab_for_sym (struct symbol *);
135
136 static struct value *resolve_subexp (struct expression **, int *, int,
137 struct type *);
138
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
141
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
143
144 static char *ada_op_name (enum exp_opcode);
145
146 static const char *ada_decoded_op_name (enum exp_opcode);
147
148 static int numeric_type_p (struct type *);
149
150 static int integer_type_p (struct type *);
151
152 static int scalar_type_p (struct type *);
153
154 static int discrete_type_p (struct type *);
155
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
157 const char **,
158 int *,
159 const char **);
160
161 static struct symbol *find_old_style_renaming_symbol (const char *,
162 struct block *);
163
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
165 int, int, int *);
166
167 static struct value *evaluate_subexp (struct type *, struct expression *,
168 int *, enum noside);
169
170 static struct value *evaluate_subexp_type (struct expression *, int *);
171
172 static int is_dynamic_field (struct type *, int);
173
174 static struct type *to_fixed_variant_branch_type (struct type *,
175 const gdb_byte *,
176 CORE_ADDR, struct value *);
177
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
179
180 static struct type *to_fixed_range_type (char *, struct value *,
181 struct objfile *);
182
183 static struct type *to_static_fixed_type (struct type *);
184 static struct type *static_unwrap_type (struct type *type);
185
186 static struct value *unwrap_value (struct value *);
187
188 static struct type *packed_array_type (struct type *, long *);
189
190 static struct type *decode_packed_array_type (struct type *);
191
192 static struct value *decode_packed_array (struct value *);
193
194 static struct value *value_subscript_packed (struct value *, int,
195 struct value **);
196
197 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
198
199 static struct value *coerce_unspec_val_to_type (struct value *,
200 struct type *);
201
202 static struct value *get_var_value (char *, char *);
203
204 static int lesseq_defined_than (struct symbol *, struct symbol *);
205
206 static int equiv_types (struct type *, struct type *);
207
208 static int is_name_suffix (const char *);
209
210 static int wild_match (const char *, int, const char *);
211
212 static struct value *ada_coerce_ref (struct value *);
213
214 static LONGEST pos_atr (struct value *);
215
216 static struct value *value_pos_atr (struct value *);
217
218 static struct value *value_val_atr (struct type *, struct value *);
219
220 static struct symbol *standard_lookup (const char *, const struct block *,
221 domain_enum);
222
223 static struct value *ada_search_struct_field (char *, struct value *, int,
224 struct type *);
225
226 static struct value *ada_value_primitive_field (struct value *, int, int,
227 struct type *);
228
229 static int find_struct_field (char *, struct type *, int,
230 struct type **, int *, int *, int *, int *);
231
232 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
233 struct value *);
234
235 static struct value *ada_to_fixed_value (struct value *);
236
237 static int ada_resolve_function (struct ada_symbol_info *, int,
238 struct value **, int, const char *,
239 struct type *);
240
241 static struct value *ada_coerce_to_simple_array (struct value *);
242
243 static int ada_is_direct_array_type (struct type *);
244
245 static void ada_language_arch_info (struct gdbarch *,
246 struct language_arch_info *);
247
248 static void check_size (const struct type *);
249
250 static struct value *ada_index_struct_field (int, struct value *, int,
251 struct type *);
252
253 static struct value *assign_aggregate (struct value *, struct value *,
254 struct expression *, int *, enum noside);
255
256 static void aggregate_assign_from_choices (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *,
259 int, LONGEST, LONGEST);
260
261 static void aggregate_assign_positional (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int *, int,
264 LONGEST, LONGEST);
265
266
267 static void aggregate_assign_others (struct value *, struct value *,
268 struct expression *,
269 int *, LONGEST *, int, LONGEST, LONGEST);
270
271
272 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
273
274
275 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
276 int *, enum noside);
277
278 static void ada_forward_operator_length (struct expression *, int, int *,
279 int *);
280 \f
281
282
283 /* Maximum-sized dynamic type. */
284 static unsigned int varsize_limit;
285
286 /* FIXME: brobecker/2003-09-17: No longer a const because it is
287 returned by a function that does not return a const char *. */
288 static char *ada_completer_word_break_characters =
289 #ifdef VMS
290 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
291 #else
292 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
293 #endif
294
295 /* The name of the symbol to use to get the name of the main subprogram. */
296 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
297 = "__gnat_ada_main_program_name";
298
299 /* Limit on the number of warnings to raise per expression evaluation. */
300 static int warning_limit = 2;
301
302 /* Number of warning messages issued; reset to 0 by cleanups after
303 expression evaluation. */
304 static int warnings_issued = 0;
305
306 static const char *known_runtime_file_name_patterns[] = {
307 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
308 };
309
310 static const char *known_auxiliary_function_name_patterns[] = {
311 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
312 };
313
314 /* Space for allocating results of ada_lookup_symbol_list. */
315 static struct obstack symbol_list_obstack;
316
317 /* Utilities */
318
319
320 static char *
321 ada_get_gdb_completer_word_break_characters (void)
322 {
323 return ada_completer_word_break_characters;
324 }
325
326 /* Print an array element index using the Ada syntax. */
327
328 static void
329 ada_print_array_index (struct value *index_value, struct ui_file *stream,
330 int format, enum val_prettyprint pretty)
331 {
332 LA_VALUE_PRINT (index_value, stream, format, pretty);
333 fprintf_filtered (stream, " => ");
334 }
335
336 /* Read the string located at ADDR from the inferior and store the
337 result into BUF. */
338
339 static void
340 extract_string (CORE_ADDR addr, char *buf)
341 {
342 int char_index = 0;
343
344 /* Loop, reading one byte at a time, until we reach the '\000'
345 end-of-string marker. */
346 do
347 {
348 target_read_memory (addr + char_index * sizeof (char),
349 buf + char_index * sizeof (char), sizeof (char));
350 char_index++;
351 }
352 while (buf[char_index - 1] != '\000');
353 }
354
355 /* Assuming VECT points to an array of *SIZE objects of size
356 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
357 updating *SIZE as necessary and returning the (new) array. */
358
359 void *
360 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
361 {
362 if (*size < min_size)
363 {
364 *size *= 2;
365 if (*size < min_size)
366 *size = min_size;
367 vect = xrealloc (vect, *size * element_size);
368 }
369 return vect;
370 }
371
372 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
373 suffix of FIELD_NAME beginning "___". */
374
375 static int
376 field_name_match (const char *field_name, const char *target)
377 {
378 int len = strlen (target);
379 return
380 (strncmp (field_name, target, len) == 0
381 && (field_name[len] == '\0'
382 || (strncmp (field_name + len, "___", 3) == 0
383 && strcmp (field_name + strlen (field_name) - 6,
384 "___XVN") != 0)));
385 }
386
387
388 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
389 FIELD_NAME, and return its index. This function also handles fields
390 whose name have ___ suffixes because the compiler sometimes alters
391 their name by adding such a suffix to represent fields with certain
392 constraints. If the field could not be found, return a negative
393 number if MAYBE_MISSING is set. Otherwise raise an error. */
394
395 int
396 ada_get_field_index (const struct type *type, const char *field_name,
397 int maybe_missing)
398 {
399 int fieldno;
400 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
401 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
402 return fieldno;
403
404 if (!maybe_missing)
405 error (_("Unable to find field %s in struct %s. Aborting"),
406 field_name, TYPE_NAME (type));
407
408 return -1;
409 }
410
411 /* The length of the prefix of NAME prior to any "___" suffix. */
412
413 int
414 ada_name_prefix_len (const char *name)
415 {
416 if (name == NULL)
417 return 0;
418 else
419 {
420 const char *p = strstr (name, "___");
421 if (p == NULL)
422 return strlen (name);
423 else
424 return p - name;
425 }
426 }
427
428 /* Return non-zero if SUFFIX is a suffix of STR.
429 Return zero if STR is null. */
430
431 static int
432 is_suffix (const char *str, const char *suffix)
433 {
434 int len1, len2;
435 if (str == NULL)
436 return 0;
437 len1 = strlen (str);
438 len2 = strlen (suffix);
439 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
440 }
441
442 /* Create a value of type TYPE whose contents come from VALADDR, if it
443 is non-null, and whose memory address (in the inferior) is
444 ADDRESS. */
445
446 struct value *
447 value_from_contents_and_address (struct type *type,
448 const gdb_byte *valaddr,
449 CORE_ADDR address)
450 {
451 struct value *v = allocate_value (type);
452 if (valaddr == NULL)
453 set_value_lazy (v, 1);
454 else
455 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
456 VALUE_ADDRESS (v) = address;
457 if (address != 0)
458 VALUE_LVAL (v) = lval_memory;
459 return v;
460 }
461
462 /* The contents of value VAL, treated as a value of type TYPE. The
463 result is an lval in memory if VAL is. */
464
465 static struct value *
466 coerce_unspec_val_to_type (struct value *val, struct type *type)
467 {
468 type = ada_check_typedef (type);
469 if (value_type (val) == type)
470 return val;
471 else
472 {
473 struct value *result;
474
475 /* Make sure that the object size is not unreasonable before
476 trying to allocate some memory for it. */
477 check_size (type);
478
479 result = allocate_value (type);
480 VALUE_LVAL (result) = VALUE_LVAL (val);
481 set_value_bitsize (result, value_bitsize (val));
482 set_value_bitpos (result, value_bitpos (val));
483 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
484 if (value_lazy (val)
485 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
486 set_value_lazy (result, 1);
487 else
488 memcpy (value_contents_raw (result), value_contents (val),
489 TYPE_LENGTH (type));
490 return result;
491 }
492 }
493
494 static const gdb_byte *
495 cond_offset_host (const gdb_byte *valaddr, long offset)
496 {
497 if (valaddr == NULL)
498 return NULL;
499 else
500 return valaddr + offset;
501 }
502
503 static CORE_ADDR
504 cond_offset_target (CORE_ADDR address, long offset)
505 {
506 if (address == 0)
507 return 0;
508 else
509 return address + offset;
510 }
511
512 /* Issue a warning (as for the definition of warning in utils.c, but
513 with exactly one argument rather than ...), unless the limit on the
514 number of warnings has passed during the evaluation of the current
515 expression. */
516
517 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
518 provided by "complaint". */
519 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
520
521 static void
522 lim_warning (const char *format, ...)
523 {
524 va_list args;
525 va_start (args, format);
526
527 warnings_issued += 1;
528 if (warnings_issued <= warning_limit)
529 vwarning (format, args);
530
531 va_end (args);
532 }
533
534 /* Issue an error if the size of an object of type T is unreasonable,
535 i.e. if it would be a bad idea to allocate a value of this type in
536 GDB. */
537
538 static void
539 check_size (const struct type *type)
540 {
541 if (TYPE_LENGTH (type) > varsize_limit)
542 error (_("object size is larger than varsize-limit"));
543 }
544
545
546 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
547 gdbtypes.h, but some of the necessary definitions in that file
548 seem to have gone missing. */
549
550 /* Maximum value of a SIZE-byte signed integer type. */
551 static LONGEST
552 max_of_size (int size)
553 {
554 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
555 return top_bit | (top_bit - 1);
556 }
557
558 /* Minimum value of a SIZE-byte signed integer type. */
559 static LONGEST
560 min_of_size (int size)
561 {
562 return -max_of_size (size) - 1;
563 }
564
565 /* Maximum value of a SIZE-byte unsigned integer type. */
566 static ULONGEST
567 umax_of_size (int size)
568 {
569 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
570 return top_bit | (top_bit - 1);
571 }
572
573 /* Maximum value of integral type T, as a signed quantity. */
574 static LONGEST
575 max_of_type (struct type *t)
576 {
577 if (TYPE_UNSIGNED (t))
578 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
579 else
580 return max_of_size (TYPE_LENGTH (t));
581 }
582
583 /* Minimum value of integral type T, as a signed quantity. */
584 static LONGEST
585 min_of_type (struct type *t)
586 {
587 if (TYPE_UNSIGNED (t))
588 return 0;
589 else
590 return min_of_size (TYPE_LENGTH (t));
591 }
592
593 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
594 static struct value *
595 discrete_type_high_bound (struct type *type)
596 {
597 switch (TYPE_CODE (type))
598 {
599 case TYPE_CODE_RANGE:
600 return value_from_longest (TYPE_TARGET_TYPE (type),
601 TYPE_HIGH_BOUND (type));
602 case TYPE_CODE_ENUM:
603 return
604 value_from_longest (type,
605 TYPE_FIELD_BITPOS (type,
606 TYPE_NFIELDS (type) - 1));
607 case TYPE_CODE_INT:
608 return value_from_longest (type, max_of_type (type));
609 default:
610 error (_("Unexpected type in discrete_type_high_bound."));
611 }
612 }
613
614 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
615 static struct value *
616 discrete_type_low_bound (struct type *type)
617 {
618 switch (TYPE_CODE (type))
619 {
620 case TYPE_CODE_RANGE:
621 return value_from_longest (TYPE_TARGET_TYPE (type),
622 TYPE_LOW_BOUND (type));
623 case TYPE_CODE_ENUM:
624 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
625 case TYPE_CODE_INT:
626 return value_from_longest (type, min_of_type (type));
627 default:
628 error (_("Unexpected type in discrete_type_low_bound."));
629 }
630 }
631
632 /* The identity on non-range types. For range types, the underlying
633 non-range scalar type. */
634
635 static struct type *
636 base_type (struct type *type)
637 {
638 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
639 {
640 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
641 return type;
642 type = TYPE_TARGET_TYPE (type);
643 }
644 return type;
645 }
646 \f
647
648 /* Language Selection */
649
650 /* If the main program is in Ada, return language_ada, otherwise return LANG
651 (the main program is in Ada iif the adainit symbol is found).
652
653 MAIN_PST is not used. */
654
655 enum language
656 ada_update_initial_language (enum language lang,
657 struct partial_symtab *main_pst)
658 {
659 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
660 (struct objfile *) NULL) != NULL)
661 return language_ada;
662
663 return lang;
664 }
665
666 /* If the main procedure is written in Ada, then return its name.
667 The result is good until the next call. Return NULL if the main
668 procedure doesn't appear to be in Ada. */
669
670 char *
671 ada_main_name (void)
672 {
673 struct minimal_symbol *msym;
674 CORE_ADDR main_program_name_addr;
675 static char main_program_name[1024];
676
677 /* For Ada, the name of the main procedure is stored in a specific
678 string constant, generated by the binder. Look for that symbol,
679 extract its address, and then read that string. If we didn't find
680 that string, then most probably the main procedure is not written
681 in Ada. */
682 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
683
684 if (msym != NULL)
685 {
686 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
687 if (main_program_name_addr == 0)
688 error (_("Invalid address for Ada main program name."));
689
690 extract_string (main_program_name_addr, main_program_name);
691 return main_program_name;
692 }
693
694 /* The main procedure doesn't seem to be in Ada. */
695 return NULL;
696 }
697 \f
698 /* Symbols */
699
700 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
701 of NULLs. */
702
703 const struct ada_opname_map ada_opname_table[] = {
704 {"Oadd", "\"+\"", BINOP_ADD},
705 {"Osubtract", "\"-\"", BINOP_SUB},
706 {"Omultiply", "\"*\"", BINOP_MUL},
707 {"Odivide", "\"/\"", BINOP_DIV},
708 {"Omod", "\"mod\"", BINOP_MOD},
709 {"Orem", "\"rem\"", BINOP_REM},
710 {"Oexpon", "\"**\"", BINOP_EXP},
711 {"Olt", "\"<\"", BINOP_LESS},
712 {"Ole", "\"<=\"", BINOP_LEQ},
713 {"Ogt", "\">\"", BINOP_GTR},
714 {"Oge", "\">=\"", BINOP_GEQ},
715 {"Oeq", "\"=\"", BINOP_EQUAL},
716 {"One", "\"/=\"", BINOP_NOTEQUAL},
717 {"Oand", "\"and\"", BINOP_BITWISE_AND},
718 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
719 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
720 {"Oconcat", "\"&\"", BINOP_CONCAT},
721 {"Oabs", "\"abs\"", UNOP_ABS},
722 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
723 {"Oadd", "\"+\"", UNOP_PLUS},
724 {"Osubtract", "\"-\"", UNOP_NEG},
725 {NULL, NULL}
726 };
727
728 /* Return non-zero if STR should be suppressed in info listings. */
729
730 static int
731 is_suppressed_name (const char *str)
732 {
733 if (strncmp (str, "_ada_", 5) == 0)
734 str += 5;
735 if (str[0] == '_' || str[0] == '\000')
736 return 1;
737 else
738 {
739 const char *p;
740 const char *suffix = strstr (str, "___");
741 if (suffix != NULL && suffix[3] != 'X')
742 return 1;
743 if (suffix == NULL)
744 suffix = str + strlen (str);
745 for (p = suffix - 1; p != str; p -= 1)
746 if (isupper (*p))
747 {
748 int i;
749 if (p[0] == 'X' && p[-1] != '_')
750 goto OK;
751 if (*p != 'O')
752 return 1;
753 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
754 if (strncmp (ada_opname_table[i].encoded, p,
755 strlen (ada_opname_table[i].encoded)) == 0)
756 goto OK;
757 return 1;
758 OK:;
759 }
760 return 0;
761 }
762 }
763
764 /* The "encoded" form of DECODED, according to GNAT conventions.
765 The result is valid until the next call to ada_encode. */
766
767 char *
768 ada_encode (const char *decoded)
769 {
770 static char *encoding_buffer = NULL;
771 static size_t encoding_buffer_size = 0;
772 const char *p;
773 int k;
774
775 if (decoded == NULL)
776 return NULL;
777
778 GROW_VECT (encoding_buffer, encoding_buffer_size,
779 2 * strlen (decoded) + 10);
780
781 k = 0;
782 for (p = decoded; *p != '\0'; p += 1)
783 {
784 if (!ADA_RETAIN_DOTS && *p == '.')
785 {
786 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
787 k += 2;
788 }
789 else if (*p == '"')
790 {
791 const struct ada_opname_map *mapping;
792
793 for (mapping = ada_opname_table;
794 mapping->encoded != NULL
795 && strncmp (mapping->decoded, p,
796 strlen (mapping->decoded)) != 0; mapping += 1)
797 ;
798 if (mapping->encoded == NULL)
799 error (_("invalid Ada operator name: %s"), p);
800 strcpy (encoding_buffer + k, mapping->encoded);
801 k += strlen (mapping->encoded);
802 break;
803 }
804 else
805 {
806 encoding_buffer[k] = *p;
807 k += 1;
808 }
809 }
810
811 encoding_buffer[k] = '\0';
812 return encoding_buffer;
813 }
814
815 /* Return NAME folded to lower case, or, if surrounded by single
816 quotes, unfolded, but with the quotes stripped away. Result good
817 to next call. */
818
819 char *
820 ada_fold_name (const char *name)
821 {
822 static char *fold_buffer = NULL;
823 static size_t fold_buffer_size = 0;
824
825 int len = strlen (name);
826 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
827
828 if (name[0] == '\'')
829 {
830 strncpy (fold_buffer, name + 1, len - 2);
831 fold_buffer[len - 2] = '\000';
832 }
833 else
834 {
835 int i;
836 for (i = 0; i <= len; i += 1)
837 fold_buffer[i] = tolower (name[i]);
838 }
839
840 return fold_buffer;
841 }
842
843 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
844
845 static int
846 is_lower_alphanum (const char c)
847 {
848 return (isdigit (c) || (isalpha (c) && islower (c)));
849 }
850
851 /* Remove either of these suffixes:
852 . .{DIGIT}+
853 . ${DIGIT}+
854 . ___{DIGIT}+
855 . __{DIGIT}+.
856 These are suffixes introduced by the compiler for entities such as
857 nested subprogram for instance, in order to avoid name clashes.
858 They do not serve any purpose for the debugger. */
859
860 static void
861 ada_remove_trailing_digits (const char *encoded, int *len)
862 {
863 if (*len > 1 && isdigit (encoded[*len - 1]))
864 {
865 int i = *len - 2;
866 while (i > 0 && isdigit (encoded[i]))
867 i--;
868 if (i >= 0 && encoded[i] == '.')
869 *len = i;
870 else if (i >= 0 && encoded[i] == '$')
871 *len = i;
872 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
873 *len = i - 2;
874 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
875 *len = i - 1;
876 }
877 }
878
879 /* Remove the suffix introduced by the compiler for protected object
880 subprograms. */
881
882 static void
883 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
884 {
885 /* Remove trailing N. */
886
887 /* Protected entry subprograms are broken into two
888 separate subprograms: The first one is unprotected, and has
889 a 'N' suffix; the second is the protected version, and has
890 the 'P' suffix. The second calls the first one after handling
891 the protection. Since the P subprograms are internally generated,
892 we leave these names undecoded, giving the user a clue that this
893 entity is internal. */
894
895 if (*len > 1
896 && encoded[*len - 1] == 'N'
897 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
898 *len = *len - 1;
899 }
900
901 /* If ENCODED follows the GNAT entity encoding conventions, then return
902 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
903 replaced by ENCODED.
904
905 The resulting string is valid until the next call of ada_decode.
906 If the string is unchanged by decoding, the original string pointer
907 is returned. */
908
909 const char *
910 ada_decode (const char *encoded)
911 {
912 int i, j;
913 int len0;
914 const char *p;
915 char *decoded;
916 int at_start_name;
917 static char *decoding_buffer = NULL;
918 static size_t decoding_buffer_size = 0;
919
920 /* The name of the Ada main procedure starts with "_ada_".
921 This prefix is not part of the decoded name, so skip this part
922 if we see this prefix. */
923 if (strncmp (encoded, "_ada_", 5) == 0)
924 encoded += 5;
925
926 /* If the name starts with '_', then it is not a properly encoded
927 name, so do not attempt to decode it. Similarly, if the name
928 starts with '<', the name should not be decoded. */
929 if (encoded[0] == '_' || encoded[0] == '<')
930 goto Suppress;
931
932 len0 = strlen (encoded);
933
934 ada_remove_trailing_digits (encoded, &len0);
935 ada_remove_po_subprogram_suffix (encoded, &len0);
936
937 /* Remove the ___X.* suffix if present. Do not forget to verify that
938 the suffix is located before the current "end" of ENCODED. We want
939 to avoid re-matching parts of ENCODED that have previously been
940 marked as discarded (by decrementing LEN0). */
941 p = strstr (encoded, "___");
942 if (p != NULL && p - encoded < len0 - 3)
943 {
944 if (p[3] == 'X')
945 len0 = p - encoded;
946 else
947 goto Suppress;
948 }
949
950 /* Remove any trailing TKB suffix. It tells us that this symbol
951 is for the body of a task, but that information does not actually
952 appear in the decoded name. */
953
954 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
955 len0 -= 3;
956
957 /* Remove trailing "B" suffixes. */
958 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
959
960 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
961 len0 -= 1;
962
963 /* Make decoded big enough for possible expansion by operator name. */
964
965 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
966 decoded = decoding_buffer;
967
968 /* Remove trailing __{digit}+ or trailing ${digit}+. */
969
970 if (len0 > 1 && isdigit (encoded[len0 - 1]))
971 {
972 i = len0 - 2;
973 while ((i >= 0 && isdigit (encoded[i]))
974 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
975 i -= 1;
976 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
977 len0 = i - 1;
978 else if (encoded[i] == '$')
979 len0 = i;
980 }
981
982 /* The first few characters that are not alphabetic are not part
983 of any encoding we use, so we can copy them over verbatim. */
984
985 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
986 decoded[j] = encoded[i];
987
988 at_start_name = 1;
989 while (i < len0)
990 {
991 /* Is this a symbol function? */
992 if (at_start_name && encoded[i] == 'O')
993 {
994 int k;
995 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
996 {
997 int op_len = strlen (ada_opname_table[k].encoded);
998 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
999 op_len - 1) == 0)
1000 && !isalnum (encoded[i + op_len]))
1001 {
1002 strcpy (decoded + j, ada_opname_table[k].decoded);
1003 at_start_name = 0;
1004 i += op_len;
1005 j += strlen (ada_opname_table[k].decoded);
1006 break;
1007 }
1008 }
1009 if (ada_opname_table[k].encoded != NULL)
1010 continue;
1011 }
1012 at_start_name = 0;
1013
1014 /* Replace "TK__" with "__", which will eventually be translated
1015 into "." (just below). */
1016
1017 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1018 i += 2;
1019
1020 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1021 be translated into "." (just below). These are internal names
1022 generated for anonymous blocks inside which our symbol is nested. */
1023
1024 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1025 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1026 && isdigit (encoded [i+4]))
1027 {
1028 int k = i + 5;
1029
1030 while (k < len0 && isdigit (encoded[k]))
1031 k++; /* Skip any extra digit. */
1032
1033 /* Double-check that the "__B_{DIGITS}+" sequence we found
1034 is indeed followed by "__". */
1035 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1036 i = k;
1037 }
1038
1039 /* Remove _E{DIGITS}+[sb] */
1040
1041 /* Just as for protected object subprograms, there are 2 categories
1042 of subprograms created by the compiler for each entry. The first
1043 one implements the actual entry code, and has a suffix following
1044 the convention above; the second one implements the barrier and
1045 uses the same convention as above, except that the 'E' is replaced
1046 by a 'B'.
1047
1048 Just as above, we do not decode the name of barrier functions
1049 to give the user a clue that the code he is debugging has been
1050 internally generated. */
1051
1052 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1053 && isdigit (encoded[i+2]))
1054 {
1055 int k = i + 3;
1056
1057 while (k < len0 && isdigit (encoded[k]))
1058 k++;
1059
1060 if (k < len0
1061 && (encoded[k] == 'b' || encoded[k] == 's'))
1062 {
1063 k++;
1064 /* Just as an extra precaution, make sure that if this
1065 suffix is followed by anything else, it is a '_'.
1066 Otherwise, we matched this sequence by accident. */
1067 if (k == len0
1068 || (k < len0 && encoded[k] == '_'))
1069 i = k;
1070 }
1071 }
1072
1073 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1074 the GNAT front-end in protected object subprograms. */
1075
1076 if (i < len0 + 3
1077 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1078 {
1079 /* Backtrack a bit up until we reach either the begining of
1080 the encoded name, or "__". Make sure that we only find
1081 digits or lowercase characters. */
1082 const char *ptr = encoded + i - 1;
1083
1084 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1085 ptr--;
1086 if (ptr < encoded
1087 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1088 i++;
1089 }
1090
1091 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1092 {
1093 /* This is a X[bn]* sequence not separated from the previous
1094 part of the name with a non-alpha-numeric character (in other
1095 words, immediately following an alpha-numeric character), then
1096 verify that it is placed at the end of the encoded name. If
1097 not, then the encoding is not valid and we should abort the
1098 decoding. Otherwise, just skip it, it is used in body-nested
1099 package names. */
1100 do
1101 i += 1;
1102 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1103 if (i < len0)
1104 goto Suppress;
1105 }
1106 else if (!ADA_RETAIN_DOTS
1107 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1108 {
1109 /* Replace '__' by '.'. */
1110 decoded[j] = '.';
1111 at_start_name = 1;
1112 i += 2;
1113 j += 1;
1114 }
1115 else
1116 {
1117 /* It's a character part of the decoded name, so just copy it
1118 over. */
1119 decoded[j] = encoded[i];
1120 i += 1;
1121 j += 1;
1122 }
1123 }
1124 decoded[j] = '\000';
1125
1126 /* Decoded names should never contain any uppercase character.
1127 Double-check this, and abort the decoding if we find one. */
1128
1129 for (i = 0; decoded[i] != '\0'; i += 1)
1130 if (isupper (decoded[i]) || decoded[i] == ' ')
1131 goto Suppress;
1132
1133 if (strcmp (decoded, encoded) == 0)
1134 return encoded;
1135 else
1136 return decoded;
1137
1138 Suppress:
1139 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1140 decoded = decoding_buffer;
1141 if (encoded[0] == '<')
1142 strcpy (decoded, encoded);
1143 else
1144 sprintf (decoded, "<%s>", encoded);
1145 return decoded;
1146
1147 }
1148
1149 /* Table for keeping permanent unique copies of decoded names. Once
1150 allocated, names in this table are never released. While this is a
1151 storage leak, it should not be significant unless there are massive
1152 changes in the set of decoded names in successive versions of a
1153 symbol table loaded during a single session. */
1154 static struct htab *decoded_names_store;
1155
1156 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1157 in the language-specific part of GSYMBOL, if it has not been
1158 previously computed. Tries to save the decoded name in the same
1159 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1160 in any case, the decoded symbol has a lifetime at least that of
1161 GSYMBOL).
1162 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1163 const, but nevertheless modified to a semantically equivalent form
1164 when a decoded name is cached in it.
1165 */
1166
1167 char *
1168 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1169 {
1170 char **resultp =
1171 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1172 if (*resultp == NULL)
1173 {
1174 const char *decoded = ada_decode (gsymbol->name);
1175 if (gsymbol->bfd_section != NULL)
1176 {
1177 bfd *obfd = gsymbol->bfd_section->owner;
1178 if (obfd != NULL)
1179 {
1180 struct objfile *objf;
1181 ALL_OBJFILES (objf)
1182 {
1183 if (obfd == objf->obfd)
1184 {
1185 *resultp = obsavestring (decoded, strlen (decoded),
1186 &objf->objfile_obstack);
1187 break;
1188 }
1189 }
1190 }
1191 }
1192 /* Sometimes, we can't find a corresponding objfile, in which
1193 case, we put the result on the heap. Since we only decode
1194 when needed, we hope this usually does not cause a
1195 significant memory leak (FIXME). */
1196 if (*resultp == NULL)
1197 {
1198 char **slot = (char **) htab_find_slot (decoded_names_store,
1199 decoded, INSERT);
1200 if (*slot == NULL)
1201 *slot = xstrdup (decoded);
1202 *resultp = *slot;
1203 }
1204 }
1205
1206 return *resultp;
1207 }
1208
1209 char *
1210 ada_la_decode (const char *encoded, int options)
1211 {
1212 return xstrdup (ada_decode (encoded));
1213 }
1214
1215 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1216 suffixes that encode debugging information or leading _ada_ on
1217 SYM_NAME (see is_name_suffix commentary for the debugging
1218 information that is ignored). If WILD, then NAME need only match a
1219 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1220 either argument is NULL. */
1221
1222 int
1223 ada_match_name (const char *sym_name, const char *name, int wild)
1224 {
1225 if (sym_name == NULL || name == NULL)
1226 return 0;
1227 else if (wild)
1228 return wild_match (name, strlen (name), sym_name);
1229 else
1230 {
1231 int len_name = strlen (name);
1232 return (strncmp (sym_name, name, len_name) == 0
1233 && is_name_suffix (sym_name + len_name))
1234 || (strncmp (sym_name, "_ada_", 5) == 0
1235 && strncmp (sym_name + 5, name, len_name) == 0
1236 && is_name_suffix (sym_name + len_name + 5));
1237 }
1238 }
1239
1240 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1241 suppressed in info listings. */
1242
1243 int
1244 ada_suppress_symbol_printing (struct symbol *sym)
1245 {
1246 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1247 return 1;
1248 else
1249 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1250 }
1251 \f
1252
1253 /* Arrays */
1254
1255 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1256
1257 static char *bound_name[] = {
1258 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1259 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1260 };
1261
1262 /* Maximum number of array dimensions we are prepared to handle. */
1263
1264 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1265
1266 /* Like modify_field, but allows bitpos > wordlength. */
1267
1268 static void
1269 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1270 {
1271 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1272 }
1273
1274
1275 /* The desc_* routines return primitive portions of array descriptors
1276 (fat pointers). */
1277
1278 /* The descriptor or array type, if any, indicated by TYPE; removes
1279 level of indirection, if needed. */
1280
1281 static struct type *
1282 desc_base_type (struct type *type)
1283 {
1284 if (type == NULL)
1285 return NULL;
1286 type = ada_check_typedef (type);
1287 if (type != NULL
1288 && (TYPE_CODE (type) == TYPE_CODE_PTR
1289 || TYPE_CODE (type) == TYPE_CODE_REF))
1290 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1291 else
1292 return type;
1293 }
1294
1295 /* True iff TYPE indicates a "thin" array pointer type. */
1296
1297 static int
1298 is_thin_pntr (struct type *type)
1299 {
1300 return
1301 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1302 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1303 }
1304
1305 /* The descriptor type for thin pointer type TYPE. */
1306
1307 static struct type *
1308 thin_descriptor_type (struct type *type)
1309 {
1310 struct type *base_type = desc_base_type (type);
1311 if (base_type == NULL)
1312 return NULL;
1313 if (is_suffix (ada_type_name (base_type), "___XVE"))
1314 return base_type;
1315 else
1316 {
1317 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1318 if (alt_type == NULL)
1319 return base_type;
1320 else
1321 return alt_type;
1322 }
1323 }
1324
1325 /* A pointer to the array data for thin-pointer value VAL. */
1326
1327 static struct value *
1328 thin_data_pntr (struct value *val)
1329 {
1330 struct type *type = value_type (val);
1331 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1332 return value_cast (desc_data_type (thin_descriptor_type (type)),
1333 value_copy (val));
1334 else
1335 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1336 VALUE_ADDRESS (val) + value_offset (val));
1337 }
1338
1339 /* True iff TYPE indicates a "thick" array pointer type. */
1340
1341 static int
1342 is_thick_pntr (struct type *type)
1343 {
1344 type = desc_base_type (type);
1345 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1346 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1347 }
1348
1349 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1350 pointer to one, the type of its bounds data; otherwise, NULL. */
1351
1352 static struct type *
1353 desc_bounds_type (struct type *type)
1354 {
1355 struct type *r;
1356
1357 type = desc_base_type (type);
1358
1359 if (type == NULL)
1360 return NULL;
1361 else if (is_thin_pntr (type))
1362 {
1363 type = thin_descriptor_type (type);
1364 if (type == NULL)
1365 return NULL;
1366 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1367 if (r != NULL)
1368 return ada_check_typedef (r);
1369 }
1370 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1371 {
1372 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1373 if (r != NULL)
1374 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1375 }
1376 return NULL;
1377 }
1378
1379 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1380 one, a pointer to its bounds data. Otherwise NULL. */
1381
1382 static struct value *
1383 desc_bounds (struct value *arr)
1384 {
1385 struct type *type = ada_check_typedef (value_type (arr));
1386 if (is_thin_pntr (type))
1387 {
1388 struct type *bounds_type =
1389 desc_bounds_type (thin_descriptor_type (type));
1390 LONGEST addr;
1391
1392 if (bounds_type == NULL)
1393 error (_("Bad GNAT array descriptor"));
1394
1395 /* NOTE: The following calculation is not really kosher, but
1396 since desc_type is an XVE-encoded type (and shouldn't be),
1397 the correct calculation is a real pain. FIXME (and fix GCC). */
1398 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1399 addr = value_as_long (arr);
1400 else
1401 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1402
1403 return
1404 value_from_longest (lookup_pointer_type (bounds_type),
1405 addr - TYPE_LENGTH (bounds_type));
1406 }
1407
1408 else if (is_thick_pntr (type))
1409 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1410 _("Bad GNAT array descriptor"));
1411 else
1412 return NULL;
1413 }
1414
1415 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1416 position of the field containing the address of the bounds data. */
1417
1418 static int
1419 fat_pntr_bounds_bitpos (struct type *type)
1420 {
1421 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1422 }
1423
1424 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1425 size of the field containing the address of the bounds data. */
1426
1427 static int
1428 fat_pntr_bounds_bitsize (struct type *type)
1429 {
1430 type = desc_base_type (type);
1431
1432 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1433 return TYPE_FIELD_BITSIZE (type, 1);
1434 else
1435 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1436 }
1437
1438 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1439 pointer to one, the type of its array data (a
1440 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1441 ada_type_of_array to get an array type with bounds data. */
1442
1443 static struct type *
1444 desc_data_type (struct type *type)
1445 {
1446 type = desc_base_type (type);
1447
1448 /* NOTE: The following is bogus; see comment in desc_bounds. */
1449 if (is_thin_pntr (type))
1450 return lookup_pointer_type
1451 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1452 else if (is_thick_pntr (type))
1453 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1454 else
1455 return NULL;
1456 }
1457
1458 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1459 its array data. */
1460
1461 static struct value *
1462 desc_data (struct value *arr)
1463 {
1464 struct type *type = value_type (arr);
1465 if (is_thin_pntr (type))
1466 return thin_data_pntr (arr);
1467 else if (is_thick_pntr (type))
1468 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1469 _("Bad GNAT array descriptor"));
1470 else
1471 return NULL;
1472 }
1473
1474
1475 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1476 position of the field containing the address of the data. */
1477
1478 static int
1479 fat_pntr_data_bitpos (struct type *type)
1480 {
1481 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1482 }
1483
1484 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1485 size of the field containing the address of the data. */
1486
1487 static int
1488 fat_pntr_data_bitsize (struct type *type)
1489 {
1490 type = desc_base_type (type);
1491
1492 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1493 return TYPE_FIELD_BITSIZE (type, 0);
1494 else
1495 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1496 }
1497
1498 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1499 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1500 bound, if WHICH is 1. The first bound is I=1. */
1501
1502 static struct value *
1503 desc_one_bound (struct value *bounds, int i, int which)
1504 {
1505 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1506 _("Bad GNAT array descriptor bounds"));
1507 }
1508
1509 /* If BOUNDS is an array-bounds structure type, return the bit position
1510 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1511 bound, if WHICH is 1. The first bound is I=1. */
1512
1513 static int
1514 desc_bound_bitpos (struct type *type, int i, int which)
1515 {
1516 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1517 }
1518
1519 /* If BOUNDS is an array-bounds structure type, return the bit field size
1520 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1521 bound, if WHICH is 1. The first bound is I=1. */
1522
1523 static int
1524 desc_bound_bitsize (struct type *type, int i, int which)
1525 {
1526 type = desc_base_type (type);
1527
1528 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1529 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1530 else
1531 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1532 }
1533
1534 /* If TYPE is the type of an array-bounds structure, the type of its
1535 Ith bound (numbering from 1). Otherwise, NULL. */
1536
1537 static struct type *
1538 desc_index_type (struct type *type, int i)
1539 {
1540 type = desc_base_type (type);
1541
1542 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1543 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1544 else
1545 return NULL;
1546 }
1547
1548 /* The number of index positions in the array-bounds type TYPE.
