60639521f1c53d5aa64b575904eb42a40f946dab
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
115 static int is_nonfunction (struct block_symbol *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct block_symbol *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270
271 static struct type *ada_find_any_type (const char *name);
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319 static char *ada_completer_word_break_characters =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
983 char *
984 ada_encode (const char *decoded)
985 {
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
988 const char *p;
989 int k;
990
991 if (decoded == NULL)
992 return NULL;
993
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
996
997 k = 0;
998 for (p = decoded; *p != '\0'; p += 1)
999 {
1000 if (*p == '.')
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
1005 else if (*p == '"')
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1010 mapping->encoded != NULL
1011 && !startswith (p, mapping->decoded); mapping += 1)
1012 ;
1013 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
1019 else
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
1024 }
1025
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
1028 }
1029
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
1034 char *
1035 ada_fold_name (const char *name)
1036 {
1037 static char *fold_buffer = NULL;
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1042
1043 if (name[0] == '\'')
1044 {
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
1047 }
1048 else
1049 {
1050 int i;
1051
1052 for (i = 0; i <= len; i += 1)
1053 fold_buffer[i] = tolower (name[i]);
1054 }
1055
1056 return fold_buffer;
1057 }
1058
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061 static int
1062 is_lower_alphanum (const char c)
1063 {
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065 }
1066
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
1074
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079 static void
1080 ada_remove_trailing_digits (const char *encoded, int *len)
1081 {
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
1085
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1093 *len = i - 2;
1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1095 *len = i - 1;
1096 }
1097 }
1098
1099 /* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102 static void
1103 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104 {
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119 }
1120
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123 static void
1124 ada_remove_Xbn_suffix (const char *encoded, int *len)
1125 {
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139 }
1140
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1144
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1147 is returned. */
1148
1149 const char *
1150 ada_decode (const char *encoded)
1151 {
1152 int i, j;
1153 int len0;
1154 const char *p;
1155 char *decoded;
1156 int at_start_name;
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
1159
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded, "_ada_"))
1164 encoded += 5;
1165
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded[0] == '_' || encoded[0] == '<')
1170 goto Suppress;
1171
1172 len0 = strlen (encoded);
1173
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
1176
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
1183 {
1184 if (p[3] == 'X')
1185 len0 = p - encoded;
1186 else
1187 goto Suppress;
1188 }
1189
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1195 len0 -= 3;
1196
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1202 len0 -= 2;
1203
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1208 len0 -= 1;
1209
1210 /* Make decoded big enough for possible expansion by operator name. */
1211
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
1214
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1218 {
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
1227 }
1228
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
1238 /* Is this a symbol function? */
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
1242
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
1260 at_start_name = 0;
1261
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1266 i += 2;
1267
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1355 {
1356 /* Replace '__' by '.'. */
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
1362 else
1363 {
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
1370 }
1371 decoded[j] = '\000';
1372
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
1378 goto Suppress;
1379
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
1384
1385 Suppress:
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
1390 else
1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1392 return decoded;
1393
1394 }
1395
1396 /* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401 static struct htab *decoded_names_store;
1402
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1408 GSYMBOL).
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1412
1413 const char *
1414 ada_decode_symbol (const struct general_symbol_info *arg)
1415 {
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
1418 &gsymbol->language_specific.demangled_name;
1419
1420 if (!gsymbol->ada_mangled)
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
1423 struct obstack *obstack = gsymbol->language_specific.obstack;
1424
1425 gsymbol->ada_mangled = 1;
1426
1427 if (obstack != NULL)
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1430 else
1431 {
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
1439
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
1444 }
1445
1446 return *resultp;
1447 }
1448
1449 static char *
1450 ada_la_decode (const char *encoded, int options)
1451 {
1452 return xstrdup (ada_decode (encoded));
1453 }
1454
1455 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1456 suffixes that encode debugging information or leading _ada_ on
1457 SYM_NAME (see is_name_suffix commentary for the debugging
1458 information that is ignored). If WILD, then NAME need only match a
1459 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1460 either argument is NULL. */
1461
1462 static int
1463 match_name (const char *sym_name, const char *name, int wild)
1464 {
1465 if (sym_name == NULL || name == NULL)
1466 return 0;
1467 else if (wild)
1468 return wild_match (sym_name, name) == 0;
1469 else
1470 {
1471 int len_name = strlen (name);
1472
1473 return (strncmp (sym_name, name, len_name) == 0
1474 && is_name_suffix (sym_name + len_name))
1475 || (startswith (sym_name, "_ada_")
1476 && strncmp (sym_name + 5, name, len_name) == 0
1477 && is_name_suffix (sym_name + len_name + 5));
1478 }
1479 }
1480 \f
1481
1482 /* Arrays */
1483
1484 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1485 generated by the GNAT compiler to describe the index type used
1486 for each dimension of an array, check whether it follows the latest
1487 known encoding. If not, fix it up to conform to the latest encoding.
1488 Otherwise, do nothing. This function also does nothing if
1489 INDEX_DESC_TYPE is NULL.
1490
1491 The GNAT encoding used to describle the array index type evolved a bit.
1492 Initially, the information would be provided through the name of each
1493 field of the structure type only, while the type of these fields was
1494 described as unspecified and irrelevant. The debugger was then expected
1495 to perform a global type lookup using the name of that field in order
1496 to get access to the full index type description. Because these global
1497 lookups can be very expensive, the encoding was later enhanced to make
1498 the global lookup unnecessary by defining the field type as being
1499 the full index type description.
