Regenerate spu overlay and icache manager files
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56
57 #include "psymtab.h"
58 #include "value.h"
59 #include "mi/mi-common.h"
60 #include "arch-utils.h"
61 #include "cli/cli-utils.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static struct type *desc_base_type (struct type *);
72
73 static struct type *desc_bounds_type (struct type *);
74
75 static struct value *desc_bounds (struct value *);
76
77 static int fat_pntr_bounds_bitpos (struct type *);
78
79 static int fat_pntr_bounds_bitsize (struct type *);
80
81 static struct type *desc_data_target_type (struct type *);
82
83 static struct value *desc_data (struct value *);
84
85 static int fat_pntr_data_bitpos (struct type *);
86
87 static int fat_pntr_data_bitsize (struct type *);
88
89 static struct value *desc_one_bound (struct value *, int, int);
90
91 static int desc_bound_bitpos (struct type *, int, int);
92
93 static int desc_bound_bitsize (struct type *, int, int);
94
95 static struct type *desc_index_type (struct type *, int);
96
97 static int desc_arity (struct type *);
98
99 static int ada_type_match (struct type *, struct type *, int);
100
101 static int ada_args_match (struct symbol *, struct value **, int);
102
103 static int full_match (const char *, const char *);
104
105 static struct value *make_array_descriptor (struct type *, struct value *);
106
107 static void ada_add_block_symbols (struct obstack *,
108 const struct block *, const char *,
109 domain_enum, struct objfile *, int);
110
111 static int is_nonfunction (struct ada_symbol_info *, int);
112
113 static void add_defn_to_vec (struct obstack *, struct symbol *,
114 const struct block *);
115
116 static int num_defns_collected (struct obstack *);
117
118 static struct ada_symbol_info *defns_collected (struct obstack *, int);
119
120 static struct value *resolve_subexp (struct expression **, int *, int,
121 struct type *);
122
123 static void replace_operator_with_call (struct expression **, int, int, int,
124 struct symbol *, const struct block *);
125
126 static int possible_user_operator_p (enum exp_opcode, struct value **);
127
128 static char *ada_op_name (enum exp_opcode);
129
130 static const char *ada_decoded_op_name (enum exp_opcode);
131
132 static int numeric_type_p (struct type *);
133
134 static int integer_type_p (struct type *);
135
136 static int scalar_type_p (struct type *);
137
138 static int discrete_type_p (struct type *);
139
140 static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145 static struct symbol *find_old_style_renaming_symbol (const char *,
146 const struct block *);
147
148 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
149 int, int, int *);
150
151 static struct value *evaluate_subexp_type (struct expression *, int *);
152
153 static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
156 static int is_dynamic_field (struct type *, int);
157
158 static struct type *to_fixed_variant_branch_type (struct type *,
159 const gdb_byte *,
160 CORE_ADDR, struct value *);
161
162 static struct type *to_fixed_array_type (struct type *, struct value *, int);
163
164 static struct type *to_fixed_range_type (struct type *, struct value *);
165
166 static struct type *to_static_fixed_type (struct type *);
167 static struct type *static_unwrap_type (struct type *type);
168
169 static struct value *unwrap_value (struct value *);
170
171 static struct type *constrained_packed_array_type (struct type *, long *);
172
173 static struct type *decode_constrained_packed_array_type (struct type *);
174
175 static long decode_packed_array_bitsize (struct type *);
176
177 static struct value *decode_constrained_packed_array (struct value *);
178
179 static int ada_is_packed_array_type (struct type *);
180
181 static int ada_is_unconstrained_packed_array_type (struct type *);
182
183 static struct value *value_subscript_packed (struct value *, int,
184 struct value **);
185
186 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
187
188 static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
190
191 static struct value *get_var_value (char *, char *);
192
193 static int lesseq_defined_than (struct symbol *, struct symbol *);
194
195 static int equiv_types (struct type *, struct type *);
196
197 static int is_name_suffix (const char *);
198
199 static int advance_wild_match (const char **, const char *, int);
200
201 static int wild_match (const char *, const char *);
202
203 static struct value *ada_coerce_ref (struct value *);
204
205 static LONGEST pos_atr (struct value *);
206
207 static struct value *value_pos_atr (struct type *, struct value *);
208
209 static struct value *value_val_atr (struct type *, struct value *);
210
211 static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
213
214 static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217 static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
220 static int find_struct_field (const char *, struct type *, int,
221 struct type **, int *, int *, int *, int *);
222
223 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
226 static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
230 static int ada_is_direct_array_type (struct type *);
231
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
234
235 static void check_size (const struct type *);
236
237 static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240 static struct value *assign_aggregate (struct value *, struct value *,
241 struct expression *,
242 int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268
269 static struct type *ada_find_any_type (const char *name);
270 \f
271
272 /* The result of a symbol lookup to be stored in our symbol cache. */
273
274 struct cache_entry
275 {
276 /* The name used to perform the lookup. */
277 const char *name;
278 /* The namespace used during the lookup. */
279 domain_enum namespace;
280 /* The symbol returned by the lookup, or NULL if no matching symbol
281 was found. */
282 struct symbol *sym;
283 /* The block where the symbol was found, or NULL if no matching
284 symbol was found. */
285 const struct block *block;
286 /* A pointer to the next entry with the same hash. */
287 struct cache_entry *next;
288 };
289
290 /* The Ada symbol cache, used to store the result of Ada-mode symbol
291 lookups in the course of executing the user's commands.
292
293 The cache is implemented using a simple, fixed-sized hash.
294 The size is fixed on the grounds that there are not likely to be
295 all that many symbols looked up during any given session, regardless
296 of the size of the symbol table. If we decide to go to a resizable
297 table, let's just use the stuff from libiberty instead. */
298
299 #define HASH_SIZE 1009
300
301 struct ada_symbol_cache
302 {
303 /* An obstack used to store the entries in our cache. */
304 struct obstack cache_space;
305
306 /* The root of the hash table used to implement our symbol cache. */
307 struct cache_entry *root[HASH_SIZE];
308 };
309
310 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
311
312 /* Maximum-sized dynamic type. */
313 static unsigned int varsize_limit;
314
315 /* FIXME: brobecker/2003-09-17: No longer a const because it is
316 returned by a function that does not return a const char *. */
317 static char *ada_completer_word_break_characters =
318 #ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320 #else
321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
322 #endif
323
324 /* The name of the symbol to use to get the name of the main subprogram. */
325 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
326 = "__gnat_ada_main_program_name";
327
328 /* Limit on the number of warnings to raise per expression evaluation. */
329 static int warning_limit = 2;
330
331 /* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333 static int warnings_issued = 0;
334
335 static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337 };
338
339 static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341 };
342
343 /* Space for allocating results of ada_lookup_symbol_list. */
344 static struct obstack symbol_list_obstack;
345
346 /* Maintenance-related settings for this module. */
347
348 static struct cmd_list_element *maint_set_ada_cmdlist;
349 static struct cmd_list_element *maint_show_ada_cmdlist;
350
351 /* Implement the "maintenance set ada" (prefix) command. */
352
353 static void
354 maint_set_ada_cmd (char *args, int from_tty)
355 {
356 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
357 gdb_stdout);
358 }
359
360 /* Implement the "maintenance show ada" (prefix) command. */
361
362 static void
363 maint_show_ada_cmd (char *args, int from_tty)
364 {
365 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
366 }
367
368 /* The "maintenance ada set/show ignore-descriptive-type" value. */
369
370 static int ada_ignore_descriptive_types_p = 0;
371
372 /* Inferior-specific data. */
373
374 /* Per-inferior data for this module. */
375
376 struct ada_inferior_data
377 {
378 /* The ada__tags__type_specific_data type, which is used when decoding
379 tagged types. With older versions of GNAT, this type was directly
380 accessible through a component ("tsd") in the object tag. But this
381 is no longer the case, so we cache it for each inferior. */
382 struct type *tsd_type;
383
384 /* The exception_support_info data. This data is used to determine
385 how to implement support for Ada exception catchpoints in a given
386 inferior. */
387 const struct exception_support_info *exception_info;
388 };
389
390 /* Our key to this module's inferior data. */
391 static const struct inferior_data *ada_inferior_data;
392
393 /* A cleanup routine for our inferior data. */
394 static void
395 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
396 {
397 struct ada_inferior_data *data;
398
399 data = inferior_data (inf, ada_inferior_data);
400 if (data != NULL)
401 xfree (data);
402 }
403
404 /* Return our inferior data for the given inferior (INF).
405
406 This function always returns a valid pointer to an allocated
407 ada_inferior_data structure. If INF's inferior data has not
408 been previously set, this functions creates a new one with all
409 fields set to zero, sets INF's inferior to it, and then returns
410 a pointer to that newly allocated ada_inferior_data. */
411
412 static struct ada_inferior_data *
413 get_ada_inferior_data (struct inferior *inf)
414 {
415 struct ada_inferior_data *data;
416
417 data = inferior_data (inf, ada_inferior_data);
418 if (data == NULL)
419 {
420 data = XCNEW (struct ada_inferior_data);
421 set_inferior_data (inf, ada_inferior_data, data);
422 }
423
424 return data;
425 }
426
427 /* Perform all necessary cleanups regarding our module's inferior data
428 that is required after the inferior INF just exited. */
429
430 static void
431 ada_inferior_exit (struct inferior *inf)
432 {
433 ada_inferior_data_cleanup (inf, NULL);
434 set_inferior_data (inf, ada_inferior_data, NULL);
435 }
436
437
438 /* program-space-specific data. */
439
440 /* This module's per-program-space data. */
441 struct ada_pspace_data
442 {
443 /* The Ada symbol cache. */
444 struct ada_symbol_cache *sym_cache;
445 };
446
447 /* Key to our per-program-space data. */
448 static const struct program_space_data *ada_pspace_data_handle;
449
450 /* Return this module's data for the given program space (PSPACE).
451 If not is found, add a zero'ed one now.
452
453 This function always returns a valid object. */
454
455 static struct ada_pspace_data *
456 get_ada_pspace_data (struct program_space *pspace)
457 {
458 struct ada_pspace_data *data;
459
460 data = program_space_data (pspace, ada_pspace_data_handle);
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468 }
469
470 /* The cleanup callback for this module's per-program-space data. */
471
472 static void
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474 {
475 struct ada_pspace_data *pspace_data = data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480 }
481
482 /* Utilities */
483
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511 static struct type *
512 ada_typedef_target_type (struct type *type)
513 {
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517 }
518
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523 static const char *
524 ada_unqualified_name (const char *decoded_name)
525 {
526 const char *result = strrchr (decoded_name, '.');
527
528 if (result != NULL)
529 result++; /* Skip the dot... */
530 else
531 result = decoded_name;
532
533 return result;
534 }
535
536 /* Return a string starting with '<', followed by STR, and '>'.
537 The result is good until the next call. */
538
539 static char *
540 add_angle_brackets (const char *str)
541 {
542 static char *result = NULL;
543
544 xfree (result);
545 result = xstrprintf ("<%s>", str);
546 return result;
547 }
548
549 static char *
550 ada_get_gdb_completer_word_break_characters (void)
551 {
552 return ada_completer_word_break_characters;
553 }
554
555 /* Print an array element index using the Ada syntax. */
556
557 static void
558 ada_print_array_index (struct value *index_value, struct ui_file *stream,
559 const struct value_print_options *options)
560 {
561 LA_VALUE_PRINT (index_value, stream, options);
562 fprintf_filtered (stream, " => ");
563 }
564
565 /* Assuming VECT points to an array of *SIZE objects of size
566 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
567 updating *SIZE as necessary and returning the (new) array. */
568
569 void *
570 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
571 {
572 if (*size < min_size)
573 {
574 *size *= 2;
575 if (*size < min_size)
576 *size = min_size;
577 vect = xrealloc (vect, *size * element_size);
578 }
579 return vect;
580 }
581
582 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
583 suffix of FIELD_NAME beginning "___". */
584
585 static int
586 field_name_match (const char *field_name, const char *target)
587 {
588 int len = strlen (target);
589
590 return
591 (strncmp (field_name, target, len) == 0
592 && (field_name[len] == '\0'
593 || (strncmp (field_name + len, "___", 3) == 0
594 && strcmp (field_name + strlen (field_name) - 6,
595 "___XVN") != 0)));
596 }
597
598
599 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
600 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
601 and return its index. This function also handles fields whose name
602 have ___ suffixes because the compiler sometimes alters their name
603 by adding such a suffix to represent fields with certain constraints.
604 If the field could not be found, return a negative number if
605 MAYBE_MISSING is set. Otherwise raise an error. */
606
607 int
608 ada_get_field_index (const struct type *type, const char *field_name,
609 int maybe_missing)
610 {
611 int fieldno;
612 struct type *struct_type = check_typedef ((struct type *) type);
613
614 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
615 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
616 return fieldno;
617
618 if (!maybe_missing)
619 error (_("Unable to find field %s in struct %s. Aborting"),
620 field_name, TYPE_NAME (struct_type));
621
622 return -1;
623 }
624
625 /* The length of the prefix of NAME prior to any "___" suffix. */
626
627 int
628 ada_name_prefix_len (const char *name)
629 {
630 if (name == NULL)
631 return 0;
632 else
633 {
634 const char *p = strstr (name, "___");
635
636 if (p == NULL)
637 return strlen (name);
638 else
639 return p - name;
640 }
641 }
642
643 /* Return non-zero if SUFFIX is a suffix of STR.
644 Return zero if STR is null. */
645
646 static int
647 is_suffix (const char *str, const char *suffix)
648 {
649 int len1, len2;
650
651 if (str == NULL)
652 return 0;
653 len1 = strlen (str);
654 len2 = strlen (suffix);
655 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
656 }
657
658 /* The contents of value VAL, treated as a value of type TYPE. The
659 result is an lval in memory if VAL is. */
660
661 static struct value *
662 coerce_unspec_val_to_type (struct value *val, struct type *type)
663 {
664 type = ada_check_typedef (type);
665 if (value_type (val) == type)
666 return val;
667 else
668 {
669 struct value *result;
670
671 /* Make sure that the object size is not unreasonable before
672 trying to allocate some memory for it. */
673 check_size (type);
674
675 if (value_lazy (val)
676 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
677 result = allocate_value_lazy (type);
678 else
679 {
680 result = allocate_value (type);
681 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
682 }
683 set_value_component_location (result, val);
684 set_value_bitsize (result, value_bitsize (val));
685 set_value_bitpos (result, value_bitpos (val));
686 set_value_address (result, value_address (val));
687 return result;
688 }
689 }
690
691 static const gdb_byte *
692 cond_offset_host (const gdb_byte *valaddr, long offset)
693 {
694 if (valaddr == NULL)
695 return NULL;
696 else
697 return valaddr + offset;
698 }
699
700 static CORE_ADDR
701 cond_offset_target (CORE_ADDR address, long offset)
702 {
703 if (address == 0)
704 return 0;
705 else
706 return address + offset;
707 }
708
709 /* Issue a warning (as for the definition of warning in utils.c, but
710 with exactly one argument rather than ...), unless the limit on the
711 number of warnings has passed during the evaluation of the current
712 expression. */
713
714 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
715 provided by "complaint". */
716 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
717
718 static void
719 lim_warning (const char *format, ...)
720 {
721 va_list args;
722
723 va_start (args, format);
724 warnings_issued += 1;
725 if (warnings_issued <= warning_limit)
726 vwarning (format, args);
727
728 va_end (args);
729 }
730
731 /* Issue an error if the size of an object of type T is unreasonable,
732 i.e. if it would be a bad idea to allocate a value of this type in
733 GDB. */
734
735 static void
736 check_size (const struct type *type)
737 {
738 if (TYPE_LENGTH (type) > varsize_limit)
739 error (_("object size is larger than varsize-limit"));
740 }
741
742 /* Maximum value of a SIZE-byte signed integer type. */
743 static LONGEST
744 max_of_size (int size)
745 {
746 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
747
748 return top_bit | (top_bit - 1);
749 }
750
751 /* Minimum value of a SIZE-byte signed integer type. */
752 static LONGEST
753 min_of_size (int size)
754 {
755 return -max_of_size (size) - 1;
756 }
757
758 /* Maximum value of a SIZE-byte unsigned integer type. */
759 static ULONGEST
760 umax_of_size (int size)
761 {
762 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
763
764 return top_bit | (top_bit - 1);
765 }
766
767 /* Maximum value of integral type T, as a signed quantity. */
768 static LONGEST
769 max_of_type (struct type *t)
770 {
771 if (TYPE_UNSIGNED (t))
772 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
773 else
774 return max_of_size (TYPE_LENGTH (t));
775 }
776
777 /* Minimum value of integral type T, as a signed quantity. */
778 static LONGEST
779 min_of_type (struct type *t)
780 {
781 if (TYPE_UNSIGNED (t))
782 return 0;
783 else
784 return min_of_size (TYPE_LENGTH (t));
785 }
786
787 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
788 LONGEST
789 ada_discrete_type_high_bound (struct type *type)
790 {
791 type = resolve_dynamic_type (type, 0);
792 switch (TYPE_CODE (type))
793 {
794 case TYPE_CODE_RANGE:
795 return TYPE_HIGH_BOUND (type);
796 case TYPE_CODE_ENUM:
797 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
798 case TYPE_CODE_BOOL:
799 return 1;
800 case TYPE_CODE_CHAR:
801 case TYPE_CODE_INT:
802 return max_of_type (type);
803 default:
804 error (_("Unexpected type in ada_discrete_type_high_bound."));
805 }
806 }
807
808 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
809 LONGEST
810 ada_discrete_type_low_bound (struct type *type)
811 {
812 type = resolve_dynamic_type (type, 0);
813 switch (TYPE_CODE (type))
814 {
815 case TYPE_CODE_RANGE:
816 return TYPE_LOW_BOUND (type);
817 case TYPE_CODE_ENUM:
818 return TYPE_FIELD_ENUMVAL (type, 0);
819 case TYPE_CODE_BOOL:
820 return 0;
821 case TYPE_CODE_CHAR:
822 case TYPE_CODE_INT:
823 return min_of_type (type);
824 default:
825 error (_("Unexpected type in ada_discrete_type_low_bound."));
826 }
827 }
828
829 /* The identity on non-range types. For range types, the underlying
830 non-range scalar type. */
831
832 static struct type *
833 get_base_type (struct type *type)
834 {
835 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
836 {
837 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
838 return type;
839 type = TYPE_TARGET_TYPE (type);
840 }
841 return type;
842 }
843
844 /* Return a decoded version of the given VALUE. This means returning
845 a value whose type is obtained by applying all the GNAT-specific
846 encondings, making the resulting type a static but standard description
847 of the initial type. */
848
849 struct value *
850 ada_get_decoded_value (struct value *value)
851 {
852 struct type *type = ada_check_typedef (value_type (value));
853
854 if (ada_is_array_descriptor_type (type)
855 || (ada_is_constrained_packed_array_type (type)
856 && TYPE_CODE (type) != TYPE_CODE_PTR))
857 {
858 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
859 value = ada_coerce_to_simple_array_ptr (value);
860 else
861 value = ada_coerce_to_simple_array (value);
862 }
863 else
864 value = ada_to_fixed_value (value);
865
866 return value;
867 }
868
869 /* Same as ada_get_decoded_value, but with the given TYPE.
870 Because there is no associated actual value for this type,
871 the resulting type might be a best-effort approximation in
872 the case of dynamic types. */
873
874 struct type *
875 ada_get_decoded_type (struct type *type)
876 {
877 type = to_static_fixed_type (type);
878 if (ada_is_constrained_packed_array_type (type))
879 type = ada_coerce_to_simple_array_type (type);
880 return type;
881 }
882
883 \f
884
885 /* Language Selection */
886
887 /* If the main program is in Ada, return language_ada, otherwise return LANG
888 (the main program is in Ada iif the adainit symbol is found). */
889
890 enum language
891 ada_update_initial_language (enum language lang)
892 {
893 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
894 (struct objfile *) NULL).minsym != NULL)
895 return language_ada;
896
897 return lang;
898 }
899
900 /* If the main procedure is written in Ada, then return its name.
901 The result is good until the next call. Return NULL if the main
902 procedure doesn't appear to be in Ada. */
903
904 char *
905 ada_main_name (void)
906 {
907 struct bound_minimal_symbol msym;
908 static char *main_program_name = NULL;
909
910 /* For Ada, the name of the main procedure is stored in a specific
911 string constant, generated by the binder. Look for that symbol,
912 extract its address, and then read that string. If we didn't find
913 that string, then most probably the main procedure is not written
914 in Ada. */
915 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
916
917 if (msym.minsym != NULL)
918 {
919 CORE_ADDR main_program_name_addr;
920 int err_code;
921
922 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
923 if (main_program_name_addr == 0)
924 error (_("Invalid address for Ada main program name."));
925
926 xfree (main_program_name);
927 target_read_string (main_program_name_addr, &main_program_name,
928 1024, &err_code);
929
930 if (err_code != 0)
931 return NULL;
932 return main_program_name;
933 }
934
935 /* The main procedure doesn't seem to be in Ada. */
936 return NULL;
937 }
938 \f
939 /* Symbols */
940
941 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
942 of NULLs. */
943
944 const struct ada_opname_map ada_opname_table[] = {
945 {"Oadd", "\"+\"", BINOP_ADD},
946 {"Osubtract", "\"-\"", BINOP_SUB},
947 {"Omultiply", "\"*\"", BINOP_MUL},
948 {"Odivide", "\"/\"", BINOP_DIV},
949 {"Omod", "\"mod\"", BINOP_MOD},
950 {"Orem", "\"rem\"", BINOP_REM},
951 {"Oexpon", "\"**\"", BINOP_EXP},
952 {"Olt", "\"<\"", BINOP_LESS},
953 {"Ole", "\"<=\"", BINOP_LEQ},
954 {"Ogt", "\">\"", BINOP_GTR},
955 {"Oge", "\">=\"", BINOP_GEQ},
956 {"Oeq", "\"=\"", BINOP_EQUAL},
957 {"One", "\"/=\"", BINOP_NOTEQUAL},
958 {"Oand", "\"and\"", BINOP_BITWISE_AND},
959 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
960 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
961 {"Oconcat", "\"&\"", BINOP_CONCAT},
962 {"Oabs", "\"abs\"", UNOP_ABS},
963 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
964 {"Oadd", "\"+\"", UNOP_PLUS},
965 {"Osubtract", "\"-\"", UNOP_NEG},
966 {NULL, NULL}
967 };
968
969 /* The "encoded" form of DECODED, according to GNAT conventions.
970 The result is valid until the next call to ada_encode. */
971
972 char *
973 ada_encode (const char *decoded)
974 {
975 static char *encoding_buffer = NULL;
976 static size_t encoding_buffer_size = 0;
977 const char *p;
978 int k;
979
980 if (decoded == NULL)
981 return NULL;
982
983 GROW_VECT (encoding_buffer, encoding_buffer_size,
984 2 * strlen (decoded) + 10);
985
986 k = 0;
987 for (p = decoded; *p != '\0'; p += 1)
988 {
989 if (*p == '.')
990 {
991 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
992 k += 2;
993 }
994 else if (*p == '"')
995 {
996 const struct ada_opname_map *mapping;
997
998 for (mapping = ada_opname_table;
999 mapping->encoded != NULL
1000 && strncmp (mapping->decoded, p,
1001 strlen (mapping->decoded)) != 0; mapping += 1)
1002 ;
1003 if (mapping->encoded == NULL)
1004 error (_("invalid Ada operator name: %s"), p);
1005 strcpy (encoding_buffer + k, mapping->encoded);
1006 k += strlen (mapping->encoded);
1007 break;
1008 }
1009 else
1010 {
1011 encoding_buffer[k] = *p;
1012 k += 1;
1013 }
1014 }
1015
1016 encoding_buffer[k] = '\0';
1017 return encoding_buffer;
1018 }
1019
1020 /* Return NAME folded to lower case, or, if surrounded by single
1021 quotes, unfolded, but with the quotes stripped away. Result good
1022 to next call. */
1023
1024 char *
1025 ada_fold_name (const char *name)
1026 {
1027 static char *fold_buffer = NULL;
1028 static size_t fold_buffer_size = 0;
1029
1030 int len = strlen (name);
1031 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1032
1033 if (name[0] == '\'')
1034 {
1035 strncpy (fold_buffer, name + 1, len - 2);
1036 fold_buffer[len - 2] = '\000';
1037 }
1038 else
1039 {
1040 int i;
1041
1042 for (i = 0; i <= len; i += 1)
1043 fold_buffer[i] = tolower (name[i]);
1044 }
1045
1046 return fold_buffer;
1047 }
1048
1049 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1050
1051 static int
1052 is_lower_alphanum (const char c)
1053 {
1054 return (isdigit (c) || (isalpha (c) && islower (c)));
1055 }
1056
1057 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1058 This function saves in LEN the length of that same symbol name but
1059 without either of these suffixes:
1060 . .{DIGIT}+
1061 . ${DIGIT}+
1062 . ___{DIGIT}+
1063 . __{DIGIT}+.
1064
1065 These are suffixes introduced by the compiler for entities such as
1066 nested subprogram for instance, in order to avoid name clashes.
1067 They do not serve any purpose for the debugger. */
1068
1069 static void
1070 ada_remove_trailing_digits (const char *encoded, int *len)
1071 {
1072 if (*len > 1 && isdigit (encoded[*len - 1]))
1073 {
1074 int i = *len - 2;
1075
1076 while (i > 0 && isdigit (encoded[i]))
1077 i--;
1078 if (i >= 0 && encoded[i] == '.')
1079 *len = i;
1080 else if (i >= 0 && encoded[i] == '$')
1081 *len = i;
1082 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1083 *len = i - 2;
1084 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1085 *len = i - 1;
1086 }
1087 }
1088
1089 /* Remove the suffix introduced by the compiler for protected object
1090 subprograms. */
1091
1092 static void
1093 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1094 {
1095 /* Remove trailing N. */
1096
1097 /* Protected entry subprograms are broken into two
1098 separate subprograms: The first one is unprotected, and has
1099 a 'N' suffix; the second is the protected version, and has
1100 the 'P' suffix. The second calls the first one after handling
1101 the protection. Since the P subprograms are internally generated,
1102 we leave these names undecoded, giving the user a clue that this
1103 entity is internal. */
1104
1105 if (*len > 1
1106 && encoded[*len - 1] == 'N'
1107 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1108 *len = *len - 1;
1109 }
1110
1111 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1112
1113 static void
1114 ada_remove_Xbn_suffix (const char *encoded, int *len)
1115 {
1116 int i = *len - 1;
1117
1118 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1119 i--;
1120
1121 if (encoded[i] != 'X')
1122 return;
1123
1124 if (i == 0)
1125 return;
1126
1127 if (isalnum (encoded[i-1]))
1128 *len = i;
1129 }
1130
1131 /* If ENCODED follows the GNAT entity encoding conventions, then return
1132 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1133 replaced by ENCODED.
1134
1135 The resulting string is valid until the next call of ada_decode.
1136 If the string is unchanged by decoding, the original string pointer
1137 is returned. */
1138
1139 const char *
1140 ada_decode (const char *encoded)
1141 {
1142 int i, j;
1143 int len0;
1144 const char *p;
1145 char *decoded;
1146 int at_start_name;
1147 static char *decoding_buffer = NULL;
1148 static size_t decoding_buffer_size = 0;
1149
1150 /* The name of the Ada main procedure starts with "_ada_".
1151 This prefix is not part of the decoded name, so skip this part
1152 if we see this prefix. */
1153 if (strncmp (encoded, "_ada_", 5) == 0)
1154 encoded += 5;
1155
1156 /* If the name starts with '_', then it is not a properly encoded
1157 name, so do not attempt to decode it. Similarly, if the name
1158 starts with '<', the name should not be decoded. */
1159 if (encoded[0] == '_' || encoded[0] == '<')
1160 goto Suppress;
1161
1162 len0 = strlen (encoded);
1163
1164 ada_remove_trailing_digits (encoded, &len0);
1165 ada_remove_po_subprogram_suffix (encoded, &len0);
1166
1167 /* Remove the ___X.* suffix if present. Do not forget to verify that
1168 the suffix is located before the current "end" of ENCODED. We want
1169 to avoid re-matching parts of ENCODED that have previously been
1170 marked as discarded (by decrementing LEN0). */
1171 p = strstr (encoded, "___");
1172 if (p != NULL && p - encoded < len0 - 3)
1173 {
1174 if (p[3] == 'X')
1175 len0 = p - encoded;
1176 else
1177 goto Suppress;
1178 }
1179
1180 /* Remove any trailing TKB suffix. It tells us that this symbol
1181 is for the body of a task, but that information does not actually
1182 appear in the decoded name. */
1183
1184 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1185 len0 -= 3;
1186
1187 /* Remove any trailing TB suffix. The TB suffix is slightly different
1188 from the TKB suffix because it is used for non-anonymous task
1189 bodies. */
1190
1191 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1192 len0 -= 2;
1193
1194 /* Remove trailing "B" suffixes. */
1195 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1196
1197 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1198 len0 -= 1;
1199
1200 /* Make decoded big enough for possible expansion by operator name. */
1201
1202 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1203 decoded = decoding_buffer;
1204
1205 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1206
1207 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1208 {
1209 i = len0 - 2;
1210 while ((i >= 0 && isdigit (encoded[i]))
1211 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1212 i -= 1;
1213 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1214 len0 = i - 1;
1215 else if (encoded[i] == '$')
1216 len0 = i;
1217 }
1218
1219 /* The first few characters that are not alphabetic are not part
1220 of any encoding we use, so we can copy them over verbatim. */
1221
1222 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1223 decoded[j] = encoded[i];
1224
1225 at_start_name = 1;
1226 while (i < len0)
1227 {
1228 /* Is this a symbol function? */
1229 if (at_start_name && encoded[i] == 'O')
1230 {
1231 int k;
1232
1233 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1234 {
1235 int op_len = strlen (ada_opname_table[k].encoded);
1236 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1237 op_len - 1) == 0)
1238 && !isalnum (encoded[i + op_len]))
1239 {
1240 strcpy (decoded + j, ada_opname_table[k].decoded);
1241 at_start_name = 0;
1242 i += op_len;
1243 j += strlen (ada_opname_table[k].decoded);
1244 break;
1245 }
1246 }
1247 if (ada_opname_table[k].encoded != NULL)
1248 continue;
1249 }
1250 at_start_name = 0;
1251
1252 /* Replace "TK__" with "__", which will eventually be translated
1253 into "." (just below). */
1254
1255 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1256 i += 2;
1257
1258 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1259 be translated into "." (just below). These are internal names
1260 generated for anonymous blocks inside which our symbol is nested. */
1261
1262 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1263 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1264 && isdigit (encoded [i+4]))
1265 {
1266 int k = i + 5;
1267
1268 while (k < len0 && isdigit (encoded[k]))
1269 k++; /* Skip any extra digit. */
1270
1271 /* Double-check that the "__B_{DIGITS}+" sequence we found
1272 is indeed followed by "__". */
1273 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1274 i = k;
1275 }
1276
1277 /* Remove _E{DIGITS}+[sb] */
1278
1279 /* Just as for protected object subprograms, there are 2 categories
1280 of subprograms created by the compiler for each entry. The first
1281 one implements the actual entry code, and has a suffix following
1282 the convention above; the second one implements the barrier and
1283 uses the same convention as above, except that the 'E' is replaced
1284 by a 'B'.
1285
1286 Just as above, we do not decode the name of barrier functions
1287 to give the user a clue that the code he is debugging has been
1288 internally generated. */
1289
1290 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1291 && isdigit (encoded[i+2]))
1292 {
1293 int k = i + 3;
1294
1295 while (k < len0 && isdigit (encoded[k]))
1296 k++;
1297
1298 if (k < len0
1299 && (encoded[k] == 'b' || encoded[k] == 's'))
1300 {
1301 k++;
1302 /* Just as an extra precaution, make sure that if this
1303 suffix is followed by anything else, it is a '_'.
1304 Otherwise, we matched this sequence by accident. */
1305 if (k == len0
1306 || (k < len0 && encoded[k] == '_'))
1307 i = k;
1308 }
1309 }
1310
1311 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1312 the GNAT front-end in protected object subprograms. */
1313
1314 if (i < len0 + 3
1315 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1316 {
1317 /* Backtrack a bit up until we reach either the begining of
1318 the encoded name, or "__". Make sure that we only find
1319 digits or lowercase characters. */
1320 const char *ptr = encoded + i - 1;
1321
1322 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1323 ptr--;
1324 if (ptr < encoded
1325 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1326 i++;
1327 }
1328
1329 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1330 {
1331 /* This is a X[bn]* sequence not separated from the previous
1332 part of the name with a non-alpha-numeric character (in other
1333 words, immediately following an alpha-numeric character), then
1334 verify that it is placed at the end of the encoded name. If
1335 not, then the encoding is not valid and we should abort the
1336 decoding. Otherwise, just skip it, it is used in body-nested
1337 package names. */
1338 do
1339 i += 1;
1340 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1341 if (i < len0)
1342 goto Suppress;
1343 }
1344 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1345 {
1346 /* Replace '__' by '.'. */
1347 decoded[j] = '.';
1348 at_start_name = 1;
1349 i += 2;
1350 j += 1;
1351 }
1352 else
1353 {
1354 /* It's a character part of the decoded name, so just copy it
1355 over. */
1356 decoded[j] = encoded[i];
1357 i += 1;
1358 j += 1;
1359 }
1360 }
1361 decoded[j] = '\000';
1362
1363 /* Decoded names should never contain any uppercase character.
1364 Double-check this, and abort the decoding if we find one. */
1365
1366 for (i = 0; decoded[i] != '\0'; i += 1)
1367 if (isupper (decoded[i]) || decoded[i] == ' ')
1368 goto Suppress;
1369
1370 if (strcmp (decoded, encoded) == 0)
1371 return encoded;
1372 else
1373 return decoded;
1374
1375 Suppress:
1376 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1377 decoded = decoding_buffer;
1378 if (encoded[0] == '<')
1379 strcpy (decoded, encoded);
1380 else
1381 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1382 return decoded;
1383
1384 }
1385
1386 /* Table for keeping permanent unique copies of decoded names. Once
1387 allocated, names in this table are never released. While this is a
1388 storage leak, it should not be significant unless there are massive
1389 changes in the set of decoded names in successive versions of a
1390 symbol table loaded during a single session. */
1391 static struct htab *decoded_names_store;
1392
1393 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1394 in the language-specific part of GSYMBOL, if it has not been
1395 previously computed. Tries to save the decoded name in the same
1396 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1397 in any case, the decoded symbol has a lifetime at least that of
1398 GSYMBOL).
1399 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1400 const, but nevertheless modified to a semantically equivalent form
1401 when a decoded name is cached in it. */
1402
1403 const char *
1404 ada_decode_symbol (const struct general_symbol_info *arg)
1405 {
1406 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1407 const char **resultp =
1408 &gsymbol->language_specific.mangled_lang.demangled_name;
1409
1410 if (!gsymbol->ada_mangled)
1411 {
1412 const char *decoded = ada_decode (gsymbol->name);
1413 struct obstack *obstack = gsymbol->language_specific.obstack;
1414
1415 gsymbol->ada_mangled = 1;
1416
1417 if (obstack != NULL)
1418 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1419 else
1420 {
1421 /* Sometimes, we can't find a corresponding objfile, in
1422 which case, we put the result on the heap. Since we only
1423 decode when needed, we hope this usually does not cause a
1424 significant memory leak (FIXME). */
1425
1426 char **slot = (char **) htab_find_slot (decoded_names_store,
1427 decoded, INSERT);
1428
1429 if (*slot == NULL)
1430 *slot = xstrdup (decoded);
1431 *resultp = *slot;
1432 }
1433 }
1434
1435 return *resultp;
1436 }
1437
1438 static char *
1439 ada_la_decode (const char *encoded, int options)
1440 {
1441 return xstrdup (ada_decode (encoded));
1442 }
1443
1444 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1445 suffixes that encode debugging information or leading _ada_ on
1446 SYM_NAME (see is_name_suffix commentary for the debugging
1447 information that is ignored). If WILD, then NAME need only match a
1448 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1449 either argument is NULL. */
1450
1451 static int
1452 match_name (const char *sym_name, const char *name, int wild)
1453 {
1454 if (sym_name == NULL || name == NULL)
1455 return 0;
1456 else if (wild)
1457 return wild_match (sym_name, name) == 0;
1458 else
1459 {
1460 int len_name = strlen (name);
1461
1462 return (strncmp (sym_name, name, len_name) == 0
1463 && is_name_suffix (sym_name + len_name))
1464 || (strncmp (sym_name, "_ada_", 5) == 0
1465 && strncmp (sym_name + 5, name, len_name) == 0
1466 && is_name_suffix (sym_name + len_name + 5));
1467 }
1468 }
1469 \f
1470
1471 /* Arrays */
1472
1473 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1474 generated by the GNAT compiler to describe the index type used
1475 for each dimension of an array, check whether it follows the latest
1476 known encoding. If not, fix it up to conform to the latest encoding.
1477 Otherwise, do nothing. This function also does nothing if
1478 INDEX_DESC_TYPE is NULL.
1479
1480 The GNAT encoding used to describle the array index type evolved a bit.
1481 Initially, the information would be provided through the name of each
1482 field of the structure type only, while the type of these fields was
1483 described as unspecified and irrelevant. The debugger was then expected
1484 to perform a global type lookup using the name of that field in order
1485 to get access to the full index type description. Because these global
1486 lookups can be very expensive, the encoding was later enhanced to make
1487 the global lookup unnecessary by defining the field type as being
1488 the full index type description.
1489
1490 The purpose of this routine is to allow us to support older versions
1491 of the compiler by detecting the use of the older encoding, and by
1492 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1493 we essentially replace each field's meaningless type by the associated
1494 index subtype). */
1495
1496 void
1497 ada_fixup_array_indexes_type (struct type *index_desc_type)
1498 {
1499 int i;
1500
1501 if (index_desc_type == NULL)
1502 return;
1503 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1504
1505 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1506 to check one field only, no need to check them all). If not, return
1507 now.
1508
1509 If our INDEX_DESC_TYPE was generated using the older encoding,
1510 the field type should be a meaningless integer type whose name
1511 is not equal to the field name. */
1512 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1513 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1514 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1515 return;
1516
1517 /* Fixup each field of INDEX_DESC_TYPE. */
1518 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1519 {
1520 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1521 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1522
1523 if (raw_type)
1524 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1525 }
1526 }
1527
1528 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1529
1530 static char *bound_name[] = {
1531 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1532 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1533 };
1534
1535 /* Maximum number of array dimensions we are prepared to handle. */
1536
1537 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1538
1539
1540 /* The desc_* routines return primitive portions of array descriptors
1541 (fat pointers). */
1542
1543 /* The descriptor or array type, if any, indicated by TYPE; removes
1544 level of indirection, if needed. */
1545
1546 static struct type *
1547 desc_base_type (struct type *type)
1548 {
1549 if (type == NULL)
1550 return NULL;
1551 type = ada_check_typedef (type);
1552 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1553 type = ada_typedef_target_type (type);
1554
1555 if (type != NULL
1556 && (TYPE_CODE (type) == TYPE_CODE_PTR
1557 || TYPE_CODE (type) == TYPE_CODE_REF))
1558 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1559 else
1560 return type;
1561 }
1562
1563 /* True iff TYPE indicates a "thin" array pointer type. */
1564
1565 static int
1566 is_thin_pntr (struct type *type)
1567 {
1568 return
1569 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1570 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1571 }
1572
1573 /* The descriptor type for thin pointer type TYPE. */
1574
1575 static struct type *
1576 thin_descriptor_type (struct type *type)
1577 {
1578 struct type *base_type = desc_base_type (type);
1579
1580 if (base_type == NULL)
1581 return NULL;
1582 if (is_suffix (ada_type_name (base_type), "___XVE"))
1583 return base_type;
1584 else
1585 {
1586 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1587
1588 if (alt_type == NULL)
1589 return base_type;
1590 else
1591 return alt_type;
1592 }
1593 }
1594
1595 /* A pointer to the array data for thin-pointer value VAL. */
1596
1597 static struct value *
1598 thin_data_pntr (struct value *val)
1599 {
1600 struct type *type = ada_check_typedef (value_type (val));
1601 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1602
1603 data_type = lookup_pointer_type (data_type);
1604
1605 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1606 return value_cast (data_type, value_copy (val));
1607 else
1608 return value_from_longest (data_type, value_address (val));
1609 }
1610
1611 /* True iff TYPE indicates a "thick" array pointer type. */
1612
1613 static int
1614 is_thick_pntr (struct type *type)
1615 {
1616 type = desc_base_type (type);
1617 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1618 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1619 }
1620
1621 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1622 pointer to one, the type of its bounds data; otherwise, NULL. */
1623
1624 static struct type *
1625 desc_bounds_type (struct type *type)
1626 {
1627 struct type *r;
1628
1629 type = desc_base_type (type);
1630
1631 if (type == NULL)
1632 return NULL;
1633 else if (is_thin_pntr (type))
1634 {
1635 type = thin_descriptor_type (type);
1636 if (type == NULL)
1637 return NULL;
1638 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1639 if (r != NULL)
1640 return ada_check_typedef (r);
1641 }
1642 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1643 {
1644 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1645 if (r != NULL)
1646 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1647 }
1648 return NULL;
1649 }
1650
1651 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1652 one, a pointer to its bounds data. Otherwise NULL. */
1653
1654 static struct value *
1655 desc_bounds (struct value *arr)
1656 {
1657 struct type *type = ada_check_typedef (value_type (arr));
1658
1659 if (is_thin_pntr (type))
1660 {
1661 struct type *bounds_type =
1662 desc_bounds_type (thin_descriptor_type (type));
1663 LONGEST addr;
1664
1665 if (bounds_type == NULL)
1666 error (_("Bad GNAT array descriptor"));
1667
1668 /* NOTE: The following calculation is not really kosher, but
1669 since desc_type is an XVE-encoded type (and shouldn't be),
1670 the correct calculation is a real pain. FIXME (and fix GCC). */
1671 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1672 addr = value_as_long (arr);
1673 else
1674 addr = value_address (arr);
1675
1676 return
1677 value_from_longest (lookup_pointer_type (bounds_type),
1678 addr - TYPE_LENGTH (bounds_type));
1679 }
1680
1681 else if (is_thick_pntr (type))
1682 {
1683 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1684 _("Bad GNAT array descriptor"));
1685 struct type *p_bounds_type = value_type (p_bounds);
1686
1687 if (p_bounds_type
1688 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1689 {
1690 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1691
1692 if (TYPE_STUB (target_type))
1693 p_bounds = value_cast (lookup_pointer_type
1694 (ada_check_typedef (target_type)),
1695 p_bounds);
1696 }
1697 else
1698 error (_("Bad GNAT array descriptor"));
1699
1700 return p_bounds;
1701 }
1702 else
1703 return NULL;
1704 }
1705
1706 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1707 position of the field containing the address of the bounds data. */
1708
1709 static int
1710 fat_pntr_bounds_bitpos (struct type *type)
1711 {
1712 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1713 }
1714
1715 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1716 size of the field containing the address of the bounds data. */
1717
1718 static int
1719 fat_pntr_bounds_bitsize (struct type *type)
1720 {
1721 type = desc_base_type (type);
1722
1723 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1724 return TYPE_FIELD_BITSIZE (type, 1);
1725 else
1726 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1727 }
1728
1729 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1730 pointer to one, the type of its array data (a array-with-no-bounds type);
1731 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1732 data. */
1733
1734 static struct type *
1735 desc_data_target_type (struct type *type)
1736 {
1737 type = desc_base_type (type);
1738
1739 /* NOTE: The following is bogus; see comment in desc_bounds. */
1740 if (is_thin_pntr (type))
1741 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1742 else if (is_thick_pntr (type))
1743 {
1744 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1745
1746 if (data_type
1747 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1748 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1749 }
1750
1751 return NULL;
1752 }
1753
1754 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1755 its array data. */
1756
1757 static struct value *
1758 desc_data (struct value *arr)
1759 {
1760 struct type *type = value_type (arr);
1761
1762 if (is_thin_pntr (type))
1763 return thin_data_pntr (arr);
1764 else if (is_thick_pntr (type))
1765 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1766 _("Bad GNAT array descriptor"));
1767 else
1768 return NULL;
1769 }
1770
1771
1772 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1773 position of the field containing the address of the data. */
1774
1775 static int
1776 fat_pntr_data_bitpos (struct type *type)
1777 {
1778 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1779 }
1780
1781 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1782 size of the field containing the address of the data. */
1783
1784 static int
1785 fat_pntr_data_bitsize (struct type *type)
1786 {
1787 type = desc_base_type (type);
1788
1789 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1790 return TYPE_FIELD_BITSIZE (type, 0);
1791 else
1792 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1793 }
1794
1795 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1796 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1797 bound, if WHICH is 1. The first bound is I=1. */
1798
1799 static struct value *
1800 desc_one_bound (struct value *bounds, int i, int which)
1801 {
1802 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1803 _("Bad GNAT array descriptor bounds"));
1804 }
1805
1806 /* If BOUNDS is an array-bounds structure type, return the bit position
1807 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
1810 static int
1811 desc_bound_bitpos (struct type *type, int i, int which)
1812 {
1813 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1814 }
1815
1816 /* If BOUNDS is an array-bounds structure type, return the bit field size
1817 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1818 bound, if WHICH is 1. The first bound is I=1. */
1819
1820 static int
1821 desc_bound_bitsize (struct type *type, int i, int which)
1822 {
1823 type = desc_base_type (type);
1824
1825 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1826 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1827 else
1828 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1829 }
1830
1831 /* If TYPE is the type of an array-bounds structure, the type of its
1832 Ith bound (numbering from 1). Otherwise, NULL. */
1833
1834 static struct type *
1835 desc_index_type (struct type *type, int i)
1836 {
1837 type = desc_base_type (type);
1838
1839 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1840 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1841 else
1842 return NULL;
1843 }
1844
1845 /* The number of index positions in the array-bounds type TYPE.
1846 Return 0 if TYPE is NULL. */
1847
1848 static int
1849 desc_arity (struct type *type)
1850 {
1851 type = desc_base_type (type);
1852
1853 if (type != NULL)
1854 return TYPE_NFIELDS (type) / 2;
1855 return 0;
1856 }
1857
1858 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1859 an array descriptor type (representing an unconstrained array
1860 type). */
1861
1862 static int
1863 ada_is_direct_array_type (struct type *type)
1864 {
1865 if (type == NULL)
1866 return 0;
1867 type = ada_check_typedef (type);
1868 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1869 || ada_is_array_descriptor_type (type));
1870 }
1871
1872 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1873 * to one. */
1874
1875 static int
1876 ada_is_array_type (struct type *type)
1877 {
1878 while (type != NULL
1879 && (TYPE_CODE (type) == TYPE_CODE_PTR
1880 || TYPE_CODE (type) == TYPE_CODE_REF))
1881 type = TYPE_TARGET_TYPE (type);
1882 return ada_is_direct_array_type (type);
1883 }
1884
1885 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1886
1887 int
1888 ada_is_simple_array_type (struct type *type)
1889 {
1890 if (type == NULL)
1891 return 0;
1892 type = ada_check_typedef (type);
1893 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1894 || (TYPE_CODE (type) == TYPE_CODE_PTR
1895 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1896 == TYPE_CODE_ARRAY));
1897 }
1898
1899 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1900
1901 int
1902 ada_is_array_descriptor_type (struct type *type)
1903 {
1904 struct type *data_type = desc_data_target_type (type);
1905
1906 if (type == NULL)
1907 return 0;
1908 type = ada_check_typedef (type);
1909 return (data_type != NULL
1910 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1911 && desc_arity (desc_bounds_type (type)) > 0);
1912 }
1913
1914 /* Non-zero iff type is a partially mal-formed GNAT array
1915 descriptor. FIXME: This is to compensate for some problems with
1916 debugging output from GNAT. Re-examine periodically to see if it
1917 is still needed. */
1918
1919 int
1920 ada_is_bogus_array_descriptor (struct type *type)
1921 {
1922 return
1923 type != NULL
1924 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1925 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1926 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1927 && !ada_is_array_descriptor_type (type);
1928 }
1929
1930
1931 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1932 (fat pointer) returns the type of the array data described---specifically,
1933 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1934 in from the descriptor; otherwise, they are left unspecified. If
1935 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1936 returns NULL. The result is simply the type of ARR if ARR is not
1937 a descriptor. */
1938 struct type *
1939 ada_type_of_array (struct value *arr, int bounds)
1940 {
1941 if (ada_is_constrained_packed_array_type (value_type (arr)))
1942 return decode_constrained_packed_array_type (value_type (arr));
1943
1944 if (!ada_is_array_descriptor_type (value_type (arr)))
1945 return value_type (arr);
1946
1947 if (!bounds)
1948 {
1949 struct type *array_type =
1950 ada_check_typedef (desc_data_target_type (value_type (arr)));
1951
1952 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1953 TYPE_FIELD_BITSIZE (array_type, 0) =
1954 decode_packed_array_bitsize (value_type (arr));
1955
1956 return array_type;
1957 }
1958 else
1959 {
1960 struct type *elt_type;
1961 int arity;
1962 struct value *descriptor;
1963
1964 elt_type = ada_array_element_type (value_type (arr), -1);
1965 arity = ada_array_arity (value_type (arr));
1966
1967 if (elt_type == NULL || arity == 0)
1968 return ada_check_typedef (value_type (arr));
1969
1970 descriptor = desc_bounds (arr);
1971 if (value_as_long (descriptor) == 0)
1972 return NULL;
1973 while (arity > 0)
1974 {
1975 struct type *range_type = alloc_type_copy (value_type (arr));
1976 struct type *array_type = alloc_type_copy (value_type (arr));
1977 struct value *low = desc_one_bound (descriptor, arity, 0);
1978 struct value *high = desc_one_bound (descriptor, arity, 1);
1979
1980 arity -= 1;
1981 create_static_range_type (range_type, value_type (low),
1982 longest_to_int (value_as_long (low)),
1983 longest_to_int (value_as_long (high)));
1984 elt_type = create_array_type (array_type, elt_type, range_type);
1985
1986 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1987 {
1988 /* We need to store the element packed bitsize, as well as
1989 recompute the array size, because it was previously
1990 computed based on the unpacked element size. */
1991 LONGEST lo = value_as_long (low);
1992 LONGEST hi = value_as_long (high);
1993
1994 TYPE_FIELD_BITSIZE (elt_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996 /* If the array has no element, then the size is already
1997 zero, and does not need to be recomputed. */
1998 if (lo < hi)
1999 {
2000 int array_bitsize =
2001 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2002
2003 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2004 }
2005 }
2006 }
2007
2008 return lookup_pointer_type (elt_type);
2009 }
2010 }
2011
2012 /* If ARR does not represent an array, returns ARR unchanged.