1549 Return 0 if TYPE is NULL. */
1550
1551 static int
1552 desc_arity (struct type *type)
1553 {
1554 type = desc_base_type (type);
1555
1556 if (type != NULL)
1557 return TYPE_NFIELDS (type) / 2;
1558 return 0;
1559 }
1560
1561 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1562 an array descriptor type (representing an unconstrained array
1563 type). */
1564
1565 static int
1566 ada_is_direct_array_type (struct type *type)
1567 {
1568 if (type == NULL)
1569 return 0;
1570 type = ada_check_typedef (type);
1571 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1572 || ada_is_array_descriptor_type (type));
1573 }
1574
1575 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1576 * to one. */
1577
1578 int
1579 ada_is_array_type (struct type *type)
1580 {
1581 while (type != NULL
1582 && (TYPE_CODE (type) == TYPE_CODE_PTR
1583 || TYPE_CODE (type) == TYPE_CODE_REF))
1584 type = TYPE_TARGET_TYPE (type);
1585 return ada_is_direct_array_type (type);
1586 }
1587
1588 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1589
1590 int
1591 ada_is_simple_array_type (struct type *type)
1592 {
1593 if (type == NULL)
1594 return 0;
1595 type = ada_check_typedef (type);
1596 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1597 || (TYPE_CODE (type) == TYPE_CODE_PTR
1598 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1599 }
1600
1601 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1602
1603 int
1604 ada_is_array_descriptor_type (struct type *type)
1605 {
1606 struct type *data_type = desc_data_type (type);
1607
1608 if (type == NULL)
1609 return 0;
1610 type = ada_check_typedef (type);
1611 return
1612 data_type != NULL
1613 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1614 && TYPE_TARGET_TYPE (data_type) != NULL
1615 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1616 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1617 && desc_arity (desc_bounds_type (type)) > 0;
1618 }
1619
1620 /* Non-zero iff type is a partially mal-formed GNAT array
1621 descriptor. FIXME: This is to compensate for some problems with
1622 debugging output from GNAT. Re-examine periodically to see if it
1623 is still needed. */
1624
1625 int
1626 ada_is_bogus_array_descriptor (struct type *type)
1627 {
1628 return
1629 type != NULL
1630 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1631 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1632 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1633 && !ada_is_array_descriptor_type (type);
1634 }
1635
1636
1637 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1638 (fat pointer) returns the type of the array data described---specifically,
1639 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1640 in from the descriptor; otherwise, they are left unspecified. If
1641 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1642 returns NULL. The result is simply the type of ARR if ARR is not
1643 a descriptor. */
1644 struct type *
1645 ada_type_of_array (struct value *arr, int bounds)
1646 {
1647 if (ada_is_packed_array_type (value_type (arr)))
1648 return decode_packed_array_type (value_type (arr));
1649
1650 if (!ada_is_array_descriptor_type (value_type (arr)))
1651 return value_type (arr);
1652
1653 if (!bounds)
1654 return
1655 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1656 else
1657 {
1658 struct type *elt_type;
1659 int arity;
1660 struct value *descriptor;
1661 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1662
1663 elt_type = ada_array_element_type (value_type (arr), -1);
1664 arity = ada_array_arity (value_type (arr));
1665
1666 if (elt_type == NULL || arity == 0)
1667 return ada_check_typedef (value_type (arr));
1668
1669 descriptor = desc_bounds (arr);
1670 if (value_as_long (descriptor) == 0)
1671 return NULL;
1672 while (arity > 0)
1673 {
1674 struct type *range_type = alloc_type (objf);
1675 struct type *array_type = alloc_type (objf);
1676 struct value *low = desc_one_bound (descriptor, arity, 0);
1677 struct value *high = desc_one_bound (descriptor, arity, 1);
1678 arity -= 1;
1679
1680 create_range_type (range_type, value_type (low),
1681 longest_to_int (value_as_long (low)),
1682 longest_to_int (value_as_long (high)));
1683 elt_type = create_array_type (array_type, elt_type, range_type);
1684 }
1685
1686 return lookup_pointer_type (elt_type);
1687 }
1688 }
1689
1690 /* If ARR does not represent an array, returns ARR unchanged.
1691 Otherwise, returns either a standard GDB array with bounds set
1692 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1693 GDB array. Returns NULL if ARR is a null fat pointer. */
1694
1695 struct value *
1696 ada_coerce_to_simple_array_ptr (struct value *arr)
1697 {
1698 if (ada_is_array_descriptor_type (value_type (arr)))
1699 {
1700 struct type *arrType = ada_type_of_array (arr, 1);
1701 if (arrType == NULL)
1702 return NULL;
1703 return value_cast (arrType, value_copy (desc_data (arr)));
1704 }
1705 else if (ada_is_packed_array_type (value_type (arr)))
1706 return decode_packed_array (arr);
1707 else
1708 return arr;
1709 }
1710
1711 /* If ARR does not represent an array, returns ARR unchanged.
1712 Otherwise, returns a standard GDB array describing ARR (which may
1713 be ARR itself if it already is in the proper form). */
1714
1715 static struct value *
1716 ada_coerce_to_simple_array (struct value *arr)
1717 {
1718 if (ada_is_array_descriptor_type (value_type (arr)))
1719 {
1720 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1721 if (arrVal == NULL)
1722 error (_("Bounds unavailable for null array pointer."));
1723 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1724 return value_ind (arrVal);
1725 }
1726 else if (ada_is_packed_array_type (value_type (arr)))
1727 return decode_packed_array (arr);
1728 else
1729 return arr;
1730 }
1731
1732 /* If TYPE represents a GNAT array type, return it translated to an
1733 ordinary GDB array type (possibly with BITSIZE fields indicating
1734 packing). For other types, is the identity. */
1735
1736 struct type *
1737 ada_coerce_to_simple_array_type (struct type *type)
1738 {
1739 struct value *mark = value_mark ();
1740 struct value *dummy = value_from_longest (builtin_type_long, 0);
1741 struct type *result;
1742 deprecated_set_value_type (dummy, type);
1743 result = ada_type_of_array (dummy, 0);
1744 value_free_to_mark (mark);
1745 return result;
1746 }
1747
1748 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1749
1750 int
1751 ada_is_packed_array_type (struct type *type)
1752 {
1753 if (type == NULL)
1754 return 0;
1755 type = desc_base_type (type);
1756 type = ada_check_typedef (type);
1757 return
1758 ada_type_name (type) != NULL
1759 && strstr (ada_type_name (type), "___XP") != NULL;
1760 }
1761
1762 /* Given that TYPE is a standard GDB array type with all bounds filled
1763 in, and that the element size of its ultimate scalar constituents
1764 (that is, either its elements, or, if it is an array of arrays, its
1765 elements' elements, etc.) is *ELT_BITS, return an identical type,
1766 but with the bit sizes of its elements (and those of any
1767 constituent arrays) recorded in the BITSIZE components of its
1768 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1769 in bits. */
1770
1771 static struct type *
1772 packed_array_type (struct type *type, long *elt_bits)
1773 {
1774 struct type *new_elt_type;
1775 struct type *new_type;
1776 LONGEST low_bound, high_bound;
1777
1778 type = ada_check_typedef (type);
1779 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1780 return type;
1781
1782 new_type = alloc_type (TYPE_OBJFILE (type));
1783 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1784 elt_bits);
1785 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1786 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1787 TYPE_NAME (new_type) = ada_type_name (type);
1788
1789 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1790 &low_bound, &high_bound) < 0)
1791 low_bound = high_bound = 0;
1792 if (high_bound < low_bound)
1793 *elt_bits = TYPE_LENGTH (new_type) = 0;
1794 else
1795 {
1796 *elt_bits *= (high_bound - low_bound + 1);
1797 TYPE_LENGTH (new_type) =
1798 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1799 }
1800
1801 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1802 return new_type;
1803 }
1804
1805 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1806
1807 static struct type *
1808 decode_packed_array_type (struct type *type)
1809 {
1810 struct symbol *sym;
1811 struct block **blocks;
1812 char *raw_name = ada_type_name (ada_check_typedef (type));
1813 char *name;
1814 char *tail;
1815 struct type *shadow_type;
1816 long bits;
1817 int i, n;
1818
1819 if (!raw_name)
1820 raw_name = ada_type_name (desc_base_type (type));
1821
1822 if (!raw_name)
1823 return NULL;
1824
1825 name = (char *) alloca (strlen (raw_name) + 1);
1826 tail = strstr (raw_name, "___XP");
1827 type = desc_base_type (type);
1828
1829 memcpy (name, raw_name, tail - raw_name);
1830 name[tail - raw_name] = '\000';
1831
1832 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1833 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1834 {
1835 lim_warning (_("could not find bounds information on packed array"));
1836 return NULL;
1837 }
1838 shadow_type = SYMBOL_TYPE (sym);
1839
1840 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1841 {
1842 lim_warning (_("could not understand bounds information on packed array"));
1843 return NULL;
1844 }
1845
1846 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1847 {
1848 lim_warning
1849 (_("could not understand bit size information on packed array"));
1850 return NULL;
1851 }
1852
1853 return packed_array_type (shadow_type, &bits);
1854 }
1855
1856 /* Given that ARR is a struct value *indicating a GNAT packed array,
1857 returns a simple array that denotes that array. Its type is a
1858 standard GDB array type except that the BITSIZEs of the array
1859 target types are set to the number of bits in each element, and the
1860 type length is set appropriately. */
1861
1862 static struct value *
1863 decode_packed_array (struct value *arr)
1864 {
1865 struct type *type;
1866
1867 arr = ada_coerce_ref (arr);
1868 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1869 arr = ada_value_ind (arr);
1870
1871 type = decode_packed_array_type (value_type (arr));
1872 if (type == NULL)
1873 {
1874 error (_("can't unpack array"));
1875 return NULL;
1876 }
1877
1878 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1879 {
1880 /* This is a (right-justified) modular type representing a packed
1881 array with no wrapper. In order to interpret the value through
1882 the (left-justified) packed array type we just built, we must
1883 first left-justify it. */
1884 int bit_size, bit_pos;
1885 ULONGEST mod;
1886
1887 mod = ada_modulus (value_type (arr)) - 1;
1888 bit_size = 0;
1889 while (mod > 0)
1890 {
1891 bit_size += 1;
1892 mod >>= 1;
1893 }
1894 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1895 arr = ada_value_primitive_packed_val (arr, NULL,
1896 bit_pos / HOST_CHAR_BIT,
1897 bit_pos % HOST_CHAR_BIT,
1898 bit_size,
1899 type);
1900 }
1901
1902 return coerce_unspec_val_to_type (arr, type);
1903 }
1904
1905
1906 /* The value of the element of packed array ARR at the ARITY indices
1907 given in IND. ARR must be a simple array. */
1908
1909 static struct value *
1910 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1911 {
1912 int i;
1913 int bits, elt_off, bit_off;
1914 long elt_total_bit_offset;
1915 struct type *elt_type;
1916 struct value *v;
1917
1918 bits = 0;
1919 elt_total_bit_offset = 0;
1920 elt_type = ada_check_typedef (value_type (arr));
1921 for (i = 0; i < arity; i += 1)
1922 {
1923 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1924 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1925 error
1926 (_("attempt to do packed indexing of something other than a packed array"));
1927 else
1928 {
1929 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1930 LONGEST lowerbound, upperbound;
1931 LONGEST idx;
1932
1933 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1934 {
1935 lim_warning (_("don't know bounds of array"));
1936 lowerbound = upperbound = 0;
1937 }
1938
1939 idx = value_as_long (value_pos_atr (ind[i]));
1940 if (idx < lowerbound || idx > upperbound)
1941 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1942 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1943 elt_total_bit_offset += (idx - lowerbound) * bits;
1944 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1945 }
1946 }
1947 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1948 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1949
1950 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1951 bits, elt_type);
1952 return v;
1953 }
1954
1955 /* Non-zero iff TYPE includes negative integer values. */
1956
1957 static int
1958 has_negatives (struct type *type)
1959 {
1960 switch (TYPE_CODE (type))
1961 {
1962 default:
1963 return 0;
1964 case TYPE_CODE_INT:
1965 return !TYPE_UNSIGNED (type);
1966 case TYPE_CODE_RANGE:
1967 return TYPE_LOW_BOUND (type) < 0;
1968 }
1969 }
1970
1971
1972 /* Create a new value of type TYPE from the contents of OBJ starting
1973 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1974 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1975 assigning through the result will set the field fetched from.
1976 VALADDR is ignored unless OBJ is NULL, in which case,
1977 VALADDR+OFFSET must address the start of storage containing the
1978 packed value. The value returned in this case is never an lval.
1979 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1980
1981 struct value *
1982 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1983 long offset, int bit_offset, int bit_size,
1984 struct type *type)
1985 {
1986 struct value *v;
1987 int src, /* Index into the source area */
1988 targ, /* Index into the target area */
1989 srcBitsLeft, /* Number of source bits left to move */
1990 nsrc, ntarg, /* Number of source and target bytes */
1991 unusedLS, /* Number of bits in next significant
1992 byte of source that are unused */
1993 accumSize; /* Number of meaningful bits in accum */
1994 unsigned char *bytes; /* First byte containing data to unpack */
1995 unsigned char *unpacked;
1996 unsigned long accum; /* Staging area for bits being transferred */
1997 unsigned char sign;
1998 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1999 /* Transmit bytes from least to most significant; delta is the direction
2000 the indices move. */
2001 int delta = BITS_BIG_ENDIAN ? -1 : 1;
2002
2003 type = ada_check_typedef (type);
2004
2005 if (obj == NULL)
2006 {
2007 v = allocate_value (type);
2008 bytes = (unsigned char *) (valaddr + offset);
2009 }
2010 else if (value_lazy (obj))
2011 {
2012 v = value_at (type,
2013 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2014 bytes = (unsigned char *) alloca (len);
2015 read_memory (VALUE_ADDRESS (v), bytes, len);
2016 }
2017 else
2018 {
2019 v = allocate_value (type);
2020 bytes = (unsigned char *) value_contents (obj) + offset;
2021 }
2022
2023 if (obj != NULL)
2024 {
2025 VALUE_LVAL (v) = VALUE_LVAL (obj);
2026 if (VALUE_LVAL (obj) == lval_internalvar)
2027 VALUE_LVAL (v) = lval_internalvar_component;
2028 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2029 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2030 set_value_bitsize (v, bit_size);
2031 if (value_bitpos (v) >= HOST_CHAR_BIT)
2032 {
2033 VALUE_ADDRESS (v) += 1;
2034 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2035 }
2036 }
2037 else
2038 set_value_bitsize (v, bit_size);
2039 unpacked = (unsigned char *) value_contents (v);
2040
2041 srcBitsLeft = bit_size;
2042 nsrc = len;
2043 ntarg = TYPE_LENGTH (type);
2044 sign = 0;
2045 if (bit_size == 0)
2046 {
2047 memset (unpacked, 0, TYPE_LENGTH (type));
2048 return v;
2049 }
2050 else if (BITS_BIG_ENDIAN)
2051 {
2052 src = len - 1;
2053 if (has_negatives (type)
2054 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2055 sign = ~0;
2056
2057 unusedLS =
2058 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2059 % HOST_CHAR_BIT;
2060
2061 switch (TYPE_CODE (type))
2062 {
2063 case TYPE_CODE_ARRAY:
2064 case TYPE_CODE_UNION:
2065 case TYPE_CODE_STRUCT:
2066 /* Non-scalar values must be aligned at a byte boundary... */
2067 accumSize =
2068 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2069 /* ... And are placed at the beginning (most-significant) bytes
2070 of the target. */
2071 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2072 break;
2073 default:
2074 accumSize = 0;
2075 targ = TYPE_LENGTH (type) - 1;
2076 break;
2077 }
2078 }
2079 else
2080 {
2081 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2082
2083 src = targ = 0;
2084 unusedLS = bit_offset;
2085 accumSize = 0;
2086
2087 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2088 sign = ~0;
2089 }
2090
2091 accum = 0;
2092 while (nsrc > 0)
2093 {
2094 /* Mask for removing bits of the next source byte that are not
2095 part of the value. */
2096 unsigned int unusedMSMask =
2097 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2098 1;
2099 /* Sign-extend bits for this byte. */
2100 unsigned int signMask = sign & ~unusedMSMask;
2101 accum |=
2102 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2103 accumSize += HOST_CHAR_BIT - unusedLS;
2104 if (accumSize >= HOST_CHAR_BIT)
2105 {
2106 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2107 accumSize -= HOST_CHAR_BIT;
2108 accum >>= HOST_CHAR_BIT;
2109 ntarg -= 1;
2110 targ += delta;
2111 }
2112 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2113 unusedLS = 0;
2114 nsrc -= 1;
2115 src += delta;
2116 }
2117 while (ntarg > 0)
2118 {
2119 accum |= sign << accumSize;
2120 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2121 accumSize -= HOST_CHAR_BIT;
2122 accum >>= HOST_CHAR_BIT;
2123 ntarg -= 1;
2124 targ += delta;
2125 }
2126
2127 return v;
2128 }
2129
2130 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2131 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2132 not overlap. */
2133 static void
2134 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2135 int src_offset, int n)
2136 {
2137 unsigned int accum, mask;
2138 int accum_bits, chunk_size;
2139
2140 target += targ_offset / HOST_CHAR_BIT;
2141 targ_offset %= HOST_CHAR_BIT;
2142 source += src_offset / HOST_CHAR_BIT;
2143 src_offset %= HOST_CHAR_BIT;
2144 if (BITS_BIG_ENDIAN)
2145 {
2146 accum = (unsigned char) *source;
2147 source += 1;
2148 accum_bits = HOST_CHAR_BIT - src_offset;
2149
2150 while (n > 0)
2151 {
2152 int unused_right;
2153 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2154 accum_bits += HOST_CHAR_BIT;
2155 source += 1;
2156 chunk_size = HOST_CHAR_BIT - targ_offset;
2157 if (chunk_size > n)
2158 chunk_size = n;
2159 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2160 mask = ((1 << chunk_size) - 1) << unused_right;
2161 *target =
2162 (*target & ~mask)
2163 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2164 n -= chunk_size;
2165 accum_bits -= chunk_size;
2166 target += 1;
2167 targ_offset = 0;
2168 }
2169 }
2170 else
2171 {
2172 accum = (unsigned char) *source >> src_offset;
2173 source += 1;
2174 accum_bits = HOST_CHAR_BIT - src_offset;
2175
2176 while (n > 0)
2177 {
2178 accum = accum + ((unsigned char) *source << accum_bits);
2179 accum_bits += HOST_CHAR_BIT;
2180 source += 1;
2181 chunk_size = HOST_CHAR_BIT - targ_offset;
2182 if (chunk_size > n)
2183 chunk_size = n;
2184 mask = ((1 << chunk_size) - 1) << targ_offset;
2185 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2186 n -= chunk_size;
2187 accum_bits -= chunk_size;
2188 accum >>= chunk_size;
2189 target += 1;
2190 targ_offset = 0;
2191 }
2192 }
2193 }
2194
2195 /* Store the contents of FROMVAL into the location of TOVAL.
2196 Return a new value with the location of TOVAL and contents of
2197 FROMVAL. Handles assignment into packed fields that have
2198 floating-point or non-scalar types. */
2199
2200 static struct value *
2201 ada_value_assign (struct value *toval, struct value *fromval)
2202 {
2203 struct type *type = value_type (toval);
2204 int bits = value_bitsize (toval);
2205
2206 toval = ada_coerce_ref (toval);
2207 fromval = ada_coerce_ref (fromval);
2208
2209 if (ada_is_direct_array_type (value_type (toval)))
2210 toval = ada_coerce_to_simple_array (toval);
2211 if (ada_is_direct_array_type (value_type (fromval)))
2212 fromval = ada_coerce_to_simple_array (fromval);
2213
2214 if (!deprecated_value_modifiable (toval))
2215 error (_("Left operand of assignment is not a modifiable lvalue."));
2216
2217 if (VALUE_LVAL (toval) == lval_memory
2218 && bits > 0
2219 && (TYPE_CODE (type) == TYPE_CODE_FLT
2220 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2221 {
2222 int len = (value_bitpos (toval)
2223 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2224 char *buffer = (char *) alloca (len);
2225 struct value *val;
2226 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2227
2228 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2229 fromval = value_cast (type, fromval);
2230
2231 read_memory (to_addr, buffer, len);
2232 if (BITS_BIG_ENDIAN)
2233 move_bits (buffer, value_bitpos (toval),
2234 value_contents (fromval),
2235 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2236 bits, bits);
2237 else
2238 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2239 0, bits);
2240 write_memory (to_addr, buffer, len);
2241 if (deprecated_memory_changed_hook)
2242 deprecated_memory_changed_hook (to_addr, len);
2243
2244 val = value_copy (toval);
2245 memcpy (value_contents_raw (val), value_contents (fromval),
2246 TYPE_LENGTH (type));
2247 deprecated_set_value_type (val, type);
2248
2249 return val;
2250 }
2251
2252 return value_assign (toval, fromval);
2253 }
2254
2255
2256 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2257 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2258 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2259 * COMPONENT, and not the inferior's memory. The current contents
2260 * of COMPONENT are ignored. */
2261 static void
2262 value_assign_to_component (struct value *container, struct value *component,
2263 struct value *val)
2264 {
2265 LONGEST offset_in_container =
2266 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2267 - VALUE_ADDRESS (container) - value_offset (container));
2268 int bit_offset_in_container =
2269 value_bitpos (component) - value_bitpos (container);
2270 int bits;
2271
2272 val = value_cast (value_type (component), val);
2273
2274 if (value_bitsize (component) == 0)
2275 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2276 else
2277 bits = value_bitsize (component);
2278
2279 if (BITS_BIG_ENDIAN)
2280 move_bits (value_contents_writeable (container) + offset_in_container,
2281 value_bitpos (container) + bit_offset_in_container,
2282 value_contents (val),
2283 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2284 bits);
2285 else
2286 move_bits (value_contents_writeable (container) + offset_in_container,
2287 value_bitpos (container) + bit_offset_in_container,
2288 value_contents (val), 0, bits);
2289 }
2290
2291 /* The value of the element of array ARR at the ARITY indices given in IND.
2292 ARR may be either a simple array, GNAT array descriptor, or pointer
2293 thereto. */
2294
2295 struct value *
2296 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2297 {
2298 int k;
2299 struct value *elt;
2300 struct type *elt_type;
2301
2302 elt = ada_coerce_to_simple_array (arr);
2303
2304 elt_type = ada_check_typedef (value_type (elt));
2305 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2306 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2307 return value_subscript_packed (elt, arity, ind);
2308
2309 for (k = 0; k < arity; k += 1)
2310 {
2311 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2312 error (_("too many subscripts (%d expected)"), k);
2313 elt = value_subscript (elt, value_pos_atr (ind[k]));
2314 }
2315 return elt;
2316 }
2317
2318 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2319 value of the element of *ARR at the ARITY indices given in
2320 IND. Does not read the entire array into memory. */
2321
2322 struct value *
2323 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2324 struct value **ind)
2325 {
2326 int k;
2327
2328 for (k = 0; k < arity; k += 1)
2329 {
2330 LONGEST lwb, upb;
2331 struct value *idx;
2332
2333 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2334 error (_("too many subscripts (%d expected)"), k);
2335 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2336 value_copy (arr));
2337 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2338 idx = value_pos_atr (ind[k]);
2339 if (lwb != 0)
2340 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2341 arr = value_add (arr, idx);
2342 type = TYPE_TARGET_TYPE (type);
2343 }
2344
2345 return value_ind (arr);
2346 }
2347
2348 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2349 actual type of ARRAY_PTR is ignored), returns a reference to
2350 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2351 bound of this array is LOW, as per Ada rules. */
2352 static struct value *
2353 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2354 int low, int high)
2355 {
2356 CORE_ADDR base = value_as_address (array_ptr)
2357 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2358 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2359 struct type *index_type =
2360 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2361 low, high);
2362 struct type *slice_type =
2363 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2364 return value_from_pointer (lookup_reference_type (slice_type), base);
2365 }
2366
2367
2368 static struct value *
2369 ada_value_slice (struct value *array, int low, int high)
2370 {
2371 struct type *type = value_type (array);
2372 struct type *index_type =
2373 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2374 struct type *slice_type =
2375 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2376 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2377 }
2378
2379 /* If type is a record type in the form of a standard GNAT array
2380 descriptor, returns the number of dimensions for type. If arr is a
2381 simple array, returns the number of "array of"s that prefix its
2382 type designation. Otherwise, returns 0. */
2383
2384 int
2385 ada_array_arity (struct type *type)
2386 {
2387 int arity;
2388
2389 if (type == NULL)
2390 return 0;
2391
2392 type = desc_base_type (type);
2393
2394 arity = 0;
2395 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2396 return desc_arity (desc_bounds_type (type));
2397 else
2398 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2399 {
2400 arity += 1;
2401 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2402 }
2403
2404 return arity;
2405 }
2406
2407 /* If TYPE is a record type in the form of a standard GNAT array
2408 descriptor or a simple array type, returns the element type for
2409 TYPE after indexing by NINDICES indices, or by all indices if
2410 NINDICES is -1. Otherwise, returns NULL. */
2411
2412 struct type *
2413 ada_array_element_type (struct type *type, int nindices)
2414 {
2415 type = desc_base_type (type);
2416
2417 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2418 {
2419 int k;
2420 struct type *p_array_type;
2421
2422 p_array_type = desc_data_type (type);
2423
2424 k = ada_array_arity (type);
2425 if (k == 0)
2426 return NULL;
2427
2428 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2429 if (nindices >= 0 && k > nindices)
2430 k = nindices;
2431 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2432 while (k > 0 && p_array_type != NULL)
2433 {
2434 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2435 k -= 1;
2436 }
2437 return p_array_type;
2438 }
2439 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2440 {
2441 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2442 {
2443 type = TYPE_TARGET_TYPE (type);
2444 nindices -= 1;
2445 }
2446 return type;
2447 }
2448
2449 return NULL;
2450 }
2451
2452 /* The type of nth index in arrays of given type (n numbering from 1).
2453 Does not examine memory. */
2454
2455 struct type *
2456 ada_index_type (struct type *type, int n)
2457 {
2458 struct type *result_type;
2459
2460 type = desc_base_type (type);
2461
2462 if (n > ada_array_arity (type))
2463 return NULL;
2464
2465 if (ada_is_simple_array_type (type))
2466 {
2467 int i;
2468
2469 for (i = 1; i < n; i += 1)
2470 type = TYPE_TARGET_TYPE (type);
2471 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2472 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2473 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2474 perhaps stabsread.c would make more sense. */
2475 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2476 result_type = builtin_type_int;
2477
2478 return result_type;
2479 }
2480 else
2481 return desc_index_type (desc_bounds_type (type), n);
2482 }
2483
2484 /* Given that arr is an array type, returns the lower bound of the
2485 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2486 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2487 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2488 bounds type. It works for other arrays with bounds supplied by
2489 run-time quantities other than discriminants. */
2490
2491 static LONGEST
2492 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2493 struct type ** typep)
2494 {
2495 struct type *type;
2496 struct type *index_type_desc;
2497
2498 if (ada_is_packed_array_type (arr_type))
2499 arr_type = decode_packed_array_type (arr_type);
2500
2501 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2502 {
2503 if (typep != NULL)
2504 *typep = builtin_type_int;
2505 return (LONGEST) - which;
2506 }
2507
2508 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2509 type = TYPE_TARGET_TYPE (arr_type);
2510 else
2511 type = arr_type;
2512
2513 index_type_desc = ada_find_parallel_type (type, "___XA");
2514 if (index_type_desc == NULL)
2515 {
2516 struct type *index_type;
2517
2518 while (n > 1)
2519 {
2520 type = TYPE_TARGET_TYPE (type);
2521 n -= 1;
2522 }
2523
2524 index_type = TYPE_INDEX_TYPE (type);
2525 if (typep != NULL)
2526 *typep = index_type;
2527
2528 /* The index type is either a range type or an enumerated type.
2529 For the range type, we have some macros that allow us to
2530 extract the value of the low and high bounds. But they
2531 do now work for enumerated types. The expressions used
2532 below work for both range and enum types. */
2533 return
2534 (LONGEST) (which == 0
2535 ? TYPE_FIELD_BITPOS (index_type, 0)
2536 : TYPE_FIELD_BITPOS (index_type,
2537 TYPE_NFIELDS (index_type) - 1));
2538 }
2539 else
2540 {
2541 struct type *index_type =
2542 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2543 NULL, TYPE_OBJFILE (arr_type));
2544
2545 if (typep != NULL)
2546 *typep = index_type;
2547
2548 return
2549 (LONGEST) (which == 0
2550 ? TYPE_LOW_BOUND (index_type)
2551 : TYPE_HIGH_BOUND (index_type));
2552 }
2553 }
2554
2555 /* Given that arr is an array value, returns the lower bound of the
2556 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2557 WHICH is 1. This routine will also work for arrays with bounds
2558 supplied by run-time quantities other than discriminants. */
2559
2560 struct value *
2561 ada_array_bound (struct value *arr, int n, int which)
2562 {
2563 struct type *arr_type = value_type (arr);
2564
2565 if (ada_is_packed_array_type (arr_type))
2566 return ada_array_bound (decode_packed_array (arr), n, which);
2567 else if (ada_is_simple_array_type (arr_type))
2568 {
2569 struct type *type;
2570 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2571 return value_from_longest (type, v);
2572 }
2573 else
2574 return desc_one_bound (desc_bounds (arr), n, which);
2575 }
2576
2577 /* Given that arr is an array value, returns the length of the
2578 nth index. This routine will also work for arrays with bounds
2579 supplied by run-time quantities other than discriminants.
