* defs.h [!FOPEN_RB]: Include "fopen-bin.h" instead of
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright
2 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004.
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53
54 #ifndef ADA_RETAIN_DOTS
55 #define ADA_RETAIN_DOTS 0
56 #endif
57
58 /* Define whether or not the C operator '/' truncates towards zero for
59 differently signed operands (truncation direction is undefined in C).
60 Copied from valarith.c. */
61
62 #ifndef TRUNCATION_TOWARDS_ZERO
63 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
64 #endif
65
66
67 static void extract_string (CORE_ADDR addr, char *buf);
68
69 static struct type *ada_create_fundamental_type (struct objfile *, int);
70
71 static void modify_general_field (char *, LONGEST, int, int);
72
73 static struct type *desc_base_type (struct type *);
74
75 static struct type *desc_bounds_type (struct type *);
76
77 static struct value *desc_bounds (struct value *);
78
79 static int fat_pntr_bounds_bitpos (struct type *);
80
81 static int fat_pntr_bounds_bitsize (struct type *);
82
83 static struct type *desc_data_type (struct type *);
84
85 static struct value *desc_data (struct value *);
86
87 static int fat_pntr_data_bitpos (struct type *);
88
89 static int fat_pntr_data_bitsize (struct type *);
90
91 static struct value *desc_one_bound (struct value *, int, int);
92
93 static int desc_bound_bitpos (struct type *, int, int);
94
95 static int desc_bound_bitsize (struct type *, int, int);
96
97 static struct type *desc_index_type (struct type *, int);
98
99 static int desc_arity (struct type *);
100
101 static int ada_type_match (struct type *, struct type *, int);
102
103 static int ada_args_match (struct symbol *, struct value **, int);
104
105 static struct value *ensure_lval (struct value *, CORE_ADDR *);
106
107 static struct value *convert_actual (struct value *, struct type *,
108 CORE_ADDR *);
109
110 static struct value *make_array_descriptor (struct type *, struct value *,
111 CORE_ADDR *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *,
116 struct symtab *, int);
117
118 static int is_nonfunction (struct ada_symbol_info *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 struct block *, struct symtab *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct ada_symbol_info *defns_collected (struct obstack *, int);
126
127 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
128 *, const char *, int,
129 domain_enum, int);
130
131 static struct symtab *symtab_for_sym (struct symbol *);
132
133 static struct value *resolve_subexp (struct expression **, int *, int,
134 struct type *);
135
136 static void replace_operator_with_call (struct expression **, int, int, int,
137 struct symbol *, struct block *);
138
139 static int possible_user_operator_p (enum exp_opcode, struct value **);
140
141 static char *ada_op_name (enum exp_opcode);
142
143 static const char *ada_decoded_op_name (enum exp_opcode);
144
145 static int numeric_type_p (struct type *);
146
147 static int integer_type_p (struct type *);
148
149 static int scalar_type_p (struct type *);
150
151 static int discrete_type_p (struct type *);
152
153 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
154 int, int, int *);
155
156 static struct value *evaluate_subexp (struct type *, struct expression *,
157 int *, enum noside);
158
159 static struct value *evaluate_subexp_type (struct expression *, int *);
160
161 static int is_dynamic_field (struct type *, int);
162
163 static struct type *to_fixed_variant_branch_type (struct type *, char *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (char *, struct value *,
169 struct objfile *);
170
171 static struct type *to_static_fixed_type (struct type *);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *packed_array_type (struct type *, long *);
176
177 static struct type *decode_packed_array_type (struct type *);
178
179 static struct value *decode_packed_array (struct value *);
180
181 static struct value *value_subscript_packed (struct value *, int,
182 struct value **);
183
184 static struct value *coerce_unspec_val_to_type (struct value *,
185 struct type *);
186
187 static struct value *get_var_value (char *, char *);
188
189 static int lesseq_defined_than (struct symbol *, struct symbol *);
190
191 static int equiv_types (struct type *, struct type *);
192
193 static int is_name_suffix (const char *);
194
195 static int wild_match (const char *, int, const char *);
196
197 static struct value *ada_coerce_ref (struct value *);
198
199 static LONGEST pos_atr (struct value *);
200
201 static struct value *value_pos_atr (struct value *);
202
203 static struct value *value_val_atr (struct type *, struct value *);
204
205 static struct symbol *standard_lookup (const char *, const struct block *,
206 domain_enum);
207
208 static struct value *ada_search_struct_field (char *, struct value *, int,
209 struct type *);
210
211 static struct value *ada_value_primitive_field (struct value *, int, int,
212 struct type *);
213
214 static int find_struct_field (char *, struct type *, int,
215 struct type **, int *, int *, int *);
216
217 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
218 struct value *);
219
220 static struct value *ada_to_fixed_value (struct value *);
221
222 static int ada_resolve_function (struct ada_symbol_info *, int,
223 struct value **, int, const char *,
224 struct type *);
225
226 static struct value *ada_coerce_to_simple_array (struct value *);
227
228 static int ada_is_direct_array_type (struct type *);
229
230 static void ada_language_arch_info (struct gdbarch *,
231 struct language_arch_info *);
232 \f
233
234
235 /* Maximum-sized dynamic type. */
236 static unsigned int varsize_limit;
237
238 /* FIXME: brobecker/2003-09-17: No longer a const because it is
239 returned by a function that does not return a const char *. */
240 static char *ada_completer_word_break_characters =
241 #ifdef VMS
242 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
243 #else
244 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
245 #endif
246
247 /* The name of the symbol to use to get the name of the main subprogram. */
248 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
249 = "__gnat_ada_main_program_name";
250
251 /* The name of the runtime function called when an exception is raised. */
252 static const char raise_sym_name[] = "__gnat_raise_nodefer_with_msg";
253
254 /* The name of the runtime function called when an unhandled exception
255 is raised. */
256 static const char raise_unhandled_sym_name[] = "__gnat_unhandled_exception";
257
258 /* The name of the runtime function called when an assert failure is
259 raised. */
260 static const char raise_assert_sym_name[] =
261 "system__assertions__raise_assert_failure";
262
263 /* When GDB stops on an unhandled exception, GDB will go up the stack until
264 if finds a frame corresponding to this function, in order to extract the
265 name of the exception that has been raised from one of the parameters. */
266 static const char process_raise_exception_name[] =
267 "ada__exceptions__process_raise_exception";
268
269 /* A string that reflects the longest exception expression rewrite,
270 aside from the exception name. */
271 static const char longest_exception_template[] =
272 "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";
273
274 /* Limit on the number of warnings to raise per expression evaluation. */
275 static int warning_limit = 2;
276
277 /* Number of warning messages issued; reset to 0 by cleanups after
278 expression evaluation. */
279 static int warnings_issued = 0;
280
281 static const char *known_runtime_file_name_patterns[] = {
282 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
283 };
284
285 static const char *known_auxiliary_function_name_patterns[] = {
286 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
287 };
288
289 /* Space for allocating results of ada_lookup_symbol_list. */
290 static struct obstack symbol_list_obstack;
291
292 /* Utilities */
293
294
295 static char *
296 ada_get_gdb_completer_word_break_characters (void)
297 {
298 return ada_completer_word_break_characters;
299 }
300
301 /* Read the string located at ADDR from the inferior and store the
302 result into BUF. */
303
304 static void
305 extract_string (CORE_ADDR addr, char *buf)
306 {
307 int char_index = 0;
308
309 /* Loop, reading one byte at a time, until we reach the '\000'
310 end-of-string marker. */
311 do
312 {
313 target_read_memory (addr + char_index * sizeof (char),
314 buf + char_index * sizeof (char), sizeof (char));
315 char_index++;
316 }
317 while (buf[char_index - 1] != '\000');
318 }
319
320 /* Assuming *OLD_VECT points to an array of *SIZE objects of size
321 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
322 updating *OLD_VECT and *SIZE as necessary. */
323
324 void
325 grow_vect (void **old_vect, size_t * size, size_t min_size, int element_size)
326 {
327 if (*size < min_size)
328 {
329 *size *= 2;
330 if (*size < min_size)
331 *size = min_size;
332 *old_vect = xrealloc (*old_vect, *size * element_size);
333 }
334 }
335
336 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
337 suffix of FIELD_NAME beginning "___". */
338
339 static int
340 field_name_match (const char *field_name, const char *target)
341 {
342 int len = strlen (target);
343 return
344 (strncmp (field_name, target, len) == 0
345 && (field_name[len] == '\0'
346 || (strncmp (field_name + len, "___", 3) == 0
347 && strcmp (field_name + strlen (field_name) - 6,
348 "___XVN") != 0)));
349 }
350
351
352 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
353 FIELD_NAME, and return its index. This function also handles fields
354 whose name have ___ suffixes because the compiler sometimes alters
355 their name by adding such a suffix to represent fields with certain
356 constraints. If the field could not be found, return a negative
357 number if MAYBE_MISSING is set. Otherwise raise an error. */
358
359 int
360 ada_get_field_index (const struct type *type, const char *field_name,
361 int maybe_missing)
362 {
363 int fieldno;
364 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
365 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
366 return fieldno;
367
368 if (!maybe_missing)
369 error ("Unable to find field %s in struct %s. Aborting",
370 field_name, TYPE_NAME (type));
371
372 return -1;
373 }
374
375 /* The length of the prefix of NAME prior to any "___" suffix. */
376
377 int
378 ada_name_prefix_len (const char *name)
379 {
380 if (name == NULL)
381 return 0;
382 else
383 {
384 const char *p = strstr (name, "___");
385 if (p == NULL)
386 return strlen (name);
387 else
388 return p - name;
389 }
390 }
391
392 /* Return non-zero if SUFFIX is a suffix of STR.
393 Return zero if STR is null. */
394
395 static int
396 is_suffix (const char *str, const char *suffix)
397 {
398 int len1, len2;
399 if (str == NULL)
400 return 0;
401 len1 = strlen (str);
402 len2 = strlen (suffix);
403 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
404 }
405
406 /* Create a value of type TYPE whose contents come from VALADDR, if it
407 is non-null, and whose memory address (in the inferior) is
408 ADDRESS. */
409
410 struct value *
411 value_from_contents_and_address (struct type *type, char *valaddr,
412 CORE_ADDR address)
413 {
414 struct value *v = allocate_value (type);
415 if (valaddr == NULL)
416 VALUE_LAZY (v) = 1;
417 else
418 memcpy (VALUE_CONTENTS_RAW (v), valaddr, TYPE_LENGTH (type));
419 VALUE_ADDRESS (v) = address;
420 if (address != 0)
421 VALUE_LVAL (v) = lval_memory;
422 return v;
423 }
424
425 /* The contents of value VAL, treated as a value of type TYPE. The
426 result is an lval in memory if VAL is. */
427
428 static struct value *
429 coerce_unspec_val_to_type (struct value *val, struct type *type)
430 {
431 type = ada_check_typedef (type);
432 if (VALUE_TYPE (val) == type)
433 return val;
434 else
435 {
436 struct value *result;
437
438 /* Make sure that the object size is not unreasonable before
439 trying to allocate some memory for it. */
440 if (TYPE_LENGTH (type) > varsize_limit)
441 error ("object size is larger than varsize-limit");
442
443 result = allocate_value (type);
444 VALUE_LVAL (result) = VALUE_LVAL (val);
445 VALUE_BITSIZE (result) = VALUE_BITSIZE (val);
446 VALUE_BITPOS (result) = VALUE_BITPOS (val);
447 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
448 if (VALUE_LAZY (val)
449 || TYPE_LENGTH (type) > TYPE_LENGTH (VALUE_TYPE (val)))
450 VALUE_LAZY (result) = 1;
451 else
452 memcpy (VALUE_CONTENTS_RAW (result), VALUE_CONTENTS (val),
453 TYPE_LENGTH (type));
454 return result;
455 }
456 }
457
458 static char *
459 cond_offset_host (char *valaddr, long offset)
460 {
461 if (valaddr == NULL)
462 return NULL;
463 else
464 return valaddr + offset;
465 }
466
467 static CORE_ADDR
468 cond_offset_target (CORE_ADDR address, long offset)
469 {
470 if (address == 0)
471 return 0;
472 else
473 return address + offset;
474 }
475
476 /* Issue a warning (as for the definition of warning in utils.c, but
477 with exactly one argument rather than ...), unless the limit on the
478 number of warnings has passed during the evaluation of the current
479 expression. */
480
481 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
482 provided by "complaint". */
483 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
484
485 static void
486 lim_warning (const char *format, ...)
487 {
488 va_list args;
489 va_start (args, format);
490
491 warnings_issued += 1;
492 if (warnings_issued <= warning_limit)
493 vwarning (format, args);
494
495 va_end (args);
496 }
497
498 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
499 gdbtypes.h, but some of the necessary definitions in that file
500 seem to have gone missing. */
501
502 /* Maximum value of a SIZE-byte signed integer type. */
503 static LONGEST
504 max_of_size (int size)
505 {
506 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
507 return top_bit | (top_bit - 1);
508 }
509
510 /* Minimum value of a SIZE-byte signed integer type. */
511 static LONGEST
512 min_of_size (int size)
513 {
514 return -max_of_size (size) - 1;
515 }
516
517 /* Maximum value of a SIZE-byte unsigned integer type. */
518 static ULONGEST
519 umax_of_size (int size)
520 {
521 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
522 return top_bit | (top_bit - 1);
523 }
524
525 /* Maximum value of integral type T, as a signed quantity. */
526 static LONGEST
527 max_of_type (struct type *t)
528 {
529 if (TYPE_UNSIGNED (t))
530 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
531 else
532 return max_of_size (TYPE_LENGTH (t));
533 }
534
535 /* Minimum value of integral type T, as a signed quantity. */
536 static LONGEST
537 min_of_type (struct type *t)
538 {
539 if (TYPE_UNSIGNED (t))
540 return 0;
541 else
542 return min_of_size (TYPE_LENGTH (t));
543 }
544
545 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
546 static struct value *
547 discrete_type_high_bound (struct type *type)
548 {
549 switch (TYPE_CODE (type))
550 {
551 case TYPE_CODE_RANGE:
552 return value_from_longest (TYPE_TARGET_TYPE (type),
553 TYPE_HIGH_BOUND (type));
554 case TYPE_CODE_ENUM:
555 return
556 value_from_longest (type,
557 TYPE_FIELD_BITPOS (type,
558 TYPE_NFIELDS (type) - 1));
559 case TYPE_CODE_INT:
560 return value_from_longest (type, max_of_type (type));
561 default:
562 error ("Unexpected type in discrete_type_high_bound.");
563 }
564 }
565
566 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
567 static struct value *
568 discrete_type_low_bound (struct type *type)
569 {
570 switch (TYPE_CODE (type))
571 {
572 case TYPE_CODE_RANGE:
573 return value_from_longest (TYPE_TARGET_TYPE (type),
574 TYPE_LOW_BOUND (type));
575 case TYPE_CODE_ENUM:
576 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
577 case TYPE_CODE_INT:
578 return value_from_longest (type, min_of_type (type));
579 default:
580 error ("Unexpected type in discrete_type_low_bound.");
581 }
582 }
583
584 /* The identity on non-range types. For range types, the underlying
585 non-range scalar type. */
586
587 static struct type *
588 base_type (struct type *type)
589 {
590 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
591 {
592 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
593 return type;
594 type = TYPE_TARGET_TYPE (type);
595 }
596 return type;
597 }
598 \f
599
600 /* Language Selection */
601
602 /* If the main program is in Ada, return language_ada, otherwise return LANG
603 (the main program is in Ada iif the adainit symbol is found).
604
605 MAIN_PST is not used. */
606
607 enum language
608 ada_update_initial_language (enum language lang,
609 struct partial_symtab *main_pst)
610 {
611 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
612 (struct objfile *) NULL) != NULL)
613 return language_ada;
614
615 return lang;
616 }
617
618 /* If the main procedure is written in Ada, then return its name.
619 The result is good until the next call. Return NULL if the main
620 procedure doesn't appear to be in Ada. */
621
622 char *
623 ada_main_name (void)
624 {
625 struct minimal_symbol *msym;
626 CORE_ADDR main_program_name_addr;
627 static char main_program_name[1024];
628
629 /* For Ada, the name of the main procedure is stored in a specific
630 string constant, generated by the binder. Look for that symbol,
631 extract its address, and then read that string. If we didn't find
632 that string, then most probably the main procedure is not written
633 in Ada. */
634 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
635
636 if (msym != NULL)
637 {
638 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
639 if (main_program_name_addr == 0)
640 error ("Invalid address for Ada main program name.");
641
642 extract_string (main_program_name_addr, main_program_name);
643 return main_program_name;
644 }
645
646 /* The main procedure doesn't seem to be in Ada. */
647 return NULL;
648 }
649 \f
650 /* Symbols */
651
652 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
653 of NULLs. */
654
655 const struct ada_opname_map ada_opname_table[] = {
656 {"Oadd", "\"+\"", BINOP_ADD},
657 {"Osubtract", "\"-\"", BINOP_SUB},
658 {"Omultiply", "\"*\"", BINOP_MUL},
659 {"Odivide", "\"/\"", BINOP_DIV},
660 {"Omod", "\"mod\"", BINOP_MOD},
661 {"Orem", "\"rem\"", BINOP_REM},
662 {"Oexpon", "\"**\"", BINOP_EXP},
663 {"Olt", "\"<\"", BINOP_LESS},
664 {"Ole", "\"<=\"", BINOP_LEQ},
665 {"Ogt", "\">\"", BINOP_GTR},
666 {"Oge", "\">=\"", BINOP_GEQ},
667 {"Oeq", "\"=\"", BINOP_EQUAL},
668 {"One", "\"/=\"", BINOP_NOTEQUAL},
669 {"Oand", "\"and\"", BINOP_BITWISE_AND},
670 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
671 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
672 {"Oconcat", "\"&\"", BINOP_CONCAT},
673 {"Oabs", "\"abs\"", UNOP_ABS},
674 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
675 {"Oadd", "\"+\"", UNOP_PLUS},
676 {"Osubtract", "\"-\"", UNOP_NEG},
677 {NULL, NULL}
678 };
679
680 /* Return non-zero if STR should be suppressed in info listings. */
681
682 static int
683 is_suppressed_name (const char *str)
684 {
685 if (strncmp (str, "_ada_", 5) == 0)
686 str += 5;
687 if (str[0] == '_' || str[0] == '\000')
688 return 1;
689 else
690 {
691 const char *p;
692 const char *suffix = strstr (str, "___");
693 if (suffix != NULL && suffix[3] != 'X')
694 return 1;
695 if (suffix == NULL)
696 suffix = str + strlen (str);
697 for (p = suffix - 1; p != str; p -= 1)
698 if (isupper (*p))
699 {
700 int i;
701 if (p[0] == 'X' && p[-1] != '_')
702 goto OK;
703 if (*p != 'O')
704 return 1;
705 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
706 if (strncmp (ada_opname_table[i].encoded, p,
707 strlen (ada_opname_table[i].encoded)) == 0)
708 goto OK;
709 return 1;
710 OK:;
711 }
712 return 0;
713 }
714 }
715
716 /* The "encoded" form of DECODED, according to GNAT conventions.
717 The result is valid until the next call to ada_encode. */
718
719 char *
720 ada_encode (const char *decoded)
721 {
722 static char *encoding_buffer = NULL;
723 static size_t encoding_buffer_size = 0;
724 const char *p;
725 int k;
726
727 if (decoded == NULL)
728 return NULL;
729
730 GROW_VECT (encoding_buffer, encoding_buffer_size,
731 2 * strlen (decoded) + 10);
732
733 k = 0;
734 for (p = decoded; *p != '\0'; p += 1)
735 {
736 if (!ADA_RETAIN_DOTS && *p == '.')
737 {
738 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
739 k += 2;
740 }
741 else if (*p == '"')
742 {
743 const struct ada_opname_map *mapping;
744
745 for (mapping = ada_opname_table;
746 mapping->encoded != NULL
747 && strncmp (mapping->decoded, p,
748 strlen (mapping->decoded)) != 0; mapping += 1)
749 ;
750 if (mapping->encoded == NULL)
751 error ("invalid Ada operator name: %s", p);
752 strcpy (encoding_buffer + k, mapping->encoded);
753 k += strlen (mapping->encoded);
754 break;
755 }
756 else
757 {
758 encoding_buffer[k] = *p;
759 k += 1;
760 }
761 }
762
763 encoding_buffer[k] = '\0';
764 return encoding_buffer;
765 }
766
767 /* Return NAME folded to lower case, or, if surrounded by single
768 quotes, unfolded, but with the quotes stripped away. Result good
769 to next call. */
770
771 char *
772 ada_fold_name (const char *name)
773 {
774 static char *fold_buffer = NULL;
775 static size_t fold_buffer_size = 0;
776
777 int len = strlen (name);
778 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
779
780 if (name[0] == '\'')
781 {
782 strncpy (fold_buffer, name + 1, len - 2);
783 fold_buffer[len - 2] = '\000';
784 }
785 else
786 {
787 int i;
788 for (i = 0; i <= len; i += 1)
789 fold_buffer[i] = tolower (name[i]);
790 }
791
792 return fold_buffer;
793 }
794
795 /* decode:
796 0. Discard trailing .{DIGIT}+ or trailing ___{DIGIT}+
797 These are suffixes introduced by GNAT5 to nested subprogram
798 names, and do not serve any purpose for the debugger.
799 1. Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
800 2. Convert other instances of embedded "__" to `.'.
801 3. Discard leading _ada_.
802 4. Convert operator names to the appropriate quoted symbols.
803 5. Remove everything after first ___ if it is followed by
804 'X'.
805 6. Replace TK__ with __, and a trailing B or TKB with nothing.
806 7. Put symbols that should be suppressed in <...> brackets.
807 8. Remove trailing X[bn]* suffix (indicating names in package bodies).
808
809 The resulting string is valid until the next call of ada_decode.
810 If the string is unchanged by demangling, the original string pointer
811 is returned. */
812
813 const char *
814 ada_decode (const char *encoded)
815 {
816 int i, j;
817 int len0;
818 const char *p;
819 char *decoded;
820 int at_start_name;
821 static char *decoding_buffer = NULL;
822 static size_t decoding_buffer_size = 0;
823
824 if (strncmp (encoded, "_ada_", 5) == 0)
825 encoded += 5;
826
827 if (encoded[0] == '_' || encoded[0] == '<')
828 goto Suppress;
829
830 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+. */
831 len0 = strlen (encoded);
832 if (len0 > 1 && isdigit (encoded[len0 - 1]))
833 {
834 i = len0 - 2;
835 while (i > 0 && isdigit (encoded[i]))
836 i--;
837 if (i >= 0 && encoded[i] == '.')
838 len0 = i;
839 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
840 len0 = i - 2;
841 }
842
843 /* Remove the ___X.* suffix if present. Do not forget to verify that
844 the suffix is located before the current "end" of ENCODED. We want
845 to avoid re-matching parts of ENCODED that have previously been
846 marked as discarded (by decrementing LEN0). */
847 p = strstr (encoded, "___");
848 if (p != NULL && p - encoded < len0 - 3)
849 {
850 if (p[3] == 'X')
851 len0 = p - encoded;
852 else
853 goto Suppress;
854 }
855
856 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
857 len0 -= 3;
858
859 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
860 len0 -= 1;
861
862 /* Make decoded big enough for possible expansion by operator name. */
863 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
864 decoded = decoding_buffer;
865
866 if (len0 > 1 && isdigit (encoded[len0 - 1]))
867 {
868 i = len0 - 2;
869 while ((i >= 0 && isdigit (encoded[i]))
870 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
871 i -= 1;
872 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
873 len0 = i - 1;
874 else if (encoded[i] == '$')
875 len0 = i;
876 }
877
878 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
879 decoded[j] = encoded[i];
880
881 at_start_name = 1;
882 while (i < len0)
883 {
884 if (at_start_name && encoded[i] == 'O')
885 {
886 int k;
887 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
888 {
889 int op_len = strlen (ada_opname_table[k].encoded);
890 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
891 op_len - 1) == 0)
892 && !isalnum (encoded[i + op_len]))
893 {
894 strcpy (decoded + j, ada_opname_table[k].decoded);
895 at_start_name = 0;
896 i += op_len;
897 j += strlen (ada_opname_table[k].decoded);
898 break;
899 }
900 }
901 if (ada_opname_table[k].encoded != NULL)
902 continue;
903 }
904 at_start_name = 0;
905
906 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
907 i += 2;
908 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
909 {
910 do
911 i += 1;
912 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
913 if (i < len0)
914 goto Suppress;
915 }
916 else if (!ADA_RETAIN_DOTS
917 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
918 {
919 decoded[j] = '.';
920 at_start_name = 1;
921 i += 2;
922 j += 1;
923 }
924 else
925 {
926 decoded[j] = encoded[i];
927 i += 1;
928 j += 1;
929 }
930 }
931 decoded[j] = '\000';
932
933 for (i = 0; decoded[i] != '\0'; i += 1)
934 if (isupper (decoded[i]) || decoded[i] == ' ')
935 goto Suppress;
936
937 if (strcmp (decoded, encoded) == 0)
938 return encoded;
939 else
940 return decoded;
941
942 Suppress:
943 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
944 decoded = decoding_buffer;
945 if (encoded[0] == '<')
946 strcpy (decoded, encoded);
947 else
948 sprintf (decoded, "<%s>", encoded);
949 return decoded;
950
951 }
952
953 /* Table for keeping permanent unique copies of decoded names. Once
954 allocated, names in this table are never released. While this is a
955 storage leak, it should not be significant unless there are massive
956 changes in the set of decoded names in successive versions of a
957 symbol table loaded during a single session. */
958 static struct htab *decoded_names_store;
959
960 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
961 in the language-specific part of GSYMBOL, if it has not been
962 previously computed. Tries to save the decoded name in the same
963 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
964 in any case, the decoded symbol has a lifetime at least that of
965 GSYMBOL).
966 The GSYMBOL parameter is "mutable" in the C++ sense: logically
967 const, but nevertheless modified to a semantically equivalent form
968 when a decoded name is cached in it.
969 */
970
971 char *
972 ada_decode_symbol (const struct general_symbol_info *gsymbol)
973 {
974 char **resultp =
975 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
976 if (*resultp == NULL)
977 {
978 const char *decoded = ada_decode (gsymbol->name);
979 if (gsymbol->bfd_section != NULL)
980 {
981 bfd *obfd = gsymbol->bfd_section->owner;
982 if (obfd != NULL)
983 {
984 struct objfile *objf;
985 ALL_OBJFILES (objf)
986 {
987 if (obfd == objf->obfd)
988 {
989 *resultp = obsavestring (decoded, strlen (decoded),
990 &objf->objfile_obstack);
991 break;
992 }
993 }
994 }
995 }
996 /* Sometimes, we can't find a corresponding objfile, in which
997 case, we put the result on the heap. Since we only decode
998 when needed, we hope this usually does not cause a
999 significant memory leak (FIXME). */
1000 if (*resultp == NULL)
1001 {
1002 char **slot = (char **) htab_find_slot (decoded_names_store,
1003 decoded, INSERT);
1004 if (*slot == NULL)
1005 *slot = xstrdup (decoded);
1006 *resultp = *slot;
1007 }
1008 }
1009
1010 return *resultp;
1011 }
1012
1013 char *
1014 ada_la_decode (const char *encoded, int options)
1015 {
1016 return xstrdup (ada_decode (encoded));
1017 }
1018
1019 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1020 suffixes that encode debugging information or leading _ada_ on
1021 SYM_NAME (see is_name_suffix commentary for the debugging
1022 information that is ignored). If WILD, then NAME need only match a
1023 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1024 either argument is NULL. */
1025
1026 int
1027 ada_match_name (const char *sym_name, const char *name, int wild)
1028 {
1029 if (sym_name == NULL || name == NULL)
1030 return 0;
1031 else if (wild)
1032 return wild_match (name, strlen (name), sym_name);
1033 else
1034 {
1035 int len_name = strlen (name);
1036 return (strncmp (sym_name, name, len_name) == 0
1037 && is_name_suffix (sym_name + len_name))
1038 || (strncmp (sym_name, "_ada_", 5) == 0
1039 && strncmp (sym_name + 5, name, len_name) == 0
1040 && is_name_suffix (sym_name + len_name + 5));
1041 }
1042 }
1043
1044 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1045 suppressed in info listings. */
1046
1047 int
1048 ada_suppress_symbol_printing (struct symbol *sym)
1049 {
1050 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1051 return 1;
1052 else
1053 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1054 }
1055 \f
1056
1057 /* Arrays */
1058
1059 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1060
1061 static char *bound_name[] = {
1062 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1063 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1064 };
1065
1066 /* Maximum number of array dimensions we are prepared to handle. */
1067
1068 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1069
1070 /* Like modify_field, but allows bitpos > wordlength. */
1071
1072 static void
1073 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1074 {
1075 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1076 }
1077
1078
1079 /* The desc_* routines return primitive portions of array descriptors
1080 (fat pointers). */
1081
1082 /* The descriptor or array type, if any, indicated by TYPE; removes
1083 level of indirection, if needed. */
1084
1085 static struct type *
1086 desc_base_type (struct type *type)
1087 {
1088 if (type == NULL)
1089 return NULL;
1090 type = ada_check_typedef (type);
1091 if (type != NULL
1092 && (TYPE_CODE (type) == TYPE_CODE_PTR
1093 || TYPE_CODE (type) == TYPE_CODE_REF))
1094 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1095 else
1096 return type;
1097 }
1098
1099 /* True iff TYPE indicates a "thin" array pointer type. */
1100
1101 static int
1102 is_thin_pntr (struct type *type)
1103 {
1104 return
1105 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1106 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1107 }
1108
1109 /* The descriptor type for thin pointer type TYPE. */
1110
1111 static struct type *
1112 thin_descriptor_type (struct type *type)
1113 {
1114 struct type *base_type = desc_base_type (type);
1115 if (base_type == NULL)
1116 return NULL;
1117 if (is_suffix (ada_type_name (base_type), "___XVE"))
1118 return base_type;
1119 else
1120 {
1121 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1122 if (alt_type == NULL)
1123 return base_type;
1124 else
1125 return alt_type;
1126 }
1127 }
1128
1129 /* A pointer to the array data for thin-pointer value VAL. */
1130
1131 static struct value *
1132 thin_data_pntr (struct value *val)
1133 {
1134 struct type *type = VALUE_TYPE (val);
1135 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1136 return value_cast (desc_data_type (thin_descriptor_type (type)),
1137 value_copy (val));
1138 else
1139 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1140 VALUE_ADDRESS (val) + VALUE_OFFSET (val));
1141 }
1142
1143 /* True iff TYPE indicates a "thick" array pointer type. */
1144
1145 static int
1146 is_thick_pntr (struct type *type)
1147 {
1148 type = desc_base_type (type);
1149 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1150 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1151 }
1152
1153 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1154 pointer to one, the type of its bounds data; otherwise, NULL. */
1155
1156 static struct type *
1157 desc_bounds_type (struct type *type)
1158 {
1159 struct type *r;
1160
1161 type = desc_base_type (type);
1162
1163 if (type == NULL)
1164 return NULL;
1165 else if (is_thin_pntr (type))
1166 {
1167 type = thin_descriptor_type (type);
1168 if (type == NULL)
1169 return NULL;
1170 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1171 if (r != NULL)
1172 return ada_check_typedef (r);
1173 }
1174 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1175 {
1176 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1177 if (r != NULL)
1178 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1179 }
1180 return NULL;
1181 }
1182
1183 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1184 one, a pointer to its bounds data. Otherwise NULL. */
1185
1186 static struct value *
1187 desc_bounds (struct value *arr)
1188 {
1189 struct type *type = ada_check_typedef (VALUE_TYPE (arr));
1190 if (is_thin_pntr (type))
1191 {
1192 struct type *bounds_type =
1193 desc_bounds_type (thin_descriptor_type (type));
1194 LONGEST addr;
1195
1196 if (desc_bounds_type == NULL)
1197 error ("Bad GNAT array descriptor");
1198
1199 /* NOTE: The following calculation is not really kosher, but
1200 since desc_type is an XVE-encoded type (and shouldn't be),
1201 the correct calculation is a real pain. FIXME (and fix GCC). */
1202 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1203 addr = value_as_long (arr);
1204 else
1205 addr = VALUE_ADDRESS (arr) + VALUE_OFFSET (arr);
1206
1207 return
1208 value_from_longest (lookup_pointer_type (bounds_type),
1209 addr - TYPE_LENGTH (bounds_type));
1210 }
1211
1212 else if (is_thick_pntr (type))
1213 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1214 "Bad GNAT array descriptor");
1215 else
1216 return NULL;
1217 }
1218
1219 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1220 position of the field containing the address of the bounds data. */
1221
1222 static int
1223 fat_pntr_bounds_bitpos (struct type *type)
1224 {
1225 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1226 }
1227
1228 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1229 size of the field containing the address of the bounds data. */
1230
1231 static int
1232 fat_pntr_bounds_bitsize (struct type *type)
1233 {
1234 type = desc_base_type (type);
1235
1236 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1237 return TYPE_FIELD_BITSIZE (type, 1);
1238 else
1239 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1240 }
1241
1242 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1243 pointer to one, the type of its array data (a
1244 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1245 ada_type_of_array to get an array type with bounds data. */
1246
1247 static struct type *
1248 desc_data_type (struct type *type)
1249 {
1250 type = desc_base_type (type);
1251
1252 /* NOTE: The following is bogus; see comment in desc_bounds. */
1253 if (is_thin_pntr (type))
1254 return lookup_pointer_type
1255 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1256 else if (is_thick_pntr (type))
1257 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1258 else
1259 return NULL;
1260 }
1261
1262 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1263 its array data. */
1264
1265 static struct value *
1266 desc_data (struct value *arr)
1267 {
1268 struct type *type = VALUE_TYPE (arr);
1269 if (is_thin_pntr (type))
1270 return thin_data_pntr (arr);
1271 else if (is_thick_pntr (type))
1272 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1273 "Bad GNAT array descriptor");
1274 else
1275 return NULL;
1276 }
1277
1278
1279 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1280 position of the field containing the address of the data. */
1281
1282 static int
1283 fat_pntr_data_bitpos (struct type *type)
1284 {
1285 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1286 }
1287
1288 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1289 size of the field containing the address of the data. */
1290
1291 static int
1292 fat_pntr_data_bitsize (struct type *type)
1293 {
1294 type = desc_base_type (type);
1295
1296 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1297 return TYPE_FIELD_BITSIZE (type, 0);
1298 else
1299 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1300 }
1301
1302 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1303 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1304 bound, if WHICH is 1. The first bound is I=1. */
1305
1306 static struct value *
1307 desc_one_bound (struct value *bounds, int i, int which)
1308 {
1309 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1310 "Bad GNAT array descriptor bounds");
1311 }
1312
1313 /* If BOUNDS is an array-bounds structure type, return the bit position
1314 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1315 bound, if WHICH is 1. The first bound is I=1. */
1316
1317 static int
1318 desc_bound_bitpos (struct type *type, int i, int which)
1319 {
1320 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1321 }
1322
1323 /* If BOUNDS is an array-bounds structure type, return the bit field size
1324 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1325 bound, if WHICH is 1. The first bound is I=1. */
1326
1327 static int
1328 desc_bound_bitsize (struct type *type, int i, int which)
1329 {
1330 type = desc_base_type (type);
1331
1332 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1333 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1334 else
1335 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1336 }
1337
1338 /* If TYPE is the type of an array-bounds structure, the type of its
1339 Ith bound (numbering from 1). Otherwise, NULL. */
1340
1341 static struct type *
1342 desc_index_type (struct type *type, int i)
1343 {
1344 type = desc_base_type (type);
1345
1346 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1347 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1348 else
1349 return NULL;
1350 }
1351
1352 /* The number of index positions in the array-bounds type TYPE.