2013 Otherwise, returns either a standard GDB array with bounds set
2014 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2015 GDB array. Returns NULL if ARR is a null fat pointer. */
2016
2017 struct value *
2018 ada_coerce_to_simple_array_ptr (struct value *arr)
2019 {
2020 if (ada_is_array_descriptor_type (value_type (arr)))
2021 {
2022 struct type *arrType = ada_type_of_array (arr, 1);
2023
2024 if (arrType == NULL)
2025 return NULL;
2026 return value_cast (arrType, value_copy (desc_data (arr)));
2027 }
2028 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2029 return decode_constrained_packed_array (arr);
2030 else
2031 return arr;
2032 }
2033
2034 /* If ARR does not represent an array, returns ARR unchanged.
2035 Otherwise, returns a standard GDB array describing ARR (which may
2036 be ARR itself if it already is in the proper form). */
2037
2038 struct value *
2039 ada_coerce_to_simple_array (struct value *arr)
2040 {
2041 if (ada_is_array_descriptor_type (value_type (arr)))
2042 {
2043 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2044
2045 if (arrVal == NULL)
2046 error (_("Bounds unavailable for null array pointer."));
2047 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
2048 return value_ind (arrVal);
2049 }
2050 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2051 return decode_constrained_packed_array (arr);
2052 else
2053 return arr;
2054 }
2055
2056 /* If TYPE represents a GNAT array type, return it translated to an
2057 ordinary GDB array type (possibly with BITSIZE fields indicating
2058 packing). For other types, is the identity. */
2059
2060 struct type *
2061 ada_coerce_to_simple_array_type (struct type *type)
2062 {
2063 if (ada_is_constrained_packed_array_type (type))
2064 return decode_constrained_packed_array_type (type);
2065
2066 if (ada_is_array_descriptor_type (type))
2067 return ada_check_typedef (desc_data_target_type (type));
2068
2069 return type;
2070 }
2071
2072 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2073
2074 static int
2075 ada_is_packed_array_type (struct type *type)
2076 {
2077 if (type == NULL)
2078 return 0;
2079 type = desc_base_type (type);
2080 type = ada_check_typedef (type);
2081 return
2082 ada_type_name (type) != NULL
2083 && strstr (ada_type_name (type), "___XP") != NULL;
2084 }
2085
2086 /* Non-zero iff TYPE represents a standard GNAT constrained
2087 packed-array type. */
2088
2089 int
2090 ada_is_constrained_packed_array_type (struct type *type)
2091 {
2092 return ada_is_packed_array_type (type)
2093 && !ada_is_array_descriptor_type (type);
2094 }
2095
2096 /* Non-zero iff TYPE represents an array descriptor for a
2097 unconstrained packed-array type. */
2098
2099 static int
2100 ada_is_unconstrained_packed_array_type (struct type *type)
2101 {
2102 return ada_is_packed_array_type (type)
2103 && ada_is_array_descriptor_type (type);
2104 }
2105
2106 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2107 return the size of its elements in bits. */
2108
2109 static long
2110 decode_packed_array_bitsize (struct type *type)
2111 {
2112 const char *raw_name;
2113 const char *tail;
2114 long bits;
2115
2116 /* Access to arrays implemented as fat pointers are encoded as a typedef
2117 of the fat pointer type. We need the name of the fat pointer type
2118 to do the decoding, so strip the typedef layer. */
2119 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2120 type = ada_typedef_target_type (type);
2121
2122 raw_name = ada_type_name (ada_check_typedef (type));
2123 if (!raw_name)
2124 raw_name = ada_type_name (desc_base_type (type));
2125
2126 if (!raw_name)
2127 return 0;
2128
2129 tail = strstr (raw_name, "___XP");
2130 gdb_assert (tail != NULL);
2131
2132 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2133 {
2134 lim_warning
2135 (_("could not understand bit size information on packed array"));
2136 return 0;
2137 }
2138
2139 return bits;
2140 }
2141
2142 /* Given that TYPE is a standard GDB array type with all bounds filled
2143 in, and that the element size of its ultimate scalar constituents
2144 (that is, either its elements, or, if it is an array of arrays, its
2145 elements' elements, etc.) is *ELT_BITS, return an identical type,
2146 but with the bit sizes of its elements (and those of any
2147 constituent arrays) recorded in the BITSIZE components of its
2148 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2149 in bits. */
2150
2151 static struct type *
2152 constrained_packed_array_type (struct type *type, long *elt_bits)
2153 {
2154 struct type *new_elt_type;
2155 struct type *new_type;
2156 struct type *index_type_desc;
2157 struct type *index_type;
2158 LONGEST low_bound, high_bound;
2159
2160 type = ada_check_typedef (type);
2161 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2162 return type;
2163
2164 index_type_desc = ada_find_parallel_type (type, "___XA");
2165 if (index_type_desc)
2166 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2167 NULL);
2168 else
2169 index_type = TYPE_INDEX_TYPE (type);
2170
2171 new_type = alloc_type_copy (type);
2172 new_elt_type =
2173 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2174 elt_bits);
2175 create_array_type (new_type, new_elt_type, index_type);
2176 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2177 TYPE_NAME (new_type) = ada_type_name (type);
2178
2179 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2180 low_bound = high_bound = 0;
2181 if (high_bound < low_bound)
2182 *elt_bits = TYPE_LENGTH (new_type) = 0;
2183 else
2184 {
2185 *elt_bits *= (high_bound - low_bound + 1);
2186 TYPE_LENGTH (new_type) =
2187 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2188 }
2189
2190 TYPE_FIXED_INSTANCE (new_type) = 1;
2191 return new_type;
2192 }
2193
2194 /* The array type encoded by TYPE, where
2195 ada_is_constrained_packed_array_type (TYPE). */
2196
2197 static struct type *
2198 decode_constrained_packed_array_type (struct type *type)
2199 {
2200 const char *raw_name = ada_type_name (ada_check_typedef (type));
2201 char *name;
2202 const char *tail;
2203 struct type *shadow_type;
2204 long bits;
2205
2206 if (!raw_name)
2207 raw_name = ada_type_name (desc_base_type (type));
2208
2209 if (!raw_name)
2210 return NULL;
2211
2212 name = (char *) alloca (strlen (raw_name) + 1);
2213 tail = strstr (raw_name, "___XP");
2214 type = desc_base_type (type);
2215
2216 memcpy (name, raw_name, tail - raw_name);
2217 name[tail - raw_name] = '\000';
2218
2219 shadow_type = ada_find_parallel_type_with_name (type, name);
2220
2221 if (shadow_type == NULL)
2222 {
2223 lim_warning (_("could not find bounds information on packed array"));
2224 return NULL;
2225 }
2226 CHECK_TYPEDEF (shadow_type);
2227
2228 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2229 {
2230 lim_warning (_("could not understand bounds "
2231 "information on packed array"));
2232 return NULL;
2233 }
2234
2235 bits = decode_packed_array_bitsize (type);
2236 return constrained_packed_array_type (shadow_type, &bits);
2237 }
2238
2239 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2240 array, returns a simple array that denotes that array. Its type is a
2241 standard GDB array type except that the BITSIZEs of the array
2242 target types are set to the number of bits in each element, and the
2243 type length is set appropriately. */
2244
2245 static struct value *
2246 decode_constrained_packed_array (struct value *arr)
2247 {
2248 struct type *type;
2249
2250 /* If our value is a pointer, then dereference it. Likewise if
2251 the value is a reference. Make sure that this operation does not
2252 cause the target type to be fixed, as this would indirectly cause
2253 this array to be decoded. The rest of the routine assumes that
2254 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2255 and "value_ind" routines to perform the dereferencing, as opposed
2256 to using "ada_coerce_ref" or "ada_value_ind". */
2257 arr = coerce_ref (arr);
2258 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2259 arr = value_ind (arr);
2260
2261 type = decode_constrained_packed_array_type (value_type (arr));
2262 if (type == NULL)
2263 {
2264 error (_("can't unpack array"));
2265 return NULL;
2266 }
2267
2268 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2269 && ada_is_modular_type (value_type (arr)))
2270 {
2271 /* This is a (right-justified) modular type representing a packed
2272 array with no wrapper. In order to interpret the value through
2273 the (left-justified) packed array type we just built, we must
2274 first left-justify it. */
2275 int bit_size, bit_pos;
2276 ULONGEST mod;
2277
2278 mod = ada_modulus (value_type (arr)) - 1;
2279 bit_size = 0;
2280 while (mod > 0)
2281 {
2282 bit_size += 1;
2283 mod >>= 1;
2284 }
2285 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2286 arr = ada_value_primitive_packed_val (arr, NULL,
2287 bit_pos / HOST_CHAR_BIT,
2288 bit_pos % HOST_CHAR_BIT,
2289 bit_size,
2290 type);
2291 }
2292
2293 return coerce_unspec_val_to_type (arr, type);
2294 }
2295
2296
2297 /* The value of the element of packed array ARR at the ARITY indices
2298 given in IND. ARR must be a simple array. */
2299
2300 static struct value *
2301 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2302 {
2303 int i;
2304 int bits, elt_off, bit_off;
2305 long elt_total_bit_offset;
2306 struct type *elt_type;
2307 struct value *v;
2308
2309 bits = 0;
2310 elt_total_bit_offset = 0;
2311 elt_type = ada_check_typedef (value_type (arr));
2312 for (i = 0; i < arity; i += 1)
2313 {
2314 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2315 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2316 error
2317 (_("attempt to do packed indexing of "
2318 "something other than a packed array"));
2319 else
2320 {
2321 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2322 LONGEST lowerbound, upperbound;
2323 LONGEST idx;
2324
2325 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2326 {
2327 lim_warning (_("don't know bounds of array"));
2328 lowerbound = upperbound = 0;
2329 }
2330
2331 idx = pos_atr (ind[i]);
2332 if (idx < lowerbound || idx > upperbound)
2333 lim_warning (_("packed array index %ld out of bounds"),
2334 (long) idx);
2335 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2336 elt_total_bit_offset += (idx - lowerbound) * bits;
2337 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2338 }
2339 }
2340 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2341 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2342
2343 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2344 bits, elt_type);
2345 return v;
2346 }
2347
2348 /* Non-zero iff TYPE includes negative integer values. */
2349
2350 static int
2351 has_negatives (struct type *type)
2352 {
2353 switch (TYPE_CODE (type))
2354 {
2355 default:
2356 return 0;
2357 case TYPE_CODE_INT:
2358 return !TYPE_UNSIGNED (type);
2359 case TYPE_CODE_RANGE:
2360 return TYPE_LOW_BOUND (type) < 0;
2361 }
2362 }
2363
2364
2365 /* Create a new value of type TYPE from the contents of OBJ starting
2366 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2367 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2368 assigning through the result will set the field fetched from.
2369 VALADDR is ignored unless OBJ is NULL, in which case,
2370 VALADDR+OFFSET must address the start of storage containing the
2371 packed value. The value returned in this case is never an lval.
2372 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2373
2374 struct value *
2375 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2376 long offset, int bit_offset, int bit_size,
2377 struct type *type)
2378 {
2379 struct value *v;
2380 int src, /* Index into the source area */
2381 targ, /* Index into the target area */
2382 srcBitsLeft, /* Number of source bits left to move */
2383 nsrc, ntarg, /* Number of source and target bytes */
2384 unusedLS, /* Number of bits in next significant
2385 byte of source that are unused */
2386 accumSize; /* Number of meaningful bits in accum */
2387 unsigned char *bytes; /* First byte containing data to unpack */
2388 unsigned char *unpacked;
2389 unsigned long accum; /* Staging area for bits being transferred */
2390 unsigned char sign;
2391 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2392 /* Transmit bytes from least to most significant; delta is the direction
2393 the indices move. */
2394 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2395
2396 type = ada_check_typedef (type);
2397
2398 if (obj == NULL)
2399 {
2400 v = allocate_value (type);
2401 bytes = (unsigned char *) (valaddr + offset);
2402 }
2403 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2404 {
2405 v = value_at (type, value_address (obj));
2406 type = value_type (v);
2407 bytes = (unsigned char *) alloca (len);
2408 read_memory (value_address (v) + offset, bytes, len);
2409 }
2410 else
2411 {
2412 v = allocate_value (type);
2413 bytes = (unsigned char *) value_contents (obj) + offset;
2414 }
2415
2416 if (obj != NULL)
2417 {
2418 long new_offset = offset;
2419
2420 set_value_component_location (v, obj);
2421 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2422 set_value_bitsize (v, bit_size);
2423 if (value_bitpos (v) >= HOST_CHAR_BIT)
2424 {
2425 ++new_offset;
2426 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2427 }
2428 set_value_offset (v, new_offset);
2429
2430 /* Also set the parent value. This is needed when trying to
2431 assign a new value (in inferior memory). */
2432 set_value_parent (v, obj);
2433 }
2434 else
2435 set_value_bitsize (v, bit_size);
2436 unpacked = (unsigned char *) value_contents (v);
2437
2438 srcBitsLeft = bit_size;
2439 nsrc = len;
2440 ntarg = TYPE_LENGTH (type);
2441 sign = 0;
2442 if (bit_size == 0)
2443 {
2444 memset (unpacked, 0, TYPE_LENGTH (type));
2445 return v;
2446 }
2447 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2448 {
2449 src = len - 1;
2450 if (has_negatives (type)
2451 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2452 sign = ~0;
2453
2454 unusedLS =
2455 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2456 % HOST_CHAR_BIT;
2457
2458 switch (TYPE_CODE (type))
2459 {
2460 case TYPE_CODE_ARRAY:
2461 case TYPE_CODE_UNION:
2462 case TYPE_CODE_STRUCT:
2463 /* Non-scalar values must be aligned at a byte boundary... */
2464 accumSize =
2465 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2466 /* ... And are placed at the beginning (most-significant) bytes
2467 of the target. */
2468 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2469 ntarg = targ + 1;
2470 break;
2471 default:
2472 accumSize = 0;
2473 targ = TYPE_LENGTH (type) - 1;
2474 break;
2475 }
2476 }
2477 else
2478 {
2479 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2480
2481 src = targ = 0;
2482 unusedLS = bit_offset;
2483 accumSize = 0;
2484
2485 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2486 sign = ~0;
2487 }
2488
2489 accum = 0;
2490 while (nsrc > 0)
2491 {
2492 /* Mask for removing bits of the next source byte that are not
2493 part of the value. */
2494 unsigned int unusedMSMask =
2495 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2496 1;
2497 /* Sign-extend bits for this byte. */
2498 unsigned int signMask = sign & ~unusedMSMask;
2499
2500 accum |=
2501 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2502 accumSize += HOST_CHAR_BIT - unusedLS;
2503 if (accumSize >= HOST_CHAR_BIT)
2504 {
2505 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2506 accumSize -= HOST_CHAR_BIT;
2507 accum >>= HOST_CHAR_BIT;
2508 ntarg -= 1;
2509 targ += delta;
2510 }
2511 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2512 unusedLS = 0;
2513 nsrc -= 1;
2514 src += delta;
2515 }
2516 while (ntarg > 0)
2517 {
2518 accum |= sign << accumSize;
2519 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
2522 ntarg -= 1;
2523 targ += delta;
2524 }
2525
2526 return v;
2527 }
2528
2529 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2530 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2531 not overlap. */
2532 static void
2533 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2534 int src_offset, int n, int bits_big_endian_p)
2535 {
2536 unsigned int accum, mask;
2537 int accum_bits, chunk_size;
2538
2539 target += targ_offset / HOST_CHAR_BIT;
2540 targ_offset %= HOST_CHAR_BIT;
2541 source += src_offset / HOST_CHAR_BIT;
2542 src_offset %= HOST_CHAR_BIT;
2543 if (bits_big_endian_p)
2544 {
2545 accum = (unsigned char) *source;
2546 source += 1;
2547 accum_bits = HOST_CHAR_BIT - src_offset;
2548
2549 while (n > 0)
2550 {
2551 int unused_right;
2552
2553 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2554 accum_bits += HOST_CHAR_BIT;
2555 source += 1;
2556 chunk_size = HOST_CHAR_BIT - targ_offset;
2557 if (chunk_size > n)
2558 chunk_size = n;
2559 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2560 mask = ((1 << chunk_size) - 1) << unused_right;
2561 *target =
2562 (*target & ~mask)
2563 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2564 n -= chunk_size;
2565 accum_bits -= chunk_size;
2566 target += 1;
2567 targ_offset = 0;
2568 }
2569 }
2570 else
2571 {
2572 accum = (unsigned char) *source >> src_offset;
2573 source += 1;
2574 accum_bits = HOST_CHAR_BIT - src_offset;
2575
2576 while (n > 0)
2577 {
2578 accum = accum + ((unsigned char) *source << accum_bits);
2579 accum_bits += HOST_CHAR_BIT;
2580 source += 1;
2581 chunk_size = HOST_CHAR_BIT - targ_offset;
2582 if (chunk_size > n)
2583 chunk_size = n;
2584 mask = ((1 << chunk_size) - 1) << targ_offset;
2585 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2586 n -= chunk_size;
2587 accum_bits -= chunk_size;
2588 accum >>= chunk_size;
2589 target += 1;
2590 targ_offset = 0;
2591 }
2592 }
2593 }
2594
2595 /* Store the contents of FROMVAL into the location of TOVAL.
2596 Return a new value with the location of TOVAL and contents of
2597 FROMVAL. Handles assignment into packed fields that have
2598 floating-point or non-scalar types. */
2599
2600 static struct value *
2601 ada_value_assign (struct value *toval, struct value *fromval)
2602 {
2603 struct type *type = value_type (toval);
2604 int bits = value_bitsize (toval);
2605
2606 toval = ada_coerce_ref (toval);
2607 fromval = ada_coerce_ref (fromval);
2608
2609 if (ada_is_direct_array_type (value_type (toval)))
2610 toval = ada_coerce_to_simple_array (toval);
2611 if (ada_is_direct_array_type (value_type (fromval)))
2612 fromval = ada_coerce_to_simple_array (fromval);
2613
2614 if (!deprecated_value_modifiable (toval))
2615 error (_("Left operand of assignment is not a modifiable lvalue."));
2616
2617 if (VALUE_LVAL (toval) == lval_memory
2618 && bits > 0
2619 && (TYPE_CODE (type) == TYPE_CODE_FLT
2620 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2621 {
2622 int len = (value_bitpos (toval)
2623 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2624 int from_size;
2625 gdb_byte *buffer = alloca (len);
2626 struct value *val;
2627 CORE_ADDR to_addr = value_address (toval);
2628
2629 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2630 fromval = value_cast (type, fromval);
2631
2632 read_memory (to_addr, buffer, len);
2633 from_size = value_bitsize (fromval);
2634 if (from_size == 0)
2635 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2636 if (gdbarch_bits_big_endian (get_type_arch (type)))
2637 move_bits (buffer, value_bitpos (toval),
2638 value_contents (fromval), from_size - bits, bits, 1);
2639 else
2640 move_bits (buffer, value_bitpos (toval),
2641 value_contents (fromval), 0, bits, 0);
2642 write_memory_with_notification (to_addr, buffer, len);
2643
2644 val = value_copy (toval);
2645 memcpy (value_contents_raw (val), value_contents (fromval),
2646 TYPE_LENGTH (type));
2647 deprecated_set_value_type (val, type);
2648
2649 return val;
2650 }
2651
2652 return value_assign (toval, fromval);
2653 }
2654
2655
2656 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2657 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2658 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2659 * COMPONENT, and not the inferior's memory. The current contents
2660 * of COMPONENT are ignored. */
2661 static void
2662 value_assign_to_component (struct value *container, struct value *component,
2663 struct value *val)
2664 {
2665 LONGEST offset_in_container =
2666 (LONGEST) (value_address (component) - value_address (container));
2667 int bit_offset_in_container =
2668 value_bitpos (component) - value_bitpos (container);
2669 int bits;
2670
2671 val = value_cast (value_type (component), val);
2672
2673 if (value_bitsize (component) == 0)
2674 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2675 else
2676 bits = value_bitsize (component);
2677
2678 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2679 move_bits (value_contents_writeable (container) + offset_in_container,
2680 value_bitpos (container) + bit_offset_in_container,
2681 value_contents (val),
2682 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2683 bits, 1);
2684 else
2685 move_bits (value_contents_writeable (container) + offset_in_container,
2686 value_bitpos (container) + bit_offset_in_container,
2687 value_contents (val), 0, bits, 0);
2688 }
2689
2690 /* The value of the element of array ARR at the ARITY indices given in IND.
2691 ARR may be either a simple array, GNAT array descriptor, or pointer
2692 thereto. */
2693
2694 struct value *
2695 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2696 {
2697 int k;
2698 struct value *elt;
2699 struct type *elt_type;
2700
2701 elt = ada_coerce_to_simple_array (arr);
2702
2703 elt_type = ada_check_typedef (value_type (elt));
2704 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2705 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2706 return value_subscript_packed (elt, arity, ind);
2707
2708 for (k = 0; k < arity; k += 1)
2709 {
2710 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2711 error (_("too many subscripts (%d expected)"), k);
2712 elt = value_subscript (elt, pos_atr (ind[k]));
2713 }
2714 return elt;
2715 }
2716
2717 /* Assuming ARR is a pointer to a GDB array, the value of the element
2718 of *ARR at the ARITY indices given in IND.
2719 Does not read the entire array into memory. */
2720
2721 static struct value *
2722 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2723 {
2724 int k;
2725 struct type *type
2726 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
2727
2728 for (k = 0; k < arity; k += 1)
2729 {
2730 LONGEST lwb, upb;
2731
2732 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2733 error (_("too many subscripts (%d expected)"), k);
2734 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2735 value_copy (arr));
2736 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2737 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2738 type = TYPE_TARGET_TYPE (type);
2739 }
2740
2741 return value_ind (arr);
2742 }
2743
2744 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2745 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2746 elements starting at index LOW. The lower bound of this array is LOW, as
2747 per Ada rules. */
2748 static struct value *
2749 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2750 int low, int high)
2751 {
2752 struct type *type0 = ada_check_typedef (type);
2753 CORE_ADDR base = value_as_address (array_ptr)
2754 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2755 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2756 struct type *index_type
2757 = create_static_range_type (NULL,
2758 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2759 low, high);
2760 struct type *slice_type =
2761 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2762
2763 return value_at_lazy (slice_type, base);
2764 }
2765
2766
2767 static struct value *
2768 ada_value_slice (struct value *array, int low, int high)
2769 {
2770 struct type *type = ada_check_typedef (value_type (array));
2771 struct type *index_type
2772 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2773 struct type *slice_type =
2774 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2775
2776 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2777 }
2778
2779 /* If type is a record type in the form of a standard GNAT array
2780 descriptor, returns the number of dimensions for type. If arr is a
2781 simple array, returns the number of "array of"s that prefix its
2782 type designation. Otherwise, returns 0. */
2783
2784 int
2785 ada_array_arity (struct type *type)
2786 {
2787 int arity;
2788
2789 if (type == NULL)
2790 return 0;
2791
2792 type = desc_base_type (type);
2793
2794 arity = 0;
2795 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2796 return desc_arity (desc_bounds_type (type));
2797 else
2798 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2799 {
2800 arity += 1;
2801 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2802 }
2803
2804 return arity;
2805 }
2806
2807 /* If TYPE is a record type in the form of a standard GNAT array
2808 descriptor or a simple array type, returns the element type for
2809 TYPE after indexing by NINDICES indices, or by all indices if
2810 NINDICES is -1. Otherwise, returns NULL. */
2811
2812 struct type *
2813 ada_array_element_type (struct type *type, int nindices)
2814 {
2815 type = desc_base_type (type);
2816
2817 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2818 {
2819 int k;
2820 struct type *p_array_type;
2821
2822 p_array_type = desc_data_target_type (type);
2823
2824 k = ada_array_arity (type);
2825 if (k == 0)
2826 return NULL;
2827
2828 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2829 if (nindices >= 0 && k > nindices)
2830 k = nindices;
2831 while (k > 0 && p_array_type != NULL)
2832 {
2833 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2834 k -= 1;
2835 }
2836 return p_array_type;
2837 }
2838 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2839 {
2840 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2841 {
2842 type = TYPE_TARGET_TYPE (type);
2843 nindices -= 1;
2844 }
2845 return type;
2846 }
2847
2848 return NULL;
2849 }
2850
2851 /* The type of nth index in arrays of given type (n numbering from 1).
2852 Does not examine memory. Throws an error if N is invalid or TYPE
2853 is not an array type. NAME is the name of the Ada attribute being
2854 evaluated ('range, 'first, 'last, or 'length); it is used in building
2855 the error message. */
2856
2857 static struct type *
2858 ada_index_type (struct type *type, int n, const char *name)
2859 {
2860 struct type *result_type;
2861
2862 type = desc_base_type (type);
2863
2864 if (n < 0 || n > ada_array_arity (type))
2865 error (_("invalid dimension number to '%s"), name);
2866
2867 if (ada_is_simple_array_type (type))
2868 {
2869 int i;
2870
2871 for (i = 1; i < n; i += 1)
2872 type = TYPE_TARGET_TYPE (type);
2873 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2874 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2875 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2876 perhaps stabsread.c would make more sense. */
2877 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2878 result_type = NULL;
2879 }
2880 else
2881 {
2882 result_type = desc_index_type (desc_bounds_type (type), n);
2883 if (result_type == NULL)
2884 error (_("attempt to take bound of something that is not an array"));
2885 }
2886
2887 return result_type;
2888 }
2889
2890 /* Given that arr is an array type, returns the lower bound of the
2891 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2892 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2893 array-descriptor type. It works for other arrays with bounds supplied
2894 by run-time quantities other than discriminants. */
2895
2896 static LONGEST
2897 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2898 {
2899 struct type *type, *index_type_desc, *index_type;
2900 int i;
2901
2902 gdb_assert (which == 0 || which == 1);
2903
2904 if (ada_is_constrained_packed_array_type (arr_type))
2905 arr_type = decode_constrained_packed_array_type (arr_type);
2906
2907 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2908 return (LONGEST) - which;
2909
2910 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2911 type = TYPE_TARGET_TYPE (arr_type);
2912 else
2913 type = arr_type;
2914
2915 index_type_desc = ada_find_parallel_type (type, "___XA");
2916 ada_fixup_array_indexes_type (index_type_desc);
2917 if (index_type_desc != NULL)
2918 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2919 NULL);
2920 else
2921 {
2922 struct type *elt_type = check_typedef (type);
2923
2924 for (i = 1; i < n; i++)
2925 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2926
2927 index_type = TYPE_INDEX_TYPE (elt_type);
2928 }
2929
2930 return
2931 (LONGEST) (which == 0
2932 ? ada_discrete_type_low_bound (index_type)
2933 : ada_discrete_type_high_bound (index_type));
2934 }
2935
2936 /* Given that arr is an array value, returns the lower bound of the
2937 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2938 WHICH is 1. This routine will also work for arrays with bounds
2939 supplied by run-time quantities other than discriminants. */
2940
2941 static LONGEST
2942 ada_array_bound (struct value *arr, int n, int which)
2943 {
2944 struct type *arr_type;
2945
2946 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2947 arr = value_ind (arr);
2948 arr_type = value_enclosing_type (arr);
2949
2950 if (ada_is_constrained_packed_array_type (arr_type))
2951 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2952 else if (ada_is_simple_array_type (arr_type))
2953 return ada_array_bound_from_type (arr_type, n, which);
2954 else
2955 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2956 }
2957
2958 /* Given that arr is an array value, returns the length of the
2959 nth index. This routine will also work for arrays with bounds
2960 supplied by run-time quantities other than discriminants.
2961 Does not work for arrays indexed by enumeration types with representation
2962 clauses at the moment. */
2963
2964 static LONGEST
2965 ada_array_length (struct value *arr, int n)
2966 {
2967 struct type *arr_type;
2968
2969 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2970 arr = value_ind (arr);
2971 arr_type = value_enclosing_type (arr);
2972
2973 if (ada_is_constrained_packed_array_type (arr_type))
2974 return ada_array_length (decode_constrained_packed_array (arr), n);
2975
2976 if (ada_is_simple_array_type (arr_type))
2977 return (ada_array_bound_from_type (arr_type, n, 1)
2978 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2979 else
2980 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2981 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2982 }
2983
2984 /* An empty array whose type is that of ARR_TYPE (an array type),
2985 with bounds LOW to LOW-1. */
2986
2987 static struct value *
2988 empty_array (struct type *arr_type, int low)
2989 {
2990 struct type *arr_type0 = ada_check_typedef (arr_type);
2991 struct type *index_type
2992 = create_static_range_type
2993 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
2994 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2995
2996 return allocate_value (create_array_type (NULL, elt_type, index_type));
2997 }
2998 \f
2999
3000 /* Name resolution */
3001
3002 /* The "decoded" name for the user-definable Ada operator corresponding
3003 to OP. */
3004
3005 static const char *
3006 ada_decoded_op_name (enum exp_opcode op)
3007 {
3008 int i;
3009
3010 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3011 {
3012 if (ada_opname_table[i].op == op)
3013 return ada_opname_table[i].decoded;
3014 }
3015 error (_("Could not find operator name for opcode"));
3016 }
3017
3018
3019 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3020 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3021 undefined namespace) and converts operators that are
3022 user-defined into appropriate function calls. If CONTEXT_TYPE is
3023 non-null, it provides a preferred result type [at the moment, only
3024 type void has any effect---causing procedures to be preferred over
3025 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3026 return type is preferred. May change (expand) *EXP. */
3027
3028 static void
3029 resolve (struct expression **expp, int void_context_p)
3030 {
3031 struct type *context_type = NULL;
3032 int pc = 0;
3033
3034 if (void_context_p)
3035 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3036
3037 resolve_subexp (expp, &pc, 1, context_type);
3038 }
3039
3040 /* Resolve the operator of the subexpression beginning at
3041 position *POS of *EXPP. "Resolving" consists of replacing
3042 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3043 with their resolutions, replacing built-in operators with
3044 function calls to user-defined operators, where appropriate, and,
3045 when DEPROCEDURE_P is non-zero, converting function-valued variables
3046 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3047 are as in ada_resolve, above. */
3048
3049 static struct value *
3050 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3051 struct type *context_type)
3052 {
3053 int pc = *pos;
3054 int i;
3055 struct expression *exp; /* Convenience: == *expp. */
3056 enum exp_opcode op = (*expp)->elts[pc].opcode;
3057 struct value **argvec; /* Vector of operand types (alloca'ed). */
3058 int nargs; /* Number of operands. */
3059 int oplen;
3060
3061 argvec = NULL;
3062 nargs = 0;
3063 exp = *expp;
3064
3065 /* Pass one: resolve operands, saving their types and updating *pos,
3066 if needed. */
3067 switch (op)
3068 {
3069 case OP_FUNCALL:
3070 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3071 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3072 *pos += 7;
3073 else
3074 {
3075 *pos += 3;
3076 resolve_subexp (expp, pos, 0, NULL);
3077 }
3078 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3079 break;
3080
3081 case UNOP_ADDR:
3082 *pos += 1;
3083 resolve_subexp (expp, pos, 0, NULL);
3084 break;
3085
3086 case UNOP_QUAL:
3087 *pos += 3;
3088 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3089 break;
3090
3091 case OP_ATR_MODULUS:
3092 case OP_ATR_SIZE:
3093 case OP_ATR_TAG:
3094 case OP_ATR_FIRST:
3095 case OP_ATR_LAST:
3096 case OP_ATR_LENGTH:
3097 case OP_ATR_POS:
3098 case OP_ATR_VAL:
3099 case OP_ATR_MIN:
3100 case OP_ATR_MAX:
3101 case TERNOP_IN_RANGE:
3102 case BINOP_IN_BOUNDS:
3103 case UNOP_IN_RANGE:
3104 case OP_AGGREGATE:
3105 case OP_OTHERS:
3106 case OP_CHOICES:
3107 case OP_POSITIONAL:
3108 case OP_DISCRETE_RANGE:
3109 case OP_NAME:
3110 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3111 *pos += oplen;
3112 break;
3113
3114 case BINOP_ASSIGN:
3115 {
3116 struct value *arg1;
3117
3118 *pos += 1;
3119 arg1 = resolve_subexp (expp, pos, 0, NULL);
3120 if (arg1 == NULL)
3121 resolve_subexp (expp, pos, 1, NULL);
3122 else
3123 resolve_subexp (expp, pos, 1, value_type (arg1));
3124 break;
3125 }
3126
3127 case UNOP_CAST:
3128 *pos += 3;
3129 nargs = 1;
3130 break;
3131
3132 case BINOP_ADD:
3133 case BINOP_SUB:
3134 case BINOP_MUL:
3135 case BINOP_DIV:
3136 case BINOP_REM:
3137 case BINOP_MOD:
3138 case BINOP_EXP:
3139 case BINOP_CONCAT:
3140 case BINOP_LOGICAL_AND:
3141 case BINOP_LOGICAL_OR:
3142 case BINOP_BITWISE_AND:
3143 case BINOP_BITWISE_IOR:
3144 case BINOP_BITWISE_XOR:
3145
3146 case BINOP_EQUAL:
3147 case BINOP_NOTEQUAL:
3148 case BINOP_LESS:
3149 case BINOP_GTR:
3150 case BINOP_LEQ:
3151 case BINOP_GEQ:
3152
3153 case BINOP_REPEAT:
3154 case BINOP_SUBSCRIPT:
3155 case BINOP_COMMA:
3156 *pos += 1;
3157 nargs = 2;
3158 break;
3159
3160 case UNOP_NEG:
3161 case UNOP_PLUS:
3162 case UNOP_LOGICAL_NOT:
3163 case UNOP_ABS:
3164 case UNOP_IND:
3165 *pos += 1;
3166 nargs = 1;
3167 break;
3168
3169 case OP_LONG:
3170 case OP_DOUBLE:
3171 case OP_VAR_VALUE:
3172 *pos += 4;
3173 break;
3174
3175 case OP_TYPE:
3176 case OP_BOOL:
3177 case OP_LAST:
3178 case OP_INTERNALVAR:
3179 *pos += 3;
3180 break;
3181
3182 case UNOP_MEMVAL:
3183 *pos += 3;
3184 nargs = 1;
3185 break;
3186
3187 case OP_REGISTER:
3188 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3189 break;
3190
3191 case STRUCTOP_STRUCT:
3192 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3193 nargs = 1;
3194 break;
3195
3196 case TERNOP_SLICE:
3197 *pos += 1;
3198 nargs = 3;
3199 break;
3200
3201 case OP_STRING:
3202 break;
3203
3204 default:
3205 error (_("Unexpected operator during name resolution"));
3206 }
3207
3208 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3209 for (i = 0; i < nargs; i += 1)
3210 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3211 argvec[i] = NULL;
3212 exp = *expp;
3213
3214 /* Pass two: perform any resolution on principal operator. */
3215 switch (op)
3216 {
3217 default:
3218 break;
3219
3220 case OP_VAR_VALUE:
3221 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3222 {
3223 struct ada_symbol_info *candidates;
3224 int n_candidates;
3225
3226 n_candidates =
3227 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3228 (exp->elts[pc + 2].symbol),
3229 exp->elts[pc + 1].block, VAR_DOMAIN,
3230 &candidates);
3231
3232 if (n_candidates > 1)
3233 {
3234 /* Types tend to get re-introduced locally, so if there
3235 are any local symbols that are not types, first filter
3236 out all types. */
3237 int j;
3238 for (j = 0; j < n_candidates; j += 1)
3239 switch (SYMBOL_CLASS (candidates[j].sym))
3240 {
3241 case LOC_REGISTER:
3242 case LOC_ARG:
3243 case LOC_REF_ARG:
3244 case LOC_REGPARM_ADDR:
3245 case LOC_LOCAL:
3246 case LOC_COMPUTED:
3247 goto FoundNonType;
3248 default:
3249 break;
3250 }
3251 FoundNonType:
3252 if (j < n_candidates)
3253 {
3254 j = 0;
3255 while (j < n_candidates)
3256 {
3257 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3258 {
3259 candidates[j] = candidates[n_candidates - 1];
3260 n_candidates -= 1;
3261 }
3262 else
3263 j += 1;
3264 }
3265 }
3266 }
3267
3268 if (n_candidates == 0)
3269 error (_("No definition found for %s"),
3270 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3271 else if (n_candidates == 1)
3272 i = 0;
3273 else if (deprocedure_p
3274 && !is_nonfunction (candidates, n_candidates))
3275 {
3276 i = ada_resolve_function
3277 (candidates, n_candidates, NULL, 0,
3278 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3279 context_type);
3280 if (i < 0)
3281 error (_("Could not find a match for %s"),
3282 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3283 }
3284 else
3285 {
3286 printf_filtered (_("Multiple matches for %s\n"),
3287 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3288 user_select_syms (candidates, n_candidates, 1);
3289 i = 0;
3290 }
3291
3292 exp->elts[pc + 1].block = candidates[i].block;
3293 exp->elts[pc + 2].symbol = candidates[i].sym;
3294 if (innermost_block == NULL
3295 || contained_in (candidates[i].block, innermost_block))
3296 innermost_block = candidates[i].block;
3297 }
3298
3299 if (deprocedure_p
3300 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3301 == TYPE_CODE_FUNC))
3302 {
3303 replace_operator_with_call (expp, pc, 0, 0,
3304 exp->elts[pc + 2].symbol,
3305 exp->elts[pc + 1].block);
3306 exp = *expp;
3307 }
3308 break;
3309
3310 case OP_FUNCALL:
3311 {
3312 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3313 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3314 {
3315 struct ada_symbol_info *candidates;
3316 int n_candidates;
3317
3318 n_candidates =
3319 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3320 (exp->elts[pc + 5].symbol),
3321 exp->elts[pc + 4].block, VAR_DOMAIN,
3322 &candidates);
3323 if (n_candidates == 1)
3324 i = 0;
3325 else
3326 {
3327 i = ada_resolve_function
3328 (candidates, n_candidates,
3329 argvec, nargs,
3330 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3331 context_type);
3332 if (i < 0)
3333 error (_("Could not find a match for %s"),
3334 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3335 }
3336
3337 exp->elts[pc + 4].block = candidates[i].block;
3338 exp->elts[pc + 5].symbol = candidates[i].sym;
3339 if (innermost_block == NULL
3340 || contained_in (candidates[i].block, innermost_block))
3341 innermost_block = candidates[i].block;
3342 }
3343 }
3344 break;
3345 case BINOP_ADD:
3346 case BINOP_SUB:
3347 case BINOP_MUL:
3348 case BINOP_DIV:
3349 case BINOP_REM:
3350 case BINOP_MOD:
3351 case BINOP_CONCAT:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3355 case BINOP_EQUAL:
3356 case BINOP_NOTEQUAL:
3357 case BINOP_LESS:
3358 case BINOP_GTR:
3359 case BINOP_LEQ:
3360 case BINOP_GEQ:
3361 case BINOP_EXP:
3362 case UNOP_NEG:
3363 case UNOP_PLUS:
3364 case UNOP_LOGICAL_NOT:
3365 case UNOP_ABS:
3366 if (possible_user_operator_p (op, argvec))
3367 {
3368 struct ada_symbol_info *candidates;
3369 int n_candidates;
3370
3371 n_candidates =
3372 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3373 (struct block *) NULL, VAR_DOMAIN,
3374 &candidates);
3375 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3376 ada_decoded_op_name (op), NULL);
3377 if (i < 0)
3378 break;
3379
3380 replace_operator_with_call (expp, pc, nargs, 1,
3381 candidates[i].sym, candidates[i].block);
3382 exp = *expp;
3383 }
3384 break;
3385
3386 case OP_TYPE:
3387 case OP_REGISTER:
3388 return NULL;
3389 }
3390
3391 *pos = pc;
3392 return evaluate_subexp_type (exp, pos);
3393 }
3394
3395 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3396 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3397 a non-pointer. */
3398 /* The term "match" here is rather loose. The match is heuristic and
3399 liberal. */
3400
3401 static int
3402 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3403 {
3404 ftype = ada_check_typedef (ftype);
3405 atype = ada_check_typedef (atype);
3406
3407 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3408 ftype = TYPE_TARGET_TYPE (ftype);
3409 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3410 atype = TYPE_TARGET_TYPE (atype);
3411
3412 switch (TYPE_CODE (ftype))
3413 {
3414 default:
3415 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3416 case TYPE_CODE_PTR:
3417 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3418 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3419 TYPE_TARGET_TYPE (atype), 0);
3420 else
3421 return (may_deref
3422 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3423 case TYPE_CODE_INT:
3424 case TYPE_CODE_ENUM:
3425 case TYPE_CODE_RANGE:
3426 switch (TYPE_CODE (atype))
3427 {
3428 case TYPE_CODE_INT:
3429 case TYPE_CODE_ENUM:
3430 case TYPE_CODE_RANGE:
3431 return 1;
3432 default:
3433 return 0;
3434 }
3435
3436 case TYPE_CODE_ARRAY:
3437 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3438 || ada_is_array_descriptor_type (atype));
3439
3440 case TYPE_CODE_STRUCT:
3441 if (ada_is_array_descriptor_type (ftype))
3442 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3443 || ada_is_array_descriptor_type (atype));
3444 else
3445 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3446 && !ada_is_array_descriptor_type (atype));
3447
3448 case TYPE_CODE_UNION:
3449 case TYPE_CODE_FLT:
3450 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3451 }
3452 }
3453
3454 /* Return non-zero if the formals of FUNC "sufficiently match" the
3455 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3456 may also be an enumeral, in which case it is treated as a 0-
3457 argument function. */
3458
3459 static int
3460 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3461 {
3462 int i;
3463 struct type *func_type = SYMBOL_TYPE (func);
3464
3465 if (SYMBOL_CLASS (func) == LOC_CONST
3466 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3467 return (n_actuals == 0);
3468 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3469 return 0;
3470
3471 if (TYPE_NFIELDS (func_type) != n_actuals)
3472 return 0;
3473
3474 for (i = 0; i < n_actuals; i += 1)
3475 {
3476 if (actuals[i] == NULL)
3477 return 0;
3478 else
3479 {
3480 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3481 i));
3482 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3483
3484 if (!ada_type_match (ftype, atype, 1))
3485 return 0;
3486 }
3487 }
3488 return 1;
3489 }
3490
3491 /* False iff function type FUNC_TYPE definitely does not produce a value
3492 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3493 FUNC_TYPE is not a valid function type with a non-null return type
3494 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3495
3496 static int
3497 return_match (struct type *func_type, struct type *context_type)
3498 {
3499 struct type *return_type;
3500
3501 if (func_type == NULL)
3502 return 1;
3503
3504 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3505 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3506 else
3507 return_type = get_base_type (func_type);
3508 if (return_type == NULL)
3509 return 1;
3510
3511 context_type = get_base_type (context_type);
3512
3513 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3514 return context_type == NULL || return_type == context_type;
3515 else if (context_type == NULL)
3516 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3517 else
3518 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3519 }
3520
3521
3522 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3523 function (if any) that matches the types of the NARGS arguments in
3524 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3525 that returns that type, then eliminate matches that don't. If
3526 CONTEXT_TYPE is void and there is at least one match that does not
3527 return void, eliminate all matches that do.
3528
3529 Asks the user if there is more than one match remaining. Returns -1
3530 if there is no such symbol or none is selected. NAME is used
3531 solely for messages. May re-arrange and modify SYMS in
3532 the process; the index returned is for the modified vector. */
3533
3534 static int
3535 ada_resolve_function (struct ada_symbol_info syms[],
3536 int nsyms, struct value **args, int nargs,
3537 const char *name, struct type *context_type)
3538 {
3539 int fallback;
3540 int k;
3541 int m; /* Number of hits */
3542
3543 m = 0;
3544 /* In the first pass of the loop, we only accept functions matching
3545 context_type. If none are found, we add a second pass of the loop
3546 where every function is accepted. */
3547 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3548 {
3549 for (k = 0; k < nsyms; k += 1)
3550 {
3551 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3552
3553 if (ada_args_match (syms[k].sym, args, nargs)
3554 && (fallback || return_match (type, context_type)))
3555 {
3556 syms[m] = syms[k];
3557 m += 1;
3558 }
3559 }
3560 }
3561
3562 if (m == 0)
3563 return -1;
3564 else if (m > 1)
3565 {
3566 printf_filtered (_("Multiple matches for %s\n"), name);
3567 user_select_syms (syms, m, 1);
3568 return 0;
3569 }
3570 return 0;
3571 }
3572
3573 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3574 in a listing of choices during disambiguation (see sort_choices, below).
3575 The idea is that overloadings of a subprogram name from the
3576 same package should sort in their source order. We settle for ordering
3577 such symbols by their trailing number (__N or $N). */
3578
3579 static int
3580 encoded_ordered_before (const char *N0, const char *N1)
3581 {
3582 if (N1 == NULL)
3583 return 0;
3584 else if (N0 == NULL)
3585 return 1;
3586 else
3587 {
3588 int k0, k1;
3589
3590 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3591 ;
3592 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3593 ;
3594 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3595 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3596 {
3597 int n0, n1;
3598
3599 n0 = k0;
3600 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3601 n0 -= 1;
3602 n1 = k1;
3603 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3604 n1 -= 1;
3605 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3606 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3607 }
3608 return (strcmp (N0, N1) < 0);
3609 }
3610 }
3611
3612 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3613 encoded names. */
3614
3615 static void
3616 sort_choices (struct ada_symbol_info syms[], int nsyms)
3617 {
3618 int i;
3619
3620 for (i = 1; i < nsyms; i += 1)
3621 {
3622 struct ada_symbol_info sym = syms[i];
3623 int j;
3624
3625 for (j = i - 1; j >= 0; j -= 1)
3626 {
3627 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3628 SYMBOL_LINKAGE_NAME (sym.sym)))
3629 break;
3630 syms[j + 1] = syms[j];
3631 }
3632 syms[j + 1] = sym;
3633 }
3634 }
3635
3636 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3637 by asking the user (if necessary), returning the number selected,
3638 and setting the first elements of SYMS items. Error if no symbols
3639 selected. */
3640
3641 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3642 to be re-integrated one of these days. */
3643
3644 int
3645 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3646 {
3647 int i;
3648 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3649 int n_chosen;
3650 int first_choice = (max_results == 1) ? 1 : 2;
3651 const char *select_mode = multiple_symbols_select_mode ();
3652
3653 if (max_results < 1)
3654 error (_("Request to select 0 symbols!"));
3655 if (nsyms <= 1)
3656 return nsyms;
3657
3658 if (select_mode == multiple_symbols_cancel)
3659 error (_("\
3660 canceled because the command is ambiguous\n\
3661 See set/show multiple-symbol."));
3662
3663 /* If select_mode is "all", then return all possible symbols.