2580 Does not work for arrays indexed by enumeration types with representation
2581 clauses at the moment. */
2582
2583 struct value *
2584 ada_array_length (struct value *arr, int n)
2585 {
2586 struct type *arr_type = ada_check_typedef (value_type (arr));
2587
2588 if (ada_is_packed_array_type (arr_type))
2589 return ada_array_length (decode_packed_array (arr), n);
2590
2591 if (ada_is_simple_array_type (arr_type))
2592 {
2593 struct type *type;
2594 LONGEST v =
2595 ada_array_bound_from_type (arr_type, n, 1, &type) -
2596 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2597 return value_from_longest (type, v);
2598 }
2599 else
2600 return
2601 value_from_longest (builtin_type_int,
2602 value_as_long (desc_one_bound (desc_bounds (arr),
2603 n, 1))
2604 - value_as_long (desc_one_bound (desc_bounds (arr),
2605 n, 0)) + 1);
2606 }
2607
2608 /* An empty array whose type is that of ARR_TYPE (an array type),
2609 with bounds LOW to LOW-1. */
2610
2611 static struct value *
2612 empty_array (struct type *arr_type, int low)
2613 {
2614 struct type *index_type =
2615 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2616 low, low - 1);
2617 struct type *elt_type = ada_array_element_type (arr_type, 1);
2618 return allocate_value (create_array_type (NULL, elt_type, index_type));
2619 }
2620 \f
2621
2622 /* Name resolution */
2623
2624 /* The "decoded" name for the user-definable Ada operator corresponding
2625 to OP. */
2626
2627 static const char *
2628 ada_decoded_op_name (enum exp_opcode op)
2629 {
2630 int i;
2631
2632 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2633 {
2634 if (ada_opname_table[i].op == op)
2635 return ada_opname_table[i].decoded;
2636 }
2637 error (_("Could not find operator name for opcode"));
2638 }
2639
2640
2641 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2642 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2643 undefined namespace) and converts operators that are
2644 user-defined into appropriate function calls. If CONTEXT_TYPE is
2645 non-null, it provides a preferred result type [at the moment, only
2646 type void has any effect---causing procedures to be preferred over
2647 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2648 return type is preferred. May change (expand) *EXP. */
2649
2650 static void
2651 resolve (struct expression **expp, int void_context_p)
2652 {
2653 int pc;
2654 pc = 0;
2655 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2656 }
2657
2658 /* Resolve the operator of the subexpression beginning at
2659 position *POS of *EXPP. "Resolving" consists of replacing
2660 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2661 with their resolutions, replacing built-in operators with
2662 function calls to user-defined operators, where appropriate, and,
2663 when DEPROCEDURE_P is non-zero, converting function-valued variables
2664 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2665 are as in ada_resolve, above. */
2666
2667 static struct value *
2668 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2669 struct type *context_type)
2670 {
2671 int pc = *pos;
2672 int i;
2673 struct expression *exp; /* Convenience: == *expp. */
2674 enum exp_opcode op = (*expp)->elts[pc].opcode;
2675 struct value **argvec; /* Vector of operand types (alloca'ed). */
2676 int nargs; /* Number of operands. */
2677 int oplen;
2678
2679 argvec = NULL;
2680 nargs = 0;
2681 exp = *expp;
2682
2683 /* Pass one: resolve operands, saving their types and updating *pos,
2684 if needed. */
2685 switch (op)
2686 {
2687 case OP_FUNCALL:
2688 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2689 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2690 *pos += 7;
2691 else
2692 {
2693 *pos += 3;
2694 resolve_subexp (expp, pos, 0, NULL);
2695 }
2696 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2697 break;
2698
2699 case UNOP_ADDR:
2700 *pos += 1;
2701 resolve_subexp (expp, pos, 0, NULL);
2702 break;
2703
2704 case UNOP_QUAL:
2705 *pos += 3;
2706 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2707 break;
2708
2709 case OP_ATR_MODULUS:
2710 case OP_ATR_SIZE:
2711 case OP_ATR_TAG:
2712 case OP_ATR_FIRST:
2713 case OP_ATR_LAST:
2714 case OP_ATR_LENGTH:
2715 case OP_ATR_POS:
2716 case OP_ATR_VAL:
2717 case OP_ATR_MIN:
2718 case OP_ATR_MAX:
2719 case TERNOP_IN_RANGE:
2720 case BINOP_IN_BOUNDS:
2721 case UNOP_IN_RANGE:
2722 case OP_AGGREGATE:
2723 case OP_OTHERS:
2724 case OP_CHOICES:
2725 case OP_POSITIONAL:
2726 case OP_DISCRETE_RANGE:
2727 case OP_NAME:
2728 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2729 *pos += oplen;
2730 break;
2731
2732 case BINOP_ASSIGN:
2733 {
2734 struct value *arg1;
2735
2736 *pos += 1;
2737 arg1 = resolve_subexp (expp, pos, 0, NULL);
2738 if (arg1 == NULL)
2739 resolve_subexp (expp, pos, 1, NULL);
2740 else
2741 resolve_subexp (expp, pos, 1, value_type (arg1));
2742 break;
2743 }
2744
2745 case UNOP_CAST:
2746 *pos += 3;
2747 nargs = 1;
2748 break;
2749
2750 case BINOP_ADD:
2751 case BINOP_SUB:
2752 case BINOP_MUL:
2753 case BINOP_DIV:
2754 case BINOP_REM:
2755 case BINOP_MOD:
2756 case BINOP_EXP:
2757 case BINOP_CONCAT:
2758 case BINOP_LOGICAL_AND:
2759 case BINOP_LOGICAL_OR:
2760 case BINOP_BITWISE_AND:
2761 case BINOP_BITWISE_IOR:
2762 case BINOP_BITWISE_XOR:
2763
2764 case BINOP_EQUAL:
2765 case BINOP_NOTEQUAL:
2766 case BINOP_LESS:
2767 case BINOP_GTR:
2768 case BINOP_LEQ:
2769 case BINOP_GEQ:
2770
2771 case BINOP_REPEAT:
2772 case BINOP_SUBSCRIPT:
2773 case BINOP_COMMA:
2774 *pos += 1;
2775 nargs = 2;
2776 break;
2777
2778 case UNOP_NEG:
2779 case UNOP_PLUS:
2780 case UNOP_LOGICAL_NOT:
2781 case UNOP_ABS:
2782 case UNOP_IND:
2783 *pos += 1;
2784 nargs = 1;
2785 break;
2786
2787 case OP_LONG:
2788 case OP_DOUBLE:
2789 case OP_VAR_VALUE:
2790 *pos += 4;
2791 break;
2792
2793 case OP_TYPE:
2794 case OP_BOOL:
2795 case OP_LAST:
2796 case OP_INTERNALVAR:
2797 *pos += 3;
2798 break;
2799
2800 case UNOP_MEMVAL:
2801 *pos += 3;
2802 nargs = 1;
2803 break;
2804
2805 case OP_REGISTER:
2806 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2807 break;
2808
2809 case STRUCTOP_STRUCT:
2810 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2811 nargs = 1;
2812 break;
2813
2814 case TERNOP_SLICE:
2815 *pos += 1;
2816 nargs = 3;
2817 break;
2818
2819 case OP_STRING:
2820 break;
2821
2822 default:
2823 error (_("Unexpected operator during name resolution"));
2824 }
2825
2826 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2827 for (i = 0; i < nargs; i += 1)
2828 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2829 argvec[i] = NULL;
2830 exp = *expp;
2831
2832 /* Pass two: perform any resolution on principal operator. */
2833 switch (op)
2834 {
2835 default:
2836 break;
2837
2838 case OP_VAR_VALUE:
2839 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2840 {
2841 struct ada_symbol_info *candidates;
2842 int n_candidates;
2843
2844 n_candidates =
2845 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2846 (exp->elts[pc + 2].symbol),
2847 exp->elts[pc + 1].block, VAR_DOMAIN,
2848 &candidates);
2849
2850 if (n_candidates > 1)
2851 {
2852 /* Types tend to get re-introduced locally, so if there
2853 are any local symbols that are not types, first filter
2854 out all types. */
2855 int j;
2856 for (j = 0; j < n_candidates; j += 1)
2857 switch (SYMBOL_CLASS (candidates[j].sym))
2858 {
2859 case LOC_REGISTER:
2860 case LOC_ARG:
2861 case LOC_REF_ARG:
2862 case LOC_REGPARM:
2863 case LOC_REGPARM_ADDR:
2864 case LOC_LOCAL:
2865 case LOC_LOCAL_ARG:
2866 case LOC_BASEREG:
2867 case LOC_BASEREG_ARG:
2868 case LOC_COMPUTED:
2869 case LOC_COMPUTED_ARG:
2870 goto FoundNonType;
2871 default:
2872 break;
2873 }
2874 FoundNonType:
2875 if (j < n_candidates)
2876 {
2877 j = 0;
2878 while (j < n_candidates)
2879 {
2880 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2881 {
2882 candidates[j] = candidates[n_candidates - 1];
2883 n_candidates -= 1;
2884 }
2885 else
2886 j += 1;
2887 }
2888 }
2889 }
2890
2891 if (n_candidates == 0)
2892 error (_("No definition found for %s"),
2893 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2894 else if (n_candidates == 1)
2895 i = 0;
2896 else if (deprocedure_p
2897 && !is_nonfunction (candidates, n_candidates))
2898 {
2899 i = ada_resolve_function
2900 (candidates, n_candidates, NULL, 0,
2901 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2902 context_type);
2903 if (i < 0)
2904 error (_("Could not find a match for %s"),
2905 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2906 }
2907 else
2908 {
2909 printf_filtered (_("Multiple matches for %s\n"),
2910 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2911 user_select_syms (candidates, n_candidates, 1);
2912 i = 0;
2913 }
2914
2915 exp->elts[pc + 1].block = candidates[i].block;
2916 exp->elts[pc + 2].symbol = candidates[i].sym;
2917 if (innermost_block == NULL
2918 || contained_in (candidates[i].block, innermost_block))
2919 innermost_block = candidates[i].block;
2920 }
2921
2922 if (deprocedure_p
2923 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2924 == TYPE_CODE_FUNC))
2925 {
2926 replace_operator_with_call (expp, pc, 0, 0,
2927 exp->elts[pc + 2].symbol,
2928 exp->elts[pc + 1].block);
2929 exp = *expp;
2930 }
2931 break;
2932
2933 case OP_FUNCALL:
2934 {
2935 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2936 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2937 {
2938 struct ada_symbol_info *candidates;
2939 int n_candidates;
2940
2941 n_candidates =
2942 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2943 (exp->elts[pc + 5].symbol),
2944 exp->elts[pc + 4].block, VAR_DOMAIN,
2945 &candidates);
2946 if (n_candidates == 1)
2947 i = 0;
2948 else
2949 {
2950 i = ada_resolve_function
2951 (candidates, n_candidates,
2952 argvec, nargs,
2953 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2954 context_type);
2955 if (i < 0)
2956 error (_("Could not find a match for %s"),
2957 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2958 }
2959
2960 exp->elts[pc + 4].block = candidates[i].block;
2961 exp->elts[pc + 5].symbol = candidates[i].sym;
2962 if (innermost_block == NULL
2963 || contained_in (candidates[i].block, innermost_block))
2964 innermost_block = candidates[i].block;
2965 }
2966 }
2967 break;
2968 case BINOP_ADD:
2969 case BINOP_SUB:
2970 case BINOP_MUL:
2971 case BINOP_DIV:
2972 case BINOP_REM:
2973 case BINOP_MOD:
2974 case BINOP_CONCAT:
2975 case BINOP_BITWISE_AND:
2976 case BINOP_BITWISE_IOR:
2977 case BINOP_BITWISE_XOR:
2978 case BINOP_EQUAL:
2979 case BINOP_NOTEQUAL:
2980 case BINOP_LESS:
2981 case BINOP_GTR:
2982 case BINOP_LEQ:
2983 case BINOP_GEQ:
2984 case BINOP_EXP:
2985 case UNOP_NEG:
2986 case UNOP_PLUS:
2987 case UNOP_LOGICAL_NOT:
2988 case UNOP_ABS:
2989 if (possible_user_operator_p (op, argvec))
2990 {
2991 struct ada_symbol_info *candidates;
2992 int n_candidates;
2993
2994 n_candidates =
2995 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2996 (struct block *) NULL, VAR_DOMAIN,
2997 &candidates);
2998 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2999 ada_decoded_op_name (op), NULL);
3000 if (i < 0)
3001 break;
3002
3003 replace_operator_with_call (expp, pc, nargs, 1,
3004 candidates[i].sym, candidates[i].block);
3005 exp = *expp;
3006 }
3007 break;
3008
3009 case OP_TYPE:
3010 case OP_REGISTER:
3011 return NULL;
3012 }
3013
3014 *pos = pc;
3015 return evaluate_subexp_type (exp, pos);
3016 }
3017
3018 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3019 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3020 a non-pointer. A type of 'void' (which is never a valid expression type)
3021 by convention matches anything. */
3022 /* The term "match" here is rather loose. The match is heuristic and
3023 liberal. FIXME: TOO liberal, in fact. */
3024
3025 static int
3026 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3027 {
3028 ftype = ada_check_typedef (ftype);
3029 atype = ada_check_typedef (atype);
3030
3031 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3032 ftype = TYPE_TARGET_TYPE (ftype);
3033 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3034 atype = TYPE_TARGET_TYPE (atype);
3035
3036 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3037 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3038 return 1;
3039
3040 switch (TYPE_CODE (ftype))
3041 {
3042 default:
3043 return 1;
3044 case TYPE_CODE_PTR:
3045 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3046 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3047 TYPE_TARGET_TYPE (atype), 0);
3048 else
3049 return (may_deref
3050 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3051 case TYPE_CODE_INT:
3052 case TYPE_CODE_ENUM:
3053 case TYPE_CODE_RANGE:
3054 switch (TYPE_CODE (atype))
3055 {
3056 case TYPE_CODE_INT:
3057 case TYPE_CODE_ENUM:
3058 case TYPE_CODE_RANGE:
3059 return 1;
3060 default:
3061 return 0;
3062 }
3063
3064 case TYPE_CODE_ARRAY:
3065 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3066 || ada_is_array_descriptor_type (atype));
3067
3068 case TYPE_CODE_STRUCT:
3069 if (ada_is_array_descriptor_type (ftype))
3070 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3071 || ada_is_array_descriptor_type (atype));
3072 else
3073 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3074 && !ada_is_array_descriptor_type (atype));
3075
3076 case TYPE_CODE_UNION:
3077 case TYPE_CODE_FLT:
3078 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3079 }
3080 }
3081
3082 /* Return non-zero if the formals of FUNC "sufficiently match" the
3083 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3084 may also be an enumeral, in which case it is treated as a 0-
3085 argument function. */
3086
3087 static int
3088 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3089 {
3090 int i;
3091 struct type *func_type = SYMBOL_TYPE (func);
3092
3093 if (SYMBOL_CLASS (func) == LOC_CONST
3094 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3095 return (n_actuals == 0);
3096 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3097 return 0;
3098
3099 if (TYPE_NFIELDS (func_type) != n_actuals)
3100 return 0;
3101
3102 for (i = 0; i < n_actuals; i += 1)
3103 {
3104 if (actuals[i] == NULL)
3105 return 0;
3106 else
3107 {
3108 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3109 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3110
3111 if (!ada_type_match (ftype, atype, 1))
3112 return 0;
3113 }
3114 }
3115 return 1;
3116 }
3117
3118 /* False iff function type FUNC_TYPE definitely does not produce a value
3119 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3120 FUNC_TYPE is not a valid function type with a non-null return type
3121 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3122
3123 static int
3124 return_match (struct type *func_type, struct type *context_type)
3125 {
3126 struct type *return_type;
3127
3128 if (func_type == NULL)
3129 return 1;
3130
3131 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3132 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3133 else
3134 return_type = base_type (func_type);
3135 if (return_type == NULL)
3136 return 1;
3137
3138 context_type = base_type (context_type);
3139
3140 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3141 return context_type == NULL || return_type == context_type;
3142 else if (context_type == NULL)
3143 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3144 else
3145 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3146 }
3147
3148
3149 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3150 function (if any) that matches the types of the NARGS arguments in
3151 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3152 that returns that type, then eliminate matches that don't. If
3153 CONTEXT_TYPE is void and there is at least one match that does not
3154 return void, eliminate all matches that do.
3155
3156 Asks the user if there is more than one match remaining. Returns -1
3157 if there is no such symbol or none is selected. NAME is used
3158 solely for messages. May re-arrange and modify SYMS in
3159 the process; the index returned is for the modified vector. */
3160
3161 static int
3162 ada_resolve_function (struct ada_symbol_info syms[],
3163 int nsyms, struct value **args, int nargs,
3164 const char *name, struct type *context_type)
3165 {
3166 int k;
3167 int m; /* Number of hits */
3168 struct type *fallback;
3169 struct type *return_type;
3170
3171 return_type = context_type;
3172 if (context_type == NULL)
3173 fallback = builtin_type_void;
3174 else
3175 fallback = NULL;
3176
3177 m = 0;
3178 while (1)
3179 {
3180 for (k = 0; k < nsyms; k += 1)
3181 {
3182 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3183
3184 if (ada_args_match (syms[k].sym, args, nargs)
3185 && return_match (type, return_type))
3186 {
3187 syms[m] = syms[k];
3188 m += 1;
3189 }
3190 }
3191 if (m > 0 || return_type == fallback)
3192 break;
3193 else
3194 return_type = fallback;
3195 }
3196
3197 if (m == 0)
3198 return -1;
3199 else if (m > 1)
3200 {
3201 printf_filtered (_("Multiple matches for %s\n"), name);
3202 user_select_syms (syms, m, 1);
3203 return 0;
3204 }
3205 return 0;
3206 }
3207
3208 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3209 in a listing of choices during disambiguation (see sort_choices, below).
3210 The idea is that overloadings of a subprogram name from the
3211 same package should sort in their source order. We settle for ordering
3212 such symbols by their trailing number (__N or $N). */
3213
3214 static int
3215 encoded_ordered_before (char *N0, char *N1)
3216 {
3217 if (N1 == NULL)
3218 return 0;
3219 else if (N0 == NULL)
3220 return 1;
3221 else
3222 {
3223 int k0, k1;
3224 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3225 ;
3226 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3227 ;
3228 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3229 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3230 {
3231 int n0, n1;
3232 n0 = k0;
3233 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3234 n0 -= 1;
3235 n1 = k1;
3236 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3237 n1 -= 1;
3238 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3239 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3240 }
3241 return (strcmp (N0, N1) < 0);
3242 }
3243 }
3244
3245 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3246 encoded names. */
3247
3248 static void
3249 sort_choices (struct ada_symbol_info syms[], int nsyms)
3250 {
3251 int i;
3252 for (i = 1; i < nsyms; i += 1)
3253 {
3254 struct ada_symbol_info sym = syms[i];
3255 int j;
3256
3257 for (j = i - 1; j >= 0; j -= 1)
3258 {
3259 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3260 SYMBOL_LINKAGE_NAME (sym.sym)))
3261 break;
3262 syms[j + 1] = syms[j];
3263 }
3264 syms[j + 1] = sym;
3265 }
3266 }
3267
3268 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3269 by asking the user (if necessary), returning the number selected,
3270 and setting the first elements of SYMS items. Error if no symbols
3271 selected. */
3272
3273 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3274 to be re-integrated one of these days. */
3275
3276 int
3277 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3278 {
3279 int i;
3280 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3281 int n_chosen;
3282 int first_choice = (max_results == 1) ? 1 : 2;
3283
3284 if (max_results < 1)
3285 error (_("Request to select 0 symbols!"));
3286 if (nsyms <= 1)
3287 return nsyms;
3288
3289 printf_unfiltered (_("[0] cancel\n"));
3290 if (max_results > 1)
3291 printf_unfiltered (_("[1] all\n"));
3292
3293 sort_choices (syms, nsyms);
3294
3295 for (i = 0; i < nsyms; i += 1)
3296 {
3297 if (syms[i].sym == NULL)
3298 continue;
3299
3300 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3301 {
3302 struct symtab_and_line sal =
3303 find_function_start_sal (syms[i].sym, 1);
3304 if (sal.symtab == NULL)
3305 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3306 i + first_choice,
3307 SYMBOL_PRINT_NAME (syms[i].sym),
3308 sal.line);
3309 else
3310 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3311 SYMBOL_PRINT_NAME (syms[i].sym),
3312 sal.symtab->filename, sal.line);
3313 continue;
3314 }
3315 else
3316 {
3317 int is_enumeral =
3318 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3319 && SYMBOL_TYPE (syms[i].sym) != NULL
3320 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3321 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3322
3323 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3324 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3325 i + first_choice,
3326 SYMBOL_PRINT_NAME (syms[i].sym),
3327 symtab->filename, SYMBOL_LINE (syms[i].sym));
3328 else if (is_enumeral
3329 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3330 {
3331 printf_unfiltered (("[%d] "), i + first_choice);
3332 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3333 gdb_stdout, -1, 0);
3334 printf_unfiltered (_("'(%s) (enumeral)\n"),
3335 SYMBOL_PRINT_NAME (syms[i].sym));
3336 }
3337 else if (symtab != NULL)
3338 printf_unfiltered (is_enumeral
3339 ? _("[%d] %s in %s (enumeral)\n")
3340 : _("[%d] %s at %s:?\n"),
3341 i + first_choice,
3342 SYMBOL_PRINT_NAME (syms[i].sym),
3343 symtab->filename);
3344 else
3345 printf_unfiltered (is_enumeral
3346 ? _("[%d] %s (enumeral)\n")
3347 : _("[%d] %s at ?\n"),
3348 i + first_choice,
3349 SYMBOL_PRINT_NAME (syms[i].sym));
3350 }
3351 }
3352
3353 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3354 "overload-choice");
3355
3356 for (i = 0; i < n_chosen; i += 1)
3357 syms[i] = syms[chosen[i]];
3358
3359 return n_chosen;
3360 }
3361
3362 /* Read and validate a set of numeric choices from the user in the
3363 range 0 .. N_CHOICES-1. Place the results in increasing
3364 order in CHOICES[0 .. N-1], and return N.
3365
3366 The user types choices as a sequence of numbers on one line
3367 separated by blanks, encoding them as follows:
3368
3369 + A choice of 0 means to cancel the selection, throwing an error.
3370 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3371 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3372
3373 The user is not allowed to choose more than MAX_RESULTS values.
3374
3375 ANNOTATION_SUFFIX, if present, is used to annotate the input
3376 prompts (for use with the -f switch). */
3377
3378 int
3379 get_selections (int *choices, int n_choices, int max_results,
3380 int is_all_choice, char *annotation_suffix)
3381 {
3382 char *args;
3383 const char *prompt;
3384 int n_chosen;
3385 int first_choice = is_all_choice ? 2 : 1;
3386
3387 prompt = getenv ("PS2");
3388 if (prompt == NULL)
3389 prompt = ">";
3390
3391 printf_unfiltered (("%s "), prompt);
3392 gdb_flush (gdb_stdout);
3393
3394 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3395
3396 if (args == NULL)
3397 error_no_arg (_("one or more choice numbers"));
3398
3399 n_chosen = 0;
3400
3401 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3402 order, as given in args. Choices are validated. */
3403 while (1)
3404 {
3405 char *args2;
3406 int choice, j;
3407
3408 while (isspace (*args))
3409 args += 1;
3410 if (*args == '\0' && n_chosen == 0)
3411 error_no_arg (_("one or more choice numbers"));
3412 else if (*args == '\0')
3413 break;
3414
3415 choice = strtol (args, &args2, 10);
3416 if (args == args2 || choice < 0
3417 || choice > n_choices + first_choice - 1)
3418 error (_("Argument must be choice number"));
3419 args = args2;
3420
3421 if (choice == 0)
3422 error (_("cancelled"));
3423
3424 if (choice < first_choice)
3425 {
3426 n_chosen = n_choices;
3427 for (j = 0; j < n_choices; j += 1)
3428 choices[j] = j;
3429 break;
3430 }
3431 choice -= first_choice;
3432
3433 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3434 {
3435 }
3436
3437 if (j < 0 || choice != choices[j])
3438 {
3439 int k;
3440 for (k = n_chosen - 1; k > j; k -= 1)
3441 choices[k + 1] = choices[k];
3442 choices[j + 1] = choice;
3443 n_chosen += 1;
3444 }
3445 }
3446
3447 if (n_chosen > max_results)
3448 error (_("Select no more than %d of the above"), max_results);
3449
3450 return n_chosen;
3451 }
3452
3453 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3454 on the function identified by SYM and BLOCK, and taking NARGS
3455 arguments. Update *EXPP as needed to hold more space. */
3456
3457 static void
3458 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3459 int oplen, struct symbol *sym,
3460 struct block *block)
3461 {
3462 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3463 symbol, -oplen for operator being replaced). */
3464 struct expression *newexp = (struct expression *)
3465 xmalloc (sizeof (struct expression)
3466 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3467 struct expression *exp = *expp;
3468
3469 newexp->nelts = exp->nelts + 7 - oplen;
3470 newexp->language_defn = exp->language_defn;
3471 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3472 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3473 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3474
3475 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3476 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3477
3478 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3479 newexp->elts[pc + 4].block = block;
3480 newexp->elts[pc + 5].symbol = sym;
3481
3482 *expp = newexp;
3483 xfree (exp);
3484 }
3485
3486 /* Type-class predicates */
3487
3488 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3489 or FLOAT). */
3490
3491 static int
3492 numeric_type_p (struct type *type)
3493 {
3494 if (type == NULL)
3495 return 0;
3496 else
3497 {
3498 switch (TYPE_CODE (type))
3499 {
3500 case TYPE_CODE_INT:
3501 case TYPE_CODE_FLT:
3502 return 1;
3503 case TYPE_CODE_RANGE:
3504 return (type == TYPE_TARGET_TYPE (type)
3505 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3506 default:
3507 return 0;
3508 }
3509 }
3510 }
3511
3512 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3513
3514 static int
3515 integer_type_p (struct type *type)
3516 {
3517 if (type == NULL)
3518 return 0;
3519 else
3520 {
3521 switch (TYPE_CODE (type))
3522 {
3523 case TYPE_CODE_INT:
3524 return 1;
3525 case TYPE_CODE_RANGE:
3526 return (type == TYPE_TARGET_TYPE (type)
3527 || integer_type_p (TYPE_TARGET_TYPE (type)));
3528 default:
3529 return 0;
3530 }
3531 }
3532 }
3533
3534 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3535
3536 static int
3537 scalar_type_p (struct type *type)
3538 {
3539 if (type == NULL)
3540 return 0;
3541 else
3542 {
3543 switch (TYPE_CODE (type))
3544 {
3545 case TYPE_CODE_INT:
3546 case TYPE_CODE_RANGE:
3547 case TYPE_CODE_ENUM:
3548 case TYPE_CODE_FLT:
3549 return 1;
3550 default:
3551 return 0;
3552 }
3553 }
3554 }
3555
3556 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3557
3558 static int
3559 discrete_type_p (struct type *type)
3560 {
3561 if (type == NULL)
3562 return 0;
3563 else
3564 {
3565 switch (TYPE_CODE (type))
3566 {
3567 case TYPE_CODE_INT:
3568 case TYPE_CODE_RANGE:
3569 case TYPE_CODE_ENUM:
3570 return 1;
3571 default:
3572 return 0;
3573 }
3574 }
3575 }
3576
3577 /* Returns non-zero if OP with operands in the vector ARGS could be
3578 a user-defined function. Errs on the side of pre-defined operators
3579 (i.e., result 0). */
3580
3581 static int
3582 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3583 {
3584 struct type *type0 =
3585 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3586 struct type *type1 =
3587 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3588
3589 if (type0 == NULL)
3590 return 0;
3591
3592 switch (op)
3593 {
3594 default:
3595 return 0;
3596
3597 case BINOP_ADD:
3598 case BINOP_SUB:
3599 case BINOP_MUL:
3600 case BINOP_DIV:
3601 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3602
3603 case BINOP_REM:
3604 case BINOP_MOD:
3605 case BINOP_BITWISE_AND:
3606 case BINOP_BITWISE_IOR:
3607 case BINOP_BITWISE_XOR:
3608 return (!(integer_type_p (type0) && integer_type_p (type1)));
3609
3610 case BINOP_EQUAL:
3611 case BINOP_NOTEQUAL:
3612 case BINOP_LESS:
3613 case BINOP_GTR:
3614 case BINOP_LEQ:
3615 case BINOP_GEQ:
3616 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3617
3618 case BINOP_CONCAT:
3619 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3620
3621 case BINOP_EXP:
3622 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3623
3624 case UNOP_NEG:
3625 case UNOP_PLUS:
3626 case UNOP_LOGICAL_NOT:
3627 case UNOP_ABS:
3628 return (!numeric_type_p (type0));
3629
3630 }
3631 }
3632 \f
3633 /* Renaming */
3634
3635 /* NOTES:
3636
3637 1. In the following, we assume that a renaming type's name may
3638 have an ___XD suffix. It would be nice if this went away at some
3639 point.
3640 2. We handle both the (old) purely type-based representation of
3641 renamings and the (new) variable-based encoding. At some point,
3642 it is devoutly to be hoped that the former goes away
3643 (FIXME: hilfinger-2007-07-09).
3644 3. Subprogram renamings are not implemented, although the XRS
3645 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3646
3647 /* If SYM encodes a renaming,
3648
3649 <renaming> renames <renamed entity>,
3650
3651 sets *LEN to the length of the renamed entity's name,
3652 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3653 the string describing the subcomponent selected from the renamed
3654 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3655 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3656 are undefined). Otherwise, returns a value indicating the category
3657 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3658 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3659 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3660 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3661 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3662 may be NULL, in which case they are not assigned.
3663
3664 [Currently, however, GCC does not generate subprogram renamings.] */
3665
3666 enum ada_renaming_category
3667 ada_parse_renaming (struct symbol *sym,
3668 const char **renamed_entity, int *len,
3669 const char **renaming_expr)
3670 {
3671 enum ada_renaming_category kind;
3672 const char *info;
3673 const char *suffix;
3674
3675 if (sym == NULL)
3676 return ADA_NOT_RENAMING;
3677 switch (SYMBOL_CLASS (sym))
3678 {
3679 default:
3680 return ADA_NOT_RENAMING;
3681 case LOC_TYPEDEF:
3682 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3683 renamed_entity, len, renaming_expr);
3684 case LOC_LOCAL:
3685 case LOC_STATIC:
3686 case LOC_COMPUTED:
3687 case LOC_OPTIMIZED_OUT:
3688 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3689 if (info == NULL)
3690 return ADA_NOT_RENAMING;
3691 switch (info[5])
3692 {
3693 case '_':
3694 kind = ADA_OBJECT_RENAMING;
3695 info += 6;
3696 break;
3697 case 'E':
3698 kind = ADA_EXCEPTION_RENAMING;
3699 info += 7;
3700 break;
3701 case 'P':
3702 kind = ADA_PACKAGE_RENAMING;
3703 info += 7;
3704 break;
3705 case 'S':
3706 kind = ADA_SUBPROGRAM_RENAMING;
3707 info += 7;
3708 break;
3709 default:
3710 return ADA_NOT_RENAMING;
3711 }
3712 }
3713
3714 if (renamed_entity != NULL)
3715 *renamed_entity = info;
3716 suffix = strstr (info, "___XE");
3717 if (suffix == NULL || suffix == info)
3718 return ADA_NOT_RENAMING;
3719 if (len != NULL)
3720 *len = strlen (info) - strlen (suffix);
3721 suffix += 5;
3722 if (renaming_expr != NULL)
3723 *renaming_expr = suffix;
3724 return kind;
3725 }
3726
3727 /* Assuming TYPE encodes a renaming according to the old encoding in
3728 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3729 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3730 ADA_NOT_RENAMING otherwise. */
3731 static enum ada_renaming_category
3732 parse_old_style_renaming (struct type *type,
3733 const char **renamed_entity, int *len,
3734 const char **renaming_expr)
3735 {
3736 enum ada_renaming_category kind;
3737 const char *name;
3738 const char *info;
3739 const char *suffix;
3740
3741 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3742 || TYPE_NFIELDS (type) != 1)
3743 return ADA_NOT_RENAMING;
3744
3745 name = type_name_no_tag (type);
3746 if (name == NULL)
3747 return ADA_NOT_RENAMING;
3748
3749 name = strstr (name, "___XR");
3750 if (name == NULL)
3751 return ADA_NOT_RENAMING;
3752 switch (name[5])
3753 {
3754 case '\0':
3755 case '_':
3756 kind = ADA_OBJECT_RENAMING;
3757 break;
3758 case 'E':
3759 kind = ADA_EXCEPTION_RENAMING;
3760 break;
3761 case 'P':
3762 kind = ADA_PACKAGE_RENAMING;
3763 break;
3764 case 'S':
3765 kind = ADA_SUBPROGRAM_RENAMING;
3766 break;
3767 default:
3768 return ADA_NOT_RENAMING;
3769 }
3770
3771 info = TYPE_FIELD_NAME (type, 0);
3772 if (info == NULL)
3773 return ADA_NOT_RENAMING;
3774 if (renamed_entity != NULL)
3775 *renamed_entity = info;
3776 suffix = strstr (info, "___XE");
3777 if (renaming_expr != NULL)
3778 *renaming_expr = suffix + 5;
3779 if (suffix == NULL || suffix == info)
3780 return ADA_NOT_RENAMING;
3781 if (len != NULL)
3782 *len = suffix - info;
3783 return kind;
3784 }
3785
3786 \f
3787
3788 /* Evaluation: Function Calls */
3789
3790 /* Return an lvalue containing the value VAL. This is the identity on
3791 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3792 on the stack, using and updating *SP as the stack pointer, and
3793 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3794
3795 static struct value *
3796 ensure_lval (struct value *val, CORE_ADDR *sp)
3797 {
3798 if (! VALUE_LVAL (val))
3799 {
3800 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3801
3802 /* The following is taken from the structure-return code in
3803 call_function_by_hand. FIXME: Therefore, some refactoring seems
3804 indicated. */
3805 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3806 {
3807 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3808 reserving sufficient space. */
3809 *sp -= len;
3810 if (gdbarch_frame_align_p (current_gdbarch))
3811 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3812 VALUE_ADDRESS (val) = *sp;
3813 }
3814 else
3815 {
3816 /* Stack grows upward. Align the frame, allocate space, and
3817 then again, re-align the frame. */
3818 if (gdbarch_frame_align_p (current_gdbarch))
3819 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3820 VALUE_ADDRESS (val) = *sp;
3821 *sp += len;
3822 if (gdbarch_frame_align_p (current_gdbarch))
3823 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3824 }
3825 VALUE_LVAL (val) = lval_memory;
3826
3827 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3828 }
3829
3830 return val;
3831 }
3832
3833 /* Return the value ACTUAL, converted to be an appropriate value for a
3834 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3835 allocating any necessary descriptors (fat pointers), or copies of
3836 values not residing in memory, updating it as needed. */
3837
3838 struct value *
3839 ada_convert_actual (struct value *actual, struct type *formal_type0,
3840 CORE_ADDR *sp)
3841 {
3842 struct type *actual_type = ada_check_typedef (value_type (actual));
3843 struct type *formal_type = ada_check_typedef (formal_type0);
3844 struct type *formal_target =
3845 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3846 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3847 struct type *actual_target =
3848 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3849 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3850
3851 if (ada_is_array_descriptor_type (formal_target)
3852 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3853 return make_array_descriptor (formal_type, actual, sp);
3854 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3855 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3856 {
3857 struct value *result;
3858 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3859 && ada_is_array_descriptor_type (actual_target))
3860 result = desc_data (actual);
3861 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3862 {
3863 if (VALUE_LVAL (actual) != lval_memory)
3864 {
3865 struct value *val;
3866 actual_type = ada_check_typedef (value_type (actual));
3867 val = allocate_value (actual_type);
3868 memcpy ((char *) value_contents_raw (val),
3869 (char *) value_contents (actual),
3870 TYPE_LENGTH (actual_type));
3871 actual = ensure_lval (val, sp);
3872 }
3873 result = value_addr (actual);
3874 }
3875 else
3876 return actual;
3877 return value_cast_pointers (formal_type, result);
3878 }
3879 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3880 return ada_value_ind (actual);
3881
3882 return actual;
3883 }
3884
3885
3886 /* Push a descriptor of type TYPE for array value ARR on the stack at
3887 *SP, updating *SP to reflect the new descriptor. Return either
3888 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3889 to-descriptor type rather than a descriptor type), a struct value *
3890 representing a pointer to this descriptor. */
3891
3892 static struct value *
3893 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3894 {
3895 struct type *bounds_type = desc_bounds_type (type);
3896 struct type *desc_type = desc_base_type (type);
3897 struct value *descriptor = allocate_value (desc_type);
3898 struct value *bounds = allocate_value (bounds_type);
3899 int i;
3900
3901 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3902 {
3903 modify_general_field (value_contents_writeable (bounds),
3904 value_as_long (ada_array_bound (arr, i, 0)),
3905 desc_bound_bitpos (bounds_type, i, 0),
3906 desc_bound_bitsize (bounds_type, i, 0));
3907 modify_general_field (value_contents_writeable (bounds),
3908 value_as_long (ada_array_bound (arr, i, 1)),
3909 desc_bound_bitpos (bounds_type, i, 1),
3910 desc_bound_bitsize (bounds_type, i, 1));
3911 }
3912
3913 bounds = ensure_lval (bounds, sp);
3914
3915 modify_general_field (value_contents_writeable (descriptor),
3916 VALUE_ADDRESS (ensure_lval (arr, sp)),
3917 fat_pntr_data_bitpos (desc_type),
3918 fat_pntr_data_bitsize (desc_type));
3919
3920 modify_general_field (value_contents_writeable (descriptor),
3921 VALUE_ADDRESS (bounds),
3922 fat_pntr_bounds_bitpos (desc_type),
3923 fat_pntr_bounds_bitsize (desc_type));
3924
3925 descriptor = ensure_lval (descriptor, sp);
3926
3927 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3928 return value_addr (descriptor);
3929 else
3930 return descriptor;
3931 }
3932 \f
3933 /* Dummy definitions for an experimental caching module that is not
3934 * used in the public sources. */
3935
3936 static int
3937 lookup_cached_symbol (const char *name, domain_enum namespace,
3938 struct symbol **sym, struct block **block,
3939 struct symtab **symtab)
3940 {
3941 return 0;
3942 }
3943
3944 static void
3945 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3946 struct block *block, struct symtab *symtab)
3947 {
3948 }
3949 \f
3950 /* Symbol Lookup */
3951
3952 /* Return the result of a standard (literal, C-like) lookup of NAME in
3953 given DOMAIN, visible from lexical block BLOCK. */
3954
3955 static struct symbol *
3956 standard_lookup (const char *name, const struct block *block,
3957 domain_enum domain)
3958 {
3959 struct symbol *sym;
3960 struct symtab *symtab;
3961
3962 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3963 return sym;
3964 sym =
3965 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3966 cache_symbol (name, domain, sym, block_found, symtab);
3967 return sym;
3968 }
3969
3970
3971 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3972 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3973 since they contend in overloading in the same way. */
3974 static int
3975 is_nonfunction (struct ada_symbol_info syms[], int n)
3976 {
3977 int i;
3978
3979 for (i = 0; i < n; i += 1)
3980 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3981 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3982 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3983 return 1;
3984
3985 return 0;
3986 }
3987
3988 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3989 struct types. Otherwise, they may not. */
3990
3991 static int
3992 equiv_types (struct type *type0, struct type *type1)
3993 {
3994 if (type0 == type1)
3995 return 1;
3996 if (type0 == NULL || type1 == NULL
3997 || TYPE_CODE (type0) != TYPE_CODE (type1))
3998 return 0;
3999 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4000 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4001 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4002 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4003 return 1;
4004
4005 return 0;
4006 }
4007
4008 /* True iff SYM0 represents the same entity as SYM1, or one that is
4009 no more defined than that of SYM1. */
4010
4011 static int
4012 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4013 {
4014 if (sym0 == sym1)
4015 return 1;
4016 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4017 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4018 return 0;
4019
4020 switch (SYMBOL_CLASS (sym0))
4021 {
4022 case LOC_UNDEF:
4023 return 1;
4024 case LOC_TYPEDEF:
4025 {
4026 struct type *type0 = SYMBOL_TYPE (sym0);
4027 struct type *type1 = SYMBOL_TYPE (sym1);
4028 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4029 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4030 int len0 = strlen (name0);
4031 return
4032 TYPE_CODE (type0) == TYPE_CODE (type1)
4033 && (equiv_types (type0, type1)
4034 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4035 && strncmp (name1 + len0, "___XV", 5) == 0));
4036 }
4037 case LOC_CONST:
4038 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4039 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4040 default:
4041 return 0;
4042 }
4043 }
4044
4045 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4046 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4047
4048 static void
4049 add_defn_to_vec (struct obstack *obstackp,
4050 struct symbol *sym,
4051 struct block *block, struct symtab *symtab)
4052 {
4053 int i;
4054 size_t tmp;
4055 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4056
4057 /* Do not try to complete stub types, as the debugger is probably
4058 already scanning all symbols matching a certain name at the
4059 time when this function is called. Trying to replace the stub
4060 type by its associated full type will cause us to restart a scan
4061 which may lead to an infinite recursion. Instead, the client
4062 collecting the matching symbols will end up collecting several
4063 matches, with at least one of them complete. It can then filter
4064 out the stub ones if needed. */
4065
4066 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4067 {
4068 if (lesseq_defined_than (sym, prevDefns[i].sym))
4069 return;
4070 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4071 {
4072 prevDefns[i].sym = sym;
4073 prevDefns[i].block = block;
4074 prevDefns[i].symtab = symtab;
4075 return;
4076 }
4077 }
4078
4079 {
4080 struct ada_symbol_info info;
4081
4082 info.sym = sym;
4083 info.block = block;
4084 info.symtab = symtab;
4085 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4086 }
4087 }
4088
4089 /* Number of ada_symbol_info structures currently collected in
4090 current vector in *OBSTACKP. */
4091
4092 static int
4093 num_defns_collected (struct obstack *obstackp)
4094 {
4095 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4096 }
4097
4098 /* Vector of ada_symbol_info structures currently collected in current
4099 vector in *OBSTACKP. If FINISH, close off the vector and return
4100 its final address. */
4101
4102 static struct ada_symbol_info *
4103 defns_collected (struct obstack *obstackp, int finish)
4104 {
4105 if (finish)
4106 return obstack_finish (obstackp);
4107 else
4108 return (struct ada_symbol_info *) obstack_base (obstackp);
4109 }
4110
4111 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4112 Check the global symbols if GLOBAL, the static symbols if not.
4113 Do wild-card match if WILD. */
4114
4115 static struct partial_symbol *
4116 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4117 int global, domain_enum namespace, int wild)
4118 {
4119 struct partial_symbol **start;
4120 int name_len = strlen (name);
4121 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4122 int i;
4123
4124 if (length == 0)
4125 {
4126 return (NULL);
4127 }
4128
4129 start = (global ?