1353 Return 0 if TYPE is NULL. */
1354
1355 static int
1356 desc_arity (struct type *type)
1357 {
1358 type = desc_base_type (type);
1359
1360 if (type != NULL)
1361 return TYPE_NFIELDS (type) / 2;
1362 return 0;
1363 }
1364
1365 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1366 an array descriptor type (representing an unconstrained array
1367 type). */
1368
1369 static int
1370 ada_is_direct_array_type (struct type *type)
1371 {
1372 if (type == NULL)
1373 return 0;
1374 type = ada_check_typedef (type);
1375 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1376 || ada_is_array_descriptor_type (type));
1377 }
1378
1379 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1380
1381 int
1382 ada_is_simple_array_type (struct type *type)
1383 {
1384 if (type == NULL)
1385 return 0;
1386 type = ada_check_typedef (type);
1387 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1388 || (TYPE_CODE (type) == TYPE_CODE_PTR
1389 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1390 }
1391
1392 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1393
1394 int
1395 ada_is_array_descriptor_type (struct type *type)
1396 {
1397 struct type *data_type = desc_data_type (type);
1398
1399 if (type == NULL)
1400 return 0;
1401 type = ada_check_typedef (type);
1402 return
1403 data_type != NULL
1404 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1405 && TYPE_TARGET_TYPE (data_type) != NULL
1406 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1407 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1408 && desc_arity (desc_bounds_type (type)) > 0;
1409 }
1410
1411 /* Non-zero iff type is a partially mal-formed GNAT array
1412 descriptor. FIXME: This is to compensate for some problems with
1413 debugging output from GNAT. Re-examine periodically to see if it
1414 is still needed. */
1415
1416 int
1417 ada_is_bogus_array_descriptor (struct type *type)
1418 {
1419 return
1420 type != NULL
1421 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1422 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1423 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1424 && !ada_is_array_descriptor_type (type);
1425 }
1426
1427
1428 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1429 (fat pointer) returns the type of the array data described---specifically,
1430 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1431 in from the descriptor; otherwise, they are left unspecified. If
1432 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1433 returns NULL. The result is simply the type of ARR if ARR is not
1434 a descriptor. */
1435 struct type *
1436 ada_type_of_array (struct value *arr, int bounds)
1437 {
1438 if (ada_is_packed_array_type (VALUE_TYPE (arr)))
1439 return decode_packed_array_type (VALUE_TYPE (arr));
1440
1441 if (!ada_is_array_descriptor_type (VALUE_TYPE (arr)))
1442 return VALUE_TYPE (arr);
1443
1444 if (!bounds)
1445 return
1446 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (VALUE_TYPE (arr))));
1447 else
1448 {
1449 struct type *elt_type;
1450 int arity;
1451 struct value *descriptor;
1452 struct objfile *objf = TYPE_OBJFILE (VALUE_TYPE (arr));
1453
1454 elt_type = ada_array_element_type (VALUE_TYPE (arr), -1);
1455 arity = ada_array_arity (VALUE_TYPE (arr));
1456
1457 if (elt_type == NULL || arity == 0)
1458 return ada_check_typedef (VALUE_TYPE (arr));
1459
1460 descriptor = desc_bounds (arr);
1461 if (value_as_long (descriptor) == 0)
1462 return NULL;
1463 while (arity > 0)
1464 {
1465 struct type *range_type = alloc_type (objf);
1466 struct type *array_type = alloc_type (objf);
1467 struct value *low = desc_one_bound (descriptor, arity, 0);
1468 struct value *high = desc_one_bound (descriptor, arity, 1);
1469 arity -= 1;
1470
1471 create_range_type (range_type, VALUE_TYPE (low),
1472 (int) value_as_long (low),
1473 (int) value_as_long (high));
1474 elt_type = create_array_type (array_type, elt_type, range_type);
1475 }
1476
1477 return lookup_pointer_type (elt_type);
1478 }
1479 }
1480
1481 /* If ARR does not represent an array, returns ARR unchanged.
1482 Otherwise, returns either a standard GDB array with bounds set
1483 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1484 GDB array. Returns NULL if ARR is a null fat pointer. */
1485
1486 struct value *
1487 ada_coerce_to_simple_array_ptr (struct value *arr)
1488 {
1489 if (ada_is_array_descriptor_type (VALUE_TYPE (arr)))
1490 {
1491 struct type *arrType = ada_type_of_array (arr, 1);
1492 if (arrType == NULL)
1493 return NULL;
1494 return value_cast (arrType, value_copy (desc_data (arr)));
1495 }
1496 else if (ada_is_packed_array_type (VALUE_TYPE (arr)))
1497 return decode_packed_array (arr);
1498 else
1499 return arr;
1500 }
1501
1502 /* If ARR does not represent an array, returns ARR unchanged.
1503 Otherwise, returns a standard GDB array describing ARR (which may
1504 be ARR itself if it already is in the proper form). */
1505
1506 static struct value *
1507 ada_coerce_to_simple_array (struct value *arr)
1508 {
1509 if (ada_is_array_descriptor_type (VALUE_TYPE (arr)))
1510 {
1511 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1512 if (arrVal == NULL)
1513 error ("Bounds unavailable for null array pointer.");
1514 return value_ind (arrVal);
1515 }
1516 else if (ada_is_packed_array_type (VALUE_TYPE (arr)))
1517 return decode_packed_array (arr);
1518 else
1519 return arr;
1520 }
1521
1522 /* If TYPE represents a GNAT array type, return it translated to an
1523 ordinary GDB array type (possibly with BITSIZE fields indicating
1524 packing). For other types, is the identity. */
1525
1526 struct type *
1527 ada_coerce_to_simple_array_type (struct type *type)
1528 {
1529 struct value *mark = value_mark ();
1530 struct value *dummy = value_from_longest (builtin_type_long, 0);
1531 struct type *result;
1532 VALUE_TYPE (dummy) = type;
1533 result = ada_type_of_array (dummy, 0);
1534 value_free_to_mark (mark);
1535 return result;
1536 }
1537
1538 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1539
1540 int
1541 ada_is_packed_array_type (struct type *type)
1542 {
1543 if (type == NULL)
1544 return 0;
1545 type = desc_base_type (type);
1546 type = ada_check_typedef (type);
1547 return
1548 ada_type_name (type) != NULL
1549 && strstr (ada_type_name (type), "___XP") != NULL;
1550 }
1551
1552 /* Given that TYPE is a standard GDB array type with all bounds filled
1553 in, and that the element size of its ultimate scalar constituents
1554 (that is, either its elements, or, if it is an array of arrays, its
1555 elements' elements, etc.) is *ELT_BITS, return an identical type,
1556 but with the bit sizes of its elements (and those of any
1557 constituent arrays) recorded in the BITSIZE components of its
1558 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1559 in bits. */
1560
1561 static struct type *
1562 packed_array_type (struct type *type, long *elt_bits)
1563 {
1564 struct type *new_elt_type;
1565 struct type *new_type;
1566 LONGEST low_bound, high_bound;
1567
1568 type = ada_check_typedef (type);
1569 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1570 return type;
1571
1572 new_type = alloc_type (TYPE_OBJFILE (type));
1573 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1574 elt_bits);
1575 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1576 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1577 TYPE_NAME (new_type) = ada_type_name (type);
1578
1579 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1580 &low_bound, &high_bound) < 0)
1581 low_bound = high_bound = 0;
1582 if (high_bound < low_bound)
1583 *elt_bits = TYPE_LENGTH (new_type) = 0;
1584 else
1585 {
1586 *elt_bits *= (high_bound - low_bound + 1);
1587 TYPE_LENGTH (new_type) =
1588 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1589 }
1590
1591 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1592 return new_type;
1593 }
1594
1595 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1596
1597 static struct type *
1598 decode_packed_array_type (struct type *type)
1599 {
1600 struct symbol *sym;
1601 struct block **blocks;
1602 const char *raw_name = ada_type_name (ada_check_typedef (type));
1603 char *name = (char *) alloca (strlen (raw_name) + 1);
1604 char *tail = strstr (raw_name, "___XP");
1605 struct type *shadow_type;
1606 long bits;
1607 int i, n;
1608
1609 type = desc_base_type (type);
1610
1611 memcpy (name, raw_name, tail - raw_name);
1612 name[tail - raw_name] = '\000';
1613
1614 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1615 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1616 {
1617 lim_warning ("could not find bounds information on packed array");
1618 return NULL;
1619 }
1620 shadow_type = SYMBOL_TYPE (sym);
1621
1622 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1623 {
1624 lim_warning ("could not understand bounds information on packed array");
1625 return NULL;
1626 }
1627
1628 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1629 {
1630 lim_warning
1631 ("could not understand bit size information on packed array");
1632 return NULL;
1633 }
1634
1635 return packed_array_type (shadow_type, &bits);
1636 }
1637
1638 /* Given that ARR is a struct value *indicating a GNAT packed array,
1639 returns a simple array that denotes that array. Its type is a
1640 standard GDB array type except that the BITSIZEs of the array
1641 target types are set to the number of bits in each element, and the
1642 type length is set appropriately. */
1643
1644 static struct value *
1645 decode_packed_array (struct value *arr)
1646 {
1647 struct type *type;
1648
1649 arr = ada_coerce_ref (arr);
1650 if (TYPE_CODE (VALUE_TYPE (arr)) == TYPE_CODE_PTR)
1651 arr = ada_value_ind (arr);
1652
1653 type = decode_packed_array_type (VALUE_TYPE (arr));
1654 if (type == NULL)
1655 {
1656 error ("can't unpack array");
1657 return NULL;
1658 }
1659
1660 if (BITS_BIG_ENDIAN && ada_is_modular_type (VALUE_TYPE (arr)))
1661 {
1662 /* This is a (right-justified) modular type representing a packed
1663 array with no wrapper. In order to interpret the value through
1664 the (left-justified) packed array type we just built, we must
1665 first left-justify it. */
1666 int bit_size, bit_pos;
1667 ULONGEST mod;
1668
1669 mod = ada_modulus (VALUE_TYPE (arr)) - 1;
1670 bit_size = 0;
1671 while (mod > 0)
1672 {
1673 bit_size += 1;
1674 mod >>= 1;
1675 }
1676 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (VALUE_TYPE (arr)) - bit_size;
1677 arr = ada_value_primitive_packed_val (arr, NULL,
1678 bit_pos / HOST_CHAR_BIT,
1679 bit_pos % HOST_CHAR_BIT,
1680 bit_size,
1681 type);
1682 }
1683
1684 return coerce_unspec_val_to_type (arr, type);
1685 }
1686
1687
1688 /* The value of the element of packed array ARR at the ARITY indices
1689 given in IND. ARR must be a simple array. */
1690
1691 static struct value *
1692 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1693 {
1694 int i;
1695 int bits, elt_off, bit_off;
1696 long elt_total_bit_offset;
1697 struct type *elt_type;
1698 struct value *v;
1699
1700 bits = 0;
1701 elt_total_bit_offset = 0;
1702 elt_type = ada_check_typedef (VALUE_TYPE (arr));
1703 for (i = 0; i < arity; i += 1)
1704 {
1705 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1706 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1707 error
1708 ("attempt to do packed indexing of something other than a packed array");
1709 else
1710 {
1711 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1712 LONGEST lowerbound, upperbound;
1713 LONGEST idx;
1714
1715 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1716 {
1717 lim_warning ("don't know bounds of array");
1718 lowerbound = upperbound = 0;
1719 }
1720
1721 idx = value_as_long (value_pos_atr (ind[i]));
1722 if (idx < lowerbound || idx > upperbound)
1723 lim_warning ("packed array index %ld out of bounds", (long) idx);
1724 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1725 elt_total_bit_offset += (idx - lowerbound) * bits;
1726 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1727 }
1728 }
1729 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1730 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1731
1732 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1733 bits, elt_type);
1734 if (VALUE_LVAL (arr) == lval_internalvar)
1735 VALUE_LVAL (v) = lval_internalvar_component;
1736 else
1737 VALUE_LVAL (v) = VALUE_LVAL (arr);
1738 return v;
1739 }
1740
1741 /* Non-zero iff TYPE includes negative integer values. */
1742
1743 static int
1744 has_negatives (struct type *type)
1745 {
1746 switch (TYPE_CODE (type))
1747 {
1748 default:
1749 return 0;
1750 case TYPE_CODE_INT:
1751 return !TYPE_UNSIGNED (type);
1752 case TYPE_CODE_RANGE:
1753 return TYPE_LOW_BOUND (type) < 0;
1754 }
1755 }
1756
1757
1758 /* Create a new value of type TYPE from the contents of OBJ starting
1759 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1760 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1761 assigning through the result will set the field fetched from.
1762 VALADDR is ignored unless OBJ is NULL, in which case,
1763 VALADDR+OFFSET must address the start of storage containing the
1764 packed value. The value returned in this case is never an lval.
1765 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1766
1767 struct value *
1768 ada_value_primitive_packed_val (struct value *obj, char *valaddr, long offset,
1769 int bit_offset, int bit_size,
1770 struct type *type)
1771 {
1772 struct value *v;
1773 int src, /* Index into the source area */
1774 targ, /* Index into the target area */
1775 srcBitsLeft, /* Number of source bits left to move */
1776 nsrc, ntarg, /* Number of source and target bytes */
1777 unusedLS, /* Number of bits in next significant
1778 byte of source that are unused */
1779 accumSize; /* Number of meaningful bits in accum */
1780 unsigned char *bytes; /* First byte containing data to unpack */
1781 unsigned char *unpacked;
1782 unsigned long accum; /* Staging area for bits being transferred */
1783 unsigned char sign;
1784 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1785 /* Transmit bytes from least to most significant; delta is the direction
1786 the indices move. */
1787 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1788
1789 type = ada_check_typedef (type);
1790
1791 if (obj == NULL)
1792 {
1793 v = allocate_value (type);
1794 bytes = (unsigned char *) (valaddr + offset);
1795 }
1796 else if (VALUE_LAZY (obj))
1797 {
1798 v = value_at (type,
1799 VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset, NULL);
1800 bytes = (unsigned char *) alloca (len);
1801 read_memory (VALUE_ADDRESS (v), bytes, len);
1802 }
1803 else
1804 {
1805 v = allocate_value (type);
1806 bytes = (unsigned char *) VALUE_CONTENTS (obj) + offset;
1807 }
1808
1809 if (obj != NULL)
1810 {
1811 VALUE_LVAL (v) = VALUE_LVAL (obj);
1812 if (VALUE_LVAL (obj) == lval_internalvar)
1813 VALUE_LVAL (v) = lval_internalvar_component;
1814 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset;
1815 VALUE_BITPOS (v) = bit_offset + VALUE_BITPOS (obj);
1816 VALUE_BITSIZE (v) = bit_size;
1817 if (VALUE_BITPOS (v) >= HOST_CHAR_BIT)
1818 {
1819 VALUE_ADDRESS (v) += 1;
1820 VALUE_BITPOS (v) -= HOST_CHAR_BIT;
1821 }
1822 }
1823 else
1824 VALUE_BITSIZE (v) = bit_size;
1825 unpacked = (unsigned char *) VALUE_CONTENTS (v);
1826
1827 srcBitsLeft = bit_size;
1828 nsrc = len;
1829 ntarg = TYPE_LENGTH (type);
1830 sign = 0;
1831 if (bit_size == 0)
1832 {
1833 memset (unpacked, 0, TYPE_LENGTH (type));
1834 return v;
1835 }
1836 else if (BITS_BIG_ENDIAN)
1837 {
1838 src = len - 1;
1839 if (has_negatives (type)
1840 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1841 sign = ~0;
1842
1843 unusedLS =
1844 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1845 % HOST_CHAR_BIT;
1846
1847 switch (TYPE_CODE (type))
1848 {
1849 case TYPE_CODE_ARRAY:
1850 case TYPE_CODE_UNION:
1851 case TYPE_CODE_STRUCT:
1852 /* Non-scalar values must be aligned at a byte boundary... */
1853 accumSize =
1854 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1855 /* ... And are placed at the beginning (most-significant) bytes
1856 of the target. */
1857 targ = src;
1858 break;
1859 default:
1860 accumSize = 0;
1861 targ = TYPE_LENGTH (type) - 1;
1862 break;
1863 }
1864 }
1865 else
1866 {
1867 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
1868
1869 src = targ = 0;
1870 unusedLS = bit_offset;
1871 accumSize = 0;
1872
1873 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
1874 sign = ~0;
1875 }
1876
1877 accum = 0;
1878 while (nsrc > 0)
1879 {
1880 /* Mask for removing bits of the next source byte that are not
1881 part of the value. */
1882 unsigned int unusedMSMask =
1883 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
1884 1;
1885 /* Sign-extend bits for this byte. */
1886 unsigned int signMask = sign & ~unusedMSMask;
1887 accum |=
1888 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
1889 accumSize += HOST_CHAR_BIT - unusedLS;
1890 if (accumSize >= HOST_CHAR_BIT)
1891 {
1892 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
1893 accumSize -= HOST_CHAR_BIT;
1894 accum >>= HOST_CHAR_BIT;
1895 ntarg -= 1;
1896 targ += delta;
1897 }
1898 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
1899 unusedLS = 0;
1900 nsrc -= 1;
1901 src += delta;
1902 }
1903 while (ntarg > 0)
1904 {
1905 accum |= sign << accumSize;
1906 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
1907 accumSize -= HOST_CHAR_BIT;
1908 accum >>= HOST_CHAR_BIT;
1909 ntarg -= 1;
1910 targ += delta;
1911 }
1912
1913 return v;
1914 }
1915
1916 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
1917 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
1918 not overlap. */
1919 static void
1920 move_bits (char *target, int targ_offset, char *source, int src_offset, int n)
1921 {
1922 unsigned int accum, mask;
1923 int accum_bits, chunk_size;
1924
1925 target += targ_offset / HOST_CHAR_BIT;
1926 targ_offset %= HOST_CHAR_BIT;
1927 source += src_offset / HOST_CHAR_BIT;
1928 src_offset %= HOST_CHAR_BIT;
1929 if (BITS_BIG_ENDIAN)
1930 {
1931 accum = (unsigned char) *source;
1932 source += 1;
1933 accum_bits = HOST_CHAR_BIT - src_offset;
1934
1935 while (n > 0)
1936 {
1937 int unused_right;
1938 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
1939 accum_bits += HOST_CHAR_BIT;
1940 source += 1;
1941 chunk_size = HOST_CHAR_BIT - targ_offset;
1942 if (chunk_size > n)
1943 chunk_size = n;
1944 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
1945 mask = ((1 << chunk_size) - 1) << unused_right;
1946 *target =
1947 (*target & ~mask)
1948 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
1949 n -= chunk_size;
1950 accum_bits -= chunk_size;
1951 target += 1;
1952 targ_offset = 0;
1953 }
1954 }
1955 else
1956 {
1957 accum = (unsigned char) *source >> src_offset;
1958 source += 1;
1959 accum_bits = HOST_CHAR_BIT - src_offset;
1960
1961 while (n > 0)
1962 {
1963 accum = accum + ((unsigned char) *source << accum_bits);
1964 accum_bits += HOST_CHAR_BIT;
1965 source += 1;
1966 chunk_size = HOST_CHAR_BIT - targ_offset;
1967 if (chunk_size > n)
1968 chunk_size = n;
1969 mask = ((1 << chunk_size) - 1) << targ_offset;
1970 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
1971 n -= chunk_size;
1972 accum_bits -= chunk_size;
1973 accum >>= chunk_size;
1974 target += 1;
1975 targ_offset = 0;
1976 }
1977 }
1978 }
1979
1980
1981 /* Store the contents of FROMVAL into the location of TOVAL.
1982 Return a new value with the location of TOVAL and contents of
1983 FROMVAL. Handles assignment into packed fields that have
1984 floating-point or non-scalar types. */
1985
1986 static struct value *
1987 ada_value_assign (struct value *toval, struct value *fromval)
1988 {
1989 struct type *type = VALUE_TYPE (toval);
1990 int bits = VALUE_BITSIZE (toval);
1991
1992 if (!toval->modifiable)
1993 error ("Left operand of assignment is not a modifiable lvalue.");
1994
1995 COERCE_REF (toval);
1996
1997 if (VALUE_LVAL (toval) == lval_memory
1998 && bits > 0
1999 && (TYPE_CODE (type) == TYPE_CODE_FLT
2000 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2001 {
2002 int len =
2003 (VALUE_BITPOS (toval) + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2004 char *buffer = (char *) alloca (len);
2005 struct value *val;
2006
2007 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2008 fromval = value_cast (type, fromval);
2009
2010 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer, len);
2011 if (BITS_BIG_ENDIAN)
2012 move_bits (buffer, VALUE_BITPOS (toval),
2013 VALUE_CONTENTS (fromval),
2014 TYPE_LENGTH (VALUE_TYPE (fromval)) * TARGET_CHAR_BIT -
2015 bits, bits);
2016 else
2017 move_bits (buffer, VALUE_BITPOS (toval), VALUE_CONTENTS (fromval),
2018 0, bits);
2019 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer,
2020 len);
2021
2022 val = value_copy (toval);
2023 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
2024 TYPE_LENGTH (type));
2025 VALUE_TYPE (val) = type;
2026
2027 return val;
2028 }
2029
2030 return value_assign (toval, fromval);
2031 }
2032
2033
2034 /* The value of the element of array ARR at the ARITY indices given in IND.
2035 ARR may be either a simple array, GNAT array descriptor, or pointer
2036 thereto. */
2037
2038 struct value *
2039 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2040 {
2041 int k;
2042 struct value *elt;
2043 struct type *elt_type;
2044
2045 elt = ada_coerce_to_simple_array (arr);
2046
2047 elt_type = ada_check_typedef (VALUE_TYPE (elt));
2048 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2049 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2050 return value_subscript_packed (elt, arity, ind);
2051
2052 for (k = 0; k < arity; k += 1)
2053 {
2054 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2055 error ("too many subscripts (%d expected)", k);
2056 elt = value_subscript (elt, value_pos_atr (ind[k]));
2057 }
2058 return elt;
2059 }
2060
2061 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2062 value of the element of *ARR at the ARITY indices given in
2063 IND. Does not read the entire array into memory. */
2064
2065 struct value *
2066 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2067 struct value **ind)
2068 {
2069 int k;
2070
2071 for (k = 0; k < arity; k += 1)
2072 {
2073 LONGEST lwb, upb;
2074 struct value *idx;
2075
2076 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2077 error ("too many subscripts (%d expected)", k);
2078 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2079 value_copy (arr));
2080 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2081 idx = value_pos_atr (ind[k]);
2082 if (lwb != 0)
2083 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2084 arr = value_add (arr, idx);
2085 type = TYPE_TARGET_TYPE (type);
2086 }
2087
2088 return value_ind (arr);
2089 }
2090
2091 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2092 actual type of ARRAY_PTR is ignored), returns a reference to
2093 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2094 bound of this array is LOW, as per Ada rules. */
2095 static struct value *
2096 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2097 int low, int high)
2098 {
2099 CORE_ADDR base = value_as_address (array_ptr)
2100 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2101 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2102 struct type *index_type =
2103 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2104 low, high);
2105 struct type *slice_type =
2106 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2107 return value_from_pointer (lookup_reference_type (slice_type), base);
2108 }
2109
2110
2111 static struct value *
2112 ada_value_slice (struct value *array, int low, int high)
2113 {
2114 struct type *type = VALUE_TYPE (array);
2115 struct type *index_type =
2116 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2117 struct type *slice_type =
2118 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2119 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2120 }
2121
2122 /* If type is a record type in the form of a standard GNAT array
2123 descriptor, returns the number of dimensions for type. If arr is a
2124 simple array, returns the number of "array of"s that prefix its
2125 type designation. Otherwise, returns 0. */
2126
2127 int
2128 ada_array_arity (struct type *type)
2129 {
2130 int arity;
2131
2132 if (type == NULL)
2133 return 0;
2134
2135 type = desc_base_type (type);
2136
2137 arity = 0;
2138 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2139 return desc_arity (desc_bounds_type (type));
2140 else
2141 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2142 {
2143 arity += 1;
2144 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2145 }
2146
2147 return arity;
2148 }
2149
2150 /* If TYPE is a record type in the form of a standard GNAT array
2151 descriptor or a simple array type, returns the element type for
2152 TYPE after indexing by NINDICES indices, or by all indices if
2153 NINDICES is -1. Otherwise, returns NULL. */
2154
2155 struct type *
2156 ada_array_element_type (struct type *type, int nindices)
2157 {
2158 type = desc_base_type (type);
2159
2160 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2161 {
2162 int k;
2163 struct type *p_array_type;
2164
2165 p_array_type = desc_data_type (type);
2166
2167 k = ada_array_arity (type);
2168 if (k == 0)
2169 return NULL;
2170
2171 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2172 if (nindices >= 0 && k > nindices)
2173 k = nindices;
2174 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2175 while (k > 0 && p_array_type != NULL)
2176 {
2177 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2178 k -= 1;
2179 }
2180 return p_array_type;
2181 }
2182 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2183 {
2184 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2185 {
2186 type = TYPE_TARGET_TYPE (type);
2187 nindices -= 1;
2188 }
2189 return type;
2190 }
2191
2192 return NULL;
2193 }
2194
2195 /* The type of nth index in arrays of given type (n numbering from 1).
2196 Does not examine memory. */
2197
2198 struct type *
2199 ada_index_type (struct type *type, int n)
2200 {
2201 struct type *result_type;
2202
2203 type = desc_base_type (type);
2204
2205 if (n > ada_array_arity (type))
2206 return NULL;
2207
2208 if (ada_is_simple_array_type (type))
2209 {
2210 int i;
2211
2212 for (i = 1; i < n; i += 1)
2213 type = TYPE_TARGET_TYPE (type);
2214 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2215 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2216 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2217 perhaps stabsread.c would make more sense. */
2218 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2219 result_type = builtin_type_int;
2220
2221 return result_type;
2222 }
2223 else
2224 return desc_index_type (desc_bounds_type (type), n);
2225 }
2226
2227 /* Given that arr is an array type, returns the lower bound of the
2228 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2229 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2230 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2231 bounds type. It works for other arrays with bounds supplied by
2232 run-time quantities other than discriminants. */
2233
2234 LONGEST
2235 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2236 struct type ** typep)
2237 {
2238 struct type *type;
2239 struct type *index_type_desc;
2240
2241 if (ada_is_packed_array_type (arr_type))
2242 arr_type = decode_packed_array_type (arr_type);
2243
2244 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2245 {
2246 if (typep != NULL)
2247 *typep = builtin_type_int;
2248 return (LONGEST) - which;
2249 }
2250
2251 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2252 type = TYPE_TARGET_TYPE (arr_type);
2253 else
2254 type = arr_type;
2255
2256 index_type_desc = ada_find_parallel_type (type, "___XA");
2257 if (index_type_desc == NULL)
2258 {
2259 struct type *range_type;
2260 struct type *index_type;
2261
2262 while (n > 1)
2263 {
2264 type = TYPE_TARGET_TYPE (type);
2265 n -= 1;
2266 }
2267
2268 range_type = TYPE_INDEX_TYPE (type);
2269 index_type = TYPE_TARGET_TYPE (range_type);
2270 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2271 index_type = builtin_type_long;
2272 if (typep != NULL)
2273 *typep = index_type;
2274 return
2275 (LONGEST) (which == 0
2276 ? TYPE_LOW_BOUND (range_type)
2277 : TYPE_HIGH_BOUND (range_type));
2278 }
2279 else
2280 {
2281 struct type *index_type =
2282 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2283 NULL, TYPE_OBJFILE (arr_type));
2284 if (typep != NULL)
2285 *typep = TYPE_TARGET_TYPE (index_type);
2286 return
2287 (LONGEST) (which == 0
2288 ? TYPE_LOW_BOUND (index_type)
2289 : TYPE_HIGH_BOUND (index_type));
2290 }
2291 }
2292
2293 /* Given that arr is an array value, returns the lower bound of the
2294 nth index (numbering from 1) if which is 0, and the upper bound if
2295 which is 1. This routine will also work for arrays with bounds
2296 supplied by run-time quantities other than discriminants. */
2297
2298 struct value *
2299 ada_array_bound (struct value *arr, int n, int which)
2300 {
2301 struct type *arr_type = VALUE_TYPE (arr);
2302
2303 if (ada_is_packed_array_type (arr_type))
2304 return ada_array_bound (decode_packed_array (arr), n, which);
2305 else if (ada_is_simple_array_type (arr_type))
2306 {
2307 struct type *type;
2308 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2309 return value_from_longest (type, v);
2310 }
2311 else
2312 return desc_one_bound (desc_bounds (arr), n, which);
2313 }
2314
2315 /* Given that arr is an array value, returns the length of the
2316 nth index. This routine will also work for arrays with bounds
2317 supplied by run-time quantities other than discriminants.