3664 Only do that if more than one symbol can be selected, of course.
3665 Otherwise, display the menu as usual. */
3666 if (select_mode == multiple_symbols_all && max_results > 1)
3667 return nsyms;
3668
3669 printf_unfiltered (_("[0] cancel\n"));
3670 if (max_results > 1)
3671 printf_unfiltered (_("[1] all\n"));
3672
3673 sort_choices (syms, nsyms);
3674
3675 for (i = 0; i < nsyms; i += 1)
3676 {
3677 if (syms[i].sym == NULL)
3678 continue;
3679
3680 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3681 {
3682 struct symtab_and_line sal =
3683 find_function_start_sal (syms[i].sym, 1);
3684
3685 if (sal.symtab == NULL)
3686 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3687 i + first_choice,
3688 SYMBOL_PRINT_NAME (syms[i].sym),
3689 sal.line);
3690 else
3691 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3692 SYMBOL_PRINT_NAME (syms[i].sym),
3693 symtab_to_filename_for_display (sal.symtab),
3694 sal.line);
3695 continue;
3696 }
3697 else
3698 {
3699 int is_enumeral =
3700 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3701 && SYMBOL_TYPE (syms[i].sym) != NULL
3702 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3703 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3704
3705 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3706 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3707 i + first_choice,
3708 SYMBOL_PRINT_NAME (syms[i].sym),
3709 symtab_to_filename_for_display (symtab),
3710 SYMBOL_LINE (syms[i].sym));
3711 else if (is_enumeral
3712 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3713 {
3714 printf_unfiltered (("[%d] "), i + first_choice);
3715 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3716 gdb_stdout, -1, 0, &type_print_raw_options);
3717 printf_unfiltered (_("'(%s) (enumeral)\n"),
3718 SYMBOL_PRINT_NAME (syms[i].sym));
3719 }
3720 else if (symtab != NULL)
3721 printf_unfiltered (is_enumeral
3722 ? _("[%d] %s in %s (enumeral)\n")
3723 : _("[%d] %s at %s:?\n"),
3724 i + first_choice,
3725 SYMBOL_PRINT_NAME (syms[i].sym),
3726 symtab_to_filename_for_display (symtab));
3727 else
3728 printf_unfiltered (is_enumeral
3729 ? _("[%d] %s (enumeral)\n")
3730 : _("[%d] %s at ?\n"),
3731 i + first_choice,
3732 SYMBOL_PRINT_NAME (syms[i].sym));
3733 }
3734 }
3735
3736 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3737 "overload-choice");
3738
3739 for (i = 0; i < n_chosen; i += 1)
3740 syms[i] = syms[chosen[i]];
3741
3742 return n_chosen;
3743 }
3744
3745 /* Read and validate a set of numeric choices from the user in the
3746 range 0 .. N_CHOICES-1. Place the results in increasing
3747 order in CHOICES[0 .. N-1], and return N.
3748
3749 The user types choices as a sequence of numbers on one line
3750 separated by blanks, encoding them as follows:
3751
3752 + A choice of 0 means to cancel the selection, throwing an error.
3753 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3754 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3755
3756 The user is not allowed to choose more than MAX_RESULTS values.
3757
3758 ANNOTATION_SUFFIX, if present, is used to annotate the input
3759 prompts (for use with the -f switch). */
3760
3761 int
3762 get_selections (int *choices, int n_choices, int max_results,
3763 int is_all_choice, char *annotation_suffix)
3764 {
3765 char *args;
3766 char *prompt;
3767 int n_chosen;
3768 int first_choice = is_all_choice ? 2 : 1;
3769
3770 prompt = getenv ("PS2");
3771 if (prompt == NULL)
3772 prompt = "> ";
3773
3774 args = command_line_input (prompt, 0, annotation_suffix);
3775
3776 if (args == NULL)
3777 error_no_arg (_("one or more choice numbers"));
3778
3779 n_chosen = 0;
3780
3781 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3782 order, as given in args. Choices are validated. */
3783 while (1)
3784 {
3785 char *args2;
3786 int choice, j;
3787
3788 args = skip_spaces (args);
3789 if (*args == '\0' && n_chosen == 0)
3790 error_no_arg (_("one or more choice numbers"));
3791 else if (*args == '\0')
3792 break;
3793
3794 choice = strtol (args, &args2, 10);
3795 if (args == args2 || choice < 0
3796 || choice > n_choices + first_choice - 1)
3797 error (_("Argument must be choice number"));
3798 args = args2;
3799
3800 if (choice == 0)
3801 error (_("cancelled"));
3802
3803 if (choice < first_choice)
3804 {
3805 n_chosen = n_choices;
3806 for (j = 0; j < n_choices; j += 1)
3807 choices[j] = j;
3808 break;
3809 }
3810 choice -= first_choice;
3811
3812 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3813 {
3814 }
3815
3816 if (j < 0 || choice != choices[j])
3817 {
3818 int k;
3819
3820 for (k = n_chosen - 1; k > j; k -= 1)
3821 choices[k + 1] = choices[k];
3822 choices[j + 1] = choice;
3823 n_chosen += 1;
3824 }
3825 }
3826
3827 if (n_chosen > max_results)
3828 error (_("Select no more than %d of the above"), max_results);
3829
3830 return n_chosen;
3831 }
3832
3833 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3834 on the function identified by SYM and BLOCK, and taking NARGS
3835 arguments. Update *EXPP as needed to hold more space. */
3836
3837 static void
3838 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3839 int oplen, struct symbol *sym,
3840 const struct block *block)
3841 {
3842 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3843 symbol, -oplen for operator being replaced). */
3844 struct expression *newexp = (struct expression *)
3845 xzalloc (sizeof (struct expression)
3846 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3847 struct expression *exp = *expp;
3848
3849 newexp->nelts = exp->nelts + 7 - oplen;
3850 newexp->language_defn = exp->language_defn;
3851 newexp->gdbarch = exp->gdbarch;
3852 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3853 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3854 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3855
3856 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3857 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3858
3859 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3860 newexp->elts[pc + 4].block = block;
3861 newexp->elts[pc + 5].symbol = sym;
3862
3863 *expp = newexp;
3864 xfree (exp);
3865 }
3866
3867 /* Type-class predicates */
3868
3869 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3870 or FLOAT). */
3871
3872 static int
3873 numeric_type_p (struct type *type)
3874 {
3875 if (type == NULL)
3876 return 0;
3877 else
3878 {
3879 switch (TYPE_CODE (type))
3880 {
3881 case TYPE_CODE_INT:
3882 case TYPE_CODE_FLT:
3883 return 1;
3884 case TYPE_CODE_RANGE:
3885 return (type == TYPE_TARGET_TYPE (type)
3886 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3887 default:
3888 return 0;
3889 }
3890 }
3891 }
3892
3893 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3894
3895 static int
3896 integer_type_p (struct type *type)
3897 {
3898 if (type == NULL)
3899 return 0;
3900 else
3901 {
3902 switch (TYPE_CODE (type))
3903 {
3904 case TYPE_CODE_INT:
3905 return 1;
3906 case TYPE_CODE_RANGE:
3907 return (type == TYPE_TARGET_TYPE (type)
3908 || integer_type_p (TYPE_TARGET_TYPE (type)));
3909 default:
3910 return 0;
3911 }
3912 }
3913 }
3914
3915 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3916
3917 static int
3918 scalar_type_p (struct type *type)
3919 {
3920 if (type == NULL)
3921 return 0;
3922 else
3923 {
3924 switch (TYPE_CODE (type))
3925 {
3926 case TYPE_CODE_INT:
3927 case TYPE_CODE_RANGE:
3928 case TYPE_CODE_ENUM:
3929 case TYPE_CODE_FLT:
3930 return 1;
3931 default:
3932 return 0;
3933 }
3934 }
3935 }
3936
3937 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3938
3939 static int
3940 discrete_type_p (struct type *type)
3941 {
3942 if (type == NULL)
3943 return 0;
3944 else
3945 {
3946 switch (TYPE_CODE (type))
3947 {
3948 case TYPE_CODE_INT:
3949 case TYPE_CODE_RANGE:
3950 case TYPE_CODE_ENUM:
3951 case TYPE_CODE_BOOL:
3952 return 1;
3953 default:
3954 return 0;
3955 }
3956 }
3957 }
3958
3959 /* Returns non-zero if OP with operands in the vector ARGS could be
3960 a user-defined function. Errs on the side of pre-defined operators
3961 (i.e., result 0). */
3962
3963 static int
3964 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3965 {
3966 struct type *type0 =
3967 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3968 struct type *type1 =
3969 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3970
3971 if (type0 == NULL)
3972 return 0;
3973
3974 switch (op)
3975 {
3976 default:
3977 return 0;
3978
3979 case BINOP_ADD:
3980 case BINOP_SUB:
3981 case BINOP_MUL:
3982 case BINOP_DIV:
3983 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3984
3985 case BINOP_REM:
3986 case BINOP_MOD:
3987 case BINOP_BITWISE_AND:
3988 case BINOP_BITWISE_IOR:
3989 case BINOP_BITWISE_XOR:
3990 return (!(integer_type_p (type0) && integer_type_p (type1)));
3991
3992 case BINOP_EQUAL:
3993 case BINOP_NOTEQUAL:
3994 case BINOP_LESS:
3995 case BINOP_GTR:
3996 case BINOP_LEQ:
3997 case BINOP_GEQ:
3998 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3999
4000 case BINOP_CONCAT:
4001 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4002
4003 case BINOP_EXP:
4004 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4005
4006 case UNOP_NEG:
4007 case UNOP_PLUS:
4008 case UNOP_LOGICAL_NOT:
4009 case UNOP_ABS:
4010 return (!numeric_type_p (type0));
4011
4012 }
4013 }
4014 \f
4015 /* Renaming */
4016
4017 /* NOTES:
4018
4019 1. In the following, we assume that a renaming type's name may
4020 have an ___XD suffix. It would be nice if this went away at some
4021 point.
4022 2. We handle both the (old) purely type-based representation of
4023 renamings and the (new) variable-based encoding. At some point,
4024 it is devoutly to be hoped that the former goes away
4025 (FIXME: hilfinger-2007-07-09).
4026 3. Subprogram renamings are not implemented, although the XRS
4027 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4028
4029 /* If SYM encodes a renaming,
4030
4031 <renaming> renames <renamed entity>,
4032
4033 sets *LEN to the length of the renamed entity's name,
4034 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4035 the string describing the subcomponent selected from the renamed
4036 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4037 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4038 are undefined). Otherwise, returns a value indicating the category
4039 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4040 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4041 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4042 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4043 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4044 may be NULL, in which case they are not assigned.
4045
4046 [Currently, however, GCC does not generate subprogram renamings.] */
4047
4048 enum ada_renaming_category
4049 ada_parse_renaming (struct symbol *sym,
4050 const char **renamed_entity, int *len,
4051 const char **renaming_expr)
4052 {
4053 enum ada_renaming_category kind;
4054 const char *info;
4055 const char *suffix;
4056
4057 if (sym == NULL)
4058 return ADA_NOT_RENAMING;
4059 switch (SYMBOL_CLASS (sym))
4060 {
4061 default:
4062 return ADA_NOT_RENAMING;
4063 case LOC_TYPEDEF:
4064 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4065 renamed_entity, len, renaming_expr);
4066 case LOC_LOCAL:
4067 case LOC_STATIC:
4068 case LOC_COMPUTED:
4069 case LOC_OPTIMIZED_OUT:
4070 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4071 if (info == NULL)
4072 return ADA_NOT_RENAMING;
4073 switch (info[5])
4074 {
4075 case '_':
4076 kind = ADA_OBJECT_RENAMING;
4077 info += 6;
4078 break;
4079 case 'E':
4080 kind = ADA_EXCEPTION_RENAMING;
4081 info += 7;
4082 break;
4083 case 'P':
4084 kind = ADA_PACKAGE_RENAMING;
4085 info += 7;
4086 break;
4087 case 'S':
4088 kind = ADA_SUBPROGRAM_RENAMING;
4089 info += 7;
4090 break;
4091 default:
4092 return ADA_NOT_RENAMING;
4093 }
4094 }
4095
4096 if (renamed_entity != NULL)
4097 *renamed_entity = info;
4098 suffix = strstr (info, "___XE");
4099 if (suffix == NULL || suffix == info)
4100 return ADA_NOT_RENAMING;
4101 if (len != NULL)
4102 *len = strlen (info) - strlen (suffix);
4103 suffix += 5;
4104 if (renaming_expr != NULL)
4105 *renaming_expr = suffix;
4106 return kind;
4107 }
4108
4109 /* Assuming TYPE encodes a renaming according to the old encoding in
4110 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4111 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4112 ADA_NOT_RENAMING otherwise. */
4113 static enum ada_renaming_category
4114 parse_old_style_renaming (struct type *type,
4115 const char **renamed_entity, int *len,
4116 const char **renaming_expr)
4117 {
4118 enum ada_renaming_category kind;
4119 const char *name;
4120 const char *info;
4121 const char *suffix;
4122
4123 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4124 || TYPE_NFIELDS (type) != 1)
4125 return ADA_NOT_RENAMING;
4126
4127 name = type_name_no_tag (type);
4128 if (name == NULL)
4129 return ADA_NOT_RENAMING;
4130
4131 name = strstr (name, "___XR");
4132 if (name == NULL)
4133 return ADA_NOT_RENAMING;
4134 switch (name[5])
4135 {
4136 case '\0':
4137 case '_':
4138 kind = ADA_OBJECT_RENAMING;
4139 break;
4140 case 'E':
4141 kind = ADA_EXCEPTION_RENAMING;
4142 break;
4143 case 'P':
4144 kind = ADA_PACKAGE_RENAMING;
4145 break;
4146 case 'S':
4147 kind = ADA_SUBPROGRAM_RENAMING;
4148 break;
4149 default:
4150 return ADA_NOT_RENAMING;
4151 }
4152
4153 info = TYPE_FIELD_NAME (type, 0);
4154 if (info == NULL)
4155 return ADA_NOT_RENAMING;
4156 if (renamed_entity != NULL)
4157 *renamed_entity = info;
4158 suffix = strstr (info, "___XE");
4159 if (renaming_expr != NULL)
4160 *renaming_expr = suffix + 5;
4161 if (suffix == NULL || suffix == info)
4162 return ADA_NOT_RENAMING;
4163 if (len != NULL)
4164 *len = suffix - info;
4165 return kind;
4166 }
4167
4168 /* Compute the value of the given RENAMING_SYM, which is expected to
4169 be a symbol encoding a renaming expression. BLOCK is the block
4170 used to evaluate the renaming. */
4171
4172 static struct value *
4173 ada_read_renaming_var_value (struct symbol *renaming_sym,
4174 const struct block *block)
4175 {
4176 const char *sym_name;
4177 struct expression *expr;
4178 struct value *value;
4179 struct cleanup *old_chain = NULL;
4180
4181 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4182 expr = parse_exp_1 (&sym_name, 0, block, 0);
4183 old_chain = make_cleanup (free_current_contents, &expr);
4184 value = evaluate_expression (expr);
4185
4186 do_cleanups (old_chain);
4187 return value;
4188 }
4189 \f
4190
4191 /* Evaluation: Function Calls */
4192
4193 /* Return an lvalue containing the value VAL. This is the identity on
4194 lvalues, and otherwise has the side-effect of allocating memory
4195 in the inferior where a copy of the value contents is copied. */
4196
4197 static struct value *
4198 ensure_lval (struct value *val)
4199 {
4200 if (VALUE_LVAL (val) == not_lval
4201 || VALUE_LVAL (val) == lval_internalvar)
4202 {
4203 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4204 const CORE_ADDR addr =
4205 value_as_long (value_allocate_space_in_inferior (len));
4206
4207 set_value_address (val, addr);
4208 VALUE_LVAL (val) = lval_memory;
4209 write_memory (addr, value_contents (val), len);
4210 }
4211
4212 return val;
4213 }
4214
4215 /* Return the value ACTUAL, converted to be an appropriate value for a
4216 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4217 allocating any necessary descriptors (fat pointers), or copies of
4218 values not residing in memory, updating it as needed. */
4219
4220 struct value *
4221 ada_convert_actual (struct value *actual, struct type *formal_type0)
4222 {
4223 struct type *actual_type = ada_check_typedef (value_type (actual));
4224 struct type *formal_type = ada_check_typedef (formal_type0);
4225 struct type *formal_target =
4226 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4227 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4228 struct type *actual_target =
4229 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4230 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4231
4232 if (ada_is_array_descriptor_type (formal_target)
4233 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4234 return make_array_descriptor (formal_type, actual);
4235 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4236 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4237 {
4238 struct value *result;
4239
4240 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4241 && ada_is_array_descriptor_type (actual_target))
4242 result = desc_data (actual);
4243 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4244 {
4245 if (VALUE_LVAL (actual) != lval_memory)
4246 {
4247 struct value *val;
4248
4249 actual_type = ada_check_typedef (value_type (actual));
4250 val = allocate_value (actual_type);
4251 memcpy ((char *) value_contents_raw (val),
4252 (char *) value_contents (actual),
4253 TYPE_LENGTH (actual_type));
4254 actual = ensure_lval (val);
4255 }
4256 result = value_addr (actual);
4257 }
4258 else
4259 return actual;
4260 return value_cast_pointers (formal_type, result, 0);
4261 }
4262 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4263 return ada_value_ind (actual);
4264
4265 return actual;
4266 }
4267
4268 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4269 type TYPE. This is usually an inefficient no-op except on some targets
4270 (such as AVR) where the representation of a pointer and an address
4271 differs. */
4272
4273 static CORE_ADDR
4274 value_pointer (struct value *value, struct type *type)
4275 {
4276 struct gdbarch *gdbarch = get_type_arch (type);
4277 unsigned len = TYPE_LENGTH (type);
4278 gdb_byte *buf = alloca (len);
4279 CORE_ADDR addr;
4280
4281 addr = value_address (value);
4282 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4283 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4284 return addr;
4285 }
4286
4287
4288 /* Push a descriptor of type TYPE for array value ARR on the stack at
4289 *SP, updating *SP to reflect the new descriptor. Return either
4290 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4291 to-descriptor type rather than a descriptor type), a struct value *
4292 representing a pointer to this descriptor. */
4293
4294 static struct value *
4295 make_array_descriptor (struct type *type, struct value *arr)
4296 {
4297 struct type *bounds_type = desc_bounds_type (type);
4298 struct type *desc_type = desc_base_type (type);
4299 struct value *descriptor = allocate_value (desc_type);
4300 struct value *bounds = allocate_value (bounds_type);
4301 int i;
4302
4303 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4304 i > 0; i -= 1)
4305 {
4306 modify_field (value_type (bounds), value_contents_writeable (bounds),
4307 ada_array_bound (arr, i, 0),
4308 desc_bound_bitpos (bounds_type, i, 0),
4309 desc_bound_bitsize (bounds_type, i, 0));
4310 modify_field (value_type (bounds), value_contents_writeable (bounds),
4311 ada_array_bound (arr, i, 1),
4312 desc_bound_bitpos (bounds_type, i, 1),
4313 desc_bound_bitsize (bounds_type, i, 1));
4314 }
4315
4316 bounds = ensure_lval (bounds);
4317
4318 modify_field (value_type (descriptor),
4319 value_contents_writeable (descriptor),
4320 value_pointer (ensure_lval (arr),
4321 TYPE_FIELD_TYPE (desc_type, 0)),
4322 fat_pntr_data_bitpos (desc_type),
4323 fat_pntr_data_bitsize (desc_type));
4324
4325 modify_field (value_type (descriptor),
4326 value_contents_writeable (descriptor),
4327 value_pointer (bounds,
4328 TYPE_FIELD_TYPE (desc_type, 1)),
4329 fat_pntr_bounds_bitpos (desc_type),
4330 fat_pntr_bounds_bitsize (desc_type));
4331
4332 descriptor = ensure_lval (descriptor);
4333
4334 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4335 return value_addr (descriptor);
4336 else
4337 return descriptor;
4338 }
4339 \f
4340 /* Symbol Cache Module */
4341
4342 /* Performance measurements made as of 2010-01-15 indicate that
4343 this cache does bring some noticeable improvements. Depending
4344 on the type of entity being printed, the cache can make it as much
4345 as an order of magnitude faster than without it.
4346
4347 The descriptive type DWARF extension has significantly reduced
4348 the need for this cache, at least when DWARF is being used. However,
4349 even in this case, some expensive name-based symbol searches are still
4350 sometimes necessary - to find an XVZ variable, mostly. */
4351
4352 /* Initialize the contents of SYM_CACHE. */
4353
4354 static void
4355 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4356 {
4357 obstack_init (&sym_cache->cache_space);
4358 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4359 }
4360
4361 /* Free the memory used by SYM_CACHE. */
4362
4363 static void
4364 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4365 {
4366 obstack_free (&sym_cache->cache_space, NULL);
4367 xfree (sym_cache);
4368 }
4369
4370 /* Return the symbol cache associated to the given program space PSPACE.
4371 If not allocated for this PSPACE yet, allocate and initialize one. */
4372
4373 static struct ada_symbol_cache *
4374 ada_get_symbol_cache (struct program_space *pspace)
4375 {
4376 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4377 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4378
4379 if (sym_cache == NULL)
4380 {
4381 sym_cache = XCNEW (struct ada_symbol_cache);
4382 ada_init_symbol_cache (sym_cache);
4383 }
4384
4385 return sym_cache;
4386 }
4387
4388 /* Clear all entries from the symbol cache. */
4389
4390 static void
4391 ada_clear_symbol_cache (void)
4392 {
4393 struct ada_symbol_cache *sym_cache
4394 = ada_get_symbol_cache (current_program_space);
4395
4396 obstack_free (&sym_cache->cache_space, NULL);
4397 ada_init_symbol_cache (sym_cache);
4398 }
4399
4400 /* Search our cache for an entry matching NAME and NAMESPACE.
4401 Return it if found, or NULL otherwise. */
4402
4403 static struct cache_entry **
4404 find_entry (const char *name, domain_enum namespace)
4405 {
4406 struct ada_symbol_cache *sym_cache
4407 = ada_get_symbol_cache (current_program_space);
4408 int h = msymbol_hash (name) % HASH_SIZE;
4409 struct cache_entry **e;
4410
4411 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4412 {
4413 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4414 return e;
4415 }
4416 return NULL;
4417 }
4418
4419 /* Search the symbol cache for an entry matching NAME and NAMESPACE.
4420 Return 1 if found, 0 otherwise.
4421
4422 If an entry was found and SYM is not NULL, set *SYM to the entry's
4423 SYM. Same principle for BLOCK if not NULL. */
4424
4425 static int
4426 lookup_cached_symbol (const char *name, domain_enum namespace,
4427 struct symbol **sym, const struct block **block)
4428 {
4429 struct cache_entry **e = find_entry (name, namespace);
4430
4431 if (e == NULL)
4432 return 0;
4433 if (sym != NULL)
4434 *sym = (*e)->sym;
4435 if (block != NULL)
4436 *block = (*e)->block;
4437 return 1;
4438 }
4439
4440 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4441 in domain NAMESPACE, save this result in our symbol cache. */
4442
4443 static void
4444 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4445 const struct block *block)
4446 {
4447 struct ada_symbol_cache *sym_cache
4448 = ada_get_symbol_cache (current_program_space);
4449 int h;
4450 char *copy;
4451 struct cache_entry *e;
4452
4453 /* If the symbol is a local symbol, then do not cache it, as a search
4454 for that symbol depends on the context. To determine whether
4455 the symbol is local or not, we check the block where we found it
4456 against the global and static blocks of its associated symtab. */
4457 if (sym
4458 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4459 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4460 return;
4461
4462 h = msymbol_hash (name) % HASH_SIZE;
4463 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4464 sizeof (*e));
4465 e->next = sym_cache->root[h];
4466 sym_cache->root[h] = e;
4467 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4468 strcpy (copy, name);
4469 e->sym = sym;
4470 e->namespace = namespace;
4471 e->block = block;
4472 }
4473 \f
4474 /* Symbol Lookup */
4475
4476 /* Return nonzero if wild matching should be used when searching for
4477 all symbols matching LOOKUP_NAME.
4478
4479 LOOKUP_NAME is expected to be a symbol name after transformation
4480 for Ada lookups (see ada_name_for_lookup). */
4481
4482 static int
4483 should_use_wild_match (const char *lookup_name)
4484 {
4485 return (strstr (lookup_name, "__") == NULL);
4486 }
4487
4488 /* Return the result of a standard (literal, C-like) lookup of NAME in
4489 given DOMAIN, visible from lexical block BLOCK. */
4490
4491 static struct symbol *
4492 standard_lookup (const char *name, const struct block *block,
4493 domain_enum domain)
4494 {
4495 /* Initialize it just to avoid a GCC false warning. */
4496 struct symbol *sym = NULL;
4497
4498 if (lookup_cached_symbol (name, domain, &sym, NULL))
4499 return sym;
4500 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4501 cache_symbol (name, domain, sym, block_found);
4502 return sym;
4503 }
4504
4505
4506 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4507 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4508 since they contend in overloading in the same way. */
4509 static int
4510 is_nonfunction (struct ada_symbol_info syms[], int n)
4511 {
4512 int i;
4513
4514 for (i = 0; i < n; i += 1)
4515 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4516 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4517 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4518 return 1;
4519
4520 return 0;
4521 }
4522
4523 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4524 struct types. Otherwise, they may not. */
4525
4526 static int
4527 equiv_types (struct type *type0, struct type *type1)
4528 {
4529 if (type0 == type1)
4530 return 1;
4531 if (type0 == NULL || type1 == NULL
4532 || TYPE_CODE (type0) != TYPE_CODE (type1))
4533 return 0;
4534 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4535 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4536 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4537 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4538 return 1;
4539
4540 return 0;
4541 }
4542
4543 /* True iff SYM0 represents the same entity as SYM1, or one that is
4544 no more defined than that of SYM1. */
4545
4546 static int
4547 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4548 {
4549 if (sym0 == sym1)
4550 return 1;
4551 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4552 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4553 return 0;
4554
4555 switch (SYMBOL_CLASS (sym0))
4556 {
4557 case LOC_UNDEF:
4558 return 1;
4559 case LOC_TYPEDEF:
4560 {
4561 struct type *type0 = SYMBOL_TYPE (sym0);
4562 struct type *type1 = SYMBOL_TYPE (sym1);
4563 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4564 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4565 int len0 = strlen (name0);
4566
4567 return
4568 TYPE_CODE (type0) == TYPE_CODE (type1)
4569 && (equiv_types (type0, type1)
4570 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4571 && strncmp (name1 + len0, "___XV", 5) == 0));
4572 }
4573 case LOC_CONST:
4574 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4575 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4576 default:
4577 return 0;
4578 }
4579 }
4580
4581 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4582 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4583
4584 static void
4585 add_defn_to_vec (struct obstack *obstackp,
4586 struct symbol *sym,
4587 const struct block *block)
4588 {
4589 int i;
4590 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4591
4592 /* Do not try to complete stub types, as the debugger is probably
4593 already scanning all symbols matching a certain name at the
4594 time when this function is called. Trying to replace the stub
4595 type by its associated full type will cause us to restart a scan
4596 which may lead to an infinite recursion. Instead, the client
4597 collecting the matching symbols will end up collecting several
4598 matches, with at least one of them complete. It can then filter
4599 out the stub ones if needed. */
4600
4601 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4602 {
4603 if (lesseq_defined_than (sym, prevDefns[i].sym))
4604 return;
4605 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4606 {
4607 prevDefns[i].sym = sym;
4608 prevDefns[i].block = block;
4609 return;
4610 }
4611 }
4612
4613 {
4614 struct ada_symbol_info info;
4615
4616 info.sym = sym;
4617 info.block = block;
4618 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4619 }
4620 }
4621
4622 /* Number of ada_symbol_info structures currently collected in
4623 current vector in *OBSTACKP. */
4624
4625 static int
4626 num_defns_collected (struct obstack *obstackp)
4627 {
4628 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4629 }
4630
4631 /* Vector of ada_symbol_info structures currently collected in current
4632 vector in *OBSTACKP. If FINISH, close off the vector and return
4633 its final address. */
4634
4635 static struct ada_symbol_info *
4636 defns_collected (struct obstack *obstackp, int finish)
4637 {
4638 if (finish)
4639 return obstack_finish (obstackp);
4640 else
4641 return (struct ada_symbol_info *) obstack_base (obstackp);
4642 }
4643
4644 /* Return a bound minimal symbol matching NAME according to Ada
4645 decoding rules. Returns an invalid symbol if there is no such
4646 minimal symbol. Names prefixed with "standard__" are handled
4647 specially: "standard__" is first stripped off, and only static and
4648 global symbols are searched. */
4649
4650 struct bound_minimal_symbol
4651 ada_lookup_simple_minsym (const char *name)
4652 {
4653 struct bound_minimal_symbol result;
4654 struct objfile *objfile;
4655 struct minimal_symbol *msymbol;
4656 const int wild_match_p = should_use_wild_match (name);
4657
4658 memset (&result, 0, sizeof (result));
4659
4660 /* Special case: If the user specifies a symbol name inside package
4661 Standard, do a non-wild matching of the symbol name without
4662 the "standard__" prefix. This was primarily introduced in order
4663 to allow the user to specifically access the standard exceptions
4664 using, for instance, Standard.Constraint_Error when Constraint_Error
4665 is ambiguous (due to the user defining its own Constraint_Error
4666 entity inside its program). */
4667 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4668 name += sizeof ("standard__") - 1;
4669
4670 ALL_MSYMBOLS (objfile, msymbol)
4671 {
4672 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4673 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4674 {
4675 result.minsym = msymbol;
4676 result.objfile = objfile;
4677 break;
4678 }
4679 }
4680
4681 return result;
4682 }
4683
4684 /* For all subprograms that statically enclose the subprogram of the
4685 selected frame, add symbols matching identifier NAME in DOMAIN
4686 and their blocks to the list of data in OBSTACKP, as for
4687 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4688 with a wildcard prefix. */
4689
4690 static void
4691 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4692 const char *name, domain_enum namespace,
4693 int wild_match_p)
4694 {
4695 }
4696
4697 /* True if TYPE is definitely an artificial type supplied to a symbol
4698 for which no debugging information was given in the symbol file. */
4699
4700 static int
4701 is_nondebugging_type (struct type *type)
4702 {
4703 const char *name = ada_type_name (type);
4704
4705 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4706 }
4707
4708 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4709 that are deemed "identical" for practical purposes.
4710
4711 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4712 types and that their number of enumerals is identical (in other
4713 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4714
4715 static int
4716 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4717 {
4718 int i;
4719
4720 /* The heuristic we use here is fairly conservative. We consider
4721 that 2 enumerate types are identical if they have the same
4722 number of enumerals and that all enumerals have the same
4723 underlying value and name. */
4724
4725 /* All enums in the type should have an identical underlying value. */
4726 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4727 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4728 return 0;
4729
4730 /* All enumerals should also have the same name (modulo any numerical
4731 suffix). */
4732 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4733 {
4734 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4735 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4736 int len_1 = strlen (name_1);
4737 int len_2 = strlen (name_2);
4738
4739 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4740 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4741 if (len_1 != len_2
4742 || strncmp (TYPE_FIELD_NAME (type1, i),
4743 TYPE_FIELD_NAME (type2, i),
4744 len_1) != 0)
4745 return 0;
4746 }
4747
4748 return 1;
4749 }
4750
4751 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4752 that are deemed "identical" for practical purposes. Sometimes,
4753 enumerals are not strictly identical, but their types are so similar
4754 that they can be considered identical.
4755
4756 For instance, consider the following code:
4757
4758 type Color is (Black, Red, Green, Blue, White);
4759 type RGB_Color is new Color range Red .. Blue;
4760
4761 Type RGB_Color is a subrange of an implicit type which is a copy
4762 of type Color. If we call that implicit type RGB_ColorB ("B" is
4763 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4764 As a result, when an expression references any of the enumeral
4765 by name (Eg. "print green"), the expression is technically
4766 ambiguous and the user should be asked to disambiguate. But
4767 doing so would only hinder the user, since it wouldn't matter
4768 what choice he makes, the outcome would always be the same.
4769 So, for practical purposes, we consider them as the same. */
4770
4771 static int
4772 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4773 {
4774 int i;
4775
4776 /* Before performing a thorough comparison check of each type,
4777 we perform a series of inexpensive checks. We expect that these
4778 checks will quickly fail in the vast majority of cases, and thus
4779 help prevent the unnecessary use of a more expensive comparison.
4780 Said comparison also expects us to make some of these checks
4781 (see ada_identical_enum_types_p). */
4782
4783 /* Quick check: All symbols should have an enum type. */
4784 for (i = 0; i < nsyms; i++)
4785 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4786 return 0;
4787
4788 /* Quick check: They should all have the same value. */
4789 for (i = 1; i < nsyms; i++)
4790 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4791 return 0;
4792
4793 /* Quick check: They should all have the same number of enumerals. */
4794 for (i = 1; i < nsyms; i++)
4795 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4796 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4797 return 0;
4798
4799 /* All the sanity checks passed, so we might have a set of
4800 identical enumeration types. Perform a more complete
4801 comparison of the type of each symbol. */
4802 for (i = 1; i < nsyms; i++)
4803 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4804 SYMBOL_TYPE (syms[0].sym)))
4805 return 0;
4806
4807 return 1;
4808 }
4809
4810 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4811 duplicate other symbols in the list (The only case I know of where
4812 this happens is when object files containing stabs-in-ecoff are
4813 linked with files containing ordinary ecoff debugging symbols (or no
4814 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4815 Returns the number of items in the modified list. */
4816
4817 static int
4818 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4819 {
4820 int i, j;
4821
4822 /* We should never be called with less than 2 symbols, as there
4823 cannot be any extra symbol in that case. But it's easy to
4824 handle, since we have nothing to do in that case. */
4825 if (nsyms < 2)
4826 return nsyms;
4827
4828 i = 0;
4829 while (i < nsyms)
4830 {
4831 int remove_p = 0;
4832
4833 /* If two symbols have the same name and one of them is a stub type,
4834 the get rid of the stub. */
4835
4836 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4837 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4838 {
4839 for (j = 0; j < nsyms; j++)
4840 {
4841 if (j != i
4842 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4843 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4844 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4845 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4846 remove_p = 1;
4847 }
4848 }
4849
4850 /* Two symbols with the same name, same class and same address
4851 should be identical. */
4852
4853 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4854 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4855 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4856 {
4857 for (j = 0; j < nsyms; j += 1)
4858 {
4859 if (i != j
4860 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4861 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4862 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4863 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4864 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4865 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4866 remove_p = 1;
4867 }
4868 }
4869
4870 if (remove_p)
4871 {
4872 for (j = i + 1; j < nsyms; j += 1)
4873 syms[j - 1] = syms[j];
4874 nsyms -= 1;
4875 }
4876
4877 i += 1;
4878 }
4879
4880 /* If all the remaining symbols are identical enumerals, then
4881 just keep the first one and discard the rest.
4882
4883 Unlike what we did previously, we do not discard any entry
4884 unless they are ALL identical. This is because the symbol
4885 comparison is not a strict comparison, but rather a practical
4886 comparison. If all symbols are considered identical, then
4887 we can just go ahead and use the first one and discard the rest.
4888 But if we cannot reduce the list to a single element, we have
4889 to ask the user to disambiguate anyways. And if we have to
4890 present a multiple-choice menu, it's less confusing if the list
4891 isn't missing some choices that were identical and yet distinct. */
4892 if (symbols_are_identical_enums (syms, nsyms))
4893 nsyms = 1;
4894
4895 return nsyms;
4896 }
4897
4898 /* Given a type that corresponds to a renaming entity, use the type name
4899 to extract the scope (package name or function name, fully qualified,
4900 and following the GNAT encoding convention) where this renaming has been
4901 defined. The string returned needs to be deallocated after use. */
4902
4903 static char *
4904 xget_renaming_scope (struct type *renaming_type)
4905 {
4906 /* The renaming types adhere to the following convention:
4907 <scope>__<rename>___<XR extension>.
4908 So, to extract the scope, we search for the "___XR" extension,
4909 and then backtrack until we find the first "__". */
4910
4911 const char *name = type_name_no_tag (renaming_type);
4912 char *suffix = strstr (name, "___XR");
4913 char *last;
4914 int scope_len;
4915 char *scope;
4916
4917 /* Now, backtrack a bit until we find the first "__". Start looking
4918 at suffix - 3, as the <rename> part is at least one character long. */
4919
4920 for (last = suffix - 3; last > name; last--)
4921 if (last[0] == '_' && last[1] == '_')
4922 break;
4923
4924 /* Make a copy of scope and return it. */
4925
4926 scope_len = last - name;
4927 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4928
4929 strncpy (scope, name, scope_len);
4930 scope[scope_len] = '\0';
4931
4932 return scope;
4933 }
4934
4935 /* Return nonzero if NAME corresponds to a package name. */
4936
4937 static int
4938 is_package_name (const char *name)
4939 {
4940 /* Here, We take advantage of the fact that no symbols are generated
4941 for packages, while symbols are generated for each function.
4942 So the condition for NAME represent a package becomes equivalent
4943 to NAME not existing in our list of symbols. There is only one
4944 small complication with library-level functions (see below). */
4945
4946 char *fun_name;
4947
4948 /* If it is a function that has not been defined at library level,
4949 then we should be able to look it up in the symbols. */
4950 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4951 return 0;
4952
4953 /* Library-level function names start with "_ada_". See if function
4954 "_ada_" followed by NAME can be found. */
4955
4956 /* Do a quick check that NAME does not contain "__", since library-level
4957 functions names cannot contain "__" in them. */
4958 if (strstr (name, "__") != NULL)
4959 return 0;
4960
4961 fun_name = xstrprintf ("_ada_%s", name);
4962
4963 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4964 }
4965
4966 /* Return nonzero if SYM corresponds to a renaming entity that is
4967 not visible from FUNCTION_NAME. */
4968
4969 static int
4970 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4971 {
4972 char *scope;
4973 struct cleanup *old_chain;
4974
4975 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4976 return 0;
4977
4978 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4979 old_chain = make_cleanup (xfree, scope);
4980
4981 /* If the rename has been defined in a package, then it is visible. */
4982 if (is_package_name (scope))
4983 {
4984 do_cleanups (old_chain);
4985 return 0;
4986 }
4987
4988 /* Check that the rename is in the current function scope by checking
4989 that its name starts with SCOPE. */
4990
4991 /* If the function name starts with "_ada_", it means that it is
4992 a library-level function. Strip this prefix before doing the
4993 comparison, as the encoding for the renaming does not contain
4994 this prefix. */
4995 if (strncmp (function_name, "_ada_", 5) == 0)
4996 function_name += 5;
4997
4998 {
4999 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5000
5001 do_cleanups (old_chain);
5002 return is_invisible;
5003 }
5004 }
5005
5006 /* Remove entries from SYMS that corresponds to a renaming entity that
5007 is not visible from the function associated with CURRENT_BLOCK or
5008 that is superfluous due to the presence of more specific renaming
5009 information. Places surviving symbols in the initial entries of
5010 SYMS and returns the number of surviving symbols.
5011
5012 Rationale:
5013 First, in cases where an object renaming is implemented as a
5014 reference variable, GNAT may produce both the actual reference
5015 variable and the renaming encoding. In this case, we discard the
5016 latter.
5017
5018 Second, GNAT emits a type following a specified encoding for each renaming
5019 entity. Unfortunately, STABS currently does not support the definition
5020 of types that are local to a given lexical block, so all renamings types
5021 are emitted at library level. As a consequence, if an application
5022 contains two renaming entities using the same name, and a user tries to
5023 print the value of one of these entities, the result of the ada symbol
5024 lookup will also contain the wrong renaming type.
5025
5026 This function partially covers for this limitation by attempting to
5027 remove from the SYMS list renaming symbols that should be visible
5028 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5029 method with the current information available. The implementation
5030 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5031
5032 - When the user tries to print a rename in a function while there
5033 is another rename entity defined in a package: Normally, the
5034 rename in the function has precedence over the rename in the
5035 package, so the latter should be removed from the list. This is
5036 currently not the case.
5037
5038 - This function will incorrectly remove valid renames if
5039 the CURRENT_BLOCK corresponds to a function which symbol name
5040 has been changed by an "Export" pragma. As a consequence,
5041 the user will be unable to print such rename entities. */
5042
5043 static int
5044 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5045 int nsyms, const struct block *current_block)
5046 {
5047 struct symbol *current_function;
5048 const char *current_function_name;
5049 int i;
5050 int is_new_style_renaming;
5051
5052 /* If there is both a renaming foo___XR... encoded as a variable and
5053 a simple variable foo in the same block, discard the latter.
5054 First, zero out such symbols, then compress. */
5055 is_new_style_renaming = 0;
5056 for (i = 0; i < nsyms; i += 1)
5057 {
5058 struct symbol *sym = syms[i].sym;
5059 const struct block *block = syms[i].block;
5060 const char *name;
5061 const char *suffix;
5062
5063 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5064 continue;
5065 name = SYMBOL_LINKAGE_NAME (sym);
5066 suffix = strstr (name, "___XR");
5067
5068 if (suffix != NULL)
5069 {
5070 int name_len = suffix - name;
5071 int j;
5072
5073 is_new_style_renaming = 1;
5074 for (j = 0; j < nsyms; j += 1)
5075 if (i != j && syms[j].sym != NULL
5076 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5077 name_len) == 0
5078 && block == syms[j].block)
5079 syms[j].sym = NULL;
5080 }
5081 }
5082 if (is_new_style_renaming)
5083 {
5084 int j, k;
5085
5086 for (j = k = 0; j < nsyms; j += 1)
5087 if (syms[j].sym != NULL)
5088 {
5089 syms[k] = syms[j];
5090 k += 1;
5091 }
5092 return k;
5093 }
5094
5095 /* Extract the function name associated to CURRENT_BLOCK.
5096 Abort if unable to do so. */
5097
5098 if (current_block == NULL)
5099 return nsyms;
5100
5101 current_function = block_linkage_function (current_block);
5102 if (current_function == NULL)
5103 return nsyms;
5104
5105 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5106 if (current_function_name == NULL)
5107 return nsyms;
5108
5109 /* Check each of the symbols, and remove it from the list if it is
5110 a type corresponding to a renaming that is out of the scope of
5111 the current block. */
5112
5113 i = 0;
5114 while (i < nsyms)
5115 {
5116 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5117 == ADA_OBJECT_RENAMING
5118 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5119 {
5120 int j;
5121
5122 for (j = i + 1; j < nsyms; j += 1)
5123 syms[j - 1] = syms[j];
5124 nsyms -= 1;
5125 }
5126 else
5127 i += 1;
5128 }
5129
5130 return nsyms;
5131 }
5132
5133 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5134 whose name and domain match NAME and DOMAIN respectively.
5135 If no match was found, then extend the search to "enclosing"
5136 routines (in other words, if we're inside a nested function,
5137 search the symbols defined inside the enclosing functions).
5138 If WILD_MATCH_P is nonzero, perform the naming matching in
5139 "wild" mode (see function "wild_match" for more info).
5140
5141 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5142
5143 static void
5144 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5145 const struct block *block, domain_enum domain,
5146 int wild_match_p)
5147 {
5148 int block_depth = 0;
5149
5150 while (block != NULL)
5151 {
5152 block_depth += 1;
5153 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5154 wild_match_p);
5155
5156 /* If we found a non-function match, assume that's the one. */
5157 if (is_nonfunction (defns_collected (obstackp, 0),
5158 num_defns_collected (obstackp)))
5159 return;
5160
5161 block = BLOCK_SUPERBLOCK (block);
5162 }
5163
5164 /* If no luck so far, try to find NAME as a local symbol in some lexically
5165 enclosing subprogram. */
5166 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5167 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5168 }
5169
5170 /* An object of this type is used as the user_data argument when
5171 calling the map_matching_symbols method. */
5172
5173 struct match_data
5174 {
5175 struct objfile *objfile;
5176 struct obstack *obstackp;
5177 struct symbol *arg_sym;
5178 int found_sym;
5179 };
5180
5181 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5182 to a list of symbols. DATA0 is a pointer to a struct match_data *
5183 containing the obstack that collects the symbol list, the file that SYM
5184 must come from, a flag indicating whether a non-argument symbol has
5185 been found in the current block, and the last argument symbol
5186 passed in SYM within the current block (if any). When SYM is null,
5187 marking the end of a block, the argument symbol is added if no
5188 other has been found. */
5189
5190 static int
5191 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5192 {
5193 struct match_data *data = (struct match_data *) data0;
5194
5195 if (sym == NULL)
5196 {
5197 if (!data->found_sym && data->arg_sym != NULL)
5198 add_defn_to_vec (data->obstackp,
5199 fixup_symbol_section (data->arg_sym, data->objfile),
5200 block);
5201 data->found_sym = 0;
5202 data->arg_sym = NULL;
5203 }
5204 else
5205 {
5206 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5207 return 0;
5208 else if (SYMBOL_IS_ARGUMENT (sym))
5209 data->arg_sym = sym;
5210 else
5211 {
5212 data->found_sym = 1;
5213 add_defn_to_vec (data->obstackp,
5214 fixup_symbol_section (sym, data->objfile),
5215 block);
5216 }
5217 }
5218 return 0;
5219 }
5220
5221 /* Implements compare_names, but only applying the comparision using
5222 the given CASING. */
5223
5224 static int
5225 compare_names_with_case (const char *string1, const char *string2,
5226 enum case_sensitivity casing)
5227 {
5228 while (*string1 != '\0' && *string2 != '\0')
5229 {
5230 char c1, c2;
5231
5232 if (isspace (*string1) || isspace (*string2))
5233 return strcmp_iw_ordered (string1, string2);
5234
5235 if (casing == case_sensitive_off)
5236 {
5237 c1 = tolower (*string1);
5238 c2 = tolower (*string2);
5239 }
5240 else
5241 {
5242 c1 = *string1;
5243 c2 = *string2;
5244 }
5245 if (c1 != c2)
5246 break;
5247
5248 string1 += 1;
5249 string2 += 1;
5250 }
5251
5252 switch (*string1)
5253 {
5254 case '(':
5255 return strcmp_iw_ordered (string1, string2);
5256 case '_':
5257 if (*string2 == '\0')
5258 {
5259 if (is_name_suffix (string1))
5260 return 0;
5261 else
5262 return 1;
5263 }
5264 /* FALLTHROUGH */
5265 default:
5266 if (*string2 == '(')
5267 return strcmp_iw_ordered (string1, string2);
5268 else
5269 {
5270 if (casing == case_sensitive_off)
5271 return tolower (*string1) - tolower (*string2);
5272 else
5273 return *string1 - *string2;
5274 }
5275 }
5276 }
5277
5278 /* Compare STRING1 to STRING2, with results as for strcmp.
5279 Compatible with strcmp_iw_ordered in that...
5280
5281 strcmp_iw_ordered (STRING1, STRING2) <= 0
5282
5283 ... implies...
5284
5285 compare_names (STRING1, STRING2) <= 0
5286
5287 (they may differ as to what symbols compare equal). */
5288
5289 static int
5290 compare_names (const char *string1, const char *string2)
5291 {
5292 int result;
5293
5294 /* Similar to what strcmp_iw_ordered does, we need to perform
5295 a case-insensitive comparison first, and only resort to
5296 a second, case-sensitive, comparison if the first one was
5297 not sufficient to differentiate the two strings. */
5298
5299 result = compare_names_with_case (string1, string2, case_sensitive_off);
5300 if (result == 0)
5301 result = compare_names_with_case (string1, string2, case_sensitive_on);
5302
5303 return result;
5304 }
5305
5306 /* Add to OBSTACKP all non-local symbols whose name and domain match
5307 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5308 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5309
5310 static void
5311 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5312 domain_enum domain, int global,
5313 int is_wild_match)
5314 {
5315 struct objfile *objfile;
5316 struct match_data data;
5317
5318 memset (&data, 0, sizeof data);
5319 data.obstackp = obstackp;
5320
5321 ALL_OBJFILES (objfile)
5322 {
5323 data.objfile = objfile;
5324
5325 if (is_wild_match)
5326 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5327 aux_add_nonlocal_symbols, &data,
5328 wild_match, NULL);
5329 else
5330 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5331 aux_add_nonlocal_symbols, &data,
5332 full_match, compare_names);
5333 }
5334
5335 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5336 {
5337 ALL_OBJFILES (objfile)
5338 {
5339 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5340 strcpy (name1, "_ada_");
5341 strcpy (name1 + sizeof ("_ada_") - 1, name);
5342 data.objfile = objfile;
5343 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5344 global,
5345 aux_add_nonlocal_symbols,
5346 &data,
5347 full_match, compare_names);
5348 }
5349 }
5350 }
5351
5352 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5353 non-zero, enclosing scope and in global scopes, returning the number of
5354 matches.
5355 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5356 indicating the symbols found and the blocks and symbol tables (if
5357 any) in which they were found. This vector is transient---good only to
5358 the next call of ada_lookup_symbol_list.
5359
5360 When full_search is non-zero, any non-function/non-enumeral
5361 symbol match within the nest of blocks whose innermost member is BLOCK0,
5362 is the one match returned (no other matches in that or
5363 enclosing blocks is returned). If there are any matches in or
5364 surrounding BLOCK0, then these alone are returned.