1500
1501 The purpose of this routine is to allow us to support older versions
1502 of the compiler by detecting the use of the older encoding, and by
1503 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1504 we essentially replace each field's meaningless type by the associated
1505 index subtype). */
1506
1507 void
1508 ada_fixup_array_indexes_type (struct type *index_desc_type)
1509 {
1510 int i;
1511
1512 if (index_desc_type == NULL)
1513 return;
1514 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1515
1516 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1517 to check one field only, no need to check them all). If not, return
1518 now.
1519
1520 If our INDEX_DESC_TYPE was generated using the older encoding,
1521 the field type should be a meaningless integer type whose name
1522 is not equal to the field name. */
1523 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1524 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1525 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1526 return;
1527
1528 /* Fixup each field of INDEX_DESC_TYPE. */
1529 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1530 {
1531 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1532 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1533
1534 if (raw_type)
1535 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1536 }
1537 }
1538
1539 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1540
1541 static char *bound_name[] = {
1542 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1543 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1544 };
1545
1546 /* Maximum number of array dimensions we are prepared to handle. */
1547
1548 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1549
1550
1551 /* The desc_* routines return primitive portions of array descriptors
1552 (fat pointers). */
1553
1554 /* The descriptor or array type, if any, indicated by TYPE; removes
1555 level of indirection, if needed. */
1556
1557 static struct type *
1558 desc_base_type (struct type *type)
1559 {
1560 if (type == NULL)
1561 return NULL;
1562 type = ada_check_typedef (type);
1563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1564 type = ada_typedef_target_type (type);
1565
1566 if (type != NULL
1567 && (TYPE_CODE (type) == TYPE_CODE_PTR
1568 || TYPE_CODE (type) == TYPE_CODE_REF))
1569 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1570 else
1571 return type;
1572 }
1573
1574 /* True iff TYPE indicates a "thin" array pointer type. */
1575
1576 static int
1577 is_thin_pntr (struct type *type)
1578 {
1579 return
1580 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1581 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1582 }
1583
1584 /* The descriptor type for thin pointer type TYPE. */
1585
1586 static struct type *
1587 thin_descriptor_type (struct type *type)
1588 {
1589 struct type *base_type = desc_base_type (type);
1590
1591 if (base_type == NULL)
1592 return NULL;
1593 if (is_suffix (ada_type_name (base_type), "___XVE"))
1594 return base_type;
1595 else
1596 {
1597 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1598
1599 if (alt_type == NULL)
1600 return base_type;
1601 else
1602 return alt_type;
1603 }
1604 }
1605
1606 /* A pointer to the array data for thin-pointer value VAL. */
1607
1608 static struct value *
1609 thin_data_pntr (struct value *val)
1610 {
1611 struct type *type = ada_check_typedef (value_type (val));
1612 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1613
1614 data_type = lookup_pointer_type (data_type);
1615
1616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1617 return value_cast (data_type, value_copy (val));
1618 else
1619 return value_from_longest (data_type, value_address (val));
1620 }
1621
1622 /* True iff TYPE indicates a "thick" array pointer type. */
1623
1624 static int
1625 is_thick_pntr (struct type *type)
1626 {
1627 type = desc_base_type (type);
1628 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1629 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1630 }
1631
1632 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1633 pointer to one, the type of its bounds data; otherwise, NULL. */
1634
1635 static struct type *
1636 desc_bounds_type (struct type *type)
1637 {
1638 struct type *r;
1639
1640 type = desc_base_type (type);
1641
1642 if (type == NULL)
1643 return NULL;
1644 else if (is_thin_pntr (type))
1645 {
1646 type = thin_descriptor_type (type);
1647 if (type == NULL)
1648 return NULL;
1649 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1650 if (r != NULL)
1651 return ada_check_typedef (r);
1652 }
1653 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1654 {
1655 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1656 if (r != NULL)
1657 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1658 }
1659 return NULL;
1660 }
1661
1662 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1663 one, a pointer to its bounds data. Otherwise NULL. */
1664
1665 static struct value *
1666 desc_bounds (struct value *arr)
1667 {
1668 struct type *type = ada_check_typedef (value_type (arr));
1669
1670 if (is_thin_pntr (type))
1671 {
1672 struct type *bounds_type =
1673 desc_bounds_type (thin_descriptor_type (type));
1674 LONGEST addr;
1675
1676 if (bounds_type == NULL)
1677 error (_("Bad GNAT array descriptor"));
1678
1679 /* NOTE: The following calculation is not really kosher, but
1680 since desc_type is an XVE-encoded type (and shouldn't be),
1681 the correct calculation is a real pain. FIXME (and fix GCC). */
1682 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1683 addr = value_as_long (arr);
1684 else
1685 addr = value_address (arr);
1686
1687 return
1688 value_from_longest (lookup_pointer_type (bounds_type),
1689 addr - TYPE_LENGTH (bounds_type));
1690 }
1691
1692 else if (is_thick_pntr (type))
1693 {
1694 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1695 _("Bad GNAT array descriptor"));
1696 struct type *p_bounds_type = value_type (p_bounds);
1697
1698 if (p_bounds_type
1699 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1700 {
1701 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1702
1703 if (TYPE_STUB (target_type))
1704 p_bounds = value_cast (lookup_pointer_type
1705 (ada_check_typedef (target_type)),
1706 p_bounds);
1707 }
1708 else
1709 error (_("Bad GNAT array descriptor"));
1710
1711 return p_bounds;
1712 }
1713 else
1714 return NULL;
1715 }
1716
1717 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1718 position of the field containing the address of the bounds data. */
1719
1720 static int
1721 fat_pntr_bounds_bitpos (struct type *type)
1722 {
1723 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1724 }
1725
1726 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1727 size of the field containing the address of the bounds data. */
