5297fd3f94c02da0511e619e8a4fdc79732ee3c4
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <string.h>
23 #include <ctype.h>
24 #include "demangle.h"
25 #include "gdb_regex.h"
26 #include "frame.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcmd.h"
30 #include "expression.h"
31 #include "parser-defs.h"
32 #include "language.h"
33 #include "varobj.h"
34 #include "c-lang.h"
35 #include "inferior.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "breakpoint.h"
39 #include "gdbcore.h"
40 #include "hashtab.h"
41 #include "gdb_obstack.h"
42 #include "ada-lang.h"
43 #include "completer.h"
44 #include <sys/stat.h>
45 #include "ui-out.h"
46 #include "block.h"
47 #include "infcall.h"
48 #include "dictionary.h"
49 #include "exceptions.h"
50 #include "annotate.h"
51 #include "valprint.h"
52 #include "source.h"
53 #include "observer.h"
54 #include "vec.h"
55 #include "stack.h"
56 #include "gdb_vecs.h"
57 #include "typeprint.h"
58
59 #include "psymtab.h"
60 #include "value.h"
61 #include "mi/mi-common.h"
62 #include "arch-utils.h"
63 #include "cli/cli-utils.h"
64
65 /* Define whether or not the C operator '/' truncates towards zero for
66 differently signed operands (truncation direction is undefined in C).
67 Copied from valarith.c. */
68
69 #ifndef TRUNCATION_TOWARDS_ZERO
70 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 #endif
72
73 static struct type *desc_base_type (struct type *);
74
75 static struct type *desc_bounds_type (struct type *);
76
77 static struct value *desc_bounds (struct value *);
78
79 static int fat_pntr_bounds_bitpos (struct type *);
80
81 static int fat_pntr_bounds_bitsize (struct type *);
82
83 static struct type *desc_data_target_type (struct type *);
84
85 static struct value *desc_data (struct value *);
86
87 static int fat_pntr_data_bitpos (struct type *);
88
89 static int fat_pntr_data_bitsize (struct type *);
90
91 static struct value *desc_one_bound (struct value *, int, int);
92
93 static int desc_bound_bitpos (struct type *, int, int);
94
95 static int desc_bound_bitsize (struct type *, int, int);
96
97 static struct type *desc_index_type (struct type *, int);
98
99 static int desc_arity (struct type *);
100
101 static int ada_type_match (struct type *, struct type *, int);
102
103 static int ada_args_match (struct symbol *, struct value **, int);
104
105 static int full_match (const char *, const char *);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *, const char *,
111 domain_enum, struct objfile *, int);
112
113 static int is_nonfunction (struct ada_symbol_info *, int);
114
115 static void add_defn_to_vec (struct obstack *, struct symbol *,
116 const struct block *);
117
118 static int num_defns_collected (struct obstack *);
119
120 static struct ada_symbol_info *defns_collected (struct obstack *, int);
121
122 static struct value *resolve_subexp (struct expression **, int *, int,
123 struct type *);
124
125 static void replace_operator_with_call (struct expression **, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static enum ada_renaming_category parse_old_style_renaming (struct type *,
143 const char **,
144 int *,
145 const char **);
146
147 static struct symbol *find_old_style_renaming_symbol (const char *,
148 const struct block *);
149
150 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
151 int, int, int *);
152
153 static struct value *evaluate_subexp_type (struct expression *, int *);
154
155 static struct type *ada_find_parallel_type_with_name (struct type *,
156 const char *);
157
158 static int is_dynamic_field (struct type *, int);
159
160 static struct type *to_fixed_variant_branch_type (struct type *,
161 const gdb_byte *,
162 CORE_ADDR, struct value *);
163
164 static struct type *to_fixed_array_type (struct type *, struct value *, int);
165
166 static struct type *to_fixed_range_type (struct type *, struct value *);
167
168 static struct type *to_static_fixed_type (struct type *);
169 static struct type *static_unwrap_type (struct type *type);
170
171 static struct value *unwrap_value (struct value *);
172
173 static struct type *constrained_packed_array_type (struct type *, long *);
174
175 static struct type *decode_constrained_packed_array_type (struct type *);
176
177 static long decode_packed_array_bitsize (struct type *);
178
179 static struct value *decode_constrained_packed_array (struct value *);
180
181 static int ada_is_packed_array_type (struct type *);
182
183 static int ada_is_unconstrained_packed_array_type (struct type *);
184
185 static struct value *value_subscript_packed (struct value *, int,
186 struct value **);
187
188 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
189
190 static struct value *coerce_unspec_val_to_type (struct value *,
191 struct type *);
192
193 static struct value *get_var_value (char *, char *);
194
195 static int lesseq_defined_than (struct symbol *, struct symbol *);
196
197 static int equiv_types (struct type *, struct type *);
198
199 static int is_name_suffix (const char *);
200
201 static int advance_wild_match (const char **, const char *, int);
202
203 static int wild_match (const char *, const char *);
204
205 static struct value *ada_coerce_ref (struct value *);
206
207 static LONGEST pos_atr (struct value *);
208
209 static struct value *value_pos_atr (struct type *, struct value *);
210
211 static struct value *value_val_atr (struct type *, struct value *);
212
213 static struct symbol *standard_lookup (const char *, const struct block *,
214 domain_enum);
215
216 static struct value *ada_search_struct_field (char *, struct value *, int,
217 struct type *);
218
219 static struct value *ada_value_primitive_field (struct value *, int, int,
220 struct type *);
221
222 static int find_struct_field (const char *, struct type *, int,
223 struct type **, int *, int *, int *, int *);
224
225 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226 struct value *);
227
228 static int ada_resolve_function (struct ada_symbol_info *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static int ada_is_direct_array_type (struct type *);
233
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
236
237 static void check_size (const struct type *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270
271 static struct type *ada_find_any_type (const char *name);
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum namespace;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319 static char *ada_completer_word_break_characters =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = program_space_data (pspace, ada_pspace_data_handle);
463 if (data == NULL)
464 {
465 data = XCNEW (struct ada_pspace_data);
466 set_program_space_data (pspace, ada_pspace_data_handle, data);
467 }
468
469 return data;
470 }
471
472 /* The cleanup callback for this module's per-program-space data. */
473
474 static void
475 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
476 {
477 struct ada_pspace_data *pspace_data = data;
478
479 if (pspace_data->sym_cache != NULL)
480 ada_free_symbol_cache (pspace_data->sym_cache);
481 xfree (pspace_data);
482 }
483
484 /* Utilities */
485
486 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
487 all typedef layers have been peeled. Otherwise, return TYPE.
488
489 Normally, we really expect a typedef type to only have 1 typedef layer.
490 In other words, we really expect the target type of a typedef type to be
491 a non-typedef type. This is particularly true for Ada units, because
492 the language does not have a typedef vs not-typedef distinction.
493 In that respect, the Ada compiler has been trying to eliminate as many
494 typedef definitions in the debugging information, since they generally
495 do not bring any extra information (we still use typedef under certain
496 circumstances related mostly to the GNAT encoding).
497
498 Unfortunately, we have seen situations where the debugging information
499 generated by the compiler leads to such multiple typedef layers. For
500 instance, consider the following example with stabs:
501
502 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
503 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
504
505 This is an error in the debugging information which causes type
506 pck__float_array___XUP to be defined twice, and the second time,
507 it is defined as a typedef of a typedef.
508
509 This is on the fringe of legality as far as debugging information is
510 concerned, and certainly unexpected. But it is easy to handle these
511 situations correctly, so we can afford to be lenient in this case. */
512
513 static struct type *
514 ada_typedef_target_type (struct type *type)
515 {
516 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
517 type = TYPE_TARGET_TYPE (type);
518 return type;
519 }
520
521 /* Given DECODED_NAME a string holding a symbol name in its
522 decoded form (ie using the Ada dotted notation), returns
523 its unqualified name. */
524
525 static const char *
526 ada_unqualified_name (const char *decoded_name)
527 {
528 const char *result = strrchr (decoded_name, '.');
529
530 if (result != NULL)
531 result++; /* Skip the dot... */
532 else
533 result = decoded_name;
534
535 return result;
536 }
537
538 /* Return a string starting with '<', followed by STR, and '>'.
539 The result is good until the next call. */
540
541 static char *
542 add_angle_brackets (const char *str)
543 {
544 static char *result = NULL;
545
546 xfree (result);
547 result = xstrprintf ("<%s>", str);
548 return result;
549 }
550
551 static char *
552 ada_get_gdb_completer_word_break_characters (void)
553 {
554 return ada_completer_word_break_characters;
555 }
556
557 /* Print an array element index using the Ada syntax. */
558
559 static void
560 ada_print_array_index (struct value *index_value, struct ui_file *stream,
561 const struct value_print_options *options)
562 {
563 LA_VALUE_PRINT (index_value, stream, options);
564 fprintf_filtered (stream, " => ");
565 }
566
567 /* Assuming VECT points to an array of *SIZE objects of size
568 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
569 updating *SIZE as necessary and returning the (new) array. */
570
571 void *
572 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
573 {
574 if (*size < min_size)
575 {
576 *size *= 2;
577 if (*size < min_size)
578 *size = min_size;
579 vect = xrealloc (vect, *size * element_size);
580 }
581 return vect;
582 }
583
584 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
585 suffix of FIELD_NAME beginning "___". */
586
587 static int
588 field_name_match (const char *field_name, const char *target)
589 {
590 int len = strlen (target);
591
592 return
593 (strncmp (field_name, target, len) == 0
594 && (field_name[len] == '\0'
595 || (strncmp (field_name + len, "___", 3) == 0
596 && strcmp (field_name + strlen (field_name) - 6,
597 "___XVN") != 0)));
598 }
599
600
601 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
602 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
603 and return its index. This function also handles fields whose name
604 have ___ suffixes because the compiler sometimes alters their name
605 by adding such a suffix to represent fields with certain constraints.
606 If the field could not be found, return a negative number if
607 MAYBE_MISSING is set. Otherwise raise an error. */
608
609 int
610 ada_get_field_index (const struct type *type, const char *field_name,
611 int maybe_missing)
612 {
613 int fieldno;
614 struct type *struct_type = check_typedef ((struct type *) type);
615
616 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
617 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
618 return fieldno;
619
620 if (!maybe_missing)
621 error (_("Unable to find field %s in struct %s. Aborting"),
622 field_name, TYPE_NAME (struct_type));
623
624 return -1;
625 }
626
627 /* The length of the prefix of NAME prior to any "___" suffix. */
628
629 int
630 ada_name_prefix_len (const char *name)
631 {
632 if (name == NULL)
633 return 0;
634 else
635 {
636 const char *p = strstr (name, "___");
637
638 if (p == NULL)
639 return strlen (name);
640 else
641 return p - name;
642 }
643 }
644
645 /* Return non-zero if SUFFIX is a suffix of STR.
646 Return zero if STR is null. */
647
648 static int
649 is_suffix (const char *str, const char *suffix)
650 {
651 int len1, len2;
652
653 if (str == NULL)
654 return 0;
655 len1 = strlen (str);
656 len2 = strlen (suffix);
657 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
658 }
659
660 /* The contents of value VAL, treated as a value of type TYPE. The
661 result is an lval in memory if VAL is. */
662
663 static struct value *
664 coerce_unspec_val_to_type (struct value *val, struct type *type)
665 {
666 type = ada_check_typedef (type);
667 if (value_type (val) == type)
668 return val;
669 else
670 {
671 struct value *result;
672
673 /* Make sure that the object size is not unreasonable before
674 trying to allocate some memory for it. */
675 check_size (type);
676
677 if (value_lazy (val)
678 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
679 result = allocate_value_lazy (type);
680 else
681 {
682 result = allocate_value (type);
683 memcpy (value_contents_raw (result), value_contents (val),
684 TYPE_LENGTH (type));
685 }
686 set_value_component_location (result, val);
687 set_value_bitsize (result, value_bitsize (val));
688 set_value_bitpos (result, value_bitpos (val));
689 set_value_address (result, value_address (val));
690 set_value_optimized_out (result, value_optimized_out_const (val));
691 return result;
692 }
693 }
694
695 static const gdb_byte *
696 cond_offset_host (const gdb_byte *valaddr, long offset)
697 {
698 if (valaddr == NULL)
699 return NULL;
700 else
701 return valaddr + offset;
702 }
703
704 static CORE_ADDR
705 cond_offset_target (CORE_ADDR address, long offset)
706 {
707 if (address == 0)
708 return 0;
709 else
710 return address + offset;
711 }
712
713 /* Issue a warning (as for the definition of warning in utils.c, but
714 with exactly one argument rather than ...), unless the limit on the
715 number of warnings has passed during the evaluation of the current
716 expression. */
717
718 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
719 provided by "complaint". */
720 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
721
722 static void
723 lim_warning (const char *format, ...)
724 {
725 va_list args;
726
727 va_start (args, format);
728 warnings_issued += 1;
729 if (warnings_issued <= warning_limit)
730 vwarning (format, args);
731
732 va_end (args);
733 }
734
735 /* Issue an error if the size of an object of type T is unreasonable,
736 i.e. if it would be a bad idea to allocate a value of this type in
737 GDB. */
738
739 static void
740 check_size (const struct type *type)
741 {
742 if (TYPE_LENGTH (type) > varsize_limit)
743 error (_("object size is larger than varsize-limit"));
744 }
745
746 /* Maximum value of a SIZE-byte signed integer type. */
747 static LONGEST
748 max_of_size (int size)
749 {
750 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
751
752 return top_bit | (top_bit - 1);
753 }
754
755 /* Minimum value of a SIZE-byte signed integer type. */
756 static LONGEST
757 min_of_size (int size)
758 {
759 return -max_of_size (size) - 1;
760 }
761
762 /* Maximum value of a SIZE-byte unsigned integer type. */
763 static ULONGEST
764 umax_of_size (int size)
765 {
766 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
767
768 return top_bit | (top_bit - 1);
769 }
770
771 /* Maximum value of integral type T, as a signed quantity. */
772 static LONGEST
773 max_of_type (struct type *t)
774 {
775 if (TYPE_UNSIGNED (t))
776 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
777 else
778 return max_of_size (TYPE_LENGTH (t));
779 }
780
781 /* Minimum value of integral type T, as a signed quantity. */
782 static LONGEST
783 min_of_type (struct type *t)
784 {
785 if (TYPE_UNSIGNED (t))
786 return 0;
787 else
788 return min_of_size (TYPE_LENGTH (t));
789 }
790
791 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
792 LONGEST
793 ada_discrete_type_high_bound (struct type *type)
794 {
795 type = resolve_dynamic_type (type, 0);
796 switch (TYPE_CODE (type))
797 {
798 case TYPE_CODE_RANGE:
799 return TYPE_HIGH_BOUND (type);
800 case TYPE_CODE_ENUM:
801 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
802 case TYPE_CODE_BOOL:
803 return 1;
804 case TYPE_CODE_CHAR:
805 case TYPE_CODE_INT:
806 return max_of_type (type);
807 default:
808 error (_("Unexpected type in ada_discrete_type_high_bound."));
809 }
810 }
811
812 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
813 LONGEST
814 ada_discrete_type_low_bound (struct type *type)
815 {
816 type = resolve_dynamic_type (type, 0);
817 switch (TYPE_CODE (type))
818 {
819 case TYPE_CODE_RANGE:
820 return TYPE_LOW_BOUND (type);
821 case TYPE_CODE_ENUM:
822 return TYPE_FIELD_ENUMVAL (type, 0);
823 case TYPE_CODE_BOOL:
824 return 0;
825 case TYPE_CODE_CHAR:
826 case TYPE_CODE_INT:
827 return min_of_type (type);
828 default:
829 error (_("Unexpected type in ada_discrete_type_low_bound."));
830 }
831 }
832
833 /* The identity on non-range types. For range types, the underlying
834 non-range scalar type. */
835
836 static struct type *
837 get_base_type (struct type *type)
838 {
839 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
840 {
841 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
842 return type;
843 type = TYPE_TARGET_TYPE (type);
844 }
845 return type;
846 }
847
848 /* Return a decoded version of the given VALUE. This means returning
849 a value whose type is obtained by applying all the GNAT-specific
850 encondings, making the resulting type a static but standard description
851 of the initial type. */
852
853 struct value *
854 ada_get_decoded_value (struct value *value)
855 {
856 struct type *type = ada_check_typedef (value_type (value));
857
858 if (ada_is_array_descriptor_type (type)
859 || (ada_is_constrained_packed_array_type (type)
860 && TYPE_CODE (type) != TYPE_CODE_PTR))
861 {
862 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
863 value = ada_coerce_to_simple_array_ptr (value);
864 else
865 value = ada_coerce_to_simple_array (value);
866 }
867 else
868 value = ada_to_fixed_value (value);
869
870 return value;
871 }
872
873 /* Same as ada_get_decoded_value, but with the given TYPE.
874 Because there is no associated actual value for this type,
875 the resulting type might be a best-effort approximation in
876 the case of dynamic types. */
877
878 struct type *
879 ada_get_decoded_type (struct type *type)
880 {
881 type = to_static_fixed_type (type);
882 if (ada_is_constrained_packed_array_type (type))
883 type = ada_coerce_to_simple_array_type (type);
884 return type;
885 }
886
887 \f
888
889 /* Language Selection */
890
891 /* If the main program is in Ada, return language_ada, otherwise return LANG
892 (the main program is in Ada iif the adainit symbol is found). */
893
894 enum language
895 ada_update_initial_language (enum language lang)
896 {
897 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
898 (struct objfile *) NULL).minsym != NULL)
899 return language_ada;
900
901 return lang;
902 }
903
904 /* If the main procedure is written in Ada, then return its name.
905 The result is good until the next call. Return NULL if the main
906 procedure doesn't appear to be in Ada. */
907
908 char *
909 ada_main_name (void)
910 {
911 struct bound_minimal_symbol msym;
912 static char *main_program_name = NULL;
913
914 /* For Ada, the name of the main procedure is stored in a specific
915 string constant, generated by the binder. Look for that symbol,
916 extract its address, and then read that string. If we didn't find
917 that string, then most probably the main procedure is not written
918 in Ada. */
919 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
920
921 if (msym.minsym != NULL)
922 {
923 CORE_ADDR main_program_name_addr;
924 int err_code;
925
926 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
927 if (main_program_name_addr == 0)
928 error (_("Invalid address for Ada main program name."));
929
930 xfree (main_program_name);
931 target_read_string (main_program_name_addr, &main_program_name,
932 1024, &err_code);
933
934 if (err_code != 0)
935 return NULL;
936 return main_program_name;
937 }
938
939 /* The main procedure doesn't seem to be in Ada. */
940 return NULL;
941 }
942 \f
943 /* Symbols */
944
945 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
946 of NULLs. */
947
948 const struct ada_opname_map ada_opname_table[] = {
949 {"Oadd", "\"+\"", BINOP_ADD},
950 {"Osubtract", "\"-\"", BINOP_SUB},
951 {"Omultiply", "\"*\"", BINOP_MUL},
952 {"Odivide", "\"/\"", BINOP_DIV},
953 {"Omod", "\"mod\"", BINOP_MOD},
954 {"Orem", "\"rem\"", BINOP_REM},
955 {"Oexpon", "\"**\"", BINOP_EXP},
956 {"Olt", "\"<\"", BINOP_LESS},
957 {"Ole", "\"<=\"", BINOP_LEQ},
958 {"Ogt", "\">\"", BINOP_GTR},
959 {"Oge", "\">=\"", BINOP_GEQ},
960 {"Oeq", "\"=\"", BINOP_EQUAL},
961 {"One", "\"/=\"", BINOP_NOTEQUAL},
962 {"Oand", "\"and\"", BINOP_BITWISE_AND},
963 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
964 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
965 {"Oconcat", "\"&\"", BINOP_CONCAT},
966 {"Oabs", "\"abs\"", UNOP_ABS},
967 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
968 {"Oadd", "\"+\"", UNOP_PLUS},
969 {"Osubtract", "\"-\"", UNOP_NEG},
970 {NULL, NULL}
971 };
972
973 /* The "encoded" form of DECODED, according to GNAT conventions.
974 The result is valid until the next call to ada_encode. */
975
976 char *
977 ada_encode (const char *decoded)
978 {
979 static char *encoding_buffer = NULL;
980 static size_t encoding_buffer_size = 0;
981 const char *p;
982 int k;
983
984 if (decoded == NULL)
985 return NULL;
986
987 GROW_VECT (encoding_buffer, encoding_buffer_size,
988 2 * strlen (decoded) + 10);
989
990 k = 0;
991 for (p = decoded; *p != '\0'; p += 1)
992 {
993 if (*p == '.')
994 {
995 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
996 k += 2;
997 }
998 else if (*p == '"')
999 {
1000 const struct ada_opname_map *mapping;
1001
1002 for (mapping = ada_opname_table;
1003 mapping->encoded != NULL
1004 && strncmp (mapping->decoded, p,
1005 strlen (mapping->decoded)) != 0; mapping += 1)
1006 ;
1007 if (mapping->encoded == NULL)
1008 error (_("invalid Ada operator name: %s"), p);
1009 strcpy (encoding_buffer + k, mapping->encoded);
1010 k += strlen (mapping->encoded);
1011 break;
1012 }
1013 else
1014 {
1015 encoding_buffer[k] = *p;
1016 k += 1;
1017 }
1018 }
1019
1020 encoding_buffer[k] = '\0';
1021 return encoding_buffer;
1022 }
1023
1024 /* Return NAME folded to lower case, or, if surrounded by single
1025 quotes, unfolded, but with the quotes stripped away. Result good
1026 to next call. */
1027
1028 char *
1029 ada_fold_name (const char *name)
1030 {
1031 static char *fold_buffer = NULL;
1032 static size_t fold_buffer_size = 0;
1033
1034 int len = strlen (name);
1035 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1036
1037 if (name[0] == '\'')
1038 {
1039 strncpy (fold_buffer, name + 1, len - 2);
1040 fold_buffer[len - 2] = '\000';
1041 }
1042 else
1043 {
1044 int i;
1045
1046 for (i = 0; i <= len; i += 1)
1047 fold_buffer[i] = tolower (name[i]);
1048 }
1049
1050 return fold_buffer;
1051 }
1052
1053 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1054
1055 static int
1056 is_lower_alphanum (const char c)
1057 {
1058 return (isdigit (c) || (isalpha (c) && islower (c)));
1059 }
1060
1061 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1062 This function saves in LEN the length of that same symbol name but
1063 without either of these suffixes:
1064 . .{DIGIT}+
1065 . ${DIGIT}+
1066 . ___{DIGIT}+
1067 . __{DIGIT}+.
1068
1069 These are suffixes introduced by the compiler for entities such as
1070 nested subprogram for instance, in order to avoid name clashes.
1071 They do not serve any purpose for the debugger. */
1072
1073 static void
1074 ada_remove_trailing_digits (const char *encoded, int *len)
1075 {
1076 if (*len > 1 && isdigit (encoded[*len - 1]))
1077 {
1078 int i = *len - 2;
1079
1080 while (i > 0 && isdigit (encoded[i]))
1081 i--;
1082 if (i >= 0 && encoded[i] == '.')
1083 *len = i;
1084 else if (i >= 0 && encoded[i] == '$')
1085 *len = i;
1086 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1087 *len = i - 2;
1088 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1089 *len = i - 1;
1090 }
1091 }
1092
1093 /* Remove the suffix introduced by the compiler for protected object
1094 subprograms. */
1095
1096 static void
1097 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1098 {
1099 /* Remove trailing N. */
1100
1101 /* Protected entry subprograms are broken into two
1102 separate subprograms: The first one is unprotected, and has
1103 a 'N' suffix; the second is the protected version, and has
1104 the 'P' suffix. The second calls the first one after handling
1105 the protection. Since the P subprograms are internally generated,
1106 we leave these names undecoded, giving the user a clue that this
1107 entity is internal. */
1108
1109 if (*len > 1
1110 && encoded[*len - 1] == 'N'
1111 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1112 *len = *len - 1;
1113 }
1114
1115 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1116
1117 static void
1118 ada_remove_Xbn_suffix (const char *encoded, int *len)
1119 {
1120 int i = *len - 1;
1121
1122 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1123 i--;
1124
1125 if (encoded[i] != 'X')
1126 return;
1127
1128 if (i == 0)
1129 return;
1130
1131 if (isalnum (encoded[i-1]))
1132 *len = i;
1133 }
1134
1135 /* If ENCODED follows the GNAT entity encoding conventions, then return
1136 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1137 replaced by ENCODED.
1138
1139 The resulting string is valid until the next call of ada_decode.
1140 If the string is unchanged by decoding, the original string pointer
1141 is returned. */
1142
1143 const char *
1144 ada_decode (const char *encoded)
1145 {
1146 int i, j;
1147 int len0;
1148 const char *p;
1149 char *decoded;
1150 int at_start_name;
1151 static char *decoding_buffer = NULL;
1152 static size_t decoding_buffer_size = 0;
1153
1154 /* The name of the Ada main procedure starts with "_ada_".
1155 This prefix is not part of the decoded name, so skip this part
1156 if we see this prefix. */
1157 if (strncmp (encoded, "_ada_", 5) == 0)
1158 encoded += 5;
1159
1160 /* If the name starts with '_', then it is not a properly encoded
1161 name, so do not attempt to decode it. Similarly, if the name
1162 starts with '<', the name should not be decoded. */
1163 if (encoded[0] == '_' || encoded[0] == '<')
1164 goto Suppress;
1165
1166 len0 = strlen (encoded);
1167
1168 ada_remove_trailing_digits (encoded, &len0);
1169 ada_remove_po_subprogram_suffix (encoded, &len0);
1170
1171 /* Remove the ___X.* suffix if present. Do not forget to verify that
1172 the suffix is located before the current "end" of ENCODED. We want
1173 to avoid re-matching parts of ENCODED that have previously been
1174 marked as discarded (by decrementing LEN0). */
1175 p = strstr (encoded, "___");
1176 if (p != NULL && p - encoded < len0 - 3)
1177 {
1178 if (p[3] == 'X')
1179 len0 = p - encoded;
1180 else
1181 goto Suppress;
1182 }
1183
1184 /* Remove any trailing TKB suffix. It tells us that this symbol
1185 is for the body of a task, but that information does not actually
1186 appear in the decoded name. */
1187
1188 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1189 len0 -= 3;
1190
1191 /* Remove any trailing TB suffix. The TB suffix is slightly different
1192 from the TKB suffix because it is used for non-anonymous task
1193 bodies. */
1194
1195 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1196 len0 -= 2;
1197
1198 /* Remove trailing "B" suffixes. */
1199 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1200
1201 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1202 len0 -= 1;
1203
1204 /* Make decoded big enough for possible expansion by operator name. */
1205
1206 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1207 decoded = decoding_buffer;
1208
1209 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1210
1211 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1212 {
1213 i = len0 - 2;
1214 while ((i >= 0 && isdigit (encoded[i]))
1215 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1216 i -= 1;
1217 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1218 len0 = i - 1;
1219 else if (encoded[i] == '$')
1220 len0 = i;
1221 }
1222
1223 /* The first few characters that are not alphabetic are not part
1224 of any encoding we use, so we can copy them over verbatim. */
1225
1226 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1227 decoded[j] = encoded[i];
1228
1229 at_start_name = 1;
1230 while (i < len0)
1231 {
1232 /* Is this a symbol function? */
1233 if (at_start_name && encoded[i] == 'O')
1234 {
1235 int k;
1236
1237 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1238 {
1239 int op_len = strlen (ada_opname_table[k].encoded);
1240 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1241 op_len - 1) == 0)
1242 && !isalnum (encoded[i + op_len]))
1243 {
1244 strcpy (decoded + j, ada_opname_table[k].decoded);
1245 at_start_name = 0;
1246 i += op_len;
1247 j += strlen (ada_opname_table[k].decoded);
1248 break;
1249 }
1250 }
1251 if (ada_opname_table[k].encoded != NULL)
1252 continue;
1253 }
1254 at_start_name = 0;
1255
1256 /* Replace "TK__" with "__", which will eventually be translated
1257 into "." (just below). */
1258
1259 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1260 i += 2;
1261
1262 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1263 be translated into "." (just below). These are internal names
1264 generated for anonymous blocks inside which our symbol is nested. */
1265
1266 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1267 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1268 && isdigit (encoded [i+4]))
1269 {
1270 int k = i + 5;
1271
1272 while (k < len0 && isdigit (encoded[k]))
1273 k++; /* Skip any extra digit. */
1274
1275 /* Double-check that the "__B_{DIGITS}+" sequence we found
1276 is indeed followed by "__". */
1277 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1278 i = k;
1279 }
1280
1281 /* Remove _E{DIGITS}+[sb] */
1282
1283 /* Just as for protected object subprograms, there are 2 categories
1284 of subprograms created by the compiler for each entry. The first
1285 one implements the actual entry code, and has a suffix following
1286 the convention above; the second one implements the barrier and
1287 uses the same convention as above, except that the 'E' is replaced
1288 by a 'B'.
1289
1290 Just as above, we do not decode the name of barrier functions
1291 to give the user a clue that the code he is debugging has been
1292 internally generated. */
1293
1294 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1295 && isdigit (encoded[i+2]))
1296 {
1297 int k = i + 3;
1298
1299 while (k < len0 && isdigit (encoded[k]))
1300 k++;
1301
1302 if (k < len0
1303 && (encoded[k] == 'b' || encoded[k] == 's'))
1304 {
1305 k++;
1306 /* Just as an extra precaution, make sure that if this
1307 suffix is followed by anything else, it is a '_'.
1308 Otherwise, we matched this sequence by accident. */
1309 if (k == len0
1310 || (k < len0 && encoded[k] == '_'))
1311 i = k;
1312 }
1313 }
1314
1315 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1316 the GNAT front-end in protected object subprograms. */
1317
1318 if (i < len0 + 3
1319 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1320 {
1321 /* Backtrack a bit up until we reach either the begining of
1322 the encoded name, or "__". Make sure that we only find
1323 digits or lowercase characters. */
1324 const char *ptr = encoded + i - 1;
1325
1326 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1327 ptr--;
1328 if (ptr < encoded
1329 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1330 i++;
1331 }
1332
1333 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1334 {
1335 /* This is a X[bn]* sequence not separated from the previous
1336 part of the name with a non-alpha-numeric character (in other
1337 words, immediately following an alpha-numeric character), then
1338 verify that it is placed at the end of the encoded name. If
1339 not, then the encoding is not valid and we should abort the
1340 decoding. Otherwise, just skip it, it is used in body-nested
1341 package names. */
1342 do
1343 i += 1;
1344 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1345 if (i < len0)
1346 goto Suppress;
1347 }
1348 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1349 {
1350 /* Replace '__' by '.'. */
1351 decoded[j] = '.';
1352 at_start_name = 1;
1353 i += 2;
1354 j += 1;
1355 }
1356 else
1357 {
1358 /* It's a character part of the decoded name, so just copy it
1359 over. */
1360 decoded[j] = encoded[i];
1361 i += 1;
1362 j += 1;
1363 }
1364 }
1365 decoded[j] = '\000';
1366
1367 /* Decoded names should never contain any uppercase character.
1368 Double-check this, and abort the decoding if we find one. */
1369
1370 for (i = 0; decoded[i] != '\0'; i += 1)
1371 if (isupper (decoded[i]) || decoded[i] == ' ')
1372 goto Suppress;
1373
1374 if (strcmp (decoded, encoded) == 0)
1375 return encoded;
1376 else
1377 return decoded;
1378
1379 Suppress:
1380 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1381 decoded = decoding_buffer;
1382 if (encoded[0] == '<')
1383 strcpy (decoded, encoded);
1384 else
1385 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1386 return decoded;
1387
1388 }
1389
1390 /* Table for keeping permanent unique copies of decoded names. Once
1391 allocated, names in this table are never released. While this is a
1392 storage leak, it should not be significant unless there are massive
1393 changes in the set of decoded names in successive versions of a
1394 symbol table loaded during a single session. */
1395 static struct htab *decoded_names_store;
1396
1397 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1398 in the language-specific part of GSYMBOL, if it has not been
1399 previously computed. Tries to save the decoded name in the same
1400 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1401 in any case, the decoded symbol has a lifetime at least that of
1402 GSYMBOL).
1403 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1404 const, but nevertheless modified to a semantically equivalent form
1405 when a decoded name is cached in it. */
1406
1407 const char *
1408 ada_decode_symbol (const struct general_symbol_info *arg)
1409 {
1410 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1411 const char **resultp =
1412 &gsymbol->language_specific.mangled_lang.demangled_name;
1413
1414 if (!gsymbol->ada_mangled)
1415 {
1416 const char *decoded = ada_decode (gsymbol->name);
1417 struct obstack *obstack = gsymbol->language_specific.obstack;
1418
1419 gsymbol->ada_mangled = 1;
1420
1421 if (obstack != NULL)
1422 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1423 else
1424 {
1425 /* Sometimes, we can't find a corresponding objfile, in
1426 which case, we put the result on the heap. Since we only
1427 decode when needed, we hope this usually does not cause a
1428 significant memory leak (FIXME). */
1429
1430 char **slot = (char **) htab_find_slot (decoded_names_store,
1431 decoded, INSERT);
1432
1433 if (*slot == NULL)
1434 *slot = xstrdup (decoded);
1435 *resultp = *slot;
1436 }
1437 }
1438
1439 return *resultp;
1440 }
1441
1442 static char *
1443 ada_la_decode (const char *encoded, int options)
1444 {
1445 return xstrdup (ada_decode (encoded));
1446 }
1447
1448 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1449 suffixes that encode debugging information or leading _ada_ on
1450 SYM_NAME (see is_name_suffix commentary for the debugging
1451 information that is ignored). If WILD, then NAME need only match a
1452 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1453 either argument is NULL. */
1454
1455 static int
1456 match_name (const char *sym_name, const char *name, int wild)
1457 {
1458 if (sym_name == NULL || name == NULL)
1459 return 0;
1460 else if (wild)
1461 return wild_match (sym_name, name) == 0;
1462 else
1463 {
1464 int len_name = strlen (name);
1465
1466 return (strncmp (sym_name, name, len_name) == 0
1467 && is_name_suffix (sym_name + len_name))
1468 || (strncmp (sym_name, "_ada_", 5) == 0
1469 && strncmp (sym_name + 5, name, len_name) == 0
1470 && is_name_suffix (sym_name + len_name + 5));
1471 }
1472 }
1473 \f
1474
1475 /* Arrays */
1476
1477 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1478 generated by the GNAT compiler to describe the index type used
1479 for each dimension of an array, check whether it follows the latest
1480 known encoding. If not, fix it up to conform to the latest encoding.
1481 Otherwise, do nothing. This function also does nothing if
1482 INDEX_DESC_TYPE is NULL.
1483
1484 The GNAT encoding used to describle the array index type evolved a bit.
1485 Initially, the information would be provided through the name of each
1486 field of the structure type only, while the type of these fields was
1487 described as unspecified and irrelevant. The debugger was then expected
1488 to perform a global type lookup using the name of that field in order
1489 to get access to the full index type description. Because these global
1490 lookups can be very expensive, the encoding was later enhanced to make
1491 the global lookup unnecessary by defining the field type as being
1492 the full index type description.
1493
1494 The purpose of this routine is to allow us to support older versions
1495 of the compiler by detecting the use of the older encoding, and by
1496 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1497 we essentially replace each field's meaningless type by the associated
1498 index subtype). */
1499
1500 void
1501 ada_fixup_array_indexes_type (struct type *index_desc_type)
1502 {
1503 int i;
1504
1505 if (index_desc_type == NULL)
1506 return;
1507 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1508
1509 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1510 to check one field only, no need to check them all). If not, return
1511 now.
1512
1513 If our INDEX_DESC_TYPE was generated using the older encoding,
1514 the field type should be a meaningless integer type whose name
1515 is not equal to the field name. */
1516 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1517 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1518 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1519 return;
1520
1521 /* Fixup each field of INDEX_DESC_TYPE. */
1522 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1523 {
1524 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1525 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1526
1527 if (raw_type)
1528 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1529 }
1530 }
1531
1532 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1533
1534 static char *bound_name[] = {
1535 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1536 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1537 };
1538
1539 /* Maximum number of array dimensions we are prepared to handle. */
1540
1541 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1542
1543
1544 /* The desc_* routines return primitive portions of array descriptors
1545 (fat pointers). */
1546
1547 /* The descriptor or array type, if any, indicated by TYPE; removes
1548 level of indirection, if needed. */
1549
1550 static struct type *
1551 desc_base_type (struct type *type)
1552 {
1553 if (type == NULL)
1554 return NULL;
1555 type = ada_check_typedef (type);
1556 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1557 type = ada_typedef_target_type (type);
1558
1559 if (type != NULL
1560 && (TYPE_CODE (type) == TYPE_CODE_PTR
1561 || TYPE_CODE (type) == TYPE_CODE_REF))
1562 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1563 else
1564 return type;
1565 }
1566
1567 /* True iff TYPE indicates a "thin" array pointer type. */
1568
1569 static int
1570 is_thin_pntr (struct type *type)
1571 {
1572 return
1573 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1574 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1575 }
1576
1577 /* The descriptor type for thin pointer type TYPE. */
1578
1579 static struct type *
1580 thin_descriptor_type (struct type *type)
1581 {
1582 struct type *base_type = desc_base_type (type);
1583
1584 if (base_type == NULL)
1585 return NULL;
1586 if (is_suffix (ada_type_name (base_type), "___XVE"))
1587 return base_type;
1588 else
1589 {
1590 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1591
1592 if (alt_type == NULL)
1593 return base_type;
1594 else
1595 return alt_type;
1596 }
1597 }
1598
1599 /* A pointer to the array data for thin-pointer value VAL. */
1600
1601 static struct value *
1602 thin_data_pntr (struct value *val)
1603 {
1604 struct type *type = ada_check_typedef (value_type (val));
1605 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1606
1607 data_type = lookup_pointer_type (data_type);
1608
1609 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1610 return value_cast (data_type, value_copy (val));
1611 else
1612 return value_from_longest (data_type, value_address (val));
1613 }
1614
1615 /* True iff TYPE indicates a "thick" array pointer type. */
1616
1617 static int
1618 is_thick_pntr (struct type *type)
1619 {
1620 type = desc_base_type (type);
1621 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1622 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1623 }
1624
1625 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1626 pointer to one, the type of its bounds data; otherwise, NULL. */
1627
1628 static struct type *
1629 desc_bounds_type (struct type *type)
1630 {
1631 struct type *r;
1632
1633 type = desc_base_type (type);
1634
1635 if (type == NULL)
1636 return NULL;
1637 else if (is_thin_pntr (type))
1638 {
1639 type = thin_descriptor_type (type);
1640 if (type == NULL)
1641 return NULL;
1642 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1643 if (r != NULL)
1644 return ada_check_typedef (r);
1645 }
1646 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1647 {
1648 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1649 if (r != NULL)
1650 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1651 }
1652 return NULL;
1653 }
1654
1655 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1656 one, a pointer to its bounds data. Otherwise NULL. */
1657
1658 static struct value *
1659 desc_bounds (struct value *arr)
1660 {
1661 struct type *type = ada_check_typedef (value_type (arr));
1662
1663 if (is_thin_pntr (type))
1664 {
1665 struct type *bounds_type =
1666 desc_bounds_type (thin_descriptor_type (type));
1667 LONGEST addr;
1668
1669 if (bounds_type == NULL)
1670 error (_("Bad GNAT array descriptor"));
1671
1672 /* NOTE: The following calculation is not really kosher, but
1673 since desc_type is an XVE-encoded type (and shouldn't be),
1674 the correct calculation is a real pain. FIXME (and fix GCC). */
1675 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1676 addr = value_as_long (arr);
1677 else
1678 addr = value_address (arr);
1679
1680 return
1681 value_from_longest (lookup_pointer_type (bounds_type),
1682 addr - TYPE_LENGTH (bounds_type));
1683 }
1684
1685 else if (is_thick_pntr (type))
1686 {
1687 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1688 _("Bad GNAT array descriptor"));
1689 struct type *p_bounds_type = value_type (p_bounds);
1690
1691 if (p_bounds_type
1692 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1693 {
1694 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1695
1696 if (TYPE_STUB (target_type))
1697 p_bounds = value_cast (lookup_pointer_type
1698 (ada_check_typedef (target_type)),
1699 p_bounds);
1700 }
1701 else
1702 error (_("Bad GNAT array descriptor"));
1703
1704 return p_bounds;
1705 }
1706 else
1707 return NULL;
1708 }
1709
1710 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1711 position of the field containing the address of the bounds data. */
1712
1713 static int
1714 fat_pntr_bounds_bitpos (struct type *type)
1715 {
1716 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1717 }
1718
1719 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1720 size of the field containing the address of the bounds data. */
1721
1722 static int
1723 fat_pntr_bounds_bitsize (struct type *type)
1724 {
1725 type = desc_base_type (type);
1726
1727 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1728 return TYPE_FIELD_BITSIZE (type, 1);
1729 else
1730 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1731 }
1732
1733 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1734 pointer to one, the type of its array data (a array-with-no-bounds type);
1735 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1736 data. */
1737
1738 static struct type *
1739 desc_data_target_type (struct type *type)
1740 {
1741 type = desc_base_type (type);
1742
1743 /* NOTE: The following is bogus; see comment in desc_bounds. */
1744 if (is_thin_pntr (type))
1745 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1746 else if (is_thick_pntr (type))
1747 {
1748 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1749
1750 if (data_type
1751 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1752 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1753 }
1754
1755 return NULL;
1756 }
1757
1758 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1759 its array data. */
1760
1761 static struct value *
1762 desc_data (struct value *arr)
1763 {
1764 struct type *type = value_type (arr);
1765
1766 if (is_thin_pntr (type))
1767 return thin_data_pntr (arr);
1768 else if (is_thick_pntr (type))
1769 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1770 _("Bad GNAT array descriptor"));
1771 else
1772 return NULL;
1773 }
1774
1775
1776 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1777 position of the field containing the address of the data. */
1778
1779 static int
1780 fat_pntr_data_bitpos (struct type *type)
1781 {
1782 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1783 }
1784
1785 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1786 size of the field containing the address of the data. */
1787
1788 static int
1789 fat_pntr_data_bitsize (struct type *type)
1790 {
1791 type = desc_base_type (type);
1792
1793 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1794 return TYPE_FIELD_BITSIZE (type, 0);
1795 else
1796 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1797 }
1798
1799 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1800 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1801 bound, if WHICH is 1. The first bound is I=1. */
1802
1803 static struct value *
1804 desc_one_bound (struct value *bounds, int i, int which)
1805 {
1806 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1807 _("Bad GNAT array descriptor bounds"));
1808 }
1809
1810 /* If BOUNDS is an array-bounds structure type, return the bit position
1811 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1812 bound, if WHICH is 1. The first bound is I=1. */
1813
1814 static int
1815 desc_bound_bitpos (struct type *type, int i, int which)
1816 {
1817 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1818 }
1819
1820 /* If BOUNDS is an array-bounds structure type, return the bit field size
1821 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1822 bound, if WHICH is 1. The first bound is I=1. */
1823
1824 static int
1825 desc_bound_bitsize (struct type *type, int i, int which)
1826 {
1827 type = desc_base_type (type);
1828
1829 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1830 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1831 else
1832 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1833 }
1834
1835 /* If TYPE is the type of an array-bounds structure, the type of its
1836 Ith bound (numbering from 1). Otherwise, NULL. */
1837
1838 static struct type *
1839 desc_index_type (struct type *type, int i)
1840 {
1841 type = desc_base_type (type);
1842
1843 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1844 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1845 else
1846 return NULL;
1847 }
1848
1849 /* The number of index positions in the array-bounds type TYPE.
1850 Return 0 if TYPE is NULL. */
1851
1852 static int
1853 desc_arity (struct type *type)
1854 {
1855 type = desc_base_type (type);
1856
1857 if (type != NULL)
1858 return TYPE_NFIELDS (type) / 2;
1859 return 0;
1860 }
1861
1862 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1863 an array descriptor type (representing an unconstrained array
1864 type). */
1865
1866 static int
1867 ada_is_direct_array_type (struct type *type)
1868 {
1869 if (type == NULL)
1870 return 0;
1871 type = ada_check_typedef (type);
1872 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1873 || ada_is_array_descriptor_type (type));
1874 }
1875
1876 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1877 * to one. */
1878
1879 static int
1880 ada_is_array_type (struct type *type)
1881 {
1882 while (type != NULL
1883 && (TYPE_CODE (type) == TYPE_CODE_PTR
1884 || TYPE_CODE (type) == TYPE_CODE_REF))
1885 type = TYPE_TARGET_TYPE (type);
1886 return ada_is_direct_array_type (type);
1887 }
1888
1889 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1890
1891 int
1892 ada_is_simple_array_type (struct type *type)
1893 {
1894 if (type == NULL)
1895 return 0;
1896 type = ada_check_typedef (type);
1897 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1898 || (TYPE_CODE (type) == TYPE_CODE_PTR
1899 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1900 == TYPE_CODE_ARRAY));
1901 }
1902
1903 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1904
1905 int
1906 ada_is_array_descriptor_type (struct type *type)
1907 {
1908 struct type *data_type = desc_data_target_type (type);
1909
1910 if (type == NULL)
1911 return 0;
1912 type = ada_check_typedef (type);
1913 return (data_type != NULL
1914 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1915 && desc_arity (desc_bounds_type (type)) > 0);
1916 }
1917
1918 /* Non-zero iff type is a partially mal-formed GNAT array
1919 descriptor. FIXME: This is to compensate for some problems with
1920 debugging output from GNAT. Re-examine periodically to see if it
1921 is still needed. */
1922
1923 int
1924 ada_is_bogus_array_descriptor (struct type *type)
1925 {
1926 return
1927 type != NULL
1928 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1929 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1930 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1931 && !ada_is_array_descriptor_type (type);
1932 }
1933
1934
1935 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1936 (fat pointer) returns the type of the array data described---specifically,
1937 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1938 in from the descriptor; otherwise, they are left unspecified. If
1939 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1940 returns NULL. The result is simply the type of ARR if ARR is not
1941 a descriptor. */
1942 struct type *
1943 ada_type_of_array (struct value *arr, int bounds)
1944 {
1945 if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array_type (value_type (arr));
1947
1948 if (!ada_is_array_descriptor_type (value_type (arr)))
1949 return value_type (arr);
1950
1951 if (!bounds)
1952 {
1953 struct type *array_type =
1954 ada_check_typedef (desc_data_target_type (value_type (arr)));
1955
1956 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1957 TYPE_FIELD_BITSIZE (array_type, 0) =
1958 decode_packed_array_bitsize (value_type (arr));
1959
1960 return array_type;
1961 }
1962 else
1963 {
1964 struct type *elt_type;
1965 int arity;
1966 struct value *descriptor;
1967
1968 elt_type = ada_array_element_type (value_type (arr), -1);
1969 arity = ada_array_arity (value_type (arr));
1970
1971 if (elt_type == NULL || arity == 0)
1972 return ada_check_typedef (value_type (arr));
1973
1974 descriptor = desc_bounds (arr);
1975 if (value_as_long (descriptor) == 0)
1976 return NULL;
1977 while (arity > 0)
1978 {
1979 struct type *range_type = alloc_type_copy (value_type (arr));
1980 struct type *array_type = alloc_type_copy (value_type (arr));
1981 struct value *low = desc_one_bound (descriptor, arity, 0);
1982 struct value *high = desc_one_bound (descriptor, arity, 1);
1983
1984 arity -= 1;
1985 create_static_range_type (range_type, value_type (low),
1986 longest_to_int (value_as_long (low)),
1987 longest_to_int (value_as_long (high)));
1988 elt_type = create_array_type (array_type, elt_type, range_type);
1989
1990 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1991 {
1992 /* We need to store the element packed bitsize, as well as
1993 recompute the array size, because it was previously
1994 computed based on the unpacked element size. */
1995 LONGEST lo = value_as_long (low);
1996 LONGEST hi = value_as_long (high);
1997
1998 TYPE_FIELD_BITSIZE (elt_type, 0) =
1999 decode_packed_array_bitsize (value_type (arr));
2000 /* If the array has no element, then the size is already
2001 zero, and does not need to be recomputed. */
2002 if (lo < hi)
2003 {
2004 int array_bitsize =
2005 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2006
2007 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2008 }
2009 }
2010 }
2011
2012 return lookup_pointer_type (elt_type);
2013 }
2014 }
2015
2016 /* If ARR does not represent an array, returns ARR unchanged.
2017 Otherwise, returns either a standard GDB array with bounds set
2018 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2019 GDB array. Returns NULL if ARR is a null fat pointer. */
2020
2021 struct value *
2022 ada_coerce_to_simple_array_ptr (struct value *arr)
2023 {
2024 if (ada_is_array_descriptor_type (value_type (arr)))
2025 {
2026 struct type *arrType = ada_type_of_array (arr, 1);
2027
2028 if (arrType == NULL)
2029 return NULL;
2030 return value_cast (arrType, value_copy (desc_data (arr)));
2031 }
2032 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2033 return decode_constrained_packed_array (arr);
2034 else
2035 return arr;
2036 }
2037
2038 /* If ARR does not represent an array, returns ARR unchanged.