5365
5366 Names prefixed with "standard__" are handled specially: "standard__"
5367 is first stripped off, and only static and global symbols are searched. */
5368
5369 static int
5370 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5371 domain_enum namespace,
5372 struct ada_symbol_info **results,
5373 int full_search)
5374 {
5375 struct symbol *sym;
5376 const struct block *block;
5377 const char *name;
5378 const int wild_match_p = should_use_wild_match (name0);
5379 int cacheIfUnique;
5380 int ndefns;
5381
5382 obstack_free (&symbol_list_obstack, NULL);
5383 obstack_init (&symbol_list_obstack);
5384
5385 cacheIfUnique = 0;
5386
5387 /* Search specified block and its superiors. */
5388
5389 name = name0;
5390 block = block0;
5391
5392 /* Special case: If the user specifies a symbol name inside package
5393 Standard, do a non-wild matching of the symbol name without
5394 the "standard__" prefix. This was primarily introduced in order
5395 to allow the user to specifically access the standard exceptions
5396 using, for instance, Standard.Constraint_Error when Constraint_Error
5397 is ambiguous (due to the user defining its own Constraint_Error
5398 entity inside its program). */
5399 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5400 {
5401 block = NULL;
5402 name = name0 + sizeof ("standard__") - 1;
5403 }
5404
5405 /* Check the non-global symbols. If we have ANY match, then we're done. */
5406
5407 if (block != NULL)
5408 {
5409 if (full_search)
5410 {
5411 ada_add_local_symbols (&symbol_list_obstack, name, block,
5412 namespace, wild_match_p);
5413 }
5414 else
5415 {
5416 /* In the !full_search case we're are being called by
5417 ada_iterate_over_symbols, and we don't want to search
5418 superblocks. */
5419 ada_add_block_symbols (&symbol_list_obstack, block, name,
5420 namespace, NULL, wild_match_p);
5421 }
5422 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5423 goto done;
5424 }
5425
5426 /* No non-global symbols found. Check our cache to see if we have
5427 already performed this search before. If we have, then return
5428 the same result. */
5429
5430 cacheIfUnique = 1;
5431 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5432 {
5433 if (sym != NULL)
5434 add_defn_to_vec (&symbol_list_obstack, sym, block);
5435 goto done;
5436 }
5437
5438 /* Search symbols from all global blocks. */
5439
5440 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5441 wild_match_p);
5442
5443 /* Now add symbols from all per-file blocks if we've gotten no hits
5444 (not strictly correct, but perhaps better than an error). */
5445
5446 if (num_defns_collected (&symbol_list_obstack) == 0)
5447 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5448 wild_match_p);
5449
5450 done:
5451 ndefns = num_defns_collected (&symbol_list_obstack);
5452 *results = defns_collected (&symbol_list_obstack, 1);
5453
5454 ndefns = remove_extra_symbols (*results, ndefns);
5455
5456 if (ndefns == 0 && full_search)
5457 cache_symbol (name0, namespace, NULL, NULL);
5458
5459 if (ndefns == 1 && full_search && cacheIfUnique)
5460 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5461
5462 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5463
5464 return ndefns;
5465 }
5466
5467 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5468 in global scopes, returning the number of matches, and setting *RESULTS
5469 to a vector of (SYM,BLOCK) tuples.
5470 See ada_lookup_symbol_list_worker for further details. */
5471
5472 int
5473 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5474 domain_enum domain, struct ada_symbol_info **results)
5475 {
5476 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5477 }
5478
5479 /* Implementation of the la_iterate_over_symbols method. */
5480
5481 static void
5482 ada_iterate_over_symbols (const struct block *block,
5483 const char *name, domain_enum domain,
5484 symbol_found_callback_ftype *callback,
5485 void *data)
5486 {
5487 int ndefs, i;
5488 struct ada_symbol_info *results;
5489
5490 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5491 for (i = 0; i < ndefs; ++i)
5492 {
5493 if (! (*callback) (results[i].sym, data))
5494 break;
5495 }
5496 }
5497
5498 /* If NAME is the name of an entity, return a string that should
5499 be used to look that entity up in Ada units. This string should
5500 be deallocated after use using xfree.
5501
5502 NAME can have any form that the "break" or "print" commands might
5503 recognize. In other words, it does not have to be the "natural"
5504 name, or the "encoded" name. */
5505
5506 char *
5507 ada_name_for_lookup (const char *name)
5508 {
5509 char *canon;
5510 int nlen = strlen (name);
5511
5512 if (name[0] == '<' && name[nlen - 1] == '>')
5513 {
5514 canon = xmalloc (nlen - 1);
5515 memcpy (canon, name + 1, nlen - 2);
5516 canon[nlen - 2] = '\0';
5517 }
5518 else
5519 canon = xstrdup (ada_encode (ada_fold_name (name)));
5520 return canon;
5521 }
5522
5523 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5524 to 1, but choosing the first symbol found if there are multiple
5525 choices.
5526
5527 The result is stored in *INFO, which must be non-NULL.
5528 If no match is found, INFO->SYM is set to NULL. */
5529
5530 void
5531 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5532 domain_enum namespace,
5533 struct ada_symbol_info *info)
5534 {
5535 struct ada_symbol_info *candidates;
5536 int n_candidates;
5537
5538 gdb_assert (info != NULL);
5539 memset (info, 0, sizeof (struct ada_symbol_info));
5540
5541 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5542 if (n_candidates == 0)
5543 return;
5544
5545 *info = candidates[0];
5546 info->sym = fixup_symbol_section (info->sym, NULL);
5547 }
5548
5549 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5550 scope and in global scopes, or NULL if none. NAME is folded and
5551 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5552 choosing the first symbol if there are multiple choices.
5553 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5554
5555 struct symbol *
5556 ada_lookup_symbol (const char *name, const struct block *block0,
5557 domain_enum namespace, int *is_a_field_of_this)
5558 {
5559 struct ada_symbol_info info;
5560
5561 if (is_a_field_of_this != NULL)
5562 *is_a_field_of_this = 0;
5563
5564 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5565 block0, namespace, &info);
5566 return info.sym;
5567 }
5568
5569 static struct symbol *
5570 ada_lookup_symbol_nonlocal (const char *name,
5571 const struct block *block,
5572 const domain_enum domain)
5573 {
5574 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5575 }
5576
5577
5578 /* True iff STR is a possible encoded suffix of a normal Ada name
5579 that is to be ignored for matching purposes. Suffixes of parallel
5580 names (e.g., XVE) are not included here. Currently, the possible suffixes
5581 are given by any of the regular expressions:
5582
5583 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5584 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5585 TKB [subprogram suffix for task bodies]
5586 _E[0-9]+[bs]$ [protected object entry suffixes]
5587 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5588
5589 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5590 match is performed. This sequence is used to differentiate homonyms,
5591 is an optional part of a valid name suffix. */
5592
5593 static int
5594 is_name_suffix (const char *str)
5595 {
5596 int k;
5597 const char *matching;
5598 const int len = strlen (str);
5599
5600 /* Skip optional leading __[0-9]+. */
5601
5602 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5603 {
5604 str += 3;
5605 while (isdigit (str[0]))
5606 str += 1;
5607 }
5608
5609 /* [.$][0-9]+ */
5610
5611 if (str[0] == '.' || str[0] == '$')
5612 {
5613 matching = str + 1;
5614 while (isdigit (matching[0]))
5615 matching += 1;
5616 if (matching[0] == '\0')
5617 return 1;
5618 }
5619
5620 /* ___[0-9]+ */
5621
5622 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5623 {
5624 matching = str + 3;
5625 while (isdigit (matching[0]))
5626 matching += 1;
5627 if (matching[0] == '\0')
5628 return 1;
5629 }
5630
5631 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5632
5633 if (strcmp (str, "TKB") == 0)
5634 return 1;
5635
5636 #if 0
5637 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5638 with a N at the end. Unfortunately, the compiler uses the same
5639 convention for other internal types it creates. So treating
5640 all entity names that end with an "N" as a name suffix causes
5641 some regressions. For instance, consider the case of an enumerated
5642 type. To support the 'Image attribute, it creates an array whose
5643 name ends with N.
5644 Having a single character like this as a suffix carrying some
5645 information is a bit risky. Perhaps we should change the encoding
5646 to be something like "_N" instead. In the meantime, do not do
5647 the following check. */
5648 /* Protected Object Subprograms */
5649 if (len == 1 && str [0] == 'N')
5650 return 1;
5651 #endif
5652
5653 /* _E[0-9]+[bs]$ */
5654 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5655 {
5656 matching = str + 3;
5657 while (isdigit (matching[0]))
5658 matching += 1;
5659 if ((matching[0] == 'b' || matching[0] == 's')
5660 && matching [1] == '\0')
5661 return 1;
5662 }
5663
5664 /* ??? We should not modify STR directly, as we are doing below. This
5665 is fine in this case, but may become problematic later if we find
5666 that this alternative did not work, and want to try matching
5667 another one from the begining of STR. Since we modified it, we
5668 won't be able to find the begining of the string anymore! */
5669 if (str[0] == 'X')
5670 {
5671 str += 1;
5672 while (str[0] != '_' && str[0] != '\0')
5673 {
5674 if (str[0] != 'n' && str[0] != 'b')
5675 return 0;
5676 str += 1;
5677 }
5678 }
5679
5680 if (str[0] == '\000')
5681 return 1;
5682
5683 if (str[0] == '_')
5684 {
5685 if (str[1] != '_' || str[2] == '\000')
5686 return 0;
5687 if (str[2] == '_')
5688 {
5689 if (strcmp (str + 3, "JM") == 0)
5690 return 1;
5691 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5692 the LJM suffix in favor of the JM one. But we will
5693 still accept LJM as a valid suffix for a reasonable
5694 amount of time, just to allow ourselves to debug programs
5695 compiled using an older version of GNAT. */
5696 if (strcmp (str + 3, "LJM") == 0)
5697 return 1;
5698 if (str[3] != 'X')
5699 return 0;
5700 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5701 || str[4] == 'U' || str[4] == 'P')
5702 return 1;
5703 if (str[4] == 'R' && str[5] != 'T')
5704 return 1;
5705 return 0;
5706 }
5707 if (!isdigit (str[2]))
5708 return 0;
5709 for (k = 3; str[k] != '\0'; k += 1)
5710 if (!isdigit (str[k]) && str[k] != '_')
5711 return 0;
5712 return 1;
5713 }
5714 if (str[0] == '$' && isdigit (str[1]))
5715 {
5716 for (k = 2; str[k] != '\0'; k += 1)
5717 if (!isdigit (str[k]) && str[k] != '_')
5718 return 0;
5719 return 1;
5720 }
5721 return 0;
5722 }
5723
5724 /* Return non-zero if the string starting at NAME and ending before
5725 NAME_END contains no capital letters. */
5726
5727 static int
5728 is_valid_name_for_wild_match (const char *name0)
5729 {
5730 const char *decoded_name = ada_decode (name0);
5731 int i;
5732
5733 /* If the decoded name starts with an angle bracket, it means that
5734 NAME0 does not follow the GNAT encoding format. It should then
5735 not be allowed as a possible wild match. */
5736 if (decoded_name[0] == '<')
5737 return 0;
5738
5739 for (i=0; decoded_name[i] != '\0'; i++)
5740 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5741 return 0;
5742
5743 return 1;
5744 }
5745
5746 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5747 that could start a simple name. Assumes that *NAMEP points into
5748 the string beginning at NAME0. */
5749
5750 static int
5751 advance_wild_match (const char **namep, const char *name0, int target0)
5752 {
5753 const char *name = *namep;
5754
5755 while (1)
5756 {
5757 int t0, t1;
5758
5759 t0 = *name;
5760 if (t0 == '_')
5761 {
5762 t1 = name[1];
5763 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5764 {
5765 name += 1;
5766 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5767 break;
5768 else
5769 name += 1;
5770 }
5771 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5772 || name[2] == target0))
5773 {
5774 name += 2;
5775 break;
5776 }
5777 else
5778 return 0;
5779 }
5780 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5781 name += 1;
5782 else
5783 return 0;
5784 }
5785
5786 *namep = name;
5787 return 1;
5788 }
5789
5790 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5791 informational suffixes of NAME (i.e., for which is_name_suffix is
5792 true). Assumes that PATN is a lower-cased Ada simple name. */
5793
5794 static int
5795 wild_match (const char *name, const char *patn)
5796 {
5797 const char *p;
5798 const char *name0 = name;
5799
5800 while (1)
5801 {
5802 const char *match = name;
5803
5804 if (*name == *patn)
5805 {
5806 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5807 if (*p != *name)
5808 break;
5809 if (*p == '\0' && is_name_suffix (name))
5810 return match != name0 && !is_valid_name_for_wild_match (name0);
5811
5812 if (name[-1] == '_')
5813 name -= 1;
5814 }
5815 if (!advance_wild_match (&name, name0, *patn))
5816 return 1;
5817 }
5818 }
5819
5820 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5821 informational suffix. */
5822
5823 static int
5824 full_match (const char *sym_name, const char *search_name)
5825 {
5826 return !match_name (sym_name, search_name, 0);
5827 }
5828
5829
5830 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5831 vector *defn_symbols, updating the list of symbols in OBSTACKP
5832 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5833 OBJFILE is the section containing BLOCK. */
5834
5835 static void
5836 ada_add_block_symbols (struct obstack *obstackp,
5837 const struct block *block, const char *name,
5838 domain_enum domain, struct objfile *objfile,
5839 int wild)
5840 {
5841 struct block_iterator iter;
5842 int name_len = strlen (name);
5843 /* A matching argument symbol, if any. */
5844 struct symbol *arg_sym;
5845 /* Set true when we find a matching non-argument symbol. */
5846 int found_sym;
5847 struct symbol *sym;
5848
5849 arg_sym = NULL;
5850 found_sym = 0;
5851 if (wild)
5852 {
5853 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5854 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5855 {
5856 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5857 SYMBOL_DOMAIN (sym), domain)
5858 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5859 {
5860 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5861 continue;
5862 else if (SYMBOL_IS_ARGUMENT (sym))
5863 arg_sym = sym;
5864 else
5865 {
5866 found_sym = 1;
5867 add_defn_to_vec (obstackp,
5868 fixup_symbol_section (sym, objfile),
5869 block);
5870 }
5871 }
5872 }
5873 }
5874 else
5875 {
5876 for (sym = block_iter_match_first (block, name, full_match, &iter);
5877 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5878 {
5879 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5880 SYMBOL_DOMAIN (sym), domain))
5881 {
5882 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5883 {
5884 if (SYMBOL_IS_ARGUMENT (sym))
5885 arg_sym = sym;
5886 else
5887 {
5888 found_sym = 1;
5889 add_defn_to_vec (obstackp,
5890 fixup_symbol_section (sym, objfile),
5891 block);
5892 }
5893 }
5894 }
5895 }
5896 }
5897
5898 if (!found_sym && arg_sym != NULL)
5899 {
5900 add_defn_to_vec (obstackp,
5901 fixup_symbol_section (arg_sym, objfile),
5902 block);
5903 }
5904
5905 if (!wild)
5906 {
5907 arg_sym = NULL;
5908 found_sym = 0;
5909
5910 ALL_BLOCK_SYMBOLS (block, iter, sym)
5911 {
5912 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5913 SYMBOL_DOMAIN (sym), domain))
5914 {
5915 int cmp;
5916
5917 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5918 if (cmp == 0)
5919 {
5920 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5921 if (cmp == 0)
5922 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5923 name_len);
5924 }
5925
5926 if (cmp == 0
5927 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5928 {
5929 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5930 {
5931 if (SYMBOL_IS_ARGUMENT (sym))
5932 arg_sym = sym;
5933 else
5934 {
5935 found_sym = 1;
5936 add_defn_to_vec (obstackp,
5937 fixup_symbol_section (sym, objfile),
5938 block);
5939 }
5940 }
5941 }
5942 }
5943 }
5944
5945 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5946 They aren't parameters, right? */
5947 if (!found_sym && arg_sym != NULL)
5948 {
5949 add_defn_to_vec (obstackp,
5950 fixup_symbol_section (arg_sym, objfile),
5951 block);
5952 }
5953 }
5954 }
5955 \f
5956
5957 /* Symbol Completion */
5958
5959 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5960 name in a form that's appropriate for the completion. The result
5961 does not need to be deallocated, but is only good until the next call.
5962
5963 TEXT_LEN is equal to the length of TEXT.
5964 Perform a wild match if WILD_MATCH_P is set.
5965 ENCODED_P should be set if TEXT represents the start of a symbol name
5966 in its encoded form. */
5967
5968 static const char *
5969 symbol_completion_match (const char *sym_name,
5970 const char *text, int text_len,
5971 int wild_match_p, int encoded_p)
5972 {
5973 const int verbatim_match = (text[0] == '<');
5974 int match = 0;
5975
5976 if (verbatim_match)
5977 {
5978 /* Strip the leading angle bracket. */
5979 text = text + 1;
5980 text_len--;
5981 }
5982
5983 /* First, test against the fully qualified name of the symbol. */
5984
5985 if (strncmp (sym_name, text, text_len) == 0)
5986 match = 1;
5987
5988 if (match && !encoded_p)
5989 {
5990 /* One needed check before declaring a positive match is to verify
5991 that iff we are doing a verbatim match, the decoded version
5992 of the symbol name starts with '<'. Otherwise, this symbol name
5993 is not a suitable completion. */
5994 const char *sym_name_copy = sym_name;
5995 int has_angle_bracket;
5996
5997 sym_name = ada_decode (sym_name);
5998 has_angle_bracket = (sym_name[0] == '<');
5999 match = (has_angle_bracket == verbatim_match);
6000 sym_name = sym_name_copy;
6001 }
6002
6003 if (match && !verbatim_match)
6004 {
6005 /* When doing non-verbatim match, another check that needs to
6006 be done is to verify that the potentially matching symbol name
6007 does not include capital letters, because the ada-mode would
6008 not be able to understand these symbol names without the
6009 angle bracket notation. */
6010 const char *tmp;
6011
6012 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6013 if (*tmp != '\0')
6014 match = 0;
6015 }
6016
6017 /* Second: Try wild matching... */
6018
6019 if (!match && wild_match_p)
6020 {
6021 /* Since we are doing wild matching, this means that TEXT
6022 may represent an unqualified symbol name. We therefore must
6023 also compare TEXT against the unqualified name of the symbol. */
6024 sym_name = ada_unqualified_name (ada_decode (sym_name));
6025
6026 if (strncmp (sym_name, text, text_len) == 0)
6027 match = 1;
6028 }
6029
6030 /* Finally: If we found a mach, prepare the result to return. */
6031
6032 if (!match)
6033 return NULL;
6034
6035 if (verbatim_match)
6036 sym_name = add_angle_brackets (sym_name);
6037
6038 if (!encoded_p)
6039 sym_name = ada_decode (sym_name);
6040
6041 return sym_name;
6042 }
6043
6044 /* A companion function to ada_make_symbol_completion_list().
6045 Check if SYM_NAME represents a symbol which name would be suitable
6046 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6047 it is appended at the end of the given string vector SV.
6048
6049 ORIG_TEXT is the string original string from the user command
6050 that needs to be completed. WORD is the entire command on which
6051 completion should be performed. These two parameters are used to
6052 determine which part of the symbol name should be added to the
6053 completion vector.
6054 if WILD_MATCH_P is set, then wild matching is performed.
6055 ENCODED_P should be set if TEXT represents a symbol name in its
6056 encoded formed (in which case the completion should also be
6057 encoded). */
6058
6059 static void
6060 symbol_completion_add (VEC(char_ptr) **sv,
6061 const char *sym_name,
6062 const char *text, int text_len,
6063 const char *orig_text, const char *word,
6064 int wild_match_p, int encoded_p)
6065 {
6066 const char *match = symbol_completion_match (sym_name, text, text_len,
6067 wild_match_p, encoded_p);
6068 char *completion;
6069
6070 if (match == NULL)
6071 return;
6072
6073 /* We found a match, so add the appropriate completion to the given
6074 string vector. */
6075
6076 if (word == orig_text)
6077 {
6078 completion = xmalloc (strlen (match) + 5);
6079 strcpy (completion, match);
6080 }
6081 else if (word > orig_text)
6082 {
6083 /* Return some portion of sym_name. */
6084 completion = xmalloc (strlen (match) + 5);
6085 strcpy (completion, match + (word - orig_text));
6086 }
6087 else
6088 {
6089 /* Return some of ORIG_TEXT plus sym_name. */
6090 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6091 strncpy (completion, word, orig_text - word);
6092 completion[orig_text - word] = '\0';
6093 strcat (completion, match);
6094 }
6095
6096 VEC_safe_push (char_ptr, *sv, completion);
6097 }
6098
6099 /* An object of this type is passed as the user_data argument to the
6100 expand_symtabs_matching method. */
6101 struct add_partial_datum
6102 {
6103 VEC(char_ptr) **completions;
6104 const char *text;
6105 int text_len;
6106 const char *text0;
6107 const char *word;
6108 int wild_match;
6109 int encoded;
6110 };
6111
6112 /* A callback for expand_symtabs_matching. */
6113
6114 static int
6115 ada_complete_symbol_matcher (const char *name, void *user_data)
6116 {
6117 struct add_partial_datum *data = user_data;
6118
6119 return symbol_completion_match (name, data->text, data->text_len,
6120 data->wild_match, data->encoded) != NULL;
6121 }
6122
6123 /* Return a list of possible symbol names completing TEXT0. WORD is
6124 the entire command on which completion is made. */
6125
6126 static VEC (char_ptr) *
6127 ada_make_symbol_completion_list (const char *text0, const char *word,
6128 enum type_code code)
6129 {
6130 char *text;
6131 int text_len;
6132 int wild_match_p;
6133 int encoded_p;
6134 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6135 struct symbol *sym;
6136 struct symtab *s;
6137 struct minimal_symbol *msymbol;
6138 struct objfile *objfile;
6139 const struct block *b, *surrounding_static_block = 0;
6140 int i;
6141 struct block_iterator iter;
6142 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6143
6144 gdb_assert (code == TYPE_CODE_UNDEF);
6145
6146 if (text0[0] == '<')
6147 {
6148 text = xstrdup (text0);
6149 make_cleanup (xfree, text);
6150 text_len = strlen (text);
6151 wild_match_p = 0;
6152 encoded_p = 1;
6153 }
6154 else
6155 {
6156 text = xstrdup (ada_encode (text0));
6157 make_cleanup (xfree, text);
6158 text_len = strlen (text);
6159 for (i = 0; i < text_len; i++)
6160 text[i] = tolower (text[i]);
6161
6162 encoded_p = (strstr (text0, "__") != NULL);
6163 /* If the name contains a ".", then the user is entering a fully
6164 qualified entity name, and the match must not be done in wild
6165 mode. Similarly, if the user wants to complete what looks like
6166 an encoded name, the match must not be done in wild mode. */
6167 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6168 }
6169
6170 /* First, look at the partial symtab symbols. */
6171 {
6172 struct add_partial_datum data;
6173
6174 data.completions = &completions;
6175 data.text = text;
6176 data.text_len = text_len;
6177 data.text0 = text0;
6178 data.word = word;
6179 data.wild_match = wild_match_p;
6180 data.encoded = encoded_p;
6181 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6182 &data);
6183 }
6184
6185 /* At this point scan through the misc symbol vectors and add each
6186 symbol you find to the list. Eventually we want to ignore
6187 anything that isn't a text symbol (everything else will be
6188 handled by the psymtab code above). */
6189
6190 ALL_MSYMBOLS (objfile, msymbol)
6191 {
6192 QUIT;
6193 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6194 text, text_len, text0, word, wild_match_p,
6195 encoded_p);
6196 }
6197
6198 /* Search upwards from currently selected frame (so that we can
6199 complete on local vars. */
6200
6201 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6202 {
6203 if (!BLOCK_SUPERBLOCK (b))
6204 surrounding_static_block = b; /* For elmin of dups */
6205
6206 ALL_BLOCK_SYMBOLS (b, iter, sym)
6207 {
6208 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6209 text, text_len, text0, word,
6210 wild_match_p, encoded_p);
6211 }
6212 }
6213
6214 /* Go through the symtabs and check the externs and statics for
6215 symbols which match. */
6216
6217 ALL_SYMTABS (objfile, s)
6218 {
6219 QUIT;
6220 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6221 ALL_BLOCK_SYMBOLS (b, iter, sym)
6222 {
6223 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6224 text, text_len, text0, word,
6225 wild_match_p, encoded_p);
6226 }
6227 }
6228
6229 ALL_SYMTABS (objfile, s)
6230 {
6231 QUIT;
6232 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6233 /* Don't do this block twice. */
6234 if (b == surrounding_static_block)
6235 continue;
6236 ALL_BLOCK_SYMBOLS (b, iter, sym)
6237 {
6238 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6239 text, text_len, text0, word,
6240 wild_match_p, encoded_p);
6241 }
6242 }
6243
6244 do_cleanups (old_chain);
6245 return completions;
6246 }
6247
6248 /* Field Access */
6249
6250 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6251 for tagged types. */
6252
6253 static int
6254 ada_is_dispatch_table_ptr_type (struct type *type)
6255 {
6256 const char *name;
6257
6258 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6259 return 0;
6260
6261 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6262 if (name == NULL)
6263 return 0;
6264
6265 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6266 }
6267
6268 /* Return non-zero if TYPE is an interface tag. */
6269
6270 static int
6271 ada_is_interface_tag (struct type *type)
6272 {
6273 const char *name = TYPE_NAME (type);
6274
6275 if (name == NULL)
6276 return 0;
6277
6278 return (strcmp (name, "ada__tags__interface_tag") == 0);
6279 }
6280
6281 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6282 to be invisible to users. */
6283
6284 int
6285 ada_is_ignored_field (struct type *type, int field_num)
6286 {
6287 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6288 return 1;
6289
6290 /* Check the name of that field. */
6291 {
6292 const char *name = TYPE_FIELD_NAME (type, field_num);
6293
6294 /* Anonymous field names should not be printed.
6295 brobecker/2007-02-20: I don't think this can actually happen
6296 but we don't want to print the value of annonymous fields anyway. */
6297 if (name == NULL)
6298 return 1;
6299
6300 /* Normally, fields whose name start with an underscore ("_")
6301 are fields that have been internally generated by the compiler,
6302 and thus should not be printed. The "_parent" field is special,
6303 however: This is a field internally generated by the compiler
6304 for tagged types, and it contains the components inherited from
6305 the parent type. This field should not be printed as is, but
6306 should not be ignored either. */
6307 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6308 return 1;
6309 }
6310
6311 /* If this is the dispatch table of a tagged type or an interface tag,
6312 then ignore. */
6313 if (ada_is_tagged_type (type, 1)
6314 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6315 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6316 return 1;
6317
6318 /* Not a special field, so it should not be ignored. */
6319 return 0;
6320 }
6321
6322 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6323 pointer or reference type whose ultimate target has a tag field. */
6324
6325 int
6326 ada_is_tagged_type (struct type *type, int refok)
6327 {
6328 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6329 }
6330
6331 /* True iff TYPE represents the type of X'Tag */
6332
6333 int
6334 ada_is_tag_type (struct type *type)
6335 {
6336 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6337 return 0;
6338 else
6339 {
6340 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6341
6342 return (name != NULL
6343 && strcmp (name, "ada__tags__dispatch_table") == 0);
6344 }
6345 }
6346
6347 /* The type of the tag on VAL. */
6348
6349 struct type *
6350 ada_tag_type (struct value *val)
6351 {
6352 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6353 }
6354
6355 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6356 retired at Ada 05). */
6357
6358 static int
6359 is_ada95_tag (struct value *tag)
6360 {
6361 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6362 }
6363
6364 /* The value of the tag on VAL. */
6365
6366 struct value *
6367 ada_value_tag (struct value *val)
6368 {
6369 return ada_value_struct_elt (val, "_tag", 0);
6370 }
6371
6372 /* The value of the tag on the object of type TYPE whose contents are
6373 saved at VALADDR, if it is non-null, or is at memory address
6374 ADDRESS. */
6375
6376 static struct value *
6377 value_tag_from_contents_and_address (struct type *type,
6378 const gdb_byte *valaddr,
6379 CORE_ADDR address)
6380 {
6381 int tag_byte_offset;
6382 struct type *tag_type;
6383
6384 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6385 NULL, NULL, NULL))
6386 {
6387 const gdb_byte *valaddr1 = ((valaddr == NULL)
6388 ? NULL
6389 : valaddr + tag_byte_offset);
6390 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6391
6392 return value_from_contents_and_address (tag_type, valaddr1, address1);
6393 }
6394 return NULL;
6395 }
6396
6397 static struct type *
6398 type_from_tag (struct value *tag)
6399 {
6400 const char *type_name = ada_tag_name (tag);
6401
6402 if (type_name != NULL)
6403 return ada_find_any_type (ada_encode (type_name));
6404 return NULL;
6405 }
6406
6407 /* Given a value OBJ of a tagged type, return a value of this
6408 type at the base address of the object. The base address, as
6409 defined in Ada.Tags, it is the address of the primary tag of
6410 the object, and therefore where the field values of its full
6411 view can be fetched. */
6412
6413 struct value *
6414 ada_tag_value_at_base_address (struct value *obj)
6415 {
6416 volatile struct gdb_exception e;
6417 struct value *val;
6418 LONGEST offset_to_top = 0;
6419 struct type *ptr_type, *obj_type;
6420 struct value *tag;
6421 CORE_ADDR base_address;
6422
6423 obj_type = value_type (obj);
6424
6425 /* It is the responsability of the caller to deref pointers. */
6426
6427 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6428 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6429 return obj;
6430
6431 tag = ada_value_tag (obj);
6432 if (!tag)
6433 return obj;
6434
6435 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6436
6437 if (is_ada95_tag (tag))
6438 return obj;
6439
6440 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6441 ptr_type = lookup_pointer_type (ptr_type);
6442 val = value_cast (ptr_type, tag);
6443 if (!val)
6444 return obj;
6445
6446 /* It is perfectly possible that an exception be raised while
6447 trying to determine the base address, just like for the tag;
6448 see ada_tag_name for more details. We do not print the error
6449 message for the same reason. */
6450
6451 TRY_CATCH (e, RETURN_MASK_ERROR)
6452 {
6453 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6454 }
6455
6456 if (e.reason < 0)
6457 return obj;
6458
6459 /* If offset is null, nothing to do. */
6460
6461 if (offset_to_top == 0)
6462 return obj;
6463
6464 /* -1 is a special case in Ada.Tags; however, what should be done
6465 is not quite clear from the documentation. So do nothing for
6466 now. */
6467
6468 if (offset_to_top == -1)
6469 return obj;
6470
6471 base_address = value_address (obj) - offset_to_top;
6472 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6473
6474 /* Make sure that we have a proper tag at the new address.
6475 Otherwise, offset_to_top is bogus (which can happen when
6476 the object is not initialized yet). */
6477
6478 if (!tag)
6479 return obj;
6480
6481 obj_type = type_from_tag (tag);
6482
6483 if (!obj_type)
6484 return obj;
6485
6486 return value_from_contents_and_address (obj_type, NULL, base_address);
6487 }
6488
6489 /* Return the "ada__tags__type_specific_data" type. */
6490
6491 static struct type *
6492 ada_get_tsd_type (struct inferior *inf)
6493 {
6494 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6495
6496 if (data->tsd_type == 0)
6497 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6498 return data->tsd_type;
6499 }
6500
6501 /* Return the TSD (type-specific data) associated to the given TAG.
6502 TAG is assumed to be the tag of a tagged-type entity.
6503
6504 May return NULL if we are unable to get the TSD. */
6505
6506 static struct value *
6507 ada_get_tsd_from_tag (struct value *tag)
6508 {
6509 struct value *val;
6510 struct type *type;
6511
6512 /* First option: The TSD is simply stored as a field of our TAG.
6513 Only older versions of GNAT would use this format, but we have
6514 to test it first, because there are no visible markers for
6515 the current approach except the absence of that field. */
6516
6517 val = ada_value_struct_elt (tag, "tsd", 1);
6518 if (val)
6519 return val;
6520
6521 /* Try the second representation for the dispatch table (in which
6522 there is no explicit 'tsd' field in the referent of the tag pointer,
6523 and instead the tsd pointer is stored just before the dispatch
6524 table. */
6525
6526 type = ada_get_tsd_type (current_inferior());
6527 if (type == NULL)
6528 return NULL;
6529 type = lookup_pointer_type (lookup_pointer_type (type));
6530 val = value_cast (type, tag);
6531 if (val == NULL)
6532 return NULL;
6533 return value_ind (value_ptradd (val, -1));
6534 }
6535
6536 /* Given the TSD of a tag (type-specific data), return a string
6537 containing the name of the associated type.
6538
6539 The returned value is good until the next call. May return NULL
6540 if we are unable to determine the tag name. */
6541
6542 static char *
6543 ada_tag_name_from_tsd (struct value *tsd)
6544 {
6545 static char name[1024];
6546 char *p;
6547 struct value *val;
6548
6549 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6550 if (val == NULL)
6551 return NULL;
6552 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6553 for (p = name; *p != '\0'; p += 1)
6554 if (isalpha (*p))
6555 *p = tolower (*p);
6556 return name;
6557 }
6558
6559 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6560 a C string.
6561
6562 Return NULL if the TAG is not an Ada tag, or if we were unable to
6563 determine the name of that tag. The result is good until the next
6564 call. */
6565
6566 const char *
6567 ada_tag_name (struct value *tag)
6568 {
6569 volatile struct gdb_exception e;
6570 char *name = NULL;
6571
6572 if (!ada_is_tag_type (value_type (tag)))
6573 return NULL;
6574
6575 /* It is perfectly possible that an exception be raised while trying
6576 to determine the TAG's name, even under normal circumstances:
6577 The associated variable may be uninitialized or corrupted, for
6578 instance. We do not let any exception propagate past this point.
6579 instead we return NULL.
6580
6581 We also do not print the error message either (which often is very
6582 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6583 the caller print a more meaningful message if necessary. */
6584 TRY_CATCH (e, RETURN_MASK_ERROR)
6585 {
6586 struct value *tsd = ada_get_tsd_from_tag (tag);
6587
6588 if (tsd != NULL)
6589 name = ada_tag_name_from_tsd (tsd);
6590 }
6591
6592 return name;
6593 }
6594
6595 /* The parent type of TYPE, or NULL if none. */
6596
6597 struct type *
6598 ada_parent_type (struct type *type)
6599 {
6600 int i;
6601
6602 type = ada_check_typedef (type);
6603
6604 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6605 return NULL;
6606
6607 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6608 if (ada_is_parent_field (type, i))
6609 {
6610 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6611
6612 /* If the _parent field is a pointer, then dereference it. */
6613 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6614 parent_type = TYPE_TARGET_TYPE (parent_type);
6615 /* If there is a parallel XVS type, get the actual base type. */
6616 parent_type = ada_get_base_type (parent_type);
6617
6618 return ada_check_typedef (parent_type);
6619 }
6620
6621 return NULL;
6622 }
6623
6624 /* True iff field number FIELD_NUM of structure type TYPE contains the
6625 parent-type (inherited) fields of a derived type. Assumes TYPE is
6626 a structure type with at least FIELD_NUM+1 fields. */
6627
6628 int
6629 ada_is_parent_field (struct type *type, int field_num)
6630 {
6631 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6632
6633 return (name != NULL
6634 && (strncmp (name, "PARENT", 6) == 0
6635 || strncmp (name, "_parent", 7) == 0));
6636 }
6637
6638 /* True iff field number FIELD_NUM of structure type TYPE is a
6639 transparent wrapper field (which should be silently traversed when doing
6640 field selection and flattened when printing). Assumes TYPE is a
6641 structure type with at least FIELD_NUM+1 fields. Such fields are always
6642 structures. */
6643
6644 int
6645 ada_is_wrapper_field (struct type *type, int field_num)
6646 {
6647 const char *name = TYPE_FIELD_NAME (type, field_num);
6648
6649 return (name != NULL
6650 && (strncmp (name, "PARENT", 6) == 0
6651 || strcmp (name, "REP") == 0
6652 || strncmp (name, "_parent", 7) == 0
6653 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6654 }
6655
6656 /* True iff field number FIELD_NUM of structure or union type TYPE
6657 is a variant wrapper. Assumes TYPE is a structure type with at least
6658 FIELD_NUM+1 fields. */
6659
6660 int
6661 ada_is_variant_part (struct type *type, int field_num)
6662 {
6663 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6664
6665 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6666 || (is_dynamic_field (type, field_num)
6667 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6668 == TYPE_CODE_UNION)));
6669 }
6670
6671 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6672 whose discriminants are contained in the record type OUTER_TYPE,
6673 returns the type of the controlling discriminant for the variant.
6674 May return NULL if the type could not be found. */
6675
6676 struct type *
6677 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6678 {
6679 char *name = ada_variant_discrim_name (var_type);
6680
6681 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6682 }
6683
6684 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6685 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6686 represents a 'when others' clause; otherwise 0. */
6687
6688 int
6689 ada_is_others_clause (struct type *type, int field_num)
6690 {
6691 const char *name = TYPE_FIELD_NAME (type, field_num);
6692
6693 return (name != NULL && name[0] == 'O');
6694 }
6695
6696 /* Assuming that TYPE0 is the type of the variant part of a record,
6697 returns the name of the discriminant controlling the variant.
6698 The value is valid until the next call to ada_variant_discrim_name. */
6699
6700 char *
6701 ada_variant_discrim_name (struct type *type0)
6702 {
6703 static char *result = NULL;
6704 static size_t result_len = 0;
6705 struct type *type;
6706 const char *name;
6707 const char *discrim_end;
6708 const char *discrim_start;
6709
6710 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6711 type = TYPE_TARGET_TYPE (type0);
6712 else
6713 type = type0;
6714
6715 name = ada_type_name (type);
6716
6717 if (name == NULL || name[0] == '\000')
6718 return "";
6719
6720 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6721 discrim_end -= 1)
6722 {
6723 if (strncmp (discrim_end, "___XVN", 6) == 0)
6724 break;
6725 }
6726 if (discrim_end == name)
6727 return "";
6728
6729 for (discrim_start = discrim_end; discrim_start != name + 3;
6730 discrim_start -= 1)
6731 {
6732 if (discrim_start == name + 1)
6733 return "";
6734 if ((discrim_start > name + 3
6735 && strncmp (discrim_start - 3, "___", 3) == 0)
6736 || discrim_start[-1] == '.')
6737 break;
6738 }
6739
6740 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6741 strncpy (result, discrim_start, discrim_end - discrim_start);
6742 result[discrim_end - discrim_start] = '\0';
6743 return result;
6744 }
6745
6746 /* Scan STR for a subtype-encoded number, beginning at position K.
6747 Put the position of the character just past the number scanned in
6748 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6749 Return 1 if there was a valid number at the given position, and 0
6750 otherwise. A "subtype-encoded" number consists of the absolute value
6751 in decimal, followed by the letter 'm' to indicate a negative number.
6752 Assumes 0m does not occur. */
6753
6754 int
6755 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6756 {
6757 ULONGEST RU;
6758
6759 if (!isdigit (str[k]))
6760 return 0;
6761
6762 /* Do it the hard way so as not to make any assumption about
6763 the relationship of unsigned long (%lu scan format code) and
6764 LONGEST. */
6765 RU = 0;
6766 while (isdigit (str[k]))
6767 {
6768 RU = RU * 10 + (str[k] - '0');
6769 k += 1;
6770 }
6771
6772 if (str[k] == 'm')
6773 {
6774 if (R != NULL)
6775 *R = (-(LONGEST) (RU - 1)) - 1;
6776 k += 1;
6777 }
6778 else if (R != NULL)
6779 *R = (LONGEST) RU;
6780
6781 /* NOTE on the above: Technically, C does not say what the results of
6782 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6783 number representable as a LONGEST (although either would probably work
6784 in most implementations). When RU>0, the locution in the then branch
6785 above is always equivalent to the negative of RU. */
6786
6787 if (new_k != NULL)
6788 *new_k = k;
6789 return 1;
6790 }
6791
6792 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6793 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6794 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6795
6796 int
6797 ada_in_variant (LONGEST val, struct type *type, int field_num)
6798 {
6799 const char *name = TYPE_FIELD_NAME (type, field_num);
6800 int p;
6801
6802 p = 0;
6803 while (1)
6804 {
6805 switch (name[p])
6806 {
6807 case '\0':
6808 return 0;
6809 case 'S':
6810 {
6811 LONGEST W;
6812
6813 if (!ada_scan_number (name, p + 1, &W, &p))
6814 return 0;
6815 if (val == W)
6816 return 1;
6817 break;
6818 }
6819 case 'R':
6820 {
6821 LONGEST L, U;
6822
6823 if (!ada_scan_number (name, p + 1, &L, &p)
6824 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6825 return 0;
6826 if (val >= L && val <= U)
6827 return 1;
6828 break;
6829 }
6830 case 'O':
6831 return 1;
6832 default:
6833 return 0;
6834 }
6835 }
6836 }
6837
6838 /* FIXME: Lots of redundancy below. Try to consolidate. */
6839
6840 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6841 ARG_TYPE, extract and return the value of one of its (non-static)
6842 fields. FIELDNO says which field. Differs from value_primitive_field
6843 only in that it can handle packed values of arbitrary type. */
6844
6845 static struct value *
6846 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6847 struct type *arg_type)
6848 {
6849 struct type *type;
6850
6851 arg_type = ada_check_typedef (arg_type);
6852 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6853
6854 /* Handle packed fields. */
6855
6856 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6857 {
6858 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6859 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6860
6861 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6862 offset + bit_pos / 8,
6863 bit_pos % 8, bit_size, type);
6864 }
6865 else
6866 return value_primitive_field (arg1, offset, fieldno, arg_type);
6867 }
6868
6869 /* Find field with name NAME in object of type TYPE. If found,
6870 set the following for each argument that is non-null:
6871 - *FIELD_TYPE_P to the field's type;
6872 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6873 an object of that type;
6874 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6875 - *BIT_SIZE_P to its size in bits if the field is packed, and
6876 0 otherwise;
6877 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6878 fields up to but not including the desired field, or by the total
6879 number of fields if not found. A NULL value of NAME never
6880 matches; the function just counts visible fields in this case.
6881
6882 Returns 1 if found, 0 otherwise. */
6883
6884 static int
6885 find_struct_field (const char *name, struct type *type, int offset,
6886 struct type **field_type_p,
6887 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6888 int *index_p)
6889 {
6890 int i;
6891
6892 type = ada_check_typedef (type);
6893
6894 if (field_type_p != NULL)
6895 *field_type_p = NULL;
6896 if (byte_offset_p != NULL)
6897 *byte_offset_p = 0;
6898 if (bit_offset_p != NULL)
6899 *bit_offset_p = 0;
6900 if (bit_size_p != NULL)
6901 *bit_size_p = 0;
6902
6903 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6904 {
6905 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6906 int fld_offset = offset + bit_pos / 8;
6907 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6908
6909 if (t_field_name == NULL)
6910 continue;
6911
6912 else if (name != NULL && field_name_match (t_field_name, name))
6913 {
6914 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6915
6916 if (field_type_p != NULL)
6917 *field_type_p = TYPE_FIELD_TYPE (type, i);
6918 if (byte_offset_p != NULL)
6919 *byte_offset_p = fld_offset;
6920 if (bit_offset_p != NULL)
6921 *bit_offset_p = bit_pos % 8;
6922 if (bit_size_p != NULL)
6923 *bit_size_p = bit_size;
6924 return 1;
6925 }
6926 else if (ada_is_wrapper_field (type, i))
6927 {
6928 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6929 field_type_p, byte_offset_p, bit_offset_p,
6930 bit_size_p, index_p))
6931 return 1;
6932 }
6933 else if (ada_is_variant_part (type, i))
6934 {
6935 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6936 fixed type?? */
6937 int j;
6938 struct type *field_type
6939 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6940
6941 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6942 {
6943 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6944 fld_offset
6945 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6946 field_type_p, byte_offset_p,
6947 bit_offset_p, bit_size_p, index_p))
6948 return 1;
6949 }
6950 }
6951 else if (index_p != NULL)
6952 *index_p += 1;
6953 }
6954 return 0;
6955 }
6956
6957 /* Number of user-visible fields in record type TYPE. */
6958
6959 static int
6960 num_visible_fields (struct type *type)
6961 {
6962 int n;
6963
6964 n = 0;
6965 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6966 return n;
6967 }
6968
6969 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6970 and search in it assuming it has (class) type TYPE.
6971 If found, return value, else return NULL.
6972
6973 Searches recursively through wrapper fields (e.g., '_parent'). */
6974
6975 static struct value *
6976 ada_search_struct_field (char *name, struct value *arg, int offset,
6977 struct type *type)
6978 {
6979 int i;
6980
6981 type = ada_check_typedef (type);
6982 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6983 {
6984 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6985
6986 if (t_field_name == NULL)
6987 continue;
6988
6989 else if (field_name_match (t_field_name, name))
6990 return ada_value_primitive_field (arg, offset, i, type);
6991
6992 else if (ada_is_wrapper_field (type, i))
6993 {
6994 struct value *v = /* Do not let indent join lines here. */
6995 ada_search_struct_field (name, arg,
6996 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6997 TYPE_FIELD_TYPE (type, i));
6998
6999 if (v != NULL)
7000 return v;
7001 }
7002
7003 else if (ada_is_variant_part (type, i))
7004 {
7005 /* PNH: Do we ever get here? See find_struct_field. */
7006 int j;
7007 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7008 i));
7009 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7010
7011 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7012 {
7013 struct value *v = ada_search_struct_field /* Force line
7014 break. */
7015 (name, arg,
7016 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7017 TYPE_FIELD_TYPE (field_type, j));
7018
7019 if (v != NULL)
7020 return v;
7021 }
7022 }
7023 }
7024 return NULL;
7025 }
7026
7027 static struct value *ada_index_struct_field_1 (int *, struct value *,
7028 int, struct type *);
7029
7030
7031 /* Return field #INDEX in ARG, where the index is that returned by
7032 * find_struct_field through its INDEX_P argument. Adjust the address
7033 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7034 * If found, return value, else return NULL. */
7035
7036 static struct value *
7037 ada_index_struct_field (int index, struct value *arg, int offset,
7038 struct type *type)
7039 {
7040 return ada_index_struct_field_1 (&index, arg, offset, type);
7041 }
7042
7043
7044 /* Auxiliary function for ada_index_struct_field. Like
7045 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7046 * *INDEX_P. */
7047
7048 static struct value *
7049 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7050 struct type *type)
7051 {
7052 int i;
7053 type = ada_check_typedef (type);
7054
7055 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7056 {
7057 if (TYPE_FIELD_NAME (type, i) == NULL)
7058 continue;
7059 else if (ada_is_wrapper_field (type, i))
7060 {
7061 struct value *v = /* Do not let indent join lines here. */
7062 ada_index_struct_field_1 (index_p, arg,
7063 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7064 TYPE_FIELD_TYPE (type, i));
7065
7066 if (v != NULL)
7067 return v;
7068 }
7069
7070 else if (ada_is_variant_part (type, i))
7071 {
7072 /* PNH: Do we ever get here? See ada_search_struct_field,
7073 find_struct_field. */
7074 error (_("Cannot assign this kind of variant record"));
7075 }
7076 else if (*index_p == 0)
7077 return ada_value_primitive_field (arg, offset, i, type);
7078 else
7079 *index_p -= 1;
7080 }
7081 return NULL;
7082 }
7083
7084 /* Given ARG, a value of type (pointer or reference to a)*
7085 structure/union, extract the component named NAME from the ultimate
7086 target structure/union and return it as a value with its
7087 appropriate type.
7088
7089 The routine searches for NAME among all members of the structure itself
7090 and (recursively) among all members of any wrapper members
7091 (e.g., '_parent').
7092
7093 If NO_ERR, then simply return NULL in case of error, rather than
7094 calling error. */
7095
7096 struct value *
7097 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7098 {
7099 struct type *t, *t1;
7100 struct value *v;
7101
7102 v = NULL;
7103 t1 = t = ada_check_typedef (value_type (arg));
7104 if (TYPE_CODE (t) == TYPE_CODE_REF)
7105 {
7106 t1 = TYPE_TARGET_TYPE (t);
7107 if (t1 == NULL)
7108 goto BadValue;
7109 t1 = ada_check_typedef (t1);
7110 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7111 {
7112 arg = coerce_ref (arg);
7113 t = t1;
7114 }
7115 }
7116
7117 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7118 {
7119 t1 = TYPE_TARGET_TYPE (t);
7120 if (t1 == NULL)
7121 goto BadValue;
7122 t1 = ada_check_typedef (t1);
7123 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7124 {
7125 arg = value_ind (arg);
7126 t = t1;
7127 }
7128 else
7129 break;
7130 }
7131
7132 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7133 goto BadValue;
7134
7135 if (t1 == t)
7136 v = ada_search_struct_field (name, arg, 0, t);
7137 else
7138 {
7139 int bit_offset, bit_size, byte_offset;
7140 struct type *field_type;
7141 CORE_ADDR address;
7142
7143 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7144 address = value_address (ada_value_ind (arg));
7145 else
7146 address = value_address (ada_coerce_ref (arg));
7147
7148 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7149 if (find_struct_field (name, t1, 0,
7150 &field_type, &byte_offset, &bit_offset,
7151 &bit_size, NULL))
7152 {
7153 if (bit_size != 0)
7154 {
7155 if (TYPE_CODE (t) == TYPE_CODE_REF)
7156 arg = ada_coerce_ref (arg);
7157 else
7158 arg = ada_value_ind (arg);
7159 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7160 bit_offset, bit_size,
7161 field_type);
7162 }
7163 else
7164 v = value_at_lazy (field_type, address + byte_offset);
7165 }
7166 }
7167
7168 if (v != NULL || no_err)
7169 return v;
7170 else
7171 error (_("There is no member named %s."), name);
7172
7173 BadValue:
7174 if (no_err)
7175 return NULL;
7176 else
7177 error (_("Attempt to extract a component of "
7178 "a value that is not a record."));
7179 }
7180
7181 /* Given a type TYPE, look up the type of the component of type named NAME.
7182 If DISPP is non-null, add its byte displacement from the beginning of a
7183 structure (pointed to by a value) of type TYPE to *DISPP (does not
7184 work for packed fields).
7185
7186 Matches any field whose name has NAME as a prefix, possibly
7187 followed by "___".
7188
7189 TYPE can be either a struct or union. If REFOK, TYPE may also
7190 be a (pointer or reference)+ to a struct or union, and the
7191 ultimate target type will be searched.
