gdb/
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 return result;
585 }
586 }
587
588 static const gdb_byte *
589 cond_offset_host (const gdb_byte *valaddr, long offset)
590 {
591 if (valaddr == NULL)
592 return NULL;
593 else
594 return valaddr + offset;
595 }
596
597 static CORE_ADDR
598 cond_offset_target (CORE_ADDR address, long offset)
599 {
600 if (address == 0)
601 return 0;
602 else
603 return address + offset;
604 }
605
606 /* Issue a warning (as for the definition of warning in utils.c, but
607 with exactly one argument rather than ...), unless the limit on the
608 number of warnings has passed during the evaluation of the current
609 expression. */
610
611 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
612 provided by "complaint". */
613 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
614
615 static void
616 lim_warning (const char *format, ...)
617 {
618 va_list args;
619
620 va_start (args, format);
621 warnings_issued += 1;
622 if (warnings_issued <= warning_limit)
623 vwarning (format, args);
624
625 va_end (args);
626 }
627
628 /* Issue an error if the size of an object of type T is unreasonable,
629 i.e. if it would be a bad idea to allocate a value of this type in
630 GDB. */
631
632 static void
633 check_size (const struct type *type)
634 {
635 if (TYPE_LENGTH (type) > varsize_limit)
636 error (_("object size is larger than varsize-limit"));
637 }
638
639 /* Maximum value of a SIZE-byte signed integer type. */
640 static LONGEST
641 max_of_size (int size)
642 {
643 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
644
645 return top_bit | (top_bit - 1);
646 }
647
648 /* Minimum value of a SIZE-byte signed integer type. */
649 static LONGEST
650 min_of_size (int size)
651 {
652 return -max_of_size (size) - 1;
653 }
654
655 /* Maximum value of a SIZE-byte unsigned integer type. */
656 static ULONGEST
657 umax_of_size (int size)
658 {
659 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
660
661 return top_bit | (top_bit - 1);
662 }
663
664 /* Maximum value of integral type T, as a signed quantity. */
665 static LONGEST
666 max_of_type (struct type *t)
667 {
668 if (TYPE_UNSIGNED (t))
669 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
670 else
671 return max_of_size (TYPE_LENGTH (t));
672 }
673
674 /* Minimum value of integral type T, as a signed quantity. */
675 static LONGEST
676 min_of_type (struct type *t)
677 {
678 if (TYPE_UNSIGNED (t))
679 return 0;
680 else
681 return min_of_size (TYPE_LENGTH (t));
682 }
683
684 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
685 LONGEST
686 ada_discrete_type_high_bound (struct type *type)
687 {
688 switch (TYPE_CODE (type))
689 {
690 case TYPE_CODE_RANGE:
691 return TYPE_HIGH_BOUND (type);
692 case TYPE_CODE_ENUM:
693 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
694 case TYPE_CODE_BOOL:
695 return 1;
696 case TYPE_CODE_CHAR:
697 case TYPE_CODE_INT:
698 return max_of_type (type);
699 default:
700 error (_("Unexpected type in ada_discrete_type_high_bound."));
701 }
702 }
703
704 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
705 LONGEST
706 ada_discrete_type_low_bound (struct type *type)
707 {
708 switch (TYPE_CODE (type))
709 {
710 case TYPE_CODE_RANGE:
711 return TYPE_LOW_BOUND (type);
712 case TYPE_CODE_ENUM:
713 return TYPE_FIELD_BITPOS (type, 0);
714 case TYPE_CODE_BOOL:
715 return 0;
716 case TYPE_CODE_CHAR:
717 case TYPE_CODE_INT:
718 return min_of_type (type);
719 default:
720 error (_("Unexpected type in ada_discrete_type_low_bound."));
721 }
722 }
723
724 /* The identity on non-range types. For range types, the underlying
725 non-range scalar type. */
726
727 static struct type *
728 get_base_type (struct type *type)
729 {
730 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
731 {
732 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
733 return type;
734 type = TYPE_TARGET_TYPE (type);
735 }
736 return type;
737 }
738
739 /* Return a decoded version of the given VALUE. This means returning
740 a value whose type is obtained by applying all the GNAT-specific
741 encondings, making the resulting type a static but standard description
742 of the initial type. */
743
744 struct value *
745 ada_get_decoded_value (struct value *value)
746 {
747 struct type *type = ada_check_typedef (value_type (value));
748
749 if (ada_is_array_descriptor_type (type)
750 || (ada_is_constrained_packed_array_type (type)
751 && TYPE_CODE (type) != TYPE_CODE_PTR))
752 {
753 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
754 value = ada_coerce_to_simple_array_ptr (value);
755 else
756 value = ada_coerce_to_simple_array (value);
757 }
758 else
759 value = ada_to_fixed_value (value);
760
761 return value;
762 }
763
764 /* Same as ada_get_decoded_value, but with the given TYPE.
765 Because there is no associated actual value for this type,
766 the resulting type might be a best-effort approximation in
767 the case of dynamic types. */
768
769 struct type *
770 ada_get_decoded_type (struct type *type)
771 {
772 type = to_static_fixed_type (type);
773 if (ada_is_constrained_packed_array_type (type))
774 type = ada_coerce_to_simple_array_type (type);
775 return type;
776 }
777
778 \f
779
780 /* Language Selection */
781
782 /* If the main program is in Ada, return language_ada, otherwise return LANG
783 (the main program is in Ada iif the adainit symbol is found). */
784
785 enum language
786 ada_update_initial_language (enum language lang)
787 {
788 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
789 (struct objfile *) NULL) != NULL)
790 return language_ada;
791
792 return lang;
793 }
794
795 /* If the main procedure is written in Ada, then return its name.
796 The result is good until the next call. Return NULL if the main
797 procedure doesn't appear to be in Ada. */
798
799 char *
800 ada_main_name (void)
801 {
802 struct minimal_symbol *msym;
803 static char *main_program_name = NULL;
804
805 /* For Ada, the name of the main procedure is stored in a specific
806 string constant, generated by the binder. Look for that symbol,
807 extract its address, and then read that string. If we didn't find
808 that string, then most probably the main procedure is not written
809 in Ada. */
810 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
811
812 if (msym != NULL)
813 {
814 CORE_ADDR main_program_name_addr;
815 int err_code;
816
817 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
818 if (main_program_name_addr == 0)
819 error (_("Invalid address for Ada main program name."));
820
821 xfree (main_program_name);
822 target_read_string (main_program_name_addr, &main_program_name,
823 1024, &err_code);
824
825 if (err_code != 0)
826 return NULL;
827 return main_program_name;
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832 }
833 \f
834 /* Symbols */
835
836 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
838
839 const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
862 };
863
864 /* The "encoded" form of DECODED, according to GNAT conventions.
865 The result is valid until the next call to ada_encode. */
866
867 char *
868 ada_encode (const char *decoded)
869 {
870 static char *encoding_buffer = NULL;
871 static size_t encoding_buffer_size = 0;
872 const char *p;
873 int k;
874
875 if (decoded == NULL)
876 return NULL;
877
878 GROW_VECT (encoding_buffer, encoding_buffer_size,
879 2 * strlen (decoded) + 10);
880
881 k = 0;
882 for (p = decoded; *p != '\0'; p += 1)
883 {
884 if (*p == '.')
885 {
886 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
887 k += 2;
888 }
889 else if (*p == '"')
890 {
891 const struct ada_opname_map *mapping;
892
893 for (mapping = ada_opname_table;
894 mapping->encoded != NULL
895 && strncmp (mapping->decoded, p,
896 strlen (mapping->decoded)) != 0; mapping += 1)
897 ;
898 if (mapping->encoded == NULL)
899 error (_("invalid Ada operator name: %s"), p);
900 strcpy (encoding_buffer + k, mapping->encoded);
901 k += strlen (mapping->encoded);
902 break;
903 }
904 else
905 {
906 encoding_buffer[k] = *p;
907 k += 1;
908 }
909 }
910
911 encoding_buffer[k] = '\0';
912 return encoding_buffer;
913 }
914
915 /* Return NAME folded to lower case, or, if surrounded by single
916 quotes, unfolded, but with the quotes stripped away. Result good
917 to next call. */
918
919 char *
920 ada_fold_name (const char *name)
921 {
922 static char *fold_buffer = NULL;
923 static size_t fold_buffer_size = 0;
924
925 int len = strlen (name);
926 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
927
928 if (name[0] == '\'')
929 {
930 strncpy (fold_buffer, name + 1, len - 2);
931 fold_buffer[len - 2] = '\000';
932 }
933 else
934 {
935 int i;
936
937 for (i = 0; i <= len; i += 1)
938 fold_buffer[i] = tolower (name[i]);
939 }
940
941 return fold_buffer;
942 }
943
944 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
945
946 static int
947 is_lower_alphanum (const char c)
948 {
949 return (isdigit (c) || (isalpha (c) && islower (c)));
950 }
951
952 /* ENCODED is the linkage name of a symbol and LEN contains its length.
953 This function saves in LEN the length of that same symbol name but
954 without either of these suffixes:
955 . .{DIGIT}+
956 . ${DIGIT}+
957 . ___{DIGIT}+
958 . __{DIGIT}+.
959
960 These are suffixes introduced by the compiler for entities such as
961 nested subprogram for instance, in order to avoid name clashes.
962 They do not serve any purpose for the debugger. */
963
964 static void
965 ada_remove_trailing_digits (const char *encoded, int *len)
966 {
967 if (*len > 1 && isdigit (encoded[*len - 1]))
968 {
969 int i = *len - 2;
970
971 while (i > 0 && isdigit (encoded[i]))
972 i--;
973 if (i >= 0 && encoded[i] == '.')
974 *len = i;
975 else if (i >= 0 && encoded[i] == '$')
976 *len = i;
977 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
978 *len = i - 2;
979 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
980 *len = i - 1;
981 }
982 }
983
984 /* Remove the suffix introduced by the compiler for protected object
985 subprograms. */
986
987 static void
988 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
989 {
990 /* Remove trailing N. */
991
992 /* Protected entry subprograms are broken into two
993 separate subprograms: The first one is unprotected, and has
994 a 'N' suffix; the second is the protected version, and has
995 the 'P' suffix. The second calls the first one after handling
996 the protection. Since the P subprograms are internally generated,
997 we leave these names undecoded, giving the user a clue that this
998 entity is internal. */
999
1000 if (*len > 1
1001 && encoded[*len - 1] == 'N'
1002 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1003 *len = *len - 1;
1004 }
1005
1006 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1007
1008 static void
1009 ada_remove_Xbn_suffix (const char *encoded, int *len)
1010 {
1011 int i = *len - 1;
1012
1013 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1014 i--;
1015
1016 if (encoded[i] != 'X')
1017 return;
1018
1019 if (i == 0)
1020 return;
1021
1022 if (isalnum (encoded[i-1]))
1023 *len = i;
1024 }
1025
1026 /* If ENCODED follows the GNAT entity encoding conventions, then return
1027 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1028 replaced by ENCODED.
1029
1030 The resulting string is valid until the next call of ada_decode.
1031 If the string is unchanged by decoding, the original string pointer
1032 is returned. */
1033
1034 const char *
1035 ada_decode (const char *encoded)
1036 {
1037 int i, j;
1038 int len0;
1039 const char *p;
1040 char *decoded;
1041 int at_start_name;
1042 static char *decoding_buffer = NULL;
1043 static size_t decoding_buffer_size = 0;
1044
1045 /* The name of the Ada main procedure starts with "_ada_".
1046 This prefix is not part of the decoded name, so skip this part
1047 if we see this prefix. */
1048 if (strncmp (encoded, "_ada_", 5) == 0)
1049 encoded += 5;
1050
1051 /* If the name starts with '_', then it is not a properly encoded
1052 name, so do not attempt to decode it. Similarly, if the name
1053 starts with '<', the name should not be decoded. */
1054 if (encoded[0] == '_' || encoded[0] == '<')
1055 goto Suppress;
1056
1057 len0 = strlen (encoded);
1058
1059 ada_remove_trailing_digits (encoded, &len0);
1060 ada_remove_po_subprogram_suffix (encoded, &len0);
1061
1062 /* Remove the ___X.* suffix if present. Do not forget to verify that
1063 the suffix is located before the current "end" of ENCODED. We want
1064 to avoid re-matching parts of ENCODED that have previously been
1065 marked as discarded (by decrementing LEN0). */
1066 p = strstr (encoded, "___");
1067 if (p != NULL && p - encoded < len0 - 3)
1068 {
1069 if (p[3] == 'X')
1070 len0 = p - encoded;
1071 else
1072 goto Suppress;
1073 }
1074
1075 /* Remove any trailing TKB suffix. It tells us that this symbol
1076 is for the body of a task, but that information does not actually
1077 appear in the decoded name. */
1078
1079 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1080 len0 -= 3;
1081
1082 /* Remove any trailing TB suffix. The TB suffix is slightly different
1083 from the TKB suffix because it is used for non-anonymous task
1084 bodies. */
1085
1086 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1087 len0 -= 2;
1088
1089 /* Remove trailing "B" suffixes. */
1090 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1091
1092 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1093 len0 -= 1;
1094
1095 /* Make decoded big enough for possible expansion by operator name. */
1096
1097 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1098 decoded = decoding_buffer;
1099
1100 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1101
1102 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1103 {
1104 i = len0 - 2;
1105 while ((i >= 0 && isdigit (encoded[i]))
1106 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1107 i -= 1;
1108 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1109 len0 = i - 1;
1110 else if (encoded[i] == '$')
1111 len0 = i;
1112 }
1113
1114 /* The first few characters that are not alphabetic are not part
1115 of any encoding we use, so we can copy them over verbatim. */
1116
1117 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1118 decoded[j] = encoded[i];
1119
1120 at_start_name = 1;
1121 while (i < len0)
1122 {
1123 /* Is this a symbol function? */
1124 if (at_start_name && encoded[i] == 'O')
1125 {
1126 int k;
1127
1128 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1129 {
1130 int op_len = strlen (ada_opname_table[k].encoded);
1131 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1132 op_len - 1) == 0)
1133 && !isalnum (encoded[i + op_len]))
1134 {
1135 strcpy (decoded + j, ada_opname_table[k].decoded);
1136 at_start_name = 0;
1137 i += op_len;
1138 j += strlen (ada_opname_table[k].decoded);
1139 break;
1140 }
1141 }
1142 if (ada_opname_table[k].encoded != NULL)
1143 continue;
1144 }
1145 at_start_name = 0;
1146
1147 /* Replace "TK__" with "__", which will eventually be translated
1148 into "." (just below). */
1149
1150 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1151 i += 2;
1152
1153 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1154 be translated into "." (just below). These are internal names
1155 generated for anonymous blocks inside which our symbol is nested. */
1156
1157 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1158 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1159 && isdigit (encoded [i+4]))
1160 {
1161 int k = i + 5;
1162
1163 while (k < len0 && isdigit (encoded[k]))
1164 k++; /* Skip any extra digit. */
1165
1166 /* Double-check that the "__B_{DIGITS}+" sequence we found
1167 is indeed followed by "__". */
1168 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1169 i = k;
1170 }
1171
1172 /* Remove _E{DIGITS}+[sb] */
1173
1174 /* Just as for protected object subprograms, there are 2 categories
1175 of subprograms created by the compiler for each entry. The first
1176 one implements the actual entry code, and has a suffix following
1177 the convention above; the second one implements the barrier and
1178 uses the same convention as above, except that the 'E' is replaced
1179 by a 'B'.
1180
1181 Just as above, we do not decode the name of barrier functions
1182 to give the user a clue that the code he is debugging has been
1183 internally generated. */
1184
1185 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1186 && isdigit (encoded[i+2]))
1187 {
1188 int k = i + 3;
1189
1190 while (k < len0 && isdigit (encoded[k]))
1191 k++;
1192
1193 if (k < len0
1194 && (encoded[k] == 'b' || encoded[k] == 's'))
1195 {
1196 k++;
1197 /* Just as an extra precaution, make sure that if this
1198 suffix is followed by anything else, it is a '_'.
1199 Otherwise, we matched this sequence by accident. */
1200 if (k == len0
1201 || (k < len0 && encoded[k] == '_'))
1202 i = k;
1203 }
1204 }
1205
1206 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1207 the GNAT front-end in protected object subprograms. */
1208
1209 if (i < len0 + 3
1210 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1211 {
1212 /* Backtrack a bit up until we reach either the begining of
1213 the encoded name, or "__". Make sure that we only find
1214 digits or lowercase characters. */
1215 const char *ptr = encoded + i - 1;
1216
1217 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1218 ptr--;
1219 if (ptr < encoded
1220 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1221 i++;
1222 }
1223
1224 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1225 {
1226 /* This is a X[bn]* sequence not separated from the previous
1227 part of the name with a non-alpha-numeric character (in other
1228 words, immediately following an alpha-numeric character), then
1229 verify that it is placed at the end of the encoded name. If
1230 not, then the encoding is not valid and we should abort the
1231 decoding. Otherwise, just skip it, it is used in body-nested
1232 package names. */
1233 do
1234 i += 1;
1235 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1236 if (i < len0)
1237 goto Suppress;
1238 }
1239 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1240 {
1241 /* Replace '__' by '.'. */
1242 decoded[j] = '.';
1243 at_start_name = 1;
1244 i += 2;
1245 j += 1;
1246 }
1247 else
1248 {
1249 /* It's a character part of the decoded name, so just copy it
1250 over. */
1251 decoded[j] = encoded[i];
1252 i += 1;
1253 j += 1;
1254 }
1255 }
1256 decoded[j] = '\000';
1257
1258 /* Decoded names should never contain any uppercase character.
1259 Double-check this, and abort the decoding if we find one. */
1260
1261 for (i = 0; decoded[i] != '\0'; i += 1)
1262 if (isupper (decoded[i]) || decoded[i] == ' ')
1263 goto Suppress;
1264
1265 if (strcmp (decoded, encoded) == 0)
1266 return encoded;
1267 else
1268 return decoded;
1269
1270 Suppress:
1271 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1272 decoded = decoding_buffer;
1273 if (encoded[0] == '<')
1274 strcpy (decoded, encoded);
1275 else
1276 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1277 return decoded;
1278
1279 }
1280
1281 /* Table for keeping permanent unique copies of decoded names. Once
1282 allocated, names in this table are never released. While this is a
1283 storage leak, it should not be significant unless there are massive
1284 changes in the set of decoded names in successive versions of a
1285 symbol table loaded during a single session. */
1286 static struct htab *decoded_names_store;
1287
1288 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1289 in the language-specific part of GSYMBOL, if it has not been
1290 previously computed. Tries to save the decoded name in the same
1291 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1292 in any case, the decoded symbol has a lifetime at least that of
1293 GSYMBOL).
1294 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1295 const, but nevertheless modified to a semantically equivalent form
1296 when a decoded name is cached in it. */
1297
1298 char *
1299 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1300 {
1301 char **resultp =
1302 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1303
1304 if (*resultp == NULL)
1305 {
1306 const char *decoded = ada_decode (gsymbol->name);
1307
1308 if (gsymbol->obj_section != NULL)
1309 {
1310 struct objfile *objf = gsymbol->obj_section->objfile;
1311
1312 *resultp = obsavestring (decoded, strlen (decoded),
1313 &objf->objfile_obstack);
1314 }
1315 /* Sometimes, we can't find a corresponding objfile, in which
1316 case, we put the result on the heap. Since we only decode
1317 when needed, we hope this usually does not cause a
1318 significant memory leak (FIXME). */
1319 if (*resultp == NULL)
1320 {
1321 char **slot = (char **) htab_find_slot (decoded_names_store,
1322 decoded, INSERT);
1323
1324 if (*slot == NULL)
1325 *slot = xstrdup (decoded);
1326 *resultp = *slot;
1327 }
1328 }
1329
1330 return *resultp;
1331 }
1332
1333 static char *
1334 ada_la_decode (const char *encoded, int options)
1335 {
1336 return xstrdup (ada_decode (encoded));
1337 }
1338
1339 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1340 suffixes that encode debugging information or leading _ada_ on
1341 SYM_NAME (see is_name_suffix commentary for the debugging
1342 information that is ignored). If WILD, then NAME need only match a
1343 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1344 either argument is NULL. */
1345
1346 static int
1347 match_name (const char *sym_name, const char *name, int wild)
1348 {
1349 if (sym_name == NULL || name == NULL)
1350 return 0;
1351 else if (wild)
1352 return wild_match (sym_name, name) == 0;
1353 else
1354 {
1355 int len_name = strlen (name);
1356
1357 return (strncmp (sym_name, name, len_name) == 0
1358 && is_name_suffix (sym_name + len_name))
1359 || (strncmp (sym_name, "_ada_", 5) == 0
1360 && strncmp (sym_name + 5, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name + 5));
1362 }
1363 }
1364 \f
1365
1366 /* Arrays */
1367
1368 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describle the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391 void
1392 ada_fixup_array_indexes_type (struct type *index_desc_type)
1393 {
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1408 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1414 {
1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1420 }
1421 }
1422
1423 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1424
1425 static char *bound_name[] = {
1426 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1427 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1428 };
1429
1430 /* Maximum number of array dimensions we are prepared to handle. */
1431
1432 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1433
1434
1435 /* The desc_* routines return primitive portions of array descriptors
1436 (fat pointers). */
1437
1438 /* The descriptor or array type, if any, indicated by TYPE; removes
1439 level of indirection, if needed. */
1440
1441 static struct type *
1442 desc_base_type (struct type *type)
1443 {
1444 if (type == NULL)
1445 return NULL;
1446 type = ada_check_typedef (type);
1447 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1448 type = ada_typedef_target_type (type);
1449
1450 if (type != NULL
1451 && (TYPE_CODE (type) == TYPE_CODE_PTR
1452 || TYPE_CODE (type) == TYPE_CODE_REF))
1453 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1454 else
1455 return type;
1456 }
1457
1458 /* True iff TYPE indicates a "thin" array pointer type. */
1459
1460 static int
1461 is_thin_pntr (struct type *type)
1462 {
1463 return
1464 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1465 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1466 }
1467
1468 /* The descriptor type for thin pointer type TYPE. */
1469
1470 static struct type *
1471 thin_descriptor_type (struct type *type)
1472 {
1473 struct type *base_type = desc_base_type (type);
1474
1475 if (base_type == NULL)
1476 return NULL;
1477 if (is_suffix (ada_type_name (base_type), "___XVE"))
1478 return base_type;
1479 else
1480 {
1481 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1482
1483 if (alt_type == NULL)
1484 return base_type;
1485 else
1486 return alt_type;
1487 }
1488 }
1489
1490 /* A pointer to the array data for thin-pointer value VAL. */
1491
1492 static struct value *
1493 thin_data_pntr (struct value *val)
1494 {
1495 struct type *type = ada_check_typedef (value_type (val));
1496 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1497
1498 data_type = lookup_pointer_type (data_type);
1499
1500 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1501 return value_cast (data_type, value_copy (val));
1502 else
1503 return value_from_longest (data_type, value_address (val));
1504 }
1505
1506 /* True iff TYPE indicates a "thick" array pointer type. */
1507
1508 static int
1509 is_thick_pntr (struct type *type)
1510 {
1511 type = desc_base_type (type);
1512 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1513 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1514 }
1515
1516 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1517 pointer to one, the type of its bounds data; otherwise, NULL. */
1518
1519 static struct type *
1520 desc_bounds_type (struct type *type)
1521 {
1522 struct type *r;
1523
1524 type = desc_base_type (type);
1525
1526 if (type == NULL)
1527 return NULL;
1528 else if (is_thin_pntr (type))
1529 {
1530 type = thin_descriptor_type (type);
1531 if (type == NULL)
1532 return NULL;
1533 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1534 if (r != NULL)
1535 return ada_check_typedef (r);
1536 }
1537 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1538 {
1539 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1540 if (r != NULL)
1541 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1542 }
1543 return NULL;
1544 }
1545
1546 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1547 one, a pointer to its bounds data. Otherwise NULL. */
1548
1549 static struct value *
1550 desc_bounds (struct value *arr)
1551 {
1552 struct type *type = ada_check_typedef (value_type (arr));
1553
1554 if (is_thin_pntr (type))
1555 {
1556 struct type *bounds_type =
1557 desc_bounds_type (thin_descriptor_type (type));
1558 LONGEST addr;
1559
1560 if (bounds_type == NULL)
1561 error (_("Bad GNAT array descriptor"));
1562
1563 /* NOTE: The following calculation is not really kosher, but
1564 since desc_type is an XVE-encoded type (and shouldn't be),
1565 the correct calculation is a real pain. FIXME (and fix GCC). */
1566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1567 addr = value_as_long (arr);
1568 else
1569 addr = value_address (arr);
1570
1571 return
1572 value_from_longest (lookup_pointer_type (bounds_type),
1573 addr - TYPE_LENGTH (bounds_type));
1574 }
1575
1576 else if (is_thick_pntr (type))
1577 {
1578 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1579 _("Bad GNAT array descriptor"));
1580 struct type *p_bounds_type = value_type (p_bounds);
1581
1582 if (p_bounds_type
1583 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1584 {
1585 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1586
1587 if (TYPE_STUB (target_type))
1588 p_bounds = value_cast (lookup_pointer_type
1589 (ada_check_typedef (target_type)),
1590 p_bounds);
1591 }
1592 else
1593 error (_("Bad GNAT array descriptor"));
1594
1595 return p_bounds;
1596 }
1597 else
1598 return NULL;
1599 }
1600
1601 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 position of the field containing the address of the bounds data. */
1603
1604 static int
1605 fat_pntr_bounds_bitpos (struct type *type)
1606 {
1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1608 }
1609
1610 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1611 size of the field containing the address of the bounds data. */
1612
1613 static int
1614 fat_pntr_bounds_bitsize (struct type *type)
1615 {
1616 type = desc_base_type (type);
1617
1618 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1619 return TYPE_FIELD_BITSIZE (type, 1);
1620 else
1621 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1622 }
1623
1624 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1625 pointer to one, the type of its array data (a array-with-no-bounds type);
1626 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1627 data. */
1628
1629 static struct type *
1630 desc_data_target_type (struct type *type)
1631 {
1632 type = desc_base_type (type);
1633
1634 /* NOTE: The following is bogus; see comment in desc_bounds. */
1635 if (is_thin_pntr (type))
1636 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1637 else if (is_thick_pntr (type))
1638 {
1639 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1640
1641 if (data_type
1642 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1643 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1644 }
1645
1646 return NULL;
1647 }
1648
1649 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1650 its array data. */
1651
1652 static struct value *
1653 desc_data (struct value *arr)
1654 {
1655 struct type *type = value_type (arr);
1656
1657 if (is_thin_pntr (type))
1658 return thin_data_pntr (arr);
1659 else if (is_thick_pntr (type))
1660 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1661 _("Bad GNAT array descriptor"));
1662 else
1663 return NULL;
1664 }
1665
1666
1667 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1668 position of the field containing the address of the data. */
1669
1670 static int
1671 fat_pntr_data_bitpos (struct type *type)
1672 {
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1674 }
1675
1676 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1677 size of the field containing the address of the data. */
1678
1679 static int
1680 fat_pntr_data_bitsize (struct type *type)
1681 {
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 0);
1686 else
1687 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1688 }
1689
1690 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1691 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
1694 static struct value *
1695 desc_one_bound (struct value *bounds, int i, int which)
1696 {
1697 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1698 _("Bad GNAT array descriptor bounds"));
1699 }
1700
1701 /* If BOUNDS is an array-bounds structure type, return the bit position
1702 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1703 bound, if WHICH is 1. The first bound is I=1. */
1704
1705 static int
1706 desc_bound_bitpos (struct type *type, int i, int which)
1707 {
1708 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1709 }
1710
1711 /* If BOUNDS is an array-bounds structure type, return the bit field size
1712 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1713 bound, if WHICH is 1. The first bound is I=1. */
1714
1715 static int
1716 desc_bound_bitsize (struct type *type, int i, int which)
1717 {
1718 type = desc_base_type (type);
1719
1720 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1721 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1722 else
1723 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1724 }
1725
1726 /* If TYPE is the type of an array-bounds structure, the type of its
1727 Ith bound (numbering from 1). Otherwise, NULL. */
1728
1729 static struct type *
1730 desc_index_type (struct type *type, int i)
1731 {
1732 type = desc_base_type (type);
1733
1734 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1735 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1736 else
1737 return NULL;
1738 }
1739
1740 /* The number of index positions in the array-bounds type TYPE.
1741 Return 0 if TYPE is NULL. */
1742
1743 static int
1744 desc_arity (struct type *type)
1745 {
1746 type = desc_base_type (type);
1747
1748 if (type != NULL)
1749 return TYPE_NFIELDS (type) / 2;
1750 return 0;
1751 }
1752
1753 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1754 an array descriptor type (representing an unconstrained array
1755 type). */
1756
1757 static int
1758 ada_is_direct_array_type (struct type *type)
1759 {
1760 if (type == NULL)
1761 return 0;
1762 type = ada_check_typedef (type);
1763 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1764 || ada_is_array_descriptor_type (type));
1765 }
1766
1767 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1768 * to one. */
1769
1770 static int
1771 ada_is_array_type (struct type *type)
1772 {
1773 while (type != NULL
1774 && (TYPE_CODE (type) == TYPE_CODE_PTR
1775 || TYPE_CODE (type) == TYPE_CODE_REF))
1776 type = TYPE_TARGET_TYPE (type);
1777 return ada_is_direct_array_type (type);
1778 }
1779
1780 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1781
1782 int
1783 ada_is_simple_array_type (struct type *type)
1784 {
1785 if (type == NULL)
1786 return 0;
1787 type = ada_check_typedef (type);
1788 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1789 || (TYPE_CODE (type) == TYPE_CODE_PTR
1790 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1791 == TYPE_CODE_ARRAY));
1792 }
1793
1794 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1795
1796 int
1797 ada_is_array_descriptor_type (struct type *type)
1798 {
1799 struct type *data_type = desc_data_target_type (type);
1800
1801 if (type == NULL)
1802 return 0;
1803 type = ada_check_typedef (type);
1804 return (data_type != NULL
1805 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1806 && desc_arity (desc_bounds_type (type)) > 0);
1807 }
1808
1809 /* Non-zero iff type is a partially mal-formed GNAT array
1810 descriptor. FIXME: This is to compensate for some problems with
1811 debugging output from GNAT. Re-examine periodically to see if it
1812 is still needed. */
1813
1814 int
1815 ada_is_bogus_array_descriptor (struct type *type)
1816 {
1817 return
1818 type != NULL
1819 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1820 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1821 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1822 && !ada_is_array_descriptor_type (type);
1823 }
1824
1825
1826 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1827 (fat pointer) returns the type of the array data described---specifically,
1828 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1829 in from the descriptor; otherwise, they are left unspecified. If
1830 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1831 returns NULL. The result is simply the type of ARR if ARR is not
1832 a descriptor. */
1833 struct type *
1834 ada_type_of_array (struct value *arr, int bounds)
1835 {
1836 if (ada_is_constrained_packed_array_type (value_type (arr)))
1837 return decode_constrained_packed_array_type (value_type (arr));
1838
1839 if (!ada_is_array_descriptor_type (value_type (arr)))
1840 return value_type (arr);
1841
1842 if (!bounds)
1843 {
1844 struct type *array_type =
1845 ada_check_typedef (desc_data_target_type (value_type (arr)));
1846
1847 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1848 TYPE_FIELD_BITSIZE (array_type, 0) =
1849 decode_packed_array_bitsize (value_type (arr));
1850
1851 return array_type;
1852 }
1853 else
1854 {
1855 struct type *elt_type;
1856 int arity;
1857 struct value *descriptor;
1858
1859 elt_type = ada_array_element_type (value_type (arr), -1);
1860 arity = ada_array_arity (value_type (arr));
1861
1862 if (elt_type == NULL || arity == 0)
1863 return ada_check_typedef (value_type (arr));
1864
1865 descriptor = desc_bounds (arr);
1866 if (value_as_long (descriptor) == 0)
1867 return NULL;
1868 while (arity > 0)
1869 {
1870 struct type *range_type = alloc_type_copy (value_type (arr));
1871 struct type *array_type = alloc_type_copy (value_type (arr));
1872 struct value *low = desc_one_bound (descriptor, arity, 0);
1873 struct value *high = desc_one_bound (descriptor, arity, 1);
1874
1875 arity -= 1;
1876 create_range_type (range_type, value_type (low),
1877 longest_to_int (value_as_long (low)),
1878 longest_to_int (value_as_long (high)));
1879 elt_type = create_array_type (array_type, elt_type, range_type);
1880
1881 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1882 {
1883 /* We need to store the element packed bitsize, as well as
1884 recompute the array size, because it was previously
1885 computed based on the unpacked element size. */
1886 LONGEST lo = value_as_long (low);
1887 LONGEST hi = value_as_long (high);
1888
1889 TYPE_FIELD_BITSIZE (elt_type, 0) =
1890 decode_packed_array_bitsize (value_type (arr));
1891 /* If the array has no element, then the size is already
1892 zero, and does not need to be recomputed. */
1893 if (lo < hi)
1894 {
1895 int array_bitsize =
1896 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1897
1898 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1899 }
1900 }
1901 }
1902
1903 return lookup_pointer_type (elt_type);
1904 }
1905 }
1906
1907 /* If ARR does not represent an array, returns ARR unchanged.
1908 Otherwise, returns either a standard GDB array with bounds set
1909 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1910 GDB array. Returns NULL if ARR is a null fat pointer. */
1911
1912 struct value *
1913 ada_coerce_to_simple_array_ptr (struct value *arr)
1914 {
1915 if (ada_is_array_descriptor_type (value_type (arr)))
1916 {
1917 struct type *arrType = ada_type_of_array (arr, 1);
1918
1919 if (arrType == NULL)
1920 return NULL;
1921 return value_cast (arrType, value_copy (desc_data (arr)));
1922 }
1923 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array (arr);
1925 else
1926 return arr;
1927 }
1928
1929 /* If ARR does not represent an array, returns ARR unchanged.
1930 Otherwise, returns a standard GDB array describing ARR (which may
1931 be ARR itself if it already is in the proper form). */
1932
1933 struct value *
1934 ada_coerce_to_simple_array (struct value *arr)
1935 {
1936 if (ada_is_array_descriptor_type (value_type (arr)))
1937 {
1938 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1939
1940 if (arrVal == NULL)
1941 error (_("Bounds unavailable for null array pointer."));
1942 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1943 return value_ind (arrVal);
1944 }
1945 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array (arr);
1947 else
1948 return arr;
1949 }
1950
1951 /* If TYPE represents a GNAT array type, return it translated to an
1952 ordinary GDB array type (possibly with BITSIZE fields indicating
1953 packing). For other types, is the identity. */
1954
1955 struct type *
1956 ada_coerce_to_simple_array_type (struct type *type)
1957 {
1958 if (ada_is_constrained_packed_array_type (type))
1959 return decode_constrained_packed_array_type (type);
1960
1961 if (ada_is_array_descriptor_type (type))
1962 return ada_check_typedef (desc_data_target_type (type));
1963
1964 return type;
1965 }
1966
1967 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1968
1969 static int
1970 ada_is_packed_array_type (struct type *type)
1971 {
1972 if (type == NULL)
1973 return 0;
1974 type = desc_base_type (type);
1975 type = ada_check_typedef (type);
1976 return
1977 ada_type_name (type) != NULL
1978 && strstr (ada_type_name (type), "___XP") != NULL;
1979 }
1980
1981 /* Non-zero iff TYPE represents a standard GNAT constrained
1982 packed-array type. */
1983
1984 int
1985 ada_is_constrained_packed_array_type (struct type *type)
1986 {
1987 return ada_is_packed_array_type (type)
1988 && !ada_is_array_descriptor_type (type);
1989 }
1990
1991 /* Non-zero iff TYPE represents an array descriptor for a
1992 unconstrained packed-array type. */
1993
1994 static int
1995 ada_is_unconstrained_packed_array_type (struct type *type)
1996 {
1997 return ada_is_packed_array_type (type)
1998 && ada_is_array_descriptor_type (type);
1999 }
2000
2001 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2002 return the size of its elements in bits. */
2003
2004 static long
2005 decode_packed_array_bitsize (struct type *type)
2006 {
2007 const char *raw_name;
2008 const char *tail;
2009 long bits;
2010
2011 /* Access to arrays implemented as fat pointers are encoded as a typedef
2012 of the fat pointer type. We need the name of the fat pointer type
2013 to do the decoding, so strip the typedef layer. */
2014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2015 type = ada_typedef_target_type (type);
2016
2017 raw_name = ada_type_name (ada_check_typedef (type));
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return 0;
2023
2024 tail = strstr (raw_name, "___XP");
2025 gdb_assert (tail != NULL);
2026
2027 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2028 {
2029 lim_warning
2030 (_("could not understand bit size information on packed array"));
2031 return 0;
2032 }
2033
2034 return bits;
2035 }
2036
2037 /* Given that TYPE is a standard GDB array type with all bounds filled
2038 in, and that the element size of its ultimate scalar constituents
2039 (that is, either its elements, or, if it is an array of arrays, its
2040 elements' elements, etc.) is *ELT_BITS, return an identical type,
2041 but with the bit sizes of its elements (and those of any
2042 constituent arrays) recorded in the BITSIZE components of its
2043 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2044 in bits. */
2045
2046 static struct type *
2047 constrained_packed_array_type (struct type *type, long *elt_bits)
2048 {
2049 struct type *new_elt_type;
2050 struct type *new_type;
2051 struct type *index_type_desc;
2052 struct type *index_type;
2053 LONGEST low_bound, high_bound;
2054
2055 type = ada_check_typedef (type);
2056 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2057 return type;
2058
2059 index_type_desc = ada_find_parallel_type (type, "___XA");
2060 if (index_type_desc)
2061 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2062 NULL);
2063 else
2064 index_type = TYPE_INDEX_TYPE (type);
2065
2066 new_type = alloc_type_copy (type);
2067 new_elt_type =
2068 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2069 elt_bits);
2070 create_array_type (new_type, new_elt_type, index_type);
2071 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2072 TYPE_NAME (new_type) = ada_type_name (type);
2073
2074 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2075 low_bound = high_bound = 0;
2076 if (high_bound < low_bound)
2077 *elt_bits = TYPE_LENGTH (new_type) = 0;
2078 else
2079 {
2080 *elt_bits *= (high_bound - low_bound + 1);
2081 TYPE_LENGTH (new_type) =
2082 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2083 }
2084
2085 TYPE_FIXED_INSTANCE (new_type) = 1;
2086 return new_type;
2087 }
2088
2089 /* The array type encoded by TYPE, where
2090 ada_is_constrained_packed_array_type (TYPE). */
2091
2092 static struct type *
2093 decode_constrained_packed_array_type (struct type *type)
2094 {
2095 const char *raw_name = ada_type_name (ada_check_typedef (type));
2096 char *name;
2097 const char *tail;
2098 struct type *shadow_type;
2099 long bits;
2100
2101 if (!raw_name)
2102 raw_name = ada_type_name (desc_base_type (type));
2103
2104 if (!raw_name)
2105 return NULL;
2106
2107 name = (char *) alloca (strlen (raw_name) + 1);
2108 tail = strstr (raw_name, "___XP");
2109 type = desc_base_type (type);
2110
2111 memcpy (name, raw_name, tail - raw_name);
2112 name[tail - raw_name] = '\000';
2113
2114 shadow_type = ada_find_parallel_type_with_name (type, name);
2115
2116 if (shadow_type == NULL)
2117 {
2118 lim_warning (_("could not find bounds information on packed array"));
2119 return NULL;
2120 }
2121 CHECK_TYPEDEF (shadow_type);
2122
2123 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2124 {
2125 lim_warning (_("could not understand bounds "
2126 "information on packed array"));
2127 return NULL;
2128 }
2129
2130 bits = decode_packed_array_bitsize (type);
2131 return constrained_packed_array_type (shadow_type, &bits);
2132 }
2133
2134 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2135 array, returns a simple array that denotes that array. Its type is a
2136 standard GDB array type except that the BITSIZEs of the array
2137 target types are set to the number of bits in each element, and the
2138 type length is set appropriately. */
2139
2140 static struct value *
2141 decode_constrained_packed_array (struct value *arr)
2142 {
2143 struct type *type;
2144
2145 arr = ada_coerce_ref (arr);
2146
2147 /* If our value is a pointer, then dererence it. Make sure that
2148 this operation does not cause the target type to be fixed, as
2149 this would indirectly cause this array to be decoded. The rest
2150 of the routine assumes that the array hasn't been decoded yet,
2151 so we use the basic "value_ind" routine to perform the dereferencing,
2152 as opposed to using "ada_value_ind". */
2153 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2154 arr = value_ind (arr);
2155
2156 type = decode_constrained_packed_array_type (value_type (arr));
2157 if (type == NULL)
2158 {
2159 error (_("can't unpack array"));
2160 return NULL;
2161 }
2162
2163 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2164 && ada_is_modular_type (value_type (arr)))
2165 {
2166 /* This is a (right-justified) modular type representing a packed
2167 array with no wrapper. In order to interpret the value through
2168 the (left-justified) packed array type we just built, we must
2169 first left-justify it. */
2170 int bit_size, bit_pos;
2171 ULONGEST mod;
2172
2173 mod = ada_modulus (value_type (arr)) - 1;
2174 bit_size = 0;
2175 while (mod > 0)
2176 {
2177 bit_size += 1;
2178 mod >>= 1;
2179 }
2180 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2181 arr = ada_value_primitive_packed_val (arr, NULL,
2182 bit_pos / HOST_CHAR_BIT,
2183 bit_pos % HOST_CHAR_BIT,
2184 bit_size,
2185 type);
2186 }
2187
2188 return coerce_unspec_val_to_type (arr, type);
2189 }
2190
2191
2192 /* The value of the element of packed array ARR at the ARITY indices
2193 given in IND. ARR must be a simple array. */
2194
2195 static struct value *
2196 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2197 {
2198 int i;
2199 int bits, elt_off, bit_off;
2200 long elt_total_bit_offset;
2201 struct type *elt_type;
2202 struct value *v;
2203
2204 bits = 0;
2205 elt_total_bit_offset = 0;
2206 elt_type = ada_check_typedef (value_type (arr));
2207 for (i = 0; i < arity; i += 1)
2208 {
2209 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2210 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2211 error
2212 (_("attempt to do packed indexing of "
2213 "something other than a packed array"));
2214 else
2215 {
2216 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2217 LONGEST lowerbound, upperbound;
2218 LONGEST idx;
2219
2220 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2221 {
2222 lim_warning (_("don't know bounds of array"));
2223 lowerbound = upperbound = 0;
2224 }
2225
2226 idx = pos_atr (ind[i]);
2227 if (idx < lowerbound || idx > upperbound)
2228 lim_warning (_("packed array index %ld out of bounds"),
2229 (long) idx);
2230 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2231 elt_total_bit_offset += (idx - lowerbound) * bits;
2232 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2233 }
2234 }
2235 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2236 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2237
2238 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2239 bits, elt_type);
2240 return v;
2241 }
2242
2243 /* Non-zero iff TYPE includes negative integer values. */
2244
2245 static int
2246 has_negatives (struct type *type)
2247 {
2248 switch (TYPE_CODE (type))
2249 {
2250 default:
2251 return 0;
2252 case TYPE_CODE_INT:
2253 return !TYPE_UNSIGNED (type);
2254 case TYPE_CODE_RANGE:
2255 return TYPE_LOW_BOUND (type) < 0;
2256 }
2257 }
2258
2259
2260 /* Create a new value of type TYPE from the contents of OBJ starting
2261 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2262 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2263 assigning through the result will set the field fetched from.