1728
1729 static int
1730 fat_pntr_bounds_bitsize (struct type *type)
1731 {
1732 type = desc_base_type (type);
1733
1734 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1735 return TYPE_FIELD_BITSIZE (type, 1);
1736 else
1737 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1738 }
1739
1740 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1741 pointer to one, the type of its array data (a array-with-no-bounds type);
1742 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1743 data. */
1744
1745 static struct type *
1746 desc_data_target_type (struct type *type)
1747 {
1748 type = desc_base_type (type);
1749
1750 /* NOTE: The following is bogus; see comment in desc_bounds. */
1751 if (is_thin_pntr (type))
1752 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1753 else if (is_thick_pntr (type))
1754 {
1755 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1756
1757 if (data_type
1758 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1759 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1760 }
1761
1762 return NULL;
1763 }
1764
1765 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1766 its array data. */
1767
1768 static struct value *
1769 desc_data (struct value *arr)
1770 {
1771 struct type *type = value_type (arr);
1772
1773 if (is_thin_pntr (type))
1774 return thin_data_pntr (arr);
1775 else if (is_thick_pntr (type))
1776 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1777 _("Bad GNAT array descriptor"));
1778 else
1779 return NULL;
1780 }
1781
1782
1783 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1784 position of the field containing the address of the data. */
1785
1786 static int
1787 fat_pntr_data_bitpos (struct type *type)
1788 {
1789 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1790 }
1791
1792 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1793 size of the field containing the address of the data. */
1794
1795 static int
1796 fat_pntr_data_bitsize (struct type *type)
1797 {
1798 type = desc_base_type (type);
1799
1800 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1801 return TYPE_FIELD_BITSIZE (type, 0);
1802 else
1803 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1804 }
1805
1806 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1807 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
1810 static struct value *
1811 desc_one_bound (struct value *bounds, int i, int which)
1812 {
1813 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1814 _("Bad GNAT array descriptor bounds"));
1815 }
1816
1817 /* If BOUNDS is an array-bounds structure type, return the bit position
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1819 bound, if WHICH is 1. The first bound is I=1. */
1820
1821 static int
1822 desc_bound_bitpos (struct type *type, int i, int which)
1823 {
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1825 }
1826
1827 /* If BOUNDS is an array-bounds structure type, return the bit field size
1828 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1829 bound, if WHICH is 1. The first bound is I=1. */
1830
1831 static int
1832 desc_bound_bitsize (struct type *type, int i, int which)
1833 {
1834 type = desc_base_type (type);
1835
1836 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1838 else
1839 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1840 }
1841
1842 /* If TYPE is the type of an array-bounds structure, the type of its
1843 Ith bound (numbering from 1). Otherwise, NULL. */
1844
1845 static struct type *
1846 desc_index_type (struct type *type, int i)
1847 {
1848 type = desc_base_type (type);
1849
1850 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1851 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1852 else
1853 return NULL;
1854 }
1855
1856 /* The number of index positions in the array-bounds type TYPE.
1857 Return 0 if TYPE is NULL. */
1858
1859 static int
1860 desc_arity (struct type *type)
1861 {
1862 type = desc_base_type (type);
1863
1864 if (type != NULL)
1865 return TYPE_NFIELDS (type) / 2;
1866 return 0;
1867 }
1868
1869 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1870 an array descriptor type (representing an unconstrained array
1871 type). */
1872
1873 static int
1874 ada_is_direct_array_type (struct type *type)
1875 {
1876 if (type == NULL)
1877 return 0;
1878 type = ada_check_typedef (type);
1879 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1880 || ada_is_array_descriptor_type (type));
1881 }
1882
1883 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1884 * to one. */
1885
1886 static int
1887 ada_is_array_type (struct type *type)
1888 {
1889 while (type != NULL
1890 && (TYPE_CODE (type) == TYPE_CODE_PTR
1891 || TYPE_CODE (type) == TYPE_CODE_REF))
1892 type = TYPE_TARGET_TYPE (type);
1893 return ada_is_direct_array_type (type);
1894 }
1895
1896 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1897
1898 int
1899 ada_is_simple_array_type (struct type *type)
1900 {
1901 if (type == NULL)
1902 return 0;
1903 type = ada_check_typedef (type);
1904 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1905 || (TYPE_CODE (type) == TYPE_CODE_PTR
1906 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1907 == TYPE_CODE_ARRAY));
1908 }
1909
1910 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1911
1912 int
1913 ada_is_array_descriptor_type (struct type *type)
1914 {
1915 struct type *data_type = desc_data_target_type (type);
1916
1917 if (type == NULL)
1918 return 0;
1919 type = ada_check_typedef (type);
1920 return (data_type != NULL
1921 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1922 && desc_arity (desc_bounds_type (type)) > 0);
1923 }
1924
1925 /* Non-zero iff type is a partially mal-formed GNAT array
1926 descriptor. FIXME: This is to compensate for some problems with
1927 debugging output from GNAT. Re-examine periodically to see if it
1928 is still needed. */
1929
1930 int
1931 ada_is_bogus_array_descriptor (struct type *type)
1932 {
1933 return
1934 type != NULL
1935 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1936 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1937 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1938 && !ada_is_array_descriptor_type (type);
1939 }
1940
1941
1942 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1943 (fat pointer) returns the type of the array data described---specifically,
1944 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1945 in from the descriptor; otherwise, they are left unspecified. If
1946 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1947 returns NULL. The result is simply the type of ARR if ARR is not
1948 a descriptor. */
1949 struct type *
1950 ada_type_of_array (struct value *arr, int bounds)
1951 {