7192
7193 Looks recursively into variant clauses and parent types.
7194
7195 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7196 TYPE is not a type of the right kind. */
7197
7198 static struct type *
7199 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7200 int noerr, int *dispp)
7201 {
7202 int i;
7203
7204 if (name == NULL)
7205 goto BadName;
7206
7207 if (refok && type != NULL)
7208 while (1)
7209 {
7210 type = ada_check_typedef (type);
7211 if (TYPE_CODE (type) != TYPE_CODE_PTR
7212 && TYPE_CODE (type) != TYPE_CODE_REF)
7213 break;
7214 type = TYPE_TARGET_TYPE (type);
7215 }
7216
7217 if (type == NULL
7218 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7219 && TYPE_CODE (type) != TYPE_CODE_UNION))
7220 {
7221 if (noerr)
7222 return NULL;
7223 else
7224 {
7225 target_terminal_ours ();
7226 gdb_flush (gdb_stdout);
7227 if (type == NULL)
7228 error (_("Type (null) is not a structure or union type"));
7229 else
7230 {
7231 /* XXX: type_sprint */
7232 fprintf_unfiltered (gdb_stderr, _("Type "));
7233 type_print (type, "", gdb_stderr, -1);
7234 error (_(" is not a structure or union type"));
7235 }
7236 }
7237 }
7238
7239 type = to_static_fixed_type (type);
7240
7241 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7242 {
7243 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7244 struct type *t;
7245 int disp;
7246
7247 if (t_field_name == NULL)
7248 continue;
7249
7250 else if (field_name_match (t_field_name, name))
7251 {
7252 if (dispp != NULL)
7253 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7254 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7255 }
7256
7257 else if (ada_is_wrapper_field (type, i))
7258 {
7259 disp = 0;
7260 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7261 0, 1, &disp);
7262 if (t != NULL)
7263 {
7264 if (dispp != NULL)
7265 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7266 return t;
7267 }
7268 }
7269
7270 else if (ada_is_variant_part (type, i))
7271 {
7272 int j;
7273 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7274 i));
7275
7276 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7277 {
7278 /* FIXME pnh 2008/01/26: We check for a field that is
7279 NOT wrapped in a struct, since the compiler sometimes
7280 generates these for unchecked variant types. Revisit
7281 if the compiler changes this practice. */
7282 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7283 disp = 0;
7284 if (v_field_name != NULL
7285 && field_name_match (v_field_name, name))
7286 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7287 else
7288 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7289 j),
7290 name, 0, 1, &disp);
7291
7292 if (t != NULL)
7293 {
7294 if (dispp != NULL)
7295 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7296 return t;
7297 }
7298 }
7299 }
7300
7301 }
7302
7303 BadName:
7304 if (!noerr)
7305 {
7306 target_terminal_ours ();
7307 gdb_flush (gdb_stdout);
7308 if (name == NULL)
7309 {
7310 /* XXX: type_sprint */
7311 fprintf_unfiltered (gdb_stderr, _("Type "));
7312 type_print (type, "", gdb_stderr, -1);
7313 error (_(" has no component named <null>"));
7314 }
7315 else
7316 {
7317 /* XXX: type_sprint */
7318 fprintf_unfiltered (gdb_stderr, _("Type "));
7319 type_print (type, "", gdb_stderr, -1);
7320 error (_(" has no component named %s"), name);
7321 }
7322 }
7323
7324 return NULL;
7325 }
7326
7327 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7328 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7329 represents an unchecked union (that is, the variant part of a
7330 record that is named in an Unchecked_Union pragma). */
7331
7332 static int
7333 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7334 {
7335 char *discrim_name = ada_variant_discrim_name (var_type);
7336
7337 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7338 == NULL);
7339 }
7340
7341
7342 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7343 within a value of type OUTER_TYPE that is stored in GDB at
7344 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7345 numbering from 0) is applicable. Returns -1 if none are. */
7346
7347 int
7348 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7349 const gdb_byte *outer_valaddr)
7350 {
7351 int others_clause;
7352 int i;
7353 char *discrim_name = ada_variant_discrim_name (var_type);
7354 struct value *outer;
7355 struct value *discrim;
7356 LONGEST discrim_val;
7357
7358 /* Using plain value_from_contents_and_address here causes problems
7359 because we will end up trying to resolve a type that is currently
7360 being constructed. */
7361 outer = value_from_contents_and_address_unresolved (outer_type,
7362 outer_valaddr, 0);
7363 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7364 if (discrim == NULL)
7365 return -1;
7366 discrim_val = value_as_long (discrim);
7367
7368 others_clause = -1;
7369 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7370 {
7371 if (ada_is_others_clause (var_type, i))
7372 others_clause = i;
7373 else if (ada_in_variant (discrim_val, var_type, i))
7374 return i;
7375 }
7376
7377 return others_clause;
7378 }
7379 \f
7380
7381
7382 /* Dynamic-Sized Records */
7383
7384 /* Strategy: The type ostensibly attached to a value with dynamic size
7385 (i.e., a size that is not statically recorded in the debugging
7386 data) does not accurately reflect the size or layout of the value.
7387 Our strategy is to convert these values to values with accurate,
7388 conventional types that are constructed on the fly. */
7389
7390 /* There is a subtle and tricky problem here. In general, we cannot
7391 determine the size of dynamic records without its data. However,
7392 the 'struct value' data structure, which GDB uses to represent
7393 quantities in the inferior process (the target), requires the size
7394 of the type at the time of its allocation in order to reserve space
7395 for GDB's internal copy of the data. That's why the
7396 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7397 rather than struct value*s.
7398
7399 However, GDB's internal history variables ($1, $2, etc.) are
7400 struct value*s containing internal copies of the data that are not, in
7401 general, the same as the data at their corresponding addresses in
7402 the target. Fortunately, the types we give to these values are all
7403 conventional, fixed-size types (as per the strategy described
7404 above), so that we don't usually have to perform the
7405 'to_fixed_xxx_type' conversions to look at their values.
7406 Unfortunately, there is one exception: if one of the internal
7407 history variables is an array whose elements are unconstrained
7408 records, then we will need to create distinct fixed types for each
7409 element selected. */
7410
7411 /* The upshot of all of this is that many routines take a (type, host
7412 address, target address) triple as arguments to represent a value.
7413 The host address, if non-null, is supposed to contain an internal
7414 copy of the relevant data; otherwise, the program is to consult the
7415 target at the target address. */
7416
7417 /* Assuming that VAL0 represents a pointer value, the result of
7418 dereferencing it. Differs from value_ind in its treatment of
7419 dynamic-sized types. */
7420
7421 struct value *
7422 ada_value_ind (struct value *val0)
7423 {
7424 struct value *val = value_ind (val0);
7425
7426 if (ada_is_tagged_type (value_type (val), 0))
7427 val = ada_tag_value_at_base_address (val);
7428
7429 return ada_to_fixed_value (val);
7430 }
7431
7432 /* The value resulting from dereferencing any "reference to"
7433 qualifiers on VAL0. */
7434
7435 static struct value *
7436 ada_coerce_ref (struct value *val0)
7437 {
7438 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7439 {
7440 struct value *val = val0;
7441
7442 val = coerce_ref (val);
7443
7444 if (ada_is_tagged_type (value_type (val), 0))
7445 val = ada_tag_value_at_base_address (val);
7446
7447 return ada_to_fixed_value (val);
7448 }
7449 else
7450 return val0;
7451 }
7452
7453 /* Return OFF rounded upward if necessary to a multiple of
7454 ALIGNMENT (a power of 2). */
7455
7456 static unsigned int
7457 align_value (unsigned int off, unsigned int alignment)
7458 {
7459 return (off + alignment - 1) & ~(alignment - 1);
7460 }
7461
7462 /* Return the bit alignment required for field #F of template type TYPE. */
7463
7464 static unsigned int
7465 field_alignment (struct type *type, int f)
7466 {
7467 const char *name = TYPE_FIELD_NAME (type, f);
7468 int len;
7469 int align_offset;
7470
7471 /* The field name should never be null, unless the debugging information
7472 is somehow malformed. In this case, we assume the field does not
7473 require any alignment. */
7474 if (name == NULL)
7475 return 1;
7476
7477 len = strlen (name);
7478
7479 if (!isdigit (name[len - 1]))
7480 return 1;
7481
7482 if (isdigit (name[len - 2]))
7483 align_offset = len - 2;
7484 else
7485 align_offset = len - 1;
7486
7487 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7488 return TARGET_CHAR_BIT;
7489
7490 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7491 }
7492
7493 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7494
7495 static struct symbol *
7496 ada_find_any_type_symbol (const char *name)
7497 {
7498 struct symbol *sym;
7499
7500 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7501 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7502 return sym;
7503
7504 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7505 return sym;
7506 }
7507
7508 /* Find a type named NAME. Ignores ambiguity. This routine will look
7509 solely for types defined by debug info, it will not search the GDB
7510 primitive types. */
7511
7512 static struct type *
7513 ada_find_any_type (const char *name)
7514 {
7515 struct symbol *sym = ada_find_any_type_symbol (name);
7516
7517 if (sym != NULL)
7518 return SYMBOL_TYPE (sym);
7519
7520 return NULL;
7521 }
7522
7523 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7524 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7525 symbol, in which case it is returned. Otherwise, this looks for
7526 symbols whose name is that of NAME_SYM suffixed with "___XR".
7527 Return symbol if found, and NULL otherwise. */
7528
7529 struct symbol *
7530 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7531 {
7532 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7533 struct symbol *sym;
7534
7535 if (strstr (name, "___XR") != NULL)
7536 return name_sym;
7537
7538 sym = find_old_style_renaming_symbol (name, block);
7539
7540 if (sym != NULL)
7541 return sym;
7542
7543 /* Not right yet. FIXME pnh 7/20/2007. */
7544 sym = ada_find_any_type_symbol (name);
7545 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7546 return sym;
7547 else
7548 return NULL;
7549 }
7550
7551 static struct symbol *
7552 find_old_style_renaming_symbol (const char *name, const struct block *block)
7553 {
7554 const struct symbol *function_sym = block_linkage_function (block);
7555 char *rename;
7556
7557 if (function_sym != NULL)
7558 {
7559 /* If the symbol is defined inside a function, NAME is not fully
7560 qualified. This means we need to prepend the function name
7561 as well as adding the ``___XR'' suffix to build the name of
7562 the associated renaming symbol. */
7563 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7564 /* Function names sometimes contain suffixes used
7565 for instance to qualify nested subprograms. When building
7566 the XR type name, we need to make sure that this suffix is
7567 not included. So do not include any suffix in the function
7568 name length below. */
7569 int function_name_len = ada_name_prefix_len (function_name);
7570 const int rename_len = function_name_len + 2 /* "__" */
7571 + strlen (name) + 6 /* "___XR\0" */ ;
7572
7573 /* Strip the suffix if necessary. */
7574 ada_remove_trailing_digits (function_name, &function_name_len);
7575 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7576 ada_remove_Xbn_suffix (function_name, &function_name_len);
7577
7578 /* Library-level functions are a special case, as GNAT adds
7579 a ``_ada_'' prefix to the function name to avoid namespace
7580 pollution. However, the renaming symbols themselves do not
7581 have this prefix, so we need to skip this prefix if present. */
7582 if (function_name_len > 5 /* "_ada_" */
7583 && strstr (function_name, "_ada_") == function_name)
7584 {
7585 function_name += 5;
7586 function_name_len -= 5;
7587 }
7588
7589 rename = (char *) alloca (rename_len * sizeof (char));
7590 strncpy (rename, function_name, function_name_len);
7591 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7592 "__%s___XR", name);
7593 }
7594 else
7595 {
7596 const int rename_len = strlen (name) + 6;
7597
7598 rename = (char *) alloca (rename_len * sizeof (char));
7599 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7600 }
7601
7602 return ada_find_any_type_symbol (rename);
7603 }
7604
7605 /* Because of GNAT encoding conventions, several GDB symbols may match a
7606 given type name. If the type denoted by TYPE0 is to be preferred to
7607 that of TYPE1 for purposes of type printing, return non-zero;
7608 otherwise return 0. */
7609
7610 int
7611 ada_prefer_type (struct type *type0, struct type *type1)
7612 {
7613 if (type1 == NULL)
7614 return 1;
7615 else if (type0 == NULL)
7616 return 0;
7617 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7618 return 1;
7619 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7620 return 0;
7621 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7622 return 1;
7623 else if (ada_is_constrained_packed_array_type (type0))
7624 return 1;
7625 else if (ada_is_array_descriptor_type (type0)
7626 && !ada_is_array_descriptor_type (type1))
7627 return 1;
7628 else
7629 {
7630 const char *type0_name = type_name_no_tag (type0);
7631 const char *type1_name = type_name_no_tag (type1);
7632
7633 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7634 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7635 return 1;
7636 }
7637 return 0;
7638 }
7639
7640 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7641 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7642
7643 const char *
7644 ada_type_name (struct type *type)
7645 {
7646 if (type == NULL)
7647 return NULL;
7648 else if (TYPE_NAME (type) != NULL)
7649 return TYPE_NAME (type);
7650 else
7651 return TYPE_TAG_NAME (type);
7652 }
7653
7654 /* Search the list of "descriptive" types associated to TYPE for a type
7655 whose name is NAME. */
7656
7657 static struct type *
7658 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7659 {
7660 struct type *result;
7661
7662 if (ada_ignore_descriptive_types_p)
7663 return NULL;
7664
7665 /* If there no descriptive-type info, then there is no parallel type
7666 to be found. */
7667 if (!HAVE_GNAT_AUX_INFO (type))
7668 return NULL;
7669
7670 result = TYPE_DESCRIPTIVE_TYPE (type);
7671 while (result != NULL)
7672 {
7673 const char *result_name = ada_type_name (result);
7674
7675 if (result_name == NULL)
7676 {
7677 warning (_("unexpected null name on descriptive type"));
7678 return NULL;
7679 }
7680
7681 /* If the names match, stop. */
7682 if (strcmp (result_name, name) == 0)
7683 break;
7684
7685 /* Otherwise, look at the next item on the list, if any. */
7686 if (HAVE_GNAT_AUX_INFO (result))
7687 result = TYPE_DESCRIPTIVE_TYPE (result);
7688 else
7689 result = NULL;
7690 }
7691
7692 /* If we didn't find a match, see whether this is a packed array. With
7693 older compilers, the descriptive type information is either absent or
7694 irrelevant when it comes to packed arrays so the above lookup fails.
7695 Fall back to using a parallel lookup by name in this case. */
7696 if (result == NULL && ada_is_constrained_packed_array_type (type))
7697 return ada_find_any_type (name);
7698
7699 return result;
7700 }
7701
7702 /* Find a parallel type to TYPE with the specified NAME, using the
7703 descriptive type taken from the debugging information, if available,
7704 and otherwise using the (slower) name-based method. */
7705
7706 static struct type *
7707 ada_find_parallel_type_with_name (struct type *type, const char *name)
7708 {
7709 struct type *result = NULL;
7710
7711 if (HAVE_GNAT_AUX_INFO (type))
7712 result = find_parallel_type_by_descriptive_type (type, name);
7713 else
7714 result = ada_find_any_type (name);
7715
7716 return result;
7717 }
7718
7719 /* Same as above, but specify the name of the parallel type by appending
7720 SUFFIX to the name of TYPE. */
7721
7722 struct type *
7723 ada_find_parallel_type (struct type *type, const char *suffix)
7724 {
7725 char *name;
7726 const char *typename = ada_type_name (type);
7727 int len;
7728
7729 if (typename == NULL)
7730 return NULL;
7731
7732 len = strlen (typename);
7733
7734 name = (char *) alloca (len + strlen (suffix) + 1);
7735
7736 strcpy (name, typename);
7737 strcpy (name + len, suffix);
7738
7739 return ada_find_parallel_type_with_name (type, name);
7740 }
7741
7742 /* If TYPE is a variable-size record type, return the corresponding template
7743 type describing its fields. Otherwise, return NULL. */
7744
7745 static struct type *
7746 dynamic_template_type (struct type *type)
7747 {
7748 type = ada_check_typedef (type);
7749
7750 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7751 || ada_type_name (type) == NULL)
7752 return NULL;
7753 else
7754 {
7755 int len = strlen (ada_type_name (type));
7756
7757 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7758 return type;
7759 else
7760 return ada_find_parallel_type (type, "___XVE");
7761 }
7762 }
7763
7764 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7765 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7766
7767 static int
7768 is_dynamic_field (struct type *templ_type, int field_num)
7769 {
7770 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7771
7772 return name != NULL
7773 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7774 && strstr (name, "___XVL") != NULL;
7775 }
7776
7777 /* The index of the variant field of TYPE, or -1 if TYPE does not
7778 represent a variant record type. */
7779
7780 static int
7781 variant_field_index (struct type *type)
7782 {
7783 int f;
7784
7785 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7786 return -1;
7787
7788 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7789 {
7790 if (ada_is_variant_part (type, f))
7791 return f;
7792 }
7793 return -1;
7794 }
7795
7796 /* A record type with no fields. */
7797
7798 static struct type *
7799 empty_record (struct type *template)
7800 {
7801 struct type *type = alloc_type_copy (template);
7802
7803 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7804 TYPE_NFIELDS (type) = 0;
7805 TYPE_FIELDS (type) = NULL;
7806 INIT_CPLUS_SPECIFIC (type);
7807 TYPE_NAME (type) = "<empty>";
7808 TYPE_TAG_NAME (type) = NULL;
7809 TYPE_LENGTH (type) = 0;
7810 return type;
7811 }
7812
7813 /* An ordinary record type (with fixed-length fields) that describes
7814 the value of type TYPE at VALADDR or ADDRESS (see comments at
7815 the beginning of this section) VAL according to GNAT conventions.
7816 DVAL0 should describe the (portion of a) record that contains any
7817 necessary discriminants. It should be NULL if value_type (VAL) is
7818 an outer-level type (i.e., as opposed to a branch of a variant.) A
7819 variant field (unless unchecked) is replaced by a particular branch
7820 of the variant.
7821
7822 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7823 length are not statically known are discarded. As a consequence,
7824 VALADDR, ADDRESS and DVAL0 are ignored.
7825
7826 NOTE: Limitations: For now, we assume that dynamic fields and
7827 variants occupy whole numbers of bytes. However, they need not be
7828 byte-aligned. */
7829
7830 struct type *
7831 ada_template_to_fixed_record_type_1 (struct type *type,
7832 const gdb_byte *valaddr,
7833 CORE_ADDR address, struct value *dval0,
7834 int keep_dynamic_fields)
7835 {
7836 struct value *mark = value_mark ();
7837 struct value *dval;
7838 struct type *rtype;
7839 int nfields, bit_len;
7840 int variant_field;
7841 long off;
7842 int fld_bit_len;
7843 int f;
7844
7845 /* Compute the number of fields in this record type that are going
7846 to be processed: unless keep_dynamic_fields, this includes only
7847 fields whose position and length are static will be processed. */
7848 if (keep_dynamic_fields)
7849 nfields = TYPE_NFIELDS (type);
7850 else
7851 {
7852 nfields = 0;
7853 while (nfields < TYPE_NFIELDS (type)
7854 && !ada_is_variant_part (type, nfields)
7855 && !is_dynamic_field (type, nfields))
7856 nfields++;
7857 }
7858
7859 rtype = alloc_type_copy (type);
7860 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7861 INIT_CPLUS_SPECIFIC (rtype);
7862 TYPE_NFIELDS (rtype) = nfields;
7863 TYPE_FIELDS (rtype) = (struct field *)
7864 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7865 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7866 TYPE_NAME (rtype) = ada_type_name (type);
7867 TYPE_TAG_NAME (rtype) = NULL;
7868 TYPE_FIXED_INSTANCE (rtype) = 1;
7869
7870 off = 0;
7871 bit_len = 0;
7872 variant_field = -1;
7873
7874 for (f = 0; f < nfields; f += 1)
7875 {
7876 off = align_value (off, field_alignment (type, f))
7877 + TYPE_FIELD_BITPOS (type, f);
7878 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7879 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7880
7881 if (ada_is_variant_part (type, f))
7882 {
7883 variant_field = f;
7884 fld_bit_len = 0;
7885 }
7886 else if (is_dynamic_field (type, f))
7887 {
7888 const gdb_byte *field_valaddr = valaddr;
7889 CORE_ADDR field_address = address;
7890 struct type *field_type =
7891 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7892
7893 if (dval0 == NULL)
7894 {
7895 /* rtype's length is computed based on the run-time
7896 value of discriminants. If the discriminants are not
7897 initialized, the type size may be completely bogus and
7898 GDB may fail to allocate a value for it. So check the
7899 size first before creating the value. */
7900 check_size (rtype);
7901 /* Using plain value_from_contents_and_address here
7902 causes problems because we will end up trying to
7903 resolve a type that is currently being
7904 constructed. */
7905 dval = value_from_contents_and_address_unresolved (rtype,
7906 valaddr,
7907 address);
7908 rtype = value_type (dval);
7909 }
7910 else
7911 dval = dval0;
7912
7913 /* If the type referenced by this field is an aligner type, we need
7914 to unwrap that aligner type, because its size might not be set.
7915 Keeping the aligner type would cause us to compute the wrong
7916 size for this field, impacting the offset of the all the fields
7917 that follow this one. */
7918 if (ada_is_aligner_type (field_type))
7919 {
7920 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7921
7922 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7923 field_address = cond_offset_target (field_address, field_offset);
7924 field_type = ada_aligned_type (field_type);
7925 }
7926
7927 field_valaddr = cond_offset_host (field_valaddr,
7928 off / TARGET_CHAR_BIT);
7929 field_address = cond_offset_target (field_address,
7930 off / TARGET_CHAR_BIT);
7931
7932 /* Get the fixed type of the field. Note that, in this case,
7933 we do not want to get the real type out of the tag: if
7934 the current field is the parent part of a tagged record,
7935 we will get the tag of the object. Clearly wrong: the real
7936 type of the parent is not the real type of the child. We
7937 would end up in an infinite loop. */
7938 field_type = ada_get_base_type (field_type);
7939 field_type = ada_to_fixed_type (field_type, field_valaddr,
7940 field_address, dval, 0);
7941 /* If the field size is already larger than the maximum
7942 object size, then the record itself will necessarily
7943 be larger than the maximum object size. We need to make
7944 this check now, because the size might be so ridiculously
7945 large (due to an uninitialized variable in the inferior)
7946 that it would cause an overflow when adding it to the
7947 record size. */
7948 check_size (field_type);
7949
7950 TYPE_FIELD_TYPE (rtype, f) = field_type;
7951 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7952 /* The multiplication can potentially overflow. But because
7953 the field length has been size-checked just above, and
7954 assuming that the maximum size is a reasonable value,
7955 an overflow should not happen in practice. So rather than
7956 adding overflow recovery code to this already complex code,
7957 we just assume that it's not going to happen. */
7958 fld_bit_len =
7959 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7960 }
7961 else
7962 {
7963 /* Note: If this field's type is a typedef, it is important
7964 to preserve the typedef layer.
7965
7966 Otherwise, we might be transforming a typedef to a fat
7967 pointer (encoding a pointer to an unconstrained array),
7968 into a basic fat pointer (encoding an unconstrained
7969 array). As both types are implemented using the same
7970 structure, the typedef is the only clue which allows us
7971 to distinguish between the two options. Stripping it
7972 would prevent us from printing this field appropriately. */
7973 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7974 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7975 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7976 fld_bit_len =
7977 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7978 else
7979 {
7980 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7981
7982 /* We need to be careful of typedefs when computing
7983 the length of our field. If this is a typedef,
7984 get the length of the target type, not the length
7985 of the typedef. */
7986 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7987 field_type = ada_typedef_target_type (field_type);
7988
7989 fld_bit_len =
7990 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7991 }
7992 }
7993 if (off + fld_bit_len > bit_len)
7994 bit_len = off + fld_bit_len;
7995 off += fld_bit_len;
7996 TYPE_LENGTH (rtype) =
7997 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7998 }
7999
8000 /* We handle the variant part, if any, at the end because of certain
8001 odd cases in which it is re-ordered so as NOT to be the last field of
8002 the record. This can happen in the presence of representation
8003 clauses. */
8004 if (variant_field >= 0)
8005 {
8006 struct type *branch_type;
8007
8008 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8009
8010 if (dval0 == NULL)
8011 {
8012 /* Using plain value_from_contents_and_address here causes
8013 problems because we will end up trying to resolve a type
8014 that is currently being constructed. */
8015 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8016 address);
8017 rtype = value_type (dval);
8018 }
8019 else
8020 dval = dval0;
8021
8022 branch_type =
8023 to_fixed_variant_branch_type
8024 (TYPE_FIELD_TYPE (type, variant_field),
8025 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8026 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8027 if (branch_type == NULL)
8028 {
8029 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8030 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8031 TYPE_NFIELDS (rtype) -= 1;
8032 }
8033 else
8034 {
8035 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8036 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8037 fld_bit_len =
8038 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8039 TARGET_CHAR_BIT;
8040 if (off + fld_bit_len > bit_len)
8041 bit_len = off + fld_bit_len;
8042 TYPE_LENGTH (rtype) =
8043 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8044 }
8045 }
8046
8047 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8048 should contain the alignment of that record, which should be a strictly
8049 positive value. If null or negative, then something is wrong, most
8050 probably in the debug info. In that case, we don't round up the size
8051 of the resulting type. If this record is not part of another structure,
8052 the current RTYPE length might be good enough for our purposes. */
8053 if (TYPE_LENGTH (type) <= 0)
8054 {
8055 if (TYPE_NAME (rtype))
8056 warning (_("Invalid type size for `%s' detected: %d."),
8057 TYPE_NAME (rtype), TYPE_LENGTH (type));
8058 else
8059 warning (_("Invalid type size for <unnamed> detected: %d."),
8060 TYPE_LENGTH (type));
8061 }
8062 else
8063 {
8064 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8065 TYPE_LENGTH (type));
8066 }
8067
8068 value_free_to_mark (mark);
8069 if (TYPE_LENGTH (rtype) > varsize_limit)
8070 error (_("record type with dynamic size is larger than varsize-limit"));
8071 return rtype;
8072 }
8073
8074 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8075 of 1. */
8076
8077 static struct type *
8078 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8079 CORE_ADDR address, struct value *dval0)
8080 {
8081 return ada_template_to_fixed_record_type_1 (type, valaddr,
8082 address, dval0, 1);
8083 }
8084
8085 /* An ordinary record type in which ___XVL-convention fields and
8086 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8087 static approximations, containing all possible fields. Uses
8088 no runtime values. Useless for use in values, but that's OK,
8089 since the results are used only for type determinations. Works on both
8090 structs and unions. Representation note: to save space, we memorize
8091 the result of this function in the TYPE_TARGET_TYPE of the
8092 template type. */
8093
8094 static struct type *
8095 template_to_static_fixed_type (struct type *type0)
8096 {
8097 struct type *type;
8098 int nfields;
8099 int f;
8100
8101 if (TYPE_TARGET_TYPE (type0) != NULL)
8102 return TYPE_TARGET_TYPE (type0);
8103
8104 nfields = TYPE_NFIELDS (type0);
8105 type = type0;
8106
8107 for (f = 0; f < nfields; f += 1)
8108 {
8109 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
8110 struct type *new_type;
8111
8112 if (is_dynamic_field (type0, f))
8113 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8114 else
8115 new_type = static_unwrap_type (field_type);
8116 if (type == type0 && new_type != field_type)
8117 {
8118 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8119 TYPE_CODE (type) = TYPE_CODE (type0);
8120 INIT_CPLUS_SPECIFIC (type);
8121 TYPE_NFIELDS (type) = nfields;
8122 TYPE_FIELDS (type) = (struct field *)
8123 TYPE_ALLOC (type, nfields * sizeof (struct field));
8124 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8125 sizeof (struct field) * nfields);
8126 TYPE_NAME (type) = ada_type_name (type0);
8127 TYPE_TAG_NAME (type) = NULL;
8128 TYPE_FIXED_INSTANCE (type) = 1;
8129 TYPE_LENGTH (type) = 0;
8130 }
8131 TYPE_FIELD_TYPE (type, f) = new_type;
8132 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8133 }
8134 return type;
8135 }
8136
8137 /* Given an object of type TYPE whose contents are at VALADDR and
8138 whose address in memory is ADDRESS, returns a revision of TYPE,
8139 which should be a non-dynamic-sized record, in which the variant
8140 part, if any, is replaced with the appropriate branch. Looks
8141 for discriminant values in DVAL0, which can be NULL if the record
8142 contains the necessary discriminant values. */
8143
8144 static struct type *
8145 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8146 CORE_ADDR address, struct value *dval0)
8147 {
8148 struct value *mark = value_mark ();
8149 struct value *dval;
8150 struct type *rtype;
8151 struct type *branch_type;
8152 int nfields = TYPE_NFIELDS (type);
8153 int variant_field = variant_field_index (type);
8154
8155 if (variant_field == -1)
8156 return type;
8157
8158 if (dval0 == NULL)
8159 {
8160 dval = value_from_contents_and_address (type, valaddr, address);
8161 type = value_type (dval);
8162 }
8163 else
8164 dval = dval0;
8165
8166 rtype = alloc_type_copy (type);
8167 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8168 INIT_CPLUS_SPECIFIC (rtype);
8169 TYPE_NFIELDS (rtype) = nfields;
8170 TYPE_FIELDS (rtype) =
8171 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8172 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8173 sizeof (struct field) * nfields);
8174 TYPE_NAME (rtype) = ada_type_name (type);
8175 TYPE_TAG_NAME (rtype) = NULL;
8176 TYPE_FIXED_INSTANCE (rtype) = 1;
8177 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8178
8179 branch_type = to_fixed_variant_branch_type
8180 (TYPE_FIELD_TYPE (type, variant_field),
8181 cond_offset_host (valaddr,
8182 TYPE_FIELD_BITPOS (type, variant_field)
8183 / TARGET_CHAR_BIT),
8184 cond_offset_target (address,
8185 TYPE_FIELD_BITPOS (type, variant_field)
8186 / TARGET_CHAR_BIT), dval);
8187 if (branch_type == NULL)
8188 {
8189 int f;
8190
8191 for (f = variant_field + 1; f < nfields; f += 1)
8192 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8193 TYPE_NFIELDS (rtype) -= 1;
8194 }
8195 else
8196 {
8197 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8198 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8199 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8200 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8201 }
8202 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8203
8204 value_free_to_mark (mark);
8205 return rtype;
8206 }
8207
8208 /* An ordinary record type (with fixed-length fields) that describes
8209 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8210 beginning of this section]. Any necessary discriminants' values
8211 should be in DVAL, a record value; it may be NULL if the object
8212 at ADDR itself contains any necessary discriminant values.
8213 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8214 values from the record are needed. Except in the case that DVAL,
8215 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8216 unchecked) is replaced by a particular branch of the variant.
8217
8218 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8219 is questionable and may be removed. It can arise during the
8220 processing of an unconstrained-array-of-record type where all the
8221 variant branches have exactly the same size. This is because in
8222 such cases, the compiler does not bother to use the XVS convention
8223 when encoding the record. I am currently dubious of this
8224 shortcut and suspect the compiler should be altered. FIXME. */
8225
8226 static struct type *
8227 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8228 CORE_ADDR address, struct value *dval)
8229 {
8230 struct type *templ_type;
8231
8232 if (TYPE_FIXED_INSTANCE (type0))
8233 return type0;
8234
8235 templ_type = dynamic_template_type (type0);
8236
8237 if (templ_type != NULL)
8238 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8239 else if (variant_field_index (type0) >= 0)
8240 {
8241 if (dval == NULL && valaddr == NULL && address == 0)
8242 return type0;
8243 return to_record_with_fixed_variant_part (type0, valaddr, address,
8244 dval);
8245 }
8246 else
8247 {
8248 TYPE_FIXED_INSTANCE (type0) = 1;
8249 return type0;
8250 }
8251
8252 }
8253
8254 /* An ordinary record type (with fixed-length fields) that describes
8255 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8256 union type. Any necessary discriminants' values should be in DVAL,
8257 a record value. That is, this routine selects the appropriate
8258 branch of the union at ADDR according to the discriminant value
8259 indicated in the union's type name. Returns VAR_TYPE0 itself if
8260 it represents a variant subject to a pragma Unchecked_Union. */
8261
8262 static struct type *
8263 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8264 CORE_ADDR address, struct value *dval)
8265 {
8266 int which;
8267 struct type *templ_type;
8268 struct type *var_type;
8269
8270 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8271 var_type = TYPE_TARGET_TYPE (var_type0);
8272 else
8273 var_type = var_type0;
8274
8275 templ_type = ada_find_parallel_type (var_type, "___XVU");
8276
8277 if (templ_type != NULL)
8278 var_type = templ_type;
8279
8280 if (is_unchecked_variant (var_type, value_type (dval)))
8281 return var_type0;
8282 which =
8283 ada_which_variant_applies (var_type,
8284 value_type (dval), value_contents (dval));
8285
8286 if (which < 0)
8287 return empty_record (var_type);
8288 else if (is_dynamic_field (var_type, which))
8289 return to_fixed_record_type
8290 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8291 valaddr, address, dval);
8292 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8293 return
8294 to_fixed_record_type
8295 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8296 else
8297 return TYPE_FIELD_TYPE (var_type, which);
8298 }
8299
8300 /* Assuming that TYPE0 is an array type describing the type of a value
8301 at ADDR, and that DVAL describes a record containing any
8302 discriminants used in TYPE0, returns a type for the value that
8303 contains no dynamic components (that is, no components whose sizes
8304 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8305 true, gives an error message if the resulting type's size is over
8306 varsize_limit. */
8307
8308 static struct type *
8309 to_fixed_array_type (struct type *type0, struct value *dval,
8310 int ignore_too_big)
8311 {
8312 struct type *index_type_desc;
8313 struct type *result;
8314 int constrained_packed_array_p;
8315
8316 type0 = ada_check_typedef (type0);
8317 if (TYPE_FIXED_INSTANCE (type0))
8318 return type0;
8319
8320 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8321 if (constrained_packed_array_p)
8322 type0 = decode_constrained_packed_array_type (type0);
8323
8324 index_type_desc = ada_find_parallel_type (type0, "___XA");
8325 ada_fixup_array_indexes_type (index_type_desc);
8326 if (index_type_desc == NULL)
8327 {
8328 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8329
8330 /* NOTE: elt_type---the fixed version of elt_type0---should never
8331 depend on the contents of the array in properly constructed
8332 debugging data. */
8333 /* Create a fixed version of the array element type.
8334 We're not providing the address of an element here,
8335 and thus the actual object value cannot be inspected to do
8336 the conversion. This should not be a problem, since arrays of
8337 unconstrained objects are not allowed. In particular, all
8338 the elements of an array of a tagged type should all be of
8339 the same type specified in the debugging info. No need to
8340 consult the object tag. */
8341 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8342
8343 /* Make sure we always create a new array type when dealing with
8344 packed array types, since we're going to fix-up the array
8345 type length and element bitsize a little further down. */
8346 if (elt_type0 == elt_type && !constrained_packed_array_p)
8347 result = type0;
8348 else
8349 result = create_array_type (alloc_type_copy (type0),
8350 elt_type, TYPE_INDEX_TYPE (type0));
8351 }
8352 else
8353 {
8354 int i;
8355 struct type *elt_type0;
8356
8357 elt_type0 = type0;
8358 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8359 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8360
8361 /* NOTE: result---the fixed version of elt_type0---should never
8362 depend on the contents of the array in properly constructed
8363 debugging data. */
8364 /* Create a fixed version of the array element type.
8365 We're not providing the address of an element here,
8366 and thus the actual object value cannot be inspected to do
8367 the conversion. This should not be a problem, since arrays of
8368 unconstrained objects are not allowed. In particular, all
8369 the elements of an array of a tagged type should all be of
8370 the same type specified in the debugging info. No need to
8371 consult the object tag. */
8372 result =
8373 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8374
8375 elt_type0 = type0;
8376 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8377 {
8378 struct type *range_type =
8379 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8380
8381 result = create_array_type (alloc_type_copy (elt_type0),
8382 result, range_type);
8383 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8384 }
8385 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8386 error (_("array type with dynamic size is larger than varsize-limit"));
8387 }
8388
8389 /* We want to preserve the type name. This can be useful when
8390 trying to get the type name of a value that has already been
8391 printed (for instance, if the user did "print VAR; whatis $". */
8392 TYPE_NAME (result) = TYPE_NAME (type0);
8393
8394 if (constrained_packed_array_p)
8395 {
8396 /* So far, the resulting type has been created as if the original
8397 type was a regular (non-packed) array type. As a result, the
8398 bitsize of the array elements needs to be set again, and the array
8399 length needs to be recomputed based on that bitsize. */
8400 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8401 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8402
8403 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8404 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8405 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8406 TYPE_LENGTH (result)++;
8407 }
8408
8409 TYPE_FIXED_INSTANCE (result) = 1;
8410 return result;
8411 }
8412
8413
8414 /* A standard type (containing no dynamically sized components)
8415 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8416 DVAL describes a record containing any discriminants used in TYPE0,
8417 and may be NULL if there are none, or if the object of type TYPE at
8418 ADDRESS or in VALADDR contains these discriminants.
8419
8420 If CHECK_TAG is not null, in the case of tagged types, this function
8421 attempts to locate the object's tag and use it to compute the actual
8422 type. However, when ADDRESS is null, we cannot use it to determine the
8423 location of the tag, and therefore compute the tagged type's actual type.
8424 So we return the tagged type without consulting the tag. */
8425
8426 static struct type *
8427 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8428 CORE_ADDR address, struct value *dval, int check_tag)
8429 {
8430 type = ada_check_typedef (type);
8431 switch (TYPE_CODE (type))
8432 {
8433 default:
8434 return type;
8435 case TYPE_CODE_STRUCT:
8436 {
8437 struct type *static_type = to_static_fixed_type (type);
8438 struct type *fixed_record_type =
8439 to_fixed_record_type (type, valaddr, address, NULL);
8440
8441 /* If STATIC_TYPE is a tagged type and we know the object's address,
8442 then we can determine its tag, and compute the object's actual
8443 type from there. Note that we have to use the fixed record
8444 type (the parent part of the record may have dynamic fields
8445 and the way the location of _tag is expressed may depend on
8446 them). */
8447
8448 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8449 {
8450 struct value *tag =
8451 value_tag_from_contents_and_address
8452 (fixed_record_type,
8453 valaddr,
8454 address);
8455 struct type *real_type = type_from_tag (tag);
8456 struct value *obj =
8457 value_from_contents_and_address (fixed_record_type,
8458 valaddr,
8459 address);
8460 fixed_record_type = value_type (obj);
8461 if (real_type != NULL)
8462 return to_fixed_record_type
8463 (real_type, NULL,
8464 value_address (ada_tag_value_at_base_address (obj)), NULL);
8465 }
8466
8467 /* Check to see if there is a parallel ___XVZ variable.
8468 If there is, then it provides the actual size of our type. */
8469 else if (ada_type_name (fixed_record_type) != NULL)
8470 {
8471 const char *name = ada_type_name (fixed_record_type);
8472 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8473 int xvz_found = 0;
8474 LONGEST size;
8475
8476 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8477 size = get_int_var_value (xvz_name, &xvz_found);
8478 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8479 {
8480 fixed_record_type = copy_type (fixed_record_type);
8481 TYPE_LENGTH (fixed_record_type) = size;
8482
8483 /* The FIXED_RECORD_TYPE may have be a stub. We have
8484 observed this when the debugging info is STABS, and
8485 apparently it is something that is hard to fix.
8486
8487 In practice, we don't need the actual type definition
8488 at all, because the presence of the XVZ variable allows us
8489 to assume that there must be a XVS type as well, which we
8490 should be able to use later, when we need the actual type
8491 definition.
8492
8493 In the meantime, pretend that the "fixed" type we are
8494 returning is NOT a stub, because this can cause trouble
8495 when using this type to create new types targeting it.
8496 Indeed, the associated creation routines often check
8497 whether the target type is a stub and will try to replace
8498 it, thus using a type with the wrong size. This, in turn,
8499 might cause the new type to have the wrong size too.
8500 Consider the case of an array, for instance, where the size
8501 of the array is computed from the number of elements in
8502 our array multiplied by the size of its element. */
8503 TYPE_STUB (fixed_record_type) = 0;
8504 }
8505 }
8506 return fixed_record_type;
8507 }
8508 case TYPE_CODE_ARRAY:
8509 return to_fixed_array_type (type, dval, 1);
8510 case TYPE_CODE_UNION:
8511 if (dval == NULL)
8512 return type;
8513 else
8514 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8515 }
8516 }
8517
8518 /* The same as ada_to_fixed_type_1, except that it preserves the type
8519 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8520
8521 The typedef layer needs be preserved in order to differentiate between
8522 arrays and array pointers when both types are implemented using the same
8523 fat pointer. In the array pointer case, the pointer is encoded as
8524 a typedef of the pointer type. For instance, considering:
8525
8526 type String_Access is access String;
8527 S1 : String_Access := null;
8528
8529 To the debugger, S1 is defined as a typedef of type String. But
8530 to the user, it is a pointer. So if the user tries to print S1,
8531 we should not dereference the array, but print the array address
8532 instead.
8533
8534 If we didn't preserve the typedef layer, we would lose the fact that
8535 the type is to be presented as a pointer (needs de-reference before
8536 being printed). And we would also use the source-level type name. */
8537
8538 struct type *
8539 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8540 CORE_ADDR address, struct value *dval, int check_tag)
8541
8542 {
8543 struct type *fixed_type =
8544 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8545
8546 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8547 then preserve the typedef layer.
8548
8549 Implementation note: We can only check the main-type portion of
8550 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8551 from TYPE now returns a type that has the same instance flags
8552 as TYPE. For instance, if TYPE is a "typedef const", and its
8553 target type is a "struct", then the typedef elimination will return
8554 a "const" version of the target type. See check_typedef for more
8555 details about how the typedef layer elimination is done.
8556
8557 brobecker/2010-11-19: It seems to me that the only case where it is
8558 useful to preserve the typedef layer is when dealing with fat pointers.
8559 Perhaps, we could add a check for that and preserve the typedef layer
8560 only in that situation. But this seems unecessary so far, probably
8561 because we call check_typedef/ada_check_typedef pretty much everywhere.
8562 */
8563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8564 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8565 == TYPE_MAIN_TYPE (fixed_type)))
8566 return type;
8567
8568 return fixed_type;
8569 }
8570
8571 /* A standard (static-sized) type corresponding as well as possible to
8572 TYPE0, but based on no runtime data. */
8573
8574 static struct type *
8575 to_static_fixed_type (struct type *type0)
8576 {
8577 struct type *type;
8578
8579 if (type0 == NULL)
8580 return NULL;
8581
8582 if (TYPE_FIXED_INSTANCE (type0))
8583 return type0;
8584
8585 type0 = ada_check_typedef (type0);
8586
8587 switch (TYPE_CODE (type0))
8588 {
8589 default:
8590 return type0;
8591 case TYPE_CODE_STRUCT:
8592 type = dynamic_template_type (type0);
8593 if (type != NULL)
8594 return template_to_static_fixed_type (type);
8595 else
8596 return template_to_static_fixed_type (type0);
8597 case TYPE_CODE_UNION:
8598 type = ada_find_parallel_type (type0, "___XVU");
8599 if (type != NULL)
8600 return template_to_static_fixed_type (type);
8601 else
8602 return template_to_static_fixed_type (type0);
8603 }
8604 }
8605
8606 /* A static approximation of TYPE with all type wrappers removed. */
8607
8608 static struct type *
8609 static_unwrap_type (struct type *type)
8610 {
8611 if (ada_is_aligner_type (type))
8612 {
8613 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8614 if (ada_type_name (type1) == NULL)
8615 TYPE_NAME (type1) = ada_type_name (type);
8616
8617 return static_unwrap_type (type1);
8618 }
8619 else
8620 {
8621 struct type *raw_real_type = ada_get_base_type (type);
8622
8623 if (raw_real_type == type)
8624 return type;
8625 else
8626 return to_static_fixed_type (raw_real_type);
8627 }
8628 }
8629
8630 /* In some cases, incomplete and private types require
8631 cross-references that are not resolved as records (for example,
8632 type Foo;
8633 type FooP is access Foo;
8634 V: FooP;
8635 type Foo is array ...;
8636 ). In these cases, since there is no mechanism for producing
8637 cross-references to such types, we instead substitute for FooP a
8638 stub enumeration type that is nowhere resolved, and whose tag is
8639 the name of the actual type. Call these types "non-record stubs". */
8640
8641 /* A type equivalent to TYPE that is not a non-record stub, if one
8642 exists, otherwise TYPE. */
8643
8644 struct type *
8645 ada_check_typedef (struct type *type)
8646 {
8647 if (type == NULL)
8648 return NULL;
8649
8650 /* If our type is a typedef type of a fat pointer, then we're done.
8651 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8652 what allows us to distinguish between fat pointers that represent
8653 array types, and fat pointers that represent array access types
8654 (in both cases, the compiler implements them as fat pointers). */
8655 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8656 && is_thick_pntr (ada_typedef_target_type (type)))
8657 return type;
8658
8659 CHECK_TYPEDEF (type);
8660 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8661 || !TYPE_STUB (type)
8662 || TYPE_TAG_NAME (type) == NULL)
8663 return type;
8664 else
8665 {
8666 const char *name = TYPE_TAG_NAME (type);
8667 struct type *type1 = ada_find_any_type (name);
8668
8669 if (type1 == NULL)
8670 return type;
8671
8672 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8673 stubs pointing to arrays, as we don't create symbols for array
8674 types, only for the typedef-to-array types). If that's the case,
8675 strip the typedef layer. */
8676 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8677 type1 = ada_check_typedef (type1);
8678
8679 return type1;
8680 }
8681 }
8682
8683 /* A value representing the data at VALADDR/ADDRESS as described by
8684 type TYPE0, but with a standard (static-sized) type that correctly
8685 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8686 type, then return VAL0 [this feature is simply to avoid redundant
8687 creation of struct values]. */
8688
8689 static struct value *
8690 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8691 struct value *val0)
8692 {
8693 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8694
8695 if (type == type0 && val0 != NULL)
8696 return val0;
8697 else
8698 return value_from_contents_and_address (type, 0, address);
8699 }
8700
8701 /* A value representing VAL, but with a standard (static-sized) type
8702 that correctly describes it. Does not necessarily create a new
8703 value. */
8704
8705 struct value *
8706 ada_to_fixed_value (struct value *val)
8707 {
8708 val = unwrap_value (val);
8709 val = ada_to_fixed_value_create (value_type (val),
8710 value_address (val),
8711 val);
8712 return val;
8713 }
8714 \f
8715
8716 /* Attributes */
8717
8718 /* Table mapping attribute numbers to names.
8719 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8720
8721 static const char *attribute_names[] = {
8722 "<?>",
8723
8724 "first",
8725 "last",
8726 "length",
8727 "image",
8728 "max",
8729 "min",
8730 "modulus",
8731 "pos",
8732 "size",
8733 "tag",
8734 "val",
8735 0
8736 };
8737
8738 const char *
8739 ada_attribute_name (enum exp_opcode n)
8740 {
8741 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8742 return attribute_names[n - OP_ATR_FIRST + 1];
8743 else
8744 return attribute_names[0];
8745 }
8746
8747 /* Evaluate the 'POS attribute applied to ARG. */
8748
8749 static LONGEST
8750 pos_atr (struct value *arg)
8751 {
8752 struct value *val = coerce_ref (arg);
8753 struct type *type = value_type (val);
8754
8755 if (!discrete_type_p (type))
8756 error (_("'POS only defined on discrete types"));
8757
8758 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8759 {
8760 int i;
8761 LONGEST v = value_as_long (val);
8762
8763 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8764 {
8765 if (v == TYPE_FIELD_ENUMVAL (type, i))
8766 return i;
8767 }
8768 error (_("enumeration value is invalid: can't find 'POS"));
8769 }
8770 else
8771 return value_as_long (val);
8772 }
8773
8774 static struct value *
8775 value_pos_atr (struct type *type, struct value *arg)
8776 {
8777 return value_from_longest (type, pos_atr (arg));
8778 }
8779
8780 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8781
8782 static struct value *
8783 value_val_atr (struct type *type, struct value *arg)
8784 {
8785 if (!discrete_type_p (type))
8786 error (_("'VAL only defined on discrete types"));
8787 if (!integer_type_p (value_type (arg)))
8788 error (_("'VAL requires integral argument"));
8789
8790 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8791 {
8792 long pos = value_as_long (arg);
8793
8794 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8795 error (_("argument to 'VAL out of range"));
8796 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8797 }
8798 else
8799 return value_from_longest (type, value_as_long (arg));
8800 }
8801 \f
8802
8803 /* Evaluation */
8804
8805 /* True if TYPE appears to be an Ada character type.