2264 VALADDR is ignored unless OBJ is NULL, in which case,
2265 VALADDR+OFFSET must address the start of storage containing the
2266 packed value. The value returned in this case is never an lval.
2267 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2268
2269 struct value *
2270 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2271 long offset, int bit_offset, int bit_size,
2272 struct type *type)
2273 {
2274 struct value *v;
2275 int src, /* Index into the source area */
2276 targ, /* Index into the target area */
2277 srcBitsLeft, /* Number of source bits left to move */
2278 nsrc, ntarg, /* Number of source and target bytes */
2279 unusedLS, /* Number of bits in next significant
2280 byte of source that are unused */
2281 accumSize; /* Number of meaningful bits in accum */
2282 unsigned char *bytes; /* First byte containing data to unpack */
2283 unsigned char *unpacked;
2284 unsigned long accum; /* Staging area for bits being transferred */
2285 unsigned char sign;
2286 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2287 /* Transmit bytes from least to most significant; delta is the direction
2288 the indices move. */
2289 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2290
2291 type = ada_check_typedef (type);
2292
2293 if (obj == NULL)
2294 {
2295 v = allocate_value (type);
2296 bytes = (unsigned char *) (valaddr + offset);
2297 }
2298 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2299 {
2300 v = value_at (type,
2301 value_address (obj) + offset);
2302 bytes = (unsigned char *) alloca (len);
2303 read_memory (value_address (v), bytes, len);
2304 }
2305 else
2306 {
2307 v = allocate_value (type);
2308 bytes = (unsigned char *) value_contents (obj) + offset;
2309 }
2310
2311 if (obj != NULL)
2312 {
2313 CORE_ADDR new_addr;
2314
2315 set_value_component_location (v, obj);
2316 new_addr = value_address (obj) + offset;
2317 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2318 set_value_bitsize (v, bit_size);
2319 if (value_bitpos (v) >= HOST_CHAR_BIT)
2320 {
2321 ++new_addr;
2322 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2323 }
2324 set_value_address (v, new_addr);
2325 }
2326 else
2327 set_value_bitsize (v, bit_size);
2328 unpacked = (unsigned char *) value_contents (v);
2329
2330 srcBitsLeft = bit_size;
2331 nsrc = len;
2332 ntarg = TYPE_LENGTH (type);
2333 sign = 0;
2334 if (bit_size == 0)
2335 {
2336 memset (unpacked, 0, TYPE_LENGTH (type));
2337 return v;
2338 }
2339 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2340 {
2341 src = len - 1;
2342 if (has_negatives (type)
2343 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2344 sign = ~0;
2345
2346 unusedLS =
2347 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2348 % HOST_CHAR_BIT;
2349
2350 switch (TYPE_CODE (type))
2351 {
2352 case TYPE_CODE_ARRAY:
2353 case TYPE_CODE_UNION:
2354 case TYPE_CODE_STRUCT:
2355 /* Non-scalar values must be aligned at a byte boundary... */
2356 accumSize =
2357 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2358 /* ... And are placed at the beginning (most-significant) bytes
2359 of the target. */
2360 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2361 ntarg = targ + 1;
2362 break;
2363 default:
2364 accumSize = 0;
2365 targ = TYPE_LENGTH (type) - 1;
2366 break;
2367 }
2368 }
2369 else
2370 {
2371 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2372
2373 src = targ = 0;
2374 unusedLS = bit_offset;
2375 accumSize = 0;
2376
2377 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2378 sign = ~0;
2379 }
2380
2381 accum = 0;
2382 while (nsrc > 0)
2383 {
2384 /* Mask for removing bits of the next source byte that are not
2385 part of the value. */
2386 unsigned int unusedMSMask =
2387 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2388 1;
2389 /* Sign-extend bits for this byte. */
2390 unsigned int signMask = sign & ~unusedMSMask;
2391
2392 accum |=
2393 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2394 accumSize += HOST_CHAR_BIT - unusedLS;
2395 if (accumSize >= HOST_CHAR_BIT)
2396 {
2397 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2398 accumSize -= HOST_CHAR_BIT;
2399 accum >>= HOST_CHAR_BIT;
2400 ntarg -= 1;
2401 targ += delta;
2402 }
2403 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2404 unusedLS = 0;
2405 nsrc -= 1;
2406 src += delta;
2407 }
2408 while (ntarg > 0)
2409 {
2410 accum |= sign << accumSize;
2411 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2412 accumSize -= HOST_CHAR_BIT;
2413 accum >>= HOST_CHAR_BIT;
2414 ntarg -= 1;
2415 targ += delta;
2416 }
2417
2418 return v;
2419 }
2420
2421 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2422 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2423 not overlap. */
2424 static void
2425 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2426 int src_offset, int n, int bits_big_endian_p)
2427 {
2428 unsigned int accum, mask;
2429 int accum_bits, chunk_size;
2430
2431 target += targ_offset / HOST_CHAR_BIT;
2432 targ_offset %= HOST_CHAR_BIT;
2433 source += src_offset / HOST_CHAR_BIT;
2434 src_offset %= HOST_CHAR_BIT;
2435 if (bits_big_endian_p)
2436 {
2437 accum = (unsigned char) *source;
2438 source += 1;
2439 accum_bits = HOST_CHAR_BIT - src_offset;
2440
2441 while (n > 0)
2442 {
2443 int unused_right;
2444
2445 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2446 accum_bits += HOST_CHAR_BIT;
2447 source += 1;
2448 chunk_size = HOST_CHAR_BIT - targ_offset;
2449 if (chunk_size > n)
2450 chunk_size = n;
2451 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2452 mask = ((1 << chunk_size) - 1) << unused_right;
2453 *target =
2454 (*target & ~mask)
2455 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2456 n -= chunk_size;
2457 accum_bits -= chunk_size;
2458 target += 1;
2459 targ_offset = 0;
2460 }
2461 }
2462 else
2463 {
2464 accum = (unsigned char) *source >> src_offset;
2465 source += 1;
2466 accum_bits = HOST_CHAR_BIT - src_offset;
2467
2468 while (n > 0)
2469 {
2470 accum = accum + ((unsigned char) *source << accum_bits);
2471 accum_bits += HOST_CHAR_BIT;
2472 source += 1;
2473 chunk_size = HOST_CHAR_BIT - targ_offset;
2474 if (chunk_size > n)
2475 chunk_size = n;
2476 mask = ((1 << chunk_size) - 1) << targ_offset;
2477 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2478 n -= chunk_size;
2479 accum_bits -= chunk_size;
2480 accum >>= chunk_size;
2481 target += 1;
2482 targ_offset = 0;
2483 }
2484 }
2485 }
2486
2487 /* Store the contents of FROMVAL into the location of TOVAL.
2488 Return a new value with the location of TOVAL and contents of
2489 FROMVAL. Handles assignment into packed fields that have
2490 floating-point or non-scalar types. */
2491
2492 static struct value *
2493 ada_value_assign (struct value *toval, struct value *fromval)
2494 {
2495 struct type *type = value_type (toval);
2496 int bits = value_bitsize (toval);
2497
2498 toval = ada_coerce_ref (toval);
2499 fromval = ada_coerce_ref (fromval);
2500
2501 if (ada_is_direct_array_type (value_type (toval)))
2502 toval = ada_coerce_to_simple_array (toval);
2503 if (ada_is_direct_array_type (value_type (fromval)))
2504 fromval = ada_coerce_to_simple_array (fromval);
2505
2506 if (!deprecated_value_modifiable (toval))
2507 error (_("Left operand of assignment is not a modifiable lvalue."));
2508
2509 if (VALUE_LVAL (toval) == lval_memory
2510 && bits > 0
2511 && (TYPE_CODE (type) == TYPE_CODE_FLT
2512 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2513 {
2514 int len = (value_bitpos (toval)
2515 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2516 int from_size;
2517 char *buffer = (char *) alloca (len);
2518 struct value *val;
2519 CORE_ADDR to_addr = value_address (toval);
2520
2521 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2522 fromval = value_cast (type, fromval);
2523
2524 read_memory (to_addr, buffer, len);
2525 from_size = value_bitsize (fromval);
2526 if (from_size == 0)
2527 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2528 if (gdbarch_bits_big_endian (get_type_arch (type)))
2529 move_bits (buffer, value_bitpos (toval),
2530 value_contents (fromval), from_size - bits, bits, 1);
2531 else
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), 0, bits, 0);
2534 write_memory (to_addr, buffer, len);
2535 observer_notify_memory_changed (to_addr, len, buffer);
2536
2537 val = value_copy (toval);
2538 memcpy (value_contents_raw (val), value_contents (fromval),
2539 TYPE_LENGTH (type));
2540 deprecated_set_value_type (val, type);
2541
2542 return val;
2543 }
2544
2545 return value_assign (toval, fromval);
2546 }
2547
2548
2549 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2550 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2551 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2552 * COMPONENT, and not the inferior's memory. The current contents
2553 * of COMPONENT are ignored. */
2554 static void
2555 value_assign_to_component (struct value *container, struct value *component,
2556 struct value *val)
2557 {
2558 LONGEST offset_in_container =
2559 (LONGEST) (value_address (component) - value_address (container));
2560 int bit_offset_in_container =
2561 value_bitpos (component) - value_bitpos (container);
2562 int bits;
2563
2564 val = value_cast (value_type (component), val);
2565
2566 if (value_bitsize (component) == 0)
2567 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2568 else
2569 bits = value_bitsize (component);
2570
2571 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2572 move_bits (value_contents_writeable (container) + offset_in_container,
2573 value_bitpos (container) + bit_offset_in_container,
2574 value_contents (val),
2575 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2576 bits, 1);
2577 else
2578 move_bits (value_contents_writeable (container) + offset_in_container,
2579 value_bitpos (container) + bit_offset_in_container,
2580 value_contents (val), 0, bits, 0);
2581 }
2582
2583 /* The value of the element of array ARR at the ARITY indices given in IND.
2584 ARR may be either a simple array, GNAT array descriptor, or pointer
2585 thereto. */
2586
2587 struct value *
2588 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2589 {
2590 int k;
2591 struct value *elt;
2592 struct type *elt_type;
2593
2594 elt = ada_coerce_to_simple_array (arr);
2595
2596 elt_type = ada_check_typedef (value_type (elt));
2597 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2598 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2599 return value_subscript_packed (elt, arity, ind);
2600
2601 for (k = 0; k < arity; k += 1)
2602 {
2603 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2604 error (_("too many subscripts (%d expected)"), k);
2605 elt = value_subscript (elt, pos_atr (ind[k]));
2606 }
2607 return elt;
2608 }
2609
2610 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2611 value of the element of *ARR at the ARITY indices given in
2612 IND. Does not read the entire array into memory. */
2613
2614 static struct value *
2615 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2616 struct value **ind)
2617 {
2618 int k;
2619
2620 for (k = 0; k < arity; k += 1)
2621 {
2622 LONGEST lwb, upb;
2623
2624 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2625 error (_("too many subscripts (%d expected)"), k);
2626 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2627 value_copy (arr));
2628 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2629 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2630 type = TYPE_TARGET_TYPE (type);
2631 }
2632
2633 return value_ind (arr);
2634 }
2635
2636 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2637 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2638 elements starting at index LOW. The lower bound of this array is LOW, as
2639 per Ada rules. */
2640 static struct value *
2641 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2642 int low, int high)
2643 {
2644 struct type *type0 = ada_check_typedef (type);
2645 CORE_ADDR base = value_as_address (array_ptr)
2646 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2647 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2648 struct type *index_type =
2649 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2650 low, high);
2651 struct type *slice_type =
2652 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2653
2654 return value_at_lazy (slice_type, base);
2655 }
2656
2657
2658 static struct value *
2659 ada_value_slice (struct value *array, int low, int high)
2660 {
2661 struct type *type = ada_check_typedef (value_type (array));
2662 struct type *index_type =
2663 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2664 struct type *slice_type =
2665 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2666
2667 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2668 }
2669
2670 /* If type is a record type in the form of a standard GNAT array
2671 descriptor, returns the number of dimensions for type. If arr is a
2672 simple array, returns the number of "array of"s that prefix its
2673 type designation. Otherwise, returns 0. */
2674
2675 int
2676 ada_array_arity (struct type *type)
2677 {
2678 int arity;
2679
2680 if (type == NULL)
2681 return 0;
2682
2683 type = desc_base_type (type);
2684
2685 arity = 0;
2686 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2687 return desc_arity (desc_bounds_type (type));
2688 else
2689 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2690 {
2691 arity += 1;
2692 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2693 }
2694
2695 return arity;
2696 }
2697
2698 /* If TYPE is a record type in the form of a standard GNAT array
2699 descriptor or a simple array type, returns the element type for
2700 TYPE after indexing by NINDICES indices, or by all indices if
2701 NINDICES is -1. Otherwise, returns NULL. */
2702
2703 struct type *
2704 ada_array_element_type (struct type *type, int nindices)
2705 {
2706 type = desc_base_type (type);
2707
2708 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2709 {
2710 int k;
2711 struct type *p_array_type;
2712
2713 p_array_type = desc_data_target_type (type);
2714
2715 k = ada_array_arity (type);
2716 if (k == 0)
2717 return NULL;
2718
2719 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2720 if (nindices >= 0 && k > nindices)
2721 k = nindices;
2722 while (k > 0 && p_array_type != NULL)
2723 {
2724 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2725 k -= 1;
2726 }
2727 return p_array_type;
2728 }
2729 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2730 {
2731 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2732 {
2733 type = TYPE_TARGET_TYPE (type);
2734 nindices -= 1;
2735 }
2736 return type;
2737 }
2738
2739 return NULL;
2740 }
2741
2742 /* The type of nth index in arrays of given type (n numbering from 1).
2743 Does not examine memory. Throws an error if N is invalid or TYPE
2744 is not an array type. NAME is the name of the Ada attribute being
2745 evaluated ('range, 'first, 'last, or 'length); it is used in building
2746 the error message. */
2747
2748 static struct type *
2749 ada_index_type (struct type *type, int n, const char *name)
2750 {
2751 struct type *result_type;
2752
2753 type = desc_base_type (type);
2754
2755 if (n < 0 || n > ada_array_arity (type))
2756 error (_("invalid dimension number to '%s"), name);
2757
2758 if (ada_is_simple_array_type (type))
2759 {
2760 int i;
2761
2762 for (i = 1; i < n; i += 1)
2763 type = TYPE_TARGET_TYPE (type);
2764 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2765 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2766 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2767 perhaps stabsread.c would make more sense. */
2768 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2769 result_type = NULL;
2770 }
2771 else
2772 {
2773 result_type = desc_index_type (desc_bounds_type (type), n);
2774 if (result_type == NULL)
2775 error (_("attempt to take bound of something that is not an array"));
2776 }
2777
2778 return result_type;
2779 }
2780
2781 /* Given that arr is an array type, returns the lower bound of the
2782 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2783 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2784 array-descriptor type. It works for other arrays with bounds supplied
2785 by run-time quantities other than discriminants. */
2786
2787 static LONGEST
2788 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2789 {
2790 struct type *type, *elt_type, *index_type_desc, *index_type;
2791 int i;
2792
2793 gdb_assert (which == 0 || which == 1);
2794
2795 if (ada_is_constrained_packed_array_type (arr_type))
2796 arr_type = decode_constrained_packed_array_type (arr_type);
2797
2798 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2799 return (LONGEST) - which;
2800
2801 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2802 type = TYPE_TARGET_TYPE (arr_type);
2803 else
2804 type = arr_type;
2805
2806 elt_type = type;
2807 for (i = n; i > 1; i--)
2808 elt_type = TYPE_TARGET_TYPE (type);
2809
2810 index_type_desc = ada_find_parallel_type (type, "___XA");
2811 ada_fixup_array_indexes_type (index_type_desc);
2812 if (index_type_desc != NULL)
2813 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2814 NULL);
2815 else
2816 index_type = TYPE_INDEX_TYPE (elt_type);
2817
2818 return
2819 (LONGEST) (which == 0
2820 ? ada_discrete_type_low_bound (index_type)
2821 : ada_discrete_type_high_bound (index_type));
2822 }
2823
2824 /* Given that arr is an array value, returns the lower bound of the
2825 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2826 WHICH is 1. This routine will also work for arrays with bounds
2827 supplied by run-time quantities other than discriminants. */
2828
2829 static LONGEST
2830 ada_array_bound (struct value *arr, int n, int which)
2831 {
2832 struct type *arr_type = value_type (arr);
2833
2834 if (ada_is_constrained_packed_array_type (arr_type))
2835 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2836 else if (ada_is_simple_array_type (arr_type))
2837 return ada_array_bound_from_type (arr_type, n, which);
2838 else
2839 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2840 }
2841
2842 /* Given that arr is an array value, returns the length of the
2843 nth index. This routine will also work for arrays with bounds
2844 supplied by run-time quantities other than discriminants.
2845 Does not work for arrays indexed by enumeration types with representation
2846 clauses at the moment. */
2847
2848 static LONGEST
2849 ada_array_length (struct value *arr, int n)
2850 {
2851 struct type *arr_type = ada_check_typedef (value_type (arr));
2852
2853 if (ada_is_constrained_packed_array_type (arr_type))
2854 return ada_array_length (decode_constrained_packed_array (arr), n);
2855
2856 if (ada_is_simple_array_type (arr_type))
2857 return (ada_array_bound_from_type (arr_type, n, 1)
2858 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2859 else
2860 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2861 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2862 }
2863
2864 /* An empty array whose type is that of ARR_TYPE (an array type),
2865 with bounds LOW to LOW-1. */
2866
2867 static struct value *
2868 empty_array (struct type *arr_type, int low)
2869 {
2870 struct type *arr_type0 = ada_check_typedef (arr_type);
2871 struct type *index_type =
2872 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2873 low, low - 1);
2874 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2875
2876 return allocate_value (create_array_type (NULL, elt_type, index_type));
2877 }
2878 \f
2879
2880 /* Name resolution */
2881
2882 /* The "decoded" name for the user-definable Ada operator corresponding
2883 to OP. */
2884
2885 static const char *
2886 ada_decoded_op_name (enum exp_opcode op)
2887 {
2888 int i;
2889
2890 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2891 {
2892 if (ada_opname_table[i].op == op)
2893 return ada_opname_table[i].decoded;
2894 }
2895 error (_("Could not find operator name for opcode"));
2896 }
2897
2898
2899 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2900 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2901 undefined namespace) and converts operators that are
2902 user-defined into appropriate function calls. If CONTEXT_TYPE is
2903 non-null, it provides a preferred result type [at the moment, only
2904 type void has any effect---causing procedures to be preferred over
2905 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2906 return type is preferred. May change (expand) *EXP. */
2907
2908 static void
2909 resolve (struct expression **expp, int void_context_p)
2910 {
2911 struct type *context_type = NULL;
2912 int pc = 0;
2913
2914 if (void_context_p)
2915 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2916
2917 resolve_subexp (expp, &pc, 1, context_type);
2918 }
2919
2920 /* Resolve the operator of the subexpression beginning at
2921 position *POS of *EXPP. "Resolving" consists of replacing
2922 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2923 with their resolutions, replacing built-in operators with
2924 function calls to user-defined operators, where appropriate, and,
2925 when DEPROCEDURE_P is non-zero, converting function-valued variables
2926 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2927 are as in ada_resolve, above. */
2928
2929 static struct value *
2930 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2931 struct type *context_type)
2932 {
2933 int pc = *pos;
2934 int i;
2935 struct expression *exp; /* Convenience: == *expp. */
2936 enum exp_opcode op = (*expp)->elts[pc].opcode;
2937 struct value **argvec; /* Vector of operand types (alloca'ed). */
2938 int nargs; /* Number of operands. */
2939 int oplen;
2940
2941 argvec = NULL;
2942 nargs = 0;
2943 exp = *expp;
2944
2945 /* Pass one: resolve operands, saving their types and updating *pos,
2946 if needed. */
2947 switch (op)
2948 {
2949 case OP_FUNCALL:
2950 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2951 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2952 *pos += 7;
2953 else
2954 {
2955 *pos += 3;
2956 resolve_subexp (expp, pos, 0, NULL);
2957 }
2958 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2959 break;
2960
2961 case UNOP_ADDR:
2962 *pos += 1;
2963 resolve_subexp (expp, pos, 0, NULL);
2964 break;
2965
2966 case UNOP_QUAL:
2967 *pos += 3;
2968 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2969 break;
2970
2971 case OP_ATR_MODULUS:
2972 case OP_ATR_SIZE:
2973 case OP_ATR_TAG:
2974 case OP_ATR_FIRST:
2975 case OP_ATR_LAST:
2976 case OP_ATR_LENGTH:
2977 case OP_ATR_POS:
2978 case OP_ATR_VAL:
2979 case OP_ATR_MIN:
2980 case OP_ATR_MAX:
2981 case TERNOP_IN_RANGE:
2982 case BINOP_IN_BOUNDS:
2983 case UNOP_IN_RANGE:
2984 case OP_AGGREGATE:
2985 case OP_OTHERS:
2986 case OP_CHOICES:
2987 case OP_POSITIONAL:
2988 case OP_DISCRETE_RANGE:
2989 case OP_NAME:
2990 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2991 *pos += oplen;
2992 break;
2993
2994 case BINOP_ASSIGN:
2995 {
2996 struct value *arg1;
2997
2998 *pos += 1;
2999 arg1 = resolve_subexp (expp, pos, 0, NULL);
3000 if (arg1 == NULL)
3001 resolve_subexp (expp, pos, 1, NULL);
3002 else
3003 resolve_subexp (expp, pos, 1, value_type (arg1));
3004 break;
3005 }
3006
3007 case UNOP_CAST:
3008 *pos += 3;
3009 nargs = 1;
3010 break;
3011
3012 case BINOP_ADD:
3013 case BINOP_SUB:
3014 case BINOP_MUL:
3015 case BINOP_DIV:
3016 case BINOP_REM:
3017 case BINOP_MOD:
3018 case BINOP_EXP:
3019 case BINOP_CONCAT:
3020 case BINOP_LOGICAL_AND:
3021 case BINOP_LOGICAL_OR:
3022 case BINOP_BITWISE_AND:
3023 case BINOP_BITWISE_IOR:
3024 case BINOP_BITWISE_XOR:
3025
3026 case BINOP_EQUAL:
3027 case BINOP_NOTEQUAL:
3028 case BINOP_LESS:
3029 case BINOP_GTR:
3030 case BINOP_LEQ:
3031 case BINOP_GEQ:
3032
3033 case BINOP_REPEAT:
3034 case BINOP_SUBSCRIPT:
3035 case BINOP_COMMA:
3036 *pos += 1;
3037 nargs = 2;
3038 break;
3039
3040 case UNOP_NEG:
3041 case UNOP_PLUS:
3042 case UNOP_LOGICAL_NOT:
3043 case UNOP_ABS:
3044 case UNOP_IND:
3045 *pos += 1;
3046 nargs = 1;
3047 break;
3048
3049 case OP_LONG:
3050 case OP_DOUBLE:
3051 case OP_VAR_VALUE:
3052 *pos += 4;
3053 break;
3054
3055 case OP_TYPE:
3056 case OP_BOOL:
3057 case OP_LAST:
3058 case OP_INTERNALVAR:
3059 *pos += 3;
3060 break;
3061
3062 case UNOP_MEMVAL:
3063 *pos += 3;
3064 nargs = 1;
3065 break;
3066
3067 case OP_REGISTER:
3068 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3069 break;
3070
3071 case STRUCTOP_STRUCT:
3072 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3073 nargs = 1;
3074 break;
3075
3076 case TERNOP_SLICE:
3077 *pos += 1;
3078 nargs = 3;
3079 break;
3080
3081 case OP_STRING:
3082 break;
3083
3084 default:
3085 error (_("Unexpected operator during name resolution"));
3086 }
3087
3088 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3089 for (i = 0; i < nargs; i += 1)
3090 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3091 argvec[i] = NULL;
3092 exp = *expp;
3093
3094 /* Pass two: perform any resolution on principal operator. */
3095 switch (op)
3096 {
3097 default:
3098 break;
3099
3100 case OP_VAR_VALUE:
3101 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3102 {
3103 struct ada_symbol_info *candidates;
3104 int n_candidates;
3105
3106 n_candidates =
3107 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3108 (exp->elts[pc + 2].symbol),
3109 exp->elts[pc + 1].block, VAR_DOMAIN,
3110 &candidates, 1);
3111
3112 if (n_candidates > 1)
3113 {
3114 /* Types tend to get re-introduced locally, so if there
3115 are any local symbols that are not types, first filter
3116 out all types. */
3117 int j;
3118 for (j = 0; j < n_candidates; j += 1)
3119 switch (SYMBOL_CLASS (candidates[j].sym))
3120 {
3121 case LOC_REGISTER:
3122 case LOC_ARG:
3123 case LOC_REF_ARG:
3124 case LOC_REGPARM_ADDR:
3125 case LOC_LOCAL:
3126 case LOC_COMPUTED:
3127 goto FoundNonType;
3128 default:
3129 break;
3130 }
3131 FoundNonType:
3132 if (j < n_candidates)
3133 {
3134 j = 0;
3135 while (j < n_candidates)
3136 {
3137 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3138 {
3139 candidates[j] = candidates[n_candidates - 1];
3140 n_candidates -= 1;
3141 }
3142 else
3143 j += 1;
3144 }
3145 }
3146 }
3147
3148 if (n_candidates == 0)
3149 error (_("No definition found for %s"),
3150 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3151 else if (n_candidates == 1)
3152 i = 0;
3153 else if (deprocedure_p
3154 && !is_nonfunction (candidates, n_candidates))
3155 {
3156 i = ada_resolve_function
3157 (candidates, n_candidates, NULL, 0,
3158 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3159 context_type);
3160 if (i < 0)
3161 error (_("Could not find a match for %s"),
3162 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3163 }
3164 else
3165 {
3166 printf_filtered (_("Multiple matches for %s\n"),
3167 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3168 user_select_syms (candidates, n_candidates, 1);
3169 i = 0;
3170 }
3171
3172 exp->elts[pc + 1].block = candidates[i].block;
3173 exp->elts[pc + 2].symbol = candidates[i].sym;
3174 if (innermost_block == NULL
3175 || contained_in (candidates[i].block, innermost_block))
3176 innermost_block = candidates[i].block;
3177 }
3178
3179 if (deprocedure_p
3180 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3181 == TYPE_CODE_FUNC))
3182 {
3183 replace_operator_with_call (expp, pc, 0, 0,
3184 exp->elts[pc + 2].symbol,
3185 exp->elts[pc + 1].block);
3186 exp = *expp;
3187 }
3188 break;
3189
3190 case OP_FUNCALL:
3191 {
3192 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3193 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3194 {
3195 struct ada_symbol_info *candidates;
3196 int n_candidates;
3197
3198 n_candidates =
3199 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3200 (exp->elts[pc + 5].symbol),
3201 exp->elts[pc + 4].block, VAR_DOMAIN,
3202 &candidates, 1);
3203 if (n_candidates == 1)
3204 i = 0;
3205 else
3206 {
3207 i = ada_resolve_function
3208 (candidates, n_candidates,
3209 argvec, nargs,
3210 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3211 context_type);
3212 if (i < 0)
3213 error (_("Could not find a match for %s"),
3214 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3215 }
3216
3217 exp->elts[pc + 4].block = candidates[i].block;
3218 exp->elts[pc + 5].symbol = candidates[i].sym;
3219 if (innermost_block == NULL
3220 || contained_in (candidates[i].block, innermost_block))
3221 innermost_block = candidates[i].block;
3222 }
3223 }
3224 break;
3225 case BINOP_ADD:
3226 case BINOP_SUB:
3227 case BINOP_MUL:
3228 case BINOP_DIV:
3229 case BINOP_REM:
3230 case BINOP_MOD:
3231 case BINOP_CONCAT:
3232 case BINOP_BITWISE_AND:
3233 case BINOP_BITWISE_IOR:
3234 case BINOP_BITWISE_XOR:
3235 case BINOP_EQUAL:
3236 case BINOP_NOTEQUAL:
3237 case BINOP_LESS:
3238 case BINOP_GTR:
3239 case BINOP_LEQ:
3240 case BINOP_GEQ:
3241 case BINOP_EXP:
3242 case UNOP_NEG:
3243 case UNOP_PLUS:
3244 case UNOP_LOGICAL_NOT:
3245 case UNOP_ABS:
3246 if (possible_user_operator_p (op, argvec))
3247 {
3248 struct ada_symbol_info *candidates;
3249 int n_candidates;
3250
3251 n_candidates =
3252 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3253 (struct block *) NULL, VAR_DOMAIN,
3254 &candidates, 1);
3255 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3256 ada_decoded_op_name (op), NULL);
3257 if (i < 0)
3258 break;
3259
3260 replace_operator_with_call (expp, pc, nargs, 1,
3261 candidates[i].sym, candidates[i].block);
3262 exp = *expp;
3263 }
3264 break;
3265
3266 case OP_TYPE:
3267 case OP_REGISTER:
3268 return NULL;
3269 }
3270
3271 *pos = pc;
3272 return evaluate_subexp_type (exp, pos);
3273 }
3274
3275 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3276 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3277 a non-pointer. */
3278 /* The term "match" here is rather loose. The match is heuristic and
3279 liberal. */
3280
3281 static int
3282 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3283 {
3284 ftype = ada_check_typedef (ftype);
3285 atype = ada_check_typedef (atype);
3286
3287 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3288 ftype = TYPE_TARGET_TYPE (ftype);
3289 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3290 atype = TYPE_TARGET_TYPE (atype);
3291
3292 switch (TYPE_CODE (ftype))
3293 {
3294 default:
3295 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3296 case TYPE_CODE_PTR:
3297 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3298 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3299 TYPE_TARGET_TYPE (atype), 0);
3300 else
3301 return (may_deref
3302 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3303 case TYPE_CODE_INT:
3304 case TYPE_CODE_ENUM:
3305 case TYPE_CODE_RANGE:
3306 switch (TYPE_CODE (atype))
3307 {
3308 case TYPE_CODE_INT:
3309 case TYPE_CODE_ENUM:
3310 case TYPE_CODE_RANGE:
3311 return 1;
3312 default:
3313 return 0;
3314 }
3315
3316 case TYPE_CODE_ARRAY:
3317 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3318 || ada_is_array_descriptor_type (atype));
3319
3320 case TYPE_CODE_STRUCT:
3321 if (ada_is_array_descriptor_type (ftype))
3322 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3323 || ada_is_array_descriptor_type (atype));
3324 else
3325 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3326 && !ada_is_array_descriptor_type (atype));
3327
3328 case TYPE_CODE_UNION:
3329 case TYPE_CODE_FLT:
3330 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3331 }
3332 }
3333
3334 /* Return non-zero if the formals of FUNC "sufficiently match" the
3335 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3336 may also be an enumeral, in which case it is treated as a 0-
3337 argument function. */
3338
3339 static int
3340 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3341 {
3342 int i;
3343 struct type *func_type = SYMBOL_TYPE (func);
3344
3345 if (SYMBOL_CLASS (func) == LOC_CONST
3346 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3347 return (n_actuals == 0);
3348 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3349 return 0;
3350
3351 if (TYPE_NFIELDS (func_type) != n_actuals)
3352 return 0;
3353
3354 for (i = 0; i < n_actuals; i += 1)
3355 {
3356 if (actuals[i] == NULL)
3357 return 0;
3358 else
3359 {
3360 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3361 i));
3362 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3363
3364 if (!ada_type_match (ftype, atype, 1))
3365 return 0;
3366 }
3367 }
3368 return 1;
3369 }
3370
3371 /* False iff function type FUNC_TYPE definitely does not produce a value
3372 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3373 FUNC_TYPE is not a valid function type with a non-null return type
3374 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3375
3376 static int
3377 return_match (struct type *func_type, struct type *context_type)
3378 {
3379 struct type *return_type;
3380
3381 if (func_type == NULL)
3382 return 1;
3383
3384 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3385 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3386 else
3387 return_type = get_base_type (func_type);
3388 if (return_type == NULL)
3389 return 1;
3390
3391 context_type = get_base_type (context_type);
3392
3393 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3394 return context_type == NULL || return_type == context_type;
3395 else if (context_type == NULL)
3396 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3397 else
3398 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3399 }
3400
3401
3402 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3403 function (if any) that matches the types of the NARGS arguments in
3404 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3405 that returns that type, then eliminate matches that don't. If
3406 CONTEXT_TYPE is void and there is at least one match that does not
3407 return void, eliminate all matches that do.
3408
3409 Asks the user if there is more than one match remaining. Returns -1
3410 if there is no such symbol or none is selected. NAME is used
3411 solely for messages. May re-arrange and modify SYMS in
3412 the process; the index returned is for the modified vector. */
3413
3414 static int
3415 ada_resolve_function (struct ada_symbol_info syms[],
3416 int nsyms, struct value **args, int nargs,
3417 const char *name, struct type *context_type)
3418 {
3419 int fallback;
3420 int k;
3421 int m; /* Number of hits */
3422
3423 m = 0;
3424 /* In the first pass of the loop, we only accept functions matching
3425 context_type. If none are found, we add a second pass of the loop
3426 where every function is accepted. */
3427 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3428 {
3429 for (k = 0; k < nsyms; k += 1)
3430 {
3431 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3432
3433 if (ada_args_match (syms[k].sym, args, nargs)
3434 && (fallback || return_match (type, context_type)))
3435 {
3436 syms[m] = syms[k];
3437 m += 1;
3438 }
3439 }
3440 }
3441
3442 if (m == 0)
3443 return -1;
3444 else if (m > 1)
3445 {
3446 printf_filtered (_("Multiple matches for %s\n"), name);
3447 user_select_syms (syms, m, 1);
3448 return 0;
3449 }
3450 return 0;
3451 }
3452
3453 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3454 in a listing of choices during disambiguation (see sort_choices, below).
3455 The idea is that overloadings of a subprogram name from the
3456 same package should sort in their source order. We settle for ordering
3457 such symbols by their trailing number (__N or $N). */
3458
3459 static int
3460 encoded_ordered_before (const char *N0, const char *N1)
3461 {
3462 if (N1 == NULL)
3463 return 0;
3464 else if (N0 == NULL)
3465 return 1;
3466 else
3467 {
3468 int k0, k1;
3469
3470 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3471 ;
3472 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3473 ;
3474 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3475 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3476 {
3477 int n0, n1;
3478
3479 n0 = k0;
3480 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3481 n0 -= 1;
3482 n1 = k1;
3483 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3484 n1 -= 1;
3485 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3486 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3487 }
3488 return (strcmp (N0, N1) < 0);
3489 }
3490 }
3491
3492 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3493 encoded names. */
3494
3495 static void
3496 sort_choices (struct ada_symbol_info syms[], int nsyms)
3497 {
3498 int i;
3499
3500 for (i = 1; i < nsyms; i += 1)
3501 {
3502 struct ada_symbol_info sym = syms[i];
3503 int j;
3504
3505 for (j = i - 1; j >= 0; j -= 1)
3506 {
3507 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3508 SYMBOL_LINKAGE_NAME (sym.sym)))
3509 break;
3510 syms[j + 1] = syms[j];
3511 }
3512 syms[j + 1] = sym;
3513 }
3514 }
3515
3516 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3517 by asking the user (if necessary), returning the number selected,
3518 and setting the first elements of SYMS items. Error if no symbols
3519 selected. */
3520
3521 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3522 to be re-integrated one of these days. */
3523
3524 int
3525 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3526 {
3527 int i;
3528 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3529 int n_chosen;
3530 int first_choice = (max_results == 1) ? 1 : 2;
3531 const char *select_mode = multiple_symbols_select_mode ();
3532
3533 if (max_results < 1)
3534 error (_("Request to select 0 symbols!"));
3535 if (nsyms <= 1)
3536 return nsyms;
3537
3538 if (select_mode == multiple_symbols_cancel)
3539 error (_("\
3540 canceled because the command is ambiguous\n\
3541 See set/show multiple-symbol."));
3542
3543 /* If select_mode is "all", then return all possible symbols.
3544 Only do that if more than one symbol can be selected, of course.
3545 Otherwise, display the menu as usual. */
3546 if (select_mode == multiple_symbols_all && max_results > 1)
3547 return nsyms;
3548
3549 printf_unfiltered (_("[0] cancel\n"));
3550 if (max_results > 1)
3551 printf_unfiltered (_("[1] all\n"));
3552
3553 sort_choices (syms, nsyms);
3554
3555 for (i = 0; i < nsyms; i += 1)
3556 {
3557 if (syms[i].sym == NULL)
3558 continue;
3559
3560 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3561 {
3562 struct symtab_and_line sal =
3563 find_function_start_sal (syms[i].sym, 1);
3564
3565 if (sal.symtab == NULL)
3566 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3567 i + first_choice,
3568 SYMBOL_PRINT_NAME (syms[i].sym),
3569 sal.line);
3570 else
3571 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3572 SYMBOL_PRINT_NAME (syms[i].sym),
3573 sal.symtab->filename, sal.line);
3574 continue;
3575 }
3576 else
3577 {
3578 int is_enumeral =
3579 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3580 && SYMBOL_TYPE (syms[i].sym) != NULL
3581 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3582 struct symtab *symtab = syms[i].sym->symtab;
3583
3584 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3585 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3586 i + first_choice,
3587 SYMBOL_PRINT_NAME (syms[i].sym),
3588 symtab->filename, SYMBOL_LINE (syms[i].sym));
3589 else if (is_enumeral
3590 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3591 {
3592 printf_unfiltered (("[%d] "), i + first_choice);
3593 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3594 gdb_stdout, -1, 0);
3595 printf_unfiltered (_("'(%s) (enumeral)\n"),
3596 SYMBOL_PRINT_NAME (syms[i].sym));
3597 }
3598 else if (symtab != NULL)
3599 printf_unfiltered (is_enumeral
3600 ? _("[%d] %s in %s (enumeral)\n")
3601 : _("[%d] %s at %s:?\n"),
3602 i + first_choice,
3603 SYMBOL_PRINT_NAME (syms[i].sym),
3604 symtab->filename);
3605 else
3606 printf_unfiltered (is_enumeral
3607 ? _("[%d] %s (enumeral)\n")
3608 : _("[%d] %s at ?\n"),
3609 i + first_choice,
3610 SYMBOL_PRINT_NAME (syms[i].sym));
3611 }
3612 }
3613
3614 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3615 "overload-choice");
3616
3617 for (i = 0; i < n_chosen; i += 1)
3618 syms[i] = syms[chosen[i]];
3619
3620 return n_chosen;
3621 }
3622
3623 /* Read and validate a set of numeric choices from the user in the
3624 range 0 .. N_CHOICES-1. Place the results in increasing
3625 order in CHOICES[0 .. N-1], and return N.
3626
3627 The user types choices as a sequence of numbers on one line
3628 separated by blanks, encoding them as follows:
3629
3630 + A choice of 0 means to cancel the selection, throwing an error.
3631 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3632 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3633
3634 The user is not allowed to choose more than MAX_RESULTS values.
3635
3636 ANNOTATION_SUFFIX, if present, is used to annotate the input
3637 prompts (for use with the -f switch). */
3638
3639 int
3640 get_selections (int *choices, int n_choices, int max_results,
3641 int is_all_choice, char *annotation_suffix)
3642 {
3643 char *args;
3644 char *prompt;
3645 int n_chosen;
3646 int first_choice = is_all_choice ? 2 : 1;
3647
3648 prompt = getenv ("PS2");
3649 if (prompt == NULL)
3650 prompt = "> ";
3651
3652 args = command_line_input (prompt, 0, annotation_suffix);
3653
3654 if (args == NULL)
3655 error_no_arg (_("one or more choice numbers"));
3656
3657 n_chosen = 0;
3658
3659 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3660 order, as given in args. Choices are validated. */
3661 while (1)
3662 {
3663 char *args2;
3664 int choice, j;
3665
3666 args = skip_spaces (args);
3667 if (*args == '\0' && n_chosen == 0)
3668 error_no_arg (_("one or more choice numbers"));
3669 else if (*args == '\0')
3670 break;
3671
3672 choice = strtol (args, &args2, 10);
3673 if (args == args2 || choice < 0
3674 || choice > n_choices + first_choice - 1)
3675 error (_("Argument must be choice number"));
3676 args = args2;
3677
3678 if (choice == 0)
3679 error (_("cancelled"));
3680
3681 if (choice < first_choice)
3682 {
3683 n_chosen = n_choices;
3684 for (j = 0; j < n_choices; j += 1)
3685 choices[j] = j;
3686 break;
3687 }
3688 choice -= first_choice;
3689
3690 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3691 {
3692 }
3693
3694 if (j < 0 || choice != choices[j])
3695 {
3696 int k;
3697
3698 for (k = n_chosen - 1; k > j; k -= 1)
3699 choices[k + 1] = choices[k];
3700 choices[j + 1] = choice;
3701 n_chosen += 1;
3702 }
3703 }
3704
3705 if (n_chosen > max_results)
3706 error (_("Select no more than %d of the above"), max_results);
3707
3708 return n_chosen;
3709 }
3710
3711 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3712 on the function identified by SYM and BLOCK, and taking NARGS
3713 arguments. Update *EXPP as needed to hold more space. */
3714
3715 static void
3716 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3717 int oplen, struct symbol *sym,
3718 struct block *block)
3719 {
3720 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3721 symbol, -oplen for operator being replaced). */
3722 struct expression *newexp = (struct expression *)
3723 xzalloc (sizeof (struct expression)
3724 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3725 struct expression *exp = *expp;
3726
3727 newexp->nelts = exp->nelts + 7 - oplen;
3728 newexp->language_defn = exp->language_defn;
3729 newexp->gdbarch = exp->gdbarch;
3730 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3731 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3732 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3733
3734 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3735 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3736
3737 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3738 newexp->elts[pc + 4].block = block;
3739 newexp->elts[pc + 5].symbol = sym;
3740
3741 *expp = newexp;
3742 xfree (exp);
3743 }
3744
3745 /* Type-class predicates */
3746
3747 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3748 or FLOAT). */
3749
3750 static int
3751 numeric_type_p (struct type *type)
3752 {
3753 if (type == NULL)
3754 return 0;
3755 else
3756 {
3757 switch (TYPE_CODE (type))
3758 {
3759 case TYPE_CODE_INT:
3760 case TYPE_CODE_FLT:
3761 return 1;
3762 case TYPE_CODE_RANGE:
3763 return (type == TYPE_TARGET_TYPE (type)
3764 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3765 default:
3766 return 0;
3767 }
3768 }
3769 }
3770
3771 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3772
3773 static int
3774 integer_type_p (struct type *type)
3775 {
3776 if (type == NULL)
3777 return 0;
3778 else
3779 {
3780 switch (TYPE_CODE (type))
3781 {
3782 case TYPE_CODE_INT:
3783 return 1;
3784 case TYPE_CODE_RANGE:
3785 return (type == TYPE_TARGET_TYPE (type)
3786 || integer_type_p (TYPE_TARGET_TYPE (type)));
3787 default:
3788 return 0;
3789 }
3790 }
3791 }
3792
3793 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3794
3795 static int
3796 scalar_type_p (struct type *type)
3797 {
3798 if (type == NULL)
3799 return 0;
3800 else
3801 {
3802 switch (TYPE_CODE (type))
3803 {
3804 case TYPE_CODE_INT:
3805 case TYPE_CODE_RANGE:
3806 case TYPE_CODE_ENUM:
3807 case TYPE_CODE_FLT:
3808 return 1;
3809 default:
3810 return 0;
3811 }
3812 }
3813 }
3814
3815 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3816
3817 static int
3818 discrete_type_p (struct type *type)
3819 {
3820 if (type == NULL)
3821 return 0;
3822 else
3823 {
3824 switch (TYPE_CODE (type))
3825 {
3826 case TYPE_CODE_INT:
3827 case TYPE_CODE_RANGE:
3828 case TYPE_CODE_ENUM:
3829 case TYPE_CODE_BOOL:
3830 return 1;
3831 default:
3832 return 0;
3833 }
3834 }
3835 }
3836
3837 /* Returns non-zero if OP with operands in the vector ARGS could be
3838 a user-defined function. Errs on the side of pre-defined operators
3839 (i.e., result 0). */
3840
3841 static int
3842 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3843 {
3844 struct type *type0 =
3845 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3846 struct type *type1 =
3847 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3848
3849 if (type0 == NULL)
3850 return 0;
3851
3852 switch (op)
3853 {
3854 default:
3855 return 0;
3856
3857 case BINOP_ADD:
3858 case BINOP_SUB:
3859 case BINOP_MUL:
3860 case BINOP_DIV:
3861 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3862
3863 case BINOP_REM:
3864 case BINOP_MOD:
3865 case BINOP_BITWISE_AND:
3866 case BINOP_BITWISE_IOR:
3867 case BINOP_BITWISE_XOR:
3868 return (!(integer_type_p (type0) && integer_type_p (type1)));
3869
3870 case BINOP_EQUAL:
3871 case BINOP_NOTEQUAL:
3872 case BINOP_LESS:
3873 case BINOP_GTR:
3874 case BINOP_LEQ:
3875 case BINOP_GEQ:
3876 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3877
3878 case BINOP_CONCAT:
3879 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3880
3881 case BINOP_EXP:
3882 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3883
3884 case UNOP_NEG:
3885 case UNOP_PLUS:
3886 case UNOP_LOGICAL_NOT:
3887 case UNOP_ABS:
3888 return (!numeric_type_p (type0));
3889
3890 }
3891 }
3892 \f
3893 /* Renaming */
3894
3895 /* NOTES:
3896
3897 1. In the following, we assume that a renaming type's name may
3898 have an ___XD suffix. It would be nice if this went away at some
3899 point.