1952 if (ada_is_constrained_packed_array_type (value_type (arr)))
1953 return decode_constrained_packed_array_type (value_type (arr));
1954
1955 if (!ada_is_array_descriptor_type (value_type (arr)))
1956 return value_type (arr);
1957
1958 if (!bounds)
1959 {
1960 struct type *array_type =
1961 ada_check_typedef (desc_data_target_type (value_type (arr)));
1962
1963 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1964 TYPE_FIELD_BITSIZE (array_type, 0) =
1965 decode_packed_array_bitsize (value_type (arr));
1966
1967 return array_type;
1968 }
1969 else
1970 {
1971 struct type *elt_type;
1972 int arity;
1973 struct value *descriptor;
1974
1975 elt_type = ada_array_element_type (value_type (arr), -1);
1976 arity = ada_array_arity (value_type (arr));
1977
1978 if (elt_type == NULL || arity == 0)
1979 return ada_check_typedef (value_type (arr));
1980
1981 descriptor = desc_bounds (arr);
1982 if (value_as_long (descriptor) == 0)
1983 return NULL;
1984 while (arity > 0)
1985 {
1986 struct type *range_type = alloc_type_copy (value_type (arr));
1987 struct type *array_type = alloc_type_copy (value_type (arr));
1988 struct value *low = desc_one_bound (descriptor, arity, 0);
1989 struct value *high = desc_one_bound (descriptor, arity, 1);
1990
1991 arity -= 1;
1992 create_static_range_type (range_type, value_type (low),
1993 longest_to_int (value_as_long (low)),
1994 longest_to_int (value_as_long (high)));
1995 elt_type = create_array_type (array_type, elt_type, range_type);
1996
1997 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1998 {
1999 /* We need to store the element packed bitsize, as well as
2000 recompute the array size, because it was previously
2001 computed based on the unpacked element size. */
2002 LONGEST lo = value_as_long (low);
2003 LONGEST hi = value_as_long (high);
2004
2005 TYPE_FIELD_BITSIZE (elt_type, 0) =
2006 decode_packed_array_bitsize (value_type (arr));
2007 /* If the array has no element, then the size is already
2008 zero, and does not need to be recomputed. */
2009 if (lo < hi)
2010 {
2011 int array_bitsize =
2012 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2013
2014 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2015 }
2016 }
2017 }
2018
2019 return lookup_pointer_type (elt_type);
2020 }
2021 }
2022
2023 /* If ARR does not represent an array, returns ARR unchanged.
2024 Otherwise, returns either a standard GDB array with bounds set
2025 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2026 GDB array. Returns NULL if ARR is a null fat pointer. */
2027
2028 struct value *
2029 ada_coerce_to_simple_array_ptr (struct value *arr)
2030 {
2031 if (ada_is_array_descriptor_type (value_type (arr)))
2032 {
2033 struct type *arrType = ada_type_of_array (arr, 1);
2034
2035 if (arrType == NULL)
2036 return NULL;
2037 return value_cast (arrType, value_copy (desc_data (arr)));
2038 }
2039 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2040 return decode_constrained_packed_array (arr);
2041 else
2042 return arr;
2043 }
2044
2045 /* If ARR does not represent an array, returns ARR unchanged.
2046 Otherwise, returns a standard GDB array describing ARR (which may
2047 be ARR itself if it already is in the proper form). */
2048
2049 struct value *
2050 ada_coerce_to_simple_array (struct value *arr)
2051 {
2052 if (ada_is_array_descriptor_type (value_type (arr)))
2053 {
2054 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2055
2056 if (arrVal == NULL)
2057 error (_("Bounds unavailable for null array pointer."));
2058 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2059 return value_ind (arrVal);
2060 }
2061 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2062 return decode_constrained_packed_array (arr);
2063 else
2064 return arr;
2065 }
2066
2067 /* If TYPE represents a GNAT array type, return it translated to an
2068 ordinary GDB array type (possibly with BITSIZE fields indicating
2069 packing). For other types, is the identity. */
2070
2071 struct type *
2072 ada_coerce_to_simple_array_type (struct type *type)
2073 {
2074 if (ada_is_constrained_packed_array_type (type))
2075 return decode_constrained_packed_array_type (type);
2076
2077 if (ada_is_array_descriptor_type (type))
2078 return ada_check_typedef (desc_data_target_type (type));
2079
2080 return type;
2081 }
2082
2083 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2084
2085 static int
2086 ada_is_packed_array_type (struct type *type)
2087 {
2088 if (type == NULL)
2089 return 0;
2090 type = desc_base_type (type);
2091 type = ada_check_typedef (type);
2092 return
2093 ada_type_name (type) != NULL
2094 && strstr (ada_type_name (type), "___XP") != NULL;
2095 }
2096
2097 /* Non-zero iff TYPE represents a standard GNAT constrained
2098 packed-array type. */
2099
2100 int
2101 ada_is_constrained_packed_array_type (struct type *type)
2102 {
2103 return ada_is_packed_array_type (type)
2104 && !ada_is_array_descriptor_type (type);
2105 }
2106
2107 /* Non-zero iff TYPE represents an array descriptor for a
2108 unconstrained packed-array type. */
2109
2110 static int
2111 ada_is_unconstrained_packed_array_type (struct type *type)
2112 {
2113 return ada_is_packed_array_type (type)
2114 && ada_is_array_descriptor_type (type);
2115 }
2116
2117 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2118 return the size of its elements in bits. */
2119
2120 static long
2121 decode_packed_array_bitsize (struct type *type)
2122 {
2123 const char *raw_name;
2124 const char *tail;
2125 long bits;
2126
2127 /* Access to arrays implemented as fat pointers are encoded as a typedef
2128 of the fat pointer type. We need the name of the fat pointer type
2129 to do the decoding, so strip the typedef layer. */
2130 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2131 type = ada_typedef_target_type (type);
2132
2133 raw_name = ada_type_name (ada_check_typedef (type));
2134 if (!raw_name)
2135 raw_name = ada_type_name (desc_base_type (type));
2136
2137 if (!raw_name)
2138 return 0;
2139
2140 tail = strstr (raw_name, "___XP");
2141 gdb_assert (tail != NULL);
2142
2143 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2144 {
2145 lim_warning
2146 (_("could not understand bit size information on packed array"));
2147 return 0;
2148 }
2149
2150 return bits;
2151 }
2152
2153 /* Given that TYPE is a standard GDB array type with all bounds filled
2154 in, and that the element size of its ultimate scalar constituents
2155 (that is, either its elements, or, if it is an array of arrays, its
2156 elements' elements, etc.) is *ELT_BITS, return an identical type,
2157 but with the bit sizes of its elements (and those of any
2158 constituent arrays) recorded in the BITSIZE components of its
2159 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2160 in bits.