8806 [At the moment, this is true only for Character and Wide_Character;
8807 It is a heuristic test that could stand improvement]. */
8808
8809 int
8810 ada_is_character_type (struct type *type)
8811 {
8812 const char *name;
8813
8814 /* If the type code says it's a character, then assume it really is,
8815 and don't check any further. */
8816 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8817 return 1;
8818
8819 /* Otherwise, assume it's a character type iff it is a discrete type
8820 with a known character type name. */
8821 name = ada_type_name (type);
8822 return (name != NULL
8823 && (TYPE_CODE (type) == TYPE_CODE_INT
8824 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8825 && (strcmp (name, "character") == 0
8826 || strcmp (name, "wide_character") == 0
8827 || strcmp (name, "wide_wide_character") == 0
8828 || strcmp (name, "unsigned char") == 0));
8829 }
8830
8831 /* True if TYPE appears to be an Ada string type. */
8832
8833 int
8834 ada_is_string_type (struct type *type)
8835 {
8836 type = ada_check_typedef (type);
8837 if (type != NULL
8838 && TYPE_CODE (type) != TYPE_CODE_PTR
8839 && (ada_is_simple_array_type (type)
8840 || ada_is_array_descriptor_type (type))
8841 && ada_array_arity (type) == 1)
8842 {
8843 struct type *elttype = ada_array_element_type (type, 1);
8844
8845 return ada_is_character_type (elttype);
8846 }
8847 else
8848 return 0;
8849 }
8850
8851 /* The compiler sometimes provides a parallel XVS type for a given
8852 PAD type. Normally, it is safe to follow the PAD type directly,
8853 but older versions of the compiler have a bug that causes the offset
8854 of its "F" field to be wrong. Following that field in that case
8855 would lead to incorrect results, but this can be worked around
8856 by ignoring the PAD type and using the associated XVS type instead.
8857
8858 Set to True if the debugger should trust the contents of PAD types.
8859 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8860 static int trust_pad_over_xvs = 1;
8861
8862 /* True if TYPE is a struct type introduced by the compiler to force the
8863 alignment of a value. Such types have a single field with a
8864 distinctive name. */
8865
8866 int
8867 ada_is_aligner_type (struct type *type)
8868 {
8869 type = ada_check_typedef (type);
8870
8871 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8872 return 0;
8873
8874 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8875 && TYPE_NFIELDS (type) == 1
8876 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8877 }
8878
8879 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8880 the parallel type. */
8881
8882 struct type *
8883 ada_get_base_type (struct type *raw_type)
8884 {
8885 struct type *real_type_namer;
8886 struct type *raw_real_type;
8887
8888 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8889 return raw_type;
8890
8891 if (ada_is_aligner_type (raw_type))
8892 /* The encoding specifies that we should always use the aligner type.
8893 So, even if this aligner type has an associated XVS type, we should
8894 simply ignore it.
8895
8896 According to the compiler gurus, an XVS type parallel to an aligner
8897 type may exist because of a stabs limitation. In stabs, aligner
8898 types are empty because the field has a variable-sized type, and
8899 thus cannot actually be used as an aligner type. As a result,
8900 we need the associated parallel XVS type to decode the type.
8901 Since the policy in the compiler is to not change the internal
8902 representation based on the debugging info format, we sometimes
8903 end up having a redundant XVS type parallel to the aligner type. */
8904 return raw_type;
8905
8906 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8907 if (real_type_namer == NULL
8908 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8909 || TYPE_NFIELDS (real_type_namer) != 1)
8910 return raw_type;
8911
8912 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8913 {
8914 /* This is an older encoding form where the base type needs to be
8915 looked up by name. We prefer the newer enconding because it is
8916 more efficient. */
8917 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8918 if (raw_real_type == NULL)
8919 return raw_type;
8920 else
8921 return raw_real_type;
8922 }
8923
8924 /* The field in our XVS type is a reference to the base type. */
8925 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8926 }
8927
8928 /* The type of value designated by TYPE, with all aligners removed. */
8929
8930 struct type *
8931 ada_aligned_type (struct type *type)
8932 {
8933 if (ada_is_aligner_type (type))
8934 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8935 else
8936 return ada_get_base_type (type);
8937 }
8938
8939
8940 /* The address of the aligned value in an object at address VALADDR
8941 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8942
8943 const gdb_byte *
8944 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8945 {
8946 if (ada_is_aligner_type (type))
8947 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8948 valaddr +
8949 TYPE_FIELD_BITPOS (type,
8950 0) / TARGET_CHAR_BIT);
8951 else
8952 return valaddr;
8953 }
8954
8955
8956
8957 /* The printed representation of an enumeration literal with encoded
8958 name NAME. The value is good to the next call of ada_enum_name. */
8959 const char *
8960 ada_enum_name (const char *name)
8961 {
8962 static char *result;
8963 static size_t result_len = 0;
8964 char *tmp;
8965
8966 /* First, unqualify the enumeration name:
8967 1. Search for the last '.' character. If we find one, then skip
8968 all the preceding characters, the unqualified name starts
8969 right after that dot.
8970 2. Otherwise, we may be debugging on a target where the compiler
8971 translates dots into "__". Search forward for double underscores,
8972 but stop searching when we hit an overloading suffix, which is
8973 of the form "__" followed by digits. */
8974
8975 tmp = strrchr (name, '.');
8976 if (tmp != NULL)
8977 name = tmp + 1;
8978 else
8979 {
8980 while ((tmp = strstr (name, "__")) != NULL)
8981 {
8982 if (isdigit (tmp[2]))
8983 break;
8984 else
8985 name = tmp + 2;
8986 }
8987 }
8988
8989 if (name[0] == 'Q')
8990 {
8991 int v;
8992
8993 if (name[1] == 'U' || name[1] == 'W')
8994 {
8995 if (sscanf (name + 2, "%x", &v) != 1)
8996 return name;
8997 }
8998 else
8999 return name;
9000
9001 GROW_VECT (result, result_len, 16);
9002 if (isascii (v) && isprint (v))
9003 xsnprintf (result, result_len, "'%c'", v);
9004 else if (name[1] == 'U')
9005 xsnprintf (result, result_len, "[\"%02x\"]", v);
9006 else
9007 xsnprintf (result, result_len, "[\"%04x\"]", v);
9008
9009 return result;
9010 }
9011 else
9012 {
9013 tmp = strstr (name, "__");
9014 if (tmp == NULL)
9015 tmp = strstr (name, "$");
9016 if (tmp != NULL)
9017 {
9018 GROW_VECT (result, result_len, tmp - name + 1);
9019 strncpy (result, name, tmp - name);
9020 result[tmp - name] = '\0';
9021 return result;
9022 }
9023
9024 return name;
9025 }
9026 }
9027
9028 /* Evaluate the subexpression of EXP starting at *POS as for
9029 evaluate_type, updating *POS to point just past the evaluated
9030 expression. */
9031
9032 static struct value *
9033 evaluate_subexp_type (struct expression *exp, int *pos)
9034 {
9035 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9036 }
9037
9038 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9039 value it wraps. */
9040
9041 static struct value *
9042 unwrap_value (struct value *val)
9043 {
9044 struct type *type = ada_check_typedef (value_type (val));
9045
9046 if (ada_is_aligner_type (type))
9047 {
9048 struct value *v = ada_value_struct_elt (val, "F", 0);
9049 struct type *val_type = ada_check_typedef (value_type (v));
9050
9051 if (ada_type_name (val_type) == NULL)
9052 TYPE_NAME (val_type) = ada_type_name (type);
9053
9054 return unwrap_value (v);
9055 }
9056 else
9057 {
9058 struct type *raw_real_type =
9059 ada_check_typedef (ada_get_base_type (type));
9060
9061 /* If there is no parallel XVS or XVE type, then the value is
9062 already unwrapped. Return it without further modification. */
9063 if ((type == raw_real_type)
9064 && ada_find_parallel_type (type, "___XVE") == NULL)
9065 return val;
9066
9067 return
9068 coerce_unspec_val_to_type
9069 (val, ada_to_fixed_type (raw_real_type, 0,
9070 value_address (val),
9071 NULL, 1));
9072 }
9073 }
9074
9075 static struct value *
9076 cast_to_fixed (struct type *type, struct value *arg)
9077 {
9078 LONGEST val;
9079
9080 if (type == value_type (arg))
9081 return arg;
9082 else if (ada_is_fixed_point_type (value_type (arg)))
9083 val = ada_float_to_fixed (type,
9084 ada_fixed_to_float (value_type (arg),
9085 value_as_long (arg)));
9086 else
9087 {
9088 DOUBLEST argd = value_as_double (arg);
9089
9090 val = ada_float_to_fixed (type, argd);
9091 }
9092
9093 return value_from_longest (type, val);
9094 }
9095
9096 static struct value *
9097 cast_from_fixed (struct type *type, struct value *arg)
9098 {
9099 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9100 value_as_long (arg));
9101
9102 return value_from_double (type, val);
9103 }
9104
9105 /* Given two array types T1 and T2, return nonzero iff both arrays
9106 contain the same number of elements. */
9107
9108 static int
9109 ada_same_array_size_p (struct type *t1, struct type *t2)
9110 {
9111 LONGEST lo1, hi1, lo2, hi2;
9112
9113 /* Get the array bounds in order to verify that the size of
9114 the two arrays match. */
9115 if (!get_array_bounds (t1, &lo1, &hi1)
9116 || !get_array_bounds (t2, &lo2, &hi2))
9117 error (_("unable to determine array bounds"));
9118
9119 /* To make things easier for size comparison, normalize a bit
9120 the case of empty arrays by making sure that the difference
9121 between upper bound and lower bound is always -1. */
9122 if (lo1 > hi1)
9123 hi1 = lo1 - 1;
9124 if (lo2 > hi2)
9125 hi2 = lo2 - 1;
9126
9127 return (hi1 - lo1 == hi2 - lo2);
9128 }
9129
9130 /* Assuming that VAL is an array of integrals, and TYPE represents
9131 an array with the same number of elements, but with wider integral
9132 elements, return an array "casted" to TYPE. In practice, this
9133 means that the returned array is built by casting each element
9134 of the original array into TYPE's (wider) element type. */
9135
9136 static struct value *
9137 ada_promote_array_of_integrals (struct type *type, struct value *val)
9138 {
9139 struct type *elt_type = TYPE_TARGET_TYPE (type);
9140 LONGEST lo, hi;
9141 struct value *res;
9142 LONGEST i;
9143
9144 /* Verify that both val and type are arrays of scalars, and
9145 that the size of val's elements is smaller than the size
9146 of type's element. */
9147 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9148 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9149 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9150 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9151 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9152 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9153
9154 if (!get_array_bounds (type, &lo, &hi))
9155 error (_("unable to determine array bounds"));
9156
9157 res = allocate_value (type);
9158
9159 /* Promote each array element. */
9160 for (i = 0; i < hi - lo + 1; i++)
9161 {
9162 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9163
9164 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9165 value_contents_all (elt), TYPE_LENGTH (elt_type));
9166 }
9167
9168 return res;
9169 }
9170
9171 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9172 return the converted value. */
9173
9174 static struct value *
9175 coerce_for_assign (struct type *type, struct value *val)
9176 {
9177 struct type *type2 = value_type (val);
9178
9179 if (type == type2)
9180 return val;
9181
9182 type2 = ada_check_typedef (type2);
9183 type = ada_check_typedef (type);
9184
9185 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9186 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9187 {
9188 val = ada_value_ind (val);
9189 type2 = value_type (val);
9190 }
9191
9192 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9193 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9194 {
9195 if (!ada_same_array_size_p (type, type2))
9196 error (_("cannot assign arrays of different length"));
9197
9198 if (is_integral_type (TYPE_TARGET_TYPE (type))
9199 && is_integral_type (TYPE_TARGET_TYPE (type2))
9200 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9201 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9202 {
9203 /* Allow implicit promotion of the array elements to
9204 a wider type. */
9205 return ada_promote_array_of_integrals (type, val);
9206 }
9207
9208 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9209 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9210 error (_("Incompatible types in assignment"));
9211 deprecated_set_value_type (val, type);
9212 }
9213 return val;
9214 }
9215
9216 static struct value *
9217 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9218 {
9219 struct value *val;
9220 struct type *type1, *type2;
9221 LONGEST v, v1, v2;
9222
9223 arg1 = coerce_ref (arg1);
9224 arg2 = coerce_ref (arg2);
9225 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9226 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9227
9228 if (TYPE_CODE (type1) != TYPE_CODE_INT
9229 || TYPE_CODE (type2) != TYPE_CODE_INT)
9230 return value_binop (arg1, arg2, op);
9231
9232 switch (op)
9233 {
9234 case BINOP_MOD:
9235 case BINOP_DIV:
9236 case BINOP_REM:
9237 break;
9238 default:
9239 return value_binop (arg1, arg2, op);
9240 }
9241
9242 v2 = value_as_long (arg2);
9243 if (v2 == 0)
9244 error (_("second operand of %s must not be zero."), op_string (op));
9245
9246 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9247 return value_binop (arg1, arg2, op);
9248
9249 v1 = value_as_long (arg1);
9250 switch (op)
9251 {
9252 case BINOP_DIV:
9253 v = v1 / v2;
9254 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9255 v += v > 0 ? -1 : 1;
9256 break;
9257 case BINOP_REM:
9258 v = v1 % v2;
9259 if (v * v1 < 0)
9260 v -= v2;
9261 break;
9262 default:
9263 /* Should not reach this point. */
9264 v = 0;
9265 }
9266
9267 val = allocate_value (type1);
9268 store_unsigned_integer (value_contents_raw (val),
9269 TYPE_LENGTH (value_type (val)),
9270 gdbarch_byte_order (get_type_arch (type1)), v);
9271 return val;
9272 }
9273
9274 static int
9275 ada_value_equal (struct value *arg1, struct value *arg2)
9276 {
9277 if (ada_is_direct_array_type (value_type (arg1))
9278 || ada_is_direct_array_type (value_type (arg2)))
9279 {
9280 /* Automatically dereference any array reference before
9281 we attempt to perform the comparison. */
9282 arg1 = ada_coerce_ref (arg1);
9283 arg2 = ada_coerce_ref (arg2);
9284
9285 arg1 = ada_coerce_to_simple_array (arg1);
9286 arg2 = ada_coerce_to_simple_array (arg2);
9287 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9288 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9289 error (_("Attempt to compare array with non-array"));
9290 /* FIXME: The following works only for types whose
9291 representations use all bits (no padding or undefined bits)
9292 and do not have user-defined equality. */
9293 return
9294 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9295 && memcmp (value_contents (arg1), value_contents (arg2),
9296 TYPE_LENGTH (value_type (arg1))) == 0;
9297 }
9298 return value_equal (arg1, arg2);
9299 }
9300
9301 /* Total number of component associations in the aggregate starting at
9302 index PC in EXP. Assumes that index PC is the start of an
9303 OP_AGGREGATE. */
9304
9305 static int
9306 num_component_specs (struct expression *exp, int pc)
9307 {
9308 int n, m, i;
9309
9310 m = exp->elts[pc + 1].longconst;
9311 pc += 3;
9312 n = 0;
9313 for (i = 0; i < m; i += 1)
9314 {
9315 switch (exp->elts[pc].opcode)
9316 {
9317 default:
9318 n += 1;
9319 break;
9320 case OP_CHOICES:
9321 n += exp->elts[pc + 1].longconst;
9322 break;
9323 }
9324 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9325 }
9326 return n;
9327 }
9328
9329 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9330 component of LHS (a simple array or a record), updating *POS past
9331 the expression, assuming that LHS is contained in CONTAINER. Does
9332 not modify the inferior's memory, nor does it modify LHS (unless
9333 LHS == CONTAINER). */
9334
9335 static void
9336 assign_component (struct value *container, struct value *lhs, LONGEST index,
9337 struct expression *exp, int *pos)
9338 {
9339 struct value *mark = value_mark ();
9340 struct value *elt;
9341
9342 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9343 {
9344 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9345 struct value *index_val = value_from_longest (index_type, index);
9346
9347 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9348 }
9349 else
9350 {
9351 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9352 elt = ada_to_fixed_value (elt);
9353 }
9354
9355 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9356 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9357 else
9358 value_assign_to_component (container, elt,
9359 ada_evaluate_subexp (NULL, exp, pos,
9360 EVAL_NORMAL));
9361
9362 value_free_to_mark (mark);
9363 }
9364
9365 /* Assuming that LHS represents an lvalue having a record or array
9366 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9367 of that aggregate's value to LHS, advancing *POS past the
9368 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9369 lvalue containing LHS (possibly LHS itself). Does not modify
9370 the inferior's memory, nor does it modify the contents of
9371 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9372
9373 static struct value *
9374 assign_aggregate (struct value *container,
9375 struct value *lhs, struct expression *exp,
9376 int *pos, enum noside noside)
9377 {
9378 struct type *lhs_type;
9379 int n = exp->elts[*pos+1].longconst;
9380 LONGEST low_index, high_index;
9381 int num_specs;
9382 LONGEST *indices;
9383 int max_indices, num_indices;
9384 int i;
9385
9386 *pos += 3;
9387 if (noside != EVAL_NORMAL)
9388 {
9389 for (i = 0; i < n; i += 1)
9390 ada_evaluate_subexp (NULL, exp, pos, noside);
9391 return container;
9392 }
9393
9394 container = ada_coerce_ref (container);
9395 if (ada_is_direct_array_type (value_type (container)))
9396 container = ada_coerce_to_simple_array (container);
9397 lhs = ada_coerce_ref (lhs);
9398 if (!deprecated_value_modifiable (lhs))
9399 error (_("Left operand of assignment is not a modifiable lvalue."));
9400
9401 lhs_type = value_type (lhs);
9402 if (ada_is_direct_array_type (lhs_type))
9403 {
9404 lhs = ada_coerce_to_simple_array (lhs);
9405 lhs_type = value_type (lhs);
9406 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9407 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9408 }
9409 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9410 {
9411 low_index = 0;
9412 high_index = num_visible_fields (lhs_type) - 1;
9413 }
9414 else
9415 error (_("Left-hand side must be array or record."));
9416
9417 num_specs = num_component_specs (exp, *pos - 3);
9418 max_indices = 4 * num_specs + 4;
9419 indices = alloca (max_indices * sizeof (indices[0]));
9420 indices[0] = indices[1] = low_index - 1;
9421 indices[2] = indices[3] = high_index + 1;
9422 num_indices = 4;
9423
9424 for (i = 0; i < n; i += 1)
9425 {
9426 switch (exp->elts[*pos].opcode)
9427 {
9428 case OP_CHOICES:
9429 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9430 &num_indices, max_indices,
9431 low_index, high_index);
9432 break;
9433 case OP_POSITIONAL:
9434 aggregate_assign_positional (container, lhs, exp, pos, indices,
9435 &num_indices, max_indices,
9436 low_index, high_index);
9437 break;
9438 case OP_OTHERS:
9439 if (i != n-1)
9440 error (_("Misplaced 'others' clause"));
9441 aggregate_assign_others (container, lhs, exp, pos, indices,
9442 num_indices, low_index, high_index);
9443 break;
9444 default:
9445 error (_("Internal error: bad aggregate clause"));
9446 }
9447 }
9448
9449 return container;
9450 }
9451
9452 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9453 construct at *POS, updating *POS past the construct, given that
9454 the positions are relative to lower bound LOW, where HIGH is the
9455 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9456 updating *NUM_INDICES as needed. CONTAINER is as for
9457 assign_aggregate. */
9458 static void
9459 aggregate_assign_positional (struct value *container,
9460 struct value *lhs, struct expression *exp,
9461 int *pos, LONGEST *indices, int *num_indices,
9462 int max_indices, LONGEST low, LONGEST high)
9463 {
9464 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9465
9466 if (ind - 1 == high)
9467 warning (_("Extra components in aggregate ignored."));
9468 if (ind <= high)
9469 {
9470 add_component_interval (ind, ind, indices, num_indices, max_indices);
9471 *pos += 3;
9472 assign_component (container, lhs, ind, exp, pos);
9473 }
9474 else
9475 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9476 }
9477
9478 /* Assign into the components of LHS indexed by the OP_CHOICES
9479 construct at *POS, updating *POS past the construct, given that
9480 the allowable indices are LOW..HIGH. Record the indices assigned
9481 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9482 needed. CONTAINER is as for assign_aggregate. */
9483 static void
9484 aggregate_assign_from_choices (struct value *container,
9485 struct value *lhs, struct expression *exp,
9486 int *pos, LONGEST *indices, int *num_indices,
9487 int max_indices, LONGEST low, LONGEST high)
9488 {
9489 int j;
9490 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9491 int choice_pos, expr_pc;
9492 int is_array = ada_is_direct_array_type (value_type (lhs));
9493
9494 choice_pos = *pos += 3;
9495
9496 for (j = 0; j < n_choices; j += 1)
9497 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9498 expr_pc = *pos;
9499 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9500
9501 for (j = 0; j < n_choices; j += 1)
9502 {
9503 LONGEST lower, upper;
9504 enum exp_opcode op = exp->elts[choice_pos].opcode;
9505
9506 if (op == OP_DISCRETE_RANGE)
9507 {
9508 choice_pos += 1;
9509 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9510 EVAL_NORMAL));
9511 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9512 EVAL_NORMAL));
9513 }
9514 else if (is_array)
9515 {
9516 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9517 EVAL_NORMAL));
9518 upper = lower;
9519 }
9520 else
9521 {
9522 int ind;
9523 const char *name;
9524
9525 switch (op)
9526 {
9527 case OP_NAME:
9528 name = &exp->elts[choice_pos + 2].string;
9529 break;
9530 case OP_VAR_VALUE:
9531 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9532 break;
9533 default:
9534 error (_("Invalid record component association."));
9535 }
9536 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9537 ind = 0;
9538 if (! find_struct_field (name, value_type (lhs), 0,
9539 NULL, NULL, NULL, NULL, &ind))
9540 error (_("Unknown component name: %s."), name);
9541 lower = upper = ind;
9542 }
9543
9544 if (lower <= upper && (lower < low || upper > high))
9545 error (_("Index in component association out of bounds."));
9546
9547 add_component_interval (lower, upper, indices, num_indices,
9548 max_indices);
9549 while (lower <= upper)
9550 {
9551 int pos1;
9552
9553 pos1 = expr_pc;
9554 assign_component (container, lhs, lower, exp, &pos1);
9555 lower += 1;
9556 }
9557 }
9558 }
9559
9560 /* Assign the value of the expression in the OP_OTHERS construct in
9561 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9562 have not been previously assigned. The index intervals already assigned
9563 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9564 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9565 static void
9566 aggregate_assign_others (struct value *container,
9567 struct value *lhs, struct expression *exp,
9568 int *pos, LONGEST *indices, int num_indices,
9569 LONGEST low, LONGEST high)
9570 {
9571 int i;
9572 int expr_pc = *pos + 1;
9573
9574 for (i = 0; i < num_indices - 2; i += 2)
9575 {
9576 LONGEST ind;
9577
9578 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9579 {
9580 int localpos;
9581
9582 localpos = expr_pc;
9583 assign_component (container, lhs, ind, exp, &localpos);
9584 }
9585 }
9586 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9587 }
9588
9589 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9590 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9591 modifying *SIZE as needed. It is an error if *SIZE exceeds
9592 MAX_SIZE. The resulting intervals do not overlap. */
9593 static void
9594 add_component_interval (LONGEST low, LONGEST high,
9595 LONGEST* indices, int *size, int max_size)
9596 {
9597 int i, j;
9598
9599 for (i = 0; i < *size; i += 2) {
9600 if (high >= indices[i] && low <= indices[i + 1])
9601 {
9602 int kh;
9603
9604 for (kh = i + 2; kh < *size; kh += 2)
9605 if (high < indices[kh])
9606 break;
9607 if (low < indices[i])
9608 indices[i] = low;
9609 indices[i + 1] = indices[kh - 1];
9610 if (high > indices[i + 1])
9611 indices[i + 1] = high;
9612 memcpy (indices + i + 2, indices + kh, *size - kh);
9613 *size -= kh - i - 2;
9614 return;
9615 }
9616 else if (high < indices[i])
9617 break;
9618 }
9619
9620 if (*size == max_size)
9621 error (_("Internal error: miscounted aggregate components."));
9622 *size += 2;
9623 for (j = *size-1; j >= i+2; j -= 1)
9624 indices[j] = indices[j - 2];
9625 indices[i] = low;
9626 indices[i + 1] = high;
9627 }
9628
9629 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9630 is different. */
9631
9632 static struct value *
9633 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9634 {
9635 if (type == ada_check_typedef (value_type (arg2)))
9636 return arg2;
9637
9638 if (ada_is_fixed_point_type (type))
9639 return (cast_to_fixed (type, arg2));
9640
9641 if (ada_is_fixed_point_type (value_type (arg2)))
9642 return cast_from_fixed (type, arg2);
9643
9644 return value_cast (type, arg2);
9645 }
9646
9647 /* Evaluating Ada expressions, and printing their result.
9648 ------------------------------------------------------
9649
9650 1. Introduction:
9651 ----------------
9652
9653 We usually evaluate an Ada expression in order to print its value.
9654 We also evaluate an expression in order to print its type, which
9655 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9656 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9657 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9658 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9659 similar.
9660
9661 Evaluating expressions is a little more complicated for Ada entities
9662 than it is for entities in languages such as C. The main reason for
9663 this is that Ada provides types whose definition might be dynamic.
9664 One example of such types is variant records. Or another example
9665 would be an array whose bounds can only be known at run time.
9666
9667 The following description is a general guide as to what should be
9668 done (and what should NOT be done) in order to evaluate an expression
9669 involving such types, and when. This does not cover how the semantic
9670 information is encoded by GNAT as this is covered separatly. For the
9671 document used as the reference for the GNAT encoding, see exp_dbug.ads
9672 in the GNAT sources.
9673
9674 Ideally, we should embed each part of this description next to its
9675 associated code. Unfortunately, the amount of code is so vast right
9676 now that it's hard to see whether the code handling a particular
9677 situation might be duplicated or not. One day, when the code is
9678 cleaned up, this guide might become redundant with the comments
9679 inserted in the code, and we might want to remove it.
9680
9681 2. ``Fixing'' an Entity, the Simple Case:
9682 -----------------------------------------
9683
9684 When evaluating Ada expressions, the tricky issue is that they may
9685 reference entities whose type contents and size are not statically
9686 known. Consider for instance a variant record:
9687
9688 type Rec (Empty : Boolean := True) is record
9689 case Empty is
9690 when True => null;
9691 when False => Value : Integer;
9692 end case;
9693 end record;
9694 Yes : Rec := (Empty => False, Value => 1);
9695 No : Rec := (empty => True);
9696
9697 The size and contents of that record depends on the value of the
9698 descriminant (Rec.Empty). At this point, neither the debugging
9699 information nor the associated type structure in GDB are able to
9700 express such dynamic types. So what the debugger does is to create
9701 "fixed" versions of the type that applies to the specific object.
9702 We also informally refer to this opperation as "fixing" an object,
9703 which means creating its associated fixed type.
9704
9705 Example: when printing the value of variable "Yes" above, its fixed
9706 type would look like this:
9707
9708 type Rec is record
9709 Empty : Boolean;
9710 Value : Integer;
9711 end record;
9712
9713 On the other hand, if we printed the value of "No", its fixed type
9714 would become:
9715
9716 type Rec is record
9717 Empty : Boolean;
9718 end record;
9719
9720 Things become a little more complicated when trying to fix an entity
9721 with a dynamic type that directly contains another dynamic type,
9722 such as an array of variant records, for instance. There are
9723 two possible cases: Arrays, and records.
9724
9725 3. ``Fixing'' Arrays:
9726 ---------------------
9727
9728 The type structure in GDB describes an array in terms of its bounds,
9729 and the type of its elements. By design, all elements in the array
9730 have the same type and we cannot represent an array of variant elements
9731 using the current type structure in GDB. When fixing an array,
9732 we cannot fix the array element, as we would potentially need one
9733 fixed type per element of the array. As a result, the best we can do
9734 when fixing an array is to produce an array whose bounds and size
9735 are correct (allowing us to read it from memory), but without having
9736 touched its element type. Fixing each element will be done later,
9737 when (if) necessary.
9738
9739 Arrays are a little simpler to handle than records, because the same
9740 amount of memory is allocated for each element of the array, even if
9741 the amount of space actually used by each element differs from element
9742 to element. Consider for instance the following array of type Rec:
9743
9744 type Rec_Array is array (1 .. 2) of Rec;
9745
9746 The actual amount of memory occupied by each element might be different
9747 from element to element, depending on the value of their discriminant.
9748 But the amount of space reserved for each element in the array remains
9749 fixed regardless. So we simply need to compute that size using
9750 the debugging information available, from which we can then determine
9751 the array size (we multiply the number of elements of the array by
9752 the size of each element).
9753
9754 The simplest case is when we have an array of a constrained element
9755 type. For instance, consider the following type declarations:
9756
9757 type Bounded_String (Max_Size : Integer) is
9758 Length : Integer;
9759 Buffer : String (1 .. Max_Size);
9760 end record;
9761 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9762
9763 In this case, the compiler describes the array as an array of
9764 variable-size elements (identified by its XVS suffix) for which
9765 the size can be read in the parallel XVZ variable.
9766
9767 In the case of an array of an unconstrained element type, the compiler
9768 wraps the array element inside a private PAD type. This type should not
9769 be shown to the user, and must be "unwrap"'ed before printing. Note
9770 that we also use the adjective "aligner" in our code to designate
9771 these wrapper types.
9772
9773 In some cases, the size allocated for each element is statically
9774 known. In that case, the PAD type already has the correct size,
9775 and the array element should remain unfixed.
9776
9777 But there are cases when this size is not statically known.
9778 For instance, assuming that "Five" is an integer variable:
9779
9780 type Dynamic is array (1 .. Five) of Integer;
9781 type Wrapper (Has_Length : Boolean := False) is record
9782 Data : Dynamic;
9783 case Has_Length is
9784 when True => Length : Integer;
9785 when False => null;
9786 end case;
9787 end record;
9788 type Wrapper_Array is array (1 .. 2) of Wrapper;
9789
9790 Hello : Wrapper_Array := (others => (Has_Length => True,
9791 Data => (others => 17),
9792 Length => 1));
9793
9794
9795 The debugging info would describe variable Hello as being an
9796 array of a PAD type. The size of that PAD type is not statically
9797 known, but can be determined using a parallel XVZ variable.
9798 In that case, a copy of the PAD type with the correct size should
9799 be used for the fixed array.
9800
9801 3. ``Fixing'' record type objects:
9802 ----------------------------------
9803
9804 Things are slightly different from arrays in the case of dynamic
9805 record types. In this case, in order to compute the associated
9806 fixed type, we need to determine the size and offset of each of
9807 its components. This, in turn, requires us to compute the fixed
9808 type of each of these components.
9809
9810 Consider for instance the example:
9811
9812 type Bounded_String (Max_Size : Natural) is record
9813 Str : String (1 .. Max_Size);
9814 Length : Natural;
9815 end record;
9816 My_String : Bounded_String (Max_Size => 10);
9817
9818 In that case, the position of field "Length" depends on the size
9819 of field Str, which itself depends on the value of the Max_Size
9820 discriminant. In order to fix the type of variable My_String,
9821 we need to fix the type of field Str. Therefore, fixing a variant
9822 record requires us to fix each of its components.
9823
9824 However, if a component does not have a dynamic size, the component
9825 should not be fixed. In particular, fields that use a PAD type
9826 should not fixed. Here is an example where this might happen
9827 (assuming type Rec above):
9828
9829 type Container (Big : Boolean) is record
9830 First : Rec;
9831 After : Integer;
9832 case Big is
9833 when True => Another : Integer;
9834 when False => null;
9835 end case;
9836 end record;
9837 My_Container : Container := (Big => False,
9838 First => (Empty => True),
9839 After => 42);
9840
9841 In that example, the compiler creates a PAD type for component First,
9842 whose size is constant, and then positions the component After just
9843 right after it. The offset of component After is therefore constant
9844 in this case.
9845
9846 The debugger computes the position of each field based on an algorithm
9847 that uses, among other things, the actual position and size of the field
9848 preceding it. Let's now imagine that the user is trying to print
9849 the value of My_Container. If the type fixing was recursive, we would
9850 end up computing the offset of field After based on the size of the
9851 fixed version of field First. And since in our example First has
9852 only one actual field, the size of the fixed type is actually smaller
9853 than the amount of space allocated to that field, and thus we would
9854 compute the wrong offset of field After.
9855
9856 To make things more complicated, we need to watch out for dynamic
9857 components of variant records (identified by the ___XVL suffix in
9858 the component name). Even if the target type is a PAD type, the size
9859 of that type might not be statically known. So the PAD type needs
9860 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9861 we might end up with the wrong size for our component. This can be
9862 observed with the following type declarations:
9863
9864 type Octal is new Integer range 0 .. 7;
9865 type Octal_Array is array (Positive range <>) of Octal;
9866 pragma Pack (Octal_Array);
9867
9868 type Octal_Buffer (Size : Positive) is record
9869 Buffer : Octal_Array (1 .. Size);
9870 Length : Integer;
9871 end record;
9872
9873 In that case, Buffer is a PAD type whose size is unset and needs
9874 to be computed by fixing the unwrapped type.
9875
9876 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9877 ----------------------------------------------------------
9878
9879 Lastly, when should the sub-elements of an entity that remained unfixed
9880 thus far, be actually fixed?
9881
9882 The answer is: Only when referencing that element. For instance
9883 when selecting one component of a record, this specific component
9884 should be fixed at that point in time. Or when printing the value
9885 of a record, each component should be fixed before its value gets
9886 printed. Similarly for arrays, the element of the array should be
9887 fixed when printing each element of the array, or when extracting
9888 one element out of that array. On the other hand, fixing should
9889 not be performed on the elements when taking a slice of an array!
9890
9891 Note that one of the side-effects of miscomputing the offset and
9892 size of each field is that we end up also miscomputing the size
9893 of the containing type. This can have adverse results when computing
9894 the value of an entity. GDB fetches the value of an entity based
9895 on the size of its type, and thus a wrong size causes GDB to fetch
9896 the wrong amount of memory. In the case where the computed size is
9897 too small, GDB fetches too little data to print the value of our
9898 entiry. Results in this case as unpredicatble, as we usually read
9899 past the buffer containing the data =:-o. */
9900
9901 /* Implement the evaluate_exp routine in the exp_descriptor structure
9902 for the Ada language. */
9903
9904 static struct value *
9905 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9906 int *pos, enum noside noside)
9907 {
9908 enum exp_opcode op;
9909 int tem;
9910 int pc;
9911 int preeval_pos;
9912 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9913 struct type *type;
9914 int nargs, oplen;
9915 struct value **argvec;
9916
9917 pc = *pos;
9918 *pos += 1;
9919 op = exp->elts[pc].opcode;
9920
9921 switch (op)
9922 {
9923 default:
9924 *pos -= 1;
9925 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9926
9927 if (noside == EVAL_NORMAL)
9928 arg1 = unwrap_value (arg1);
9929
9930 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9931 then we need to perform the conversion manually, because
9932 evaluate_subexp_standard doesn't do it. This conversion is
9933 necessary in Ada because the different kinds of float/fixed
9934 types in Ada have different representations.
9935
9936 Similarly, we need to perform the conversion from OP_LONG
9937 ourselves. */
9938 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9939 arg1 = ada_value_cast (expect_type, arg1, noside);
9940
9941 return arg1;
9942
9943 case OP_STRING:
9944 {
9945 struct value *result;
9946
9947 *pos -= 1;
9948 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9949 /* The result type will have code OP_STRING, bashed there from
9950 OP_ARRAY. Bash it back. */
9951 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9952 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9953 return result;
9954 }
9955
9956 case UNOP_CAST:
9957 (*pos) += 2;
9958 type = exp->elts[pc + 1].type;
9959 arg1 = evaluate_subexp (type, exp, pos, noside);
9960 if (noside == EVAL_SKIP)
9961 goto nosideret;
9962 arg1 = ada_value_cast (type, arg1, noside);
9963 return arg1;
9964
9965 case UNOP_QUAL:
9966 (*pos) += 2;
9967 type = exp->elts[pc + 1].type;
9968 return ada_evaluate_subexp (type, exp, pos, noside);
9969
9970 case BINOP_ASSIGN:
9971 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9972 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9973 {
9974 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9975 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9976 return arg1;
9977 return ada_value_assign (arg1, arg1);
9978 }
9979 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9980 except if the lhs of our assignment is a convenience variable.
9981 In the case of assigning to a convenience variable, the lhs
9982 should be exactly the result of the evaluation of the rhs. */
9983 type = value_type (arg1);
9984 if (VALUE_LVAL (arg1) == lval_internalvar)
9985 type = NULL;
9986 arg2 = evaluate_subexp (type, exp, pos, noside);
9987 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9988 return arg1;
9989 if (ada_is_fixed_point_type (value_type (arg1)))
9990 arg2 = cast_to_fixed (value_type (arg1), arg2);
9991 else if (ada_is_fixed_point_type (value_type (arg2)))
9992 error
9993 (_("Fixed-point values must be assigned to fixed-point variables"));
9994 else
9995 arg2 = coerce_for_assign (value_type (arg1), arg2);
9996 return ada_value_assign (arg1, arg2);
9997
9998 case BINOP_ADD:
9999 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10000 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10001 if (noside == EVAL_SKIP)
10002 goto nosideret;
10003 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10004 return (value_from_longest
10005 (value_type (arg1),
10006 value_as_long (arg1) + value_as_long (arg2)));
10007 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10008 return (value_from_longest
10009 (value_type (arg2),
10010 value_as_long (arg1) + value_as_long (arg2)));
10011 if ((ada_is_fixed_point_type (value_type (arg1))
10012 || ada_is_fixed_point_type (value_type (arg2)))
10013 && value_type (arg1) != value_type (arg2))
10014 error (_("Operands of fixed-point addition must have the same type"));
10015 /* Do the addition, and cast the result to the type of the first
10016 argument. We cannot cast the result to a reference type, so if
10017 ARG1 is a reference type, find its underlying type. */
10018 type = value_type (arg1);
10019 while (TYPE_CODE (type) == TYPE_CODE_REF)
10020 type = TYPE_TARGET_TYPE (type);
10021 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10022 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10023
10024 case BINOP_SUB:
10025 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10026 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10027 if (noside == EVAL_SKIP)
10028 goto nosideret;
10029 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10030 return (value_from_longest
10031 (value_type (arg1),
10032 value_as_long (arg1) - value_as_long (arg2)));
10033 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10034 return (value_from_longest
10035 (value_type (arg2),
10036 value_as_long (arg1) - value_as_long (arg2)));
10037 if ((ada_is_fixed_point_type (value_type (arg1))
10038 || ada_is_fixed_point_type (value_type (arg2)))
10039 && value_type (arg1) != value_type (arg2))
10040 error (_("Operands of fixed-point subtraction "
10041 "must have the same type"));
10042 /* Do the substraction, and cast the result to the type of the first
10043 argument. We cannot cast the result to a reference type, so if
10044 ARG1 is a reference type, find its underlying type. */
10045 type = value_type (arg1);
10046 while (TYPE_CODE (type) == TYPE_CODE_REF)
10047 type = TYPE_TARGET_TYPE (type);
10048 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10049 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10050
10051 case BINOP_MUL:
10052 case BINOP_DIV:
10053 case BINOP_REM:
10054 case BINOP_MOD:
10055 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10056 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10057 if (noside == EVAL_SKIP)
10058 goto nosideret;
10059 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10060 {
10061 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10062 return value_zero (value_type (arg1), not_lval);
10063 }
10064 else
10065 {
10066 type = builtin_type (exp->gdbarch)->builtin_double;
10067 if (ada_is_fixed_point_type (value_type (arg1)))
10068 arg1 = cast_from_fixed (type, arg1);
10069 if (ada_is_fixed_point_type (value_type (arg2)))
10070 arg2 = cast_from_fixed (type, arg2);
10071 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10072 return ada_value_binop (arg1, arg2, op);
10073 }
10074
10075 case BINOP_EQUAL:
10076 case BINOP_NOTEQUAL:
10077 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10078 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10079 if (noside == EVAL_SKIP)
10080 goto nosideret;
10081 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10082 tem = 0;
10083 else
10084 {
10085 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10086 tem = ada_value_equal (arg1, arg2);
10087 }
10088 if (op == BINOP_NOTEQUAL)
10089 tem = !tem;
10090 type = language_bool_type (exp->language_defn, exp->gdbarch);
10091 return value_from_longest (type, (LONGEST) tem);
10092
10093 case UNOP_NEG:
10094 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10095 if (noside == EVAL_SKIP)
10096 goto nosideret;
10097 else if (ada_is_fixed_point_type (value_type (arg1)))
10098 return value_cast (value_type (arg1), value_neg (arg1));
10099 else
10100 {
10101 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10102 return value_neg (arg1);
10103 }
10104
10105 case BINOP_LOGICAL_AND:
10106 case BINOP_LOGICAL_OR:
10107 case UNOP_LOGICAL_NOT:
10108 {
10109 struct value *val;
10110
10111 *pos -= 1;
10112 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10113 type = language_bool_type (exp->language_defn, exp->gdbarch);
10114 return value_cast (type, val);
10115 }
10116
10117 case BINOP_BITWISE_AND:
10118 case BINOP_BITWISE_IOR:
10119 case BINOP_BITWISE_XOR:
10120 {
10121 struct value *val;
10122
10123 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10124 *pos = pc;
10125 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10126
10127 return value_cast (value_type (arg1), val);
10128 }
10129
10130 case OP_VAR_VALUE:
10131 *pos -= 1;
10132
10133 if (noside == EVAL_SKIP)
10134 {
10135 *pos += 4;
10136 goto nosideret;
10137 }
10138
10139 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10140 /* Only encountered when an unresolved symbol occurs in a
10141 context other than a function call, in which case, it is
10142 invalid. */
10143 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10144 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10145
10146 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10147 {
10148 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10149 /* Check to see if this is a tagged type. We also need to handle
10150 the case where the type is a reference to a tagged type, but
10151 we have to be careful to exclude pointers to tagged types.
10152 The latter should be shown as usual (as a pointer), whereas
10153 a reference should mostly be transparent to the user. */
10154 if (ada_is_tagged_type (type, 0)
10155 || (TYPE_CODE (type) == TYPE_CODE_REF
10156 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10157 {
10158 /* Tagged types are a little special in the fact that the real
10159 type is dynamic and can only be determined by inspecting the
10160 object's tag. This means that we need to get the object's
10161 value first (EVAL_NORMAL) and then extract the actual object
10162 type from its tag.
10163
10164 Note that we cannot skip the final step where we extract
10165 the object type from its tag, because the EVAL_NORMAL phase
10166 results in dynamic components being resolved into fixed ones.
10167 This can cause problems when trying to print the type
10168 description of tagged types whose parent has a dynamic size:
10169 We use the type name of the "_parent" component in order
10170 to print the name of the ancestor type in the type description.
10171 If that component had a dynamic size, the resolution into
10172 a fixed type would result in the loss of that type name,
10173 thus preventing us from printing the name of the ancestor
10174 type in the type description. */
10175 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10176
10177 if (TYPE_CODE (type) != TYPE_CODE_REF)
10178 {
10179 struct type *actual_type;
10180
10181 actual_type = type_from_tag (ada_value_tag (arg1));
10182 if (actual_type == NULL)
10183 /* If, for some reason, we were unable to determine
10184 the actual type from the tag, then use the static
10185 approximation that we just computed as a fallback.
10186 This can happen if the debugging information is
10187 incomplete, for instance. */
10188 actual_type = type;
10189 return value_zero (actual_type, not_lval);
10190 }
10191 else
10192 {
10193 /* In the case of a ref, ada_coerce_ref takes care
10194 of determining the actual type. But the evaluation
10195 should return a ref as it should be valid to ask
10196 for its address; so rebuild a ref after coerce. */
10197 arg1 = ada_coerce_ref (arg1);
10198 return value_ref (arg1);
10199 }
10200 }
10201
10202 /* Records and unions for which GNAT encodings have been
10203 generated need to be statically fixed as well.
10204 Otherwise, non-static fixing produces a type where
10205 all dynamic properties are removed, which prevents "ptype"
10206 from being able to completely describe the type.