4130 pst->objfile->global_psymbols.list + pst->globals_offset :
4131 pst->objfile->static_psymbols.list + pst->statics_offset);
4132
4133 if (wild)
4134 {
4135 for (i = 0; i < length; i += 1)
4136 {
4137 struct partial_symbol *psym = start[i];
4138
4139 if (SYMBOL_DOMAIN (psym) == namespace
4140 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4141 return psym;
4142 }
4143 return NULL;
4144 }
4145 else
4146 {
4147 if (global)
4148 {
4149 int U;
4150 i = 0;
4151 U = length - 1;
4152 while (U - i > 4)
4153 {
4154 int M = (U + i) >> 1;
4155 struct partial_symbol *psym = start[M];
4156 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4157 i = M + 1;
4158 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4159 U = M - 1;
4160 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4161 i = M + 1;
4162 else
4163 U = M;
4164 }
4165 }
4166 else
4167 i = 0;
4168
4169 while (i < length)
4170 {
4171 struct partial_symbol *psym = start[i];
4172
4173 if (SYMBOL_DOMAIN (psym) == namespace)
4174 {
4175 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4176
4177 if (cmp < 0)
4178 {
4179 if (global)
4180 break;
4181 }
4182 else if (cmp == 0
4183 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4184 + name_len))
4185 return psym;
4186 }
4187 i += 1;
4188 }
4189
4190 if (global)
4191 {
4192 int U;
4193 i = 0;
4194 U = length - 1;
4195 while (U - i > 4)
4196 {
4197 int M = (U + i) >> 1;
4198 struct partial_symbol *psym = start[M];
4199 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4200 i = M + 1;
4201 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4202 U = M - 1;
4203 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4204 i = M + 1;
4205 else
4206 U = M;
4207 }
4208 }
4209 else
4210 i = 0;
4211
4212 while (i < length)
4213 {
4214 struct partial_symbol *psym = start[i];
4215
4216 if (SYMBOL_DOMAIN (psym) == namespace)
4217 {
4218 int cmp;
4219
4220 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4221 if (cmp == 0)
4222 {
4223 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4224 if (cmp == 0)
4225 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4226 name_len);
4227 }
4228
4229 if (cmp < 0)
4230 {
4231 if (global)
4232 break;
4233 }
4234 else if (cmp == 0
4235 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4236 + name_len + 5))
4237 return psym;
4238 }
4239 i += 1;
4240 }
4241 }
4242 return NULL;
4243 }
4244
4245 /* Find a symbol table containing symbol SYM or NULL if none. */
4246
4247 static struct symtab *
4248 symtab_for_sym (struct symbol *sym)
4249 {
4250 struct symtab *s;
4251 struct objfile *objfile;
4252 struct block *b;
4253 struct symbol *tmp_sym;
4254 struct dict_iterator iter;
4255 int j;
4256
4257 ALL_PRIMARY_SYMTABS (objfile, s)
4258 {
4259 switch (SYMBOL_CLASS (sym))
4260 {
4261 case LOC_CONST:
4262 case LOC_STATIC:
4263 case LOC_TYPEDEF:
4264 case LOC_REGISTER:
4265 case LOC_LABEL:
4266 case LOC_BLOCK:
4267 case LOC_CONST_BYTES:
4268 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4269 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4270 return s;
4271 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4272 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4273 return s;
4274 break;
4275 default:
4276 break;
4277 }
4278 switch (SYMBOL_CLASS (sym))
4279 {
4280 case LOC_REGISTER:
4281 case LOC_ARG:
4282 case LOC_REF_ARG:
4283 case LOC_REGPARM:
4284 case LOC_REGPARM_ADDR:
4285 case LOC_LOCAL:
4286 case LOC_TYPEDEF:
4287 case LOC_LOCAL_ARG:
4288 case LOC_BASEREG:
4289 case LOC_BASEREG_ARG:
4290 case LOC_COMPUTED:
4291 case LOC_COMPUTED_ARG:
4292 for (j = FIRST_LOCAL_BLOCK;
4293 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4294 {
4295 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4296 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4297 return s;
4298 }
4299 break;
4300 default:
4301 break;
4302 }
4303 }
4304 return NULL;
4305 }
4306
4307 /* Return a minimal symbol matching NAME according to Ada decoding
4308 rules. Returns NULL if there is no such minimal symbol. Names
4309 prefixed with "standard__" are handled specially: "standard__" is
4310 first stripped off, and only static and global symbols are searched. */
4311
4312 struct minimal_symbol *
4313 ada_lookup_simple_minsym (const char *name)
4314 {
4315 struct objfile *objfile;
4316 struct minimal_symbol *msymbol;
4317 int wild_match;
4318
4319 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4320 {
4321 name += sizeof ("standard__") - 1;
4322 wild_match = 0;
4323 }
4324 else
4325 wild_match = (strstr (name, "__") == NULL);
4326
4327 ALL_MSYMBOLS (objfile, msymbol)
4328 {
4329 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4330 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4331 return msymbol;
4332 }
4333
4334 return NULL;
4335 }
4336
4337 /* For all subprograms that statically enclose the subprogram of the
4338 selected frame, add symbols matching identifier NAME in DOMAIN
4339 and their blocks to the list of data in OBSTACKP, as for
4340 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4341 wildcard prefix. */
4342
4343 static void
4344 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4345 const char *name, domain_enum namespace,
4346 int wild_match)
4347 {
4348 }
4349
4350 /* True if TYPE is definitely an artificial type supplied to a symbol
4351 for which no debugging information was given in the symbol file. */
4352
4353 static int
4354 is_nondebugging_type (struct type *type)
4355 {
4356 char *name = ada_type_name (type);
4357 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4358 }
4359
4360 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4361 duplicate other symbols in the list (The only case I know of where
4362 this happens is when object files containing stabs-in-ecoff are
4363 linked with files containing ordinary ecoff debugging symbols (or no
4364 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4365 Returns the number of items in the modified list. */
4366
4367 static int
4368 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4369 {
4370 int i, j;
4371
4372 i = 0;
4373 while (i < nsyms)
4374 {
4375 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4376 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4377 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4378 {
4379 for (j = 0; j < nsyms; j += 1)
4380 {
4381 if (i != j
4382 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4383 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4384 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4385 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4386 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4387 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4388 {
4389 int k;
4390 for (k = i + 1; k < nsyms; k += 1)
4391 syms[k - 1] = syms[k];
4392 nsyms -= 1;
4393 goto NextSymbol;
4394 }
4395 }
4396 }
4397 i += 1;
4398 NextSymbol:
4399 ;
4400 }
4401 return nsyms;
4402 }
4403
4404 /* Given a type that corresponds to a renaming entity, use the type name
4405 to extract the scope (package name or function name, fully qualified,
4406 and following the GNAT encoding convention) where this renaming has been
4407 defined. The string returned needs to be deallocated after use. */
4408
4409 static char *
4410 xget_renaming_scope (struct type *renaming_type)
4411 {
4412 /* The renaming types adhere to the following convention:
4413 <scope>__<rename>___<XR extension>.
4414 So, to extract the scope, we search for the "___XR" extension,
4415 and then backtrack until we find the first "__". */
4416
4417 const char *name = type_name_no_tag (renaming_type);
4418 char *suffix = strstr (name, "___XR");
4419 char *last;
4420 int scope_len;
4421 char *scope;
4422
4423 /* Now, backtrack a bit until we find the first "__". Start looking
4424 at suffix - 3, as the <rename> part is at least one character long. */
4425
4426 for (last = suffix - 3; last > name; last--)
4427 if (last[0] == '_' && last[1] == '_')
4428 break;
4429
4430 /* Make a copy of scope and return it. */
4431
4432 scope_len = last - name;
4433 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4434
4435 strncpy (scope, name, scope_len);
4436 scope[scope_len] = '\0';
4437
4438 return scope;
4439 }
4440
4441 /* Return nonzero if NAME corresponds to a package name. */
4442
4443 static int
4444 is_package_name (const char *name)
4445 {
4446 /* Here, We take advantage of the fact that no symbols are generated
4447 for packages, while symbols are generated for each function.
4448 So the condition for NAME represent a package becomes equivalent
4449 to NAME not existing in our list of symbols. There is only one
4450 small complication with library-level functions (see below). */
4451
4452 char *fun_name;
4453
4454 /* If it is a function that has not been defined at library level,
4455 then we should be able to look it up in the symbols. */
4456 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4457 return 0;
4458
4459 /* Library-level function names start with "_ada_". See if function
4460 "_ada_" followed by NAME can be found. */
4461
4462 /* Do a quick check that NAME does not contain "__", since library-level
4463 functions names cannot contain "__" in them. */
4464 if (strstr (name, "__") != NULL)
4465 return 0;
4466
4467 fun_name = xstrprintf ("_ada_%s", name);
4468
4469 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4470 }
4471
4472 /* Return nonzero if SYM corresponds to a renaming entity that is
4473 not visible from FUNCTION_NAME. */
4474
4475 static int
4476 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4477 {
4478 char *scope;
4479
4480 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4481 return 0;
4482
4483 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4484
4485 make_cleanup (xfree, scope);
4486
4487 /* If the rename has been defined in a package, then it is visible. */
4488 if (is_package_name (scope))
4489 return 0;
4490
4491 /* Check that the rename is in the current function scope by checking
4492 that its name starts with SCOPE. */
4493
4494 /* If the function name starts with "_ada_", it means that it is
4495 a library-level function. Strip this prefix before doing the
4496 comparison, as the encoding for the renaming does not contain
4497 this prefix. */
4498 if (strncmp (function_name, "_ada_", 5) == 0)
4499 function_name += 5;
4500
4501 return (strncmp (function_name, scope, strlen (scope)) != 0);
4502 }
4503
4504 /* Remove entries from SYMS that corresponds to a renaming entity that
4505 is not visible from the function associated with CURRENT_BLOCK or
4506 that is superfluous due to the presence of more specific renaming
4507 information. Places surviving symbols in the initial entries of
4508 SYMS and returns the number of surviving symbols.
4509
4510 Rationale:
4511 First, in cases where an object renaming is implemented as a
4512 reference variable, GNAT may produce both the actual reference
4513 variable and the renaming encoding. In this case, we discard the
4514 latter.
4515
4516 Second, GNAT emits a type following a specified encoding for each renaming
4517 entity. Unfortunately, STABS currently does not support the definition
4518 of types that are local to a given lexical block, so all renamings types
4519 are emitted at library level. As a consequence, if an application
4520 contains two renaming entities using the same name, and a user tries to
4521 print the value of one of these entities, the result of the ada symbol
4522 lookup will also contain the wrong renaming type.
4523
4524 This function partially covers for this limitation by attempting to
4525 remove from the SYMS list renaming symbols that should be visible
4526 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4527 method with the current information available. The implementation
4528 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4529
4530 - When the user tries to print a rename in a function while there
4531 is another rename entity defined in a package: Normally, the
4532 rename in the function has precedence over the rename in the
4533 package, so the latter should be removed from the list. This is
4534 currently not the case.
4535
4536 - This function will incorrectly remove valid renames if
4537 the CURRENT_BLOCK corresponds to a function which symbol name
4538 has been changed by an "Export" pragma. As a consequence,
4539 the user will be unable to print such rename entities. */
4540
4541 static int
4542 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4543 int nsyms, const struct block *current_block)
4544 {
4545 struct symbol *current_function;
4546 char *current_function_name;
4547 int i;
4548 int is_new_style_renaming;
4549
4550 /* If there is both a renaming foo___XR... encoded as a variable and
4551 a simple variable foo in the same block, discard the latter.
4552 First, zero out such symbols, then compress. */
4553 is_new_style_renaming = 0;
4554 for (i = 0; i < nsyms; i += 1)
4555 {
4556 struct symbol *sym = syms[i].sym;
4557 struct block *block = syms[i].block;
4558 const char *name;
4559 const char *suffix;
4560
4561 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4562 continue;
4563 name = SYMBOL_LINKAGE_NAME (sym);
4564 suffix = strstr (name, "___XR");
4565
4566 if (suffix != NULL)
4567 {
4568 int name_len = suffix - name;
4569 int j;
4570 is_new_style_renaming = 1;
4571 for (j = 0; j < nsyms; j += 1)
4572 if (i != j && syms[j].sym != NULL
4573 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4574 name_len) == 0
4575 && block == syms[j].block)
4576 syms[j].sym = NULL;
4577 }
4578 }
4579 if (is_new_style_renaming)
4580 {
4581 int j, k;
4582
4583 for (j = k = 0; j < nsyms; j += 1)
4584 if (syms[j].sym != NULL)
4585 {
4586 syms[k] = syms[j];
4587 k += 1;
4588 }
4589 return k;
4590 }
4591
4592 /* Extract the function name associated to CURRENT_BLOCK.
4593 Abort if unable to do so. */
4594
4595 if (current_block == NULL)
4596 return nsyms;
4597
4598 current_function = block_function (current_block);
4599 if (current_function == NULL)
4600 return nsyms;
4601
4602 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4603 if (current_function_name == NULL)
4604 return nsyms;
4605
4606 /* Check each of the symbols, and remove it from the list if it is
4607 a type corresponding to a renaming that is out of the scope of
4608 the current block. */
4609
4610 i = 0;
4611 while (i < nsyms)
4612 {
4613 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4614 == ADA_OBJECT_RENAMING
4615 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4616 {
4617 int j;
4618 for (j = i + 1; j < nsyms; j += 1)
4619 syms[j - 1] = syms[j];
4620 nsyms -= 1;
4621 }
4622 else
4623 i += 1;
4624 }
4625
4626 return nsyms;
4627 }
4628
4629 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4630 scope and in global scopes, returning the number of matches. Sets
4631 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4632 indicating the symbols found and the blocks and symbol tables (if
4633 any) in which they were found. This vector are transient---good only to
4634 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4635 symbol match within the nest of blocks whose innermost member is BLOCK0,
4636 is the one match returned (no other matches in that or
4637 enclosing blocks is returned). If there are any matches in or
4638 surrounding BLOCK0, then these alone are returned. Otherwise, the
4639 search extends to global and file-scope (static) symbol tables.
4640 Names prefixed with "standard__" are handled specially: "standard__"
4641 is first stripped off, and only static and global symbols are searched. */
4642
4643 int
4644 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4645 domain_enum namespace,
4646 struct ada_symbol_info **results)
4647 {
4648 struct symbol *sym;
4649 struct symtab *s;
4650 struct partial_symtab *ps;
4651 struct blockvector *bv;
4652 struct objfile *objfile;
4653 struct block *block;
4654 const char *name;
4655 struct minimal_symbol *msymbol;
4656 int wild_match;
4657 int cacheIfUnique;
4658 int block_depth;
4659 int ndefns;
4660
4661 obstack_free (&symbol_list_obstack, NULL);
4662 obstack_init (&symbol_list_obstack);
4663
4664 cacheIfUnique = 0;
4665
4666 /* Search specified block and its superiors. */
4667
4668 wild_match = (strstr (name0, "__") == NULL);
4669 name = name0;
4670 block = (struct block *) block0; /* FIXME: No cast ought to be
4671 needed, but adding const will
4672 have a cascade effect. */
4673 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4674 {
4675 wild_match = 0;
4676 block = NULL;
4677 name = name0 + sizeof ("standard__") - 1;
4678 }
4679
4680 block_depth = 0;
4681 while (block != NULL)
4682 {
4683 block_depth += 1;
4684 ada_add_block_symbols (&symbol_list_obstack, block, name,
4685 namespace, NULL, NULL, wild_match);
4686
4687 /* If we found a non-function match, assume that's the one. */
4688 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4689 num_defns_collected (&symbol_list_obstack)))
4690 goto done;
4691
4692 block = BLOCK_SUPERBLOCK (block);
4693 }
4694
4695 /* If no luck so far, try to find NAME as a local symbol in some lexically
4696 enclosing subprogram. */
4697 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4698 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4699 name, namespace, wild_match);
4700
4701 /* If we found ANY matches among non-global symbols, we're done. */
4702
4703 if (num_defns_collected (&symbol_list_obstack) > 0)
4704 goto done;
4705
4706 cacheIfUnique = 1;
4707 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4708 {
4709 if (sym != NULL)
4710 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4711 goto done;
4712 }
4713
4714 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4715 tables, and psymtab's. */
4716
4717 ALL_PRIMARY_SYMTABS (objfile, s)
4718 {
4719 QUIT;
4720 bv = BLOCKVECTOR (s);
4721 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4722 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4723 objfile, s, wild_match);
4724 }
4725
4726 if (namespace == VAR_DOMAIN)
4727 {
4728 ALL_MSYMBOLS (objfile, msymbol)
4729 {
4730 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4731 {
4732 switch (MSYMBOL_TYPE (msymbol))
4733 {
4734 case mst_solib_trampoline:
4735 break;
4736 default:
4737 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4738 if (s != NULL)
4739 {
4740 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4741 QUIT;
4742 bv = BLOCKVECTOR (s);
4743 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4744 ada_add_block_symbols (&symbol_list_obstack, block,
4745 SYMBOL_LINKAGE_NAME (msymbol),
4746 namespace, objfile, s, wild_match);
4747
4748 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4749 {
4750 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4751 ada_add_block_symbols (&symbol_list_obstack, block,
4752 SYMBOL_LINKAGE_NAME (msymbol),
4753 namespace, objfile, s,
4754 wild_match);
4755 }
4756 }
4757 }
4758 }
4759 }
4760 }
4761
4762 ALL_PSYMTABS (objfile, ps)
4763 {
4764 QUIT;
4765 if (!ps->readin
4766 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4767 {
4768 s = PSYMTAB_TO_SYMTAB (ps);
4769 if (!s->primary)
4770 continue;
4771 bv = BLOCKVECTOR (s);
4772 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4773 ada_add_block_symbols (&symbol_list_obstack, block, name,
4774 namespace, objfile, s, wild_match);
4775 }
4776 }
4777
4778 /* Now add symbols from all per-file blocks if we've gotten no hits
4779 (Not strictly correct, but perhaps better than an error).
4780 Do the symtabs first, then check the psymtabs. */
4781
4782 if (num_defns_collected (&symbol_list_obstack) == 0)
4783 {
4784
4785 ALL_PRIMARY_SYMTABS (objfile, s)
4786 {
4787 QUIT;
4788 bv = BLOCKVECTOR (s);
4789 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4790 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4791 objfile, s, wild_match);
4792 }
4793
4794 ALL_PSYMTABS (objfile, ps)
4795 {
4796 QUIT;
4797 if (!ps->readin
4798 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4799 {
4800 s = PSYMTAB_TO_SYMTAB (ps);
4801 bv = BLOCKVECTOR (s);
4802 if (!s->primary)
4803 continue;
4804 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4805 ada_add_block_symbols (&symbol_list_obstack, block, name,
4806 namespace, objfile, s, wild_match);
4807 }
4808 }
4809 }
4810
4811 done:
4812 ndefns = num_defns_collected (&symbol_list_obstack);
4813 *results = defns_collected (&symbol_list_obstack, 1);
4814
4815 ndefns = remove_extra_symbols (*results, ndefns);
4816
4817 if (ndefns == 0)
4818 cache_symbol (name0, namespace, NULL, NULL, NULL);
4819
4820 if (ndefns == 1 && cacheIfUnique)
4821 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4822 (*results)[0].symtab);
4823
4824 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4825
4826 return ndefns;
4827 }
4828
4829 struct symbol *
4830 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4831 domain_enum namespace,
4832 struct block **block_found, struct symtab **symtab)
4833 {
4834 struct ada_symbol_info *candidates;
4835 int n_candidates;
4836
4837 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4838
4839 if (n_candidates == 0)
4840 return NULL;
4841
4842 if (block_found != NULL)
4843 *block_found = candidates[0].block;
4844
4845 if (symtab != NULL)
4846 {
4847 *symtab = candidates[0].symtab;
4848 if (*symtab == NULL && candidates[0].block != NULL)
4849 {
4850 struct objfile *objfile;
4851 struct symtab *s;
4852 struct block *b;
4853 struct blockvector *bv;
4854
4855 /* Search the list of symtabs for one which contains the
4856 address of the start of this block. */
4857 ALL_PRIMARY_SYMTABS (objfile, s)
4858 {
4859 bv = BLOCKVECTOR (s);
4860 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4861 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4862 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4863 {
4864 *symtab = s;
4865 return fixup_symbol_section (candidates[0].sym, objfile);
4866 }
4867 }
4868 /* FIXME: brobecker/2004-11-12: I think that we should never
4869 reach this point. I don't see a reason why we would not
4870 find a symtab for a given block, so I suggest raising an
4871 internal_error exception here. Otherwise, we end up
4872 returning a symbol but no symtab, which certain parts of
4873 the code that rely (indirectly) on this function do not
4874 expect, eventually causing a SEGV. */
4875 return fixup_symbol_section (candidates[0].sym, NULL);
4876 }
4877 }
4878 return candidates[0].sym;
4879 }
4880
4881 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4882 scope and in global scopes, or NULL if none. NAME is folded and
4883 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4884 choosing the first symbol if there are multiple choices.
4885 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4886 table in which the symbol was found (in both cases, these
4887 assignments occur only if the pointers are non-null). */
4888 struct symbol *
4889 ada_lookup_symbol (const char *name, const struct block *block0,
4890 domain_enum namespace, int *is_a_field_of_this,
4891 struct symtab **symtab)
4892 {
4893 if (is_a_field_of_this != NULL)
4894 *is_a_field_of_this = 0;
4895
4896 return
4897 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4898 block0, namespace, NULL, symtab);
4899 }
4900
4901 static struct symbol *
4902 ada_lookup_symbol_nonlocal (const char *name,
4903 const char *linkage_name,
4904 const struct block *block,
4905 const domain_enum domain, struct symtab **symtab)
4906 {
4907 if (linkage_name == NULL)
4908 linkage_name = name;
4909 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4910 NULL, symtab);
4911 }
4912
4913
4914 /* True iff STR is a possible encoded suffix of a normal Ada name
4915 that is to be ignored for matching purposes. Suffixes of parallel
4916 names (e.g., XVE) are not included here. Currently, the possible suffixes
4917 are given by either of the regular expression:
4918
4919 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4920 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4921 _E[0-9]+[bs]$ [protected object entry suffixes]
4922 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4923
4924 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4925 match is performed. This sequence is used to differentiate homonyms,
4926 is an optional part of a valid name suffix. */
4927
4928 static int
4929 is_name_suffix (const char *str)
4930 {
4931 int k;
4932 const char *matching;
4933 const int len = strlen (str);
4934
4935 /* Skip optional leading __[0-9]+. */
4936
4937 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4938 {
4939 str += 3;
4940 while (isdigit (str[0]))
4941 str += 1;
4942 }
4943
4944 /* [.$][0-9]+ */
4945
4946 if (str[0] == '.' || str[0] == '$')
4947 {
4948 matching = str + 1;
4949 while (isdigit (matching[0]))
4950 matching += 1;
4951 if (matching[0] == '\0')
4952 return 1;
4953 }
4954
4955 /* ___[0-9]+ */
4956
4957 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4958 {
4959 matching = str + 3;
4960 while (isdigit (matching[0]))
4961 matching += 1;
4962 if (matching[0] == '\0')
4963 return 1;
4964 }
4965
4966 #if 0
4967 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4968 with a N at the end. Unfortunately, the compiler uses the same
4969 convention for other internal types it creates. So treating
4970 all entity names that end with an "N" as a name suffix causes
4971 some regressions. For instance, consider the case of an enumerated
4972 type. To support the 'Image attribute, it creates an array whose
4973 name ends with N.
4974 Having a single character like this as a suffix carrying some
4975 information is a bit risky. Perhaps we should change the encoding
4976 to be something like "_N" instead. In the meantime, do not do
4977 the following check. */
4978 /* Protected Object Subprograms */
4979 if (len == 1 && str [0] == 'N')
4980 return 1;
4981 #endif
4982
4983 /* _E[0-9]+[bs]$ */
4984 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4985 {
4986 matching = str + 3;
4987 while (isdigit (matching[0]))
4988 matching += 1;
4989 if ((matching[0] == 'b' || matching[0] == 's')
4990 && matching [1] == '\0')
4991 return 1;
4992 }
4993
4994 /* ??? We should not modify STR directly, as we are doing below. This
4995 is fine in this case, but may become problematic later if we find
4996 that this alternative did not work, and want to try matching
4997 another one from the begining of STR. Since we modified it, we
4998 won't be able to find the begining of the string anymore! */
4999 if (str[0] == 'X')
5000 {
5001 str += 1;
5002 while (str[0] != '_' && str[0] != '\0')
5003 {
5004 if (str[0] != 'n' && str[0] != 'b')
5005 return 0;
5006 str += 1;
5007 }
5008 }
5009
5010 if (str[0] == '\000')
5011 return 1;
5012
5013 if (str[0] == '_')
5014 {
5015 if (str[1] != '_' || str[2] == '\000')
5016 return 0;
5017 if (str[2] == '_')
5018 {
5019 if (strcmp (str + 3, "JM") == 0)
5020 return 1;
5021 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5022 the LJM suffix in favor of the JM one. But we will
5023 still accept LJM as a valid suffix for a reasonable
5024 amount of time, just to allow ourselves to debug programs
5025 compiled using an older version of GNAT. */
5026 if (strcmp (str + 3, "LJM") == 0)
5027 return 1;
5028 if (str[3] != 'X')
5029 return 0;
5030 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5031 || str[4] == 'U' || str[4] == 'P')
5032 return 1;
5033 if (str[4] == 'R' && str[5] != 'T')
5034 return 1;
5035 return 0;
5036 }
5037 if (!isdigit (str[2]))
5038 return 0;
5039 for (k = 3; str[k] != '\0'; k += 1)
5040 if (!isdigit (str[k]) && str[k] != '_')
5041 return 0;
5042 return 1;
5043 }
5044 if (str[0] == '$' && isdigit (str[1]))
5045 {
5046 for (k = 2; str[k] != '\0'; k += 1)
5047 if (!isdigit (str[k]) && str[k] != '_')
5048 return 0;
5049 return 1;
5050 }
5051 return 0;
5052 }
5053
5054 /* Return nonzero if the given string starts with a dot ('.')
5055 followed by zero or more digits.
5056
5057 Note: brobecker/2003-11-10: A forward declaration has not been
5058 added at the begining of this file yet, because this function
5059 is only used to work around a problem found during wild matching
5060 when trying to match minimal symbol names against symbol names
5061 obtained from dwarf-2 data. This function is therefore currently
5062 only used in wild_match() and is likely to be deleted when the
5063 problem in dwarf-2 is fixed. */
5064
5065 static int
5066 is_dot_digits_suffix (const char *str)
5067 {
5068 if (str[0] != '.')
5069 return 0;
5070
5071 str++;
5072 while (isdigit (str[0]))
5073 str++;
5074 return (str[0] == '\0');
5075 }
5076
5077 /* Return non-zero if the string starting at NAME and ending before
5078 NAME_END contains no capital letters. */
5079
5080 static int
5081 is_valid_name_for_wild_match (const char *name0)
5082 {
5083 const char *decoded_name = ada_decode (name0);
5084 int i;
5085
5086 for (i=0; decoded_name[i] != '\0'; i++)
5087 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5088 return 0;
5089
5090 return 1;
5091 }
5092
5093 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5094 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5095 informational suffixes of NAME (i.e., for which is_name_suffix is
5096 true). */
5097
5098 static int
5099 wild_match (const char *patn0, int patn_len, const char *name0)
5100 {
5101 int name_len;
5102 char *name;
5103 char *name_start;
5104 char *patn;
5105
5106 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5107 stored in the symbol table for nested function names is sometimes
5108 different from the name of the associated entity stored in
5109 the dwarf-2 data: This is the case for nested subprograms, where
5110 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5111 while the symbol name from the dwarf-2 data does not.
5112
5113 Although the DWARF-2 standard documents that entity names stored
5114 in the dwarf-2 data should be identical to the name as seen in
5115 the source code, GNAT takes a different approach as we already use
5116 a special encoding mechanism to convey the information so that
5117 a C debugger can still use the information generated to debug
5118 Ada programs. A corollary is that the symbol names in the dwarf-2
5119 data should match the names found in the symbol table. I therefore
5120 consider this issue as a compiler defect.
5121
5122 Until the compiler is properly fixed, we work-around the problem
5123 by ignoring such suffixes during the match. We do so by making
5124 a copy of PATN0 and NAME0, and then by stripping such a suffix
5125 if present. We then perform the match on the resulting strings. */
5126 {
5127 char *dot;
5128 name_len = strlen (name0);
5129
5130 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5131 strcpy (name, name0);
5132 dot = strrchr (name, '.');
5133 if (dot != NULL && is_dot_digits_suffix (dot))
5134 *dot = '\0';
5135
5136 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5137 strncpy (patn, patn0, patn_len);
5138 patn[patn_len] = '\0';
5139 dot = strrchr (patn, '.');
5140 if (dot != NULL && is_dot_digits_suffix (dot))
5141 {
5142 *dot = '\0';
5143 patn_len = dot - patn;
5144 }
5145 }
5146
5147 /* Now perform the wild match. */
5148
5149 name_len = strlen (name);
5150 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5151 && strncmp (patn, name + 5, patn_len) == 0
5152 && is_name_suffix (name + patn_len + 5))
5153 return 1;
5154
5155 while (name_len >= patn_len)
5156 {
5157 if (strncmp (patn, name, patn_len) == 0
5158 && is_name_suffix (name + patn_len))
5159 return (name == name_start || is_valid_name_for_wild_match (name0));
5160 do
5161 {
5162 name += 1;
5163 name_len -= 1;
5164 }
5165 while (name_len > 0
5166 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5167 if (name_len <= 0)
5168 return 0;
5169 if (name[0] == '_')
5170 {
5171 if (!islower (name[2]))
5172 return 0;
5173 name += 2;
5174 name_len -= 2;
5175 }
5176 else
5177 {
5178 if (!islower (name[1]))
5179 return 0;
5180 name += 1;
5181 name_len -= 1;
5182 }
5183 }
5184
5185 return 0;
5186 }
5187
5188
5189 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5190 vector *defn_symbols, updating the list of symbols in OBSTACKP
5191 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5192 OBJFILE is the section containing BLOCK.
5193 SYMTAB is recorded with each symbol added. */
5194
5195 static void
5196 ada_add_block_symbols (struct obstack *obstackp,
5197 struct block *block, const char *name,
5198 domain_enum domain, struct objfile *objfile,
5199 struct symtab *symtab, int wild)
5200 {
5201 struct dict_iterator iter;
5202 int name_len = strlen (name);
5203 /* A matching argument symbol, if any. */
5204 struct symbol *arg_sym;
5205 /* Set true when we find a matching non-argument symbol. */
5206 int found_sym;
5207 struct symbol *sym;
5208
5209 arg_sym = NULL;
5210 found_sym = 0;
5211 if (wild)
5212 {
5213 struct symbol *sym;
5214 ALL_BLOCK_SYMBOLS (block, iter, sym)
5215 {
5216 if (SYMBOL_DOMAIN (sym) == domain
5217 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5218 {
5219 switch (SYMBOL_CLASS (sym))
5220 {
5221 case LOC_ARG:
5222 case LOC_LOCAL_ARG:
5223 case LOC_REF_ARG:
5224 case LOC_REGPARM:
5225 case LOC_REGPARM_ADDR:
5226 case LOC_BASEREG_ARG:
5227 case LOC_COMPUTED_ARG:
5228 arg_sym = sym;
5229 break;
5230 case LOC_UNRESOLVED:
5231 continue;
5232 default:
5233 found_sym = 1;
5234 add_defn_to_vec (obstackp,
5235 fixup_symbol_section (sym, objfile),
5236 block, symtab);
5237 break;
5238 }
5239 }
5240 }
5241 }
5242 else
5243 {
5244 ALL_BLOCK_SYMBOLS (block, iter, sym)
5245 {
5246 if (SYMBOL_DOMAIN (sym) == domain)
5247 {
5248 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5249 if (cmp == 0
5250 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5251 {
5252 switch (SYMBOL_CLASS (sym))
5253 {
5254 case LOC_ARG:
5255 case LOC_LOCAL_ARG:
5256 case LOC_REF_ARG:
5257 case LOC_REGPARM:
5258 case LOC_REGPARM_ADDR:
5259 case LOC_BASEREG_ARG:
5260 case LOC_COMPUTED_ARG:
5261 arg_sym = sym;
5262 break;
5263 case LOC_UNRESOLVED:
5264 break;
5265 default:
5266 found_sym = 1;
5267 add_defn_to_vec (obstackp,
5268 fixup_symbol_section (sym, objfile),
5269 block, symtab);
5270 break;
5271 }
5272 }
5273 }
5274 }
5275 }
5276
5277 if (!found_sym && arg_sym != NULL)
5278 {
5279 add_defn_to_vec (obstackp,
5280 fixup_symbol_section (arg_sym, objfile),
5281 block, symtab);
5282 }
5283
5284 if (!wild)
5285 {
5286 arg_sym = NULL;
5287 found_sym = 0;
5288
5289 ALL_BLOCK_SYMBOLS (block, iter, sym)
5290 {
5291 if (SYMBOL_DOMAIN (sym) == domain)
5292 {
5293 int cmp;
5294
5295 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5296 if (cmp == 0)
5297 {
5298 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5299 if (cmp == 0)
5300 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5301 name_len);
5302 }
5303
5304 if (cmp == 0
5305 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5306 {
5307 switch (SYMBOL_CLASS (sym))
5308 {
5309 case LOC_ARG:
5310 case LOC_LOCAL_ARG:
5311 case LOC_REF_ARG:
5312 case LOC_REGPARM:
5313 case LOC_REGPARM_ADDR:
5314 case LOC_BASEREG_ARG:
5315 case LOC_COMPUTED_ARG:
5316 arg_sym = sym;
5317 break;
5318 case LOC_UNRESOLVED:
5319 break;
5320 default:
5321 found_sym = 1;
5322 add_defn_to_vec (obstackp,
5323 fixup_symbol_section (sym, objfile),
5324 block, symtab);
5325 break;
5326 }
5327 }
5328 }
5329 }
5330
5331 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5332 They aren't parameters, right? */
5333 if (!found_sym && arg_sym != NULL)
5334 {
5335 add_defn_to_vec (obstackp,
5336 fixup_symbol_section (arg_sym, objfile),
5337 block, symtab);
5338 }
5339 }
5340 }
5341 \f
5342 /* Field Access */
5343
5344 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5345 for tagged types. */
5346
5347 static int
5348 ada_is_dispatch_table_ptr_type (struct type *type)
5349 {
5350 char *name;
5351
5352 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5353 return 0;
5354
5355 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5356 if (name == NULL)
5357 return 0;
5358
5359 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5360 }
5361
5362 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5363 to be invisible to users. */
5364
5365 int
5366 ada_is_ignored_field (struct type *type, int field_num)
5367 {
5368 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5369 return 1;
5370
5371 /* Check the name of that field. */
5372 {
5373 const char *name = TYPE_FIELD_NAME (type, field_num);
5374
5375 /* Anonymous field names should not be printed.
5376 brobecker/2007-02-20: I don't think this can actually happen
5377 but we don't want to print the value of annonymous fields anyway. */
5378 if (name == NULL)
5379 return 1;
5380
5381 /* A field named "_parent" is internally generated by GNAT for
5382 tagged types, and should not be printed either. */
5383 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5384 return 1;
5385 }
5386
5387 /* If this is the dispatch table of a tagged type, then ignore. */
5388 if (ada_is_tagged_type (type, 1)
5389 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5390 return 1;
5391
5392 /* Not a special field, so it should not be ignored. */
5393 return 0;
5394 }
5395
5396 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5397 pointer or reference type whose ultimate target has a tag field. */
5398
5399 int
5400 ada_is_tagged_type (struct type *type, int refok)
5401 {
5402 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5403 }
5404
5405 /* True iff TYPE represents the type of X'Tag */
5406
5407 int
5408 ada_is_tag_type (struct type *type)
5409 {
5410 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5411 return 0;
5412 else
5413 {
5414 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5415 return (name != NULL
5416 && strcmp (name, "ada__tags__dispatch_table") == 0);
5417 }
5418 }
5419
5420 /* The type of the tag on VAL. */
5421
5422 struct type *
5423 ada_tag_type (struct value *val)
5424 {
5425 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5426 }
5427
5428 /* The value of the tag on VAL. */
5429
5430 struct value *
5431 ada_value_tag (struct value *val)
5432 {
5433 return ada_value_struct_elt (val, "_tag", 0);
5434 }
5435
5436 /* The value of the tag on the object of type TYPE whose contents are
5437 saved at VALADDR, if it is non-null, or is at memory address
5438 ADDRESS. */
5439
5440 static struct value *
5441 value_tag_from_contents_and_address (struct type *type,
5442 const gdb_byte *valaddr,
5443 CORE_ADDR address)
5444 {
5445 int tag_byte_offset, dummy1, dummy2;
5446 struct type *tag_type;
5447 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5448 NULL, NULL, NULL))
5449 {
5450 const gdb_byte *valaddr1 = ((valaddr == NULL)
5451 ? NULL
5452 : valaddr + tag_byte_offset);
5453 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5454
5455 return value_from_contents_and_address (tag_type, valaddr1, address1);
5456 }
5457 return NULL;
5458 }
5459
5460 static struct type *
5461 type_from_tag (struct value *tag)
5462 {
5463 const char *type_name = ada_tag_name (tag);
5464 if (type_name != NULL)
5465 return ada_find_any_type (ada_encode (type_name));
5466 return NULL;
5467 }
5468
5469 struct tag_args
5470 {
5471 struct value *tag;
5472 char *name;
5473 };
5474
5475
5476 static int ada_tag_name_1 (void *);
5477 static int ada_tag_name_2 (struct tag_args *);
5478
5479 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5480 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5481 The value stored in ARGS->name is valid until the next call to
5482 ada_tag_name_1. */
5483
5484 static int
5485 ada_tag_name_1 (void *args0)
5486 {
5487 struct tag_args *args = (struct tag_args *) args0;
5488 static char name[1024];
5489 char *p;
5490 struct value *val;
5491 args->name = NULL;
5492 val = ada_value_struct_elt (args->tag, "tsd", 1);
5493 if (val == NULL)
5494 return ada_tag_name_2 (args);
5495 val = ada_value_struct_elt (val, "expanded_name", 1);
5496 if (val == NULL)
5497 return 0;
5498 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5499 for (p = name; *p != '\0'; p += 1)
5500 if (isalpha (*p))
5501 *p = tolower (*p);
5502 args->name = name;
5503 return 0;
5504 }
5505
5506 /* Utility function for ada_tag_name_1 that tries the second
5507 representation for the dispatch table (in which there is no
5508 explicit 'tsd' field in the referent of the tag pointer, and instead
5509 the tsd pointer is stored just before the dispatch table. */
5510
5511 static int
5512 ada_tag_name_2 (struct tag_args *args)
5513 {
5514 struct type *info_type;
5515 static char name[1024];
5516 char *p;
5517 struct value *val, *valp;
5518
5519 args->name = NULL;
5520 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5521 if (info_type == NULL)
5522 return 0;
5523 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5524 valp = value_cast (info_type, args->tag);
5525 if (valp == NULL)
5526 return 0;
5527 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5528 if (val == NULL)
5529 return 0;
5530 val = ada_value_struct_elt (val, "expanded_name", 1);
5531 if (val == NULL)
5532 return 0;
5533 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5534 for (p = name; *p != '\0'; p += 1)
5535 if (isalpha (*p))
5536 *p = tolower (*p);
5537 args->name = name;
5538 return 0;
5539 }
5540
5541 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5542 * a C string. */
5543
5544 const char *
5545 ada_tag_name (struct value *tag)
5546 {
5547 struct tag_args args;
5548 if (!ada_is_tag_type (value_type (tag)))
5549 return NULL;
5550 args.tag = tag;
5551 args.name = NULL;
5552 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5553 return args.name;
5554 }
5555
5556 /* The parent type of TYPE, or NULL if none. */
5557
5558 struct type *
5559 ada_parent_type (struct type *type)
5560 {
5561 int i;
5562
5563 type = ada_check_typedef (type);
5564
5565 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5566 return NULL;
5567
5568 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5569 if (ada_is_parent_field (type, i))
5570 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5571
5572 return NULL;
5573 }
5574
5575 /* True iff field number FIELD_NUM of structure type TYPE contains the
5576 parent-type (inherited) fields of a derived type. Assumes TYPE is
5577 a structure type with at least FIELD_NUM+1 fields. */
5578
5579 int
5580 ada_is_parent_field (struct type *type, int field_num)
5581 {
5582 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5583 return (name != NULL
5584 && (strncmp (name, "PARENT", 6) == 0
5585 || strncmp (name, "_parent", 7) == 0));
5586 }
5587
5588 /* True iff field number FIELD_NUM of structure type TYPE is a
5589 transparent wrapper field (which should be silently traversed when doing
5590 field selection and flattened when printing). Assumes TYPE is a
5591 structure type with at least FIELD_NUM+1 fields. Such fields are always
5592 structures. */
5593
5594 int
5595 ada_is_wrapper_field (struct type *type, int field_num)
5596 {
5597 const char *name = TYPE_FIELD_NAME (type, field_num);
5598 return (name != NULL
5599 && (strncmp (name, "PARENT", 6) == 0
5600 || strcmp (name, "REP") == 0
5601 || strncmp (name, "_parent", 7) == 0
5602 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5603 }
5604
5605 /* True iff field number FIELD_NUM of structure or union type TYPE
5606 is a variant wrapper. Assumes TYPE is a structure type with at least
5607 FIELD_NUM+1 fields. */
5608
5609 int
5610 ada_is_variant_part (struct type *type, int field_num)
5611 {
5612 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5613 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5614 || (is_dynamic_field (type, field_num)
5615 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5616 == TYPE_CODE_UNION)));
5617 }
5618
5619 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5620 whose discriminants are contained in the record type OUTER_TYPE,
5621 returns the type of the controlling discriminant for the variant. */
5622
5623 struct type *
5624 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5625 {
5626 char *name = ada_variant_discrim_name (var_type);
5627 struct type *type =
5628 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5629 if (type == NULL)
5630 return builtin_type_int;
5631 else
5632 return type;
5633 }
5634
5635 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5636 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5637 represents a 'when others' clause; otherwise 0. */
5638
5639 int
5640 ada_is_others_clause (struct type *type, int field_num)
5641 {
5642 const char *name = TYPE_FIELD_NAME (type, field_num);
5643 return (name != NULL && name[0] == 'O');
5644 }
5645
5646 /* Assuming that TYPE0 is the type of the variant part of a record,
5647 returns the name of the discriminant controlling the variant.