2318 Does not work for arrays indexed by enumeration types with representation
2319 clauses at the moment. */
2320
2321 struct value *
2322 ada_array_length (struct value *arr, int n)
2323 {
2324 struct type *arr_type = ada_check_typedef (VALUE_TYPE (arr));
2325
2326 if (ada_is_packed_array_type (arr_type))
2327 return ada_array_length (decode_packed_array (arr), n);
2328
2329 if (ada_is_simple_array_type (arr_type))
2330 {
2331 struct type *type;
2332 LONGEST v =
2333 ada_array_bound_from_type (arr_type, n, 1, &type) -
2334 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2335 return value_from_longest (type, v);
2336 }
2337 else
2338 return
2339 value_from_longest (builtin_type_int,
2340 value_as_long (desc_one_bound (desc_bounds (arr),
2341 n, 1))
2342 - value_as_long (desc_one_bound (desc_bounds (arr),
2343 n, 0)) + 1);
2344 }
2345
2346 /* An empty array whose type is that of ARR_TYPE (an array type),
2347 with bounds LOW to LOW-1. */
2348
2349 static struct value *
2350 empty_array (struct type *arr_type, int low)
2351 {
2352 struct type *index_type =
2353 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2354 low, low - 1);
2355 struct type *elt_type = ada_array_element_type (arr_type, 1);
2356 return allocate_value (create_array_type (NULL, elt_type, index_type));
2357 }
2358 \f
2359
2360 /* Name resolution */
2361
2362 /* The "decoded" name for the user-definable Ada operator corresponding
2363 to OP. */
2364
2365 static const char *
2366 ada_decoded_op_name (enum exp_opcode op)
2367 {
2368 int i;
2369
2370 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2371 {
2372 if (ada_opname_table[i].op == op)
2373 return ada_opname_table[i].decoded;
2374 }
2375 error ("Could not find operator name for opcode");
2376 }
2377
2378
2379 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2380 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2381 undefined namespace) and converts operators that are
2382 user-defined into appropriate function calls. If CONTEXT_TYPE is
2383 non-null, it provides a preferred result type [at the moment, only
2384 type void has any effect---causing procedures to be preferred over
2385 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2386 return type is preferred. May change (expand) *EXP. */
2387
2388 static void
2389 resolve (struct expression **expp, int void_context_p)
2390 {
2391 int pc;
2392 pc = 0;
2393 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2394 }
2395
2396 /* Resolve the operator of the subexpression beginning at
2397 position *POS of *EXPP. "Resolving" consists of replacing
2398 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2399 with their resolutions, replacing built-in operators with
2400 function calls to user-defined operators, where appropriate, and,
2401 when DEPROCEDURE_P is non-zero, converting function-valued variables
2402 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2403 are as in ada_resolve, above. */
2404
2405 static struct value *
2406 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2407 struct type *context_type)
2408 {
2409 int pc = *pos;
2410 int i;
2411 struct expression *exp; /* Convenience: == *expp. */
2412 enum exp_opcode op = (*expp)->elts[pc].opcode;
2413 struct value **argvec; /* Vector of operand types (alloca'ed). */
2414 int nargs; /* Number of operands. */
2415
2416 argvec = NULL;
2417 nargs = 0;
2418 exp = *expp;
2419
2420 /* Pass one: resolve operands, saving their types and updating *pos. */
2421 switch (op)
2422 {
2423 case OP_FUNCALL:
2424 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2425 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2426 *pos += 7;
2427 else
2428 {
2429 *pos += 3;
2430 resolve_subexp (expp, pos, 0, NULL);
2431 }
2432 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2433 break;
2434
2435 case UNOP_QUAL:
2436 *pos += 3;
2437 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2438 break;
2439
2440 case UNOP_ADDR:
2441 *pos += 1;
2442 resolve_subexp (expp, pos, 0, NULL);
2443 break;
2444
2445 case OP_ATR_MODULUS:
2446 *pos += 4;
2447 break;
2448
2449 case OP_ATR_SIZE:
2450 case OP_ATR_TAG:
2451 *pos += 1;
2452 nargs = 1;
2453 break;
2454
2455 case OP_ATR_FIRST:
2456 case OP_ATR_LAST:
2457 case OP_ATR_LENGTH:
2458 case OP_ATR_POS:
2459 case OP_ATR_VAL:
2460 *pos += 1;
2461 nargs = 2;
2462 break;
2463
2464 case OP_ATR_MIN:
2465 case OP_ATR_MAX:
2466 *pos += 1;
2467 nargs = 3;
2468 break;
2469
2470 case BINOP_ASSIGN:
2471 {
2472 struct value *arg1;
2473
2474 *pos += 1;
2475 arg1 = resolve_subexp (expp, pos, 0, NULL);
2476 if (arg1 == NULL)
2477 resolve_subexp (expp, pos, 1, NULL);
2478 else
2479 resolve_subexp (expp, pos, 1, VALUE_TYPE (arg1));
2480 break;
2481 }
2482
2483 case UNOP_CAST:
2484 case UNOP_IN_RANGE:
2485 *pos += 3;
2486 nargs = 1;
2487 break;
2488
2489 case BINOP_ADD:
2490 case BINOP_SUB:
2491 case BINOP_MUL:
2492 case BINOP_DIV:
2493 case BINOP_REM:
2494 case BINOP_MOD:
2495 case BINOP_EXP:
2496 case BINOP_CONCAT:
2497 case BINOP_LOGICAL_AND:
2498 case BINOP_LOGICAL_OR:
2499 case BINOP_BITWISE_AND:
2500 case BINOP_BITWISE_IOR:
2501 case BINOP_BITWISE_XOR:
2502
2503 case BINOP_EQUAL:
2504 case BINOP_NOTEQUAL:
2505 case BINOP_LESS:
2506 case BINOP_GTR:
2507 case BINOP_LEQ:
2508 case BINOP_GEQ:
2509
2510 case BINOP_REPEAT:
2511 case BINOP_SUBSCRIPT:
2512 case BINOP_COMMA:
2513 *pos += 1;
2514 nargs = 2;
2515 break;
2516
2517 case UNOP_NEG:
2518 case UNOP_PLUS:
2519 case UNOP_LOGICAL_NOT:
2520 case UNOP_ABS:
2521 case UNOP_IND:
2522 *pos += 1;
2523 nargs = 1;
2524 break;
2525
2526 case OP_LONG:
2527 case OP_DOUBLE:
2528 case OP_VAR_VALUE:
2529 *pos += 4;
2530 break;
2531
2532 case OP_TYPE:
2533 case OP_BOOL:
2534 case OP_LAST:
2535 case OP_REGISTER:
2536 case OP_INTERNALVAR:
2537 *pos += 3;
2538 break;
2539
2540 case UNOP_MEMVAL:
2541 *pos += 3;
2542 nargs = 1;
2543 break;
2544
2545 case STRUCTOP_STRUCT:
2546 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2547 nargs = 1;
2548 break;
2549
2550 case OP_STRING:
2551 (*pos) += 3
2552 + BYTES_TO_EXP_ELEM (longest_to_int (exp->elts[pc + 1].longconst)
2553 + 1);
2554 break;
2555
2556 case TERNOP_SLICE:
2557 case TERNOP_IN_RANGE:
2558 *pos += 1;
2559 nargs = 3;
2560 break;
2561
2562 case BINOP_IN_BOUNDS:
2563 *pos += 3;
2564 nargs = 2;
2565 break;
2566
2567 default:
2568 error ("Unexpected operator during name resolution");
2569 }
2570
2571 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2572 for (i = 0; i < nargs; i += 1)
2573 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2574 argvec[i] = NULL;
2575 exp = *expp;
2576
2577 /* Pass two: perform any resolution on principal operator. */
2578 switch (op)
2579 {
2580 default:
2581 break;
2582
2583 case OP_VAR_VALUE:
2584 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2585 {
2586 struct ada_symbol_info *candidates;
2587 int n_candidates;
2588
2589 n_candidates =
2590 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2591 (exp->elts[pc + 2].symbol),
2592 exp->elts[pc + 1].block, VAR_DOMAIN,
2593 &candidates);
2594
2595 if (n_candidates > 1)
2596 {
2597 /* Types tend to get re-introduced locally, so if there
2598 are any local symbols that are not types, first filter
2599 out all types. */
2600 int j;
2601 for (j = 0; j < n_candidates; j += 1)
2602 switch (SYMBOL_CLASS (candidates[j].sym))
2603 {
2604 case LOC_REGISTER:
2605 case LOC_ARG:
2606 case LOC_REF_ARG:
2607 case LOC_REGPARM:
2608 case LOC_REGPARM_ADDR:
2609 case LOC_LOCAL:
2610 case LOC_LOCAL_ARG:
2611 case LOC_BASEREG:
2612 case LOC_BASEREG_ARG:
2613 case LOC_COMPUTED:
2614 case LOC_COMPUTED_ARG:
2615 goto FoundNonType;
2616 default:
2617 break;
2618 }
2619 FoundNonType:
2620 if (j < n_candidates)
2621 {
2622 j = 0;
2623 while (j < n_candidates)
2624 {
2625 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2626 {
2627 candidates[j] = candidates[n_candidates - 1];
2628 n_candidates -= 1;
2629 }
2630 else
2631 j += 1;
2632 }
2633 }
2634 }
2635
2636 if (n_candidates == 0)
2637 error ("No definition found for %s",
2638 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2639 else if (n_candidates == 1)
2640 i = 0;
2641 else if (deprocedure_p
2642 && !is_nonfunction (candidates, n_candidates))
2643 {
2644 i = ada_resolve_function
2645 (candidates, n_candidates, NULL, 0,
2646 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2647 context_type);
2648 if (i < 0)
2649 error ("Could not find a match for %s",
2650 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2651 }
2652 else
2653 {
2654 printf_filtered ("Multiple matches for %s\n",
2655 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2656 user_select_syms (candidates, n_candidates, 1);
2657 i = 0;
2658 }
2659
2660 exp->elts[pc + 1].block = candidates[i].block;
2661 exp->elts[pc + 2].symbol = candidates[i].sym;
2662 if (innermost_block == NULL
2663 || contained_in (candidates[i].block, innermost_block))
2664 innermost_block = candidates[i].block;
2665 }
2666
2667 if (deprocedure_p
2668 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2669 == TYPE_CODE_FUNC))
2670 {
2671 replace_operator_with_call (expp, pc, 0, 0,
2672 exp->elts[pc + 2].symbol,
2673 exp->elts[pc + 1].block);
2674 exp = *expp;
2675 }
2676 break;
2677
2678 case OP_FUNCALL:
2679 {
2680 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2681 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2682 {
2683 struct ada_symbol_info *candidates;
2684 int n_candidates;
2685
2686 n_candidates =
2687 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2688 (exp->elts[pc + 5].symbol),
2689 exp->elts[pc + 4].block, VAR_DOMAIN,
2690 &candidates);
2691 if (n_candidates == 1)
2692 i = 0;
2693 else
2694 {
2695 i = ada_resolve_function
2696 (candidates, n_candidates,
2697 argvec, nargs,
2698 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2699 context_type);
2700 if (i < 0)
2701 error ("Could not find a match for %s",
2702 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2703 }
2704
2705 exp->elts[pc + 4].block = candidates[i].block;
2706 exp->elts[pc + 5].symbol = candidates[i].sym;
2707 if (innermost_block == NULL
2708 || contained_in (candidates[i].block, innermost_block))
2709 innermost_block = candidates[i].block;
2710 }
2711 }
2712 break;
2713 case BINOP_ADD:
2714 case BINOP_SUB:
2715 case BINOP_MUL:
2716 case BINOP_DIV:
2717 case BINOP_REM:
2718 case BINOP_MOD:
2719 case BINOP_CONCAT:
2720 case BINOP_BITWISE_AND:
2721 case BINOP_BITWISE_IOR:
2722 case BINOP_BITWISE_XOR:
2723 case BINOP_EQUAL:
2724 case BINOP_NOTEQUAL:
2725 case BINOP_LESS:
2726 case BINOP_GTR:
2727 case BINOP_LEQ:
2728 case BINOP_GEQ:
2729 case BINOP_EXP:
2730 case UNOP_NEG:
2731 case UNOP_PLUS:
2732 case UNOP_LOGICAL_NOT:
2733 case UNOP_ABS:
2734 if (possible_user_operator_p (op, argvec))
2735 {
2736 struct ada_symbol_info *candidates;
2737 int n_candidates;
2738
2739 n_candidates =
2740 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2741 (struct block *) NULL, VAR_DOMAIN,
2742 &candidates);
2743 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2744 ada_decoded_op_name (op), NULL);
2745 if (i < 0)
2746 break;
2747
2748 replace_operator_with_call (expp, pc, nargs, 1,
2749 candidates[i].sym, candidates[i].block);
2750 exp = *expp;
2751 }
2752 break;
2753
2754 case OP_TYPE:
2755 return NULL;
2756 }
2757
2758 *pos = pc;
2759 return evaluate_subexp_type (exp, pos);
2760 }
2761
2762 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2763 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2764 a non-pointer. A type of 'void' (which is never a valid expression type)
2765 by convention matches anything. */
2766 /* The term "match" here is rather loose. The match is heuristic and
2767 liberal. FIXME: TOO liberal, in fact. */
2768
2769 static int
2770 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2771 {
2772 ftype = ada_check_typedef (ftype);
2773 atype = ada_check_typedef (atype);
2774
2775 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2776 ftype = TYPE_TARGET_TYPE (ftype);
2777 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2778 atype = TYPE_TARGET_TYPE (atype);
2779
2780 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2781 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2782 return 1;
2783
2784 switch (TYPE_CODE (ftype))
2785 {
2786 default:
2787 return 1;
2788 case TYPE_CODE_PTR:
2789 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2790 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2791 TYPE_TARGET_TYPE (atype), 0);
2792 else
2793 return (may_deref
2794 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2795 case TYPE_CODE_INT:
2796 case TYPE_CODE_ENUM:
2797 case TYPE_CODE_RANGE:
2798 switch (TYPE_CODE (atype))
2799 {
2800 case TYPE_CODE_INT:
2801 case TYPE_CODE_ENUM:
2802 case TYPE_CODE_RANGE:
2803 return 1;
2804 default:
2805 return 0;
2806 }
2807
2808 case TYPE_CODE_ARRAY:
2809 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2810 || ada_is_array_descriptor_type (atype));
2811
2812 case TYPE_CODE_STRUCT:
2813 if (ada_is_array_descriptor_type (ftype))
2814 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2815 || ada_is_array_descriptor_type (atype));
2816 else
2817 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2818 && !ada_is_array_descriptor_type (atype));
2819
2820 case TYPE_CODE_UNION:
2821 case TYPE_CODE_FLT:
2822 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2823 }
2824 }
2825
2826 /* Return non-zero if the formals of FUNC "sufficiently match" the
2827 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
2828 may also be an enumeral, in which case it is treated as a 0-
2829 argument function. */
2830
2831 static int
2832 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
2833 {
2834 int i;
2835 struct type *func_type = SYMBOL_TYPE (func);
2836
2837 if (SYMBOL_CLASS (func) == LOC_CONST
2838 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
2839 return (n_actuals == 0);
2840 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
2841 return 0;
2842
2843 if (TYPE_NFIELDS (func_type) != n_actuals)
2844 return 0;
2845
2846 for (i = 0; i < n_actuals; i += 1)
2847 {
2848 if (actuals[i] == NULL)
2849 return 0;
2850 else
2851 {
2852 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
2853 struct type *atype = ada_check_typedef (VALUE_TYPE (actuals[i]));
2854
2855 if (!ada_type_match (ftype, atype, 1))
2856 return 0;
2857 }
2858 }
2859 return 1;
2860 }
2861
2862 /* False iff function type FUNC_TYPE definitely does not produce a value
2863 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
2864 FUNC_TYPE is not a valid function type with a non-null return type
2865 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
2866
2867 static int
2868 return_match (struct type *func_type, struct type *context_type)
2869 {
2870 struct type *return_type;
2871
2872 if (func_type == NULL)
2873 return 1;
2874
2875 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
2876 return_type = base_type (TYPE_TARGET_TYPE (func_type));
2877 else
2878 return_type = base_type (func_type);
2879 if (return_type == NULL)
2880 return 1;
2881
2882 context_type = base_type (context_type);
2883
2884 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
2885 return context_type == NULL || return_type == context_type;
2886 else if (context_type == NULL)
2887 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
2888 else
2889 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
2890 }
2891
2892
2893 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
2894 function (if any) that matches the types of the NARGS arguments in
2895 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
2896 that returns that type, then eliminate matches that don't. If
2897 CONTEXT_TYPE is void and there is at least one match that does not
2898 return void, eliminate all matches that do.
2899
2900 Asks the user if there is more than one match remaining. Returns -1
2901 if there is no such symbol or none is selected. NAME is used
2902 solely for messages. May re-arrange and modify SYMS in
2903 the process; the index returned is for the modified vector. */
2904
2905 static int
2906 ada_resolve_function (struct ada_symbol_info syms[],
2907 int nsyms, struct value **args, int nargs,
2908 const char *name, struct type *context_type)
2909 {
2910 int k;
2911 int m; /* Number of hits */
2912 struct type *fallback;
2913 struct type *return_type;
2914
2915 return_type = context_type;
2916 if (context_type == NULL)
2917 fallback = builtin_type_void;
2918 else
2919 fallback = NULL;
2920
2921 m = 0;
2922 while (1)
2923 {
2924 for (k = 0; k < nsyms; k += 1)
2925 {
2926 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
2927
2928 if (ada_args_match (syms[k].sym, args, nargs)
2929 && return_match (type, return_type))
2930 {
2931 syms[m] = syms[k];
2932 m += 1;
2933 }
2934 }
2935 if (m > 0 || return_type == fallback)
2936 break;
2937 else
2938 return_type = fallback;
2939 }
2940
2941 if (m == 0)
2942 return -1;
2943 else if (m > 1)
2944 {
2945 printf_filtered ("Multiple matches for %s\n", name);
2946 user_select_syms (syms, m, 1);
2947 return 0;
2948 }
2949 return 0;
2950 }
2951
2952 /* Returns true (non-zero) iff decoded name N0 should appear before N1
2953 in a listing of choices during disambiguation (see sort_choices, below).
2954 The idea is that overloadings of a subprogram name from the
2955 same package should sort in their source order. We settle for ordering
2956 such symbols by their trailing number (__N or $N). */
2957
2958 static int
2959 encoded_ordered_before (char *N0, char *N1)
2960 {
2961 if (N1 == NULL)
2962 return 0;
2963 else if (N0 == NULL)
2964 return 1;
2965 else
2966 {
2967 int k0, k1;
2968 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
2969 ;
2970 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
2971 ;
2972 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
2973 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
2974 {
2975 int n0, n1;
2976 n0 = k0;
2977 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
2978 n0 -= 1;
2979 n1 = k1;
2980 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
2981 n1 -= 1;
2982 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
2983 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
2984 }
2985 return (strcmp (N0, N1) < 0);
2986 }
2987 }
2988
2989 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
2990 encoded names. */
2991
2992 static void
2993 sort_choices (struct ada_symbol_info syms[], int nsyms)
2994 {
2995 int i;
2996 for (i = 1; i < nsyms; i += 1)
2997 {
2998 struct ada_symbol_info sym = syms[i];
2999 int j;
3000
3001 for (j = i - 1; j >= 0; j -= 1)
3002 {
3003 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3004 SYMBOL_LINKAGE_NAME (sym.sym)))
3005 break;
3006 syms[j + 1] = syms[j];
3007 }
3008 syms[j + 1] = sym;
3009 }
3010 }
3011
3012 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3013 by asking the user (if necessary), returning the number selected,
3014 and setting the first elements of SYMS items. Error if no symbols
3015 selected. */
3016
3017 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3018 to be re-integrated one of these days. */
3019
3020 int
3021 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3022 {
3023 int i;
3024 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3025 int n_chosen;
3026 int first_choice = (max_results == 1) ? 1 : 2;
3027
3028 if (max_results < 1)
3029 error ("Request to select 0 symbols!");
3030 if (nsyms <= 1)
3031 return nsyms;
3032
3033 printf_unfiltered ("[0] cancel\n");
3034 if (max_results > 1)
3035 printf_unfiltered ("[1] all\n");
3036
3037 sort_choices (syms, nsyms);
3038
3039 for (i = 0; i < nsyms; i += 1)
3040 {
3041 if (syms[i].sym == NULL)
3042 continue;
3043
3044 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3045 {
3046 struct symtab_and_line sal =
3047 find_function_start_sal (syms[i].sym, 1);
3048 printf_unfiltered ("[%d] %s at %s:%d\n", i + first_choice,
3049 SYMBOL_PRINT_NAME (syms[i].sym),
3050 (sal.symtab == NULL
3051 ? "<no source file available>"
3052 : sal.symtab->filename), sal.line);
3053 continue;
3054 }
3055 else
3056 {
3057 int is_enumeral =
3058 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3059 && SYMBOL_TYPE (syms[i].sym) != NULL
3060 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3061 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3062
3063 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3064 printf_unfiltered ("[%d] %s at %s:%d\n",
3065 i + first_choice,
3066 SYMBOL_PRINT_NAME (syms[i].sym),
3067 symtab->filename, SYMBOL_LINE (syms[i].sym));
3068 else if (is_enumeral
3069 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3070 {
3071 printf_unfiltered ("[%d] ", i + first_choice);
3072 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3073 gdb_stdout, -1, 0);
3074 printf_unfiltered ("'(%s) (enumeral)\n",
3075 SYMBOL_PRINT_NAME (syms[i].sym));
3076 }
3077 else if (symtab != NULL)
3078 printf_unfiltered (is_enumeral
3079 ? "[%d] %s in %s (enumeral)\n"
3080 : "[%d] %s at %s:?\n",
3081 i + first_choice,
3082 SYMBOL_PRINT_NAME (syms[i].sym),
3083 symtab->filename);
3084 else
3085 printf_unfiltered (is_enumeral
3086 ? "[%d] %s (enumeral)\n"
3087 : "[%d] %s at ?\n",
3088 i + first_choice,
3089 SYMBOL_PRINT_NAME (syms[i].sym));
3090 }
3091 }
3092
3093 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3094 "overload-choice");
3095
3096 for (i = 0; i < n_chosen; i += 1)
3097 syms[i] = syms[chosen[i]];
3098
3099 return n_chosen;
3100 }
3101
3102 /* Read and validate a set of numeric choices from the user in the
3103 range 0 .. N_CHOICES-1. Place the results in increasing
3104 order in CHOICES[0 .. N-1], and return N.
3105
3106 The user types choices as a sequence of numbers on one line
3107 separated by blanks, encoding them as follows:
3108
3109 + A choice of 0 means to cancel the selection, throwing an error.
3110 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3111 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3112