3900 2. We handle both the (old) purely type-based representation of
3901 renamings and the (new) variable-based encoding. At some point,
3902 it is devoutly to be hoped that the former goes away
3903 (FIXME: hilfinger-2007-07-09).
3904 3. Subprogram renamings are not implemented, although the XRS
3905 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3906
3907 /* If SYM encodes a renaming,
3908
3909 <renaming> renames <renamed entity>,
3910
3911 sets *LEN to the length of the renamed entity's name,
3912 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3913 the string describing the subcomponent selected from the renamed
3914 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3915 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3916 are undefined). Otherwise, returns a value indicating the category
3917 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3918 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3919 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3920 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3921 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3922 may be NULL, in which case they are not assigned.
3923
3924 [Currently, however, GCC does not generate subprogram renamings.] */
3925
3926 enum ada_renaming_category
3927 ada_parse_renaming (struct symbol *sym,
3928 const char **renamed_entity, int *len,
3929 const char **renaming_expr)
3930 {
3931 enum ada_renaming_category kind;
3932 const char *info;
3933 const char *suffix;
3934
3935 if (sym == NULL)
3936 return ADA_NOT_RENAMING;
3937 switch (SYMBOL_CLASS (sym))
3938 {
3939 default:
3940 return ADA_NOT_RENAMING;
3941 case LOC_TYPEDEF:
3942 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3943 renamed_entity, len, renaming_expr);
3944 case LOC_LOCAL:
3945 case LOC_STATIC:
3946 case LOC_COMPUTED:
3947 case LOC_OPTIMIZED_OUT:
3948 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3949 if (info == NULL)
3950 return ADA_NOT_RENAMING;
3951 switch (info[5])
3952 {
3953 case '_':
3954 kind = ADA_OBJECT_RENAMING;
3955 info += 6;
3956 break;
3957 case 'E':
3958 kind = ADA_EXCEPTION_RENAMING;
3959 info += 7;
3960 break;
3961 case 'P':
3962 kind = ADA_PACKAGE_RENAMING;
3963 info += 7;
3964 break;
3965 case 'S':
3966 kind = ADA_SUBPROGRAM_RENAMING;
3967 info += 7;
3968 break;
3969 default:
3970 return ADA_NOT_RENAMING;
3971 }
3972 }
3973
3974 if (renamed_entity != NULL)
3975 *renamed_entity = info;
3976 suffix = strstr (info, "___XE");
3977 if (suffix == NULL || suffix == info)
3978 return ADA_NOT_RENAMING;
3979 if (len != NULL)
3980 *len = strlen (info) - strlen (suffix);
3981 suffix += 5;
3982 if (renaming_expr != NULL)
3983 *renaming_expr = suffix;
3984 return kind;
3985 }
3986
3987 /* Assuming TYPE encodes a renaming according to the old encoding in
3988 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3989 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3990 ADA_NOT_RENAMING otherwise. */
3991 static enum ada_renaming_category
3992 parse_old_style_renaming (struct type *type,
3993 const char **renamed_entity, int *len,
3994 const char **renaming_expr)
3995 {
3996 enum ada_renaming_category kind;
3997 const char *name;
3998 const char *info;
3999 const char *suffix;
4000
4001 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4002 || TYPE_NFIELDS (type) != 1)
4003 return ADA_NOT_RENAMING;
4004
4005 name = type_name_no_tag (type);
4006 if (name == NULL)
4007 return ADA_NOT_RENAMING;
4008
4009 name = strstr (name, "___XR");
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012 switch (name[5])
4013 {
4014 case '\0':
4015 case '_':
4016 kind = ADA_OBJECT_RENAMING;
4017 break;
4018 case 'E':
4019 kind = ADA_EXCEPTION_RENAMING;
4020 break;
4021 case 'P':
4022 kind = ADA_PACKAGE_RENAMING;
4023 break;
4024 case 'S':
4025 kind = ADA_SUBPROGRAM_RENAMING;
4026 break;
4027 default:
4028 return ADA_NOT_RENAMING;
4029 }
4030
4031 info = TYPE_FIELD_NAME (type, 0);
4032 if (info == NULL)
4033 return ADA_NOT_RENAMING;
4034 if (renamed_entity != NULL)
4035 *renamed_entity = info;
4036 suffix = strstr (info, "___XE");
4037 if (renaming_expr != NULL)
4038 *renaming_expr = suffix + 5;
4039 if (suffix == NULL || suffix == info)
4040 return ADA_NOT_RENAMING;
4041 if (len != NULL)
4042 *len = suffix - info;
4043 return kind;
4044 }
4045
4046 \f
4047
4048 /* Evaluation: Function Calls */
4049
4050 /* Return an lvalue containing the value VAL. This is the identity on
4051 lvalues, and otherwise has the side-effect of allocating memory
4052 in the inferior where a copy of the value contents is copied. */
4053
4054 static struct value *
4055 ensure_lval (struct value *val)
4056 {
4057 if (VALUE_LVAL (val) == not_lval
4058 || VALUE_LVAL (val) == lval_internalvar)
4059 {
4060 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4061 const CORE_ADDR addr =
4062 value_as_long (value_allocate_space_in_inferior (len));
4063
4064 set_value_address (val, addr);
4065 VALUE_LVAL (val) = lval_memory;
4066 write_memory (addr, value_contents (val), len);
4067 }
4068
4069 return val;
4070 }
4071
4072 /* Return the value ACTUAL, converted to be an appropriate value for a
4073 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4074 allocating any necessary descriptors (fat pointers), or copies of
4075 values not residing in memory, updating it as needed. */
4076
4077 struct value *
4078 ada_convert_actual (struct value *actual, struct type *formal_type0)
4079 {
4080 struct type *actual_type = ada_check_typedef (value_type (actual));
4081 struct type *formal_type = ada_check_typedef (formal_type0);
4082 struct type *formal_target =
4083 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4084 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4085 struct type *actual_target =
4086 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4087 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4088
4089 if (ada_is_array_descriptor_type (formal_target)
4090 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4091 return make_array_descriptor (formal_type, actual);
4092 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4093 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4094 {
4095 struct value *result;
4096
4097 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4098 && ada_is_array_descriptor_type (actual_target))
4099 result = desc_data (actual);
4100 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4101 {
4102 if (VALUE_LVAL (actual) != lval_memory)
4103 {
4104 struct value *val;
4105
4106 actual_type = ada_check_typedef (value_type (actual));
4107 val = allocate_value (actual_type);
4108 memcpy ((char *) value_contents_raw (val),
4109 (char *) value_contents (actual),
4110 TYPE_LENGTH (actual_type));
4111 actual = ensure_lval (val);
4112 }
4113 result = value_addr (actual);
4114 }
4115 else
4116 return actual;
4117 return value_cast_pointers (formal_type, result);
4118 }
4119 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4120 return ada_value_ind (actual);
4121
4122 return actual;
4123 }
4124
4125 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4126 type TYPE. This is usually an inefficient no-op except on some targets
4127 (such as AVR) where the representation of a pointer and an address
4128 differs. */
4129
4130 static CORE_ADDR
4131 value_pointer (struct value *value, struct type *type)
4132 {
4133 struct gdbarch *gdbarch = get_type_arch (type);
4134 unsigned len = TYPE_LENGTH (type);
4135 gdb_byte *buf = alloca (len);
4136 CORE_ADDR addr;
4137
4138 addr = value_address (value);
4139 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4140 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4141 return addr;
4142 }
4143
4144
4145 /* Push a descriptor of type TYPE for array value ARR on the stack at
4146 *SP, updating *SP to reflect the new descriptor. Return either
4147 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4148 to-descriptor type rather than a descriptor type), a struct value *
4149 representing a pointer to this descriptor. */
4150
4151 static struct value *
4152 make_array_descriptor (struct type *type, struct value *arr)
4153 {
4154 struct type *bounds_type = desc_bounds_type (type);
4155 struct type *desc_type = desc_base_type (type);
4156 struct value *descriptor = allocate_value (desc_type);
4157 struct value *bounds = allocate_value (bounds_type);
4158 int i;
4159
4160 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4161 i > 0; i -= 1)
4162 {
4163 modify_field (value_type (bounds), value_contents_writeable (bounds),
4164 ada_array_bound (arr, i, 0),
4165 desc_bound_bitpos (bounds_type, i, 0),
4166 desc_bound_bitsize (bounds_type, i, 0));
4167 modify_field (value_type (bounds), value_contents_writeable (bounds),
4168 ada_array_bound (arr, i, 1),
4169 desc_bound_bitpos (bounds_type, i, 1),
4170 desc_bound_bitsize (bounds_type, i, 1));
4171 }
4172
4173 bounds = ensure_lval (bounds);
4174
4175 modify_field (value_type (descriptor),
4176 value_contents_writeable (descriptor),
4177 value_pointer (ensure_lval (arr),
4178 TYPE_FIELD_TYPE (desc_type, 0)),
4179 fat_pntr_data_bitpos (desc_type),
4180 fat_pntr_data_bitsize (desc_type));
4181
4182 modify_field (value_type (descriptor),
4183 value_contents_writeable (descriptor),
4184 value_pointer (bounds,
4185 TYPE_FIELD_TYPE (desc_type, 1)),
4186 fat_pntr_bounds_bitpos (desc_type),
4187 fat_pntr_bounds_bitsize (desc_type));
4188
4189 descriptor = ensure_lval (descriptor);
4190
4191 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4192 return value_addr (descriptor);
4193 else
4194 return descriptor;
4195 }
4196 \f
4197 /* Dummy definitions for an experimental caching module that is not
4198 * used in the public sources. */
4199
4200 static int
4201 lookup_cached_symbol (const char *name, domain_enum namespace,
4202 struct symbol **sym, struct block **block)
4203 {
4204 return 0;
4205 }
4206
4207 static void
4208 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4209 struct block *block)
4210 {
4211 }
4212 \f
4213 /* Symbol Lookup */
4214
4215 /* Return nonzero if wild matching should be used when searching for
4216 all symbols matching LOOKUP_NAME.
4217
4218 LOOKUP_NAME is expected to be a symbol name after transformation
4219 for Ada lookups (see ada_name_for_lookup). */
4220
4221 static int
4222 should_use_wild_match (const char *lookup_name)
4223 {
4224 return (strstr (lookup_name, "__") == NULL);
4225 }
4226
4227 /* Return the result of a standard (literal, C-like) lookup of NAME in
4228 given DOMAIN, visible from lexical block BLOCK. */
4229
4230 static struct symbol *
4231 standard_lookup (const char *name, const struct block *block,
4232 domain_enum domain)
4233 {
4234 struct symbol *sym;
4235
4236 if (lookup_cached_symbol (name, domain, &sym, NULL))
4237 return sym;
4238 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4239 cache_symbol (name, domain, sym, block_found);
4240 return sym;
4241 }
4242
4243
4244 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4245 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4246 since they contend in overloading in the same way. */
4247 static int
4248 is_nonfunction (struct ada_symbol_info syms[], int n)
4249 {
4250 int i;
4251
4252 for (i = 0; i < n; i += 1)
4253 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4254 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4255 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4256 return 1;
4257
4258 return 0;
4259 }
4260
4261 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4262 struct types. Otherwise, they may not. */
4263
4264 static int
4265 equiv_types (struct type *type0, struct type *type1)
4266 {
4267 if (type0 == type1)
4268 return 1;
4269 if (type0 == NULL || type1 == NULL
4270 || TYPE_CODE (type0) != TYPE_CODE (type1))
4271 return 0;
4272 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4273 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4274 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4275 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4276 return 1;
4277
4278 return 0;
4279 }
4280
4281 /* True iff SYM0 represents the same entity as SYM1, or one that is
4282 no more defined than that of SYM1. */
4283
4284 static int
4285 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4286 {
4287 if (sym0 == sym1)
4288 return 1;
4289 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4290 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4291 return 0;
4292
4293 switch (SYMBOL_CLASS (sym0))
4294 {
4295 case LOC_UNDEF:
4296 return 1;
4297 case LOC_TYPEDEF:
4298 {
4299 struct type *type0 = SYMBOL_TYPE (sym0);
4300 struct type *type1 = SYMBOL_TYPE (sym1);
4301 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4302 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4303 int len0 = strlen (name0);
4304
4305 return
4306 TYPE_CODE (type0) == TYPE_CODE (type1)
4307 && (equiv_types (type0, type1)
4308 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4309 && strncmp (name1 + len0, "___XV", 5) == 0));
4310 }
4311 case LOC_CONST:
4312 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4313 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4314 default:
4315 return 0;
4316 }
4317 }
4318
4319 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4320 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4321
4322 static void
4323 add_defn_to_vec (struct obstack *obstackp,
4324 struct symbol *sym,
4325 struct block *block)
4326 {
4327 int i;
4328 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4329
4330 /* Do not try to complete stub types, as the debugger is probably
4331 already scanning all symbols matching a certain name at the
4332 time when this function is called. Trying to replace the stub
4333 type by its associated full type will cause us to restart a scan
4334 which may lead to an infinite recursion. Instead, the client
4335 collecting the matching symbols will end up collecting several
4336 matches, with at least one of them complete. It can then filter
4337 out the stub ones if needed. */
4338
4339 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4340 {
4341 if (lesseq_defined_than (sym, prevDefns[i].sym))
4342 return;
4343 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4344 {
4345 prevDefns[i].sym = sym;
4346 prevDefns[i].block = block;
4347 return;
4348 }
4349 }
4350
4351 {
4352 struct ada_symbol_info info;
4353
4354 info.sym = sym;
4355 info.block = block;
4356 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4357 }
4358 }
4359
4360 /* Number of ada_symbol_info structures currently collected in
4361 current vector in *OBSTACKP. */
4362
4363 static int
4364 num_defns_collected (struct obstack *obstackp)
4365 {
4366 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4367 }
4368
4369 /* Vector of ada_symbol_info structures currently collected in current
4370 vector in *OBSTACKP. If FINISH, close off the vector and return
4371 its final address. */
4372
4373 static struct ada_symbol_info *
4374 defns_collected (struct obstack *obstackp, int finish)
4375 {
4376 if (finish)
4377 return obstack_finish (obstackp);
4378 else
4379 return (struct ada_symbol_info *) obstack_base (obstackp);
4380 }
4381
4382 /* Return a minimal symbol matching NAME according to Ada decoding
4383 rules. Returns NULL if there is no such minimal symbol. Names
4384 prefixed with "standard__" are handled specially: "standard__" is
4385 first stripped off, and only static and global symbols are searched. */
4386
4387 struct minimal_symbol *
4388 ada_lookup_simple_minsym (const char *name)
4389 {
4390 struct objfile *objfile;
4391 struct minimal_symbol *msymbol;
4392 const int wild_match = should_use_wild_match (name);
4393
4394 /* Special case: If the user specifies a symbol name inside package
4395 Standard, do a non-wild matching of the symbol name without
4396 the "standard__" prefix. This was primarily introduced in order
4397 to allow the user to specifically access the standard exceptions
4398 using, for instance, Standard.Constraint_Error when Constraint_Error
4399 is ambiguous (due to the user defining its own Constraint_Error
4400 entity inside its program). */
4401 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4402 name += sizeof ("standard__") - 1;
4403
4404 ALL_MSYMBOLS (objfile, msymbol)
4405 {
4406 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4407 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4408 return msymbol;
4409 }
4410
4411 return NULL;
4412 }
4413
4414 /* For all subprograms that statically enclose the subprogram of the
4415 selected frame, add symbols matching identifier NAME in DOMAIN
4416 and their blocks to the list of data in OBSTACKP, as for
4417 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4418 wildcard prefix. */
4419
4420 static void
4421 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4422 const char *name, domain_enum namespace,
4423 int wild_match)
4424 {
4425 }
4426
4427 /* True if TYPE is definitely an artificial type supplied to a symbol
4428 for which no debugging information was given in the symbol file. */
4429
4430 static int
4431 is_nondebugging_type (struct type *type)
4432 {
4433 const char *name = ada_type_name (type);
4434
4435 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4436 }
4437
4438 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4439 that are deemed "identical" for practical purposes.
4440
4441 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4442 types and that their number of enumerals is identical (in other
4443 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4444
4445 static int
4446 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4447 {
4448 int i;
4449
4450 /* The heuristic we use here is fairly conservative. We consider
4451 that 2 enumerate types are identical if they have the same
4452 number of enumerals and that all enumerals have the same
4453 underlying value and name. */
4454
4455 /* All enums in the type should have an identical underlying value. */
4456 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4457 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4458 return 0;
4459
4460 /* All enumerals should also have the same name (modulo any numerical
4461 suffix). */
4462 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4463 {
4464 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4465 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4466 int len_1 = strlen (name_1);
4467 int len_2 = strlen (name_2);
4468
4469 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4470 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4471 if (len_1 != len_2
4472 || strncmp (TYPE_FIELD_NAME (type1, i),
4473 TYPE_FIELD_NAME (type2, i),
4474 len_1) != 0)
4475 return 0;
4476 }
4477
4478 return 1;
4479 }
4480
4481 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4482 that are deemed "identical" for practical purposes. Sometimes,
4483 enumerals are not strictly identical, but their types are so similar
4484 that they can be considered identical.
4485
4486 For instance, consider the following code:
4487
4488 type Color is (Black, Red, Green, Blue, White);
4489 type RGB_Color is new Color range Red .. Blue;
4490
4491 Type RGB_Color is a subrange of an implicit type which is a copy
4492 of type Color. If we call that implicit type RGB_ColorB ("B" is
4493 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4494 As a result, when an expression references any of the enumeral
4495 by name (Eg. "print green"), the expression is technically
4496 ambiguous and the user should be asked to disambiguate. But
4497 doing so would only hinder the user, since it wouldn't matter
4498 what choice he makes, the outcome would always be the same.
4499 So, for practical purposes, we consider them as the same. */
4500
4501 static int
4502 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4503 {
4504 int i;
4505
4506 /* Before performing a thorough comparison check of each type,
4507 we perform a series of inexpensive checks. We expect that these
4508 checks will quickly fail in the vast majority of cases, and thus
4509 help prevent the unnecessary use of a more expensive comparison.
4510 Said comparison also expects us to make some of these checks
4511 (see ada_identical_enum_types_p). */
4512
4513 /* Quick check: All symbols should have an enum type. */
4514 for (i = 0; i < nsyms; i++)
4515 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4516 return 0;
4517
4518 /* Quick check: They should all have the same value. */
4519 for (i = 1; i < nsyms; i++)
4520 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4521 return 0;
4522
4523 /* Quick check: They should all have the same number of enumerals. */
4524 for (i = 1; i < nsyms; i++)
4525 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4526 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4527 return 0;
4528
4529 /* All the sanity checks passed, so we might have a set of
4530 identical enumeration types. Perform a more complete
4531 comparison of the type of each symbol. */
4532 for (i = 1; i < nsyms; i++)
4533 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4534 SYMBOL_TYPE (syms[0].sym)))
4535 return 0;
4536
4537 return 1;
4538 }
4539
4540 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4541 duplicate other symbols in the list (The only case I know of where
4542 this happens is when object files containing stabs-in-ecoff are
4543 linked with files containing ordinary ecoff debugging symbols (or no
4544 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4545 Returns the number of items in the modified list. */
4546
4547 static int
4548 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4549 {
4550 int i, j;
4551
4552 /* We should never be called with less than 2 symbols, as there
4553 cannot be any extra symbol in that case. But it's easy to
4554 handle, since we have nothing to do in that case. */
4555 if (nsyms < 2)
4556 return nsyms;
4557
4558 i = 0;
4559 while (i < nsyms)
4560 {
4561 int remove_p = 0;
4562
4563 /* If two symbols have the same name and one of them is a stub type,
4564 the get rid of the stub. */
4565
4566 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4567 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4568 {
4569 for (j = 0; j < nsyms; j++)
4570 {
4571 if (j != i
4572 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4573 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4574 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4575 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4576 remove_p = 1;
4577 }
4578 }
4579
4580 /* Two symbols with the same name, same class and same address
4581 should be identical. */
4582
4583 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4584 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4585 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4586 {
4587 for (j = 0; j < nsyms; j += 1)
4588 {
4589 if (i != j
4590 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4591 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4592 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4593 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4594 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4595 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4596 remove_p = 1;
4597 }
4598 }
4599
4600 if (remove_p)
4601 {
4602 for (j = i + 1; j < nsyms; j += 1)
4603 syms[j - 1] = syms[j];
4604 nsyms -= 1;
4605 }
4606
4607 i += 1;
4608 }
4609
4610 /* If all the remaining symbols are identical enumerals, then
4611 just keep the first one and discard the rest.
4612
4613 Unlike what we did previously, we do not discard any entry
4614 unless they are ALL identical. This is because the symbol
4615 comparison is not a strict comparison, but rather a practical
4616 comparison. If all symbols are considered identical, then
4617 we can just go ahead and use the first one and discard the rest.
4618 But if we cannot reduce the list to a single element, we have
4619 to ask the user to disambiguate anyways. And if we have to
4620 present a multiple-choice menu, it's less confusing if the list
4621 isn't missing some choices that were identical and yet distinct. */
4622 if (symbols_are_identical_enums (syms, nsyms))
4623 nsyms = 1;
4624
4625 return nsyms;
4626 }
4627
4628 /* Given a type that corresponds to a renaming entity, use the type name
4629 to extract the scope (package name or function name, fully qualified,
4630 and following the GNAT encoding convention) where this renaming has been
4631 defined. The string returned needs to be deallocated after use. */
4632
4633 static char *
4634 xget_renaming_scope (struct type *renaming_type)
4635 {
4636 /* The renaming types adhere to the following convention:
4637 <scope>__<rename>___<XR extension>.
4638 So, to extract the scope, we search for the "___XR" extension,
4639 and then backtrack until we find the first "__". */
4640
4641 const char *name = type_name_no_tag (renaming_type);
4642 char *suffix = strstr (name, "___XR");
4643 char *last;
4644 int scope_len;
4645 char *scope;
4646
4647 /* Now, backtrack a bit until we find the first "__". Start looking
4648 at suffix - 3, as the <rename> part is at least one character long. */
4649
4650 for (last = suffix - 3; last > name; last--)
4651 if (last[0] == '_' && last[1] == '_')
4652 break;
4653
4654 /* Make a copy of scope and return it. */
4655
4656 scope_len = last - name;
4657 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4658
4659 strncpy (scope, name, scope_len);
4660 scope[scope_len] = '\0';
4661
4662 return scope;
4663 }
4664
4665 /* Return nonzero if NAME corresponds to a package name. */
4666
4667 static int
4668 is_package_name (const char *name)
4669 {
4670 /* Here, We take advantage of the fact that no symbols are generated
4671 for packages, while symbols are generated for each function.
4672 So the condition for NAME represent a package becomes equivalent
4673 to NAME not existing in our list of symbols. There is only one
4674 small complication with library-level functions (see below). */
4675
4676 char *fun_name;
4677
4678 /* If it is a function that has not been defined at library level,
4679 then we should be able to look it up in the symbols. */
4680 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4681 return 0;
4682
4683 /* Library-level function names start with "_ada_". See if function
4684 "_ada_" followed by NAME can be found. */
4685
4686 /* Do a quick check that NAME does not contain "__", since library-level
4687 functions names cannot contain "__" in them. */
4688 if (strstr (name, "__") != NULL)
4689 return 0;
4690
4691 fun_name = xstrprintf ("_ada_%s", name);
4692
4693 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4694 }
4695
4696 /* Return nonzero if SYM corresponds to a renaming entity that is
4697 not visible from FUNCTION_NAME. */
4698
4699 static int
4700 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4701 {
4702 char *scope;
4703
4704 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4705 return 0;
4706
4707 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4708
4709 make_cleanup (xfree, scope);
4710
4711 /* If the rename has been defined in a package, then it is visible. */
4712 if (is_package_name (scope))
4713 return 0;
4714
4715 /* Check that the rename is in the current function scope by checking
4716 that its name starts with SCOPE. */
4717
4718 /* If the function name starts with "_ada_", it means that it is
4719 a library-level function. Strip this prefix before doing the
4720 comparison, as the encoding for the renaming does not contain
4721 this prefix. */
4722 if (strncmp (function_name, "_ada_", 5) == 0)
4723 function_name += 5;
4724
4725 return (strncmp (function_name, scope, strlen (scope)) != 0);
4726 }
4727
4728 /* Remove entries from SYMS that corresponds to a renaming entity that
4729 is not visible from the function associated with CURRENT_BLOCK or
4730 that is superfluous due to the presence of more specific renaming
4731 information. Places surviving symbols in the initial entries of
4732 SYMS and returns the number of surviving symbols.
4733
4734 Rationale:
4735 First, in cases where an object renaming is implemented as a
4736 reference variable, GNAT may produce both the actual reference
4737 variable and the renaming encoding. In this case, we discard the
4738 latter.
4739
4740 Second, GNAT emits a type following a specified encoding for each renaming
4741 entity. Unfortunately, STABS currently does not support the definition
4742 of types that are local to a given lexical block, so all renamings types
4743 are emitted at library level. As a consequence, if an application
4744 contains two renaming entities using the same name, and a user tries to
4745 print the value of one of these entities, the result of the ada symbol
4746 lookup will also contain the wrong renaming type.
4747
4748 This function partially covers for this limitation by attempting to
4749 remove from the SYMS list renaming symbols that should be visible
4750 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4751 method with the current information available. The implementation
4752 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4753
4754 - When the user tries to print a rename in a function while there
4755 is another rename entity defined in a package: Normally, the
4756 rename in the function has precedence over the rename in the
4757 package, so the latter should be removed from the list. This is
4758 currently not the case.
4759
4760 - This function will incorrectly remove valid renames if
4761 the CURRENT_BLOCK corresponds to a function which symbol name
4762 has been changed by an "Export" pragma. As a consequence,
4763 the user will be unable to print such rename entities. */
4764
4765 static int
4766 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4767 int nsyms, const struct block *current_block)
4768 {
4769 struct symbol *current_function;
4770 const char *current_function_name;
4771 int i;
4772 int is_new_style_renaming;
4773
4774 /* If there is both a renaming foo___XR... encoded as a variable and
4775 a simple variable foo in the same block, discard the latter.
4776 First, zero out such symbols, then compress. */
4777 is_new_style_renaming = 0;
4778 for (i = 0; i < nsyms; i += 1)
4779 {
4780 struct symbol *sym = syms[i].sym;
4781 struct block *block = syms[i].block;
4782 const char *name;
4783 const char *suffix;
4784
4785 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4786 continue;
4787 name = SYMBOL_LINKAGE_NAME (sym);
4788 suffix = strstr (name, "___XR");
4789
4790 if (suffix != NULL)
4791 {
4792 int name_len = suffix - name;
4793 int j;
4794
4795 is_new_style_renaming = 1;
4796 for (j = 0; j < nsyms; j += 1)
4797 if (i != j && syms[j].sym != NULL
4798 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4799 name_len) == 0
4800 && block == syms[j].block)
4801 syms[j].sym = NULL;
4802 }
4803 }
4804 if (is_new_style_renaming)
4805 {
4806 int j, k;
4807
4808 for (j = k = 0; j < nsyms; j += 1)
4809 if (syms[j].sym != NULL)
4810 {
4811 syms[k] = syms[j];
4812 k += 1;
4813 }
4814 return k;
4815 }
4816
4817 /* Extract the function name associated to CURRENT_BLOCK.
4818 Abort if unable to do so. */
4819
4820 if (current_block == NULL)
4821 return nsyms;
4822
4823 current_function = block_linkage_function (current_block);
4824 if (current_function == NULL)
4825 return nsyms;
4826
4827 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4828 if (current_function_name == NULL)
4829 return nsyms;
4830
4831 /* Check each of the symbols, and remove it from the list if it is
4832 a type corresponding to a renaming that is out of the scope of
4833 the current block. */
4834
4835 i = 0;
4836 while (i < nsyms)
4837 {
4838 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4839 == ADA_OBJECT_RENAMING
4840 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4841 {
4842 int j;
4843
4844 for (j = i + 1; j < nsyms; j += 1)
4845 syms[j - 1] = syms[j];
4846 nsyms -= 1;
4847 }
4848 else
4849 i += 1;
4850 }
4851
4852 return nsyms;
4853 }
4854
4855 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4856 whose name and domain match NAME and DOMAIN respectively.
4857 If no match was found, then extend the search to "enclosing"
4858 routines (in other words, if we're inside a nested function,
4859 search the symbols defined inside the enclosing functions).
4860
4861 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4862
4863 static void
4864 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4865 struct block *block, domain_enum domain,
4866 int wild_match)
4867 {
4868 int block_depth = 0;
4869
4870 while (block != NULL)
4871 {
4872 block_depth += 1;
4873 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4874
4875 /* If we found a non-function match, assume that's the one. */
4876 if (is_nonfunction (defns_collected (obstackp, 0),
4877 num_defns_collected (obstackp)))
4878 return;
4879
4880 block = BLOCK_SUPERBLOCK (block);
4881 }
4882
4883 /* If no luck so far, try to find NAME as a local symbol in some lexically
4884 enclosing subprogram. */
4885 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4886 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4887 }
4888
4889 /* An object of this type is used as the user_data argument when
4890 calling the map_matching_symbols method. */
4891
4892 struct match_data
4893 {
4894 struct objfile *objfile;
4895 struct obstack *obstackp;
4896 struct symbol *arg_sym;
4897 int found_sym;
4898 };
4899
4900 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4901 to a list of symbols. DATA0 is a pointer to a struct match_data *
4902 containing the obstack that collects the symbol list, the file that SYM
4903 must come from, a flag indicating whether a non-argument symbol has
4904 been found in the current block, and the last argument symbol
4905 passed in SYM within the current block (if any). When SYM is null,
4906 marking the end of a block, the argument symbol is added if no
4907 other has been found. */
4908
4909 static int
4910 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4911 {
4912 struct match_data *data = (struct match_data *) data0;
4913
4914 if (sym == NULL)
4915 {
4916 if (!data->found_sym && data->arg_sym != NULL)
4917 add_defn_to_vec (data->obstackp,
4918 fixup_symbol_section (data->arg_sym, data->objfile),
4919 block);
4920 data->found_sym = 0;
4921 data->arg_sym = NULL;
4922 }
4923 else
4924 {
4925 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4926 return 0;
4927 else if (SYMBOL_IS_ARGUMENT (sym))
4928 data->arg_sym = sym;
4929 else
4930 {
4931 data->found_sym = 1;
4932 add_defn_to_vec (data->obstackp,
4933 fixup_symbol_section (sym, data->objfile),
4934 block);
4935 }
4936 }
4937 return 0;
4938 }
4939
4940 /* Compare STRING1 to STRING2, with results as for strcmp.
4941 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4942 implies compare_names (STRING1, STRING2) (they may differ as to
4943 what symbols compare equal). */
4944
4945 static int
4946 compare_names (const char *string1, const char *string2)
4947 {
4948 while (*string1 != '\0' && *string2 != '\0')
4949 {
4950 if (isspace (*string1) || isspace (*string2))
4951 return strcmp_iw_ordered (string1, string2);
4952 if (*string1 != *string2)
4953 break;
4954 string1 += 1;
4955 string2 += 1;
4956 }
4957 switch (*string1)
4958 {
4959 case '(':
4960 return strcmp_iw_ordered (string1, string2);
4961 case '_':
4962 if (*string2 == '\0')
4963 {
4964 if (is_name_suffix (string1))
4965 return 0;
4966 else
4967 return 1;
4968 }
4969 /* FALLTHROUGH */
4970 default:
4971 if (*string2 == '(')
4972 return strcmp_iw_ordered (string1, string2);
4973 else
4974 return *string1 - *string2;
4975 }
4976 }
4977
4978 /* Add to OBSTACKP all non-local symbols whose name and domain match
4979 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4980 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4981
4982 static void
4983 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4984 domain_enum domain, int global,
4985 int is_wild_match)
4986 {
4987 struct objfile *objfile;
4988 struct match_data data;
4989
4990 memset (&data, 0, sizeof data);
4991 data.obstackp = obstackp;
4992
4993 ALL_OBJFILES (objfile)
4994 {
4995 data.objfile = objfile;
4996
4997 if (is_wild_match)
4998 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4999 aux_add_nonlocal_symbols, &data,
5000 wild_match, NULL);
5001 else
5002 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5003 aux_add_nonlocal_symbols, &data,
5004 full_match, compare_names);
5005 }
5006
5007 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5008 {
5009 ALL_OBJFILES (objfile)
5010 {
5011 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5012 strcpy (name1, "_ada_");
5013 strcpy (name1 + sizeof ("_ada_") - 1, name);
5014 data.objfile = objfile;
5015 objfile->sf->qf->map_matching_symbols (name1, domain,
5016 objfile, global,
5017 aux_add_nonlocal_symbols,
5018 &data,
5019 full_match, compare_names);
5020 }
5021 }
5022 }
5023
5024 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5025 scope and in global scopes, returning the number of matches. Sets
5026 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5027 indicating the symbols found and the blocks and symbol tables (if
5028 any) in which they were found. This vector are transient---good only to
5029 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5030 symbol match within the nest of blocks whose innermost member is BLOCK0,
5031 is the one match returned (no other matches in that or
5032 enclosing blocks is returned). If there are any matches in or
5033 surrounding BLOCK0, then these alone are returned. Otherwise, if
5034 FULL_SEARCH is non-zero, then the search extends to global and
5035 file-scope (static) symbol tables.
5036 Names prefixed with "standard__" are handled specially: "standard__"
5037 is first stripped off, and only static and global symbols are searched. */
5038
5039 int
5040 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5041 domain_enum namespace,
5042 struct ada_symbol_info **results,
5043 int full_search)
5044 {
5045 struct symbol *sym;
5046 struct block *block;
5047 const char *name;
5048 const int wild_match = should_use_wild_match (name0);
5049 int cacheIfUnique;
5050 int ndefns;
5051
5052 obstack_free (&symbol_list_obstack, NULL);
5053 obstack_init (&symbol_list_obstack);
5054
5055 cacheIfUnique = 0;
5056
5057 /* Search specified block and its superiors. */
5058
5059 name = name0;
5060 block = (struct block *) block0; /* FIXME: No cast ought to be
5061 needed, but adding const will
5062 have a cascade effect. */
5063
5064 /* Special case: If the user specifies a symbol name inside package
5065 Standard, do a non-wild matching of the symbol name without
5066 the "standard__" prefix. This was primarily introduced in order
5067 to allow the user to specifically access the standard exceptions
5068 using, for instance, Standard.Constraint_Error when Constraint_Error
5069 is ambiguous (due to the user defining its own Constraint_Error
5070 entity inside its program). */
5071 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5072 {
5073 block = NULL;
5074 name = name0 + sizeof ("standard__") - 1;
5075 }
5076
5077 /* Check the non-global symbols. If we have ANY match, then we're done. */
5078
5079 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5080 wild_match);
5081 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5082 goto done;
5083
5084 /* No non-global symbols found. Check our cache to see if we have
5085 already performed this search before. If we have, then return
5086 the same result. */
5087
5088 cacheIfUnique = 1;
5089 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5090 {
5091 if (sym != NULL)
5092 add_defn_to_vec (&symbol_list_obstack, sym, block);
5093 goto done;
5094 }
5095
5096 /* Search symbols from all global blocks. */
5097
5098 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5099 wild_match);
5100
5101 /* Now add symbols from all per-file blocks if we've gotten no hits
5102 (not strictly correct, but perhaps better than an error). */
5103
5104 if (num_defns_collected (&symbol_list_obstack) == 0)
5105 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5106 wild_match);
5107
5108 done:
5109 ndefns = num_defns_collected (&symbol_list_obstack);
5110 *results = defns_collected (&symbol_list_obstack, 1);
5111
5112 ndefns = remove_extra_symbols (*results, ndefns);
5113
5114 if (ndefns == 0 && full_search)
5115 cache_symbol (name0, namespace, NULL, NULL);
5116
5117 if (ndefns == 1 && full_search && cacheIfUnique)
5118 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5119
5120 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5121
5122 return ndefns;
5123 }
5124
5125 /* If NAME is the name of an entity, return a string that should
5126 be used to look that entity up in Ada units. This string should
5127 be deallocated after use using xfree.
5128
5129 NAME can have any form that the "break" or "print" commands might
5130 recognize. In other words, it does not have to be the "natural"
5131 name, or the "encoded" name. */
5132
5133 char *
5134 ada_name_for_lookup (const char *name)
5135 {
5136 char *canon;
5137 int nlen = strlen (name);
5138
5139 if (name[0] == '<' && name[nlen - 1] == '>')
5140 {
5141 canon = xmalloc (nlen - 1);
5142 memcpy (canon, name + 1, nlen - 2);
5143 canon[nlen - 2] = '\0';
5144 }
5145 else
5146 canon = xstrdup (ada_encode (ada_fold_name (name)));
5147 return canon;
5148 }
5149
5150 /* Implementation of the la_iterate_over_symbols method. */
5151
5152 static void
5153 ada_iterate_over_symbols (const struct block *block,
5154 const char *name, domain_enum domain,
5155 symbol_found_callback_ftype *callback,
5156 void *data)
5157 {
5158 int ndefs, i;
5159 struct ada_symbol_info *results;
5160
5161 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5162 for (i = 0; i < ndefs; ++i)
5163 {
5164 if (! (*callback) (results[i].sym, data))
5165 break;
5166 }
5167 }
5168
5169 struct symbol *
5170 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
5171 domain_enum namespace, struct block **block_found)
5172 {
5173 struct ada_symbol_info *candidates;
5174 int n_candidates;
5175
5176 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates,
5177 1);
5178
5179 if (n_candidates == 0)
5180 return NULL;
5181
5182 if (block_found != NULL)
5183 *block_found = candidates[0].block;
5184
5185 return fixup_symbol_section (candidates[0].sym, NULL);
5186 }
5187
5188 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5189 scope and in global scopes, or NULL if none. NAME is folded and
5190 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5191 choosing the first symbol if there are multiple choices.
5192 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5193 table in which the symbol was found (in both cases, these
5194 assignments occur only if the pointers are non-null). */
5195 struct symbol *
5196 ada_lookup_symbol (const char *name, const struct block *block0,
5197 domain_enum namespace, int *is_a_field_of_this)
5198 {
5199 if (is_a_field_of_this != NULL)
5200 *is_a_field_of_this = 0;
5201
5202 return
5203 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5204 block0, namespace, NULL);
5205 }
5206
5207 static struct symbol *
5208 ada_lookup_symbol_nonlocal (const char *name,
5209 const struct block *block,
5210 const domain_enum domain)
5211 {
5212 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5213 }
5214
5215
5216 /* True iff STR is a possible encoded suffix of a normal Ada name
5217 that is to be ignored for matching purposes. Suffixes of parallel
5218 names (e.g., XVE) are not included here. Currently, the possible suffixes
5219 are given by any of the regular expressions:
5220
5221 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5222 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5223 TKB [subprogram suffix for task bodies]
5224 _E[0-9]+[bs]$ [protected object entry suffixes]
5225 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5226
5227 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5228 match is performed. This sequence is used to differentiate homonyms,
5229 is an optional part of a valid name suffix. */
5230
5231 static int
5232 is_name_suffix (const char *str)
5233 {
5234 int k;
5235 const char *matching;
5236 const int len = strlen (str);
5237
5238 /* Skip optional leading __[0-9]+. */
5239
5240 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5241 {
5242 str += 3;
5243 while (isdigit (str[0]))
5244 str += 1;
5245 }
5246
5247 /* [.$][0-9]+ */
5248
5249 if (str[0] == '.' || str[0] == '$')
5250 {
5251 matching = str + 1;
5252 while (isdigit (matching[0]))
5253 matching += 1;
5254 if (matching[0] == '\0')
5255 return 1;
5256 }
5257
5258 /* ___[0-9]+ */
5259
5260 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5261 {
5262 matching = str + 3;
5263 while (isdigit (matching[0]))
5264 matching += 1;
5265 if (matching[0] == '\0')
5266 return 1;
5267 }
5268
5269 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5270
5271 if (strcmp (str, "TKB") == 0)
5272 return 1;
5273
5274 #if 0
5275 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5276 with a N at the end. Unfortunately, the compiler uses the same
5277 convention for other internal types it creates. So treating
5278 all entity names that end with an "N" as a name suffix causes
5279 some regressions. For instance, consider the case of an enumerated
5280 type. To support the 'Image attribute, it creates an array whose
5281 name ends with N.