5648 The value is valid until the next call to ada_variant_discrim_name. */
5649
5650 char *
5651 ada_variant_discrim_name (struct type *type0)
5652 {
5653 static char *result = NULL;
5654 static size_t result_len = 0;
5655 struct type *type;
5656 const char *name;
5657 const char *discrim_end;
5658 const char *discrim_start;
5659
5660 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5661 type = TYPE_TARGET_TYPE (type0);
5662 else
5663 type = type0;
5664
5665 name = ada_type_name (type);
5666
5667 if (name == NULL || name[0] == '\000')
5668 return "";
5669
5670 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5671 discrim_end -= 1)
5672 {
5673 if (strncmp (discrim_end, "___XVN", 6) == 0)
5674 break;
5675 }
5676 if (discrim_end == name)
5677 return "";
5678
5679 for (discrim_start = discrim_end; discrim_start != name + 3;
5680 discrim_start -= 1)
5681 {
5682 if (discrim_start == name + 1)
5683 return "";
5684 if ((discrim_start > name + 3
5685 && strncmp (discrim_start - 3, "___", 3) == 0)
5686 || discrim_start[-1] == '.')
5687 break;
5688 }
5689
5690 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5691 strncpy (result, discrim_start, discrim_end - discrim_start);
5692 result[discrim_end - discrim_start] = '\0';
5693 return result;
5694 }
5695
5696 /* Scan STR for a subtype-encoded number, beginning at position K.
5697 Put the position of the character just past the number scanned in
5698 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5699 Return 1 if there was a valid number at the given position, and 0
5700 otherwise. A "subtype-encoded" number consists of the absolute value
5701 in decimal, followed by the letter 'm' to indicate a negative number.
5702 Assumes 0m does not occur. */
5703
5704 int
5705 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5706 {
5707 ULONGEST RU;
5708
5709 if (!isdigit (str[k]))
5710 return 0;
5711
5712 /* Do it the hard way so as not to make any assumption about
5713 the relationship of unsigned long (%lu scan format code) and
5714 LONGEST. */
5715 RU = 0;
5716 while (isdigit (str[k]))
5717 {
5718 RU = RU * 10 + (str[k] - '0');
5719 k += 1;
5720 }
5721
5722 if (str[k] == 'm')
5723 {
5724 if (R != NULL)
5725 *R = (-(LONGEST) (RU - 1)) - 1;
5726 k += 1;
5727 }
5728 else if (R != NULL)
5729 *R = (LONGEST) RU;
5730
5731 /* NOTE on the above: Technically, C does not say what the results of
5732 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5733 number representable as a LONGEST (although either would probably work
5734 in most implementations). When RU>0, the locution in the then branch
5735 above is always equivalent to the negative of RU. */
5736
5737 if (new_k != NULL)
5738 *new_k = k;
5739 return 1;
5740 }
5741
5742 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5743 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5744 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5745
5746 int
5747 ada_in_variant (LONGEST val, struct type *type, int field_num)
5748 {
5749 const char *name = TYPE_FIELD_NAME (type, field_num);
5750 int p;
5751
5752 p = 0;
5753 while (1)
5754 {
5755 switch (name[p])
5756 {
5757 case '\0':
5758 return 0;
5759 case 'S':
5760 {
5761 LONGEST W;
5762 if (!ada_scan_number (name, p + 1, &W, &p))
5763 return 0;
5764 if (val == W)
5765 return 1;
5766 break;
5767 }
5768 case 'R':
5769 {
5770 LONGEST L, U;
5771 if (!ada_scan_number (name, p + 1, &L, &p)
5772 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5773 return 0;
5774 if (val >= L && val <= U)
5775 return 1;
5776 break;
5777 }
5778 case 'O':
5779 return 1;
5780 default:
5781 return 0;
5782 }
5783 }
5784 }
5785
5786 /* FIXME: Lots of redundancy below. Try to consolidate. */
5787
5788 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5789 ARG_TYPE, extract and return the value of one of its (non-static)
5790 fields. FIELDNO says which field. Differs from value_primitive_field
5791 only in that it can handle packed values of arbitrary type. */
5792
5793 static struct value *
5794 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5795 struct type *arg_type)
5796 {
5797 struct type *type;
5798
5799 arg_type = ada_check_typedef (arg_type);
5800 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5801
5802 /* Handle packed fields. */
5803
5804 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5805 {
5806 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5807 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5808
5809 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5810 offset + bit_pos / 8,
5811 bit_pos % 8, bit_size, type);
5812 }
5813 else
5814 return value_primitive_field (arg1, offset, fieldno, arg_type);
5815 }
5816
5817 /* Find field with name NAME in object of type TYPE. If found,
5818 set the following for each argument that is non-null:
5819 - *FIELD_TYPE_P to the field's type;
5820 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5821 an object of that type;
5822 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5823 - *BIT_SIZE_P to its size in bits if the field is packed, and
5824 0 otherwise;
5825 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5826 fields up to but not including the desired field, or by the total
5827 number of fields if not found. A NULL value of NAME never
5828 matches; the function just counts visible fields in this case.
5829
5830 Returns 1 if found, 0 otherwise. */
5831
5832 static int
5833 find_struct_field (char *name, struct type *type, int offset,
5834 struct type **field_type_p,
5835 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5836 int *index_p)
5837 {
5838 int i;
5839
5840 type = ada_check_typedef (type);
5841
5842 if (field_type_p != NULL)
5843 *field_type_p = NULL;
5844 if (byte_offset_p != NULL)
5845 *byte_offset_p = 0;
5846 if (bit_offset_p != NULL)
5847 *bit_offset_p = 0;
5848 if (bit_size_p != NULL)
5849 *bit_size_p = 0;
5850
5851 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5852 {
5853 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5854 int fld_offset = offset + bit_pos / 8;
5855 char *t_field_name = TYPE_FIELD_NAME (type, i);
5856
5857 if (t_field_name == NULL)
5858 continue;
5859
5860 else if (name != NULL && field_name_match (t_field_name, name))
5861 {
5862 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5863 if (field_type_p != NULL)
5864 *field_type_p = TYPE_FIELD_TYPE (type, i);
5865 if (byte_offset_p != NULL)
5866 *byte_offset_p = fld_offset;
5867 if (bit_offset_p != NULL)
5868 *bit_offset_p = bit_pos % 8;
5869 if (bit_size_p != NULL)
5870 *bit_size_p = bit_size;
5871 return 1;
5872 }
5873 else if (ada_is_wrapper_field (type, i))
5874 {
5875 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5876 field_type_p, byte_offset_p, bit_offset_p,
5877 bit_size_p, index_p))
5878 return 1;
5879 }
5880 else if (ada_is_variant_part (type, i))
5881 {
5882 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5883 fixed type?? */
5884 int j;
5885 struct type *field_type
5886 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5887
5888 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5889 {
5890 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5891 fld_offset
5892 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5893 field_type_p, byte_offset_p,
5894 bit_offset_p, bit_size_p, index_p))
5895 return 1;
5896 }
5897 }
5898 else if (index_p != NULL)
5899 *index_p += 1;
5900 }
5901 return 0;
5902 }
5903
5904 /* Number of user-visible fields in record type TYPE. */
5905
5906 static int
5907 num_visible_fields (struct type *type)
5908 {
5909 int n;
5910 n = 0;
5911 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5912 return n;
5913 }
5914
5915 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5916 and search in it assuming it has (class) type TYPE.
5917 If found, return value, else return NULL.
5918
5919 Searches recursively through wrapper fields (e.g., '_parent'). */
5920
5921 static struct value *
5922 ada_search_struct_field (char *name, struct value *arg, int offset,
5923 struct type *type)
5924 {
5925 int i;
5926 type = ada_check_typedef (type);
5927
5928 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5929 {
5930 char *t_field_name = TYPE_FIELD_NAME (type, i);
5931
5932 if (t_field_name == NULL)
5933 continue;
5934
5935 else if (field_name_match (t_field_name, name))
5936 return ada_value_primitive_field (arg, offset, i, type);
5937
5938 else if (ada_is_wrapper_field (type, i))
5939 {
5940 struct value *v = /* Do not let indent join lines here. */
5941 ada_search_struct_field (name, arg,
5942 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5943 TYPE_FIELD_TYPE (type, i));
5944 if (v != NULL)
5945 return v;
5946 }
5947
5948 else if (ada_is_variant_part (type, i))
5949 {
5950 /* PNH: Do we ever get here? See find_struct_field. */
5951 int j;
5952 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5953 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5954
5955 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5956 {
5957 struct value *v = ada_search_struct_field /* Force line break. */
5958 (name, arg,
5959 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5960 TYPE_FIELD_TYPE (field_type, j));
5961 if (v != NULL)
5962 return v;
5963 }
5964 }
5965 }
5966 return NULL;
5967 }
5968
5969 static struct value *ada_index_struct_field_1 (int *, struct value *,
5970 int, struct type *);
5971
5972
5973 /* Return field #INDEX in ARG, where the index is that returned by
5974 * find_struct_field through its INDEX_P argument. Adjust the address
5975 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5976 * If found, return value, else return NULL. */
5977
5978 static struct value *
5979 ada_index_struct_field (int index, struct value *arg, int offset,
5980 struct type *type)
5981 {
5982 return ada_index_struct_field_1 (&index, arg, offset, type);
5983 }
5984
5985
5986 /* Auxiliary function for ada_index_struct_field. Like
5987 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5988 * *INDEX_P. */
5989
5990 static struct value *
5991 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5992 struct type *type)
5993 {
5994 int i;
5995 type = ada_check_typedef (type);
5996
5997 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5998 {
5999 if (TYPE_FIELD_NAME (type, i) == NULL)
6000 continue;
6001 else if (ada_is_wrapper_field (type, i))
6002 {
6003 struct value *v = /* Do not let indent join lines here. */
6004 ada_index_struct_field_1 (index_p, arg,
6005 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6006 TYPE_FIELD_TYPE (type, i));
6007 if (v != NULL)
6008 return v;
6009 }
6010
6011 else if (ada_is_variant_part (type, i))
6012 {
6013 /* PNH: Do we ever get here? See ada_search_struct_field,
6014 find_struct_field. */
6015 error (_("Cannot assign this kind of variant record"));
6016 }
6017 else if (*index_p == 0)
6018 return ada_value_primitive_field (arg, offset, i, type);
6019 else
6020 *index_p -= 1;
6021 }
6022 return NULL;
6023 }
6024
6025 /* Given ARG, a value of type (pointer or reference to a)*
6026 structure/union, extract the component named NAME from the ultimate
6027 target structure/union and return it as a value with its
6028 appropriate type. If ARG is a pointer or reference and the field
6029 is not packed, returns a reference to the field, otherwise the
6030 value of the field (an lvalue if ARG is an lvalue).
6031
6032 The routine searches for NAME among all members of the structure itself
6033 and (recursively) among all members of any wrapper members
6034 (e.g., '_parent').
6035
6036 If NO_ERR, then simply return NULL in case of error, rather than
6037 calling error. */
6038
6039 struct value *
6040 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6041 {
6042 struct type *t, *t1;
6043 struct value *v;
6044
6045 v = NULL;
6046 t1 = t = ada_check_typedef (value_type (arg));
6047 if (TYPE_CODE (t) == TYPE_CODE_REF)
6048 {
6049 t1 = TYPE_TARGET_TYPE (t);
6050 if (t1 == NULL)
6051 goto BadValue;
6052 t1 = ada_check_typedef (t1);
6053 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6054 {
6055 arg = coerce_ref (arg);
6056 t = t1;
6057 }
6058 }
6059
6060 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6061 {
6062 t1 = TYPE_TARGET_TYPE (t);
6063 if (t1 == NULL)
6064 goto BadValue;
6065 t1 = ada_check_typedef (t1);
6066 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6067 {
6068 arg = value_ind (arg);
6069 t = t1;
6070 }
6071 else
6072 break;
6073 }
6074
6075 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6076 goto BadValue;
6077
6078 if (t1 == t)
6079 v = ada_search_struct_field (name, arg, 0, t);
6080 else
6081 {
6082 int bit_offset, bit_size, byte_offset;
6083 struct type *field_type;
6084 CORE_ADDR address;
6085
6086 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6087 address = value_as_address (arg);
6088 else
6089 address = unpack_pointer (t, value_contents (arg));
6090
6091 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6092 if (find_struct_field (name, t1, 0,
6093 &field_type, &byte_offset, &bit_offset,
6094 &bit_size, NULL))
6095 {
6096 if (bit_size != 0)
6097 {
6098 if (TYPE_CODE (t) == TYPE_CODE_REF)
6099 arg = ada_coerce_ref (arg);
6100 else
6101 arg = ada_value_ind (arg);
6102 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6103 bit_offset, bit_size,
6104 field_type);
6105 }
6106 else
6107 v = value_from_pointer (lookup_reference_type (field_type),
6108 address + byte_offset);
6109 }
6110 }
6111
6112 if (v != NULL || no_err)
6113 return v;
6114 else
6115 error (_("There is no member named %s."), name);
6116
6117 BadValue:
6118 if (no_err)
6119 return NULL;
6120 else
6121 error (_("Attempt to extract a component of a value that is not a record."));
6122 }
6123
6124 /* Given a type TYPE, look up the type of the component of type named NAME.
6125 If DISPP is non-null, add its byte displacement from the beginning of a
6126 structure (pointed to by a value) of type TYPE to *DISPP (does not
6127 work for packed fields).
6128
6129 Matches any field whose name has NAME as a prefix, possibly
6130 followed by "___".
6131
6132 TYPE can be either a struct or union. If REFOK, TYPE may also
6133 be a (pointer or reference)+ to a struct or union, and the
6134 ultimate target type will be searched.
6135
6136 Looks recursively into variant clauses and parent types.
6137
6138 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6139 TYPE is not a type of the right kind. */
6140
6141 static struct type *
6142 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6143 int noerr, int *dispp)
6144 {
6145 int i;
6146
6147 if (name == NULL)
6148 goto BadName;
6149
6150 if (refok && type != NULL)
6151 while (1)
6152 {
6153 type = ada_check_typedef (type);
6154 if (TYPE_CODE (type) != TYPE_CODE_PTR
6155 && TYPE_CODE (type) != TYPE_CODE_REF)
6156 break;
6157 type = TYPE_TARGET_TYPE (type);
6158 }
6159
6160 if (type == NULL
6161 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6162 && TYPE_CODE (type) != TYPE_CODE_UNION))
6163 {
6164 if (noerr)
6165 return NULL;
6166 else
6167 {
6168 target_terminal_ours ();
6169 gdb_flush (gdb_stdout);
6170 if (type == NULL)
6171 error (_("Type (null) is not a structure or union type"));
6172 else
6173 {
6174 /* XXX: type_sprint */
6175 fprintf_unfiltered (gdb_stderr, _("Type "));
6176 type_print (type, "", gdb_stderr, -1);
6177 error (_(" is not a structure or union type"));
6178 }
6179 }
6180 }
6181
6182 type = to_static_fixed_type (type);
6183
6184 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6185 {
6186 char *t_field_name = TYPE_FIELD_NAME (type, i);
6187 struct type *t;
6188 int disp;
6189
6190 if (t_field_name == NULL)
6191 continue;
6192
6193 else if (field_name_match (t_field_name, name))
6194 {
6195 if (dispp != NULL)
6196 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6197 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6198 }
6199
6200 else if (ada_is_wrapper_field (type, i))
6201 {
6202 disp = 0;
6203 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6204 0, 1, &disp);
6205 if (t != NULL)
6206 {
6207 if (dispp != NULL)
6208 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6209 return t;
6210 }
6211 }
6212
6213 else if (ada_is_variant_part (type, i))
6214 {
6215 int j;
6216 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6217
6218 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6219 {
6220 disp = 0;
6221 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6222 name, 0, 1, &disp);
6223 if (t != NULL)
6224 {
6225 if (dispp != NULL)
6226 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6227 return t;
6228 }
6229 }
6230 }
6231
6232 }
6233
6234 BadName:
6235 if (!noerr)
6236 {
6237 target_terminal_ours ();
6238 gdb_flush (gdb_stdout);
6239 if (name == NULL)
6240 {
6241 /* XXX: type_sprint */
6242 fprintf_unfiltered (gdb_stderr, _("Type "));
6243 type_print (type, "", gdb_stderr, -1);
6244 error (_(" has no component named <null>"));
6245 }
6246 else
6247 {
6248 /* XXX: type_sprint */
6249 fprintf_unfiltered (gdb_stderr, _("Type "));
6250 type_print (type, "", gdb_stderr, -1);
6251 error (_(" has no component named %s"), name);
6252 }
6253 }
6254
6255 return NULL;
6256 }
6257
6258 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6259 within a value of type OUTER_TYPE that is stored in GDB at
6260 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6261 numbering from 0) is applicable. Returns -1 if none are. */
6262
6263 int
6264 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6265 const gdb_byte *outer_valaddr)
6266 {
6267 int others_clause;
6268 int i;
6269 char *discrim_name = ada_variant_discrim_name (var_type);
6270 struct value *outer;
6271 struct value *discrim;
6272 LONGEST discrim_val;
6273
6274 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6275 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6276 if (discrim == NULL)
6277 return -1;
6278 discrim_val = value_as_long (discrim);
6279
6280 others_clause = -1;
6281 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6282 {
6283 if (ada_is_others_clause (var_type, i))
6284 others_clause = i;
6285 else if (ada_in_variant (discrim_val, var_type, i))
6286 return i;
6287 }
6288
6289 return others_clause;
6290 }
6291 \f
6292
6293
6294 /* Dynamic-Sized Records */
6295
6296 /* Strategy: The type ostensibly attached to a value with dynamic size
6297 (i.e., a size that is not statically recorded in the debugging
6298 data) does not accurately reflect the size or layout of the value.
6299 Our strategy is to convert these values to values with accurate,
6300 conventional types that are constructed on the fly. */
6301
6302 /* There is a subtle and tricky problem here. In general, we cannot
6303 determine the size of dynamic records without its data. However,
6304 the 'struct value' data structure, which GDB uses to represent
6305 quantities in the inferior process (the target), requires the size
6306 of the type at the time of its allocation in order to reserve space
6307 for GDB's internal copy of the data. That's why the
6308 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6309 rather than struct value*s.
6310
6311 However, GDB's internal history variables ($1, $2, etc.) are
6312 struct value*s containing internal copies of the data that are not, in
6313 general, the same as the data at their corresponding addresses in
6314 the target. Fortunately, the types we give to these values are all
6315 conventional, fixed-size types (as per the strategy described
6316 above), so that we don't usually have to perform the
6317 'to_fixed_xxx_type' conversions to look at their values.
6318 Unfortunately, there is one exception: if one of the internal
6319 history variables is an array whose elements are unconstrained
6320 records, then we will need to create distinct fixed types for each
6321 element selected. */
6322
6323 /* The upshot of all of this is that many routines take a (type, host
6324 address, target address) triple as arguments to represent a value.
6325 The host address, if non-null, is supposed to contain an internal
6326 copy of the relevant data; otherwise, the program is to consult the
6327 target at the target address. */
6328
6329 /* Assuming that VAL0 represents a pointer value, the result of
6330 dereferencing it. Differs from value_ind in its treatment of
6331 dynamic-sized types. */
6332
6333 struct value *
6334 ada_value_ind (struct value *val0)
6335 {
6336 struct value *val = unwrap_value (value_ind (val0));
6337 return ada_to_fixed_value (val);
6338 }
6339
6340 /* The value resulting from dereferencing any "reference to"
6341 qualifiers on VAL0. */
6342
6343 static struct value *
6344 ada_coerce_ref (struct value *val0)
6345 {
6346 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6347 {
6348 struct value *val = val0;
6349 val = coerce_ref (val);
6350 val = unwrap_value (val);
6351 return ada_to_fixed_value (val);
6352 }
6353 else
6354 return val0;
6355 }
6356
6357 /* Return OFF rounded upward if necessary to a multiple of
6358 ALIGNMENT (a power of 2). */
6359
6360 static unsigned int
6361 align_value (unsigned int off, unsigned int alignment)
6362 {
6363 return (off + alignment - 1) & ~(alignment - 1);
6364 }
6365
6366 /* Return the bit alignment required for field #F of template type TYPE. */
6367
6368 static unsigned int
6369 field_alignment (struct type *type, int f)
6370 {
6371 const char *name = TYPE_FIELD_NAME (type, f);
6372 int len;
6373 int align_offset;
6374
6375 /* The field name should never be null, unless the debugging information
6376 is somehow malformed. In this case, we assume the field does not
6377 require any alignment. */
6378 if (name == NULL)
6379 return 1;
6380
6381 len = strlen (name);
6382
6383 if (!isdigit (name[len - 1]))
6384 return 1;
6385
6386 if (isdigit (name[len - 2]))
6387 align_offset = len - 2;
6388 else
6389 align_offset = len - 1;
6390
6391 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6392 return TARGET_CHAR_BIT;
6393
6394 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6395 }
6396
6397 /* Find a symbol named NAME. Ignores ambiguity. */
6398
6399 struct symbol *
6400 ada_find_any_symbol (const char *name)
6401 {
6402 struct symbol *sym;
6403
6404 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6405 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6406 return sym;
6407
6408 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6409 return sym;
6410 }
6411
6412 /* Find a type named NAME. Ignores ambiguity. */
6413
6414 struct type *
6415 ada_find_any_type (const char *name)
6416 {
6417 struct symbol *sym = ada_find_any_symbol (name);
6418
6419 if (sym != NULL)
6420 return SYMBOL_TYPE (sym);
6421
6422 return NULL;
6423 }
6424
6425 /* Given NAME and an associated BLOCK, search all symbols for
6426 NAME suffixed with "___XR", which is the ``renaming'' symbol
6427 associated to NAME. Return this symbol if found, return
6428 NULL otherwise. */
6429
6430 struct symbol *
6431 ada_find_renaming_symbol (const char *name, struct block *block)
6432 {
6433 struct symbol *sym;
6434
6435 sym = find_old_style_renaming_symbol (name, block);
6436
6437 if (sym != NULL)
6438 return sym;
6439
6440 /* Not right yet. FIXME pnh 7/20/2007. */
6441 sym = ada_find_any_symbol (name);
6442 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6443 return sym;
6444 else
6445 return NULL;
6446 }
6447
6448 static struct symbol *
6449 find_old_style_renaming_symbol (const char *name, struct block *block)
6450 {
6451 const struct symbol *function_sym = block_function (block);
6452 char *rename;
6453
6454 if (function_sym != NULL)
6455 {
6456 /* If the symbol is defined inside a function, NAME is not fully
6457 qualified. This means we need to prepend the function name
6458 as well as adding the ``___XR'' suffix to build the name of
6459 the associated renaming symbol. */
6460 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6461 /* Function names sometimes contain suffixes used
6462 for instance to qualify nested subprograms. When building
6463 the XR type name, we need to make sure that this suffix is
6464 not included. So do not include any suffix in the function
6465 name length below. */
6466 const int function_name_len = ada_name_prefix_len (function_name);
6467 const int rename_len = function_name_len + 2 /* "__" */
6468 + strlen (name) + 6 /* "___XR\0" */ ;
6469
6470 /* Strip the suffix if necessary. */
6471 function_name[function_name_len] = '\0';
6472
6473 /* Library-level functions are a special case, as GNAT adds
6474 a ``_ada_'' prefix to the function name to avoid namespace
6475 pollution. However, the renaming symbols themselves do not
6476 have this prefix, so we need to skip this prefix if present. */
6477 if (function_name_len > 5 /* "_ada_" */
6478 && strstr (function_name, "_ada_") == function_name)
6479 function_name = function_name + 5;
6480
6481 rename = (char *) alloca (rename_len * sizeof (char));
6482 sprintf (rename, "%s__%s___XR", function_name, name);
6483 }
6484 else
6485 {
6486 const int rename_len = strlen (name) + 6;
6487 rename = (char *) alloca (rename_len * sizeof (char));
6488 sprintf (rename, "%s___XR", name);
6489 }
6490
6491 return ada_find_any_symbol (rename);
6492 }
6493
6494 /* Because of GNAT encoding conventions, several GDB symbols may match a
6495 given type name. If the type denoted by TYPE0 is to be preferred to
6496 that of TYPE1 for purposes of type printing, return non-zero;
6497 otherwise return 0. */
6498
6499 int
6500 ada_prefer_type (struct type *type0, struct type *type1)
6501 {
6502 if (type1 == NULL)
6503 return 1;
6504 else if (type0 == NULL)
6505 return 0;
6506 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6507 return 1;
6508 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6509 return 0;
6510 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6511 return 1;
6512 else if (ada_is_packed_array_type (type0))
6513 return 1;
6514 else if (ada_is_array_descriptor_type (type0)
6515 && !ada_is_array_descriptor_type (type1))
6516 return 1;
6517 else
6518 {
6519 const char *type0_name = type_name_no_tag (type0);
6520 const char *type1_name = type_name_no_tag (type1);
6521
6522 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6523 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6524 return 1;
6525 }
6526 return 0;
6527 }
6528
6529 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6530 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6531
6532 char *
6533 ada_type_name (struct type *type)
6534 {
6535 if (type == NULL)
6536 return NULL;
6537 else if (TYPE_NAME (type) != NULL)
6538 return TYPE_NAME (type);
6539 else
6540 return TYPE_TAG_NAME (type);
6541 }
6542
6543 /* Find a parallel type to TYPE whose name is formed by appending
6544 SUFFIX to the name of TYPE. */
6545
6546 struct type *
6547 ada_find_parallel_type (struct type *type, const char *suffix)
6548 {
6549 static char *name;
6550 static size_t name_len = 0;
6551 int len;
6552 char *typename = ada_type_name (type);
6553
6554 if (typename == NULL)
6555 return NULL;
6556
6557 len = strlen (typename);
6558
6559 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6560
6561 strcpy (name, typename);
6562 strcpy (name + len, suffix);
6563
6564 return ada_find_any_type (name);
6565 }
6566
6567
6568 /* If TYPE is a variable-size record type, return the corresponding template
6569 type describing its fields. Otherwise, return NULL. */
6570
6571 static struct type *
6572 dynamic_template_type (struct type *type)
6573 {
6574 type = ada_check_typedef (type);
6575
6576 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6577 || ada_type_name (type) == NULL)
6578 return NULL;
6579 else
6580 {
6581 int len = strlen (ada_type_name (type));
6582 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6583 return type;
6584 else
6585 return ada_find_parallel_type (type, "___XVE");
6586 }
6587 }
6588
6589 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6590 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6591
6592 static int
6593 is_dynamic_field (struct type *templ_type, int field_num)
6594 {
6595 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6596 return name != NULL
6597 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6598 && strstr (name, "___XVL") != NULL;
6599 }
6600
6601 /* The index of the variant field of TYPE, or -1 if TYPE does not
6602 represent a variant record type. */
6603
6604 static int
6605 variant_field_index (struct type *type)
6606 {
6607 int f;
6608
6609 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6610 return -1;
6611
6612 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6613 {
6614 if (ada_is_variant_part (type, f))
6615 return f;
6616 }
6617 return -1;
6618 }
6619
6620 /* A record type with no fields. */
6621
6622 static struct type *
6623 empty_record (struct objfile *objfile)
6624 {
6625 struct type *type = alloc_type (objfile);
6626 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6627 TYPE_NFIELDS (type) = 0;
6628 TYPE_FIELDS (type) = NULL;
6629 TYPE_NAME (type) = "<empty>";
6630 TYPE_TAG_NAME (type) = NULL;
6631 TYPE_FLAGS (type) = 0;
6632 TYPE_LENGTH (type) = 0;
6633 return type;
6634 }
6635
6636 /* An ordinary record type (with fixed-length fields) that describes
6637 the value of type TYPE at VALADDR or ADDRESS (see comments at
6638 the beginning of this section) VAL according to GNAT conventions.
6639 DVAL0 should describe the (portion of a) record that contains any
6640 necessary discriminants. It should be NULL if value_type (VAL) is
6641 an outer-level type (i.e., as opposed to a branch of a variant.) A
6642 variant field (unless unchecked) is replaced by a particular branch
6643 of the variant.
6644
6645 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6646 length are not statically known are discarded. As a consequence,
6647 VALADDR, ADDRESS and DVAL0 are ignored.
6648
6649 NOTE: Limitations: For now, we assume that dynamic fields and
6650 variants occupy whole numbers of bytes. However, they need not be
6651 byte-aligned. */
6652
6653 struct type *
6654 ada_template_to_fixed_record_type_1 (struct type *type,
6655 const gdb_byte *valaddr,
6656 CORE_ADDR address, struct value *dval0,
6657 int keep_dynamic_fields)
6658 {
6659 struct value *mark = value_mark ();
6660 struct value *dval;
6661 struct type *rtype;
6662 int nfields, bit_len;
6663 int variant_field;
6664 long off;
6665 int fld_bit_len, bit_incr;
6666 int f;
6667
6668 /* Compute the number of fields in this record type that are going
6669 to be processed: unless keep_dynamic_fields, this includes only
6670 fields whose position and length are static will be processed. */
6671 if (keep_dynamic_fields)
6672 nfields = TYPE_NFIELDS (type);
6673 else
6674 {
6675 nfields = 0;
6676 while (nfields < TYPE_NFIELDS (type)
6677 && !ada_is_variant_part (type, nfields)
6678 && !is_dynamic_field (type, nfields))
6679 nfields++;
6680 }
6681
6682 rtype = alloc_type (TYPE_OBJFILE (type));
6683 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6684 INIT_CPLUS_SPECIFIC (rtype);
6685 TYPE_NFIELDS (rtype) = nfields;
6686 TYPE_FIELDS (rtype) = (struct field *)
6687 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6688 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6689 TYPE_NAME (rtype) = ada_type_name (type);
6690 TYPE_TAG_NAME (rtype) = NULL;
6691 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6692
6693 off = 0;
6694 bit_len = 0;
6695 variant_field = -1;
6696
6697 for (f = 0; f < nfields; f += 1)
6698 {
6699 off = align_value (off, field_alignment (type, f))
6700 + TYPE_FIELD_BITPOS (type, f);
6701 TYPE_FIELD_BITPOS (rtype, f) = off;
6702 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6703
6704 if (ada_is_variant_part (type, f))
6705 {
6706 variant_field = f;
6707 fld_bit_len = bit_incr = 0;
6708 }
6709 else if (is_dynamic_field (type, f))
6710 {
6711 if (dval0 == NULL)
6712 dval = value_from_contents_and_address (rtype, valaddr, address);
6713 else
6714 dval = dval0;
6715
6716 /* Get the fixed type of the field. Note that, in this case, we
6717 do not want to get the real type out of the tag: if the current
6718 field is the parent part of a tagged record, we will get the
6719 tag of the object. Clearly wrong: the real type of the parent
6720 is not the real type of the child. We would end up in an infinite
6721 loop. */
6722 TYPE_FIELD_TYPE (rtype, f) =
6723 ada_to_fixed_type
6724 (ada_get_base_type
6725 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6726 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6727 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6728 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6729 bit_incr = fld_bit_len =
6730 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6731 }
6732 else
6733 {
6734 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6735 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6736 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6737 bit_incr = fld_bit_len =
6738 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6739 else
6740 bit_incr = fld_bit_len =
6741 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6742 }
6743 if (off + fld_bit_len > bit_len)
6744 bit_len = off + fld_bit_len;
6745 off += bit_incr;
6746 TYPE_LENGTH (rtype) =
6747 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6748 }
6749
6750 /* We handle the variant part, if any, at the end because of certain
6751 odd cases in which it is re-ordered so as NOT the last field of
6752 the record. This can happen in the presence of representation
6753 clauses. */
6754 if (variant_field >= 0)
6755 {
6756 struct type *branch_type;
6757
6758 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6759
6760 if (dval0 == NULL)
6761 dval = value_from_contents_and_address (rtype, valaddr, address);
6762 else
6763 dval = dval0;
6764
6765 branch_type =
6766 to_fixed_variant_branch_type
6767 (TYPE_FIELD_TYPE (type, variant_field),
6768 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6769 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6770 if (branch_type == NULL)
6771 {
6772 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6773 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6774 TYPE_NFIELDS (rtype) -= 1;
6775 }
6776 else
6777 {
6778 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6779 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6780 fld_bit_len =
6781 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6782 TARGET_CHAR_BIT;
6783 if (off + fld_bit_len > bit_len)
6784 bit_len = off + fld_bit_len;
6785 TYPE_LENGTH (rtype) =
6786 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6787 }
6788 }
6789
6790 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6791 should contain the alignment of that record, which should be a strictly
6792 positive value. If null or negative, then something is wrong, most
6793 probably in the debug info. In that case, we don't round up the size
6794 of the resulting type. If this record is not part of another structure,
6795 the current RTYPE length might be good enough for our purposes. */
6796 if (TYPE_LENGTH (type) <= 0)
6797 {
6798 if (TYPE_NAME (rtype))
6799 warning (_("Invalid type size for `%s' detected: %d."),
6800 TYPE_NAME (rtype), TYPE_LENGTH (type));
6801 else
6802 warning (_("Invalid type size for <unnamed> detected: %d."),
6803 TYPE_LENGTH (type));
6804 }
6805 else
6806 {
6807 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6808 TYPE_LENGTH (type));
6809 }
6810
6811 value_free_to_mark (mark);
6812 if (TYPE_LENGTH (rtype) > varsize_limit)
6813 error (_("record type with dynamic size is larger than varsize-limit"));
6814 return rtype;
6815 }
6816
6817 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6818 of 1. */
6819
6820 static struct type *
6821 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6822 CORE_ADDR address, struct value *dval0)
6823 {
6824 return ada_template_to_fixed_record_type_1 (type, valaddr,
6825 address, dval0, 1);
6826 }
6827
6828 /* An ordinary record type in which ___XVL-convention fields and
6829 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6830 static approximations, containing all possible fields. Uses
6831 no runtime values. Useless for use in values, but that's OK,
6832 since the results are used only for type determinations. Works on both
6833 structs and unions. Representation note: to save space, we memorize
6834 the result of this function in the TYPE_TARGET_TYPE of the
6835 template type. */
6836
6837 static struct type *
6838 template_to_static_fixed_type (struct type *type0)
6839 {
6840 struct type *type;
6841 int nfields;
6842 int f;
6843
6844 if (TYPE_TARGET_TYPE (type0) != NULL)
6845 return TYPE_TARGET_TYPE (type0);
6846
6847 nfields = TYPE_NFIELDS (type0);
6848 type = type0;
6849
6850 for (f = 0; f < nfields; f += 1)
6851 {
6852 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6853 struct type *new_type;
6854
6855 if (is_dynamic_field (type0, f))
6856 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6857 else
6858 new_type = static_unwrap_type (field_type);
6859 if (type == type0 && new_type != field_type)
6860 {
6861 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6862 TYPE_CODE (type) = TYPE_CODE (type0);
6863 INIT_CPLUS_SPECIFIC (type);
6864 TYPE_NFIELDS (type) = nfields;
6865 TYPE_FIELDS (type) = (struct field *)
6866 TYPE_ALLOC (type, nfields * sizeof (struct field));
6867 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6868 sizeof (struct field) * nfields);
6869 TYPE_NAME (type) = ada_type_name (type0);
6870 TYPE_TAG_NAME (type) = NULL;
6871 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6872 TYPE_LENGTH (type) = 0;
6873 }
6874 TYPE_FIELD_TYPE (type, f) = new_type;
6875 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6876 }
6877 return type;
6878 }
6879
6880 /* Given an object of type TYPE whose contents are at VALADDR and
6881 whose address in memory is ADDRESS, returns a revision of TYPE --
6882 a non-dynamic-sized record with a variant part -- in which
6883 the variant part is replaced with the appropriate branch. Looks
6884 for discriminant values in DVAL0, which can be NULL if the record
6885 contains the necessary discriminant values. */
6886
6887 static struct type *
6888 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6889 CORE_ADDR address, struct value *dval0)
6890 {
6891 struct value *mark = value_mark ();
6892 struct value *dval;
6893 struct type *rtype;
6894 struct type *branch_type;
6895 int nfields = TYPE_NFIELDS (type);
6896 int variant_field = variant_field_index (type);
6897
6898 if (variant_field == -1)
6899 return type;
6900
6901 if (dval0 == NULL)
6902 dval = value_from_contents_and_address (type, valaddr, address);
6903 else
6904 dval = dval0;
6905
6906 rtype = alloc_type (TYPE_OBJFILE (type));
6907 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6908 INIT_CPLUS_SPECIFIC (rtype);
6909 TYPE_NFIELDS (rtype) = nfields;
6910 TYPE_FIELDS (rtype) =
6911 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6912 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6913 sizeof (struct field) * nfields);
6914 TYPE_NAME (rtype) = ada_type_name (type);
6915 TYPE_TAG_NAME (rtype) = NULL;
6916 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6917 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6918
6919 branch_type = to_fixed_variant_branch_type
6920 (TYPE_FIELD_TYPE (type, variant_field),
6921 cond_offset_host (valaddr,
6922 TYPE_FIELD_BITPOS (type, variant_field)
6923 / TARGET_CHAR_BIT),
6924 cond_offset_target (address,
6925 TYPE_FIELD_BITPOS (type, variant_field)
6926 / TARGET_CHAR_BIT), dval);
6927 if (branch_type == NULL)
6928 {
6929 int f;
6930 for (f = variant_field + 1; f < nfields; f += 1)
6931 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6932 TYPE_NFIELDS (rtype) -= 1;
6933 }
6934 else
6935 {
6936 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6937 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6938 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6939 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6940 }
6941 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6942
6943 value_free_to_mark (mark);
6944 return rtype;
6945 }
6946
6947 /* An ordinary record type (with fixed-length fields) that describes
6948 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6949 beginning of this section]. Any necessary discriminants' values
6950 should be in DVAL, a record value; it may be NULL if the object
6951 at ADDR itself contains any necessary discriminant values.