2039 Otherwise, returns a standard GDB array describing ARR (which may
2040 be ARR itself if it already is in the proper form). */
2041
2042 struct value *
2043 ada_coerce_to_simple_array (struct value *arr)
2044 {
2045 if (ada_is_array_descriptor_type (value_type (arr)))
2046 {
2047 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2048
2049 if (arrVal == NULL)
2050 error (_("Bounds unavailable for null array pointer."));
2051 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
2052 return value_ind (arrVal);
2053 }
2054 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2055 return decode_constrained_packed_array (arr);
2056 else
2057 return arr;
2058 }
2059
2060 /* If TYPE represents a GNAT array type, return it translated to an
2061 ordinary GDB array type (possibly with BITSIZE fields indicating
2062 packing). For other types, is the identity. */
2063
2064 struct type *
2065 ada_coerce_to_simple_array_type (struct type *type)
2066 {
2067 if (ada_is_constrained_packed_array_type (type))
2068 return decode_constrained_packed_array_type (type);
2069
2070 if (ada_is_array_descriptor_type (type))
2071 return ada_check_typedef (desc_data_target_type (type));
2072
2073 return type;
2074 }
2075
2076 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2077
2078 static int
2079 ada_is_packed_array_type (struct type *type)
2080 {
2081 if (type == NULL)
2082 return 0;
2083 type = desc_base_type (type);
2084 type = ada_check_typedef (type);
2085 return
2086 ada_type_name (type) != NULL
2087 && strstr (ada_type_name (type), "___XP") != NULL;
2088 }
2089
2090 /* Non-zero iff TYPE represents a standard GNAT constrained
2091 packed-array type. */
2092
2093 int
2094 ada_is_constrained_packed_array_type (struct type *type)
2095 {
2096 return ada_is_packed_array_type (type)
2097 && !ada_is_array_descriptor_type (type);
2098 }
2099
2100 /* Non-zero iff TYPE represents an array descriptor for a
2101 unconstrained packed-array type. */
2102
2103 static int
2104 ada_is_unconstrained_packed_array_type (struct type *type)
2105 {
2106 return ada_is_packed_array_type (type)
2107 && ada_is_array_descriptor_type (type);
2108 }
2109
2110 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2111 return the size of its elements in bits. */
2112
2113 static long
2114 decode_packed_array_bitsize (struct type *type)
2115 {
2116 const char *raw_name;
2117 const char *tail;
2118 long bits;
2119
2120 /* Access to arrays implemented as fat pointers are encoded as a typedef
2121 of the fat pointer type. We need the name of the fat pointer type
2122 to do the decoding, so strip the typedef layer. */
2123 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2124 type = ada_typedef_target_type (type);
2125
2126 raw_name = ada_type_name (ada_check_typedef (type));
2127 if (!raw_name)
2128 raw_name = ada_type_name (desc_base_type (type));
2129
2130 if (!raw_name)
2131 return 0;
2132
2133 tail = strstr (raw_name, "___XP");
2134 gdb_assert (tail != NULL);
2135
2136 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2137 {
2138 lim_warning
2139 (_("could not understand bit size information on packed array"));
2140 return 0;
2141 }
2142
2143 return bits;
2144 }
2145
2146 /* Given that TYPE is a standard GDB array type with all bounds filled
2147 in, and that the element size of its ultimate scalar constituents
2148 (that is, either its elements, or, if it is an array of arrays, its
2149 elements' elements, etc.) is *ELT_BITS, return an identical type,
2150 but with the bit sizes of its elements (and those of any
2151 constituent arrays) recorded in the BITSIZE components of its
2152 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2153 in bits. */
2154
2155 static struct type *
2156 constrained_packed_array_type (struct type *type, long *elt_bits)
2157 {
2158 struct type *new_elt_type;
2159 struct type *new_type;
2160 struct type *index_type_desc;
2161 struct type *index_type;
2162 LONGEST low_bound, high_bound;
2163
2164 type = ada_check_typedef (type);
2165 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2166 return type;
2167
2168 index_type_desc = ada_find_parallel_type (type, "___XA");
2169 if (index_type_desc)
2170 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2171 NULL);
2172 else
2173 index_type = TYPE_INDEX_TYPE (type);
2174
2175 new_type = alloc_type_copy (type);
2176 new_elt_type =
2177 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2178 elt_bits);
2179 create_array_type (new_type, new_elt_type, index_type);
2180 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2181 TYPE_NAME (new_type) = ada_type_name (type);
2182
2183 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2184 low_bound = high_bound = 0;
2185 if (high_bound < low_bound)
2186 *elt_bits = TYPE_LENGTH (new_type) = 0;
2187 else
2188 {
2189 *elt_bits *= (high_bound - low_bound + 1);
2190 TYPE_LENGTH (new_type) =
2191 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2192 }
2193
2194 TYPE_FIXED_INSTANCE (new_type) = 1;
2195 return new_type;
2196 }
2197
2198 /* The array type encoded by TYPE, where
2199 ada_is_constrained_packed_array_type (TYPE). */
2200
2201 static struct type *
2202 decode_constrained_packed_array_type (struct type *type)
2203 {
2204 const char *raw_name = ada_type_name (ada_check_typedef (type));
2205 char *name;
2206 const char *tail;
2207 struct type *shadow_type;
2208 long bits;
2209
2210 if (!raw_name)
2211 raw_name = ada_type_name (desc_base_type (type));
2212
2213 if (!raw_name)
2214 return NULL;
2215
2216 name = (char *) alloca (strlen (raw_name) + 1);
2217 tail = strstr (raw_name, "___XP");
2218 type = desc_base_type (type);
2219
2220 memcpy (name, raw_name, tail - raw_name);
2221 name[tail - raw_name] = '\000';
2222
2223 shadow_type = ada_find_parallel_type_with_name (type, name);
2224
2225 if (shadow_type == NULL)
2226 {
2227 lim_warning (_("could not find bounds information on packed array"));
2228 return NULL;
2229 }
2230 CHECK_TYPEDEF (shadow_type);
2231
2232 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2233 {
2234 lim_warning (_("could not understand bounds "
2235 "information on packed array"));
2236 return NULL;
2237 }
2238
2239 bits = decode_packed_array_bitsize (type);
2240 return constrained_packed_array_type (shadow_type, &bits);
2241 }
2242
2243 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2244 array, returns a simple array that denotes that array. Its type is a
2245 standard GDB array type except that the BITSIZEs of the array
2246 target types are set to the number of bits in each element, and the
2247 type length is set appropriately. */
2248
2249 static struct value *
2250 decode_constrained_packed_array (struct value *arr)
2251 {
2252 struct type *type;
2253
2254 /* If our value is a pointer, then dereference it. Likewise if
2255 the value is a reference. Make sure that this operation does not
2256 cause the target type to be fixed, as this would indirectly cause
2257 this array to be decoded. The rest of the routine assumes that
2258 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2259 and "value_ind" routines to perform the dereferencing, as opposed
2260 to using "ada_coerce_ref" or "ada_value_ind". */
2261 arr = coerce_ref (arr);
2262 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2263 arr = value_ind (arr);
2264
2265 type = decode_constrained_packed_array_type (value_type (arr));
2266 if (type == NULL)
2267 {
2268 error (_("can't unpack array"));
2269 return NULL;
2270 }
2271
2272 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2273 && ada_is_modular_type (value_type (arr)))
2274 {
2275 /* This is a (right-justified) modular type representing a packed
2276 array with no wrapper. In order to interpret the value through
2277 the (left-justified) packed array type we just built, we must
2278 first left-justify it. */
2279 int bit_size, bit_pos;
2280 ULONGEST mod;
2281
2282 mod = ada_modulus (value_type (arr)) - 1;
2283 bit_size = 0;
2284 while (mod > 0)
2285 {
2286 bit_size += 1;
2287 mod >>= 1;
2288 }
2289 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2290 arr = ada_value_primitive_packed_val (arr, NULL,
2291 bit_pos / HOST_CHAR_BIT,
2292 bit_pos % HOST_CHAR_BIT,
2293 bit_size,
2294 type);
2295 }
2296
2297 return coerce_unspec_val_to_type (arr, type);
2298 }
2299
2300
2301 /* The value of the element of packed array ARR at the ARITY indices
2302 given in IND. ARR must be a simple array. */
2303
2304 static struct value *
2305 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2306 {
2307 int i;
2308 int bits, elt_off, bit_off;
2309 long elt_total_bit_offset;
2310 struct type *elt_type;
2311 struct value *v;
2312
2313 bits = 0;
2314 elt_total_bit_offset = 0;
2315 elt_type = ada_check_typedef (value_type (arr));
2316 for (i = 0; i < arity; i += 1)
2317 {
2318 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2319 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2320 error
2321 (_("attempt to do packed indexing of "
2322 "something other than a packed array"));
2323 else
2324 {
2325 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2326 LONGEST lowerbound, upperbound;
2327 LONGEST idx;
2328
2329 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2330 {
2331 lim_warning (_("don't know bounds of array"));
2332 lowerbound = upperbound = 0;
2333 }
2334
2335 idx = pos_atr (ind[i]);
2336 if (idx < lowerbound || idx > upperbound)
2337 lim_warning (_("packed array index %ld out of bounds"),
2338 (long) idx);
2339 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2340 elt_total_bit_offset += (idx - lowerbound) * bits;
2341 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2342 }
2343 }
2344 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2345 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2346
2347 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2348 bits, elt_type);
2349 return v;
2350 }
2351
2352 /* Non-zero iff TYPE includes negative integer values. */
2353
2354 static int
2355 has_negatives (struct type *type)
2356 {
2357 switch (TYPE_CODE (type))
2358 {
2359 default:
2360 return 0;
2361 case TYPE_CODE_INT:
2362 return !TYPE_UNSIGNED (type);
2363 case TYPE_CODE_RANGE:
2364 return TYPE_LOW_BOUND (type) < 0;
2365 }
2366 }
2367
2368
2369 /* Create a new value of type TYPE from the contents of OBJ starting
2370 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2371 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2372 assigning through the result will set the field fetched from.
2373 VALADDR is ignored unless OBJ is NULL, in which case,
2374 VALADDR+OFFSET must address the start of storage containing the
2375 packed value. The value returned in this case is never an lval.
2376 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2377
2378 struct value *
2379 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2380 long offset, int bit_offset, int bit_size,
2381 struct type *type)
2382 {
2383 struct value *v;
2384 int src, /* Index into the source area */
2385 targ, /* Index into the target area */
2386 srcBitsLeft, /* Number of source bits left to move */
2387 nsrc, ntarg, /* Number of source and target bytes */
2388 unusedLS, /* Number of bits in next significant
2389 byte of source that are unused */
2390 accumSize; /* Number of meaningful bits in accum */
2391 unsigned char *bytes; /* First byte containing data to unpack */
2392 unsigned char *unpacked;
2393 unsigned long accum; /* Staging area for bits being transferred */
2394 unsigned char sign;
2395 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2396 /* Transmit bytes from least to most significant; delta is the direction
2397 the indices move. */
2398 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2399
2400 type = ada_check_typedef (type);
2401
2402 if (obj == NULL)
2403 {
2404 v = allocate_value (type);
2405 bytes = (unsigned char *) (valaddr + offset);
2406 }
2407 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2408 {
2409 v = value_at (type, value_address (obj));
2410 type = value_type (v);
2411 bytes = (unsigned char *) alloca (len);
2412 read_memory (value_address (v) + offset, bytes, len);
2413 }
2414 else
2415 {
2416 v = allocate_value (type);
2417 bytes = (unsigned char *) value_contents (obj) + offset;
2418 }
2419
2420 if (obj != NULL)
2421 {
2422 long new_offset = offset;
2423
2424 set_value_component_location (v, obj);
2425 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2426 set_value_bitsize (v, bit_size);
2427 if (value_bitpos (v) >= HOST_CHAR_BIT)
2428 {
2429 ++new_offset;
2430 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2431 }
2432 set_value_offset (v, new_offset);
2433
2434 /* Also set the parent value. This is needed when trying to
2435 assign a new value (in inferior memory). */
2436 set_value_parent (v, obj);
2437 }
2438 else
2439 set_value_bitsize (v, bit_size);
2440 unpacked = (unsigned char *) value_contents (v);
2441
2442 srcBitsLeft = bit_size;
2443 nsrc = len;
2444 ntarg = TYPE_LENGTH (type);
2445 sign = 0;
2446 if (bit_size == 0)
2447 {
2448 memset (unpacked, 0, TYPE_LENGTH (type));
2449 return v;
2450 }
2451 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2452 {
2453 src = len - 1;
2454 if (has_negatives (type)
2455 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2456 sign = ~0;
2457
2458 unusedLS =
2459 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2460 % HOST_CHAR_BIT;
2461
2462 switch (TYPE_CODE (type))
2463 {
2464 case TYPE_CODE_ARRAY:
2465 case TYPE_CODE_UNION:
2466 case TYPE_CODE_STRUCT:
2467 /* Non-scalar values must be aligned at a byte boundary... */
2468 accumSize =
2469 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2470 /* ... And are placed at the beginning (most-significant) bytes
2471 of the target. */
2472 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2473 ntarg = targ + 1;
2474 break;
2475 default:
2476 accumSize = 0;
2477 targ = TYPE_LENGTH (type) - 1;
2478 break;
2479 }
2480 }
2481 else
2482 {
2483 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2484
2485 src = targ = 0;
2486 unusedLS = bit_offset;
2487 accumSize = 0;
2488
2489 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2490 sign = ~0;
2491 }
2492
2493 accum = 0;
2494 while (nsrc > 0)
2495 {
2496 /* Mask for removing bits of the next source byte that are not
2497 part of the value. */
2498 unsigned int unusedMSMask =
2499 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2500 1;
2501 /* Sign-extend bits for this byte. */
2502 unsigned int signMask = sign & ~unusedMSMask;
2503
2504 accum |=
2505 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2506 accumSize += HOST_CHAR_BIT - unusedLS;
2507 if (accumSize >= HOST_CHAR_BIT)
2508 {
2509 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2510 accumSize -= HOST_CHAR_BIT;
2511 accum >>= HOST_CHAR_BIT;
2512 ntarg -= 1;
2513 targ += delta;
2514 }
2515 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2516 unusedLS = 0;
2517 nsrc -= 1;
2518 src += delta;
2519 }
2520 while (ntarg > 0)
2521 {
2522 accum |= sign << accumSize;
2523 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2524 accumSize -= HOST_CHAR_BIT;
2525 accum >>= HOST_CHAR_BIT;
2526 ntarg -= 1;
2527 targ += delta;
2528 }
2529
2530 return v;
2531 }
2532
2533 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2534 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2535 not overlap. */
2536 static void
2537 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2538 int src_offset, int n, int bits_big_endian_p)
2539 {
2540 unsigned int accum, mask;
2541 int accum_bits, chunk_size;
2542
2543 target += targ_offset / HOST_CHAR_BIT;
2544 targ_offset %= HOST_CHAR_BIT;
2545 source += src_offset / HOST_CHAR_BIT;
2546 src_offset %= HOST_CHAR_BIT;
2547 if (bits_big_endian_p)
2548 {
2549 accum = (unsigned char) *source;
2550 source += 1;
2551 accum_bits = HOST_CHAR_BIT - src_offset;
2552
2553 while (n > 0)
2554 {
2555 int unused_right;
2556
2557 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2558 accum_bits += HOST_CHAR_BIT;
2559 source += 1;
2560 chunk_size = HOST_CHAR_BIT - targ_offset;
2561 if (chunk_size > n)
2562 chunk_size = n;
2563 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2564 mask = ((1 << chunk_size) - 1) << unused_right;
2565 *target =
2566 (*target & ~mask)
2567 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2568 n -= chunk_size;
2569 accum_bits -= chunk_size;
2570 target += 1;
2571 targ_offset = 0;
2572 }
2573 }
2574 else
2575 {
2576 accum = (unsigned char) *source >> src_offset;
2577 source += 1;
2578 accum_bits = HOST_CHAR_BIT - src_offset;
2579
2580 while (n > 0)
2581 {
2582 accum = accum + ((unsigned char) *source << accum_bits);
2583 accum_bits += HOST_CHAR_BIT;
2584 source += 1;
2585 chunk_size = HOST_CHAR_BIT - targ_offset;
2586 if (chunk_size > n)
2587 chunk_size = n;
2588 mask = ((1 << chunk_size) - 1) << targ_offset;
2589 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2590 n -= chunk_size;
2591 accum_bits -= chunk_size;
2592 accum >>= chunk_size;
2593 target += 1;
2594 targ_offset = 0;
2595 }
2596 }
2597 }
2598
2599 /* Store the contents of FROMVAL into the location of TOVAL.
2600 Return a new value with the location of TOVAL and contents of
2601 FROMVAL. Handles assignment into packed fields that have
2602 floating-point or non-scalar types. */
2603
2604 static struct value *
2605 ada_value_assign (struct value *toval, struct value *fromval)
2606 {
2607 struct type *type = value_type (toval);
2608 int bits = value_bitsize (toval);
2609
2610 toval = ada_coerce_ref (toval);
2611 fromval = ada_coerce_ref (fromval);
2612
2613 if (ada_is_direct_array_type (value_type (toval)))
2614 toval = ada_coerce_to_simple_array (toval);
2615 if (ada_is_direct_array_type (value_type (fromval)))
2616 fromval = ada_coerce_to_simple_array (fromval);
2617
2618 if (!deprecated_value_modifiable (toval))
2619 error (_("Left operand of assignment is not a modifiable lvalue."));
2620
2621 if (VALUE_LVAL (toval) == lval_memory
2622 && bits > 0
2623 && (TYPE_CODE (type) == TYPE_CODE_FLT
2624 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2625 {
2626 int len = (value_bitpos (toval)
2627 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2628 int from_size;
2629 gdb_byte *buffer = alloca (len);
2630 struct value *val;
2631 CORE_ADDR to_addr = value_address (toval);
2632
2633 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2634 fromval = value_cast (type, fromval);
2635
2636 read_memory (to_addr, buffer, len);
2637 from_size = value_bitsize (fromval);
2638 if (from_size == 0)
2639 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2640 if (gdbarch_bits_big_endian (get_type_arch (type)))
2641 move_bits (buffer, value_bitpos (toval),
2642 value_contents (fromval), from_size - bits, bits, 1);
2643 else
2644 move_bits (buffer, value_bitpos (toval),
2645 value_contents (fromval), 0, bits, 0);
2646 write_memory_with_notification (to_addr, buffer, len);
2647
2648 val = value_copy (toval);
2649 memcpy (value_contents_raw (val), value_contents (fromval),
2650 TYPE_LENGTH (type));
2651 deprecated_set_value_type (val, type);
2652
2653 return val;
2654 }
2655
2656 return value_assign (toval, fromval);
2657 }
2658
2659
2660 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2661 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2662 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2663 * COMPONENT, and not the inferior's memory. The current contents
2664 * of COMPONENT are ignored. */
2665 static void
2666 value_assign_to_component (struct value *container, struct value *component,
2667 struct value *val)
2668 {
2669 LONGEST offset_in_container =
2670 (LONGEST) (value_address (component) - value_address (container));
2671 int bit_offset_in_container =
2672 value_bitpos (component) - value_bitpos (container);
2673 int bits;
2674
2675 val = value_cast (value_type (component), val);
2676
2677 if (value_bitsize (component) == 0)
2678 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2679 else
2680 bits = value_bitsize (component);
2681
2682 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2683 move_bits (value_contents_writeable (container) + offset_in_container,
2684 value_bitpos (container) + bit_offset_in_container,
2685 value_contents (val),
2686 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2687 bits, 1);
2688 else
2689 move_bits (value_contents_writeable (container) + offset_in_container,
2690 value_bitpos (container) + bit_offset_in_container,
2691 value_contents (val), 0, bits, 0);
2692 }
2693
2694 /* The value of the element of array ARR at the ARITY indices given in IND.
2695 ARR may be either a simple array, GNAT array descriptor, or pointer
2696 thereto. */
2697
2698 struct value *
2699 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2700 {
2701 int k;
2702 struct value *elt;
2703 struct type *elt_type;
2704
2705 elt = ada_coerce_to_simple_array (arr);
2706
2707 elt_type = ada_check_typedef (value_type (elt));
2708 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2709 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2710 return value_subscript_packed (elt, arity, ind);
2711
2712 for (k = 0; k < arity; k += 1)
2713 {
2714 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2715 error (_("too many subscripts (%d expected)"), k);
2716 elt = value_subscript (elt, pos_atr (ind[k]));
2717 }
2718 return elt;
2719 }
2720
2721 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2722 value of the element of *ARR at the ARITY indices given in
2723 IND. Does not read the entire array into memory. */
2724
2725 static struct value *
2726 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2727 struct value **ind)
2728 {
2729 int k;
2730
2731 for (k = 0; k < arity; k += 1)
2732 {
2733 LONGEST lwb, upb;
2734
2735 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2736 error (_("too many subscripts (%d expected)"), k);
2737 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2738 value_copy (arr));
2739 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2740 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2741 type = TYPE_TARGET_TYPE (type);
2742 }
2743
2744 return value_ind (arr);
2745 }
2746
2747 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2748 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2749 elements starting at index LOW. The lower bound of this array is LOW, as
2750 per Ada rules. */
2751 static struct value *
2752 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2753 int low, int high)
2754 {
2755 struct type *type0 = ada_check_typedef (type);
2756 CORE_ADDR base = value_as_address (array_ptr)
2757 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2758 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2759 struct type *index_type
2760 = create_static_range_type (NULL,
2761 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2762 low, high);
2763 struct type *slice_type =
2764 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2765
2766 return value_at_lazy (slice_type, base);
2767 }
2768
2769
2770 static struct value *
2771 ada_value_slice (struct value *array, int low, int high)
2772 {
2773 struct type *type = ada_check_typedef (value_type (array));
2774 struct type *index_type
2775 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2776 struct type *slice_type =
2777 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2778
2779 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2780 }
2781
2782 /* If type is a record type in the form of a standard GNAT array
2783 descriptor, returns the number of dimensions for type. If arr is a
2784 simple array, returns the number of "array of"s that prefix its
2785 type designation. Otherwise, returns 0. */
2786
2787 int
2788 ada_array_arity (struct type *type)
2789 {
2790 int arity;
2791
2792 if (type == NULL)
2793 return 0;
2794
2795 type = desc_base_type (type);
2796
2797 arity = 0;
2798 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2799 return desc_arity (desc_bounds_type (type));
2800 else
2801 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2802 {
2803 arity += 1;
2804 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2805 }
2806
2807 return arity;
2808 }
2809
2810 /* If TYPE is a record type in the form of a standard GNAT array
2811 descriptor or a simple array type, returns the element type for
2812 TYPE after indexing by NINDICES indices, or by all indices if
2813 NINDICES is -1. Otherwise, returns NULL. */
2814
2815 struct type *
2816 ada_array_element_type (struct type *type, int nindices)
2817 {
2818 type = desc_base_type (type);
2819
2820 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2821 {
2822 int k;
2823 struct type *p_array_type;
2824
2825 p_array_type = desc_data_target_type (type);
2826
2827 k = ada_array_arity (type);
2828 if (k == 0)
2829 return NULL;
2830
2831 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2832 if (nindices >= 0 && k > nindices)
2833 k = nindices;
2834 while (k > 0 && p_array_type != NULL)
2835 {
2836 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2837 k -= 1;
2838 }
2839 return p_array_type;
2840 }
2841 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2842 {
2843 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2844 {
2845 type = TYPE_TARGET_TYPE (type);
2846 nindices -= 1;
2847 }
2848 return type;
2849 }
2850
2851 return NULL;
2852 }
2853
2854 /* The type of nth index in arrays of given type (n numbering from 1).
2855 Does not examine memory. Throws an error if N is invalid or TYPE
2856 is not an array type. NAME is the name of the Ada attribute being
2857 evaluated ('range, 'first, 'last, or 'length); it is used in building
2858 the error message. */
2859
2860 static struct type *
2861 ada_index_type (struct type *type, int n, const char *name)
2862 {
2863 struct type *result_type;
2864
2865 type = desc_base_type (type);
2866
2867 if (n < 0 || n > ada_array_arity (type))
2868 error (_("invalid dimension number to '%s"), name);
2869
2870 if (ada_is_simple_array_type (type))
2871 {
2872 int i;
2873
2874 for (i = 1; i < n; i += 1)
2875 type = TYPE_TARGET_TYPE (type);
2876 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2877 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2878 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2879 perhaps stabsread.c would make more sense. */
2880 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2881 result_type = NULL;
2882 }
2883 else
2884 {
2885 result_type = desc_index_type (desc_bounds_type (type), n);
2886 if (result_type == NULL)
2887 error (_("attempt to take bound of something that is not an array"));
2888 }
2889
2890 return result_type;
2891 }
2892
2893 /* Given that arr is an array type, returns the lower bound of the
2894 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2895 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2896 array-descriptor type. It works for other arrays with bounds supplied
2897 by run-time quantities other than discriminants. */
2898
2899 static LONGEST
2900 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2901 {
2902 struct type *type, *index_type_desc, *index_type;
2903 int i;
2904
2905 gdb_assert (which == 0 || which == 1);
2906
2907 if (ada_is_constrained_packed_array_type (arr_type))
2908 arr_type = decode_constrained_packed_array_type (arr_type);
2909
2910 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2911 return (LONGEST) - which;
2912
2913 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2914 type = TYPE_TARGET_TYPE (arr_type);
2915 else
2916 type = arr_type;
2917
2918 index_type_desc = ada_find_parallel_type (type, "___XA");
2919 ada_fixup_array_indexes_type (index_type_desc);
2920 if (index_type_desc != NULL)
2921 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2922 NULL);
2923 else
2924 {
2925 struct type *elt_type = check_typedef (type);
2926
2927 for (i = 1; i < n; i++)
2928 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2929
2930 index_type = TYPE_INDEX_TYPE (elt_type);
2931 }
2932
2933 return
2934 (LONGEST) (which == 0
2935 ? ada_discrete_type_low_bound (index_type)
2936 : ada_discrete_type_high_bound (index_type));
2937 }
2938
2939 /* Given that arr is an array value, returns the lower bound of the
2940 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2941 WHICH is 1. This routine will also work for arrays with bounds
2942 supplied by run-time quantities other than discriminants. */
2943
2944 static LONGEST
2945 ada_array_bound (struct value *arr, int n, int which)
2946 {
2947 struct type *arr_type = value_type (arr);
2948
2949 if (ada_is_constrained_packed_array_type (arr_type))
2950 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2951 else if (ada_is_simple_array_type (arr_type))
2952 return ada_array_bound_from_type (arr_type, n, which);
2953 else
2954 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2955 }
2956
2957 /* Given that arr is an array value, returns the length of the
2958 nth index. This routine will also work for arrays with bounds
2959 supplied by run-time quantities other than discriminants.
2960 Does not work for arrays indexed by enumeration types with representation
2961 clauses at the moment. */
2962
2963 static LONGEST
2964 ada_array_length (struct value *arr, int n)
2965 {
2966 struct type *arr_type = ada_check_typedef (value_type (arr));
2967
2968 if (ada_is_constrained_packed_array_type (arr_type))
2969 return ada_array_length (decode_constrained_packed_array (arr), n);
2970
2971 if (ada_is_simple_array_type (arr_type))
2972 return (ada_array_bound_from_type (arr_type, n, 1)
2973 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2974 else
2975 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2976 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2977 }
2978
2979 /* An empty array whose type is that of ARR_TYPE (an array type),
2980 with bounds LOW to LOW-1. */
2981
2982 static struct value *
2983 empty_array (struct type *arr_type, int low)
2984 {
2985 struct type *arr_type0 = ada_check_typedef (arr_type);
2986 struct type *index_type
2987 = create_static_range_type
2988 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
2989 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2990
2991 return allocate_value (create_array_type (NULL, elt_type, index_type));
2992 }
2993 \f
2994
2995 /* Name resolution */
2996
2997 /* The "decoded" name for the user-definable Ada operator corresponding
2998 to OP. */
2999
3000 static const char *
3001 ada_decoded_op_name (enum exp_opcode op)
3002 {
3003 int i;
3004
3005 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3006 {
3007 if (ada_opname_table[i].op == op)
3008 return ada_opname_table[i].decoded;
3009 }
3010 error (_("Could not find operator name for opcode"));
3011 }
3012
3013
3014 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3015 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3016 undefined namespace) and converts operators that are
3017 user-defined into appropriate function calls. If CONTEXT_TYPE is
3018 non-null, it provides a preferred result type [at the moment, only
3019 type void has any effect---causing procedures to be preferred over
3020 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3021 return type is preferred. May change (expand) *EXP. */
3022
3023 static void
3024 resolve (struct expression **expp, int void_context_p)
3025 {
3026 struct type *context_type = NULL;
3027 int pc = 0;
3028
3029 if (void_context_p)
3030 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3031
3032 resolve_subexp (expp, &pc, 1, context_type);
3033 }
3034
3035 /* Resolve the operator of the subexpression beginning at
3036 position *POS of *EXPP. "Resolving" consists of replacing
3037 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3038 with their resolutions, replacing built-in operators with
3039 function calls to user-defined operators, where appropriate, and,
3040 when DEPROCEDURE_P is non-zero, converting function-valued variables
3041 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3042 are as in ada_resolve, above. */
3043
3044 static struct value *
3045 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3046 struct type *context_type)
3047 {
3048 int pc = *pos;
3049 int i;
3050 struct expression *exp; /* Convenience: == *expp. */
3051 enum exp_opcode op = (*expp)->elts[pc].opcode;
3052 struct value **argvec; /* Vector of operand types (alloca'ed). */
3053 int nargs; /* Number of operands. */
3054 int oplen;
3055
3056 argvec = NULL;
3057 nargs = 0;
3058 exp = *expp;
3059
3060 /* Pass one: resolve operands, saving their types and updating *pos,
3061 if needed. */
3062 switch (op)
3063 {
3064 case OP_FUNCALL:
3065 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3066 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3067 *pos += 7;
3068 else
3069 {
3070 *pos += 3;
3071 resolve_subexp (expp, pos, 0, NULL);
3072 }
3073 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3074 break;
3075
3076 case UNOP_ADDR:
3077 *pos += 1;
3078 resolve_subexp (expp, pos, 0, NULL);
3079 break;
3080
3081 case UNOP_QUAL:
3082 *pos += 3;
3083 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3084 break;
3085
3086 case OP_ATR_MODULUS:
3087 case OP_ATR_SIZE:
3088 case OP_ATR_TAG:
3089 case OP_ATR_FIRST:
3090 case OP_ATR_LAST:
3091 case OP_ATR_LENGTH:
3092 case OP_ATR_POS:
3093 case OP_ATR_VAL:
3094 case OP_ATR_MIN:
3095 case OP_ATR_MAX:
3096 case TERNOP_IN_RANGE:
3097 case BINOP_IN_BOUNDS:
3098 case UNOP_IN_RANGE:
3099 case OP_AGGREGATE:
3100 case OP_OTHERS:
3101 case OP_CHOICES:
3102 case OP_POSITIONAL:
3103 case OP_DISCRETE_RANGE:
3104 case OP_NAME:
3105 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3106 *pos += oplen;
3107 break;
3108
3109 case BINOP_ASSIGN:
3110 {
3111 struct value *arg1;
3112
3113 *pos += 1;
3114 arg1 = resolve_subexp (expp, pos, 0, NULL);
3115 if (arg1 == NULL)
3116 resolve_subexp (expp, pos, 1, NULL);
3117 else
3118 resolve_subexp (expp, pos, 1, value_type (arg1));
3119 break;
3120 }
3121
3122 case UNOP_CAST:
3123 *pos += 3;
3124 nargs = 1;
3125 break;
3126
3127 case BINOP_ADD:
3128 case BINOP_SUB:
3129 case BINOP_MUL:
3130 case BINOP_DIV:
3131 case BINOP_REM:
3132 case BINOP_MOD:
3133 case BINOP_EXP:
3134 case BINOP_CONCAT:
3135 case BINOP_LOGICAL_AND:
3136 case BINOP_LOGICAL_OR:
3137 case BINOP_BITWISE_AND:
3138 case BINOP_BITWISE_IOR:
3139 case BINOP_BITWISE_XOR:
3140
3141 case BINOP_EQUAL:
3142 case BINOP_NOTEQUAL:
3143 case BINOP_LESS:
3144 case BINOP_GTR:
3145 case BINOP_LEQ:
3146 case BINOP_GEQ:
3147
3148 case BINOP_REPEAT:
3149 case BINOP_SUBSCRIPT:
3150 case BINOP_COMMA:
3151 *pos += 1;
3152 nargs = 2;
3153 break;
3154
3155 case UNOP_NEG:
3156 case UNOP_PLUS:
3157 case UNOP_LOGICAL_NOT:
3158 case UNOP_ABS:
3159 case UNOP_IND:
3160 *pos += 1;
3161 nargs = 1;
3162 break;
3163
3164 case OP_LONG:
3165 case OP_DOUBLE:
3166 case OP_VAR_VALUE:
3167 *pos += 4;
3168 break;
3169
3170 case OP_TYPE:
3171 case OP_BOOL:
3172 case OP_LAST:
3173 case OP_INTERNALVAR:
3174 *pos += 3;
3175 break;
3176
3177 case UNOP_MEMVAL:
3178 *pos += 3;
3179 nargs = 1;
3180 break;
3181
3182 case OP_REGISTER:
3183 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3184 break;
3185
3186 case STRUCTOP_STRUCT:
3187 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3188 nargs = 1;
3189 break;
3190
3191 case TERNOP_SLICE:
3192 *pos += 1;
3193 nargs = 3;
3194 break;
3195
3196 case OP_STRING:
3197 break;
3198
3199 default:
3200 error (_("Unexpected operator during name resolution"));
3201 }
3202
3203 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3204 for (i = 0; i < nargs; i += 1)
3205 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3206 argvec[i] = NULL;
3207 exp = *expp;
3208
3209 /* Pass two: perform any resolution on principal operator. */
3210 switch (op)
3211 {
3212 default:
3213 break;
3214
3215 case OP_VAR_VALUE:
3216 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3217 {
3218 struct ada_symbol_info *candidates;
3219 int n_candidates;
3220
3221 n_candidates =
3222 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3223 (exp->elts[pc + 2].symbol),
3224 exp->elts[pc + 1].block, VAR_DOMAIN,
3225 &candidates);
3226
3227 if (n_candidates > 1)
3228 {
3229 /* Types tend to get re-introduced locally, so if there
3230 are any local symbols that are not types, first filter
3231 out all types. */
3232 int j;
3233 for (j = 0; j < n_candidates; j += 1)
3234 switch (SYMBOL_CLASS (candidates[j].sym))
3235 {
3236 case LOC_REGISTER:
3237 case LOC_ARG:
3238 case LOC_REF_ARG:
3239 case LOC_REGPARM_ADDR:
3240 case LOC_LOCAL:
3241 case LOC_COMPUTED:
3242 goto FoundNonType;
3243 default:
3244 break;
3245 }
3246 FoundNonType:
3247 if (j < n_candidates)
3248 {
3249 j = 0;
3250 while (j < n_candidates)
3251 {
3252 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3253 {
3254 candidates[j] = candidates[n_candidates - 1];
3255 n_candidates -= 1;
3256 }
3257 else
3258 j += 1;
3259 }
3260 }
3261 }
3262
3263 if (n_candidates == 0)
3264 error (_("No definition found for %s"),
3265 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3266 else if (n_candidates == 1)
3267 i = 0;
3268 else if (deprocedure_p
3269 && !is_nonfunction (candidates, n_candidates))
3270 {
3271 i = ada_resolve_function
3272 (candidates, n_candidates, NULL, 0,
3273 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3274 context_type);
3275 if (i < 0)
3276 error (_("Could not find a match for %s"),
3277 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3278 }
3279 else
3280 {
3281 printf_filtered (_("Multiple matches for %s\n"),
3282 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3283 user_select_syms (candidates, n_candidates, 1);
3284 i = 0;
3285 }
3286
3287 exp->elts[pc + 1].block = candidates[i].block;
3288 exp->elts[pc + 2].symbol = candidates[i].sym;
3289 if (innermost_block == NULL
3290 || contained_in (candidates[i].block, innermost_block))
3291 innermost_block = candidates[i].block;
3292 }
3293
3294 if (deprocedure_p
3295 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3296 == TYPE_CODE_FUNC))
3297 {
3298 replace_operator_with_call (expp, pc, 0, 0,
3299 exp->elts[pc + 2].symbol,
3300 exp->elts[pc + 1].block);
3301 exp = *expp;
3302 }
3303 break;
3304
3305 case OP_FUNCALL:
3306 {
3307 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3308 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3309 {
3310 struct ada_symbol_info *candidates;
3311 int n_candidates;
3312
3313 n_candidates =
3314 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3315 (exp->elts[pc + 5].symbol),
3316 exp->elts[pc + 4].block, VAR_DOMAIN,
3317 &candidates);
3318 if (n_candidates == 1)
3319 i = 0;
3320 else
3321 {
3322 i = ada_resolve_function
3323 (candidates, n_candidates,
3324 argvec, nargs,
3325 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3326 context_type);
3327 if (i < 0)
3328 error (_("Could not find a match for %s"),
3329 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3330 }
3331
3332 exp->elts[pc + 4].block = candidates[i].block;
3333 exp->elts[pc + 5].symbol = candidates[i].sym;
3334 if (innermost_block == NULL
3335 || contained_in (candidates[i].block, innermost_block))
3336 innermost_block = candidates[i].block;
3337 }
3338 }
3339 break;
3340 case BINOP_ADD:
3341 case BINOP_SUB:
3342 case BINOP_MUL:
3343 case BINOP_DIV:
3344 case BINOP_REM:
3345 case BINOP_MOD:
3346 case BINOP_CONCAT:
3347 case BINOP_BITWISE_AND:
3348 case BINOP_BITWISE_IOR:
3349 case BINOP_BITWISE_XOR:
3350 case BINOP_EQUAL:
3351 case BINOP_NOTEQUAL:
3352 case BINOP_LESS:
3353 case BINOP_GTR:
3354 case BINOP_LEQ:
3355 case BINOP_GEQ:
3356 case BINOP_EXP:
3357 case UNOP_NEG:
3358 case UNOP_PLUS:
3359 case UNOP_LOGICAL_NOT:
3360 case UNOP_ABS:
3361 if (possible_user_operator_p (op, argvec))
3362 {
3363 struct ada_symbol_info *candidates;
3364 int n_candidates;
3365
3366 n_candidates =
3367 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3368 (struct block *) NULL, VAR_DOMAIN,
3369 &candidates);
3370 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3371 ada_decoded_op_name (op), NULL);
3372 if (i < 0)
3373 break;
3374
3375 replace_operator_with_call (expp, pc, nargs, 1,
3376 candidates[i].sym, candidates[i].block);
3377 exp = *expp;
3378 }
3379 break;
3380
3381 case OP_TYPE:
3382 case OP_REGISTER:
3383 return NULL;
3384 }
3385
3386 *pos = pc;
3387 return evaluate_subexp_type (exp, pos);
3388 }
3389
3390 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3391 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3392 a non-pointer. */
3393 /* The term "match" here is rather loose. The match is heuristic and
3394 liberal. */
3395
3396 static int
3397 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3398 {
3399 ftype = ada_check_typedef (ftype);
3400 atype = ada_check_typedef (atype);
3401
3402 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3403 ftype = TYPE_TARGET_TYPE (ftype);
3404 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3405 atype = TYPE_TARGET_TYPE (atype);
3406
3407 switch (TYPE_CODE (ftype))
3408 {
3409 default:
3410 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3411 case TYPE_CODE_PTR:
3412 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3413 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3414 TYPE_TARGET_TYPE (atype), 0);
3415 else
3416 return (may_deref
3417 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3418 case TYPE_CODE_INT:
3419 case TYPE_CODE_ENUM:
3420 case TYPE_CODE_RANGE:
3421 switch (TYPE_CODE (atype))
3422 {
3423 case TYPE_CODE_INT:
3424 case TYPE_CODE_ENUM:
3425 case TYPE_CODE_RANGE:
3426 return 1;
3427 default:
3428 return 0;
3429 }
3430
3431 case TYPE_CODE_ARRAY:
3432 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3433 || ada_is_array_descriptor_type (atype));
3434
3435 case TYPE_CODE_STRUCT:
3436 if (ada_is_array_descriptor_type (ftype))
3437 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3438 || ada_is_array_descriptor_type (atype));
3439 else
3440 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3441 && !ada_is_array_descriptor_type (atype));
3442
3443 case TYPE_CODE_UNION:
3444 case TYPE_CODE_FLT:
3445 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3446 }
3447 }
3448
3449 /* Return non-zero if the formals of FUNC "sufficiently match" the
3450 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3451 may also be an enumeral, in which case it is treated as a 0-
3452 argument function. */
3453
3454 static int
3455 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3456 {
3457 int i;
3458 struct type *func_type = SYMBOL_TYPE (func);
3459
3460 if (SYMBOL_CLASS (func) == LOC_CONST
3461 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3462 return (n_actuals == 0);
3463 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3464 return 0;
3465
3466 if (TYPE_NFIELDS (func_type) != n_actuals)
3467 return 0;
3468
3469 for (i = 0; i < n_actuals; i += 1)
3470 {
3471 if (actuals[i] == NULL)
3472 return 0;
3473 else
3474 {
3475 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3476 i));
3477 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3478
3479 if (!ada_type_match (ftype, atype, 1))
3480 return 0;
3481 }
3482 }
3483 return 1;
3484 }
3485
3486 /* False iff function type FUNC_TYPE definitely does not produce a value
3487 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3488 FUNC_TYPE is not a valid function type with a non-null return type
3489 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3490
3491 static int
3492 return_match (struct type *func_type, struct type *context_type)
3493 {
3494 struct type *return_type;
3495
3496 if (func_type == NULL)
3497 return 1;
3498
3499 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3500 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3501 else
3502 return_type = get_base_type (func_type);
3503 if (return_type == NULL)
3504 return 1;
3505
3506 context_type = get_base_type (context_type);
3507
3508 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3509 return context_type == NULL || return_type == context_type;
3510 else if (context_type == NULL)
3511 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3512 else
3513 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3514 }
3515
3516
3517 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3518 function (if any) that matches the types of the NARGS arguments in
3519 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3520 that returns that type, then eliminate matches that don't. If
3521 CONTEXT_TYPE is void and there is at least one match that does not
3522 return void, eliminate all matches that do.
3523
3524 Asks the user if there is more than one match remaining. Returns -1
3525 if there is no such symbol or none is selected. NAME is used
3526 solely for messages. May re-arrange and modify SYMS in
3527 the process; the index returned is for the modified vector. */
3528
3529 static int
3530 ada_resolve_function (struct ada_symbol_info syms[],
3531 int nsyms, struct value **args, int nargs,
3532 const char *name, struct type *context_type)
3533 {
3534 int fallback;
3535 int k;
3536 int m; /* Number of hits */
3537
3538 m = 0;
3539 /* In the first pass of the loop, we only accept functions matching
3540 context_type. If none are found, we add a second pass of the loop
3541 where every function is accepted. */
3542 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3543 {
3544 for (k = 0; k < nsyms; k += 1)
3545 {
3546 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3547
3548 if (ada_args_match (syms[k].sym, args, nargs)
3549 && (fallback || return_match (type, context_type)))
3550 {
3551 syms[m] = syms[k];
3552 m += 1;
3553 }
3554 }
3555 }
3556
3557 if (m == 0)
3558 return -1;
3559 else if (m > 1)
3560 {
3561 printf_filtered (_("Multiple matches for %s\n"), name);
3562 user_select_syms (syms, m, 1);
3563 return 0;
3564 }
3565 return 0;
3566 }
3567
3568 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3569 in a listing of choices during disambiguation (see sort_choices, below).
3570 The idea is that overloadings of a subprogram name from the
3571 same package should sort in their source order. We settle for ordering
3572 such symbols by their trailing number (__N or $N). */
3573
3574 static int
3575 encoded_ordered_before (const char *N0, const char *N1)
3576 {
3577 if (N1 == NULL)
3578 return 0;
3579 else if (N0 == NULL)
3580 return 1;
3581 else
3582 {
3583 int k0, k1;
3584
3585 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3586 ;
3587 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3588 ;
3589 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3590 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3591 {
3592 int n0, n1;
3593
3594 n0 = k0;
3595 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3596 n0 -= 1;
3597 n1 = k1;
3598 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3599 n1 -= 1;
3600 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3601 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3602 }
3603 return (strcmp (N0, N1) < 0);
3604 }
3605 }
3606
3607 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3608 encoded names. */
3609
3610 static void
3611 sort_choices (struct ada_symbol_info syms[], int nsyms)
3612 {
3613 int i;
3614
3615 for (i = 1; i < nsyms; i += 1)
3616 {
3617 struct ada_symbol_info sym = syms[i];
3618 int j;
3619
3620 for (j = i - 1; j >= 0; j -= 1)
3621 {
3622 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3623 SYMBOL_LINKAGE_NAME (sym.sym)))
3624 break;
3625 syms[j + 1] = syms[j];
3626 }
3627 syms[j + 1] = sym;
3628 }
3629 }
3630
3631 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3632 by asking the user (if necessary), returning the number selected,
3633 and setting the first elements of SYMS items. Error if no symbols
3634 selected. */
3635
3636 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3637 to be re-integrated one of these days. */
3638
3639 int
3640 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3641 {
3642 int i;
3643 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3644 int n_chosen;
3645 int first_choice = (max_results == 1) ? 1 : 2;
3646 const char *select_mode = multiple_symbols_select_mode ();
3647
3648 if (max_results < 1)
3649 error (_("Request to select 0 symbols!"));
3650 if (nsyms <= 1)
3651 return nsyms;
3652
3653 if (select_mode == multiple_symbols_cancel)
3654 error (_("\
3655 canceled because the command is ambiguous\n\
3656 See set/show multiple-symbol."));
3657
3658 /* If select_mode is "all", then return all possible symbols.
3659 Only do that if more than one symbol can be selected, of course.
3660 Otherwise, display the menu as usual. */
3661 if (select_mode == multiple_symbols_all && max_results > 1)
3662 return nsyms;
3663
3664 printf_unfiltered (_("[0] cancel\n"));
3665 if (max_results > 1)
3666 printf_unfiltered (_("[1] all\n"));
3667
3668 sort_choices (syms, nsyms);
3669
3670 for (i = 0; i < nsyms; i += 1)
3671 {
3672 if (syms[i].sym == NULL)
3673 continue;
3674
3675 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3676 {
3677 struct symtab_and_line sal =
3678 find_function_start_sal (syms[i].sym, 1);
3679
3680 if (sal.symtab == NULL)
3681 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3682 i + first_choice,
3683 SYMBOL_PRINT_NAME (syms[i].sym),
3684 sal.line);
3685 else
3686 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3687 SYMBOL_PRINT_NAME (syms[i].sym),
3688 symtab_to_filename_for_display (sal.symtab),
3689 sal.line);
3690 continue;
3691 }
3692 else
3693 {
3694 int is_enumeral =
3695 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3696 && SYMBOL_TYPE (syms[i].sym) != NULL
3697 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3698 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3699
3700 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3701 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3702 i + first_choice,
3703 SYMBOL_PRINT_NAME (syms[i].sym),
3704 symtab_to_filename_for_display (symtab),
3705 SYMBOL_LINE (syms[i].sym));
3706 else if (is_enumeral
3707 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3708 {
3709 printf_unfiltered (("[%d] "), i + first_choice);
3710 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3711 gdb_stdout, -1, 0, &type_print_raw_options);
3712 printf_unfiltered (_("'(%s) (enumeral)\n"),
3713 SYMBOL_PRINT_NAME (syms[i].sym));
3714 }
3715 else if (symtab != NULL)
3716 printf_unfiltered (is_enumeral
3717 ? _("[%d] %s in %s (enumeral)\n")
3718 : _("[%d] %s at %s:?\n"),
3719 i + first_choice,
3720 SYMBOL_PRINT_NAME (syms[i].sym),
3721 symtab_to_filename_for_display (symtab));
3722 else
3723 printf_unfiltered (is_enumeral
3724 ? _("[%d] %s (enumeral)\n")
3725 : _("[%d] %s at ?\n"),
3726 i + first_choice,
3727 SYMBOL_PRINT_NAME (syms[i].sym));
3728 }
3729 }
3730
3731 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3732 "overload-choice");
3733
3734 for (i = 0; i < n_chosen; i += 1)
3735 syms[i] = syms[chosen[i]];
3736
3737 return n_chosen;
3738 }
3739
3740 /* Read and validate a set of numeric choices from the user in the
3741 range 0 .. N_CHOICES-1. Place the results in increasing
3742 order in CHOICES[0 .. N-1], and return N.