2161
2162 Note that, for arrays whose index type has an XA encoding where
2163 a bound references a record discriminant, getting that discriminant,
2164 and therefore the actual value of that bound, is not possible
2165 because none of the given parameters gives us access to the record.
2166 This function assumes that it is OK in the context where it is being
2167 used to return an array whose bounds are still dynamic and where
2168 the length is arbitrary. */
2169
2170 static struct type *
2171 constrained_packed_array_type (struct type *type, long *elt_bits)
2172 {
2173 struct type *new_elt_type;
2174 struct type *new_type;
2175 struct type *index_type_desc;
2176 struct type *index_type;
2177 LONGEST low_bound, high_bound;
2178
2179 type = ada_check_typedef (type);
2180 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2181 return type;
2182
2183 index_type_desc = ada_find_parallel_type (type, "___XA");
2184 if (index_type_desc)
2185 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2186 NULL);
2187 else
2188 index_type = TYPE_INDEX_TYPE (type);
2189
2190 new_type = alloc_type_copy (type);
2191 new_elt_type =
2192 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2193 elt_bits);
2194 create_array_type (new_type, new_elt_type, index_type);
2195 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2196 TYPE_NAME (new_type) = ada_type_name (type);
2197
2198 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2199 && is_dynamic_type (check_typedef (index_type)))
2200 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2201 low_bound = high_bound = 0;
2202 if (high_bound < low_bound)
2203 *elt_bits = TYPE_LENGTH (new_type) = 0;
2204 else
2205 {
2206 *elt_bits *= (high_bound - low_bound + 1);
2207 TYPE_LENGTH (new_type) =
2208 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2209 }
2210
2211 TYPE_FIXED_INSTANCE (new_type) = 1;
2212 return new_type;
2213 }
2214
2215 /* The array type encoded by TYPE, where
2216 ada_is_constrained_packed_array_type (TYPE). */
2217
2218 static struct type *
2219 decode_constrained_packed_array_type (struct type *type)
2220 {
2221 const char *raw_name = ada_type_name (ada_check_typedef (type));
2222 char *name;
2223 const char *tail;
2224 struct type *shadow_type;
2225 long bits;
2226
2227 if (!raw_name)
2228 raw_name = ada_type_name (desc_base_type (type));
2229
2230 if (!raw_name)
2231 return NULL;
2232
2233 name = (char *) alloca (strlen (raw_name) + 1);
2234 tail = strstr (raw_name, "___XP");
2235 type = desc_base_type (type);
2236
2237 memcpy (name, raw_name, tail - raw_name);
2238 name[tail - raw_name] = '\000';
2239
2240 shadow_type = ada_find_parallel_type_with_name (type, name);
2241
2242 if (shadow_type == NULL)
2243 {
2244 lim_warning (_("could not find bounds information on packed array"));
2245 return NULL;
2246 }
2247 shadow_type = check_typedef (shadow_type);
2248
2249 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2250 {
2251 lim_warning (_("could not understand bounds "
2252 "information on packed array"));
2253 return NULL;
2254 }
2255
2256 bits = decode_packed_array_bitsize (type);
2257 return constrained_packed_array_type (shadow_type, &bits);
2258 }
2259
2260 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2261 array, returns a simple array that denotes that array. Its type is a
2262 standard GDB array type except that the BITSIZEs of the array
2263 target types are set to the number of bits in each element, and the
2264 type length is set appropriately. */
2265
2266 static struct value *
2267 decode_constrained_packed_array (struct value *arr)
2268 {
2269 struct type *type;
2270
2271 /* If our value is a pointer, then dereference it. Likewise if
2272 the value is a reference. Make sure that this operation does not
2273 cause the target type to be fixed, as this would indirectly cause
2274 this array to be decoded. The rest of the routine assumes that
2275 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2276 and "value_ind" routines to perform the dereferencing, as opposed
2277 to using "ada_coerce_ref" or "ada_value_ind". */
2278 arr = coerce_ref (arr);
2279 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2280 arr = value_ind (arr);
2281
2282 type = decode_constrained_packed_array_type (value_type (arr));
2283 if (type == NULL)
2284 {
2285 error (_("can't unpack array"));
2286 return NULL;
2287 }
2288
2289 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2290 && ada_is_modular_type (value_type (arr)))
2291 {
2292 /* This is a (right-justified) modular type representing a packed
2293 array with no wrapper. In order to interpret the value through