6952 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6953 values from the record are needed. Except in the case that DVAL,
6954 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6955 unchecked) is replaced by a particular branch of the variant.
6956
6957 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6958 is questionable and may be removed. It can arise during the
6959 processing of an unconstrained-array-of-record type where all the
6960 variant branches have exactly the same size. This is because in
6961 such cases, the compiler does not bother to use the XVS convention
6962 when encoding the record. I am currently dubious of this
6963 shortcut and suspect the compiler should be altered. FIXME. */
6964
6965 static struct type *
6966 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6967 CORE_ADDR address, struct value *dval)
6968 {
6969 struct type *templ_type;
6970
6971 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6972 return type0;
6973
6974 templ_type = dynamic_template_type (type0);
6975
6976 if (templ_type != NULL)
6977 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6978 else if (variant_field_index (type0) >= 0)
6979 {
6980 if (dval == NULL && valaddr == NULL && address == 0)
6981 return type0;
6982 return to_record_with_fixed_variant_part (type0, valaddr, address,
6983 dval);
6984 }
6985 else
6986 {
6987 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6988 return type0;
6989 }
6990
6991 }
6992
6993 /* An ordinary record type (with fixed-length fields) that describes
6994 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6995 union type. Any necessary discriminants' values should be in DVAL,
6996 a record value. That is, this routine selects the appropriate
6997 branch of the union at ADDR according to the discriminant value
6998 indicated in the union's type name. */
6999
7000 static struct type *
7001 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7002 CORE_ADDR address, struct value *dval)
7003 {
7004 int which;
7005 struct type *templ_type;
7006 struct type *var_type;
7007
7008 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7009 var_type = TYPE_TARGET_TYPE (var_type0);
7010 else
7011 var_type = var_type0;
7012
7013 templ_type = ada_find_parallel_type (var_type, "___XVU");
7014
7015 if (templ_type != NULL)
7016 var_type = templ_type;
7017
7018 which =
7019 ada_which_variant_applies (var_type,
7020 value_type (dval), value_contents (dval));
7021
7022 if (which < 0)
7023 return empty_record (TYPE_OBJFILE (var_type));
7024 else if (is_dynamic_field (var_type, which))
7025 return to_fixed_record_type
7026 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7027 valaddr, address, dval);
7028 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7029 return
7030 to_fixed_record_type
7031 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7032 else
7033 return TYPE_FIELD_TYPE (var_type, which);
7034 }
7035
7036 /* Assuming that TYPE0 is an array type describing the type of a value
7037 at ADDR, and that DVAL describes a record containing any
7038 discriminants used in TYPE0, returns a type for the value that
7039 contains no dynamic components (that is, no components whose sizes
7040 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7041 true, gives an error message if the resulting type's size is over
7042 varsize_limit. */
7043
7044 static struct type *
7045 to_fixed_array_type (struct type *type0, struct value *dval,
7046 int ignore_too_big)
7047 {
7048 struct type *index_type_desc;
7049 struct type *result;
7050
7051 if (ada_is_packed_array_type (type0) /* revisit? */
7052 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7053 return type0;
7054
7055 index_type_desc = ada_find_parallel_type (type0, "___XA");
7056 if (index_type_desc == NULL)
7057 {
7058 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7059 /* NOTE: elt_type---the fixed version of elt_type0---should never
7060 depend on the contents of the array in properly constructed
7061 debugging data. */
7062 /* Create a fixed version of the array element type.
7063 We're not providing the address of an element here,
7064 and thus the actual object value cannot be inspected to do
7065 the conversion. This should not be a problem, since arrays of
7066 unconstrained objects are not allowed. In particular, all
7067 the elements of an array of a tagged type should all be of
7068 the same type specified in the debugging info. No need to
7069 consult the object tag. */
7070 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7071
7072 if (elt_type0 == elt_type)
7073 result = type0;
7074 else
7075 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7076 elt_type, TYPE_INDEX_TYPE (type0));
7077 }
7078 else
7079 {
7080 int i;
7081 struct type *elt_type0;
7082
7083 elt_type0 = type0;
7084 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7085 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7086
7087 /* NOTE: result---the fixed version of elt_type0---should never
7088 depend on the contents of the array in properly constructed
7089 debugging data. */
7090 /* Create a fixed version of the array element type.
7091 We're not providing the address of an element here,
7092 and thus the actual object value cannot be inspected to do
7093 the conversion. This should not be a problem, since arrays of
7094 unconstrained objects are not allowed. In particular, all
7095 the elements of an array of a tagged type should all be of
7096 the same type specified in the debugging info. No need to
7097 consult the object tag. */
7098 result =
7099 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7100 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7101 {
7102 struct type *range_type =
7103 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7104 dval, TYPE_OBJFILE (type0));
7105 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7106 result, range_type);
7107 }
7108 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7109 error (_("array type with dynamic size is larger than varsize-limit"));
7110 }
7111
7112 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7113 return result;
7114 }
7115
7116
7117 /* A standard type (containing no dynamically sized components)
7118 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7119 DVAL describes a record containing any discriminants used in TYPE0,
7120 and may be NULL if there are none, or if the object of type TYPE at
7121 ADDRESS or in VALADDR contains these discriminants.
7122
7123 If CHECK_TAG is not null, in the case of tagged types, this function
7124 attempts to locate the object's tag and use it to compute the actual
7125 type. However, when ADDRESS is null, we cannot use it to determine the
7126 location of the tag, and therefore compute the tagged type's actual type.
7127 So we return the tagged type without consulting the tag. */
7128
7129 static struct type *
7130 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7131 CORE_ADDR address, struct value *dval, int check_tag)
7132 {
7133 type = ada_check_typedef (type);
7134 switch (TYPE_CODE (type))
7135 {
7136 default:
7137 return type;
7138 case TYPE_CODE_STRUCT:
7139 {
7140 struct type *static_type = to_static_fixed_type (type);
7141 struct type *fixed_record_type =
7142 to_fixed_record_type (type, valaddr, address, NULL);
7143 /* If STATIC_TYPE is a tagged type and we know the object's address,
7144 then we can determine its tag, and compute the object's actual
7145 type from there. Note that we have to use the fixed record
7146 type (the parent part of the record may have dynamic fields
7147 and the way the location of _tag is expressed may depend on
7148 them). */
7149
7150 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7151 {
7152 struct type *real_type =
7153 type_from_tag (value_tag_from_contents_and_address
7154 (fixed_record_type,
7155 valaddr,
7156 address));
7157 if (real_type != NULL)
7158 return to_fixed_record_type (real_type, valaddr, address, NULL);
7159 }
7160 return fixed_record_type;
7161 }
7162 case TYPE_CODE_ARRAY:
7163 return to_fixed_array_type (type, dval, 1);
7164 case TYPE_CODE_UNION:
7165 if (dval == NULL)
7166 return type;
7167 else
7168 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7169 }
7170 }
7171
7172 /* The same as ada_to_fixed_type_1, except that it preserves the type
7173 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7174 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7175
7176 struct type *
7177 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7178 CORE_ADDR address, struct value *dval, int check_tag)
7179
7180 {
7181 struct type *fixed_type =
7182 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7183
7184 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7185 && TYPE_TARGET_TYPE (type) == fixed_type)
7186 return type;
7187
7188 return fixed_type;
7189 }
7190
7191 /* A standard (static-sized) type corresponding as well as possible to
7192 TYPE0, but based on no runtime data. */
7193
7194 static struct type *
7195 to_static_fixed_type (struct type *type0)
7196 {
7197 struct type *type;
7198
7199 if (type0 == NULL)
7200 return NULL;
7201
7202 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7203 return type0;
7204
7205 type0 = ada_check_typedef (type0);
7206
7207 switch (TYPE_CODE (type0))
7208 {
7209 default:
7210 return type0;
7211 case TYPE_CODE_STRUCT:
7212 type = dynamic_template_type (type0);
7213 if (type != NULL)
7214 return template_to_static_fixed_type (type);
7215 else
7216 return template_to_static_fixed_type (type0);
7217 case TYPE_CODE_UNION:
7218 type = ada_find_parallel_type (type0, "___XVU");
7219 if (type != NULL)
7220 return template_to_static_fixed_type (type);
7221 else
7222 return template_to_static_fixed_type (type0);
7223 }
7224 }
7225
7226 /* A static approximation of TYPE with all type wrappers removed. */
7227
7228 static struct type *
7229 static_unwrap_type (struct type *type)
7230 {
7231 if (ada_is_aligner_type (type))
7232 {
7233 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7234 if (ada_type_name (type1) == NULL)
7235 TYPE_NAME (type1) = ada_type_name (type);
7236
7237 return static_unwrap_type (type1);
7238 }
7239 else
7240 {
7241 struct type *raw_real_type = ada_get_base_type (type);
7242 if (raw_real_type == type)
7243 return type;
7244 else
7245 return to_static_fixed_type (raw_real_type);
7246 }
7247 }
7248
7249 /* In some cases, incomplete and private types require
7250 cross-references that are not resolved as records (for example,
7251 type Foo;
7252 type FooP is access Foo;
7253 V: FooP;
7254 type Foo is array ...;
7255 ). In these cases, since there is no mechanism for producing
7256 cross-references to such types, we instead substitute for FooP a
7257 stub enumeration type that is nowhere resolved, and whose tag is
7258 the name of the actual type. Call these types "non-record stubs". */
7259
7260 /* A type equivalent to TYPE that is not a non-record stub, if one
7261 exists, otherwise TYPE. */
7262
7263 struct type *
7264 ada_check_typedef (struct type *type)
7265 {
7266 if (type == NULL)
7267 return NULL;
7268
7269 CHECK_TYPEDEF (type);
7270 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7271 || !TYPE_STUB (type)
7272 || TYPE_TAG_NAME (type) == NULL)
7273 return type;
7274 else
7275 {
7276 char *name = TYPE_TAG_NAME (type);
7277 struct type *type1 = ada_find_any_type (name);
7278 return (type1 == NULL) ? type : type1;
7279 }
7280 }
7281
7282 /* A value representing the data at VALADDR/ADDRESS as described by
7283 type TYPE0, but with a standard (static-sized) type that correctly
7284 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7285 type, then return VAL0 [this feature is simply to avoid redundant
7286 creation of struct values]. */
7287
7288 static struct value *
7289 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7290 struct value *val0)
7291 {
7292 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7293 if (type == type0 && val0 != NULL)
7294 return val0;
7295 else
7296 return value_from_contents_and_address (type, 0, address);
7297 }
7298
7299 /* A value representing VAL, but with a standard (static-sized) type
7300 that correctly describes it. Does not necessarily create a new
7301 value. */
7302
7303 static struct value *
7304 ada_to_fixed_value (struct value *val)
7305 {
7306 return ada_to_fixed_value_create (value_type (val),
7307 VALUE_ADDRESS (val) + value_offset (val),
7308 val);
7309 }
7310
7311 /* A value representing VAL, but with a standard (static-sized) type
7312 chosen to approximate the real type of VAL as well as possible, but
7313 without consulting any runtime values. For Ada dynamic-sized
7314 types, therefore, the type of the result is likely to be inaccurate. */
7315
7316 struct value *
7317 ada_to_static_fixed_value (struct value *val)
7318 {
7319 struct type *type =
7320 to_static_fixed_type (static_unwrap_type (value_type (val)));
7321 if (type == value_type (val))
7322 return val;
7323 else
7324 return coerce_unspec_val_to_type (val, type);
7325 }
7326 \f
7327
7328 /* Attributes */
7329
7330 /* Table mapping attribute numbers to names.
7331 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7332
7333 static const char *attribute_names[] = {
7334 "<?>",
7335
7336 "first",
7337 "last",
7338 "length",
7339 "image",
7340 "max",
7341 "min",
7342 "modulus",
7343 "pos",
7344 "size",
7345 "tag",
7346 "val",
7347 0
7348 };
7349
7350 const char *
7351 ada_attribute_name (enum exp_opcode n)
7352 {
7353 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7354 return attribute_names[n - OP_ATR_FIRST + 1];
7355 else
7356 return attribute_names[0];
7357 }
7358
7359 /* Evaluate the 'POS attribute applied to ARG. */
7360
7361 static LONGEST
7362 pos_atr (struct value *arg)
7363 {
7364 struct type *type = value_type (arg);
7365
7366 if (!discrete_type_p (type))
7367 error (_("'POS only defined on discrete types"));
7368
7369 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7370 {
7371 int i;
7372 LONGEST v = value_as_long (arg);
7373
7374 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7375 {
7376 if (v == TYPE_FIELD_BITPOS (type, i))
7377 return i;
7378 }
7379 error (_("enumeration value is invalid: can't find 'POS"));
7380 }
7381 else
7382 return value_as_long (arg);
7383 }
7384
7385 static struct value *
7386 value_pos_atr (struct value *arg)
7387 {
7388 return value_from_longest (builtin_type_int, pos_atr (arg));
7389 }
7390
7391 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7392
7393 static struct value *
7394 value_val_atr (struct type *type, struct value *arg)
7395 {
7396 if (!discrete_type_p (type))
7397 error (_("'VAL only defined on discrete types"));
7398 if (!integer_type_p (value_type (arg)))
7399 error (_("'VAL requires integral argument"));
7400
7401 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7402 {
7403 long pos = value_as_long (arg);
7404 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7405 error (_("argument to 'VAL out of range"));
7406 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7407 }
7408 else
7409 return value_from_longest (type, value_as_long (arg));
7410 }
7411 \f
7412
7413 /* Evaluation */
7414
7415 /* True if TYPE appears to be an Ada character type.
7416 [At the moment, this is true only for Character and Wide_Character;
7417 It is a heuristic test that could stand improvement]. */
7418
7419 int
7420 ada_is_character_type (struct type *type)
7421 {
7422 const char *name;
7423
7424 /* If the type code says it's a character, then assume it really is,
7425 and don't check any further. */
7426 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7427 return 1;
7428
7429 /* Otherwise, assume it's a character type iff it is a discrete type
7430 with a known character type name. */
7431 name = ada_type_name (type);
7432 return (name != NULL
7433 && (TYPE_CODE (type) == TYPE_CODE_INT
7434 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7435 && (strcmp (name, "character") == 0
7436 || strcmp (name, "wide_character") == 0
7437 || strcmp (name, "wide_wide_character") == 0
7438 || strcmp (name, "unsigned char") == 0));
7439 }
7440
7441 /* True if TYPE appears to be an Ada string type. */
7442
7443 int
7444 ada_is_string_type (struct type *type)
7445 {
7446 type = ada_check_typedef (type);
7447 if (type != NULL
7448 && TYPE_CODE (type) != TYPE_CODE_PTR
7449 && (ada_is_simple_array_type (type)
7450 || ada_is_array_descriptor_type (type))
7451 && ada_array_arity (type) == 1)
7452 {
7453 struct type *elttype = ada_array_element_type (type, 1);
7454
7455 return ada_is_character_type (elttype);
7456 }
7457 else
7458 return 0;
7459 }
7460
7461
7462 /* True if TYPE is a struct type introduced by the compiler to force the
7463 alignment of a value. Such types have a single field with a
7464 distinctive name. */
7465
7466 int
7467 ada_is_aligner_type (struct type *type)
7468 {
7469 type = ada_check_typedef (type);
7470
7471 /* If we can find a parallel XVS type, then the XVS type should
7472 be used instead of this type. And hence, this is not an aligner
7473 type. */
7474 if (ada_find_parallel_type (type, "___XVS") != NULL)
7475 return 0;
7476
7477 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7478 && TYPE_NFIELDS (type) == 1
7479 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7480 }
7481
7482 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7483 the parallel type. */
7484
7485 struct type *
7486 ada_get_base_type (struct type *raw_type)
7487 {
7488 struct type *real_type_namer;
7489 struct type *raw_real_type;
7490
7491 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7492 return raw_type;
7493
7494 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7495 if (real_type_namer == NULL
7496 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7497 || TYPE_NFIELDS (real_type_namer) != 1)
7498 return raw_type;
7499
7500 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7501 if (raw_real_type == NULL)
7502 return raw_type;
7503 else
7504 return raw_real_type;
7505 }
7506
7507 /* The type of value designated by TYPE, with all aligners removed. */
7508
7509 struct type *
7510 ada_aligned_type (struct type *type)
7511 {
7512 if (ada_is_aligner_type (type))
7513 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7514 else
7515 return ada_get_base_type (type);
7516 }
7517
7518
7519 /* The address of the aligned value in an object at address VALADDR
7520 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7521
7522 const gdb_byte *
7523 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7524 {
7525 if (ada_is_aligner_type (type))
7526 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7527 valaddr +
7528 TYPE_FIELD_BITPOS (type,
7529 0) / TARGET_CHAR_BIT);
7530 else
7531 return valaddr;
7532 }
7533
7534
7535
7536 /* The printed representation of an enumeration literal with encoded
7537 name NAME. The value is good to the next call of ada_enum_name. */
7538 const char *
7539 ada_enum_name (const char *name)
7540 {
7541 static char *result;
7542 static size_t result_len = 0;
7543 char *tmp;
7544
7545 /* First, unqualify the enumeration name:
7546 1. Search for the last '.' character. If we find one, then skip
7547 all the preceeding characters, the unqualified name starts
7548 right after that dot.
7549 2. Otherwise, we may be debugging on a target where the compiler
7550 translates dots into "__". Search forward for double underscores,
7551 but stop searching when we hit an overloading suffix, which is
7552 of the form "__" followed by digits. */
7553
7554 tmp = strrchr (name, '.');
7555 if (tmp != NULL)
7556 name = tmp + 1;
7557 else
7558 {
7559 while ((tmp = strstr (name, "__")) != NULL)
7560 {
7561 if (isdigit (tmp[2]))
7562 break;
7563 else
7564 name = tmp + 2;
7565 }
7566 }
7567
7568 if (name[0] == 'Q')
7569 {
7570 int v;
7571 if (name[1] == 'U' || name[1] == 'W')
7572 {
7573 if (sscanf (name + 2, "%x", &v) != 1)
7574 return name;
7575 }
7576 else
7577 return name;
7578
7579 GROW_VECT (result, result_len, 16);
7580 if (isascii (v) && isprint (v))
7581 sprintf (result, "'%c'", v);
7582 else if (name[1] == 'U')
7583 sprintf (result, "[\"%02x\"]", v);
7584 else
7585 sprintf (result, "[\"%04x\"]", v);
7586
7587 return result;
7588 }
7589 else
7590 {
7591 tmp = strstr (name, "__");
7592 if (tmp == NULL)
7593 tmp = strstr (name, "$");
7594 if (tmp != NULL)
7595 {
7596 GROW_VECT (result, result_len, tmp - name + 1);
7597 strncpy (result, name, tmp - name);
7598 result[tmp - name] = '\0';
7599 return result;
7600 }
7601
7602 return name;
7603 }
7604 }
7605
7606 static struct value *
7607 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7608 enum noside noside)
7609 {
7610 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7611 (expect_type, exp, pos, noside);
7612 }
7613
7614 /* Evaluate the subexpression of EXP starting at *POS as for
7615 evaluate_type, updating *POS to point just past the evaluated
7616 expression. */
7617
7618 static struct value *
7619 evaluate_subexp_type (struct expression *exp, int *pos)
7620 {
7621 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7622 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7623 }
7624
7625 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7626 value it wraps. */
7627
7628 static struct value *
7629 unwrap_value (struct value *val)
7630 {
7631 struct type *type = ada_check_typedef (value_type (val));
7632 if (ada_is_aligner_type (type))
7633 {
7634 struct value *v = value_struct_elt (&val, NULL, "F",
7635 NULL, "internal structure");
7636 struct type *val_type = ada_check_typedef (value_type (v));
7637 if (ada_type_name (val_type) == NULL)
7638 TYPE_NAME (val_type) = ada_type_name (type);
7639
7640 return unwrap_value (v);
7641 }
7642 else
7643 {
7644 struct type *raw_real_type =
7645 ada_check_typedef (ada_get_base_type (type));
7646
7647 if (type == raw_real_type)
7648 return val;
7649
7650 return
7651 coerce_unspec_val_to_type
7652 (val, ada_to_fixed_type (raw_real_type, 0,
7653 VALUE_ADDRESS (val) + value_offset (val),
7654 NULL, 1));
7655 }
7656 }
7657
7658 static struct value *
7659 cast_to_fixed (struct type *type, struct value *arg)
7660 {
7661 LONGEST val;
7662
7663 if (type == value_type (arg))
7664 return arg;
7665 else if (ada_is_fixed_point_type (value_type (arg)))
7666 val = ada_float_to_fixed (type,
7667 ada_fixed_to_float (value_type (arg),
7668 value_as_long (arg)));
7669 else
7670 {
7671 DOUBLEST argd =
7672 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7673 val = ada_float_to_fixed (type, argd);
7674 }
7675
7676 return value_from_longest (type, val);
7677 }
7678
7679 static struct value *
7680 cast_from_fixed_to_double (struct value *arg)
7681 {
7682 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7683 value_as_long (arg));
7684 return value_from_double (builtin_type_double, val);
7685 }
7686
7687 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7688 return the converted value. */
7689
7690 static struct value *
7691 coerce_for_assign (struct type *type, struct value *val)
7692 {
7693 struct type *type2 = value_type (val);
7694 if (type == type2)
7695 return val;
7696
7697 type2 = ada_check_typedef (type2);
7698 type = ada_check_typedef (type);
7699
7700 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7701 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7702 {
7703 val = ada_value_ind (val);
7704 type2 = value_type (val);
7705 }
7706
7707 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7708 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7709 {
7710 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7711 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7712 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7713 error (_("Incompatible types in assignment"));
7714 deprecated_set_value_type (val, type);
7715 }
7716 return val;
7717 }
7718
7719 static struct value *
7720 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7721 {
7722 struct value *val;
7723 struct type *type1, *type2;
7724 LONGEST v, v1, v2;
7725
7726 arg1 = coerce_ref (arg1);
7727 arg2 = coerce_ref (arg2);
7728 type1 = base_type (ada_check_typedef (value_type (arg1)));
7729 type2 = base_type (ada_check_typedef (value_type (arg2)));
7730
7731 if (TYPE_CODE (type1) != TYPE_CODE_INT
7732 || TYPE_CODE (type2) != TYPE_CODE_INT)
7733 return value_binop (arg1, arg2, op);
7734
7735 switch (op)
7736 {
7737 case BINOP_MOD:
7738 case BINOP_DIV:
7739 case BINOP_REM:
7740 break;
7741 default:
7742 return value_binop (arg1, arg2, op);
7743 }
7744
7745 v2 = value_as_long (arg2);
7746 if (v2 == 0)
7747 error (_("second operand of %s must not be zero."), op_string (op));
7748
7749 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7750 return value_binop (arg1, arg2, op);
7751
7752 v1 = value_as_long (arg1);
7753 switch (op)
7754 {
7755 case BINOP_DIV:
7756 v = v1 / v2;
7757 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7758 v += v > 0 ? -1 : 1;
7759 break;
7760 case BINOP_REM:
7761 v = v1 % v2;
7762 if (v * v1 < 0)
7763 v -= v2;
7764 break;
7765 default:
7766 /* Should not reach this point. */
7767 v = 0;
7768 }
7769
7770 val = allocate_value (type1);
7771 store_unsigned_integer (value_contents_raw (val),
7772 TYPE_LENGTH (value_type (val)), v);
7773 return val;
7774 }
7775
7776 static int
7777 ada_value_equal (struct value *arg1, struct value *arg2)
7778 {
7779 if (ada_is_direct_array_type (value_type (arg1))
7780 || ada_is_direct_array_type (value_type (arg2)))
7781 {
7782 /* Automatically dereference any array reference before
7783 we attempt to perform the comparison. */
7784 arg1 = ada_coerce_ref (arg1);
7785 arg2 = ada_coerce_ref (arg2);
7786
7787 arg1 = ada_coerce_to_simple_array (arg1);
7788 arg2 = ada_coerce_to_simple_array (arg2);
7789 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7790 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7791 error (_("Attempt to compare array with non-array"));
7792 /* FIXME: The following works only for types whose
7793 representations use all bits (no padding or undefined bits)
7794 and do not have user-defined equality. */
7795 return
7796 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7797 && memcmp (value_contents (arg1), value_contents (arg2),
7798 TYPE_LENGTH (value_type (arg1))) == 0;
7799 }
7800 return value_equal (arg1, arg2);
7801 }
7802
7803 /* Total number of component associations in the aggregate starting at
7804 index PC in EXP. Assumes that index PC is the start of an
7805 OP_AGGREGATE. */
7806
7807 static int
7808 num_component_specs (struct expression *exp, int pc)
7809 {
7810 int n, m, i;
7811 m = exp->elts[pc + 1].longconst;
7812 pc += 3;
7813 n = 0;
7814 for (i = 0; i < m; i += 1)
7815 {
7816 switch (exp->elts[pc].opcode)
7817 {
7818 default:
7819 n += 1;
7820 break;
7821 case OP_CHOICES:
7822 n += exp->elts[pc + 1].longconst;
7823 break;
7824 }
7825 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7826 }
7827 return n;
7828 }
7829
7830 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7831 component of LHS (a simple array or a record), updating *POS past
7832 the expression, assuming that LHS is contained in CONTAINER. Does
7833 not modify the inferior's memory, nor does it modify LHS (unless
7834 LHS == CONTAINER). */
7835
7836 static void
7837 assign_component (struct value *container, struct value *lhs, LONGEST index,
7838 struct expression *exp, int *pos)
7839 {
7840 struct value *mark = value_mark ();
7841 struct value *elt;
7842 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7843 {
7844 struct value *index_val = value_from_longest (builtin_type_int, index);
7845 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7846 }
7847 else
7848 {
7849 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7850 elt = ada_to_fixed_value (unwrap_value (elt));
7851 }
7852
7853 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7854 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7855 else
7856 value_assign_to_component (container, elt,
7857 ada_evaluate_subexp (NULL, exp, pos,
7858 EVAL_NORMAL));
7859
7860 value_free_to_mark (mark);
7861 }
7862
7863 /* Assuming that LHS represents an lvalue having a record or array
7864 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7865 of that aggregate's value to LHS, advancing *POS past the
7866 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7867 lvalue containing LHS (possibly LHS itself). Does not modify
7868 the inferior's memory, nor does it modify the contents of
7869 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7870
7871 static struct value *
7872 assign_aggregate (struct value *container,
7873 struct value *lhs, struct expression *exp,
7874 int *pos, enum noside noside)
7875 {
7876 struct type *lhs_type;
7877 int n = exp->elts[*pos+1].longconst;
7878 LONGEST low_index, high_index;
7879 int num_specs;
7880 LONGEST *indices;
7881 int max_indices, num_indices;
7882 int is_array_aggregate;
7883 int i;
7884 struct value *mark = value_mark ();
7885
7886 *pos += 3;
7887 if (noside != EVAL_NORMAL)
7888 {
7889 int i;
7890 for (i = 0; i < n; i += 1)
7891 ada_evaluate_subexp (NULL, exp, pos, noside);
7892 return container;
7893 }
7894
7895 container = ada_coerce_ref (container);
7896 if (ada_is_direct_array_type (value_type (container)))
7897 container = ada_coerce_to_simple_array (container);
7898 lhs = ada_coerce_ref (lhs);
7899 if (!deprecated_value_modifiable (lhs))
7900 error (_("Left operand of assignment is not a modifiable lvalue."));
7901
7902 lhs_type = value_type (lhs);
7903 if (ada_is_direct_array_type (lhs_type))
7904 {
7905 lhs = ada_coerce_to_simple_array (lhs);
7906 lhs_type = value_type (lhs);
7907 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7908 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7909 is_array_aggregate = 1;
7910 }
7911 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7912 {
7913 low_index = 0;
7914 high_index = num_visible_fields (lhs_type) - 1;
7915 is_array_aggregate = 0;
7916 }
7917 else
7918 error (_("Left-hand side must be array or record."));
7919
7920 num_specs = num_component_specs (exp, *pos - 3);
7921 max_indices = 4 * num_specs + 4;
7922 indices = alloca (max_indices * sizeof (indices[0]));
7923 indices[0] = indices[1] = low_index - 1;
7924 indices[2] = indices[3] = high_index + 1;
7925 num_indices = 4;
7926
7927 for (i = 0; i < n; i += 1)
7928 {
7929 switch (exp->elts[*pos].opcode)
7930 {
7931 case OP_CHOICES:
7932 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7933 &num_indices, max_indices,
7934 low_index, high_index);
7935 break;
7936 case OP_POSITIONAL:
7937 aggregate_assign_positional (container, lhs, exp, pos, indices,
7938 &num_indices, max_indices,
7939 low_index, high_index);
7940 break;
7941 case OP_OTHERS:
7942 if (i != n-1)
7943 error (_("Misplaced 'others' clause"));
7944 aggregate_assign_others (container, lhs, exp, pos, indices,
7945 num_indices, low_index, high_index);
7946 break;
7947 default:
7948 error (_("Internal error: bad aggregate clause"));
7949 }
7950 }
7951
7952 return container;
7953 }
7954
7955 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7956 construct at *POS, updating *POS past the construct, given that
7957 the positions are relative to lower bound LOW, where HIGH is the
7958 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7959 updating *NUM_INDICES as needed. CONTAINER is as for
7960 assign_aggregate. */
7961 static void
7962 aggregate_assign_positional (struct value *container,
7963 struct value *lhs, struct expression *exp,
7964 int *pos, LONGEST *indices, int *num_indices,
7965 int max_indices, LONGEST low, LONGEST high)
7966 {
7967 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7968
7969 if (ind - 1 == high)
7970 warning (_("Extra components in aggregate ignored."));
7971 if (ind <= high)
7972 {
7973 add_component_interval (ind, ind, indices, num_indices, max_indices);
7974 *pos += 3;
7975 assign_component (container, lhs, ind, exp, pos);
7976 }
7977 else
7978 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7979 }
7980
7981 /* Assign into the components of LHS indexed by the OP_CHOICES
7982 construct at *POS, updating *POS past the construct, given that
7983 the allowable indices are LOW..HIGH. Record the indices assigned
7984 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7985 needed. CONTAINER is as for assign_aggregate. */
7986 static void
7987 aggregate_assign_from_choices (struct value *container,
7988 struct value *lhs, struct expression *exp,
7989 int *pos, LONGEST *indices, int *num_indices,
7990 int max_indices, LONGEST low, LONGEST high)
7991 {
7992 int j;
7993 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7994 int choice_pos, expr_pc;
7995 int is_array = ada_is_direct_array_type (value_type (lhs));
7996
7997 choice_pos = *pos += 3;
7998
7999 for (j = 0; j < n_choices; j += 1)
8000 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8001 expr_pc = *pos;
8002 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8003
8004 for (j = 0; j < n_choices; j += 1)
8005 {
8006 LONGEST lower, upper;
8007 enum exp_opcode op = exp->elts[choice_pos].opcode;
8008 if (op == OP_DISCRETE_RANGE)
8009 {
8010 choice_pos += 1;
8011 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8012 EVAL_NORMAL));
8013 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8014 EVAL_NORMAL));
8015 }
8016 else if (is_array)
8017 {
8018 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8019 EVAL_NORMAL));
8020 upper = lower;
8021 }
8022 else
8023 {
8024 int ind;
8025 char *name;
8026 switch (op)
8027 {
8028 case OP_NAME:
8029 name = &exp->elts[choice_pos + 2].string;
8030 break;
8031 case OP_VAR_VALUE:
8032 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8033 break;
8034 default:
8035 error (_("Invalid record component association."));
8036 }
8037 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8038 ind = 0;
8039 if (! find_struct_field (name, value_type (lhs), 0,
8040 NULL, NULL, NULL, NULL, &ind))
8041 error (_("Unknown component name: %s."), name);
8042 lower = upper = ind;
8043 }
8044
8045 if (lower <= upper && (lower < low || upper > high))
8046 error (_("Index in component association out of bounds."));
8047
8048 add_component_interval (lower, upper, indices, num_indices,
8049 max_indices);
8050 while (lower <= upper)
8051 {
8052 int pos1;
8053 pos1 = expr_pc;
8054 assign_component (container, lhs, lower, exp, &pos1);
8055 lower += 1;
8056 }
8057 }
8058 }
8059
8060 /* Assign the value of the expression in the OP_OTHERS construct in
8061 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8062 have not been previously assigned. The index intervals already assigned
8063 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8064 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8065 static void
8066 aggregate_assign_others (struct value *container,
8067 struct value *lhs, struct expression *exp,
8068 int *pos, LONGEST *indices, int num_indices,
8069 LONGEST low, LONGEST high)
8070 {
8071 int i;
8072 int expr_pc = *pos+1;
8073
8074 for (i = 0; i < num_indices - 2; i += 2)
8075 {
8076 LONGEST ind;
8077 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8078 {
8079 int pos;
8080 pos = expr_pc;
8081 assign_component (container, lhs, ind, exp, &pos);
8082 }
8083 }
8084 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8085 }
8086
8087 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8088 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8089 modifying *SIZE as needed. It is an error if *SIZE exceeds
8090 MAX_SIZE. The resulting intervals do not overlap. */
8091 static void
8092 add_component_interval (LONGEST low, LONGEST high,
8093 LONGEST* indices, int *size, int max_size)
8094 {
8095 int i, j;
8096 for (i = 0; i < *size; i += 2) {
8097 if (high >= indices[i] && low <= indices[i + 1])
8098 {
8099 int kh;
8100 for (kh = i + 2; kh < *size; kh += 2)
8101 if (high < indices[kh])
8102 break;
8103 if (low < indices[i])
8104 indices[i] = low;
8105 indices[i + 1] = indices[kh - 1];
8106 if (high > indices[i + 1])
8107 indices[i + 1] = high;
8108 memcpy (indices + i + 2, indices + kh, *size - kh);
8109 *size -= kh - i - 2;
8110 return;
8111 }
8112 else if (high < indices[i])
8113 break;
8114 }
8115
8116 if (*size == max_size)
8117 error (_("Internal error: miscounted aggregate components."));
8118 *size += 2;
8119 for (j = *size-1; j >= i+2; j -= 1)
8120 indices[j] = indices[j - 2];
8121 indices[i] = low;
8122 indices[i + 1] = high;
8123 }
8124
8125 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8126 is different. */
8127
8128 static struct value *
8129 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8130 {
8131 if (type == ada_check_typedef (value_type (arg2)))
8132 return arg2;
8133
8134 if (ada_is_fixed_point_type (type))
8135 return (cast_to_fixed (type, arg2));
8136
8137 if (ada_is_fixed_point_type (value_type (arg2)))
8138 return value_cast (type, cast_from_fixed_to_double (arg2));
8139
8140 return value_cast (type, arg2);
8141 }
8142
8143 static struct value *
8144 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8145 int *pos, enum noside noside)
8146 {
8147 enum exp_opcode op;
8148 int tem, tem2, tem3;
8149 int pc;
8150 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8151 struct type *type;
8152 int nargs, oplen;
8153 struct value **argvec;
8154
8155 pc = *pos;
8156 *pos += 1;
8157 op = exp->elts[pc].opcode;
8158
8159 switch (op)
8160 {
8161 default:
8162 *pos -= 1;
8163 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8164 arg1 = unwrap_value (arg1);
8165
8166 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8167 then we need to perform the conversion manually, because
8168 evaluate_subexp_standard doesn't do it. This conversion is
8169 necessary in Ada because the different kinds of float/fixed
8170 types in Ada have different representations.