10207 For instance, a case statement in a variant record would be
10208 replaced by the relevant components based on the actual
10209 value of the discriminants. */
10210 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10211 && dynamic_template_type (type) != NULL)
10212 || (TYPE_CODE (type) == TYPE_CODE_UNION
10213 && ada_find_parallel_type (type, "___XVU") != NULL))
10214 {
10215 *pos += 4;
10216 return value_zero (to_static_fixed_type (type), not_lval);
10217 }
10218 }
10219
10220 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10221 return ada_to_fixed_value (arg1);
10222
10223 case OP_FUNCALL:
10224 (*pos) += 2;
10225
10226 /* Allocate arg vector, including space for the function to be
10227 called in argvec[0] and a terminating NULL. */
10228 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10229 argvec =
10230 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10231
10232 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10233 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10234 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10235 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10236 else
10237 {
10238 for (tem = 0; tem <= nargs; tem += 1)
10239 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10240 argvec[tem] = 0;
10241
10242 if (noside == EVAL_SKIP)
10243 goto nosideret;
10244 }
10245
10246 if (ada_is_constrained_packed_array_type
10247 (desc_base_type (value_type (argvec[0]))))
10248 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10249 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10250 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10251 /* This is a packed array that has already been fixed, and
10252 therefore already coerced to a simple array. Nothing further
10253 to do. */
10254 ;
10255 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10256 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10257 && VALUE_LVAL (argvec[0]) == lval_memory))
10258 argvec[0] = value_addr (argvec[0]);
10259
10260 type = ada_check_typedef (value_type (argvec[0]));
10261
10262 /* Ada allows us to implicitly dereference arrays when subscripting
10263 them. So, if this is an array typedef (encoding use for array
10264 access types encoded as fat pointers), strip it now. */
10265 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10266 type = ada_typedef_target_type (type);
10267
10268 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10269 {
10270 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10271 {
10272 case TYPE_CODE_FUNC:
10273 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10274 break;
10275 case TYPE_CODE_ARRAY:
10276 break;
10277 case TYPE_CODE_STRUCT:
10278 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10279 argvec[0] = ada_value_ind (argvec[0]);
10280 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10281 break;
10282 default:
10283 error (_("cannot subscript or call something of type `%s'"),
10284 ada_type_name (value_type (argvec[0])));
10285 break;
10286 }
10287 }
10288
10289 switch (TYPE_CODE (type))
10290 {
10291 case TYPE_CODE_FUNC:
10292 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10293 {
10294 struct type *rtype = TYPE_TARGET_TYPE (type);
10295
10296 if (TYPE_GNU_IFUNC (type))
10297 return allocate_value (TYPE_TARGET_TYPE (rtype));
10298 return allocate_value (rtype);
10299 }
10300 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10301 case TYPE_CODE_INTERNAL_FUNCTION:
10302 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10303 /* We don't know anything about what the internal
10304 function might return, but we have to return
10305 something. */
10306 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10307 not_lval);
10308 else
10309 return call_internal_function (exp->gdbarch, exp->language_defn,
10310 argvec[0], nargs, argvec + 1);
10311
10312 case TYPE_CODE_STRUCT:
10313 {
10314 int arity;
10315
10316 arity = ada_array_arity (type);
10317 type = ada_array_element_type (type, nargs);
10318 if (type == NULL)
10319 error (_("cannot subscript or call a record"));
10320 if (arity != nargs)
10321 error (_("wrong number of subscripts; expecting %d"), arity);
10322 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10323 return value_zero (ada_aligned_type (type), lval_memory);
10324 return
10325 unwrap_value (ada_value_subscript
10326 (argvec[0], nargs, argvec + 1));
10327 }
10328 case TYPE_CODE_ARRAY:
10329 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10330 {
10331 type = ada_array_element_type (type, nargs);
10332 if (type == NULL)
10333 error (_("element type of array unknown"));
10334 else
10335 return value_zero (ada_aligned_type (type), lval_memory);
10336 }
10337 return
10338 unwrap_value (ada_value_subscript
10339 (ada_coerce_to_simple_array (argvec[0]),
10340 nargs, argvec + 1));
10341 case TYPE_CODE_PTR: /* Pointer to array */
10342 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10343 {
10344 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10345 type = ada_array_element_type (type, nargs);
10346 if (type == NULL)
10347 error (_("element type of array unknown"));
10348 else
10349 return value_zero (ada_aligned_type (type), lval_memory);
10350 }
10351 return
10352 unwrap_value (ada_value_ptr_subscript (argvec[0],
10353 nargs, argvec + 1));
10354
10355 default:
10356 error (_("Attempt to index or call something other than an "
10357 "array or function"));
10358 }
10359
10360 case TERNOP_SLICE:
10361 {
10362 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10363 struct value *low_bound_val =
10364 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10365 struct value *high_bound_val =
10366 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10367 LONGEST low_bound;
10368 LONGEST high_bound;
10369
10370 low_bound_val = coerce_ref (low_bound_val);
10371 high_bound_val = coerce_ref (high_bound_val);
10372 low_bound = pos_atr (low_bound_val);
10373 high_bound = pos_atr (high_bound_val);
10374
10375 if (noside == EVAL_SKIP)
10376 goto nosideret;
10377
10378 /* If this is a reference to an aligner type, then remove all
10379 the aligners. */
10380 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10381 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10382 TYPE_TARGET_TYPE (value_type (array)) =
10383 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10384
10385 if (ada_is_constrained_packed_array_type (value_type (array)))
10386 error (_("cannot slice a packed array"));
10387
10388 /* If this is a reference to an array or an array lvalue,
10389 convert to a pointer. */
10390 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10391 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10392 && VALUE_LVAL (array) == lval_memory))
10393 array = value_addr (array);
10394
10395 if (noside == EVAL_AVOID_SIDE_EFFECTS
10396 && ada_is_array_descriptor_type (ada_check_typedef
10397 (value_type (array))))
10398 return empty_array (ada_type_of_array (array, 0), low_bound);
10399
10400 array = ada_coerce_to_simple_array_ptr (array);
10401
10402 /* If we have more than one level of pointer indirection,
10403 dereference the value until we get only one level. */
10404 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10405 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10406 == TYPE_CODE_PTR))
10407 array = value_ind (array);
10408
10409 /* Make sure we really do have an array type before going further,
10410 to avoid a SEGV when trying to get the index type or the target
10411 type later down the road if the debug info generated by
10412 the compiler is incorrect or incomplete. */
10413 if (!ada_is_simple_array_type (value_type (array)))
10414 error (_("cannot take slice of non-array"));
10415
10416 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10417 == TYPE_CODE_PTR)
10418 {
10419 struct type *type0 = ada_check_typedef (value_type (array));
10420
10421 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10422 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10423 else
10424 {
10425 struct type *arr_type0 =
10426 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10427
10428 return ada_value_slice_from_ptr (array, arr_type0,
10429 longest_to_int (low_bound),
10430 longest_to_int (high_bound));
10431 }
10432 }
10433 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10434 return array;
10435 else if (high_bound < low_bound)
10436 return empty_array (value_type (array), low_bound);
10437 else
10438 return ada_value_slice (array, longest_to_int (low_bound),
10439 longest_to_int (high_bound));
10440 }
10441
10442 case UNOP_IN_RANGE:
10443 (*pos) += 2;
10444 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10445 type = check_typedef (exp->elts[pc + 1].type);
10446
10447 if (noside == EVAL_SKIP)
10448 goto nosideret;
10449
10450 switch (TYPE_CODE (type))
10451 {
10452 default:
10453 lim_warning (_("Membership test incompletely implemented; "
10454 "always returns true"));
10455 type = language_bool_type (exp->language_defn, exp->gdbarch);
10456 return value_from_longest (type, (LONGEST) 1);
10457
10458 case TYPE_CODE_RANGE:
10459 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10460 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10461 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10462 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10463 type = language_bool_type (exp->language_defn, exp->gdbarch);
10464 return
10465 value_from_longest (type,
10466 (value_less (arg1, arg3)
10467 || value_equal (arg1, arg3))
10468 && (value_less (arg2, arg1)
10469 || value_equal (arg2, arg1)));
10470 }
10471
10472 case BINOP_IN_BOUNDS:
10473 (*pos) += 2;
10474 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10475 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10476
10477 if (noside == EVAL_SKIP)
10478 goto nosideret;
10479
10480 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10481 {
10482 type = language_bool_type (exp->language_defn, exp->gdbarch);
10483 return value_zero (type, not_lval);
10484 }
10485
10486 tem = longest_to_int (exp->elts[pc + 1].longconst);
10487
10488 type = ada_index_type (value_type (arg2), tem, "range");
10489 if (!type)
10490 type = value_type (arg1);
10491
10492 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10493 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10494
10495 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10496 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10497 type = language_bool_type (exp->language_defn, exp->gdbarch);
10498 return
10499 value_from_longest (type,
10500 (value_less (arg1, arg3)
10501 || value_equal (arg1, arg3))
10502 && (value_less (arg2, arg1)
10503 || value_equal (arg2, arg1)));
10504
10505 case TERNOP_IN_RANGE:
10506 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10507 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10508 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10509
10510 if (noside == EVAL_SKIP)
10511 goto nosideret;
10512
10513 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10514 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10515 type = language_bool_type (exp->language_defn, exp->gdbarch);
10516 return
10517 value_from_longest (type,
10518 (value_less (arg1, arg3)
10519 || value_equal (arg1, arg3))
10520 && (value_less (arg2, arg1)
10521 || value_equal (arg2, arg1)));
10522
10523 case OP_ATR_FIRST:
10524 case OP_ATR_LAST:
10525 case OP_ATR_LENGTH:
10526 {
10527 struct type *type_arg;
10528
10529 if (exp->elts[*pos].opcode == OP_TYPE)
10530 {
10531 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10532 arg1 = NULL;
10533 type_arg = check_typedef (exp->elts[pc + 2].type);
10534 }
10535 else
10536 {
10537 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10538 type_arg = NULL;
10539 }
10540
10541 if (exp->elts[*pos].opcode != OP_LONG)
10542 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10543 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10544 *pos += 4;
10545
10546 if (noside == EVAL_SKIP)
10547 goto nosideret;
10548
10549 if (type_arg == NULL)
10550 {
10551 arg1 = ada_coerce_ref (arg1);
10552
10553 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10554 arg1 = ada_coerce_to_simple_array (arg1);
10555
10556 if (op == OP_ATR_LENGTH)
10557 type = builtin_type (exp->gdbarch)->builtin_int;
10558 else
10559 {
10560 type = ada_index_type (value_type (arg1), tem,
10561 ada_attribute_name (op));
10562 if (type == NULL)
10563 type = builtin_type (exp->gdbarch)->builtin_int;
10564 }
10565
10566 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10567 return allocate_value (type);
10568
10569 switch (op)
10570 {
10571 default: /* Should never happen. */
10572 error (_("unexpected attribute encountered"));
10573 case OP_ATR_FIRST:
10574 return value_from_longest
10575 (type, ada_array_bound (arg1, tem, 0));
10576 case OP_ATR_LAST:
10577 return value_from_longest
10578 (type, ada_array_bound (arg1, tem, 1));
10579 case OP_ATR_LENGTH:
10580 return value_from_longest
10581 (type, ada_array_length (arg1, tem));
10582 }
10583 }
10584 else if (discrete_type_p (type_arg))
10585 {
10586 struct type *range_type;
10587 const char *name = ada_type_name (type_arg);
10588
10589 range_type = NULL;
10590 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10591 range_type = to_fixed_range_type (type_arg, NULL);
10592 if (range_type == NULL)
10593 range_type = type_arg;
10594 switch (op)
10595 {
10596 default:
10597 error (_("unexpected attribute encountered"));
10598 case OP_ATR_FIRST:
10599 return value_from_longest
10600 (range_type, ada_discrete_type_low_bound (range_type));
10601 case OP_ATR_LAST:
10602 return value_from_longest
10603 (range_type, ada_discrete_type_high_bound (range_type));
10604 case OP_ATR_LENGTH:
10605 error (_("the 'length attribute applies only to array types"));
10606 }
10607 }
10608 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10609 error (_("unimplemented type attribute"));
10610 else
10611 {
10612 LONGEST low, high;
10613
10614 if (ada_is_constrained_packed_array_type (type_arg))
10615 type_arg = decode_constrained_packed_array_type (type_arg);
10616
10617 if (op == OP_ATR_LENGTH)
10618 type = builtin_type (exp->gdbarch)->builtin_int;
10619 else
10620 {
10621 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10622 if (type == NULL)
10623 type = builtin_type (exp->gdbarch)->builtin_int;
10624 }
10625
10626 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10627 return allocate_value (type);
10628
10629 switch (op)
10630 {
10631 default:
10632 error (_("unexpected attribute encountered"));
10633 case OP_ATR_FIRST:
10634 low = ada_array_bound_from_type (type_arg, tem, 0);
10635 return value_from_longest (type, low);
10636 case OP_ATR_LAST:
10637 high = ada_array_bound_from_type (type_arg, tem, 1);
10638 return value_from_longest (type, high);
10639 case OP_ATR_LENGTH:
10640 low = ada_array_bound_from_type (type_arg, tem, 0);
10641 high = ada_array_bound_from_type (type_arg, tem, 1);
10642 return value_from_longest (type, high - low + 1);
10643 }
10644 }
10645 }
10646
10647 case OP_ATR_TAG:
10648 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10649 if (noside == EVAL_SKIP)
10650 goto nosideret;
10651
10652 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10653 return value_zero (ada_tag_type (arg1), not_lval);
10654
10655 return ada_value_tag (arg1);
10656
10657 case OP_ATR_MIN:
10658 case OP_ATR_MAX:
10659 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10660 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10661 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10662 if (noside == EVAL_SKIP)
10663 goto nosideret;
10664 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10665 return value_zero (value_type (arg1), not_lval);
10666 else
10667 {
10668 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10669 return value_binop (arg1, arg2,
10670 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10671 }
10672
10673 case OP_ATR_MODULUS:
10674 {
10675 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10676
10677 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10678 if (noside == EVAL_SKIP)
10679 goto nosideret;
10680
10681 if (!ada_is_modular_type (type_arg))
10682 error (_("'modulus must be applied to modular type"));
10683
10684 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10685 ada_modulus (type_arg));
10686 }
10687
10688
10689 case OP_ATR_POS:
10690 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10691 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10692 if (noside == EVAL_SKIP)
10693 goto nosideret;
10694 type = builtin_type (exp->gdbarch)->builtin_int;
10695 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10696 return value_zero (type, not_lval);
10697 else
10698 return value_pos_atr (type, arg1);
10699
10700 case OP_ATR_SIZE:
10701 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10702 type = value_type (arg1);
10703
10704 /* If the argument is a reference, then dereference its type, since
10705 the user is really asking for the size of the actual object,
10706 not the size of the pointer. */
10707 if (TYPE_CODE (type) == TYPE_CODE_REF)
10708 type = TYPE_TARGET_TYPE (type);
10709
10710 if (noside == EVAL_SKIP)
10711 goto nosideret;
10712 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10713 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10714 else
10715 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10716 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10717
10718 case OP_ATR_VAL:
10719 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10721 type = exp->elts[pc + 2].type;
10722 if (noside == EVAL_SKIP)
10723 goto nosideret;
10724 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10725 return value_zero (type, not_lval);
10726 else
10727 return value_val_atr (type, arg1);
10728
10729 case BINOP_EXP:
10730 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10731 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10732 if (noside == EVAL_SKIP)
10733 goto nosideret;
10734 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10735 return value_zero (value_type (arg1), not_lval);
10736 else
10737 {
10738 /* For integer exponentiation operations,
10739 only promote the first argument. */
10740 if (is_integral_type (value_type (arg2)))
10741 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10742 else
10743 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10744
10745 return value_binop (arg1, arg2, op);
10746 }
10747
10748 case UNOP_PLUS:
10749 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10750 if (noside == EVAL_SKIP)
10751 goto nosideret;
10752 else
10753 return arg1;
10754
10755 case UNOP_ABS:
10756 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10757 if (noside == EVAL_SKIP)
10758 goto nosideret;
10759 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10760 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10761 return value_neg (arg1);
10762 else
10763 return arg1;
10764
10765 case UNOP_IND:
10766 preeval_pos = *pos;
10767 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10768 if (noside == EVAL_SKIP)
10769 goto nosideret;
10770 type = ada_check_typedef (value_type (arg1));
10771 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10772 {
10773 if (ada_is_array_descriptor_type (type))
10774 /* GDB allows dereferencing GNAT array descriptors. */
10775 {
10776 struct type *arrType = ada_type_of_array (arg1, 0);
10777
10778 if (arrType == NULL)
10779 error (_("Attempt to dereference null array pointer."));
10780 return value_at_lazy (arrType, 0);
10781 }
10782 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10783 || TYPE_CODE (type) == TYPE_CODE_REF
10784 /* In C you can dereference an array to get the 1st elt. */
10785 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10786 {
10787 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10788 only be determined by inspecting the object's tag.
10789 This means that we need to evaluate completely the
10790 expression in order to get its type. */
10791
10792 if ((TYPE_CODE (type) == TYPE_CODE_REF
10793 || TYPE_CODE (type) == TYPE_CODE_PTR)
10794 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10795 {
10796 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10797 EVAL_NORMAL);
10798 type = value_type (ada_value_ind (arg1));
10799 }
10800 else
10801 {
10802 type = to_static_fixed_type
10803 (ada_aligned_type
10804 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10805 }
10806 check_size (type);
10807 return value_zero (type, lval_memory);
10808 }
10809 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10810 {
10811 /* GDB allows dereferencing an int. */
10812 if (expect_type == NULL)
10813 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10814 lval_memory);
10815 else
10816 {
10817 expect_type =
10818 to_static_fixed_type (ada_aligned_type (expect_type));
10819 return value_zero (expect_type, lval_memory);
10820 }
10821 }
10822 else
10823 error (_("Attempt to take contents of a non-pointer value."));
10824 }
10825 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10826 type = ada_check_typedef (value_type (arg1));
10827
10828 if (TYPE_CODE (type) == TYPE_CODE_INT)
10829 /* GDB allows dereferencing an int. If we were given
10830 the expect_type, then use that as the target type.
10831 Otherwise, assume that the target type is an int. */
10832 {
10833 if (expect_type != NULL)
10834 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10835 arg1));
10836 else
10837 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10838 (CORE_ADDR) value_as_address (arg1));
10839 }
10840
10841 if (ada_is_array_descriptor_type (type))
10842 /* GDB allows dereferencing GNAT array descriptors. */
10843 return ada_coerce_to_simple_array (arg1);
10844 else
10845 return ada_value_ind (arg1);
10846
10847 case STRUCTOP_STRUCT:
10848 tem = longest_to_int (exp->elts[pc + 1].longconst);
10849 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10850 preeval_pos = *pos;
10851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10852 if (noside == EVAL_SKIP)
10853 goto nosideret;
10854 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10855 {
10856 struct type *type1 = value_type (arg1);
10857
10858 if (ada_is_tagged_type (type1, 1))
10859 {
10860 type = ada_lookup_struct_elt_type (type1,
10861 &exp->elts[pc + 2].string,
10862 1, 1, NULL);
10863
10864 /* If the field is not found, check if it exists in the
10865 extension of this object's type. This means that we
10866 need to evaluate completely the expression. */
10867
10868 if (type == NULL)
10869 {
10870 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10871 EVAL_NORMAL);
10872 arg1 = ada_value_struct_elt (arg1,
10873 &exp->elts[pc + 2].string,
10874 0);
10875 arg1 = unwrap_value (arg1);
10876 type = value_type (ada_to_fixed_value (arg1));
10877 }
10878 }
10879 else
10880 type =
10881 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10882 0, NULL);
10883
10884 return value_zero (ada_aligned_type (type), lval_memory);
10885 }
10886 else
10887 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10888 arg1 = unwrap_value (arg1);
10889 return ada_to_fixed_value (arg1);
10890
10891 case OP_TYPE:
10892 /* The value is not supposed to be used. This is here to make it
10893 easier to accommodate expressions that contain types. */
10894 (*pos) += 2;
10895 if (noside == EVAL_SKIP)
10896 goto nosideret;
10897 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10898 return allocate_value (exp->elts[pc + 1].type);
10899 else
10900 error (_("Attempt to use a type name as an expression"));
10901
10902 case OP_AGGREGATE:
10903 case OP_CHOICES:
10904 case OP_OTHERS:
10905 case OP_DISCRETE_RANGE:
10906 case OP_POSITIONAL:
10907 case OP_NAME:
10908 if (noside == EVAL_NORMAL)
10909 switch (op)
10910 {
10911 case OP_NAME:
10912 error (_("Undefined name, ambiguous name, or renaming used in "
10913 "component association: %s."), &exp->elts[pc+2].string);
10914 case OP_AGGREGATE:
10915 error (_("Aggregates only allowed on the right of an assignment"));
10916 default:
10917 internal_error (__FILE__, __LINE__,
10918 _("aggregate apparently mangled"));
10919 }
10920
10921 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10922 *pos += oplen - 1;
10923 for (tem = 0; tem < nargs; tem += 1)
10924 ada_evaluate_subexp (NULL, exp, pos, noside);
10925 goto nosideret;
10926 }
10927
10928 nosideret:
10929 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10930 }
10931 \f
10932
10933 /* Fixed point */
10934
10935 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10936 type name that encodes the 'small and 'delta information.
10937 Otherwise, return NULL. */
10938
10939 static const char *
10940 fixed_type_info (struct type *type)
10941 {
10942 const char *name = ada_type_name (type);
10943 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10944
10945 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10946 {
10947 const char *tail = strstr (name, "___XF_");
10948
10949 if (tail == NULL)
10950 return NULL;
10951 else
10952 return tail + 5;
10953 }
10954 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10955 return fixed_type_info (TYPE_TARGET_TYPE (type));
10956 else
10957 return NULL;
10958 }
10959
10960 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10961
10962 int
10963 ada_is_fixed_point_type (struct type *type)
10964 {
10965 return fixed_type_info (type) != NULL;
10966 }
10967
10968 /* Return non-zero iff TYPE represents a System.Address type. */
10969
10970 int
10971 ada_is_system_address_type (struct type *type)
10972 {
10973 return (TYPE_NAME (type)
10974 && strcmp (TYPE_NAME (type), "system__address") == 0);
10975 }
10976
10977 /* Assuming that TYPE is the representation of an Ada fixed-point
10978 type, return its delta, or -1 if the type is malformed and the
10979 delta cannot be determined. */
10980
10981 DOUBLEST
10982 ada_delta (struct type *type)
10983 {
10984 const char *encoding = fixed_type_info (type);
10985 DOUBLEST num, den;
10986
10987 /* Strictly speaking, num and den are encoded as integer. However,
10988 they may not fit into a long, and they will have to be converted
10989 to DOUBLEST anyway. So scan them as DOUBLEST. */
10990 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10991 &num, &den) < 2)
10992 return -1.0;
10993 else
10994 return num / den;
10995 }
10996
10997 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10998 factor ('SMALL value) associated with the type. */
10999
11000 static DOUBLEST
11001 scaling_factor (struct type *type)
11002 {
11003 const char *encoding = fixed_type_info (type);
11004 DOUBLEST num0, den0, num1, den1;
11005 int n;
11006
11007 /* Strictly speaking, num's and den's are encoded as integer. However,
11008 they may not fit into a long, and they will have to be converted
11009 to DOUBLEST anyway. So scan them as DOUBLEST. */
11010 n = sscanf (encoding,
11011 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11012 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11013 &num0, &den0, &num1, &den1);
11014
11015 if (n < 2)
11016 return 1.0;
11017 else if (n == 4)
11018 return num1 / den1;
11019 else
11020 return num0 / den0;
11021 }
11022
11023
11024 /* Assuming that X is the representation of a value of fixed-point
11025 type TYPE, return its floating-point equivalent. */
11026
11027 DOUBLEST
11028 ada_fixed_to_float (struct type *type, LONGEST x)
11029 {
11030 return (DOUBLEST) x *scaling_factor (type);
11031 }
11032
11033 /* The representation of a fixed-point value of type TYPE
11034 corresponding to the value X. */
11035
11036 LONGEST
11037 ada_float_to_fixed (struct type *type, DOUBLEST x)
11038 {
11039 return (LONGEST) (x / scaling_factor (type) + 0.5);
11040 }
11041
11042 \f
11043
11044 /* Range types */
11045
11046 /* Scan STR beginning at position K for a discriminant name, and
11047 return the value of that discriminant field of DVAL in *PX. If
11048 PNEW_K is not null, put the position of the character beyond the
11049 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11050 not alter *PX and *PNEW_K if unsuccessful. */
11051
11052 static int
11053 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11054 int *pnew_k)
11055 {
11056 static char *bound_buffer = NULL;
11057 static size_t bound_buffer_len = 0;
11058 char *bound;
11059 char *pend;
11060 struct value *bound_val;
11061
11062 if (dval == NULL || str == NULL || str[k] == '\0')
11063 return 0;
11064
11065 pend = strstr (str + k, "__");
11066 if (pend == NULL)
11067 {
11068 bound = str + k;
11069 k += strlen (bound);
11070 }
11071 else
11072 {
11073 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11074 bound = bound_buffer;
11075 strncpy (bound_buffer, str + k, pend - (str + k));
11076 bound[pend - (str + k)] = '\0';
11077 k = pend - str;
11078 }
11079
11080 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11081 if (bound_val == NULL)
11082 return 0;
11083
11084 *px = value_as_long (bound_val);
11085 if (pnew_k != NULL)
11086 *pnew_k = k;
11087 return 1;
11088 }
11089
11090 /* Value of variable named NAME in the current environment. If
11091 no such variable found, then if ERR_MSG is null, returns 0, and
11092 otherwise causes an error with message ERR_MSG. */
11093
11094 static struct value *
11095 get_var_value (char *name, char *err_msg)
11096 {
11097 struct ada_symbol_info *syms;
11098 int nsyms;
11099
11100 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11101 &syms);
11102
11103 if (nsyms != 1)
11104 {
11105 if (err_msg == NULL)
11106 return 0;
11107 else
11108 error (("%s"), err_msg);
11109 }
11110
11111 return value_of_variable (syms[0].sym, syms[0].block);
11112 }
11113
11114 /* Value of integer variable named NAME in the current environment. If
11115 no such variable found, returns 0, and sets *FLAG to 0. If
11116 successful, sets *FLAG to 1. */
11117
11118 LONGEST
11119 get_int_var_value (char *name, int *flag)
11120 {
11121 struct value *var_val = get_var_value (name, 0);
11122
11123 if (var_val == 0)
11124 {
11125 if (flag != NULL)
11126 *flag = 0;
11127 return 0;
11128 }
11129 else
11130 {
11131 if (flag != NULL)
11132 *flag = 1;
11133 return value_as_long (var_val);
11134 }
11135 }
11136
11137
11138 /* Return a range type whose base type is that of the range type named
11139 NAME in the current environment, and whose bounds are calculated
11140 from NAME according to the GNAT range encoding conventions.
11141 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11142 corresponding range type from debug information; fall back to using it
11143 if symbol lookup fails. If a new type must be created, allocate it
11144 like ORIG_TYPE was. The bounds information, in general, is encoded
11145 in NAME, the base type given in the named range type. */
11146
11147 static struct type *
11148 to_fixed_range_type (struct type *raw_type, struct value *dval)
11149 {
11150 const char *name;
11151 struct type *base_type;
11152 char *subtype_info;
11153
11154 gdb_assert (raw_type != NULL);
11155 gdb_assert (TYPE_NAME (raw_type) != NULL);
11156
11157 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11158 base_type = TYPE_TARGET_TYPE (raw_type);
11159 else
11160 base_type = raw_type;
11161
11162 name = TYPE_NAME (raw_type);
11163 subtype_info = strstr (name, "___XD");
11164 if (subtype_info == NULL)
11165 {
11166 LONGEST L = ada_discrete_type_low_bound (raw_type);
11167 LONGEST U = ada_discrete_type_high_bound (raw_type);
11168
11169 if (L < INT_MIN || U > INT_MAX)
11170 return raw_type;
11171 else
11172 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11173 L, U);
11174 }
11175 else
11176 {
11177 static char *name_buf = NULL;
11178 static size_t name_len = 0;
11179 int prefix_len = subtype_info - name;
11180 LONGEST L, U;
11181 struct type *type;
11182 char *bounds_str;
11183 int n;
11184
11185 GROW_VECT (name_buf, name_len, prefix_len + 5);
11186 strncpy (name_buf, name, prefix_len);
11187 name_buf[prefix_len] = '\0';
11188
11189 subtype_info += 5;
11190 bounds_str = strchr (subtype_info, '_');
11191 n = 1;
11192
11193 if (*subtype_info == 'L')
11194 {
11195 if (!ada_scan_number (bounds_str, n, &L, &n)
11196 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11197 return raw_type;
11198 if (bounds_str[n] == '_')
11199 n += 2;
11200 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11201 n += 1;
11202 subtype_info += 1;
11203 }
11204 else
11205 {
11206 int ok;
11207
11208 strcpy (name_buf + prefix_len, "___L");
11209 L = get_int_var_value (name_buf, &ok);
11210 if (!ok)
11211 {
11212 lim_warning (_("Unknown lower bound, using 1."));
11213 L = 1;
11214 }
11215 }
11216
11217 if (*subtype_info == 'U')
11218 {
11219 if (!ada_scan_number (bounds_str, n, &U, &n)
11220 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11221 return raw_type;
11222 }
11223 else
11224 {
11225 int ok;
11226
11227 strcpy (name_buf + prefix_len, "___U");
11228 U = get_int_var_value (name_buf, &ok);
11229 if (!ok)
11230 {
11231 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11232 U = L;
11233 }
11234 }
11235
11236 type = create_static_range_type (alloc_type_copy (raw_type),
11237 base_type, L, U);
11238 TYPE_NAME (type) = name;
11239 return type;
11240 }
11241 }
11242
11243 /* True iff NAME is the name of a range type. */
11244
11245 int
11246 ada_is_range_type_name (const char *name)
11247 {
11248 return (name != NULL && strstr (name, "___XD"));
11249 }
11250 \f
11251
11252 /* Modular types */
11253
11254 /* True iff TYPE is an Ada modular type. */
11255
11256 int
11257 ada_is_modular_type (struct type *type)
11258 {
11259 struct type *subranged_type = get_base_type (type);
11260
11261 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11262 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11263 && TYPE_UNSIGNED (subranged_type));
11264 }
11265
11266 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11267
11268 ULONGEST
11269 ada_modulus (struct type *type)
11270 {
11271 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11272 }
11273 \f
11274
11275 /* Ada exception catchpoint support:
11276 ---------------------------------
11277
11278 We support 3 kinds of exception catchpoints:
11279 . catchpoints on Ada exceptions
11280 . catchpoints on unhandled Ada exceptions
11281 . catchpoints on failed assertions
11282
11283 Exceptions raised during failed assertions, or unhandled exceptions
11284 could perfectly be caught with the general catchpoint on Ada exceptions.
11285 However, we can easily differentiate these two special cases, and having
11286 the option to distinguish these two cases from the rest can be useful
11287 to zero-in on certain situations.
11288
11289 Exception catchpoints are a specialized form of breakpoint,
11290 since they rely on inserting breakpoints inside known routines
11291 of the GNAT runtime. The implementation therefore uses a standard
11292 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11293 of breakpoint_ops.
11294
11295 Support in the runtime for exception catchpoints have been changed
11296 a few times already, and these changes affect the implementation
11297 of these catchpoints. In order to be able to support several
11298 variants of the runtime, we use a sniffer that will determine
11299 the runtime variant used by the program being debugged. */
11300
11301 /* Ada's standard exceptions.
11302
11303 The Ada 83 standard also defined Numeric_Error. But there so many
11304 situations where it was unclear from the Ada 83 Reference Manual
11305 (RM) whether Constraint_Error or Numeric_Error should be raised,
11306 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11307 Interpretation saying that anytime the RM says that Numeric_Error
11308 should be raised, the implementation may raise Constraint_Error.
11309 Ada 95 went one step further and pretty much removed Numeric_Error
11310 from the list of standard exceptions (it made it a renaming of
11311 Constraint_Error, to help preserve compatibility when compiling
11312 an Ada83 compiler). As such, we do not include Numeric_Error from
11313 this list of standard exceptions. */
11314
11315 static char *standard_exc[] = {
11316 "constraint_error",
11317 "program_error",
11318 "storage_error",
11319 "tasking_error"
11320 };
11321
11322 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11323
11324 /* A structure that describes how to support exception catchpoints
11325 for a given executable. */
11326
11327 struct exception_support_info
11328 {
11329 /* The name of the symbol to break on in order to insert
11330 a catchpoint on exceptions. */
11331 const char *catch_exception_sym;
11332
11333 /* The name of the symbol to break on in order to insert
11334 a catchpoint on unhandled exceptions. */
11335 const char *catch_exception_unhandled_sym;
11336
11337 /* The name of the symbol to break on in order to insert
11338 a catchpoint on failed assertions. */
11339 const char *catch_assert_sym;
11340
11341 /* Assuming that the inferior just triggered an unhandled exception
11342 catchpoint, this function is responsible for returning the address
11343 in inferior memory where the name of that exception is stored.
11344 Return zero if the address could not be computed. */
11345 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11346 };
11347
11348 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11349 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11350
11351 /* The following exception support info structure describes how to
11352 implement exception catchpoints with the latest version of the
11353 Ada runtime (as of 2007-03-06). */
11354
11355 static const struct exception_support_info default_exception_support_info =
11356 {
11357 "__gnat_debug_raise_exception", /* catch_exception_sym */
11358 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11359 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11360 ada_unhandled_exception_name_addr
11361 };
11362
11363 /* The following exception support info structure describes how to
11364 implement exception catchpoints with a slightly older version
11365 of the Ada runtime. */
11366
11367 static const struct exception_support_info exception_support_info_fallback =
11368 {
11369 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11370 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11371 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11372 ada_unhandled_exception_name_addr_from_raise
11373 };
11374
11375 /* Return nonzero if we can detect the exception support routines
11376 described in EINFO.
11377
11378 This function errors out if an abnormal situation is detected
11379 (for instance, if we find the exception support routines, but
11380 that support is found to be incomplete). */
11381
11382 static int
11383 ada_has_this_exception_support (const struct exception_support_info *einfo)
11384 {
11385 struct symbol *sym;
11386
11387 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11388 that should be compiled with debugging information. As a result, we
11389 expect to find that symbol in the symtabs. */
11390
11391 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11392 if (sym == NULL)
11393 {
11394 /* Perhaps we did not find our symbol because the Ada runtime was
11395 compiled without debugging info, or simply stripped of it.
11396 It happens on some GNU/Linux distributions for instance, where
11397 users have to install a separate debug package in order to get
11398 the runtime's debugging info. In that situation, let the user
11399 know why we cannot insert an Ada exception catchpoint.
11400
11401 Note: Just for the purpose of inserting our Ada exception
11402 catchpoint, we could rely purely on the associated minimal symbol.
11403 But we would be operating in degraded mode anyway, since we are
11404 still lacking the debugging info needed later on to extract
11405 the name of the exception being raised (this name is printed in
11406 the catchpoint message, and is also used when trying to catch
11407 a specific exception). We do not handle this case for now. */
11408 struct bound_minimal_symbol msym
11409 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11410
11411 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11412 error (_("Your Ada runtime appears to be missing some debugging "
11413 "information.\nCannot insert Ada exception catchpoint "
11414 "in this configuration."));
11415
11416 return 0;
11417 }
11418
11419 /* Make sure that the symbol we found corresponds to a function. */
11420
11421 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11422 error (_("Symbol \"%s\" is not a function (class = %d)"),
11423 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11424
11425 return 1;
11426 }
11427
11428 /* Inspect the Ada runtime and determine which exception info structure
11429 should be used to provide support for exception catchpoints.
11430
11431 This function will always set the per-inferior exception_info,
11432 or raise an error. */
11433
11434 static void
11435 ada_exception_support_info_sniffer (void)
11436 {
11437 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11438
11439 /* If the exception info is already known, then no need to recompute it. */
11440 if (data->exception_info != NULL)
11441 return;
11442
11443 /* Check the latest (default) exception support info. */
11444 if (ada_has_this_exception_support (&default_exception_support_info))
11445 {
11446 data->exception_info = &default_exception_support_info;
11447 return;
11448 }
11449
11450 /* Try our fallback exception suport info. */
11451 if (ada_has_this_exception_support (&exception_support_info_fallback))
11452 {
11453 data->exception_info = &exception_support_info_fallback;
11454 return;
11455 }
11456
11457 /* Sometimes, it is normal for us to not be able to find the routine
11458 we are looking for. This happens when the program is linked with
11459 the shared version of the GNAT runtime, and the program has not been
11460 started yet. Inform the user of these two possible causes if
11461 applicable. */
11462
11463 if (ada_update_initial_language (language_unknown) != language_ada)
11464 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11465
11466 /* If the symbol does not exist, then check that the program is
11467 already started, to make sure that shared libraries have been
11468 loaded. If it is not started, this may mean that the symbol is
11469 in a shared library. */
11470
11471 if (ptid_get_pid (inferior_ptid) == 0)
11472 error (_("Unable to insert catchpoint. Try to start the program first."));
11473
11474 /* At this point, we know that we are debugging an Ada program and
11475 that the inferior has been started, but we still are not able to
11476 find the run-time symbols. That can mean that we are in
11477 configurable run time mode, or that a-except as been optimized
11478 out by the linker... In any case, at this point it is not worth
11479 supporting this feature. */
11480
11481 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11482 }
11483
11484 /* True iff FRAME is very likely to be that of a function that is
11485 part of the runtime system. This is all very heuristic, but is
11486 intended to be used as advice as to what frames are uninteresting
11487 to most users. */
11488
11489 static int
11490 is_known_support_routine (struct frame_info *frame)
11491 {
11492 struct symtab_and_line sal;
11493 char *func_name;
11494 enum language func_lang;
11495 int i;
11496 const char *fullname;
11497
11498 /* If this code does not have any debugging information (no symtab),
11499 This cannot be any user code. */
11500
11501 find_frame_sal (frame, &sal);
11502 if (sal.symtab == NULL)
11503 return 1;
11504
11505 /* If there is a symtab, but the associated source file cannot be
11506 located, then assume this is not user code: Selecting a frame
11507 for which we cannot display the code would not be very helpful
11508 for the user. This should also take care of case such as VxWorks
11509 where the kernel has some debugging info provided for a few units. */
11510
11511 fullname = symtab_to_fullname (sal.symtab);
11512 if (access (fullname, R_OK) != 0)
11513 return 1;
11514
11515 /* Check the unit filename againt the Ada runtime file naming.
11516 We also check the name of the objfile against the name of some
11517 known system libraries that sometimes come with debugging info
11518 too. */
11519
11520 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11521 {
11522 re_comp (known_runtime_file_name_patterns[i]);
11523 if (re_exec (lbasename (sal.symtab->filename)))
11524 return 1;
11525 if (sal.symtab->objfile != NULL
11526 && re_exec (objfile_name (sal.symtab->objfile)))
11527 return 1;
11528 }
11529
11530 /* Check whether the function is a GNAT-generated entity. */
11531
11532 find_frame_funname (frame, &func_name, &func_lang, NULL);
11533 if (func_name == NULL)
11534 return 1;
11535
11536 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11537 {
11538 re_comp (known_auxiliary_function_name_patterns[i]);
11539 if (re_exec (func_name))
11540 {
11541 xfree (func_name);
11542 return 1;
11543 }
11544 }
11545
11546 xfree (func_name);
11547 return 0;
11548 }
11549
11550 /* Find the first frame that contains debugging information and that is not
11551 part of the Ada run-time, starting from FI and moving upward. */
11552
11553 void
11554 ada_find_printable_frame (struct frame_info *fi)
11555 {
11556 for (; fi != NULL; fi = get_prev_frame (fi))
11557 {
11558 if (!is_known_support_routine (fi))
11559 {
11560 select_frame (fi);
11561 break;
11562 }
11563 }
11564
11565 }
11566
11567 /* Assuming that the inferior just triggered an unhandled exception
11568 catchpoint, return the address in inferior memory where the name
11569 of the exception is stored.
11570
11571 Return zero if the address could not be computed. */
11572
11573 static CORE_ADDR
11574 ada_unhandled_exception_name_addr (void)
11575 {
11576 return parse_and_eval_address ("e.full_name");
11577 }
11578
11579 /* Same as ada_unhandled_exception_name_addr, except that this function
11580 should be used when the inferior uses an older version of the runtime,
11581 where the exception name needs to be extracted from a specific frame
11582 several frames up in the callstack. */
11583
11584 static CORE_ADDR
11585 ada_unhandled_exception_name_addr_from_raise (void)
11586 {
11587 int frame_level;
11588 struct frame_info *fi;
11589 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11590 struct cleanup *old_chain;
11591
11592 /* To determine the name of this exception, we need to select
11593 the frame corresponding to RAISE_SYM_NAME. This frame is
11594 at least 3 levels up, so we simply skip the first 3 frames
11595 without checking the name of their associated function. */
11596 fi = get_current_frame ();
11597 for (frame_level = 0; frame_level < 3; frame_level += 1)
11598 if (fi != NULL)
11599 fi = get_prev_frame (fi);
11600
11601 old_chain = make_cleanup (null_cleanup, NULL);
11602 while (fi != NULL)
11603 {
11604 char *func_name;
11605 enum language func_lang;
11606
11607 find_frame_funname (fi, &func_name, &func_lang, NULL);
11608 if (func_name != NULL)
11609 {
11610 make_cleanup (xfree, func_name);
11611
11612 if (strcmp (func_name,
11613 data->exception_info->catch_exception_sym) == 0)
11614 break; /* We found the frame we were looking for... */
11615 fi = get_prev_frame (fi);
11616 }
11617 }
11618 do_cleanups (old_chain);
11619
11620 if (fi == NULL)
11621 return 0;
11622
11623 select_frame (fi);
11624 return parse_and_eval_address ("id.full_name");
11625 }
11626
11627 /* Assuming the inferior just triggered an Ada exception catchpoint
11628 (of any type), return the address in inferior memory where the name
11629 of the exception is stored, if applicable.
11630
11631 Return zero if the address could not be computed, or if not relevant. */
11632
11633 static CORE_ADDR
11634 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11635 struct breakpoint *b)
11636 {
11637 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11638
11639 switch (ex)
11640 {
11641 case ada_catch_exception:
11642 return (parse_and_eval_address ("e.full_name"));
11643 break;
11644
11645 case ada_catch_exception_unhandled:
11646 return data->exception_info->unhandled_exception_name_addr ();
11647 break;
11648
11649 case ada_catch_assert:
11650 return 0; /* Exception name is not relevant in this case. */
11651 break;
11652
11653 default:
11654 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11655 break;
11656 }
11657
11658 return 0; /* Should never be reached. */
11659 }
11660
11661 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11662 any error that ada_exception_name_addr_1 might cause to be thrown.
11663 When an error is intercepted, a warning with the error message is printed,
11664 and zero is returned. */
11665
11666 static CORE_ADDR
11667 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11668 struct breakpoint *b)
11669 {
11670 volatile struct gdb_exception e;
11671 CORE_ADDR result = 0;
11672
11673 TRY_CATCH (e, RETURN_MASK_ERROR)
11674 {
11675 result = ada_exception_name_addr_1 (ex, b);
11676 }
11677
11678 if (e.reason < 0)
11679 {
11680 warning (_("failed to get exception name: %s"), e.message);
11681 return 0;
11682 }
11683
11684 return result;
11685 }
11686
11687 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11688
11689 /* Ada catchpoints.
11690
11691 In the case of catchpoints on Ada exceptions, the catchpoint will
11692 stop the target on every exception the program throws. When a user
11693 specifies the name of a specific exception, we translate this
11694 request into a condition expression (in text form), and then parse
11695 it into an expression stored in each of the catchpoint's locations.
11696 We then use this condition to check whether the exception that was
11697 raised is the one the user is interested in. If not, then the
11698 target is resumed again. We store the name of the requested
11699 exception, in order to be able to re-set the condition expression
11700 when symbols change. */
11701
11702 /* An instance of this type is used to represent an Ada catchpoint
11703 breakpoint location. It includes a "struct bp_location" as a kind
11704 of base class; users downcast to "struct bp_location *" when
11705 needed. */
11706
11707 struct ada_catchpoint_location
11708 {
11709 /* The base class. */
11710 struct bp_location base;
11711
11712 /* The condition that checks whether the exception that was raised
11713 is the specific exception the user specified on catchpoint
11714 creation. */
11715 struct expression *excep_cond_expr;
11716 };
11717
11718 /* Implement the DTOR method in the bp_location_ops structure for all
11719 Ada exception catchpoint kinds. */
11720
11721 static void
11722 ada_catchpoint_location_dtor (struct bp_location *bl)
11723 {
11724 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11725
11726 xfree (al->excep_cond_expr);
11727 }
11728
11729 /* The vtable to be used in Ada catchpoint locations. */
11730
11731 static const struct bp_location_ops ada_catchpoint_location_ops =
11732 {
11733 ada_catchpoint_location_dtor
11734 };
11735
11736 /* An instance of this type is used to represent an Ada catchpoint.
11737 It includes a "struct breakpoint" as a kind of base class; users
11738 downcast to "struct breakpoint *" when needed. */
11739
11740 struct ada_catchpoint
11741 {
11742 /* The base class. */
11743 struct breakpoint base;
11744
11745 /* The name of the specific exception the user specified. */
11746 char *excep_string;
11747 };
11748
11749 /* Parse the exception condition string in the context of each of the
11750 catchpoint's locations, and store them for later evaluation. */
11751
11752 static void
11753 create_excep_cond_exprs (struct ada_catchpoint *c)
11754 {
11755 struct cleanup *old_chain;
11756 struct bp_location *bl;
11757 char *cond_string;
11758
11759 /* Nothing to do if there's no specific exception to catch. */
11760 if (c->excep_string == NULL)
11761 return;
11762
11763 /* Same if there are no locations... */
11764 if (c->base.loc == NULL)
11765 return;
11766
11767 /* Compute the condition expression in text form, from the specific
11768 expection we want to catch. */
11769 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11770 old_chain = make_cleanup (xfree, cond_string);
11771
11772 /* Iterate over all the catchpoint's locations, and parse an
11773 expression for each. */
11774 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11775 {
11776 struct ada_catchpoint_location *ada_loc
11777 = (struct ada_catchpoint_location *) bl;
11778 struct expression *exp = NULL;
11779
11780 if (!bl->shlib_disabled)
11781 {
11782 volatile struct gdb_exception e;
11783 const char *s;
11784
11785 s = cond_string;
11786 TRY_CATCH (e, RETURN_MASK_ERROR)
11787 {
11788 exp = parse_exp_1 (&s, bl->address,
11789 block_for_pc (bl->address), 0);
11790 }
11791 if (e.reason < 0)
11792 {
11793 warning (_("failed to reevaluate internal exception condition "
11794 "for catchpoint %d: %s"),
11795 c->base.number, e.message);
11796 /* There is a bug in GCC on sparc-solaris when building with
11797 optimization which causes EXP to change unexpectedly
11798 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11799 The problem should be fixed starting with GCC 4.9.
11800 In the meantime, work around it by forcing EXP back
11801 to NULL. */
11802 exp = NULL;
11803 }
11804 }
11805
11806 ada_loc->excep_cond_expr = exp;
11807 }
11808
11809 do_cleanups (old_chain);
11810 }
11811
11812 /* Implement the DTOR method in the breakpoint_ops structure for all
11813 exception catchpoint kinds. */
11814
11815 static void
11816 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11817 {
11818 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11819
11820 xfree (c->excep_string);
11821
11822 bkpt_breakpoint_ops.dtor (b);
11823 }
11824
11825 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11826 structure for all exception catchpoint kinds. */
11827
11828 static struct bp_location *
11829 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11830 struct breakpoint *self)
11831 {
11832 struct ada_catchpoint_location *loc;
11833
11834 loc = XNEW (struct ada_catchpoint_location);
11835 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11836 loc->excep_cond_expr = NULL;
11837 return &loc->base;
11838 }
11839
11840 /* Implement the RE_SET method in the breakpoint_ops structure for all
11841 exception catchpoint kinds. */
11842
11843 static void
11844 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11845 {
11846 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11847
11848 /* Call the base class's method. This updates the catchpoint's
11849 locations. */
11850 bkpt_breakpoint_ops.re_set (b);
11851
11852 /* Reparse the exception conditional expressions. One for each
11853 location. */
11854 create_excep_cond_exprs (c);
11855 }
11856
11857 /* Returns true if we should stop for this breakpoint hit. If the
11858 user specified a specific exception, we only want to cause a stop
11859 if the program thrown that exception. */
11860
11861 static int
11862 should_stop_exception (const struct bp_location *bl)
11863 {
11864 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11865 const struct ada_catchpoint_location *ada_loc
11866 = (const struct ada_catchpoint_location *) bl;
11867 volatile struct gdb_exception ex;
11868 int stop;
11869
11870 /* With no specific exception, should always stop. */
11871 if (c->excep_string == NULL)
11872 return 1;
11873
11874 if (ada_loc->excep_cond_expr == NULL)
11875 {
11876 /* We will have a NULL expression if back when we were creating
11877 the expressions, this location's had failed to parse. */
11878 return 1;
11879 }
11880
11881 stop = 1;
11882 TRY_CATCH (ex, RETURN_MASK_ALL)
11883 {
11884 struct value *mark;
11885
11886 mark = value_mark ();
11887 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11888 value_free_to_mark (mark);
11889 }
11890 if (ex.reason < 0)
11891 exception_fprintf (gdb_stderr, ex,
11892 _("Error in testing exception condition:\n"));
11893 return stop;
11894 }
11895
11896 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11897 for all exception catchpoint kinds. */
11898
11899 static void
11900 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11901 {
11902 bs->stop = should_stop_exception (bs->bp_location_at);
11903 }
11904
11905 /* Implement the PRINT_IT method in the breakpoint_ops structure
11906 for all exception catchpoint kinds. */
11907
11908 static enum print_stop_action
11909 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11910 {
11911 struct ui_out *uiout = current_uiout;
11912 struct breakpoint *b = bs->breakpoint_at;
11913
11914 annotate_catchpoint (b->number);
11915
11916 if (ui_out_is_mi_like_p (uiout))
11917 {
11918 ui_out_field_string (uiout, "reason",
11919 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11920 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11921 }
11922
11923 ui_out_text (uiout,
11924 b->disposition == disp_del ? "\nTemporary catchpoint "
11925 : "\nCatchpoint ");
11926 ui_out_field_int (uiout, "bkptno", b->number);
11927 ui_out_text (uiout, ", ");
11928
11929 switch (ex)
11930 {
11931 case ada_catch_exception:
11932 case ada_catch_exception_unhandled:
11933 {
11934 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11935 char exception_name[256];
11936
11937 if (addr != 0)
11938 {
11939 read_memory (addr, (gdb_byte *) exception_name,
11940 sizeof (exception_name) - 1);
11941 exception_name [sizeof (exception_name) - 1] = '\0';
11942 }
11943 else
11944 {
11945 /* For some reason, we were unable to read the exception
11946 name. This could happen if the Runtime was compiled
11947 without debugging info, for instance. In that case,
11948 just replace the exception name by the generic string
11949 "exception" - it will read as "an exception" in the
11950 notification we are about to print. */
11951 memcpy (exception_name, "exception", sizeof ("exception"));
11952 }
11953 /* In the case of unhandled exception breakpoints, we print
11954 the exception name as "unhandled EXCEPTION_NAME", to make
11955 it clearer to the user which kind of catchpoint just got
11956 hit. We used ui_out_text to make sure that this extra
11957 info does not pollute the exception name in the MI case. */
11958 if (ex == ada_catch_exception_unhandled)
11959 ui_out_text (uiout, "unhandled ");
11960 ui_out_field_string (uiout, "exception-name", exception_name);
11961 }
11962 break;
11963 case ada_catch_assert:
11964 /* In this case, the name of the exception is not really
11965 important. Just print "failed assertion" to make it clearer
11966 that his program just hit an assertion-failure catchpoint.