5282 Having a single character like this as a suffix carrying some
5283 information is a bit risky. Perhaps we should change the encoding
5284 to be something like "_N" instead. In the meantime, do not do
5285 the following check. */
5286 /* Protected Object Subprograms */
5287 if (len == 1 && str [0] == 'N')
5288 return 1;
5289 #endif
5290
5291 /* _E[0-9]+[bs]$ */
5292 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5293 {
5294 matching = str + 3;
5295 while (isdigit (matching[0]))
5296 matching += 1;
5297 if ((matching[0] == 'b' || matching[0] == 's')
5298 && matching [1] == '\0')
5299 return 1;
5300 }
5301
5302 /* ??? We should not modify STR directly, as we are doing below. This
5303 is fine in this case, but may become problematic later if we find
5304 that this alternative did not work, and want to try matching
5305 another one from the begining of STR. Since we modified it, we
5306 won't be able to find the begining of the string anymore! */
5307 if (str[0] == 'X')
5308 {
5309 str += 1;
5310 while (str[0] != '_' && str[0] != '\0')
5311 {
5312 if (str[0] != 'n' && str[0] != 'b')
5313 return 0;
5314 str += 1;
5315 }
5316 }
5317
5318 if (str[0] == '\000')
5319 return 1;
5320
5321 if (str[0] == '_')
5322 {
5323 if (str[1] != '_' || str[2] == '\000')
5324 return 0;
5325 if (str[2] == '_')
5326 {
5327 if (strcmp (str + 3, "JM") == 0)
5328 return 1;
5329 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5330 the LJM suffix in favor of the JM one. But we will
5331 still accept LJM as a valid suffix for a reasonable
5332 amount of time, just to allow ourselves to debug programs
5333 compiled using an older version of GNAT. */
5334 if (strcmp (str + 3, "LJM") == 0)
5335 return 1;
5336 if (str[3] != 'X')
5337 return 0;
5338 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5339 || str[4] == 'U' || str[4] == 'P')
5340 return 1;
5341 if (str[4] == 'R' && str[5] != 'T')
5342 return 1;
5343 return 0;
5344 }
5345 if (!isdigit (str[2]))
5346 return 0;
5347 for (k = 3; str[k] != '\0'; k += 1)
5348 if (!isdigit (str[k]) && str[k] != '_')
5349 return 0;
5350 return 1;
5351 }
5352 if (str[0] == '$' && isdigit (str[1]))
5353 {
5354 for (k = 2; str[k] != '\0'; k += 1)
5355 if (!isdigit (str[k]) && str[k] != '_')
5356 return 0;
5357 return 1;
5358 }
5359 return 0;
5360 }
5361
5362 /* Return non-zero if the string starting at NAME and ending before
5363 NAME_END contains no capital letters. */
5364
5365 static int
5366 is_valid_name_for_wild_match (const char *name0)
5367 {
5368 const char *decoded_name = ada_decode (name0);
5369 int i;
5370
5371 /* If the decoded name starts with an angle bracket, it means that
5372 NAME0 does not follow the GNAT encoding format. It should then
5373 not be allowed as a possible wild match. */
5374 if (decoded_name[0] == '<')
5375 return 0;
5376
5377 for (i=0; decoded_name[i] != '\0'; i++)
5378 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5379 return 0;
5380
5381 return 1;
5382 }
5383
5384 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5385 that could start a simple name. Assumes that *NAMEP points into
5386 the string beginning at NAME0. */
5387
5388 static int
5389 advance_wild_match (const char **namep, const char *name0, int target0)
5390 {
5391 const char *name = *namep;
5392
5393 while (1)
5394 {
5395 int t0, t1;
5396
5397 t0 = *name;
5398 if (t0 == '_')
5399 {
5400 t1 = name[1];
5401 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5402 {
5403 name += 1;
5404 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5405 break;
5406 else
5407 name += 1;
5408 }
5409 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5410 || name[2] == target0))
5411 {
5412 name += 2;
5413 break;
5414 }
5415 else
5416 return 0;
5417 }
5418 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5419 name += 1;
5420 else
5421 return 0;
5422 }
5423
5424 *namep = name;
5425 return 1;
5426 }
5427
5428 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5429 informational suffixes of NAME (i.e., for which is_name_suffix is
5430 true). Assumes that PATN is a lower-cased Ada simple name. */
5431
5432 static int
5433 wild_match (const char *name, const char *patn)
5434 {
5435 const char *p, *n;
5436 const char *name0 = name;
5437
5438 while (1)
5439 {
5440 const char *match = name;
5441
5442 if (*name == *patn)
5443 {
5444 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5445 if (*p != *name)
5446 break;
5447 if (*p == '\0' && is_name_suffix (name))
5448 return match != name0 && !is_valid_name_for_wild_match (name0);
5449
5450 if (name[-1] == '_')
5451 name -= 1;
5452 }
5453 if (!advance_wild_match (&name, name0, *patn))
5454 return 1;
5455 }
5456 }
5457
5458 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5459 informational suffix. */
5460
5461 static int
5462 full_match (const char *sym_name, const char *search_name)
5463 {
5464 return !match_name (sym_name, search_name, 0);
5465 }
5466
5467
5468 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5469 vector *defn_symbols, updating the list of symbols in OBSTACKP
5470 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5471 OBJFILE is the section containing BLOCK.
5472 SYMTAB is recorded with each symbol added. */
5473
5474 static void
5475 ada_add_block_symbols (struct obstack *obstackp,
5476 struct block *block, const char *name,
5477 domain_enum domain, struct objfile *objfile,
5478 int wild)
5479 {
5480 struct dict_iterator iter;
5481 int name_len = strlen (name);
5482 /* A matching argument symbol, if any. */
5483 struct symbol *arg_sym;
5484 /* Set true when we find a matching non-argument symbol. */
5485 int found_sym;
5486 struct symbol *sym;
5487
5488 arg_sym = NULL;
5489 found_sym = 0;
5490 if (wild)
5491 {
5492 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5493 wild_match, &iter);
5494 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5495 {
5496 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5497 SYMBOL_DOMAIN (sym), domain)
5498 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5499 {
5500 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5501 continue;
5502 else if (SYMBOL_IS_ARGUMENT (sym))
5503 arg_sym = sym;
5504 else
5505 {
5506 found_sym = 1;
5507 add_defn_to_vec (obstackp,
5508 fixup_symbol_section (sym, objfile),
5509 block);
5510 }
5511 }
5512 }
5513 }
5514 else
5515 {
5516 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5517 full_match, &iter);
5518 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5519 {
5520 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5521 SYMBOL_DOMAIN (sym), domain))
5522 {
5523 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5524 {
5525 if (SYMBOL_IS_ARGUMENT (sym))
5526 arg_sym = sym;
5527 else
5528 {
5529 found_sym = 1;
5530 add_defn_to_vec (obstackp,
5531 fixup_symbol_section (sym, objfile),
5532 block);
5533 }
5534 }
5535 }
5536 }
5537 }
5538
5539 if (!found_sym && arg_sym != NULL)
5540 {
5541 add_defn_to_vec (obstackp,
5542 fixup_symbol_section (arg_sym, objfile),
5543 block);
5544 }
5545
5546 if (!wild)
5547 {
5548 arg_sym = NULL;
5549 found_sym = 0;
5550
5551 ALL_BLOCK_SYMBOLS (block, iter, sym)
5552 {
5553 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5554 SYMBOL_DOMAIN (sym), domain))
5555 {
5556 int cmp;
5557
5558 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5559 if (cmp == 0)
5560 {
5561 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5562 if (cmp == 0)
5563 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5564 name_len);
5565 }
5566
5567 if (cmp == 0
5568 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5569 {
5570 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5571 {
5572 if (SYMBOL_IS_ARGUMENT (sym))
5573 arg_sym = sym;
5574 else
5575 {
5576 found_sym = 1;
5577 add_defn_to_vec (obstackp,
5578 fixup_symbol_section (sym, objfile),
5579 block);
5580 }
5581 }
5582 }
5583 }
5584 }
5585
5586 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5587 They aren't parameters, right? */
5588 if (!found_sym && arg_sym != NULL)
5589 {
5590 add_defn_to_vec (obstackp,
5591 fixup_symbol_section (arg_sym, objfile),
5592 block);
5593 }
5594 }
5595 }
5596 \f
5597
5598 /* Symbol Completion */
5599
5600 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5601 name in a form that's appropriate for the completion. The result
5602 does not need to be deallocated, but is only good until the next call.
5603
5604 TEXT_LEN is equal to the length of TEXT.
5605 Perform a wild match if WILD_MATCH is set.
5606 ENCODED should be set if TEXT represents the start of a symbol name
5607 in its encoded form. */
5608
5609 static const char *
5610 symbol_completion_match (const char *sym_name,
5611 const char *text, int text_len,
5612 int wild_match, int encoded)
5613 {
5614 const int verbatim_match = (text[0] == '<');
5615 int match = 0;
5616
5617 if (verbatim_match)
5618 {
5619 /* Strip the leading angle bracket. */
5620 text = text + 1;
5621 text_len--;
5622 }
5623
5624 /* First, test against the fully qualified name of the symbol. */
5625
5626 if (strncmp (sym_name, text, text_len) == 0)
5627 match = 1;
5628
5629 if (match && !encoded)
5630 {
5631 /* One needed check before declaring a positive match is to verify
5632 that iff we are doing a verbatim match, the decoded version
5633 of the symbol name starts with '<'. Otherwise, this symbol name
5634 is not a suitable completion. */
5635 const char *sym_name_copy = sym_name;
5636 int has_angle_bracket;
5637
5638 sym_name = ada_decode (sym_name);
5639 has_angle_bracket = (sym_name[0] == '<');
5640 match = (has_angle_bracket == verbatim_match);
5641 sym_name = sym_name_copy;
5642 }
5643
5644 if (match && !verbatim_match)
5645 {
5646 /* When doing non-verbatim match, another check that needs to
5647 be done is to verify that the potentially matching symbol name
5648 does not include capital letters, because the ada-mode would
5649 not be able to understand these symbol names without the
5650 angle bracket notation. */
5651 const char *tmp;
5652
5653 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5654 if (*tmp != '\0')
5655 match = 0;
5656 }
5657
5658 /* Second: Try wild matching... */
5659
5660 if (!match && wild_match)
5661 {
5662 /* Since we are doing wild matching, this means that TEXT
5663 may represent an unqualified symbol name. We therefore must
5664 also compare TEXT against the unqualified name of the symbol. */
5665 sym_name = ada_unqualified_name (ada_decode (sym_name));
5666
5667 if (strncmp (sym_name, text, text_len) == 0)
5668 match = 1;
5669 }
5670
5671 /* Finally: If we found a mach, prepare the result to return. */
5672
5673 if (!match)
5674 return NULL;
5675
5676 if (verbatim_match)
5677 sym_name = add_angle_brackets (sym_name);
5678
5679 if (!encoded)
5680 sym_name = ada_decode (sym_name);
5681
5682 return sym_name;
5683 }
5684
5685 /* A companion function to ada_make_symbol_completion_list().
5686 Check if SYM_NAME represents a symbol which name would be suitable
5687 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5688 it is appended at the end of the given string vector SV.
5689
5690 ORIG_TEXT is the string original string from the user command
5691 that needs to be completed. WORD is the entire command on which
5692 completion should be performed. These two parameters are used to
5693 determine which part of the symbol name should be added to the
5694 completion vector.
5695 if WILD_MATCH is set, then wild matching is performed.
5696 ENCODED should be set if TEXT represents a symbol name in its
5697 encoded formed (in which case the completion should also be
5698 encoded). */
5699
5700 static void
5701 symbol_completion_add (VEC(char_ptr) **sv,
5702 const char *sym_name,
5703 const char *text, int text_len,
5704 const char *orig_text, const char *word,
5705 int wild_match, int encoded)
5706 {
5707 const char *match = symbol_completion_match (sym_name, text, text_len,
5708 wild_match, encoded);
5709 char *completion;
5710
5711 if (match == NULL)
5712 return;
5713
5714 /* We found a match, so add the appropriate completion to the given
5715 string vector. */
5716
5717 if (word == orig_text)
5718 {
5719 completion = xmalloc (strlen (match) + 5);
5720 strcpy (completion, match);
5721 }
5722 else if (word > orig_text)
5723 {
5724 /* Return some portion of sym_name. */
5725 completion = xmalloc (strlen (match) + 5);
5726 strcpy (completion, match + (word - orig_text));
5727 }
5728 else
5729 {
5730 /* Return some of ORIG_TEXT plus sym_name. */
5731 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5732 strncpy (completion, word, orig_text - word);
5733 completion[orig_text - word] = '\0';
5734 strcat (completion, match);
5735 }
5736
5737 VEC_safe_push (char_ptr, *sv, completion);
5738 }
5739
5740 /* An object of this type is passed as the user_data argument to the
5741 expand_partial_symbol_names method. */
5742 struct add_partial_datum
5743 {
5744 VEC(char_ptr) **completions;
5745 char *text;
5746 int text_len;
5747 char *text0;
5748 char *word;
5749 int wild_match;
5750 int encoded;
5751 };
5752
5753 /* A callback for expand_partial_symbol_names. */
5754 static int
5755 ada_expand_partial_symbol_name (const char *name, void *user_data)
5756 {
5757 struct add_partial_datum *data = user_data;
5758
5759 return symbol_completion_match (name, data->text, data->text_len,
5760 data->wild_match, data->encoded) != NULL;
5761 }
5762
5763 /* Return a list of possible symbol names completing TEXT0. The list
5764 is NULL terminated. WORD is the entire command on which completion
5765 is made. */
5766
5767 static char **
5768 ada_make_symbol_completion_list (char *text0, char *word)
5769 {
5770 char *text;
5771 int text_len;
5772 int wild_match;
5773 int encoded;
5774 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5775 struct symbol *sym;
5776 struct symtab *s;
5777 struct minimal_symbol *msymbol;
5778 struct objfile *objfile;
5779 struct block *b, *surrounding_static_block = 0;
5780 int i;
5781 struct dict_iterator iter;
5782
5783 if (text0[0] == '<')
5784 {
5785 text = xstrdup (text0);
5786 make_cleanup (xfree, text);
5787 text_len = strlen (text);
5788 wild_match = 0;
5789 encoded = 1;
5790 }
5791 else
5792 {
5793 text = xstrdup (ada_encode (text0));
5794 make_cleanup (xfree, text);
5795 text_len = strlen (text);
5796 for (i = 0; i < text_len; i++)
5797 text[i] = tolower (text[i]);
5798
5799 encoded = (strstr (text0, "__") != NULL);
5800 /* If the name contains a ".", then the user is entering a fully
5801 qualified entity name, and the match must not be done in wild
5802 mode. Similarly, if the user wants to complete what looks like
5803 an encoded name, the match must not be done in wild mode. */
5804 wild_match = (strchr (text0, '.') == NULL && !encoded);
5805 }
5806
5807 /* First, look at the partial symtab symbols. */
5808 {
5809 struct add_partial_datum data;
5810
5811 data.completions = &completions;
5812 data.text = text;
5813 data.text_len = text_len;
5814 data.text0 = text0;
5815 data.word = word;
5816 data.wild_match = wild_match;
5817 data.encoded = encoded;
5818 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5819 }
5820
5821 /* At this point scan through the misc symbol vectors and add each
5822 symbol you find to the list. Eventually we want to ignore
5823 anything that isn't a text symbol (everything else will be
5824 handled by the psymtab code above). */
5825
5826 ALL_MSYMBOLS (objfile, msymbol)
5827 {
5828 QUIT;
5829 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5830 text, text_len, text0, word, wild_match, encoded);
5831 }
5832
5833 /* Search upwards from currently selected frame (so that we can
5834 complete on local vars. */
5835
5836 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5837 {
5838 if (!BLOCK_SUPERBLOCK (b))
5839 surrounding_static_block = b; /* For elmin of dups */
5840
5841 ALL_BLOCK_SYMBOLS (b, iter, sym)
5842 {
5843 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5844 text, text_len, text0, word,
5845 wild_match, encoded);
5846 }
5847 }
5848
5849 /* Go through the symtabs and check the externs and statics for
5850 symbols which match. */
5851
5852 ALL_SYMTABS (objfile, s)
5853 {
5854 QUIT;
5855 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5856 ALL_BLOCK_SYMBOLS (b, iter, sym)
5857 {
5858 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5859 text, text_len, text0, word,
5860 wild_match, encoded);
5861 }
5862 }
5863
5864 ALL_SYMTABS (objfile, s)
5865 {
5866 QUIT;
5867 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5868 /* Don't do this block twice. */
5869 if (b == surrounding_static_block)
5870 continue;
5871 ALL_BLOCK_SYMBOLS (b, iter, sym)
5872 {
5873 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5874 text, text_len, text0, word,
5875 wild_match, encoded);
5876 }
5877 }
5878
5879 /* Append the closing NULL entry. */
5880 VEC_safe_push (char_ptr, completions, NULL);
5881
5882 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5883 return the copy. It's unfortunate that we have to make a copy
5884 of an array that we're about to destroy, but there is nothing much
5885 we can do about it. Fortunately, it's typically not a very large
5886 array. */
5887 {
5888 const size_t completions_size =
5889 VEC_length (char_ptr, completions) * sizeof (char *);
5890 char **result = xmalloc (completions_size);
5891
5892 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5893
5894 VEC_free (char_ptr, completions);
5895 return result;
5896 }
5897 }
5898
5899 /* Field Access */
5900
5901 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5902 for tagged types. */
5903
5904 static int
5905 ada_is_dispatch_table_ptr_type (struct type *type)
5906 {
5907 const char *name;
5908
5909 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5910 return 0;
5911
5912 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5913 if (name == NULL)
5914 return 0;
5915
5916 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5917 }
5918
5919 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5920 to be invisible to users. */
5921
5922 int
5923 ada_is_ignored_field (struct type *type, int field_num)
5924 {
5925 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5926 return 1;
5927
5928 /* Check the name of that field. */
5929 {
5930 const char *name = TYPE_FIELD_NAME (type, field_num);
5931
5932 /* Anonymous field names should not be printed.
5933 brobecker/2007-02-20: I don't think this can actually happen
5934 but we don't want to print the value of annonymous fields anyway. */
5935 if (name == NULL)
5936 return 1;
5937
5938 /* Normally, fields whose name start with an underscore ("_")
5939 are fields that have been internally generated by the compiler,
5940 and thus should not be printed. The "_parent" field is special,
5941 however: This is a field internally generated by the compiler
5942 for tagged types, and it contains the components inherited from
5943 the parent type. This field should not be printed as is, but
5944 should not be ignored either. */
5945 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5946 return 1;
5947 }
5948
5949 /* If this is the dispatch table of a tagged type, then ignore. */
5950 if (ada_is_tagged_type (type, 1)
5951 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5952 return 1;
5953
5954 /* Not a special field, so it should not be ignored. */
5955 return 0;
5956 }
5957
5958 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5959 pointer or reference type whose ultimate target has a tag field. */
5960
5961 int
5962 ada_is_tagged_type (struct type *type, int refok)
5963 {
5964 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5965 }
5966
5967 /* True iff TYPE represents the type of X'Tag */
5968
5969 int
5970 ada_is_tag_type (struct type *type)
5971 {
5972 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5973 return 0;
5974 else
5975 {
5976 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5977
5978 return (name != NULL
5979 && strcmp (name, "ada__tags__dispatch_table") == 0);
5980 }
5981 }
5982
5983 /* The type of the tag on VAL. */
5984
5985 struct type *
5986 ada_tag_type (struct value *val)
5987 {
5988 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5989 }
5990
5991 /* The value of the tag on VAL. */
5992
5993 struct value *
5994 ada_value_tag (struct value *val)
5995 {
5996 return ada_value_struct_elt (val, "_tag", 0);
5997 }
5998
5999 /* The value of the tag on the object of type TYPE whose contents are
6000 saved at VALADDR, if it is non-null, or is at memory address
6001 ADDRESS. */
6002
6003 static struct value *
6004 value_tag_from_contents_and_address (struct type *type,
6005 const gdb_byte *valaddr,
6006 CORE_ADDR address)
6007 {
6008 int tag_byte_offset;
6009 struct type *tag_type;
6010
6011 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6012 NULL, NULL, NULL))
6013 {
6014 const gdb_byte *valaddr1 = ((valaddr == NULL)
6015 ? NULL
6016 : valaddr + tag_byte_offset);
6017 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6018
6019 return value_from_contents_and_address (tag_type, valaddr1, address1);
6020 }
6021 return NULL;
6022 }
6023
6024 static struct type *
6025 type_from_tag (struct value *tag)
6026 {
6027 const char *type_name = ada_tag_name (tag);
6028
6029 if (type_name != NULL)
6030 return ada_find_any_type (ada_encode (type_name));
6031 return NULL;
6032 }
6033
6034 /* Return the "ada__tags__type_specific_data" type. */
6035
6036 static struct type *
6037 ada_get_tsd_type (struct inferior *inf)
6038 {
6039 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6040
6041 if (data->tsd_type == 0)
6042 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6043 return data->tsd_type;
6044 }
6045
6046 /* Return the TSD (type-specific data) associated to the given TAG.
6047 TAG is assumed to be the tag of a tagged-type entity.
6048
6049 May return NULL if we are unable to get the TSD. */
6050
6051 static struct value *
6052 ada_get_tsd_from_tag (struct value *tag)
6053 {
6054 struct value *val;
6055 struct type *type;
6056
6057 /* First option: The TSD is simply stored as a field of our TAG.
6058 Only older versions of GNAT would use this format, but we have
6059 to test it first, because there are no visible markers for
6060 the current approach except the absence of that field. */
6061
6062 val = ada_value_struct_elt (tag, "tsd", 1);
6063 if (val)
6064 return val;
6065
6066 /* Try the second representation for the dispatch table (in which
6067 there is no explicit 'tsd' field in the referent of the tag pointer,
6068 and instead the tsd pointer is stored just before the dispatch
6069 table. */
6070
6071 type = ada_get_tsd_type (current_inferior());
6072 if (type == NULL)
6073 return NULL;
6074 type = lookup_pointer_type (lookup_pointer_type (type));
6075 val = value_cast (type, tag);
6076 if (val == NULL)
6077 return NULL;
6078 return value_ind (value_ptradd (val, -1));
6079 }
6080
6081 /* Given the TSD of a tag (type-specific data), return a string
6082 containing the name of the associated type.
6083
6084 The returned value is good until the next call. May return NULL
6085 if we are unable to determine the tag name. */
6086
6087 static char *
6088 ada_tag_name_from_tsd (struct value *tsd)
6089 {
6090 static char name[1024];
6091 char *p;
6092 struct value *val;
6093
6094 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6095 if (val == NULL)
6096 return NULL;
6097 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6098 for (p = name; *p != '\0'; p += 1)
6099 if (isalpha (*p))
6100 *p = tolower (*p);
6101 return name;
6102 }
6103
6104 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6105 a C string.
6106
6107 Return NULL if the TAG is not an Ada tag, or if we were unable to
6108 determine the name of that tag. The result is good until the next
6109 call. */
6110
6111 const char *
6112 ada_tag_name (struct value *tag)
6113 {
6114 volatile struct gdb_exception e;
6115 char *name = NULL;
6116
6117 if (!ada_is_tag_type (value_type (tag)))
6118 return NULL;
6119
6120 /* It is perfectly possible that an exception be raised while trying
6121 to determine the TAG's name, even under normal circumstances:
6122 The associated variable may be uninitialized or corrupted, for
6123 instance. We do not let any exception propagate past this point.
6124 instead we return NULL.
6125
6126 We also do not print the error message either (which often is very
6127 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6128 the caller print a more meaningful message if necessary. */
6129 TRY_CATCH (e, RETURN_MASK_ERROR)
6130 {
6131 struct value *tsd = ada_get_tsd_from_tag (tag);
6132
6133 if (tsd != NULL)
6134 name = ada_tag_name_from_tsd (tsd);
6135 }
6136
6137 return name;
6138 }
6139
6140 /* The parent type of TYPE, or NULL if none. */
6141
6142 struct type *
6143 ada_parent_type (struct type *type)
6144 {
6145 int i;
6146
6147 type = ada_check_typedef (type);
6148
6149 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6150 return NULL;
6151
6152 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6153 if (ada_is_parent_field (type, i))
6154 {
6155 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6156
6157 /* If the _parent field is a pointer, then dereference it. */
6158 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6159 parent_type = TYPE_TARGET_TYPE (parent_type);
6160 /* If there is a parallel XVS type, get the actual base type. */
6161 parent_type = ada_get_base_type (parent_type);
6162
6163 return ada_check_typedef (parent_type);
6164 }
6165
6166 return NULL;
6167 }
6168
6169 /* True iff field number FIELD_NUM of structure type TYPE contains the
6170 parent-type (inherited) fields of a derived type. Assumes TYPE is
6171 a structure type with at least FIELD_NUM+1 fields. */
6172
6173 int
6174 ada_is_parent_field (struct type *type, int field_num)
6175 {
6176 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6177
6178 return (name != NULL
6179 && (strncmp (name, "PARENT", 6) == 0
6180 || strncmp (name, "_parent", 7) == 0));
6181 }
6182
6183 /* True iff field number FIELD_NUM of structure type TYPE is a
6184 transparent wrapper field (which should be silently traversed when doing
6185 field selection and flattened when printing). Assumes TYPE is a
6186 structure type with at least FIELD_NUM+1 fields. Such fields are always
6187 structures. */
6188
6189 int
6190 ada_is_wrapper_field (struct type *type, int field_num)
6191 {
6192 const char *name = TYPE_FIELD_NAME (type, field_num);
6193
6194 return (name != NULL
6195 && (strncmp (name, "PARENT", 6) == 0
6196 || strcmp (name, "REP") == 0
6197 || strncmp (name, "_parent", 7) == 0
6198 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6199 }
6200
6201 /* True iff field number FIELD_NUM of structure or union type TYPE
6202 is a variant wrapper. Assumes TYPE is a structure type with at least
6203 FIELD_NUM+1 fields. */
6204
6205 int
6206 ada_is_variant_part (struct type *type, int field_num)
6207 {
6208 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6209
6210 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6211 || (is_dynamic_field (type, field_num)
6212 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6213 == TYPE_CODE_UNION)));
6214 }
6215
6216 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6217 whose discriminants are contained in the record type OUTER_TYPE,
6218 returns the type of the controlling discriminant for the variant.
6219 May return NULL if the type could not be found. */
6220
6221 struct type *
6222 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6223 {
6224 char *name = ada_variant_discrim_name (var_type);
6225
6226 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6227 }
6228
6229 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6230 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6231 represents a 'when others' clause; otherwise 0. */
6232
6233 int
6234 ada_is_others_clause (struct type *type, int field_num)
6235 {
6236 const char *name = TYPE_FIELD_NAME (type, field_num);
6237
6238 return (name != NULL && name[0] == 'O');
6239 }
6240
6241 /* Assuming that TYPE0 is the type of the variant part of a record,
6242 returns the name of the discriminant controlling the variant.
6243 The value is valid until the next call to ada_variant_discrim_name. */
6244
6245 char *
6246 ada_variant_discrim_name (struct type *type0)
6247 {
6248 static char *result = NULL;
6249 static size_t result_len = 0;
6250 struct type *type;
6251 const char *name;
6252 const char *discrim_end;
6253 const char *discrim_start;
6254
6255 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6256 type = TYPE_TARGET_TYPE (type0);
6257 else
6258 type = type0;
6259
6260 name = ada_type_name (type);
6261
6262 if (name == NULL || name[0] == '\000')
6263 return "";
6264
6265 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6266 discrim_end -= 1)
6267 {
6268 if (strncmp (discrim_end, "___XVN", 6) == 0)
6269 break;
6270 }
6271 if (discrim_end == name)
6272 return "";
6273
6274 for (discrim_start = discrim_end; discrim_start != name + 3;
6275 discrim_start -= 1)
6276 {
6277 if (discrim_start == name + 1)
6278 return "";
6279 if ((discrim_start > name + 3
6280 && strncmp (discrim_start - 3, "___", 3) == 0)
6281 || discrim_start[-1] == '.')
6282 break;
6283 }
6284
6285 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6286 strncpy (result, discrim_start, discrim_end - discrim_start);
6287 result[discrim_end - discrim_start] = '\0';
6288 return result;
6289 }
6290
6291 /* Scan STR for a subtype-encoded number, beginning at position K.
6292 Put the position of the character just past the number scanned in
6293 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6294 Return 1 if there was a valid number at the given position, and 0
6295 otherwise. A "subtype-encoded" number consists of the absolute value
6296 in decimal, followed by the letter 'm' to indicate a negative number.
6297 Assumes 0m does not occur. */
6298
6299 int
6300 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6301 {
6302 ULONGEST RU;
6303
6304 if (!isdigit (str[k]))
6305 return 0;
6306
6307 /* Do it the hard way so as not to make any assumption about
6308 the relationship of unsigned long (%lu scan format code) and
6309 LONGEST. */
6310 RU = 0;
6311 while (isdigit (str[k]))
6312 {
6313 RU = RU * 10 + (str[k] - '0');
6314 k += 1;
6315 }
6316
6317 if (str[k] == 'm')
6318 {
6319 if (R != NULL)
6320 *R = (-(LONGEST) (RU - 1)) - 1;
6321 k += 1;
6322 }
6323 else if (R != NULL)
6324 *R = (LONGEST) RU;
6325
6326 /* NOTE on the above: Technically, C does not say what the results of
6327 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6328 number representable as a LONGEST (although either would probably work
6329 in most implementations). When RU>0, the locution in the then branch
6330 above is always equivalent to the negative of RU. */
6331
6332 if (new_k != NULL)
6333 *new_k = k;
6334 return 1;
6335 }
6336
6337 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6338 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6339 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6340
6341 int
6342 ada_in_variant (LONGEST val, struct type *type, int field_num)
6343 {
6344 const char *name = TYPE_FIELD_NAME (type, field_num);
6345 int p;
6346
6347 p = 0;
6348 while (1)
6349 {
6350 switch (name[p])
6351 {
6352 case '\0':
6353 return 0;
6354 case 'S':
6355 {
6356 LONGEST W;
6357
6358 if (!ada_scan_number (name, p + 1, &W, &p))
6359 return 0;
6360 if (val == W)
6361 return 1;
6362 break;
6363 }
6364 case 'R':
6365 {
6366 LONGEST L, U;
6367
6368 if (!ada_scan_number (name, p + 1, &L, &p)
6369 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6370 return 0;
6371 if (val >= L && val <= U)
6372 return 1;
6373 break;
6374 }
6375 case 'O':
6376 return 1;
6377 default:
6378 return 0;
6379 }
6380 }
6381 }
6382
6383 /* FIXME: Lots of redundancy below. Try to consolidate. */
6384
6385 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6386 ARG_TYPE, extract and return the value of one of its (non-static)
6387 fields. FIELDNO says which field. Differs from value_primitive_field
6388 only in that it can handle packed values of arbitrary type. */
6389
6390 static struct value *
6391 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6392 struct type *arg_type)
6393 {
6394 struct type *type;
6395
6396 arg_type = ada_check_typedef (arg_type);
6397 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6398
6399 /* Handle packed fields. */
6400
6401 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6402 {
6403 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6404 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6405
6406 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6407 offset + bit_pos / 8,
6408 bit_pos % 8, bit_size, type);
6409 }
6410 else
6411 return value_primitive_field (arg1, offset, fieldno, arg_type);
6412 }
6413
6414 /* Find field with name NAME in object of type TYPE. If found,
6415 set the following for each argument that is non-null:
6416 - *FIELD_TYPE_P to the field's type;
6417 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6418 an object of that type;
6419 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6420 - *BIT_SIZE_P to its size in bits if the field is packed, and
6421 0 otherwise;
6422 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6423 fields up to but not including the desired field, or by the total
6424 number of fields if not found. A NULL value of NAME never
6425 matches; the function just counts visible fields in this case.
6426
6427 Returns 1 if found, 0 otherwise. */
6428
6429 static int
6430 find_struct_field (const char *name, struct type *type, int offset,
6431 struct type **field_type_p,
6432 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6433 int *index_p)
6434 {
6435 int i;
6436
6437 type = ada_check_typedef (type);
6438
6439 if (field_type_p != NULL)
6440 *field_type_p = NULL;
6441 if (byte_offset_p != NULL)
6442 *byte_offset_p = 0;
6443 if (bit_offset_p != NULL)
6444 *bit_offset_p = 0;
6445 if (bit_size_p != NULL)
6446 *bit_size_p = 0;
6447
6448 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6449 {
6450 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6451 int fld_offset = offset + bit_pos / 8;
6452 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6453
6454 if (t_field_name == NULL)
6455 continue;
6456
6457 else if (name != NULL && field_name_match (t_field_name, name))
6458 {
6459 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6460
6461 if (field_type_p != NULL)
6462 *field_type_p = TYPE_FIELD_TYPE (type, i);
6463 if (byte_offset_p != NULL)
6464 *byte_offset_p = fld_offset;
6465 if (bit_offset_p != NULL)
6466 *bit_offset_p = bit_pos % 8;
6467 if (bit_size_p != NULL)
6468 *bit_size_p = bit_size;
6469 return 1;
6470 }
6471 else if (ada_is_wrapper_field (type, i))
6472 {
6473 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6474 field_type_p, byte_offset_p, bit_offset_p,
6475 bit_size_p, index_p))
6476 return 1;
6477 }
6478 else if (ada_is_variant_part (type, i))
6479 {
6480 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6481 fixed type?? */
6482 int j;
6483 struct type *field_type
6484 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6485
6486 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6487 {
6488 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6489 fld_offset
6490 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6491 field_type_p, byte_offset_p,
6492 bit_offset_p, bit_size_p, index_p))
6493 return 1;
6494 }
6495 }
6496 else if (index_p != NULL)
6497 *index_p += 1;
6498 }
6499 return 0;
6500 }
6501
6502 /* Number of user-visible fields in record type TYPE. */
6503
6504 static int
6505 num_visible_fields (struct type *type)
6506 {
6507 int n;
6508
6509 n = 0;
6510 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6511 return n;
6512 }
6513
6514 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6515 and search in it assuming it has (class) type TYPE.
6516 If found, return value, else return NULL.
6517
6518 Searches recursively through wrapper fields (e.g., '_parent'). */
6519
6520 static struct value *
6521 ada_search_struct_field (char *name, struct value *arg, int offset,
6522 struct type *type)
6523 {
6524 int i;
6525
6526 type = ada_check_typedef (type);
6527 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6528 {
6529 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6530
6531 if (t_field_name == NULL)
6532 continue;
6533
6534 else if (field_name_match (t_field_name, name))
6535 return ada_value_primitive_field (arg, offset, i, type);
6536
6537 else if (ada_is_wrapper_field (type, i))
6538 {
6539 struct value *v = /* Do not let indent join lines here. */
6540 ada_search_struct_field (name, arg,
6541 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6542 TYPE_FIELD_TYPE (type, i));
6543
6544 if (v != NULL)
6545 return v;
6546 }
6547
6548 else if (ada_is_variant_part (type, i))
6549 {
6550 /* PNH: Do we ever get here? See find_struct_field. */
6551 int j;
6552 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6553 i));
6554 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6555
6556 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6557 {
6558 struct value *v = ada_search_struct_field /* Force line
6559 break. */
6560 (name, arg,
6561 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6562 TYPE_FIELD_TYPE (field_type, j));
6563
6564 if (v != NULL)
6565 return v;
6566 }
6567 }
6568 }
6569 return NULL;
6570 }
6571
6572 static struct value *ada_index_struct_field_1 (int *, struct value *,
6573 int, struct type *);
6574
6575
6576 /* Return field #INDEX in ARG, where the index is that returned by
6577 * find_struct_field through its INDEX_P argument. Adjust the address
6578 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6579 * If found, return value, else return NULL. */
6580
6581 static struct value *
6582 ada_index_struct_field (int index, struct value *arg, int offset,
6583 struct type *type)
6584 {
6585 return ada_index_struct_field_1 (&index, arg, offset, type);
6586 }
6587
6588
6589 /* Auxiliary function for ada_index_struct_field. Like
6590 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6591 * *INDEX_P. */
6592
6593 static struct value *
6594 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6595 struct type *type)
6596 {
6597 int i;
6598 type = ada_check_typedef (type);
6599
6600 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6601 {
6602 if (TYPE_FIELD_NAME (type, i) == NULL)
6603 continue;
6604 else if (ada_is_wrapper_field (type, i))
6605 {
6606 struct value *v = /* Do not let indent join lines here. */
6607 ada_index_struct_field_1 (index_p, arg,
6608 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6609 TYPE_FIELD_TYPE (type, i));
6610
6611 if (v != NULL)
6612 return v;
6613 }
6614
6615 else if (ada_is_variant_part (type, i))
6616 {
6617 /* PNH: Do we ever get here? See ada_search_struct_field,
6618 find_struct_field. */
6619 error (_("Cannot assign this kind of variant record"));
6620 }
6621 else if (*index_p == 0)
6622 return ada_value_primitive_field (arg, offset, i, type);
6623 else
6624 *index_p -= 1;
6625 }
6626 return NULL;
6627 }
6628
6629 /* Given ARG, a value of type (pointer or reference to a)*
6630 structure/union, extract the component named NAME from the ultimate
6631 target structure/union and return it as a value with its
6632 appropriate type.
6633
6634 The routine searches for NAME among all members of the structure itself
6635 and (recursively) among all members of any wrapper members
6636 (e.g., '_parent').
6637
6638 If NO_ERR, then simply return NULL in case of error, rather than
6639 calling error. */
6640
6641 struct value *
6642 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6643 {
6644 struct type *t, *t1;
6645 struct value *v;
6646
6647 v = NULL;
6648 t1 = t = ada_check_typedef (value_type (arg));
6649 if (TYPE_CODE (t) == TYPE_CODE_REF)
6650 {
6651 t1 = TYPE_TARGET_TYPE (t);
6652 if (t1 == NULL)
6653 goto BadValue;
6654 t1 = ada_check_typedef (t1);
6655 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6656 {
6657 arg = coerce_ref (arg);
6658 t = t1;
6659 }
6660 }
6661
6662 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6663 {
6664 t1 = TYPE_TARGET_TYPE (t);
6665 if (t1 == NULL)
6666 goto BadValue;
6667 t1 = ada_check_typedef (t1);
6668 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6669 {
6670 arg = value_ind (arg);
6671 t = t1;
6672 }
6673 else
6674 break;
6675 }
6676
6677 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6678 goto BadValue;
6679
6680 if (t1 == t)
6681 v = ada_search_struct_field (name, arg, 0, t);
6682 else
6683 {
6684 int bit_offset, bit_size, byte_offset;
6685 struct type *field_type;
6686 CORE_ADDR address;
6687
6688 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6689 address = value_as_address (arg);
6690 else
6691 address = unpack_pointer (t, value_contents (arg));
6692
6693 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6694 if (find_struct_field (name, t1, 0,
6695 &field_type, &byte_offset, &bit_offset,
6696 &bit_size, NULL))
6697 {
6698 if (bit_size != 0)
6699 {
6700 if (TYPE_CODE (t) == TYPE_CODE_REF)
6701 arg = ada_coerce_ref (arg);
6702 else
6703 arg = ada_value_ind (arg);
6704 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6705 bit_offset, bit_size,
6706 field_type);
6707 }
6708 else
6709 v = value_at_lazy (field_type, address + byte_offset);
6710 }
6711 }
6712
6713 if (v != NULL || no_err)
6714 return v;
6715 else
6716 error (_("There is no member named %s."), name);
6717
6718 BadValue:
6719 if (no_err)
6720 return NULL;
6721 else
6722 error (_("Attempt to extract a component of "
6723 "a value that is not a record."));
6724 }
6725
6726 /* Given a type TYPE, look up the type of the component of type named NAME.
6727 If DISPP is non-null, add its byte displacement from the beginning of a
6728 structure (pointed to by a value) of type TYPE to *DISPP (does not
6729 work for packed fields).
6730
6731 Matches any field whose name has NAME as a prefix, possibly
6732 followed by "___".
6733
6734 TYPE can be either a struct or union. If REFOK, TYPE may also
6735 be a (pointer or reference)+ to a struct or union, and the
6736 ultimate target type will be searched.
6737
6738 Looks recursively into variant clauses and parent types.
6739
6740 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6741 TYPE is not a type of the right kind. */
6742
6743 static struct type *
6744 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6745 int noerr, int *dispp)
6746 {
6747 int i;
6748
6749 if (name == NULL)
6750 goto BadName;
6751
6752 if (refok && type != NULL)
6753 while (1)
6754 {
6755 type = ada_check_typedef (type);
6756 if (TYPE_CODE (type) != TYPE_CODE_PTR
6757 && TYPE_CODE (type) != TYPE_CODE_REF)
6758 break;
6759 type = TYPE_TARGET_TYPE (type);
6760 }
6761
6762 if (type == NULL
6763 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6764 && TYPE_CODE (type) != TYPE_CODE_UNION))
6765 {
6766 if (noerr)
6767 return NULL;
6768 else
6769 {
6770 target_terminal_ours ();
6771 gdb_flush (gdb_stdout);
6772 if (type == NULL)
6773 error (_("Type (null) is not a structure or union type"));
6774 else
6775 {
6776 /* XXX: type_sprint */
6777 fprintf_unfiltered (gdb_stderr, _("Type "));
6778 type_print (type, "", gdb_stderr, -1);
6779 error (_(" is not a structure or union type"));
6780 }
6781 }
6782 }
6783
6784 type = to_static_fixed_type (type);
6785
6786 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6787 {
6788 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6789 struct type *t;
6790 int disp;
6791
6792 if (t_field_name == NULL)
6793 continue;
6794
6795 else if (field_name_match (t_field_name, name))
6796 {
6797 if (dispp != NULL)
6798 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6799 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6800 }
6801
6802 else if (ada_is_wrapper_field (type, i))
6803 {
6804 disp = 0;
6805 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6806 0, 1, &disp);
6807 if (t != NULL)
6808 {
6809 if (dispp != NULL)
6810 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6811 return t;
6812 }
6813 }
6814
6815 else if (ada_is_variant_part (type, i))
6816 {
6817 int j;
6818 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6819 i));
6820
6821 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6822 {
6823 /* FIXME pnh 2008/01/26: We check for a field that is
6824 NOT wrapped in a struct, since the compiler sometimes
6825 generates these for unchecked variant types. Revisit
6826 if the compiler changes this practice. */
6827 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6828 disp = 0;
6829 if (v_field_name != NULL
6830 && field_name_match (v_field_name, name))
6831 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6832 else
6833 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6834 j),
6835 name, 0, 1, &disp);
6836
6837 if (t != NULL)
6838 {
6839 if (dispp != NULL)
6840 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6841 return t;
6842 }
6843 }
6844 }
6845
6846 }
6847
6848 BadName:
6849 if (!noerr)
6850 {
6851 target_terminal_ours ();
6852 gdb_flush (gdb_stdout);
6853 if (name == NULL)
6854 {
6855 /* XXX: type_sprint */
6856 fprintf_unfiltered (gdb_stderr, _("Type "));
6857 type_print (type, "", gdb_stderr, -1);
6858 error (_(" has no component named <null>"));
6859 }
6860 else
6861 {
6862 /* XXX: type_sprint */
6863 fprintf_unfiltered (gdb_stderr, _("Type "));
6864 type_print (type, "", gdb_stderr, -1);
6865 error (_(" has no component named %s"), name);
6866 }
6867 }
6868
6869 return NULL;
6870 }
6871
6872 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6873 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6874 represents an unchecked union (that is, the variant part of a
6875 record that is named in an Unchecked_Union pragma). */
6876
6877 static int
6878 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6879 {
6880 char *discrim_name = ada_variant_discrim_name (var_type);
6881
6882 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6883 == NULL);
6884 }
6885
6886
6887 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6888 within a value of type OUTER_TYPE that is stored in GDB at
6889 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6890 numbering from 0) is applicable. Returns -1 if none are. */
6891
6892 int
6893 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6894 const gdb_byte *outer_valaddr)
6895 {
6896 int others_clause;
6897 int i;
6898 char *discrim_name = ada_variant_discrim_name (var_type);
6899 struct value *outer;
6900 struct value *discrim;
6901 LONGEST discrim_val;
6902
6903 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6904 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6905 if (discrim == NULL)
6906 return -1;
6907 discrim_val = value_as_long (discrim);
6908
6909 others_clause = -1;
6910 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6911 {
6912 if (ada_is_others_clause (var_type, i))
6913 others_clause = i;
6914 else if (ada_in_variant (discrim_val, var_type, i))
6915 return i;
6916 }
6917
6918 return others_clause;
6919 }
6920 \f
6921
6922
6923 /* Dynamic-Sized Records */
6924
6925 /* Strategy: The type ostensibly attached to a value with dynamic size
6926 (i.e., a size that is not statically recorded in the debugging
6927 data) does not accurately reflect the size or layout of the value.