3743
3744 The user types choices as a sequence of numbers on one line
3745 separated by blanks, encoding them as follows:
3746
3747 + A choice of 0 means to cancel the selection, throwing an error.
3748 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3749 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3750
3751 The user is not allowed to choose more than MAX_RESULTS values.
3752
3753 ANNOTATION_SUFFIX, if present, is used to annotate the input
3754 prompts (for use with the -f switch). */
3755
3756 int
3757 get_selections (int *choices, int n_choices, int max_results,
3758 int is_all_choice, char *annotation_suffix)
3759 {
3760 char *args;
3761 char *prompt;
3762 int n_chosen;
3763 int first_choice = is_all_choice ? 2 : 1;
3764
3765 prompt = getenv ("PS2");
3766 if (prompt == NULL)
3767 prompt = "> ";
3768
3769 args = command_line_input (prompt, 0, annotation_suffix);
3770
3771 if (args == NULL)
3772 error_no_arg (_("one or more choice numbers"));
3773
3774 n_chosen = 0;
3775
3776 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3777 order, as given in args. Choices are validated. */
3778 while (1)
3779 {
3780 char *args2;
3781 int choice, j;
3782
3783 args = skip_spaces (args);
3784 if (*args == '\0' && n_chosen == 0)
3785 error_no_arg (_("one or more choice numbers"));
3786 else if (*args == '\0')
3787 break;
3788
3789 choice = strtol (args, &args2, 10);
3790 if (args == args2 || choice < 0
3791 || choice > n_choices + first_choice - 1)
3792 error (_("Argument must be choice number"));
3793 args = args2;
3794
3795 if (choice == 0)
3796 error (_("cancelled"));
3797
3798 if (choice < first_choice)
3799 {
3800 n_chosen = n_choices;
3801 for (j = 0; j < n_choices; j += 1)
3802 choices[j] = j;
3803 break;
3804 }
3805 choice -= first_choice;
3806
3807 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3808 {
3809 }
3810
3811 if (j < 0 || choice != choices[j])
3812 {
3813 int k;
3814
3815 for (k = n_chosen - 1; k > j; k -= 1)
3816 choices[k + 1] = choices[k];
3817 choices[j + 1] = choice;
3818 n_chosen += 1;
3819 }
3820 }
3821
3822 if (n_chosen > max_results)
3823 error (_("Select no more than %d of the above"), max_results);
3824
3825 return n_chosen;
3826 }
3827
3828 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3829 on the function identified by SYM and BLOCK, and taking NARGS
3830 arguments. Update *EXPP as needed to hold more space. */
3831
3832 static void
3833 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3834 int oplen, struct symbol *sym,
3835 const struct block *block)
3836 {
3837 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3838 symbol, -oplen for operator being replaced). */
3839 struct expression *newexp = (struct expression *)
3840 xzalloc (sizeof (struct expression)
3841 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3842 struct expression *exp = *expp;
3843
3844 newexp->nelts = exp->nelts + 7 - oplen;
3845 newexp->language_defn = exp->language_defn;
3846 newexp->gdbarch = exp->gdbarch;
3847 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3848 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3849 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3850
3851 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3852 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3853
3854 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3855 newexp->elts[pc + 4].block = block;
3856 newexp->elts[pc + 5].symbol = sym;
3857
3858 *expp = newexp;
3859 xfree (exp);
3860 }
3861
3862 /* Type-class predicates */
3863
3864 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3865 or FLOAT). */
3866
3867 static int
3868 numeric_type_p (struct type *type)
3869 {
3870 if (type == NULL)
3871 return 0;
3872 else
3873 {
3874 switch (TYPE_CODE (type))
3875 {
3876 case TYPE_CODE_INT:
3877 case TYPE_CODE_FLT:
3878 return 1;
3879 case TYPE_CODE_RANGE:
3880 return (type == TYPE_TARGET_TYPE (type)
3881 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3882 default:
3883 return 0;
3884 }
3885 }
3886 }
3887
3888 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3889
3890 static int
3891 integer_type_p (struct type *type)
3892 {
3893 if (type == NULL)
3894 return 0;
3895 else
3896 {
3897 switch (TYPE_CODE (type))
3898 {
3899 case TYPE_CODE_INT:
3900 return 1;
3901 case TYPE_CODE_RANGE:
3902 return (type == TYPE_TARGET_TYPE (type)
3903 || integer_type_p (TYPE_TARGET_TYPE (type)));
3904 default:
3905 return 0;
3906 }
3907 }
3908 }
3909
3910 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3911
3912 static int
3913 scalar_type_p (struct type *type)
3914 {
3915 if (type == NULL)
3916 return 0;
3917 else
3918 {
3919 switch (TYPE_CODE (type))
3920 {
3921 case TYPE_CODE_INT:
3922 case TYPE_CODE_RANGE:
3923 case TYPE_CODE_ENUM:
3924 case TYPE_CODE_FLT:
3925 return 1;
3926 default:
3927 return 0;
3928 }
3929 }
3930 }
3931
3932 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3933
3934 static int
3935 discrete_type_p (struct type *type)
3936 {
3937 if (type == NULL)
3938 return 0;
3939 else
3940 {
3941 switch (TYPE_CODE (type))
3942 {
3943 case TYPE_CODE_INT:
3944 case TYPE_CODE_RANGE:
3945 case TYPE_CODE_ENUM:
3946 case TYPE_CODE_BOOL:
3947 return 1;
3948 default:
3949 return 0;
3950 }
3951 }
3952 }
3953
3954 /* Returns non-zero if OP with operands in the vector ARGS could be
3955 a user-defined function. Errs on the side of pre-defined operators
3956 (i.e., result 0). */
3957
3958 static int
3959 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3960 {
3961 struct type *type0 =
3962 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3963 struct type *type1 =
3964 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3965
3966 if (type0 == NULL)
3967 return 0;
3968
3969 switch (op)
3970 {
3971 default:
3972 return 0;
3973
3974 case BINOP_ADD:
3975 case BINOP_SUB:
3976 case BINOP_MUL:
3977 case BINOP_DIV:
3978 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3979
3980 case BINOP_REM:
3981 case BINOP_MOD:
3982 case BINOP_BITWISE_AND:
3983 case BINOP_BITWISE_IOR:
3984 case BINOP_BITWISE_XOR:
3985 return (!(integer_type_p (type0) && integer_type_p (type1)));
3986
3987 case BINOP_EQUAL:
3988 case BINOP_NOTEQUAL:
3989 case BINOP_LESS:
3990 case BINOP_GTR:
3991 case BINOP_LEQ:
3992 case BINOP_GEQ:
3993 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3994
3995 case BINOP_CONCAT:
3996 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3997
3998 case BINOP_EXP:
3999 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4000
4001 case UNOP_NEG:
4002 case UNOP_PLUS:
4003 case UNOP_LOGICAL_NOT:
4004 case UNOP_ABS:
4005 return (!numeric_type_p (type0));
4006
4007 }
4008 }
4009 \f
4010 /* Renaming */
4011
4012 /* NOTES:
4013
4014 1. In the following, we assume that a renaming type's name may
4015 have an ___XD suffix. It would be nice if this went away at some
4016 point.
4017 2. We handle both the (old) purely type-based representation of
4018 renamings and the (new) variable-based encoding. At some point,
4019 it is devoutly to be hoped that the former goes away
4020 (FIXME: hilfinger-2007-07-09).
4021 3. Subprogram renamings are not implemented, although the XRS
4022 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4023
4024 /* If SYM encodes a renaming,
4025
4026 <renaming> renames <renamed entity>,
4027
4028 sets *LEN to the length of the renamed entity's name,
4029 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4030 the string describing the subcomponent selected from the renamed
4031 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4032 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4033 are undefined). Otherwise, returns a value indicating the category
4034 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4035 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4036 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4037 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4038 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4039 may be NULL, in which case they are not assigned.
4040
4041 [Currently, however, GCC does not generate subprogram renamings.] */
4042
4043 enum ada_renaming_category
4044 ada_parse_renaming (struct symbol *sym,
4045 const char **renamed_entity, int *len,
4046 const char **renaming_expr)
4047 {
4048 enum ada_renaming_category kind;
4049 const char *info;
4050 const char *suffix;
4051
4052 if (sym == NULL)
4053 return ADA_NOT_RENAMING;
4054 switch (SYMBOL_CLASS (sym))
4055 {
4056 default:
4057 return ADA_NOT_RENAMING;
4058 case LOC_TYPEDEF:
4059 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4060 renamed_entity, len, renaming_expr);
4061 case LOC_LOCAL:
4062 case LOC_STATIC:
4063 case LOC_COMPUTED:
4064 case LOC_OPTIMIZED_OUT:
4065 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4066 if (info == NULL)
4067 return ADA_NOT_RENAMING;
4068 switch (info[5])
4069 {
4070 case '_':
4071 kind = ADA_OBJECT_RENAMING;
4072 info += 6;
4073 break;
4074 case 'E':
4075 kind = ADA_EXCEPTION_RENAMING;
4076 info += 7;
4077 break;
4078 case 'P':
4079 kind = ADA_PACKAGE_RENAMING;
4080 info += 7;
4081 break;
4082 case 'S':
4083 kind = ADA_SUBPROGRAM_RENAMING;
4084 info += 7;
4085 break;
4086 default:
4087 return ADA_NOT_RENAMING;
4088 }
4089 }
4090
4091 if (renamed_entity != NULL)
4092 *renamed_entity = info;
4093 suffix = strstr (info, "___XE");
4094 if (suffix == NULL || suffix == info)
4095 return ADA_NOT_RENAMING;
4096 if (len != NULL)
4097 *len = strlen (info) - strlen (suffix);
4098 suffix += 5;
4099 if (renaming_expr != NULL)
4100 *renaming_expr = suffix;
4101 return kind;
4102 }
4103
4104 /* Assuming TYPE encodes a renaming according to the old encoding in
4105 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4106 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4107 ADA_NOT_RENAMING otherwise. */
4108 static enum ada_renaming_category
4109 parse_old_style_renaming (struct type *type,
4110 const char **renamed_entity, int *len,
4111 const char **renaming_expr)
4112 {
4113 enum ada_renaming_category kind;
4114 const char *name;
4115 const char *info;
4116 const char *suffix;
4117
4118 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4119 || TYPE_NFIELDS (type) != 1)
4120 return ADA_NOT_RENAMING;
4121
4122 name = type_name_no_tag (type);
4123 if (name == NULL)
4124 return ADA_NOT_RENAMING;
4125
4126 name = strstr (name, "___XR");
4127 if (name == NULL)
4128 return ADA_NOT_RENAMING;
4129 switch (name[5])
4130 {
4131 case '\0':
4132 case '_':
4133 kind = ADA_OBJECT_RENAMING;
4134 break;
4135 case 'E':
4136 kind = ADA_EXCEPTION_RENAMING;
4137 break;
4138 case 'P':
4139 kind = ADA_PACKAGE_RENAMING;
4140 break;
4141 case 'S':
4142 kind = ADA_SUBPROGRAM_RENAMING;
4143 break;
4144 default:
4145 return ADA_NOT_RENAMING;
4146 }
4147
4148 info = TYPE_FIELD_NAME (type, 0);
4149 if (info == NULL)
4150 return ADA_NOT_RENAMING;
4151 if (renamed_entity != NULL)
4152 *renamed_entity = info;
4153 suffix = strstr (info, "___XE");
4154 if (renaming_expr != NULL)
4155 *renaming_expr = suffix + 5;
4156 if (suffix == NULL || suffix == info)
4157 return ADA_NOT_RENAMING;
4158 if (len != NULL)
4159 *len = suffix - info;
4160 return kind;
4161 }
4162
4163 /* Compute the value of the given RENAMING_SYM, which is expected to
4164 be a symbol encoding a renaming expression. BLOCK is the block
4165 used to evaluate the renaming. */
4166
4167 static struct value *
4168 ada_read_renaming_var_value (struct symbol *renaming_sym,
4169 const struct block *block)
4170 {
4171 const char *sym_name;
4172 struct expression *expr;
4173 struct value *value;
4174 struct cleanup *old_chain = NULL;
4175
4176 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4177 expr = parse_exp_1 (&sym_name, 0, block, 0);
4178 old_chain = make_cleanup (free_current_contents, &expr);
4179 value = evaluate_expression (expr);
4180
4181 do_cleanups (old_chain);
4182 return value;
4183 }
4184 \f
4185
4186 /* Evaluation: Function Calls */
4187
4188 /* Return an lvalue containing the value VAL. This is the identity on
4189 lvalues, and otherwise has the side-effect of allocating memory
4190 in the inferior where a copy of the value contents is copied. */
4191
4192 static struct value *
4193 ensure_lval (struct value *val)
4194 {
4195 if (VALUE_LVAL (val) == not_lval
4196 || VALUE_LVAL (val) == lval_internalvar)
4197 {
4198 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4199 const CORE_ADDR addr =
4200 value_as_long (value_allocate_space_in_inferior (len));
4201
4202 set_value_address (val, addr);
4203 VALUE_LVAL (val) = lval_memory;
4204 write_memory (addr, value_contents (val), len);
4205 }
4206
4207 return val;
4208 }
4209
4210 /* Return the value ACTUAL, converted to be an appropriate value for a
4211 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4212 allocating any necessary descriptors (fat pointers), or copies of
4213 values not residing in memory, updating it as needed. */
4214
4215 struct value *
4216 ada_convert_actual (struct value *actual, struct type *formal_type0)
4217 {
4218 struct type *actual_type = ada_check_typedef (value_type (actual));
4219 struct type *formal_type = ada_check_typedef (formal_type0);
4220 struct type *formal_target =
4221 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4222 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4223 struct type *actual_target =
4224 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4225 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4226
4227 if (ada_is_array_descriptor_type (formal_target)
4228 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4229 return make_array_descriptor (formal_type, actual);
4230 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4231 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4232 {
4233 struct value *result;
4234
4235 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4236 && ada_is_array_descriptor_type (actual_target))
4237 result = desc_data (actual);
4238 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4239 {
4240 if (VALUE_LVAL (actual) != lval_memory)
4241 {
4242 struct value *val;
4243
4244 actual_type = ada_check_typedef (value_type (actual));
4245 val = allocate_value (actual_type);
4246 memcpy ((char *) value_contents_raw (val),
4247 (char *) value_contents (actual),
4248 TYPE_LENGTH (actual_type));
4249 actual = ensure_lval (val);
4250 }
4251 result = value_addr (actual);
4252 }
4253 else
4254 return actual;
4255 return value_cast_pointers (formal_type, result, 0);
4256 }
4257 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4258 return ada_value_ind (actual);
4259
4260 return actual;
4261 }
4262
4263 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4264 type TYPE. This is usually an inefficient no-op except on some targets
4265 (such as AVR) where the representation of a pointer and an address
4266 differs. */
4267
4268 static CORE_ADDR
4269 value_pointer (struct value *value, struct type *type)
4270 {
4271 struct gdbarch *gdbarch = get_type_arch (type);
4272 unsigned len = TYPE_LENGTH (type);
4273 gdb_byte *buf = alloca (len);
4274 CORE_ADDR addr;
4275
4276 addr = value_address (value);
4277 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4278 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4279 return addr;
4280 }
4281
4282
4283 /* Push a descriptor of type TYPE for array value ARR on the stack at
4284 *SP, updating *SP to reflect the new descriptor. Return either
4285 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4286 to-descriptor type rather than a descriptor type), a struct value *
4287 representing a pointer to this descriptor. */
4288
4289 static struct value *
4290 make_array_descriptor (struct type *type, struct value *arr)
4291 {
4292 struct type *bounds_type = desc_bounds_type (type);
4293 struct type *desc_type = desc_base_type (type);
4294 struct value *descriptor = allocate_value (desc_type);
4295 struct value *bounds = allocate_value (bounds_type);
4296 int i;
4297
4298 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4299 i > 0; i -= 1)
4300 {
4301 modify_field (value_type (bounds), value_contents_writeable (bounds),
4302 ada_array_bound (arr, i, 0),
4303 desc_bound_bitpos (bounds_type, i, 0),
4304 desc_bound_bitsize (bounds_type, i, 0));
4305 modify_field (value_type (bounds), value_contents_writeable (bounds),
4306 ada_array_bound (arr, i, 1),
4307 desc_bound_bitpos (bounds_type, i, 1),
4308 desc_bound_bitsize (bounds_type, i, 1));
4309 }
4310
4311 bounds = ensure_lval (bounds);
4312
4313 modify_field (value_type (descriptor),
4314 value_contents_writeable (descriptor),
4315 value_pointer (ensure_lval (arr),
4316 TYPE_FIELD_TYPE (desc_type, 0)),
4317 fat_pntr_data_bitpos (desc_type),
4318 fat_pntr_data_bitsize (desc_type));
4319
4320 modify_field (value_type (descriptor),
4321 value_contents_writeable (descriptor),
4322 value_pointer (bounds,
4323 TYPE_FIELD_TYPE (desc_type, 1)),
4324 fat_pntr_bounds_bitpos (desc_type),
4325 fat_pntr_bounds_bitsize (desc_type));
4326
4327 descriptor = ensure_lval (descriptor);
4328
4329 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4330 return value_addr (descriptor);
4331 else
4332 return descriptor;
4333 }
4334 \f
4335 /* Symbol Cache Module */
4336
4337 /* Performance measurements made as of 2010-01-15 indicate that
4338 this cache does bring some noticeable improvements. Depending
4339 on the type of entity being printed, the cache can make it as much
4340 as an order of magnitude faster than without it.
4341
4342 The descriptive type DWARF extension has significantly reduced
4343 the need for this cache, at least when DWARF is being used. However,
4344 even in this case, some expensive name-based symbol searches are still
4345 sometimes necessary - to find an XVZ variable, mostly. */
4346
4347 /* Initialize the contents of SYM_CACHE. */
4348
4349 static void
4350 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4351 {
4352 obstack_init (&sym_cache->cache_space);
4353 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4354 }
4355
4356 /* Free the memory used by SYM_CACHE. */
4357
4358 static void
4359 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4360 {
4361 obstack_free (&sym_cache->cache_space, NULL);
4362 xfree (sym_cache);
4363 }
4364
4365 /* Return the symbol cache associated to the given program space PSPACE.
4366 If not allocated for this PSPACE yet, allocate and initialize one. */
4367
4368 static struct ada_symbol_cache *
4369 ada_get_symbol_cache (struct program_space *pspace)
4370 {
4371 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4372 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4373
4374 if (sym_cache == NULL)
4375 {
4376 sym_cache = XCNEW (struct ada_symbol_cache);
4377 ada_init_symbol_cache (sym_cache);
4378 }
4379
4380 return sym_cache;
4381 }
4382
4383 /* Clear all entries from the symbol cache. */
4384
4385 static void
4386 ada_clear_symbol_cache (void)
4387 {
4388 struct ada_symbol_cache *sym_cache
4389 = ada_get_symbol_cache (current_program_space);
4390
4391 obstack_free (&sym_cache->cache_space, NULL);
4392 ada_init_symbol_cache (sym_cache);
4393 }
4394
4395 /* Search our cache for an entry matching NAME and NAMESPACE.
4396 Return it if found, or NULL otherwise. */
4397
4398 static struct cache_entry **
4399 find_entry (const char *name, domain_enum namespace)
4400 {
4401 struct ada_symbol_cache *sym_cache
4402 = ada_get_symbol_cache (current_program_space);
4403 int h = msymbol_hash (name) % HASH_SIZE;
4404 struct cache_entry **e;
4405
4406 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4407 {
4408 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4409 return e;
4410 }
4411 return NULL;
4412 }
4413
4414 /* Search the symbol cache for an entry matching NAME and NAMESPACE.
4415 Return 1 if found, 0 otherwise.
4416
4417 If an entry was found and SYM is not NULL, set *SYM to the entry's
4418 SYM. Same principle for BLOCK if not NULL. */
4419
4420 static int
4421 lookup_cached_symbol (const char *name, domain_enum namespace,
4422 struct symbol **sym, const struct block **block)
4423 {
4424 struct cache_entry **e = find_entry (name, namespace);
4425
4426 if (e == NULL)
4427 return 0;
4428 if (sym != NULL)
4429 *sym = (*e)->sym;
4430 if (block != NULL)
4431 *block = (*e)->block;
4432 return 1;
4433 }
4434
4435 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4436 in domain NAMESPACE, save this result in our symbol cache. */
4437
4438 static void
4439 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4440 const struct block *block)
4441 {
4442 struct ada_symbol_cache *sym_cache
4443 = ada_get_symbol_cache (current_program_space);
4444 int h;
4445 char *copy;
4446 struct cache_entry *e;
4447
4448 /* If the symbol is a local symbol, then do not cache it, as a search
4449 for that symbol depends on the context. To determine whether
4450 the symbol is local or not, we check the block where we found it
4451 against the global and static blocks of its associated symtab. */
4452 if (sym
4453 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4454 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4455 return;
4456
4457 h = msymbol_hash (name) % HASH_SIZE;
4458 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4459 sizeof (*e));
4460 e->next = sym_cache->root[h];
4461 sym_cache->root[h] = e;
4462 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4463 strcpy (copy, name);
4464 e->sym = sym;
4465 e->namespace = namespace;
4466 e->block = block;
4467 }
4468 \f
4469 /* Symbol Lookup */
4470
4471 /* Return nonzero if wild matching should be used when searching for
4472 all symbols matching LOOKUP_NAME.
4473
4474 LOOKUP_NAME is expected to be a symbol name after transformation
4475 for Ada lookups (see ada_name_for_lookup). */
4476
4477 static int
4478 should_use_wild_match (const char *lookup_name)
4479 {
4480 return (strstr (lookup_name, "__") == NULL);
4481 }
4482
4483 /* Return the result of a standard (literal, C-like) lookup of NAME in
4484 given DOMAIN, visible from lexical block BLOCK. */
4485
4486 static struct symbol *
4487 standard_lookup (const char *name, const struct block *block,
4488 domain_enum domain)
4489 {
4490 /* Initialize it just to avoid a GCC false warning. */
4491 struct symbol *sym = NULL;
4492
4493 if (lookup_cached_symbol (name, domain, &sym, NULL))
4494 return sym;
4495 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4496 cache_symbol (name, domain, sym, block_found);
4497 return sym;
4498 }
4499
4500
4501 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4502 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4503 since they contend in overloading in the same way. */
4504 static int
4505 is_nonfunction (struct ada_symbol_info syms[], int n)
4506 {
4507 int i;
4508
4509 for (i = 0; i < n; i += 1)
4510 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4511 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4512 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4513 return 1;
4514
4515 return 0;
4516 }
4517
4518 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4519 struct types. Otherwise, they may not. */
4520
4521 static int
4522 equiv_types (struct type *type0, struct type *type1)
4523 {
4524 if (type0 == type1)
4525 return 1;
4526 if (type0 == NULL || type1 == NULL
4527 || TYPE_CODE (type0) != TYPE_CODE (type1))
4528 return 0;
4529 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4530 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4531 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4532 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4533 return 1;
4534
4535 return 0;
4536 }
4537
4538 /* True iff SYM0 represents the same entity as SYM1, or one that is
4539 no more defined than that of SYM1. */
4540
4541 static int
4542 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4543 {
4544 if (sym0 == sym1)
4545 return 1;
4546 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4547 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4548 return 0;
4549
4550 switch (SYMBOL_CLASS (sym0))
4551 {
4552 case LOC_UNDEF:
4553 return 1;
4554 case LOC_TYPEDEF:
4555 {
4556 struct type *type0 = SYMBOL_TYPE (sym0);
4557 struct type *type1 = SYMBOL_TYPE (sym1);
4558 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4559 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4560 int len0 = strlen (name0);
4561
4562 return
4563 TYPE_CODE (type0) == TYPE_CODE (type1)
4564 && (equiv_types (type0, type1)
4565 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4566 && strncmp (name1 + len0, "___XV", 5) == 0));
4567 }
4568 case LOC_CONST:
4569 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4570 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4571 default:
4572 return 0;
4573 }
4574 }
4575
4576 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4577 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4578
4579 static void
4580 add_defn_to_vec (struct obstack *obstackp,
4581 struct symbol *sym,
4582 const struct block *block)
4583 {
4584 int i;
4585 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4586
4587 /* Do not try to complete stub types, as the debugger is probably
4588 already scanning all symbols matching a certain name at the
4589 time when this function is called. Trying to replace the stub
4590 type by its associated full type will cause us to restart a scan
4591 which may lead to an infinite recursion. Instead, the client
4592 collecting the matching symbols will end up collecting several
4593 matches, with at least one of them complete. It can then filter
4594 out the stub ones if needed. */
4595
4596 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4597 {
4598 if (lesseq_defined_than (sym, prevDefns[i].sym))
4599 return;
4600 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4601 {
4602 prevDefns[i].sym = sym;
4603 prevDefns[i].block = block;
4604 return;
4605 }
4606 }
4607
4608 {
4609 struct ada_symbol_info info;
4610
4611 info.sym = sym;
4612 info.block = block;
4613 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4614 }
4615 }
4616
4617 /* Number of ada_symbol_info structures currently collected in
4618 current vector in *OBSTACKP. */
4619
4620 static int
4621 num_defns_collected (struct obstack *obstackp)
4622 {
4623 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4624 }
4625
4626 /* Vector of ada_symbol_info structures currently collected in current
4627 vector in *OBSTACKP. If FINISH, close off the vector and return
4628 its final address. */
4629
4630 static struct ada_symbol_info *
4631 defns_collected (struct obstack *obstackp, int finish)
4632 {
4633 if (finish)
4634 return obstack_finish (obstackp);
4635 else
4636 return (struct ada_symbol_info *) obstack_base (obstackp);
4637 }
4638
4639 /* Return a bound minimal symbol matching NAME according to Ada
4640 decoding rules. Returns an invalid symbol if there is no such
4641 minimal symbol. Names prefixed with "standard__" are handled
4642 specially: "standard__" is first stripped off, and only static and
4643 global symbols are searched. */
4644
4645 struct bound_minimal_symbol
4646 ada_lookup_simple_minsym (const char *name)
4647 {
4648 struct bound_minimal_symbol result;
4649 struct objfile *objfile;
4650 struct minimal_symbol *msymbol;
4651 const int wild_match_p = should_use_wild_match (name);
4652
4653 memset (&result, 0, sizeof (result));
4654
4655 /* Special case: If the user specifies a symbol name inside package
4656 Standard, do a non-wild matching of the symbol name without
4657 the "standard__" prefix. This was primarily introduced in order
4658 to allow the user to specifically access the standard exceptions
4659 using, for instance, Standard.Constraint_Error when Constraint_Error
4660 is ambiguous (due to the user defining its own Constraint_Error
4661 entity inside its program). */
4662 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4663 name += sizeof ("standard__") - 1;
4664
4665 ALL_MSYMBOLS (objfile, msymbol)
4666 {
4667 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4668 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4669 {
4670 result.minsym = msymbol;
4671 result.objfile = objfile;
4672 break;
4673 }
4674 }
4675
4676 return result;
4677 }
4678
4679 /* For all subprograms that statically enclose the subprogram of the
4680 selected frame, add symbols matching identifier NAME in DOMAIN
4681 and their blocks to the list of data in OBSTACKP, as for
4682 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4683 with a wildcard prefix. */
4684
4685 static void
4686 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4687 const char *name, domain_enum namespace,
4688 int wild_match_p)
4689 {
4690 }
4691
4692 /* True if TYPE is definitely an artificial type supplied to a symbol
4693 for which no debugging information was given in the symbol file. */
4694
4695 static int
4696 is_nondebugging_type (struct type *type)
4697 {
4698 const char *name = ada_type_name (type);
4699
4700 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4701 }
4702
4703 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4704 that are deemed "identical" for practical purposes.
4705
4706 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4707 types and that their number of enumerals is identical (in other
4708 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4709
4710 static int
4711 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4712 {
4713 int i;
4714
4715 /* The heuristic we use here is fairly conservative. We consider
4716 that 2 enumerate types are identical if they have the same
4717 number of enumerals and that all enumerals have the same
4718 underlying value and name. */
4719
4720 /* All enums in the type should have an identical underlying value. */
4721 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4722 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4723 return 0;
4724
4725 /* All enumerals should also have the same name (modulo any numerical
4726 suffix). */
4727 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4728 {
4729 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4730 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4731 int len_1 = strlen (name_1);
4732 int len_2 = strlen (name_2);
4733
4734 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4735 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4736 if (len_1 != len_2
4737 || strncmp (TYPE_FIELD_NAME (type1, i),
4738 TYPE_FIELD_NAME (type2, i),
4739 len_1) != 0)
4740 return 0;
4741 }
4742
4743 return 1;
4744 }
4745
4746 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4747 that are deemed "identical" for practical purposes. Sometimes,
4748 enumerals are not strictly identical, but their types are so similar
4749 that they can be considered identical.
4750
4751 For instance, consider the following code:
4752
4753 type Color is (Black, Red, Green, Blue, White);
4754 type RGB_Color is new Color range Red .. Blue;
4755
4756 Type RGB_Color is a subrange of an implicit type which is a copy
4757 of type Color. If we call that implicit type RGB_ColorB ("B" is
4758 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4759 As a result, when an expression references any of the enumeral
4760 by name (Eg. "print green"), the expression is technically
4761 ambiguous and the user should be asked to disambiguate. But
4762 doing so would only hinder the user, since it wouldn't matter
4763 what choice he makes, the outcome would always be the same.
4764 So, for practical purposes, we consider them as the same. */
4765
4766 static int
4767 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4768 {
4769 int i;
4770
4771 /* Before performing a thorough comparison check of each type,
4772 we perform a series of inexpensive checks. We expect that these
4773 checks will quickly fail in the vast majority of cases, and thus
4774 help prevent the unnecessary use of a more expensive comparison.
4775 Said comparison also expects us to make some of these checks
4776 (see ada_identical_enum_types_p). */
4777
4778 /* Quick check: All symbols should have an enum type. */
4779 for (i = 0; i < nsyms; i++)
4780 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4781 return 0;
4782
4783 /* Quick check: They should all have the same value. */
4784 for (i = 1; i < nsyms; i++)
4785 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4786 return 0;
4787
4788 /* Quick check: They should all have the same number of enumerals. */
4789 for (i = 1; i < nsyms; i++)
4790 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4791 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4792 return 0;
4793
4794 /* All the sanity checks passed, so we might have a set of
4795 identical enumeration types. Perform a more complete
4796 comparison of the type of each symbol. */
4797 for (i = 1; i < nsyms; i++)
4798 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4799 SYMBOL_TYPE (syms[0].sym)))
4800 return 0;
4801
4802 return 1;
4803 }
4804
4805 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4806 duplicate other symbols in the list (The only case I know of where
4807 this happens is when object files containing stabs-in-ecoff are
4808 linked with files containing ordinary ecoff debugging symbols (or no
4809 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4810 Returns the number of items in the modified list. */
4811
4812 static int
4813 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4814 {
4815 int i, j;
4816
4817 /* We should never be called with less than 2 symbols, as there
4818 cannot be any extra symbol in that case. But it's easy to
4819 handle, since we have nothing to do in that case. */
4820 if (nsyms < 2)
4821 return nsyms;
4822
4823 i = 0;
4824 while (i < nsyms)
4825 {
4826 int remove_p = 0;
4827
4828 /* If two symbols have the same name and one of them is a stub type,
4829 the get rid of the stub. */
4830
4831 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4832 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4833 {
4834 for (j = 0; j < nsyms; j++)
4835 {
4836 if (j != i
4837 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4838 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4839 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4840 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4841 remove_p = 1;
4842 }
4843 }
4844
4845 /* Two symbols with the same name, same class and same address
4846 should be identical. */
4847
4848 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4849 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4850 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4851 {
4852 for (j = 0; j < nsyms; j += 1)
4853 {
4854 if (i != j
4855 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4856 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4857 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4858 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4859 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4860 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4861 remove_p = 1;
4862 }
4863 }
4864
4865 if (remove_p)
4866 {
4867 for (j = i + 1; j < nsyms; j += 1)
4868 syms[j - 1] = syms[j];
4869 nsyms -= 1;
4870 }
4871
4872 i += 1;
4873 }
4874
4875 /* If all the remaining symbols are identical enumerals, then
4876 just keep the first one and discard the rest.
4877
4878 Unlike what we did previously, we do not discard any entry
4879 unless they are ALL identical. This is because the symbol
4880 comparison is not a strict comparison, but rather a practical
4881 comparison. If all symbols are considered identical, then
4882 we can just go ahead and use the first one and discard the rest.
4883 But if we cannot reduce the list to a single element, we have
4884 to ask the user to disambiguate anyways. And if we have to
4885 present a multiple-choice menu, it's less confusing if the list
4886 isn't missing some choices that were identical and yet distinct. */
4887 if (symbols_are_identical_enums (syms, nsyms))
4888 nsyms = 1;
4889
4890 return nsyms;
4891 }
4892
4893 /* Given a type that corresponds to a renaming entity, use the type name
4894 to extract the scope (package name or function name, fully qualified,
4895 and following the GNAT encoding convention) where this renaming has been
4896 defined. The string returned needs to be deallocated after use. */
4897
4898 static char *
4899 xget_renaming_scope (struct type *renaming_type)
4900 {
4901 /* The renaming types adhere to the following convention:
4902 <scope>__<rename>___<XR extension>.
4903 So, to extract the scope, we search for the "___XR" extension,
4904 and then backtrack until we find the first "__". */
4905
4906 const char *name = type_name_no_tag (renaming_type);
4907 char *suffix = strstr (name, "___XR");
4908 char *last;
4909 int scope_len;
4910 char *scope;
4911
4912 /* Now, backtrack a bit until we find the first "__". Start looking
4913 at suffix - 3, as the <rename> part is at least one character long. */
4914
4915 for (last = suffix - 3; last > name; last--)
4916 if (last[0] == '_' && last[1] == '_')
4917 break;
4918
4919 /* Make a copy of scope and return it. */
4920
4921 scope_len = last - name;
4922 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4923
4924 strncpy (scope, name, scope_len);
4925 scope[scope_len] = '\0';
4926
4927 return scope;
4928 }
4929
4930 /* Return nonzero if NAME corresponds to a package name. */
4931
4932 static int
4933 is_package_name (const char *name)
4934 {
4935 /* Here, We take advantage of the fact that no symbols are generated
4936 for packages, while symbols are generated for each function.
4937 So the condition for NAME represent a package becomes equivalent
4938 to NAME not existing in our list of symbols. There is only one
4939 small complication with library-level functions (see below). */
4940
4941 char *fun_name;
4942
4943 /* If it is a function that has not been defined at library level,
4944 then we should be able to look it up in the symbols. */
4945 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4946 return 0;
4947
4948 /* Library-level function names start with "_ada_". See if function
4949 "_ada_" followed by NAME can be found. */
4950
4951 /* Do a quick check that NAME does not contain "__", since library-level
4952 functions names cannot contain "__" in them. */
4953 if (strstr (name, "__") != NULL)
4954 return 0;
4955
4956 fun_name = xstrprintf ("_ada_%s", name);
4957
4958 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4959 }
4960
4961 /* Return nonzero if SYM corresponds to a renaming entity that is
4962 not visible from FUNCTION_NAME. */
4963
4964 static int
4965 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4966 {
4967 char *scope;
4968 struct cleanup *old_chain;
4969
4970 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4971 return 0;
4972
4973 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4974 old_chain = make_cleanup (xfree, scope);
4975
4976 /* If the rename has been defined in a package, then it is visible. */
4977 if (is_package_name (scope))
4978 {
4979 do_cleanups (old_chain);
4980 return 0;
4981 }
4982
4983 /* Check that the rename is in the current function scope by checking
4984 that its name starts with SCOPE. */
4985
4986 /* If the function name starts with "_ada_", it means that it is
4987 a library-level function. Strip this prefix before doing the
4988 comparison, as the encoding for the renaming does not contain
4989 this prefix. */
4990 if (strncmp (function_name, "_ada_", 5) == 0)
4991 function_name += 5;
4992
4993 {
4994 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4995
4996 do_cleanups (old_chain);
4997 return is_invisible;
4998 }
4999 }
5000
5001 /* Remove entries from SYMS that corresponds to a renaming entity that
5002 is not visible from the function associated with CURRENT_BLOCK or
5003 that is superfluous due to the presence of more specific renaming
5004 information. Places surviving symbols in the initial entries of
5005 SYMS and returns the number of surviving symbols.
5006
5007 Rationale:
5008 First, in cases where an object renaming is implemented as a
5009 reference variable, GNAT may produce both the actual reference
5010 variable and the renaming encoding. In this case, we discard the
5011 latter.
5012
5013 Second, GNAT emits a type following a specified encoding for each renaming
5014 entity. Unfortunately, STABS currently does not support the definition
5015 of types that are local to a given lexical block, so all renamings types
5016 are emitted at library level. As a consequence, if an application
5017 contains two renaming entities using the same name, and a user tries to
5018 print the value of one of these entities, the result of the ada symbol
5019 lookup will also contain the wrong renaming type.
5020
5021 This function partially covers for this limitation by attempting to
5022 remove from the SYMS list renaming symbols that should be visible
5023 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5024 method with the current information available. The implementation
5025 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5026
5027 - When the user tries to print a rename in a function while there
5028 is another rename entity defined in a package: Normally, the
5029 rename in the function has precedence over the rename in the
5030 package, so the latter should be removed from the list. This is
5031 currently not the case.
5032
5033 - This function will incorrectly remove valid renames if
5034 the CURRENT_BLOCK corresponds to a function which symbol name
5035 has been changed by an "Export" pragma. As a consequence,
5036 the user will be unable to print such rename entities. */
5037
5038 static int
5039 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5040 int nsyms, const struct block *current_block)
5041 {
5042 struct symbol *current_function;
5043 const char *current_function_name;
5044 int i;
5045 int is_new_style_renaming;
5046
5047 /* If there is both a renaming foo___XR... encoded as a variable and
5048 a simple variable foo in the same block, discard the latter.
5049 First, zero out such symbols, then compress. */
5050 is_new_style_renaming = 0;
5051 for (i = 0; i < nsyms; i += 1)
5052 {
5053 struct symbol *sym = syms[i].sym;
5054 const struct block *block = syms[i].block;
5055 const char *name;
5056 const char *suffix;
5057
5058 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5059 continue;
5060 name = SYMBOL_LINKAGE_NAME (sym);
5061 suffix = strstr (name, "___XR");
5062
5063 if (suffix != NULL)
5064 {
5065 int name_len = suffix - name;
5066 int j;
5067
5068 is_new_style_renaming = 1;
5069 for (j = 0; j < nsyms; j += 1)
5070 if (i != j && syms[j].sym != NULL
5071 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5072 name_len) == 0
5073 && block == syms[j].block)
5074 syms[j].sym = NULL;
5075 }
5076 }
5077 if (is_new_style_renaming)
5078 {
5079 int j, k;
5080
5081 for (j = k = 0; j < nsyms; j += 1)
5082 if (syms[j].sym != NULL)
5083 {
5084 syms[k] = syms[j];
5085 k += 1;
5086 }
5087 return k;
5088 }
5089
5090 /* Extract the function name associated to CURRENT_BLOCK.
5091 Abort if unable to do so. */
5092
5093 if (current_block == NULL)
5094 return nsyms;
5095
5096 current_function = block_linkage_function (current_block);
5097 if (current_function == NULL)
5098 return nsyms;
5099
5100 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5101 if (current_function_name == NULL)
5102 return nsyms;
5103
5104 /* Check each of the symbols, and remove it from the list if it is
5105 a type corresponding to a renaming that is out of the scope of
5106 the current block. */
5107
5108 i = 0;
5109 while (i < nsyms)
5110 {
5111 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5112 == ADA_OBJECT_RENAMING
5113 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5114 {
5115 int j;
5116
5117 for (j = i + 1; j < nsyms; j += 1)
5118 syms[j - 1] = syms[j];
5119 nsyms -= 1;
5120 }
5121 else
5122 i += 1;
5123 }
5124
5125 return nsyms;
5126 }
5127
5128 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5129 whose name and domain match NAME and DOMAIN respectively.
5130 If no match was found, then extend the search to "enclosing"
5131 routines (in other words, if we're inside a nested function,
5132 search the symbols defined inside the enclosing functions).
5133 If WILD_MATCH_P is nonzero, perform the naming matching in
5134 "wild" mode (see function "wild_match" for more info).
5135
5136 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5137
5138 static void
5139 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5140 const struct block *block, domain_enum domain,
5141 int wild_match_p)
5142 {
5143 int block_depth = 0;
5144
5145 while (block != NULL)
5146 {
5147 block_depth += 1;
5148 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5149 wild_match_p);
5150
5151 /* If we found a non-function match, assume that's the one. */
5152 if (is_nonfunction (defns_collected (obstackp, 0),
5153 num_defns_collected (obstackp)))
5154 return;
5155
5156 block = BLOCK_SUPERBLOCK (block);
5157 }
5158
5159 /* If no luck so far, try to find NAME as a local symbol in some lexically
5160 enclosing subprogram. */
5161 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5162 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5163 }
5164
5165 /* An object of this type is used as the user_data argument when
5166 calling the map_matching_symbols method. */
5167
5168 struct match_data
5169 {
5170 struct objfile *objfile;
5171 struct obstack *obstackp;
5172 struct symbol *arg_sym;
5173 int found_sym;
5174 };
5175
5176 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5177 to a list of symbols. DATA0 is a pointer to a struct match_data *
5178 containing the obstack that collects the symbol list, the file that SYM
5179 must come from, a flag indicating whether a non-argument symbol has
5180 been found in the current block, and the last argument symbol
5181 passed in SYM within the current block (if any). When SYM is null,
5182 marking the end of a block, the argument symbol is added if no
5183 other has been found. */
5184
5185 static int
5186 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5187 {
5188 struct match_data *data = (struct match_data *) data0;
5189
5190 if (sym == NULL)
5191 {
5192 if (!data->found_sym && data->arg_sym != NULL)
5193 add_defn_to_vec (data->obstackp,
5194 fixup_symbol_section (data->arg_sym, data->objfile),
5195 block);
5196 data->found_sym = 0;
5197 data->arg_sym = NULL;
5198 }
5199 else
5200 {
5201 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5202 return 0;
5203 else if (SYMBOL_IS_ARGUMENT (sym))
5204 data->arg_sym = sym;
5205 else
5206 {
5207 data->found_sym = 1;
5208 add_defn_to_vec (data->obstackp,
5209 fixup_symbol_section (sym, data->objfile),
5210 block);
5211 }
5212 }
5213 return 0;
5214 }
5215
5216 /* Implements compare_names, but only applying the comparision using
5217 the given CASING. */
5218
5219 static int
5220 compare_names_with_case (const char *string1, const char *string2,
5221 enum case_sensitivity casing)
5222 {
5223 while (*string1 != '\0' && *string2 != '\0')
5224 {
5225 char c1, c2;
5226
5227 if (isspace (*string1) || isspace (*string2))
5228 return strcmp_iw_ordered (string1, string2);
5229
5230 if (casing == case_sensitive_off)
5231 {
5232 c1 = tolower (*string1);
5233 c2 = tolower (*string2);
5234 }
5235 else
5236 {
5237 c1 = *string1;
5238 c2 = *string2;
5239 }
5240 if (c1 != c2)
5241 break;
5242
5243 string1 += 1;
5244 string2 += 1;
5245 }
5246
5247 switch (*string1)
5248 {
5249 case '(':
5250 return strcmp_iw_ordered (string1, string2);
5251 case '_':
5252 if (*string2 == '\0')
5253 {
5254 if (is_name_suffix (string1))
5255 return 0;
5256 else
5257 return 1;
5258 }
5259 /* FALLTHROUGH */
5260 default:
5261 if (*string2 == '(')
5262 return strcmp_iw_ordered (string1, string2);
5263 else
5264 {
5265 if (casing == case_sensitive_off)
5266 return tolower (*string1) - tolower (*string2);
5267 else
5268 return *string1 - *string2;
5269 }
5270 }
5271 }
5272
5273 /* Compare STRING1 to STRING2, with results as for strcmp.
5274 Compatible with strcmp_iw_ordered in that...
5275
5276 strcmp_iw_ordered (STRING1, STRING2) <= 0
5277
5278 ... implies...
5279
5280 compare_names (STRING1, STRING2) <= 0
5281
5282 (they may differ as to what symbols compare equal). */
5283
5284 static int
5285 compare_names (const char *string1, const char *string2)
5286 {
5287 int result;
5288
5289 /* Similar to what strcmp_iw_ordered does, we need to perform
5290 a case-insensitive comparison first, and only resort to
5291 a second, case-sensitive, comparison if the first one was
5292 not sufficient to differentiate the two strings. */
5293
5294 result = compare_names_with_case (string1, string2, case_sensitive_off);
5295 if (result == 0)
5296 result = compare_names_with_case (string1, string2, case_sensitive_on);
5297
5298 return result;
5299 }
5300
5301 /* Add to OBSTACKP all non-local symbols whose name and domain match
5302 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5303 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5304
5305 static void
5306 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5307 domain_enum domain, int global,
5308 int is_wild_match)
5309 {
5310 struct objfile *objfile;
5311 struct match_data data;
5312
5313 memset (&data, 0, sizeof data);
5314 data.obstackp = obstackp;
5315
5316 ALL_OBJFILES (objfile)
5317 {
5318 data.objfile = objfile;
5319
5320 if (is_wild_match)
5321 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5322 aux_add_nonlocal_symbols, &data,
5323 wild_match, NULL);
5324 else
5325 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5326 aux_add_nonlocal_symbols, &data,
5327 full_match, compare_names);
5328 }
5329
5330 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5331 {
5332 ALL_OBJFILES (objfile)
5333 {
5334 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5335 strcpy (name1, "_ada_");
5336 strcpy (name1 + sizeof ("_ada_") - 1, name);
5337 data.objfile = objfile;
5338 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5339 global,
5340 aux_add_nonlocal_symbols,
5341 &data,
5342 full_match, compare_names);
5343 }
5344 }
5345 }
5346
5347 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5348 non-zero, enclosing scope and in global scopes, returning the number of
5349 matches.
5350 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5351 indicating the symbols found and the blocks and symbol tables (if
5352 any) in which they were found. This vector is transient---good only to
5353 the next call of ada_lookup_symbol_list.
5354
5355 When full_search is non-zero, any non-function/non-enumeral
5356 symbol match within the nest of blocks whose innermost member is BLOCK0,
5357 is the one match returned (no other matches in that or
5358 enclosing blocks is returned). If there are any matches in or
5359 surrounding BLOCK0, then these alone are returned.
5360
5361 Names prefixed with "standard__" are handled specially: "standard__"
5362 is first stripped off, and only static and global symbols are searched. */
5363
5364 static int
5365 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5366 domain_enum namespace,
5367 struct ada_symbol_info **results,
5368 int full_search)
5369 {
5370 struct symbol *sym;
5371 const struct block *block;
5372 const char *name;
5373 const int wild_match_p = should_use_wild_match (name0);
5374 int cacheIfUnique;
5375 int ndefns;
5376
5377 obstack_free (&symbol_list_obstack, NULL);
5378 obstack_init (&symbol_list_obstack);
5379
5380 cacheIfUnique = 0;
5381
5382 /* Search specified block and its superiors. */
5383
5384 name = name0;
5385 block = block0;
5386
5387 /* Special case: If the user specifies a symbol name inside package
5388 Standard, do a non-wild matching of the symbol name without
5389 the "standard__" prefix. This was primarily introduced in order
5390 to allow the user to specifically access the standard exceptions
5391 using, for instance, Standard.Constraint_Error when Constraint_Error
5392 is ambiguous (due to the user defining its own Constraint_Error
5393 entity inside its program). */
5394 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5395 {
5396 block = NULL;
5397 name = name0 + sizeof ("standard__") - 1;
5398 }
5399
5400 /* Check the non-global symbols. If we have ANY match, then we're done. */
5401
5402 if (block != NULL)
5403 {
5404 if (full_search)
5405 {
5406 ada_add_local_symbols (&symbol_list_obstack, name, block,
5407 namespace, wild_match_p);
5408 }
5409 else
5410 {
5411 /* In the !full_search case we're are being called by
5412 ada_iterate_over_symbols, and we don't want to search
5413 superblocks. */
5414 ada_add_block_symbols (&symbol_list_obstack, block, name,
5415 namespace, NULL, wild_match_p);
5416 }
5417 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5418 goto done;
5419 }
5420
5421 /* No non-global symbols found. Check our cache to see if we have
5422 already performed this search before. If we have, then return
5423 the same result. */
5424
5425 cacheIfUnique = 1;
5426 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5427 {
5428 if (sym != NULL)
5429 add_defn_to_vec (&symbol_list_obstack, sym, block);
5430 goto done;
5431 }
5432
5433 /* Search symbols from all global blocks. */
5434
5435 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5436 wild_match_p);
5437
5438 /* Now add symbols from all per-file blocks if we've gotten no hits
5439 (not strictly correct, but perhaps better than an error). */
5440
5441 if (num_defns_collected (&symbol_list_obstack) == 0)
5442 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5443 wild_match_p);
5444
5445 done:
5446 ndefns = num_defns_collected (&symbol_list_obstack);
5447 *results = defns_collected (&symbol_list_obstack, 1);
5448
5449 ndefns = remove_extra_symbols (*results, ndefns);
5450
5451 if (ndefns == 0 && full_search)
5452 cache_symbol (name0, namespace, NULL, NULL);
5453
5454 if (ndefns == 1 && full_search && cacheIfUnique)
5455 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5456
5457 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5458
5459 return ndefns;
5460 }
5461
5462 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5463 in global scopes, returning the number of matches, and setting *RESULTS
5464 to a vector of (SYM,BLOCK) tuples.