3113 The user is not allowed to choose more than MAX_RESULTS values.
3114
3115 ANNOTATION_SUFFIX, if present, is used to annotate the input
3116 prompts (for use with the -f switch). */
3117
3118 int
3119 get_selections (int *choices, int n_choices, int max_results,
3120 int is_all_choice, char *annotation_suffix)
3121 {
3122 char *args;
3123 const char *prompt;
3124 int n_chosen;
3125 int first_choice = is_all_choice ? 2 : 1;
3126
3127 prompt = getenv ("PS2");
3128 if (prompt == NULL)
3129 prompt = ">";
3130
3131 printf_unfiltered ("%s ", prompt);
3132 gdb_flush (gdb_stdout);
3133
3134 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3135
3136 if (args == NULL)
3137 error_no_arg ("one or more choice numbers");
3138
3139 n_chosen = 0;
3140
3141 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3142 order, as given in args. Choices are validated. */
3143 while (1)
3144 {
3145 char *args2;
3146 int choice, j;
3147
3148 while (isspace (*args))
3149 args += 1;
3150 if (*args == '\0' && n_chosen == 0)
3151 error_no_arg ("one or more choice numbers");
3152 else if (*args == '\0')
3153 break;
3154
3155 choice = strtol (args, &args2, 10);
3156 if (args == args2 || choice < 0
3157 || choice > n_choices + first_choice - 1)
3158 error ("Argument must be choice number");
3159 args = args2;
3160
3161 if (choice == 0)
3162 error ("cancelled");
3163
3164 if (choice < first_choice)
3165 {
3166 n_chosen = n_choices;
3167 for (j = 0; j < n_choices; j += 1)
3168 choices[j] = j;
3169 break;
3170 }
3171 choice -= first_choice;
3172
3173 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3174 {
3175 }
3176
3177 if (j < 0 || choice != choices[j])
3178 {
3179 int k;
3180 for (k = n_chosen - 1; k > j; k -= 1)
3181 choices[k + 1] = choices[k];
3182 choices[j + 1] = choice;
3183 n_chosen += 1;
3184 }
3185 }
3186
3187 if (n_chosen > max_results)
3188 error ("Select no more than %d of the above", max_results);
3189
3190 return n_chosen;
3191 }
3192
3193 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3194 on the function identified by SYM and BLOCK, and taking NARGS
3195 arguments. Update *EXPP as needed to hold more space. */
3196
3197 static void
3198 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3199 int oplen, struct symbol *sym,
3200 struct block *block)
3201 {
3202 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3203 symbol, -oplen for operator being replaced). */
3204 struct expression *newexp = (struct expression *)
3205 xmalloc (sizeof (struct expression)
3206 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3207 struct expression *exp = *expp;
3208
3209 newexp->nelts = exp->nelts + 7 - oplen;
3210 newexp->language_defn = exp->language_defn;
3211 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3212 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3213 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3214
3215 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3216 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3217
3218 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3219 newexp->elts[pc + 4].block = block;
3220 newexp->elts[pc + 5].symbol = sym;
3221
3222 *expp = newexp;
3223 xfree (exp);
3224 }
3225
3226 /* Type-class predicates */
3227
3228 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3229 or FLOAT). */
3230
3231 static int
3232 numeric_type_p (struct type *type)
3233 {
3234 if (type == NULL)
3235 return 0;
3236 else
3237 {
3238 switch (TYPE_CODE (type))
3239 {
3240 case TYPE_CODE_INT:
3241 case TYPE_CODE_FLT:
3242 return 1;
3243 case TYPE_CODE_RANGE:
3244 return (type == TYPE_TARGET_TYPE (type)
3245 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3246 default:
3247 return 0;
3248 }
3249 }
3250 }
3251
3252 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3253
3254 static int
3255 integer_type_p (struct type *type)
3256 {
3257 if (type == NULL)
3258 return 0;
3259 else
3260 {
3261 switch (TYPE_CODE (type))
3262 {
3263 case TYPE_CODE_INT:
3264 return 1;
3265 case TYPE_CODE_RANGE:
3266 return (type == TYPE_TARGET_TYPE (type)
3267 || integer_type_p (TYPE_TARGET_TYPE (type)));
3268 default:
3269 return 0;
3270 }
3271 }
3272 }
3273
3274 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3275
3276 static int
3277 scalar_type_p (struct type *type)
3278 {
3279 if (type == NULL)
3280 return 0;
3281 else
3282 {
3283 switch (TYPE_CODE (type))
3284 {
3285 case TYPE_CODE_INT:
3286 case TYPE_CODE_RANGE:
3287 case TYPE_CODE_ENUM:
3288 case TYPE_CODE_FLT:
3289 return 1;
3290 default:
3291 return 0;
3292 }
3293 }
3294 }
3295
3296 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3297
3298 static int
3299 discrete_type_p (struct type *type)
3300 {
3301 if (type == NULL)
3302 return 0;
3303 else
3304 {
3305 switch (TYPE_CODE (type))
3306 {
3307 case TYPE_CODE_INT:
3308 case TYPE_CODE_RANGE:
3309 case TYPE_CODE_ENUM:
3310 return 1;
3311 default:
3312 return 0;
3313 }
3314 }
3315 }
3316
3317 /* Returns non-zero if OP with operands in the vector ARGS could be
3318 a user-defined function. Errs on the side of pre-defined operators
3319 (i.e., result 0). */
3320
3321 static int
3322 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3323 {
3324 struct type *type0 =
3325 (args[0] == NULL) ? NULL : ada_check_typedef (VALUE_TYPE (args[0]));
3326 struct type *type1 =
3327 (args[1] == NULL) ? NULL : ada_check_typedef (VALUE_TYPE (args[1]));
3328
3329 if (type0 == NULL)
3330 return 0;
3331
3332 switch (op)
3333 {
3334 default:
3335 return 0;
3336
3337 case BINOP_ADD:
3338 case BINOP_SUB:
3339 case BINOP_MUL:
3340 case BINOP_DIV:
3341 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3342
3343 case BINOP_REM:
3344 case BINOP_MOD:
3345 case BINOP_BITWISE_AND:
3346 case BINOP_BITWISE_IOR:
3347 case BINOP_BITWISE_XOR:
3348 return (!(integer_type_p (type0) && integer_type_p (type1)));
3349
3350 case BINOP_EQUAL:
3351 case BINOP_NOTEQUAL:
3352 case BINOP_LESS:
3353 case BINOP_GTR:
3354 case BINOP_LEQ:
3355 case BINOP_GEQ:
3356 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3357
3358 case BINOP_CONCAT:
3359 return
3360 ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
3361 && (TYPE_CODE (type0) != TYPE_CODE_PTR
3362 || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
3363 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
3364 && (TYPE_CODE (type1) != TYPE_CODE_PTR
3365 || (TYPE_CODE (TYPE_TARGET_TYPE (type1))
3366 != TYPE_CODE_ARRAY))));
3367
3368 case BINOP_EXP:
3369 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3370
3371 case UNOP_NEG:
3372 case UNOP_PLUS:
3373 case UNOP_LOGICAL_NOT:
3374 case UNOP_ABS:
3375 return (!numeric_type_p (type0));
3376
3377 }
3378 }
3379 \f
3380 /* Renaming */
3381
3382 /* NOTE: In the following, we assume that a renaming type's name may
3383 have an ___XD suffix. It would be nice if this went away at some
3384 point. */
3385
3386 /* If TYPE encodes a renaming, returns the renaming suffix, which
3387 is XR for an object renaming, XRP for a procedure renaming, XRE for
3388 an exception renaming, and XRS for a subprogram renaming. Returns
3389 NULL if NAME encodes none of these. */
3390
3391 const char *
3392 ada_renaming_type (struct type *type)
3393 {
3394 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3395 {
3396 const char *name = type_name_no_tag (type);
3397 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3398 if (suffix == NULL
3399 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3400 return NULL;
3401 else
3402 return suffix + 3;
3403 }
3404 else
3405 return NULL;
3406 }
3407
3408 /* Return non-zero iff SYM encodes an object renaming. */
3409
3410 int
3411 ada_is_object_renaming (struct symbol *sym)
3412 {
3413 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3414 return renaming_type != NULL
3415 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3416 }
3417
3418 /* Assuming that SYM encodes a non-object renaming, returns the original
3419 name of the renamed entity. The name is good until the end of
3420 parsing. */
3421
3422 char *
3423 ada_simple_renamed_entity (struct symbol *sym)
3424 {
3425 struct type *type;
3426 const char *raw_name;
3427 int len;
3428 char *result;
3429
3430 type = SYMBOL_TYPE (sym);
3431 if (type == NULL || TYPE_NFIELDS (type) < 1)
3432 error ("Improperly encoded renaming.");
3433
3434 raw_name = TYPE_FIELD_NAME (type, 0);
3435 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3436 if (len <= 0)
3437 error ("Improperly encoded renaming.");
3438
3439 result = xmalloc (len + 1);
3440 strncpy (result, raw_name, len);
3441 result[len] = '\000';
3442 return result;
3443 }
3444 \f
3445
3446 /* Evaluation: Function Calls */
3447
3448 /* Return an lvalue containing the value VAL. This is the identity on
3449 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3450 on the stack, using and updating *SP as the stack pointer, and
3451 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3452
3453 static struct value *
3454 ensure_lval (struct value *val, CORE_ADDR *sp)
3455 {
3456 if (! VALUE_LVAL (val))
3457 {
3458 int len = TYPE_LENGTH (ada_check_typedef (VALUE_TYPE (val)));
3459
3460 /* The following is taken from the structure-return code in
3461 call_function_by_hand. FIXME: Therefore, some refactoring seems
3462 indicated. */
3463 if (INNER_THAN (1, 2))
3464 {
3465 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3466 reserving sufficient space. */
3467 *sp -= len;
3468 if (gdbarch_frame_align_p (current_gdbarch))
3469 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3470 VALUE_ADDRESS (val) = *sp;
3471 }
3472 else
3473 {
3474 /* Stack grows upward. Align the frame, allocate space, and
3475 then again, re-align the frame. */
3476 if (gdbarch_frame_align_p (current_gdbarch))
3477 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3478 VALUE_ADDRESS (val) = *sp;
3479 *sp += len;
3480 if (gdbarch_frame_align_p (current_gdbarch))
3481 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3482 }
3483
3484 write_memory (VALUE_ADDRESS (val), VALUE_CONTENTS_RAW (val), len);
3485 }
3486
3487 return val;
3488 }
3489
3490 /* Return the value ACTUAL, converted to be an appropriate value for a
3491 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3492 allocating any necessary descriptors (fat pointers), or copies of
3493 values not residing in memory, updating it as needed. */
3494
3495 static struct value *
3496 convert_actual (struct value *actual, struct type *formal_type0,
3497 CORE_ADDR *sp)
3498 {
3499 struct type *actual_type = ada_check_typedef (VALUE_TYPE (actual));
3500 struct type *formal_type = ada_check_typedef (formal_type0);
3501 struct type *formal_target =
3502 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3503 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3504 struct type *actual_target =
3505 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3506 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3507
3508 if (ada_is_array_descriptor_type (formal_target)
3509 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3510 return make_array_descriptor (formal_type, actual, sp);
3511 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3512 {
3513 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3514 && ada_is_array_descriptor_type (actual_target))
3515 return desc_data (actual);
3516 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3517 {
3518 if (VALUE_LVAL (actual) != lval_memory)
3519 {
3520 struct value *val;
3521 actual_type = ada_check_typedef (VALUE_TYPE (actual));
3522 val = allocate_value (actual_type);
3523 memcpy ((char *) VALUE_CONTENTS_RAW (val),
3524 (char *) VALUE_CONTENTS (actual),
3525 TYPE_LENGTH (actual_type));
3526 actual = ensure_lval (val, sp);
3527 }
3528 return value_addr (actual);
3529 }
3530 }
3531 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3532 return ada_value_ind (actual);
3533
3534 return actual;
3535 }
3536
3537
3538 /* Push a descriptor of type TYPE for array value ARR on the stack at
3539 *SP, updating *SP to reflect the new descriptor. Return either
3540 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3541 to-descriptor type rather than a descriptor type), a struct value *
3542 representing a pointer to this descriptor. */
3543
3544 static struct value *
3545 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3546 {
3547 struct type *bounds_type = desc_bounds_type (type);
3548 struct type *desc_type = desc_base_type (type);
3549 struct value *descriptor = allocate_value (desc_type);
3550 struct value *bounds = allocate_value (bounds_type);
3551 int i;
3552
3553 for (i = ada_array_arity (ada_check_typedef (VALUE_TYPE (arr))); i > 0; i -= 1)
3554 {
3555 modify_general_field (VALUE_CONTENTS (bounds),
3556 value_as_long (ada_array_bound (arr, i, 0)),
3557 desc_bound_bitpos (bounds_type, i, 0),
3558 desc_bound_bitsize (bounds_type, i, 0));
3559 modify_general_field (VALUE_CONTENTS (bounds),
3560 value_as_long (ada_array_bound (arr, i, 1)),
3561 desc_bound_bitpos (bounds_type, i, 1),
3562 desc_bound_bitsize (bounds_type, i, 1));
3563 }
3564
3565 bounds = ensure_lval (bounds, sp);
3566
3567 modify_general_field (VALUE_CONTENTS (descriptor),
3568 VALUE_ADDRESS (ensure_lval (arr, sp)),
3569 fat_pntr_data_bitpos (desc_type),
3570 fat_pntr_data_bitsize (desc_type));
3571
3572 modify_general_field (VALUE_CONTENTS (descriptor),
3573 VALUE_ADDRESS (bounds),
3574 fat_pntr_bounds_bitpos (desc_type),
3575 fat_pntr_bounds_bitsize (desc_type));
3576
3577 descriptor = ensure_lval (descriptor, sp);
3578
3579 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3580 return value_addr (descriptor);
3581 else
3582 return descriptor;
3583 }
3584
3585
3586 /* Assuming a dummy frame has been established on the target, perform any
3587 conversions needed for calling function FUNC on the NARGS actual
3588 parameters in ARGS, other than standard C conversions. Does
3589 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3590 does not match the number of arguments expected. Use *SP as a
3591 stack pointer for additional data that must be pushed, updating its
3592 value as needed. */
3593
3594 void
3595 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3596 CORE_ADDR *sp)
3597 {
3598 int i;
3599
3600 if (TYPE_NFIELDS (VALUE_TYPE (func)) == 0
3601 || nargs != TYPE_NFIELDS (VALUE_TYPE (func)))
3602 return;
3603
3604 for (i = 0; i < nargs; i += 1)
3605 args[i] =
3606 convert_actual (args[i], TYPE_FIELD_TYPE (VALUE_TYPE (func), i), sp);
3607 }
3608 \f
3609 /* Dummy definitions for an experimental caching module that is not
3610 * used in the public sources. */
3611
3612 static int
3613 lookup_cached_symbol (const char *name, domain_enum namespace,
3614 struct symbol **sym, struct block **block,
3615 struct symtab **symtab)
3616 {
3617 return 0;
3618 }
3619
3620 static void
3621 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3622 struct block *block, struct symtab *symtab)
3623 {
3624 }
3625 \f
3626 /* Symbol Lookup */
3627
3628 /* Return the result of a standard (literal, C-like) lookup of NAME in
3629 given DOMAIN, visible from lexical block BLOCK. */
3630
3631 static struct symbol *
3632 standard_lookup (const char *name, const struct block *block,
3633 domain_enum domain)
3634 {
3635 struct symbol *sym;
3636 struct symtab *symtab;
3637
3638 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3639 return sym;
3640 sym =
3641 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3642 cache_symbol (name, domain, sym, block_found, symtab);
3643 return sym;
3644 }
3645
3646
3647 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3648 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3649 since they contend in overloading in the same way. */
3650 static int
3651 is_nonfunction (struct ada_symbol_info syms[], int n)
3652 {
3653 int i;
3654
3655 for (i = 0; i < n; i += 1)
3656 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3657 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3658 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3659 return 1;
3660
3661 return 0;
3662 }
3663
3664 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3665 struct types. Otherwise, they may not. */
3666
3667 static int
3668 equiv_types (struct type *type0, struct type *type1)
3669 {
3670 if (type0 == type1)
3671 return 1;
3672 if (type0 == NULL || type1 == NULL
3673 || TYPE_CODE (type0) != TYPE_CODE (type1))
3674 return 0;
3675 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3676 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3677 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3678 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3679 return 1;
3680
3681 return 0;
3682 }
3683
3684 /* True iff SYM0 represents the same entity as SYM1, or one that is
3685 no more defined than that of SYM1. */
3686
3687 static int
3688 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3689 {
3690 if (sym0 == sym1)
3691 return 1;
3692 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3693 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3694 return 0;
3695
3696 switch (SYMBOL_CLASS (sym0))
3697 {
3698 case LOC_UNDEF:
3699 return 1;
3700 case LOC_TYPEDEF:
3701 {
3702 struct type *type0 = SYMBOL_TYPE (sym0);
3703 struct type *type1 = SYMBOL_TYPE (sym1);
3704 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3705 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3706 int len0 = strlen (name0);
3707 return
3708 TYPE_CODE (type0) == TYPE_CODE (type1)
3709 && (equiv_types (type0, type1)
3710 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3711 && strncmp (name1 + len0, "___XV", 5) == 0));
3712 }
3713 case LOC_CONST:
3714 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3715 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3716 default:
3717 return 0;
3718 }
3719 }
3720
3721 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3722 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3723
3724 static void
3725 add_defn_to_vec (struct obstack *obstackp,
3726 struct symbol *sym,
3727 struct block *block, struct symtab *symtab)
3728 {
3729 int i;
3730 size_t tmp;
3731 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3732
3733 if (SYMBOL_TYPE (sym) != NULL)
3734 SYMBOL_TYPE (sym) = ada_check_typedef (SYMBOL_TYPE (sym));
3735 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3736 {
3737 if (lesseq_defined_than (sym, prevDefns[i].sym))
3738 return;
3739 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3740 {
3741 prevDefns[i].sym = sym;
3742 prevDefns[i].block = block;
3743 prevDefns[i].symtab = symtab;
3744 return;
3745 }
3746 }
3747
3748 {
3749 struct ada_symbol_info info;
3750
3751 info.sym = sym;
3752 info.block = block;
3753 info.symtab = symtab;
3754 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3755 }
3756 }
3757
3758 /* Number of ada_symbol_info structures currently collected in
3759 current vector in *OBSTACKP. */
3760
3761 static int
3762 num_defns_collected (struct obstack *obstackp)
3763 {
3764 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3765 }
3766
3767 /* Vector of ada_symbol_info structures currently collected in current
3768 vector in *OBSTACKP. If FINISH, close off the vector and return
3769 its final address. */
3770
3771 static struct ada_symbol_info *
3772 defns_collected (struct obstack *obstackp, int finish)
3773 {
3774 if (finish)
3775 return obstack_finish (obstackp);
3776 else
3777 return (struct ada_symbol_info *) obstack_base (obstackp);
3778 }
3779
3780 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3781 Check the global symbols if GLOBAL, the static symbols if not.
3782 Do wild-card match if WILD. */
3783
3784 static struct partial_symbol *
3785 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3786 int global, domain_enum namespace, int wild)
3787 {
3788 struct partial_symbol **start;
3789 int name_len = strlen (name);
3790 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3791 int i;
3792
3793 if (length == 0)
3794 {
3795 return (NULL);
3796 }
3797
3798 start = (global ?
3799 pst->objfile->global_psymbols.list + pst->globals_offset :
3800 pst->objfile->static_psymbols.list + pst->statics_offset);
3801
3802 if (wild)
3803 {
3804 for (i = 0; i < length; i += 1)
3805 {
3806 struct partial_symbol *psym = start[i];
3807
3808 if (SYMBOL_DOMAIN (psym) == namespace
3809 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
3810 return psym;
3811 }
3812 return NULL;
3813 }
3814 else
3815 {
3816 if (global)
3817 {
3818 int U;
3819 i = 0;
3820 U = length - 1;
3821 while (U - i > 4)
3822 {
3823 int M = (U + i) >> 1;
3824 struct partial_symbol *psym = start[M];
3825 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
3826 i = M + 1;
3827 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
3828 U = M - 1;
3829 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
3830 i = M + 1;
3831 else
3832 U = M;
3833 }
3834 }
3835 else
3836 i = 0;
3837
3838 while (i < length)
3839 {
3840 struct partial_symbol *psym = start[i];
3841
3842 if (SYMBOL_DOMAIN (psym) == namespace)
3843 {
3844 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
3845
3846 if (cmp < 0)
3847 {
3848 if (global)
3849 break;
3850 }
3851 else if (cmp == 0
3852 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
3853 + name_len))
3854 return psym;
3855 }
3856 i += 1;
3857 }
3858
3859 if (global)
3860 {
3861 int U;
3862 i = 0;
3863 U = length - 1;
3864 while (U - i > 4)
3865 {
3866 int M = (U + i) >> 1;
3867 struct partial_symbol *psym = start[M];
3868 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
3869 i = M + 1;
3870 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
3871 U = M - 1;
3872 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
3873 i = M + 1;
3874 else
3875 U = M;
3876 }
3877 }
3878 else
3879 i = 0;
3880
3881 while (i < length)
3882 {
3883 struct partial_symbol *psym = start[i];
3884
3885 if (SYMBOL_DOMAIN (psym) == namespace)
3886 {
3887 int cmp;
3888
3889 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
3890 if (cmp == 0)
3891 {
3892 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
3893 if (cmp == 0)
3894 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
3895 name_len);
3896 }
3897
3898 if (cmp < 0)
3899 {
3900 if (global)
3901 break;
3902 }
3903 else if (cmp == 0
3904 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
3905 + name_len + 5))
3906 return psym;
3907 }
3908 i += 1;
3909 }
3910 }
3911 return NULL;
3912 }
3913
3914 /* Find a symbol table containing symbol SYM or NULL if none. */
3915
3916 static struct symtab *
3917 symtab_for_sym (struct symbol *sym)
3918 {
3919 struct symtab *s;
3920 struct objfile *objfile;
3921 struct block *b;
3922 struct symbol *tmp_sym;
3923 struct dict_iterator iter;
3924 int j;
3925
3926 ALL_SYMTABS (objfile, s)
3927 {
3928 switch (SYMBOL_CLASS (sym))
3929 {
3930 case LOC_CONST:
3931 case LOC_STATIC:
3932 case LOC_TYPEDEF:
3933 case LOC_REGISTER:
3934 case LOC_LABEL:
3935 case LOC_BLOCK:
3936 case LOC_CONST_BYTES:
3937 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3938 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
3939 return s;
3940 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3941 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
3942 return s;
3943 break;
3944 default:
3945 break;
3946 }
3947 switch (SYMBOL_CLASS (sym))
3948 {
3949 case LOC_REGISTER:
3950 case LOC_ARG:
3951 case LOC_REF_ARG:
3952 case LOC_REGPARM:
3953 case LOC_REGPARM_ADDR:
3954 case LOC_LOCAL:
3955 case LOC_TYPEDEF:
3956 case LOC_LOCAL_ARG:
3957 case LOC_BASEREG:
3958 case LOC_BASEREG_ARG:
3959 case LOC_COMPUTED:
3960 case LOC_COMPUTED_ARG:
3961 for (j = FIRST_LOCAL_BLOCK;
3962 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
3963 {
3964 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
3965 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
3966 return s;
3967 }
3968 break;
3969 default:
3970 break;
3971 }
3972 }
3973 return NULL;
3974 }
3975
3976 /* Return a minimal symbol matching NAME according to Ada decoding
3977 rules. Returns NULL if there is no such minimal symbol. Names
3978 prefixed with "standard__" are handled specially: "standard__" is
3979 first stripped off, and only static and global symbols are searched. */
3980
3981 struct minimal_symbol *
3982 ada_lookup_simple_minsym (const char *name)
3983 {
3984 struct objfile *objfile;
3985 struct minimal_symbol *msymbol;
3986 int wild_match;
3987
3988 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
3989 {
3990 name += sizeof ("standard__") - 1;
3991 wild_match = 0;
3992 }
3993 else
3994 wild_match = (strstr (name, "__") == NULL);
3995
3996 ALL_MSYMBOLS (objfile, msymbol)
3997 {
3998 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
3999 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4000 return msymbol;
4001 }
4002
4003 return NULL;
4004 }
4005
4006 /* For all subprograms that statically enclose the subprogram of the
4007 selected frame, add symbols matching identifier NAME in DOMAIN
4008 and their blocks to the list of data in OBSTACKP, as for
4009 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4010 wildcard prefix. */
4011
4012 static void
4013 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4014 const char *name, domain_enum namespace,
4015 int wild_match)
4016 {
4017 }
4018
4019 /* FIXME: The next two routines belong in symtab.c */
4020
4021 static void
4022 restore_language (void *lang)
4023 {
4024 set_language ((enum language) lang);
4025 }
4026
4027 /* As for lookup_symbol, but performed as if the current language
4028 were LANG. */
4029
4030 struct symbol *
4031 lookup_symbol_in_language (const char *name, const struct block *block,
4032 domain_enum domain, enum language lang,
4033 int *is_a_field_of_this, struct symtab **symtab)
4034 {
4035 struct cleanup *old_chain
4036 = make_cleanup (restore_language, (void *) current_language->la_language);
4037 struct symbol *result;
4038 set_language (lang);
4039 result = lookup_symbol (name, block, domain, is_a_field_of_this, symtab);
4040 do_cleanups (old_chain);
4041 return result;
4042 }
4043
4044 /* True if TYPE is definitely an artificial type supplied to a symbol
4045 for which no debugging information was given in the symbol file. */
4046
4047 static int
4048 is_nondebugging_type (struct type *type)
4049 {
4050 char *name = ada_type_name (type);
4051 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4052 }
4053
4054 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4055 duplicate other symbols in the list (The only case I know of where
4056 this happens is when object files containing stabs-in-ecoff are
4057 linked with files containing ordinary ecoff debugging symbols (or no
4058 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4059 Returns the number of items in the modified list. */
4060
4061 static int
4062 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4063 {
4064 int i, j;
4065
4066 i = 0;
4067 while (i < nsyms)
4068 {
4069 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4070 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4071 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4072 {
4073 for (j = 0; j < nsyms; j += 1)
4074 {
4075 if (i != j
4076 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4077 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4078 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4079 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4080 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4081 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4082 {
4083 int k;
4084 for (k = i + 1; k < nsyms; k += 1)
4085 syms[k - 1] = syms[k];
4086 nsyms -= 1;
4087 goto NextSymbol;
4088 }
4089 }
4090 }
4091 i += 1;
4092 NextSymbol:
4093 ;
4094 }
4095 return nsyms;
4096 }
4097
4098 /* Given a type that corresponds to a renaming entity, use the type name
4099 to extract the scope (package name or function name, fully qualified,
4100 and following the GNAT encoding convention) where this renaming has been
4101 defined. The string returned needs to be deallocated after use. */
4102
4103 static char *
4104 xget_renaming_scope (struct type *renaming_type)
4105 {
4106 /* The renaming types adhere to the following convention:
4107 <scope>__<rename>___<XR extension>.
4108 So, to extract the scope, we search for the "___XR" extension,
4109 and then backtrack until we find the first "__". */
4110
4111 const char *name = type_name_no_tag (renaming_type);
4112 char *suffix = strstr (name, "___XR");
4113 char *last;
4114 int scope_len;
4115 char *scope;
4116
4117 /* Now, backtrack a bit until we find the first "__". Start looking
4118 at suffix - 3, as the <rename> part is at least one character long. */
4119
4120 for (last = suffix - 3; last > name; last--)
4121 if (last[0] == '_' && last[1] == '_')
4122 break;
4123
4124 /* Make a copy of scope and return it. */
4125
4126 scope_len = last - name;
4127 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4128
4129 strncpy (scope, name, scope_len);
4130 scope[scope_len] = '\0';
4131
4132 return scope;
4133 }
4134
4135 /* Return nonzero if NAME corresponds to a package name. */
4136
4137 static int
4138 is_package_name (const char *name)
4139 {
4140 /* Here, We take advantage of the fact that no symbols are generated
4141 for packages, while symbols are generated for each function.
4142 So the condition for NAME represent a package becomes equivalent
4143 to NAME not existing in our list of symbols. There is only one
4144 small complication with library-level functions (see below). */
4145
4146 char *fun_name;
4147
4148 /* If it is a function that has not been defined at library level,
4149 then we should be able to look it up in the symbols. */
4150 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4151 return 0;
4152
4153 /* Library-level function names start with "_ada_". See if function
4154 "_ada_" followed by NAME can be found. */
4155
4156 /* Do a quick check that NAME does not contain "__", since library-level
4157 functions names can not contain "__" in them. */
4158 if (strstr (name, "__") != NULL)
4159 return 0;
4160
4161 fun_name = xstrprintf ("_ada_%s", name);
4162
4163 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4164 }
4165
4166 /* Return nonzero if SYM corresponds to a renaming entity that is
4167 visible from FUNCTION_NAME. */
4168
4169 static int
4170 renaming_is_visible (const struct symbol *sym, char *function_name)
4171 {
4172 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4173
4174 make_cleanup (xfree, scope);
4175
4176 /* If the rename has been defined in a package, then it is visible. */
4177 if (is_package_name (scope))
4178 return 1;
4179
4180 /* Check that the rename is in the current function scope by checking
4181 that its name starts with SCOPE. */
4182
4183 /* If the function name starts with "_ada_", it means that it is
4184 a library-level function. Strip this prefix before doing the
4185 comparison, as the encoding for the renaming does not contain
4186 this prefix. */
4187 if (strncmp (function_name, "_ada_", 5) == 0)
4188 function_name += 5;
4189
4190 return (strncmp (function_name, scope, strlen (scope)) == 0);
4191 }
4192
4193 /* Iterates over the SYMS list and remove any entry that corresponds to
4194 a renaming entity that is not visible from the function associated
4195 with CURRENT_BLOCK.
4196
4197 Rationale:
4198 GNAT emits a type following a specified encoding for each renaming
4199 entity. Unfortunately, STABS currently does not support the definition
4200 of types that are local to a given lexical block, so all renamings types
4201 are emitted at library level. As a consequence, if an application
4202 contains two renaming entities using the same name, and a user tries to
4203 print the value of one of these entities, the result of the ada symbol
4204 lookup will also contain the wrong renaming type.
4205
4206 This function partially covers for this limitation by attempting to
4207 remove from the SYMS list renaming symbols that should be visible
4208 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4209 method with the current information available. The implementation
4210 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4211
4212 - When the user tries to print a rename in a function while there
4213 is another rename entity defined in a package: Normally, the
4214 rename in the function has precedence over the rename in the
4215 package, so the latter should be removed from the list. This is
4216 currently not the case.
4217
4218 - This function will incorrectly remove valid renames if
4219 the CURRENT_BLOCK corresponds to a function which symbol name
4220 has been changed by an "Export" pragma. As a consequence,
4221 the user will be unable to print such rename entities. */
4222
4223 static int
4224 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4225 int nsyms, struct block *current_block)
4226 {
4227 struct symbol *current_function;
4228 char *current_function_name;
4229 int i;
4230
4231 /* Extract the function name associated to CURRENT_BLOCK.
4232 Abort if unable to do so. */
4233
4234 if (current_block == NULL)
4235 return nsyms;
4236
4237 current_function = block_function (current_block);
4238 if (current_function == NULL)
4239 return nsyms;
4240
4241 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4242 if (current_function_name == NULL)
4243 return nsyms;
4244
4245 /* Check each of the symbols, and remove it from the list if it is
4246 a type corresponding to a renaming that is out of the scope of
4247 the current block. */
4248
4249 i = 0;
4250 while (i < nsyms)
4251 {
4252 if (ada_is_object_renaming (syms[i].sym)
4253 && !renaming_is_visible (syms[i].sym, current_function_name))
4254 {
4255 int j;
4256 for (j = i + 1; j < nsyms; j++)
4257 syms[j - 1] = syms[j];
4258 nsyms -= 1;
4259 }
4260 else
4261 i += 1;
4262 }
4263
4264 return nsyms;
4265 }
4266
4267 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4268 scope and in global scopes, returning the number of matches. Sets
4269 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4270 indicating the symbols found and the blocks and symbol tables (if
4271 any) in which they were found. This vector are transient---good only to
4272 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4273 symbol match within the nest of blocks whose innermost member is BLOCK0,
4274 is the one match returned (no other matches in that or
4275 enclosing blocks is returned). If there are any matches in or
4276 surrounding BLOCK0, then these alone are returned. Otherwise, the
4277 search extends to global and file-scope (static) symbol tables.
4278 Names prefixed with "standard__" are handled specially: "standard__"
4279 is first stripped off, and only static and global symbols are searched. */
4280
4281 int
4282 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4283 domain_enum namespace,
4284 struct ada_symbol_info **results)
4285 {
4286 struct symbol *sym;
4287 struct symtab *s;
4288 struct partial_symtab *ps;
4289 struct blockvector *bv;
4290 struct objfile *objfile;
4291 struct block *block;
4292 const char *name;
4293 struct minimal_symbol *msymbol;
4294 int wild_match;
4295 int cacheIfUnique;
4296 int block_depth;
4297 int ndefns;
4298
4299 obstack_free (&symbol_list_obstack, NULL);
4300 obstack_init (&symbol_list_obstack);
4301
4302 cacheIfUnique = 0;
4303
4304 /* Search specified block and its superiors. */
4305
4306 wild_match = (strstr (name0, "__") == NULL);
4307 name = name0;
4308 block = (struct block *) block0; /* FIXME: No cast ought to be
4309 needed, but adding const will
4310 have a cascade effect. */
4311 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4312 {
4313 wild_match = 0;
4314 block = NULL;
4315 name = name0 + sizeof ("standard__") - 1;
4316 }
4317
4318 block_depth = 0;
4319 while (block != NULL)
4320 {
4321 block_depth += 1;
4322 ada_add_block_symbols (&symbol_list_obstack, block, name,
4323 namespace, NULL, NULL, wild_match);
4324
4325 /* If we found a non-function match, assume that's the one. */
4326 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4327 num_defns_collected (&symbol_list_obstack)))
4328 goto done;
4329
4330 block = BLOCK_SUPERBLOCK (block);
4331 }
4332
4333 /* If no luck so far, try to find NAME as a local symbol in some lexically
4334 enclosing subprogram. */
4335 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4336 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4337 name, namespace, wild_match);
4338
4339 /* If we found ANY matches among non-global symbols, we're done. */
4340
4341 if (num_defns_collected (&symbol_list_obstack) > 0)
4342 goto done;
4343
4344 cacheIfUnique = 1;
4345 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4346 {
4347 if (sym != NULL)
4348 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4349 goto done;
4350 }
4351
4352 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4353 tables, and psymtab's. */
4354
4355 ALL_SYMTABS (objfile, s)
4356 {
4357 QUIT;
4358 if (!s->primary)
4359 continue;
4360 bv = BLOCKVECTOR (s);
4361 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4362 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4363 objfile, s, wild_match);
4364 }
4365
4366 if (namespace == VAR_DOMAIN)
4367 {
4368 ALL_MSYMBOLS (objfile, msymbol)
4369 {
4370 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4371 {
4372 switch (MSYMBOL_TYPE (msymbol))
4373 {
4374 case mst_solib_trampoline:
4375 break;
4376 default:
4377 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4378 if (s != NULL)
4379 {
4380 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4381 QUIT;
4382 bv = BLOCKVECTOR (s);
4383 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4384 ada_add_block_symbols (&symbol_list_obstack, block,
4385 SYMBOL_LINKAGE_NAME (msymbol),
4386 namespace, objfile, s, wild_match);
4387
4388 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4389 {
4390 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4391 ada_add_block_symbols (&symbol_list_obstack, block,
4392 SYMBOL_LINKAGE_NAME (msymbol),
4393 namespace, objfile, s,
4394 wild_match);
4395 }
4396 }
4397 }
4398 }
4399 }
4400 }
4401
4402 ALL_PSYMTABS (objfile, ps)
4403 {
4404 QUIT;
4405 if (!ps->readin
4406 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4407 {
4408 s = PSYMTAB_TO_SYMTAB (ps);
4409 if (!s->primary)
4410 continue;
4411 bv = BLOCKVECTOR (s);
4412 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4413 ada_add_block_symbols (&symbol_list_obstack, block, name,
4414 namespace, objfile, s, wild_match);
4415 }
4416 }
4417
4418 /* Now add symbols from all per-file blocks if we've gotten no hits
4419 (Not strictly correct, but perhaps better than an error).
4420 Do the symtabs first, then check the psymtabs. */
4421
4422 if (num_defns_collected (&symbol_list_obstack) == 0)
4423 {
4424
4425 ALL_SYMTABS (objfile, s)
4426 {
4427 QUIT;
4428 if (!s->primary)
4429 continue;
4430 bv = BLOCKVECTOR (s);
4431 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4432 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4433 objfile, s, wild_match);
4434 }
4435
4436 ALL_PSYMTABS (objfile, ps)
4437 {
4438 QUIT;
4439 if (!ps->readin
4440 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4441 {
4442 s = PSYMTAB_TO_SYMTAB (ps);
4443 bv = BLOCKVECTOR (s);
4444 if (!s->primary)
4445 continue;
4446 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4447 ada_add_block_symbols (&symbol_list_obstack, block, name,
4448 namespace, objfile, s, wild_match);
4449 }
4450 }
4451 }
4452
4453 done:
4454 ndefns = num_defns_collected (&symbol_list_obstack);
4455 *results = defns_collected (&symbol_list_obstack, 1);
4456
4457 ndefns = remove_extra_symbols (*results, ndefns);
4458
4459 if (ndefns == 0)
4460 cache_symbol (name0, namespace, NULL, NULL, NULL);
4461
4462 if (ndefns == 1 && cacheIfUnique)
4463 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4464 (*results)[0].symtab);
4465
4466 ndefns = remove_out_of_scope_renamings (*results, ndefns,
4467 (struct block *) block0);
4468
4469 return ndefns;
4470 }
4471
4472 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4473 scope and in global scopes, or NULL if none. NAME is folded and
4474 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4475 but is disambiguated by user query if needed. *IS_A_FIELD_OF_THIS is
4476 set to 0 and *SYMTAB is set to the symbol table in which the symbol
4477 was found (in both cases, these assignments occur only if the
4478 pointers are non-null). */
4479 struct symbol *
4480 ada_lookup_symbol (const char *name, const struct block *block0,
4481 domain_enum namespace, int *is_a_field_of_this,
4482 struct symtab **symtab)
4483 {
4484 struct ada_symbol_info *candidates;
4485 int n_candidates;
4486
4487 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4488 block0, namespace, &candidates);
4489
4490 if (n_candidates == 0)
4491 return NULL;
4492
4493 if (is_a_field_of_this != NULL)
4494 *is_a_field_of_this = 0;
4495
4496 if (symtab != NULL)
4497 {
4498 *symtab = candidates[0].symtab;
4499 if (*symtab == NULL && candidates[0].block != NULL)
4500 {
4501 struct objfile *objfile;
4502 struct symtab *s;
4503 struct block *b;
4504 struct blockvector *bv;
4505
4506 /* Search the list of symtabs for one which contains the
4507 address of the start of this block. */
4508 ALL_SYMTABS (objfile, s)
4509 {
4510 bv = BLOCKVECTOR (s);
4511 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4512 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4513 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4514 {
4515 *symtab = s;
4516 return fixup_symbol_section (candidates[0].sym, objfile);
4517 }
4518 return fixup_symbol_section (candidates[0].sym, NULL);
4519 }
4520 }
4521 }
4522 return candidates[0].sym;
4523 }
4524
4525 static struct symbol *
4526 ada_lookup_symbol_nonlocal (const char *name,
4527 const char *linkage_name,
4528 const struct block *block,
4529 const domain_enum domain, struct symtab **symtab)
4530 {
4531 if (linkage_name == NULL)
4532 linkage_name = name;
4533 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4534 NULL, symtab);
4535 }
4536
4537
4538 /* True iff STR is a possible encoded suffix of a normal Ada name
4539 that is to be ignored for matching purposes. Suffixes of parallel
4540 names (e.g., XVE) are not included here. Currently, the possible suffixes
4541 are given by either of the regular expression:
4542
4543 (__[0-9]+)?\.[0-9]+ [nested subprogram suffix, on platforms such
4544 as GNU/Linux]
4545 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4546 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4547 */
4548
4549 static int
4550 is_name_suffix (const char *str)
4551 {
4552 int k;
4553 const char *matching;
4554 const int len = strlen (str);
4555
4556 /* (__[0-9]+)?\.[0-9]+ */
4557 matching = str;
4558 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4559 {
4560 matching += 3;
4561 while (isdigit (matching[0]))
4562 matching += 1;
4563 if (matching[0] == '\0')
4564 return 1;
4565 }
4566
4567 if (matching[0] == '.')