11967 We used ui_out_text because this info does not belong in
11968 the MI output. */
11969 ui_out_text (uiout, "failed assertion");
11970 break;
11971 }
11972 ui_out_text (uiout, " at ");
11973 ada_find_printable_frame (get_current_frame ());
11974
11975 return PRINT_SRC_AND_LOC;
11976 }
11977
11978 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11979 for all exception catchpoint kinds. */
11980
11981 static void
11982 print_one_exception (enum ada_exception_catchpoint_kind ex,
11983 struct breakpoint *b, struct bp_location **last_loc)
11984 {
11985 struct ui_out *uiout = current_uiout;
11986 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11987 struct value_print_options opts;
11988
11989 get_user_print_options (&opts);
11990 if (opts.addressprint)
11991 {
11992 annotate_field (4);
11993 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11994 }
11995
11996 annotate_field (5);
11997 *last_loc = b->loc;
11998 switch (ex)
11999 {
12000 case ada_catch_exception:
12001 if (c->excep_string != NULL)
12002 {
12003 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12004
12005 ui_out_field_string (uiout, "what", msg);
12006 xfree (msg);
12007 }
12008 else
12009 ui_out_field_string (uiout, "what", "all Ada exceptions");
12010
12011 break;
12012
12013 case ada_catch_exception_unhandled:
12014 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12015 break;
12016
12017 case ada_catch_assert:
12018 ui_out_field_string (uiout, "what", "failed Ada assertions");
12019 break;
12020
12021 default:
12022 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12023 break;
12024 }
12025 }
12026
12027 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12028 for all exception catchpoint kinds. */
12029
12030 static void
12031 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12032 struct breakpoint *b)
12033 {
12034 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12035 struct ui_out *uiout = current_uiout;
12036
12037 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12038 : _("Catchpoint "));
12039 ui_out_field_int (uiout, "bkptno", b->number);
12040 ui_out_text (uiout, ": ");
12041
12042 switch (ex)
12043 {
12044 case ada_catch_exception:
12045 if (c->excep_string != NULL)
12046 {
12047 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12048 struct cleanup *old_chain = make_cleanup (xfree, info);
12049
12050 ui_out_text (uiout, info);
12051 do_cleanups (old_chain);
12052 }
12053 else
12054 ui_out_text (uiout, _("all Ada exceptions"));
12055 break;
12056
12057 case ada_catch_exception_unhandled:
12058 ui_out_text (uiout, _("unhandled Ada exceptions"));
12059 break;
12060
12061 case ada_catch_assert:
12062 ui_out_text (uiout, _("failed Ada assertions"));
12063 break;
12064
12065 default:
12066 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12067 break;
12068 }
12069 }
12070
12071 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12072 for all exception catchpoint kinds. */
12073
12074 static void
12075 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12076 struct breakpoint *b, struct ui_file *fp)
12077 {
12078 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12079
12080 switch (ex)
12081 {
12082 case ada_catch_exception:
12083 fprintf_filtered (fp, "catch exception");
12084 if (c->excep_string != NULL)
12085 fprintf_filtered (fp, " %s", c->excep_string);
12086 break;
12087
12088 case ada_catch_exception_unhandled:
12089 fprintf_filtered (fp, "catch exception unhandled");
12090 break;
12091
12092 case ada_catch_assert:
12093 fprintf_filtered (fp, "catch assert");
12094 break;
12095
12096 default:
12097 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12098 }
12099 print_recreate_thread (b, fp);
12100 }
12101
12102 /* Virtual table for "catch exception" breakpoints. */
12103
12104 static void
12105 dtor_catch_exception (struct breakpoint *b)
12106 {
12107 dtor_exception (ada_catch_exception, b);
12108 }
12109
12110 static struct bp_location *
12111 allocate_location_catch_exception (struct breakpoint *self)
12112 {
12113 return allocate_location_exception (ada_catch_exception, self);
12114 }
12115
12116 static void
12117 re_set_catch_exception (struct breakpoint *b)
12118 {
12119 re_set_exception (ada_catch_exception, b);
12120 }
12121
12122 static void
12123 check_status_catch_exception (bpstat bs)
12124 {
12125 check_status_exception (ada_catch_exception, bs);
12126 }
12127
12128 static enum print_stop_action
12129 print_it_catch_exception (bpstat bs)
12130 {
12131 return print_it_exception (ada_catch_exception, bs);
12132 }
12133
12134 static void
12135 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12136 {
12137 print_one_exception (ada_catch_exception, b, last_loc);
12138 }
12139
12140 static void
12141 print_mention_catch_exception (struct breakpoint *b)
12142 {
12143 print_mention_exception (ada_catch_exception, b);
12144 }
12145
12146 static void
12147 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12148 {
12149 print_recreate_exception (ada_catch_exception, b, fp);
12150 }
12151
12152 static struct breakpoint_ops catch_exception_breakpoint_ops;
12153
12154 /* Virtual table for "catch exception unhandled" breakpoints. */
12155
12156 static void
12157 dtor_catch_exception_unhandled (struct breakpoint *b)
12158 {
12159 dtor_exception (ada_catch_exception_unhandled, b);
12160 }
12161
12162 static struct bp_location *
12163 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12164 {
12165 return allocate_location_exception (ada_catch_exception_unhandled, self);
12166 }
12167
12168 static void
12169 re_set_catch_exception_unhandled (struct breakpoint *b)
12170 {
12171 re_set_exception (ada_catch_exception_unhandled, b);
12172 }
12173
12174 static void
12175 check_status_catch_exception_unhandled (bpstat bs)
12176 {
12177 check_status_exception (ada_catch_exception_unhandled, bs);
12178 }
12179
12180 static enum print_stop_action
12181 print_it_catch_exception_unhandled (bpstat bs)
12182 {
12183 return print_it_exception (ada_catch_exception_unhandled, bs);
12184 }
12185
12186 static void
12187 print_one_catch_exception_unhandled (struct breakpoint *b,
12188 struct bp_location **last_loc)
12189 {
12190 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12191 }
12192
12193 static void
12194 print_mention_catch_exception_unhandled (struct breakpoint *b)
12195 {
12196 print_mention_exception (ada_catch_exception_unhandled, b);
12197 }
12198
12199 static void
12200 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12201 struct ui_file *fp)
12202 {
12203 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12204 }
12205
12206 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12207
12208 /* Virtual table for "catch assert" breakpoints. */
12209
12210 static void
12211 dtor_catch_assert (struct breakpoint *b)
12212 {
12213 dtor_exception (ada_catch_assert, b);
12214 }
12215
12216 static struct bp_location *
12217 allocate_location_catch_assert (struct breakpoint *self)
12218 {
12219 return allocate_location_exception (ada_catch_assert, self);
12220 }
12221
12222 static void
12223 re_set_catch_assert (struct breakpoint *b)
12224 {
12225 re_set_exception (ada_catch_assert, b);
12226 }
12227
12228 static void
12229 check_status_catch_assert (bpstat bs)
12230 {
12231 check_status_exception (ada_catch_assert, bs);
12232 }
12233
12234 static enum print_stop_action
12235 print_it_catch_assert (bpstat bs)
12236 {
12237 return print_it_exception (ada_catch_assert, bs);
12238 }
12239
12240 static void
12241 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12242 {
12243 print_one_exception (ada_catch_assert, b, last_loc);
12244 }
12245
12246 static void
12247 print_mention_catch_assert (struct breakpoint *b)
12248 {
12249 print_mention_exception (ada_catch_assert, b);
12250 }
12251
12252 static void
12253 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12254 {
12255 print_recreate_exception (ada_catch_assert, b, fp);
12256 }
12257
12258 static struct breakpoint_ops catch_assert_breakpoint_ops;
12259
12260 /* Return a newly allocated copy of the first space-separated token
12261 in ARGSP, and then adjust ARGSP to point immediately after that
12262 token.
12263
12264 Return NULL if ARGPS does not contain any more tokens. */
12265
12266 static char *
12267 ada_get_next_arg (char **argsp)
12268 {
12269 char *args = *argsp;
12270 char *end;
12271 char *result;
12272
12273 args = skip_spaces (args);
12274 if (args[0] == '\0')
12275 return NULL; /* No more arguments. */
12276
12277 /* Find the end of the current argument. */
12278
12279 end = skip_to_space (args);
12280
12281 /* Adjust ARGSP to point to the start of the next argument. */
12282
12283 *argsp = end;
12284
12285 /* Make a copy of the current argument and return it. */
12286
12287 result = xmalloc (end - args + 1);
12288 strncpy (result, args, end - args);
12289 result[end - args] = '\0';
12290
12291 return result;
12292 }
12293
12294 /* Split the arguments specified in a "catch exception" command.
12295 Set EX to the appropriate catchpoint type.
12296 Set EXCEP_STRING to the name of the specific exception if
12297 specified by the user.
12298 If a condition is found at the end of the arguments, the condition
12299 expression is stored in COND_STRING (memory must be deallocated
12300 after use). Otherwise COND_STRING is set to NULL. */
12301
12302 static void
12303 catch_ada_exception_command_split (char *args,
12304 enum ada_exception_catchpoint_kind *ex,
12305 char **excep_string,
12306 char **cond_string)
12307 {
12308 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12309 char *exception_name;
12310 char *cond = NULL;
12311
12312 exception_name = ada_get_next_arg (&args);
12313 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12314 {
12315 /* This is not an exception name; this is the start of a condition
12316 expression for a catchpoint on all exceptions. So, "un-get"
12317 this token, and set exception_name to NULL. */
12318 xfree (exception_name);
12319 exception_name = NULL;
12320 args -= 2;
12321 }
12322 make_cleanup (xfree, exception_name);
12323
12324 /* Check to see if we have a condition. */
12325
12326 args = skip_spaces (args);
12327 if (strncmp (args, "if", 2) == 0
12328 && (isspace (args[2]) || args[2] == '\0'))
12329 {
12330 args += 2;
12331 args = skip_spaces (args);
12332
12333 if (args[0] == '\0')
12334 error (_("Condition missing after `if' keyword"));
12335 cond = xstrdup (args);
12336 make_cleanup (xfree, cond);
12337
12338 args += strlen (args);
12339 }
12340
12341 /* Check that we do not have any more arguments. Anything else
12342 is unexpected. */
12343
12344 if (args[0] != '\0')
12345 error (_("Junk at end of expression"));
12346
12347 discard_cleanups (old_chain);
12348
12349 if (exception_name == NULL)
12350 {
12351 /* Catch all exceptions. */
12352 *ex = ada_catch_exception;
12353 *excep_string = NULL;
12354 }
12355 else if (strcmp (exception_name, "unhandled") == 0)
12356 {
12357 /* Catch unhandled exceptions. */
12358 *ex = ada_catch_exception_unhandled;
12359 *excep_string = NULL;
12360 }
12361 else
12362 {
12363 /* Catch a specific exception. */
12364 *ex = ada_catch_exception;
12365 *excep_string = exception_name;
12366 }
12367 *cond_string = cond;
12368 }
12369
12370 /* Return the name of the symbol on which we should break in order to
12371 implement a catchpoint of the EX kind. */
12372
12373 static const char *
12374 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12375 {
12376 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12377
12378 gdb_assert (data->exception_info != NULL);
12379
12380 switch (ex)
12381 {
12382 case ada_catch_exception:
12383 return (data->exception_info->catch_exception_sym);
12384 break;
12385 case ada_catch_exception_unhandled:
12386 return (data->exception_info->catch_exception_unhandled_sym);
12387 break;
12388 case ada_catch_assert:
12389 return (data->exception_info->catch_assert_sym);
12390 break;
12391 default:
12392 internal_error (__FILE__, __LINE__,
12393 _("unexpected catchpoint kind (%d)"), ex);
12394 }
12395 }
12396
12397 /* Return the breakpoint ops "virtual table" used for catchpoints
12398 of the EX kind. */
12399
12400 static const struct breakpoint_ops *
12401 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12402 {
12403 switch (ex)
12404 {
12405 case ada_catch_exception:
12406 return (&catch_exception_breakpoint_ops);
12407 break;
12408 case ada_catch_exception_unhandled:
12409 return (&catch_exception_unhandled_breakpoint_ops);
12410 break;
12411 case ada_catch_assert:
12412 return (&catch_assert_breakpoint_ops);
12413 break;
12414 default:
12415 internal_error (__FILE__, __LINE__,
12416 _("unexpected catchpoint kind (%d)"), ex);
12417 }
12418 }
12419
12420 /* Return the condition that will be used to match the current exception
12421 being raised with the exception that the user wants to catch. This
12422 assumes that this condition is used when the inferior just triggered
12423 an exception catchpoint.
12424
12425 The string returned is a newly allocated string that needs to be
12426 deallocated later. */
12427
12428 static char *
12429 ada_exception_catchpoint_cond_string (const char *excep_string)
12430 {
12431 int i;
12432
12433 /* The standard exceptions are a special case. They are defined in
12434 runtime units that have been compiled without debugging info; if
12435 EXCEP_STRING is the not-fully-qualified name of a standard
12436 exception (e.g. "constraint_error") then, during the evaluation
12437 of the condition expression, the symbol lookup on this name would
12438 *not* return this standard exception. The catchpoint condition
12439 may then be set only on user-defined exceptions which have the
12440 same not-fully-qualified name (e.g. my_package.constraint_error).
12441
12442 To avoid this unexcepted behavior, these standard exceptions are
12443 systematically prefixed by "standard". This means that "catch
12444 exception constraint_error" is rewritten into "catch exception
12445 standard.constraint_error".
12446
12447 If an exception named contraint_error is defined in another package of
12448 the inferior program, then the only way to specify this exception as a
12449 breakpoint condition is to use its fully-qualified named:
12450 e.g. my_package.constraint_error. */
12451
12452 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12453 {
12454 if (strcmp (standard_exc [i], excep_string) == 0)
12455 {
12456 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12457 excep_string);
12458 }
12459 }
12460 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12461 }
12462
12463 /* Return the symtab_and_line that should be used to insert an exception
12464 catchpoint of the TYPE kind.
12465
12466 EXCEP_STRING should contain the name of a specific exception that
12467 the catchpoint should catch, or NULL otherwise.
12468
12469 ADDR_STRING returns the name of the function where the real
12470 breakpoint that implements the catchpoints is set, depending on the
12471 type of catchpoint we need to create. */
12472
12473 static struct symtab_and_line
12474 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12475 char **addr_string, const struct breakpoint_ops **ops)
12476 {
12477 const char *sym_name;
12478 struct symbol *sym;
12479
12480 /* First, find out which exception support info to use. */
12481 ada_exception_support_info_sniffer ();
12482
12483 /* Then lookup the function on which we will break in order to catch
12484 the Ada exceptions requested by the user. */
12485 sym_name = ada_exception_sym_name (ex);
12486 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12487
12488 /* We can assume that SYM is not NULL at this stage. If the symbol
12489 did not exist, ada_exception_support_info_sniffer would have
12490 raised an exception.
12491
12492 Also, ada_exception_support_info_sniffer should have already
12493 verified that SYM is a function symbol. */
12494 gdb_assert (sym != NULL);
12495 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12496
12497 /* Set ADDR_STRING. */
12498 *addr_string = xstrdup (sym_name);
12499
12500 /* Set OPS. */
12501 *ops = ada_exception_breakpoint_ops (ex);
12502
12503 return find_function_start_sal (sym, 1);
12504 }
12505
12506 /* Create an Ada exception catchpoint.
12507
12508 EX_KIND is the kind of exception catchpoint to be created.
12509
12510 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12511 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12512 of the exception to which this catchpoint applies. When not NULL,
12513 the string must be allocated on the heap, and its deallocation
12514 is no longer the responsibility of the caller.
12515
12516 COND_STRING, if not NULL, is the catchpoint condition. This string
12517 must be allocated on the heap, and its deallocation is no longer
12518 the responsibility of the caller.
12519
12520 TEMPFLAG, if nonzero, means that the underlying breakpoint
12521 should be temporary.
12522
12523 FROM_TTY is the usual argument passed to all commands implementations. */
12524
12525 void
12526 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12527 enum ada_exception_catchpoint_kind ex_kind,
12528 char *excep_string,
12529 char *cond_string,
12530 int tempflag,
12531 int disabled,
12532 int from_tty)
12533 {
12534 struct ada_catchpoint *c;
12535 char *addr_string = NULL;
12536 const struct breakpoint_ops *ops = NULL;
12537 struct symtab_and_line sal
12538 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12539
12540 c = XNEW (struct ada_catchpoint);
12541 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12542 ops, tempflag, disabled, from_tty);
12543 c->excep_string = excep_string;
12544 create_excep_cond_exprs (c);
12545 if (cond_string != NULL)
12546 set_breakpoint_condition (&c->base, cond_string, from_tty);
12547 install_breakpoint (0, &c->base, 1);
12548 }
12549
12550 /* Implement the "catch exception" command. */
12551
12552 static void
12553 catch_ada_exception_command (char *arg, int from_tty,
12554 struct cmd_list_element *command)
12555 {
12556 struct gdbarch *gdbarch = get_current_arch ();
12557 int tempflag;
12558 enum ada_exception_catchpoint_kind ex_kind;
12559 char *excep_string = NULL;
12560 char *cond_string = NULL;
12561
12562 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12563
12564 if (!arg)
12565 arg = "";
12566 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12567 &cond_string);
12568 create_ada_exception_catchpoint (gdbarch, ex_kind,
12569 excep_string, cond_string,
12570 tempflag, 1 /* enabled */,
12571 from_tty);
12572 }
12573
12574 /* Split the arguments specified in a "catch assert" command.
12575
12576 ARGS contains the command's arguments (or the empty string if
12577 no arguments were passed).
12578
12579 If ARGS contains a condition, set COND_STRING to that condition
12580 (the memory needs to be deallocated after use). */
12581
12582 static void
12583 catch_ada_assert_command_split (char *args, char **cond_string)
12584 {
12585 args = skip_spaces (args);
12586
12587 /* Check whether a condition was provided. */
12588 if (strncmp (args, "if", 2) == 0
12589 && (isspace (args[2]) || args[2] == '\0'))
12590 {
12591 args += 2;
12592 args = skip_spaces (args);
12593 if (args[0] == '\0')
12594 error (_("condition missing after `if' keyword"));
12595 *cond_string = xstrdup (args);
12596 }
12597
12598 /* Otherwise, there should be no other argument at the end of
12599 the command. */
12600 else if (args[0] != '\0')
12601 error (_("Junk at end of arguments."));
12602 }
12603
12604 /* Implement the "catch assert" command. */
12605
12606 static void
12607 catch_assert_command (char *arg, int from_tty,
12608 struct cmd_list_element *command)
12609 {
12610 struct gdbarch *gdbarch = get_current_arch ();
12611 int tempflag;
12612 char *cond_string = NULL;
12613
12614 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12615
12616 if (!arg)
12617 arg = "";
12618 catch_ada_assert_command_split (arg, &cond_string);
12619 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12620 NULL, cond_string,
12621 tempflag, 1 /* enabled */,
12622 from_tty);
12623 }
12624
12625 /* Return non-zero if the symbol SYM is an Ada exception object. */
12626
12627 static int
12628 ada_is_exception_sym (struct symbol *sym)
12629 {
12630 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12631
12632 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12633 && SYMBOL_CLASS (sym) != LOC_BLOCK
12634 && SYMBOL_CLASS (sym) != LOC_CONST
12635 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12636 && type_name != NULL && strcmp (type_name, "exception") == 0);
12637 }
12638
12639 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12640 Ada exception object. This matches all exceptions except the ones
12641 defined by the Ada language. */
12642
12643 static int
12644 ada_is_non_standard_exception_sym (struct symbol *sym)
12645 {
12646 int i;
12647
12648 if (!ada_is_exception_sym (sym))
12649 return 0;
12650
12651 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12652 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12653 return 0; /* A standard exception. */
12654
12655 /* Numeric_Error is also a standard exception, so exclude it.
12656 See the STANDARD_EXC description for more details as to why
12657 this exception is not listed in that array. */
12658 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12659 return 0;
12660
12661 return 1;
12662 }
12663
12664 /* A helper function for qsort, comparing two struct ada_exc_info
12665 objects.
12666
12667 The comparison is determined first by exception name, and then
12668 by exception address. */
12669
12670 static int
12671 compare_ada_exception_info (const void *a, const void *b)
12672 {
12673 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12674 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12675 int result;
12676
12677 result = strcmp (exc_a->name, exc_b->name);
12678 if (result != 0)
12679 return result;
12680
12681 if (exc_a->addr < exc_b->addr)
12682 return -1;
12683 if (exc_a->addr > exc_b->addr)
12684 return 1;
12685
12686 return 0;
12687 }
12688
12689 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12690 routine, but keeping the first SKIP elements untouched.
12691
12692 All duplicates are also removed. */
12693
12694 static void
12695 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12696 int skip)
12697 {
12698 struct ada_exc_info *to_sort
12699 = VEC_address (ada_exc_info, *exceptions) + skip;
12700 int to_sort_len
12701 = VEC_length (ada_exc_info, *exceptions) - skip;
12702 int i, j;
12703
12704 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12705 compare_ada_exception_info);
12706
12707 for (i = 1, j = 1; i < to_sort_len; i++)
12708 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12709 to_sort[j++] = to_sort[i];
12710 to_sort_len = j;
12711 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12712 }
12713
12714 /* A function intended as the "name_matcher" callback in the struct
12715 quick_symbol_functions' expand_symtabs_matching method.
12716
12717 SEARCH_NAME is the symbol's search name.
12718
12719 If USER_DATA is not NULL, it is a pointer to a regext_t object
12720 used to match the symbol (by natural name). Otherwise, when USER_DATA
12721 is null, no filtering is performed, and all symbols are a positive
12722 match. */
12723
12724 static int
12725 ada_exc_search_name_matches (const char *search_name, void *user_data)
12726 {
12727 regex_t *preg = user_data;
12728
12729 if (preg == NULL)
12730 return 1;
12731
12732 /* In Ada, the symbol "search name" is a linkage name, whereas
12733 the regular expression used to do the matching refers to
12734 the natural name. So match against the decoded name. */
12735 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12736 }
12737
12738 /* Add all exceptions defined by the Ada standard whose name match
12739 a regular expression.
12740
12741 If PREG is not NULL, then this regexp_t object is used to
12742 perform the symbol name matching. Otherwise, no name-based
12743 filtering is performed.
12744
12745 EXCEPTIONS is a vector of exceptions to which matching exceptions
12746 gets pushed. */
12747
12748 static void
12749 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12750 {
12751 int i;
12752
12753 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12754 {
12755 if (preg == NULL
12756 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12757 {
12758 struct bound_minimal_symbol msymbol
12759 = ada_lookup_simple_minsym (standard_exc[i]);
12760
12761 if (msymbol.minsym != NULL)
12762 {
12763 struct ada_exc_info info
12764 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12765
12766 VEC_safe_push (ada_exc_info, *exceptions, &info);
12767 }
12768 }
12769 }
12770 }
12771
12772 /* Add all Ada exceptions defined locally and accessible from the given
12773 FRAME.
12774
12775 If PREG is not NULL, then this regexp_t object is used to
12776 perform the symbol name matching. Otherwise, no name-based
12777 filtering is performed.
12778
12779 EXCEPTIONS is a vector of exceptions to which matching exceptions
12780 gets pushed. */
12781
12782 static void
12783 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12784 VEC(ada_exc_info) **exceptions)
12785 {
12786 const struct block *block = get_frame_block (frame, 0);
12787
12788 while (block != 0)
12789 {
12790 struct block_iterator iter;
12791 struct symbol *sym;
12792
12793 ALL_BLOCK_SYMBOLS (block, iter, sym)
12794 {
12795 switch (SYMBOL_CLASS (sym))
12796 {
12797 case LOC_TYPEDEF:
12798 case LOC_BLOCK:
12799 case LOC_CONST:
12800 break;
12801 default:
12802 if (ada_is_exception_sym (sym))
12803 {
12804 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12805 SYMBOL_VALUE_ADDRESS (sym)};
12806
12807 VEC_safe_push (ada_exc_info, *exceptions, &info);
12808 }
12809 }
12810 }
12811 if (BLOCK_FUNCTION (block) != NULL)
12812 break;
12813 block = BLOCK_SUPERBLOCK (block);
12814 }
12815 }
12816
12817 /* Add all exceptions defined globally whose name name match
12818 a regular expression, excluding standard exceptions.
12819
12820 The reason we exclude standard exceptions is that they need
12821 to be handled separately: Standard exceptions are defined inside
12822 a runtime unit which is normally not compiled with debugging info,
12823 and thus usually do not show up in our symbol search. However,
12824 if the unit was in fact built with debugging info, we need to
12825 exclude them because they would duplicate the entry we found
12826 during the special loop that specifically searches for those
12827 standard exceptions.
12828
12829 If PREG is not NULL, then this regexp_t object is used to
12830 perform the symbol name matching. Otherwise, no name-based
12831 filtering is performed.
12832
12833 EXCEPTIONS is a vector of exceptions to which matching exceptions
12834 gets pushed. */
12835
12836 static void
12837 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12838 {
12839 struct objfile *objfile;
12840 struct symtab *s;
12841
12842 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12843 VARIABLES_DOMAIN, preg);
12844
12845 ALL_PRIMARY_SYMTABS (objfile, s)
12846 {
12847 const struct blockvector *bv = BLOCKVECTOR (s);
12848 int i;
12849
12850 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12851 {
12852 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12853 struct block_iterator iter;
12854 struct symbol *sym;
12855
12856 ALL_BLOCK_SYMBOLS (b, iter, sym)
12857 if (ada_is_non_standard_exception_sym (sym)
12858 && (preg == NULL
12859 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12860 0, NULL, 0) == 0))
12861 {
12862 struct ada_exc_info info
12863 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12864
12865 VEC_safe_push (ada_exc_info, *exceptions, &info);
12866 }
12867 }
12868 }
12869 }
12870
12871 /* Implements ada_exceptions_list with the regular expression passed
12872 as a regex_t, rather than a string.
12873
12874 If not NULL, PREG is used to filter out exceptions whose names
12875 do not match. Otherwise, all exceptions are listed. */
12876
12877 static VEC(ada_exc_info) *
12878 ada_exceptions_list_1 (regex_t *preg)
12879 {
12880 VEC(ada_exc_info) *result = NULL;
12881 struct cleanup *old_chain
12882 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12883 int prev_len;
12884
12885 /* First, list the known standard exceptions. These exceptions
12886 need to be handled separately, as they are usually defined in
12887 runtime units that have been compiled without debugging info. */
12888
12889 ada_add_standard_exceptions (preg, &result);
12890
12891 /* Next, find all exceptions whose scope is local and accessible
12892 from the currently selected frame. */
12893
12894 if (has_stack_frames ())
12895 {
12896 prev_len = VEC_length (ada_exc_info, result);
12897 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12898 &result);
12899 if (VEC_length (ada_exc_info, result) > prev_len)
12900 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12901 }
12902
12903 /* Add all exceptions whose scope is global. */
12904
12905 prev_len = VEC_length (ada_exc_info, result);
12906 ada_add_global_exceptions (preg, &result);
12907 if (VEC_length (ada_exc_info, result) > prev_len)
12908 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12909
12910 discard_cleanups (old_chain);
12911 return result;
12912 }
12913
12914 /* Return a vector of ada_exc_info.
12915
12916 If REGEXP is NULL, all exceptions are included in the result.
12917 Otherwise, it should contain a valid regular expression,
12918 and only the exceptions whose names match that regular expression
12919 are included in the result.
12920
12921 The exceptions are sorted in the following order:
12922 - Standard exceptions (defined by the Ada language), in
12923 alphabetical order;
12924 - Exceptions only visible from the current frame, in
12925 alphabetical order;
12926 - Exceptions whose scope is global, in alphabetical order. */
12927
12928 VEC(ada_exc_info) *
12929 ada_exceptions_list (const char *regexp)
12930 {
12931 VEC(ada_exc_info) *result = NULL;
12932 struct cleanup *old_chain = NULL;
12933 regex_t reg;
12934
12935 if (regexp != NULL)
12936 old_chain = compile_rx_or_error (&reg, regexp,
12937 _("invalid regular expression"));
12938
12939 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12940
12941 if (old_chain != NULL)
12942 do_cleanups (old_chain);
12943 return result;
12944 }
12945
12946 /* Implement the "info exceptions" command. */
12947
12948 static void
12949 info_exceptions_command (char *regexp, int from_tty)
12950 {
12951 VEC(ada_exc_info) *exceptions;
12952 struct cleanup *cleanup;
12953 struct gdbarch *gdbarch = get_current_arch ();
12954 int ix;
12955 struct ada_exc_info *info;
12956
12957 exceptions = ada_exceptions_list (regexp);
12958 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12959
12960 if (regexp != NULL)
12961 printf_filtered
12962 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12963 else
12964 printf_filtered (_("All defined Ada exceptions:\n"));
12965
12966 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12967 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12968
12969 do_cleanups (cleanup);
12970 }
12971
12972 /* Operators */
12973 /* Information about operators given special treatment in functions
12974 below. */
12975 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12976
12977 #define ADA_OPERATORS \
12978 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12979 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12980 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12981 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12982 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12983 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12984 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12985 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12986 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12987 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12988 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12989 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12990 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12991 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12992 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12993 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12994 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12995 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12996 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12997
12998 static void
12999 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13000 int *argsp)
13001 {
13002 switch (exp->elts[pc - 1].opcode)
13003 {
13004 default:
13005 operator_length_standard (exp, pc, oplenp, argsp);
13006 break;
13007
13008 #define OP_DEFN(op, len, args, binop) \
13009 case op: *oplenp = len; *argsp = args; break;
13010 ADA_OPERATORS;
13011 #undef OP_DEFN
13012
13013 case OP_AGGREGATE:
13014 *oplenp = 3;
13015 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13016 break;
13017
13018 case OP_CHOICES:
13019 *oplenp = 3;
13020 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13021 break;
13022 }
13023 }
13024
13025 /* Implementation of the exp_descriptor method operator_check. */
13026
13027 static int
13028 ada_operator_check (struct expression *exp, int pos,
13029 int (*objfile_func) (struct objfile *objfile, void *data),
13030 void *data)
13031 {
13032 const union exp_element *const elts = exp->elts;
13033 struct type *type = NULL;
13034
13035 switch (elts[pos].opcode)
13036 {
13037 case UNOP_IN_RANGE:
13038 case UNOP_QUAL:
13039 type = elts[pos + 1].type;
13040 break;
13041
13042 default:
13043 return operator_check_standard (exp, pos, objfile_func, data);
13044 }
13045
13046 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13047
13048 if (type && TYPE_OBJFILE (type)
13049 && (*objfile_func) (TYPE_OBJFILE (type), data))
13050 return 1;
13051
13052 return 0;
13053 }
13054
13055 static char *
13056 ada_op_name (enum exp_opcode opcode)
13057 {
13058 switch (opcode)
13059 {
13060 default:
13061 return op_name_standard (opcode);
13062
13063 #define OP_DEFN(op, len, args, binop) case op: return #op;
13064 ADA_OPERATORS;
13065 #undef OP_DEFN
13066
13067 case OP_AGGREGATE:
13068 return "OP_AGGREGATE";
13069 case OP_CHOICES:
13070 return "OP_CHOICES";
13071 case OP_NAME:
13072 return "OP_NAME";
13073 }
13074 }
13075
13076 /* As for operator_length, but assumes PC is pointing at the first
13077 element of the operator, and gives meaningful results only for the
13078 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13079
13080 static void
13081 ada_forward_operator_length (struct expression *exp, int pc,
13082 int *oplenp, int *argsp)
13083 {
13084 switch (exp->elts[pc].opcode)
13085 {
13086 default:
13087 *oplenp = *argsp = 0;
13088 break;
13089
13090 #define OP_DEFN(op, len, args, binop) \
13091 case op: *oplenp = len; *argsp = args; break;
13092 ADA_OPERATORS;
13093 #undef OP_DEFN
13094
13095 case OP_AGGREGATE:
13096 *oplenp = 3;
13097 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13098 break;
13099
13100 case OP_CHOICES:
13101 *oplenp = 3;
13102 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13103 break;
13104
13105 case OP_STRING:
13106 case OP_NAME:
13107 {
13108 int len = longest_to_int (exp->elts[pc + 1].longconst);
13109
13110 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13111 *argsp = 0;
13112 break;
13113 }
13114 }
13115 }
13116
13117 static int
13118 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13119 {
13120 enum exp_opcode op = exp->elts[elt].opcode;
13121 int oplen, nargs;
13122 int pc = elt;
13123 int i;
13124
13125 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13126
13127 switch (op)
13128 {
13129 /* Ada attributes ('Foo). */
13130 case OP_ATR_FIRST:
13131 case OP_ATR_LAST:
13132 case OP_ATR_LENGTH:
13133 case OP_ATR_IMAGE:
13134 case OP_ATR_MAX:
13135 case OP_ATR_MIN:
13136 case OP_ATR_MODULUS:
13137 case OP_ATR_POS:
13138 case OP_ATR_SIZE:
13139 case OP_ATR_TAG:
13140 case OP_ATR_VAL:
13141 break;
13142
13143 case UNOP_IN_RANGE:
13144 case UNOP_QUAL:
13145 /* XXX: gdb_sprint_host_address, type_sprint */
13146 fprintf_filtered (stream, _("Type @"));
13147 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13148 fprintf_filtered (stream, " (");
13149 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13150 fprintf_filtered (stream, ")");
13151 break;
13152 case BINOP_IN_BOUNDS:
13153 fprintf_filtered (stream, " (%d)",
13154 longest_to_int (exp->elts[pc + 2].longconst));
13155 break;
13156 case TERNOP_IN_RANGE:
13157 break;
13158
13159 case OP_AGGREGATE:
13160 case OP_OTHERS:
13161 case OP_DISCRETE_RANGE:
13162 case OP_POSITIONAL:
13163 case OP_CHOICES:
13164 break;
13165
13166 case OP_NAME:
13167 case OP_STRING:
13168 {
13169 char *name = &exp->elts[elt + 2].string;
13170 int len = longest_to_int (exp->elts[elt + 1].longconst);
13171
13172 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13173 break;
13174 }
13175
13176 default:
13177 return dump_subexp_body_standard (exp, stream, elt);
13178 }
13179
13180 elt += oplen;
13181 for (i = 0; i < nargs; i += 1)
13182 elt = dump_subexp (exp, stream, elt);
13183
13184 return elt;
13185 }
13186
13187 /* The Ada extension of print_subexp (q.v.). */
13188
13189 static void
13190 ada_print_subexp (struct expression *exp, int *pos,
13191 struct ui_file *stream, enum precedence prec)
13192 {
13193 int oplen, nargs, i;
13194 int pc = *pos;
13195 enum exp_opcode op = exp->elts[pc].opcode;
13196
13197 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13198
13199 *pos += oplen;
13200 switch (op)
13201 {
13202 default:
13203 *pos -= oplen;
13204 print_subexp_standard (exp, pos, stream, prec);
13205 return;
13206
13207 case OP_VAR_VALUE:
13208 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13209 return;
13210
13211 case BINOP_IN_BOUNDS:
13212 /* XXX: sprint_subexp */
13213 print_subexp (exp, pos, stream, PREC_SUFFIX);
13214 fputs_filtered (" in ", stream);
13215 print_subexp (exp, pos, stream, PREC_SUFFIX);
13216 fputs_filtered ("'range", stream);
13217 if (exp->elts[pc + 1].longconst > 1)
13218 fprintf_filtered (stream, "(%ld)",
13219 (long) exp->elts[pc + 1].longconst);
13220 return;
13221
13222 case TERNOP_IN_RANGE:
13223 if (prec >= PREC_EQUAL)
13224 fputs_filtered ("(", stream);
13225 /* XXX: sprint_subexp */
13226 print_subexp (exp, pos, stream, PREC_SUFFIX);
13227 fputs_filtered (" in ", stream);
13228 print_subexp (exp, pos, stream, PREC_EQUAL);
13229 fputs_filtered (" .. ", stream);
13230 print_subexp (exp, pos, stream, PREC_EQUAL);
13231 if (prec >= PREC_EQUAL)
13232 fputs_filtered (")", stream);
13233 return;
13234
13235 case OP_ATR_FIRST:
13236 case OP_ATR_LAST:
13237 case OP_ATR_LENGTH:
13238 case OP_ATR_IMAGE:
13239 case OP_ATR_MAX:
13240 case OP_ATR_MIN:
13241 case OP_ATR_MODULUS:
13242 case OP_ATR_POS:
13243 case OP_ATR_SIZE:
13244 case OP_ATR_TAG:
13245 case OP_ATR_VAL:
13246 if (exp->elts[*pos].opcode == OP_TYPE)
13247 {
13248 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13249 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13250 &type_print_raw_options);
13251 *pos += 3;
13252 }
13253 else
13254 print_subexp (exp, pos, stream, PREC_SUFFIX);
13255 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13256 if (nargs > 1)
13257 {
13258 int tem;
13259
13260 for (tem = 1; tem < nargs; tem += 1)
13261 {
13262 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13263 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13264 }
13265 fputs_filtered (")", stream);
13266 }
13267 return;
13268
13269 case UNOP_QUAL:
13270 type_print (exp->elts[pc + 1].type, "", stream, 0);
13271 fputs_filtered ("'(", stream);
13272 print_subexp (exp, pos, stream, PREC_PREFIX);
13273 fputs_filtered (")", stream);
13274 return;
13275
13276 case UNOP_IN_RANGE:
13277 /* XXX: sprint_subexp */
13278 print_subexp (exp, pos, stream, PREC_SUFFIX);
13279 fputs_filtered (" in ", stream);
13280 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13281 &type_print_raw_options);
13282 return;
13283
13284 case OP_DISCRETE_RANGE:
13285 print_subexp (exp, pos, stream, PREC_SUFFIX);
13286 fputs_filtered ("..", stream);
13287 print_subexp (exp, pos, stream, PREC_SUFFIX);
13288 return;
13289
13290 case OP_OTHERS:
13291 fputs_filtered ("others => ", stream);
13292 print_subexp (exp, pos, stream, PREC_SUFFIX);
13293 return;
13294
13295 case OP_CHOICES:
13296 for (i = 0; i < nargs-1; i += 1)
13297 {
13298 if (i > 0)
13299 fputs_filtered ("|", stream);
13300 print_subexp (exp, pos, stream, PREC_SUFFIX);
13301 }
13302 fputs_filtered (" => ", stream);
13303 print_subexp (exp, pos, stream, PREC_SUFFIX);
13304 return;
13305
13306 case OP_POSITIONAL:
13307 print_subexp (exp, pos, stream, PREC_SUFFIX);
13308 return;
13309
13310 case OP_AGGREGATE:
13311 fputs_filtered ("(", stream);
13312 for (i = 0; i < nargs; i += 1)
13313 {
13314 if (i > 0)
13315 fputs_filtered (", ", stream);
13316 print_subexp (exp, pos, stream, PREC_SUFFIX);
13317 }
13318 fputs_filtered (")", stream);
13319 return;
13320 }
13321 }
13322
13323 /* Table mapping opcodes into strings for printing operators
13324 and precedences of the operators. */
13325
13326 static const struct op_print ada_op_print_tab[] = {
13327 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13328 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13329 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13330 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13331 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13332 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13333 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13334 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13335 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13336 {">=", BINOP_GEQ, PREC_ORDER, 0},
13337 {">", BINOP_GTR, PREC_ORDER, 0},
13338 {"<", BINOP_LESS, PREC_ORDER, 0},
13339 {">>", BINOP_RSH, PREC_SHIFT, 0},
13340 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13341 {"+", BINOP_ADD, PREC_ADD, 0},
13342 {"-", BINOP_SUB, PREC_ADD, 0},
13343 {"&", BINOP_CONCAT, PREC_ADD, 0},
13344 {"*", BINOP_MUL, PREC_MUL, 0},
13345 {"/", BINOP_DIV, PREC_MUL, 0},
13346 {"rem", BINOP_REM, PREC_MUL, 0},
13347 {"mod", BINOP_MOD, PREC_MUL, 0},
13348 {"**", BINOP_EXP, PREC_REPEAT, 0},
13349 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13350 {"-", UNOP_NEG, PREC_PREFIX, 0},
13351 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13352 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13353 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13354 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13355 {".all", UNOP_IND, PREC_SUFFIX, 1},
13356 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13357 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13358 {NULL, 0, 0, 0}
13359 };
13360 \f
13361 enum ada_primitive_types {
13362 ada_primitive_type_int,
13363 ada_primitive_type_long,
13364 ada_primitive_type_short,
13365 ada_primitive_type_char,
13366 ada_primitive_type_float,
13367 ada_primitive_type_double,
13368 ada_primitive_type_void,
13369 ada_primitive_type_long_long,
13370 ada_primitive_type_long_double,
13371 ada_primitive_type_natural,
13372 ada_primitive_type_positive,
13373 ada_primitive_type_system_address,
13374 nr_ada_primitive_types
13375 };
13376
13377 static void
13378 ada_language_arch_info (struct gdbarch *gdbarch,
13379 struct language_arch_info *lai)
13380 {
13381 const struct builtin_type *builtin = builtin_type (gdbarch);
13382
13383 lai->primitive_type_vector
13384 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13385 struct type *);
13386
13387 lai->primitive_type_vector [ada_primitive_type_int]
13388 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13389 0, "integer");
13390 lai->primitive_type_vector [ada_primitive_type_long]
13391 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13392 0, "long_integer");
13393 lai->primitive_type_vector [ada_primitive_type_short]
13394 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13395 0, "short_integer");
13396 lai->string_char_type
13397 = lai->primitive_type_vector [ada_primitive_type_char]
13398 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13399 lai->primitive_type_vector [ada_primitive_type_float]
13400 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13401 "float", NULL);
13402 lai->primitive_type_vector [ada_primitive_type_double]
13403 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13404 "long_float", NULL);
13405 lai->primitive_type_vector [ada_primitive_type_long_long]
13406 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13407 0, "long_long_integer");
13408 lai->primitive_type_vector [ada_primitive_type_long_double]
13409 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13410 "long_long_float", NULL);
13411 lai->primitive_type_vector [ada_primitive_type_natural]
13412 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13413 0, "natural");
13414 lai->primitive_type_vector [ada_primitive_type_positive]
13415 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13416 0, "positive");
13417 lai->primitive_type_vector [ada_primitive_type_void]
13418 = builtin->builtin_void;
13419
13420 lai->primitive_type_vector [ada_primitive_type_system_address]
13421 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13422 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13423 = "system__address";
13424
13425 lai->bool_type_symbol = NULL;
13426 lai->bool_type_default = builtin->builtin_bool;
13427 }
13428 \f
13429 /* Language vector */
13430
13431 /* Not really used, but needed in the ada_language_defn. */
13432
13433 static void
13434 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13435 {
13436 ada_emit_char (c, type, stream, quoter, 1);
13437 }
13438
13439 static int
13440 parse (struct parser_state *ps)
13441 {
13442 warnings_issued = 0;
13443 return ada_parse (ps);
13444 }
13445
13446 static const struct exp_descriptor ada_exp_descriptor = {
13447 ada_print_subexp,
13448 ada_operator_length,
13449 ada_operator_check,
13450 ada_op_name,
13451 ada_dump_subexp_body,
13452 ada_evaluate_subexp
13453 };
13454
13455 /* Implement the "la_get_symbol_name_cmp" language_defn method
13456 for Ada. */
13457
13458 static symbol_name_cmp_ftype
13459 ada_get_symbol_name_cmp (const char *lookup_name)
13460 {
13461 if (should_use_wild_match (lookup_name))
13462 return wild_match;
13463 else
13464 return compare_names;
13465 }
13466
13467 /* Implement the "la_read_var_value" language_defn method for Ada. */
13468
13469 static struct value *
13470 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13471 {
13472 const struct block *frame_block = NULL;
13473 struct symbol *renaming_sym = NULL;
13474
13475 /* The only case where default_read_var_value is not sufficient
13476 is when VAR is a renaming... */
13477 if (frame)
13478 frame_block = get_frame_block (frame, NULL);
13479 if (frame_block)
13480 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13481 if (renaming_sym != NULL)
13482 return ada_read_renaming_var_value (renaming_sym, frame_block);
13483
13484 /* This is a typical case where we expect the default_read_var_value
13485 function to work. */
13486 return default_read_var_value (var, frame);
13487 }
13488
13489 const struct language_defn ada_language_defn = {
13490 "ada", /* Language name */
13491 "Ada",
13492 language_ada,
13493 range_check_off,
13494 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13495 that's not quite what this means. */
13496 array_row_major,
13497 macro_expansion_no,
13498 &ada_exp_descriptor,
13499 parse,
13500 ada_error,
13501 resolve,
13502 ada_printchar, /* Print a character constant */
13503 ada_printstr, /* Function to print string constant */
13504 emit_char, /* Function to print single char (not used) */
13505 ada_print_type, /* Print a type using appropriate syntax */
13506 ada_print_typedef, /* Print a typedef using appropriate syntax */
13507 ada_val_print, /* Print a value using appropriate syntax */
13508 ada_value_print, /* Print a top-level value */
13509 ada_read_var_value, /* la_read_var_value */
13510 NULL, /* Language specific skip_trampoline */
13511 NULL, /* name_of_this */
13512 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13513 basic_lookup_transparent_type, /* lookup_transparent_type */
13514 ada_la_decode, /* Language specific symbol demangler */
13515 NULL, /* Language specific
13516 class_name_from_physname */
13517 ada_op_print_tab, /* expression operators for printing */
13518 0, /* c-style arrays */
13519 1, /* String lower bound */
13520 ada_get_gdb_completer_word_break_characters,
13521 ada_make_symbol_completion_list,
13522 ada_language_arch_info,
13523 ada_print_array_index,
13524 default_pass_by_reference,
13525 c_get_string,
13526 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13527 ada_iterate_over_symbols,
13528 &ada_varobj_ops,
13529 LANG_MAGIC
13530 };
13531
13532 /* Provide a prototype to silence -Wmissing-prototypes. */
13533 extern initialize_file_ftype _initialize_ada_language;
13534
13535 /* Command-list for the "set/show ada" prefix command. */
13536 static struct cmd_list_element *set_ada_list;
13537 static struct cmd_list_element *show_ada_list;
13538
13539 /* Implement the "set ada" prefix command. */
13540
13541 static void
13542 set_ada_command (char *arg, int from_tty)
13543 {
13544 printf_unfiltered (_(\
13545 "\"set ada\" must be followed by the name of a setting.\n"));
13546 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13547 }
13548
13549 /* Implement the "show ada" prefix command. */
13550
13551 static void
13552 show_ada_command (char *args, int from_tty)
13553 {
13554 cmd_show_list (show_ada_list, from_tty, "");
13555 }
13556
13557 static void
13558 initialize_ada_catchpoint_ops (void)
13559 {
13560 struct breakpoint_ops *ops;
13561
13562 initialize_breakpoint_ops ();
13563
13564 ops = &catch_exception_breakpoint_ops;
13565 *ops = bkpt_breakpoint_ops;
13566 ops->dtor = dtor_catch_exception;
13567 ops->allocate_location = allocate_location_catch_exception;
13568 ops->re_set = re_set_catch_exception;
13569 ops->check_status = check_status_catch_exception;
13570 ops->print_it = print_it_catch_exception;
13571 ops->print_one = print_one_catch_exception;
13572 ops->print_mention = print_mention_catch_exception;
13573 ops->print_recreate = print_recreate_catch_exception;
13574
13575 ops = &catch_exception_unhandled_breakpoint_ops;
13576 *ops = bkpt_breakpoint_ops;
13577 ops->dtor = dtor_catch_exception_unhandled;
13578 ops->allocate_location = allocate_location_catch_exception_unhandled;
13579 ops->re_set = re_set_catch_exception_unhandled;
13580 ops->check_status = check_status_catch_exception_unhandled;
13581 ops->print_it = print_it_catch_exception_unhandled;
13582 ops->print_one = print_one_catch_exception_unhandled;
13583 ops->print_mention = print_mention_catch_exception_unhandled;
13584 ops->print_recreate = print_recreate_catch_exception_unhandled;
13585
13586 ops = &catch_assert_breakpoint_ops;
13587 *ops = bkpt_breakpoint_ops;
13588 ops->dtor = dtor_catch_assert;
13589 ops->allocate_location = allocate_location_catch_assert;
13590 ops->re_set = re_set_catch_assert;
13591 ops->check_status = check_status_catch_assert;
13592 ops->print_it = print_it_catch_assert;
13593 ops->print_one = print_one_catch_assert;
13594 ops->print_mention = print_mention_catch_assert;
13595 ops->print_recreate = print_recreate_catch_assert;
13596 }
13597
13598 /* This module's 'new_objfile' observer. */
13599
13600 static void
13601 ada_new_objfile_observer (struct objfile *objfile)
13602 {
13603 ada_clear_symbol_cache ();
13604 }
13605
13606 /* This module's 'free_objfile' observer. */
13607
13608 static void
13609 ada_free_objfile_observer (struct objfile *objfile)
13610 {
13611 ada_clear_symbol_cache ();
13612 }
13613
13614 void
13615 _initialize_ada_language (void)
13616 {
13617 add_language (&ada_language_defn);
13618
13619 initialize_ada_catchpoint_ops ();
13620
13621 add_prefix_cmd ("ada", no_class, set_ada_command,
13622 _("Prefix command for changing Ada-specfic settings"),
13623 &set_ada_list, "set ada ", 0, &setlist);
13624
13625 add_prefix_cmd ("ada", no_class, show_ada_command,
13626 _("Generic command for showing Ada-specific settings."),
13627 &show_ada_list, "show ada ", 0, &showlist);
13628
13629 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13630 &trust_pad_over_xvs, _("\
13631 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13632 Show whether an optimization trusting PAD types over XVS types is activated"),
13633 _("\
13634 This is related to the encoding used by the GNAT compiler. The debugger\n\
13635 should normally trust the contents of PAD types, but certain older versions\n\
13636 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13637 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13638 work around this bug. It is always safe to turn this option \"off\", but\n\
13639 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13640 this option to \"off\" unless necessary."),
13641 NULL, NULL, &set_ada_list, &show_ada_list);
13642
13643 add_catch_command ("exception", _("\
13644 Catch Ada exceptions, when raised.\n\
13645 With an argument, catch only exceptions with the given name."),
13646 catch_ada_exception_command,
13647 NULL,
13648 CATCH_PERMANENT,
13649 CATCH_TEMPORARY);
13650 add_catch_command ("assert", _("\
13651 Catch failed Ada assertions, when raised.\n\
13652 With an argument, catch only exceptions with the given name."),
13653 catch_assert_command,
13654 NULL,
13655 CATCH_PERMANENT,
13656 CATCH_TEMPORARY);
13657
13658 varsize_limit = 65536;
13659
13660 add_info ("exceptions", info_exceptions_command,
13661 _("\
13662 List all Ada exception names.\n\
13663 If a regular expression is passed as an argument, only those matching\n\
13664 the regular expression are listed."));
13665
13666 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13667 _("Set Ada maintenance-related variables."),
13668 &maint_set_ada_cmdlist, "maintenance set ada ",
13669 0/*allow-unknown*/, &maintenance_set_cmdlist);
13670
13671 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13672 _("Show Ada maintenance-related variables"),
13673 &maint_show_ada_cmdlist, "maintenance show ada ",
13674 0/*allow-unknown*/, &maintenance_show_cmdlist);
13675
13676 add_setshow_boolean_cmd
13677 ("ignore-descriptive-types", class_maintenance,
13678 &ada_ignore_descriptive_types_p,
13679 _("Set whether descriptive types generated by GNAT should be ignored."),
13680 _("Show whether descriptive types generated by GNAT should be ignored."),
13681 _("\
13682 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13683 DWARF attribute."),
13684 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13685
13686 obstack_init (&symbol_list_obstack);
13687
13688 decoded_names_store = htab_create_alloc
13689 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13690 NULL, xcalloc, xfree);
13691
13692 /* The ada-lang observers. */
13693 observer_attach_new_objfile (ada_new_objfile_observer);
13694 observer_attach_free_objfile (ada_free_objfile_observer);
13695 observer_attach_inferior_exit (ada_inferior_exit);
13696
13697 /* Setup various context-specific data. */
13698 ada_inferior_data
13699 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13700 ada_pspace_data_handle
13701 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13702 }
This page took 0.707531 seconds and 4 git commands to generate.