6928 Our strategy is to convert these values to values with accurate,
6929 conventional types that are constructed on the fly. */
6930
6931 /* There is a subtle and tricky problem here. In general, we cannot
6932 determine the size of dynamic records without its data. However,
6933 the 'struct value' data structure, which GDB uses to represent
6934 quantities in the inferior process (the target), requires the size
6935 of the type at the time of its allocation in order to reserve space
6936 for GDB's internal copy of the data. That's why the
6937 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6938 rather than struct value*s.
6939
6940 However, GDB's internal history variables ($1, $2, etc.) are
6941 struct value*s containing internal copies of the data that are not, in
6942 general, the same as the data at their corresponding addresses in
6943 the target. Fortunately, the types we give to these values are all
6944 conventional, fixed-size types (as per the strategy described
6945 above), so that we don't usually have to perform the
6946 'to_fixed_xxx_type' conversions to look at their values.
6947 Unfortunately, there is one exception: if one of the internal
6948 history variables is an array whose elements are unconstrained
6949 records, then we will need to create distinct fixed types for each
6950 element selected. */
6951
6952 /* The upshot of all of this is that many routines take a (type, host
6953 address, target address) triple as arguments to represent a value.
6954 The host address, if non-null, is supposed to contain an internal
6955 copy of the relevant data; otherwise, the program is to consult the
6956 target at the target address. */
6957
6958 /* Assuming that VAL0 represents a pointer value, the result of
6959 dereferencing it. Differs from value_ind in its treatment of
6960 dynamic-sized types. */
6961
6962 struct value *
6963 ada_value_ind (struct value *val0)
6964 {
6965 struct value *val = value_ind (val0);
6966
6967 return ada_to_fixed_value (val);
6968 }
6969
6970 /* The value resulting from dereferencing any "reference to"
6971 qualifiers on VAL0. */
6972
6973 static struct value *
6974 ada_coerce_ref (struct value *val0)
6975 {
6976 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6977 {
6978 struct value *val = val0;
6979
6980 val = coerce_ref (val);
6981 return ada_to_fixed_value (val);
6982 }
6983 else
6984 return val0;
6985 }
6986
6987 /* Return OFF rounded upward if necessary to a multiple of
6988 ALIGNMENT (a power of 2). */
6989
6990 static unsigned int
6991 align_value (unsigned int off, unsigned int alignment)
6992 {
6993 return (off + alignment - 1) & ~(alignment - 1);
6994 }
6995
6996 /* Return the bit alignment required for field #F of template type TYPE. */
6997
6998 static unsigned int
6999 field_alignment (struct type *type, int f)
7000 {
7001 const char *name = TYPE_FIELD_NAME (type, f);
7002 int len;
7003 int align_offset;
7004
7005 /* The field name should never be null, unless the debugging information
7006 is somehow malformed. In this case, we assume the field does not
7007 require any alignment. */
7008 if (name == NULL)
7009 return 1;
7010
7011 len = strlen (name);
7012
7013 if (!isdigit (name[len - 1]))
7014 return 1;
7015
7016 if (isdigit (name[len - 2]))
7017 align_offset = len - 2;
7018 else
7019 align_offset = len - 1;
7020
7021 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7022 return TARGET_CHAR_BIT;
7023
7024 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7025 }
7026
7027 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7028
7029 static struct symbol *
7030 ada_find_any_type_symbol (const char *name)
7031 {
7032 struct symbol *sym;
7033
7034 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7035 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7036 return sym;
7037
7038 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7039 return sym;
7040 }
7041
7042 /* Find a type named NAME. Ignores ambiguity. This routine will look
7043 solely for types defined by debug info, it will not search the GDB
7044 primitive types. */
7045
7046 static struct type *
7047 ada_find_any_type (const char *name)
7048 {
7049 struct symbol *sym = ada_find_any_type_symbol (name);
7050
7051 if (sym != NULL)
7052 return SYMBOL_TYPE (sym);
7053
7054 return NULL;
7055 }
7056
7057 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7058 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7059 symbol, in which case it is returned. Otherwise, this looks for
7060 symbols whose name is that of NAME_SYM suffixed with "___XR".
7061 Return symbol if found, and NULL otherwise. */
7062
7063 struct symbol *
7064 ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
7065 {
7066 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7067 struct symbol *sym;
7068
7069 if (strstr (name, "___XR") != NULL)
7070 return name_sym;
7071
7072 sym = find_old_style_renaming_symbol (name, block);
7073
7074 if (sym != NULL)
7075 return sym;
7076
7077 /* Not right yet. FIXME pnh 7/20/2007. */
7078 sym = ada_find_any_type_symbol (name);
7079 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7080 return sym;
7081 else
7082 return NULL;
7083 }
7084
7085 static struct symbol *
7086 find_old_style_renaming_symbol (const char *name, struct block *block)
7087 {
7088 const struct symbol *function_sym = block_linkage_function (block);
7089 char *rename;
7090
7091 if (function_sym != NULL)
7092 {
7093 /* If the symbol is defined inside a function, NAME is not fully
7094 qualified. This means we need to prepend the function name
7095 as well as adding the ``___XR'' suffix to build the name of
7096 the associated renaming symbol. */
7097 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7098 /* Function names sometimes contain suffixes used
7099 for instance to qualify nested subprograms. When building
7100 the XR type name, we need to make sure that this suffix is
7101 not included. So do not include any suffix in the function
7102 name length below. */
7103 int function_name_len = ada_name_prefix_len (function_name);
7104 const int rename_len = function_name_len + 2 /* "__" */
7105 + strlen (name) + 6 /* "___XR\0" */ ;
7106
7107 /* Strip the suffix if necessary. */
7108 ada_remove_trailing_digits (function_name, &function_name_len);
7109 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7110 ada_remove_Xbn_suffix (function_name, &function_name_len);
7111
7112 /* Library-level functions are a special case, as GNAT adds
7113 a ``_ada_'' prefix to the function name to avoid namespace
7114 pollution. However, the renaming symbols themselves do not
7115 have this prefix, so we need to skip this prefix if present. */
7116 if (function_name_len > 5 /* "_ada_" */
7117 && strstr (function_name, "_ada_") == function_name)
7118 {
7119 function_name += 5;
7120 function_name_len -= 5;
7121 }
7122
7123 rename = (char *) alloca (rename_len * sizeof (char));
7124 strncpy (rename, function_name, function_name_len);
7125 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7126 "__%s___XR", name);
7127 }
7128 else
7129 {
7130 const int rename_len = strlen (name) + 6;
7131
7132 rename = (char *) alloca (rename_len * sizeof (char));
7133 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7134 }
7135
7136 return ada_find_any_type_symbol (rename);
7137 }
7138
7139 /* Because of GNAT encoding conventions, several GDB symbols may match a
7140 given type name. If the type denoted by TYPE0 is to be preferred to
7141 that of TYPE1 for purposes of type printing, return non-zero;
7142 otherwise return 0. */
7143
7144 int
7145 ada_prefer_type (struct type *type0, struct type *type1)
7146 {
7147 if (type1 == NULL)
7148 return 1;
7149 else if (type0 == NULL)
7150 return 0;
7151 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7152 return 1;
7153 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7154 return 0;
7155 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7156 return 1;
7157 else if (ada_is_constrained_packed_array_type (type0))
7158 return 1;
7159 else if (ada_is_array_descriptor_type (type0)
7160 && !ada_is_array_descriptor_type (type1))
7161 return 1;
7162 else
7163 {
7164 const char *type0_name = type_name_no_tag (type0);
7165 const char *type1_name = type_name_no_tag (type1);
7166
7167 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7168 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7169 return 1;
7170 }
7171 return 0;
7172 }
7173
7174 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7175 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7176
7177 const char *
7178 ada_type_name (struct type *type)
7179 {
7180 if (type == NULL)
7181 return NULL;
7182 else if (TYPE_NAME (type) != NULL)
7183 return TYPE_NAME (type);
7184 else
7185 return TYPE_TAG_NAME (type);
7186 }
7187
7188 /* Search the list of "descriptive" types associated to TYPE for a type
7189 whose name is NAME. */
7190
7191 static struct type *
7192 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7193 {
7194 struct type *result;
7195
7196 /* If there no descriptive-type info, then there is no parallel type
7197 to be found. */
7198 if (!HAVE_GNAT_AUX_INFO (type))
7199 return NULL;
7200
7201 result = TYPE_DESCRIPTIVE_TYPE (type);
7202 while (result != NULL)
7203 {
7204 const char *result_name = ada_type_name (result);
7205
7206 if (result_name == NULL)
7207 {
7208 warning (_("unexpected null name on descriptive type"));
7209 return NULL;
7210 }
7211
7212 /* If the names match, stop. */
7213 if (strcmp (result_name, name) == 0)
7214 break;
7215
7216 /* Otherwise, look at the next item on the list, if any. */
7217 if (HAVE_GNAT_AUX_INFO (result))
7218 result = TYPE_DESCRIPTIVE_TYPE (result);
7219 else
7220 result = NULL;
7221 }
7222
7223 /* If we didn't find a match, see whether this is a packed array. With
7224 older compilers, the descriptive type information is either absent or
7225 irrelevant when it comes to packed arrays so the above lookup fails.
7226 Fall back to using a parallel lookup by name in this case. */
7227 if (result == NULL && ada_is_constrained_packed_array_type (type))
7228 return ada_find_any_type (name);
7229
7230 return result;
7231 }
7232
7233 /* Find a parallel type to TYPE with the specified NAME, using the
7234 descriptive type taken from the debugging information, if available,
7235 and otherwise using the (slower) name-based method. */
7236
7237 static struct type *
7238 ada_find_parallel_type_with_name (struct type *type, const char *name)
7239 {
7240 struct type *result = NULL;
7241
7242 if (HAVE_GNAT_AUX_INFO (type))
7243 result = find_parallel_type_by_descriptive_type (type, name);
7244 else
7245 result = ada_find_any_type (name);
7246
7247 return result;
7248 }
7249
7250 /* Same as above, but specify the name of the parallel type by appending
7251 SUFFIX to the name of TYPE. */
7252
7253 struct type *
7254 ada_find_parallel_type (struct type *type, const char *suffix)
7255 {
7256 char *name;
7257 const char *typename = ada_type_name (type);
7258 int len;
7259
7260 if (typename == NULL)
7261 return NULL;
7262
7263 len = strlen (typename);
7264
7265 name = (char *) alloca (len + strlen (suffix) + 1);
7266
7267 strcpy (name, typename);
7268 strcpy (name + len, suffix);
7269
7270 return ada_find_parallel_type_with_name (type, name);
7271 }
7272
7273 /* If TYPE is a variable-size record type, return the corresponding template
7274 type describing its fields. Otherwise, return NULL. */
7275
7276 static struct type *
7277 dynamic_template_type (struct type *type)
7278 {
7279 type = ada_check_typedef (type);
7280
7281 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7282 || ada_type_name (type) == NULL)
7283 return NULL;
7284 else
7285 {
7286 int len = strlen (ada_type_name (type));
7287
7288 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7289 return type;
7290 else
7291 return ada_find_parallel_type (type, "___XVE");
7292 }
7293 }
7294
7295 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7296 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7297
7298 static int
7299 is_dynamic_field (struct type *templ_type, int field_num)
7300 {
7301 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7302
7303 return name != NULL
7304 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7305 && strstr (name, "___XVL") != NULL;
7306 }
7307
7308 /* The index of the variant field of TYPE, or -1 if TYPE does not
7309 represent a variant record type. */
7310
7311 static int
7312 variant_field_index (struct type *type)
7313 {
7314 int f;
7315
7316 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7317 return -1;
7318
7319 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7320 {
7321 if (ada_is_variant_part (type, f))
7322 return f;
7323 }
7324 return -1;
7325 }
7326
7327 /* A record type with no fields. */
7328
7329 static struct type *
7330 empty_record (struct type *template)
7331 {
7332 struct type *type = alloc_type_copy (template);
7333
7334 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7335 TYPE_NFIELDS (type) = 0;
7336 TYPE_FIELDS (type) = NULL;
7337 INIT_CPLUS_SPECIFIC (type);
7338 TYPE_NAME (type) = "<empty>";
7339 TYPE_TAG_NAME (type) = NULL;
7340 TYPE_LENGTH (type) = 0;
7341 return type;
7342 }
7343
7344 /* An ordinary record type (with fixed-length fields) that describes
7345 the value of type TYPE at VALADDR or ADDRESS (see comments at
7346 the beginning of this section) VAL according to GNAT conventions.
7347 DVAL0 should describe the (portion of a) record that contains any
7348 necessary discriminants. It should be NULL if value_type (VAL) is
7349 an outer-level type (i.e., as opposed to a branch of a variant.) A
7350 variant field (unless unchecked) is replaced by a particular branch
7351 of the variant.
7352
7353 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7354 length are not statically known are discarded. As a consequence,
7355 VALADDR, ADDRESS and DVAL0 are ignored.
7356
7357 NOTE: Limitations: For now, we assume that dynamic fields and
7358 variants occupy whole numbers of bytes. However, they need not be
7359 byte-aligned. */
7360
7361 struct type *
7362 ada_template_to_fixed_record_type_1 (struct type *type,
7363 const gdb_byte *valaddr,
7364 CORE_ADDR address, struct value *dval0,
7365 int keep_dynamic_fields)
7366 {
7367 struct value *mark = value_mark ();
7368 struct value *dval;
7369 struct type *rtype;
7370 int nfields, bit_len;
7371 int variant_field;
7372 long off;
7373 int fld_bit_len;
7374 int f;
7375
7376 /* Compute the number of fields in this record type that are going
7377 to be processed: unless keep_dynamic_fields, this includes only
7378 fields whose position and length are static will be processed. */
7379 if (keep_dynamic_fields)
7380 nfields = TYPE_NFIELDS (type);
7381 else
7382 {
7383 nfields = 0;
7384 while (nfields < TYPE_NFIELDS (type)
7385 && !ada_is_variant_part (type, nfields)
7386 && !is_dynamic_field (type, nfields))
7387 nfields++;
7388 }
7389
7390 rtype = alloc_type_copy (type);
7391 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7392 INIT_CPLUS_SPECIFIC (rtype);
7393 TYPE_NFIELDS (rtype) = nfields;
7394 TYPE_FIELDS (rtype) = (struct field *)
7395 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7396 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7397 TYPE_NAME (rtype) = ada_type_name (type);
7398 TYPE_TAG_NAME (rtype) = NULL;
7399 TYPE_FIXED_INSTANCE (rtype) = 1;
7400
7401 off = 0;
7402 bit_len = 0;
7403 variant_field = -1;
7404
7405 for (f = 0; f < nfields; f += 1)
7406 {
7407 off = align_value (off, field_alignment (type, f))
7408 + TYPE_FIELD_BITPOS (type, f);
7409 TYPE_FIELD_BITPOS (rtype, f) = off;
7410 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7411
7412 if (ada_is_variant_part (type, f))
7413 {
7414 variant_field = f;
7415 fld_bit_len = 0;
7416 }
7417 else if (is_dynamic_field (type, f))
7418 {
7419 const gdb_byte *field_valaddr = valaddr;
7420 CORE_ADDR field_address = address;
7421 struct type *field_type =
7422 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7423
7424 if (dval0 == NULL)
7425 {
7426 /* rtype's length is computed based on the run-time
7427 value of discriminants. If the discriminants are not
7428 initialized, the type size may be completely bogus and
7429 GDB may fail to allocate a value for it. So check the
7430 size first before creating the value. */
7431 check_size (rtype);
7432 dval = value_from_contents_and_address (rtype, valaddr, address);
7433 }
7434 else
7435 dval = dval0;
7436
7437 /* If the type referenced by this field is an aligner type, we need
7438 to unwrap that aligner type, because its size might not be set.
7439 Keeping the aligner type would cause us to compute the wrong
7440 size for this field, impacting the offset of the all the fields
7441 that follow this one. */
7442 if (ada_is_aligner_type (field_type))
7443 {
7444 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7445
7446 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7447 field_address = cond_offset_target (field_address, field_offset);
7448 field_type = ada_aligned_type (field_type);
7449 }
7450
7451 field_valaddr = cond_offset_host (field_valaddr,
7452 off / TARGET_CHAR_BIT);
7453 field_address = cond_offset_target (field_address,
7454 off / TARGET_CHAR_BIT);
7455
7456 /* Get the fixed type of the field. Note that, in this case,
7457 we do not want to get the real type out of the tag: if
7458 the current field is the parent part of a tagged record,
7459 we will get the tag of the object. Clearly wrong: the real
7460 type of the parent is not the real type of the child. We
7461 would end up in an infinite loop. */
7462 field_type = ada_get_base_type (field_type);
7463 field_type = ada_to_fixed_type (field_type, field_valaddr,
7464 field_address, dval, 0);
7465 /* If the field size is already larger than the maximum
7466 object size, then the record itself will necessarily
7467 be larger than the maximum object size. We need to make
7468 this check now, because the size might be so ridiculously
7469 large (due to an uninitialized variable in the inferior)
7470 that it would cause an overflow when adding it to the
7471 record size. */
7472 check_size (field_type);
7473
7474 TYPE_FIELD_TYPE (rtype, f) = field_type;
7475 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7476 /* The multiplication can potentially overflow. But because
7477 the field length has been size-checked just above, and
7478 assuming that the maximum size is a reasonable value,
7479 an overflow should not happen in practice. So rather than
7480 adding overflow recovery code to this already complex code,
7481 we just assume that it's not going to happen. */
7482 fld_bit_len =
7483 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7484 }
7485 else
7486 {
7487 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7488
7489 /* If our field is a typedef type (most likely a typedef of
7490 a fat pointer, encoding an array access), then we need to
7491 look at its target type to determine its characteristics.
7492 In particular, we would miscompute the field size if we took
7493 the size of the typedef (zero), instead of the size of
7494 the target type. */
7495 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7496 field_type = ada_typedef_target_type (field_type);
7497
7498 TYPE_FIELD_TYPE (rtype, f) = field_type;
7499 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7500 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7501 fld_bit_len =
7502 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7503 else
7504 fld_bit_len =
7505 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7506 }
7507 if (off + fld_bit_len > bit_len)
7508 bit_len = off + fld_bit_len;
7509 off += fld_bit_len;
7510 TYPE_LENGTH (rtype) =
7511 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7512 }
7513
7514 /* We handle the variant part, if any, at the end because of certain
7515 odd cases in which it is re-ordered so as NOT to be the last field of
7516 the record. This can happen in the presence of representation
7517 clauses. */
7518 if (variant_field >= 0)
7519 {
7520 struct type *branch_type;
7521
7522 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7523
7524 if (dval0 == NULL)
7525 dval = value_from_contents_and_address (rtype, valaddr, address);
7526 else
7527 dval = dval0;
7528
7529 branch_type =
7530 to_fixed_variant_branch_type
7531 (TYPE_FIELD_TYPE (type, variant_field),
7532 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7533 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7534 if (branch_type == NULL)
7535 {
7536 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7537 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7538 TYPE_NFIELDS (rtype) -= 1;
7539 }
7540 else
7541 {
7542 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7543 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7544 fld_bit_len =
7545 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7546 TARGET_CHAR_BIT;
7547 if (off + fld_bit_len > bit_len)
7548 bit_len = off + fld_bit_len;
7549 TYPE_LENGTH (rtype) =
7550 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7551 }
7552 }
7553
7554 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7555 should contain the alignment of that record, which should be a strictly
7556 positive value. If null or negative, then something is wrong, most
7557 probably in the debug info. In that case, we don't round up the size
7558 of the resulting type. If this record is not part of another structure,
7559 the current RTYPE length might be good enough for our purposes. */
7560 if (TYPE_LENGTH (type) <= 0)
7561 {
7562 if (TYPE_NAME (rtype))
7563 warning (_("Invalid type size for `%s' detected: %d."),
7564 TYPE_NAME (rtype), TYPE_LENGTH (type));
7565 else
7566 warning (_("Invalid type size for <unnamed> detected: %d."),
7567 TYPE_LENGTH (type));
7568 }
7569 else
7570 {
7571 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7572 TYPE_LENGTH (type));
7573 }
7574
7575 value_free_to_mark (mark);
7576 if (TYPE_LENGTH (rtype) > varsize_limit)
7577 error (_("record type with dynamic size is larger than varsize-limit"));
7578 return rtype;
7579 }
7580
7581 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7582 of 1. */
7583
7584 static struct type *
7585 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7586 CORE_ADDR address, struct value *dval0)
7587 {
7588 return ada_template_to_fixed_record_type_1 (type, valaddr,
7589 address, dval0, 1);
7590 }
7591
7592 /* An ordinary record type in which ___XVL-convention fields and
7593 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7594 static approximations, containing all possible fields. Uses
7595 no runtime values. Useless for use in values, but that's OK,
7596 since the results are used only for type determinations. Works on both
7597 structs and unions. Representation note: to save space, we memorize
7598 the result of this function in the TYPE_TARGET_TYPE of the
7599 template type. */
7600
7601 static struct type *
7602 template_to_static_fixed_type (struct type *type0)
7603 {
7604 struct type *type;
7605 int nfields;
7606 int f;
7607
7608 if (TYPE_TARGET_TYPE (type0) != NULL)
7609 return TYPE_TARGET_TYPE (type0);
7610
7611 nfields = TYPE_NFIELDS (type0);
7612 type = type0;
7613
7614 for (f = 0; f < nfields; f += 1)
7615 {
7616 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7617 struct type *new_type;
7618
7619 if (is_dynamic_field (type0, f))
7620 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7621 else
7622 new_type = static_unwrap_type (field_type);
7623 if (type == type0 && new_type != field_type)
7624 {
7625 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7626 TYPE_CODE (type) = TYPE_CODE (type0);
7627 INIT_CPLUS_SPECIFIC (type);
7628 TYPE_NFIELDS (type) = nfields;
7629 TYPE_FIELDS (type) = (struct field *)
7630 TYPE_ALLOC (type, nfields * sizeof (struct field));
7631 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7632 sizeof (struct field) * nfields);
7633 TYPE_NAME (type) = ada_type_name (type0);
7634 TYPE_TAG_NAME (type) = NULL;
7635 TYPE_FIXED_INSTANCE (type) = 1;
7636 TYPE_LENGTH (type) = 0;
7637 }
7638 TYPE_FIELD_TYPE (type, f) = new_type;
7639 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7640 }
7641 return type;
7642 }
7643
7644 /* Given an object of type TYPE whose contents are at VALADDR and
7645 whose address in memory is ADDRESS, returns a revision of TYPE,
7646 which should be a non-dynamic-sized record, in which the variant
7647 part, if any, is replaced with the appropriate branch. Looks
7648 for discriminant values in DVAL0, which can be NULL if the record
7649 contains the necessary discriminant values. */
7650
7651 static struct type *
7652 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7653 CORE_ADDR address, struct value *dval0)
7654 {
7655 struct value *mark = value_mark ();
7656 struct value *dval;
7657 struct type *rtype;
7658 struct type *branch_type;
7659 int nfields = TYPE_NFIELDS (type);
7660 int variant_field = variant_field_index (type);
7661
7662 if (variant_field == -1)
7663 return type;
7664
7665 if (dval0 == NULL)
7666 dval = value_from_contents_and_address (type, valaddr, address);
7667 else
7668 dval = dval0;
7669
7670 rtype = alloc_type_copy (type);
7671 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7672 INIT_CPLUS_SPECIFIC (rtype);
7673 TYPE_NFIELDS (rtype) = nfields;
7674 TYPE_FIELDS (rtype) =
7675 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7676 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7677 sizeof (struct field) * nfields);
7678 TYPE_NAME (rtype) = ada_type_name (type);
7679 TYPE_TAG_NAME (rtype) = NULL;
7680 TYPE_FIXED_INSTANCE (rtype) = 1;
7681 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7682
7683 branch_type = to_fixed_variant_branch_type
7684 (TYPE_FIELD_TYPE (type, variant_field),
7685 cond_offset_host (valaddr,
7686 TYPE_FIELD_BITPOS (type, variant_field)
7687 / TARGET_CHAR_BIT),
7688 cond_offset_target (address,
7689 TYPE_FIELD_BITPOS (type, variant_field)
7690 / TARGET_CHAR_BIT), dval);
7691 if (branch_type == NULL)
7692 {
7693 int f;
7694
7695 for (f = variant_field + 1; f < nfields; f += 1)
7696 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7697 TYPE_NFIELDS (rtype) -= 1;
7698 }
7699 else
7700 {
7701 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7702 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7703 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7704 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7705 }
7706 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7707
7708 value_free_to_mark (mark);
7709 return rtype;
7710 }
7711
7712 /* An ordinary record type (with fixed-length fields) that describes
7713 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7714 beginning of this section]. Any necessary discriminants' values
7715 should be in DVAL, a record value; it may be NULL if the object
7716 at ADDR itself contains any necessary discriminant values.
7717 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7718 values from the record are needed. Except in the case that DVAL,
7719 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7720 unchecked) is replaced by a particular branch of the variant.
7721
7722 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7723 is questionable and may be removed. It can arise during the
7724 processing of an unconstrained-array-of-record type where all the
7725 variant branches have exactly the same size. This is because in
7726 such cases, the compiler does not bother to use the XVS convention
7727 when encoding the record. I am currently dubious of this
7728 shortcut and suspect the compiler should be altered. FIXME. */
7729
7730 static struct type *
7731 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7732 CORE_ADDR address, struct value *dval)
7733 {
7734 struct type *templ_type;
7735
7736 if (TYPE_FIXED_INSTANCE (type0))
7737 return type0;
7738
7739 templ_type = dynamic_template_type (type0);
7740
7741 if (templ_type != NULL)
7742 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7743 else if (variant_field_index (type0) >= 0)
7744 {
7745 if (dval == NULL && valaddr == NULL && address == 0)
7746 return type0;
7747 return to_record_with_fixed_variant_part (type0, valaddr, address,
7748 dval);
7749 }
7750 else
7751 {
7752 TYPE_FIXED_INSTANCE (type0) = 1;
7753 return type0;
7754 }
7755
7756 }
7757
7758 /* An ordinary record type (with fixed-length fields) that describes
7759 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7760 union type. Any necessary discriminants' values should be in DVAL,
7761 a record value. That is, this routine selects the appropriate
7762 branch of the union at ADDR according to the discriminant value
7763 indicated in the union's type name. Returns VAR_TYPE0 itself if
7764 it represents a variant subject to a pragma Unchecked_Union. */
7765
7766 static struct type *
7767 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7768 CORE_ADDR address, struct value *dval)
7769 {
7770 int which;
7771 struct type *templ_type;
7772 struct type *var_type;
7773
7774 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7775 var_type = TYPE_TARGET_TYPE (var_type0);
7776 else
7777 var_type = var_type0;
7778
7779 templ_type = ada_find_parallel_type (var_type, "___XVU");
7780
7781 if (templ_type != NULL)
7782 var_type = templ_type;
7783
7784 if (is_unchecked_variant (var_type, value_type (dval)))
7785 return var_type0;
7786 which =
7787 ada_which_variant_applies (var_type,
7788 value_type (dval), value_contents (dval));
7789
7790 if (which < 0)
7791 return empty_record (var_type);
7792 else if (is_dynamic_field (var_type, which))
7793 return to_fixed_record_type
7794 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7795 valaddr, address, dval);
7796 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7797 return
7798 to_fixed_record_type
7799 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7800 else
7801 return TYPE_FIELD_TYPE (var_type, which);
7802 }
7803
7804 /* Assuming that TYPE0 is an array type describing the type of a value
7805 at ADDR, and that DVAL describes a record containing any
7806 discriminants used in TYPE0, returns a type for the value that
7807 contains no dynamic components (that is, no components whose sizes
7808 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7809 true, gives an error message if the resulting type's size is over
7810 varsize_limit. */
7811
7812 static struct type *
7813 to_fixed_array_type (struct type *type0, struct value *dval,
7814 int ignore_too_big)
7815 {
7816 struct type *index_type_desc;
7817 struct type *result;
7818 int constrained_packed_array_p;
7819
7820 type0 = ada_check_typedef (type0);
7821 if (TYPE_FIXED_INSTANCE (type0))
7822 return type0;
7823
7824 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7825 if (constrained_packed_array_p)
7826 type0 = decode_constrained_packed_array_type (type0);
7827
7828 index_type_desc = ada_find_parallel_type (type0, "___XA");
7829 ada_fixup_array_indexes_type (index_type_desc);
7830 if (index_type_desc == NULL)
7831 {
7832 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7833
7834 /* NOTE: elt_type---the fixed version of elt_type0---should never
7835 depend on the contents of the array in properly constructed
7836 debugging data. */
7837 /* Create a fixed version of the array element type.
7838 We're not providing the address of an element here,
7839 and thus the actual object value cannot be inspected to do
7840 the conversion. This should not be a problem, since arrays of
7841 unconstrained objects are not allowed. In particular, all
7842 the elements of an array of a tagged type should all be of
7843 the same type specified in the debugging info. No need to
7844 consult the object tag. */
7845 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7846
7847 /* Make sure we always create a new array type when dealing with
7848 packed array types, since we're going to fix-up the array
7849 type length and element bitsize a little further down. */
7850 if (elt_type0 == elt_type && !constrained_packed_array_p)
7851 result = type0;
7852 else
7853 result = create_array_type (alloc_type_copy (type0),
7854 elt_type, TYPE_INDEX_TYPE (type0));
7855 }
7856 else
7857 {
7858 int i;
7859 struct type *elt_type0;
7860
7861 elt_type0 = type0;
7862 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7863 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7864
7865 /* NOTE: result---the fixed version of elt_type0---should never
7866 depend on the contents of the array in properly constructed
7867 debugging data. */
7868 /* Create a fixed version of the array element type.
7869 We're not providing the address of an element here,
7870 and thus the actual object value cannot be inspected to do
7871 the conversion. This should not be a problem, since arrays of
7872 unconstrained objects are not allowed. In particular, all
7873 the elements of an array of a tagged type should all be of
7874 the same type specified in the debugging info. No need to
7875 consult the object tag. */
7876 result =
7877 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7878
7879 elt_type0 = type0;
7880 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7881 {
7882 struct type *range_type =
7883 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7884
7885 result = create_array_type (alloc_type_copy (elt_type0),
7886 result, range_type);
7887 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7888 }
7889 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7890 error (_("array type with dynamic size is larger than varsize-limit"));
7891 }
7892
7893 /* We want to preserve the type name. This can be useful when
7894 trying to get the type name of a value that has already been
7895 printed (for instance, if the user did "print VAR; whatis $". */
7896 TYPE_NAME (result) = TYPE_NAME (type0);
7897
7898 if (constrained_packed_array_p)
7899 {
7900 /* So far, the resulting type has been created as if the original
7901 type was a regular (non-packed) array type. As a result, the
7902 bitsize of the array elements needs to be set again, and the array
7903 length needs to be recomputed based on that bitsize. */
7904 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7905 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7906
7907 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7908 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7909 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7910 TYPE_LENGTH (result)++;
7911 }
7912
7913 TYPE_FIXED_INSTANCE (result) = 1;
7914 return result;
7915 }
7916
7917
7918 /* A standard type (containing no dynamically sized components)
7919 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7920 DVAL describes a record containing any discriminants used in TYPE0,
7921 and may be NULL if there are none, or if the object of type TYPE at
7922 ADDRESS or in VALADDR contains these discriminants.
7923
7924 If CHECK_TAG is not null, in the case of tagged types, this function
7925 attempts to locate the object's tag and use it to compute the actual
7926 type. However, when ADDRESS is null, we cannot use it to determine the
7927 location of the tag, and therefore compute the tagged type's actual type.
7928 So we return the tagged type without consulting the tag. */
7929
7930 static struct type *
7931 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7932 CORE_ADDR address, struct value *dval, int check_tag)
7933 {
7934 type = ada_check_typedef (type);
7935 switch (TYPE_CODE (type))
7936 {
7937 default:
7938 return type;
7939 case TYPE_CODE_STRUCT:
7940 {
7941 struct type *static_type = to_static_fixed_type (type);
7942 struct type *fixed_record_type =
7943 to_fixed_record_type (type, valaddr, address, NULL);
7944
7945 /* If STATIC_TYPE is a tagged type and we know the object's address,
7946 then we can determine its tag, and compute the object's actual
7947 type from there. Note that we have to use the fixed record
7948 type (the parent part of the record may have dynamic fields
7949 and the way the location of _tag is expressed may depend on
7950 them). */
7951
7952 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7953 {
7954 struct type *real_type =
7955 type_from_tag (value_tag_from_contents_and_address
7956 (fixed_record_type,
7957 valaddr,
7958 address));
7959
7960 if (real_type != NULL)
7961 return to_fixed_record_type (real_type, valaddr, address, NULL);
7962 }
7963
7964 /* Check to see if there is a parallel ___XVZ variable.
7965 If there is, then it provides the actual size of our type. */
7966 else if (ada_type_name (fixed_record_type) != NULL)
7967 {
7968 const char *name = ada_type_name (fixed_record_type);
7969 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7970 int xvz_found = 0;
7971 LONGEST size;
7972
7973 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7974 size = get_int_var_value (xvz_name, &xvz_found);
7975 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7976 {
7977 fixed_record_type = copy_type (fixed_record_type);
7978 TYPE_LENGTH (fixed_record_type) = size;
7979
7980 /* The FIXED_RECORD_TYPE may have be a stub. We have
7981 observed this when the debugging info is STABS, and
7982 apparently it is something that is hard to fix.
7983
7984 In practice, we don't need the actual type definition
7985 at all, because the presence of the XVZ variable allows us
7986 to assume that there must be a XVS type as well, which we
7987 should be able to use later, when we need the actual type
7988 definition.
7989
7990 In the meantime, pretend that the "fixed" type we are
7991 returning is NOT a stub, because this can cause trouble
7992 when using this type to create new types targeting it.
7993 Indeed, the associated creation routines often check
7994 whether the target type is a stub and will try to replace
7995 it, thus using a type with the wrong size. This, in turn,
7996 might cause the new type to have the wrong size too.
7997 Consider the case of an array, for instance, where the size
7998 of the array is computed from the number of elements in
7999 our array multiplied by the size of its element. */
8000 TYPE_STUB (fixed_record_type) = 0;
8001 }
8002 }
8003 return fixed_record_type;
8004 }
8005 case TYPE_CODE_ARRAY:
8006 return to_fixed_array_type (type, dval, 1);
8007 case TYPE_CODE_UNION:
8008 if (dval == NULL)
8009 return type;
8010 else
8011 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8012 }
8013 }
8014
8015 /* The same as ada_to_fixed_type_1, except that it preserves the type
8016 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8017
8018 The typedef layer needs be preserved in order to differentiate between
8019 arrays and array pointers when both types are implemented using the same
8020 fat pointer. In the array pointer case, the pointer is encoded as
8021 a typedef of the pointer type. For instance, considering:
8022
8023 type String_Access is access String;
8024 S1 : String_Access := null;
8025
8026 To the debugger, S1 is defined as a typedef of type String. But
8027 to the user, it is a pointer. So if the user tries to print S1,
8028 we should not dereference the array, but print the array address
8029 instead.
8030
8031 If we didn't preserve the typedef layer, we would lose the fact that
8032 the type is to be presented as a pointer (needs de-reference before
8033 being printed). And we would also use the source-level type name. */
8034
8035 struct type *
8036 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8037 CORE_ADDR address, struct value *dval, int check_tag)
8038
8039 {
8040 struct type *fixed_type =
8041 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8042
8043 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8044 then preserve the typedef layer.
8045
8046 Implementation note: We can only check the main-type portion of
8047 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8048 from TYPE now returns a type that has the same instance flags
8049 as TYPE. For instance, if TYPE is a "typedef const", and its
8050 target type is a "struct", then the typedef elimination will return
8051 a "const" version of the target type. See check_typedef for more
8052 details about how the typedef layer elimination is done.
8053
8054 brobecker/2010-11-19: It seems to me that the only case where it is
8055 useful to preserve the typedef layer is when dealing with fat pointers.
8056 Perhaps, we could add a check for that and preserve the typedef layer
8057 only in that situation. But this seems unecessary so far, probably
8058 because we call check_typedef/ada_check_typedef pretty much everywhere.
8059 */
8060 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8061 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8062 == TYPE_MAIN_TYPE (fixed_type)))
8063 return type;
8064
8065 return fixed_type;
8066 }
8067
8068 /* A standard (static-sized) type corresponding as well as possible to
8069 TYPE0, but based on no runtime data. */
8070
8071 static struct type *
8072 to_static_fixed_type (struct type *type0)
8073 {
8074 struct type *type;
8075
8076 if (type0 == NULL)
8077 return NULL;
8078
8079 if (TYPE_FIXED_INSTANCE (type0))
8080 return type0;
8081
8082 type0 = ada_check_typedef (type0);
8083
8084 switch (TYPE_CODE (type0))
8085 {
8086 default:
8087 return type0;
8088 case TYPE_CODE_STRUCT:
8089 type = dynamic_template_type (type0);
8090 if (type != NULL)
8091 return template_to_static_fixed_type (type);
8092 else
8093 return template_to_static_fixed_type (type0);
8094 case TYPE_CODE_UNION:
8095 type = ada_find_parallel_type (type0, "___XVU");
8096 if (type != NULL)
8097 return template_to_static_fixed_type (type);
8098 else
8099 return template_to_static_fixed_type (type0);
8100 }
8101 }
8102
8103 /* A static approximation of TYPE with all type wrappers removed. */
8104
8105 static struct type *
8106 static_unwrap_type (struct type *type)
8107 {
8108 if (ada_is_aligner_type (type))
8109 {
8110 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8111 if (ada_type_name (type1) == NULL)
8112 TYPE_NAME (type1) = ada_type_name (type);
8113
8114 return static_unwrap_type (type1);
8115 }
8116 else
8117 {
8118 struct type *raw_real_type = ada_get_base_type (type);
8119
8120 if (raw_real_type == type)
8121 return type;
8122 else
8123 return to_static_fixed_type (raw_real_type);
8124 }
8125 }
8126
8127 /* In some cases, incomplete and private types require
8128 cross-references that are not resolved as records (for example,
8129 type Foo;
8130 type FooP is access Foo;
8131 V: FooP;
8132 type Foo is array ...;
8133 ). In these cases, since there is no mechanism for producing
8134 cross-references to such types, we instead substitute for FooP a
8135 stub enumeration type that is nowhere resolved, and whose tag is
8136 the name of the actual type. Call these types "non-record stubs". */
8137
8138 /* A type equivalent to TYPE that is not a non-record stub, if one
8139 exists, otherwise TYPE. */
8140
8141 struct type *
8142 ada_check_typedef (struct type *type)
8143 {
8144 if (type == NULL)
8145 return NULL;
8146
8147 /* If our type is a typedef type of a fat pointer, then we're done.
8148 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8149 what allows us to distinguish between fat pointers that represent
8150 array types, and fat pointers that represent array access types
8151 (in both cases, the compiler implements them as fat pointers). */
8152 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8153 && is_thick_pntr (ada_typedef_target_type (type)))
8154 return type;
8155
8156 CHECK_TYPEDEF (type);
8157 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8158 || !TYPE_STUB (type)
8159 || TYPE_TAG_NAME (type) == NULL)
8160 return type;
8161 else
8162 {
8163 const char *name = TYPE_TAG_NAME (type);
8164 struct type *type1 = ada_find_any_type (name);
8165
8166 if (type1 == NULL)
8167 return type;
8168
8169 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8170 stubs pointing to arrays, as we don't create symbols for array
8171 types, only for the typedef-to-array types). If that's the case,
8172 strip the typedef layer. */
8173 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8174 type1 = ada_check_typedef (type1);
8175
8176 return type1;
8177 }
8178 }
8179
8180 /* A value representing the data at VALADDR/ADDRESS as described by
8181 type TYPE0, but with a standard (static-sized) type that correctly
8182 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8183 type, then return VAL0 [this feature is simply to avoid redundant
8184 creation of struct values]. */
8185
8186 static struct value *
8187 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8188 struct value *val0)
8189 {
8190 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8191
8192 if (type == type0 && val0 != NULL)
8193 return val0;
8194 else
8195 return value_from_contents_and_address (type, 0, address);
8196 }
8197
8198 /* A value representing VAL, but with a standard (static-sized) type
8199 that correctly describes it. Does not necessarily create a new
8200 value. */
8201
8202 struct value *
8203 ada_to_fixed_value (struct value *val)
8204 {
8205 val = unwrap_value (val);
8206 val = ada_to_fixed_value_create (value_type (val),
8207 value_address (val),
8208 val);
8209 return val;
8210 }
8211 \f
8212
8213 /* Attributes */
8214
8215 /* Table mapping attribute numbers to names.
8216 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8217
8218 static const char *attribute_names[] = {
8219 "<?>",
8220
8221 "first",
8222 "last",
8223 "length",
8224 "image",
8225 "max",
8226 "min",
8227 "modulus",
8228 "pos",
8229 "size",
8230 "tag",
8231 "val",
8232 0
8233 };
8234
8235 const char *
8236 ada_attribute_name (enum exp_opcode n)
8237 {
8238 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8239 return attribute_names[n - OP_ATR_FIRST + 1];
8240 else
8241 return attribute_names[0];
8242 }
8243
8244 /* Evaluate the 'POS attribute applied to ARG. */
8245
8246 static LONGEST
8247 pos_atr (struct value *arg)
8248 {
8249 struct value *val = coerce_ref (arg);
8250 struct type *type = value_type (val);
8251
8252 if (!discrete_type_p (type))
8253 error (_("'POS only defined on discrete types"));
8254
8255 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8256 {
8257 int i;
8258 LONGEST v = value_as_long (val);
8259
8260 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8261 {
8262 if (v == TYPE_FIELD_BITPOS (type, i))
8263 return i;
8264 }
8265 error (_("enumeration value is invalid: can't find 'POS"));
8266 }
8267 else
8268 return value_as_long (val);
8269 }
8270
8271 static struct value *
8272 value_pos_atr (struct type *type, struct value *arg)
8273 {
8274 return value_from_longest (type, pos_atr (arg));
8275 }
8276
8277 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8278
8279 static struct value *
8280 value_val_atr (struct type *type, struct value *arg)
8281 {
8282 if (!discrete_type_p (type))
8283 error (_("'VAL only defined on discrete types"));
8284 if (!integer_type_p (value_type (arg)))
8285 error (_("'VAL requires integral argument"));
8286
8287 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8288 {
8289 long pos = value_as_long (arg);
8290
8291 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8292 error (_("argument to 'VAL out of range"));
8293 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8294 }
8295 else
8296 return value_from_longest (type, value_as_long (arg));
8297 }
8298 \f
8299
8300 /* Evaluation */
8301
8302 /* True if TYPE appears to be an Ada character type.