5465 See ada_lookup_symbol_list_worker for further details. */
5466
5467 int
5468 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5469 domain_enum domain, struct ada_symbol_info **results)
5470 {
5471 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5472 }
5473
5474 /* Implementation of the la_iterate_over_symbols method. */
5475
5476 static void
5477 ada_iterate_over_symbols (const struct block *block,
5478 const char *name, domain_enum domain,
5479 symbol_found_callback_ftype *callback,
5480 void *data)
5481 {
5482 int ndefs, i;
5483 struct ada_symbol_info *results;
5484
5485 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5486 for (i = 0; i < ndefs; ++i)
5487 {
5488 if (! (*callback) (results[i].sym, data))
5489 break;
5490 }
5491 }
5492
5493 /* If NAME is the name of an entity, return a string that should
5494 be used to look that entity up in Ada units. This string should
5495 be deallocated after use using xfree.
5496
5497 NAME can have any form that the "break" or "print" commands might
5498 recognize. In other words, it does not have to be the "natural"
5499 name, or the "encoded" name. */
5500
5501 char *
5502 ada_name_for_lookup (const char *name)
5503 {
5504 char *canon;
5505 int nlen = strlen (name);
5506
5507 if (name[0] == '<' && name[nlen - 1] == '>')
5508 {
5509 canon = xmalloc (nlen - 1);
5510 memcpy (canon, name + 1, nlen - 2);
5511 canon[nlen - 2] = '\0';
5512 }
5513 else
5514 canon = xstrdup (ada_encode (ada_fold_name (name)));
5515 return canon;
5516 }
5517
5518 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5519 to 1, but choosing the first symbol found if there are multiple
5520 choices.
5521
5522 The result is stored in *INFO, which must be non-NULL.
5523 If no match is found, INFO->SYM is set to NULL. */
5524
5525 void
5526 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5527 domain_enum namespace,
5528 struct ada_symbol_info *info)
5529 {
5530 struct ada_symbol_info *candidates;
5531 int n_candidates;
5532
5533 gdb_assert (info != NULL);
5534 memset (info, 0, sizeof (struct ada_symbol_info));
5535
5536 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5537 if (n_candidates == 0)
5538 return;
5539
5540 *info = candidates[0];
5541 info->sym = fixup_symbol_section (info->sym, NULL);
5542 }
5543
5544 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5545 scope and in global scopes, or NULL if none. NAME is folded and
5546 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5547 choosing the first symbol if there are multiple choices.
5548 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5549
5550 struct symbol *
5551 ada_lookup_symbol (const char *name, const struct block *block0,
5552 domain_enum namespace, int *is_a_field_of_this)
5553 {
5554 struct ada_symbol_info info;
5555
5556 if (is_a_field_of_this != NULL)
5557 *is_a_field_of_this = 0;
5558
5559 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5560 block0, namespace, &info);
5561 return info.sym;
5562 }
5563
5564 static struct symbol *
5565 ada_lookup_symbol_nonlocal (const char *name,
5566 const struct block *block,
5567 const domain_enum domain)
5568 {
5569 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5570 }
5571
5572
5573 /* True iff STR is a possible encoded suffix of a normal Ada name
5574 that is to be ignored for matching purposes. Suffixes of parallel
5575 names (e.g., XVE) are not included here. Currently, the possible suffixes
5576 are given by any of the regular expressions:
5577
5578 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5579 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5580 TKB [subprogram suffix for task bodies]
5581 _E[0-9]+[bs]$ [protected object entry suffixes]
5582 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5583
5584 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5585 match is performed. This sequence is used to differentiate homonyms,
5586 is an optional part of a valid name suffix. */
5587
5588 static int
5589 is_name_suffix (const char *str)
5590 {
5591 int k;
5592 const char *matching;
5593 const int len = strlen (str);
5594
5595 /* Skip optional leading __[0-9]+. */
5596
5597 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5598 {
5599 str += 3;
5600 while (isdigit (str[0]))
5601 str += 1;
5602 }
5603
5604 /* [.$][0-9]+ */
5605
5606 if (str[0] == '.' || str[0] == '$')
5607 {
5608 matching = str + 1;
5609 while (isdigit (matching[0]))
5610 matching += 1;
5611 if (matching[0] == '\0')
5612 return 1;
5613 }
5614
5615 /* ___[0-9]+ */
5616
5617 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5618 {
5619 matching = str + 3;
5620 while (isdigit (matching[0]))
5621 matching += 1;
5622 if (matching[0] == '\0')
5623 return 1;
5624 }
5625
5626 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5627
5628 if (strcmp (str, "TKB") == 0)
5629 return 1;
5630
5631 #if 0
5632 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5633 with a N at the end. Unfortunately, the compiler uses the same
5634 convention for other internal types it creates. So treating
5635 all entity names that end with an "N" as a name suffix causes
5636 some regressions. For instance, consider the case of an enumerated
5637 type. To support the 'Image attribute, it creates an array whose
5638 name ends with N.
5639 Having a single character like this as a suffix carrying some
5640 information is a bit risky. Perhaps we should change the encoding
5641 to be something like "_N" instead. In the meantime, do not do
5642 the following check. */
5643 /* Protected Object Subprograms */
5644 if (len == 1 && str [0] == 'N')
5645 return 1;
5646 #endif
5647
5648 /* _E[0-9]+[bs]$ */
5649 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5650 {
5651 matching = str + 3;
5652 while (isdigit (matching[0]))
5653 matching += 1;
5654 if ((matching[0] == 'b' || matching[0] == 's')
5655 && matching [1] == '\0')
5656 return 1;
5657 }
5658
5659 /* ??? We should not modify STR directly, as we are doing below. This
5660 is fine in this case, but may become problematic later if we find
5661 that this alternative did not work, and want to try matching
5662 another one from the begining of STR. Since we modified it, we
5663 won't be able to find the begining of the string anymore! */
5664 if (str[0] == 'X')
5665 {
5666 str += 1;
5667 while (str[0] != '_' && str[0] != '\0')
5668 {
5669 if (str[0] != 'n' && str[0] != 'b')
5670 return 0;
5671 str += 1;
5672 }
5673 }
5674
5675 if (str[0] == '\000')
5676 return 1;
5677
5678 if (str[0] == '_')
5679 {
5680 if (str[1] != '_' || str[2] == '\000')
5681 return 0;
5682 if (str[2] == '_')
5683 {
5684 if (strcmp (str + 3, "JM") == 0)
5685 return 1;
5686 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5687 the LJM suffix in favor of the JM one. But we will
5688 still accept LJM as a valid suffix for a reasonable
5689 amount of time, just to allow ourselves to debug programs
5690 compiled using an older version of GNAT. */
5691 if (strcmp (str + 3, "LJM") == 0)
5692 return 1;
5693 if (str[3] != 'X')
5694 return 0;
5695 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5696 || str[4] == 'U' || str[4] == 'P')
5697 return 1;
5698 if (str[4] == 'R' && str[5] != 'T')
5699 return 1;
5700 return 0;
5701 }
5702 if (!isdigit (str[2]))
5703 return 0;
5704 for (k = 3; str[k] != '\0'; k += 1)
5705 if (!isdigit (str[k]) && str[k] != '_')
5706 return 0;
5707 return 1;
5708 }
5709 if (str[0] == '$' && isdigit (str[1]))
5710 {
5711 for (k = 2; str[k] != '\0'; k += 1)
5712 if (!isdigit (str[k]) && str[k] != '_')
5713 return 0;
5714 return 1;
5715 }
5716 return 0;
5717 }
5718
5719 /* Return non-zero if the string starting at NAME and ending before
5720 NAME_END contains no capital letters. */
5721
5722 static int
5723 is_valid_name_for_wild_match (const char *name0)
5724 {
5725 const char *decoded_name = ada_decode (name0);
5726 int i;
5727
5728 /* If the decoded name starts with an angle bracket, it means that
5729 NAME0 does not follow the GNAT encoding format. It should then
5730 not be allowed as a possible wild match. */
5731 if (decoded_name[0] == '<')
5732 return 0;
5733
5734 for (i=0; decoded_name[i] != '\0'; i++)
5735 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5736 return 0;
5737
5738 return 1;
5739 }
5740
5741 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5742 that could start a simple name. Assumes that *NAMEP points into
5743 the string beginning at NAME0. */
5744
5745 static int
5746 advance_wild_match (const char **namep, const char *name0, int target0)
5747 {
5748 const char *name = *namep;
5749
5750 while (1)
5751 {
5752 int t0, t1;
5753
5754 t0 = *name;
5755 if (t0 == '_')
5756 {
5757 t1 = name[1];
5758 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5759 {
5760 name += 1;
5761 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5762 break;
5763 else
5764 name += 1;
5765 }
5766 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5767 || name[2] == target0))
5768 {
5769 name += 2;
5770 break;
5771 }
5772 else
5773 return 0;
5774 }
5775 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5776 name += 1;
5777 else
5778 return 0;
5779 }
5780
5781 *namep = name;
5782 return 1;
5783 }
5784
5785 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5786 informational suffixes of NAME (i.e., for which is_name_suffix is
5787 true). Assumes that PATN is a lower-cased Ada simple name. */
5788
5789 static int
5790 wild_match (const char *name, const char *patn)
5791 {
5792 const char *p;
5793 const char *name0 = name;
5794
5795 while (1)
5796 {
5797 const char *match = name;
5798
5799 if (*name == *patn)
5800 {
5801 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5802 if (*p != *name)
5803 break;
5804 if (*p == '\0' && is_name_suffix (name))
5805 return match != name0 && !is_valid_name_for_wild_match (name0);
5806
5807 if (name[-1] == '_')
5808 name -= 1;
5809 }
5810 if (!advance_wild_match (&name, name0, *patn))
5811 return 1;
5812 }
5813 }
5814
5815 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5816 informational suffix. */
5817
5818 static int
5819 full_match (const char *sym_name, const char *search_name)
5820 {
5821 return !match_name (sym_name, search_name, 0);
5822 }
5823
5824
5825 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5826 vector *defn_symbols, updating the list of symbols in OBSTACKP
5827 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5828 OBJFILE is the section containing BLOCK. */
5829
5830 static void
5831 ada_add_block_symbols (struct obstack *obstackp,
5832 const struct block *block, const char *name,
5833 domain_enum domain, struct objfile *objfile,
5834 int wild)
5835 {
5836 struct block_iterator iter;
5837 int name_len = strlen (name);
5838 /* A matching argument symbol, if any. */
5839 struct symbol *arg_sym;
5840 /* Set true when we find a matching non-argument symbol. */
5841 int found_sym;
5842 struct symbol *sym;
5843
5844 arg_sym = NULL;
5845 found_sym = 0;
5846 if (wild)
5847 {
5848 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5849 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5850 {
5851 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5852 SYMBOL_DOMAIN (sym), domain)
5853 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5854 {
5855 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5856 continue;
5857 else if (SYMBOL_IS_ARGUMENT (sym))
5858 arg_sym = sym;
5859 else
5860 {
5861 found_sym = 1;
5862 add_defn_to_vec (obstackp,
5863 fixup_symbol_section (sym, objfile),
5864 block);
5865 }
5866 }
5867 }
5868 }
5869 else
5870 {
5871 for (sym = block_iter_match_first (block, name, full_match, &iter);
5872 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5873 {
5874 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5875 SYMBOL_DOMAIN (sym), domain))
5876 {
5877 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5878 {
5879 if (SYMBOL_IS_ARGUMENT (sym))
5880 arg_sym = sym;
5881 else
5882 {
5883 found_sym = 1;
5884 add_defn_to_vec (obstackp,
5885 fixup_symbol_section (sym, objfile),
5886 block);
5887 }
5888 }
5889 }
5890 }
5891 }
5892
5893 if (!found_sym && arg_sym != NULL)
5894 {
5895 add_defn_to_vec (obstackp,
5896 fixup_symbol_section (arg_sym, objfile),
5897 block);
5898 }
5899
5900 if (!wild)
5901 {
5902 arg_sym = NULL;
5903 found_sym = 0;
5904
5905 ALL_BLOCK_SYMBOLS (block, iter, sym)
5906 {
5907 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5908 SYMBOL_DOMAIN (sym), domain))
5909 {
5910 int cmp;
5911
5912 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5913 if (cmp == 0)
5914 {
5915 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5916 if (cmp == 0)
5917 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5918 name_len);
5919 }
5920
5921 if (cmp == 0
5922 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5923 {
5924 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5925 {
5926 if (SYMBOL_IS_ARGUMENT (sym))
5927 arg_sym = sym;
5928 else
5929 {
5930 found_sym = 1;
5931 add_defn_to_vec (obstackp,
5932 fixup_symbol_section (sym, objfile),
5933 block);
5934 }
5935 }
5936 }
5937 }
5938 }
5939
5940 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5941 They aren't parameters, right? */
5942 if (!found_sym && arg_sym != NULL)
5943 {
5944 add_defn_to_vec (obstackp,
5945 fixup_symbol_section (arg_sym, objfile),
5946 block);
5947 }
5948 }
5949 }
5950 \f
5951
5952 /* Symbol Completion */
5953
5954 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5955 name in a form that's appropriate for the completion. The result
5956 does not need to be deallocated, but is only good until the next call.
5957
5958 TEXT_LEN is equal to the length of TEXT.
5959 Perform a wild match if WILD_MATCH_P is set.
5960 ENCODED_P should be set if TEXT represents the start of a symbol name
5961 in its encoded form. */
5962
5963 static const char *
5964 symbol_completion_match (const char *sym_name,
5965 const char *text, int text_len,
5966 int wild_match_p, int encoded_p)
5967 {
5968 const int verbatim_match = (text[0] == '<');
5969 int match = 0;
5970
5971 if (verbatim_match)
5972 {
5973 /* Strip the leading angle bracket. */
5974 text = text + 1;
5975 text_len--;
5976 }
5977
5978 /* First, test against the fully qualified name of the symbol. */
5979
5980 if (strncmp (sym_name, text, text_len) == 0)
5981 match = 1;
5982
5983 if (match && !encoded_p)
5984 {
5985 /* One needed check before declaring a positive match is to verify
5986 that iff we are doing a verbatim match, the decoded version
5987 of the symbol name starts with '<'. Otherwise, this symbol name
5988 is not a suitable completion. */
5989 const char *sym_name_copy = sym_name;
5990 int has_angle_bracket;
5991
5992 sym_name = ada_decode (sym_name);
5993 has_angle_bracket = (sym_name[0] == '<');
5994 match = (has_angle_bracket == verbatim_match);
5995 sym_name = sym_name_copy;
5996 }
5997
5998 if (match && !verbatim_match)
5999 {
6000 /* When doing non-verbatim match, another check that needs to
6001 be done is to verify that the potentially matching symbol name
6002 does not include capital letters, because the ada-mode would
6003 not be able to understand these symbol names without the
6004 angle bracket notation. */
6005 const char *tmp;
6006
6007 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6008 if (*tmp != '\0')
6009 match = 0;
6010 }
6011
6012 /* Second: Try wild matching... */
6013
6014 if (!match && wild_match_p)
6015 {
6016 /* Since we are doing wild matching, this means that TEXT
6017 may represent an unqualified symbol name. We therefore must
6018 also compare TEXT against the unqualified name of the symbol. */
6019 sym_name = ada_unqualified_name (ada_decode (sym_name));
6020
6021 if (strncmp (sym_name, text, text_len) == 0)
6022 match = 1;
6023 }
6024
6025 /* Finally: If we found a mach, prepare the result to return. */
6026
6027 if (!match)
6028 return NULL;
6029
6030 if (verbatim_match)
6031 sym_name = add_angle_brackets (sym_name);
6032
6033 if (!encoded_p)
6034 sym_name = ada_decode (sym_name);
6035
6036 return sym_name;
6037 }
6038
6039 /* A companion function to ada_make_symbol_completion_list().
6040 Check if SYM_NAME represents a symbol which name would be suitable
6041 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6042 it is appended at the end of the given string vector SV.
6043
6044 ORIG_TEXT is the string original string from the user command
6045 that needs to be completed. WORD is the entire command on which
6046 completion should be performed. These two parameters are used to
6047 determine which part of the symbol name should be added to the
6048 completion vector.
6049 if WILD_MATCH_P is set, then wild matching is performed.
6050 ENCODED_P should be set if TEXT represents a symbol name in its
6051 encoded formed (in which case the completion should also be
6052 encoded). */
6053
6054 static void
6055 symbol_completion_add (VEC(char_ptr) **sv,
6056 const char *sym_name,
6057 const char *text, int text_len,
6058 const char *orig_text, const char *word,
6059 int wild_match_p, int encoded_p)
6060 {
6061 const char *match = symbol_completion_match (sym_name, text, text_len,
6062 wild_match_p, encoded_p);
6063 char *completion;
6064
6065 if (match == NULL)
6066 return;
6067
6068 /* We found a match, so add the appropriate completion to the given
6069 string vector. */
6070
6071 if (word == orig_text)
6072 {
6073 completion = xmalloc (strlen (match) + 5);
6074 strcpy (completion, match);
6075 }
6076 else if (word > orig_text)
6077 {
6078 /* Return some portion of sym_name. */
6079 completion = xmalloc (strlen (match) + 5);
6080 strcpy (completion, match + (word - orig_text));
6081 }
6082 else
6083 {
6084 /* Return some of ORIG_TEXT plus sym_name. */
6085 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6086 strncpy (completion, word, orig_text - word);
6087 completion[orig_text - word] = '\0';
6088 strcat (completion, match);
6089 }
6090
6091 VEC_safe_push (char_ptr, *sv, completion);
6092 }
6093
6094 /* An object of this type is passed as the user_data argument to the
6095 expand_symtabs_matching method. */
6096 struct add_partial_datum
6097 {
6098 VEC(char_ptr) **completions;
6099 const char *text;
6100 int text_len;
6101 const char *text0;
6102 const char *word;
6103 int wild_match;
6104 int encoded;
6105 };
6106
6107 /* A callback for expand_symtabs_matching. */
6108
6109 static int
6110 ada_complete_symbol_matcher (const char *name, void *user_data)
6111 {
6112 struct add_partial_datum *data = user_data;
6113
6114 return symbol_completion_match (name, data->text, data->text_len,
6115 data->wild_match, data->encoded) != NULL;
6116 }
6117
6118 /* Return a list of possible symbol names completing TEXT0. WORD is
6119 the entire command on which completion is made. */
6120
6121 static VEC (char_ptr) *
6122 ada_make_symbol_completion_list (const char *text0, const char *word,
6123 enum type_code code)
6124 {
6125 char *text;
6126 int text_len;
6127 int wild_match_p;
6128 int encoded_p;
6129 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6130 struct symbol *sym;
6131 struct symtab *s;
6132 struct minimal_symbol *msymbol;
6133 struct objfile *objfile;
6134 const struct block *b, *surrounding_static_block = 0;
6135 int i;
6136 struct block_iterator iter;
6137 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6138
6139 gdb_assert (code == TYPE_CODE_UNDEF);
6140
6141 if (text0[0] == '<')
6142 {
6143 text = xstrdup (text0);
6144 make_cleanup (xfree, text);
6145 text_len = strlen (text);
6146 wild_match_p = 0;
6147 encoded_p = 1;
6148 }
6149 else
6150 {
6151 text = xstrdup (ada_encode (text0));
6152 make_cleanup (xfree, text);
6153 text_len = strlen (text);
6154 for (i = 0; i < text_len; i++)
6155 text[i] = tolower (text[i]);
6156
6157 encoded_p = (strstr (text0, "__") != NULL);
6158 /* If the name contains a ".", then the user is entering a fully
6159 qualified entity name, and the match must not be done in wild
6160 mode. Similarly, if the user wants to complete what looks like
6161 an encoded name, the match must not be done in wild mode. */
6162 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6163 }
6164
6165 /* First, look at the partial symtab symbols. */
6166 {
6167 struct add_partial_datum data;
6168
6169 data.completions = &completions;
6170 data.text = text;
6171 data.text_len = text_len;
6172 data.text0 = text0;
6173 data.word = word;
6174 data.wild_match = wild_match_p;
6175 data.encoded = encoded_p;
6176 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6177 &data);
6178 }
6179
6180 /* At this point scan through the misc symbol vectors and add each
6181 symbol you find to the list. Eventually we want to ignore
6182 anything that isn't a text symbol (everything else will be
6183 handled by the psymtab code above). */
6184
6185 ALL_MSYMBOLS (objfile, msymbol)
6186 {
6187 QUIT;
6188 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6189 text, text_len, text0, word, wild_match_p,
6190 encoded_p);
6191 }
6192
6193 /* Search upwards from currently selected frame (so that we can
6194 complete on local vars. */
6195
6196 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6197 {
6198 if (!BLOCK_SUPERBLOCK (b))
6199 surrounding_static_block = b; /* For elmin of dups */
6200
6201 ALL_BLOCK_SYMBOLS (b, iter, sym)
6202 {
6203 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6204 text, text_len, text0, word,
6205 wild_match_p, encoded_p);
6206 }
6207 }
6208
6209 /* Go through the symtabs and check the externs and statics for
6210 symbols which match. */
6211
6212 ALL_SYMTABS (objfile, s)
6213 {
6214 QUIT;
6215 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6216 ALL_BLOCK_SYMBOLS (b, iter, sym)
6217 {
6218 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6219 text, text_len, text0, word,
6220 wild_match_p, encoded_p);
6221 }
6222 }
6223
6224 ALL_SYMTABS (objfile, s)
6225 {
6226 QUIT;
6227 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6228 /* Don't do this block twice. */
6229 if (b == surrounding_static_block)
6230 continue;
6231 ALL_BLOCK_SYMBOLS (b, iter, sym)
6232 {
6233 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6234 text, text_len, text0, word,
6235 wild_match_p, encoded_p);
6236 }
6237 }
6238
6239 do_cleanups (old_chain);
6240 return completions;
6241 }
6242
6243 /* Field Access */
6244
6245 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6246 for tagged types. */
6247
6248 static int
6249 ada_is_dispatch_table_ptr_type (struct type *type)
6250 {
6251 const char *name;
6252
6253 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6254 return 0;
6255
6256 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6257 if (name == NULL)
6258 return 0;
6259
6260 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6261 }
6262
6263 /* Return non-zero if TYPE is an interface tag. */
6264
6265 static int
6266 ada_is_interface_tag (struct type *type)
6267 {
6268 const char *name = TYPE_NAME (type);
6269
6270 if (name == NULL)
6271 return 0;
6272
6273 return (strcmp (name, "ada__tags__interface_tag") == 0);
6274 }
6275
6276 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6277 to be invisible to users. */
6278
6279 int
6280 ada_is_ignored_field (struct type *type, int field_num)
6281 {
6282 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6283 return 1;
6284
6285 /* Check the name of that field. */
6286 {
6287 const char *name = TYPE_FIELD_NAME (type, field_num);
6288
6289 /* Anonymous field names should not be printed.
6290 brobecker/2007-02-20: I don't think this can actually happen
6291 but we don't want to print the value of annonymous fields anyway. */
6292 if (name == NULL)
6293 return 1;
6294
6295 /* Normally, fields whose name start with an underscore ("_")
6296 are fields that have been internally generated by the compiler,
6297 and thus should not be printed. The "_parent" field is special,
6298 however: This is a field internally generated by the compiler
6299 for tagged types, and it contains the components inherited from
6300 the parent type. This field should not be printed as is, but
6301 should not be ignored either. */
6302 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6303 return 1;
6304 }
6305
6306 /* If this is the dispatch table of a tagged type or an interface tag,
6307 then ignore. */
6308 if (ada_is_tagged_type (type, 1)
6309 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6310 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6311 return 1;
6312
6313 /* Not a special field, so it should not be ignored. */
6314 return 0;
6315 }
6316
6317 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6318 pointer or reference type whose ultimate target has a tag field. */
6319
6320 int
6321 ada_is_tagged_type (struct type *type, int refok)
6322 {
6323 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6324 }
6325
6326 /* True iff TYPE represents the type of X'Tag */
6327
6328 int
6329 ada_is_tag_type (struct type *type)
6330 {
6331 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6332 return 0;
6333 else
6334 {
6335 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6336
6337 return (name != NULL
6338 && strcmp (name, "ada__tags__dispatch_table") == 0);
6339 }
6340 }
6341
6342 /* The type of the tag on VAL. */
6343
6344 struct type *
6345 ada_tag_type (struct value *val)
6346 {
6347 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6348 }
6349
6350 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6351 retired at Ada 05). */
6352
6353 static int
6354 is_ada95_tag (struct value *tag)
6355 {
6356 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6357 }
6358
6359 /* The value of the tag on VAL. */
6360
6361 struct value *
6362 ada_value_tag (struct value *val)
6363 {
6364 return ada_value_struct_elt (val, "_tag", 0);
6365 }
6366
6367 /* The value of the tag on the object of type TYPE whose contents are
6368 saved at VALADDR, if it is non-null, or is at memory address
6369 ADDRESS. */
6370
6371 static struct value *
6372 value_tag_from_contents_and_address (struct type *type,
6373 const gdb_byte *valaddr,
6374 CORE_ADDR address)
6375 {
6376 int tag_byte_offset;
6377 struct type *tag_type;
6378
6379 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6380 NULL, NULL, NULL))
6381 {
6382 const gdb_byte *valaddr1 = ((valaddr == NULL)
6383 ? NULL
6384 : valaddr + tag_byte_offset);
6385 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6386
6387 return value_from_contents_and_address (tag_type, valaddr1, address1);
6388 }
6389 return NULL;
6390 }
6391
6392 static struct type *
6393 type_from_tag (struct value *tag)
6394 {
6395 const char *type_name = ada_tag_name (tag);
6396
6397 if (type_name != NULL)
6398 return ada_find_any_type (ada_encode (type_name));
6399 return NULL;
6400 }
6401
6402 /* Given a value OBJ of a tagged type, return a value of this
6403 type at the base address of the object. The base address, as
6404 defined in Ada.Tags, it is the address of the primary tag of
6405 the object, and therefore where the field values of its full
6406 view can be fetched. */
6407
6408 struct value *
6409 ada_tag_value_at_base_address (struct value *obj)
6410 {
6411 volatile struct gdb_exception e;
6412 struct value *val;
6413 LONGEST offset_to_top = 0;
6414 struct type *ptr_type, *obj_type;
6415 struct value *tag;
6416 CORE_ADDR base_address;
6417
6418 obj_type = value_type (obj);
6419
6420 /* It is the responsability of the caller to deref pointers. */
6421
6422 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6423 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6424 return obj;
6425
6426 tag = ada_value_tag (obj);
6427 if (!tag)
6428 return obj;
6429
6430 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6431
6432 if (is_ada95_tag (tag))
6433 return obj;
6434
6435 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6436 ptr_type = lookup_pointer_type (ptr_type);
6437 val = value_cast (ptr_type, tag);
6438 if (!val)
6439 return obj;
6440
6441 /* It is perfectly possible that an exception be raised while
6442 trying to determine the base address, just like for the tag;
6443 see ada_tag_name for more details. We do not print the error
6444 message for the same reason. */
6445
6446 TRY_CATCH (e, RETURN_MASK_ERROR)
6447 {
6448 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6449 }
6450
6451 if (e.reason < 0)
6452 return obj;
6453
6454 /* If offset is null, nothing to do. */
6455
6456 if (offset_to_top == 0)
6457 return obj;
6458
6459 /* -1 is a special case in Ada.Tags; however, what should be done
6460 is not quite clear from the documentation. So do nothing for
6461 now. */
6462
6463 if (offset_to_top == -1)
6464 return obj;
6465
6466 base_address = value_address (obj) - offset_to_top;
6467 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6468
6469 /* Make sure that we have a proper tag at the new address.
6470 Otherwise, offset_to_top is bogus (which can happen when
6471 the object is not initialized yet). */
6472
6473 if (!tag)
6474 return obj;
6475
6476 obj_type = type_from_tag (tag);
6477
6478 if (!obj_type)
6479 return obj;
6480
6481 return value_from_contents_and_address (obj_type, NULL, base_address);
6482 }
6483
6484 /* Return the "ada__tags__type_specific_data" type. */
6485
6486 static struct type *
6487 ada_get_tsd_type (struct inferior *inf)
6488 {
6489 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6490
6491 if (data->tsd_type == 0)
6492 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6493 return data->tsd_type;
6494 }
6495
6496 /* Return the TSD (type-specific data) associated to the given TAG.
6497 TAG is assumed to be the tag of a tagged-type entity.
6498
6499 May return NULL if we are unable to get the TSD. */
6500
6501 static struct value *
6502 ada_get_tsd_from_tag (struct value *tag)
6503 {
6504 struct value *val;
6505 struct type *type;
6506
6507 /* First option: The TSD is simply stored as a field of our TAG.
6508 Only older versions of GNAT would use this format, but we have
6509 to test it first, because there are no visible markers for
6510 the current approach except the absence of that field. */
6511
6512 val = ada_value_struct_elt (tag, "tsd", 1);
6513 if (val)
6514 return val;
6515
6516 /* Try the second representation for the dispatch table (in which
6517 there is no explicit 'tsd' field in the referent of the tag pointer,
6518 and instead the tsd pointer is stored just before the dispatch
6519 table. */
6520
6521 type = ada_get_tsd_type (current_inferior());
6522 if (type == NULL)
6523 return NULL;
6524 type = lookup_pointer_type (lookup_pointer_type (type));
6525 val = value_cast (type, tag);
6526 if (val == NULL)
6527 return NULL;
6528 return value_ind (value_ptradd (val, -1));
6529 }
6530
6531 /* Given the TSD of a tag (type-specific data), return a string
6532 containing the name of the associated type.
6533
6534 The returned value is good until the next call. May return NULL
6535 if we are unable to determine the tag name. */
6536
6537 static char *
6538 ada_tag_name_from_tsd (struct value *tsd)
6539 {
6540 static char name[1024];
6541 char *p;
6542 struct value *val;
6543
6544 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6545 if (val == NULL)
6546 return NULL;
6547 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6548 for (p = name; *p != '\0'; p += 1)
6549 if (isalpha (*p))
6550 *p = tolower (*p);
6551 return name;
6552 }
6553
6554 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6555 a C string.
6556
6557 Return NULL if the TAG is not an Ada tag, or if we were unable to
6558 determine the name of that tag. The result is good until the next
6559 call. */
6560
6561 const char *
6562 ada_tag_name (struct value *tag)
6563 {
6564 volatile struct gdb_exception e;
6565 char *name = NULL;
6566
6567 if (!ada_is_tag_type (value_type (tag)))
6568 return NULL;
6569
6570 /* It is perfectly possible that an exception be raised while trying
6571 to determine the TAG's name, even under normal circumstances:
6572 The associated variable may be uninitialized or corrupted, for
6573 instance. We do not let any exception propagate past this point.
6574 instead we return NULL.
6575
6576 We also do not print the error message either (which often is very
6577 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6578 the caller print a more meaningful message if necessary. */
6579 TRY_CATCH (e, RETURN_MASK_ERROR)
6580 {
6581 struct value *tsd = ada_get_tsd_from_tag (tag);
6582
6583 if (tsd != NULL)
6584 name = ada_tag_name_from_tsd (tsd);
6585 }
6586
6587 return name;
6588 }
6589
6590 /* The parent type of TYPE, or NULL if none. */
6591
6592 struct type *
6593 ada_parent_type (struct type *type)
6594 {
6595 int i;
6596
6597 type = ada_check_typedef (type);
6598
6599 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6600 return NULL;
6601
6602 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6603 if (ada_is_parent_field (type, i))
6604 {
6605 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6606
6607 /* If the _parent field is a pointer, then dereference it. */
6608 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6609 parent_type = TYPE_TARGET_TYPE (parent_type);
6610 /* If there is a parallel XVS type, get the actual base type. */
6611 parent_type = ada_get_base_type (parent_type);
6612
6613 return ada_check_typedef (parent_type);
6614 }
6615
6616 return NULL;
6617 }
6618
6619 /* True iff field number FIELD_NUM of structure type TYPE contains the
6620 parent-type (inherited) fields of a derived type. Assumes TYPE is
6621 a structure type with at least FIELD_NUM+1 fields. */
6622
6623 int
6624 ada_is_parent_field (struct type *type, int field_num)
6625 {
6626 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6627
6628 return (name != NULL
6629 && (strncmp (name, "PARENT", 6) == 0
6630 || strncmp (name, "_parent", 7) == 0));
6631 }
6632
6633 /* True iff field number FIELD_NUM of structure type TYPE is a
6634 transparent wrapper field (which should be silently traversed when doing
6635 field selection and flattened when printing). Assumes TYPE is a
6636 structure type with at least FIELD_NUM+1 fields. Such fields are always
6637 structures. */
6638
6639 int
6640 ada_is_wrapper_field (struct type *type, int field_num)
6641 {
6642 const char *name = TYPE_FIELD_NAME (type, field_num);
6643
6644 return (name != NULL
6645 && (strncmp (name, "PARENT", 6) == 0
6646 || strcmp (name, "REP") == 0
6647 || strncmp (name, "_parent", 7) == 0
6648 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6649 }
6650
6651 /* True iff field number FIELD_NUM of structure or union type TYPE
6652 is a variant wrapper. Assumes TYPE is a structure type with at least
6653 FIELD_NUM+1 fields. */
6654
6655 int
6656 ada_is_variant_part (struct type *type, int field_num)
6657 {
6658 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6659
6660 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6661 || (is_dynamic_field (type, field_num)
6662 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6663 == TYPE_CODE_UNION)));
6664 }
6665
6666 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6667 whose discriminants are contained in the record type OUTER_TYPE,
6668 returns the type of the controlling discriminant for the variant.
6669 May return NULL if the type could not be found. */
6670
6671 struct type *
6672 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6673 {
6674 char *name = ada_variant_discrim_name (var_type);
6675
6676 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6677 }
6678
6679 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6680 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6681 represents a 'when others' clause; otherwise 0. */
6682
6683 int
6684 ada_is_others_clause (struct type *type, int field_num)
6685 {
6686 const char *name = TYPE_FIELD_NAME (type, field_num);
6687
6688 return (name != NULL && name[0] == 'O');
6689 }
6690
6691 /* Assuming that TYPE0 is the type of the variant part of a record,
6692 returns the name of the discriminant controlling the variant.
6693 The value is valid until the next call to ada_variant_discrim_name. */
6694
6695 char *
6696 ada_variant_discrim_name (struct type *type0)
6697 {
6698 static char *result = NULL;
6699 static size_t result_len = 0;
6700 struct type *type;
6701 const char *name;
6702 const char *discrim_end;
6703 const char *discrim_start;
6704
6705 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6706 type = TYPE_TARGET_TYPE (type0);
6707 else
6708 type = type0;
6709
6710 name = ada_type_name (type);
6711
6712 if (name == NULL || name[0] == '\000')
6713 return "";
6714
6715 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6716 discrim_end -= 1)
6717 {
6718 if (strncmp (discrim_end, "___XVN", 6) == 0)
6719 break;
6720 }
6721 if (discrim_end == name)
6722 return "";
6723
6724 for (discrim_start = discrim_end; discrim_start != name + 3;
6725 discrim_start -= 1)
6726 {
6727 if (discrim_start == name + 1)
6728 return "";
6729 if ((discrim_start > name + 3
6730 && strncmp (discrim_start - 3, "___", 3) == 0)
6731 || discrim_start[-1] == '.')
6732 break;
6733 }
6734
6735 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6736 strncpy (result, discrim_start, discrim_end - discrim_start);
6737 result[discrim_end - discrim_start] = '\0';
6738 return result;
6739 }
6740
6741 /* Scan STR for a subtype-encoded number, beginning at position K.
6742 Put the position of the character just past the number scanned in
6743 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6744 Return 1 if there was a valid number at the given position, and 0
6745 otherwise. A "subtype-encoded" number consists of the absolute value
6746 in decimal, followed by the letter 'm' to indicate a negative number.
6747 Assumes 0m does not occur. */
6748
6749 int
6750 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6751 {
6752 ULONGEST RU;
6753
6754 if (!isdigit (str[k]))
6755 return 0;
6756
6757 /* Do it the hard way so as not to make any assumption about
6758 the relationship of unsigned long (%lu scan format code) and
6759 LONGEST. */
6760 RU = 0;
6761 while (isdigit (str[k]))
6762 {
6763 RU = RU * 10 + (str[k] - '0');
6764 k += 1;
6765 }
6766
6767 if (str[k] == 'm')
6768 {
6769 if (R != NULL)
6770 *R = (-(LONGEST) (RU - 1)) - 1;
6771 k += 1;
6772 }
6773 else if (R != NULL)
6774 *R = (LONGEST) RU;
6775
6776 /* NOTE on the above: Technically, C does not say what the results of
6777 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6778 number representable as a LONGEST (although either would probably work
6779 in most implementations). When RU>0, the locution in the then branch
6780 above is always equivalent to the negative of RU. */
6781
6782 if (new_k != NULL)
6783 *new_k = k;
6784 return 1;
6785 }
6786
6787 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6788 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6789 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6790
6791 int
6792 ada_in_variant (LONGEST val, struct type *type, int field_num)
6793 {
6794 const char *name = TYPE_FIELD_NAME (type, field_num);
6795 int p;
6796
6797 p = 0;
6798 while (1)
6799 {
6800 switch (name[p])
6801 {
6802 case '\0':
6803 return 0;
6804 case 'S':
6805 {
6806 LONGEST W;
6807
6808 if (!ada_scan_number (name, p + 1, &W, &p))
6809 return 0;
6810 if (val == W)
6811 return 1;
6812 break;
6813 }
6814 case 'R':
6815 {
6816 LONGEST L, U;
6817
6818 if (!ada_scan_number (name, p + 1, &L, &p)
6819 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6820 return 0;
6821 if (val >= L && val <= U)
6822 return 1;
6823 break;
6824 }
6825 case 'O':
6826 return 1;
6827 default:
6828 return 0;
6829 }
6830 }
6831 }
6832
6833 /* FIXME: Lots of redundancy below. Try to consolidate. */
6834
6835 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6836 ARG_TYPE, extract and return the value of one of its (non-static)
6837 fields. FIELDNO says which field. Differs from value_primitive_field
6838 only in that it can handle packed values of arbitrary type. */
6839
6840 static struct value *
6841 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6842 struct type *arg_type)
6843 {
6844 struct type *type;
6845
6846 arg_type = ada_check_typedef (arg_type);
6847 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6848
6849 /* Handle packed fields. */
6850
6851 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6852 {
6853 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6854 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6855
6856 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6857 offset + bit_pos / 8,
6858 bit_pos % 8, bit_size, type);
6859 }
6860 else
6861 return value_primitive_field (arg1, offset, fieldno, arg_type);
6862 }
6863
6864 /* Find field with name NAME in object of type TYPE. If found,
6865 set the following for each argument that is non-null:
6866 - *FIELD_TYPE_P to the field's type;
6867 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6868 an object of that type;
6869 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6870 - *BIT_SIZE_P to its size in bits if the field is packed, and
6871 0 otherwise;
6872 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6873 fields up to but not including the desired field, or by the total
6874 number of fields if not found. A NULL value of NAME never
6875 matches; the function just counts visible fields in this case.
6876
6877 Returns 1 if found, 0 otherwise. */
6878
6879 static int
6880 find_struct_field (const char *name, struct type *type, int offset,
6881 struct type **field_type_p,
6882 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6883 int *index_p)
6884 {
6885 int i;
6886
6887 type = ada_check_typedef (type);
6888
6889 if (field_type_p != NULL)
6890 *field_type_p = NULL;
6891 if (byte_offset_p != NULL)
6892 *byte_offset_p = 0;
6893 if (bit_offset_p != NULL)
6894 *bit_offset_p = 0;
6895 if (bit_size_p != NULL)
6896 *bit_size_p = 0;
6897
6898 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6899 {
6900 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6901 int fld_offset = offset + bit_pos / 8;
6902 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6903
6904 if (t_field_name == NULL)
6905 continue;
6906
6907 else if (name != NULL && field_name_match (t_field_name, name))
6908 {
6909 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6910
6911 if (field_type_p != NULL)
6912 *field_type_p = TYPE_FIELD_TYPE (type, i);
6913 if (byte_offset_p != NULL)
6914 *byte_offset_p = fld_offset;
6915 if (bit_offset_p != NULL)
6916 *bit_offset_p = bit_pos % 8;
6917 if (bit_size_p != NULL)
6918 *bit_size_p = bit_size;
6919 return 1;
6920 }
6921 else if (ada_is_wrapper_field (type, i))
6922 {
6923 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6924 field_type_p, byte_offset_p, bit_offset_p,
6925 bit_size_p, index_p))
6926 return 1;
6927 }
6928 else if (ada_is_variant_part (type, i))
6929 {
6930 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6931 fixed type?? */
6932 int j;
6933 struct type *field_type
6934 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6935
6936 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6937 {
6938 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6939 fld_offset
6940 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6941 field_type_p, byte_offset_p,
6942 bit_offset_p, bit_size_p, index_p))
6943 return 1;
6944 }
6945 }
6946 else if (index_p != NULL)
6947 *index_p += 1;
6948 }
6949 return 0;
6950 }
6951
6952 /* Number of user-visible fields in record type TYPE. */
6953
6954 static int
6955 num_visible_fields (struct type *type)
6956 {
6957 int n;
6958
6959 n = 0;
6960 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6961 return n;
6962 }
6963
6964 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6965 and search in it assuming it has (class) type TYPE.
6966 If found, return value, else return NULL.
6967
6968 Searches recursively through wrapper fields (e.g., '_parent'). */
6969
6970 static struct value *
6971 ada_search_struct_field (char *name, struct value *arg, int offset,
6972 struct type *type)
6973 {
6974 int i;
6975
6976 type = ada_check_typedef (type);
6977 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6978 {
6979 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6980
6981 if (t_field_name == NULL)
6982 continue;
6983
6984 else if (field_name_match (t_field_name, name))
6985 return ada_value_primitive_field (arg, offset, i, type);
6986
6987 else if (ada_is_wrapper_field (type, i))
6988 {
6989 struct value *v = /* Do not let indent join lines here. */
6990 ada_search_struct_field (name, arg,
6991 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6992 TYPE_FIELD_TYPE (type, i));
6993
6994 if (v != NULL)
6995 return v;
6996 }
6997
6998 else if (ada_is_variant_part (type, i))
6999 {
7000 /* PNH: Do we ever get here? See find_struct_field. */
7001 int j;
7002 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7003 i));
7004 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7005
7006 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7007 {
7008 struct value *v = ada_search_struct_field /* Force line
7009 break. */
7010 (name, arg,
7011 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7012 TYPE_FIELD_TYPE (field_type, j));
7013
7014 if (v != NULL)
7015 return v;
7016 }
7017 }
7018 }
7019 return NULL;
7020 }
7021
7022 static struct value *ada_index_struct_field_1 (int *, struct value *,
7023 int, struct type *);
7024
7025
7026 /* Return field #INDEX in ARG, where the index is that returned by
7027 * find_struct_field through its INDEX_P argument. Adjust the address
7028 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7029 * If found, return value, else return NULL. */
7030
7031 static struct value *
7032 ada_index_struct_field (int index, struct value *arg, int offset,
7033 struct type *type)
7034 {
7035 return ada_index_struct_field_1 (&index, arg, offset, type);
7036 }
7037
7038
7039 /* Auxiliary function for ada_index_struct_field. Like
7040 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7041 * *INDEX_P. */
7042
7043 static struct value *
7044 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7045 struct type *type)
7046 {
7047 int i;
7048 type = ada_check_typedef (type);
7049
7050 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7051 {
7052 if (TYPE_FIELD_NAME (type, i) == NULL)
7053 continue;
7054 else if (ada_is_wrapper_field (type, i))
7055 {
7056 struct value *v = /* Do not let indent join lines here. */
7057 ada_index_struct_field_1 (index_p, arg,
7058 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7059 TYPE_FIELD_TYPE (type, i));
7060
7061 if (v != NULL)
7062 return v;
7063 }
7064
7065 else if (ada_is_variant_part (type, i))
7066 {
7067 /* PNH: Do we ever get here? See ada_search_struct_field,
7068 find_struct_field. */
7069 error (_("Cannot assign this kind of variant record"));
7070 }
7071 else if (*index_p == 0)
7072 return ada_value_primitive_field (arg, offset, i, type);
7073 else
7074 *index_p -= 1;
7075 }
7076 return NULL;
7077 }
7078
7079 /* Given ARG, a value of type (pointer or reference to a)*
7080 structure/union, extract the component named NAME from the ultimate
7081 target structure/union and return it as a value with its
7082 appropriate type.
7083
7084 The routine searches for NAME among all members of the structure itself
7085 and (recursively) among all members of any wrapper members
7086 (e.g., '_parent').
7087
7088 If NO_ERR, then simply return NULL in case of error, rather than
7089 calling error. */
7090
7091 struct value *
7092 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7093 {
7094 struct type *t, *t1;
7095 struct value *v;
7096
7097 v = NULL;
7098 t1 = t = ada_check_typedef (value_type (arg));
7099 if (TYPE_CODE (t) == TYPE_CODE_REF)
7100 {
7101 t1 = TYPE_TARGET_TYPE (t);
7102 if (t1 == NULL)
7103 goto BadValue;
7104 t1 = ada_check_typedef (t1);
7105 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7106 {
7107 arg = coerce_ref (arg);
7108 t = t1;
7109 }
7110 }
7111
7112 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7113 {
7114 t1 = TYPE_TARGET_TYPE (t);
7115 if (t1 == NULL)
7116 goto BadValue;
7117 t1 = ada_check_typedef (t1);
7118 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7119 {
7120 arg = value_ind (arg);
7121 t = t1;
7122 }
7123 else
7124 break;
7125 }
7126
7127 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7128 goto BadValue;
7129
7130 if (t1 == t)
7131 v = ada_search_struct_field (name, arg, 0, t);
7132 else
7133 {
7134 int bit_offset, bit_size, byte_offset;
7135 struct type *field_type;
7136 CORE_ADDR address;
7137
7138 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7139 address = value_address (ada_value_ind (arg));
7140 else
7141 address = value_address (ada_coerce_ref (arg));
7142
7143 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7144 if (find_struct_field (name, t1, 0,
7145 &field_type, &byte_offset, &bit_offset,
7146 &bit_size, NULL))
7147 {
7148 if (bit_size != 0)
7149 {
7150 if (TYPE_CODE (t) == TYPE_CODE_REF)
7151 arg = ada_coerce_ref (arg);
7152 else
7153 arg = ada_value_ind (arg);
7154 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7155 bit_offset, bit_size,
7156 field_type);
7157 }
7158 else
7159 v = value_at_lazy (field_type, address + byte_offset);
7160 }
7161 }
7162
7163 if (v != NULL || no_err)
7164 return v;
7165 else
7166 error (_("There is no member named %s."), name);
7167
7168 BadValue:
7169 if (no_err)
7170 return NULL;
7171 else
7172 error (_("Attempt to extract a component of "
7173 "a value that is not a record."));
7174 }
7175
7176 /* Given a type TYPE, look up the type of the component of type named NAME.
7177 If DISPP is non-null, add its byte displacement from the beginning of a
7178 structure (pointed to by a value) of type TYPE to *DISPP (does not
7179 work for packed fields).
7180
7181 Matches any field whose name has NAME as a prefix, possibly
7182 followed by "___".
7183
7184 TYPE can be either a struct or union. If REFOK, TYPE may also
7185 be a (pointer or reference)+ to a struct or union, and the
7186 ultimate target type will be searched.