2294 the (left-justified) packed array type we just built, we must
2295 first left-justify it. */
2296 int bit_size, bit_pos;
2297 ULONGEST mod;
2298
2299 mod = ada_modulus (value_type (arr)) - 1;
2300 bit_size = 0;
2301 while (mod > 0)
2302 {
2303 bit_size += 1;
2304 mod >>= 1;
2305 }
2306 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2307 arr = ada_value_primitive_packed_val (arr, NULL,
2308 bit_pos / HOST_CHAR_BIT,
2309 bit_pos % HOST_CHAR_BIT,
2310 bit_size,
2311 type);
2312 }
2313
2314 return coerce_unspec_val_to_type (arr, type);
2315 }
2316
2317
2318 /* The value of the element of packed array ARR at the ARITY indices
2319 given in IND. ARR must be a simple array. */
2320
2321 static struct value *
2322 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2323 {
2324 int i;
2325 int bits, elt_off, bit_off;
2326 long elt_total_bit_offset;
2327 struct type *elt_type;
2328 struct value *v;
2329
2330 bits = 0;
2331 elt_total_bit_offset = 0;
2332 elt_type = ada_check_typedef (value_type (arr));
2333 for (i = 0; i < arity; i += 1)
2334 {
2335 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2336 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2337 error
2338 (_("attempt to do packed indexing of "
2339 "something other than a packed array"));
2340 else
2341 {
2342 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2343 LONGEST lowerbound, upperbound;
2344 LONGEST idx;
2345
2346 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2347 {
2348 lim_warning (_("don't know bounds of array"));
2349 lowerbound = upperbound = 0;
2350 }
2351
2352 idx = pos_atr (ind[i]);
2353 if (idx < lowerbound || idx > upperbound)
2354 lim_warning (_("packed array index %ld out of bounds"),
2355 (long) idx);
2356 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2357 elt_total_bit_offset += (idx - lowerbound) * bits;
2358 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2359 }
2360 }
2361 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2362 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2363
2364 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2365 bits, elt_type);
2366 return v;
2367 }
2368
2369 /* Non-zero iff TYPE includes negative integer values. */
2370
2371 static int
2372 has_negatives (struct type *type)
2373 {
2374 switch (TYPE_CODE (type))
2375 {
2376 default:
2377 return 0;
2378 case TYPE_CODE_INT:
2379 return !TYPE_UNSIGNED (type);
2380 case TYPE_CODE_RANGE:
2381 return TYPE_LOW_BOUND (type) < 0;
2382 }
2383 }
2384
2385
2386 /* Create a new value of type TYPE from the contents of OBJ starting
2387 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2388 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2389 assigning through the result will set the field fetched from.
2390 VALADDR is ignored unless OBJ is NULL, in which case,
2391 VALADDR+OFFSET must address the start of storage containing the
2392 packed value. The value returned in this case is never an lval.
2393 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2394
2395 struct value *
2396 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2397 long offset, int bit_offset, int bit_size,
2398 struct type *type)
2399 {
2400 struct value *v;
2401 int src_idx, /* Index into the source area */
2402 unpacked_idx, /* Index into the unpacked buffer */
2403 srcBitsLeft, /* Number of source bits left to move */
2404 src_bytes_left, /* Number of source bytes left to process. */
2405 unpacked_bytes_left, /* Number of bytes left to set in unpacked. */
2406 unusedLS, /* Number of bits in next significant
2407 byte of source that are unused */
2408 accumSize; /* Number of meaningful bits in accum */
2409 unsigned char *src; /* First byte containing data to unpack */
2410 unsigned char *unpacked;
2411 unsigned long accum; /* Staging area for bits being transferred */
2412 unsigned char sign;
2413 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2414 /* Transmit bytes from least to most significant; delta is the direction
2415 the indices move. */
2416 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2417
2418 type = ada_check_typedef (type);
2419
2420 if (obj == NULL)
2421 {
2422 v = allocate_value (type);
2423 src = (unsigned char *) valaddr + offset;
2424 }
2425 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2426 {
2427 v = value_at (type, value_address (obj) + offset);
2428 type = value_type (v);
2429 if (TYPE_LENGTH (type) * HOST_CHAR_BIT < bit_size)
2430 {
2431 /* This can happen in the case of an array of dynamic objects,
2432 where the size of each element changes from element to element.