4568 {
4569 matching += 1;
4570 while (isdigit (matching[0]))
4571 matching += 1;
4572 if (matching[0] == '\0')
4573 return 1;
4574 }
4575
4576 /* ___[0-9]+ */
4577 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4578 {
4579 matching = str + 3;
4580 while (isdigit (matching[0]))
4581 matching += 1;
4582 if (matching[0] == '\0')
4583 return 1;
4584 }
4585
4586 /* ??? We should not modify STR directly, as we are doing below. This
4587 is fine in this case, but may become problematic later if we find
4588 that this alternative did not work, and want to try matching
4589 another one from the begining of STR. Since we modified it, we
4590 won't be able to find the begining of the string anymore! */
4591 if (str[0] == 'X')
4592 {
4593 str += 1;
4594 while (str[0] != '_' && str[0] != '\0')
4595 {
4596 if (str[0] != 'n' && str[0] != 'b')
4597 return 0;
4598 str += 1;
4599 }
4600 }
4601 if (str[0] == '\000')
4602 return 1;
4603 if (str[0] == '_')
4604 {
4605 if (str[1] != '_' || str[2] == '\000')
4606 return 0;
4607 if (str[2] == '_')
4608 {
4609 if (strcmp (str + 3, "JM") == 0)
4610 return 1;
4611 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4612 the LJM suffix in favor of the JM one. But we will
4613 still accept LJM as a valid suffix for a reasonable
4614 amount of time, just to allow ourselves to debug programs
4615 compiled using an older version of GNAT. */
4616 if (strcmp (str + 3, "LJM") == 0)
4617 return 1;
4618 if (str[3] != 'X')
4619 return 0;
4620 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4621 || str[4] == 'U' || str[4] == 'P')
4622 return 1;
4623 if (str[4] == 'R' && str[5] != 'T')
4624 return 1;
4625 return 0;
4626 }
4627 if (!isdigit (str[2]))
4628 return 0;
4629 for (k = 3; str[k] != '\0'; k += 1)
4630 if (!isdigit (str[k]) && str[k] != '_')
4631 return 0;
4632 return 1;
4633 }
4634 if (str[0] == '$' && isdigit (str[1]))
4635 {
4636 for (k = 2; str[k] != '\0'; k += 1)
4637 if (!isdigit (str[k]) && str[k] != '_')
4638 return 0;
4639 return 1;
4640 }
4641 return 0;
4642 }
4643
4644 /* Return nonzero if the given string starts with a dot ('.')
4645 followed by zero or more digits.
4646
4647 Note: brobecker/2003-11-10: A forward declaration has not been
4648 added at the begining of this file yet, because this function
4649 is only used to work around a problem found during wild matching
4650 when trying to match minimal symbol names against symbol names
4651 obtained from dwarf-2 data. This function is therefore currently
4652 only used in wild_match() and is likely to be deleted when the
4653 problem in dwarf-2 is fixed. */
4654
4655 static int
4656 is_dot_digits_suffix (const char *str)
4657 {
4658 if (str[0] != '.')
4659 return 0;
4660
4661 str++;
4662 while (isdigit (str[0]))
4663 str++;
4664 return (str[0] == '\0');
4665 }
4666
4667 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4668 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4669 informational suffixes of NAME (i.e., for which is_name_suffix is
4670 true). */
4671
4672 static int
4673 wild_match (const char *patn0, int patn_len, const char *name0)
4674 {
4675 int name_len;
4676 char *name;
4677 char *patn;
4678
4679 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4680 stored in the symbol table for nested function names is sometimes
4681 different from the name of the associated entity stored in
4682 the dwarf-2 data: This is the case for nested subprograms, where
4683 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4684 while the symbol name from the dwarf-2 data does not.
4685
4686 Although the DWARF-2 standard documents that entity names stored
4687 in the dwarf-2 data should be identical to the name as seen in
4688 the source code, GNAT takes a different approach as we already use
4689 a special encoding mechanism to convey the information so that
4690 a C debugger can still use the information generated to debug
4691 Ada programs. A corollary is that the symbol names in the dwarf-2
4692 data should match the names found in the symbol table. I therefore
4693 consider this issue as a compiler defect.
4694
4695 Until the compiler is properly fixed, we work-around the problem
4696 by ignoring such suffixes during the match. We do so by making
4697 a copy of PATN0 and NAME0, and then by stripping such a suffix
4698 if present. We then perform the match on the resulting strings. */
4699 {
4700 char *dot;
4701 name_len = strlen (name0);
4702
4703 name = (char *) alloca ((name_len + 1) * sizeof (char));
4704 strcpy (name, name0);
4705 dot = strrchr (name, '.');
4706 if (dot != NULL && is_dot_digits_suffix (dot))
4707 *dot = '\0';
4708
4709 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4710 strncpy (patn, patn0, patn_len);
4711 patn[patn_len] = '\0';
4712 dot = strrchr (patn, '.');
4713 if (dot != NULL && is_dot_digits_suffix (dot))
4714 {
4715 *dot = '\0';
4716 patn_len = dot - patn;
4717 }
4718 }
4719
4720 /* Now perform the wild match. */
4721
4722 name_len = strlen (name);
4723 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4724 && strncmp (patn, name + 5, patn_len) == 0
4725 && is_name_suffix (name + patn_len + 5))
4726 return 1;
4727
4728 while (name_len >= patn_len)
4729 {
4730 if (strncmp (patn, name, patn_len) == 0
4731 && is_name_suffix (name + patn_len))
4732 return 1;
4733 do
4734 {
4735 name += 1;
4736 name_len -= 1;
4737 }
4738 while (name_len > 0
4739 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4740 if (name_len <= 0)
4741 return 0;
4742 if (name[0] == '_')
4743 {
4744 if (!islower (name[2]))
4745 return 0;
4746 name += 2;
4747 name_len -= 2;
4748 }
4749 else
4750 {
4751 if (!islower (name[1]))
4752 return 0;
4753 name += 1;
4754 name_len -= 1;
4755 }
4756 }
4757
4758 return 0;
4759 }
4760
4761
4762 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4763 vector *defn_symbols, updating the list of symbols in OBSTACKP
4764 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4765 OBJFILE is the section containing BLOCK.
4766 SYMTAB is recorded with each symbol added. */
4767
4768 static void
4769 ada_add_block_symbols (struct obstack *obstackp,
4770 struct block *block, const char *name,
4771 domain_enum domain, struct objfile *objfile,
4772 struct symtab *symtab, int wild)
4773 {
4774 struct dict_iterator iter;
4775 int name_len = strlen (name);
4776 /* A matching argument symbol, if any. */
4777 struct symbol *arg_sym;
4778 /* Set true when we find a matching non-argument symbol. */
4779 int found_sym;
4780 struct symbol *sym;
4781
4782 arg_sym = NULL;
4783 found_sym = 0;
4784 if (wild)
4785 {
4786 struct symbol *sym;
4787 ALL_BLOCK_SYMBOLS (block, iter, sym)
4788 {
4789 if (SYMBOL_DOMAIN (sym) == domain
4790 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4791 {
4792 switch (SYMBOL_CLASS (sym))
4793 {
4794 case LOC_ARG:
4795 case LOC_LOCAL_ARG:
4796 case LOC_REF_ARG:
4797 case LOC_REGPARM:
4798 case LOC_REGPARM_ADDR:
4799 case LOC_BASEREG_ARG:
4800 case LOC_COMPUTED_ARG:
4801 arg_sym = sym;
4802 break;
4803 case LOC_UNRESOLVED:
4804 continue;
4805 default:
4806 found_sym = 1;
4807 add_defn_to_vec (obstackp,
4808 fixup_symbol_section (sym, objfile),
4809 block, symtab);
4810 break;
4811 }
4812 }
4813 }
4814 }
4815 else
4816 {
4817 ALL_BLOCK_SYMBOLS (block, iter, sym)
4818 {
4819 if (SYMBOL_DOMAIN (sym) == domain)
4820 {
4821 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4822 if (cmp == 0
4823 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4824 {
4825 switch (SYMBOL_CLASS (sym))
4826 {
4827 case LOC_ARG:
4828 case LOC_LOCAL_ARG:
4829 case LOC_REF_ARG:
4830 case LOC_REGPARM:
4831 case LOC_REGPARM_ADDR:
4832 case LOC_BASEREG_ARG:
4833 case LOC_COMPUTED_ARG:
4834 arg_sym = sym;
4835 break;
4836 case LOC_UNRESOLVED:
4837 break;
4838 default:
4839 found_sym = 1;
4840 add_defn_to_vec (obstackp,
4841 fixup_symbol_section (sym, objfile),
4842 block, symtab);
4843 break;
4844 }
4845 }
4846 }
4847 }
4848 }
4849
4850 if (!found_sym && arg_sym != NULL)
4851 {
4852 add_defn_to_vec (obstackp,
4853 fixup_symbol_section (arg_sym, objfile),
4854 block, symtab);
4855 }
4856
4857 if (!wild)
4858 {
4859 arg_sym = NULL;
4860 found_sym = 0;
4861
4862 ALL_BLOCK_SYMBOLS (block, iter, sym)
4863 {
4864 if (SYMBOL_DOMAIN (sym) == domain)
4865 {
4866 int cmp;
4867
4868 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
4869 if (cmp == 0)
4870 {
4871 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
4872 if (cmp == 0)
4873 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
4874 name_len);
4875 }
4876
4877 if (cmp == 0
4878 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
4879 {
4880 switch (SYMBOL_CLASS (sym))
4881 {
4882 case LOC_ARG:
4883 case LOC_LOCAL_ARG:
4884 case LOC_REF_ARG:
4885 case LOC_REGPARM:
4886 case LOC_REGPARM_ADDR:
4887 case LOC_BASEREG_ARG:
4888 case LOC_COMPUTED_ARG:
4889 arg_sym = sym;
4890 break;
4891 case LOC_UNRESOLVED:
4892 break;
4893 default:
4894 found_sym = 1;
4895 add_defn_to_vec (obstackp,
4896 fixup_symbol_section (sym, objfile),
4897 block, symtab);
4898 break;
4899 }
4900 }
4901 }
4902 }
4903
4904 /* NOTE: This really shouldn't be needed for _ada_ symbols.
4905 They aren't parameters, right? */
4906 if (!found_sym && arg_sym != NULL)
4907 {
4908 add_defn_to_vec (obstackp,
4909 fixup_symbol_section (arg_sym, objfile),
4910 block, symtab);
4911 }
4912 }
4913 }
4914 \f
4915 /* Field Access */
4916
4917 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
4918 to be invisible to users. */
4919
4920 int
4921 ada_is_ignored_field (struct type *type, int field_num)
4922 {
4923 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
4924 return 1;
4925 else
4926 {
4927 const char *name = TYPE_FIELD_NAME (type, field_num);
4928 return (name == NULL
4929 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
4930 }
4931 }
4932
4933 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
4934 pointer or reference type whose ultimate target has a tag field. */
4935
4936 int
4937 ada_is_tagged_type (struct type *type, int refok)
4938 {
4939 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
4940 }
4941
4942 /* True iff TYPE represents the type of X'Tag */
4943
4944 int
4945 ada_is_tag_type (struct type *type)
4946 {
4947 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
4948 return 0;
4949 else
4950 {
4951 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
4952 return (name != NULL
4953 && strcmp (name, "ada__tags__dispatch_table") == 0);
4954 }
4955 }
4956
4957 /* The type of the tag on VAL. */
4958
4959 struct type *
4960 ada_tag_type (struct value *val)
4961 {
4962 return ada_lookup_struct_elt_type (VALUE_TYPE (val), "_tag", 1, 0, NULL);
4963 }
4964
4965 /* The value of the tag on VAL. */
4966
4967 struct value *
4968 ada_value_tag (struct value *val)
4969 {
4970 return ada_value_struct_elt (val, "_tag", "record");
4971 }
4972
4973 /* The value of the tag on the object of type TYPE whose contents are
4974 saved at VALADDR, if it is non-null, or is at memory address
4975 ADDRESS. */
4976
4977 static struct value *
4978 value_tag_from_contents_and_address (struct type *type, char *valaddr,
4979 CORE_ADDR address)
4980 {
4981 int tag_byte_offset, dummy1, dummy2;
4982 struct type *tag_type;
4983 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
4984 &dummy1, &dummy2))
4985 {
4986 char *valaddr1 = (valaddr == NULL) ? NULL : valaddr + tag_byte_offset;
4987 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
4988
4989 return value_from_contents_and_address (tag_type, valaddr1, address1);
4990 }
4991 return NULL;
4992 }
4993
4994 static struct type *
4995 type_from_tag (struct value *tag)
4996 {
4997 const char *type_name = ada_tag_name (tag);
4998 if (type_name != NULL)
4999 return ada_find_any_type (ada_encode (type_name));
5000 return NULL;
5001 }
5002
5003 struct tag_args
5004 {
5005 struct value *tag;
5006 char *name;
5007 };
5008
5009 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5010 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5011 The value stored in ARGS->name is valid until the next call to
5012 ada_tag_name_1. */
5013
5014 static int
5015 ada_tag_name_1 (void *args0)
5016 {
5017 struct tag_args *args = (struct tag_args *) args0;
5018 static char name[1024];
5019 char *p;
5020 struct value *val;
5021 args->name = NULL;
5022 val = ada_value_struct_elt (args->tag, "tsd", NULL);
5023 if (val == NULL)
5024 return 0;
5025 val = ada_value_struct_elt (val, "expanded_name", NULL);
5026 if (val == NULL)
5027 return 0;
5028 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5029 for (p = name; *p != '\0'; p += 1)
5030 if (isalpha (*p))
5031 *p = tolower (*p);
5032 args->name = name;
5033 return 0;
5034 }
5035
5036 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5037 * a C string. */
5038
5039 const char *
5040 ada_tag_name (struct value *tag)
5041 {
5042 struct tag_args args;
5043 if (!ada_is_tag_type (VALUE_TYPE (tag)))
5044 return NULL;
5045 args.tag = tag;
5046 args.name = NULL;
5047 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5048 return args.name;
5049 }
5050
5051 /* The parent type of TYPE, or NULL if none. */
5052
5053 struct type *
5054 ada_parent_type (struct type *type)
5055 {
5056 int i;
5057
5058 type = ada_check_typedef (type);
5059
5060 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5061 return NULL;
5062
5063 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5064 if (ada_is_parent_field (type, i))
5065 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5066
5067 return NULL;
5068 }
5069
5070 /* True iff field number FIELD_NUM of structure type TYPE contains the
5071 parent-type (inherited) fields of a derived type. Assumes TYPE is
5072 a structure type with at least FIELD_NUM+1 fields. */
5073
5074 int
5075 ada_is_parent_field (struct type *type, int field_num)
5076 {
5077 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5078 return (name != NULL
5079 && (strncmp (name, "PARENT", 6) == 0
5080 || strncmp (name, "_parent", 7) == 0));
5081 }
5082
5083 /* True iff field number FIELD_NUM of structure type TYPE is a
5084 transparent wrapper field (which should be silently traversed when doing
5085 field selection and flattened when printing). Assumes TYPE is a
5086 structure type with at least FIELD_NUM+1 fields. Such fields are always
5087 structures. */
5088
5089 int
5090 ada_is_wrapper_field (struct type *type, int field_num)
5091 {
5092 const char *name = TYPE_FIELD_NAME (type, field_num);
5093 return (name != NULL
5094 && (strncmp (name, "PARENT", 6) == 0
5095 || strcmp (name, "REP") == 0
5096 || strncmp (name, "_parent", 7) == 0
5097 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5098 }
5099
5100 /* True iff field number FIELD_NUM of structure or union type TYPE
5101 is a variant wrapper. Assumes TYPE is a structure type with at least
5102 FIELD_NUM+1 fields. */
5103
5104 int
5105 ada_is_variant_part (struct type *type, int field_num)
5106 {
5107 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5108 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5109 || (is_dynamic_field (type, field_num)
5110 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5111 == TYPE_CODE_UNION)));
5112 }
5113
5114 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5115 whose discriminants are contained in the record type OUTER_TYPE,
5116 returns the type of the controlling discriminant for the variant. */
5117
5118 struct type *
5119 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5120 {
5121 char *name = ada_variant_discrim_name (var_type);
5122 struct type *type =
5123 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5124 if (type == NULL)
5125 return builtin_type_int;
5126 else
5127 return type;
5128 }
5129
5130 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5131 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5132 represents a 'when others' clause; otherwise 0. */
5133
5134 int
5135 ada_is_others_clause (struct type *type, int field_num)
5136 {
5137 const char *name = TYPE_FIELD_NAME (type, field_num);
5138 return (name != NULL && name[0] == 'O');
5139 }
5140
5141 /* Assuming that TYPE0 is the type of the variant part of a record,
5142 returns the name of the discriminant controlling the variant.
5143 The value is valid until the next call to ada_variant_discrim_name. */
5144
5145 char *
5146 ada_variant_discrim_name (struct type *type0)
5147 {
5148 static char *result = NULL;
5149 static size_t result_len = 0;
5150 struct type *type;
5151 const char *name;
5152 const char *discrim_end;
5153 const char *discrim_start;
5154
5155 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5156 type = TYPE_TARGET_TYPE (type0);
5157 else
5158 type = type0;
5159
5160 name = ada_type_name (type);
5161
5162 if (name == NULL || name[0] == '\000')
5163 return "";
5164
5165 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5166 discrim_end -= 1)
5167 {
5168 if (strncmp (discrim_end, "___XVN", 6) == 0)
5169 break;
5170 }
5171 if (discrim_end == name)
5172 return "";
5173
5174 for (discrim_start = discrim_end; discrim_start != name + 3;
5175 discrim_start -= 1)
5176 {
5177 if (discrim_start == name + 1)
5178 return "";
5179 if ((discrim_start > name + 3
5180 && strncmp (discrim_start - 3, "___", 3) == 0)
5181 || discrim_start[-1] == '.')
5182 break;
5183 }
5184
5185 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5186 strncpy (result, discrim_start, discrim_end - discrim_start);
5187 result[discrim_end - discrim_start] = '\0';
5188 return result;
5189 }
5190
5191 /* Scan STR for a subtype-encoded number, beginning at position K.
5192 Put the position of the character just past the number scanned in
5193 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5194 Return 1 if there was a valid number at the given position, and 0
5195 otherwise. A "subtype-encoded" number consists of the absolute value
5196 in decimal, followed by the letter 'm' to indicate a negative number.
5197 Assumes 0m does not occur. */
5198
5199 int
5200 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5201 {
5202 ULONGEST RU;
5203
5204 if (!isdigit (str[k]))
5205 return 0;
5206
5207 /* Do it the hard way so as not to make any assumption about
5208 the relationship of unsigned long (%lu scan format code) and
5209 LONGEST. */
5210 RU = 0;
5211 while (isdigit (str[k]))
5212 {
5213 RU = RU * 10 + (str[k] - '0');
5214 k += 1;
5215 }
5216
5217 if (str[k] == 'm')
5218 {
5219 if (R != NULL)
5220 *R = (-(LONGEST) (RU - 1)) - 1;
5221 k += 1;
5222 }
5223 else if (R != NULL)
5224 *R = (LONGEST) RU;
5225
5226 /* NOTE on the above: Technically, C does not say what the results of
5227 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5228 number representable as a LONGEST (although either would probably work
5229 in most implementations). When RU>0, the locution in the then branch
5230 above is always equivalent to the negative of RU. */
5231
5232 if (new_k != NULL)
5233 *new_k = k;
5234 return 1;
5235 }
5236
5237 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5238 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5239 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5240
5241 int
5242 ada_in_variant (LONGEST val, struct type *type, int field_num)
5243 {
5244 const char *name = TYPE_FIELD_NAME (type, field_num);
5245 int p;
5246
5247 p = 0;
5248 while (1)
5249 {
5250 switch (name[p])
5251 {
5252 case '\0':
5253 return 0;
5254 case 'S':
5255 {
5256 LONGEST W;
5257 if (!ada_scan_number (name, p + 1, &W, &p))
5258 return 0;
5259 if (val == W)
5260 return 1;
5261 break;
5262 }
5263 case 'R':
5264 {
5265 LONGEST L, U;
5266 if (!ada_scan_number (name, p + 1, &L, &p)
5267 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5268 return 0;
5269 if (val >= L && val <= U)
5270 return 1;
5271 break;
5272 }
5273 case 'O':
5274 return 1;
5275 default:
5276 return 0;
5277 }
5278 }
5279 }
5280
5281 /* FIXME: Lots of redundancy below. Try to consolidate. */
5282
5283 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5284 ARG_TYPE, extract and return the value of one of its (non-static)
5285 fields. FIELDNO says which field. Differs from value_primitive_field
5286 only in that it can handle packed values of arbitrary type. */
5287
5288 static struct value *
5289 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5290 struct type *arg_type)
5291 {
5292 struct type *type;
5293
5294 arg_type = ada_check_typedef (arg_type);
5295 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5296
5297 /* Handle packed fields. */
5298
5299 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5300 {
5301 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5302 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5303
5304 return ada_value_primitive_packed_val (arg1, VALUE_CONTENTS (arg1),
5305 offset + bit_pos / 8,
5306 bit_pos % 8, bit_size, type);
5307 }
5308 else
5309 return value_primitive_field (arg1, offset, fieldno, arg_type);
5310 }
5311
5312 /* Find field with name NAME in object of type TYPE. If found, return 1
5313 after setting *FIELD_TYPE_P to the field's type, *BYTE_OFFSET_P to
5314 OFFSET + the byte offset of the field within an object of that type,
5315 *BIT_OFFSET_P to the bit offset modulo byte size of the field, and
5316 *BIT_SIZE_P to its size in bits if the field is packed, and 0 otherwise.
5317 Looks inside wrappers for the field. Returns 0 if field not
5318 found. */
5319 static int
5320 find_struct_field (char *name, struct type *type, int offset,
5321 struct type **field_type_p,
5322 int *byte_offset_p, int *bit_offset_p, int *bit_size_p)
5323 {
5324 int i;
5325
5326 type = ada_check_typedef (type);
5327 *field_type_p = NULL;
5328 *byte_offset_p = *bit_offset_p = *bit_size_p = 0;
5329
5330 for (i = TYPE_NFIELDS (type) - 1; i >= 0; i -= 1)
5331 {
5332 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5333 int fld_offset = offset + bit_pos / 8;
5334 char *t_field_name = TYPE_FIELD_NAME (type, i);
5335
5336 if (t_field_name == NULL)
5337 continue;
5338
5339 else if (field_name_match (t_field_name, name))
5340 {
5341 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5342 *field_type_p = TYPE_FIELD_TYPE (type, i);
5343 *byte_offset_p = fld_offset;
5344 *bit_offset_p = bit_pos % 8;
5345 *bit_size_p = bit_size;
5346 return 1;
5347 }
5348 else if (ada_is_wrapper_field (type, i))
5349 {
5350 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5351 field_type_p, byte_offset_p, bit_offset_p,
5352 bit_size_p))
5353 return 1;
5354 }
5355 else if (ada_is_variant_part (type, i))
5356 {
5357 int j;
5358 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5359
5360 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5361 {
5362 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5363 fld_offset
5364 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5365 field_type_p, byte_offset_p,
5366 bit_offset_p, bit_size_p))
5367 return 1;
5368 }
5369 }
5370 }
5371 return 0;
5372 }
5373
5374
5375
5376 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5377 and search in it assuming it has (class) type TYPE.
5378 If found, return value, else return NULL.
5379
5380 Searches recursively through wrapper fields (e.g., '_parent'). */
5381
5382 static struct value *
5383 ada_search_struct_field (char *name, struct value *arg, int offset,
5384 struct type *type)
5385 {
5386 int i;
5387 type = ada_check_typedef (type);
5388
5389 for (i = TYPE_NFIELDS (type) - 1; i >= 0; i -= 1)
5390 {
5391 char *t_field_name = TYPE_FIELD_NAME (type, i);
5392
5393 if (t_field_name == NULL)
5394 continue;
5395
5396 else if (field_name_match (t_field_name, name))
5397 return ada_value_primitive_field (arg, offset, i, type);
5398
5399 else if (ada_is_wrapper_field (type, i))
5400 {
5401 struct value *v = /* Do not let indent join lines here. */
5402 ada_search_struct_field (name, arg,
5403 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5404 TYPE_FIELD_TYPE (type, i));
5405 if (v != NULL)
5406 return v;
5407 }
5408
5409 else if (ada_is_variant_part (type, i))
5410 {
5411 int j;
5412 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5413 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5414
5415 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5416 {
5417 struct value *v = ada_search_struct_field /* Force line break. */
5418 (name, arg,
5419 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5420 TYPE_FIELD_TYPE (field_type, j));
5421 if (v != NULL)
5422 return v;
5423 }
5424 }
5425 }
5426 return NULL;
5427 }
5428
5429 /* Given ARG, a value of type (pointer or reference to a)*
5430 structure/union, extract the component named NAME from the ultimate
5431 target structure/union and return it as a value with its
5432 appropriate type. If ARG is a pointer or reference and the field
5433 is not packed, returns a reference to the field, otherwise the
5434 value of the field (an lvalue if ARG is an lvalue).
5435
5436 The routine searches for NAME among all members of the structure itself
5437 and (recursively) among all members of any wrapper members
5438 (e.g., '_parent').
5439
5440 ERR is a name (for use in error messages) that identifies the class
5441 of entity that ARG is supposed to be. ERR may be null, indicating
5442 that on error, the function simply returns NULL, and does not
5443 throw an error. (FIXME: True only if ARG is a pointer or reference
5444 at the moment). */
5445
5446 struct value *
5447 ada_value_struct_elt (struct value *arg, char *name, char *err)
5448 {
5449 struct type *t, *t1;
5450 struct value *v;
5451
5452 v = NULL;
5453 t1 = t = ada_check_typedef (VALUE_TYPE (arg));
5454 if (TYPE_CODE (t) == TYPE_CODE_REF)
5455 {
5456 t1 = TYPE_TARGET_TYPE (t);
5457 if (t1 == NULL)
5458 {
5459 if (err == NULL)
5460 return NULL;
5461 else
5462 error ("Bad value type in a %s.", err);
5463 }
5464 t1 = ada_check_typedef (t1);
5465 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5466 {
5467 COERCE_REF (arg);
5468 t = t1;
5469 }
5470 }
5471
5472 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5473 {
5474 t1 = TYPE_TARGET_TYPE (t);
5475 if (t1 == NULL)
5476 {
5477 if (err == NULL)
5478 return NULL;
5479 else
5480 error ("Bad value type in a %s.", err);
5481 }
5482 t1 = ada_check_typedef (t1);
5483 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5484 {
5485 arg = value_ind (arg);
5486 t = t1;
5487 }
5488 else
5489 break;
5490 }
5491
5492 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5493 {
5494 if (err == NULL)
5495 return NULL;
5496 else
5497 error ("Attempt to extract a component of a value that is not a %s.",
5498 err);
5499 }
5500
5501 if (t1 == t)
5502 v = ada_search_struct_field (name, arg, 0, t);
5503 else
5504 {
5505 int bit_offset, bit_size, byte_offset;
5506 struct type *field_type;
5507 CORE_ADDR address;
5508
5509 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5510 address = value_as_address (arg);
5511 else
5512 address = unpack_pointer (t, VALUE_CONTENTS (arg));
5513
5514 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5515 if (find_struct_field (name, t1, 0,
5516 &field_type, &byte_offset, &bit_offset,
5517 &bit_size))
5518 {
5519 if (bit_size != 0)
5520 {
5521 arg = ada_value_ind (arg);
5522 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5523 bit_offset, bit_size,
5524 field_type);
5525 }
5526 else
5527 v = value_from_pointer (lookup_reference_type (field_type),
5528 address + byte_offset);
5529 }
5530 }
5531
5532 if (v == NULL && err != NULL)
5533 error ("There is no member named %s.", name);
5534
5535 return v;
5536 }
5537
5538 /* Given a type TYPE, look up the type of the component of type named NAME.
5539 If DISPP is non-null, add its byte displacement from the beginning of a
5540 structure (pointed to by a value) of type TYPE to *DISPP (does not
5541 work for packed fields).
5542
5543 Matches any field whose name has NAME as a prefix, possibly
5544 followed by "___".
5545
5546 TYPE can be either a struct or union. If REFOK, TYPE may also
5547 be a (pointer or reference)+ to a struct or union, and the
5548 ultimate target type will be searched.
5549
5550 Looks recursively into variant clauses and parent types.
5551
5552 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5553 TYPE is not a type of the right kind. */
5554
5555 static struct type *
5556 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5557 int noerr, int *dispp)
5558 {
5559 int i;
5560
5561 if (name == NULL)
5562 goto BadName;
5563
5564 if (refok && type != NULL)
5565 while (1)
5566 {
5567 type = ada_check_typedef (type);
5568 if (TYPE_CODE (type) != TYPE_CODE_PTR
5569 && TYPE_CODE (type) != TYPE_CODE_REF)
5570 break;
5571 type = TYPE_TARGET_TYPE (type);
5572 }
5573
5574 if (type == NULL
5575 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5576 && TYPE_CODE (type) != TYPE_CODE_UNION))
5577 {
5578 if (noerr)
5579 return NULL;
5580 else
5581 {
5582 target_terminal_ours ();
5583 gdb_flush (gdb_stdout);
5584 fprintf_unfiltered (gdb_stderr, "Type ");
5585 if (type == NULL)
5586 fprintf_unfiltered (gdb_stderr, "(null)");
5587 else
5588 type_print (type, "", gdb_stderr, -1);
5589 error (" is not a structure or union type");
5590 }
5591 }
5592
5593 type = to_static_fixed_type (type);
5594
5595 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5596 {
5597 char *t_field_name = TYPE_FIELD_NAME (type, i);
5598 struct type *t;
5599 int disp;
5600
5601 if (t_field_name == NULL)
5602 continue;
5603
5604 else if (field_name_match (t_field_name, name))
5605 {
5606 if (dispp != NULL)
5607 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5608 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5609 }
5610
5611 else if (ada_is_wrapper_field (type, i))
5612 {
5613 disp = 0;
5614 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5615 0, 1, &disp);
5616 if (t != NULL)
5617 {
5618 if (dispp != NULL)
5619 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5620 return t;
5621 }
5622 }
5623
5624 else if (ada_is_variant_part (type, i))
5625 {
5626 int j;
5627 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5628
5629 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5630 {
5631 disp = 0;
5632 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5633 name, 0, 1, &disp);
5634 if (t != NULL)
5635 {
5636 if (dispp != NULL)
5637 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5638 return t;
5639 }
5640 }
5641 }
5642
5643 }
5644
5645 BadName:
5646 if (!noerr)
5647 {
5648 target_terminal_ours ();
5649 gdb_flush (gdb_stdout);
5650 fprintf_unfiltered (gdb_stderr, "Type ");
5651 type_print (type, "", gdb_stderr, -1);
5652 fprintf_unfiltered (gdb_stderr, " has no component named ");
5653 error ("%s", name == NULL ? "<null>" : name);
5654 }
5655
5656 return NULL;
5657 }
5658
5659 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
5660 within a value of type OUTER_TYPE that is stored in GDB at
5661 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
5662 numbering from 0) is applicable. Returns -1 if none are. */
5663
5664 int
5665 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
5666 char *outer_valaddr)
5667 {
5668 int others_clause;
5669 int i;
5670 int disp;
5671 struct type *discrim_type;
5672 char *discrim_name = ada_variant_discrim_name (var_type);
5673 LONGEST discrim_val;
5674
5675 disp = 0;
5676 discrim_type =
5677 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
5678 if (discrim_type == NULL)
5679 return -1;
5680 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
5681
5682 others_clause = -1;
5683 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
5684 {
5685 if (ada_is_others_clause (var_type, i))
5686 others_clause = i;
5687 else if (ada_in_variant (discrim_val, var_type, i))
5688 return i;
5689 }
5690
5691 return others_clause;
5692 }
5693 \f
5694
5695
5696 /* Dynamic-Sized Records */
5697
5698 /* Strategy: The type ostensibly attached to a value with dynamic size
5699 (i.e., a size that is not statically recorded in the debugging
5700 data) does not accurately reflect the size or layout of the value.