7187
7188 Looks recursively into variant clauses and parent types.
7189
7190 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7191 TYPE is not a type of the right kind. */
7192
7193 static struct type *
7194 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7195 int noerr, int *dispp)
7196 {
7197 int i;
7198
7199 if (name == NULL)
7200 goto BadName;
7201
7202 if (refok && type != NULL)
7203 while (1)
7204 {
7205 type = ada_check_typedef (type);
7206 if (TYPE_CODE (type) != TYPE_CODE_PTR
7207 && TYPE_CODE (type) != TYPE_CODE_REF)
7208 break;
7209 type = TYPE_TARGET_TYPE (type);
7210 }
7211
7212 if (type == NULL
7213 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7214 && TYPE_CODE (type) != TYPE_CODE_UNION))
7215 {
7216 if (noerr)
7217 return NULL;
7218 else
7219 {
7220 target_terminal_ours ();
7221 gdb_flush (gdb_stdout);
7222 if (type == NULL)
7223 error (_("Type (null) is not a structure or union type"));
7224 else
7225 {
7226 /* XXX: type_sprint */
7227 fprintf_unfiltered (gdb_stderr, _("Type "));
7228 type_print (type, "", gdb_stderr, -1);
7229 error (_(" is not a structure or union type"));
7230 }
7231 }
7232 }
7233
7234 type = to_static_fixed_type (type);
7235
7236 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7237 {
7238 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7239 struct type *t;
7240 int disp;
7241
7242 if (t_field_name == NULL)
7243 continue;
7244
7245 else if (field_name_match (t_field_name, name))
7246 {
7247 if (dispp != NULL)
7248 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7249 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7250 }
7251
7252 else if (ada_is_wrapper_field (type, i))
7253 {
7254 disp = 0;
7255 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7256 0, 1, &disp);
7257 if (t != NULL)
7258 {
7259 if (dispp != NULL)
7260 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7261 return t;
7262 }
7263 }
7264
7265 else if (ada_is_variant_part (type, i))
7266 {
7267 int j;
7268 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7269 i));
7270
7271 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7272 {
7273 /* FIXME pnh 2008/01/26: We check for a field that is
7274 NOT wrapped in a struct, since the compiler sometimes
7275 generates these for unchecked variant types. Revisit
7276 if the compiler changes this practice. */
7277 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7278 disp = 0;
7279 if (v_field_name != NULL
7280 && field_name_match (v_field_name, name))
7281 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7282 else
7283 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7284 j),
7285 name, 0, 1, &disp);
7286
7287 if (t != NULL)
7288 {
7289 if (dispp != NULL)
7290 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7291 return t;
7292 }
7293 }
7294 }
7295
7296 }
7297
7298 BadName:
7299 if (!noerr)
7300 {
7301 target_terminal_ours ();
7302 gdb_flush (gdb_stdout);
7303 if (name == NULL)
7304 {
7305 /* XXX: type_sprint */
7306 fprintf_unfiltered (gdb_stderr, _("Type "));
7307 type_print (type, "", gdb_stderr, -1);
7308 error (_(" has no component named <null>"));
7309 }
7310 else
7311 {
7312 /* XXX: type_sprint */
7313 fprintf_unfiltered (gdb_stderr, _("Type "));
7314 type_print (type, "", gdb_stderr, -1);
7315 error (_(" has no component named %s"), name);
7316 }
7317 }
7318
7319 return NULL;
7320 }
7321
7322 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7323 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7324 represents an unchecked union (that is, the variant part of a
7325 record that is named in an Unchecked_Union pragma). */
7326
7327 static int
7328 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7329 {
7330 char *discrim_name = ada_variant_discrim_name (var_type);
7331
7332 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7333 == NULL);
7334 }
7335
7336
7337 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7338 within a value of type OUTER_TYPE that is stored in GDB at
7339 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7340 numbering from 0) is applicable. Returns -1 if none are. */
7341
7342 int
7343 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7344 const gdb_byte *outer_valaddr)
7345 {
7346 int others_clause;
7347 int i;
7348 char *discrim_name = ada_variant_discrim_name (var_type);
7349 struct value *outer;
7350 struct value *discrim;
7351 LONGEST discrim_val;
7352
7353 /* Using plain value_from_contents_and_address here causes problems
7354 because we will end up trying to resolve a type that is currently
7355 being constructed. */
7356 outer = value_from_contents_and_address_unresolved (outer_type,
7357 outer_valaddr, 0);
7358 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7359 if (discrim == NULL)
7360 return -1;
7361 discrim_val = value_as_long (discrim);
7362
7363 others_clause = -1;
7364 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7365 {
7366 if (ada_is_others_clause (var_type, i))
7367 others_clause = i;
7368 else if (ada_in_variant (discrim_val, var_type, i))
7369 return i;
7370 }
7371
7372 return others_clause;
7373 }
7374 \f
7375
7376
7377 /* Dynamic-Sized Records */
7378
7379 /* Strategy: The type ostensibly attached to a value with dynamic size
7380 (i.e., a size that is not statically recorded in the debugging
7381 data) does not accurately reflect the size or layout of the value.
7382 Our strategy is to convert these values to values with accurate,
7383 conventional types that are constructed on the fly. */
7384
7385 /* There is a subtle and tricky problem here. In general, we cannot
7386 determine the size of dynamic records without its data. However,
7387 the 'struct value' data structure, which GDB uses to represent
7388 quantities in the inferior process (the target), requires the size
7389 of the type at the time of its allocation in order to reserve space
7390 for GDB's internal copy of the data. That's why the
7391 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7392 rather than struct value*s.
7393
7394 However, GDB's internal history variables ($1, $2, etc.) are
7395 struct value*s containing internal copies of the data that are not, in
7396 general, the same as the data at their corresponding addresses in
7397 the target. Fortunately, the types we give to these values are all
7398 conventional, fixed-size types (as per the strategy described
7399 above), so that we don't usually have to perform the
7400 'to_fixed_xxx_type' conversions to look at their values.
7401 Unfortunately, there is one exception: if one of the internal
7402 history variables is an array whose elements are unconstrained
7403 records, then we will need to create distinct fixed types for each
7404 element selected. */
7405
7406 /* The upshot of all of this is that many routines take a (type, host
7407 address, target address) triple as arguments to represent a value.
7408 The host address, if non-null, is supposed to contain an internal
7409 copy of the relevant data; otherwise, the program is to consult the
7410 target at the target address. */
7411
7412 /* Assuming that VAL0 represents a pointer value, the result of
7413 dereferencing it. Differs from value_ind in its treatment of
7414 dynamic-sized types. */
7415
7416 struct value *
7417 ada_value_ind (struct value *val0)
7418 {
7419 struct value *val = value_ind (val0);
7420
7421 if (ada_is_tagged_type (value_type (val), 0))
7422 val = ada_tag_value_at_base_address (val);
7423
7424 return ada_to_fixed_value (val);
7425 }
7426
7427 /* The value resulting from dereferencing any "reference to"
7428 qualifiers on VAL0. */
7429
7430 static struct value *
7431 ada_coerce_ref (struct value *val0)
7432 {
7433 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7434 {
7435 struct value *val = val0;
7436
7437 val = coerce_ref (val);
7438
7439 if (ada_is_tagged_type (value_type (val), 0))
7440 val = ada_tag_value_at_base_address (val);
7441
7442 return ada_to_fixed_value (val);
7443 }
7444 else
7445 return val0;
7446 }
7447
7448 /* Return OFF rounded upward if necessary to a multiple of
7449 ALIGNMENT (a power of 2). */
7450
7451 static unsigned int
7452 align_value (unsigned int off, unsigned int alignment)
7453 {
7454 return (off + alignment - 1) & ~(alignment - 1);
7455 }
7456
7457 /* Return the bit alignment required for field #F of template type TYPE. */
7458
7459 static unsigned int
7460 field_alignment (struct type *type, int f)
7461 {
7462 const char *name = TYPE_FIELD_NAME (type, f);
7463 int len;
7464 int align_offset;
7465
7466 /* The field name should never be null, unless the debugging information
7467 is somehow malformed. In this case, we assume the field does not
7468 require any alignment. */
7469 if (name == NULL)
7470 return 1;
7471
7472 len = strlen (name);
7473
7474 if (!isdigit (name[len - 1]))
7475 return 1;
7476
7477 if (isdigit (name[len - 2]))
7478 align_offset = len - 2;
7479 else
7480 align_offset = len - 1;
7481
7482 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7483 return TARGET_CHAR_BIT;
7484
7485 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7486 }
7487
7488 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7489
7490 static struct symbol *
7491 ada_find_any_type_symbol (const char *name)
7492 {
7493 struct symbol *sym;
7494
7495 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7496 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7497 return sym;
7498
7499 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7500 return sym;
7501 }
7502
7503 /* Find a type named NAME. Ignores ambiguity. This routine will look
7504 solely for types defined by debug info, it will not search the GDB
7505 primitive types. */
7506
7507 static struct type *
7508 ada_find_any_type (const char *name)
7509 {
7510 struct symbol *sym = ada_find_any_type_symbol (name);
7511
7512 if (sym != NULL)
7513 return SYMBOL_TYPE (sym);
7514
7515 return NULL;
7516 }
7517
7518 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7519 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7520 symbol, in which case it is returned. Otherwise, this looks for
7521 symbols whose name is that of NAME_SYM suffixed with "___XR".
7522 Return symbol if found, and NULL otherwise. */
7523
7524 struct symbol *
7525 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7526 {
7527 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7528 struct symbol *sym;
7529
7530 if (strstr (name, "___XR") != NULL)
7531 return name_sym;
7532
7533 sym = find_old_style_renaming_symbol (name, block);
7534
7535 if (sym != NULL)
7536 return sym;
7537
7538 /* Not right yet. FIXME pnh 7/20/2007. */
7539 sym = ada_find_any_type_symbol (name);
7540 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7541 return sym;
7542 else
7543 return NULL;
7544 }
7545
7546 static struct symbol *
7547 find_old_style_renaming_symbol (const char *name, const struct block *block)
7548 {
7549 const struct symbol *function_sym = block_linkage_function (block);
7550 char *rename;
7551
7552 if (function_sym != NULL)
7553 {
7554 /* If the symbol is defined inside a function, NAME is not fully
7555 qualified. This means we need to prepend the function name
7556 as well as adding the ``___XR'' suffix to build the name of
7557 the associated renaming symbol. */
7558 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7559 /* Function names sometimes contain suffixes used
7560 for instance to qualify nested subprograms. When building
7561 the XR type name, we need to make sure that this suffix is
7562 not included. So do not include any suffix in the function
7563 name length below. */
7564 int function_name_len = ada_name_prefix_len (function_name);
7565 const int rename_len = function_name_len + 2 /* "__" */
7566 + strlen (name) + 6 /* "___XR\0" */ ;
7567
7568 /* Strip the suffix if necessary. */
7569 ada_remove_trailing_digits (function_name, &function_name_len);
7570 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7571 ada_remove_Xbn_suffix (function_name, &function_name_len);
7572
7573 /* Library-level functions are a special case, as GNAT adds
7574 a ``_ada_'' prefix to the function name to avoid namespace
7575 pollution. However, the renaming symbols themselves do not
7576 have this prefix, so we need to skip this prefix if present. */
7577 if (function_name_len > 5 /* "_ada_" */
7578 && strstr (function_name, "_ada_") == function_name)
7579 {
7580 function_name += 5;
7581 function_name_len -= 5;
7582 }
7583
7584 rename = (char *) alloca (rename_len * sizeof (char));
7585 strncpy (rename, function_name, function_name_len);
7586 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7587 "__%s___XR", name);
7588 }
7589 else
7590 {
7591 const int rename_len = strlen (name) + 6;
7592
7593 rename = (char *) alloca (rename_len * sizeof (char));
7594 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7595 }
7596
7597 return ada_find_any_type_symbol (rename);
7598 }
7599
7600 /* Because of GNAT encoding conventions, several GDB symbols may match a
7601 given type name. If the type denoted by TYPE0 is to be preferred to
7602 that of TYPE1 for purposes of type printing, return non-zero;
7603 otherwise return 0. */
7604
7605 int
7606 ada_prefer_type (struct type *type0, struct type *type1)
7607 {
7608 if (type1 == NULL)
7609 return 1;
7610 else if (type0 == NULL)
7611 return 0;
7612 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7613 return 1;
7614 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7615 return 0;
7616 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7617 return 1;
7618 else if (ada_is_constrained_packed_array_type (type0))
7619 return 1;
7620 else if (ada_is_array_descriptor_type (type0)
7621 && !ada_is_array_descriptor_type (type1))
7622 return 1;
7623 else
7624 {
7625 const char *type0_name = type_name_no_tag (type0);
7626 const char *type1_name = type_name_no_tag (type1);
7627
7628 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7629 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7630 return 1;
7631 }
7632 return 0;
7633 }
7634
7635 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7636 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7637
7638 const char *
7639 ada_type_name (struct type *type)
7640 {
7641 if (type == NULL)
7642 return NULL;
7643 else if (TYPE_NAME (type) != NULL)
7644 return TYPE_NAME (type);
7645 else
7646 return TYPE_TAG_NAME (type);
7647 }
7648
7649 /* Search the list of "descriptive" types associated to TYPE for a type
7650 whose name is NAME. */
7651
7652 static struct type *
7653 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7654 {
7655 struct type *result;
7656
7657 if (ada_ignore_descriptive_types_p)
7658 return NULL;
7659
7660 /* If there no descriptive-type info, then there is no parallel type
7661 to be found. */
7662 if (!HAVE_GNAT_AUX_INFO (type))
7663 return NULL;
7664
7665 result = TYPE_DESCRIPTIVE_TYPE (type);
7666 while (result != NULL)
7667 {
7668 const char *result_name = ada_type_name (result);
7669
7670 if (result_name == NULL)
7671 {
7672 warning (_("unexpected null name on descriptive type"));
7673 return NULL;
7674 }
7675
7676 /* If the names match, stop. */
7677 if (strcmp (result_name, name) == 0)
7678 break;
7679
7680 /* Otherwise, look at the next item on the list, if any. */
7681 if (HAVE_GNAT_AUX_INFO (result))
7682 result = TYPE_DESCRIPTIVE_TYPE (result);
7683 else
7684 result = NULL;
7685 }
7686
7687 /* If we didn't find a match, see whether this is a packed array. With
7688 older compilers, the descriptive type information is either absent or
7689 irrelevant when it comes to packed arrays so the above lookup fails.
7690 Fall back to using a parallel lookup by name in this case. */
7691 if (result == NULL && ada_is_constrained_packed_array_type (type))
7692 return ada_find_any_type (name);
7693
7694 return result;
7695 }
7696
7697 /* Find a parallel type to TYPE with the specified NAME, using the
7698 descriptive type taken from the debugging information, if available,
7699 and otherwise using the (slower) name-based method. */
7700
7701 static struct type *
7702 ada_find_parallel_type_with_name (struct type *type, const char *name)
7703 {
7704 struct type *result = NULL;
7705
7706 if (HAVE_GNAT_AUX_INFO (type))
7707 result = find_parallel_type_by_descriptive_type (type, name);
7708 else
7709 result = ada_find_any_type (name);
7710
7711 return result;
7712 }
7713
7714 /* Same as above, but specify the name of the parallel type by appending
7715 SUFFIX to the name of TYPE. */
7716
7717 struct type *
7718 ada_find_parallel_type (struct type *type, const char *suffix)
7719 {
7720 char *name;
7721 const char *typename = ada_type_name (type);
7722 int len;
7723
7724 if (typename == NULL)
7725 return NULL;
7726
7727 len = strlen (typename);
7728
7729 name = (char *) alloca (len + strlen (suffix) + 1);
7730
7731 strcpy (name, typename);
7732 strcpy (name + len, suffix);
7733
7734 return ada_find_parallel_type_with_name (type, name);
7735 }
7736
7737 /* If TYPE is a variable-size record type, return the corresponding template
7738 type describing its fields. Otherwise, return NULL. */
7739
7740 static struct type *
7741 dynamic_template_type (struct type *type)
7742 {
7743 type = ada_check_typedef (type);
7744
7745 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7746 || ada_type_name (type) == NULL)
7747 return NULL;
7748 else
7749 {
7750 int len = strlen (ada_type_name (type));
7751
7752 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7753 return type;
7754 else
7755 return ada_find_parallel_type (type, "___XVE");
7756 }
7757 }
7758
7759 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7760 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7761
7762 static int
7763 is_dynamic_field (struct type *templ_type, int field_num)
7764 {
7765 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7766
7767 return name != NULL
7768 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7769 && strstr (name, "___XVL") != NULL;
7770 }
7771
7772 /* The index of the variant field of TYPE, or -1 if TYPE does not
7773 represent a variant record type. */
7774
7775 static int
7776 variant_field_index (struct type *type)
7777 {
7778 int f;
7779
7780 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7781 return -1;
7782
7783 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7784 {
7785 if (ada_is_variant_part (type, f))
7786 return f;
7787 }
7788 return -1;
7789 }
7790
7791 /* A record type with no fields. */
7792
7793 static struct type *
7794 empty_record (struct type *template)
7795 {
7796 struct type *type = alloc_type_copy (template);
7797
7798 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7799 TYPE_NFIELDS (type) = 0;
7800 TYPE_FIELDS (type) = NULL;
7801 INIT_CPLUS_SPECIFIC (type);
7802 TYPE_NAME (type) = "<empty>";
7803 TYPE_TAG_NAME (type) = NULL;
7804 TYPE_LENGTH (type) = 0;
7805 return type;
7806 }
7807
7808 /* An ordinary record type (with fixed-length fields) that describes
7809 the value of type TYPE at VALADDR or ADDRESS (see comments at
7810 the beginning of this section) VAL according to GNAT conventions.
7811 DVAL0 should describe the (portion of a) record that contains any
7812 necessary discriminants. It should be NULL if value_type (VAL) is
7813 an outer-level type (i.e., as opposed to a branch of a variant.) A
7814 variant field (unless unchecked) is replaced by a particular branch
7815 of the variant.
7816
7817 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7818 length are not statically known are discarded. As a consequence,
7819 VALADDR, ADDRESS and DVAL0 are ignored.
7820
7821 NOTE: Limitations: For now, we assume that dynamic fields and
7822 variants occupy whole numbers of bytes. However, they need not be
7823 byte-aligned. */
7824
7825 struct type *
7826 ada_template_to_fixed_record_type_1 (struct type *type,
7827 const gdb_byte *valaddr,
7828 CORE_ADDR address, struct value *dval0,
7829 int keep_dynamic_fields)
7830 {
7831 struct value *mark = value_mark ();
7832 struct value *dval;
7833 struct type *rtype;
7834 int nfields, bit_len;
7835 int variant_field;
7836 long off;
7837 int fld_bit_len;
7838 int f;
7839
7840 /* Compute the number of fields in this record type that are going
7841 to be processed: unless keep_dynamic_fields, this includes only
7842 fields whose position and length are static will be processed. */
7843 if (keep_dynamic_fields)
7844 nfields = TYPE_NFIELDS (type);
7845 else
7846 {
7847 nfields = 0;
7848 while (nfields < TYPE_NFIELDS (type)
7849 && !ada_is_variant_part (type, nfields)
7850 && !is_dynamic_field (type, nfields))
7851 nfields++;
7852 }
7853
7854 rtype = alloc_type_copy (type);
7855 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7856 INIT_CPLUS_SPECIFIC (rtype);
7857 TYPE_NFIELDS (rtype) = nfields;
7858 TYPE_FIELDS (rtype) = (struct field *)
7859 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7860 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7861 TYPE_NAME (rtype) = ada_type_name (type);
7862 TYPE_TAG_NAME (rtype) = NULL;
7863 TYPE_FIXED_INSTANCE (rtype) = 1;
7864
7865 off = 0;
7866 bit_len = 0;
7867 variant_field = -1;
7868
7869 for (f = 0; f < nfields; f += 1)
7870 {
7871 off = align_value (off, field_alignment (type, f))
7872 + TYPE_FIELD_BITPOS (type, f);
7873 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7874 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7875
7876 if (ada_is_variant_part (type, f))
7877 {
7878 variant_field = f;
7879 fld_bit_len = 0;
7880 }
7881 else if (is_dynamic_field (type, f))
7882 {
7883 const gdb_byte *field_valaddr = valaddr;
7884 CORE_ADDR field_address = address;
7885 struct type *field_type =
7886 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7887
7888 if (dval0 == NULL)
7889 {
7890 /* rtype's length is computed based on the run-time
7891 value of discriminants. If the discriminants are not
7892 initialized, the type size may be completely bogus and
7893 GDB may fail to allocate a value for it. So check the
7894 size first before creating the value. */
7895 check_size (rtype);
7896 /* Using plain value_from_contents_and_address here
7897 causes problems because we will end up trying to
7898 resolve a type that is currently being
7899 constructed. */
7900 dval = value_from_contents_and_address_unresolved (rtype,
7901 valaddr,
7902 address);
7903 rtype = value_type (dval);
7904 }
7905 else
7906 dval = dval0;
7907
7908 /* If the type referenced by this field is an aligner type, we need
7909 to unwrap that aligner type, because its size might not be set.
7910 Keeping the aligner type would cause us to compute the wrong
7911 size for this field, impacting the offset of the all the fields
7912 that follow this one. */
7913 if (ada_is_aligner_type (field_type))
7914 {
7915 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7916
7917 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7918 field_address = cond_offset_target (field_address, field_offset);
7919 field_type = ada_aligned_type (field_type);
7920 }
7921
7922 field_valaddr = cond_offset_host (field_valaddr,
7923 off / TARGET_CHAR_BIT);
7924 field_address = cond_offset_target (field_address,
7925 off / TARGET_CHAR_BIT);
7926
7927 /* Get the fixed type of the field. Note that, in this case,
7928 we do not want to get the real type out of the tag: if
7929 the current field is the parent part of a tagged record,
7930 we will get the tag of the object. Clearly wrong: the real
7931 type of the parent is not the real type of the child. We
7932 would end up in an infinite loop. */
7933 field_type = ada_get_base_type (field_type);
7934 field_type = ada_to_fixed_type (field_type, field_valaddr,
7935 field_address, dval, 0);
7936 /* If the field size is already larger than the maximum
7937 object size, then the record itself will necessarily
7938 be larger than the maximum object size. We need to make
7939 this check now, because the size might be so ridiculously
7940 large (due to an uninitialized variable in the inferior)
7941 that it would cause an overflow when adding it to the
7942 record size. */
7943 check_size (field_type);
7944
7945 TYPE_FIELD_TYPE (rtype, f) = field_type;
7946 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7947 /* The multiplication can potentially overflow. But because
7948 the field length has been size-checked just above, and
7949 assuming that the maximum size is a reasonable value,
7950 an overflow should not happen in practice. So rather than
7951 adding overflow recovery code to this already complex code,
7952 we just assume that it's not going to happen. */
7953 fld_bit_len =
7954 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7955 }
7956 else
7957 {
7958 /* Note: If this field's type is a typedef, it is important
7959 to preserve the typedef layer.
7960
7961 Otherwise, we might be transforming a typedef to a fat
7962 pointer (encoding a pointer to an unconstrained array),
7963 into a basic fat pointer (encoding an unconstrained
7964 array). As both types are implemented using the same
7965 structure, the typedef is the only clue which allows us
7966 to distinguish between the two options. Stripping it
7967 would prevent us from printing this field appropriately. */
7968 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7969 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7970 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7971 fld_bit_len =
7972 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7973 else
7974 {
7975 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7976
7977 /* We need to be careful of typedefs when computing
7978 the length of our field. If this is a typedef,
7979 get the length of the target type, not the length
7980 of the typedef. */
7981 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7982 field_type = ada_typedef_target_type (field_type);
7983
7984 fld_bit_len =
7985 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7986 }
7987 }
7988 if (off + fld_bit_len > bit_len)
7989 bit_len = off + fld_bit_len;
7990 off += fld_bit_len;
7991 TYPE_LENGTH (rtype) =
7992 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7993 }
7994
7995 /* We handle the variant part, if any, at the end because of certain
7996 odd cases in which it is re-ordered so as NOT to be the last field of
7997 the record. This can happen in the presence of representation
7998 clauses. */
7999 if (variant_field >= 0)
8000 {
8001 struct type *branch_type;
8002
8003 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8004
8005 if (dval0 == NULL)
8006 {
8007 /* Using plain value_from_contents_and_address here causes
8008 problems because we will end up trying to resolve a type
8009 that is currently being constructed. */
8010 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8011 address);
8012 rtype = value_type (dval);
8013 }
8014 else
8015 dval = dval0;
8016
8017 branch_type =
8018 to_fixed_variant_branch_type
8019 (TYPE_FIELD_TYPE (type, variant_field),
8020 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8021 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8022 if (branch_type == NULL)
8023 {
8024 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8025 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8026 TYPE_NFIELDS (rtype) -= 1;
8027 }
8028 else
8029 {
8030 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8031 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8032 fld_bit_len =
8033 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8034 TARGET_CHAR_BIT;
8035 if (off + fld_bit_len > bit_len)
8036 bit_len = off + fld_bit_len;
8037 TYPE_LENGTH (rtype) =
8038 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8039 }
8040 }
8041
8042 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8043 should contain the alignment of that record, which should be a strictly
8044 positive value. If null or negative, then something is wrong, most
8045 probably in the debug info. In that case, we don't round up the size
8046 of the resulting type. If this record is not part of another structure,
8047 the current RTYPE length might be good enough for our purposes. */
8048 if (TYPE_LENGTH (type) <= 0)
8049 {
8050 if (TYPE_NAME (rtype))
8051 warning (_("Invalid type size for `%s' detected: %d."),
8052 TYPE_NAME (rtype), TYPE_LENGTH (type));
8053 else
8054 warning (_("Invalid type size for <unnamed> detected: %d."),
8055 TYPE_LENGTH (type));
8056 }
8057 else
8058 {
8059 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8060 TYPE_LENGTH (type));
8061 }
8062
8063 value_free_to_mark (mark);
8064 if (TYPE_LENGTH (rtype) > varsize_limit)
8065 error (_("record type with dynamic size is larger than varsize-limit"));
8066 return rtype;
8067 }
8068
8069 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8070 of 1. */
8071
8072 static struct type *
8073 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8074 CORE_ADDR address, struct value *dval0)
8075 {
8076 return ada_template_to_fixed_record_type_1 (type, valaddr,
8077 address, dval0, 1);
8078 }
8079
8080 /* An ordinary record type in which ___XVL-convention fields and
8081 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8082 static approximations, containing all possible fields. Uses
8083 no runtime values. Useless for use in values, but that's OK,
8084 since the results are used only for type determinations. Works on both
8085 structs and unions. Representation note: to save space, we memorize
8086 the result of this function in the TYPE_TARGET_TYPE of the
8087 template type. */
8088
8089 static struct type *
8090 template_to_static_fixed_type (struct type *type0)
8091 {
8092 struct type *type;
8093 int nfields;
8094 int f;
8095
8096 if (TYPE_TARGET_TYPE (type0) != NULL)
8097 return TYPE_TARGET_TYPE (type0);
8098
8099 nfields = TYPE_NFIELDS (type0);
8100 type = type0;
8101
8102 for (f = 0; f < nfields; f += 1)
8103 {
8104 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
8105 struct type *new_type;
8106
8107 if (is_dynamic_field (type0, f))
8108 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8109 else
8110 new_type = static_unwrap_type (field_type);
8111 if (type == type0 && new_type != field_type)
8112 {
8113 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8114 TYPE_CODE (type) = TYPE_CODE (type0);
8115 INIT_CPLUS_SPECIFIC (type);
8116 TYPE_NFIELDS (type) = nfields;
8117 TYPE_FIELDS (type) = (struct field *)
8118 TYPE_ALLOC (type, nfields * sizeof (struct field));
8119 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8120 sizeof (struct field) * nfields);
8121 TYPE_NAME (type) = ada_type_name (type0);
8122 TYPE_TAG_NAME (type) = NULL;
8123 TYPE_FIXED_INSTANCE (type) = 1;
8124 TYPE_LENGTH (type) = 0;
8125 }
8126 TYPE_FIELD_TYPE (type, f) = new_type;
8127 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8128 }
8129 return type;
8130 }
8131
8132 /* Given an object of type TYPE whose contents are at VALADDR and
8133 whose address in memory is ADDRESS, returns a revision of TYPE,
8134 which should be a non-dynamic-sized record, in which the variant
8135 part, if any, is replaced with the appropriate branch. Looks
8136 for discriminant values in DVAL0, which can be NULL if the record
8137 contains the necessary discriminant values. */
8138
8139 static struct type *
8140 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8141 CORE_ADDR address, struct value *dval0)
8142 {
8143 struct value *mark = value_mark ();
8144 struct value *dval;
8145 struct type *rtype;
8146 struct type *branch_type;
8147 int nfields = TYPE_NFIELDS (type);
8148 int variant_field = variant_field_index (type);
8149
8150 if (variant_field == -1)
8151 return type;
8152
8153 if (dval0 == NULL)
8154 {
8155 dval = value_from_contents_and_address (type, valaddr, address);
8156 type = value_type (dval);
8157 }
8158 else
8159 dval = dval0;
8160
8161 rtype = alloc_type_copy (type);
8162 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8163 INIT_CPLUS_SPECIFIC (rtype);
8164 TYPE_NFIELDS (rtype) = nfields;
8165 TYPE_FIELDS (rtype) =
8166 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8167 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8168 sizeof (struct field) * nfields);
8169 TYPE_NAME (rtype) = ada_type_name (type);
8170 TYPE_TAG_NAME (rtype) = NULL;
8171 TYPE_FIXED_INSTANCE (rtype) = 1;
8172 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8173
8174 branch_type = to_fixed_variant_branch_type
8175 (TYPE_FIELD_TYPE (type, variant_field),
8176 cond_offset_host (valaddr,
8177 TYPE_FIELD_BITPOS (type, variant_field)
8178 / TARGET_CHAR_BIT),
8179 cond_offset_target (address,
8180 TYPE_FIELD_BITPOS (type, variant_field)
8181 / TARGET_CHAR_BIT), dval);
8182 if (branch_type == NULL)
8183 {
8184 int f;
8185
8186 for (f = variant_field + 1; f < nfields; f += 1)
8187 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8188 TYPE_NFIELDS (rtype) -= 1;
8189 }
8190 else
8191 {
8192 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8193 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8194 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8195 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8196 }
8197 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8198
8199 value_free_to_mark (mark);
8200 return rtype;
8201 }
8202
8203 /* An ordinary record type (with fixed-length fields) that describes
8204 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8205 beginning of this section]. Any necessary discriminants' values
8206 should be in DVAL, a record value; it may be NULL if the object
8207 at ADDR itself contains any necessary discriminant values.
8208 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8209 values from the record are needed. Except in the case that DVAL,
8210 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8211 unchecked) is replaced by a particular branch of the variant.
8212
8213 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8214 is questionable and may be removed. It can arise during the
8215 processing of an unconstrained-array-of-record type where all the
8216 variant branches have exactly the same size. This is because in
8217 such cases, the compiler does not bother to use the XVS convention
8218 when encoding the record. I am currently dubious of this
8219 shortcut and suspect the compiler should be altered. FIXME. */
8220
8221 static struct type *
8222 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8223 CORE_ADDR address, struct value *dval)
8224 {
8225 struct type *templ_type;
8226
8227 if (TYPE_FIXED_INSTANCE (type0))
8228 return type0;
8229
8230 templ_type = dynamic_template_type (type0);
8231
8232 if (templ_type != NULL)
8233 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8234 else if (variant_field_index (type0) >= 0)
8235 {
8236 if (dval == NULL && valaddr == NULL && address == 0)
8237 return type0;
8238 return to_record_with_fixed_variant_part (type0, valaddr, address,
8239 dval);
8240 }
8241 else
8242 {
8243 TYPE_FIXED_INSTANCE (type0) = 1;
8244 return type0;
8245 }
8246
8247 }
8248
8249 /* An ordinary record type (with fixed-length fields) that describes
8250 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8251 union type. Any necessary discriminants' values should be in DVAL,
8252 a record value. That is, this routine selects the appropriate
8253 branch of the union at ADDR according to the discriminant value
8254 indicated in the union's type name. Returns VAR_TYPE0 itself if
8255 it represents a variant subject to a pragma Unchecked_Union. */
8256
8257 static struct type *
8258 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8259 CORE_ADDR address, struct value *dval)
8260 {
8261 int which;
8262 struct type *templ_type;
8263 struct type *var_type;
8264
8265 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8266 var_type = TYPE_TARGET_TYPE (var_type0);
8267 else
8268 var_type = var_type0;
8269
8270 templ_type = ada_find_parallel_type (var_type, "___XVU");
8271
8272 if (templ_type != NULL)
8273 var_type = templ_type;
8274
8275 if (is_unchecked_variant (var_type, value_type (dval)))
8276 return var_type0;
8277 which =
8278 ada_which_variant_applies (var_type,
8279 value_type (dval), value_contents (dval));
8280
8281 if (which < 0)
8282 return empty_record (var_type);
8283 else if (is_dynamic_field (var_type, which))
8284 return to_fixed_record_type
8285 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8286 valaddr, address, dval);
8287 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8288 return
8289 to_fixed_record_type
8290 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8291 else
8292 return TYPE_FIELD_TYPE (var_type, which);
8293 }
8294
8295 /* Assuming that TYPE0 is an array type describing the type of a value
8296 at ADDR, and that DVAL describes a record containing any
8297 discriminants used in TYPE0, returns a type for the value that
8298 contains no dynamic components (that is, no components whose sizes
8299 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8300 true, gives an error message if the resulting type's size is over
8301 varsize_limit. */
8302
8303 static struct type *
8304 to_fixed_array_type (struct type *type0, struct value *dval,
8305 int ignore_too_big)
8306 {
8307 struct type *index_type_desc;
8308 struct type *result;
8309 int constrained_packed_array_p;
8310
8311 type0 = ada_check_typedef (type0);
8312 if (TYPE_FIXED_INSTANCE (type0))
8313 return type0;
8314
8315 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8316 if (constrained_packed_array_p)
8317 type0 = decode_constrained_packed_array_type (type0);
8318
8319 index_type_desc = ada_find_parallel_type (type0, "___XA");
8320 ada_fixup_array_indexes_type (index_type_desc);
8321 if (index_type_desc == NULL)
8322 {
8323 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8324
8325 /* NOTE: elt_type---the fixed version of elt_type0---should never
8326 depend on the contents of the array in properly constructed
8327 debugging data. */
8328 /* Create a fixed version of the array element type.
8329 We're not providing the address of an element here,
8330 and thus the actual object value cannot be inspected to do
8331 the conversion. This should not be a problem, since arrays of
8332 unconstrained objects are not allowed. In particular, all
8333 the elements of an array of a tagged type should all be of
8334 the same type specified in the debugging info. No need to
8335 consult the object tag. */
8336 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8337
8338 /* Make sure we always create a new array type when dealing with
8339 packed array types, since we're going to fix-up the array
8340 type length and element bitsize a little further down. */
8341 if (elt_type0 == elt_type && !constrained_packed_array_p)
8342 result = type0;
8343 else
8344 result = create_array_type (alloc_type_copy (type0),
8345 elt_type, TYPE_INDEX_TYPE (type0));
8346 }
8347 else
8348 {
8349 int i;
8350 struct type *elt_type0;
8351
8352 elt_type0 = type0;
8353 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8354 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8355
8356 /* NOTE: result---the fixed version of elt_type0---should never
8357 depend on the contents of the array in properly constructed
8358 debugging data. */
8359 /* Create a fixed version of the array element type.
8360 We're not providing the address of an element here,
8361 and thus the actual object value cannot be inspected to do
8362 the conversion. This should not be a problem, since arrays of
8363 unconstrained objects are not allowed. In particular, all
8364 the elements of an array of a tagged type should all be of
8365 the same type specified in the debugging info. No need to
8366 consult the object tag. */
8367 result =
8368 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8369
8370 elt_type0 = type0;
8371 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8372 {
8373 struct type *range_type =
8374 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8375
8376 result = create_array_type (alloc_type_copy (elt_type0),
8377 result, range_type);
8378 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8379 }
8380 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8381 error (_("array type with dynamic size is larger than varsize-limit"));
8382 }
8383
8384 /* We want to preserve the type name. This can be useful when
8385 trying to get the type name of a value that has already been
8386 printed (for instance, if the user did "print VAR; whatis $". */
8387 TYPE_NAME (result) = TYPE_NAME (type0);
8388
8389 if (constrained_packed_array_p)
8390 {
8391 /* So far, the resulting type has been created as if the original
8392 type was a regular (non-packed) array type. As a result, the
8393 bitsize of the array elements needs to be set again, and the array
8394 length needs to be recomputed based on that bitsize. */
8395 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8396 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8397
8398 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8399 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8400 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8401 TYPE_LENGTH (result)++;
8402 }
8403
8404 TYPE_FIXED_INSTANCE (result) = 1;
8405 return result;
8406 }
8407
8408
8409 /* A standard type (containing no dynamically sized components)
8410 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8411 DVAL describes a record containing any discriminants used in TYPE0,
8412 and may be NULL if there are none, or if the object of type TYPE at
8413 ADDRESS or in VALADDR contains these discriminants.
8414
8415 If CHECK_TAG is not null, in the case of tagged types, this function
8416 attempts to locate the object's tag and use it to compute the actual
8417 type. However, when ADDRESS is null, we cannot use it to determine the
8418 location of the tag, and therefore compute the tagged type's actual type.
8419 So we return the tagged type without consulting the tag. */
8420
8421 static struct type *
8422 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8423 CORE_ADDR address, struct value *dval, int check_tag)
8424 {
8425 type = ada_check_typedef (type);
8426 switch (TYPE_CODE (type))
8427 {
8428 default:
8429 return type;
8430 case TYPE_CODE_STRUCT:
8431 {
8432 struct type *static_type = to_static_fixed_type (type);
8433 struct type *fixed_record_type =
8434 to_fixed_record_type (type, valaddr, address, NULL);
8435
8436 /* If STATIC_TYPE is a tagged type and we know the object's address,
8437 then we can determine its tag, and compute the object's actual
8438 type from there. Note that we have to use the fixed record
8439 type (the parent part of the record may have dynamic fields
8440 and the way the location of _tag is expressed may depend on
8441 them). */
8442
8443 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8444 {
8445 struct value *tag =
8446 value_tag_from_contents_and_address
8447 (fixed_record_type,
8448 valaddr,
8449 address);
8450 struct type *real_type = type_from_tag (tag);
8451 struct value *obj =
8452 value_from_contents_and_address (fixed_record_type,
8453 valaddr,
8454 address);
8455 fixed_record_type = value_type (obj);
8456 if (real_type != NULL)
8457 return to_fixed_record_type
8458 (real_type, NULL,
8459 value_address (ada_tag_value_at_base_address (obj)), NULL);
8460 }
8461
8462 /* Check to see if there is a parallel ___XVZ variable.
8463 If there is, then it provides the actual size of our type. */
8464 else if (ada_type_name (fixed_record_type) != NULL)
8465 {
8466 const char *name = ada_type_name (fixed_record_type);
8467 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8468 int xvz_found = 0;
8469 LONGEST size;
8470
8471 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8472 size = get_int_var_value (xvz_name, &xvz_found);
8473 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8474 {
8475 fixed_record_type = copy_type (fixed_record_type);
8476 TYPE_LENGTH (fixed_record_type) = size;
8477
8478 /* The FIXED_RECORD_TYPE may have be a stub. We have
8479 observed this when the debugging info is STABS, and
8480 apparently it is something that is hard to fix.
8481
8482 In practice, we don't need the actual type definition
8483 at all, because the presence of the XVZ variable allows us
8484 to assume that there must be a XVS type as well, which we
8485 should be able to use later, when we need the actual type
8486 definition.
8487
8488 In the meantime, pretend that the "fixed" type we are
8489 returning is NOT a stub, because this can cause trouble
8490 when using this type to create new types targeting it.
8491 Indeed, the associated creation routines often check
8492 whether the target type is a stub and will try to replace
8493 it, thus using a type with the wrong size. This, in turn,
8494 might cause the new type to have the wrong size too.
8495 Consider the case of an array, for instance, where the size
8496 of the array is computed from the number of elements in
8497 our array multiplied by the size of its element. */
8498 TYPE_STUB (fixed_record_type) = 0;
8499 }
8500 }
8501 return fixed_record_type;
8502 }
8503 case TYPE_CODE_ARRAY:
8504 return to_fixed_array_type (type, dval, 1);
8505 case TYPE_CODE_UNION:
8506 if (dval == NULL)
8507 return type;
8508 else
8509 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8510 }
8511 }
8512
8513 /* The same as ada_to_fixed_type_1, except that it preserves the type
8514 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8515
8516 The typedef layer needs be preserved in order to differentiate between
8517 arrays and array pointers when both types are implemented using the same
8518 fat pointer. In the array pointer case, the pointer is encoded as
8519 a typedef of the pointer type. For instance, considering:
8520
8521 type String_Access is access String;
8522 S1 : String_Access := null;
8523
8524 To the debugger, S1 is defined as a typedef of type String. But
8525 to the user, it is a pointer. So if the user tries to print S1,
8526 we should not dereference the array, but print the array address
8527 instead.
8528
8529 If we didn't preserve the typedef layer, we would lose the fact that
8530 the type is to be presented as a pointer (needs de-reference before
8531 being printed). And we would also use the source-level type name. */
8532
8533 struct type *
8534 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8535 CORE_ADDR address, struct value *dval, int check_tag)
8536
8537 {
8538 struct type *fixed_type =
8539 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8540
8541 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8542 then preserve the typedef layer.
8543
8544 Implementation note: We can only check the main-type portion of
8545 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8546 from TYPE now returns a type that has the same instance flags
8547 as TYPE. For instance, if TYPE is a "typedef const", and its
8548 target type is a "struct", then the typedef elimination will return
8549 a "const" version of the target type. See check_typedef for more
8550 details about how the typedef layer elimination is done.
8551
8552 brobecker/2010-11-19: It seems to me that the only case where it is
8553 useful to preserve the typedef layer is when dealing with fat pointers.
8554 Perhaps, we could add a check for that and preserve the typedef layer
8555 only in that situation. But this seems unecessary so far, probably
8556 because we call check_typedef/ada_check_typedef pretty much everywhere.
8557 */
8558 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8559 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8560 == TYPE_MAIN_TYPE (fixed_type)))
8561 return type;
8562
8563 return fixed_type;
8564 }
8565
8566 /* A standard (static-sized) type corresponding as well as possible to
8567 TYPE0, but based on no runtime data. */
8568
8569 static struct type *
8570 to_static_fixed_type (struct type *type0)
8571 {
8572 struct type *type;
8573
8574 if (type0 == NULL)
8575 return NULL;
8576
8577 if (TYPE_FIXED_INSTANCE (type0))
8578 return type0;
8579
8580 type0 = ada_check_typedef (type0);
8581
8582 switch (TYPE_CODE (type0))
8583 {
8584 default:
8585 return type0;
8586 case TYPE_CODE_STRUCT:
8587 type = dynamic_template_type (type0);
8588 if (type != NULL)
8589 return template_to_static_fixed_type (type);
8590 else
8591 return template_to_static_fixed_type (type0);
8592 case TYPE_CODE_UNION:
8593 type = ada_find_parallel_type (type0, "___XVU");
8594 if (type != NULL)
8595 return template_to_static_fixed_type (type);
8596 else
8597 return template_to_static_fixed_type (type0);
8598 }
8599 }
8600
8601 /* A static approximation of TYPE with all type wrappers removed. */
8602
8603 static struct type *
8604 static_unwrap_type (struct type *type)
8605 {
8606 if (ada_is_aligner_type (type))
8607 {
8608 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8609 if (ada_type_name (type1) == NULL)
8610 TYPE_NAME (type1) = ada_type_name (type);
8611
8612 return static_unwrap_type (type1);
8613 }
8614 else
8615 {
8616 struct type *raw_real_type = ada_get_base_type (type);
8617
8618 if (raw_real_type == type)
8619 return type;
8620 else
8621 return to_static_fixed_type (raw_real_type);
8622 }
8623 }
8624
8625 /* In some cases, incomplete and private types require
8626 cross-references that are not resolved as records (for example,
8627 type Foo;
8628 type FooP is access Foo;
8629 V: FooP;
8630 type Foo is array ...;
8631 ). In these cases, since there is no mechanism for producing
8632 cross-references to such types, we instead substitute for FooP a
8633 stub enumeration type that is nowhere resolved, and whose tag is
8634 the name of the actual type. Call these types "non-record stubs". */
8635
8636 /* A type equivalent to TYPE that is not a non-record stub, if one
8637 exists, otherwise TYPE. */
8638
8639 struct type *
8640 ada_check_typedef (struct type *type)
8641 {
8642 if (type == NULL)
8643 return NULL;
8644
8645 /* If our type is a typedef type of a fat pointer, then we're done.
8646 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8647 what allows us to distinguish between fat pointers that represent
8648 array types, and fat pointers that represent array access types
8649 (in both cases, the compiler implements them as fat pointers). */
8650 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8651 && is_thick_pntr (ada_typedef_target_type (type)))
8652 return type;
8653
8654 CHECK_TYPEDEF (type);
8655 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8656 || !TYPE_STUB (type)
8657 || TYPE_TAG_NAME (type) == NULL)
8658 return type;
8659 else
8660 {
8661 const char *name = TYPE_TAG_NAME (type);
8662 struct type *type1 = ada_find_any_type (name);
8663
8664 if (type1 == NULL)
8665 return type;
8666
8667 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8668 stubs pointing to arrays, as we don't create symbols for array
8669 types, only for the typedef-to-array types). If that's the case,
8670 strip the typedef layer. */
8671 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8672 type1 = ada_check_typedef (type1);
8673
8674 return type1;
8675 }
8676 }
8677
8678 /* A value representing the data at VALADDR/ADDRESS as described by
8679 type TYPE0, but with a standard (static-sized) type that correctly
8680 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8681 type, then return VAL0 [this feature is simply to avoid redundant
8682 creation of struct values]. */
8683
8684 static struct value *
8685 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8686 struct value *val0)
8687 {
8688 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8689
8690 if (type == type0 && val0 != NULL)
8691 return val0;
8692 else
8693 return value_from_contents_and_address (type, 0, address);
8694 }
8695
8696 /* A value representing VAL, but with a standard (static-sized) type
8697 that correctly describes it. Does not necessarily create a new
8698 value. */
8699
8700 struct value *
8701 ada_to_fixed_value (struct value *val)
8702 {
8703 val = unwrap_value (val);
8704 val = ada_to_fixed_value_create (value_type (val),
8705 value_address (val),
8706 val);
8707 return val;
8708 }
8709 \f
8710
8711 /* Attributes */
8712
8713 /* Table mapping attribute numbers to names.
8714 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8715
8716 static const char *attribute_names[] = {
8717 "<?>",
8718
8719 "first",
8720 "last",
8721 "length",
8722 "image",
8723 "max",
8724 "min",
8725 "modulus",
8726 "pos",
8727 "size",
8728 "tag",
8729 "val",
8730 0
8731 };
8732
8733 const char *
8734 ada_attribute_name (enum exp_opcode n)
8735 {
8736 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8737 return attribute_names[n - OP_ATR_FIRST + 1];
8738 else
8739 return attribute_names[0];
8740 }
8741
8742 /* Evaluate the 'POS attribute applied to ARG. */
8743
8744 static LONGEST
8745 pos_atr (struct value *arg)
8746 {
8747 struct value *val = coerce_ref (arg);
8748 struct type *type = value_type (val);
8749
8750 if (!discrete_type_p (type))
8751 error (_("'POS only defined on discrete types"));
8752
8753 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8754 {
8755 int i;
8756 LONGEST v = value_as_long (val);
8757
8758 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8759 {
8760 if (v == TYPE_FIELD_ENUMVAL (type, i))
8761 return i;
8762 }
8763 error (_("enumeration value is invalid: can't find 'POS"));
8764 }
8765 else
8766 return value_as_long (val);
8767 }
8768
8769 static struct value *
8770 value_pos_atr (struct type *type, struct value *arg)
8771 {
8772 return value_from_longest (type, pos_atr (arg));
8773 }
8774
8775 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8776
8777 static struct value *
8778 value_val_atr (struct type *type, struct value *arg)
8779 {
8780 if (!discrete_type_p (type))
8781 error (_("'VAL only defined on discrete types"));
8782 if (!integer_type_p (value_type (arg)))
8783 error (_("'VAL requires integral argument"));
8784
8785 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8786 {
8787 long pos = value_as_long (arg);
8788
8789 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8790 error (_("argument to 'VAL out of range"));
8791 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8792 }
8793 else
8794 return value_from_longest (type, value_as_long (arg));
8795 }
8796 \f
8797
8798 /* Evaluation */
8799
8800 /* True if TYPE appears to be an Ada character type.
8801 [At the moment, this is true only for Character and Wide_Character;
8802 It is a heuristic test that could stand improvement]. */
8803
8804 int
8805 ada_is_character_type (struct type *type)
8806 {
8807 const char *name;
8808
8809 /* If the type code says it's a character, then assume it really is,
8810 and don't check any further. */
8811 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8812 return 1;
8813
8814 /* Otherwise, assume it's a character type iff it is a discrete type
8815 with a known character type name. */
8816 name = ada_type_name (type);
8817 return (name != NULL
8818 && (TYPE_CODE (type) == TYPE_CODE_INT
8819 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8820 && (strcmp (name, "character") == 0
8821 || strcmp (name, "wide_character") == 0
8822 || strcmp (name, "wide_wide_character") == 0
8823 || strcmp (name, "unsigned char") == 0));
8824 }
8825
8826 /* True if TYPE appears to be an Ada string type. */
8827
8828 int
8829 ada_is_string_type (struct type *type)
8830 {
8831 type = ada_check_typedef (type);
8832 if (type != NULL
8833 && TYPE_CODE (type) != TYPE_CODE_PTR
8834 && (ada_is_simple_array_type (type)
8835 || ada_is_array_descriptor_type (type))
8836 && ada_array_arity (type) == 1)
8837 {
8838 struct type *elttype = ada_array_element_type (type, 1);
8839
8840 return ada_is_character_type (elttype);
8841 }
8842 else
8843 return 0;
8844 }
8845
8846 /* The compiler sometimes provides a parallel XVS type for a given
8847 PAD type. Normally, it is safe to follow the PAD type directly,
8848 but older versions of the compiler have a bug that causes the offset
8849 of its "F" field to be wrong. Following that field in that case
8850 would lead to incorrect results, but this can be worked around
8851 by ignoring the PAD type and using the associated XVS type instead.