8171
8172 Similarly, we need to perform the conversion from OP_LONG
8173 ourselves. */
8174 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8175 arg1 = ada_value_cast (expect_type, arg1, noside);
8176
8177 return arg1;
8178
8179 case OP_STRING:
8180 {
8181 struct value *result;
8182 *pos -= 1;
8183 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8184 /* The result type will have code OP_STRING, bashed there from
8185 OP_ARRAY. Bash it back. */
8186 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8187 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8188 return result;
8189 }
8190
8191 case UNOP_CAST:
8192 (*pos) += 2;
8193 type = exp->elts[pc + 1].type;
8194 arg1 = evaluate_subexp (type, exp, pos, noside);
8195 if (noside == EVAL_SKIP)
8196 goto nosideret;
8197 arg1 = ada_value_cast (type, arg1, noside);
8198 return arg1;
8199
8200 case UNOP_QUAL:
8201 (*pos) += 2;
8202 type = exp->elts[pc + 1].type;
8203 return ada_evaluate_subexp (type, exp, pos, noside);
8204
8205 case BINOP_ASSIGN:
8206 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8207 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8208 {
8209 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8210 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8211 return arg1;
8212 return ada_value_assign (arg1, arg1);
8213 }
8214 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8215 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8216 return arg1;
8217 if (ada_is_fixed_point_type (value_type (arg1)))
8218 arg2 = cast_to_fixed (value_type (arg1), arg2);
8219 else if (ada_is_fixed_point_type (value_type (arg2)))
8220 error
8221 (_("Fixed-point values must be assigned to fixed-point variables"));
8222 else
8223 arg2 = coerce_for_assign (value_type (arg1), arg2);
8224 return ada_value_assign (arg1, arg2);
8225
8226 case BINOP_ADD:
8227 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8228 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8229 if (noside == EVAL_SKIP)
8230 goto nosideret;
8231 if ((ada_is_fixed_point_type (value_type (arg1))
8232 || ada_is_fixed_point_type (value_type (arg2)))
8233 && value_type (arg1) != value_type (arg2))
8234 error (_("Operands of fixed-point addition must have the same type"));
8235 /* Do the addition, and cast the result to the type of the first
8236 argument. We cannot cast the result to a reference type, so if
8237 ARG1 is a reference type, find its underlying type. */
8238 type = value_type (arg1);
8239 while (TYPE_CODE (type) == TYPE_CODE_REF)
8240 type = TYPE_TARGET_TYPE (type);
8241 return value_cast (type, value_add (arg1, arg2));
8242
8243 case BINOP_SUB:
8244 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8245 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8246 if (noside == EVAL_SKIP)
8247 goto nosideret;
8248 if ((ada_is_fixed_point_type (value_type (arg1))
8249 || ada_is_fixed_point_type (value_type (arg2)))
8250 && value_type (arg1) != value_type (arg2))
8251 error (_("Operands of fixed-point subtraction must have the same type"));
8252 /* Do the substraction, and cast the result to the type of the first
8253 argument. We cannot cast the result to a reference type, so if
8254 ARG1 is a reference type, find its underlying type. */
8255 type = value_type (arg1);
8256 while (TYPE_CODE (type) == TYPE_CODE_REF)
8257 type = TYPE_TARGET_TYPE (type);
8258 return value_cast (type, value_sub (arg1, arg2));
8259
8260 case BINOP_MUL:
8261 case BINOP_DIV:
8262 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8263 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8264 if (noside == EVAL_SKIP)
8265 goto nosideret;
8266 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8267 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8268 return value_zero (value_type (arg1), not_lval);
8269 else
8270 {
8271 if (ada_is_fixed_point_type (value_type (arg1)))
8272 arg1 = cast_from_fixed_to_double (arg1);
8273 if (ada_is_fixed_point_type (value_type (arg2)))
8274 arg2 = cast_from_fixed_to_double (arg2);
8275 return ada_value_binop (arg1, arg2, op);
8276 }
8277
8278 case BINOP_REM:
8279 case BINOP_MOD:
8280 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8281 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8282 if (noside == EVAL_SKIP)
8283 goto nosideret;
8284 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8285 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8286 return value_zero (value_type (arg1), not_lval);
8287 else
8288 return ada_value_binop (arg1, arg2, op);
8289
8290 case BINOP_EQUAL:
8291 case BINOP_NOTEQUAL:
8292 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8293 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8294 if (noside == EVAL_SKIP)
8295 goto nosideret;
8296 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8297 tem = 0;
8298 else
8299 tem = ada_value_equal (arg1, arg2);
8300 if (op == BINOP_NOTEQUAL)
8301 tem = !tem;
8302 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8303
8304 case UNOP_NEG:
8305 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8306 if (noside == EVAL_SKIP)
8307 goto nosideret;
8308 else if (ada_is_fixed_point_type (value_type (arg1)))
8309 return value_cast (value_type (arg1), value_neg (arg1));
8310 else
8311 return value_neg (arg1);
8312
8313 case BINOP_LOGICAL_AND:
8314 case BINOP_LOGICAL_OR:
8315 case UNOP_LOGICAL_NOT:
8316 {
8317 struct value *val;
8318
8319 *pos -= 1;
8320 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8321 return value_cast (LA_BOOL_TYPE, val);
8322 }
8323
8324 case BINOP_BITWISE_AND:
8325 case BINOP_BITWISE_IOR:
8326 case BINOP_BITWISE_XOR:
8327 {
8328 struct value *val;
8329
8330 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8331 *pos = pc;
8332 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8333
8334 return value_cast (value_type (arg1), val);
8335 }
8336
8337 case OP_VAR_VALUE:
8338 *pos -= 1;
8339
8340 /* Tagged types are a little special in the fact that the real type
8341 is dynamic and can only be determined by inspecting the object
8342 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8343 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8344 if (noside == EVAL_AVOID_SIDE_EFFECTS
8345 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8346 noside = EVAL_NORMAL;
8347
8348 if (noside == EVAL_SKIP)
8349 {
8350 *pos += 4;
8351 goto nosideret;
8352 }
8353 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8354 /* Only encountered when an unresolved symbol occurs in a
8355 context other than a function call, in which case, it is
8356 invalid. */
8357 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8358 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8359 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8360 {
8361 *pos += 4;
8362 return value_zero
8363 (to_static_fixed_type
8364 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8365 not_lval);
8366 }
8367 else
8368 {
8369 arg1 =
8370 unwrap_value (evaluate_subexp_standard
8371 (expect_type, exp, pos, noside));
8372 return ada_to_fixed_value (arg1);
8373 }
8374
8375 case OP_FUNCALL:
8376 (*pos) += 2;
8377
8378 /* Allocate arg vector, including space for the function to be
8379 called in argvec[0] and a terminating NULL. */
8380 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8381 argvec =
8382 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8383
8384 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8385 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8386 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8387 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8388 else
8389 {
8390 for (tem = 0; tem <= nargs; tem += 1)
8391 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8392 argvec[tem] = 0;
8393
8394 if (noside == EVAL_SKIP)
8395 goto nosideret;
8396 }
8397
8398 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8399 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8400 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8401 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8402 && VALUE_LVAL (argvec[0]) == lval_memory))
8403 argvec[0] = value_addr (argvec[0]);
8404
8405 type = ada_check_typedef (value_type (argvec[0]));
8406 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8407 {
8408 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8409 {
8410 case TYPE_CODE_FUNC:
8411 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8412 break;
8413 case TYPE_CODE_ARRAY:
8414 break;
8415 case TYPE_CODE_STRUCT:
8416 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8417 argvec[0] = ada_value_ind (argvec[0]);
8418 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8419 break;
8420 default:
8421 error (_("cannot subscript or call something of type `%s'"),
8422 ada_type_name (value_type (argvec[0])));
8423 break;
8424 }
8425 }
8426
8427 switch (TYPE_CODE (type))
8428 {
8429 case TYPE_CODE_FUNC:
8430 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8431 return allocate_value (TYPE_TARGET_TYPE (type));
8432 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8433 case TYPE_CODE_STRUCT:
8434 {
8435 int arity;
8436
8437 arity = ada_array_arity (type);
8438 type = ada_array_element_type (type, nargs);
8439 if (type == NULL)
8440 error (_("cannot subscript or call a record"));
8441 if (arity != nargs)
8442 error (_("wrong number of subscripts; expecting %d"), arity);
8443 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8444 return value_zero (ada_aligned_type (type), lval_memory);
8445 return
8446 unwrap_value (ada_value_subscript
8447 (argvec[0], nargs, argvec + 1));
8448 }
8449 case TYPE_CODE_ARRAY:
8450 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8451 {
8452 type = ada_array_element_type (type, nargs);
8453 if (type == NULL)
8454 error (_("element type of array unknown"));
8455 else
8456 return value_zero (ada_aligned_type (type), lval_memory);
8457 }
8458 return
8459 unwrap_value (ada_value_subscript
8460 (ada_coerce_to_simple_array (argvec[0]),
8461 nargs, argvec + 1));
8462 case TYPE_CODE_PTR: /* Pointer to array */
8463 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8464 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8465 {
8466 type = ada_array_element_type (type, nargs);
8467 if (type == NULL)
8468 error (_("element type of array unknown"));
8469 else
8470 return value_zero (ada_aligned_type (type), lval_memory);
8471 }
8472 return
8473 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8474 nargs, argvec + 1));
8475
8476 default:
8477 error (_("Attempt to index or call something other than an "
8478 "array or function"));
8479 }
8480
8481 case TERNOP_SLICE:
8482 {
8483 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8484 struct value *low_bound_val =
8485 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8486 struct value *high_bound_val =
8487 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8488 LONGEST low_bound;
8489 LONGEST high_bound;
8490 low_bound_val = coerce_ref (low_bound_val);
8491 high_bound_val = coerce_ref (high_bound_val);
8492 low_bound = pos_atr (low_bound_val);
8493 high_bound = pos_atr (high_bound_val);
8494
8495 if (noside == EVAL_SKIP)
8496 goto nosideret;
8497
8498 /* If this is a reference to an aligner type, then remove all
8499 the aligners. */
8500 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8501 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8502 TYPE_TARGET_TYPE (value_type (array)) =
8503 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8504
8505 if (ada_is_packed_array_type (value_type (array)))
8506 error (_("cannot slice a packed array"));
8507
8508 /* If this is a reference to an array or an array lvalue,
8509 convert to a pointer. */
8510 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8511 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8512 && VALUE_LVAL (array) == lval_memory))
8513 array = value_addr (array);
8514
8515 if (noside == EVAL_AVOID_SIDE_EFFECTS
8516 && ada_is_array_descriptor_type (ada_check_typedef
8517 (value_type (array))))
8518 return empty_array (ada_type_of_array (array, 0), low_bound);
8519
8520 array = ada_coerce_to_simple_array_ptr (array);
8521
8522 /* If we have more than one level of pointer indirection,
8523 dereference the value until we get only one level. */
8524 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8525 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8526 == TYPE_CODE_PTR))
8527 array = value_ind (array);
8528
8529 /* Make sure we really do have an array type before going further,
8530 to avoid a SEGV when trying to get the index type or the target
8531 type later down the road if the debug info generated by
8532 the compiler is incorrect or incomplete. */
8533 if (!ada_is_simple_array_type (value_type (array)))
8534 error (_("cannot take slice of non-array"));
8535
8536 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8537 {
8538 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8539 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8540 low_bound);
8541 else
8542 {
8543 struct type *arr_type0 =
8544 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8545 NULL, 1);
8546 return ada_value_slice_ptr (array, arr_type0,
8547 longest_to_int (low_bound),
8548 longest_to_int (high_bound));
8549 }
8550 }
8551 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8552 return array;
8553 else if (high_bound < low_bound)
8554 return empty_array (value_type (array), low_bound);
8555 else
8556 return ada_value_slice (array, longest_to_int (low_bound),
8557 longest_to_int (high_bound));
8558 }
8559
8560 case UNOP_IN_RANGE:
8561 (*pos) += 2;
8562 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8563 type = exp->elts[pc + 1].type;
8564
8565 if (noside == EVAL_SKIP)
8566 goto nosideret;
8567
8568 switch (TYPE_CODE (type))
8569 {
8570 default:
8571 lim_warning (_("Membership test incompletely implemented; "
8572 "always returns true"));
8573 return value_from_longest (builtin_type_int, (LONGEST) 1);
8574
8575 case TYPE_CODE_RANGE:
8576 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8577 arg3 = value_from_longest (builtin_type_int,
8578 TYPE_HIGH_BOUND (type));
8579 return
8580 value_from_longest (builtin_type_int,
8581 (value_less (arg1, arg3)
8582 || value_equal (arg1, arg3))
8583 && (value_less (arg2, arg1)
8584 || value_equal (arg2, arg1)));
8585 }
8586
8587 case BINOP_IN_BOUNDS:
8588 (*pos) += 2;
8589 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8590 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8591
8592 if (noside == EVAL_SKIP)
8593 goto nosideret;
8594
8595 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8596 return value_zero (builtin_type_int, not_lval);
8597
8598 tem = longest_to_int (exp->elts[pc + 1].longconst);
8599
8600 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8601 error (_("invalid dimension number to 'range"));
8602
8603 arg3 = ada_array_bound (arg2, tem, 1);
8604 arg2 = ada_array_bound (arg2, tem, 0);
8605
8606 return
8607 value_from_longest (builtin_type_int,
8608 (value_less (arg1, arg3)
8609 || value_equal (arg1, arg3))
8610 && (value_less (arg2, arg1)
8611 || value_equal (arg2, arg1)));
8612
8613 case TERNOP_IN_RANGE:
8614 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8615 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8616 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8617
8618 if (noside == EVAL_SKIP)
8619 goto nosideret;
8620
8621 return
8622 value_from_longest (builtin_type_int,
8623 (value_less (arg1, arg3)
8624 || value_equal (arg1, arg3))
8625 && (value_less (arg2, arg1)
8626 || value_equal (arg2, arg1)));
8627
8628 case OP_ATR_FIRST:
8629 case OP_ATR_LAST:
8630 case OP_ATR_LENGTH:
8631 {
8632 struct type *type_arg;
8633 if (exp->elts[*pos].opcode == OP_TYPE)
8634 {
8635 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8636 arg1 = NULL;
8637 type_arg = exp->elts[pc + 2].type;
8638 }
8639 else
8640 {
8641 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8642 type_arg = NULL;
8643 }
8644
8645 if (exp->elts[*pos].opcode != OP_LONG)
8646 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8647 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8648 *pos += 4;
8649
8650 if (noside == EVAL_SKIP)
8651 goto nosideret;
8652
8653 if (type_arg == NULL)
8654 {
8655 arg1 = ada_coerce_ref (arg1);
8656
8657 if (ada_is_packed_array_type (value_type (arg1)))
8658 arg1 = ada_coerce_to_simple_array (arg1);
8659
8660 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8661 error (_("invalid dimension number to '%s"),
8662 ada_attribute_name (op));
8663
8664 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8665 {
8666 type = ada_index_type (value_type (arg1), tem);
8667 if (type == NULL)
8668 error
8669 (_("attempt to take bound of something that is not an array"));
8670 return allocate_value (type);
8671 }
8672
8673 switch (op)
8674 {
8675 default: /* Should never happen. */
8676 error (_("unexpected attribute encountered"));
8677 case OP_ATR_FIRST:
8678 return ada_array_bound (arg1, tem, 0);
8679 case OP_ATR_LAST:
8680 return ada_array_bound (arg1, tem, 1);
8681 case OP_ATR_LENGTH:
8682 return ada_array_length (arg1, tem);
8683 }
8684 }
8685 else if (discrete_type_p (type_arg))
8686 {
8687 struct type *range_type;
8688 char *name = ada_type_name (type_arg);
8689 range_type = NULL;
8690 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8691 range_type =
8692 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8693 if (range_type == NULL)
8694 range_type = type_arg;
8695 switch (op)
8696 {
8697 default:
8698 error (_("unexpected attribute encountered"));
8699 case OP_ATR_FIRST:
8700 return discrete_type_low_bound (range_type);
8701 case OP_ATR_LAST:
8702 return discrete_type_high_bound (range_type);
8703 case OP_ATR_LENGTH:
8704 error (_("the 'length attribute applies only to array types"));
8705 }
8706 }
8707 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8708 error (_("unimplemented type attribute"));
8709 else
8710 {
8711 LONGEST low, high;
8712
8713 if (ada_is_packed_array_type (type_arg))
8714 type_arg = decode_packed_array_type (type_arg);
8715
8716 if (tem < 1 || tem > ada_array_arity (type_arg))
8717 error (_("invalid dimension number to '%s"),
8718 ada_attribute_name (op));
8719
8720 type = ada_index_type (type_arg, tem);
8721 if (type == NULL)
8722 error
8723 (_("attempt to take bound of something that is not an array"));
8724 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8725 return allocate_value (type);
8726
8727 switch (op)
8728 {
8729 default:
8730 error (_("unexpected attribute encountered"));
8731 case OP_ATR_FIRST:
8732 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8733 return value_from_longest (type, low);
8734 case OP_ATR_LAST:
8735 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8736 return value_from_longest (type, high);
8737 case OP_ATR_LENGTH:
8738 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8739 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8740 return value_from_longest (type, high - low + 1);
8741 }
8742 }
8743 }
8744
8745 case OP_ATR_TAG:
8746 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8747 if (noside == EVAL_SKIP)
8748 goto nosideret;
8749
8750 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8751 return value_zero (ada_tag_type (arg1), not_lval);
8752
8753 return ada_value_tag (arg1);
8754
8755 case OP_ATR_MIN:
8756 case OP_ATR_MAX:
8757 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8758 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8759 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8760 if (noside == EVAL_SKIP)
8761 goto nosideret;
8762 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8763 return value_zero (value_type (arg1), not_lval);
8764 else
8765 return value_binop (arg1, arg2,
8766 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8767
8768 case OP_ATR_MODULUS:
8769 {
8770 struct type *type_arg = exp->elts[pc + 2].type;
8771 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8772
8773 if (noside == EVAL_SKIP)
8774 goto nosideret;
8775
8776 if (!ada_is_modular_type (type_arg))
8777 error (_("'modulus must be applied to modular type"));
8778
8779 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8780 ada_modulus (type_arg));
8781 }
8782
8783
8784 case OP_ATR_POS:
8785 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8786 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8787 if (noside == EVAL_SKIP)
8788 goto nosideret;
8789 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8790 return value_zero (builtin_type_int, not_lval);
8791 else
8792 return value_pos_atr (arg1);
8793
8794 case OP_ATR_SIZE:
8795 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8796 if (noside == EVAL_SKIP)
8797 goto nosideret;
8798 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8799 return value_zero (builtin_type_int, not_lval);
8800 else
8801 return value_from_longest (builtin_type_int,
8802 TARGET_CHAR_BIT
8803 * TYPE_LENGTH (value_type (arg1)));
8804
8805 case OP_ATR_VAL:
8806 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8807 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8808 type = exp->elts[pc + 2].type;
8809 if (noside == EVAL_SKIP)
8810 goto nosideret;
8811 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8812 return value_zero (type, not_lval);
8813 else
8814 return value_val_atr (type, arg1);
8815
8816 case BINOP_EXP:
8817 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8818 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8819 if (noside == EVAL_SKIP)
8820 goto nosideret;
8821 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8822 return value_zero (value_type (arg1), not_lval);
8823 else
8824 return value_binop (arg1, arg2, op);
8825
8826 case UNOP_PLUS:
8827 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8828 if (noside == EVAL_SKIP)
8829 goto nosideret;
8830 else
8831 return arg1;
8832
8833 case UNOP_ABS:
8834 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8835 if (noside == EVAL_SKIP)
8836 goto nosideret;
8837 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8838 return value_neg (arg1);
8839 else
8840 return arg1;
8841
8842 case UNOP_IND:
8843 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8844 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8845 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8846 if (noside == EVAL_SKIP)
8847 goto nosideret;
8848 type = ada_check_typedef (value_type (arg1));
8849 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8850 {
8851 if (ada_is_array_descriptor_type (type))
8852 /* GDB allows dereferencing GNAT array descriptors. */
8853 {
8854 struct type *arrType = ada_type_of_array (arg1, 0);
8855 if (arrType == NULL)
8856 error (_("Attempt to dereference null array pointer."));
8857 return value_at_lazy (arrType, 0);
8858 }
8859 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8860 || TYPE_CODE (type) == TYPE_CODE_REF
8861 /* In C you can dereference an array to get the 1st elt. */
8862 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8863 {
8864 type = to_static_fixed_type
8865 (ada_aligned_type
8866 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8867 check_size (type);
8868 return value_zero (type, lval_memory);
8869 }
8870 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8871 /* GDB allows dereferencing an int. */
8872 return value_zero (builtin_type_int, lval_memory);
8873 else
8874 error (_("Attempt to take contents of a non-pointer value."));
8875 }
8876 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8877 type = ada_check_typedef (value_type (arg1));
8878
8879 if (ada_is_array_descriptor_type (type))
8880 /* GDB allows dereferencing GNAT array descriptors. */
8881 return ada_coerce_to_simple_array (arg1);
8882 else
8883 return ada_value_ind (arg1);
8884
8885 case STRUCTOP_STRUCT:
8886 tem = longest_to_int (exp->elts[pc + 1].longconst);
8887 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8888 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8889 if (noside == EVAL_SKIP)
8890 goto nosideret;
8891 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8892 {
8893 struct type *type1 = value_type (arg1);
8894 if (ada_is_tagged_type (type1, 1))
8895 {
8896 type = ada_lookup_struct_elt_type (type1,
8897 &exp->elts[pc + 2].string,
8898 1, 1, NULL);
8899 if (type == NULL)
8900 /* In this case, we assume that the field COULD exist
8901 in some extension of the type. Return an object of
8902 "type" void, which will match any formal
8903 (see ada_type_match). */
8904 return value_zero (builtin_type_void, lval_memory);
8905 }
8906 else
8907 type =
8908 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8909 0, NULL);
8910
8911 return value_zero (ada_aligned_type (type), lval_memory);
8912 }
8913 else
8914 return
8915 ada_to_fixed_value (unwrap_value
8916 (ada_value_struct_elt
8917 (arg1, &exp->elts[pc + 2].string, 0)));
8918 case OP_TYPE:
8919 /* The value is not supposed to be used. This is here to make it
8920 easier to accommodate expressions that contain types. */
8921 (*pos) += 2;
8922 if (noside == EVAL_SKIP)
8923 goto nosideret;
8924 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8925 return allocate_value (exp->elts[pc + 1].type);
8926 else
8927 error (_("Attempt to use a type name as an expression"));
8928
8929 case OP_AGGREGATE:
8930 case OP_CHOICES:
8931 case OP_OTHERS:
8932 case OP_DISCRETE_RANGE:
8933 case OP_POSITIONAL:
8934 case OP_NAME:
8935 if (noside == EVAL_NORMAL)
8936 switch (op)
8937 {
8938 case OP_NAME:
8939 error (_("Undefined name, ambiguous name, or renaming used in "
8940 "component association: %s."), &exp->elts[pc+2].string);
8941 case OP_AGGREGATE:
8942 error (_("Aggregates only allowed on the right of an assignment"));
8943 default:
8944 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8945 }
8946
8947 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8948 *pos += oplen - 1;
8949 for (tem = 0; tem < nargs; tem += 1)
8950 ada_evaluate_subexp (NULL, exp, pos, noside);
8951 goto nosideret;
8952 }
8953
8954 nosideret:
8955 return value_from_longest (builtin_type_long, (LONGEST) 1);
8956 }
8957 \f
8958
8959 /* Fixed point */
8960
8961 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8962 type name that encodes the 'small and 'delta information.
8963 Otherwise, return NULL. */
8964
8965 static const char *
8966 fixed_type_info (struct type *type)
8967 {
8968 const char *name = ada_type_name (type);
8969 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8970
8971 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8972 {
8973 const char *tail = strstr (name, "___XF_");
8974 if (tail == NULL)
8975 return NULL;
8976 else
8977 return tail + 5;
8978 }
8979 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8980 return fixed_type_info (TYPE_TARGET_TYPE (type));
8981 else
8982 return NULL;
8983 }
8984
8985 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8986
8987 int
8988 ada_is_fixed_point_type (struct type *type)
8989 {
8990 return fixed_type_info (type) != NULL;
8991 }
8992
8993 /* Return non-zero iff TYPE represents a System.Address type. */
8994
8995 int
8996 ada_is_system_address_type (struct type *type)
8997 {
8998 return (TYPE_NAME (type)
8999 && strcmp (TYPE_NAME (type), "system__address") == 0);
9000 }
9001
9002 /* Assuming that TYPE is the representation of an Ada fixed-point
9003 type, return its delta, or -1 if the type is malformed and the
9004 delta cannot be determined. */
9005
9006 DOUBLEST
9007 ada_delta (struct type *type)
9008 {
9009 const char *encoding = fixed_type_info (type);
9010 long num, den;
9011
9012 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9013 return -1.0;
9014 else
9015 return (DOUBLEST) num / (DOUBLEST) den;
9016 }
9017
9018 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9019 factor ('SMALL value) associated with the type. */
9020
9021 static DOUBLEST
9022 scaling_factor (struct type *type)
9023 {
9024 const char *encoding = fixed_type_info (type);
9025 unsigned long num0, den0, num1, den1;
9026 int n;
9027
9028 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9029
9030 if (n < 2)
9031 return 1.0;
9032 else if (n == 4)
9033 return (DOUBLEST) num1 / (DOUBLEST) den1;
9034 else
9035 return (DOUBLEST) num0 / (DOUBLEST) den0;
9036 }
9037
9038
9039 /* Assuming that X is the representation of a value of fixed-point
9040 type TYPE, return its floating-point equivalent. */
9041
9042 DOUBLEST
9043 ada_fixed_to_float (struct type *type, LONGEST x)
9044 {
9045 return (DOUBLEST) x *scaling_factor (type);
9046 }
9047
9048 /* The representation of a fixed-point value of type TYPE
9049 corresponding to the value X. */
9050
9051 LONGEST
9052 ada_float_to_fixed (struct type *type, DOUBLEST x)
9053 {
9054 return (LONGEST) (x / scaling_factor (type) + 0.5);
9055 }
9056
9057
9058 /* VAX floating formats */
9059
9060 /* Non-zero iff TYPE represents one of the special VAX floating-point
9061 types. */
9062
9063 int
9064 ada_is_vax_floating_type (struct type *type)
9065 {
9066 int name_len =
9067 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9068 return
9069 name_len > 6
9070 && (TYPE_CODE (type) == TYPE_CODE_INT
9071 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9072 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9073 }
9074
9075 /* The type of special VAX floating-point type this is, assuming
9076 ada_is_vax_floating_point. */
9077
9078 int
9079 ada_vax_float_type_suffix (struct type *type)
9080 {
9081 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9082 }
9083
9084 /* A value representing the special debugging function that outputs
9085 VAX floating-point values of the type represented by TYPE. Assumes
9086 ada_is_vax_floating_type (TYPE). */
9087
9088 struct value *
9089 ada_vax_float_print_function (struct type *type)
9090 {
9091 switch (ada_vax_float_type_suffix (type))
9092 {
9093 case 'F':
9094 return get_var_value ("DEBUG_STRING_F", 0);
9095 case 'D':
9096 return get_var_value ("DEBUG_STRING_D", 0);
9097 case 'G':
9098 return get_var_value ("DEBUG_STRING_G", 0);
9099 default:
9100 error (_("invalid VAX floating-point type"));
9101 }
9102 }
9103 \f
9104
9105 /* Range types */
9106
9107 /* Scan STR beginning at position K for a discriminant name, and
9108 return the value of that discriminant field of DVAL in *PX. If
9109 PNEW_K is not null, put the position of the character beyond the
9110 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9111 not alter *PX and *PNEW_K if unsuccessful. */
9112
9113 static int
9114 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9115 int *pnew_k)
9116 {
9117 static char *bound_buffer = NULL;
9118 static size_t bound_buffer_len = 0;
9119 char *bound;
9120 char *pend;
9121 struct value *bound_val;
9122
9123 if (dval == NULL || str == NULL || str[k] == '\0')
9124 return 0;
9125
9126 pend = strstr (str + k, "__");
9127 if (pend == NULL)
9128 {
9129 bound = str + k;
9130 k += strlen (bound);
9131 }
9132 else
9133 {
9134 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9135 bound = bound_buffer;
9136 strncpy (bound_buffer, str + k, pend - (str + k));
9137 bound[pend - (str + k)] = '\0';
9138 k = pend - str;
9139 }
9140
9141 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9142 if (bound_val == NULL)
9143 return 0;
9144
9145 *px = value_as_long (bound_val);
9146 if (pnew_k != NULL)
9147 *pnew_k = k;
9148 return 1;
9149 }
9150
9151 /* Value of variable named NAME in the current environment. If
9152 no such variable found, then if ERR_MSG is null, returns 0, and
9153 otherwise causes an error with message ERR_MSG. */
9154
9155 static struct value *
9156 get_var_value (char *name, char *err_msg)
9157 {
9158 struct ada_symbol_info *syms;
9159 int nsyms;
9160
9161 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9162 &syms);
9163
9164 if (nsyms != 1)
9165 {
9166 if (err_msg == NULL)
9167 return 0;
9168 else
9169 error (("%s"), err_msg);
9170 }
9171
9172 return value_of_variable (syms[0].sym, syms[0].block);
9173 }
9174
9175 /* Value of integer variable named NAME in the current environment. If
9176 no such variable found, returns 0, and sets *FLAG to 0. If
9177 successful, sets *FLAG to 1. */
9178
9179 LONGEST
9180 get_int_var_value (char *name, int *flag)
9181 {
9182 struct value *var_val = get_var_value (name, 0);
9183
9184 if (var_val == 0)
9185 {
9186 if (flag != NULL)
9187 *flag = 0;
9188 return 0;
9189 }
9190 else
9191 {
9192 if (flag != NULL)
9193 *flag = 1;
9194 return value_as_long (var_val);
9195 }
9196 }
9197
9198
9199 /* Return a range type whose base type is that of the range type named
9200 NAME in the current environment, and whose bounds are calculated
9201 from NAME according to the GNAT range encoding conventions.
9202 Extract discriminant values, if needed, from DVAL. If a new type
9203 must be created, allocate in OBJFILE's space. The bounds
9204 information, in general, is encoded in NAME, the base type given in
9205 the named range type. */
9206
9207 static struct type *
9208 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9209 {
9210 struct type *raw_type = ada_find_any_type (name);
9211 struct type *base_type;
9212 char *subtype_info;
9213
9214 if (raw_type == NULL)
9215 base_type = builtin_type_int;
9216 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9217 base_type = TYPE_TARGET_TYPE (raw_type);
9218 else
9219 base_type = raw_type;
9220
9221 subtype_info = strstr (name, "___XD");
9222 if (subtype_info == NULL)
9223 return raw_type;
9224 else
9225 {
9226 static char *name_buf = NULL;
9227 static size_t name_len = 0;
9228 int prefix_len = subtype_info - name;
9229 LONGEST L, U;
9230 struct type *type;
9231 char *bounds_str;
9232 int n;
9233
9234 GROW_VECT (name_buf, name_len, prefix_len + 5);
9235 strncpy (name_buf, name, prefix_len);
9236 name_buf[prefix_len] = '\0';
9237
9238 subtype_info += 5;
9239 bounds_str = strchr (subtype_info, '_');
9240 n = 1;
9241
9242 if (*subtype_info == 'L')
9243 {
9244 if (!ada_scan_number (bounds_str, n, &L, &n)
9245 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9246 return raw_type;
9247 if (bounds_str[n] == '_')
9248 n += 2;
9249 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9250 n += 1;
9251 subtype_info += 1;
9252 }
9253 else
9254 {
9255 int ok;
9256 strcpy (name_buf + prefix_len, "___L");
9257 L = get_int_var_value (name_buf, &ok);
9258 if (!ok)
9259 {
9260 lim_warning (_("Unknown lower bound, using 1."));
9261 L = 1;
9262 }
9263 }
9264
9265 if (*subtype_info == 'U')
9266 {
9267 if (!ada_scan_number (bounds_str, n, &U, &n)
9268 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9269 return raw_type;
9270 }
9271 else
9272 {
9273 int ok;
9274 strcpy (name_buf + prefix_len, "___U");
9275 U = get_int_var_value (name_buf, &ok);
9276 if (!ok)
9277 {
9278 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9279 U = L;
9280 }
9281 }
9282
9283 if (objfile == NULL)
9284 objfile = TYPE_OBJFILE (base_type);
9285 type = create_range_type (alloc_type (objfile), base_type, L, U);
9286 TYPE_NAME (type) = name;
9287 return type;
9288 }
9289 }
9290
9291 /* True iff NAME is the name of a range type. */
9292
9293 int
9294 ada_is_range_type_name (const char *name)
9295 {
9296 return (name != NULL && strstr (name, "___XD"));
9297 }
9298 \f
9299
9300 /* Modular types */
9301
9302 /* True iff TYPE is an Ada modular type. */
9303
9304 int
9305 ada_is_modular_type (struct type *type)
9306 {
9307 struct type *subranged_type = base_type (type);
9308
9309 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9310 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9311 && TYPE_UNSIGNED (subranged_type));
9312 }
9313
9314 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9315
9316 ULONGEST
9317 ada_modulus (struct type * type)
9318 {
9319 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9320 }
9321 \f
9322
9323 /* Ada exception catchpoint support:
9324 ---------------------------------
9325
9326 We support 3 kinds of exception catchpoints:
9327 . catchpoints on Ada exceptions
9328 . catchpoints on unhandled Ada exceptions
9329 . catchpoints on failed assertions
9330
9331 Exceptions raised during failed assertions, or unhandled exceptions
9332 could perfectly be caught with the general catchpoint on Ada exceptions.
9333 However, we can easily differentiate these two special cases, and having
9334 the option to distinguish these two cases from the rest can be useful
9335 to zero-in on certain situations.
9336
9337 Exception catchpoints are a specialized form of breakpoint,
9338 since they rely on inserting breakpoints inside known routines
9339 of the GNAT runtime. The implementation therefore uses a standard
9340 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9341 of breakpoint_ops.
9342
9343 Support in the runtime for exception catchpoints have been changed
9344 a few times already, and these changes affect the implementation
9345 of these catchpoints. In order to be able to support several
9346 variants of the runtime, we use a sniffer that will determine
9347 the runtime variant used by the program being debugged.
9348
9349 At this time, we do not support the use of conditions on Ada exception
9350 catchpoints. The COND and COND_STRING fields are therefore set
9351 to NULL (most of the time, see below).
9352
9353 Conditions where EXP_STRING, COND, and COND_STRING are used:
9354
9355 When a user specifies the name of a specific exception in the case
9356 of catchpoints on Ada exceptions, we store the name of that exception
9357 in the EXP_STRING. We then translate this request into an actual
9358 condition stored in COND_STRING, and then parse it into an expression
9359 stored in COND. */
9360
9361 /* The different types of catchpoints that we introduced for catching
9362 Ada exceptions. */
9363
9364 enum exception_catchpoint_kind
9365 {
9366 ex_catch_exception,
9367 ex_catch_exception_unhandled,
9368 ex_catch_assert
9369 };
9370
9371 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9372
9373 /* A structure that describes how to support exception catchpoints
9374 for a given executable. */
9375
9376 struct exception_support_info
9377 {
9378 /* The name of the symbol to break on in order to insert
9379 a catchpoint on exceptions. */
9380 const char *catch_exception_sym;
9381
9382 /* The name of the symbol to break on in order to insert
9383 a catchpoint on unhandled exceptions. */
9384 const char *catch_exception_unhandled_sym;
9385
9386 /* The name of the symbol to break on in order to insert
9387 a catchpoint on failed assertions. */
9388 const char *catch_assert_sym;
9389
9390 /* Assuming that the inferior just triggered an unhandled exception
9391 catchpoint, this function is responsible for returning the address
9392 in inferior memory where the name of that exception is stored.
9393 Return zero if the address could not be computed. */
9394 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9395 };
9396
9397 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9398 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9399
9400 /* The following exception support info structure describes how to
9401 implement exception catchpoints with the latest version of the
9402 Ada runtime (as of 2007-03-06). */
9403
9404 static const struct exception_support_info default_exception_support_info =
9405 {
9406 "__gnat_debug_raise_exception", /* catch_exception_sym */
9407 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9408 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9409 ada_unhandled_exception_name_addr
9410 };
9411
9412 /* The following exception support info structure describes how to
9413 implement exception catchpoints with a slightly older version
9414 of the Ada runtime. */
9415
9416 static const struct exception_support_info exception_support_info_fallback =
9417 {
9418 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9419 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9420 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9421 ada_unhandled_exception_name_addr_from_raise
9422 };
9423
9424 /* For each executable, we sniff which exception info structure to use
9425 and cache it in the following global variable. */
9426
9427 static const struct exception_support_info *exception_info = NULL;
9428
9429 /* Inspect the Ada runtime and determine which exception info structure
9430 should be used to provide support for exception catchpoints.