5701 Our strategy is to convert these values to values with accurate,
5702 conventional types that are constructed on the fly. */
5703
5704 /* There is a subtle and tricky problem here. In general, we cannot
5705 determine the size of dynamic records without its data. However,
5706 the 'struct value' data structure, which GDB uses to represent
5707 quantities in the inferior process (the target), requires the size
5708 of the type at the time of its allocation in order to reserve space
5709 for GDB's internal copy of the data. That's why the
5710 'to_fixed_xxx_type' routines take (target) addresses as parameters,
5711 rather than struct value*s.
5712
5713 However, GDB's internal history variables ($1, $2, etc.) are
5714 struct value*s containing internal copies of the data that are not, in
5715 general, the same as the data at their corresponding addresses in
5716 the target. Fortunately, the types we give to these values are all
5717 conventional, fixed-size types (as per the strategy described
5718 above), so that we don't usually have to perform the
5719 'to_fixed_xxx_type' conversions to look at their values.
5720 Unfortunately, there is one exception: if one of the internal
5721 history variables is an array whose elements are unconstrained
5722 records, then we will need to create distinct fixed types for each
5723 element selected. */
5724
5725 /* The upshot of all of this is that many routines take a (type, host
5726 address, target address) triple as arguments to represent a value.
5727 The host address, if non-null, is supposed to contain an internal
5728 copy of the relevant data; otherwise, the program is to consult the
5729 target at the target address. */
5730
5731 /* Assuming that VAL0 represents a pointer value, the result of
5732 dereferencing it. Differs from value_ind in its treatment of
5733 dynamic-sized types. */
5734
5735 struct value *
5736 ada_value_ind (struct value *val0)
5737 {
5738 struct value *val = unwrap_value (value_ind (val0));
5739 return ada_to_fixed_value (val);
5740 }
5741
5742 /* The value resulting from dereferencing any "reference to"
5743 qualifiers on VAL0. */
5744
5745 static struct value *
5746 ada_coerce_ref (struct value *val0)
5747 {
5748 if (TYPE_CODE (VALUE_TYPE (val0)) == TYPE_CODE_REF)
5749 {
5750 struct value *val = val0;
5751 COERCE_REF (val);
5752 val = unwrap_value (val);
5753 return ada_to_fixed_value (val);
5754 }
5755 else
5756 return val0;
5757 }
5758
5759 /* Return OFF rounded upward if necessary to a multiple of
5760 ALIGNMENT (a power of 2). */
5761
5762 static unsigned int
5763 align_value (unsigned int off, unsigned int alignment)
5764 {
5765 return (off + alignment - 1) & ~(alignment - 1);
5766 }
5767
5768 /* Return the bit alignment required for field #F of template type TYPE. */
5769
5770 static unsigned int
5771 field_alignment (struct type *type, int f)
5772 {
5773 const char *name = TYPE_FIELD_NAME (type, f);
5774 int len = (name == NULL) ? 0 : strlen (name);
5775 int align_offset;
5776
5777 if (!isdigit (name[len - 1]))
5778 return 1;
5779
5780 if (isdigit (name[len - 2]))
5781 align_offset = len - 2;
5782 else
5783 align_offset = len - 1;
5784
5785 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
5786 return TARGET_CHAR_BIT;
5787
5788 return atoi (name + align_offset) * TARGET_CHAR_BIT;
5789 }
5790
5791 /* Find a symbol named NAME. Ignores ambiguity. */
5792
5793 struct symbol *
5794 ada_find_any_symbol (const char *name)
5795 {
5796 struct symbol *sym;
5797
5798 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
5799 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5800 return sym;
5801
5802 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
5803 return sym;
5804 }
5805
5806 /* Find a type named NAME. Ignores ambiguity. */
5807
5808 struct type *
5809 ada_find_any_type (const char *name)
5810 {
5811 struct symbol *sym = ada_find_any_symbol (name);
5812
5813 if (sym != NULL)
5814 return SYMBOL_TYPE (sym);
5815
5816 return NULL;
5817 }
5818
5819 /* Given a symbol NAME and its associated BLOCK, search all symbols
5820 for its ___XR counterpart, which is the ``renaming'' symbol
5821 associated to NAME. Return this symbol if found, return
5822 NULL otherwise. */
5823
5824 struct symbol *
5825 ada_find_renaming_symbol (const char *name, struct block *block)
5826 {
5827 const struct symbol *function_sym = block_function (block);
5828 char *rename;
5829
5830 if (function_sym != NULL)
5831 {
5832 /* If the symbol is defined inside a function, NAME is not fully
5833 qualified. This means we need to prepend the function name
5834 as well as adding the ``___XR'' suffix to build the name of
5835 the associated renaming symbol. */
5836 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
5837 const int function_name_len = strlen (function_name);
5838 const int rename_len = function_name_len + 2 /* "__" */
5839 + strlen (name) + 6 /* "___XR\0" */ ;
5840
5841 /* Library-level functions are a special case, as GNAT adds
5842 a ``_ada_'' prefix to the function name to avoid namespace
5843 pollution. However, the renaming symbol themselves do not
5844 have this prefix, so we need to skip this prefix if present. */
5845 if (function_name_len > 5 /* "_ada_" */
5846 && strstr (function_name, "_ada_") == function_name)
5847 function_name = function_name + 5;
5848
5849 rename = (char *) alloca (rename_len * sizeof (char));
5850 sprintf (rename, "%s__%s___XR", function_name, name);
5851 }
5852 else
5853 {
5854 const int rename_len = strlen (name) + 6;
5855 rename = (char *) alloca (rename_len * sizeof (char));
5856 sprintf (rename, "%s___XR", name);
5857 }
5858
5859 return ada_find_any_symbol (rename);
5860 }
5861
5862 /* Because of GNAT encoding conventions, several GDB symbols may match a
5863 given type name. If the type denoted by TYPE0 is to be preferred to
5864 that of TYPE1 for purposes of type printing, return non-zero;
5865 otherwise return 0. */
5866
5867 int
5868 ada_prefer_type (struct type *type0, struct type *type1)
5869 {
5870 if (type1 == NULL)
5871 return 1;
5872 else if (type0 == NULL)
5873 return 0;
5874 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
5875 return 1;
5876 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
5877 return 0;
5878 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
5879 return 1;
5880 else if (ada_is_packed_array_type (type0))
5881 return 1;
5882 else if (ada_is_array_descriptor_type (type0)
5883 && !ada_is_array_descriptor_type (type1))
5884 return 1;
5885 else if (ada_renaming_type (type0) != NULL
5886 && ada_renaming_type (type1) == NULL)
5887 return 1;
5888 return 0;
5889 }
5890
5891 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
5892 null, its TYPE_TAG_NAME. Null if TYPE is null. */
5893
5894 char *
5895 ada_type_name (struct type *type)
5896 {
5897 if (type == NULL)
5898 return NULL;
5899 else if (TYPE_NAME (type) != NULL)
5900 return TYPE_NAME (type);
5901 else
5902 return TYPE_TAG_NAME (type);
5903 }
5904
5905 /* Find a parallel type to TYPE whose name is formed by appending
5906 SUFFIX to the name of TYPE. */
5907
5908 struct type *
5909 ada_find_parallel_type (struct type *type, const char *suffix)
5910 {
5911 static char *name;
5912 static size_t name_len = 0;
5913 int len;
5914 char *typename = ada_type_name (type);
5915
5916 if (typename == NULL)
5917 return NULL;
5918
5919 len = strlen (typename);
5920
5921 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
5922
5923 strcpy (name, typename);
5924 strcpy (name + len, suffix);
5925
5926 return ada_find_any_type (name);
5927 }
5928
5929
5930 /* If TYPE is a variable-size record type, return the corresponding template
5931 type describing its fields. Otherwise, return NULL. */
5932
5933 static struct type *
5934 dynamic_template_type (struct type *type)
5935 {
5936 type = ada_check_typedef (type);
5937
5938 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
5939 || ada_type_name (type) == NULL)
5940 return NULL;
5941 else
5942 {
5943 int len = strlen (ada_type_name (type));
5944 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
5945 return type;
5946 else
5947 return ada_find_parallel_type (type, "___XVE");
5948 }
5949 }
5950
5951 /* Assuming that TEMPL_TYPE is a union or struct type, returns
5952 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
5953
5954 static int
5955 is_dynamic_field (struct type *templ_type, int field_num)
5956 {
5957 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5958 return name != NULL
5959 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
5960 && strstr (name, "___XVL") != NULL;
5961 }
5962
5963 /* The index of the variant field of TYPE, or -1 if TYPE does not
5964 represent a variant record type. */
5965
5966 static int
5967 variant_field_index (struct type *type)
5968 {
5969 int f;
5970
5971 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5972 return -1;
5973
5974 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
5975 {
5976 if (ada_is_variant_part (type, f))
5977 return f;
5978 }
5979 return -1;
5980 }
5981
5982 /* A record type with no fields. */
5983
5984 static struct type *
5985 empty_record (struct objfile *objfile)
5986 {
5987 struct type *type = alloc_type (objfile);
5988 TYPE_CODE (type) = TYPE_CODE_STRUCT;
5989 TYPE_NFIELDS (type) = 0;
5990 TYPE_FIELDS (type) = NULL;
5991 TYPE_NAME (type) = "<empty>";
5992 TYPE_TAG_NAME (type) = NULL;
5993 TYPE_FLAGS (type) = 0;
5994 TYPE_LENGTH (type) = 0;
5995 return type;
5996 }
5997
5998 /* An ordinary record type (with fixed-length fields) that describes
5999 the value of type TYPE at VALADDR or ADDRESS (see comments at
6000 the beginning of this section) VAL according to GNAT conventions.
6001 DVAL0 should describe the (portion of a) record that contains any
6002 necessary discriminants. It should be NULL if VALUE_TYPE (VAL) is
6003 an outer-level type (i.e., as opposed to a branch of a variant.) A
6004 variant field (unless unchecked) is replaced by a particular branch
6005 of the variant.
6006
6007 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6008 length are not statically known are discarded. As a consequence,
6009 VALADDR, ADDRESS and DVAL0 are ignored.
6010
6011 NOTE: Limitations: For now, we assume that dynamic fields and
6012 variants occupy whole numbers of bytes. However, they need not be
6013 byte-aligned. */
6014
6015 struct type *
6016 ada_template_to_fixed_record_type_1 (struct type *type, char *valaddr,
6017 CORE_ADDR address, struct value *dval0,
6018 int keep_dynamic_fields)
6019 {
6020 struct value *mark = value_mark ();
6021 struct value *dval;
6022 struct type *rtype;
6023 int nfields, bit_len;
6024 int variant_field;
6025 long off;
6026 int fld_bit_len, bit_incr;
6027 int f;
6028
6029 /* Compute the number of fields in this record type that are going
6030 to be processed: unless keep_dynamic_fields, this includes only
6031 fields whose position and length are static will be processed. */
6032 if (keep_dynamic_fields)
6033 nfields = TYPE_NFIELDS (type);
6034 else
6035 {
6036 nfields = 0;
6037 while (nfields < TYPE_NFIELDS (type)
6038 && !ada_is_variant_part (type, nfields)
6039 && !is_dynamic_field (type, nfields))
6040 nfields++;
6041 }
6042
6043 rtype = alloc_type (TYPE_OBJFILE (type));
6044 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6045 INIT_CPLUS_SPECIFIC (rtype);
6046 TYPE_NFIELDS (rtype) = nfields;
6047 TYPE_FIELDS (rtype) = (struct field *)
6048 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6049 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6050 TYPE_NAME (rtype) = ada_type_name (type);
6051 TYPE_TAG_NAME (rtype) = NULL;
6052 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6053
6054 off = 0;
6055 bit_len = 0;
6056 variant_field = -1;
6057
6058 for (f = 0; f < nfields; f += 1)
6059 {
6060 off = align_value (off, field_alignment (type, f))
6061 + TYPE_FIELD_BITPOS (type, f);
6062 TYPE_FIELD_BITPOS (rtype, f) = off;
6063 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6064
6065 if (ada_is_variant_part (type, f))
6066 {
6067 variant_field = f;
6068 fld_bit_len = bit_incr = 0;
6069 }
6070 else if (is_dynamic_field (type, f))
6071 {
6072 if (dval0 == NULL)
6073 dval = value_from_contents_and_address (rtype, valaddr, address);
6074 else
6075 dval = dval0;
6076
6077 TYPE_FIELD_TYPE (rtype, f) =
6078 ada_to_fixed_type
6079 (ada_get_base_type
6080 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6081 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6082 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6083 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6084 bit_incr = fld_bit_len =
6085 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6086 }
6087 else
6088 {
6089 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6090 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6091 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6092 bit_incr = fld_bit_len =
6093 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6094 else
6095 bit_incr = fld_bit_len =
6096 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6097 }
6098 if (off + fld_bit_len > bit_len)
6099 bit_len = off + fld_bit_len;
6100 off += bit_incr;
6101 TYPE_LENGTH (rtype) =
6102 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6103 }
6104
6105 /* We handle the variant part, if any, at the end because of certain
6106 odd cases in which it is re-ordered so as NOT the last field of
6107 the record. This can happen in the presence of representation
6108 clauses. */
6109 if (variant_field >= 0)
6110 {
6111 struct type *branch_type;
6112
6113 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6114
6115 if (dval0 == NULL)
6116 dval = value_from_contents_and_address (rtype, valaddr, address);
6117 else
6118 dval = dval0;
6119
6120 branch_type =
6121 to_fixed_variant_branch_type
6122 (TYPE_FIELD_TYPE (type, variant_field),
6123 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6124 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6125 if (branch_type == NULL)
6126 {
6127 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6128 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6129 TYPE_NFIELDS (rtype) -= 1;
6130 }
6131 else
6132 {
6133 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6134 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6135 fld_bit_len =
6136 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6137 TARGET_CHAR_BIT;
6138 if (off + fld_bit_len > bit_len)
6139 bit_len = off + fld_bit_len;
6140 TYPE_LENGTH (rtype) =
6141 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6142 }
6143 }
6144
6145 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), TYPE_LENGTH (type));
6146
6147 value_free_to_mark (mark);
6148 if (TYPE_LENGTH (rtype) > varsize_limit)
6149 error ("record type with dynamic size is larger than varsize-limit");
6150 return rtype;
6151 }
6152
6153 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6154 of 1. */
6155
6156 static struct type *
6157 template_to_fixed_record_type (struct type *type, char *valaddr,
6158 CORE_ADDR address, struct value *dval0)
6159 {
6160 return ada_template_to_fixed_record_type_1 (type, valaddr,
6161 address, dval0, 1);
6162 }
6163
6164 /* An ordinary record type in which ___XVL-convention fields and
6165 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6166 static approximations, containing all possible fields. Uses
6167 no runtime values. Useless for use in values, but that's OK,
6168 since the results are used only for type determinations. Works on both
6169 structs and unions. Representation note: to save space, we memorize
6170 the result of this function in the TYPE_TARGET_TYPE of the
6171 template type. */
6172
6173 static struct type *
6174 template_to_static_fixed_type (struct type *type0)
6175 {
6176 struct type *type;
6177 int nfields;
6178 int f;
6179
6180 if (TYPE_TARGET_TYPE (type0) != NULL)
6181 return TYPE_TARGET_TYPE (type0);
6182
6183 nfields = TYPE_NFIELDS (type0);
6184 type = type0;
6185
6186 for (f = 0; f < nfields; f += 1)
6187 {
6188 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6189 struct type *new_type;
6190
6191 if (is_dynamic_field (type0, f))
6192 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6193 else
6194 new_type = to_static_fixed_type (field_type);
6195 if (type == type0 && new_type != field_type)
6196 {
6197 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6198 TYPE_CODE (type) = TYPE_CODE (type0);
6199 INIT_CPLUS_SPECIFIC (type);
6200 TYPE_NFIELDS (type) = nfields;
6201 TYPE_FIELDS (type) = (struct field *)
6202 TYPE_ALLOC (type, nfields * sizeof (struct field));
6203 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6204 sizeof (struct field) * nfields);
6205 TYPE_NAME (type) = ada_type_name (type0);
6206 TYPE_TAG_NAME (type) = NULL;
6207 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6208 TYPE_LENGTH (type) = 0;
6209 }
6210 TYPE_FIELD_TYPE (type, f) = new_type;
6211 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6212 }
6213 return type;
6214 }
6215
6216 /* Given an object of type TYPE whose contents are at VALADDR and
6217 whose address in memory is ADDRESS, returns a revision of TYPE --
6218 a non-dynamic-sized record with a variant part -- in which
6219 the variant part is replaced with the appropriate branch. Looks
6220 for discriminant values in DVAL0, which can be NULL if the record
6221 contains the necessary discriminant values. */
6222
6223 static struct type *
6224 to_record_with_fixed_variant_part (struct type *type, char *valaddr,
6225 CORE_ADDR address, struct value *dval0)
6226 {
6227 struct value *mark = value_mark ();
6228 struct value *dval;
6229 struct type *rtype;
6230 struct type *branch_type;
6231 int nfields = TYPE_NFIELDS (type);
6232 int variant_field = variant_field_index (type);
6233
6234 if (variant_field == -1)
6235 return type;
6236
6237 if (dval0 == NULL)
6238 dval = value_from_contents_and_address (type, valaddr, address);
6239 else
6240 dval = dval0;
6241
6242 rtype = alloc_type (TYPE_OBJFILE (type));
6243 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6244 INIT_CPLUS_SPECIFIC (rtype);
6245 TYPE_NFIELDS (rtype) = nfields;
6246 TYPE_FIELDS (rtype) =
6247 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6248 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6249 sizeof (struct field) * nfields);
6250 TYPE_NAME (rtype) = ada_type_name (type);
6251 TYPE_TAG_NAME (rtype) = NULL;
6252 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6253 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6254
6255 branch_type = to_fixed_variant_branch_type
6256 (TYPE_FIELD_TYPE (type, variant_field),
6257 cond_offset_host (valaddr,
6258 TYPE_FIELD_BITPOS (type, variant_field)
6259 / TARGET_CHAR_BIT),
6260 cond_offset_target (address,
6261 TYPE_FIELD_BITPOS (type, variant_field)
6262 / TARGET_CHAR_BIT), dval);
6263 if (branch_type == NULL)
6264 {
6265 int f;
6266 for (f = variant_field + 1; f < nfields; f += 1)
6267 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6268 TYPE_NFIELDS (rtype) -= 1;
6269 }
6270 else
6271 {
6272 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6273 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6274 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6275 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6276 }
6277 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6278
6279 value_free_to_mark (mark);
6280 return rtype;
6281 }
6282
6283 /* An ordinary record type (with fixed-length fields) that describes
6284 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6285 beginning of this section]. Any necessary discriminants' values
6286 should be in DVAL, a record value; it may be NULL if the object
6287 at ADDR itself contains any necessary discriminant values.
6288 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6289 values from the record are needed. Except in the case that DVAL,
6290 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6291 unchecked) is replaced by a particular branch of the variant.
6292
6293 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6294 is questionable and may be removed. It can arise during the
6295 processing of an unconstrained-array-of-record type where all the
6296 variant branches have exactly the same size. This is because in
6297 such cases, the compiler does not bother to use the XVS convention
6298 when encoding the record. I am currently dubious of this
6299 shortcut and suspect the compiler should be altered. FIXME. */
6300
6301 static struct type *
6302 to_fixed_record_type (struct type *type0, char *valaddr,
6303 CORE_ADDR address, struct value *dval)
6304 {
6305 struct type *templ_type;
6306
6307 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6308 return type0;
6309
6310 templ_type = dynamic_template_type (type0);
6311
6312 if (templ_type != NULL)
6313 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6314 else if (variant_field_index (type0) >= 0)
6315 {
6316 if (dval == NULL && valaddr == NULL && address == 0)
6317 return type0;
6318 return to_record_with_fixed_variant_part (type0, valaddr, address,
6319 dval);
6320 }
6321 else
6322 {
6323 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6324 return type0;
6325 }
6326
6327 }
6328
6329 /* An ordinary record type (with fixed-length fields) that describes
6330 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6331 union type. Any necessary discriminants' values should be in DVAL,
6332 a record value. That is, this routine selects the appropriate
6333 branch of the union at ADDR according to the discriminant value
6334 indicated in the union's type name. */
6335
6336 static struct type *
6337 to_fixed_variant_branch_type (struct type *var_type0, char *valaddr,
6338 CORE_ADDR address, struct value *dval)
6339 {
6340 int which;
6341 struct type *templ_type;
6342 struct type *var_type;
6343
6344 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6345 var_type = TYPE_TARGET_TYPE (var_type0);
6346 else
6347 var_type = var_type0;
6348
6349 templ_type = ada_find_parallel_type (var_type, "___XVU");
6350
6351 if (templ_type != NULL)
6352 var_type = templ_type;
6353
6354 which =
6355 ada_which_variant_applies (var_type,
6356 VALUE_TYPE (dval), VALUE_CONTENTS (dval));
6357
6358 if (which < 0)
6359 return empty_record (TYPE_OBJFILE (var_type));
6360 else if (is_dynamic_field (var_type, which))
6361 return to_fixed_record_type
6362 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6363 valaddr, address, dval);
6364 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6365 return
6366 to_fixed_record_type
6367 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6368 else
6369 return TYPE_FIELD_TYPE (var_type, which);
6370 }
6371
6372 /* Assuming that TYPE0 is an array type describing the type of a value
6373 at ADDR, and that DVAL describes a record containing any
6374 discriminants used in TYPE0, returns a type for the value that
6375 contains no dynamic components (that is, no components whose sizes
6376 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6377 true, gives an error message if the resulting type's size is over
6378 varsize_limit. */
6379
6380 static struct type *
6381 to_fixed_array_type (struct type *type0, struct value *dval,
6382 int ignore_too_big)
6383 {
6384 struct type *index_type_desc;
6385 struct type *result;
6386
6387 if (ada_is_packed_array_type (type0) /* revisit? */
6388 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6389 return type0;
6390
6391 index_type_desc = ada_find_parallel_type (type0, "___XA");
6392 if (index_type_desc == NULL)
6393 {
6394 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6395 /* NOTE: elt_type---the fixed version of elt_type0---should never
6396 depend on the contents of the array in properly constructed
6397 debugging data. */
6398 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6399
6400 if (elt_type0 == elt_type)
6401 result = type0;
6402 else
6403 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6404 elt_type, TYPE_INDEX_TYPE (type0));
6405 }
6406 else
6407 {
6408 int i;
6409 struct type *elt_type0;
6410
6411 elt_type0 = type0;
6412 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6413 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6414
6415 /* NOTE: result---the fixed version of elt_type0---should never
6416 depend on the contents of the array in properly constructed
6417 debugging data. */
6418 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6419 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6420 {
6421 struct type *range_type =
6422 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6423 dval, TYPE_OBJFILE (type0));
6424 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6425 result, range_type);
6426 }
6427 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6428 error ("array type with dynamic size is larger than varsize-limit");
6429 }
6430
6431 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6432 return result;
6433 }
6434
6435
6436 /* A standard type (containing no dynamically sized components)
6437 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6438 DVAL describes a record containing any discriminants used in TYPE0,
6439 and may be NULL if there are none, or if the object of type TYPE at
6440 ADDRESS or in VALADDR contains these discriminants. */
6441
6442 struct type *
6443 ada_to_fixed_type (struct type *type, char *valaddr,
6444 CORE_ADDR address, struct value *dval)
6445 {
6446 type = ada_check_typedef (type);
6447 switch (TYPE_CODE (type))
6448 {
6449 default:
6450 return type;
6451 case TYPE_CODE_STRUCT:
6452 {
6453 struct type *static_type = to_static_fixed_type (type);
6454 if (ada_is_tagged_type (static_type, 0))
6455 {
6456 struct type *real_type =
6457 type_from_tag (value_tag_from_contents_and_address (static_type,
6458 valaddr,
6459 address));
6460 if (real_type != NULL)
6461 type = real_type;
6462 }
6463 return to_fixed_record_type (type, valaddr, address, NULL);
6464 }
6465 case TYPE_CODE_ARRAY:
6466 return to_fixed_array_type (type, dval, 1);
6467 case TYPE_CODE_UNION:
6468 if (dval == NULL)
6469 return type;
6470 else
6471 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6472 }
6473 }
6474
6475 /* A standard (static-sized) type corresponding as well as possible to
6476 TYPE0, but based on no runtime data. */
6477
6478 static struct type *
6479 to_static_fixed_type (struct type *type0)
6480 {
6481 struct type *type;
6482
6483 if (type0 == NULL)
6484 return NULL;
6485
6486 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6487 return type0;
6488
6489 type0 = ada_check_typedef (type0);
6490
6491 switch (TYPE_CODE (type0))
6492 {
6493 default:
6494 return type0;
6495 case TYPE_CODE_STRUCT:
6496 type = dynamic_template_type (type0);
6497 if (type != NULL)
6498 return template_to_static_fixed_type (type);
6499 else
6500 return template_to_static_fixed_type (type0);
6501 case TYPE_CODE_UNION:
6502 type = ada_find_parallel_type (type0, "___XVU");
6503 if (type != NULL)
6504 return template_to_static_fixed_type (type);
6505 else
6506 return template_to_static_fixed_type (type0);
6507 }
6508 }
6509
6510 /* A static approximation of TYPE with all type wrappers removed. */
6511
6512 static struct type *
6513 static_unwrap_type (struct type *type)
6514 {
6515 if (ada_is_aligner_type (type))
6516 {
6517 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6518 if (ada_type_name (type1) == NULL)
6519 TYPE_NAME (type1) = ada_type_name (type);
6520
6521 return static_unwrap_type (type1);
6522 }
6523 else
6524 {
6525 struct type *raw_real_type = ada_get_base_type (type);
6526 if (raw_real_type == type)
6527 return type;
6528 else
6529 return to_static_fixed_type (raw_real_type);
6530 }
6531 }
6532
6533 /* In some cases, incomplete and private types require
6534 cross-references that are not resolved as records (for example,
6535 type Foo;
6536 type FooP is access Foo;
6537 V: FooP;
6538 type Foo is array ...;
6539 ). In these cases, since there is no mechanism for producing
6540 cross-references to such types, we instead substitute for FooP a
6541 stub enumeration type that is nowhere resolved, and whose tag is
6542 the name of the actual type. Call these types "non-record stubs". */
6543
6544 /* A type equivalent to TYPE that is not a non-record stub, if one
6545 exists, otherwise TYPE. */
6546
6547 struct type *
6548 ada_check_typedef (struct type *type)
6549 {
6550 CHECK_TYPEDEF (type);
6551 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6552 || (TYPE_FLAGS (type) & TYPE_FLAG_STUB) == 0
6553 || TYPE_TAG_NAME (type) == NULL)
6554 return type;
6555 else
6556 {
6557 char *name = TYPE_TAG_NAME (type);
6558 struct type *type1 = ada_find_any_type (name);
6559 return (type1 == NULL) ? type : type1;
6560 }
6561 }
6562
6563 /* A value representing the data at VALADDR/ADDRESS as described by
6564 type TYPE0, but with a standard (static-sized) type that correctly
6565 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6566 type, then return VAL0 [this feature is simply to avoid redundant
6567 creation of struct values]. */
6568
6569 static struct value *
6570 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
6571 struct value *val0)
6572 {
6573 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
6574 if (type == type0 && val0 != NULL)
6575 return val0;
6576 else
6577 return value_from_contents_and_address (type, 0, address);
6578 }
6579
6580 /* A value representing VAL, but with a standard (static-sized) type
6581 that correctly describes it. Does not necessarily create a new
6582 value. */
6583
6584 static struct value *
6585 ada_to_fixed_value (struct value *val)
6586 {
6587 return ada_to_fixed_value_create (VALUE_TYPE (val),
6588 VALUE_ADDRESS (val) + VALUE_OFFSET (val),
6589 val);
6590 }
6591
6592 /* A value representing VAL, but with a standard (static-sized) type
6593 chosen to approximate the real type of VAL as well as possible, but
6594 without consulting any runtime values. For Ada dynamic-sized
6595 types, therefore, the type of the result is likely to be inaccurate. */
6596
6597 struct value *
6598 ada_to_static_fixed_value (struct value *val)
6599 {
6600 struct type *type =
6601 to_static_fixed_type (static_unwrap_type (VALUE_TYPE (val)));
6602 if (type == VALUE_TYPE (val))
6603 return val;
6604 else
6605 return coerce_unspec_val_to_type (val, type);
6606 }
6607 \f
6608
6609 /* Attributes */
6610
6611 /* Table mapping attribute numbers to names.
6612 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
6613
6614 static const char *attribute_names[] = {
6615 "<?>",
6616
6617 "first",
6618 "last",
6619 "length",
6620 "image",
6621 "max",
6622 "min",
6623 "modulus",
6624 "pos",
6625 "size",
6626 "tag",
6627 "val",
6628 0
6629 };
6630
6631 const char *
6632 ada_attribute_name (enum exp_opcode n)
6633 {
6634 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
6635 return attribute_names[n - OP_ATR_FIRST + 1];
6636 else
6637 return attribute_names[0];
6638 }
6639
6640 /* Evaluate the 'POS attribute applied to ARG. */
6641
6642 static LONGEST
6643 pos_atr (struct value *arg)
6644 {
6645 struct type *type = VALUE_TYPE (arg);
6646
6647 if (!discrete_type_p (type))
6648 error ("'POS only defined on discrete types");
6649
6650 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
6651 {
6652 int i;
6653 LONGEST v = value_as_long (arg);
6654
6655 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6656 {
6657 if (v == TYPE_FIELD_BITPOS (type, i))
6658 return i;
6659 }
6660 error ("enumeration value is invalid: can't find 'POS");
6661 }
6662 else
6663 return value_as_long (arg);
6664 }
6665
6666 static struct value *
6667 value_pos_atr (struct value *arg)
6668 {
6669 return value_from_longest (builtin_type_int, pos_atr (arg));
6670 }
6671
6672 /* Evaluate the TYPE'VAL attribute applied to ARG. */
6673
6674 static struct value *
6675 value_val_atr (struct type *type, struct value *arg)
6676 {
6677 if (!discrete_type_p (type))
6678 error ("'VAL only defined on discrete types");
6679 if (!integer_type_p (VALUE_TYPE (arg)))
6680 error ("'VAL requires integral argument");
6681
6682 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
6683 {
6684 long pos = value_as_long (arg);
6685 if (pos < 0 || pos >= TYPE_NFIELDS (type))
6686 error ("argument to 'VAL out of range");
6687 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
6688 }
6689 else
6690 return value_from_longest (type, value_as_long (arg));
6691 }
6692 \f
6693
6694 /* Evaluation */
6695
6696 /* True if TYPE appears to be an Ada character type.