8852
8853 Set to True if the debugger should trust the contents of PAD types.
8854 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8855 static int trust_pad_over_xvs = 1;
8856
8857 /* True if TYPE is a struct type introduced by the compiler to force the
8858 alignment of a value. Such types have a single field with a
8859 distinctive name. */
8860
8861 int
8862 ada_is_aligner_type (struct type *type)
8863 {
8864 type = ada_check_typedef (type);
8865
8866 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8867 return 0;
8868
8869 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8870 && TYPE_NFIELDS (type) == 1
8871 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8872 }
8873
8874 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8875 the parallel type. */
8876
8877 struct type *
8878 ada_get_base_type (struct type *raw_type)
8879 {
8880 struct type *real_type_namer;
8881 struct type *raw_real_type;
8882
8883 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8884 return raw_type;
8885
8886 if (ada_is_aligner_type (raw_type))
8887 /* The encoding specifies that we should always use the aligner type.
8888 So, even if this aligner type has an associated XVS type, we should
8889 simply ignore it.
8890
8891 According to the compiler gurus, an XVS type parallel to an aligner
8892 type may exist because of a stabs limitation. In stabs, aligner
8893 types are empty because the field has a variable-sized type, and
8894 thus cannot actually be used as an aligner type. As a result,
8895 we need the associated parallel XVS type to decode the type.
8896 Since the policy in the compiler is to not change the internal
8897 representation based on the debugging info format, we sometimes
8898 end up having a redundant XVS type parallel to the aligner type. */
8899 return raw_type;
8900
8901 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8902 if (real_type_namer == NULL
8903 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8904 || TYPE_NFIELDS (real_type_namer) != 1)
8905 return raw_type;
8906
8907 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8908 {
8909 /* This is an older encoding form where the base type needs to be
8910 looked up by name. We prefer the newer enconding because it is
8911 more efficient. */
8912 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8913 if (raw_real_type == NULL)
8914 return raw_type;
8915 else
8916 return raw_real_type;
8917 }
8918
8919 /* The field in our XVS type is a reference to the base type. */
8920 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8921 }
8922
8923 /* The type of value designated by TYPE, with all aligners removed. */
8924
8925 struct type *
8926 ada_aligned_type (struct type *type)
8927 {
8928 if (ada_is_aligner_type (type))
8929 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8930 else
8931 return ada_get_base_type (type);
8932 }
8933
8934
8935 /* The address of the aligned value in an object at address VALADDR
8936 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8937
8938 const gdb_byte *
8939 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8940 {
8941 if (ada_is_aligner_type (type))
8942 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8943 valaddr +
8944 TYPE_FIELD_BITPOS (type,
8945 0) / TARGET_CHAR_BIT);
8946 else
8947 return valaddr;
8948 }
8949
8950
8951
8952 /* The printed representation of an enumeration literal with encoded
8953 name NAME. The value is good to the next call of ada_enum_name. */
8954 const char *
8955 ada_enum_name (const char *name)
8956 {
8957 static char *result;
8958 static size_t result_len = 0;
8959 char *tmp;
8960
8961 /* First, unqualify the enumeration name:
8962 1. Search for the last '.' character. If we find one, then skip
8963 all the preceding characters, the unqualified name starts
8964 right after that dot.
8965 2. Otherwise, we may be debugging on a target where the compiler
8966 translates dots into "__". Search forward for double underscores,
8967 but stop searching when we hit an overloading suffix, which is
8968 of the form "__" followed by digits. */
8969
8970 tmp = strrchr (name, '.');
8971 if (tmp != NULL)
8972 name = tmp + 1;
8973 else
8974 {
8975 while ((tmp = strstr (name, "__")) != NULL)
8976 {
8977 if (isdigit (tmp[2]))
8978 break;
8979 else
8980 name = tmp + 2;
8981 }
8982 }
8983
8984 if (name[0] == 'Q')
8985 {
8986 int v;
8987
8988 if (name[1] == 'U' || name[1] == 'W')
8989 {
8990 if (sscanf (name + 2, "%x", &v) != 1)
8991 return name;
8992 }
8993 else
8994 return name;
8995
8996 GROW_VECT (result, result_len, 16);
8997 if (isascii (v) && isprint (v))
8998 xsnprintf (result, result_len, "'%c'", v);
8999 else if (name[1] == 'U')
9000 xsnprintf (result, result_len, "[\"%02x\"]", v);
9001 else
9002 xsnprintf (result, result_len, "[\"%04x\"]", v);
9003
9004 return result;
9005 }
9006 else
9007 {
9008 tmp = strstr (name, "__");
9009 if (tmp == NULL)
9010 tmp = strstr (name, "$");
9011 if (tmp != NULL)
9012 {
9013 GROW_VECT (result, result_len, tmp - name + 1);
9014 strncpy (result, name, tmp - name);
9015 result[tmp - name] = '\0';
9016 return result;
9017 }
9018
9019 return name;
9020 }
9021 }
9022
9023 /* Evaluate the subexpression of EXP starting at *POS as for
9024 evaluate_type, updating *POS to point just past the evaluated
9025 expression. */
9026
9027 static struct value *
9028 evaluate_subexp_type (struct expression *exp, int *pos)
9029 {
9030 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9031 }
9032
9033 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9034 value it wraps. */
9035
9036 static struct value *
9037 unwrap_value (struct value *val)
9038 {
9039 struct type *type = ada_check_typedef (value_type (val));
9040
9041 if (ada_is_aligner_type (type))
9042 {
9043 struct value *v = ada_value_struct_elt (val, "F", 0);
9044 struct type *val_type = ada_check_typedef (value_type (v));
9045
9046 if (ada_type_name (val_type) == NULL)
9047 TYPE_NAME (val_type) = ada_type_name (type);
9048
9049 return unwrap_value (v);
9050 }
9051 else
9052 {
9053 struct type *raw_real_type =
9054 ada_check_typedef (ada_get_base_type (type));
9055
9056 /* If there is no parallel XVS or XVE type, then the value is
9057 already unwrapped. Return it without further modification. */
9058 if ((type == raw_real_type)
9059 && ada_find_parallel_type (type, "___XVE") == NULL)
9060 return val;
9061
9062 return
9063 coerce_unspec_val_to_type
9064 (val, ada_to_fixed_type (raw_real_type, 0,
9065 value_address (val),
9066 NULL, 1));
9067 }
9068 }
9069
9070 static struct value *
9071 cast_to_fixed (struct type *type, struct value *arg)
9072 {
9073 LONGEST val;
9074
9075 if (type == value_type (arg))
9076 return arg;
9077 else if (ada_is_fixed_point_type (value_type (arg)))
9078 val = ada_float_to_fixed (type,
9079 ada_fixed_to_float (value_type (arg),
9080 value_as_long (arg)));
9081 else
9082 {
9083 DOUBLEST argd = value_as_double (arg);
9084
9085 val = ada_float_to_fixed (type, argd);
9086 }
9087
9088 return value_from_longest (type, val);
9089 }
9090
9091 static struct value *
9092 cast_from_fixed (struct type *type, struct value *arg)
9093 {
9094 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9095 value_as_long (arg));
9096
9097 return value_from_double (type, val);
9098 }
9099
9100 /* Given two array types T1 and T2, return nonzero iff both arrays
9101 contain the same number of elements. */
9102
9103 static int
9104 ada_same_array_size_p (struct type *t1, struct type *t2)
9105 {
9106 LONGEST lo1, hi1, lo2, hi2;
9107
9108 /* Get the array bounds in order to verify that the size of
9109 the two arrays match. */
9110 if (!get_array_bounds (t1, &lo1, &hi1)
9111 || !get_array_bounds (t2, &lo2, &hi2))
9112 error (_("unable to determine array bounds"));
9113
9114 /* To make things easier for size comparison, normalize a bit
9115 the case of empty arrays by making sure that the difference
9116 between upper bound and lower bound is always -1. */
9117 if (lo1 > hi1)
9118 hi1 = lo1 - 1;
9119 if (lo2 > hi2)
9120 hi2 = lo2 - 1;
9121
9122 return (hi1 - lo1 == hi2 - lo2);
9123 }
9124
9125 /* Assuming that VAL is an array of integrals, and TYPE represents
9126 an array with the same number of elements, but with wider integral
9127 elements, return an array "casted" to TYPE. In practice, this
9128 means that the returned array is built by casting each element
9129 of the original array into TYPE's (wider) element type. */
9130
9131 static struct value *
9132 ada_promote_array_of_integrals (struct type *type, struct value *val)
9133 {
9134 struct type *elt_type = TYPE_TARGET_TYPE (type);
9135 LONGEST lo, hi;
9136 struct value *res;
9137 LONGEST i;
9138
9139 /* Verify that both val and type are arrays of scalars, and
9140 that the size of val's elements is smaller than the size
9141 of type's element. */
9142 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9143 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9144 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9145 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9146 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9147 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9148
9149 if (!get_array_bounds (type, &lo, &hi))
9150 error (_("unable to determine array bounds"));
9151
9152 res = allocate_value (type);
9153
9154 /* Promote each array element. */
9155 for (i = 0; i < hi - lo + 1; i++)
9156 {
9157 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9158
9159 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9160 value_contents_all (elt), TYPE_LENGTH (elt_type));
9161 }
9162
9163 return res;
9164 }
9165
9166 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9167 return the converted value. */
9168
9169 static struct value *
9170 coerce_for_assign (struct type *type, struct value *val)
9171 {
9172 struct type *type2 = value_type (val);
9173
9174 if (type == type2)
9175 return val;
9176
9177 type2 = ada_check_typedef (type2);
9178 type = ada_check_typedef (type);
9179
9180 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9181 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9182 {
9183 val = ada_value_ind (val);
9184 type2 = value_type (val);
9185 }
9186
9187 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9188 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9189 {
9190 if (!ada_same_array_size_p (type, type2))
9191 error (_("cannot assign arrays of different length"));
9192
9193 if (is_integral_type (TYPE_TARGET_TYPE (type))
9194 && is_integral_type (TYPE_TARGET_TYPE (type2))
9195 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9196 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9197 {
9198 /* Allow implicit promotion of the array elements to
9199 a wider type. */
9200 return ada_promote_array_of_integrals (type, val);
9201 }
9202
9203 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9204 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9205 error (_("Incompatible types in assignment"));
9206 deprecated_set_value_type (val, type);
9207 }
9208 return val;
9209 }
9210
9211 static struct value *
9212 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9213 {
9214 struct value *val;
9215 struct type *type1, *type2;
9216 LONGEST v, v1, v2;
9217
9218 arg1 = coerce_ref (arg1);
9219 arg2 = coerce_ref (arg2);
9220 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9221 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9222
9223 if (TYPE_CODE (type1) != TYPE_CODE_INT
9224 || TYPE_CODE (type2) != TYPE_CODE_INT)
9225 return value_binop (arg1, arg2, op);
9226
9227 switch (op)
9228 {
9229 case BINOP_MOD:
9230 case BINOP_DIV:
9231 case BINOP_REM:
9232 break;
9233 default:
9234 return value_binop (arg1, arg2, op);
9235 }
9236
9237 v2 = value_as_long (arg2);
9238 if (v2 == 0)
9239 error (_("second operand of %s must not be zero."), op_string (op));
9240
9241 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9242 return value_binop (arg1, arg2, op);
9243
9244 v1 = value_as_long (arg1);
9245 switch (op)
9246 {
9247 case BINOP_DIV:
9248 v = v1 / v2;
9249 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9250 v += v > 0 ? -1 : 1;
9251 break;
9252 case BINOP_REM:
9253 v = v1 % v2;
9254 if (v * v1 < 0)
9255 v -= v2;
9256 break;
9257 default:
9258 /* Should not reach this point. */
9259 v = 0;
9260 }
9261
9262 val = allocate_value (type1);
9263 store_unsigned_integer (value_contents_raw (val),
9264 TYPE_LENGTH (value_type (val)),
9265 gdbarch_byte_order (get_type_arch (type1)), v);
9266 return val;
9267 }
9268
9269 static int
9270 ada_value_equal (struct value *arg1, struct value *arg2)
9271 {
9272 if (ada_is_direct_array_type (value_type (arg1))
9273 || ada_is_direct_array_type (value_type (arg2)))
9274 {
9275 /* Automatically dereference any array reference before
9276 we attempt to perform the comparison. */
9277 arg1 = ada_coerce_ref (arg1);
9278 arg2 = ada_coerce_ref (arg2);
9279
9280 arg1 = ada_coerce_to_simple_array (arg1);
9281 arg2 = ada_coerce_to_simple_array (arg2);
9282 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9283 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9284 error (_("Attempt to compare array with non-array"));
9285 /* FIXME: The following works only for types whose
9286 representations use all bits (no padding or undefined bits)
9287 and do not have user-defined equality. */
9288 return
9289 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9290 && memcmp (value_contents (arg1), value_contents (arg2),
9291 TYPE_LENGTH (value_type (arg1))) == 0;
9292 }
9293 return value_equal (arg1, arg2);
9294 }
9295
9296 /* Total number of component associations in the aggregate starting at
9297 index PC in EXP. Assumes that index PC is the start of an
9298 OP_AGGREGATE. */
9299
9300 static int
9301 num_component_specs (struct expression *exp, int pc)
9302 {
9303 int n, m, i;
9304
9305 m = exp->elts[pc + 1].longconst;
9306 pc += 3;
9307 n = 0;
9308 for (i = 0; i < m; i += 1)
9309 {
9310 switch (exp->elts[pc].opcode)
9311 {
9312 default:
9313 n += 1;
9314 break;
9315 case OP_CHOICES:
9316 n += exp->elts[pc + 1].longconst;
9317 break;
9318 }
9319 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9320 }
9321 return n;
9322 }
9323
9324 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9325 component of LHS (a simple array or a record), updating *POS past
9326 the expression, assuming that LHS is contained in CONTAINER. Does
9327 not modify the inferior's memory, nor does it modify LHS (unless
9328 LHS == CONTAINER). */
9329
9330 static void
9331 assign_component (struct value *container, struct value *lhs, LONGEST index,
9332 struct expression *exp, int *pos)
9333 {
9334 struct value *mark = value_mark ();
9335 struct value *elt;
9336
9337 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9338 {
9339 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9340 struct value *index_val = value_from_longest (index_type, index);
9341
9342 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9343 }
9344 else
9345 {
9346 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9347 elt = ada_to_fixed_value (elt);
9348 }
9349
9350 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9351 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9352 else
9353 value_assign_to_component (container, elt,
9354 ada_evaluate_subexp (NULL, exp, pos,
9355 EVAL_NORMAL));
9356
9357 value_free_to_mark (mark);
9358 }
9359
9360 /* Assuming that LHS represents an lvalue having a record or array
9361 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9362 of that aggregate's value to LHS, advancing *POS past the
9363 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9364 lvalue containing LHS (possibly LHS itself). Does not modify
9365 the inferior's memory, nor does it modify the contents of
9366 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9367
9368 static struct value *
9369 assign_aggregate (struct value *container,
9370 struct value *lhs, struct expression *exp,
9371 int *pos, enum noside noside)
9372 {
9373 struct type *lhs_type;
9374 int n = exp->elts[*pos+1].longconst;
9375 LONGEST low_index, high_index;
9376 int num_specs;
9377 LONGEST *indices;
9378 int max_indices, num_indices;
9379 int i;
9380
9381 *pos += 3;
9382 if (noside != EVAL_NORMAL)
9383 {
9384 for (i = 0; i < n; i += 1)
9385 ada_evaluate_subexp (NULL, exp, pos, noside);
9386 return container;
9387 }
9388
9389 container = ada_coerce_ref (container);
9390 if (ada_is_direct_array_type (value_type (container)))
9391 container = ada_coerce_to_simple_array (container);
9392 lhs = ada_coerce_ref (lhs);
9393 if (!deprecated_value_modifiable (lhs))
9394 error (_("Left operand of assignment is not a modifiable lvalue."));
9395
9396 lhs_type = value_type (lhs);
9397 if (ada_is_direct_array_type (lhs_type))
9398 {
9399 lhs = ada_coerce_to_simple_array (lhs);
9400 lhs_type = value_type (lhs);
9401 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9402 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9403 }
9404 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9405 {
9406 low_index = 0;
9407 high_index = num_visible_fields (lhs_type) - 1;
9408 }
9409 else
9410 error (_("Left-hand side must be array or record."));
9411
9412 num_specs = num_component_specs (exp, *pos - 3);
9413 max_indices = 4 * num_specs + 4;
9414 indices = alloca (max_indices * sizeof (indices[0]));
9415 indices[0] = indices[1] = low_index - 1;
9416 indices[2] = indices[3] = high_index + 1;
9417 num_indices = 4;
9418
9419 for (i = 0; i < n; i += 1)
9420 {
9421 switch (exp->elts[*pos].opcode)
9422 {
9423 case OP_CHOICES:
9424 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9425 &num_indices, max_indices,
9426 low_index, high_index);
9427 break;
9428 case OP_POSITIONAL:
9429 aggregate_assign_positional (container, lhs, exp, pos, indices,
9430 &num_indices, max_indices,
9431 low_index, high_index);
9432 break;
9433 case OP_OTHERS:
9434 if (i != n-1)
9435 error (_("Misplaced 'others' clause"));
9436 aggregate_assign_others (container, lhs, exp, pos, indices,
9437 num_indices, low_index, high_index);
9438 break;
9439 default:
9440 error (_("Internal error: bad aggregate clause"));
9441 }
9442 }
9443
9444 return container;
9445 }
9446
9447 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9448 construct at *POS, updating *POS past the construct, given that
9449 the positions are relative to lower bound LOW, where HIGH is the
9450 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9451 updating *NUM_INDICES as needed. CONTAINER is as for
9452 assign_aggregate. */
9453 static void
9454 aggregate_assign_positional (struct value *container,
9455 struct value *lhs, struct expression *exp,
9456 int *pos, LONGEST *indices, int *num_indices,
9457 int max_indices, LONGEST low, LONGEST high)
9458 {
9459 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9460
9461 if (ind - 1 == high)
9462 warning (_("Extra components in aggregate ignored."));
9463 if (ind <= high)
9464 {
9465 add_component_interval (ind, ind, indices, num_indices, max_indices);
9466 *pos += 3;
9467 assign_component (container, lhs, ind, exp, pos);
9468 }
9469 else
9470 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9471 }
9472
9473 /* Assign into the components of LHS indexed by the OP_CHOICES
9474 construct at *POS, updating *POS past the construct, given that
9475 the allowable indices are LOW..HIGH. Record the indices assigned
9476 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9477 needed. CONTAINER is as for assign_aggregate. */
9478 static void
9479 aggregate_assign_from_choices (struct value *container,
9480 struct value *lhs, struct expression *exp,
9481 int *pos, LONGEST *indices, int *num_indices,
9482 int max_indices, LONGEST low, LONGEST high)
9483 {
9484 int j;
9485 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9486 int choice_pos, expr_pc;
9487 int is_array = ada_is_direct_array_type (value_type (lhs));
9488
9489 choice_pos = *pos += 3;
9490
9491 for (j = 0; j < n_choices; j += 1)
9492 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9493 expr_pc = *pos;
9494 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9495
9496 for (j = 0; j < n_choices; j += 1)
9497 {
9498 LONGEST lower, upper;
9499 enum exp_opcode op = exp->elts[choice_pos].opcode;
9500
9501 if (op == OP_DISCRETE_RANGE)
9502 {
9503 choice_pos += 1;
9504 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9505 EVAL_NORMAL));
9506 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9507 EVAL_NORMAL));
9508 }
9509 else if (is_array)
9510 {
9511 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9512 EVAL_NORMAL));
9513 upper = lower;
9514 }
9515 else
9516 {
9517 int ind;
9518 const char *name;
9519
9520 switch (op)
9521 {
9522 case OP_NAME:
9523 name = &exp->elts[choice_pos + 2].string;
9524 break;
9525 case OP_VAR_VALUE:
9526 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9527 break;
9528 default:
9529 error (_("Invalid record component association."));
9530 }
9531 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9532 ind = 0;
9533 if (! find_struct_field (name, value_type (lhs), 0,
9534 NULL, NULL, NULL, NULL, &ind))
9535 error (_("Unknown component name: %s."), name);
9536 lower = upper = ind;
9537 }
9538
9539 if (lower <= upper && (lower < low || upper > high))
9540 error (_("Index in component association out of bounds."));
9541
9542 add_component_interval (lower, upper, indices, num_indices,
9543 max_indices);
9544 while (lower <= upper)
9545 {
9546 int pos1;
9547
9548 pos1 = expr_pc;
9549 assign_component (container, lhs, lower, exp, &pos1);
9550 lower += 1;
9551 }
9552 }
9553 }
9554
9555 /* Assign the value of the expression in the OP_OTHERS construct in
9556 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9557 have not been previously assigned. The index intervals already assigned
9558 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9559 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9560 static void
9561 aggregate_assign_others (struct value *container,
9562 struct value *lhs, struct expression *exp,
9563 int *pos, LONGEST *indices, int num_indices,
9564 LONGEST low, LONGEST high)
9565 {
9566 int i;
9567 int expr_pc = *pos + 1;
9568
9569 for (i = 0; i < num_indices - 2; i += 2)
9570 {
9571 LONGEST ind;
9572
9573 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9574 {
9575 int localpos;
9576
9577 localpos = expr_pc;
9578 assign_component (container, lhs, ind, exp, &localpos);
9579 }
9580 }
9581 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9582 }
9583
9584 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9585 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9586 modifying *SIZE as needed. It is an error if *SIZE exceeds
9587 MAX_SIZE. The resulting intervals do not overlap. */
9588 static void
9589 add_component_interval (LONGEST low, LONGEST high,
9590 LONGEST* indices, int *size, int max_size)
9591 {
9592 int i, j;
9593
9594 for (i = 0; i < *size; i += 2) {
9595 if (high >= indices[i] && low <= indices[i + 1])
9596 {
9597 int kh;
9598
9599 for (kh = i + 2; kh < *size; kh += 2)
9600 if (high < indices[kh])
9601 break;
9602 if (low < indices[i])
9603 indices[i] = low;
9604 indices[i + 1] = indices[kh - 1];
9605 if (high > indices[i + 1])
9606 indices[i + 1] = high;
9607 memcpy (indices + i + 2, indices + kh, *size - kh);
9608 *size -= kh - i - 2;
9609 return;
9610 }
9611 else if (high < indices[i])
9612 break;
9613 }
9614
9615 if (*size == max_size)
9616 error (_("Internal error: miscounted aggregate components."));
9617 *size += 2;
9618 for (j = *size-1; j >= i+2; j -= 1)
9619 indices[j] = indices[j - 2];
9620 indices[i] = low;
9621 indices[i + 1] = high;
9622 }
9623
9624 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9625 is different. */
9626
9627 static struct value *
9628 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9629 {
9630 if (type == ada_check_typedef (value_type (arg2)))
9631 return arg2;
9632
9633 if (ada_is_fixed_point_type (type))
9634 return (cast_to_fixed (type, arg2));
9635
9636 if (ada_is_fixed_point_type (value_type (arg2)))
9637 return cast_from_fixed (type, arg2);
9638
9639 return value_cast (type, arg2);
9640 }
9641
9642 /* Evaluating Ada expressions, and printing their result.
9643 ------------------------------------------------------
9644
9645 1. Introduction:
9646 ----------------
9647
9648 We usually evaluate an Ada expression in order to print its value.
9649 We also evaluate an expression in order to print its type, which
9650 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9651 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9652 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9653 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9654 similar.
9655
9656 Evaluating expressions is a little more complicated for Ada entities
9657 than it is for entities in languages such as C. The main reason for
9658 this is that Ada provides types whose definition might be dynamic.
9659 One example of such types is variant records. Or another example
9660 would be an array whose bounds can only be known at run time.
9661
9662 The following description is a general guide as to what should be
9663 done (and what should NOT be done) in order to evaluate an expression
9664 involving such types, and when. This does not cover how the semantic
9665 information is encoded by GNAT as this is covered separatly. For the
9666 document used as the reference for the GNAT encoding, see exp_dbug.ads
9667 in the GNAT sources.
9668
9669 Ideally, we should embed each part of this description next to its
9670 associated code. Unfortunately, the amount of code is so vast right
9671 now that it's hard to see whether the code handling a particular
9672 situation might be duplicated or not. One day, when the code is
9673 cleaned up, this guide might become redundant with the comments
9674 inserted in the code, and we might want to remove it.
9675
9676 2. ``Fixing'' an Entity, the Simple Case:
9677 -----------------------------------------
9678
9679 When evaluating Ada expressions, the tricky issue is that they may
9680 reference entities whose type contents and size are not statically
9681 known. Consider for instance a variant record:
9682
9683 type Rec (Empty : Boolean := True) is record
9684 case Empty is
9685 when True => null;
9686 when False => Value : Integer;
9687 end case;
9688 end record;
9689 Yes : Rec := (Empty => False, Value => 1);
9690 No : Rec := (empty => True);
9691
9692 The size and contents of that record depends on the value of the
9693 descriminant (Rec.Empty). At this point, neither the debugging
9694 information nor the associated type structure in GDB are able to
9695 express such dynamic types. So what the debugger does is to create
9696 "fixed" versions of the type that applies to the specific object.
9697 We also informally refer to this opperation as "fixing" an object,
9698 which means creating its associated fixed type.
9699
9700 Example: when printing the value of variable "Yes" above, its fixed
9701 type would look like this:
9702
9703 type Rec is record
9704 Empty : Boolean;
9705 Value : Integer;
9706 end record;
9707
9708 On the other hand, if we printed the value of "No", its fixed type
9709 would become:
9710
9711 type Rec is record
9712 Empty : Boolean;
9713 end record;
9714
9715 Things become a little more complicated when trying to fix an entity
9716 with a dynamic type that directly contains another dynamic type,
9717 such as an array of variant records, for instance. There are
9718 two possible cases: Arrays, and records.
9719
9720 3. ``Fixing'' Arrays:
9721 ---------------------
9722
9723 The type structure in GDB describes an array in terms of its bounds,
9724 and the type of its elements. By design, all elements in the array
9725 have the same type and we cannot represent an array of variant elements
9726 using the current type structure in GDB. When fixing an array,
9727 we cannot fix the array element, as we would potentially need one
9728 fixed type per element of the array. As a result, the best we can do
9729 when fixing an array is to produce an array whose bounds and size
9730 are correct (allowing us to read it from memory), but without having
9731 touched its element type. Fixing each element will be done later,
9732 when (if) necessary.
9733
9734 Arrays are a little simpler to handle than records, because the same
9735 amount of memory is allocated for each element of the array, even if
9736 the amount of space actually used by each element differs from element
9737 to element. Consider for instance the following array of type Rec:
9738
9739 type Rec_Array is array (1 .. 2) of Rec;
9740
9741 The actual amount of memory occupied by each element might be different
9742 from element to element, depending on the value of their discriminant.
9743 But the amount of space reserved for each element in the array remains
9744 fixed regardless. So we simply need to compute that size using
9745 the debugging information available, from which we can then determine
9746 the array size (we multiply the number of elements of the array by
9747 the size of each element).
9748
9749 The simplest case is when we have an array of a constrained element
9750 type. For instance, consider the following type declarations:
9751
9752 type Bounded_String (Max_Size : Integer) is
9753 Length : Integer;
9754 Buffer : String (1 .. Max_Size);
9755 end record;
9756 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9757
9758 In this case, the compiler describes the array as an array of
9759 variable-size elements (identified by its XVS suffix) for which
9760 the size can be read in the parallel XVZ variable.
9761
9762 In the case of an array of an unconstrained element type, the compiler
9763 wraps the array element inside a private PAD type. This type should not
9764 be shown to the user, and must be "unwrap"'ed before printing. Note
9765 that we also use the adjective "aligner" in our code to designate
9766 these wrapper types.
9767
9768 In some cases, the size allocated for each element is statically
9769 known. In that case, the PAD type already has the correct size,
9770 and the array element should remain unfixed.
9771
9772 But there are cases when this size is not statically known.
9773 For instance, assuming that "Five" is an integer variable:
9774
9775 type Dynamic is array (1 .. Five) of Integer;
9776 type Wrapper (Has_Length : Boolean := False) is record
9777 Data : Dynamic;
9778 case Has_Length is
9779 when True => Length : Integer;
9780 when False => null;
9781 end case;
9782 end record;
9783 type Wrapper_Array is array (1 .. 2) of Wrapper;
9784
9785 Hello : Wrapper_Array := (others => (Has_Length => True,
9786 Data => (others => 17),
9787 Length => 1));
9788
9789
9790 The debugging info would describe variable Hello as being an
9791 array of a PAD type. The size of that PAD type is not statically
9792 known, but can be determined using a parallel XVZ variable.
9793 In that case, a copy of the PAD type with the correct size should
9794 be used for the fixed array.
9795
9796 3. ``Fixing'' record type objects:
9797 ----------------------------------
9798
9799 Things are slightly different from arrays in the case of dynamic
9800 record types. In this case, in order to compute the associated
9801 fixed type, we need to determine the size and offset of each of
9802 its components. This, in turn, requires us to compute the fixed
9803 type of each of these components.
9804
9805 Consider for instance the example:
9806
9807 type Bounded_String (Max_Size : Natural) is record
9808 Str : String (1 .. Max_Size);
9809 Length : Natural;
9810 end record;
9811 My_String : Bounded_String (Max_Size => 10);
9812
9813 In that case, the position of field "Length" depends on the size
9814 of field Str, which itself depends on the value of the Max_Size
9815 discriminant. In order to fix the type of variable My_String,
9816 we need to fix the type of field Str. Therefore, fixing a variant
9817 record requires us to fix each of its components.
9818
9819 However, if a component does not have a dynamic size, the component
9820 should not be fixed. In particular, fields that use a PAD type
9821 should not fixed. Here is an example where this might happen
9822 (assuming type Rec above):
9823
9824 type Container (Big : Boolean) is record
9825 First : Rec;
9826 After : Integer;
9827 case Big is
9828 when True => Another : Integer;
9829 when False => null;
9830 end case;
9831 end record;
9832 My_Container : Container := (Big => False,
9833 First => (Empty => True),
9834 After => 42);
9835
9836 In that example, the compiler creates a PAD type for component First,
9837 whose size is constant, and then positions the component After just
9838 right after it. The offset of component After is therefore constant
9839 in this case.
9840
9841 The debugger computes the position of each field based on an algorithm
9842 that uses, among other things, the actual position and size of the field
9843 preceding it. Let's now imagine that the user is trying to print
9844 the value of My_Container. If the type fixing was recursive, we would
9845 end up computing the offset of field After based on the size of the
9846 fixed version of field First. And since in our example First has
9847 only one actual field, the size of the fixed type is actually smaller
9848 than the amount of space allocated to that field, and thus we would
9849 compute the wrong offset of field After.
9850
9851 To make things more complicated, we need to watch out for dynamic
9852 components of variant records (identified by the ___XVL suffix in
9853 the component name). Even if the target type is a PAD type, the size
9854 of that type might not be statically known. So the PAD type needs
9855 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9856 we might end up with the wrong size for our component. This can be
9857 observed with the following type declarations:
9858
9859 type Octal is new Integer range 0 .. 7;
9860 type Octal_Array is array (Positive range <>) of Octal;
9861 pragma Pack (Octal_Array);
9862
9863 type Octal_Buffer (Size : Positive) is record
9864 Buffer : Octal_Array (1 .. Size);
9865 Length : Integer;
9866 end record;
9867
9868 In that case, Buffer is a PAD type whose size is unset and needs
9869 to be computed by fixing the unwrapped type.
9870
9871 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9872 ----------------------------------------------------------
9873
9874 Lastly, when should the sub-elements of an entity that remained unfixed
9875 thus far, be actually fixed?
9876
9877 The answer is: Only when referencing that element. For instance
9878 when selecting one component of a record, this specific component
9879 should be fixed at that point in time. Or when printing the value
9880 of a record, each component should be fixed before its value gets
9881 printed. Similarly for arrays, the element of the array should be
9882 fixed when printing each element of the array, or when extracting
9883 one element out of that array. On the other hand, fixing should
9884 not be performed on the elements when taking a slice of an array!
9885
9886 Note that one of the side-effects of miscomputing the offset and
9887 size of each field is that we end up also miscomputing the size
9888 of the containing type. This can have adverse results when computing
9889 the value of an entity. GDB fetches the value of an entity based
9890 on the size of its type, and thus a wrong size causes GDB to fetch
9891 the wrong amount of memory. In the case where the computed size is
9892 too small, GDB fetches too little data to print the value of our
9893 entiry. Results in this case as unpredicatble, as we usually read
9894 past the buffer containing the data =:-o. */
9895
9896 /* Implement the evaluate_exp routine in the exp_descriptor structure
9897 for the Ada language. */
9898
9899 static struct value *
9900 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9901 int *pos, enum noside noside)
9902 {
9903 enum exp_opcode op;
9904 int tem;
9905 int pc;
9906 int preeval_pos;
9907 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9908 struct type *type;
9909 int nargs, oplen;
9910 struct value **argvec;
9911
9912 pc = *pos;
9913 *pos += 1;
9914 op = exp->elts[pc].opcode;
9915
9916 switch (op)
9917 {
9918 default:
9919 *pos -= 1;
9920 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9921
9922 if (noside == EVAL_NORMAL)
9923 arg1 = unwrap_value (arg1);
9924
9925 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9926 then we need to perform the conversion manually, because
9927 evaluate_subexp_standard doesn't do it. This conversion is
9928 necessary in Ada because the different kinds of float/fixed
9929 types in Ada have different representations.
9930
9931 Similarly, we need to perform the conversion from OP_LONG
9932 ourselves. */
9933 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9934 arg1 = ada_value_cast (expect_type, arg1, noside);
9935
9936 return arg1;
9937
9938 case OP_STRING:
9939 {
9940 struct value *result;
9941
9942 *pos -= 1;
9943 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9944 /* The result type will have code OP_STRING, bashed there from
9945 OP_ARRAY. Bash it back. */
9946 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9947 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9948 return result;
9949 }
9950
9951 case UNOP_CAST:
9952 (*pos) += 2;
9953 type = exp->elts[pc + 1].type;
9954 arg1 = evaluate_subexp (type, exp, pos, noside);
9955 if (noside == EVAL_SKIP)
9956 goto nosideret;
9957 arg1 = ada_value_cast (type, arg1, noside);
9958 return arg1;
9959
9960 case UNOP_QUAL:
9961 (*pos) += 2;
9962 type = exp->elts[pc + 1].type;
9963 return ada_evaluate_subexp (type, exp, pos, noside);
9964
9965 case BINOP_ASSIGN:
9966 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9967 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9968 {
9969 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9970 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9971 return arg1;
9972 return ada_value_assign (arg1, arg1);
9973 }
9974 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9975 except if the lhs of our assignment is a convenience variable.
9976 In the case of assigning to a convenience variable, the lhs
9977 should be exactly the result of the evaluation of the rhs. */
9978 type = value_type (arg1);
9979 if (VALUE_LVAL (arg1) == lval_internalvar)
9980 type = NULL;
9981 arg2 = evaluate_subexp (type, exp, pos, noside);
9982 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9983 return arg1;
9984 if (ada_is_fixed_point_type (value_type (arg1)))
9985 arg2 = cast_to_fixed (value_type (arg1), arg2);
9986 else if (ada_is_fixed_point_type (value_type (arg2)))
9987 error
9988 (_("Fixed-point values must be assigned to fixed-point variables"));
9989 else
9990 arg2 = coerce_for_assign (value_type (arg1), arg2);
9991 return ada_value_assign (arg1, arg2);
9992
9993 case BINOP_ADD:
9994 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9995 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9996 if (noside == EVAL_SKIP)
9997 goto nosideret;
9998 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9999 return (value_from_longest
10000 (value_type (arg1),
10001 value_as_long (arg1) + value_as_long (arg2)));
10002 if ((ada_is_fixed_point_type (value_type (arg1))
10003 || ada_is_fixed_point_type (value_type (arg2)))
10004 && value_type (arg1) != value_type (arg2))
10005 error (_("Operands of fixed-point addition must have the same type"));
10006 /* Do the addition, and cast the result to the type of the first
10007 argument. We cannot cast the result to a reference type, so if
10008 ARG1 is a reference type, find its underlying type. */
10009 type = value_type (arg1);
10010 while (TYPE_CODE (type) == TYPE_CODE_REF)
10011 type = TYPE_TARGET_TYPE (type);
10012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10013 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10014
10015 case BINOP_SUB:
10016 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10017 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10018 if (noside == EVAL_SKIP)
10019 goto nosideret;
10020 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10021 return (value_from_longest
10022 (value_type (arg1),
10023 value_as_long (arg1) - value_as_long (arg2)));
10024 if ((ada_is_fixed_point_type (value_type (arg1))
10025 || ada_is_fixed_point_type (value_type (arg2)))
10026 && value_type (arg1) != value_type (arg2))
10027 error (_("Operands of fixed-point subtraction "
10028 "must have the same type"));
10029 /* Do the substraction, and cast the result to the type of the first
10030 argument. We cannot cast the result to a reference type, so if
10031 ARG1 is a reference type, find its underlying type. */
10032 type = value_type (arg1);
10033 while (TYPE_CODE (type) == TYPE_CODE_REF)
10034 type = TYPE_TARGET_TYPE (type);
10035 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10036 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10037
10038 case BINOP_MUL:
10039 case BINOP_DIV:
10040 case BINOP_REM:
10041 case BINOP_MOD:
10042 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10043 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10044 if (noside == EVAL_SKIP)
10045 goto nosideret;
10046 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10047 {
10048 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10049 return value_zero (value_type (arg1), not_lval);
10050 }
10051 else
10052 {
10053 type = builtin_type (exp->gdbarch)->builtin_double;
10054 if (ada_is_fixed_point_type (value_type (arg1)))
10055 arg1 = cast_from_fixed (type, arg1);
10056 if (ada_is_fixed_point_type (value_type (arg2)))
10057 arg2 = cast_from_fixed (type, arg2);
10058 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10059 return ada_value_binop (arg1, arg2, op);
10060 }
10061
10062 case BINOP_EQUAL:
10063 case BINOP_NOTEQUAL:
10064 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10065 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10066 if (noside == EVAL_SKIP)
10067 goto nosideret;
10068 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10069 tem = 0;
10070 else
10071 {
10072 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10073 tem = ada_value_equal (arg1, arg2);
10074 }
10075 if (op == BINOP_NOTEQUAL)
10076 tem = !tem;
10077 type = language_bool_type (exp->language_defn, exp->gdbarch);
10078 return value_from_longest (type, (LONGEST) tem);
10079
10080 case UNOP_NEG:
10081 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10082 if (noside == EVAL_SKIP)
10083 goto nosideret;
10084 else if (ada_is_fixed_point_type (value_type (arg1)))
10085 return value_cast (value_type (arg1), value_neg (arg1));
10086 else
10087 {
10088 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10089 return value_neg (arg1);
10090 }
10091
10092 case BINOP_LOGICAL_AND:
10093 case BINOP_LOGICAL_OR:
10094 case UNOP_LOGICAL_NOT:
10095 {
10096 struct value *val;
10097
10098 *pos -= 1;
10099 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10100 type = language_bool_type (exp->language_defn, exp->gdbarch);
10101 return value_cast (type, val);
10102 }
10103
10104 case BINOP_BITWISE_AND:
10105 case BINOP_BITWISE_IOR:
10106 case BINOP_BITWISE_XOR:
10107 {
10108 struct value *val;
10109
10110 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10111 *pos = pc;
10112 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10113
10114 return value_cast (value_type (arg1), val);
10115 }
10116
10117 case OP_VAR_VALUE:
10118 *pos -= 1;
10119
10120 if (noside == EVAL_SKIP)
10121 {
10122 *pos += 4;
10123 goto nosideret;
10124 }
10125 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10126 /* Only encountered when an unresolved symbol occurs in a
10127 context other than a function call, in which case, it is
10128 invalid. */
10129 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10130 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10131 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10132 {
10133 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10134 /* Check to see if this is a tagged type. We also need to handle
10135 the case where the type is a reference to a tagged type, but
10136 we have to be careful to exclude pointers to tagged types.
10137 The latter should be shown as usual (as a pointer), whereas
10138 a reference should mostly be transparent to the user. */
10139 if (ada_is_tagged_type (type, 0)
10140 || (TYPE_CODE (type) == TYPE_CODE_REF
10141 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10142 {
10143 /* Tagged types are a little special in the fact that the real
10144 type is dynamic and can only be determined by inspecting the
10145 object's tag. This means that we need to get the object's
10146 value first (EVAL_NORMAL) and then extract the actual object
10147 type from its tag.
10148
10149 Note that we cannot skip the final step where we extract
10150 the object type from its tag, because the EVAL_NORMAL phase
10151 results in dynamic components being resolved into fixed ones.
10152 This can cause problems when trying to print the type
10153 description of tagged types whose parent has a dynamic size:
10154 We use the type name of the "_parent" component in order
10155 to print the name of the ancestor type in the type description.
10156 If that component had a dynamic size, the resolution into
10157 a fixed type would result in the loss of that type name,
10158 thus preventing us from printing the name of the ancestor
10159 type in the type description. */
10160 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10161
10162 if (TYPE_CODE (type) != TYPE_CODE_REF)
10163 {
10164 struct type *actual_type;
10165
10166 actual_type = type_from_tag (ada_value_tag (arg1));
10167 if (actual_type == NULL)
10168 /* If, for some reason, we were unable to determine
10169 the actual type from the tag, then use the static
10170 approximation that we just computed as a fallback.