8303 [At the moment, this is true only for Character and Wide_Character;
8304 It is a heuristic test that could stand improvement]. */
8305
8306 int
8307 ada_is_character_type (struct type *type)
8308 {
8309 const char *name;
8310
8311 /* If the type code says it's a character, then assume it really is,
8312 and don't check any further. */
8313 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8314 return 1;
8315
8316 /* Otherwise, assume it's a character type iff it is a discrete type
8317 with a known character type name. */
8318 name = ada_type_name (type);
8319 return (name != NULL
8320 && (TYPE_CODE (type) == TYPE_CODE_INT
8321 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8322 && (strcmp (name, "character") == 0
8323 || strcmp (name, "wide_character") == 0
8324 || strcmp (name, "wide_wide_character") == 0
8325 || strcmp (name, "unsigned char") == 0));
8326 }
8327
8328 /* True if TYPE appears to be an Ada string type. */
8329
8330 int
8331 ada_is_string_type (struct type *type)
8332 {
8333 type = ada_check_typedef (type);
8334 if (type != NULL
8335 && TYPE_CODE (type) != TYPE_CODE_PTR
8336 && (ada_is_simple_array_type (type)
8337 || ada_is_array_descriptor_type (type))
8338 && ada_array_arity (type) == 1)
8339 {
8340 struct type *elttype = ada_array_element_type (type, 1);
8341
8342 return ada_is_character_type (elttype);
8343 }
8344 else
8345 return 0;
8346 }
8347
8348 /* The compiler sometimes provides a parallel XVS type for a given
8349 PAD type. Normally, it is safe to follow the PAD type directly,
8350 but older versions of the compiler have a bug that causes the offset
8351 of its "F" field to be wrong. Following that field in that case
8352 would lead to incorrect results, but this can be worked around
8353 by ignoring the PAD type and using the associated XVS type instead.
8354
8355 Set to True if the debugger should trust the contents of PAD types.
8356 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8357 static int trust_pad_over_xvs = 1;
8358
8359 /* True if TYPE is a struct type introduced by the compiler to force the
8360 alignment of a value. Such types have a single field with a
8361 distinctive name. */
8362
8363 int
8364 ada_is_aligner_type (struct type *type)
8365 {
8366 type = ada_check_typedef (type);
8367
8368 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8369 return 0;
8370
8371 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8372 && TYPE_NFIELDS (type) == 1
8373 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8374 }
8375
8376 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8377 the parallel type. */
8378
8379 struct type *
8380 ada_get_base_type (struct type *raw_type)
8381 {
8382 struct type *real_type_namer;
8383 struct type *raw_real_type;
8384
8385 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8386 return raw_type;
8387
8388 if (ada_is_aligner_type (raw_type))
8389 /* The encoding specifies that we should always use the aligner type.
8390 So, even if this aligner type has an associated XVS type, we should
8391 simply ignore it.
8392
8393 According to the compiler gurus, an XVS type parallel to an aligner
8394 type may exist because of a stabs limitation. In stabs, aligner
8395 types are empty because the field has a variable-sized type, and
8396 thus cannot actually be used as an aligner type. As a result,
8397 we need the associated parallel XVS type to decode the type.
8398 Since the policy in the compiler is to not change the internal
8399 representation based on the debugging info format, we sometimes
8400 end up having a redundant XVS type parallel to the aligner type. */
8401 return raw_type;
8402
8403 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8404 if (real_type_namer == NULL
8405 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8406 || TYPE_NFIELDS (real_type_namer) != 1)
8407 return raw_type;
8408
8409 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8410 {
8411 /* This is an older encoding form where the base type needs to be
8412 looked up by name. We prefer the newer enconding because it is
8413 more efficient. */
8414 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8415 if (raw_real_type == NULL)
8416 return raw_type;
8417 else
8418 return raw_real_type;
8419 }
8420
8421 /* The field in our XVS type is a reference to the base type. */
8422 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8423 }
8424
8425 /* The type of value designated by TYPE, with all aligners removed. */
8426
8427 struct type *
8428 ada_aligned_type (struct type *type)
8429 {
8430 if (ada_is_aligner_type (type))
8431 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8432 else
8433 return ada_get_base_type (type);
8434 }
8435
8436
8437 /* The address of the aligned value in an object at address VALADDR
8438 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8439
8440 const gdb_byte *
8441 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8442 {
8443 if (ada_is_aligner_type (type))
8444 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8445 valaddr +
8446 TYPE_FIELD_BITPOS (type,
8447 0) / TARGET_CHAR_BIT);
8448 else
8449 return valaddr;
8450 }
8451
8452
8453
8454 /* The printed representation of an enumeration literal with encoded
8455 name NAME. The value is good to the next call of ada_enum_name. */
8456 const char *
8457 ada_enum_name (const char *name)
8458 {
8459 static char *result;
8460 static size_t result_len = 0;
8461 char *tmp;
8462
8463 /* First, unqualify the enumeration name:
8464 1. Search for the last '.' character. If we find one, then skip
8465 all the preceding characters, the unqualified name starts
8466 right after that dot.
8467 2. Otherwise, we may be debugging on a target where the compiler
8468 translates dots into "__". Search forward for double underscores,
8469 but stop searching when we hit an overloading suffix, which is
8470 of the form "__" followed by digits. */
8471
8472 tmp = strrchr (name, '.');
8473 if (tmp != NULL)
8474 name = tmp + 1;
8475 else
8476 {
8477 while ((tmp = strstr (name, "__")) != NULL)
8478 {
8479 if (isdigit (tmp[2]))
8480 break;
8481 else
8482 name = tmp + 2;
8483 }
8484 }
8485
8486 if (name[0] == 'Q')
8487 {
8488 int v;
8489
8490 if (name[1] == 'U' || name[1] == 'W')
8491 {
8492 if (sscanf (name + 2, "%x", &v) != 1)
8493 return name;
8494 }
8495 else
8496 return name;
8497
8498 GROW_VECT (result, result_len, 16);
8499 if (isascii (v) && isprint (v))
8500 xsnprintf (result, result_len, "'%c'", v);
8501 else if (name[1] == 'U')
8502 xsnprintf (result, result_len, "[\"%02x\"]", v);
8503 else
8504 xsnprintf (result, result_len, "[\"%04x\"]", v);
8505
8506 return result;
8507 }
8508 else
8509 {
8510 tmp = strstr (name, "__");
8511 if (tmp == NULL)
8512 tmp = strstr (name, "$");
8513 if (tmp != NULL)
8514 {
8515 GROW_VECT (result, result_len, tmp - name + 1);
8516 strncpy (result, name, tmp - name);
8517 result[tmp - name] = '\0';
8518 return result;
8519 }
8520
8521 return name;
8522 }
8523 }
8524
8525 /* Evaluate the subexpression of EXP starting at *POS as for
8526 evaluate_type, updating *POS to point just past the evaluated
8527 expression. */
8528
8529 static struct value *
8530 evaluate_subexp_type (struct expression *exp, int *pos)
8531 {
8532 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8533 }
8534
8535 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8536 value it wraps. */
8537
8538 static struct value *
8539 unwrap_value (struct value *val)
8540 {
8541 struct type *type = ada_check_typedef (value_type (val));
8542
8543 if (ada_is_aligner_type (type))
8544 {
8545 struct value *v = ada_value_struct_elt (val, "F", 0);
8546 struct type *val_type = ada_check_typedef (value_type (v));
8547
8548 if (ada_type_name (val_type) == NULL)
8549 TYPE_NAME (val_type) = ada_type_name (type);
8550
8551 return unwrap_value (v);
8552 }
8553 else
8554 {
8555 struct type *raw_real_type =
8556 ada_check_typedef (ada_get_base_type (type));
8557
8558 /* If there is no parallel XVS or XVE type, then the value is
8559 already unwrapped. Return it without further modification. */
8560 if ((type == raw_real_type)
8561 && ada_find_parallel_type (type, "___XVE") == NULL)
8562 return val;
8563
8564 return
8565 coerce_unspec_val_to_type
8566 (val, ada_to_fixed_type (raw_real_type, 0,
8567 value_address (val),
8568 NULL, 1));
8569 }
8570 }
8571
8572 static struct value *
8573 cast_to_fixed (struct type *type, struct value *arg)
8574 {
8575 LONGEST val;
8576
8577 if (type == value_type (arg))
8578 return arg;
8579 else if (ada_is_fixed_point_type (value_type (arg)))
8580 val = ada_float_to_fixed (type,
8581 ada_fixed_to_float (value_type (arg),
8582 value_as_long (arg)));
8583 else
8584 {
8585 DOUBLEST argd = value_as_double (arg);
8586
8587 val = ada_float_to_fixed (type, argd);
8588 }
8589
8590 return value_from_longest (type, val);
8591 }
8592
8593 static struct value *
8594 cast_from_fixed (struct type *type, struct value *arg)
8595 {
8596 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8597 value_as_long (arg));
8598
8599 return value_from_double (type, val);
8600 }
8601
8602 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8603 return the converted value. */
8604
8605 static struct value *
8606 coerce_for_assign (struct type *type, struct value *val)
8607 {
8608 struct type *type2 = value_type (val);
8609
8610 if (type == type2)
8611 return val;
8612
8613 type2 = ada_check_typedef (type2);
8614 type = ada_check_typedef (type);
8615
8616 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8617 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8618 {
8619 val = ada_value_ind (val);
8620 type2 = value_type (val);
8621 }
8622
8623 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8624 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8625 {
8626 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8627 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8628 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8629 error (_("Incompatible types in assignment"));
8630 deprecated_set_value_type (val, type);
8631 }
8632 return val;
8633 }
8634
8635 static struct value *
8636 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8637 {
8638 struct value *val;
8639 struct type *type1, *type2;
8640 LONGEST v, v1, v2;
8641
8642 arg1 = coerce_ref (arg1);
8643 arg2 = coerce_ref (arg2);
8644 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8645 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8646
8647 if (TYPE_CODE (type1) != TYPE_CODE_INT
8648 || TYPE_CODE (type2) != TYPE_CODE_INT)
8649 return value_binop (arg1, arg2, op);
8650
8651 switch (op)
8652 {
8653 case BINOP_MOD:
8654 case BINOP_DIV:
8655 case BINOP_REM:
8656 break;
8657 default:
8658 return value_binop (arg1, arg2, op);
8659 }
8660
8661 v2 = value_as_long (arg2);
8662 if (v2 == 0)
8663 error (_("second operand of %s must not be zero."), op_string (op));
8664
8665 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8666 return value_binop (arg1, arg2, op);
8667
8668 v1 = value_as_long (arg1);
8669 switch (op)
8670 {
8671 case BINOP_DIV:
8672 v = v1 / v2;
8673 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8674 v += v > 0 ? -1 : 1;
8675 break;
8676 case BINOP_REM:
8677 v = v1 % v2;
8678 if (v * v1 < 0)
8679 v -= v2;
8680 break;
8681 default:
8682 /* Should not reach this point. */
8683 v = 0;
8684 }
8685
8686 val = allocate_value (type1);
8687 store_unsigned_integer (value_contents_raw (val),
8688 TYPE_LENGTH (value_type (val)),
8689 gdbarch_byte_order (get_type_arch (type1)), v);
8690 return val;
8691 }
8692
8693 static int
8694 ada_value_equal (struct value *arg1, struct value *arg2)
8695 {
8696 if (ada_is_direct_array_type (value_type (arg1))
8697 || ada_is_direct_array_type (value_type (arg2)))
8698 {
8699 /* Automatically dereference any array reference before
8700 we attempt to perform the comparison. */
8701 arg1 = ada_coerce_ref (arg1);
8702 arg2 = ada_coerce_ref (arg2);
8703
8704 arg1 = ada_coerce_to_simple_array (arg1);
8705 arg2 = ada_coerce_to_simple_array (arg2);
8706 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8707 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8708 error (_("Attempt to compare array with non-array"));
8709 /* FIXME: The following works only for types whose
8710 representations use all bits (no padding or undefined bits)
8711 and do not have user-defined equality. */
8712 return
8713 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8714 && memcmp (value_contents (arg1), value_contents (arg2),
8715 TYPE_LENGTH (value_type (arg1))) == 0;
8716 }
8717 return value_equal (arg1, arg2);
8718 }
8719
8720 /* Total number of component associations in the aggregate starting at
8721 index PC in EXP. Assumes that index PC is the start of an
8722 OP_AGGREGATE. */
8723
8724 static int
8725 num_component_specs (struct expression *exp, int pc)
8726 {
8727 int n, m, i;
8728
8729 m = exp->elts[pc + 1].longconst;
8730 pc += 3;
8731 n = 0;
8732 for (i = 0; i < m; i += 1)
8733 {
8734 switch (exp->elts[pc].opcode)
8735 {
8736 default:
8737 n += 1;
8738 break;
8739 case OP_CHOICES:
8740 n += exp->elts[pc + 1].longconst;
8741 break;
8742 }
8743 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8744 }
8745 return n;
8746 }
8747
8748 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8749 component of LHS (a simple array or a record), updating *POS past
8750 the expression, assuming that LHS is contained in CONTAINER. Does
8751 not modify the inferior's memory, nor does it modify LHS (unless
8752 LHS == CONTAINER). */
8753
8754 static void
8755 assign_component (struct value *container, struct value *lhs, LONGEST index,
8756 struct expression *exp, int *pos)
8757 {
8758 struct value *mark = value_mark ();
8759 struct value *elt;
8760
8761 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8762 {
8763 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8764 struct value *index_val = value_from_longest (index_type, index);
8765
8766 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8767 }
8768 else
8769 {
8770 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8771 elt = ada_to_fixed_value (elt);
8772 }
8773
8774 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8775 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8776 else
8777 value_assign_to_component (container, elt,
8778 ada_evaluate_subexp (NULL, exp, pos,
8779 EVAL_NORMAL));
8780
8781 value_free_to_mark (mark);
8782 }
8783
8784 /* Assuming that LHS represents an lvalue having a record or array
8785 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8786 of that aggregate's value to LHS, advancing *POS past the
8787 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8788 lvalue containing LHS (possibly LHS itself). Does not modify
8789 the inferior's memory, nor does it modify the contents of
8790 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8791
8792 static struct value *
8793 assign_aggregate (struct value *container,
8794 struct value *lhs, struct expression *exp,
8795 int *pos, enum noside noside)
8796 {
8797 struct type *lhs_type;
8798 int n = exp->elts[*pos+1].longconst;
8799 LONGEST low_index, high_index;
8800 int num_specs;
8801 LONGEST *indices;
8802 int max_indices, num_indices;
8803 int is_array_aggregate;
8804 int i;
8805
8806 *pos += 3;
8807 if (noside != EVAL_NORMAL)
8808 {
8809 for (i = 0; i < n; i += 1)
8810 ada_evaluate_subexp (NULL, exp, pos, noside);
8811 return container;
8812 }
8813
8814 container = ada_coerce_ref (container);
8815 if (ada_is_direct_array_type (value_type (container)))
8816 container = ada_coerce_to_simple_array (container);
8817 lhs = ada_coerce_ref (lhs);
8818 if (!deprecated_value_modifiable (lhs))
8819 error (_("Left operand of assignment is not a modifiable lvalue."));
8820
8821 lhs_type = value_type (lhs);
8822 if (ada_is_direct_array_type (lhs_type))
8823 {
8824 lhs = ada_coerce_to_simple_array (lhs);
8825 lhs_type = value_type (lhs);
8826 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8827 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8828 is_array_aggregate = 1;
8829 }
8830 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8831 {
8832 low_index = 0;
8833 high_index = num_visible_fields (lhs_type) - 1;
8834 is_array_aggregate = 0;
8835 }
8836 else
8837 error (_("Left-hand side must be array or record."));
8838
8839 num_specs = num_component_specs (exp, *pos - 3);
8840 max_indices = 4 * num_specs + 4;
8841 indices = alloca (max_indices * sizeof (indices[0]));
8842 indices[0] = indices[1] = low_index - 1;
8843 indices[2] = indices[3] = high_index + 1;
8844 num_indices = 4;
8845
8846 for (i = 0; i < n; i += 1)
8847 {
8848 switch (exp->elts[*pos].opcode)
8849 {
8850 case OP_CHOICES:
8851 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8852 &num_indices, max_indices,
8853 low_index, high_index);
8854 break;
8855 case OP_POSITIONAL:
8856 aggregate_assign_positional (container, lhs, exp, pos, indices,
8857 &num_indices, max_indices,
8858 low_index, high_index);
8859 break;
8860 case OP_OTHERS:
8861 if (i != n-1)
8862 error (_("Misplaced 'others' clause"));
8863 aggregate_assign_others (container, lhs, exp, pos, indices,
8864 num_indices, low_index, high_index);
8865 break;
8866 default:
8867 error (_("Internal error: bad aggregate clause"));
8868 }
8869 }
8870
8871 return container;
8872 }
8873
8874 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8875 construct at *POS, updating *POS past the construct, given that
8876 the positions are relative to lower bound LOW, where HIGH is the
8877 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8878 updating *NUM_INDICES as needed. CONTAINER is as for
8879 assign_aggregate. */
8880 static void
8881 aggregate_assign_positional (struct value *container,
8882 struct value *lhs, struct expression *exp,
8883 int *pos, LONGEST *indices, int *num_indices,
8884 int max_indices, LONGEST low, LONGEST high)
8885 {
8886 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8887
8888 if (ind - 1 == high)
8889 warning (_("Extra components in aggregate ignored."));
8890 if (ind <= high)
8891 {
8892 add_component_interval (ind, ind, indices, num_indices, max_indices);
8893 *pos += 3;
8894 assign_component (container, lhs, ind, exp, pos);
8895 }
8896 else
8897 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8898 }
8899
8900 /* Assign into the components of LHS indexed by the OP_CHOICES
8901 construct at *POS, updating *POS past the construct, given that
8902 the allowable indices are LOW..HIGH. Record the indices assigned
8903 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8904 needed. CONTAINER is as for assign_aggregate. */
8905 static void
8906 aggregate_assign_from_choices (struct value *container,
8907 struct value *lhs, struct expression *exp,
8908 int *pos, LONGEST *indices, int *num_indices,
8909 int max_indices, LONGEST low, LONGEST high)
8910 {
8911 int j;
8912 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8913 int choice_pos, expr_pc;
8914 int is_array = ada_is_direct_array_type (value_type (lhs));
8915
8916 choice_pos = *pos += 3;
8917
8918 for (j = 0; j < n_choices; j += 1)
8919 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8920 expr_pc = *pos;
8921 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8922
8923 for (j = 0; j < n_choices; j += 1)
8924 {
8925 LONGEST lower, upper;
8926 enum exp_opcode op = exp->elts[choice_pos].opcode;
8927
8928 if (op == OP_DISCRETE_RANGE)
8929 {
8930 choice_pos += 1;
8931 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8932 EVAL_NORMAL));
8933 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8934 EVAL_NORMAL));
8935 }
8936 else if (is_array)
8937 {
8938 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8939 EVAL_NORMAL));
8940 upper = lower;
8941 }
8942 else
8943 {
8944 int ind;
8945 const char *name;
8946
8947 switch (op)
8948 {
8949 case OP_NAME:
8950 name = &exp->elts[choice_pos + 2].string;
8951 break;
8952 case OP_VAR_VALUE:
8953 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8954 break;
8955 default:
8956 error (_("Invalid record component association."));
8957 }
8958 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8959 ind = 0;
8960 if (! find_struct_field (name, value_type (lhs), 0,
8961 NULL, NULL, NULL, NULL, &ind))
8962 error (_("Unknown component name: %s."), name);
8963 lower = upper = ind;
8964 }
8965
8966 if (lower <= upper && (lower < low || upper > high))
8967 error (_("Index in component association out of bounds."));
8968
8969 add_component_interval (lower, upper, indices, num_indices,
8970 max_indices);
8971 while (lower <= upper)
8972 {
8973 int pos1;
8974
8975 pos1 = expr_pc;
8976 assign_component (container, lhs, lower, exp, &pos1);
8977 lower += 1;
8978 }
8979 }
8980 }
8981
8982 /* Assign the value of the expression in the OP_OTHERS construct in
8983 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8984 have not been previously assigned. The index intervals already assigned
8985 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8986 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8987 static void
8988 aggregate_assign_others (struct value *container,
8989 struct value *lhs, struct expression *exp,
8990 int *pos, LONGEST *indices, int num_indices,
8991 LONGEST low, LONGEST high)
8992 {
8993 int i;
8994 int expr_pc = *pos + 1;
8995
8996 for (i = 0; i < num_indices - 2; i += 2)
8997 {
8998 LONGEST ind;
8999
9000 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9001 {
9002 int localpos;
9003
9004 localpos = expr_pc;
9005 assign_component (container, lhs, ind, exp, &localpos);
9006 }
9007 }
9008 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9009 }
9010
9011 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9012 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9013 modifying *SIZE as needed. It is an error if *SIZE exceeds
9014 MAX_SIZE. The resulting intervals do not overlap. */
9015 static void
9016 add_component_interval (LONGEST low, LONGEST high,
9017 LONGEST* indices, int *size, int max_size)
9018 {
9019 int i, j;
9020
9021 for (i = 0; i < *size; i += 2) {
9022 if (high >= indices[i] && low <= indices[i + 1])
9023 {
9024 int kh;
9025
9026 for (kh = i + 2; kh < *size; kh += 2)
9027 if (high < indices[kh])
9028 break;
9029 if (low < indices[i])
9030 indices[i] = low;
9031 indices[i + 1] = indices[kh - 1];
9032 if (high > indices[i + 1])
9033 indices[i + 1] = high;
9034 memcpy (indices + i + 2, indices + kh, *size - kh);
9035 *size -= kh - i - 2;
9036 return;
9037 }
9038 else if (high < indices[i])
9039 break;
9040 }
9041
9042 if (*size == max_size)
9043 error (_("Internal error: miscounted aggregate components."));
9044 *size += 2;
9045 for (j = *size-1; j >= i+2; j -= 1)
9046 indices[j] = indices[j - 2];
9047 indices[i] = low;
9048 indices[i + 1] = high;
9049 }
9050
9051 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9052 is different. */
9053
9054 static struct value *
9055 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9056 {
9057 if (type == ada_check_typedef (value_type (arg2)))
9058 return arg2;
9059
9060 if (ada_is_fixed_point_type (type))
9061 return (cast_to_fixed (type, arg2));
9062
9063 if (ada_is_fixed_point_type (value_type (arg2)))
9064 return cast_from_fixed (type, arg2);
9065
9066 return value_cast (type, arg2);
9067 }
9068
9069 /* Evaluating Ada expressions, and printing their result.
9070 ------------------------------------------------------
9071
9072 1. Introduction:
9073 ----------------
9074
9075 We usually evaluate an Ada expression in order to print its value.
9076 We also evaluate an expression in order to print its type, which
9077 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9078 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9079 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9080 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9081 similar.
9082
9083 Evaluating expressions is a little more complicated for Ada entities
9084 than it is for entities in languages such as C. The main reason for
9085 this is that Ada provides types whose definition might be dynamic.
9086 One example of such types is variant records. Or another example
9087 would be an array whose bounds can only be known at run time.
9088
9089 The following description is a general guide as to what should be
9090 done (and what should NOT be done) in order to evaluate an expression
9091 involving such types, and when. This does not cover how the semantic
9092 information is encoded by GNAT as this is covered separatly. For the
9093 document used as the reference for the GNAT encoding, see exp_dbug.ads
9094 in the GNAT sources.
9095
9096 Ideally, we should embed each part of this description next to its
9097 associated code. Unfortunately, the amount of code is so vast right
9098 now that it's hard to see whether the code handling a particular
9099 situation might be duplicated or not. One day, when the code is
9100 cleaned up, this guide might become redundant with the comments
9101 inserted in the code, and we might want to remove it.
9102
9103 2. ``Fixing'' an Entity, the Simple Case:
9104 -----------------------------------------
9105
9106 When evaluating Ada expressions, the tricky issue is that they may
9107 reference entities whose type contents and size are not statically
9108 known. Consider for instance a variant record:
9109
9110 type Rec (Empty : Boolean := True) is record
9111 case Empty is
9112 when True => null;
9113 when False => Value : Integer;
9114 end case;
9115 end record;
9116 Yes : Rec := (Empty => False, Value => 1);
9117 No : Rec := (empty => True);
9118
9119 The size and contents of that record depends on the value of the
9120 descriminant (Rec.Empty). At this point, neither the debugging
9121 information nor the associated type structure in GDB are able to
9122 express such dynamic types. So what the debugger does is to create
9123 "fixed" versions of the type that applies to the specific object.
9124 We also informally refer to this opperation as "fixing" an object,
9125 which means creating its associated fixed type.
9126
9127 Example: when printing the value of variable "Yes" above, its fixed
9128 type would look like this:
9129
9130 type Rec is record
9131 Empty : Boolean;
9132 Value : Integer;
9133 end record;
9134
9135 On the other hand, if we printed the value of "No", its fixed type
9136 would become:
9137
9138 type Rec is record
9139 Empty : Boolean;
9140 end record;
9141
9142 Things become a little more complicated when trying to fix an entity
9143 with a dynamic type that directly contains another dynamic type,
9144 such as an array of variant records, for instance. There are
9145 two possible cases: Arrays, and records.
9146
9147 3. ``Fixing'' Arrays:
9148 ---------------------
9149
9150 The type structure in GDB describes an array in terms of its bounds,
9151 and the type of its elements. By design, all elements in the array
9152 have the same type and we cannot represent an array of variant elements
9153 using the current type structure in GDB. When fixing an array,
9154 we cannot fix the array element, as we would potentially need one
9155 fixed type per element of the array. As a result, the best we can do
9156 when fixing an array is to produce an array whose bounds and size
9157 are correct (allowing us to read it from memory), but without having
9158 touched its element type. Fixing each element will be done later,
9159 when (if) necessary.
9160
9161 Arrays are a little simpler to handle than records, because the same
9162 amount of memory is allocated for each element of the array, even if
9163 the amount of space actually used by each element differs from element
9164 to element. Consider for instance the following array of type Rec:
9165
9166 type Rec_Array is array (1 .. 2) of Rec;
9167
9168 The actual amount of memory occupied by each element might be different
9169 from element to element, depending on the value of their discriminant.
9170 But the amount of space reserved for each element in the array remains
9171 fixed regardless. So we simply need to compute that size using
9172 the debugging information available, from which we can then determine
9173 the array size (we multiply the number of elements of the array by
9174 the size of each element).
9175
9176 The simplest case is when we have an array of a constrained element
9177 type. For instance, consider the following type declarations:
9178
9179 type Bounded_String (Max_Size : Integer) is
9180 Length : Integer;
9181 Buffer : String (1 .. Max_Size);
9182 end record;
9183 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9184
9185 In this case, the compiler describes the array as an array of
9186 variable-size elements (identified by its XVS suffix) for which
9187 the size can be read in the parallel XVZ variable.
9188
9189 In the case of an array of an unconstrained element type, the compiler
9190 wraps the array element inside a private PAD type. This type should not
9191 be shown to the user, and must be "unwrap"'ed before printing. Note
9192 that we also use the adjective "aligner" in our code to designate
9193 these wrapper types.
9194
9195 In some cases, the size allocated for each element is statically
9196 known. In that case, the PAD type already has the correct size,
9197 and the array element should remain unfixed.
9198
9199 But there are cases when this size is not statically known.
9200 For instance, assuming that "Five" is an integer variable:
9201
9202 type Dynamic is array (1 .. Five) of Integer;
9203 type Wrapper (Has_Length : Boolean := False) is record
9204 Data : Dynamic;
9205 case Has_Length is
9206 when True => Length : Integer;
9207 when False => null;
9208 end case;
9209 end record;
9210 type Wrapper_Array is array (1 .. 2) of Wrapper;
9211
9212 Hello : Wrapper_Array := (others => (Has_Length => True,
9213 Data => (others => 17),
9214 Length => 1));
9215
9216
9217 The debugging info would describe variable Hello as being an
9218 array of a PAD type. The size of that PAD type is not statically
9219 known, but can be determined using a parallel XVZ variable.
9220 In that case, a copy of the PAD type with the correct size should
9221 be used for the fixed array.
9222
9223 3. ``Fixing'' record type objects:
9224 ----------------------------------
9225
9226 Things are slightly different from arrays in the case of dynamic
9227 record types. In this case, in order to compute the associated
9228 fixed type, we need to determine the size and offset of each of
9229 its components. This, in turn, requires us to compute the fixed
9230 type of each of these components.
9231
9232 Consider for instance the example:
9233
9234 type Bounded_String (Max_Size : Natural) is record
9235 Str : String (1 .. Max_Size);
9236 Length : Natural;
9237 end record;
9238 My_String : Bounded_String (Max_Size => 10);
9239
9240 In that case, the position of field "Length" depends on the size
9241 of field Str, which itself depends on the value of the Max_Size
9242 discriminant. In order to fix the type of variable My_String,
9243 we need to fix the type of field Str. Therefore, fixing a variant
9244 record requires us to fix each of its components.
9245
9246 However, if a component does not have a dynamic size, the component
9247 should not be fixed. In particular, fields that use a PAD type
9248 should not fixed. Here is an example where this might happen
9249 (assuming type Rec above):
9250
9251 type Container (Big : Boolean) is record
9252 First : Rec;
9253 After : Integer;
9254 case Big is
9255 when True => Another : Integer;
9256 when False => null;
9257 end case;
9258 end record;
9259 My_Container : Container := (Big => False,
9260 First => (Empty => True),
9261 After => 42);
9262
9263 In that example, the compiler creates a PAD type for component First,
9264 whose size is constant, and then positions the component After just
9265 right after it. The offset of component After is therefore constant
9266 in this case.
9267
9268 The debugger computes the position of each field based on an algorithm
9269 that uses, among other things, the actual position and size of the field
9270 preceding it. Let's now imagine that the user is trying to print
9271 the value of My_Container. If the type fixing was recursive, we would
9272 end up computing the offset of field After based on the size of the
9273 fixed version of field First. And since in our example First has
9274 only one actual field, the size of the fixed type is actually smaller
9275 than the amount of space allocated to that field, and thus we would
9276 compute the wrong offset of field After.
9277
9278 To make things more complicated, we need to watch out for dynamic
9279 components of variant records (identified by the ___XVL suffix in
9280 the component name). Even if the target type is a PAD type, the size
9281 of that type might not be statically known. So the PAD type needs
9282 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9283 we might end up with the wrong size for our component. This can be
9284 observed with the following type declarations:
9285
9286 type Octal is new Integer range 0 .. 7;
9287 type Octal_Array is array (Positive range <>) of Octal;
9288 pragma Pack (Octal_Array);
9289
9290 type Octal_Buffer (Size : Positive) is record
9291 Buffer : Octal_Array (1 .. Size);
9292 Length : Integer;
9293 end record;
9294
9295 In that case, Buffer is a PAD type whose size is unset and needs
9296 to be computed by fixing the unwrapped type.
9297
9298 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9299 ----------------------------------------------------------
9300
9301 Lastly, when should the sub-elements of an entity that remained unfixed
9302 thus far, be actually fixed?
9303
9304 The answer is: Only when referencing that element. For instance
9305 when selecting one component of a record, this specific component
9306 should be fixed at that point in time. Or when printing the value
9307 of a record, each component should be fixed before its value gets
9308 printed. Similarly for arrays, the element of the array should be
9309 fixed when printing each element of the array, or when extracting
9310 one element out of that array. On the other hand, fixing should
9311 not be performed on the elements when taking a slice of an array!
9312
9313 Note that one of the side-effects of miscomputing the offset and
9314 size of each field is that we end up also miscomputing the size
9315 of the containing type. This can have adverse results when computing
9316 the value of an entity. GDB fetches the value of an entity based
9317 on the size of its type, and thus a wrong size causes GDB to fetch
9318 the wrong amount of memory. In the case where the computed size is
9319 too small, GDB fetches too little data to print the value of our
9320 entiry. Results in this case as unpredicatble, as we usually read
9321 past the buffer containing the data =:-o. */
9322
9323 /* Implement the evaluate_exp routine in the exp_descriptor structure
9324 for the Ada language. */
9325
9326 static struct value *
9327 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9328 int *pos, enum noside noside)
9329 {
9330 enum exp_opcode op;
9331 int tem;
9332 int pc;
9333 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9334 struct type *type;
9335 int nargs, oplen;
9336 struct value **argvec;
9337
9338 pc = *pos;
9339 *pos += 1;
9340 op = exp->elts[pc].opcode;
9341
9342 switch (op)
9343 {
9344 default:
9345 *pos -= 1;
9346 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9347 arg1 = unwrap_value (arg1);
9348
9349 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9350 then we need to perform the conversion manually, because
9351 evaluate_subexp_standard doesn't do it. This conversion is
9352 necessary in Ada because the different kinds of float/fixed
9353 types in Ada have different representations.
9354
9355 Similarly, we need to perform the conversion from OP_LONG
9356 ourselves. */
9357 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9358 arg1 = ada_value_cast (expect_type, arg1, noside);
9359
9360 return arg1;
9361
9362 case OP_STRING:
9363 {
9364 struct value *result;
9365
9366 *pos -= 1;
9367 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9368 /* The result type will have code OP_STRING, bashed there from
9369 OP_ARRAY. Bash it back. */
9370 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9371 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9372 return result;
9373 }
9374
9375 case UNOP_CAST:
9376 (*pos) += 2;
9377 type = exp->elts[pc + 1].type;
9378 arg1 = evaluate_subexp (type, exp, pos, noside);
9379 if (noside == EVAL_SKIP)
9380 goto nosideret;
9381 arg1 = ada_value_cast (type, arg1, noside);
9382 return arg1;
9383
9384 case UNOP_QUAL:
9385 (*pos) += 2;
9386 type = exp->elts[pc + 1].type;
9387 return ada_evaluate_subexp (type, exp, pos, noside);
9388
9389 case BINOP_ASSIGN:
9390 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9391 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9392 {
9393 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9394 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9395 return arg1;
9396 return ada_value_assign (arg1, arg1);
9397 }
9398 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9399 except if the lhs of our assignment is a convenience variable.
9400 In the case of assigning to a convenience variable, the lhs
9401 should be exactly the result of the evaluation of the rhs. */
9402 type = value_type (arg1);
9403 if (VALUE_LVAL (arg1) == lval_internalvar)
9404 type = NULL;
9405 arg2 = evaluate_subexp (type, exp, pos, noside);
9406 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9407 return arg1;
9408 if (ada_is_fixed_point_type (value_type (arg1)))
9409 arg2 = cast_to_fixed (value_type (arg1), arg2);
9410 else if (ada_is_fixed_point_type (value_type (arg2)))
9411 error
9412 (_("Fixed-point values must be assigned to fixed-point variables"));
9413 else
9414 arg2 = coerce_for_assign (value_type (arg1), arg2);
9415 return ada_value_assign (arg1, arg2);
9416
9417 case BINOP_ADD:
9418 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9419 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9420 if (noside == EVAL_SKIP)
9421 goto nosideret;
9422 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9423 return (value_from_longest
9424 (value_type (arg1),
9425 value_as_long (arg1) + value_as_long (arg2)));
9426 if ((ada_is_fixed_point_type (value_type (arg1))
9427 || ada_is_fixed_point_type (value_type (arg2)))
9428 && value_type (arg1) != value_type (arg2))
9429 error (_("Operands of fixed-point addition must have the same type"));
9430 /* Do the addition, and cast the result to the type of the first
9431 argument. We cannot cast the result to a reference type, so if
9432 ARG1 is a reference type, find its underlying type. */
9433 type = value_type (arg1);
9434 while (TYPE_CODE (type) == TYPE_CODE_REF)
9435 type = TYPE_TARGET_TYPE (type);
9436 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9437 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9438
9439 case BINOP_SUB:
9440 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9441 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9442 if (noside == EVAL_SKIP)
9443 goto nosideret;
9444 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9445 return (value_from_longest
9446 (value_type (arg1),
9447 value_as_long (arg1) - value_as_long (arg2)));
9448 if ((ada_is_fixed_point_type (value_type (arg1))
9449 || ada_is_fixed_point_type (value_type (arg2)))
9450 && value_type (arg1) != value_type (arg2))
9451 error (_("Operands of fixed-point subtraction "
9452 "must have the same type"));
9453 /* Do the substraction, and cast the result to the type of the first
9454 argument. We cannot cast the result to a reference type, so if
9455 ARG1 is a reference type, find its underlying type. */
9456 type = value_type (arg1);
9457 while (TYPE_CODE (type) == TYPE_CODE_REF)
9458 type = TYPE_TARGET_TYPE (type);
9459 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9460 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9461
9462 case BINOP_MUL:
9463 case BINOP_DIV:
9464 case BINOP_REM:
9465 case BINOP_MOD:
9466 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9467 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9468 if (noside == EVAL_SKIP)
9469 goto nosideret;
9470 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9471 {
9472 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9473 return value_zero (value_type (arg1), not_lval);
9474 }
9475 else
9476 {
9477 type = builtin_type (exp->gdbarch)->builtin_double;
9478 if (ada_is_fixed_point_type (value_type (arg1)))
9479 arg1 = cast_from_fixed (type, arg1);
9480 if (ada_is_fixed_point_type (value_type (arg2)))
9481 arg2 = cast_from_fixed (type, arg2);
9482 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9483 return ada_value_binop (arg1, arg2, op);
9484 }
9485
9486 case BINOP_EQUAL:
9487 case BINOP_NOTEQUAL:
9488 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9489 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9490 if (noside == EVAL_SKIP)
9491 goto nosideret;
9492 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9493 tem = 0;
9494 else
9495 {
9496 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9497 tem = ada_value_equal (arg1, arg2);
9498 }
9499 if (op == BINOP_NOTEQUAL)
9500 tem = !tem;
9501 type = language_bool_type (exp->language_defn, exp->gdbarch);
9502 return value_from_longest (type, (LONGEST) tem);
9503
9504 case UNOP_NEG:
9505 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9506 if (noside == EVAL_SKIP)
9507 goto nosideret;
9508 else if (ada_is_fixed_point_type (value_type (arg1)))
9509 return value_cast (value_type (arg1), value_neg (arg1));
9510 else
9511 {
9512 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9513 return value_neg (arg1);
9514 }
9515
9516 case BINOP_LOGICAL_AND:
9517 case BINOP_LOGICAL_OR:
9518 case UNOP_LOGICAL_NOT:
9519 {
9520 struct value *val;
9521
9522 *pos -= 1;
9523 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9524 type = language_bool_type (exp->language_defn, exp->gdbarch);
9525 return value_cast (type, val);
9526 }
9527
9528 case BINOP_BITWISE_AND:
9529 case BINOP_BITWISE_IOR:
9530 case BINOP_BITWISE_XOR:
9531 {
9532 struct value *val;
9533
9534 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9535 *pos = pc;
9536 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9537
9538 return value_cast (value_type (arg1), val);
9539 }
9540
9541 case OP_VAR_VALUE:
9542 *pos -= 1;
9543
9544 if (noside == EVAL_SKIP)
9545 {
9546 *pos += 4;
9547 goto nosideret;
9548 }
9549 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9550 /* Only encountered when an unresolved symbol occurs in a
9551 context other than a function call, in which case, it is
9552 invalid. */
9553 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9554 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9555 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9556 {
9557 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9558 /* Check to see if this is a tagged type. We also need to handle
9559 the case where the type is a reference to a tagged type, but
9560 we have to be careful to exclude pointers to tagged types.
9561 The latter should be shown as usual (as a pointer), whereas
9562 a reference should mostly be transparent to the user. */
9563 if (ada_is_tagged_type (type, 0)
9564 || (TYPE_CODE(type) == TYPE_CODE_REF
9565 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9566 {
9567 /* Tagged types are a little special in the fact that the real
9568 type is dynamic and can only be determined by inspecting the
9569 object's tag. This means that we need to get the object's
9570 value first (EVAL_NORMAL) and then extract the actual object
9571 type from its tag.
9572
9573 Note that we cannot skip the final step where we extract
9574 the object type from its tag, because the EVAL_NORMAL phase
9575 results in dynamic components being resolved into fixed ones.
9576 This can cause problems when trying to print the type
9577 description of tagged types whose parent has a dynamic size:
9578 We use the type name of the "_parent" component in order
9579 to print the name of the ancestor type in the type description.
9580 If that component had a dynamic size, the resolution into
9581 a fixed type would result in the loss of that type name,
9582 thus preventing us from printing the name of the ancestor
9583 type in the type description. */
9584 struct type *actual_type;
9585
9586 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9587 actual_type = type_from_tag (ada_value_tag (arg1));
9588 if (actual_type == NULL)
9589 /* If, for some reason, we were unable to determine
9590 the actual type from the tag, then use the static
9591 approximation that we just computed as a fallback.