2433 In that case, we're initially given the array stride, but
2434 after resolving the element type, we find that its size is
2435 less than this stride. In that case, adjust bit_size to
2436 match TYPE's length, and recompute LEN accordingly. */
2437 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2438 src_len = TYPE_LENGTH (type) + (bit_offset + HOST_CHAR_BIT - 1) / 8;
2439 }
2440 src = alloca (src_len);
2441 read_memory (value_address (v), src, src_len);
2442 }
2443 else
2444 {
2445 v = allocate_value (type);
2446 src = (unsigned char *) value_contents (obj) + offset;
2447 }
2448
2449 if (obj != NULL)
2450 {
2451 long new_offset = offset;
2452
2453 set_value_component_location (v, obj);
2454 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2455 set_value_bitsize (v, bit_size);
2456 if (value_bitpos (v) >= HOST_CHAR_BIT)
2457 {
2458 ++new_offset;
2459 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2460 }
2461 set_value_offset (v, new_offset);
2462
2463 /* Also set the parent value. This is needed when trying to
2464 assign a new value (in inferior memory). */
2465 set_value_parent (v, obj);
2466 }
2467 else
2468 set_value_bitsize (v, bit_size);
2469 unpacked = (unsigned char *) value_contents (v);
2470
2471 srcBitsLeft = bit_size;
2472 src_bytes_left = src_len;
2473 unpacked_bytes_left = TYPE_LENGTH (type);
2474 sign = 0;
2475 if (bit_size == 0)
2476 {
2477 memset (unpacked, 0, TYPE_LENGTH (type));
2478 return v;
2479 }
2480 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2481 {
2482 src_idx = src_len - 1;
2483 if (has_negatives (type)
2484 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2485 sign = ~0;
2486
2487 unusedLS =
2488 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2489 % HOST_CHAR_BIT;
2490
2491 switch (TYPE_CODE (type))
2492 {
2493 case TYPE_CODE_ARRAY:
2494 case TYPE_CODE_UNION:
2495 case TYPE_CODE_STRUCT:
2496 /* Non-scalar values must be aligned at a byte boundary... */
2497 accumSize =
2498 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2499 /* ... And are placed at the beginning (most-significant) bytes
2500 of the target. */
2501 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2502 unpacked_bytes_left = unpacked_idx + 1;
2503 break;
2504 default:
2505 accumSize = 0;
2506 unpacked_idx = TYPE_LENGTH (type) - 1;
2507 break;
2508 }
2509 }
2510 else
2511 {
2512 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2513
2514 src_idx = unpacked_idx = 0;
2515 unusedLS = bit_offset;
2516 accumSize = 0;
2517
2518 if (has_negatives (type) && (src[src_len - 1] & (1 << sign_bit_offset)))
2519 sign = ~0;
2520 }
2521
2522 accum = 0;
2523 while (src_bytes_left > 0)
2524 {
2525 /* Mask for removing bits of the next source byte that are not
2526 part of the value. */
2527 unsigned int unusedMSMask =
2528 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2529 1;
2530 /* Sign-extend bits for this byte. */
2531 unsigned int signMask = sign & ~unusedMSMask;
2532
2533 accum |=
2534 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2535 accumSize += HOST_CHAR_BIT - unusedLS;
2536 if (accumSize >= HOST_CHAR_BIT)
2537 {
2538 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
2539 accumSize -= HOST_CHAR_BIT;
2540 accum >>= HOST_CHAR_BIT;
2541 unpacked_bytes_left -= 1;
2542 unpacked_idx += delta;
2543 }
2544 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2545 unusedLS = 0;
2546 src_bytes_left -= 1;
2547 src_idx += delta;
2548 }
2549 while (unpacked_bytes_left > 0)
2550 {
2551 accum |= sign << accumSize;
2552 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
2553 accumSize -= HOST_CHAR_BIT;
2554 if (accumSize < 0)
2555 accumSize = 0;
2556 accum >>= HOST_CHAR_BIT;
2557 unpacked_bytes_left -= 1;
2558 unpacked_idx += delta;
2559 }
2560
2561 if (is_dynamic_type (value_type (v)))
2562 v = value_from_contents_and_address (value_type (v), value_contents (v),
2563 0);
2564 return v;
2565 }
2566
2567 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2568 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2569 not overlap. */
2570 static void
2571 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2572 int src_offset, int n, int bits_big_endian_p)
2573 {
2574 unsigned int accum, mask;
2575 int accum_bits, chunk_size;
2576
2577 target += targ_offset / HOST_CHAR_BIT;
2578 targ_offset %= HOST_CHAR_BIT;
2579 source += src_offset / HOST_CHAR_BIT;
2580 src_offset %= HOST_CHAR_BIT;
2581 if (bits_big_endian_p)
2582 {
2583 accum = (unsigned char) *source;
2584 source += 1;
2585 accum_bits = HOST_CHAR_BIT - src_offset;
2586
2587 while (n > 0)
2588 {
2589 int unused_right;
2590
2591 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2592 accum_bits += HOST_CHAR_BIT;
2593 source += 1;
2594 chunk_size = HOST_CHAR_BIT - targ_offset;
2595 if (chunk_size > n)
2596 chunk_size = n;
2597 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2598 mask = ((1 << chunk_size) - 1) << unused_right;
2599 *target =
2600 (*target & ~mask)
2601 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2602 n -= chunk_size;
2603 accum_bits -= chunk_size;
2604 target += 1;
2605 targ_offset = 0;
2606 }
2607 }
2608 else
2609 {
2610 accum = (unsigned char) *source >> src_offset;
2611 source += 1;
2612 accum_bits = HOST_CHAR_BIT - src_offset;
2613
2614 while (n > 0)
2615 {
2616 accum = accum + ((unsigned char) *source << accum_bits);
2617 accum_bits += HOST_CHAR_BIT;
2618 source += 1;
2619 chunk_size = HOST_CHAR_BIT - targ_offset;
2620 if (chunk_size > n)
2621 chunk_size = n;
2622 mask = ((1 << chunk_size) - 1) << targ_offset;
2623 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2624 n -= chunk_size;
2625 accum_bits -= chunk_size;
2626 accum >>= chunk_size;
2627 target += 1;
2628 targ_offset = 0;
2629 }
2630 }
2631 }
2632
2633 /* Store the contents of FROMVAL into the location of TOVAL.