10171 This can happen if the debugging information is
10172 incomplete, for instance. */
10173 actual_type = type;
10174 return value_zero (actual_type, not_lval);
10175 }
10176 else
10177 {
10178 /* In the case of a ref, ada_coerce_ref takes care
10179 of determining the actual type. But the evaluation
10180 should return a ref as it should be valid to ask
10181 for its address; so rebuild a ref after coerce. */
10182 arg1 = ada_coerce_ref (arg1);
10183 return value_ref (arg1);
10184 }
10185 }
10186
10187 *pos += 4;
10188 return value_zero (to_static_fixed_type (type), not_lval);
10189 }
10190 else
10191 {
10192 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10193 return ada_to_fixed_value (arg1);
10194 }
10195
10196 case OP_FUNCALL:
10197 (*pos) += 2;
10198
10199 /* Allocate arg vector, including space for the function to be
10200 called in argvec[0] and a terminating NULL. */
10201 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10202 argvec =
10203 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10204
10205 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10206 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10207 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10208 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10209 else
10210 {
10211 for (tem = 0; tem <= nargs; tem += 1)
10212 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10213 argvec[tem] = 0;
10214
10215 if (noside == EVAL_SKIP)
10216 goto nosideret;
10217 }
10218
10219 if (ada_is_constrained_packed_array_type
10220 (desc_base_type (value_type (argvec[0]))))
10221 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10222 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10223 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10224 /* This is a packed array that has already been fixed, and
10225 therefore already coerced to a simple array. Nothing further
10226 to do. */
10227 ;
10228 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10229 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10230 && VALUE_LVAL (argvec[0]) == lval_memory))
10231 argvec[0] = value_addr (argvec[0]);
10232
10233 type = ada_check_typedef (value_type (argvec[0]));
10234
10235 /* Ada allows us to implicitly dereference arrays when subscripting
10236 them. So, if this is an array typedef (encoding use for array
10237 access types encoded as fat pointers), strip it now. */
10238 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10239 type = ada_typedef_target_type (type);
10240
10241 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10242 {
10243 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10244 {
10245 case TYPE_CODE_FUNC:
10246 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10247 break;
10248 case TYPE_CODE_ARRAY:
10249 break;
10250 case TYPE_CODE_STRUCT:
10251 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10252 argvec[0] = ada_value_ind (argvec[0]);
10253 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10254 break;
10255 default:
10256 error (_("cannot subscript or call something of type `%s'"),
10257 ada_type_name (value_type (argvec[0])));
10258 break;
10259 }
10260 }
10261
10262 switch (TYPE_CODE (type))
10263 {
10264 case TYPE_CODE_FUNC:
10265 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10266 {
10267 struct type *rtype = TYPE_TARGET_TYPE (type);
10268
10269 if (TYPE_GNU_IFUNC (type))
10270 return allocate_value (TYPE_TARGET_TYPE (rtype));
10271 return allocate_value (rtype);
10272 }
10273 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10274 case TYPE_CODE_INTERNAL_FUNCTION:
10275 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10276 /* We don't know anything about what the internal
10277 function might return, but we have to return
10278 something. */
10279 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10280 not_lval);
10281 else
10282 return call_internal_function (exp->gdbarch, exp->language_defn,
10283 argvec[0], nargs, argvec + 1);
10284
10285 case TYPE_CODE_STRUCT:
10286 {
10287 int arity;
10288
10289 arity = ada_array_arity (type);
10290 type = ada_array_element_type (type, nargs);
10291 if (type == NULL)
10292 error (_("cannot subscript or call a record"));
10293 if (arity != nargs)
10294 error (_("wrong number of subscripts; expecting %d"), arity);
10295 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10296 return value_zero (ada_aligned_type (type), lval_memory);
10297 return
10298 unwrap_value (ada_value_subscript
10299 (argvec[0], nargs, argvec + 1));
10300 }
10301 case TYPE_CODE_ARRAY:
10302 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10303 {
10304 type = ada_array_element_type (type, nargs);
10305 if (type == NULL)
10306 error (_("element type of array unknown"));
10307 else
10308 return value_zero (ada_aligned_type (type), lval_memory);
10309 }
10310 return
10311 unwrap_value (ada_value_subscript
10312 (ada_coerce_to_simple_array (argvec[0]),
10313 nargs, argvec + 1));
10314 case TYPE_CODE_PTR: /* Pointer to array */
10315 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10316 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10317 {
10318 type = ada_array_element_type (type, nargs);
10319 if (type == NULL)
10320 error (_("element type of array unknown"));
10321 else
10322 return value_zero (ada_aligned_type (type), lval_memory);
10323 }
10324 return
10325 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10326 nargs, argvec + 1));
10327
10328 default:
10329 error (_("Attempt to index or call something other than an "
10330 "array or function"));
10331 }
10332
10333 case TERNOP_SLICE:
10334 {
10335 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10336 struct value *low_bound_val =
10337 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10338 struct value *high_bound_val =
10339 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10340 LONGEST low_bound;
10341 LONGEST high_bound;
10342
10343 low_bound_val = coerce_ref (low_bound_val);
10344 high_bound_val = coerce_ref (high_bound_val);
10345 low_bound = pos_atr (low_bound_val);
10346 high_bound = pos_atr (high_bound_val);
10347
10348 if (noside == EVAL_SKIP)
10349 goto nosideret;
10350
10351 /* If this is a reference to an aligner type, then remove all
10352 the aligners. */
10353 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10354 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10355 TYPE_TARGET_TYPE (value_type (array)) =
10356 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10357
10358 if (ada_is_constrained_packed_array_type (value_type (array)))
10359 error (_("cannot slice a packed array"));
10360
10361 /* If this is a reference to an array or an array lvalue,
10362 convert to a pointer. */
10363 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10364 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10365 && VALUE_LVAL (array) == lval_memory))
10366 array = value_addr (array);
10367
10368 if (noside == EVAL_AVOID_SIDE_EFFECTS
10369 && ada_is_array_descriptor_type (ada_check_typedef
10370 (value_type (array))))
10371 return empty_array (ada_type_of_array (array, 0), low_bound);
10372
10373 array = ada_coerce_to_simple_array_ptr (array);
10374
10375 /* If we have more than one level of pointer indirection,
10376 dereference the value until we get only one level. */
10377 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10378 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10379 == TYPE_CODE_PTR))
10380 array = value_ind (array);
10381
10382 /* Make sure we really do have an array type before going further,
10383 to avoid a SEGV when trying to get the index type or the target
10384 type later down the road if the debug info generated by
10385 the compiler is incorrect or incomplete. */
10386 if (!ada_is_simple_array_type (value_type (array)))
10387 error (_("cannot take slice of non-array"));
10388
10389 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10390 == TYPE_CODE_PTR)
10391 {
10392 struct type *type0 = ada_check_typedef (value_type (array));
10393
10394 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10395 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10396 else
10397 {
10398 struct type *arr_type0 =
10399 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10400
10401 return ada_value_slice_from_ptr (array, arr_type0,
10402 longest_to_int (low_bound),
10403 longest_to_int (high_bound));
10404 }
10405 }
10406 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10407 return array;
10408 else if (high_bound < low_bound)
10409 return empty_array (value_type (array), low_bound);
10410 else
10411 return ada_value_slice (array, longest_to_int (low_bound),
10412 longest_to_int (high_bound));
10413 }
10414
10415 case UNOP_IN_RANGE:
10416 (*pos) += 2;
10417 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10418 type = check_typedef (exp->elts[pc + 1].type);
10419
10420 if (noside == EVAL_SKIP)
10421 goto nosideret;
10422
10423 switch (TYPE_CODE (type))
10424 {
10425 default:
10426 lim_warning (_("Membership test incompletely implemented; "
10427 "always returns true"));
10428 type = language_bool_type (exp->language_defn, exp->gdbarch);
10429 return value_from_longest (type, (LONGEST) 1);
10430
10431 case TYPE_CODE_RANGE:
10432 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10433 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10434 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10435 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10436 type = language_bool_type (exp->language_defn, exp->gdbarch);
10437 return
10438 value_from_longest (type,
10439 (value_less (arg1, arg3)
10440 || value_equal (arg1, arg3))
10441 && (value_less (arg2, arg1)
10442 || value_equal (arg2, arg1)));
10443 }
10444
10445 case BINOP_IN_BOUNDS:
10446 (*pos) += 2;
10447 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10448 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10449
10450 if (noside == EVAL_SKIP)
10451 goto nosideret;
10452
10453 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10454 {
10455 type = language_bool_type (exp->language_defn, exp->gdbarch);
10456 return value_zero (type, not_lval);
10457 }
10458
10459 tem = longest_to_int (exp->elts[pc + 1].longconst);
10460
10461 type = ada_index_type (value_type (arg2), tem, "range");
10462 if (!type)
10463 type = value_type (arg1);
10464
10465 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10466 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10467
10468 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10469 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10470 type = language_bool_type (exp->language_defn, exp->gdbarch);
10471 return
10472 value_from_longest (type,
10473 (value_less (arg1, arg3)
10474 || value_equal (arg1, arg3))
10475 && (value_less (arg2, arg1)
10476 || value_equal (arg2, arg1)));
10477
10478 case TERNOP_IN_RANGE:
10479 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10480 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10481 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10482
10483 if (noside == EVAL_SKIP)
10484 goto nosideret;
10485
10486 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10487 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10488 type = language_bool_type (exp->language_defn, exp->gdbarch);
10489 return
10490 value_from_longest (type,
10491 (value_less (arg1, arg3)
10492 || value_equal (arg1, arg3))
10493 && (value_less (arg2, arg1)
10494 || value_equal (arg2, arg1)));
10495
10496 case OP_ATR_FIRST:
10497 case OP_ATR_LAST:
10498 case OP_ATR_LENGTH:
10499 {
10500 struct type *type_arg;
10501
10502 if (exp->elts[*pos].opcode == OP_TYPE)
10503 {
10504 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10505 arg1 = NULL;
10506 type_arg = check_typedef (exp->elts[pc + 2].type);
10507 }
10508 else
10509 {
10510 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10511 type_arg = NULL;
10512 }
10513
10514 if (exp->elts[*pos].opcode != OP_LONG)
10515 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10516 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10517 *pos += 4;
10518
10519 if (noside == EVAL_SKIP)
10520 goto nosideret;
10521
10522 if (type_arg == NULL)
10523 {
10524 arg1 = ada_coerce_ref (arg1);
10525
10526 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10527 arg1 = ada_coerce_to_simple_array (arg1);
10528
10529 if (op == OP_ATR_LENGTH)
10530 type = builtin_type (exp->gdbarch)->builtin_int;
10531 else
10532 {
10533 type = ada_index_type (value_type (arg1), tem,
10534 ada_attribute_name (op));
10535 if (type == NULL)
10536 type = builtin_type (exp->gdbarch)->builtin_int;
10537 }
10538
10539 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10540 return allocate_value (type);
10541
10542 switch (op)
10543 {
10544 default: /* Should never happen. */
10545 error (_("unexpected attribute encountered"));
10546 case OP_ATR_FIRST:
10547 return value_from_longest
10548 (type, ada_array_bound (arg1, tem, 0));
10549 case OP_ATR_LAST:
10550 return value_from_longest
10551 (type, ada_array_bound (arg1, tem, 1));
10552 case OP_ATR_LENGTH:
10553 return value_from_longest
10554 (type, ada_array_length (arg1, tem));
10555 }
10556 }
10557 else if (discrete_type_p (type_arg))
10558 {
10559 struct type *range_type;
10560 const char *name = ada_type_name (type_arg);
10561
10562 range_type = NULL;
10563 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10564 range_type = to_fixed_range_type (type_arg, NULL);
10565 if (range_type == NULL)
10566 range_type = type_arg;
10567 switch (op)
10568 {
10569 default:
10570 error (_("unexpected attribute encountered"));
10571 case OP_ATR_FIRST:
10572 return value_from_longest
10573 (range_type, ada_discrete_type_low_bound (range_type));
10574 case OP_ATR_LAST:
10575 return value_from_longest
10576 (range_type, ada_discrete_type_high_bound (range_type));
10577 case OP_ATR_LENGTH:
10578 error (_("the 'length attribute applies only to array types"));
10579 }
10580 }
10581 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10582 error (_("unimplemented type attribute"));
10583 else
10584 {
10585 LONGEST low, high;
10586
10587 if (ada_is_constrained_packed_array_type (type_arg))
10588 type_arg = decode_constrained_packed_array_type (type_arg);
10589
10590 if (op == OP_ATR_LENGTH)
10591 type = builtin_type (exp->gdbarch)->builtin_int;
10592 else
10593 {
10594 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10595 if (type == NULL)
10596 type = builtin_type (exp->gdbarch)->builtin_int;
10597 }
10598
10599 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10600 return allocate_value (type);
10601
10602 switch (op)
10603 {
10604 default:
10605 error (_("unexpected attribute encountered"));
10606 case OP_ATR_FIRST:
10607 low = ada_array_bound_from_type (type_arg, tem, 0);
10608 return value_from_longest (type, low);
10609 case OP_ATR_LAST:
10610 high = ada_array_bound_from_type (type_arg, tem, 1);
10611 return value_from_longest (type, high);
10612 case OP_ATR_LENGTH:
10613 low = ada_array_bound_from_type (type_arg, tem, 0);
10614 high = ada_array_bound_from_type (type_arg, tem, 1);
10615 return value_from_longest (type, high - low + 1);
10616 }
10617 }
10618 }
10619
10620 case OP_ATR_TAG:
10621 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10622 if (noside == EVAL_SKIP)
10623 goto nosideret;
10624
10625 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10626 return value_zero (ada_tag_type (arg1), not_lval);
10627
10628 return ada_value_tag (arg1);
10629
10630 case OP_ATR_MIN:
10631 case OP_ATR_MAX:
10632 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10633 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10634 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10635 if (noside == EVAL_SKIP)
10636 goto nosideret;
10637 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10638 return value_zero (value_type (arg1), not_lval);
10639 else
10640 {
10641 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10642 return value_binop (arg1, arg2,
10643 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10644 }
10645
10646 case OP_ATR_MODULUS:
10647 {
10648 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10649
10650 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10651 if (noside == EVAL_SKIP)
10652 goto nosideret;
10653
10654 if (!ada_is_modular_type (type_arg))
10655 error (_("'modulus must be applied to modular type"));
10656
10657 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10658 ada_modulus (type_arg));
10659 }
10660
10661
10662 case OP_ATR_POS:
10663 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10664 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10665 if (noside == EVAL_SKIP)
10666 goto nosideret;
10667 type = builtin_type (exp->gdbarch)->builtin_int;
10668 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10669 return value_zero (type, not_lval);
10670 else
10671 return value_pos_atr (type, arg1);
10672
10673 case OP_ATR_SIZE:
10674 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10675 type = value_type (arg1);
10676
10677 /* If the argument is a reference, then dereference its type, since
10678 the user is really asking for the size of the actual object,
10679 not the size of the pointer. */
10680 if (TYPE_CODE (type) == TYPE_CODE_REF)
10681 type = TYPE_TARGET_TYPE (type);
10682
10683 if (noside == EVAL_SKIP)
10684 goto nosideret;
10685 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10686 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10687 else
10688 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10689 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10690
10691 case OP_ATR_VAL:
10692 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10693 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10694 type = exp->elts[pc + 2].type;
10695 if (noside == EVAL_SKIP)
10696 goto nosideret;
10697 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10698 return value_zero (type, not_lval);
10699 else
10700 return value_val_atr (type, arg1);
10701
10702 case BINOP_EXP:
10703 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10704 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10705 if (noside == EVAL_SKIP)
10706 goto nosideret;
10707 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10708 return value_zero (value_type (arg1), not_lval);
10709 else
10710 {
10711 /* For integer exponentiation operations,
10712 only promote the first argument. */
10713 if (is_integral_type (value_type (arg2)))
10714 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10715 else
10716 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10717
10718 return value_binop (arg1, arg2, op);
10719 }
10720
10721 case UNOP_PLUS:
10722 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10723 if (noside == EVAL_SKIP)
10724 goto nosideret;
10725 else
10726 return arg1;
10727
10728 case UNOP_ABS:
10729 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10730 if (noside == EVAL_SKIP)
10731 goto nosideret;
10732 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10733 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10734 return value_neg (arg1);
10735 else
10736 return arg1;
10737
10738 case UNOP_IND:
10739 preeval_pos = *pos;
10740 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10741 if (noside == EVAL_SKIP)
10742 goto nosideret;
10743 type = ada_check_typedef (value_type (arg1));
10744 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10745 {
10746 if (ada_is_array_descriptor_type (type))
10747 /* GDB allows dereferencing GNAT array descriptors. */
10748 {
10749 struct type *arrType = ada_type_of_array (arg1, 0);
10750
10751 if (arrType == NULL)
10752 error (_("Attempt to dereference null array pointer."));
10753 return value_at_lazy (arrType, 0);
10754 }
10755 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10756 || TYPE_CODE (type) == TYPE_CODE_REF
10757 /* In C you can dereference an array to get the 1st elt. */
10758 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10759 {
10760 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10761 only be determined by inspecting the object's tag.
10762 This means that we need to evaluate completely the
10763 expression in order to get its type. */
10764
10765 if ((TYPE_CODE (type) == TYPE_CODE_REF
10766 || TYPE_CODE (type) == TYPE_CODE_PTR)
10767 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10768 {
10769 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10770 EVAL_NORMAL);
10771 type = value_type (ada_value_ind (arg1));
10772 }
10773 else
10774 {
10775 type = to_static_fixed_type
10776 (ada_aligned_type
10777 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10778 }
10779 check_size (type);
10780 return value_zero (type, lval_memory);
10781 }
10782 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10783 {
10784 /* GDB allows dereferencing an int. */
10785 if (expect_type == NULL)
10786 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10787 lval_memory);
10788 else
10789 {
10790 expect_type =
10791 to_static_fixed_type (ada_aligned_type (expect_type));
10792 return value_zero (expect_type, lval_memory);
10793 }
10794 }
10795 else
10796 error (_("Attempt to take contents of a non-pointer value."));
10797 }
10798 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10799 type = ada_check_typedef (value_type (arg1));
10800
10801 if (TYPE_CODE (type) == TYPE_CODE_INT)
10802 /* GDB allows dereferencing an int. If we were given
10803 the expect_type, then use that as the target type.
10804 Otherwise, assume that the target type is an int. */
10805 {
10806 if (expect_type != NULL)
10807 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10808 arg1));
10809 else
10810 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10811 (CORE_ADDR) value_as_address (arg1));
10812 }
10813
10814 if (ada_is_array_descriptor_type (type))
10815 /* GDB allows dereferencing GNAT array descriptors. */
10816 return ada_coerce_to_simple_array (arg1);
10817 else
10818 return ada_value_ind (arg1);
10819
10820 case STRUCTOP_STRUCT:
10821 tem = longest_to_int (exp->elts[pc + 1].longconst);
10822 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10823 preeval_pos = *pos;
10824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10825 if (noside == EVAL_SKIP)
10826 goto nosideret;
10827 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10828 {
10829 struct type *type1 = value_type (arg1);
10830
10831 if (ada_is_tagged_type (type1, 1))
10832 {
10833 type = ada_lookup_struct_elt_type (type1,
10834 &exp->elts[pc + 2].string,
10835 1, 1, NULL);
10836
10837 /* If the field is not found, check if it exists in the
10838 extension of this object's type. This means that we
10839 need to evaluate completely the expression. */
10840
10841 if (type == NULL)
10842 {
10843 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10844 EVAL_NORMAL);
10845 arg1 = ada_value_struct_elt (arg1,
10846 &exp->elts[pc + 2].string,
10847 0);
10848 arg1 = unwrap_value (arg1);
10849 type = value_type (ada_to_fixed_value (arg1));
10850 }
10851 }
10852 else
10853 type =
10854 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10855 0, NULL);
10856
10857 return value_zero (ada_aligned_type (type), lval_memory);
10858 }
10859 else
10860 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10861 arg1 = unwrap_value (arg1);
10862 return ada_to_fixed_value (arg1);
10863
10864 case OP_TYPE:
10865 /* The value is not supposed to be used. This is here to make it
10866 easier to accommodate expressions that contain types. */
10867 (*pos) += 2;
10868 if (noside == EVAL_SKIP)
10869 goto nosideret;
10870 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10871 return allocate_value (exp->elts[pc + 1].type);
10872 else
10873 error (_("Attempt to use a type name as an expression"));
10874
10875 case OP_AGGREGATE:
10876 case OP_CHOICES:
10877 case OP_OTHERS:
10878 case OP_DISCRETE_RANGE:
10879 case OP_POSITIONAL:
10880 case OP_NAME:
10881 if (noside == EVAL_NORMAL)
10882 switch (op)
10883 {
10884 case OP_NAME:
10885 error (_("Undefined name, ambiguous name, or renaming used in "
10886 "component association: %s."), &exp->elts[pc+2].string);
10887 case OP_AGGREGATE:
10888 error (_("Aggregates only allowed on the right of an assignment"));
10889 default:
10890 internal_error (__FILE__, __LINE__,
10891 _("aggregate apparently mangled"));
10892 }
10893
10894 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10895 *pos += oplen - 1;
10896 for (tem = 0; tem < nargs; tem += 1)
10897 ada_evaluate_subexp (NULL, exp, pos, noside);
10898 goto nosideret;
10899 }
10900
10901 nosideret:
10902 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10903 }
10904 \f
10905
10906 /* Fixed point */
10907
10908 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10909 type name that encodes the 'small and 'delta information.
10910 Otherwise, return NULL. */
10911
10912 static const char *
10913 fixed_type_info (struct type *type)
10914 {
10915 const char *name = ada_type_name (type);
10916 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10917
10918 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10919 {
10920 const char *tail = strstr (name, "___XF_");
10921
10922 if (tail == NULL)
10923 return NULL;
10924 else
10925 return tail + 5;
10926 }
10927 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10928 return fixed_type_info (TYPE_TARGET_TYPE (type));
10929 else
10930 return NULL;
10931 }
10932
10933 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10934
10935 int
10936 ada_is_fixed_point_type (struct type *type)
10937 {
10938 return fixed_type_info (type) != NULL;
10939 }
10940
10941 /* Return non-zero iff TYPE represents a System.Address type. */
10942
10943 int
10944 ada_is_system_address_type (struct type *type)
10945 {
10946 return (TYPE_NAME (type)
10947 && strcmp (TYPE_NAME (type), "system__address") == 0);
10948 }
10949
10950 /* Assuming that TYPE is the representation of an Ada fixed-point
10951 type, return its delta, or -1 if the type is malformed and the
10952 delta cannot be determined. */
10953
10954 DOUBLEST
10955 ada_delta (struct type *type)
10956 {
10957 const char *encoding = fixed_type_info (type);
10958 DOUBLEST num, den;
10959
10960 /* Strictly speaking, num and den are encoded as integer. However,
10961 they may not fit into a long, and they will have to be converted
10962 to DOUBLEST anyway. So scan them as DOUBLEST. */
10963 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10964 &num, &den) < 2)
10965 return -1.0;
10966 else
10967 return num / den;
10968 }
10969
10970 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10971 factor ('SMALL value) associated with the type. */
10972
10973 static DOUBLEST
10974 scaling_factor (struct type *type)
10975 {
10976 const char *encoding = fixed_type_info (type);
10977 DOUBLEST num0, den0, num1, den1;
10978 int n;
10979
10980 /* Strictly speaking, num's and den's are encoded as integer. However,
10981 they may not fit into a long, and they will have to be converted
10982 to DOUBLEST anyway. So scan them as DOUBLEST. */
10983 n = sscanf (encoding,
10984 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10985 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10986 &num0, &den0, &num1, &den1);
10987
10988 if (n < 2)
10989 return 1.0;
10990 else if (n == 4)
10991 return num1 / den1;
10992 else
10993 return num0 / den0;
10994 }
10995
10996
10997 /* Assuming that X is the representation of a value of fixed-point
10998 type TYPE, return its floating-point equivalent. */
10999
11000 DOUBLEST
11001 ada_fixed_to_float (struct type *type, LONGEST x)
11002 {
11003 return (DOUBLEST) x *scaling_factor (type);
11004 }
11005
11006 /* The representation of a fixed-point value of type TYPE
11007 corresponding to the value X. */
11008
11009 LONGEST
11010 ada_float_to_fixed (struct type *type, DOUBLEST x)
11011 {
11012 return (LONGEST) (x / scaling_factor (type) + 0.5);
11013 }
11014
11015 \f
11016
11017 /* Range types */
11018
11019 /* Scan STR beginning at position K for a discriminant name, and
11020 return the value of that discriminant field of DVAL in *PX. If
11021 PNEW_K is not null, put the position of the character beyond the
11022 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11023 not alter *PX and *PNEW_K if unsuccessful. */
11024
11025 static int
11026 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11027 int *pnew_k)
11028 {
11029 static char *bound_buffer = NULL;
11030 static size_t bound_buffer_len = 0;
11031 char *bound;
11032 char *pend;
11033 struct value *bound_val;
11034
11035 if (dval == NULL || str == NULL || str[k] == '\0')
11036 return 0;
11037
11038 pend = strstr (str + k, "__");
11039 if (pend == NULL)
11040 {
11041 bound = str + k;
11042 k += strlen (bound);
11043 }
11044 else
11045 {
11046 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11047 bound = bound_buffer;
11048 strncpy (bound_buffer, str + k, pend - (str + k));
11049 bound[pend - (str + k)] = '\0';
11050 k = pend - str;
11051 }
11052
11053 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11054 if (bound_val == NULL)
11055 return 0;
11056
11057 *px = value_as_long (bound_val);
11058 if (pnew_k != NULL)
11059 *pnew_k = k;
11060 return 1;
11061 }
11062
11063 /* Value of variable named NAME in the current environment. If
11064 no such variable found, then if ERR_MSG is null, returns 0, and
11065 otherwise causes an error with message ERR_MSG. */
11066
11067 static struct value *
11068 get_var_value (char *name, char *err_msg)
11069 {
11070 struct ada_symbol_info *syms;
11071 int nsyms;
11072
11073 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11074 &syms);
11075
11076 if (nsyms != 1)
11077 {
11078 if (err_msg == NULL)
11079 return 0;
11080 else
11081 error (("%s"), err_msg);
11082 }
11083
11084 return value_of_variable (syms[0].sym, syms[0].block);
11085 }
11086
11087 /* Value of integer variable named NAME in the current environment. If
11088 no such variable found, returns 0, and sets *FLAG to 0. If
11089 successful, sets *FLAG to 1. */
11090
11091 LONGEST
11092 get_int_var_value (char *name, int *flag)
11093 {
11094 struct value *var_val = get_var_value (name, 0);
11095
11096 if (var_val == 0)
11097 {
11098 if (flag != NULL)
11099 *flag = 0;
11100 return 0;
11101 }
11102 else
11103 {
11104 if (flag != NULL)
11105 *flag = 1;
11106 return value_as_long (var_val);
11107 }
11108 }
11109
11110
11111 /* Return a range type whose base type is that of the range type named
11112 NAME in the current environment, and whose bounds are calculated
11113 from NAME according to the GNAT range encoding conventions.
11114 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11115 corresponding range type from debug information; fall back to using it
11116 if symbol lookup fails. If a new type must be created, allocate it
11117 like ORIG_TYPE was. The bounds information, in general, is encoded
11118 in NAME, the base type given in the named range type. */
11119
11120 static struct type *
11121 to_fixed_range_type (struct type *raw_type, struct value *dval)
11122 {
11123 const char *name;
11124 struct type *base_type;
11125 char *subtype_info;
11126
11127 gdb_assert (raw_type != NULL);
11128 gdb_assert (TYPE_NAME (raw_type) != NULL);
11129
11130 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11131 base_type = TYPE_TARGET_TYPE (raw_type);
11132 else
11133 base_type = raw_type;
11134
11135 name = TYPE_NAME (raw_type);
11136 subtype_info = strstr (name, "___XD");
11137 if (subtype_info == NULL)
11138 {
11139 LONGEST L = ada_discrete_type_low_bound (raw_type);
11140 LONGEST U = ada_discrete_type_high_bound (raw_type);
11141
11142 if (L < INT_MIN || U > INT_MAX)
11143 return raw_type;
11144 else
11145 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11146 L, U);
11147 }
11148 else
11149 {
11150 static char *name_buf = NULL;
11151 static size_t name_len = 0;
11152 int prefix_len = subtype_info - name;
11153 LONGEST L, U;
11154 struct type *type;
11155 char *bounds_str;
11156 int n;
11157
11158 GROW_VECT (name_buf, name_len, prefix_len + 5);
11159 strncpy (name_buf, name, prefix_len);
11160 name_buf[prefix_len] = '\0';
11161
11162 subtype_info += 5;
11163 bounds_str = strchr (subtype_info, '_');
11164 n = 1;
11165
11166 if (*subtype_info == 'L')
11167 {
11168 if (!ada_scan_number (bounds_str, n, &L, &n)
11169 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11170 return raw_type;
11171 if (bounds_str[n] == '_')
11172 n += 2;
11173 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11174 n += 1;
11175 subtype_info += 1;
11176 }
11177 else
11178 {
11179 int ok;
11180
11181 strcpy (name_buf + prefix_len, "___L");
11182 L = get_int_var_value (name_buf, &ok);
11183 if (!ok)
11184 {
11185 lim_warning (_("Unknown lower bound, using 1."));
11186 L = 1;
11187 }
11188 }
11189
11190 if (*subtype_info == 'U')
11191 {
11192 if (!ada_scan_number (bounds_str, n, &U, &n)
11193 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11194 return raw_type;
11195 }
11196 else
11197 {
11198 int ok;
11199
11200 strcpy (name_buf + prefix_len, "___U");
11201 U = get_int_var_value (name_buf, &ok);
11202 if (!ok)
11203 {
11204 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11205 U = L;
11206 }
11207 }
11208
11209 type = create_static_range_type (alloc_type_copy (raw_type),
11210 base_type, L, U);
11211 TYPE_NAME (type) = name;
11212 return type;
11213 }
11214 }
11215
11216 /* True iff NAME is the name of a range type. */
11217
11218 int
11219 ada_is_range_type_name (const char *name)
11220 {
11221 return (name != NULL && strstr (name, "___XD"));
11222 }
11223 \f
11224
11225 /* Modular types */
11226
11227 /* True iff TYPE is an Ada modular type. */
11228
11229 int
11230 ada_is_modular_type (struct type *type)
11231 {
11232 struct type *subranged_type = get_base_type (type);
11233
11234 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11235 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11236 && TYPE_UNSIGNED (subranged_type));
11237 }
11238
11239 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11240
11241 ULONGEST
11242 ada_modulus (struct type *type)
11243 {
11244 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11245 }
11246 \f
11247
11248 /* Ada exception catchpoint support:
11249 ---------------------------------
11250
11251 We support 3 kinds of exception catchpoints:
11252 . catchpoints on Ada exceptions
11253 . catchpoints on unhandled Ada exceptions
11254 . catchpoints on failed assertions
11255
11256 Exceptions raised during failed assertions, or unhandled exceptions
11257 could perfectly be caught with the general catchpoint on Ada exceptions.
11258 However, we can easily differentiate these two special cases, and having
11259 the option to distinguish these two cases from the rest can be useful
11260 to zero-in on certain situations.
11261
11262 Exception catchpoints are a specialized form of breakpoint,
11263 since they rely on inserting breakpoints inside known routines
11264 of the GNAT runtime. The implementation therefore uses a standard
11265 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11266 of breakpoint_ops.
11267
11268 Support in the runtime for exception catchpoints have been changed
11269 a few times already, and these changes affect the implementation
11270 of these catchpoints. In order to be able to support several
11271 variants of the runtime, we use a sniffer that will determine
11272 the runtime variant used by the program being debugged. */
11273
11274 /* Ada's standard exceptions.
11275
11276 The Ada 83 standard also defined Numeric_Error. But there so many
11277 situations where it was unclear from the Ada 83 Reference Manual
11278 (RM) whether Constraint_Error or Numeric_Error should be raised,
11279 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11280 Interpretation saying that anytime the RM says that Numeric_Error
11281 should be raised, the implementation may raise Constraint_Error.
11282 Ada 95 went one step further and pretty much removed Numeric_Error
11283 from the list of standard exceptions (it made it a renaming of
11284 Constraint_Error, to help preserve compatibility when compiling
11285 an Ada83 compiler). As such, we do not include Numeric_Error from
11286 this list of standard exceptions. */
11287
11288 static char *standard_exc[] = {
11289 "constraint_error",
11290 "program_error",
11291 "storage_error",
11292 "tasking_error"
11293 };
11294
11295 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11296
11297 /* A structure that describes how to support exception catchpoints
11298 for a given executable. */
11299
11300 struct exception_support_info
11301 {
11302 /* The name of the symbol to break on in order to insert
11303 a catchpoint on exceptions. */
11304 const char *catch_exception_sym;
11305
11306 /* The name of the symbol to break on in order to insert
11307 a catchpoint on unhandled exceptions. */
11308 const char *catch_exception_unhandled_sym;
11309
11310 /* The name of the symbol to break on in order to insert
11311 a catchpoint on failed assertions. */
11312 const char *catch_assert_sym;
11313
11314 /* Assuming that the inferior just triggered an unhandled exception
11315 catchpoint, this function is responsible for returning the address
11316 in inferior memory where the name of that exception is stored.
11317 Return zero if the address could not be computed. */
11318 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11319 };
11320
11321 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11322 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11323
11324 /* The following exception support info structure describes how to
11325 implement exception catchpoints with the latest version of the
11326 Ada runtime (as of 2007-03-06). */
11327
11328 static const struct exception_support_info default_exception_support_info =
11329 {
11330 "__gnat_debug_raise_exception", /* catch_exception_sym */
11331 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11332 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11333 ada_unhandled_exception_name_addr
11334 };
11335
11336 /* The following exception support info structure describes how to
11337 implement exception catchpoints with a slightly older version
11338 of the Ada runtime. */
11339
11340 static const struct exception_support_info exception_support_info_fallback =
11341 {
11342 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11343 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11344 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11345 ada_unhandled_exception_name_addr_from_raise
11346 };
11347
11348 /* Return nonzero if we can detect the exception support routines
11349 described in EINFO.
11350
11351 This function errors out if an abnormal situation is detected
11352 (for instance, if we find the exception support routines, but
11353 that support is found to be incomplete). */
11354
11355 static int
11356 ada_has_this_exception_support (const struct exception_support_info *einfo)
11357 {
11358 struct symbol *sym;
11359
11360 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11361 that should be compiled with debugging information. As a result, we
11362 expect to find that symbol in the symtabs. */
11363
11364 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11365 if (sym == NULL)
11366 {
11367 /* Perhaps we did not find our symbol because the Ada runtime was
11368 compiled without debugging info, or simply stripped of it.
11369 It happens on some GNU/Linux distributions for instance, where
11370 users have to install a separate debug package in order to get
11371 the runtime's debugging info. In that situation, let the user
11372 know why we cannot insert an Ada exception catchpoint.
11373
11374 Note: Just for the purpose of inserting our Ada exception
11375 catchpoint, we could rely purely on the associated minimal symbol.
11376 But we would be operating in degraded mode anyway, since we are
11377 still lacking the debugging info needed later on to extract
11378 the name of the exception being raised (this name is printed in
11379 the catchpoint message, and is also used when trying to catch
11380 a specific exception). We do not handle this case for now. */
11381 struct bound_minimal_symbol msym
11382 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11383
11384 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11385 error (_("Your Ada runtime appears to be missing some debugging "
11386 "information.\nCannot insert Ada exception catchpoint "
11387 "in this configuration."));
11388
11389 return 0;
11390 }
11391
11392 /* Make sure that the symbol we found corresponds to a function. */
11393
11394 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11395 error (_("Symbol \"%s\" is not a function (class = %d)"),
11396 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11397
11398 return 1;
11399 }
11400
11401 /* Inspect the Ada runtime and determine which exception info structure
11402 should be used to provide support for exception catchpoints.
11403
11404 This function will always set the per-inferior exception_info,
11405 or raise an error. */
11406
11407 static void
11408 ada_exception_support_info_sniffer (void)
11409 {
11410 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11411
11412 /* If the exception info is already known, then no need to recompute it. */
11413 if (data->exception_info != NULL)
11414 return;
11415
11416 /* Check the latest (default) exception support info. */
11417 if (ada_has_this_exception_support (&default_exception_support_info))
11418 {
11419 data->exception_info = &default_exception_support_info;
11420 return;
11421 }
11422
11423 /* Try our fallback exception suport info. */
11424 if (ada_has_this_exception_support (&exception_support_info_fallback))
11425 {
11426 data->exception_info = &exception_support_info_fallback;
11427 return;
11428 }
11429
11430 /* Sometimes, it is normal for us to not be able to find the routine
11431 we are looking for. This happens when the program is linked with
11432 the shared version of the GNAT runtime, and the program has not been
11433 started yet. Inform the user of these two possible causes if
11434 applicable. */
11435
11436 if (ada_update_initial_language (language_unknown) != language_ada)
11437 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11438
11439 /* If the symbol does not exist, then check that the program is
11440 already started, to make sure that shared libraries have been
11441 loaded. If it is not started, this may mean that the symbol is
11442 in a shared library. */
11443
11444 if (ptid_get_pid (inferior_ptid) == 0)
11445 error (_("Unable to insert catchpoint. Try to start the program first."));
11446
11447 /* At this point, we know that we are debugging an Ada program and
11448 that the inferior has been started, but we still are not able to
11449 find the run-time symbols. That can mean that we are in
11450 configurable run time mode, or that a-except as been optimized
11451 out by the linker... In any case, at this point it is not worth
11452 supporting this feature. */
11453
11454 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11455 }
11456
11457 /* True iff FRAME is very likely to be that of a function that is
11458 part of the runtime system. This is all very heuristic, but is
11459 intended to be used as advice as to what frames are uninteresting
11460 to most users. */
11461
11462 static int
11463 is_known_support_routine (struct frame_info *frame)
11464 {
11465 struct symtab_and_line sal;
11466 char *func_name;
11467 enum language func_lang;
11468 int i;
11469 const char *fullname;
11470
11471 /* If this code does not have any debugging information (no symtab),
11472 This cannot be any user code. */
11473
11474 find_frame_sal (frame, &sal);
11475 if (sal.symtab == NULL)
11476 return 1;
11477
11478 /* If there is a symtab, but the associated source file cannot be
11479 located, then assume this is not user code: Selecting a frame
11480 for which we cannot display the code would not be very helpful
11481 for the user. This should also take care of case such as VxWorks
11482 where the kernel has some debugging info provided for a few units. */
11483
11484 fullname = symtab_to_fullname (sal.symtab);
11485 if (access (fullname, R_OK) != 0)
11486 return 1;
11487
11488 /* Check the unit filename againt the Ada runtime file naming.
11489 We also check the name of the objfile against the name of some
11490 known system libraries that sometimes come with debugging info
11491 too. */
11492
11493 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11494 {
11495 re_comp (known_runtime_file_name_patterns[i]);
11496 if (re_exec (lbasename (sal.symtab->filename)))
11497 return 1;
11498 if (sal.symtab->objfile != NULL
11499 && re_exec (objfile_name (sal.symtab->objfile)))
11500 return 1;
11501 }
11502
11503 /* Check whether the function is a GNAT-generated entity. */
11504
11505 find_frame_funname (frame, &func_name, &func_lang, NULL);
11506 if (func_name == NULL)
11507 return 1;
11508
11509 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11510 {
11511 re_comp (known_auxiliary_function_name_patterns[i]);
11512 if (re_exec (func_name))
11513 {
11514 xfree (func_name);
11515 return 1;
11516 }
11517 }
11518
11519 xfree (func_name);
11520 return 0;
11521 }
11522
11523 /* Find the first frame that contains debugging information and that is not
11524 part of the Ada run-time, starting from FI and moving upward. */
11525
11526 void
11527 ada_find_printable_frame (struct frame_info *fi)
11528 {
11529 for (; fi != NULL; fi = get_prev_frame (fi))
11530 {
11531 if (!is_known_support_routine (fi))
11532 {
11533 select_frame (fi);
11534 break;
11535 }
11536 }
11537
11538 }
11539
11540 /* Assuming that the inferior just triggered an unhandled exception
11541 catchpoint, return the address in inferior memory where the name
11542 of the exception is stored.
11543
11544 Return zero if the address could not be computed. */
11545
11546 static CORE_ADDR
11547 ada_unhandled_exception_name_addr (void)
11548 {
11549 return parse_and_eval_address ("e.full_name");
11550 }
11551
11552 /* Same as ada_unhandled_exception_name_addr, except that this function
11553 should be used when the inferior uses an older version of the runtime,
11554 where the exception name needs to be extracted from a specific frame
11555 several frames up in the callstack. */
11556
11557 static CORE_ADDR
11558 ada_unhandled_exception_name_addr_from_raise (void)
11559 {
11560 int frame_level;
11561 struct frame_info *fi;
11562 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11563 struct cleanup *old_chain;
11564
11565 /* To determine the name of this exception, we need to select
11566 the frame corresponding to RAISE_SYM_NAME. This frame is
11567 at least 3 levels up, so we simply skip the first 3 frames
11568 without checking the name of their associated function. */
11569 fi = get_current_frame ();
11570 for (frame_level = 0; frame_level < 3; frame_level += 1)
11571 if (fi != NULL)
11572 fi = get_prev_frame (fi);
11573
11574 old_chain = make_cleanup (null_cleanup, NULL);
11575 while (fi != NULL)
11576 {
11577 char *func_name;
11578 enum language func_lang;
11579
11580 find_frame_funname (fi, &func_name, &func_lang, NULL);
11581 if (func_name != NULL)
11582 {
11583 make_cleanup (xfree, func_name);
11584
11585 if (strcmp (func_name,
11586 data->exception_info->catch_exception_sym) == 0)
11587 break; /* We found the frame we were looking for... */
11588 fi = get_prev_frame (fi);
11589 }
11590 }
11591 do_cleanups (old_chain);
11592
11593 if (fi == NULL)
11594 return 0;
11595
11596 select_frame (fi);
11597 return parse_and_eval_address ("id.full_name");
11598 }
11599
11600 /* Assuming the inferior just triggered an Ada exception catchpoint
11601 (of any type), return the address in inferior memory where the name
11602 of the exception is stored, if applicable.
11603
11604 Return zero if the address could not be computed, or if not relevant. */
11605
11606 static CORE_ADDR
11607 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11608 struct breakpoint *b)
11609 {
11610 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11611
11612 switch (ex)
11613 {
11614 case ada_catch_exception:
11615 return (parse_and_eval_address ("e.full_name"));
11616 break;
11617
11618 case ada_catch_exception_unhandled:
11619 return data->exception_info->unhandled_exception_name_addr ();
11620 break;
11621
11622 case ada_catch_assert:
11623 return 0; /* Exception name is not relevant in this case. */
11624 break;
11625
11626 default:
11627 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11628 break;
11629 }
11630
11631 return 0; /* Should never be reached. */
11632 }
11633
11634 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11635 any error that ada_exception_name_addr_1 might cause to be thrown.
11636 When an error is intercepted, a warning with the error message is printed,
11637 and zero is returned. */
11638
11639 static CORE_ADDR
11640 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11641 struct breakpoint *b)
11642 {
11643 volatile struct gdb_exception e;
11644 CORE_ADDR result = 0;
11645
11646 TRY_CATCH (e, RETURN_MASK_ERROR)
11647 {
11648 result = ada_exception_name_addr_1 (ex, b);
11649 }
11650
11651 if (e.reason < 0)
11652 {
11653 warning (_("failed to get exception name: %s"), e.message);
11654 return 0;
11655 }
11656
11657 return result;
11658 }
11659
11660 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11661
11662 /* Ada catchpoints.
11663
11664 In the case of catchpoints on Ada exceptions, the catchpoint will
11665 stop the target on every exception the program throws. When a user
11666 specifies the name of a specific exception, we translate this
11667 request into a condition expression (in text form), and then parse
11668 it into an expression stored in each of the catchpoint's locations.
11669 We then use this condition to check whether the exception that was
11670 raised is the one the user is interested in. If not, then the
11671 target is resumed again. We store the name of the requested
11672 exception, in order to be able to re-set the condition expression
11673 when symbols change. */
11674
11675 /* An instance of this type is used to represent an Ada catchpoint
11676 breakpoint location. It includes a "struct bp_location" as a kind
11677 of base class; users downcast to "struct bp_location *" when
11678 needed. */
11679
11680 struct ada_catchpoint_location
11681 {
11682 /* The base class. */
11683 struct bp_location base;
11684
11685 /* The condition that checks whether the exception that was raised
11686 is the specific exception the user specified on catchpoint
11687 creation. */
11688 struct expression *excep_cond_expr;
11689 };
11690
11691 /* Implement the DTOR method in the bp_location_ops structure for all
11692 Ada exception catchpoint kinds. */
11693
11694 static void
11695 ada_catchpoint_location_dtor (struct bp_location *bl)
11696 {
11697 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11698
11699 xfree (al->excep_cond_expr);
11700 }
11701
11702 /* The vtable to be used in Ada catchpoint locations. */
11703
11704 static const struct bp_location_ops ada_catchpoint_location_ops =
11705 {
11706 ada_catchpoint_location_dtor
11707 };
11708
11709 /* An instance of this type is used to represent an Ada catchpoint.
11710 It includes a "struct breakpoint" as a kind of base class; users
11711 downcast to "struct breakpoint *" when needed. */
11712
11713 struct ada_catchpoint
11714 {
11715 /* The base class. */
11716 struct breakpoint base;
11717
11718 /* The name of the specific exception the user specified. */
11719 char *excep_string;
11720 };
11721
11722 /* Parse the exception condition string in the context of each of the
11723 catchpoint's locations, and store them for later evaluation. */
11724
11725 static void
11726 create_excep_cond_exprs (struct ada_catchpoint *c)
11727 {
11728 struct cleanup *old_chain;
11729 struct bp_location *bl;
11730 char *cond_string;
11731
11732 /* Nothing to do if there's no specific exception to catch. */
11733 if (c->excep_string == NULL)
11734 return;
11735
11736 /* Same if there are no locations... */
11737 if (c->base.loc == NULL)
11738 return;
11739
11740 /* Compute the condition expression in text form, from the specific
11741 expection we want to catch. */
11742 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11743 old_chain = make_cleanup (xfree, cond_string);
11744
11745 /* Iterate over all the catchpoint's locations, and parse an
11746 expression for each. */
11747 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11748 {
11749 struct ada_catchpoint_location *ada_loc
11750 = (struct ada_catchpoint_location *) bl;
11751 struct expression *exp = NULL;
11752
11753 if (!bl->shlib_disabled)
11754 {
11755 volatile struct gdb_exception e;
11756 const char *s;
11757
11758 s = cond_string;
11759 TRY_CATCH (e, RETURN_MASK_ERROR)
11760 {
11761 exp = parse_exp_1 (&s, bl->address,
11762 block_for_pc (bl->address), 0);
11763 }
11764 if (e.reason < 0)
11765 {
11766 warning (_("failed to reevaluate internal exception condition "
11767 "for catchpoint %d: %s"),
11768 c->base.number, e.message);
11769 /* There is a bug in GCC on sparc-solaris when building with
11770 optimization which causes EXP to change unexpectedly
11771 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11772 The problem should be fixed starting with GCC 4.9.
11773 In the meantime, work around it by forcing EXP back
11774 to NULL. */
11775 exp = NULL;
11776 }
11777 }
11778
11779 ada_loc->excep_cond_expr = exp;
11780 }
11781
11782 do_cleanups (old_chain);
11783 }
11784
11785 /* Implement the DTOR method in the breakpoint_ops structure for all
11786 exception catchpoint kinds. */
11787
11788 static void
11789 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11790 {
11791 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11792
11793 xfree (c->excep_string);
11794
11795 bkpt_breakpoint_ops.dtor (b);
11796 }
11797
11798 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11799 structure for all exception catchpoint kinds. */
11800
11801 static struct bp_location *
11802 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11803 struct breakpoint *self)
11804 {
11805 struct ada_catchpoint_location *loc;
11806
11807 loc = XNEW (struct ada_catchpoint_location);
11808 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11809 loc->excep_cond_expr = NULL;
11810 return &loc->base;
11811 }
11812
11813 /* Implement the RE_SET method in the breakpoint_ops structure for all
11814 exception catchpoint kinds. */
11815
11816 static void
11817 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11818 {
11819 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11820
11821 /* Call the base class's method. This updates the catchpoint's
11822 locations. */
11823 bkpt_breakpoint_ops.re_set (b);
11824
11825 /* Reparse the exception conditional expressions. One for each
11826 location. */
11827 create_excep_cond_exprs (c);
11828 }
11829
11830 /* Returns true if we should stop for this breakpoint hit. If the
11831 user specified a specific exception, we only want to cause a stop
11832 if the program thrown that exception. */
11833
11834 static int
11835 should_stop_exception (const struct bp_location *bl)
11836 {
11837 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11838 const struct ada_catchpoint_location *ada_loc
11839 = (const struct ada_catchpoint_location *) bl;
11840 volatile struct gdb_exception ex;
11841 int stop;
11842
11843 /* With no specific exception, should always stop. */
11844 if (c->excep_string == NULL)
11845 return 1;
11846
11847 if (ada_loc->excep_cond_expr == NULL)
11848 {
11849 /* We will have a NULL expression if back when we were creating
11850 the expressions, this location's had failed to parse. */
11851 return 1;
11852 }
11853
11854 stop = 1;
11855 TRY_CATCH (ex, RETURN_MASK_ALL)
11856 {
11857 struct value *mark;
11858
11859 mark = value_mark ();
11860 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11861 value_free_to_mark (mark);
11862 }
11863 if (ex.reason < 0)
11864 exception_fprintf (gdb_stderr, ex,
11865 _("Error in testing exception condition:\n"));
11866 return stop;
11867 }
11868
11869 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11870 for all exception catchpoint kinds. */
11871
11872 static void
11873 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11874 {
11875 bs->stop = should_stop_exception (bs->bp_location_at);
11876 }
11877
11878 /* Implement the PRINT_IT method in the breakpoint_ops structure
11879 for all exception catchpoint kinds. */
11880
11881 static enum print_stop_action
11882 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11883 {
11884 struct ui_out *uiout = current_uiout;
11885 struct breakpoint *b = bs->breakpoint_at;
11886
11887 annotate_catchpoint (b->number);
11888
11889 if (ui_out_is_mi_like_p (uiout))
11890 {
11891 ui_out_field_string (uiout, "reason",
11892 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11893 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11894 }
11895
11896 ui_out_text (uiout,
11897 b->disposition == disp_del ? "\nTemporary catchpoint "
11898 : "\nCatchpoint ");
11899 ui_out_field_int (uiout, "bkptno", b->number);
11900 ui_out_text (uiout, ", ");
11901
11902 switch (ex)
11903 {
11904 case ada_catch_exception:
11905 case ada_catch_exception_unhandled:
11906 {
11907 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11908 char exception_name[256];
11909
11910 if (addr != 0)
11911 {
11912 read_memory (addr, (gdb_byte *) exception_name,
11913 sizeof (exception_name) - 1);
11914 exception_name [sizeof (exception_name) - 1] = '\0';
11915 }
11916 else
11917 {
11918 /* For some reason, we were unable to read the exception
11919 name. This could happen if the Runtime was compiled
11920 without debugging info, for instance. In that case,
11921 just replace the exception name by the generic string
11922 "exception" - it will read as "an exception" in the
11923 notification we are about to print. */
11924 memcpy (exception_name, "exception", sizeof ("exception"));
11925 }
11926 /* In the case of unhandled exception breakpoints, we print
11927 the exception name as "unhandled EXCEPTION_NAME", to make
11928 it clearer to the user which kind of catchpoint just got
11929 hit. We used ui_out_text to make sure that this extra
11930 info does not pollute the exception name in the MI case. */
11931 if (ex == ada_catch_exception_unhandled)
11932 ui_out_text (uiout, "unhandled ");
11933 ui_out_field_string (uiout, "exception-name", exception_name);
11934 }
11935 break;
11936 case ada_catch_assert:
11937 /* In this case, the name of the exception is not really
11938 important. Just print "failed assertion" to make it clearer
11939 that his program just hit an assertion-failure catchpoint.