9592 This can happen if the debugging information is
9593 incomplete, for instance. */
9594 actual_type = type;
9595
9596 return value_zero (actual_type, not_lval);
9597 }
9598
9599 *pos += 4;
9600 return value_zero
9601 (to_static_fixed_type
9602 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9603 not_lval);
9604 }
9605 else
9606 {
9607 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9608 return ada_to_fixed_value (arg1);
9609 }
9610
9611 case OP_FUNCALL:
9612 (*pos) += 2;
9613
9614 /* Allocate arg vector, including space for the function to be
9615 called in argvec[0] and a terminating NULL. */
9616 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9617 argvec =
9618 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9619
9620 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9621 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9622 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9623 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9624 else
9625 {
9626 for (tem = 0; tem <= nargs; tem += 1)
9627 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9628 argvec[tem] = 0;
9629
9630 if (noside == EVAL_SKIP)
9631 goto nosideret;
9632 }
9633
9634 if (ada_is_constrained_packed_array_type
9635 (desc_base_type (value_type (argvec[0]))))
9636 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9637 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9638 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9639 /* This is a packed array that has already been fixed, and
9640 therefore already coerced to a simple array. Nothing further
9641 to do. */
9642 ;
9643 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9644 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9645 && VALUE_LVAL (argvec[0]) == lval_memory))
9646 argvec[0] = value_addr (argvec[0]);
9647
9648 type = ada_check_typedef (value_type (argvec[0]));
9649
9650 /* Ada allows us to implicitly dereference arrays when subscripting
9651 them. So, if this is an array typedef (encoding use for array
9652 access types encoded as fat pointers), strip it now. */
9653 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9654 type = ada_typedef_target_type (type);
9655
9656 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9657 {
9658 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9659 {
9660 case TYPE_CODE_FUNC:
9661 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9662 break;
9663 case TYPE_CODE_ARRAY:
9664 break;
9665 case TYPE_CODE_STRUCT:
9666 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9667 argvec[0] = ada_value_ind (argvec[0]);
9668 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9669 break;
9670 default:
9671 error (_("cannot subscript or call something of type `%s'"),
9672 ada_type_name (value_type (argvec[0])));
9673 break;
9674 }
9675 }
9676
9677 switch (TYPE_CODE (type))
9678 {
9679 case TYPE_CODE_FUNC:
9680 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9681 return allocate_value (TYPE_TARGET_TYPE (type));
9682 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9683 case TYPE_CODE_STRUCT:
9684 {
9685 int arity;
9686
9687 arity = ada_array_arity (type);
9688 type = ada_array_element_type (type, nargs);
9689 if (type == NULL)
9690 error (_("cannot subscript or call a record"));
9691 if (arity != nargs)
9692 error (_("wrong number of subscripts; expecting %d"), arity);
9693 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9694 return value_zero (ada_aligned_type (type), lval_memory);
9695 return
9696 unwrap_value (ada_value_subscript
9697 (argvec[0], nargs, argvec + 1));
9698 }
9699 case TYPE_CODE_ARRAY:
9700 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9701 {
9702 type = ada_array_element_type (type, nargs);
9703 if (type == NULL)
9704 error (_("element type of array unknown"));
9705 else
9706 return value_zero (ada_aligned_type (type), lval_memory);
9707 }
9708 return
9709 unwrap_value (ada_value_subscript
9710 (ada_coerce_to_simple_array (argvec[0]),
9711 nargs, argvec + 1));
9712 case TYPE_CODE_PTR: /* Pointer to array */
9713 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9714 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9715 {
9716 type = ada_array_element_type (type, nargs);
9717 if (type == NULL)
9718 error (_("element type of array unknown"));
9719 else
9720 return value_zero (ada_aligned_type (type), lval_memory);
9721 }
9722 return
9723 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9724 nargs, argvec + 1));
9725
9726 default:
9727 error (_("Attempt to index or call something other than an "
9728 "array or function"));
9729 }
9730
9731 case TERNOP_SLICE:
9732 {
9733 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9734 struct value *low_bound_val =
9735 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9736 struct value *high_bound_val =
9737 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9738 LONGEST low_bound;
9739 LONGEST high_bound;
9740
9741 low_bound_val = coerce_ref (low_bound_val);
9742 high_bound_val = coerce_ref (high_bound_val);
9743 low_bound = pos_atr (low_bound_val);
9744 high_bound = pos_atr (high_bound_val);
9745
9746 if (noside == EVAL_SKIP)
9747 goto nosideret;
9748
9749 /* If this is a reference to an aligner type, then remove all
9750 the aligners. */
9751 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9752 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9753 TYPE_TARGET_TYPE (value_type (array)) =
9754 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9755
9756 if (ada_is_constrained_packed_array_type (value_type (array)))
9757 error (_("cannot slice a packed array"));
9758
9759 /* If this is a reference to an array or an array lvalue,
9760 convert to a pointer. */
9761 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9762 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9763 && VALUE_LVAL (array) == lval_memory))
9764 array = value_addr (array);
9765
9766 if (noside == EVAL_AVOID_SIDE_EFFECTS
9767 && ada_is_array_descriptor_type (ada_check_typedef
9768 (value_type (array))))
9769 return empty_array (ada_type_of_array (array, 0), low_bound);
9770
9771 array = ada_coerce_to_simple_array_ptr (array);
9772
9773 /* If we have more than one level of pointer indirection,
9774 dereference the value until we get only one level. */
9775 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9776 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9777 == TYPE_CODE_PTR))
9778 array = value_ind (array);
9779
9780 /* Make sure we really do have an array type before going further,
9781 to avoid a SEGV when trying to get the index type or the target
9782 type later down the road if the debug info generated by
9783 the compiler is incorrect or incomplete. */
9784 if (!ada_is_simple_array_type (value_type (array)))
9785 error (_("cannot take slice of non-array"));
9786
9787 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9788 == TYPE_CODE_PTR)
9789 {
9790 struct type *type0 = ada_check_typedef (value_type (array));
9791
9792 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9793 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9794 else
9795 {
9796 struct type *arr_type0 =
9797 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9798
9799 return ada_value_slice_from_ptr (array, arr_type0,
9800 longest_to_int (low_bound),
9801 longest_to_int (high_bound));
9802 }
9803 }
9804 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9805 return array;
9806 else if (high_bound < low_bound)
9807 return empty_array (value_type (array), low_bound);
9808 else
9809 return ada_value_slice (array, longest_to_int (low_bound),
9810 longest_to_int (high_bound));
9811 }
9812
9813 case UNOP_IN_RANGE:
9814 (*pos) += 2;
9815 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9816 type = check_typedef (exp->elts[pc + 1].type);
9817
9818 if (noside == EVAL_SKIP)
9819 goto nosideret;
9820
9821 switch (TYPE_CODE (type))
9822 {
9823 default:
9824 lim_warning (_("Membership test incompletely implemented; "
9825 "always returns true"));
9826 type = language_bool_type (exp->language_defn, exp->gdbarch);
9827 return value_from_longest (type, (LONGEST) 1);
9828
9829 case TYPE_CODE_RANGE:
9830 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9831 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9832 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9833 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9834 type = language_bool_type (exp->language_defn, exp->gdbarch);
9835 return
9836 value_from_longest (type,
9837 (value_less (arg1, arg3)
9838 || value_equal (arg1, arg3))
9839 && (value_less (arg2, arg1)
9840 || value_equal (arg2, arg1)));
9841 }
9842
9843 case BINOP_IN_BOUNDS:
9844 (*pos) += 2;
9845 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9846 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9847
9848 if (noside == EVAL_SKIP)
9849 goto nosideret;
9850
9851 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9852 {
9853 type = language_bool_type (exp->language_defn, exp->gdbarch);
9854 return value_zero (type, not_lval);
9855 }
9856
9857 tem = longest_to_int (exp->elts[pc + 1].longconst);
9858
9859 type = ada_index_type (value_type (arg2), tem, "range");
9860 if (!type)
9861 type = value_type (arg1);
9862
9863 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9864 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9865
9866 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9867 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9868 type = language_bool_type (exp->language_defn, exp->gdbarch);
9869 return
9870 value_from_longest (type,
9871 (value_less (arg1, arg3)
9872 || value_equal (arg1, arg3))
9873 && (value_less (arg2, arg1)
9874 || value_equal (arg2, arg1)));
9875
9876 case TERNOP_IN_RANGE:
9877 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9878 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9879 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9880
9881 if (noside == EVAL_SKIP)
9882 goto nosideret;
9883
9884 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9885 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9886 type = language_bool_type (exp->language_defn, exp->gdbarch);
9887 return
9888 value_from_longest (type,
9889 (value_less (arg1, arg3)
9890 || value_equal (arg1, arg3))
9891 && (value_less (arg2, arg1)
9892 || value_equal (arg2, arg1)));
9893
9894 case OP_ATR_FIRST:
9895 case OP_ATR_LAST:
9896 case OP_ATR_LENGTH:
9897 {
9898 struct type *type_arg;
9899
9900 if (exp->elts[*pos].opcode == OP_TYPE)
9901 {
9902 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9903 arg1 = NULL;
9904 type_arg = check_typedef (exp->elts[pc + 2].type);
9905 }
9906 else
9907 {
9908 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9909 type_arg = NULL;
9910 }
9911
9912 if (exp->elts[*pos].opcode != OP_LONG)
9913 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9914 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9915 *pos += 4;
9916
9917 if (noside == EVAL_SKIP)
9918 goto nosideret;
9919
9920 if (type_arg == NULL)
9921 {
9922 arg1 = ada_coerce_ref (arg1);
9923
9924 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9925 arg1 = ada_coerce_to_simple_array (arg1);
9926
9927 type = ada_index_type (value_type (arg1), tem,
9928 ada_attribute_name (op));
9929 if (type == NULL)
9930 type = builtin_type (exp->gdbarch)->builtin_int;
9931
9932 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9933 return allocate_value (type);
9934
9935 switch (op)
9936 {
9937 default: /* Should never happen. */
9938 error (_("unexpected attribute encountered"));
9939 case OP_ATR_FIRST:
9940 return value_from_longest
9941 (type, ada_array_bound (arg1, tem, 0));
9942 case OP_ATR_LAST:
9943 return value_from_longest
9944 (type, ada_array_bound (arg1, tem, 1));
9945 case OP_ATR_LENGTH:
9946 return value_from_longest
9947 (type, ada_array_length (arg1, tem));
9948 }
9949 }
9950 else if (discrete_type_p (type_arg))
9951 {
9952 struct type *range_type;
9953 const char *name = ada_type_name (type_arg);
9954
9955 range_type = NULL;
9956 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9957 range_type = to_fixed_range_type (type_arg, NULL);
9958 if (range_type == NULL)
9959 range_type = type_arg;
9960 switch (op)
9961 {
9962 default:
9963 error (_("unexpected attribute encountered"));
9964 case OP_ATR_FIRST:
9965 return value_from_longest
9966 (range_type, ada_discrete_type_low_bound (range_type));
9967 case OP_ATR_LAST:
9968 return value_from_longest
9969 (range_type, ada_discrete_type_high_bound (range_type));
9970 case OP_ATR_LENGTH:
9971 error (_("the 'length attribute applies only to array types"));
9972 }
9973 }
9974 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9975 error (_("unimplemented type attribute"));
9976 else
9977 {
9978 LONGEST low, high;
9979
9980 if (ada_is_constrained_packed_array_type (type_arg))
9981 type_arg = decode_constrained_packed_array_type (type_arg);
9982
9983 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9984 if (type == NULL)
9985 type = builtin_type (exp->gdbarch)->builtin_int;
9986
9987 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9988 return allocate_value (type);
9989
9990 switch (op)
9991 {
9992 default:
9993 error (_("unexpected attribute encountered"));
9994 case OP_ATR_FIRST:
9995 low = ada_array_bound_from_type (type_arg, tem, 0);
9996 return value_from_longest (type, low);
9997 case OP_ATR_LAST:
9998 high = ada_array_bound_from_type (type_arg, tem, 1);
9999 return value_from_longest (type, high);
10000 case OP_ATR_LENGTH:
10001 low = ada_array_bound_from_type (type_arg, tem, 0);
10002 high = ada_array_bound_from_type (type_arg, tem, 1);
10003 return value_from_longest (type, high - low + 1);
10004 }
10005 }
10006 }
10007
10008 case OP_ATR_TAG:
10009 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10010 if (noside == EVAL_SKIP)
10011 goto nosideret;
10012
10013 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10014 return value_zero (ada_tag_type (arg1), not_lval);
10015
10016 return ada_value_tag (arg1);
10017
10018 case OP_ATR_MIN:
10019 case OP_ATR_MAX:
10020 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10021 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10022 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10023 if (noside == EVAL_SKIP)
10024 goto nosideret;
10025 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10026 return value_zero (value_type (arg1), not_lval);
10027 else
10028 {
10029 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10030 return value_binop (arg1, arg2,
10031 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10032 }
10033
10034 case OP_ATR_MODULUS:
10035 {
10036 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10037
10038 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10039 if (noside == EVAL_SKIP)
10040 goto nosideret;
10041
10042 if (!ada_is_modular_type (type_arg))
10043 error (_("'modulus must be applied to modular type"));
10044
10045 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10046 ada_modulus (type_arg));
10047 }
10048
10049
10050 case OP_ATR_POS:
10051 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10052 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10053 if (noside == EVAL_SKIP)
10054 goto nosideret;
10055 type = builtin_type (exp->gdbarch)->builtin_int;
10056 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10057 return value_zero (type, not_lval);
10058 else
10059 return value_pos_atr (type, arg1);
10060
10061 case OP_ATR_SIZE:
10062 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10063 type = value_type (arg1);
10064
10065 /* If the argument is a reference, then dereference its type, since
10066 the user is really asking for the size of the actual object,
10067 not the size of the pointer. */
10068 if (TYPE_CODE (type) == TYPE_CODE_REF)
10069 type = TYPE_TARGET_TYPE (type);
10070
10071 if (noside == EVAL_SKIP)
10072 goto nosideret;
10073 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10074 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10075 else
10076 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10077 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10078
10079 case OP_ATR_VAL:
10080 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10081 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10082 type = exp->elts[pc + 2].type;
10083 if (noside == EVAL_SKIP)
10084 goto nosideret;
10085 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10086 return value_zero (type, not_lval);
10087 else
10088 return value_val_atr (type, arg1);
10089
10090 case BINOP_EXP:
10091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10092 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10093 if (noside == EVAL_SKIP)
10094 goto nosideret;
10095 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10096 return value_zero (value_type (arg1), not_lval);
10097 else
10098 {
10099 /* For integer exponentiation operations,
10100 only promote the first argument. */
10101 if (is_integral_type (value_type (arg2)))
10102 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10103 else
10104 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10105
10106 return value_binop (arg1, arg2, op);
10107 }
10108
10109 case UNOP_PLUS:
10110 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10111 if (noside == EVAL_SKIP)
10112 goto nosideret;
10113 else
10114 return arg1;
10115
10116 case UNOP_ABS:
10117 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10118 if (noside == EVAL_SKIP)
10119 goto nosideret;
10120 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10121 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10122 return value_neg (arg1);
10123 else
10124 return arg1;
10125
10126 case UNOP_IND:
10127 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10128 if (noside == EVAL_SKIP)
10129 goto nosideret;
10130 type = ada_check_typedef (value_type (arg1));
10131 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10132 {
10133 if (ada_is_array_descriptor_type (type))
10134 /* GDB allows dereferencing GNAT array descriptors. */
10135 {
10136 struct type *arrType = ada_type_of_array (arg1, 0);
10137
10138 if (arrType == NULL)
10139 error (_("Attempt to dereference null array pointer."));
10140 return value_at_lazy (arrType, 0);
10141 }
10142 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10143 || TYPE_CODE (type) == TYPE_CODE_REF
10144 /* In C you can dereference an array to get the 1st elt. */
10145 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10146 {
10147 type = to_static_fixed_type
10148 (ada_aligned_type
10149 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10150 check_size (type);
10151 return value_zero (type, lval_memory);
10152 }
10153 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10154 {
10155 /* GDB allows dereferencing an int. */
10156 if (expect_type == NULL)
10157 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10158 lval_memory);
10159 else
10160 {
10161 expect_type =
10162 to_static_fixed_type (ada_aligned_type (expect_type));
10163 return value_zero (expect_type, lval_memory);
10164 }
10165 }
10166 else
10167 error (_("Attempt to take contents of a non-pointer value."));
10168 }
10169 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10170 type = ada_check_typedef (value_type (arg1));
10171
10172 if (TYPE_CODE (type) == TYPE_CODE_INT)
10173 /* GDB allows dereferencing an int. If we were given
10174 the expect_type, then use that as the target type.
10175 Otherwise, assume that the target type is an int. */
10176 {
10177 if (expect_type != NULL)
10178 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10179 arg1));
10180 else
10181 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10182 (CORE_ADDR) value_as_address (arg1));
10183 }
10184
10185 if (ada_is_array_descriptor_type (type))
10186 /* GDB allows dereferencing GNAT array descriptors. */
10187 return ada_coerce_to_simple_array (arg1);
10188 else
10189 return ada_value_ind (arg1);
10190
10191 case STRUCTOP_STRUCT:
10192 tem = longest_to_int (exp->elts[pc + 1].longconst);
10193 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10194 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10195 if (noside == EVAL_SKIP)
10196 goto nosideret;
10197 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10198 {
10199 struct type *type1 = value_type (arg1);
10200
10201 if (ada_is_tagged_type (type1, 1))
10202 {
10203 type = ada_lookup_struct_elt_type (type1,
10204 &exp->elts[pc + 2].string,
10205 1, 1, NULL);
10206 if (type == NULL)
10207 /* In this case, we assume that the field COULD exist
10208 in some extension of the type. Return an object of
10209 "type" void, which will match any formal
10210 (see ada_type_match). */
10211 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10212 lval_memory);
10213 }
10214 else
10215 type =
10216 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10217 0, NULL);
10218
10219 return value_zero (ada_aligned_type (type), lval_memory);
10220 }
10221 else
10222 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10223 arg1 = unwrap_value (arg1);
10224 return ada_to_fixed_value (arg1);
10225
10226 case OP_TYPE:
10227 /* The value is not supposed to be used. This is here to make it
10228 easier to accommodate expressions that contain types. */
10229 (*pos) += 2;
10230 if (noside == EVAL_SKIP)
10231 goto nosideret;
10232 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10233 return allocate_value (exp->elts[pc + 1].type);
10234 else
10235 error (_("Attempt to use a type name as an expression"));
10236
10237 case OP_AGGREGATE:
10238 case OP_CHOICES:
10239 case OP_OTHERS:
10240 case OP_DISCRETE_RANGE:
10241 case OP_POSITIONAL:
10242 case OP_NAME:
10243 if (noside == EVAL_NORMAL)
10244 switch (op)
10245 {
10246 case OP_NAME:
10247 error (_("Undefined name, ambiguous name, or renaming used in "
10248 "component association: %s."), &exp->elts[pc+2].string);
10249 case OP_AGGREGATE:
10250 error (_("Aggregates only allowed on the right of an assignment"));
10251 default:
10252 internal_error (__FILE__, __LINE__,
10253 _("aggregate apparently mangled"));
10254 }
10255
10256 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10257 *pos += oplen - 1;
10258 for (tem = 0; tem < nargs; tem += 1)
10259 ada_evaluate_subexp (NULL, exp, pos, noside);
10260 goto nosideret;
10261 }
10262
10263 nosideret:
10264 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10265 }
10266 \f
10267
10268 /* Fixed point */
10269
10270 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10271 type name that encodes the 'small and 'delta information.
10272 Otherwise, return NULL. */
10273
10274 static const char *
10275 fixed_type_info (struct type *type)
10276 {
10277 const char *name = ada_type_name (type);
10278 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10279
10280 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10281 {
10282 const char *tail = strstr (name, "___XF_");
10283
10284 if (tail == NULL)
10285 return NULL;
10286 else
10287 return tail + 5;
10288 }
10289 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10290 return fixed_type_info (TYPE_TARGET_TYPE (type));
10291 else
10292 return NULL;
10293 }
10294
10295 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10296
10297 int
10298 ada_is_fixed_point_type (struct type *type)
10299 {
10300 return fixed_type_info (type) != NULL;
10301 }
10302
10303 /* Return non-zero iff TYPE represents a System.Address type. */
10304
10305 int
10306 ada_is_system_address_type (struct type *type)
10307 {
10308 return (TYPE_NAME (type)
10309 && strcmp (TYPE_NAME (type), "system__address") == 0);
10310 }
10311
10312 /* Assuming that TYPE is the representation of an Ada fixed-point
10313 type, return its delta, or -1 if the type is malformed and the
10314 delta cannot be determined. */
10315
10316 DOUBLEST
10317 ada_delta (struct type *type)
10318 {
10319 const char *encoding = fixed_type_info (type);
10320 DOUBLEST num, den;
10321
10322 /* Strictly speaking, num and den are encoded as integer. However,
10323 they may not fit into a long, and they will have to be converted
10324 to DOUBLEST anyway. So scan them as DOUBLEST. */
10325 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10326 &num, &den) < 2)
10327 return -1.0;
10328 else
10329 return num / den;
10330 }
10331
10332 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10333 factor ('SMALL value) associated with the type. */
10334
10335 static DOUBLEST
10336 scaling_factor (struct type *type)
10337 {
10338 const char *encoding = fixed_type_info (type);
10339 DOUBLEST num0, den0, num1, den1;
10340 int n;
10341
10342 /* Strictly speaking, num's and den's are encoded as integer. However,
10343 they may not fit into a long, and they will have to be converted
10344 to DOUBLEST anyway. So scan them as DOUBLEST. */
10345 n = sscanf (encoding,
10346 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10347 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10348 &num0, &den0, &num1, &den1);
10349
10350 if (n < 2)
10351 return 1.0;
10352 else if (n == 4)
10353 return num1 / den1;
10354 else
10355 return num0 / den0;
10356 }
10357
10358
10359 /* Assuming that X is the representation of a value of fixed-point
10360 type TYPE, return its floating-point equivalent. */
10361
10362 DOUBLEST
10363 ada_fixed_to_float (struct type *type, LONGEST x)
10364 {
10365 return (DOUBLEST) x *scaling_factor (type);
10366 }
10367
10368 /* The representation of a fixed-point value of type TYPE
10369 corresponding to the value X. */
10370
10371 LONGEST
10372 ada_float_to_fixed (struct type *type, DOUBLEST x)
10373 {
10374 return (LONGEST) (x / scaling_factor (type) + 0.5);
10375 }
10376
10377 \f
10378
10379 /* Range types */
10380
10381 /* Scan STR beginning at position K for a discriminant name, and
10382 return the value of that discriminant field of DVAL in *PX. If
10383 PNEW_K is not null, put the position of the character beyond the
10384 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10385 not alter *PX and *PNEW_K if unsuccessful. */
10386
10387 static int
10388 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10389 int *pnew_k)
10390 {
10391 static char *bound_buffer = NULL;
10392 static size_t bound_buffer_len = 0;
10393 char *bound;
10394 char *pend;
10395 struct value *bound_val;
10396
10397 if (dval == NULL || str == NULL || str[k] == '\0')
10398 return 0;
10399
10400 pend = strstr (str + k, "__");
10401 if (pend == NULL)
10402 {
10403 bound = str + k;
10404 k += strlen (bound);
10405 }
10406 else
10407 {
10408 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10409 bound = bound_buffer;
10410 strncpy (bound_buffer, str + k, pend - (str + k));
10411 bound[pend - (str + k)] = '\0';
10412 k = pend - str;
10413 }
10414
10415 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10416 if (bound_val == NULL)
10417 return 0;
10418
10419 *px = value_as_long (bound_val);
10420 if (pnew_k != NULL)
10421 *pnew_k = k;
10422 return 1;
10423 }
10424
10425 /* Value of variable named NAME in the current environment. If
10426 no such variable found, then if ERR_MSG is null, returns 0, and
10427 otherwise causes an error with message ERR_MSG. */
10428
10429 static struct value *
10430 get_var_value (char *name, char *err_msg)
10431 {
10432 struct ada_symbol_info *syms;
10433 int nsyms;
10434
10435 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10436 &syms, 1);
10437
10438 if (nsyms != 1)
10439 {
10440 if (err_msg == NULL)
10441 return 0;
10442 else
10443 error (("%s"), err_msg);
10444 }
10445
10446 return value_of_variable (syms[0].sym, syms[0].block);
10447 }
10448
10449 /* Value of integer variable named NAME in the current environment. If
10450 no such variable found, returns 0, and sets *FLAG to 0. If
10451 successful, sets *FLAG to 1. */
10452
10453 LONGEST
10454 get_int_var_value (char *name, int *flag)
10455 {
10456 struct value *var_val = get_var_value (name, 0);
10457
10458 if (var_val == 0)
10459 {
10460 if (flag != NULL)
10461 *flag = 0;
10462 return 0;
10463 }
10464 else
10465 {
10466 if (flag != NULL)
10467 *flag = 1;
10468 return value_as_long (var_val);
10469 }
10470 }
10471
10472
10473 /* Return a range type whose base type is that of the range type named
10474 NAME in the current environment, and whose bounds are calculated
10475 from NAME according to the GNAT range encoding conventions.
10476 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10477 corresponding range type from debug information; fall back to using it
10478 if symbol lookup fails. If a new type must be created, allocate it
10479 like ORIG_TYPE was. The bounds information, in general, is encoded
10480 in NAME, the base type given in the named range type. */
10481
10482 static struct type *
10483 to_fixed_range_type (struct type *raw_type, struct value *dval)
10484 {
10485 const char *name;
10486 struct type *base_type;
10487 char *subtype_info;
10488
10489 gdb_assert (raw_type != NULL);
10490 gdb_assert (TYPE_NAME (raw_type) != NULL);
10491
10492 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10493 base_type = TYPE_TARGET_TYPE (raw_type);
10494 else
10495 base_type = raw_type;
10496
10497 name = TYPE_NAME (raw_type);
10498 subtype_info = strstr (name, "___XD");
10499 if (subtype_info == NULL)
10500 {
10501 LONGEST L = ada_discrete_type_low_bound (raw_type);
10502 LONGEST U = ada_discrete_type_high_bound (raw_type);
10503
10504 if (L < INT_MIN || U > INT_MAX)
10505 return raw_type;
10506 else
10507 return create_range_type (alloc_type_copy (raw_type), raw_type,
10508 ada_discrete_type_low_bound (raw_type),
10509 ada_discrete_type_high_bound (raw_type));
10510 }
10511 else
10512 {
10513 static char *name_buf = NULL;
10514 static size_t name_len = 0;
10515 int prefix_len = subtype_info - name;
10516 LONGEST L, U;
10517 struct type *type;
10518 char *bounds_str;
10519 int n;
10520
10521 GROW_VECT (name_buf, name_len, prefix_len + 5);
10522 strncpy (name_buf, name, prefix_len);
10523 name_buf[prefix_len] = '\0';
10524
10525 subtype_info += 5;
10526 bounds_str = strchr (subtype_info, '_');
10527 n = 1;
10528
10529 if (*subtype_info == 'L')
10530 {
10531 if (!ada_scan_number (bounds_str, n, &L, &n)
10532 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10533 return raw_type;
10534 if (bounds_str[n] == '_')
10535 n += 2;
10536 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10537 n += 1;
10538 subtype_info += 1;
10539 }
10540 else
10541 {
10542 int ok;
10543
10544 strcpy (name_buf + prefix_len, "___L");
10545 L = get_int_var_value (name_buf, &ok);
10546 if (!ok)
10547 {
10548 lim_warning (_("Unknown lower bound, using 1."));
10549 L = 1;
10550 }
10551 }
10552
10553 if (*subtype_info == 'U')
10554 {
10555 if (!ada_scan_number (bounds_str, n, &U, &n)
10556 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10557 return raw_type;
10558 }
10559 else
10560 {
10561 int ok;
10562
10563 strcpy (name_buf + prefix_len, "___U");
10564 U = get_int_var_value (name_buf, &ok);
10565 if (!ok)
10566 {
10567 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10568 U = L;
10569 }
10570 }
10571
10572 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10573 TYPE_NAME (type) = name;
10574 return type;
10575 }
10576 }
10577
10578 /* True iff NAME is the name of a range type. */
10579
10580 int
10581 ada_is_range_type_name (const char *name)
10582 {
10583 return (name != NULL && strstr (name, "___XD"));
10584 }
10585 \f
10586
10587 /* Modular types */
10588
10589 /* True iff TYPE is an Ada modular type. */
10590
10591 int
10592 ada_is_modular_type (struct type *type)
10593 {
10594 struct type *subranged_type = get_base_type (type);
10595
10596 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10597 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10598 && TYPE_UNSIGNED (subranged_type));
10599 }
10600
10601 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10602
10603 ULONGEST
10604 ada_modulus (struct type *type)
10605 {
10606 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10607 }
10608 \f
10609
10610 /* Ada exception catchpoint support:
10611 ---------------------------------
10612
10613 We support 3 kinds of exception catchpoints:
10614 . catchpoints on Ada exceptions
10615 . catchpoints on unhandled Ada exceptions
10616 . catchpoints on failed assertions
10617
10618 Exceptions raised during failed assertions, or unhandled exceptions
10619 could perfectly be caught with the general catchpoint on Ada exceptions.
10620 However, we can easily differentiate these two special cases, and having
10621 the option to distinguish these two cases from the rest can be useful
10622 to zero-in on certain situations.
10623
10624 Exception catchpoints are a specialized form of breakpoint,
10625 since they rely on inserting breakpoints inside known routines
10626 of the GNAT runtime. The implementation therefore uses a standard
10627 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10628 of breakpoint_ops.
10629
10630 Support in the runtime for exception catchpoints have been changed
10631 a few times already, and these changes affect the implementation
10632 of these catchpoints. In order to be able to support several
10633 variants of the runtime, we use a sniffer that will determine
10634 the runtime variant used by the program being debugged. */
10635
10636 /* The different types of catchpoints that we introduced for catching
10637 Ada exceptions. */
10638
10639 enum exception_catchpoint_kind
10640 {
10641 ex_catch_exception,
10642 ex_catch_exception_unhandled,
10643 ex_catch_assert
10644 };
10645
10646 /* Ada's standard exceptions. */
10647
10648 static char *standard_exc[] = {
10649 "constraint_error",
10650 "program_error",
10651 "storage_error",
10652 "tasking_error"
10653 };
10654
10655 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10656
10657 /* A structure that describes how to support exception catchpoints
10658 for a given executable. */
10659
10660 struct exception_support_info
10661 {
10662 /* The name of the symbol to break on in order to insert
10663 a catchpoint on exceptions. */
10664 const char *catch_exception_sym;
10665
10666 /* The name of the symbol to break on in order to insert
10667 a catchpoint on unhandled exceptions. */
10668 const char *catch_exception_unhandled_sym;
10669
10670 /* The name of the symbol to break on in order to insert
10671 a catchpoint on failed assertions. */
10672 const char *catch_assert_sym;
10673
10674 /* Assuming that the inferior just triggered an unhandled exception
10675 catchpoint, this function is responsible for returning the address
10676 in inferior memory where the name of that exception is stored.
10677 Return zero if the address could not be computed. */
10678 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10679 };
10680
10681 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10682 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10683
10684 /* The following exception support info structure describes how to
10685 implement exception catchpoints with the latest version of the
10686 Ada runtime (as of 2007-03-06). */
10687
10688 static const struct exception_support_info default_exception_support_info =
10689 {
10690 "__gnat_debug_raise_exception", /* catch_exception_sym */
10691 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10692 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10693 ada_unhandled_exception_name_addr
10694 };
10695
10696 /* The following exception support info structure describes how to
10697 implement exception catchpoints with a slightly older version
10698 of the Ada runtime. */
10699
10700 static const struct exception_support_info exception_support_info_fallback =
10701 {
10702 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10703 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10704 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10705 ada_unhandled_exception_name_addr_from_raise
10706 };
10707
10708 /* Return nonzero if we can detect the exception support routines
10709 described in EINFO.
10710
10711 This function errors out if an abnormal situation is detected
10712 (for instance, if we find the exception support routines, but
10713 that support is found to be incomplete). */
10714
10715 static int
10716 ada_has_this_exception_support (const struct exception_support_info *einfo)
10717 {
10718 struct symbol *sym;
10719
10720 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10721 that should be compiled with debugging information. As a result, we
10722 expect to find that symbol in the symtabs. */
10723
10724 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10725 if (sym == NULL)
10726 {
10727 /* Perhaps we did not find our symbol because the Ada runtime was
10728 compiled without debugging info, or simply stripped of it.
10729 It happens on some GNU/Linux distributions for instance, where
10730 users have to install a separate debug package in order to get
10731 the runtime's debugging info. In that situation, let the user
10732 know why we cannot insert an Ada exception catchpoint.
10733
10734 Note: Just for the purpose of inserting our Ada exception
10735 catchpoint, we could rely purely on the associated minimal symbol.
10736 But we would be operating in degraded mode anyway, since we are
10737 still lacking the debugging info needed later on to extract
10738 the name of the exception being raised (this name is printed in
10739 the catchpoint message, and is also used when trying to catch
10740 a specific exception). We do not handle this case for now. */
10741 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10742 error (_("Your Ada runtime appears to be missing some debugging "
10743 "information.\nCannot insert Ada exception catchpoint "
10744 "in this configuration."));
10745
10746 return 0;
10747 }
10748
10749 /* Make sure that the symbol we found corresponds to a function. */
10750
10751 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10752 error (_("Symbol \"%s\" is not a function (class = %d)"),
10753 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10754
10755 return 1;
10756 }
10757
10758 /* Inspect the Ada runtime and determine which exception info structure
10759 should be used to provide support for exception catchpoints.
10760
10761 This function will always set the per-inferior exception_info,
10762 or raise an error. */
10763
10764 static void
10765 ada_exception_support_info_sniffer (void)
10766 {
10767 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10768 struct symbol *sym;
10769
10770 /* If the exception info is already known, then no need to recompute it. */
10771 if (data->exception_info != NULL)
10772 return;
10773
10774 /* Check the latest (default) exception support info. */
10775 if (ada_has_this_exception_support (&default_exception_support_info))
10776 {
10777 data->exception_info = &default_exception_support_info;
10778 return;
10779 }
10780
10781 /* Try our fallback exception suport info. */
10782 if (ada_has_this_exception_support (&exception_support_info_fallback))
10783 {
10784 data->exception_info = &exception_support_info_fallback;
10785 return;
10786 }
10787
10788 /* Sometimes, it is normal for us to not be able to find the routine
10789 we are looking for. This happens when the program is linked with
10790 the shared version of the GNAT runtime, and the program has not been
10791 started yet. Inform the user of these two possible causes if
10792 applicable. */
10793
10794 if (ada_update_initial_language (language_unknown) != language_ada)
10795 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10796
10797 /* If the symbol does not exist, then check that the program is
10798 already started, to make sure that shared libraries have been
10799 loaded. If it is not started, this may mean that the symbol is
10800 in a shared library. */
10801
10802 if (ptid_get_pid (inferior_ptid) == 0)
10803 error (_("Unable to insert catchpoint. Try to start the program first."));
10804
10805 /* At this point, we know that we are debugging an Ada program and
10806 that the inferior has been started, but we still are not able to
10807 find the run-time symbols. That can mean that we are in
10808 configurable run time mode, or that a-except as been optimized
10809 out by the linker... In any case, at this point it is not worth
10810 supporting this feature. */
10811
10812 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10813 }
10814
10815 /* True iff FRAME is very likely to be that of a function that is
10816 part of the runtime system. This is all very heuristic, but is
10817 intended to be used as advice as to what frames are uninteresting
10818 to most users. */
10819
10820 static int
10821 is_known_support_routine (struct frame_info *frame)
10822 {
10823 struct symtab_and_line sal;
10824 const char *func_name;
10825 enum language func_lang;
10826 int i;
10827
10828 /* If this code does not have any debugging information (no symtab),
10829 This cannot be any user code. */
10830
10831 find_frame_sal (frame, &sal);
10832 if (sal.symtab == NULL)
10833 return 1;
10834
10835 /* If there is a symtab, but the associated source file cannot be
10836 located, then assume this is not user code: Selecting a frame
10837 for which we cannot display the code would not be very helpful
10838 for the user. This should also take care of case such as VxWorks
10839 where the kernel has some debugging info provided for a few units. */
10840
10841 if (symtab_to_fullname (sal.symtab) == NULL)
10842 return 1;
10843
10844 /* Check the unit filename againt the Ada runtime file naming.
10845 We also check the name of the objfile against the name of some
10846 known system libraries that sometimes come with debugging info
10847 too. */
10848
10849 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10850 {
10851 re_comp (known_runtime_file_name_patterns[i]);
10852 if (re_exec (sal.symtab->filename))
10853 return 1;
10854 if (sal.symtab->objfile != NULL
10855 && re_exec (sal.symtab->objfile->name))
10856 return 1;
10857 }
10858
10859 /* Check whether the function is a GNAT-generated entity. */
10860
10861 find_frame_funname (frame, &func_name, &func_lang, NULL);
10862 if (func_name == NULL)
10863 return 1;
10864
10865 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10866 {
10867 re_comp (known_auxiliary_function_name_patterns[i]);
10868 if (re_exec (func_name))
10869 return 1;
10870 }
10871
10872 return 0;
10873 }
10874
10875 /* Find the first frame that contains debugging information and that is not
10876 part of the Ada run-time, starting from FI and moving upward. */
10877
10878 void
10879 ada_find_printable_frame (struct frame_info *fi)
10880 {
10881 for (; fi != NULL; fi = get_prev_frame (fi))
10882 {
10883 if (!is_known_support_routine (fi))
10884 {
10885 select_frame (fi);
10886 break;
10887 }
10888 }
10889
10890 }
10891
10892 /* Assuming that the inferior just triggered an unhandled exception
10893 catchpoint, return the address in inferior memory where the name
10894 of the exception is stored.
10895
10896 Return zero if the address could not be computed. */
10897
10898 static CORE_ADDR
10899 ada_unhandled_exception_name_addr (void)
10900 {
10901 return parse_and_eval_address ("e.full_name");
10902 }
10903
10904 /* Same as ada_unhandled_exception_name_addr, except that this function
10905 should be used when the inferior uses an older version of the runtime,
10906 where the exception name needs to be extracted from a specific frame
10907 several frames up in the callstack. */
10908
10909 static CORE_ADDR
10910 ada_unhandled_exception_name_addr_from_raise (void)
10911 {
10912 int frame_level;
10913 struct frame_info *fi;
10914 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10915
10916 /* To determine the name of this exception, we need to select
10917 the frame corresponding to RAISE_SYM_NAME. This frame is
10918 at least 3 levels up, so we simply skip the first 3 frames
10919 without checking the name of their associated function. */
10920 fi = get_current_frame ();
10921 for (frame_level = 0; frame_level < 3; frame_level += 1)
10922 if (fi != NULL)
10923 fi = get_prev_frame (fi);
10924
10925 while (fi != NULL)
10926 {
10927 const char *func_name;
10928 enum language func_lang;
10929
10930 find_frame_funname (fi, &func_name, &func_lang, NULL);
10931 if (func_name != NULL
10932 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10933 break; /* We found the frame we were looking for... */
10934 fi = get_prev_frame (fi);
10935 }
10936
10937 if (fi == NULL)
10938 return 0;
10939
10940 select_frame (fi);
10941 return parse_and_eval_address ("id.full_name");
10942 }
10943
10944 /* Assuming the inferior just triggered an Ada exception catchpoint
10945 (of any type), return the address in inferior memory where the name
10946 of the exception is stored, if applicable.
10947
10948 Return zero if the address could not be computed, or if not relevant. */
10949
10950 static CORE_ADDR
10951 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10952 struct breakpoint *b)
10953 {
10954 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10955
10956 switch (ex)
10957 {
10958 case ex_catch_exception:
10959 return (parse_and_eval_address ("e.full_name"));
10960 break;
10961
10962 case ex_catch_exception_unhandled:
10963 return data->exception_info->unhandled_exception_name_addr ();
10964 break;
10965
10966 case ex_catch_assert:
10967 return 0; /* Exception name is not relevant in this case. */
10968 break;
10969
10970 default:
10971 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10972 break;
10973 }
10974
10975 return 0; /* Should never be reached. */
10976 }
10977
10978 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10979 any error that ada_exception_name_addr_1 might cause to be thrown.
10980 When an error is intercepted, a warning with the error message is printed,
10981 and zero is returned. */
10982
10983 static CORE_ADDR
10984 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10985 struct breakpoint *b)
10986 {
10987 volatile struct gdb_exception e;
10988 CORE_ADDR result = 0;
10989
10990 TRY_CATCH (e, RETURN_MASK_ERROR)
10991 {
10992 result = ada_exception_name_addr_1 (ex, b);
10993 }
10994
10995 if (e.reason < 0)
10996 {
10997 warning (_("failed to get exception name: %s"), e.message);
10998 return 0;
10999 }
11000
11001 return result;
11002 }
11003
11004 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11005 char *, char **,
11006 const struct breakpoint_ops **);
11007 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11008
11009 /* Ada catchpoints.
11010
11011 In the case of catchpoints on Ada exceptions, the catchpoint will
11012 stop the target on every exception the program throws. When a user
11013 specifies the name of a specific exception, we translate this
11014 request into a condition expression (in text form), and then parse
11015 it into an expression stored in each of the catchpoint's locations.
11016 We then use this condition to check whether the exception that was
11017 raised is the one the user is interested in. If not, then the
11018 target is resumed again. We store the name of the requested
11019 exception, in order to be able to re-set the condition expression
11020 when symbols change. */
11021
11022 /* An instance of this type is used to represent an Ada catchpoint
11023 breakpoint location. It includes a "struct bp_location" as a kind
11024 of base class; users downcast to "struct bp_location *" when
11025 needed. */
11026
11027 struct ada_catchpoint_location
11028 {
11029 /* The base class. */
11030 struct bp_location base;
11031
11032 /* The condition that checks whether the exception that was raised
11033 is the specific exception the user specified on catchpoint
11034 creation. */
11035 struct expression *excep_cond_expr;
11036 };
11037
11038 /* Implement the DTOR method in the bp_location_ops structure for all
11039 Ada exception catchpoint kinds. */
11040
11041 static void
11042 ada_catchpoint_location_dtor (struct bp_location *bl)
11043 {
11044 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11045
11046 xfree (al->excep_cond_expr);
11047 }
11048
11049 /* The vtable to be used in Ada catchpoint locations. */
11050
11051 static const struct bp_location_ops ada_catchpoint_location_ops =
11052 {
11053 ada_catchpoint_location_dtor
11054 };
11055
11056 /* An instance of this type is used to represent an Ada catchpoint.
11057 It includes a "struct breakpoint" as a kind of base class; users
11058 downcast to "struct breakpoint *" when needed. */
11059
11060 struct ada_catchpoint
11061 {
11062 /* The base class. */
11063 struct breakpoint base;
11064
11065 /* The name of the specific exception the user specified. */
11066 char *excep_string;
11067 };
11068
11069 /* Parse the exception condition string in the context of each of the
11070 catchpoint's locations, and store them for later evaluation. */
11071
11072 static void
11073 create_excep_cond_exprs (struct ada_catchpoint *c)
11074 {
11075 struct cleanup *old_chain;
11076 struct bp_location *bl;
11077 char *cond_string;
11078
11079 /* Nothing to do if there's no specific exception to catch. */
11080 if (c->excep_string == NULL)
11081 return;
11082
11083 /* Same if there are no locations... */
11084 if (c->base.loc == NULL)
11085 return;
11086
11087 /* Compute the condition expression in text form, from the specific
11088 expection we want to catch. */
11089 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11090 old_chain = make_cleanup (xfree, cond_string);
11091
11092 /* Iterate over all the catchpoint's locations, and parse an
11093 expression for each. */
11094 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11095 {
11096 struct ada_catchpoint_location *ada_loc
11097 = (struct ada_catchpoint_location *) bl;
11098 struct expression *exp = NULL;
11099
11100 if (!bl->shlib_disabled)
11101 {
11102 volatile struct gdb_exception e;
11103 char *s;
11104
11105 s = cond_string;
11106 TRY_CATCH (e, RETURN_MASK_ERROR)
11107 {
11108 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11109 }
11110 if (e.reason < 0)
11111 warning (_("failed to reevaluate internal exception condition "
11112 "for catchpoint %d: %s"),
11113 c->base.number, e.message);
11114 }
11115
11116 ada_loc->excep_cond_expr = exp;
11117 }
11118
11119 do_cleanups (old_chain);
11120 }
11121
11122 /* Implement the DTOR method in the breakpoint_ops structure for all
11123 exception catchpoint kinds. */
11124
11125 static void
11126 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11127 {
11128 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11129
11130 xfree (c->excep_string);
11131
11132 bkpt_breakpoint_ops.dtor (b);
11133 }
11134
11135 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11136 structure for all exception catchpoint kinds. */
11137
11138 static struct bp_location *
11139 allocate_location_exception (enum exception_catchpoint_kind ex,
11140 struct breakpoint *self)
11141 {
11142 struct ada_catchpoint_location *loc;
11143
11144 loc = XNEW (struct ada_catchpoint_location);
11145 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11146 loc->excep_cond_expr = NULL;
11147 return &loc->base;
11148 }
11149
11150 /* Implement the RE_SET method in the breakpoint_ops structure for all
11151 exception catchpoint kinds. */
11152
11153 static void
11154 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11155 {
11156 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11157
11158 /* Call the base class's method. This updates the catchpoint's
11159 locations. */
11160 bkpt_breakpoint_ops.re_set (b);
11161
11162 /* Reparse the exception conditional expressions. One for each
11163 location. */
11164 create_excep_cond_exprs (c);
11165 }
11166
11167 /* Returns true if we should stop for this breakpoint hit. If the
11168 user specified a specific exception, we only want to cause a stop
11169 if the program thrown that exception. */
11170
11171 static int
11172 should_stop_exception (const struct bp_location *bl)
11173 {
11174 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11175 const struct ada_catchpoint_location *ada_loc
11176 = (const struct ada_catchpoint_location *) bl;
11177 volatile struct gdb_exception ex;
11178 int stop;
11179
11180 /* With no specific exception, should always stop. */
11181 if (c->excep_string == NULL)
11182 return 1;
11183
11184 if (ada_loc->excep_cond_expr == NULL)
11185 {
11186 /* We will have a NULL expression if back when we were creating
11187 the expressions, this location's had failed to parse. */
11188 return 1;
11189 }
11190
11191 stop = 1;
11192 TRY_CATCH (ex, RETURN_MASK_ALL)
11193 {
11194 struct value *mark;
11195
11196 mark = value_mark ();
11197 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11198 value_free_to_mark (mark);
11199 }
11200 if (ex.reason < 0)
11201 exception_fprintf (gdb_stderr, ex,
11202 _("Error in testing exception condition:\n"));
11203 return stop;
11204 }
11205
11206 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11207 for all exception catchpoint kinds. */
11208
11209 static void
11210 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11211 {
11212 bs->stop = should_stop_exception (bs->bp_location_at);
11213 }
11214
11215 /* Implement the PRINT_IT method in the breakpoint_ops structure
11216 for all exception catchpoint kinds. */
11217
11218 static enum print_stop_action
11219 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11220 {
11221 struct ui_out *uiout = current_uiout;
11222 struct breakpoint *b = bs->breakpoint_at;
11223
11224 annotate_catchpoint (b->number);
11225
11226 if (ui_out_is_mi_like_p (uiout))
11227 {
11228 ui_out_field_string (uiout, "reason",
11229 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11230 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11231 }
11232
11233 ui_out_text (uiout,
11234 b->disposition == disp_del ? "\nTemporary catchpoint "
11235 : "\nCatchpoint ");
11236 ui_out_field_int (uiout, "bkptno", b->number);
11237 ui_out_text (uiout, ", ");
11238
11239 switch (ex)
11240 {
11241 case ex_catch_exception:
11242 case ex_catch_exception_unhandled:
11243 {
11244 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11245 char exception_name[256];
11246
11247 if (addr != 0)
11248 {
11249 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11250 exception_name [sizeof (exception_name) - 1] = '\0';
11251 }
11252 else
11253 {
11254 /* For some reason, we were unable to read the exception
11255 name. This could happen if the Runtime was compiled
11256 without debugging info, for instance. In that case,
11257 just replace the exception name by the generic string
11258 "exception" - it will read as "an exception" in the
11259 notification we are about to print. */
11260 memcpy (exception_name, "exception", sizeof ("exception"));
11261 }
11262 /* In the case of unhandled exception breakpoints, we print
11263 the exception name as "unhandled EXCEPTION_NAME", to make
11264 it clearer to the user which kind of catchpoint just got
11265 hit. We used ui_out_text to make sure that this extra
11266 info does not pollute the exception name in the MI case. */
11267 if (ex == ex_catch_exception_unhandled)
11268 ui_out_text (uiout, "unhandled ");
11269 ui_out_field_string (uiout, "exception-name", exception_name);
11270 }
11271 break;
11272 case ex_catch_assert:
11273 /* In this case, the name of the exception is not really
11274 important. Just print "failed assertion" to make it clearer
11275 that his program just hit an assertion-failure catchpoint.