6697 [At the moment, this is true only for Character and Wide_Character;
6698 It is a heuristic test that could stand improvement]. */
6699
6700 int
6701 ada_is_character_type (struct type *type)
6702 {
6703 const char *name = ada_type_name (type);
6704 return
6705 name != NULL
6706 && (TYPE_CODE (type) == TYPE_CODE_CHAR
6707 || TYPE_CODE (type) == TYPE_CODE_INT
6708 || TYPE_CODE (type) == TYPE_CODE_RANGE)
6709 && (strcmp (name, "character") == 0
6710 || strcmp (name, "wide_character") == 0
6711 || strcmp (name, "unsigned char") == 0);
6712 }
6713
6714 /* True if TYPE appears to be an Ada string type. */
6715
6716 int
6717 ada_is_string_type (struct type *type)
6718 {
6719 type = ada_check_typedef (type);
6720 if (type != NULL
6721 && TYPE_CODE (type) != TYPE_CODE_PTR
6722 && (ada_is_simple_array_type (type)
6723 || ada_is_array_descriptor_type (type))
6724 && ada_array_arity (type) == 1)
6725 {
6726 struct type *elttype = ada_array_element_type (type, 1);
6727
6728 return ada_is_character_type (elttype);
6729 }
6730 else
6731 return 0;
6732 }
6733
6734
6735 /* True if TYPE is a struct type introduced by the compiler to force the
6736 alignment of a value. Such types have a single field with a
6737 distinctive name. */
6738
6739 int
6740 ada_is_aligner_type (struct type *type)
6741 {
6742 type = ada_check_typedef (type);
6743 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
6744 && TYPE_NFIELDS (type) == 1
6745 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
6746 }
6747
6748 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
6749 the parallel type. */
6750
6751 struct type *
6752 ada_get_base_type (struct type *raw_type)
6753 {
6754 struct type *real_type_namer;
6755 struct type *raw_real_type;
6756
6757 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
6758 return raw_type;
6759
6760 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
6761 if (real_type_namer == NULL
6762 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
6763 || TYPE_NFIELDS (real_type_namer) != 1)
6764 return raw_type;
6765
6766 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
6767 if (raw_real_type == NULL)
6768 return raw_type;
6769 else
6770 return raw_real_type;
6771 }
6772
6773 /* The type of value designated by TYPE, with all aligners removed. */
6774
6775 struct type *
6776 ada_aligned_type (struct type *type)
6777 {
6778 if (ada_is_aligner_type (type))
6779 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
6780 else
6781 return ada_get_base_type (type);
6782 }
6783
6784
6785 /* The address of the aligned value in an object at address VALADDR
6786 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
6787
6788 char *
6789 ada_aligned_value_addr (struct type *type, char *valaddr)
6790 {
6791 if (ada_is_aligner_type (type))
6792 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
6793 valaddr +
6794 TYPE_FIELD_BITPOS (type,
6795 0) / TARGET_CHAR_BIT);
6796 else
6797 return valaddr;
6798 }
6799
6800
6801
6802 /* The printed representation of an enumeration literal with encoded
6803 name NAME. The value is good to the next call of ada_enum_name. */
6804 const char *
6805 ada_enum_name (const char *name)
6806 {
6807 static char *result;
6808 static size_t result_len = 0;
6809 char *tmp;
6810
6811 /* First, unqualify the enumeration name:
6812 1. Search for the last '.' character. If we find one, then skip
6813 all the preceeding characters, the unqualified name starts
6814 right after that dot.
6815 2. Otherwise, we may be debugging on a target where the compiler
6816 translates dots into "__". Search forward for double underscores,
6817 but stop searching when we hit an overloading suffix, which is
6818 of the form "__" followed by digits. */
6819
6820 tmp = strrchr (name, '.');
6821 if (tmp != NULL)
6822 name = tmp + 1;
6823 else
6824 {
6825 while ((tmp = strstr (name, "__")) != NULL)
6826 {
6827 if (isdigit (tmp[2]))
6828 break;
6829 else
6830 name = tmp + 2;
6831 }
6832 }
6833
6834 if (name[0] == 'Q')
6835 {
6836 int v;
6837 if (name[1] == 'U' || name[1] == 'W')
6838 {
6839 if (sscanf (name + 2, "%x", &v) != 1)
6840 return name;
6841 }
6842 else
6843 return name;
6844
6845 GROW_VECT (result, result_len, 16);
6846 if (isascii (v) && isprint (v))
6847 sprintf (result, "'%c'", v);
6848 else if (name[1] == 'U')
6849 sprintf (result, "[\"%02x\"]", v);
6850 else
6851 sprintf (result, "[\"%04x\"]", v);
6852
6853 return result;
6854 }
6855 else
6856 {
6857 tmp = strstr (name, "__");
6858 if (tmp == NULL)
6859 tmp = strstr (name, "$");
6860 if (tmp != NULL)
6861 {
6862 GROW_VECT (result, result_len, tmp - name + 1);
6863 strncpy (result, name, tmp - name);
6864 result[tmp - name] = '\0';
6865 return result;
6866 }
6867
6868 return name;
6869 }
6870 }
6871
6872 static struct value *
6873 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
6874 enum noside noside)
6875 {
6876 return (*exp->language_defn->la_exp_desc->evaluate_exp)
6877 (expect_type, exp, pos, noside);
6878 }
6879
6880 /* Evaluate the subexpression of EXP starting at *POS as for
6881 evaluate_type, updating *POS to point just past the evaluated
6882 expression. */
6883
6884 static struct value *
6885 evaluate_subexp_type (struct expression *exp, int *pos)
6886 {
6887 return (*exp->language_defn->la_exp_desc->evaluate_exp)
6888 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
6889 }
6890
6891 /* If VAL is wrapped in an aligner or subtype wrapper, return the
6892 value it wraps. */
6893
6894 static struct value *
6895 unwrap_value (struct value *val)
6896 {
6897 struct type *type = ada_check_typedef (VALUE_TYPE (val));
6898 if (ada_is_aligner_type (type))
6899 {
6900 struct value *v = value_struct_elt (&val, NULL, "F",
6901 NULL, "internal structure");
6902 struct type *val_type = ada_check_typedef (VALUE_TYPE (v));
6903 if (ada_type_name (val_type) == NULL)
6904 TYPE_NAME (val_type) = ada_type_name (type);
6905
6906 return unwrap_value (v);
6907 }
6908 else
6909 {
6910 struct type *raw_real_type =
6911 ada_check_typedef (ada_get_base_type (type));
6912
6913 if (type == raw_real_type)
6914 return val;
6915
6916 return
6917 coerce_unspec_val_to_type
6918 (val, ada_to_fixed_type (raw_real_type, 0,
6919 VALUE_ADDRESS (val) + VALUE_OFFSET (val),
6920 NULL));
6921 }
6922 }
6923
6924 static struct value *
6925 cast_to_fixed (struct type *type, struct value *arg)
6926 {
6927 LONGEST val;
6928
6929 if (type == VALUE_TYPE (arg))
6930 return arg;
6931 else if (ada_is_fixed_point_type (VALUE_TYPE (arg)))
6932 val = ada_float_to_fixed (type,
6933 ada_fixed_to_float (VALUE_TYPE (arg),
6934 value_as_long (arg)));
6935 else
6936 {
6937 DOUBLEST argd =
6938 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
6939 val = ada_float_to_fixed (type, argd);
6940 }
6941
6942 return value_from_longest (type, val);
6943 }
6944
6945 static struct value *
6946 cast_from_fixed_to_double (struct value *arg)
6947 {
6948 DOUBLEST val = ada_fixed_to_float (VALUE_TYPE (arg),
6949 value_as_long (arg));
6950 return value_from_double (builtin_type_double, val);
6951 }
6952
6953 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
6954 return the converted value. */
6955
6956 static struct value *
6957 coerce_for_assign (struct type *type, struct value *val)
6958 {
6959 struct type *type2 = VALUE_TYPE (val);
6960 if (type == type2)
6961 return val;
6962
6963 type2 = ada_check_typedef (type2);
6964 type = ada_check_typedef (type);
6965
6966 if (TYPE_CODE (type2) == TYPE_CODE_PTR
6967 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
6968 {
6969 val = ada_value_ind (val);
6970 type2 = VALUE_TYPE (val);
6971 }
6972
6973 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
6974 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
6975 {
6976 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
6977 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
6978 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
6979 error ("Incompatible types in assignment");
6980 VALUE_TYPE (val) = type;
6981 }
6982 return val;
6983 }
6984
6985 static struct value *
6986 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
6987 {
6988 struct value *val;
6989 struct type *type1, *type2;
6990 LONGEST v, v1, v2;
6991
6992 COERCE_REF (arg1);
6993 COERCE_REF (arg2);
6994 type1 = base_type (ada_check_typedef (VALUE_TYPE (arg1)));
6995 type2 = base_type (ada_check_typedef (VALUE_TYPE (arg2)));
6996
6997 if (TYPE_CODE (type1) != TYPE_CODE_INT
6998 || TYPE_CODE (type2) != TYPE_CODE_INT)
6999 return value_binop (arg1, arg2, op);
7000
7001 switch (op)
7002 {
7003 case BINOP_MOD:
7004 case BINOP_DIV:
7005 case BINOP_REM:
7006 break;
7007 default:
7008 return value_binop (arg1, arg2, op);
7009 }
7010
7011 v2 = value_as_long (arg2);
7012 if (v2 == 0)
7013 error ("second operand of %s must not be zero.", op_string (op));
7014
7015 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7016 return value_binop (arg1, arg2, op);
7017
7018 v1 = value_as_long (arg1);
7019 switch (op)
7020 {
7021 case BINOP_DIV:
7022 v = v1 / v2;
7023 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7024 v += v > 0 ? -1 : 1;
7025 break;
7026 case BINOP_REM:
7027 v = v1 % v2;
7028 if (v * v1 < 0)
7029 v -= v2;
7030 break;
7031 default:
7032 /* Should not reach this point. */
7033 v = 0;
7034 }
7035
7036 val = allocate_value (type1);
7037 store_unsigned_integer (VALUE_CONTENTS_RAW (val),
7038 TYPE_LENGTH (VALUE_TYPE (val)), v);
7039 return val;
7040 }
7041
7042 static int
7043 ada_value_equal (struct value *arg1, struct value *arg2)
7044 {
7045 if (ada_is_direct_array_type (VALUE_TYPE (arg1))
7046 || ada_is_direct_array_type (VALUE_TYPE (arg2)))
7047 {
7048 arg1 = ada_coerce_to_simple_array (arg1);
7049 arg2 = ada_coerce_to_simple_array (arg2);
7050 if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_ARRAY
7051 || TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_ARRAY)
7052 error ("Attempt to compare array with non-array");
7053 /* FIXME: The following works only for types whose
7054 representations use all bits (no padding or undefined bits)
7055 and do not have user-defined equality. */
7056 return
7057 TYPE_LENGTH (VALUE_TYPE (arg1)) == TYPE_LENGTH (VALUE_TYPE (arg2))
7058 && memcmp (VALUE_CONTENTS (arg1), VALUE_CONTENTS (arg2),
7059 TYPE_LENGTH (VALUE_TYPE (arg1))) == 0;
7060 }
7061 return value_equal (arg1, arg2);
7062 }
7063
7064 struct value *
7065 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7066 int *pos, enum noside noside)
7067 {
7068 enum exp_opcode op;
7069 int tem, tem2, tem3;
7070 int pc;
7071 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7072 struct type *type;
7073 int nargs;
7074 struct value **argvec;
7075
7076 pc = *pos;
7077 *pos += 1;
7078 op = exp->elts[pc].opcode;
7079
7080 switch (op)
7081 {
7082 default:
7083 *pos -= 1;
7084 return
7085 unwrap_value (evaluate_subexp_standard
7086 (expect_type, exp, pos, noside));
7087
7088 case OP_STRING:
7089 {
7090 struct value *result;
7091 *pos -= 1;
7092 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7093 /* The result type will have code OP_STRING, bashed there from
7094 OP_ARRAY. Bash it back. */
7095 if (TYPE_CODE (VALUE_TYPE (result)) == TYPE_CODE_STRING)
7096 TYPE_CODE (VALUE_TYPE (result)) = TYPE_CODE_ARRAY;
7097 return result;
7098 }
7099
7100 case UNOP_CAST:
7101 (*pos) += 2;
7102 type = exp->elts[pc + 1].type;
7103 arg1 = evaluate_subexp (type, exp, pos, noside);
7104 if (noside == EVAL_SKIP)
7105 goto nosideret;
7106 if (type != ada_check_typedef (VALUE_TYPE (arg1)))
7107 {
7108 if (ada_is_fixed_point_type (type))
7109 arg1 = cast_to_fixed (type, arg1);
7110 else if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
7111 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7112 else if (VALUE_LVAL (arg1) == lval_memory)
7113 {
7114 /* This is in case of the really obscure (and undocumented,
7115 but apparently expected) case of (Foo) Bar.all, where Bar
7116 is an integer constant and Foo is a dynamic-sized type.
7117 If we don't do this, ARG1 will simply be relabeled with
7118 TYPE. */
7119 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7120 return value_zero (to_static_fixed_type (type), not_lval);
7121 arg1 =
7122 ada_to_fixed_value_create
7123 (type, VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), 0);
7124 }
7125 else
7126 arg1 = value_cast (type, arg1);
7127 }
7128 return arg1;
7129
7130 case UNOP_QUAL:
7131 (*pos) += 2;
7132 type = exp->elts[pc + 1].type;
7133 return ada_evaluate_subexp (type, exp, pos, noside);
7134
7135 case BINOP_ASSIGN:
7136 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7137 arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
7138 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7139 return arg1;
7140 if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
7141 arg2 = cast_to_fixed (VALUE_TYPE (arg1), arg2);
7142 else if (ada_is_fixed_point_type (VALUE_TYPE (arg2)))
7143 error
7144 ("Fixed-point values must be assigned to fixed-point variables");
7145 else
7146 arg2 = coerce_for_assign (VALUE_TYPE (arg1), arg2);
7147 return ada_value_assign (arg1, arg2);
7148
7149 case BINOP_ADD:
7150 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7151 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7152 if (noside == EVAL_SKIP)
7153 goto nosideret;
7154 if ((ada_is_fixed_point_type (VALUE_TYPE (arg1))
7155 || ada_is_fixed_point_type (VALUE_TYPE (arg2)))
7156 && VALUE_TYPE (arg1) != VALUE_TYPE (arg2))
7157 error ("Operands of fixed-point addition must have the same type");
7158 return value_cast (VALUE_TYPE (arg1), value_add (arg1, arg2));
7159
7160 case BINOP_SUB:
7161 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7162 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7163 if (noside == EVAL_SKIP)
7164 goto nosideret;
7165 if ((ada_is_fixed_point_type (VALUE_TYPE (arg1))
7166 || ada_is_fixed_point_type (VALUE_TYPE (arg2)))
7167 && VALUE_TYPE (arg1) != VALUE_TYPE (arg2))
7168 error ("Operands of fixed-point subtraction must have the same type");
7169 return value_cast (VALUE_TYPE (arg1), value_sub (arg1, arg2));
7170
7171 case BINOP_MUL:
7172 case BINOP_DIV:
7173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7174 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7175 if (noside == EVAL_SKIP)
7176 goto nosideret;
7177 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7178 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7179 return value_zero (VALUE_TYPE (arg1), not_lval);
7180 else
7181 {
7182 if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
7183 arg1 = cast_from_fixed_to_double (arg1);
7184 if (ada_is_fixed_point_type (VALUE_TYPE (arg2)))
7185 arg2 = cast_from_fixed_to_double (arg2);
7186 return ada_value_binop (arg1, arg2, op);
7187 }
7188
7189 case BINOP_REM:
7190 case BINOP_MOD:
7191 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7192 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7193 if (noside == EVAL_SKIP)
7194 goto nosideret;
7195 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7196 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7197 return value_zero (VALUE_TYPE (arg1), not_lval);
7198 else
7199 return ada_value_binop (arg1, arg2, op);
7200
7201 case BINOP_EQUAL:
7202 case BINOP_NOTEQUAL:
7203 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7204 arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
7205 if (noside == EVAL_SKIP)
7206 goto nosideret;
7207 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7208 tem = 0;
7209 else
7210 tem = ada_value_equal (arg1, arg2);
7211 if (op == BINOP_NOTEQUAL)
7212 tem = !tem;
7213 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7214
7215 case UNOP_NEG:
7216 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7217 if (noside == EVAL_SKIP)
7218 goto nosideret;
7219 else if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
7220 return value_cast (VALUE_TYPE (arg1), value_neg (arg1));
7221 else
7222 return value_neg (arg1);
7223
7224 case OP_VAR_VALUE:
7225 *pos -= 1;
7226 if (noside == EVAL_SKIP)
7227 {
7228 *pos += 4;
7229 goto nosideret;
7230 }
7231 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
7232 /* Only encountered when an unresolved symbol occurs in a
7233 context other than a function call, in which case, it is
7234 illegal. */
7235 error ("Unexpected unresolved symbol, %s, during evaluation",
7236 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
7237 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7238 {
7239 *pos += 4;
7240 return value_zero
7241 (to_static_fixed_type
7242 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7243 not_lval);
7244 }
7245 else
7246 {
7247 arg1 =
7248 unwrap_value (evaluate_subexp_standard
7249 (expect_type, exp, pos, noside));
7250 return ada_to_fixed_value (arg1);
7251 }
7252
7253 case OP_FUNCALL:
7254 (*pos) += 2;
7255
7256 /* Allocate arg vector, including space for the function to be
7257 called in argvec[0] and a terminating NULL. */
7258 nargs = longest_to_int (exp->elts[pc + 1].longconst);
7259 argvec =
7260 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
7261
7262 if (exp->elts[*pos].opcode == OP_VAR_VALUE
7263 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
7264 error ("Unexpected unresolved symbol, %s, during evaluation",
7265 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
7266 else
7267 {
7268 for (tem = 0; tem <= nargs; tem += 1)
7269 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7270 argvec[tem] = 0;
7271
7272 if (noside == EVAL_SKIP)
7273 goto nosideret;
7274 }
7275
7276 if (ada_is_packed_array_type (desc_base_type (VALUE_TYPE (argvec[0]))))
7277 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
7278 else if (TYPE_CODE (VALUE_TYPE (argvec[0])) == TYPE_CODE_REF
7279 || (TYPE_CODE (VALUE_TYPE (argvec[0])) == TYPE_CODE_ARRAY
7280 && VALUE_LVAL (argvec[0]) == lval_memory))
7281 argvec[0] = value_addr (argvec[0]);
7282
7283 type = ada_check_typedef (VALUE_TYPE (argvec[0]));
7284 if (TYPE_CODE (type) == TYPE_CODE_PTR)
7285 {
7286 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
7287 {
7288 case TYPE_CODE_FUNC:
7289 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
7290 break;
7291 case TYPE_CODE_ARRAY:
7292 break;
7293 case TYPE_CODE_STRUCT:
7294 if (noside != EVAL_AVOID_SIDE_EFFECTS)
7295 argvec[0] = ada_value_ind (argvec[0]);
7296 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
7297 break;
7298 default:
7299 error ("cannot subscript or call something of type `%s'",
7300 ada_type_name (VALUE_TYPE (argvec[0])));
7301 break;
7302 }
7303 }
7304
7305 switch (TYPE_CODE (type))
7306 {
7307 case TYPE_CODE_FUNC:
7308 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7309 return allocate_value (TYPE_TARGET_TYPE (type));
7310 return call_function_by_hand (argvec[0], nargs, argvec + 1);
7311 case TYPE_CODE_STRUCT:
7312 {
7313 int arity;
7314
7315 arity = ada_array_arity (type);
7316 type = ada_array_element_type (type, nargs);
7317 if (type == NULL)
7318 error ("cannot subscript or call a record");
7319 if (arity != nargs)
7320 error ("wrong number of subscripts; expecting %d", arity);
7321 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7322 return allocate_value (ada_aligned_type (type));
7323 return
7324 unwrap_value (ada_value_subscript
7325 (argvec[0], nargs, argvec + 1));
7326 }
7327 case TYPE_CODE_ARRAY:
7328 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7329 {
7330 type = ada_array_element_type (type, nargs);
7331 if (type == NULL)
7332 error ("element type of array unknown");
7333 else
7334 return allocate_value (ada_aligned_type (type));
7335 }
7336 return
7337 unwrap_value (ada_value_subscript
7338 (ada_coerce_to_simple_array (argvec[0]),
7339 nargs, argvec + 1));
7340 case TYPE_CODE_PTR: /* Pointer to array */
7341 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
7342 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7343 {
7344 type = ada_array_element_type (type, nargs);
7345 if (type == NULL)
7346 error ("element type of array unknown");
7347 else
7348 return allocate_value (ada_aligned_type (type));
7349 }
7350 return
7351 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
7352 nargs, argvec + 1));
7353
7354 default:
7355 error ("Internal error in evaluate_subexp");
7356 }
7357
7358 case TERNOP_SLICE:
7359 {
7360 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7361 struct value *low_bound_val =
7362 evaluate_subexp (NULL_TYPE, exp, pos, noside);
7363 LONGEST low_bound = pos_atr (low_bound_val);
7364 LONGEST high_bound
7365 = pos_atr (evaluate_subexp (NULL_TYPE, exp, pos, noside));
7366
7367 if (noside == EVAL_SKIP)
7368 goto nosideret;
7369
7370 /* If this is a reference to an aligner type, then remove all
7371 the aligners. */
7372 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_REF
7373 && ada_is_aligner_type (TYPE_TARGET_TYPE (VALUE_TYPE (array))))
7374 TYPE_TARGET_TYPE (VALUE_TYPE (array)) =
7375 ada_aligned_type (TYPE_TARGET_TYPE (VALUE_TYPE (array)));
7376
7377 if (ada_is_packed_array_type (VALUE_TYPE (array)))
7378 error ("cannot slice a packed array");
7379
7380 /* If this is a reference to an array or an array lvalue,
7381 convert to a pointer. */
7382 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_REF
7383 || (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_ARRAY
7384 && VALUE_LVAL (array) == lval_memory))
7385 array = value_addr (array);
7386
7387 if (noside == EVAL_AVOID_SIDE_EFFECTS
7388 && ada_is_array_descriptor_type (ada_check_typedef
7389 (VALUE_TYPE (array))))
7390 return empty_array (ada_type_of_array (array, 0), low_bound);
7391
7392 array = ada_coerce_to_simple_array_ptr (array);
7393
7394 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_PTR)
7395 {
7396 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
7397 return empty_array (TYPE_TARGET_TYPE (VALUE_TYPE (array)),
7398 low_bound);
7399 else
7400 {
7401 struct type *arr_type0 =
7402 to_fixed_array_type (TYPE_TARGET_TYPE (VALUE_TYPE (array)),
7403 NULL, 1);
7404 return ada_value_slice_ptr (array, arr_type0,
7405 (int) low_bound,
7406 (int) high_bound);
7407 }
7408 }
7409 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7410 return array;
7411 else if (high_bound < low_bound)
7412 return empty_array (VALUE_TYPE (array), low_bound);
7413 else
7414 return ada_value_slice (array, (int) low_bound, (int) high_bound);
7415 }
7416
7417 case UNOP_IN_RANGE:
7418 (*pos) += 2;
7419 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7420 type = exp->elts[pc + 1].type;
7421
7422 if (noside == EVAL_SKIP)
7423 goto nosideret;
7424
7425 switch (TYPE_CODE (type))
7426 {
7427 default:
7428 lim_warning ("Membership test incompletely implemented; "
7429 "always returns true");
7430 return value_from_longest (builtin_type_int, (LONGEST) 1);
7431
7432 case TYPE_CODE_RANGE:
7433 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
7434 arg3 = value_from_longest (builtin_type_int,
7435 TYPE_HIGH_BOUND (type));
7436 return
7437 value_from_longest (builtin_type_int,
7438 (value_less (arg1, arg3)
7439 || value_equal (arg1, arg3))
7440 && (value_less (arg2, arg1)
7441 || value_equal (arg2, arg1)));
7442 }
7443
7444 case BINOP_IN_BOUNDS:
7445 (*pos) += 2;
7446 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7447 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7448
7449 if (noside == EVAL_SKIP)
7450 goto nosideret;
7451
7452 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7453 return value_zero (builtin_type_int, not_lval);
7454
7455 tem = longest_to_int (exp->elts[pc + 1].longconst);
7456
7457 if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg2)))
7458 error ("invalid dimension number to '%s", "range");
7459
7460 arg3 = ada_array_bound (arg2, tem, 1);
7461 arg2 = ada_array_bound (arg2, tem, 0);
7462
7463 return
7464 value_from_longest (builtin_type_int,
7465 (value_less (arg1, arg3)
7466 || value_equal (arg1, arg3))
7467 && (value_less (arg2, arg1)
7468 || value_equal (arg2, arg1)));
7469
7470 case TERNOP_IN_RANGE:
7471 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7472 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7473 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7474
7475 if (noside == EVAL_SKIP)
7476 goto nosideret;
7477
7478 return
7479 value_from_longest (builtin_type_int,
7480 (value_less (arg1, arg3)
7481 || value_equal (arg1, arg3))
7482 && (value_less (arg2, arg1)
7483 || value_equal (arg2, arg1)));
7484
7485 case OP_ATR_FIRST:
7486 case OP_ATR_LAST:
7487 case OP_ATR_LENGTH:
7488 {
7489 struct type *type_arg;
7490 if (exp->elts[*pos].opcode == OP_TYPE)
7491 {
7492 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7493 arg1 = NULL;
7494 type_arg = exp->elts[pc + 2].type;
7495 }
7496 else
7497 {
7498 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7499 type_arg = NULL;
7500 }
7501
7502 if (exp->elts[*pos].opcode != OP_LONG)
7503 error ("illegal operand to '%s", ada_attribute_name (op));
7504 tem = longest_to_int (exp->elts[*pos + 2].longconst);
7505 *pos += 4;
7506
7507 if (noside == EVAL_SKIP)
7508 goto nosideret;
7509
7510 if (type_arg == NULL)
7511 {
7512 arg1 = ada_coerce_ref (arg1);
7513
7514 if (ada_is_packed_array_type (VALUE_TYPE (arg1)))
7515 arg1 = ada_coerce_to_simple_array (arg1);
7516
7517 if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg1)))
7518 error ("invalid dimension number to '%s",
7519 ada_attribute_name (op));
7520
7521 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7522 {
7523 type = ada_index_type (VALUE_TYPE (arg1), tem);
7524 if (type == NULL)
7525 error
7526 ("attempt to take bound of something that is not an array");
7527 return allocate_value (type);
7528 }
7529
7530 switch (op)
7531 {
7532 default: /* Should never happen. */
7533 error ("unexpected attribute encountered");
7534 case OP_ATR_FIRST:
7535 return ada_array_bound (arg1, tem, 0);
7536 case OP_ATR_LAST:
7537 return ada_array_bound (arg1, tem, 1);
7538 case OP_ATR_LENGTH:
7539 return ada_array_length (arg1, tem);
7540 }
7541 }
7542 else if (discrete_type_p (type_arg))
7543 {
7544 struct type *range_type;
7545 char *name = ada_type_name (type_arg);
7546 range_type = NULL;
7547 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
7548 range_type =
7549 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
7550 if (range_type == NULL)
7551 range_type = type_arg;
7552 switch (op)
7553 {
7554 default:
7555 error ("unexpected attribute encountered");
7556 case OP_ATR_FIRST:
7557 return discrete_type_low_bound (range_type);
7558 case OP_ATR_LAST:
7559 return discrete_type_high_bound (range_type);
7560 case OP_ATR_LENGTH:
7561 error ("the 'length attribute applies only to array types");
7562 }
7563 }
7564 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
7565 error ("unimplemented type attribute");
7566 else
7567 {
7568 LONGEST low, high;
7569
7570 if (ada_is_packed_array_type (type_arg))
7571 type_arg = decode_packed_array_type (type_arg);
7572
7573 if (tem < 1 || tem > ada_array_arity (type_arg))
7574 error ("invalid dimension number to '%s",
7575 ada_attribute_name (op));
7576
7577 type = ada_index_type (type_arg, tem);
7578 if (type == NULL)
7579 error
7580 ("attempt to take bound of something that is not an array");
7581 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7582 return allocate_value (type);
7583
7584 switch (op)
7585 {
7586 default:
7587 error ("unexpected attribute encountered");
7588 case OP_ATR_FIRST:
7589 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
7590 return value_from_longest (type, low);
7591 case OP_ATR_LAST:
7592 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
7593 return value_from_longest (type, high);
7594 case OP_ATR_LENGTH:
7595 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
7596 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
7597 return value_from_longest (type, high - low + 1);
7598 }
7599 }
7600 }
7601
7602 case OP_ATR_TAG:
7603 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7604 if (noside == EVAL_SKIP)
7605 goto nosideret;
7606
7607 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7608 return value_zero (ada_tag_type (arg1), not_lval);
7609
7610 return ada_value_tag (arg1);
7611
7612 case OP_ATR_MIN:
7613 case OP_ATR_MAX:
7614 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7615 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7616 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7617 if (noside == EVAL_SKIP)
7618 goto nosideret;
7619 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7620 return value_zero (VALUE_TYPE (arg1), not_lval);
7621 else
7622 return value_binop (arg1, arg2,
7623 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
7624
7625 case OP_ATR_MODULUS:
7626 {
7627 struct type *type_arg = exp->elts[pc + 2].type;
7628 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7629
7630 if (noside == EVAL_SKIP)
7631 goto nosideret;
7632
7633 if (!ada_is_modular_type (type_arg))
7634 error ("'modulus must be applied to modular type");
7635
7636 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
7637 ada_modulus (type_arg));
7638 }
7639
7640
7641 case OP_ATR_POS:
7642 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7643 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7644 if (noside == EVAL_SKIP)
7645 goto nosideret;
7646 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7647 return value_zero (builtin_type_int, not_lval);
7648 else
7649 return value_pos_atr (arg1);
7650
7651 case OP_ATR_SIZE:
7652 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7653 if (noside == EVAL_SKIP)
7654 goto nosideret;
7655 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7656 return value_zero (builtin_type_int, not_lval);
7657 else
7658 return value_from_longest (builtin_type_int,
7659 TARGET_CHAR_BIT
7660 * TYPE_LENGTH (VALUE_TYPE (arg1)));
7661
7662 case OP_ATR_VAL:
7663 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7664 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7665 type = exp->elts[pc + 2].type;
7666 if (noside == EVAL_SKIP)
7667 goto nosideret;
7668 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7669 return value_zero (type, not_lval);
7670 else
7671 return value_val_atr (type, arg1);
7672
7673 case BINOP_EXP:
7674 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7675 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7676 if (noside == EVAL_SKIP)
7677 goto nosideret;
7678 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7679 return value_zero (VALUE_TYPE (arg1), not_lval);
7680 else
7681 return value_binop (arg1, arg2, op);
7682
7683 case UNOP_PLUS:
7684 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7685 if (noside == EVAL_SKIP)
7686 goto nosideret;
7687 else
7688 return arg1;
7689
7690 case UNOP_ABS:
7691 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7692 if (noside == EVAL_SKIP)
7693 goto nosideret;
7694 if (value_less (arg1, value_zero (VALUE_TYPE (arg1), not_lval)))
7695 return value_neg (arg1);
7696 else
7697 return arg1;
7698
7699 case UNOP_IND:
7700 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
7701 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
7702 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
7703 if (noside == EVAL_SKIP)
7704 goto nosideret;
7705 type = ada_check_typedef (VALUE_TYPE (arg1));
7706 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7707 {
7708 if (ada_is_array_descriptor_type (type))
7709 /* GDB allows dereferencing GNAT array descriptors. */
7710 {
7711 struct type *arrType = ada_type_of_array (arg1, 0);
7712 if (arrType == NULL)
7713 error ("Attempt to dereference null array pointer.");
7714 return value_at_lazy (arrType, 0, NULL);
7715 }
7716 else if (TYPE_CODE (type) == TYPE_CODE_PTR
7717 || TYPE_CODE (type) == TYPE_CODE_REF
7718 /* In C you can dereference an array to get the 1st elt. */
7719 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
7720 return
7721 value_zero
7722 (to_static_fixed_type
7723 (ada_aligned_type (check_typedef (TYPE_TARGET_TYPE (type)))),
7724 lval_memory);
7725 else if (TYPE_CODE (type) == TYPE_CODE_INT)
7726 /* GDB allows dereferencing an int. */
7727 return value_zero (builtin_type_int, lval_memory);
7728 else
7729 error ("Attempt to take contents of a non-pointer value.");
7730 }
7731 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
7732 type = ada_check_typedef (VALUE_TYPE (arg1));
7733
7734 if (ada_is_array_descriptor_type (type))
7735 /* GDB allows dereferencing GNAT array descriptors. */
7736 return ada_coerce_to_simple_array (arg1);
7737 else
7738 return ada_value_ind (arg1);
7739
7740 case STRUCTOP_STRUCT:
7741 tem = longest_to_int (exp->elts[pc + 1].longconst);
7742 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
7743 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7744 if (noside == EVAL_SKIP)
7745 goto nosideret;
7746 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7747 {
7748 struct type *type1 = VALUE_TYPE (arg1);
7749 if (ada_is_tagged_type (type1, 1))
7750 {
7751 type = ada_lookup_struct_elt_type (type1,
7752 &exp->elts[pc + 2].string,
7753 1, 1, NULL);
7754 if (type == NULL)
7755 /* In this case, we assume that the field COULD exist
7756 in some extension of the type. Return an object of
7757 "type" void, which will match any formal
7758 (see ada_type_match). */
7759 return value_zero (builtin_type_void, lval_memory);
7760 }
7761 else
7762 type =
7763 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
7764 0, NULL);
7765
7766 return value_zero (ada_aligned_type (type), lval_memory);
7767 }
7768 else
7769 return
7770 ada_to_fixed_value (unwrap_value
7771 (ada_value_struct_elt
7772 (arg1, &exp->elts[pc + 2].string, "record")));
7773 case OP_TYPE:
7774 /* The value is not supposed to be used. This is here to make it
7775 easier to accommodate expressions that contain types. */
7776 (*pos) += 2;
7777 if (noside == EVAL_SKIP)
7778 goto nosideret;
7779 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7780 return allocate_value (builtin_type_void);
7781 else
7782 error ("Attempt to use a type name as an expression");
7783 }
7784
7785 nosideret:
7786 return value_from_longest (builtin_type_long, (LONGEST) 1);
7787 }
7788 \f
7789
7790 /* Fixed point */
7791
7792 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
7793 type name that encodes the 'small and 'delta information.