11940 We used ui_out_text because this info does not belong in
11941 the MI output. */
11942 ui_out_text (uiout, "failed assertion");
11943 break;
11944 }
11945 ui_out_text (uiout, " at ");
11946 ada_find_printable_frame (get_current_frame ());
11947
11948 return PRINT_SRC_AND_LOC;
11949 }
11950
11951 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11952 for all exception catchpoint kinds. */
11953
11954 static void
11955 print_one_exception (enum ada_exception_catchpoint_kind ex,
11956 struct breakpoint *b, struct bp_location **last_loc)
11957 {
11958 struct ui_out *uiout = current_uiout;
11959 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11960 struct value_print_options opts;
11961
11962 get_user_print_options (&opts);
11963 if (opts.addressprint)
11964 {
11965 annotate_field (4);
11966 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11967 }
11968
11969 annotate_field (5);
11970 *last_loc = b->loc;
11971 switch (ex)
11972 {
11973 case ada_catch_exception:
11974 if (c->excep_string != NULL)
11975 {
11976 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11977
11978 ui_out_field_string (uiout, "what", msg);
11979 xfree (msg);
11980 }
11981 else
11982 ui_out_field_string (uiout, "what", "all Ada exceptions");
11983
11984 break;
11985
11986 case ada_catch_exception_unhandled:
11987 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11988 break;
11989
11990 case ada_catch_assert:
11991 ui_out_field_string (uiout, "what", "failed Ada assertions");
11992 break;
11993
11994 default:
11995 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11996 break;
11997 }
11998 }
11999
12000 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12001 for all exception catchpoint kinds. */
12002
12003 static void
12004 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12005 struct breakpoint *b)
12006 {
12007 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12008 struct ui_out *uiout = current_uiout;
12009
12010 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12011 : _("Catchpoint "));
12012 ui_out_field_int (uiout, "bkptno", b->number);
12013 ui_out_text (uiout, ": ");
12014
12015 switch (ex)
12016 {
12017 case ada_catch_exception:
12018 if (c->excep_string != NULL)
12019 {
12020 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12021 struct cleanup *old_chain = make_cleanup (xfree, info);
12022
12023 ui_out_text (uiout, info);
12024 do_cleanups (old_chain);
12025 }
12026 else
12027 ui_out_text (uiout, _("all Ada exceptions"));
12028 break;
12029
12030 case ada_catch_exception_unhandled:
12031 ui_out_text (uiout, _("unhandled Ada exceptions"));
12032 break;
12033
12034 case ada_catch_assert:
12035 ui_out_text (uiout, _("failed Ada assertions"));
12036 break;
12037
12038 default:
12039 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12040 break;
12041 }
12042 }
12043
12044 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12045 for all exception catchpoint kinds. */
12046
12047 static void
12048 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12049 struct breakpoint *b, struct ui_file *fp)
12050 {
12051 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12052
12053 switch (ex)
12054 {
12055 case ada_catch_exception:
12056 fprintf_filtered (fp, "catch exception");
12057 if (c->excep_string != NULL)
12058 fprintf_filtered (fp, " %s", c->excep_string);
12059 break;
12060
12061 case ada_catch_exception_unhandled:
12062 fprintf_filtered (fp, "catch exception unhandled");
12063 break;
12064
12065 case ada_catch_assert:
12066 fprintf_filtered (fp, "catch assert");
12067 break;
12068
12069 default:
12070 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12071 }
12072 print_recreate_thread (b, fp);
12073 }
12074
12075 /* Virtual table for "catch exception" breakpoints. */
12076
12077 static void
12078 dtor_catch_exception (struct breakpoint *b)
12079 {
12080 dtor_exception (ada_catch_exception, b);
12081 }
12082
12083 static struct bp_location *
12084 allocate_location_catch_exception (struct breakpoint *self)
12085 {
12086 return allocate_location_exception (ada_catch_exception, self);
12087 }
12088
12089 static void
12090 re_set_catch_exception (struct breakpoint *b)
12091 {
12092 re_set_exception (ada_catch_exception, b);
12093 }
12094
12095 static void
12096 check_status_catch_exception (bpstat bs)
12097 {
12098 check_status_exception (ada_catch_exception, bs);
12099 }
12100
12101 static enum print_stop_action
12102 print_it_catch_exception (bpstat bs)
12103 {
12104 return print_it_exception (ada_catch_exception, bs);
12105 }
12106
12107 static void
12108 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12109 {
12110 print_one_exception (ada_catch_exception, b, last_loc);
12111 }
12112
12113 static void
12114 print_mention_catch_exception (struct breakpoint *b)
12115 {
12116 print_mention_exception (ada_catch_exception, b);
12117 }
12118
12119 static void
12120 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12121 {
12122 print_recreate_exception (ada_catch_exception, b, fp);
12123 }
12124
12125 static struct breakpoint_ops catch_exception_breakpoint_ops;
12126
12127 /* Virtual table for "catch exception unhandled" breakpoints. */
12128
12129 static void
12130 dtor_catch_exception_unhandled (struct breakpoint *b)
12131 {
12132 dtor_exception (ada_catch_exception_unhandled, b);
12133 }
12134
12135 static struct bp_location *
12136 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12137 {
12138 return allocate_location_exception (ada_catch_exception_unhandled, self);
12139 }
12140
12141 static void
12142 re_set_catch_exception_unhandled (struct breakpoint *b)
12143 {
12144 re_set_exception (ada_catch_exception_unhandled, b);
12145 }
12146
12147 static void
12148 check_status_catch_exception_unhandled (bpstat bs)
12149 {
12150 check_status_exception (ada_catch_exception_unhandled, bs);
12151 }
12152
12153 static enum print_stop_action
12154 print_it_catch_exception_unhandled (bpstat bs)
12155 {
12156 return print_it_exception (ada_catch_exception_unhandled, bs);
12157 }
12158
12159 static void
12160 print_one_catch_exception_unhandled (struct breakpoint *b,
12161 struct bp_location **last_loc)
12162 {
12163 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12164 }
12165
12166 static void
12167 print_mention_catch_exception_unhandled (struct breakpoint *b)
12168 {
12169 print_mention_exception (ada_catch_exception_unhandled, b);
12170 }
12171
12172 static void
12173 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12174 struct ui_file *fp)
12175 {
12176 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12177 }
12178
12179 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12180
12181 /* Virtual table for "catch assert" breakpoints. */
12182
12183 static void
12184 dtor_catch_assert (struct breakpoint *b)
12185 {
12186 dtor_exception (ada_catch_assert, b);
12187 }
12188
12189 static struct bp_location *
12190 allocate_location_catch_assert (struct breakpoint *self)
12191 {
12192 return allocate_location_exception (ada_catch_assert, self);
12193 }
12194
12195 static void
12196 re_set_catch_assert (struct breakpoint *b)
12197 {
12198 re_set_exception (ada_catch_assert, b);
12199 }
12200
12201 static void
12202 check_status_catch_assert (bpstat bs)
12203 {
12204 check_status_exception (ada_catch_assert, bs);
12205 }
12206
12207 static enum print_stop_action
12208 print_it_catch_assert (bpstat bs)
12209 {
12210 return print_it_exception (ada_catch_assert, bs);
12211 }
12212
12213 static void
12214 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12215 {
12216 print_one_exception (ada_catch_assert, b, last_loc);
12217 }
12218
12219 static void
12220 print_mention_catch_assert (struct breakpoint *b)
12221 {
12222 print_mention_exception (ada_catch_assert, b);
12223 }
12224
12225 static void
12226 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12227 {
12228 print_recreate_exception (ada_catch_assert, b, fp);
12229 }
12230
12231 static struct breakpoint_ops catch_assert_breakpoint_ops;
12232
12233 /* Return a newly allocated copy of the first space-separated token
12234 in ARGSP, and then adjust ARGSP to point immediately after that
12235 token.
12236
12237 Return NULL if ARGPS does not contain any more tokens. */
12238
12239 static char *
12240 ada_get_next_arg (char **argsp)
12241 {
12242 char *args = *argsp;
12243 char *end;
12244 char *result;
12245
12246 args = skip_spaces (args);
12247 if (args[0] == '\0')
12248 return NULL; /* No more arguments. */
12249
12250 /* Find the end of the current argument. */
12251
12252 end = skip_to_space (args);
12253
12254 /* Adjust ARGSP to point to the start of the next argument. */
12255
12256 *argsp = end;
12257
12258 /* Make a copy of the current argument and return it. */
12259
12260 result = xmalloc (end - args + 1);
12261 strncpy (result, args, end - args);
12262 result[end - args] = '\0';
12263
12264 return result;
12265 }
12266
12267 /* Split the arguments specified in a "catch exception" command.
12268 Set EX to the appropriate catchpoint type.
12269 Set EXCEP_STRING to the name of the specific exception if
12270 specified by the user.
12271 If a condition is found at the end of the arguments, the condition
12272 expression is stored in COND_STRING (memory must be deallocated
12273 after use). Otherwise COND_STRING is set to NULL. */
12274
12275 static void
12276 catch_ada_exception_command_split (char *args,
12277 enum ada_exception_catchpoint_kind *ex,
12278 char **excep_string,
12279 char **cond_string)
12280 {
12281 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12282 char *exception_name;
12283 char *cond = NULL;
12284
12285 exception_name = ada_get_next_arg (&args);
12286 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12287 {
12288 /* This is not an exception name; this is the start of a condition
12289 expression for a catchpoint on all exceptions. So, "un-get"
12290 this token, and set exception_name to NULL. */
12291 xfree (exception_name);
12292 exception_name = NULL;
12293 args -= 2;
12294 }
12295 make_cleanup (xfree, exception_name);
12296
12297 /* Check to see if we have a condition. */
12298
12299 args = skip_spaces (args);
12300 if (strncmp (args, "if", 2) == 0
12301 && (isspace (args[2]) || args[2] == '\0'))
12302 {
12303 args += 2;
12304 args = skip_spaces (args);
12305
12306 if (args[0] == '\0')
12307 error (_("Condition missing after `if' keyword"));
12308 cond = xstrdup (args);
12309 make_cleanup (xfree, cond);
12310
12311 args += strlen (args);
12312 }
12313
12314 /* Check that we do not have any more arguments. Anything else
12315 is unexpected. */
12316
12317 if (args[0] != '\0')
12318 error (_("Junk at end of expression"));
12319
12320 discard_cleanups (old_chain);
12321
12322 if (exception_name == NULL)
12323 {
12324 /* Catch all exceptions. */
12325 *ex = ada_catch_exception;
12326 *excep_string = NULL;
12327 }
12328 else if (strcmp (exception_name, "unhandled") == 0)
12329 {
12330 /* Catch unhandled exceptions. */
12331 *ex = ada_catch_exception_unhandled;
12332 *excep_string = NULL;
12333 }
12334 else
12335 {
12336 /* Catch a specific exception. */
12337 *ex = ada_catch_exception;
12338 *excep_string = exception_name;
12339 }
12340 *cond_string = cond;
12341 }
12342
12343 /* Return the name of the symbol on which we should break in order to
12344 implement a catchpoint of the EX kind. */
12345
12346 static const char *
12347 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12348 {
12349 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12350
12351 gdb_assert (data->exception_info != NULL);
12352
12353 switch (ex)
12354 {
12355 case ada_catch_exception:
12356 return (data->exception_info->catch_exception_sym);
12357 break;
12358 case ada_catch_exception_unhandled:
12359 return (data->exception_info->catch_exception_unhandled_sym);
12360 break;
12361 case ada_catch_assert:
12362 return (data->exception_info->catch_assert_sym);
12363 break;
12364 default:
12365 internal_error (__FILE__, __LINE__,
12366 _("unexpected catchpoint kind (%d)"), ex);
12367 }
12368 }
12369
12370 /* Return the breakpoint ops "virtual table" used for catchpoints
12371 of the EX kind. */
12372
12373 static const struct breakpoint_ops *
12374 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12375 {
12376 switch (ex)
12377 {
12378 case ada_catch_exception:
12379 return (&catch_exception_breakpoint_ops);
12380 break;
12381 case ada_catch_exception_unhandled:
12382 return (&catch_exception_unhandled_breakpoint_ops);
12383 break;
12384 case ada_catch_assert:
12385 return (&catch_assert_breakpoint_ops);
12386 break;
12387 default:
12388 internal_error (__FILE__, __LINE__,
12389 _("unexpected catchpoint kind (%d)"), ex);
12390 }
12391 }
12392
12393 /* Return the condition that will be used to match the current exception
12394 being raised with the exception that the user wants to catch. This
12395 assumes that this condition is used when the inferior just triggered
12396 an exception catchpoint.
12397
12398 The string returned is a newly allocated string that needs to be
12399 deallocated later. */
12400
12401 static char *
12402 ada_exception_catchpoint_cond_string (const char *excep_string)
12403 {
12404 int i;
12405
12406 /* The standard exceptions are a special case. They are defined in
12407 runtime units that have been compiled without debugging info; if
12408 EXCEP_STRING is the not-fully-qualified name of a standard
12409 exception (e.g. "constraint_error") then, during the evaluation
12410 of the condition expression, the symbol lookup on this name would
12411 *not* return this standard exception. The catchpoint condition
12412 may then be set only on user-defined exceptions which have the
12413 same not-fully-qualified name (e.g. my_package.constraint_error).
12414
12415 To avoid this unexcepted behavior, these standard exceptions are
12416 systematically prefixed by "standard". This means that "catch
12417 exception constraint_error" is rewritten into "catch exception
12418 standard.constraint_error".
12419
12420 If an exception named contraint_error is defined in another package of
12421 the inferior program, then the only way to specify this exception as a
12422 breakpoint condition is to use its fully-qualified named:
12423 e.g. my_package.constraint_error. */
12424
12425 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12426 {
12427 if (strcmp (standard_exc [i], excep_string) == 0)
12428 {
12429 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12430 excep_string);
12431 }
12432 }
12433 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12434 }
12435
12436 /* Return the symtab_and_line that should be used to insert an exception
12437 catchpoint of the TYPE kind.
12438
12439 EXCEP_STRING should contain the name of a specific exception that
12440 the catchpoint should catch, or NULL otherwise.
12441
12442 ADDR_STRING returns the name of the function where the real
12443 breakpoint that implements the catchpoints is set, depending on the
12444 type of catchpoint we need to create. */
12445
12446 static struct symtab_and_line
12447 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12448 char **addr_string, const struct breakpoint_ops **ops)
12449 {
12450 const char *sym_name;
12451 struct symbol *sym;
12452
12453 /* First, find out which exception support info to use. */
12454 ada_exception_support_info_sniffer ();
12455
12456 /* Then lookup the function on which we will break in order to catch
12457 the Ada exceptions requested by the user. */
12458 sym_name = ada_exception_sym_name (ex);
12459 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12460
12461 /* We can assume that SYM is not NULL at this stage. If the symbol
12462 did not exist, ada_exception_support_info_sniffer would have
12463 raised an exception.
12464
12465 Also, ada_exception_support_info_sniffer should have already
12466 verified that SYM is a function symbol. */
12467 gdb_assert (sym != NULL);
12468 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12469
12470 /* Set ADDR_STRING. */
12471 *addr_string = xstrdup (sym_name);
12472
12473 /* Set OPS. */
12474 *ops = ada_exception_breakpoint_ops (ex);
12475
12476 return find_function_start_sal (sym, 1);
12477 }
12478
12479 /* Create an Ada exception catchpoint.
12480
12481 EX_KIND is the kind of exception catchpoint to be created.
12482
12483 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12484 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12485 of the exception to which this catchpoint applies. When not NULL,
12486 the string must be allocated on the heap, and its deallocation
12487 is no longer the responsibility of the caller.
12488
12489 COND_STRING, if not NULL, is the catchpoint condition. This string
12490 must be allocated on the heap, and its deallocation is no longer
12491 the responsibility of the caller.
12492
12493 TEMPFLAG, if nonzero, means that the underlying breakpoint
12494 should be temporary.
12495
12496 FROM_TTY is the usual argument passed to all commands implementations. */
12497
12498 void
12499 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12500 enum ada_exception_catchpoint_kind ex_kind,
12501 char *excep_string,
12502 char *cond_string,
12503 int tempflag,
12504 int disabled,
12505 int from_tty)
12506 {
12507 struct ada_catchpoint *c;
12508 char *addr_string = NULL;
12509 const struct breakpoint_ops *ops = NULL;
12510 struct symtab_and_line sal
12511 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12512
12513 c = XNEW (struct ada_catchpoint);
12514 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12515 ops, tempflag, disabled, from_tty);
12516 c->excep_string = excep_string;
12517 create_excep_cond_exprs (c);
12518 if (cond_string != NULL)
12519 set_breakpoint_condition (&c->base, cond_string, from_tty);
12520 install_breakpoint (0, &c->base, 1);
12521 }
12522
12523 /* Implement the "catch exception" command. */
12524
12525 static void
12526 catch_ada_exception_command (char *arg, int from_tty,
12527 struct cmd_list_element *command)
12528 {
12529 struct gdbarch *gdbarch = get_current_arch ();
12530 int tempflag;
12531 enum ada_exception_catchpoint_kind ex_kind;
12532 char *excep_string = NULL;
12533 char *cond_string = NULL;
12534
12535 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12536
12537 if (!arg)
12538 arg = "";
12539 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12540 &cond_string);
12541 create_ada_exception_catchpoint (gdbarch, ex_kind,
12542 excep_string, cond_string,
12543 tempflag, 1 /* enabled */,
12544 from_tty);
12545 }
12546
12547 /* Split the arguments specified in a "catch assert" command.
12548
12549 ARGS contains the command's arguments (or the empty string if
12550 no arguments were passed).
12551
12552 If ARGS contains a condition, set COND_STRING to that condition
12553 (the memory needs to be deallocated after use). */
12554
12555 static void
12556 catch_ada_assert_command_split (char *args, char **cond_string)
12557 {
12558 args = skip_spaces (args);
12559
12560 /* Check whether a condition was provided. */
12561 if (strncmp (args, "if", 2) == 0
12562 && (isspace (args[2]) || args[2] == '\0'))
12563 {
12564 args += 2;
12565 args = skip_spaces (args);
12566 if (args[0] == '\0')
12567 error (_("condition missing after `if' keyword"));
12568 *cond_string = xstrdup (args);
12569 }
12570
12571 /* Otherwise, there should be no other argument at the end of
12572 the command. */
12573 else if (args[0] != '\0')
12574 error (_("Junk at end of arguments."));
12575 }
12576
12577 /* Implement the "catch assert" command. */
12578
12579 static void
12580 catch_assert_command (char *arg, int from_tty,
12581 struct cmd_list_element *command)
12582 {
12583 struct gdbarch *gdbarch = get_current_arch ();
12584 int tempflag;
12585 char *cond_string = NULL;
12586
12587 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12588
12589 if (!arg)
12590 arg = "";
12591 catch_ada_assert_command_split (arg, &cond_string);
12592 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12593 NULL, cond_string,
12594 tempflag, 1 /* enabled */,
12595 from_tty);
12596 }
12597
12598 /* Return non-zero if the symbol SYM is an Ada exception object. */
12599
12600 static int
12601 ada_is_exception_sym (struct symbol *sym)
12602 {
12603 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12604
12605 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12606 && SYMBOL_CLASS (sym) != LOC_BLOCK
12607 && SYMBOL_CLASS (sym) != LOC_CONST
12608 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12609 && type_name != NULL && strcmp (type_name, "exception") == 0);
12610 }
12611
12612 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12613 Ada exception object. This matches all exceptions except the ones
12614 defined by the Ada language. */
12615
12616 static int
12617 ada_is_non_standard_exception_sym (struct symbol *sym)
12618 {
12619 int i;
12620
12621 if (!ada_is_exception_sym (sym))
12622 return 0;
12623
12624 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12625 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12626 return 0; /* A standard exception. */
12627
12628 /* Numeric_Error is also a standard exception, so exclude it.
12629 See the STANDARD_EXC description for more details as to why
12630 this exception is not listed in that array. */
12631 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12632 return 0;
12633
12634 return 1;
12635 }
12636
12637 /* A helper function for qsort, comparing two struct ada_exc_info
12638 objects.
12639
12640 The comparison is determined first by exception name, and then
12641 by exception address. */
12642
12643 static int
12644 compare_ada_exception_info (const void *a, const void *b)
12645 {
12646 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12647 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12648 int result;
12649
12650 result = strcmp (exc_a->name, exc_b->name);
12651 if (result != 0)
12652 return result;
12653
12654 if (exc_a->addr < exc_b->addr)
12655 return -1;
12656 if (exc_a->addr > exc_b->addr)
12657 return 1;
12658
12659 return 0;
12660 }
12661
12662 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12663 routine, but keeping the first SKIP elements untouched.
12664
12665 All duplicates are also removed. */
12666
12667 static void
12668 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12669 int skip)
12670 {
12671 struct ada_exc_info *to_sort
12672 = VEC_address (ada_exc_info, *exceptions) + skip;
12673 int to_sort_len
12674 = VEC_length (ada_exc_info, *exceptions) - skip;
12675 int i, j;
12676
12677 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12678 compare_ada_exception_info);
12679
12680 for (i = 1, j = 1; i < to_sort_len; i++)
12681 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12682 to_sort[j++] = to_sort[i];
12683 to_sort_len = j;
12684 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12685 }
12686
12687 /* A function intended as the "name_matcher" callback in the struct
12688 quick_symbol_functions' expand_symtabs_matching method.
12689
12690 SEARCH_NAME is the symbol's search name.
12691
12692 If USER_DATA is not NULL, it is a pointer to a regext_t object
12693 used to match the symbol (by natural name). Otherwise, when USER_DATA
12694 is null, no filtering is performed, and all symbols are a positive
12695 match. */
12696
12697 static int
12698 ada_exc_search_name_matches (const char *search_name, void *user_data)
12699 {
12700 regex_t *preg = user_data;
12701
12702 if (preg == NULL)
12703 return 1;
12704
12705 /* In Ada, the symbol "search name" is a linkage name, whereas
12706 the regular expression used to do the matching refers to
12707 the natural name. So match against the decoded name. */
12708 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12709 }
12710
12711 /* Add all exceptions defined by the Ada standard whose name match
12712 a regular expression.
12713
12714 If PREG is not NULL, then this regexp_t object is used to
12715 perform the symbol name matching. Otherwise, no name-based
12716 filtering is performed.
12717
12718 EXCEPTIONS is a vector of exceptions to which matching exceptions
12719 gets pushed. */
12720
12721 static void
12722 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12723 {
12724 int i;
12725
12726 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12727 {
12728 if (preg == NULL
12729 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12730 {
12731 struct bound_minimal_symbol msymbol
12732 = ada_lookup_simple_minsym (standard_exc[i]);
12733
12734 if (msymbol.minsym != NULL)
12735 {
12736 struct ada_exc_info info
12737 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12738
12739 VEC_safe_push (ada_exc_info, *exceptions, &info);
12740 }
12741 }
12742 }
12743 }
12744
12745 /* Add all Ada exceptions defined locally and accessible from the given
12746 FRAME.
12747
12748 If PREG is not NULL, then this regexp_t object is used to
12749 perform the symbol name matching. Otherwise, no name-based
12750 filtering is performed.
12751
12752 EXCEPTIONS is a vector of exceptions to which matching exceptions
12753 gets pushed. */
12754
12755 static void
12756 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12757 VEC(ada_exc_info) **exceptions)
12758 {
12759 const struct block *block = get_frame_block (frame, 0);
12760
12761 while (block != 0)
12762 {
12763 struct block_iterator iter;
12764 struct symbol *sym;
12765
12766 ALL_BLOCK_SYMBOLS (block, iter, sym)
12767 {
12768 switch (SYMBOL_CLASS (sym))
12769 {
12770 case LOC_TYPEDEF:
12771 case LOC_BLOCK:
12772 case LOC_CONST:
12773 break;
12774 default:
12775 if (ada_is_exception_sym (sym))
12776 {
12777 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12778 SYMBOL_VALUE_ADDRESS (sym)};
12779
12780 VEC_safe_push (ada_exc_info, *exceptions, &info);
12781 }
12782 }
12783 }
12784 if (BLOCK_FUNCTION (block) != NULL)
12785 break;
12786 block = BLOCK_SUPERBLOCK (block);
12787 }
12788 }
12789
12790 /* Add all exceptions defined globally whose name name match
12791 a regular expression, excluding standard exceptions.
12792
12793 The reason we exclude standard exceptions is that they need
12794 to be handled separately: Standard exceptions are defined inside
12795 a runtime unit which is normally not compiled with debugging info,
12796 and thus usually do not show up in our symbol search. However,
12797 if the unit was in fact built with debugging info, we need to
12798 exclude them because they would duplicate the entry we found
12799 during the special loop that specifically searches for those
12800 standard exceptions.
12801
12802 If PREG is not NULL, then this regexp_t object is used to
12803 perform the symbol name matching. Otherwise, no name-based
12804 filtering is performed.
12805
12806 EXCEPTIONS is a vector of exceptions to which matching exceptions
12807 gets pushed. */
12808
12809 static void
12810 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12811 {
12812 struct objfile *objfile;
12813 struct symtab *s;
12814
12815 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12816 VARIABLES_DOMAIN, preg);
12817
12818 ALL_PRIMARY_SYMTABS (objfile, s)
12819 {
12820 const struct blockvector *bv = BLOCKVECTOR (s);
12821 int i;
12822
12823 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12824 {
12825 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12826 struct block_iterator iter;
12827 struct symbol *sym;
12828
12829 ALL_BLOCK_SYMBOLS (b, iter, sym)
12830 if (ada_is_non_standard_exception_sym (sym)
12831 && (preg == NULL
12832 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12833 0, NULL, 0) == 0))
12834 {
12835 struct ada_exc_info info
12836 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12837
12838 VEC_safe_push (ada_exc_info, *exceptions, &info);
12839 }
12840 }
12841 }
12842 }
12843
12844 /* Implements ada_exceptions_list with the regular expression passed
12845 as a regex_t, rather than a string.
12846
12847 If not NULL, PREG is used to filter out exceptions whose names
12848 do not match. Otherwise, all exceptions are listed. */
12849
12850 static VEC(ada_exc_info) *
12851 ada_exceptions_list_1 (regex_t *preg)
12852 {
12853 VEC(ada_exc_info) *result = NULL;
12854 struct cleanup *old_chain
12855 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12856 int prev_len;
12857
12858 /* First, list the known standard exceptions. These exceptions
12859 need to be handled separately, as they are usually defined in
12860 runtime units that have been compiled without debugging info. */
12861
12862 ada_add_standard_exceptions (preg, &result);
12863
12864 /* Next, find all exceptions whose scope is local and accessible
12865 from the currently selected frame. */
12866
12867 if (has_stack_frames ())
12868 {
12869 prev_len = VEC_length (ada_exc_info, result);
12870 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12871 &result);
12872 if (VEC_length (ada_exc_info, result) > prev_len)
12873 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12874 }
12875
12876 /* Add all exceptions whose scope is global. */
12877
12878 prev_len = VEC_length (ada_exc_info, result);
12879 ada_add_global_exceptions (preg, &result);
12880 if (VEC_length (ada_exc_info, result) > prev_len)
12881 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12882
12883 discard_cleanups (old_chain);
12884 return result;
12885 }
12886
12887 /* Return a vector of ada_exc_info.
12888
12889 If REGEXP is NULL, all exceptions are included in the result.
12890 Otherwise, it should contain a valid regular expression,
12891 and only the exceptions whose names match that regular expression
12892 are included in the result.
12893
12894 The exceptions are sorted in the following order:
12895 - Standard exceptions (defined by the Ada language), in
12896 alphabetical order;
12897 - Exceptions only visible from the current frame, in
12898 alphabetical order;
12899 - Exceptions whose scope is global, in alphabetical order. */
12900
12901 VEC(ada_exc_info) *
12902 ada_exceptions_list (const char *regexp)
12903 {
12904 VEC(ada_exc_info) *result = NULL;
12905 struct cleanup *old_chain = NULL;
12906 regex_t reg;
12907
12908 if (regexp != NULL)
12909 old_chain = compile_rx_or_error (&reg, regexp,
12910 _("invalid regular expression"));
12911
12912 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12913
12914 if (old_chain != NULL)
12915 do_cleanups (old_chain);
12916 return result;
12917 }
12918
12919 /* Implement the "info exceptions" command. */
12920
12921 static void
12922 info_exceptions_command (char *regexp, int from_tty)
12923 {
12924 VEC(ada_exc_info) *exceptions;
12925 struct cleanup *cleanup;
12926 struct gdbarch *gdbarch = get_current_arch ();
12927 int ix;
12928 struct ada_exc_info *info;
12929
12930 exceptions = ada_exceptions_list (regexp);
12931 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12932
12933 if (regexp != NULL)
12934 printf_filtered
12935 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12936 else
12937 printf_filtered (_("All defined Ada exceptions:\n"));
12938
12939 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12940 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12941
12942 do_cleanups (cleanup);
12943 }
12944
12945 /* Operators */
12946 /* Information about operators given special treatment in functions
12947 below. */
12948 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12949
12950 #define ADA_OPERATORS \
12951 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12952 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12953 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12954 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12955 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12956 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12957 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12958 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12959 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12960 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12961 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12962 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12963 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12964 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12965 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12966 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12967 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12968 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12969 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12970
12971 static void
12972 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12973 int *argsp)
12974 {
12975 switch (exp->elts[pc - 1].opcode)
12976 {
12977 default:
12978 operator_length_standard (exp, pc, oplenp, argsp);
12979 break;
12980
12981 #define OP_DEFN(op, len, args, binop) \
12982 case op: *oplenp = len; *argsp = args; break;
12983 ADA_OPERATORS;
12984 #undef OP_DEFN
12985
12986 case OP_AGGREGATE:
12987 *oplenp = 3;
12988 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12989 break;
12990
12991 case OP_CHOICES:
12992 *oplenp = 3;
12993 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12994 break;
12995 }
12996 }
12997
12998 /* Implementation of the exp_descriptor method operator_check. */
12999
13000 static int
13001 ada_operator_check (struct expression *exp, int pos,
13002 int (*objfile_func) (struct objfile *objfile, void *data),
13003 void *data)
13004 {
13005 const union exp_element *const elts = exp->elts;
13006 struct type *type = NULL;
13007
13008 switch (elts[pos].opcode)
13009 {
13010 case UNOP_IN_RANGE:
13011 case UNOP_QUAL:
13012 type = elts[pos + 1].type;
13013 break;
13014
13015 default:
13016 return operator_check_standard (exp, pos, objfile_func, data);
13017 }
13018
13019 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13020
13021 if (type && TYPE_OBJFILE (type)
13022 && (*objfile_func) (TYPE_OBJFILE (type), data))
13023 return 1;
13024
13025 return 0;
13026 }
13027
13028 static char *
13029 ada_op_name (enum exp_opcode opcode)
13030 {
13031 switch (opcode)
13032 {
13033 default:
13034 return op_name_standard (opcode);
13035
13036 #define OP_DEFN(op, len, args, binop) case op: return #op;
13037 ADA_OPERATORS;
13038 #undef OP_DEFN
13039
13040 case OP_AGGREGATE:
13041 return "OP_AGGREGATE";
13042 case OP_CHOICES:
13043 return "OP_CHOICES";
13044 case OP_NAME:
13045 return "OP_NAME";
13046 }
13047 }
13048
13049 /* As for operator_length, but assumes PC is pointing at the first
13050 element of the operator, and gives meaningful results only for the
13051 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13052
13053 static void
13054 ada_forward_operator_length (struct expression *exp, int pc,
13055 int *oplenp, int *argsp)
13056 {
13057 switch (exp->elts[pc].opcode)
13058 {
13059 default:
13060 *oplenp = *argsp = 0;
13061 break;
13062
13063 #define OP_DEFN(op, len, args, binop) \
13064 case op: *oplenp = len; *argsp = args; break;
13065 ADA_OPERATORS;
13066 #undef OP_DEFN
13067
13068 case OP_AGGREGATE:
13069 *oplenp = 3;
13070 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13071 break;
13072
13073 case OP_CHOICES:
13074 *oplenp = 3;
13075 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13076 break;
13077
13078 case OP_STRING:
13079 case OP_NAME:
13080 {
13081 int len = longest_to_int (exp->elts[pc + 1].longconst);
13082
13083 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13084 *argsp = 0;
13085 break;
13086 }
13087 }
13088 }
13089
13090 static int
13091 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13092 {
13093 enum exp_opcode op = exp->elts[elt].opcode;
13094 int oplen, nargs;
13095 int pc = elt;
13096 int i;
13097
13098 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13099
13100 switch (op)
13101 {
13102 /* Ada attributes ('Foo). */
13103 case OP_ATR_FIRST:
13104 case OP_ATR_LAST:
13105 case OP_ATR_LENGTH:
13106 case OP_ATR_IMAGE:
13107 case OP_ATR_MAX:
13108 case OP_ATR_MIN:
13109 case OP_ATR_MODULUS:
13110 case OP_ATR_POS:
13111 case OP_ATR_SIZE:
13112 case OP_ATR_TAG:
13113 case OP_ATR_VAL:
13114 break;
13115
13116 case UNOP_IN_RANGE:
13117 case UNOP_QUAL:
13118 /* XXX: gdb_sprint_host_address, type_sprint */
13119 fprintf_filtered (stream, _("Type @"));
13120 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13121 fprintf_filtered (stream, " (");
13122 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13123 fprintf_filtered (stream, ")");
13124 break;
13125 case BINOP_IN_BOUNDS:
13126 fprintf_filtered (stream, " (%d)",
13127 longest_to_int (exp->elts[pc + 2].longconst));
13128 break;
13129 case TERNOP_IN_RANGE:
13130 break;
13131
13132 case OP_AGGREGATE:
13133 case OP_OTHERS:
13134 case OP_DISCRETE_RANGE:
13135 case OP_POSITIONAL:
13136 case OP_CHOICES:
13137 break;
13138
13139 case OP_NAME:
13140 case OP_STRING:
13141 {
13142 char *name = &exp->elts[elt + 2].string;
13143 int len = longest_to_int (exp->elts[elt + 1].longconst);
13144
13145 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13146 break;
13147 }
13148
13149 default:
13150 return dump_subexp_body_standard (exp, stream, elt);
13151 }
13152
13153 elt += oplen;
13154 for (i = 0; i < nargs; i += 1)
13155 elt = dump_subexp (exp, stream, elt);
13156
13157 return elt;
13158 }
13159
13160 /* The Ada extension of print_subexp (q.v.). */
13161
13162 static void
13163 ada_print_subexp (struct expression *exp, int *pos,
13164 struct ui_file *stream, enum precedence prec)
13165 {
13166 int oplen, nargs, i;
13167 int pc = *pos;
13168 enum exp_opcode op = exp->elts[pc].opcode;
13169
13170 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13171
13172 *pos += oplen;
13173 switch (op)
13174 {
13175 default:
13176 *pos -= oplen;
13177 print_subexp_standard (exp, pos, stream, prec);
13178 return;
13179
13180 case OP_VAR_VALUE:
13181 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13182 return;
13183
13184 case BINOP_IN_BOUNDS:
13185 /* XXX: sprint_subexp */
13186 print_subexp (exp, pos, stream, PREC_SUFFIX);
13187 fputs_filtered (" in ", stream);
13188 print_subexp (exp, pos, stream, PREC_SUFFIX);
13189 fputs_filtered ("'range", stream);
13190 if (exp->elts[pc + 1].longconst > 1)
13191 fprintf_filtered (stream, "(%ld)",
13192 (long) exp->elts[pc + 1].longconst);
13193 return;
13194
13195 case TERNOP_IN_RANGE:
13196 if (prec >= PREC_EQUAL)
13197 fputs_filtered ("(", stream);
13198 /* XXX: sprint_subexp */
13199 print_subexp (exp, pos, stream, PREC_SUFFIX);
13200 fputs_filtered (" in ", stream);
13201 print_subexp (exp, pos, stream, PREC_EQUAL);
13202 fputs_filtered (" .. ", stream);
13203 print_subexp (exp, pos, stream, PREC_EQUAL);
13204 if (prec >= PREC_EQUAL)
13205 fputs_filtered (")", stream);
13206 return;
13207
13208 case OP_ATR_FIRST:
13209 case OP_ATR_LAST:
13210 case OP_ATR_LENGTH:
13211 case OP_ATR_IMAGE:
13212 case OP_ATR_MAX:
13213 case OP_ATR_MIN:
13214 case OP_ATR_MODULUS:
13215 case OP_ATR_POS:
13216 case OP_ATR_SIZE:
13217 case OP_ATR_TAG:
13218 case OP_ATR_VAL:
13219 if (exp->elts[*pos].opcode == OP_TYPE)
13220 {
13221 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13222 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13223 &type_print_raw_options);
13224 *pos += 3;
13225 }
13226 else
13227 print_subexp (exp, pos, stream, PREC_SUFFIX);
13228 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13229 if (nargs > 1)
13230 {
13231 int tem;
13232
13233 for (tem = 1; tem < nargs; tem += 1)
13234 {
13235 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13236 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13237 }
13238 fputs_filtered (")", stream);
13239 }
13240 return;
13241
13242 case UNOP_QUAL:
13243 type_print (exp->elts[pc + 1].type, "", stream, 0);
13244 fputs_filtered ("'(", stream);
13245 print_subexp (exp, pos, stream, PREC_PREFIX);
13246 fputs_filtered (")", stream);
13247 return;
13248
13249 case UNOP_IN_RANGE:
13250 /* XXX: sprint_subexp */
13251 print_subexp (exp, pos, stream, PREC_SUFFIX);
13252 fputs_filtered (" in ", stream);
13253 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13254 &type_print_raw_options);
13255 return;
13256
13257 case OP_DISCRETE_RANGE:
13258 print_subexp (exp, pos, stream, PREC_SUFFIX);
13259 fputs_filtered ("..", stream);
13260 print_subexp (exp, pos, stream, PREC_SUFFIX);
13261 return;
13262
13263 case OP_OTHERS:
13264 fputs_filtered ("others => ", stream);
13265 print_subexp (exp, pos, stream, PREC_SUFFIX);
13266 return;
13267
13268 case OP_CHOICES:
13269 for (i = 0; i < nargs-1; i += 1)
13270 {
13271 if (i > 0)
13272 fputs_filtered ("|", stream);
13273 print_subexp (exp, pos, stream, PREC_SUFFIX);
13274 }
13275 fputs_filtered (" => ", stream);
13276 print_subexp (exp, pos, stream, PREC_SUFFIX);
13277 return;
13278
13279 case OP_POSITIONAL:
13280 print_subexp (exp, pos, stream, PREC_SUFFIX);
13281 return;
13282
13283 case OP_AGGREGATE:
13284 fputs_filtered ("(", stream);
13285 for (i = 0; i < nargs; i += 1)
13286 {
13287 if (i > 0)
13288 fputs_filtered (", ", stream);
13289 print_subexp (exp, pos, stream, PREC_SUFFIX);
13290 }
13291 fputs_filtered (")", stream);
13292 return;
13293 }
13294 }
13295
13296 /* Table mapping opcodes into strings for printing operators
13297 and precedences of the operators. */
13298
13299 static const struct op_print ada_op_print_tab[] = {
13300 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13301 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13302 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13303 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13304 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13305 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13306 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13307 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13308 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13309 {">=", BINOP_GEQ, PREC_ORDER, 0},
13310 {">", BINOP_GTR, PREC_ORDER, 0},
13311 {"<", BINOP_LESS, PREC_ORDER, 0},
13312 {">>", BINOP_RSH, PREC_SHIFT, 0},
13313 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13314 {"+", BINOP_ADD, PREC_ADD, 0},
13315 {"-", BINOP_SUB, PREC_ADD, 0},
13316 {"&", BINOP_CONCAT, PREC_ADD, 0},
13317 {"*", BINOP_MUL, PREC_MUL, 0},
13318 {"/", BINOP_DIV, PREC_MUL, 0},
13319 {"rem", BINOP_REM, PREC_MUL, 0},
13320 {"mod", BINOP_MOD, PREC_MUL, 0},
13321 {"**", BINOP_EXP, PREC_REPEAT, 0},
13322 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13323 {"-", UNOP_NEG, PREC_PREFIX, 0},
13324 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13325 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13326 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13327 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13328 {".all", UNOP_IND, PREC_SUFFIX, 1},
13329 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13330 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13331 {NULL, 0, 0, 0}
13332 };
13333 \f
13334 enum ada_primitive_types {
13335 ada_primitive_type_int,
13336 ada_primitive_type_long,
13337 ada_primitive_type_short,
13338 ada_primitive_type_char,
13339 ada_primitive_type_float,
13340 ada_primitive_type_double,
13341 ada_primitive_type_void,
13342 ada_primitive_type_long_long,
13343 ada_primitive_type_long_double,
13344 ada_primitive_type_natural,
13345 ada_primitive_type_positive,
13346 ada_primitive_type_system_address,
13347 nr_ada_primitive_types
13348 };
13349
13350 static void
13351 ada_language_arch_info (struct gdbarch *gdbarch,
13352 struct language_arch_info *lai)
13353 {
13354 const struct builtin_type *builtin = builtin_type (gdbarch);
13355
13356 lai->primitive_type_vector
13357 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13358 struct type *);
13359
13360 lai->primitive_type_vector [ada_primitive_type_int]
13361 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13362 0, "integer");
13363 lai->primitive_type_vector [ada_primitive_type_long]
13364 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13365 0, "long_integer");
13366 lai->primitive_type_vector [ada_primitive_type_short]
13367 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13368 0, "short_integer");
13369 lai->string_char_type
13370 = lai->primitive_type_vector [ada_primitive_type_char]
13371 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13372 lai->primitive_type_vector [ada_primitive_type_float]
13373 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13374 "float", NULL);
13375 lai->primitive_type_vector [ada_primitive_type_double]
13376 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13377 "long_float", NULL);
13378 lai->primitive_type_vector [ada_primitive_type_long_long]
13379 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13380 0, "long_long_integer");
13381 lai->primitive_type_vector [ada_primitive_type_long_double]
13382 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13383 "long_long_float", NULL);
13384 lai->primitive_type_vector [ada_primitive_type_natural]
13385 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13386 0, "natural");
13387 lai->primitive_type_vector [ada_primitive_type_positive]
13388 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13389 0, "positive");
13390 lai->primitive_type_vector [ada_primitive_type_void]
13391 = builtin->builtin_void;
13392
13393 lai->primitive_type_vector [ada_primitive_type_system_address]
13394 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13395 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13396 = "system__address";
13397
13398 lai->bool_type_symbol = NULL;
13399 lai->bool_type_default = builtin->builtin_bool;
13400 }
13401 \f
13402 /* Language vector */
13403
13404 /* Not really used, but needed in the ada_language_defn. */
13405
13406 static void
13407 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13408 {
13409 ada_emit_char (c, type, stream, quoter, 1);
13410 }
13411
13412 static int
13413 parse (struct parser_state *ps)
13414 {
13415 warnings_issued = 0;
13416 return ada_parse (ps);
13417 }
13418
13419 static const struct exp_descriptor ada_exp_descriptor = {
13420 ada_print_subexp,
13421 ada_operator_length,
13422 ada_operator_check,
13423 ada_op_name,
13424 ada_dump_subexp_body,
13425 ada_evaluate_subexp
13426 };
13427
13428 /* Implement the "la_get_symbol_name_cmp" language_defn method
13429 for Ada. */
13430
13431 static symbol_name_cmp_ftype
13432 ada_get_symbol_name_cmp (const char *lookup_name)
13433 {
13434 if (should_use_wild_match (lookup_name))
13435 return wild_match;
13436 else
13437 return compare_names;
13438 }
13439
13440 /* Implement the "la_read_var_value" language_defn method for Ada. */
13441
13442 static struct value *
13443 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13444 {
13445 const struct block *frame_block = NULL;
13446 struct symbol *renaming_sym = NULL;
13447
13448 /* The only case where default_read_var_value is not sufficient
13449 is when VAR is a renaming... */
13450 if (frame)
13451 frame_block = get_frame_block (frame, NULL);
13452 if (frame_block)
13453 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13454 if (renaming_sym != NULL)
13455 return ada_read_renaming_var_value (renaming_sym, frame_block);
13456
13457 /* This is a typical case where we expect the default_read_var_value
13458 function to work. */
13459 return default_read_var_value (var, frame);
13460 }
13461
13462 const struct language_defn ada_language_defn = {
13463 "ada", /* Language name */
13464 "Ada",
13465 language_ada,
13466 range_check_off,
13467 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13468 that's not quite what this means. */
13469 array_row_major,
13470 macro_expansion_no,
13471 &ada_exp_descriptor,
13472 parse,
13473 ada_error,
13474 resolve,
13475 ada_printchar, /* Print a character constant */
13476 ada_printstr, /* Function to print string constant */
13477 emit_char, /* Function to print single char (not used) */
13478 ada_print_type, /* Print a type using appropriate syntax */
13479 ada_print_typedef, /* Print a typedef using appropriate syntax */
13480 ada_val_print, /* Print a value using appropriate syntax */
13481 ada_value_print, /* Print a top-level value */
13482 ada_read_var_value, /* la_read_var_value */
13483 NULL, /* Language specific skip_trampoline */
13484 NULL, /* name_of_this */
13485 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13486 basic_lookup_transparent_type, /* lookup_transparent_type */
13487 ada_la_decode, /* Language specific symbol demangler */
13488 NULL, /* Language specific
13489 class_name_from_physname */
13490 ada_op_print_tab, /* expression operators for printing */
13491 0, /* c-style arrays */
13492 1, /* String lower bound */
13493 ada_get_gdb_completer_word_break_characters,
13494 ada_make_symbol_completion_list,
13495 ada_language_arch_info,
13496 ada_print_array_index,
13497 default_pass_by_reference,
13498 c_get_string,
13499 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13500 ada_iterate_over_symbols,
13501 &ada_varobj_ops,
13502 LANG_MAGIC
13503 };
13504
13505 /* Provide a prototype to silence -Wmissing-prototypes. */
13506 extern initialize_file_ftype _initialize_ada_language;
13507
13508 /* Command-list for the "set/show ada" prefix command. */
13509 static struct cmd_list_element *set_ada_list;
13510 static struct cmd_list_element *show_ada_list;
13511
13512 /* Implement the "set ada" prefix command. */
13513
13514 static void
13515 set_ada_command (char *arg, int from_tty)
13516 {
13517 printf_unfiltered (_(\
13518 "\"set ada\" must be followed by the name of a setting.\n"));
13519 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13520 }
13521
13522 /* Implement the "show ada" prefix command. */
13523
13524 static void
13525 show_ada_command (char *args, int from_tty)
13526 {
13527 cmd_show_list (show_ada_list, from_tty, "");
13528 }
13529
13530 static void
13531 initialize_ada_catchpoint_ops (void)
13532 {
13533 struct breakpoint_ops *ops;
13534
13535 initialize_breakpoint_ops ();
13536
13537 ops = &catch_exception_breakpoint_ops;
13538 *ops = bkpt_breakpoint_ops;
13539 ops->dtor = dtor_catch_exception;
13540 ops->allocate_location = allocate_location_catch_exception;
13541 ops->re_set = re_set_catch_exception;
13542 ops->check_status = check_status_catch_exception;
13543 ops->print_it = print_it_catch_exception;
13544 ops->print_one = print_one_catch_exception;
13545 ops->print_mention = print_mention_catch_exception;
13546 ops->print_recreate = print_recreate_catch_exception;
13547
13548 ops = &catch_exception_unhandled_breakpoint_ops;
13549 *ops = bkpt_breakpoint_ops;
13550 ops->dtor = dtor_catch_exception_unhandled;
13551 ops->allocate_location = allocate_location_catch_exception_unhandled;
13552 ops->re_set = re_set_catch_exception_unhandled;
13553 ops->check_status = check_status_catch_exception_unhandled;
13554 ops->print_it = print_it_catch_exception_unhandled;
13555 ops->print_one = print_one_catch_exception_unhandled;
13556 ops->print_mention = print_mention_catch_exception_unhandled;
13557 ops->print_recreate = print_recreate_catch_exception_unhandled;
13558
13559 ops = &catch_assert_breakpoint_ops;
13560 *ops = bkpt_breakpoint_ops;
13561 ops->dtor = dtor_catch_assert;
13562 ops->allocate_location = allocate_location_catch_assert;
13563 ops->re_set = re_set_catch_assert;
13564 ops->check_status = check_status_catch_assert;
13565 ops->print_it = print_it_catch_assert;
13566 ops->print_one = print_one_catch_assert;
13567 ops->print_mention = print_mention_catch_assert;
13568 ops->print_recreate = print_recreate_catch_assert;
13569 }
13570
13571 /* This module's 'new_objfile' observer. */
13572
13573 static void
13574 ada_new_objfile_observer (struct objfile *objfile)
13575 {
13576 ada_clear_symbol_cache ();
13577 }
13578
13579 /* This module's 'free_objfile' observer. */
13580
13581 static void
13582 ada_free_objfile_observer (struct objfile *objfile)
13583 {
13584 ada_clear_symbol_cache ();
13585 }
13586
13587 void
13588 _initialize_ada_language (void)
13589 {
13590 add_language (&ada_language_defn);
13591
13592 initialize_ada_catchpoint_ops ();
13593
13594 add_prefix_cmd ("ada", no_class, set_ada_command,
13595 _("Prefix command for changing Ada-specfic settings"),
13596 &set_ada_list, "set ada ", 0, &setlist);
13597
13598 add_prefix_cmd ("ada", no_class, show_ada_command,
13599 _("Generic command for showing Ada-specific settings."),
13600 &show_ada_list, "show ada ", 0, &showlist);
13601
13602 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13603 &trust_pad_over_xvs, _("\
13604 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13605 Show whether an optimization trusting PAD types over XVS types is activated"),
13606 _("\
13607 This is related to the encoding used by the GNAT compiler. The debugger\n\
13608 should normally trust the contents of PAD types, but certain older versions\n\
13609 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13610 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13611 work around this bug. It is always safe to turn this option \"off\", but\n\
13612 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13613 this option to \"off\" unless necessary."),
13614 NULL, NULL, &set_ada_list, &show_ada_list);
13615
13616 add_catch_command ("exception", _("\
13617 Catch Ada exceptions, when raised.\n\
13618 With an argument, catch only exceptions with the given name."),
13619 catch_ada_exception_command,
13620 NULL,
13621 CATCH_PERMANENT,
13622 CATCH_TEMPORARY);
13623 add_catch_command ("assert", _("\
13624 Catch failed Ada assertions, when raised.\n\
13625 With an argument, catch only exceptions with the given name."),
13626 catch_assert_command,
13627 NULL,
13628 CATCH_PERMANENT,
13629 CATCH_TEMPORARY);
13630
13631 varsize_limit = 65536;
13632
13633 add_info ("exceptions", info_exceptions_command,
13634 _("\
13635 List all Ada exception names.\n\
13636 If a regular expression is passed as an argument, only those matching\n\
13637 the regular expression are listed."));
13638
13639 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13640 _("Set Ada maintenance-related variables."),
13641 &maint_set_ada_cmdlist, "maintenance set ada ",
13642 0/*allow-unknown*/, &maintenance_set_cmdlist);
13643
13644 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13645 _("Show Ada maintenance-related variables"),
13646 &maint_show_ada_cmdlist, "maintenance show ada ",
13647 0/*allow-unknown*/, &maintenance_show_cmdlist);
13648
13649 add_setshow_boolean_cmd
13650 ("ignore-descriptive-types", class_maintenance,
13651 &ada_ignore_descriptive_types_p,
13652 _("Set whether descriptive types generated by GNAT should be ignored."),
13653 _("Show whether descriptive types generated by GNAT should be ignored."),
13654 _("\
13655 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13656 DWARF attribute."),
13657 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13658
13659 obstack_init (&symbol_list_obstack);
13660
13661 decoded_names_store = htab_create_alloc
13662 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13663 NULL, xcalloc, xfree);
13664
13665 /* The ada-lang observers. */
13666 observer_attach_new_objfile (ada_new_objfile_observer);
13667 observer_attach_free_objfile (ada_free_objfile_observer);
13668 observer_attach_inferior_exit (ada_inferior_exit);
13669
13670 /* Setup various context-specific data. */
13671 ada_inferior_data
13672 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13673 ada_pspace_data_handle
13674 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13675 }
This page took 0.317299 seconds and 4 git commands to generate.