11276 We used ui_out_text because this info does not belong in
11277 the MI output. */
11278 ui_out_text (uiout, "failed assertion");
11279 break;
11280 }
11281 ui_out_text (uiout, " at ");
11282 ada_find_printable_frame (get_current_frame ());
11283
11284 return PRINT_SRC_AND_LOC;
11285 }
11286
11287 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11288 for all exception catchpoint kinds. */
11289
11290 static void
11291 print_one_exception (enum exception_catchpoint_kind ex,
11292 struct breakpoint *b, struct bp_location **last_loc)
11293 {
11294 struct ui_out *uiout = current_uiout;
11295 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11296 struct value_print_options opts;
11297
11298 get_user_print_options (&opts);
11299 if (opts.addressprint)
11300 {
11301 annotate_field (4);
11302 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11303 }
11304
11305 annotate_field (5);
11306 *last_loc = b->loc;
11307 switch (ex)
11308 {
11309 case ex_catch_exception:
11310 if (c->excep_string != NULL)
11311 {
11312 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11313
11314 ui_out_field_string (uiout, "what", msg);
11315 xfree (msg);
11316 }
11317 else
11318 ui_out_field_string (uiout, "what", "all Ada exceptions");
11319
11320 break;
11321
11322 case ex_catch_exception_unhandled:
11323 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11324 break;
11325
11326 case ex_catch_assert:
11327 ui_out_field_string (uiout, "what", "failed Ada assertions");
11328 break;
11329
11330 default:
11331 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11332 break;
11333 }
11334 }
11335
11336 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11337 for all exception catchpoint kinds. */
11338
11339 static void
11340 print_mention_exception (enum exception_catchpoint_kind ex,
11341 struct breakpoint *b)
11342 {
11343 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11344 struct ui_out *uiout = current_uiout;
11345
11346 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11347 : _("Catchpoint "));
11348 ui_out_field_int (uiout, "bkptno", b->number);
11349 ui_out_text (uiout, ": ");
11350
11351 switch (ex)
11352 {
11353 case ex_catch_exception:
11354 if (c->excep_string != NULL)
11355 {
11356 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11357 struct cleanup *old_chain = make_cleanup (xfree, info);
11358
11359 ui_out_text (uiout, info);
11360 do_cleanups (old_chain);
11361 }
11362 else
11363 ui_out_text (uiout, _("all Ada exceptions"));
11364 break;
11365
11366 case ex_catch_exception_unhandled:
11367 ui_out_text (uiout, _("unhandled Ada exceptions"));
11368 break;
11369
11370 case ex_catch_assert:
11371 ui_out_text (uiout, _("failed Ada assertions"));
11372 break;
11373
11374 default:
11375 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11376 break;
11377 }
11378 }
11379
11380 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11381 for all exception catchpoint kinds. */
11382
11383 static void
11384 print_recreate_exception (enum exception_catchpoint_kind ex,
11385 struct breakpoint *b, struct ui_file *fp)
11386 {
11387 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11388
11389 switch (ex)
11390 {
11391 case ex_catch_exception:
11392 fprintf_filtered (fp, "catch exception");
11393 if (c->excep_string != NULL)
11394 fprintf_filtered (fp, " %s", c->excep_string);
11395 break;
11396
11397 case ex_catch_exception_unhandled:
11398 fprintf_filtered (fp, "catch exception unhandled");
11399 break;
11400
11401 case ex_catch_assert:
11402 fprintf_filtered (fp, "catch assert");
11403 break;
11404
11405 default:
11406 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11407 }
11408 print_recreate_thread (b, fp);
11409 }
11410
11411 /* Virtual table for "catch exception" breakpoints. */
11412
11413 static void
11414 dtor_catch_exception (struct breakpoint *b)
11415 {
11416 dtor_exception (ex_catch_exception, b);
11417 }
11418
11419 static struct bp_location *
11420 allocate_location_catch_exception (struct breakpoint *self)
11421 {
11422 return allocate_location_exception (ex_catch_exception, self);
11423 }
11424
11425 static void
11426 re_set_catch_exception (struct breakpoint *b)
11427 {
11428 re_set_exception (ex_catch_exception, b);
11429 }
11430
11431 static void
11432 check_status_catch_exception (bpstat bs)
11433 {
11434 check_status_exception (ex_catch_exception, bs);
11435 }
11436
11437 static enum print_stop_action
11438 print_it_catch_exception (bpstat bs)
11439 {
11440 return print_it_exception (ex_catch_exception, bs);
11441 }
11442
11443 static void
11444 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11445 {
11446 print_one_exception (ex_catch_exception, b, last_loc);
11447 }
11448
11449 static void
11450 print_mention_catch_exception (struct breakpoint *b)
11451 {
11452 print_mention_exception (ex_catch_exception, b);
11453 }
11454
11455 static void
11456 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11457 {
11458 print_recreate_exception (ex_catch_exception, b, fp);
11459 }
11460
11461 static struct breakpoint_ops catch_exception_breakpoint_ops;
11462
11463 /* Virtual table for "catch exception unhandled" breakpoints. */
11464
11465 static void
11466 dtor_catch_exception_unhandled (struct breakpoint *b)
11467 {
11468 dtor_exception (ex_catch_exception_unhandled, b);
11469 }
11470
11471 static struct bp_location *
11472 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11473 {
11474 return allocate_location_exception (ex_catch_exception_unhandled, self);
11475 }
11476
11477 static void
11478 re_set_catch_exception_unhandled (struct breakpoint *b)
11479 {
11480 re_set_exception (ex_catch_exception_unhandled, b);
11481 }
11482
11483 static void
11484 check_status_catch_exception_unhandled (bpstat bs)
11485 {
11486 check_status_exception (ex_catch_exception_unhandled, bs);
11487 }
11488
11489 static enum print_stop_action
11490 print_it_catch_exception_unhandled (bpstat bs)
11491 {
11492 return print_it_exception (ex_catch_exception_unhandled, bs);
11493 }
11494
11495 static void
11496 print_one_catch_exception_unhandled (struct breakpoint *b,
11497 struct bp_location **last_loc)
11498 {
11499 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11500 }
11501
11502 static void
11503 print_mention_catch_exception_unhandled (struct breakpoint *b)
11504 {
11505 print_mention_exception (ex_catch_exception_unhandled, b);
11506 }
11507
11508 static void
11509 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11510 struct ui_file *fp)
11511 {
11512 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11513 }
11514
11515 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11516
11517 /* Virtual table for "catch assert" breakpoints. */
11518
11519 static void
11520 dtor_catch_assert (struct breakpoint *b)
11521 {
11522 dtor_exception (ex_catch_assert, b);
11523 }
11524
11525 static struct bp_location *
11526 allocate_location_catch_assert (struct breakpoint *self)
11527 {
11528 return allocate_location_exception (ex_catch_assert, self);
11529 }
11530
11531 static void
11532 re_set_catch_assert (struct breakpoint *b)
11533 {
11534 return re_set_exception (ex_catch_assert, b);
11535 }
11536
11537 static void
11538 check_status_catch_assert (bpstat bs)
11539 {
11540 check_status_exception (ex_catch_assert, bs);
11541 }
11542
11543 static enum print_stop_action
11544 print_it_catch_assert (bpstat bs)
11545 {
11546 return print_it_exception (ex_catch_assert, bs);
11547 }
11548
11549 static void
11550 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11551 {
11552 print_one_exception (ex_catch_assert, b, last_loc);
11553 }
11554
11555 static void
11556 print_mention_catch_assert (struct breakpoint *b)
11557 {
11558 print_mention_exception (ex_catch_assert, b);
11559 }
11560
11561 static void
11562 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11563 {
11564 print_recreate_exception (ex_catch_assert, b, fp);
11565 }
11566
11567 static struct breakpoint_ops catch_assert_breakpoint_ops;
11568
11569 /* Return a newly allocated copy of the first space-separated token
11570 in ARGSP, and then adjust ARGSP to point immediately after that
11571 token.
11572
11573 Return NULL if ARGPS does not contain any more tokens. */
11574
11575 static char *
11576 ada_get_next_arg (char **argsp)
11577 {
11578 char *args = *argsp;
11579 char *end;
11580 char *result;
11581
11582 args = skip_spaces (args);
11583 if (args[0] == '\0')
11584 return NULL; /* No more arguments. */
11585
11586 /* Find the end of the current argument. */
11587
11588 end = skip_to_space (args);
11589
11590 /* Adjust ARGSP to point to the start of the next argument. */
11591
11592 *argsp = end;
11593
11594 /* Make a copy of the current argument and return it. */
11595
11596 result = xmalloc (end - args + 1);
11597 strncpy (result, args, end - args);
11598 result[end - args] = '\0';
11599
11600 return result;
11601 }
11602
11603 /* Split the arguments specified in a "catch exception" command.
11604 Set EX to the appropriate catchpoint type.
11605 Set EXCEP_STRING to the name of the specific exception if
11606 specified by the user.
11607 If a condition is found at the end of the arguments, the condition
11608 expression is stored in COND_STRING (memory must be deallocated
11609 after use). Otherwise COND_STRING is set to NULL. */
11610
11611 static void
11612 catch_ada_exception_command_split (char *args,
11613 enum exception_catchpoint_kind *ex,
11614 char **excep_string,
11615 char **cond_string)
11616 {
11617 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11618 char *exception_name;
11619 char *cond = NULL;
11620
11621 exception_name = ada_get_next_arg (&args);
11622 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11623 {
11624 /* This is not an exception name; this is the start of a condition
11625 expression for a catchpoint on all exceptions. So, "un-get"
11626 this token, and set exception_name to NULL. */
11627 xfree (exception_name);
11628 exception_name = NULL;
11629 args -= 2;
11630 }
11631 make_cleanup (xfree, exception_name);
11632
11633 /* Check to see if we have a condition. */
11634
11635 args = skip_spaces (args);
11636 if (strncmp (args, "if", 2) == 0
11637 && (isspace (args[2]) || args[2] == '\0'))
11638 {
11639 args += 2;
11640 args = skip_spaces (args);
11641
11642 if (args[0] == '\0')
11643 error (_("Condition missing after `if' keyword"));
11644 cond = xstrdup (args);
11645 make_cleanup (xfree, cond);
11646
11647 args += strlen (args);
11648 }
11649
11650 /* Check that we do not have any more arguments. Anything else
11651 is unexpected. */
11652
11653 if (args[0] != '\0')
11654 error (_("Junk at end of expression"));
11655
11656 discard_cleanups (old_chain);
11657
11658 if (exception_name == NULL)
11659 {
11660 /* Catch all exceptions. */
11661 *ex = ex_catch_exception;
11662 *excep_string = NULL;
11663 }
11664 else if (strcmp (exception_name, "unhandled") == 0)
11665 {
11666 /* Catch unhandled exceptions. */
11667 *ex = ex_catch_exception_unhandled;
11668 *excep_string = NULL;
11669 }
11670 else
11671 {
11672 /* Catch a specific exception. */
11673 *ex = ex_catch_exception;
11674 *excep_string = exception_name;
11675 }
11676 *cond_string = cond;
11677 }
11678
11679 /* Return the name of the symbol on which we should break in order to
11680 implement a catchpoint of the EX kind. */
11681
11682 static const char *
11683 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11684 {
11685 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11686
11687 gdb_assert (data->exception_info != NULL);
11688
11689 switch (ex)
11690 {
11691 case ex_catch_exception:
11692 return (data->exception_info->catch_exception_sym);
11693 break;
11694 case ex_catch_exception_unhandled:
11695 return (data->exception_info->catch_exception_unhandled_sym);
11696 break;
11697 case ex_catch_assert:
11698 return (data->exception_info->catch_assert_sym);
11699 break;
11700 default:
11701 internal_error (__FILE__, __LINE__,
11702 _("unexpected catchpoint kind (%d)"), ex);
11703 }
11704 }
11705
11706 /* Return the breakpoint ops "virtual table" used for catchpoints
11707 of the EX kind. */
11708
11709 static const struct breakpoint_ops *
11710 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11711 {
11712 switch (ex)
11713 {
11714 case ex_catch_exception:
11715 return (&catch_exception_breakpoint_ops);
11716 break;
11717 case ex_catch_exception_unhandled:
11718 return (&catch_exception_unhandled_breakpoint_ops);
11719 break;
11720 case ex_catch_assert:
11721 return (&catch_assert_breakpoint_ops);
11722 break;
11723 default:
11724 internal_error (__FILE__, __LINE__,
11725 _("unexpected catchpoint kind (%d)"), ex);
11726 }
11727 }
11728
11729 /* Return the condition that will be used to match the current exception
11730 being raised with the exception that the user wants to catch. This
11731 assumes that this condition is used when the inferior just triggered
11732 an exception catchpoint.
11733
11734 The string returned is a newly allocated string that needs to be
11735 deallocated later. */
11736
11737 static char *
11738 ada_exception_catchpoint_cond_string (const char *excep_string)
11739 {
11740 int i;
11741
11742 /* The standard exceptions are a special case. They are defined in
11743 runtime units that have been compiled without debugging info; if
11744 EXCEP_STRING is the not-fully-qualified name of a standard
11745 exception (e.g. "constraint_error") then, during the evaluation
11746 of the condition expression, the symbol lookup on this name would
11747 *not* return this standard exception. The catchpoint condition
11748 may then be set only on user-defined exceptions which have the
11749 same not-fully-qualified name (e.g. my_package.constraint_error).
11750
11751 To avoid this unexcepted behavior, these standard exceptions are
11752 systematically prefixed by "standard". This means that "catch
11753 exception constraint_error" is rewritten into "catch exception
11754 standard.constraint_error".
11755
11756 If an exception named contraint_error is defined in another package of
11757 the inferior program, then the only way to specify this exception as a
11758 breakpoint condition is to use its fully-qualified named:
11759 e.g. my_package.constraint_error. */
11760
11761 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11762 {
11763 if (strcmp (standard_exc [i], excep_string) == 0)
11764 {
11765 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11766 excep_string);
11767 }
11768 }
11769 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11770 }
11771
11772 /* Return the symtab_and_line that should be used to insert an exception
11773 catchpoint of the TYPE kind.
11774
11775 EXCEP_STRING should contain the name of a specific exception that
11776 the catchpoint should catch, or NULL otherwise.
11777
11778 ADDR_STRING returns the name of the function where the real
11779 breakpoint that implements the catchpoints is set, depending on the
11780 type of catchpoint we need to create. */
11781
11782 static struct symtab_and_line
11783 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11784 char **addr_string, const struct breakpoint_ops **ops)
11785 {
11786 const char *sym_name;
11787 struct symbol *sym;
11788
11789 /* First, find out which exception support info to use. */
11790 ada_exception_support_info_sniffer ();
11791
11792 /* Then lookup the function on which we will break in order to catch
11793 the Ada exceptions requested by the user. */
11794 sym_name = ada_exception_sym_name (ex);
11795 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11796
11797 /* We can assume that SYM is not NULL at this stage. If the symbol
11798 did not exist, ada_exception_support_info_sniffer would have
11799 raised an exception.
11800
11801 Also, ada_exception_support_info_sniffer should have already
11802 verified that SYM is a function symbol. */
11803 gdb_assert (sym != NULL);
11804 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11805
11806 /* Set ADDR_STRING. */
11807 *addr_string = xstrdup (sym_name);
11808
11809 /* Set OPS. */
11810 *ops = ada_exception_breakpoint_ops (ex);
11811
11812 return find_function_start_sal (sym, 1);
11813 }
11814
11815 /* Parse the arguments (ARGS) of the "catch exception" command.
11816
11817 If the user asked the catchpoint to catch only a specific
11818 exception, then save the exception name in ADDR_STRING.
11819
11820 If the user provided a condition, then set COND_STRING to
11821 that condition expression (the memory must be deallocated
11822 after use). Otherwise, set COND_STRING to NULL.
11823
11824 See ada_exception_sal for a description of all the remaining
11825 function arguments of this function. */
11826
11827 static struct symtab_and_line
11828 ada_decode_exception_location (char *args, char **addr_string,
11829 char **excep_string,
11830 char **cond_string,
11831 const struct breakpoint_ops **ops)
11832 {
11833 enum exception_catchpoint_kind ex;
11834
11835 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
11836 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11837 }
11838
11839 /* Create an Ada exception catchpoint. */
11840
11841 static void
11842 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11843 struct symtab_and_line sal,
11844 char *addr_string,
11845 char *excep_string,
11846 char *cond_string,
11847 const struct breakpoint_ops *ops,
11848 int tempflag,
11849 int from_tty)
11850 {
11851 struct ada_catchpoint *c;
11852
11853 c = XNEW (struct ada_catchpoint);
11854 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11855 ops, tempflag, from_tty);
11856 c->excep_string = excep_string;
11857 create_excep_cond_exprs (c);
11858 if (cond_string != NULL)
11859 set_breakpoint_condition (&c->base, cond_string, from_tty);
11860 install_breakpoint (0, &c->base, 1);
11861 }
11862
11863 /* Implement the "catch exception" command. */
11864
11865 static void
11866 catch_ada_exception_command (char *arg, int from_tty,
11867 struct cmd_list_element *command)
11868 {
11869 struct gdbarch *gdbarch = get_current_arch ();
11870 int tempflag;
11871 struct symtab_and_line sal;
11872 char *addr_string = NULL;
11873 char *excep_string = NULL;
11874 char *cond_string = NULL;
11875 const struct breakpoint_ops *ops = NULL;
11876
11877 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11878
11879 if (!arg)
11880 arg = "";
11881 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11882 &cond_string, &ops);
11883 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11884 excep_string, cond_string, ops,
11885 tempflag, from_tty);
11886 }
11887
11888 /* Assuming that ARGS contains the arguments of a "catch assert"
11889 command, parse those arguments and return a symtab_and_line object
11890 for a failed assertion catchpoint.
11891
11892 Set ADDR_STRING to the name of the function where the real
11893 breakpoint that implements the catchpoint is set.
11894
11895 If ARGS contains a condition, set COND_STRING to that condition
11896 (the memory needs to be deallocated after use). Otherwise, set
11897 COND_STRING to NULL. */
11898
11899 static struct symtab_and_line
11900 ada_decode_assert_location (char *args, char **addr_string,
11901 char **cond_string,
11902 const struct breakpoint_ops **ops)
11903 {
11904 args = skip_spaces (args);
11905
11906 /* Check whether a condition was provided. */
11907 if (strncmp (args, "if", 2) == 0
11908 && (isspace (args[2]) || args[2] == '\0'))
11909 {
11910 args += 2;
11911 args = skip_spaces (args);
11912 if (args[0] == '\0')
11913 error (_("condition missing after `if' keyword"));
11914 *cond_string = xstrdup (args);
11915 }
11916
11917 /* Otherwise, there should be no other argument at the end of
11918 the command. */
11919 else if (args[0] != '\0')
11920 error (_("Junk at end of arguments."));
11921
11922 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11923 }
11924
11925 /* Implement the "catch assert" command. */
11926
11927 static void
11928 catch_assert_command (char *arg, int from_tty,
11929 struct cmd_list_element *command)
11930 {
11931 struct gdbarch *gdbarch = get_current_arch ();
11932 int tempflag;
11933 struct symtab_and_line sal;
11934 char *addr_string = NULL;
11935 char *cond_string = NULL;
11936 const struct breakpoint_ops *ops = NULL;
11937
11938 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11939
11940 if (!arg)
11941 arg = "";
11942 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
11943 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11944 NULL, cond_string, ops, tempflag,
11945 from_tty);
11946 }
11947 /* Operators */
11948 /* Information about operators given special treatment in functions
11949 below. */
11950 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11951
11952 #define ADA_OPERATORS \
11953 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11954 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11955 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11956 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11957 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11958 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11959 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11960 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11961 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11962 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11963 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11964 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11965 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11966 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11967 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11968 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11969 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11970 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11971 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11972
11973 static void
11974 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11975 int *argsp)
11976 {
11977 switch (exp->elts[pc - 1].opcode)
11978 {
11979 default:
11980 operator_length_standard (exp, pc, oplenp, argsp);
11981 break;
11982
11983 #define OP_DEFN(op, len, args, binop) \
11984 case op: *oplenp = len; *argsp = args; break;
11985 ADA_OPERATORS;
11986 #undef OP_DEFN
11987
11988 case OP_AGGREGATE:
11989 *oplenp = 3;
11990 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11991 break;
11992
11993 case OP_CHOICES:
11994 *oplenp = 3;
11995 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11996 break;
11997 }
11998 }
11999
12000 /* Implementation of the exp_descriptor method operator_check. */
12001
12002 static int
12003 ada_operator_check (struct expression *exp, int pos,
12004 int (*objfile_func) (struct objfile *objfile, void *data),
12005 void *data)
12006 {
12007 const union exp_element *const elts = exp->elts;
12008 struct type *type = NULL;
12009
12010 switch (elts[pos].opcode)
12011 {
12012 case UNOP_IN_RANGE:
12013 case UNOP_QUAL:
12014 type = elts[pos + 1].type;
12015 break;
12016
12017 default:
12018 return operator_check_standard (exp, pos, objfile_func, data);
12019 }
12020
12021 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12022
12023 if (type && TYPE_OBJFILE (type)
12024 && (*objfile_func) (TYPE_OBJFILE (type), data))
12025 return 1;
12026
12027 return 0;
12028 }
12029
12030 static char *
12031 ada_op_name (enum exp_opcode opcode)
12032 {
12033 switch (opcode)
12034 {
12035 default:
12036 return op_name_standard (opcode);
12037
12038 #define OP_DEFN(op, len, args, binop) case op: return #op;
12039 ADA_OPERATORS;
12040 #undef OP_DEFN
12041
12042 case OP_AGGREGATE:
12043 return "OP_AGGREGATE";
12044 case OP_CHOICES:
12045 return "OP_CHOICES";
12046 case OP_NAME:
12047 return "OP_NAME";
12048 }
12049 }
12050
12051 /* As for operator_length, but assumes PC is pointing at the first
12052 element of the operator, and gives meaningful results only for the
12053 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12054
12055 static void
12056 ada_forward_operator_length (struct expression *exp, int pc,
12057 int *oplenp, int *argsp)
12058 {
12059 switch (exp->elts[pc].opcode)
12060 {
12061 default:
12062 *oplenp = *argsp = 0;
12063 break;
12064
12065 #define OP_DEFN(op, len, args, binop) \
12066 case op: *oplenp = len; *argsp = args; break;
12067 ADA_OPERATORS;
12068 #undef OP_DEFN
12069
12070 case OP_AGGREGATE:
12071 *oplenp = 3;
12072 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12073 break;
12074
12075 case OP_CHOICES:
12076 *oplenp = 3;
12077 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12078 break;
12079
12080 case OP_STRING:
12081 case OP_NAME:
12082 {
12083 int len = longest_to_int (exp->elts[pc + 1].longconst);
12084
12085 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12086 *argsp = 0;
12087 break;
12088 }
12089 }
12090 }
12091
12092 static int
12093 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12094 {
12095 enum exp_opcode op = exp->elts[elt].opcode;
12096 int oplen, nargs;
12097 int pc = elt;
12098 int i;
12099
12100 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12101
12102 switch (op)
12103 {
12104 /* Ada attributes ('Foo). */
12105 case OP_ATR_FIRST:
12106 case OP_ATR_LAST:
12107 case OP_ATR_LENGTH:
12108 case OP_ATR_IMAGE:
12109 case OP_ATR_MAX:
12110 case OP_ATR_MIN:
12111 case OP_ATR_MODULUS:
12112 case OP_ATR_POS:
12113 case OP_ATR_SIZE:
12114 case OP_ATR_TAG:
12115 case OP_ATR_VAL:
12116 break;
12117
12118 case UNOP_IN_RANGE:
12119 case UNOP_QUAL:
12120 /* XXX: gdb_sprint_host_address, type_sprint */
12121 fprintf_filtered (stream, _("Type @"));
12122 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12123 fprintf_filtered (stream, " (");
12124 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12125 fprintf_filtered (stream, ")");
12126 break;
12127 case BINOP_IN_BOUNDS:
12128 fprintf_filtered (stream, " (%d)",
12129 longest_to_int (exp->elts[pc + 2].longconst));
12130 break;
12131 case TERNOP_IN_RANGE:
12132 break;
12133
12134 case OP_AGGREGATE:
12135 case OP_OTHERS:
12136 case OP_DISCRETE_RANGE:
12137 case OP_POSITIONAL:
12138 case OP_CHOICES:
12139 break;
12140
12141 case OP_NAME:
12142 case OP_STRING:
12143 {
12144 char *name = &exp->elts[elt + 2].string;
12145 int len = longest_to_int (exp->elts[elt + 1].longconst);
12146
12147 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12148 break;
12149 }
12150
12151 default:
12152 return dump_subexp_body_standard (exp, stream, elt);
12153 }
12154
12155 elt += oplen;
12156 for (i = 0; i < nargs; i += 1)
12157 elt = dump_subexp (exp, stream, elt);
12158
12159 return elt;
12160 }
12161
12162 /* The Ada extension of print_subexp (q.v.). */
12163
12164 static void
12165 ada_print_subexp (struct expression *exp, int *pos,
12166 struct ui_file *stream, enum precedence prec)
12167 {
12168 int oplen, nargs, i;
12169 int pc = *pos;
12170 enum exp_opcode op = exp->elts[pc].opcode;
12171
12172 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12173
12174 *pos += oplen;
12175 switch (op)
12176 {
12177 default:
12178 *pos -= oplen;
12179 print_subexp_standard (exp, pos, stream, prec);
12180 return;
12181
12182 case OP_VAR_VALUE:
12183 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12184 return;
12185
12186 case BINOP_IN_BOUNDS:
12187 /* XXX: sprint_subexp */
12188 print_subexp (exp, pos, stream, PREC_SUFFIX);
12189 fputs_filtered (" in ", stream);
12190 print_subexp (exp, pos, stream, PREC_SUFFIX);
12191 fputs_filtered ("'range", stream);
12192 if (exp->elts[pc + 1].longconst > 1)
12193 fprintf_filtered (stream, "(%ld)",
12194 (long) exp->elts[pc + 1].longconst);
12195 return;
12196
12197 case TERNOP_IN_RANGE:
12198 if (prec >= PREC_EQUAL)
12199 fputs_filtered ("(", stream);
12200 /* XXX: sprint_subexp */
12201 print_subexp (exp, pos, stream, PREC_SUFFIX);
12202 fputs_filtered (" in ", stream);
12203 print_subexp (exp, pos, stream, PREC_EQUAL);
12204 fputs_filtered (" .. ", stream);
12205 print_subexp (exp, pos, stream, PREC_EQUAL);
12206 if (prec >= PREC_EQUAL)
12207 fputs_filtered (")", stream);
12208 return;
12209
12210 case OP_ATR_FIRST:
12211 case OP_ATR_LAST:
12212 case OP_ATR_LENGTH:
12213 case OP_ATR_IMAGE:
12214 case OP_ATR_MAX:
12215 case OP_ATR_MIN:
12216 case OP_ATR_MODULUS:
12217 case OP_ATR_POS:
12218 case OP_ATR_SIZE:
12219 case OP_ATR_TAG:
12220 case OP_ATR_VAL:
12221 if (exp->elts[*pos].opcode == OP_TYPE)
12222 {
12223 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12224 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12225 *pos += 3;
12226 }
12227 else
12228 print_subexp (exp, pos, stream, PREC_SUFFIX);
12229 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12230 if (nargs > 1)
12231 {
12232 int tem;
12233
12234 for (tem = 1; tem < nargs; tem += 1)
12235 {
12236 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12237 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12238 }
12239 fputs_filtered (")", stream);
12240 }
12241 return;
12242
12243 case UNOP_QUAL:
12244 type_print (exp->elts[pc + 1].type, "", stream, 0);
12245 fputs_filtered ("'(", stream);
12246 print_subexp (exp, pos, stream, PREC_PREFIX);
12247 fputs_filtered (")", stream);
12248 return;
12249
12250 case UNOP_IN_RANGE:
12251 /* XXX: sprint_subexp */
12252 print_subexp (exp, pos, stream, PREC_SUFFIX);
12253 fputs_filtered (" in ", stream);
12254 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12255 return;
12256
12257 case OP_DISCRETE_RANGE:
12258 print_subexp (exp, pos, stream, PREC_SUFFIX);
12259 fputs_filtered ("..", stream);
12260 print_subexp (exp, pos, stream, PREC_SUFFIX);
12261 return;
12262
12263 case OP_OTHERS:
12264 fputs_filtered ("others => ", stream);
12265 print_subexp (exp, pos, stream, PREC_SUFFIX);
12266 return;
12267
12268 case OP_CHOICES:
12269 for (i = 0; i < nargs-1; i += 1)
12270 {
12271 if (i > 0)
12272 fputs_filtered ("|", stream);
12273 print_subexp (exp, pos, stream, PREC_SUFFIX);
12274 }
12275 fputs_filtered (" => ", stream);
12276 print_subexp (exp, pos, stream, PREC_SUFFIX);
12277 return;
12278
12279 case OP_POSITIONAL:
12280 print_subexp (exp, pos, stream, PREC_SUFFIX);
12281 return;
12282
12283 case OP_AGGREGATE:
12284 fputs_filtered ("(", stream);
12285 for (i = 0; i < nargs; i += 1)
12286 {
12287 if (i > 0)
12288 fputs_filtered (", ", stream);
12289 print_subexp (exp, pos, stream, PREC_SUFFIX);
12290 }
12291 fputs_filtered (")", stream);
12292 return;
12293 }
12294 }
12295
12296 /* Table mapping opcodes into strings for printing operators
12297 and precedences of the operators. */
12298
12299 static const struct op_print ada_op_print_tab[] = {
12300 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12301 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12302 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12303 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12304 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12305 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12306 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12307 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12308 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12309 {">=", BINOP_GEQ, PREC_ORDER, 0},
12310 {">", BINOP_GTR, PREC_ORDER, 0},
12311 {"<", BINOP_LESS, PREC_ORDER, 0},
12312 {">>", BINOP_RSH, PREC_SHIFT, 0},
12313 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12314 {"+", BINOP_ADD, PREC_ADD, 0},
12315 {"-", BINOP_SUB, PREC_ADD, 0},
12316 {"&", BINOP_CONCAT, PREC_ADD, 0},
12317 {"*", BINOP_MUL, PREC_MUL, 0},
12318 {"/", BINOP_DIV, PREC_MUL, 0},
12319 {"rem", BINOP_REM, PREC_MUL, 0},
12320 {"mod", BINOP_MOD, PREC_MUL, 0},
12321 {"**", BINOP_EXP, PREC_REPEAT, 0},
12322 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12323 {"-", UNOP_NEG, PREC_PREFIX, 0},
12324 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12325 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12326 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12327 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12328 {".all", UNOP_IND, PREC_SUFFIX, 1},
12329 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12330 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12331 {NULL, 0, 0, 0}
12332 };
12333 \f
12334 enum ada_primitive_types {
12335 ada_primitive_type_int,
12336 ada_primitive_type_long,
12337 ada_primitive_type_short,
12338 ada_primitive_type_char,
12339 ada_primitive_type_float,
12340 ada_primitive_type_double,
12341 ada_primitive_type_void,
12342 ada_primitive_type_long_long,
12343 ada_primitive_type_long_double,
12344 ada_primitive_type_natural,
12345 ada_primitive_type_positive,
12346 ada_primitive_type_system_address,
12347 nr_ada_primitive_types
12348 };
12349
12350 static void
12351 ada_language_arch_info (struct gdbarch *gdbarch,
12352 struct language_arch_info *lai)
12353 {
12354 const struct builtin_type *builtin = builtin_type (gdbarch);
12355
12356 lai->primitive_type_vector
12357 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12358 struct type *);
12359
12360 lai->primitive_type_vector [ada_primitive_type_int]
12361 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12362 0, "integer");
12363 lai->primitive_type_vector [ada_primitive_type_long]
12364 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12365 0, "long_integer");
12366 lai->primitive_type_vector [ada_primitive_type_short]
12367 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12368 0, "short_integer");
12369 lai->string_char_type
12370 = lai->primitive_type_vector [ada_primitive_type_char]
12371 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12372 lai->primitive_type_vector [ada_primitive_type_float]
12373 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12374 "float", NULL);
12375 lai->primitive_type_vector [ada_primitive_type_double]
12376 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12377 "long_float", NULL);
12378 lai->primitive_type_vector [ada_primitive_type_long_long]
12379 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12380 0, "long_long_integer");
12381 lai->primitive_type_vector [ada_primitive_type_long_double]
12382 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12383 "long_long_float", NULL);
12384 lai->primitive_type_vector [ada_primitive_type_natural]
12385 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12386 0, "natural");
12387 lai->primitive_type_vector [ada_primitive_type_positive]
12388 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12389 0, "positive");
12390 lai->primitive_type_vector [ada_primitive_type_void]
12391 = builtin->builtin_void;
12392
12393 lai->primitive_type_vector [ada_primitive_type_system_address]
12394 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12395 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12396 = "system__address";
12397
12398 lai->bool_type_symbol = NULL;
12399 lai->bool_type_default = builtin->builtin_bool;
12400 }
12401 \f
12402 /* Language vector */
12403
12404 /* Not really used, but needed in the ada_language_defn. */
12405
12406 static void
12407 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12408 {
12409 ada_emit_char (c, type, stream, quoter, 1);
12410 }
12411
12412 static int
12413 parse (void)
12414 {
12415 warnings_issued = 0;
12416 return ada_parse ();
12417 }
12418
12419 static const struct exp_descriptor ada_exp_descriptor = {
12420 ada_print_subexp,
12421 ada_operator_length,
12422 ada_operator_check,
12423 ada_op_name,
12424 ada_dump_subexp_body,
12425 ada_evaluate_subexp
12426 };
12427
12428 /* Implement the "la_get_symbol_name_cmp" language_defn method
12429 for Ada. */
12430
12431 static symbol_name_cmp_ftype
12432 ada_get_symbol_name_cmp (const char *lookup_name)
12433 {
12434 if (should_use_wild_match (lookup_name))
12435 return wild_match;
12436 else
12437 return compare_names;
12438 }
12439
12440 const struct language_defn ada_language_defn = {
12441 "ada", /* Language name */
12442 language_ada,
12443 range_check_off,
12444 type_check_off,
12445 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12446 that's not quite what this means. */
12447 array_row_major,
12448 macro_expansion_no,
12449 &ada_exp_descriptor,
12450 parse,
12451 ada_error,
12452 resolve,
12453 ada_printchar, /* Print a character constant */
12454 ada_printstr, /* Function to print string constant */
12455 emit_char, /* Function to print single char (not used) */
12456 ada_print_type, /* Print a type using appropriate syntax */
12457 ada_print_typedef, /* Print a typedef using appropriate syntax */
12458 ada_val_print, /* Print a value using appropriate syntax */
12459 ada_value_print, /* Print a top-level value */
12460 NULL, /* Language specific skip_trampoline */
12461 NULL, /* name_of_this */
12462 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12463 basic_lookup_transparent_type, /* lookup_transparent_type */
12464 ada_la_decode, /* Language specific symbol demangler */
12465 NULL, /* Language specific
12466 class_name_from_physname */
12467 ada_op_print_tab, /* expression operators for printing */
12468 0, /* c-style arrays */
12469 1, /* String lower bound */
12470 ada_get_gdb_completer_word_break_characters,
12471 ada_make_symbol_completion_list,
12472 ada_language_arch_info,
12473 ada_print_array_index,
12474 default_pass_by_reference,
12475 c_get_string,
12476 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12477 ada_iterate_over_symbols,
12478 LANG_MAGIC
12479 };
12480
12481 /* Provide a prototype to silence -Wmissing-prototypes. */
12482 extern initialize_file_ftype _initialize_ada_language;
12483
12484 /* Command-list for the "set/show ada" prefix command. */
12485 static struct cmd_list_element *set_ada_list;
12486 static struct cmd_list_element *show_ada_list;
12487
12488 /* Implement the "set ada" prefix command. */
12489
12490 static void
12491 set_ada_command (char *arg, int from_tty)
12492 {
12493 printf_unfiltered (_(\
12494 "\"set ada\" must be followed by the name of a setting.\n"));
12495 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12496 }
12497
12498 /* Implement the "show ada" prefix command. */
12499
12500 static void
12501 show_ada_command (char *args, int from_tty)
12502 {
12503 cmd_show_list (show_ada_list, from_tty, "");
12504 }
12505
12506 static void
12507 initialize_ada_catchpoint_ops (void)
12508 {
12509 struct breakpoint_ops *ops;
12510
12511 initialize_breakpoint_ops ();
12512
12513 ops = &catch_exception_breakpoint_ops;
12514 *ops = bkpt_breakpoint_ops;
12515 ops->dtor = dtor_catch_exception;
12516 ops->allocate_location = allocate_location_catch_exception;
12517 ops->re_set = re_set_catch_exception;
12518 ops->check_status = check_status_catch_exception;
12519 ops->print_it = print_it_catch_exception;
12520 ops->print_one = print_one_catch_exception;
12521 ops->print_mention = print_mention_catch_exception;
12522 ops->print_recreate = print_recreate_catch_exception;
12523
12524 ops = &catch_exception_unhandled_breakpoint_ops;
12525 *ops = bkpt_breakpoint_ops;
12526 ops->dtor = dtor_catch_exception_unhandled;
12527 ops->allocate_location = allocate_location_catch_exception_unhandled;
12528 ops->re_set = re_set_catch_exception_unhandled;
12529 ops->check_status = check_status_catch_exception_unhandled;
12530 ops->print_it = print_it_catch_exception_unhandled;
12531 ops->print_one = print_one_catch_exception_unhandled;
12532 ops->print_mention = print_mention_catch_exception_unhandled;
12533 ops->print_recreate = print_recreate_catch_exception_unhandled;
12534
12535 ops = &catch_assert_breakpoint_ops;
12536 *ops = bkpt_breakpoint_ops;
12537 ops->dtor = dtor_catch_assert;
12538 ops->allocate_location = allocate_location_catch_assert;
12539 ops->re_set = re_set_catch_assert;
12540 ops->check_status = check_status_catch_assert;
12541 ops->print_it = print_it_catch_assert;
12542 ops->print_one = print_one_catch_assert;
12543 ops->print_mention = print_mention_catch_assert;
12544 ops->print_recreate = print_recreate_catch_assert;
12545 }
12546
12547 void
12548 _initialize_ada_language (void)
12549 {
12550 add_language (&ada_language_defn);
12551
12552 initialize_ada_catchpoint_ops ();
12553
12554 add_prefix_cmd ("ada", no_class, set_ada_command,
12555 _("Prefix command for changing Ada-specfic settings"),
12556 &set_ada_list, "set ada ", 0, &setlist);
12557
12558 add_prefix_cmd ("ada", no_class, show_ada_command,
12559 _("Generic command for showing Ada-specific settings."),
12560 &show_ada_list, "show ada ", 0, &showlist);
12561
12562 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12563 &trust_pad_over_xvs, _("\
12564 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12565 Show whether an optimization trusting PAD types over XVS types is activated"),
12566 _("\
12567 This is related to the encoding used by the GNAT compiler. The debugger\n\
12568 should normally trust the contents of PAD types, but certain older versions\n\
12569 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12570 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12571 work around this bug. It is always safe to turn this option \"off\", but\n\
12572 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12573 this option to \"off\" unless necessary."),
12574 NULL, NULL, &set_ada_list, &show_ada_list);
12575
12576 add_catch_command ("exception", _("\
12577 Catch Ada exceptions, when raised.\n\
12578 With an argument, catch only exceptions with the given name."),
12579 catch_ada_exception_command,
12580 NULL,
12581 CATCH_PERMANENT,
12582 CATCH_TEMPORARY);
12583 add_catch_command ("assert", _("\
12584 Catch failed Ada assertions, when raised.\n\
12585 With an argument, catch only exceptions with the given name."),
12586 catch_assert_command,
12587 NULL,
12588 CATCH_PERMANENT,
12589 CATCH_TEMPORARY);
12590
12591 varsize_limit = 65536;
12592
12593 obstack_init (&symbol_list_obstack);
12594
12595 decoded_names_store = htab_create_alloc
12596 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12597 NULL, xcalloc, xfree);
12598
12599 /* Setup per-inferior data. */
12600 observer_attach_inferior_exit (ada_inferior_exit);
12601 ada_inferior_data
12602 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12603 }
This page took 0.292057 seconds and 4 git commands to generate.