9431
9432 This function will always set exception_info, or raise an error. */
9433
9434 static void
9435 ada_exception_support_info_sniffer (void)
9436 {
9437 struct symbol *sym;
9438
9439 /* If the exception info is already known, then no need to recompute it. */
9440 if (exception_info != NULL)
9441 return;
9442
9443 /* Check the latest (default) exception support info. */
9444 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9445 NULL, VAR_DOMAIN);
9446 if (sym != NULL)
9447 {
9448 exception_info = &default_exception_support_info;
9449 return;
9450 }
9451
9452 /* Try our fallback exception suport info. */
9453 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9454 NULL, VAR_DOMAIN);
9455 if (sym != NULL)
9456 {
9457 exception_info = &exception_support_info_fallback;
9458 return;
9459 }
9460
9461 /* Sometimes, it is normal for us to not be able to find the routine
9462 we are looking for. This happens when the program is linked with
9463 the shared version of the GNAT runtime, and the program has not been
9464 started yet. Inform the user of these two possible causes if
9465 applicable. */
9466
9467 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9468 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9469
9470 /* If the symbol does not exist, then check that the program is
9471 already started, to make sure that shared libraries have been
9472 loaded. If it is not started, this may mean that the symbol is
9473 in a shared library. */
9474
9475 if (ptid_get_pid (inferior_ptid) == 0)
9476 error (_("Unable to insert catchpoint. Try to start the program first."));
9477
9478 /* At this point, we know that we are debugging an Ada program and
9479 that the inferior has been started, but we still are not able to
9480 find the run-time symbols. That can mean that we are in
9481 configurable run time mode, or that a-except as been optimized
9482 out by the linker... In any case, at this point it is not worth
9483 supporting this feature. */
9484
9485 error (_("Cannot insert catchpoints in this configuration."));
9486 }
9487
9488 /* An observer of "executable_changed" events.
9489 Its role is to clear certain cached values that need to be recomputed
9490 each time a new executable is loaded by GDB. */
9491
9492 static void
9493 ada_executable_changed_observer (void *unused)
9494 {
9495 /* If the executable changed, then it is possible that the Ada runtime
9496 is different. So we need to invalidate the exception support info
9497 cache. */
9498 exception_info = NULL;
9499 }
9500
9501 /* Return the name of the function at PC, NULL if could not find it.
9502 This function only checks the debugging information, not the symbol
9503 table. */
9504
9505 static char *
9506 function_name_from_pc (CORE_ADDR pc)
9507 {
9508 char *func_name;
9509
9510 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9511 return NULL;
9512
9513 return func_name;
9514 }
9515
9516 /* True iff FRAME is very likely to be that of a function that is
9517 part of the runtime system. This is all very heuristic, but is
9518 intended to be used as advice as to what frames are uninteresting
9519 to most users. */
9520
9521 static int
9522 is_known_support_routine (struct frame_info *frame)
9523 {
9524 struct symtab_and_line sal;
9525 char *func_name;
9526 int i;
9527
9528 /* If this code does not have any debugging information (no symtab),
9529 This cannot be any user code. */
9530
9531 find_frame_sal (frame, &sal);
9532 if (sal.symtab == NULL)
9533 return 1;
9534
9535 /* If there is a symtab, but the associated source file cannot be
9536 located, then assume this is not user code: Selecting a frame
9537 for which we cannot display the code would not be very helpful
9538 for the user. This should also take care of case such as VxWorks
9539 where the kernel has some debugging info provided for a few units. */
9540
9541 if (symtab_to_fullname (sal.symtab) == NULL)
9542 return 1;
9543
9544 /* Check the unit filename againt the Ada runtime file naming.
9545 We also check the name of the objfile against the name of some
9546 known system libraries that sometimes come with debugging info
9547 too. */
9548
9549 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9550 {
9551 re_comp (known_runtime_file_name_patterns[i]);
9552 if (re_exec (sal.symtab->filename))
9553 return 1;
9554 if (sal.symtab->objfile != NULL
9555 && re_exec (sal.symtab->objfile->name))
9556 return 1;
9557 }
9558
9559 /* Check whether the function is a GNAT-generated entity. */
9560
9561 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9562 if (func_name == NULL)
9563 return 1;
9564
9565 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9566 {
9567 re_comp (known_auxiliary_function_name_patterns[i]);
9568 if (re_exec (func_name))
9569 return 1;
9570 }
9571
9572 return 0;
9573 }
9574
9575 /* Find the first frame that contains debugging information and that is not
9576 part of the Ada run-time, starting from FI and moving upward. */
9577
9578 static void
9579 ada_find_printable_frame (struct frame_info *fi)
9580 {
9581 for (; fi != NULL; fi = get_prev_frame (fi))
9582 {
9583 if (!is_known_support_routine (fi))
9584 {
9585 select_frame (fi);
9586 break;
9587 }
9588 }
9589
9590 }
9591
9592 /* Assuming that the inferior just triggered an unhandled exception
9593 catchpoint, return the address in inferior memory where the name
9594 of the exception is stored.
9595
9596 Return zero if the address could not be computed. */
9597
9598 static CORE_ADDR
9599 ada_unhandled_exception_name_addr (void)
9600 {
9601 return parse_and_eval_address ("e.full_name");
9602 }
9603
9604 /* Same as ada_unhandled_exception_name_addr, except that this function
9605 should be used when the inferior uses an older version of the runtime,
9606 where the exception name needs to be extracted from a specific frame
9607 several frames up in the callstack. */
9608
9609 static CORE_ADDR
9610 ada_unhandled_exception_name_addr_from_raise (void)
9611 {
9612 int frame_level;
9613 struct frame_info *fi;
9614
9615 /* To determine the name of this exception, we need to select
9616 the frame corresponding to RAISE_SYM_NAME. This frame is
9617 at least 3 levels up, so we simply skip the first 3 frames
9618 without checking the name of their associated function. */
9619 fi = get_current_frame ();
9620 for (frame_level = 0; frame_level < 3; frame_level += 1)
9621 if (fi != NULL)
9622 fi = get_prev_frame (fi);
9623
9624 while (fi != NULL)
9625 {
9626 const char *func_name =
9627 function_name_from_pc (get_frame_address_in_block (fi));
9628 if (func_name != NULL
9629 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9630 break; /* We found the frame we were looking for... */
9631 fi = get_prev_frame (fi);
9632 }
9633
9634 if (fi == NULL)
9635 return 0;
9636
9637 select_frame (fi);
9638 return parse_and_eval_address ("id.full_name");
9639 }
9640
9641 /* Assuming the inferior just triggered an Ada exception catchpoint
9642 (of any type), return the address in inferior memory where the name
9643 of the exception is stored, if applicable.
9644
9645 Return zero if the address could not be computed, or if not relevant. */
9646
9647 static CORE_ADDR
9648 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9649 struct breakpoint *b)
9650 {
9651 switch (ex)
9652 {
9653 case ex_catch_exception:
9654 return (parse_and_eval_address ("e.full_name"));
9655 break;
9656
9657 case ex_catch_exception_unhandled:
9658 return exception_info->unhandled_exception_name_addr ();
9659 break;
9660
9661 case ex_catch_assert:
9662 return 0; /* Exception name is not relevant in this case. */
9663 break;
9664
9665 default:
9666 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9667 break;
9668 }
9669
9670 return 0; /* Should never be reached. */
9671 }
9672
9673 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9674 any error that ada_exception_name_addr_1 might cause to be thrown.
9675 When an error is intercepted, a warning with the error message is printed,
9676 and zero is returned. */
9677
9678 static CORE_ADDR
9679 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9680 struct breakpoint *b)
9681 {
9682 struct gdb_exception e;
9683 CORE_ADDR result = 0;
9684
9685 TRY_CATCH (e, RETURN_MASK_ERROR)
9686 {
9687 result = ada_exception_name_addr_1 (ex, b);
9688 }
9689
9690 if (e.reason < 0)
9691 {
9692 warning (_("failed to get exception name: %s"), e.message);
9693 return 0;
9694 }
9695
9696 return result;
9697 }
9698
9699 /* Implement the PRINT_IT method in the breakpoint_ops structure
9700 for all exception catchpoint kinds. */
9701
9702 static enum print_stop_action
9703 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9704 {
9705 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9706 char exception_name[256];
9707
9708 if (addr != 0)
9709 {
9710 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9711 exception_name [sizeof (exception_name) - 1] = '\0';
9712 }
9713
9714 ada_find_printable_frame (get_current_frame ());
9715
9716 annotate_catchpoint (b->number);
9717 switch (ex)
9718 {
9719 case ex_catch_exception:
9720 if (addr != 0)
9721 printf_filtered (_("\nCatchpoint %d, %s at "),
9722 b->number, exception_name);
9723 else
9724 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9725 break;
9726 case ex_catch_exception_unhandled:
9727 if (addr != 0)
9728 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9729 b->number, exception_name);
9730 else
9731 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9732 b->number);
9733 break;
9734 case ex_catch_assert:
9735 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9736 b->number);
9737 break;
9738 }
9739
9740 return PRINT_SRC_AND_LOC;
9741 }
9742
9743 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9744 for all exception catchpoint kinds. */
9745
9746 static void
9747 print_one_exception (enum exception_catchpoint_kind ex,
9748 struct breakpoint *b, CORE_ADDR *last_addr)
9749 {
9750 if (addressprint)
9751 {
9752 annotate_field (4);
9753 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9754 }
9755
9756 annotate_field (5);
9757 *last_addr = b->loc->address;
9758 switch (ex)
9759 {
9760 case ex_catch_exception:
9761 if (b->exp_string != NULL)
9762 {
9763 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9764
9765 ui_out_field_string (uiout, "what", msg);
9766 xfree (msg);
9767 }
9768 else
9769 ui_out_field_string (uiout, "what", "all Ada exceptions");
9770
9771 break;
9772
9773 case ex_catch_exception_unhandled:
9774 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9775 break;
9776
9777 case ex_catch_assert:
9778 ui_out_field_string (uiout, "what", "failed Ada assertions");
9779 break;
9780
9781 default:
9782 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9783 break;
9784 }
9785 }
9786
9787 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9788 for all exception catchpoint kinds. */
9789
9790 static void
9791 print_mention_exception (enum exception_catchpoint_kind ex,
9792 struct breakpoint *b)
9793 {
9794 switch (ex)
9795 {
9796 case ex_catch_exception:
9797 if (b->exp_string != NULL)
9798 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9799 b->number, b->exp_string);
9800 else
9801 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9802
9803 break;
9804
9805 case ex_catch_exception_unhandled:
9806 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9807 b->number);
9808 break;
9809
9810 case ex_catch_assert:
9811 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9812 break;
9813
9814 default:
9815 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9816 break;
9817 }
9818 }
9819
9820 /* Virtual table for "catch exception" breakpoints. */
9821
9822 static enum print_stop_action
9823 print_it_catch_exception (struct breakpoint *b)
9824 {
9825 return print_it_exception (ex_catch_exception, b);
9826 }
9827
9828 static void
9829 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9830 {
9831 print_one_exception (ex_catch_exception, b, last_addr);
9832 }
9833
9834 static void
9835 print_mention_catch_exception (struct breakpoint *b)
9836 {
9837 print_mention_exception (ex_catch_exception, b);
9838 }
9839
9840 static struct breakpoint_ops catch_exception_breakpoint_ops =
9841 {
9842 print_it_catch_exception,
9843 print_one_catch_exception,
9844 print_mention_catch_exception
9845 };
9846
9847 /* Virtual table for "catch exception unhandled" breakpoints. */
9848
9849 static enum print_stop_action
9850 print_it_catch_exception_unhandled (struct breakpoint *b)
9851 {
9852 return print_it_exception (ex_catch_exception_unhandled, b);
9853 }
9854
9855 static void
9856 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9857 {
9858 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9859 }
9860
9861 static void
9862 print_mention_catch_exception_unhandled (struct breakpoint *b)
9863 {
9864 print_mention_exception (ex_catch_exception_unhandled, b);
9865 }
9866
9867 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9868 print_it_catch_exception_unhandled,
9869 print_one_catch_exception_unhandled,
9870 print_mention_catch_exception_unhandled
9871 };
9872
9873 /* Virtual table for "catch assert" breakpoints. */
9874
9875 static enum print_stop_action
9876 print_it_catch_assert (struct breakpoint *b)
9877 {
9878 return print_it_exception (ex_catch_assert, b);
9879 }
9880
9881 static void
9882 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9883 {
9884 print_one_exception (ex_catch_assert, b, last_addr);
9885 }
9886
9887 static void
9888 print_mention_catch_assert (struct breakpoint *b)
9889 {
9890 print_mention_exception (ex_catch_assert, b);
9891 }
9892
9893 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9894 print_it_catch_assert,
9895 print_one_catch_assert,
9896 print_mention_catch_assert
9897 };
9898
9899 /* Return non-zero if B is an Ada exception catchpoint. */
9900
9901 int
9902 ada_exception_catchpoint_p (struct breakpoint *b)
9903 {
9904 return (b->ops == &catch_exception_breakpoint_ops
9905 || b->ops == &catch_exception_unhandled_breakpoint_ops
9906 || b->ops == &catch_assert_breakpoint_ops);
9907 }
9908
9909 /* Return a newly allocated copy of the first space-separated token
9910 in ARGSP, and then adjust ARGSP to point immediately after that
9911 token.
9912
9913 Return NULL if ARGPS does not contain any more tokens. */
9914
9915 static char *
9916 ada_get_next_arg (char **argsp)
9917 {
9918 char *args = *argsp;
9919 char *end;
9920 char *result;
9921
9922 /* Skip any leading white space. */
9923
9924 while (isspace (*args))
9925 args++;
9926
9927 if (args[0] == '\0')
9928 return NULL; /* No more arguments. */
9929
9930 /* Find the end of the current argument. */
9931
9932 end = args;
9933 while (*end != '\0' && !isspace (*end))
9934 end++;
9935
9936 /* Adjust ARGSP to point to the start of the next argument. */
9937
9938 *argsp = end;
9939
9940 /* Make a copy of the current argument and return it. */
9941
9942 result = xmalloc (end - args + 1);
9943 strncpy (result, args, end - args);
9944 result[end - args] = '\0';
9945
9946 return result;
9947 }
9948
9949 /* Split the arguments specified in a "catch exception" command.
9950 Set EX to the appropriate catchpoint type.
9951 Set EXP_STRING to the name of the specific exception if
9952 specified by the user. */
9953
9954 static void
9955 catch_ada_exception_command_split (char *args,
9956 enum exception_catchpoint_kind *ex,
9957 char **exp_string)
9958 {
9959 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9960 char *exception_name;
9961
9962 exception_name = ada_get_next_arg (&args);
9963 make_cleanup (xfree, exception_name);
9964
9965 /* Check that we do not have any more arguments. Anything else
9966 is unexpected. */
9967
9968 while (isspace (*args))
9969 args++;
9970
9971 if (args[0] != '\0')
9972 error (_("Junk at end of expression"));
9973
9974 discard_cleanups (old_chain);
9975
9976 if (exception_name == NULL)
9977 {
9978 /* Catch all exceptions. */
9979 *ex = ex_catch_exception;
9980 *exp_string = NULL;
9981 }
9982 else if (strcmp (exception_name, "unhandled") == 0)
9983 {
9984 /* Catch unhandled exceptions. */
9985 *ex = ex_catch_exception_unhandled;
9986 *exp_string = NULL;
9987 }
9988 else
9989 {
9990 /* Catch a specific exception. */
9991 *ex = ex_catch_exception;
9992 *exp_string = exception_name;
9993 }
9994 }
9995
9996 /* Return the name of the symbol on which we should break in order to
9997 implement a catchpoint of the EX kind. */
9998
9999 static const char *
10000 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10001 {
10002 gdb_assert (exception_info != NULL);
10003
10004 switch (ex)
10005 {
10006 case ex_catch_exception:
10007 return (exception_info->catch_exception_sym);
10008 break;
10009 case ex_catch_exception_unhandled:
10010 return (exception_info->catch_exception_unhandled_sym);
10011 break;
10012 case ex_catch_assert:
10013 return (exception_info->catch_assert_sym);
10014 break;
10015 default:
10016 internal_error (__FILE__, __LINE__,
10017 _("unexpected catchpoint kind (%d)"), ex);
10018 }
10019 }
10020
10021 /* Return the breakpoint ops "virtual table" used for catchpoints
10022 of the EX kind. */
10023
10024 static struct breakpoint_ops *
10025 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10026 {
10027 switch (ex)
10028 {
10029 case ex_catch_exception:
10030 return (&catch_exception_breakpoint_ops);
10031 break;
10032 case ex_catch_exception_unhandled:
10033 return (&catch_exception_unhandled_breakpoint_ops);
10034 break;
10035 case ex_catch_assert:
10036 return (&catch_assert_breakpoint_ops);
10037 break;
10038 default:
10039 internal_error (__FILE__, __LINE__,
10040 _("unexpected catchpoint kind (%d)"), ex);
10041 }
10042 }
10043
10044 /* Return the condition that will be used to match the current exception
10045 being raised with the exception that the user wants to catch. This
10046 assumes that this condition is used when the inferior just triggered
10047 an exception catchpoint.
10048
10049 The string returned is a newly allocated string that needs to be
10050 deallocated later. */
10051
10052 static char *
10053 ada_exception_catchpoint_cond_string (const char *exp_string)
10054 {
10055 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10056 }
10057
10058 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10059
10060 static struct expression *
10061 ada_parse_catchpoint_condition (char *cond_string,
10062 struct symtab_and_line sal)
10063 {
10064 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10065 }
10066
10067 /* Return the symtab_and_line that should be used to insert an exception
10068 catchpoint of the TYPE kind.
10069
10070 EX_STRING should contain the name of a specific exception
10071 that the catchpoint should catch, or NULL otherwise.
10072
10073 The idea behind all the remaining parameters is that their names match
10074 the name of certain fields in the breakpoint structure that are used to
10075 handle exception catchpoints. This function returns the value to which
10076 these fields should be set, depending on the type of catchpoint we need
10077 to create.
10078
10079 If COND and COND_STRING are both non-NULL, any value they might
10080 hold will be free'ed, and then replaced by newly allocated ones.
10081 These parameters are left untouched otherwise. */
10082
10083 static struct symtab_and_line
10084 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10085 char **addr_string, char **cond_string,
10086 struct expression **cond, struct breakpoint_ops **ops)
10087 {
10088 const char *sym_name;
10089 struct symbol *sym;
10090 struct symtab_and_line sal;
10091
10092 /* First, find out which exception support info to use. */
10093 ada_exception_support_info_sniffer ();
10094
10095 /* Then lookup the function on which we will break in order to catch
10096 the Ada exceptions requested by the user. */
10097
10098 sym_name = ada_exception_sym_name (ex);
10099 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10100
10101 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10102 that should be compiled with debugging information. As a result, we
10103 expect to find that symbol in the symtabs. If we don't find it, then
10104 the target most likely does not support Ada exceptions, or we cannot
10105 insert exception breakpoints yet, because the GNAT runtime hasn't been
10106 loaded yet. */
10107
10108 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10109 in such a way that no debugging information is produced for the symbol
10110 we are looking for. In this case, we could search the minimal symbols
10111 as a fall-back mechanism. This would still be operating in degraded
10112 mode, however, as we would still be missing the debugging information
10113 that is needed in order to extract the name of the exception being
10114 raised (this name is printed in the catchpoint message, and is also
10115 used when trying to catch a specific exception). We do not handle
10116 this case for now. */
10117
10118 if (sym == NULL)
10119 error (_("Unable to break on '%s' in this configuration."), sym_name);
10120
10121 /* Make sure that the symbol we found corresponds to a function. */
10122 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10123 error (_("Symbol \"%s\" is not a function (class = %d)"),
10124 sym_name, SYMBOL_CLASS (sym));
10125
10126 sal = find_function_start_sal (sym, 1);
10127
10128 /* Set ADDR_STRING. */
10129
10130 *addr_string = xstrdup (sym_name);
10131
10132 /* Set the COND and COND_STRING (if not NULL). */
10133
10134 if (cond_string != NULL && cond != NULL)
10135 {
10136 if (*cond_string != NULL)
10137 {
10138 xfree (*cond_string);
10139 *cond_string = NULL;
10140 }
10141 if (*cond != NULL)
10142 {
10143 xfree (*cond);
10144 *cond = NULL;
10145 }
10146 if (exp_string != NULL)
10147 {
10148 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10149 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10150 }
10151 }
10152
10153 /* Set OPS. */
10154 *ops = ada_exception_breakpoint_ops (ex);
10155
10156 return sal;
10157 }
10158
10159 /* Parse the arguments (ARGS) of the "catch exception" command.
10160
10161 Set TYPE to the appropriate exception catchpoint type.
10162 If the user asked the catchpoint to catch only a specific
10163 exception, then save the exception name in ADDR_STRING.
10164
10165 See ada_exception_sal for a description of all the remaining
10166 function arguments of this function. */
10167
10168 struct symtab_and_line
10169 ada_decode_exception_location (char *args, char **addr_string,
10170 char **exp_string, char **cond_string,
10171 struct expression **cond,
10172 struct breakpoint_ops **ops)
10173 {
10174 enum exception_catchpoint_kind ex;
10175
10176 catch_ada_exception_command_split (args, &ex, exp_string);
10177 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10178 cond, ops);
10179 }
10180
10181 struct symtab_and_line
10182 ada_decode_assert_location (char *args, char **addr_string,
10183 struct breakpoint_ops **ops)
10184 {
10185 /* Check that no argument where provided at the end of the command. */
10186
10187 if (args != NULL)
10188 {
10189 while (isspace (*args))
10190 args++;
10191 if (*args != '\0')
10192 error (_("Junk at end of arguments."));
10193 }
10194
10195 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10196 ops);
10197 }
10198
10199 /* Operators */
10200 /* Information about operators given special treatment in functions
10201 below. */
10202 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10203
10204 #define ADA_OPERATORS \
10205 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10206 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10207 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10208 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10209 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10210 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10211 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10212 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10213 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10214 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10215 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10216 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10217 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10218 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10219 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10220 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10221 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10222 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10223 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10224
10225 static void
10226 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10227 {
10228 switch (exp->elts[pc - 1].opcode)
10229 {
10230 default:
10231 operator_length_standard (exp, pc, oplenp, argsp);
10232 break;
10233
10234 #define OP_DEFN(op, len, args, binop) \
10235 case op: *oplenp = len; *argsp = args; break;
10236 ADA_OPERATORS;
10237 #undef OP_DEFN
10238
10239 case OP_AGGREGATE:
10240 *oplenp = 3;
10241 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10242 break;
10243
10244 case OP_CHOICES:
10245 *oplenp = 3;
10246 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10247 break;
10248 }
10249 }
10250
10251 static char *
10252 ada_op_name (enum exp_opcode opcode)
10253 {
10254 switch (opcode)
10255 {
10256 default:
10257 return op_name_standard (opcode);
10258
10259 #define OP_DEFN(op, len, args, binop) case op: return #op;
10260 ADA_OPERATORS;
10261 #undef OP_DEFN
10262
10263 case OP_AGGREGATE:
10264 return "OP_AGGREGATE";
10265 case OP_CHOICES:
10266 return "OP_CHOICES";
10267 case OP_NAME:
10268 return "OP_NAME";
10269 }
10270 }
10271
10272 /* As for operator_length, but assumes PC is pointing at the first
10273 element of the operator, and gives meaningful results only for the
10274 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10275
10276 static void
10277 ada_forward_operator_length (struct expression *exp, int pc,
10278 int *oplenp, int *argsp)
10279 {
10280 switch (exp->elts[pc].opcode)
10281 {
10282 default:
10283 *oplenp = *argsp = 0;
10284 break;
10285
10286 #define OP_DEFN(op, len, args, binop) \
10287 case op: *oplenp = len; *argsp = args; break;
10288 ADA_OPERATORS;
10289 #undef OP_DEFN
10290
10291 case OP_AGGREGATE:
10292 *oplenp = 3;
10293 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10294 break;
10295
10296 case OP_CHOICES:
10297 *oplenp = 3;
10298 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10299 break;
10300
10301 case OP_STRING:
10302 case OP_NAME:
10303 {
10304 int len = longest_to_int (exp->elts[pc + 1].longconst);
10305 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10306 *argsp = 0;
10307 break;
10308 }
10309 }
10310 }
10311
10312 static int
10313 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10314 {
10315 enum exp_opcode op = exp->elts[elt].opcode;
10316 int oplen, nargs;
10317 int pc = elt;
10318 int i;
10319
10320 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10321
10322 switch (op)
10323 {
10324 /* Ada attributes ('Foo). */
10325 case OP_ATR_FIRST:
10326 case OP_ATR_LAST:
10327 case OP_ATR_LENGTH:
10328 case OP_ATR_IMAGE:
10329 case OP_ATR_MAX:
10330 case OP_ATR_MIN:
10331 case OP_ATR_MODULUS:
10332 case OP_ATR_POS:
10333 case OP_ATR_SIZE:
10334 case OP_ATR_TAG:
10335 case OP_ATR_VAL:
10336 break;
10337
10338 case UNOP_IN_RANGE:
10339 case UNOP_QUAL:
10340 /* XXX: gdb_sprint_host_address, type_sprint */
10341 fprintf_filtered (stream, _("Type @"));
10342 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10343 fprintf_filtered (stream, " (");
10344 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10345 fprintf_filtered (stream, ")");
10346 break;
10347 case BINOP_IN_BOUNDS:
10348 fprintf_filtered (stream, " (%d)",
10349 longest_to_int (exp->elts[pc + 2].longconst));
10350 break;
10351 case TERNOP_IN_RANGE:
10352 break;
10353
10354 case OP_AGGREGATE:
10355 case OP_OTHERS:
10356 case OP_DISCRETE_RANGE:
10357 case OP_POSITIONAL:
10358 case OP_CHOICES:
10359 break;
10360
10361 case OP_NAME:
10362 case OP_STRING:
10363 {
10364 char *name = &exp->elts[elt + 2].string;
10365 int len = longest_to_int (exp->elts[elt + 1].longconst);
10366 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10367 break;
10368 }
10369
10370 default:
10371 return dump_subexp_body_standard (exp, stream, elt);
10372 }
10373
10374 elt += oplen;
10375 for (i = 0; i < nargs; i += 1)
10376 elt = dump_subexp (exp, stream, elt);
10377
10378 return elt;
10379 }
10380
10381 /* The Ada extension of print_subexp (q.v.). */
10382
10383 static void
10384 ada_print_subexp (struct expression *exp, int *pos,
10385 struct ui_file *stream, enum precedence prec)
10386 {
10387 int oplen, nargs, i;
10388 int pc = *pos;
10389 enum exp_opcode op = exp->elts[pc].opcode;
10390
10391 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10392
10393 *pos += oplen;
10394 switch (op)
10395 {
10396 default:
10397 *pos -= oplen;
10398 print_subexp_standard (exp, pos, stream, prec);
10399 return;
10400
10401 case OP_VAR_VALUE:
10402 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10403 return;
10404
10405 case BINOP_IN_BOUNDS:
10406 /* XXX: sprint_subexp */
10407 print_subexp (exp, pos, stream, PREC_SUFFIX);
10408 fputs_filtered (" in ", stream);
10409 print_subexp (exp, pos, stream, PREC_SUFFIX);
10410 fputs_filtered ("'range", stream);
10411 if (exp->elts[pc + 1].longconst > 1)
10412 fprintf_filtered (stream, "(%ld)",
10413 (long) exp->elts[pc + 1].longconst);
10414 return;
10415
10416 case TERNOP_IN_RANGE:
10417 if (prec >= PREC_EQUAL)
10418 fputs_filtered ("(", stream);
10419 /* XXX: sprint_subexp */
10420 print_subexp (exp, pos, stream, PREC_SUFFIX);
10421 fputs_filtered (" in ", stream);
10422 print_subexp (exp, pos, stream, PREC_EQUAL);
10423 fputs_filtered (" .. ", stream);
10424 print_subexp (exp, pos, stream, PREC_EQUAL);
10425 if (prec >= PREC_EQUAL)
10426 fputs_filtered (")", stream);
10427 return;
10428
10429 case OP_ATR_FIRST:
10430 case OP_ATR_LAST:
10431 case OP_ATR_LENGTH:
10432 case OP_ATR_IMAGE:
10433 case OP_ATR_MAX:
10434 case OP_ATR_MIN:
10435 case OP_ATR_MODULUS:
10436 case OP_ATR_POS:
10437 case OP_ATR_SIZE:
10438 case OP_ATR_TAG:
10439 case OP_ATR_VAL:
10440 if (exp->elts[*pos].opcode == OP_TYPE)
10441 {
10442 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10443 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10444 *pos += 3;
10445 }
10446 else
10447 print_subexp (exp, pos, stream, PREC_SUFFIX);
10448 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10449 if (nargs > 1)
10450 {
10451 int tem;
10452 for (tem = 1; tem < nargs; tem += 1)
10453 {
10454 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10455 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10456 }
10457 fputs_filtered (")", stream);
10458 }
10459 return;
10460
10461 case UNOP_QUAL:
10462 type_print (exp->elts[pc + 1].type, "", stream, 0);
10463 fputs_filtered ("'(", stream);
10464 print_subexp (exp, pos, stream, PREC_PREFIX);
10465 fputs_filtered (")", stream);
10466 return;
10467
10468 case UNOP_IN_RANGE:
10469 /* XXX: sprint_subexp */
10470 print_subexp (exp, pos, stream, PREC_SUFFIX);
10471 fputs_filtered (" in ", stream);
10472 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10473 return;
10474
10475 case OP_DISCRETE_RANGE:
10476 print_subexp (exp, pos, stream, PREC_SUFFIX);
10477 fputs_filtered ("..", stream);
10478 print_subexp (exp, pos, stream, PREC_SUFFIX);
10479 return;
10480
10481 case OP_OTHERS:
10482 fputs_filtered ("others => ", stream);
10483 print_subexp (exp, pos, stream, PREC_SUFFIX);
10484 return;
10485
10486 case OP_CHOICES:
10487 for (i = 0; i < nargs-1; i += 1)
10488 {
10489 if (i > 0)
10490 fputs_filtered ("|", stream);
10491 print_subexp (exp, pos, stream, PREC_SUFFIX);
10492 }
10493 fputs_filtered (" => ", stream);
10494 print_subexp (exp, pos, stream, PREC_SUFFIX);
10495 return;
10496
10497 case OP_POSITIONAL:
10498 print_subexp (exp, pos, stream, PREC_SUFFIX);
10499 return;
10500
10501 case OP_AGGREGATE:
10502 fputs_filtered ("(", stream);
10503 for (i = 0; i < nargs; i += 1)
10504 {
10505 if (i > 0)
10506 fputs_filtered (", ", stream);
10507 print_subexp (exp, pos, stream, PREC_SUFFIX);
10508 }
10509 fputs_filtered (")", stream);
10510 return;
10511 }
10512 }
10513
10514 /* Table mapping opcodes into strings for printing operators
10515 and precedences of the operators. */
10516
10517 static const struct op_print ada_op_print_tab[] = {
10518 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10519 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10520 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10521 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10522 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10523 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10524 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10525 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10526 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10527 {">=", BINOP_GEQ, PREC_ORDER, 0},
10528 {">", BINOP_GTR, PREC_ORDER, 0},
10529 {"<", BINOP_LESS, PREC_ORDER, 0},
10530 {">>", BINOP_RSH, PREC_SHIFT, 0},
10531 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10532 {"+", BINOP_ADD, PREC_ADD, 0},
10533 {"-", BINOP_SUB, PREC_ADD, 0},
10534 {"&", BINOP_CONCAT, PREC_ADD, 0},
10535 {"*", BINOP_MUL, PREC_MUL, 0},
10536 {"/", BINOP_DIV, PREC_MUL, 0},
10537 {"rem", BINOP_REM, PREC_MUL, 0},
10538 {"mod", BINOP_MOD, PREC_MUL, 0},
10539 {"**", BINOP_EXP, PREC_REPEAT, 0},
10540 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10541 {"-", UNOP_NEG, PREC_PREFIX, 0},
10542 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10543 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10544 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10545 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10546 {".all", UNOP_IND, PREC_SUFFIX, 1},
10547 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10548 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10549 {NULL, 0, 0, 0}
10550 };
10551 \f
10552 enum ada_primitive_types {
10553 ada_primitive_type_int,
10554 ada_primitive_type_long,
10555 ada_primitive_type_short,
10556 ada_primitive_type_char,
10557 ada_primitive_type_float,
10558 ada_primitive_type_double,
10559 ada_primitive_type_void,
10560 ada_primitive_type_long_long,
10561 ada_primitive_type_long_double,
10562 ada_primitive_type_natural,
10563 ada_primitive_type_positive,
10564 ada_primitive_type_system_address,
10565 nr_ada_primitive_types
10566 };
10567
10568 static void
10569 ada_language_arch_info (struct gdbarch *gdbarch,
10570 struct language_arch_info *lai)
10571 {
10572 const struct builtin_type *builtin = builtin_type (gdbarch);
10573 lai->primitive_type_vector
10574 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10575 struct type *);
10576 lai->primitive_type_vector [ada_primitive_type_int] =
10577 init_type (TYPE_CODE_INT,
10578 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10579 0, "integer", (struct objfile *) NULL);
10580 lai->primitive_type_vector [ada_primitive_type_long] =
10581 init_type (TYPE_CODE_INT,
10582 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10583 0, "long_integer", (struct objfile *) NULL);
10584 lai->primitive_type_vector [ada_primitive_type_short] =
10585 init_type (TYPE_CODE_INT,
10586 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10587 0, "short_integer", (struct objfile *) NULL);
10588 lai->string_char_type =
10589 lai->primitive_type_vector [ada_primitive_type_char] =
10590 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10591 0, "character", (struct objfile *) NULL);
10592 lai->primitive_type_vector [ada_primitive_type_float] =
10593 init_type (TYPE_CODE_FLT,
10594 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10595 0, "float", (struct objfile *) NULL);
10596 lai->primitive_type_vector [ada_primitive_type_double] =
10597 init_type (TYPE_CODE_FLT,
10598 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10599 0, "long_float", (struct objfile *) NULL);
10600 lai->primitive_type_vector [ada_primitive_type_long_long] =
10601 init_type (TYPE_CODE_INT,
10602 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10603 0, "long_long_integer", (struct objfile *) NULL);
10604 lai->primitive_type_vector [ada_primitive_type_long_double] =
10605 init_type (TYPE_CODE_FLT,
10606 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10607 0, "long_long_float", (struct objfile *) NULL);
10608 lai->primitive_type_vector [ada_primitive_type_natural] =
10609 init_type (TYPE_CODE_INT,
10610 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10611 0, "natural", (struct objfile *) NULL);
10612 lai->primitive_type_vector [ada_primitive_type_positive] =
10613 init_type (TYPE_CODE_INT,
10614 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10615 0, "positive", (struct objfile *) NULL);
10616 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10617
10618 lai->primitive_type_vector [ada_primitive_type_system_address] =
10619 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10620 (struct objfile *) NULL));
10621 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10622 = "system__address";
10623 }
10624 \f
10625 /* Language vector */
10626
10627 /* Not really used, but needed in the ada_language_defn. */
10628
10629 static void
10630 emit_char (int c, struct ui_file *stream, int quoter)
10631 {
10632 ada_emit_char (c, stream, quoter, 1);
10633 }
10634
10635 static int
10636 parse (void)
10637 {
10638 warnings_issued = 0;
10639 return ada_parse ();
10640 }
10641
10642 static const struct exp_descriptor ada_exp_descriptor = {
10643 ada_print_subexp,
10644 ada_operator_length,
10645 ada_op_name,
10646 ada_dump_subexp_body,
10647 ada_evaluate_subexp
10648 };
10649
10650 const struct language_defn ada_language_defn = {
10651 "ada", /* Language name */
10652 language_ada,
10653 range_check_off,
10654 type_check_off,
10655 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10656 that's not quite what this means. */
10657 array_row_major,
10658 &ada_exp_descriptor,
10659 parse,
10660 ada_error,
10661 resolve,
10662 ada_printchar, /* Print a character constant */
10663 ada_printstr, /* Function to print string constant */
10664 emit_char, /* Function to print single char (not used) */
10665 ada_print_type, /* Print a type using appropriate syntax */
10666 ada_val_print, /* Print a value using appropriate syntax */
10667 ada_value_print, /* Print a top-level value */
10668 NULL, /* Language specific skip_trampoline */
10669 NULL, /* value_of_this */
10670 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10671 basic_lookup_transparent_type, /* lookup_transparent_type */
10672 ada_la_decode, /* Language specific symbol demangler */
10673 NULL, /* Language specific class_name_from_physname */
10674 ada_op_print_tab, /* expression operators for printing */
10675 0, /* c-style arrays */
10676 1, /* String lower bound */
10677 ada_get_gdb_completer_word_break_characters,
10678 ada_language_arch_info,
10679 ada_print_array_index,
10680 default_pass_by_reference,
10681 LANG_MAGIC
10682 };
10683
10684 void
10685 _initialize_ada_language (void)
10686 {
10687 add_language (&ada_language_defn);
10688
10689 varsize_limit = 65536;
10690
10691 obstack_init (&symbol_list_obstack);
10692
10693 decoded_names_store = htab_create_alloc
10694 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10695 NULL, xcalloc, xfree);
10696
10697 observer_attach_executable_changed (ada_executable_changed_observer);
10698 }
This page took 0.249503 seconds and 4 git commands to generate.