7794 Otherwise, return NULL. */
7795
7796 static const char *
7797 fixed_type_info (struct type *type)
7798 {
7799 const char *name = ada_type_name (type);
7800 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
7801
7802 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
7803 {
7804 const char *tail = strstr (name, "___XF_");
7805 if (tail == NULL)
7806 return NULL;
7807 else
7808 return tail + 5;
7809 }
7810 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
7811 return fixed_type_info (TYPE_TARGET_TYPE (type));
7812 else
7813 return NULL;
7814 }
7815
7816 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
7817
7818 int
7819 ada_is_fixed_point_type (struct type *type)
7820 {
7821 return fixed_type_info (type) != NULL;
7822 }
7823
7824 /* Return non-zero iff TYPE represents a System.Address type. */
7825
7826 int
7827 ada_is_system_address_type (struct type *type)
7828 {
7829 return (TYPE_NAME (type)
7830 && strcmp (TYPE_NAME (type), "system__address") == 0);
7831 }
7832
7833 /* Assuming that TYPE is the representation of an Ada fixed-point
7834 type, return its delta, or -1 if the type is malformed and the
7835 delta cannot be determined. */
7836
7837 DOUBLEST
7838 ada_delta (struct type *type)
7839 {
7840 const char *encoding = fixed_type_info (type);
7841 long num, den;
7842
7843 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
7844 return -1.0;
7845 else
7846 return (DOUBLEST) num / (DOUBLEST) den;
7847 }
7848
7849 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
7850 factor ('SMALL value) associated with the type. */
7851
7852 static DOUBLEST
7853 scaling_factor (struct type *type)
7854 {
7855 const char *encoding = fixed_type_info (type);
7856 unsigned long num0, den0, num1, den1;
7857 int n;
7858
7859 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
7860
7861 if (n < 2)
7862 return 1.0;
7863 else if (n == 4)
7864 return (DOUBLEST) num1 / (DOUBLEST) den1;
7865 else
7866 return (DOUBLEST) num0 / (DOUBLEST) den0;
7867 }
7868
7869
7870 /* Assuming that X is the representation of a value of fixed-point
7871 type TYPE, return its floating-point equivalent. */
7872
7873 DOUBLEST
7874 ada_fixed_to_float (struct type *type, LONGEST x)
7875 {
7876 return (DOUBLEST) x *scaling_factor (type);
7877 }
7878
7879 /* The representation of a fixed-point value of type TYPE
7880 corresponding to the value X. */
7881
7882 LONGEST
7883 ada_float_to_fixed (struct type *type, DOUBLEST x)
7884 {
7885 return (LONGEST) (x / scaling_factor (type) + 0.5);
7886 }
7887
7888
7889 /* VAX floating formats */
7890
7891 /* Non-zero iff TYPE represents one of the special VAX floating-point
7892 types. */
7893
7894 int
7895 ada_is_vax_floating_type (struct type *type)
7896 {
7897 int name_len =
7898 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
7899 return
7900 name_len > 6
7901 && (TYPE_CODE (type) == TYPE_CODE_INT
7902 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7903 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
7904 }
7905
7906 /* The type of special VAX floating-point type this is, assuming
7907 ada_is_vax_floating_point. */
7908
7909 int
7910 ada_vax_float_type_suffix (struct type *type)
7911 {
7912 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
7913 }
7914
7915 /* A value representing the special debugging function that outputs
7916 VAX floating-point values of the type represented by TYPE. Assumes
7917 ada_is_vax_floating_type (TYPE). */
7918
7919 struct value *
7920 ada_vax_float_print_function (struct type *type)
7921 {
7922 switch (ada_vax_float_type_suffix (type))
7923 {
7924 case 'F':
7925 return get_var_value ("DEBUG_STRING_F", 0);
7926 case 'D':
7927 return get_var_value ("DEBUG_STRING_D", 0);
7928 case 'G':
7929 return get_var_value ("DEBUG_STRING_G", 0);
7930 default:
7931 error ("invalid VAX floating-point type");
7932 }
7933 }
7934 \f
7935
7936 /* Range types */
7937
7938 /* Scan STR beginning at position K for a discriminant name, and
7939 return the value of that discriminant field of DVAL in *PX. If
7940 PNEW_K is not null, put the position of the character beyond the
7941 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
7942 not alter *PX and *PNEW_K if unsuccessful. */
7943
7944 static int
7945 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
7946 int *pnew_k)
7947 {
7948 static char *bound_buffer = NULL;
7949 static size_t bound_buffer_len = 0;
7950 char *bound;
7951 char *pend;
7952 struct value *bound_val;
7953
7954 if (dval == NULL || str == NULL || str[k] == '\0')
7955 return 0;
7956
7957 pend = strstr (str + k, "__");
7958 if (pend == NULL)
7959 {
7960 bound = str + k;
7961 k += strlen (bound);
7962 }
7963 else
7964 {
7965 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
7966 bound = bound_buffer;
7967 strncpy (bound_buffer, str + k, pend - (str + k));
7968 bound[pend - (str + k)] = '\0';
7969 k = pend - str;
7970 }
7971
7972 bound_val = ada_search_struct_field (bound, dval, 0, VALUE_TYPE (dval));
7973 if (bound_val == NULL)
7974 return 0;
7975
7976 *px = value_as_long (bound_val);
7977 if (pnew_k != NULL)
7978 *pnew_k = k;
7979 return 1;
7980 }
7981
7982 /* Value of variable named NAME in the current environment. If
7983 no such variable found, then if ERR_MSG is null, returns 0, and
7984 otherwise causes an error with message ERR_MSG. */
7985
7986 static struct value *
7987 get_var_value (char *name, char *err_msg)
7988 {
7989 struct ada_symbol_info *syms;
7990 int nsyms;
7991
7992 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
7993 &syms);
7994
7995 if (nsyms != 1)
7996 {
7997 if (err_msg == NULL)
7998 return 0;
7999 else
8000 error ("%s", err_msg);
8001 }
8002
8003 return value_of_variable (syms[0].sym, syms[0].block);
8004 }
8005
8006 /* Value of integer variable named NAME in the current environment. If
8007 no such variable found, returns 0, and sets *FLAG to 0. If
8008 successful, sets *FLAG to 1. */
8009
8010 LONGEST
8011 get_int_var_value (char *name, int *flag)
8012 {
8013 struct value *var_val = get_var_value (name, 0);
8014
8015 if (var_val == 0)
8016 {
8017 if (flag != NULL)
8018 *flag = 0;
8019 return 0;
8020 }
8021 else
8022 {
8023 if (flag != NULL)
8024 *flag = 1;
8025 return value_as_long (var_val);
8026 }
8027 }
8028
8029
8030 /* Return a range type whose base type is that of the range type named
8031 NAME in the current environment, and whose bounds are calculated
8032 from NAME according to the GNAT range encoding conventions.
8033 Extract discriminant values, if needed, from DVAL. If a new type
8034 must be created, allocate in OBJFILE's space. The bounds
8035 information, in general, is encoded in NAME, the base type given in
8036 the named range type. */
8037
8038 static struct type *
8039 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8040 {
8041 struct type *raw_type = ada_find_any_type (name);
8042 struct type *base_type;
8043 char *subtype_info;
8044
8045 if (raw_type == NULL)
8046 base_type = builtin_type_int;
8047 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8048 base_type = TYPE_TARGET_TYPE (raw_type);
8049 else
8050 base_type = raw_type;
8051
8052 subtype_info = strstr (name, "___XD");
8053 if (subtype_info == NULL)
8054 return raw_type;
8055 else
8056 {
8057 static char *name_buf = NULL;
8058 static size_t name_len = 0;
8059 int prefix_len = subtype_info - name;
8060 LONGEST L, U;
8061 struct type *type;
8062 char *bounds_str;
8063 int n;
8064
8065 GROW_VECT (name_buf, name_len, prefix_len + 5);
8066 strncpy (name_buf, name, prefix_len);
8067 name_buf[prefix_len] = '\0';
8068
8069 subtype_info += 5;
8070 bounds_str = strchr (subtype_info, '_');
8071 n = 1;
8072
8073 if (*subtype_info == 'L')
8074 {
8075 if (!ada_scan_number (bounds_str, n, &L, &n)
8076 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8077 return raw_type;
8078 if (bounds_str[n] == '_')
8079 n += 2;
8080 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8081 n += 1;
8082 subtype_info += 1;
8083 }
8084 else
8085 {
8086 int ok;
8087 strcpy (name_buf + prefix_len, "___L");
8088 L = get_int_var_value (name_buf, &ok);
8089 if (!ok)
8090 {
8091 lim_warning ("Unknown lower bound, using 1.");
8092 L = 1;
8093 }
8094 }
8095
8096 if (*subtype_info == 'U')
8097 {
8098 if (!ada_scan_number (bounds_str, n, &U, &n)
8099 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8100 return raw_type;
8101 }
8102 else
8103 {
8104 int ok;
8105 strcpy (name_buf + prefix_len, "___U");
8106 U = get_int_var_value (name_buf, &ok);
8107 if (!ok)
8108 {
8109 lim_warning ("Unknown upper bound, using %ld.", (long) L);
8110 U = L;
8111 }
8112 }
8113
8114 if (objfile == NULL)
8115 objfile = TYPE_OBJFILE (base_type);
8116 type = create_range_type (alloc_type (objfile), base_type, L, U);
8117 TYPE_NAME (type) = name;
8118 return type;
8119 }
8120 }
8121
8122 /* True iff NAME is the name of a range type. */
8123
8124 int
8125 ada_is_range_type_name (const char *name)
8126 {
8127 return (name != NULL && strstr (name, "___XD"));
8128 }
8129 \f
8130
8131 /* Modular types */
8132
8133 /* True iff TYPE is an Ada modular type. */
8134
8135 int
8136 ada_is_modular_type (struct type *type)
8137 {
8138 struct type *subranged_type = base_type (type);
8139
8140 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8141 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8142 && TYPE_UNSIGNED (subranged_type));
8143 }
8144
8145 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8146
8147 ULONGEST
8148 ada_modulus (struct type * type)
8149 {
8150 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8151 }
8152 \f
8153 /* Operators */
8154 /* Information about operators given special treatment in functions
8155 below. */
8156 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
8157
8158 #define ADA_OPERATORS \
8159 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
8160 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
8161 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
8162 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
8163 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
8164 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
8165 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
8166 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
8167 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
8168 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
8169 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
8170 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
8171 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
8172 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
8173 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
8174 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0)
8175
8176 static void
8177 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
8178 {
8179 switch (exp->elts[pc - 1].opcode)
8180 {
8181 default:
8182 operator_length_standard (exp, pc, oplenp, argsp);
8183 break;
8184
8185 #define OP_DEFN(op, len, args, binop) \
8186 case op: *oplenp = len; *argsp = args; break;
8187 ADA_OPERATORS;
8188 #undef OP_DEFN
8189 }
8190 }
8191
8192 static char *
8193 ada_op_name (enum exp_opcode opcode)
8194 {
8195 switch (opcode)
8196 {
8197 default:
8198 return op_name_standard (opcode);
8199 #define OP_DEFN(op, len, args, binop) case op: return #op;
8200 ADA_OPERATORS;
8201 #undef OP_DEFN
8202 }
8203 }
8204
8205 /* As for operator_length, but assumes PC is pointing at the first
8206 element of the operator, and gives meaningful results only for the
8207 Ada-specific operators. */
8208
8209 static void
8210 ada_forward_operator_length (struct expression *exp, int pc,
8211 int *oplenp, int *argsp)
8212 {
8213 switch (exp->elts[pc].opcode)
8214 {
8215 default:
8216 *oplenp = *argsp = 0;
8217 break;
8218 #define OP_DEFN(op, len, args, binop) \
8219 case op: *oplenp = len; *argsp = args; break;
8220 ADA_OPERATORS;
8221 #undef OP_DEFN
8222 }
8223 }
8224
8225 static int
8226 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
8227 {
8228 enum exp_opcode op = exp->elts[elt].opcode;
8229 int oplen, nargs;
8230 int pc = elt;
8231 int i;
8232
8233 ada_forward_operator_length (exp, elt, &oplen, &nargs);
8234
8235 switch (op)
8236 {
8237 /* Ada attributes ('Foo). */
8238 case OP_ATR_FIRST:
8239 case OP_ATR_LAST:
8240 case OP_ATR_LENGTH:
8241 case OP_ATR_IMAGE:
8242 case OP_ATR_MAX:
8243 case OP_ATR_MIN:
8244 case OP_ATR_MODULUS:
8245 case OP_ATR_POS:
8246 case OP_ATR_SIZE:
8247 case OP_ATR_TAG:
8248 case OP_ATR_VAL:
8249 break;
8250
8251 case UNOP_IN_RANGE:
8252 case UNOP_QUAL:
8253 fprintf_filtered (stream, "Type @");
8254 gdb_print_host_address (exp->elts[pc + 1].type, stream);
8255 fprintf_filtered (stream, " (");
8256 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
8257 fprintf_filtered (stream, ")");
8258 break;
8259 case BINOP_IN_BOUNDS:
8260 fprintf_filtered (stream, " (%d)", (int) exp->elts[pc + 2].longconst);
8261 break;
8262 case TERNOP_IN_RANGE:
8263 break;
8264
8265 default:
8266 return dump_subexp_body_standard (exp, stream, elt);
8267 }
8268
8269 elt += oplen;
8270 for (i = 0; i < nargs; i += 1)
8271 elt = dump_subexp (exp, stream, elt);
8272
8273 return elt;
8274 }
8275
8276 /* The Ada extension of print_subexp (q.v.). */
8277
8278 static void
8279 ada_print_subexp (struct expression *exp, int *pos,
8280 struct ui_file *stream, enum precedence prec)
8281 {
8282 int oplen, nargs;
8283 int pc = *pos;
8284 enum exp_opcode op = exp->elts[pc].opcode;
8285
8286 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8287
8288 switch (op)
8289 {
8290 default:
8291 print_subexp_standard (exp, pos, stream, prec);
8292 return;
8293
8294 case OP_VAR_VALUE:
8295 *pos += oplen;
8296 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
8297 return;
8298
8299 case BINOP_IN_BOUNDS:
8300 *pos += oplen;
8301 print_subexp (exp, pos, stream, PREC_SUFFIX);
8302 fputs_filtered (" in ", stream);
8303 print_subexp (exp, pos, stream, PREC_SUFFIX);
8304 fputs_filtered ("'range", stream);
8305 if (exp->elts[pc + 1].longconst > 1)
8306 fprintf_filtered (stream, "(%ld)",
8307 (long) exp->elts[pc + 1].longconst);
8308 return;
8309
8310 case TERNOP_IN_RANGE:
8311 *pos += oplen;
8312 if (prec >= PREC_EQUAL)
8313 fputs_filtered ("(", stream);
8314 print_subexp (exp, pos, stream, PREC_SUFFIX);
8315 fputs_filtered (" in ", stream);
8316 print_subexp (exp, pos, stream, PREC_EQUAL);
8317 fputs_filtered (" .. ", stream);
8318 print_subexp (exp, pos, stream, PREC_EQUAL);
8319 if (prec >= PREC_EQUAL)
8320 fputs_filtered (")", stream);
8321 return;
8322
8323 case OP_ATR_FIRST:
8324 case OP_ATR_LAST:
8325 case OP_ATR_LENGTH:
8326 case OP_ATR_IMAGE:
8327 case OP_ATR_MAX:
8328 case OP_ATR_MIN:
8329 case OP_ATR_MODULUS:
8330 case OP_ATR_POS:
8331 case OP_ATR_SIZE:
8332 case OP_ATR_TAG:
8333 case OP_ATR_VAL:
8334 *pos += oplen;
8335 if (exp->elts[*pos].opcode == OP_TYPE)
8336 {
8337 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
8338 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
8339 *pos += 3;
8340 }
8341 else
8342 print_subexp (exp, pos, stream, PREC_SUFFIX);
8343 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
8344 if (nargs > 1)
8345 {
8346 int tem;
8347 for (tem = 1; tem < nargs; tem += 1)
8348 {
8349 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
8350 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
8351 }
8352 fputs_filtered (")", stream);
8353 }
8354 return;
8355
8356 case UNOP_QUAL:
8357 *pos += oplen;
8358 type_print (exp->elts[pc + 1].type, "", stream, 0);
8359 fputs_filtered ("'(", stream);
8360 print_subexp (exp, pos, stream, PREC_PREFIX);
8361 fputs_filtered (")", stream);
8362 return;
8363
8364 case UNOP_IN_RANGE:
8365 *pos += oplen;
8366 print_subexp (exp, pos, stream, PREC_SUFFIX);
8367 fputs_filtered (" in ", stream);
8368 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
8369 return;
8370 }
8371 }
8372
8373 /* Table mapping opcodes into strings for printing operators
8374 and precedences of the operators. */
8375
8376 static const struct op_print ada_op_print_tab[] = {
8377 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
8378 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
8379 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
8380 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
8381 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
8382 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
8383 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
8384 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
8385 {"<=", BINOP_LEQ, PREC_ORDER, 0},
8386 {">=", BINOP_GEQ, PREC_ORDER, 0},
8387 {">", BINOP_GTR, PREC_ORDER, 0},
8388 {"<", BINOP_LESS, PREC_ORDER, 0},
8389 {">>", BINOP_RSH, PREC_SHIFT, 0},
8390 {"<<", BINOP_LSH, PREC_SHIFT, 0},
8391 {"+", BINOP_ADD, PREC_ADD, 0},
8392 {"-", BINOP_SUB, PREC_ADD, 0},
8393 {"&", BINOP_CONCAT, PREC_ADD, 0},
8394 {"*", BINOP_MUL, PREC_MUL, 0},
8395 {"/", BINOP_DIV, PREC_MUL, 0},
8396 {"rem", BINOP_REM, PREC_MUL, 0},
8397 {"mod", BINOP_MOD, PREC_MUL, 0},
8398 {"**", BINOP_EXP, PREC_REPEAT, 0},
8399 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
8400 {"-", UNOP_NEG, PREC_PREFIX, 0},
8401 {"+", UNOP_PLUS, PREC_PREFIX, 0},
8402 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
8403 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
8404 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
8405 {".all", UNOP_IND, PREC_SUFFIX, 1},
8406 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
8407 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
8408 {NULL, 0, 0, 0}
8409 };
8410 \f
8411 /* Fundamental Ada Types */
8412
8413 /* Create a fundamental Ada type using default reasonable for the current
8414 target machine.
8415
8416 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
8417 define fundamental types such as "int" or "double". Others (stabs or
8418 DWARF version 2, etc) do define fundamental types. For the formats which
8419 don't provide fundamental types, gdb can create such types using this
8420 function.
8421
8422 FIXME: Some compilers distinguish explicitly signed integral types
8423 (signed short, signed int, signed long) from "regular" integral types
8424 (short, int, long) in the debugging information. There is some dis-
8425 agreement as to how useful this feature is. In particular, gcc does
8426 not support this. Also, only some debugging formats allow the
8427 distinction to be passed on to a debugger. For now, we always just
8428 use "short", "int", or "long" as the type name, for both the implicit
8429 and explicitly signed types. This also makes life easier for the
8430 gdb test suite since we don't have to account for the differences
8431 in output depending upon what the compiler and debugging format
8432 support. We will probably have to re-examine the issue when gdb
8433 starts taking it's fundamental type information directly from the
8434 debugging information supplied by the compiler. fnf@cygnus.com */
8435
8436 static struct type *
8437 ada_create_fundamental_type (struct objfile *objfile, int typeid)
8438 {
8439 struct type *type = NULL;
8440
8441 switch (typeid)
8442 {
8443 default:
8444 /* FIXME: For now, if we are asked to produce a type not in this
8445 language, create the equivalent of a C integer type with the
8446 name "<?type?>". When all the dust settles from the type
8447 reconstruction work, this should probably become an error. */
8448 type = init_type (TYPE_CODE_INT,
8449 TARGET_INT_BIT / TARGET_CHAR_BIT,
8450 0, "<?type?>", objfile);
8451 warning ("internal error: no Ada fundamental type %d", typeid);
8452 break;
8453 case FT_VOID:
8454 type = init_type (TYPE_CODE_VOID,
8455 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8456 0, "void", objfile);
8457 break;
8458 case FT_CHAR:
8459 type = init_type (TYPE_CODE_INT,
8460 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8461 0, "character", objfile);
8462 break;
8463 case FT_SIGNED_CHAR:
8464 type = init_type (TYPE_CODE_INT,
8465 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8466 0, "signed char", objfile);
8467 break;
8468 case FT_UNSIGNED_CHAR:
8469 type = init_type (TYPE_CODE_INT,
8470 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8471 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
8472 break;
8473 case FT_SHORT:
8474 type = init_type (TYPE_CODE_INT,
8475 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8476 0, "short_integer", objfile);
8477 break;
8478 case FT_SIGNED_SHORT:
8479 type = init_type (TYPE_CODE_INT,
8480 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8481 0, "short_integer", objfile);
8482 break;
8483 case FT_UNSIGNED_SHORT:
8484 type = init_type (TYPE_CODE_INT,
8485 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8486 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
8487 break;
8488 case FT_INTEGER:
8489 type = init_type (TYPE_CODE_INT,
8490 TARGET_INT_BIT / TARGET_CHAR_BIT,
8491 0, "integer", objfile);
8492 break;
8493 case FT_SIGNED_INTEGER:
8494 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT /
8495 TARGET_CHAR_BIT,
8496 0, "integer", objfile); /* FIXME -fnf */
8497 break;
8498 case FT_UNSIGNED_INTEGER:
8499 type = init_type (TYPE_CODE_INT,
8500 TARGET_INT_BIT / TARGET_CHAR_BIT,
8501 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
8502 break;
8503 case FT_LONG:
8504 type = init_type (TYPE_CODE_INT,
8505 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8506 0, "long_integer", objfile);
8507 break;
8508 case FT_SIGNED_LONG:
8509 type = init_type (TYPE_CODE_INT,
8510 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8511 0, "long_integer", objfile);
8512 break;
8513 case FT_UNSIGNED_LONG:
8514 type = init_type (TYPE_CODE_INT,
8515 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8516 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
8517 break;
8518 case FT_LONG_LONG:
8519 type = init_type (TYPE_CODE_INT,
8520 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8521 0, "long_long_integer", objfile);
8522 break;
8523 case FT_SIGNED_LONG_LONG:
8524 type = init_type (TYPE_CODE_INT,
8525 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8526 0, "long_long_integer", objfile);
8527 break;
8528 case FT_UNSIGNED_LONG_LONG:
8529 type = init_type (TYPE_CODE_INT,
8530 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8531 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
8532 break;
8533 case FT_FLOAT:
8534 type = init_type (TYPE_CODE_FLT,
8535 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
8536 0, "float", objfile);
8537 break;
8538 case FT_DBL_PREC_FLOAT:
8539 type = init_type (TYPE_CODE_FLT,
8540 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
8541 0, "long_float", objfile);
8542 break;
8543 case FT_EXT_PREC_FLOAT:
8544 type = init_type (TYPE_CODE_FLT,
8545 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
8546 0, "long_long_float", objfile);
8547 break;
8548 }
8549 return (type);
8550 }
8551
8552 enum ada_primitive_types {
8553 ada_primitive_type_int,
8554 ada_primitive_type_long,
8555 ada_primitive_type_short,
8556 ada_primitive_type_char,
8557 ada_primitive_type_float,
8558 ada_primitive_type_double,
8559 ada_primitive_type_void,
8560 ada_primitive_type_long_long,
8561 ada_primitive_type_long_double,
8562 ada_primitive_type_natural,
8563 ada_primitive_type_positive,
8564 ada_primitive_type_system_address,
8565 nr_ada_primitive_types
8566 };
8567
8568 static void
8569 ada_language_arch_info (struct gdbarch *current_gdbarch,
8570 struct language_arch_info *lai)
8571 {
8572 const struct builtin_type *builtin = builtin_type (current_gdbarch);
8573 lai->primitive_type_vector
8574 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
8575 struct type *);
8576 lai->primitive_type_vector [ada_primitive_type_int] =
8577 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8578 0, "integer", (struct objfile *) NULL);
8579 lai->primitive_type_vector [ada_primitive_type_long] =
8580 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
8581 0, "long_integer", (struct objfile *) NULL);
8582 lai->primitive_type_vector [ada_primitive_type_short] =
8583 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8584 0, "short_integer", (struct objfile *) NULL);
8585 lai->string_char_type =
8586 lai->primitive_type_vector [ada_primitive_type_char] =
8587 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8588 0, "character", (struct objfile *) NULL);
8589 lai->primitive_type_vector [ada_primitive_type_float] =
8590 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
8591 0, "float", (struct objfile *) NULL);
8592 lai->primitive_type_vector [ada_primitive_type_double] =
8593 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
8594 0, "long_float", (struct objfile *) NULL);
8595 lai->primitive_type_vector [ada_primitive_type_long_long] =
8596 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8597 0, "long_long_integer", (struct objfile *) NULL);
8598 lai->primitive_type_vector [ada_primitive_type_long_double] =
8599 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
8600 0, "long_long_float", (struct objfile *) NULL);
8601 lai->primitive_type_vector [ada_primitive_type_natural] =
8602 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8603 0, "natural", (struct objfile *) NULL);
8604 lai->primitive_type_vector [ada_primitive_type_positive] =
8605 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8606 0, "positive", (struct objfile *) NULL);
8607 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
8608
8609 lai->primitive_type_vector [ada_primitive_type_system_address] =
8610 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
8611 (struct objfile *) NULL));
8612 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
8613 = "system__address";
8614 }
8615 \f
8616 /* Language vector */
8617
8618 /* Not really used, but needed in the ada_language_defn. */
8619
8620 static void
8621 emit_char (int c, struct ui_file *stream, int quoter)
8622 {
8623 ada_emit_char (c, stream, quoter, 1);
8624 }
8625
8626 static int
8627 parse (void)
8628 {
8629 warnings_issued = 0;
8630 return ada_parse ();
8631 }
8632
8633 static const struct exp_descriptor ada_exp_descriptor = {
8634 ada_print_subexp,
8635 ada_operator_length,
8636 ada_op_name,
8637 ada_dump_subexp_body,
8638 ada_evaluate_subexp
8639 };
8640
8641 const struct language_defn ada_language_defn = {
8642 "ada", /* Language name */
8643 language_ada,
8644 NULL,
8645 range_check_off,
8646 type_check_off,
8647 case_sensitive_on, /* Yes, Ada is case-insensitive, but
8648 that's not quite what this means. */
8649 array_row_major,
8650 &ada_exp_descriptor,
8651 parse,
8652 ada_error,
8653 resolve,
8654 ada_printchar, /* Print a character constant */
8655 ada_printstr, /* Function to print string constant */
8656 emit_char, /* Function to print single char (not used) */
8657 ada_create_fundamental_type, /* Create fundamental type in this language */
8658 ada_print_type, /* Print a type using appropriate syntax */
8659 ada_val_print, /* Print a value using appropriate syntax */
8660 ada_value_print, /* Print a top-level value */
8661 NULL, /* Language specific skip_trampoline */
8662 NULL, /* value_of_this */
8663 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
8664 basic_lookup_transparent_type, /* lookup_transparent_type */
8665 ada_la_decode, /* Language specific symbol demangler */
8666 NULL, /* Language specific class_name_from_physname */
8667 ada_op_print_tab, /* expression operators for printing */
8668 0, /* c-style arrays */
8669 1, /* String lower bound */
8670 NULL,
8671 ada_get_gdb_completer_word_break_characters,
8672 ada_language_arch_info,
8673 LANG_MAGIC
8674 };
8675
8676 void
8677 _initialize_ada_language (void)
8678 {
8679 add_language (&ada_language_defn);
8680
8681 varsize_limit = 65536;
8682
8683 obstack_init (&symbol_list_obstack);
8684
8685 decoded_names_store = htab_create_alloc
8686 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
8687 NULL, xcalloc, xfree);
8688 }
This page took 0.219741 seconds and 4 git commands to generate.