2634 Return a new value with the location of TOVAL and contents of
2635 FROMVAL. Handles assignment into packed fields that have
2636 floating-point or non-scalar types. */
2637
2638 static struct value *
2639 ada_value_assign (struct value *toval, struct value *fromval)
2640 {
2641 struct type *type = value_type (toval);
2642 int bits = value_bitsize (toval);
2643
2644 toval = ada_coerce_ref (toval);
2645 fromval = ada_coerce_ref (fromval);
2646
2647 if (ada_is_direct_array_type (value_type (toval)))
2648 toval = ada_coerce_to_simple_array (toval);
2649 if (ada_is_direct_array_type (value_type (fromval)))
2650 fromval = ada_coerce_to_simple_array (fromval);
2651
2652 if (!deprecated_value_modifiable (toval))
2653 error (_("Left operand of assignment is not a modifiable lvalue."));
2654
2655 if (VALUE_LVAL (toval) == lval_memory
2656 && bits > 0
2657 && (TYPE_CODE (type) == TYPE_CODE_FLT
2658 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2659 {
2660 int len = (value_bitpos (toval)
2661 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2662 int from_size;
2663 gdb_byte *buffer = (gdb_byte *) alloca (len);
2664 struct value *val;
2665 CORE_ADDR to_addr = value_address (toval);
2666
2667 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2668 fromval = value_cast (type, fromval);
2669
2670 read_memory (to_addr, buffer, len);
2671 from_size = value_bitsize (fromval);
2672 if (from_size == 0)
2673 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2674 if (gdbarch_bits_big_endian (get_type_arch (type)))
2675 move_bits (buffer, value_bitpos (toval),
2676 value_contents (fromval), from_size - bits, bits, 1);
2677 else
2678 move_bits (buffer, value_bitpos (toval),
2679 value_contents (fromval), 0, bits, 0);
2680 write_memory_with_notification (to_addr, buffer, len);
2681
2682 val = value_copy (toval);
2683 memcpy (value_contents_raw (val), value_contents (fromval),
2684 TYPE_LENGTH (type));
2685 deprecated_set_value_type (val, type);
2686
2687 return val;
2688 }
2689
2690 return value_assign (toval, fromval);
2691 }
2692
2693
2694 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2695 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2696 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2697 COMPONENT, and not the inferior's memory. The current contents
2698 of COMPONENT are ignored.
2699
2700 Although not part of the initial design, this function also works
2701 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2702 had a null address, and COMPONENT had an address which is equal to
2703 its offset inside CONTAINER. */
2704
2705 static void
2706 value_assign_to_component (struct value *container, struct value *component,
2707 struct value *val)
2708 {
2709 LONGEST offset_in_container =
2710 (LONGEST) (value_address (component) - value_address (container));
2711 int bit_offset_in_container =
2712 value_bitpos (component) - value_bitpos (container);
2713 int bits;
2714
2715 val = value_cast (value_type (component), val);
2716
2717 if (value_bitsize (component) == 0)
2718 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2719 else
2720 bits = value_bitsize (component);
2721
2722 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2723 move_bits (value_contents_writeable (container) + offset_in_container,
2724 value_bitpos (container) + bit_offset_in_container,
2725 value_contents (val),
2726 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2727 bits, 1);
2728 else
2729 move_bits (value_contents_writeable (container) + offset_in_container,
2730 value_bitpos (container) + bit_offset_in_container,
2731 value_contents (val), 0, bits, 0);
2732 }
2733
2734 /* The value of the element of array ARR at the ARITY indices given in IND.
2735 ARR may be either a simple array, GNAT array descriptor, or pointer
2736 thereto. */
2737
2738 struct value *
2739 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2740 {
2741 int k;
2742 struct value *elt;
2743 struct type *elt_type;
2744
2745 elt = ada_coerce_to_simple_array (arr);
2746
2747 elt_type = ada_check_typedef (value_type (elt));
2748 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2749 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2750 return value_subscript_packed (elt, arity, ind);
2751
2752 for (k = 0; k < arity; k += 1)
2753 {
2754 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2755 error (_("too many subscripts (%d expected)"), k);
2756 elt = value_subscript (elt, pos_atr (ind[k]));
2757 }
2758 return elt;
2759 }
2760
2761 /* Assuming ARR is a pointer to a GDB array, the value of the element
2762 of *ARR at the ARITY indices given in IND.
2763 Does not read the entire array into memory.
2764
2765 Note: Unlike what one would expect, this function is used instead of
2766 ada_value_subscript for basically all non-packed array types. The reason
2767 for this is that a side effect of doing our own pointer arithmetics instead
2768 of relying on value_subscript is that there is no implicit typedef peeling.
2769 This is important for arrays of array accesses, where it allows us to
2770 preserve the fact that the array's element is an array access, where the
2771 access part os encoded in a typedef layer. */
2772
2773 static struct value *
2774 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2775 {
2776 int k;
2777 struct value *array_ind = ada_value_ind (arr);
2778 struct type *type
2779 = check_typedef (value_enclosing_type (array_ind));
2780
2781 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2782 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2783 return value_subscript_packed (array_ind, arity, ind);
2784
2785 for (k = 0; k < arity; k += 1)
2786 {
2787 LONGEST lwb, upb;
2788 struct value *lwb_value;
2789
2790 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2791 error (_("too many subscripts (%d expected)"), k);
2792 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2793 value_copy (arr));
2794 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2795 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2796 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2797 type = TYPE_TARGET_TYPE (type);
2798 }
2799
2800 return value_ind (arr);
2801 }
2802
2803 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2804 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2805 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2806 this array is LOW, as per Ada rules. */
2807 static struct value *
2808 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2809 int low, int high)
2810 {
2811 struct type *type0 = ada_check_typedef (type);
2812 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2813 struct type *index_type
2814 = create_static_range_type (NULL, base_index_type, low, high);
2815 struct type *slice_type =
2816 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2817 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2818 LONGEST base_low_pos, low_pos;
2819 CORE_ADDR base;
2820
2821 if (!discrete_position (base_index_type, low, &low_pos)
2822 || !discrete_position (base_index_type, base_low, &base_low_pos))
2823 {
2824 warning (_("unable to get positions in slice, use bounds instead"));
2825 low_pos = low;
2826 base_low_pos = base_low;
2827 }
2828
2829 base = value_as_address (array_ptr)
2830 + ((low_pos - base_low_pos)
2831 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2832 return value_at_lazy (slice_type, base);
2833 }
2834
2835
2836 static struct value *
2837 ada_value_slice (struct value *array, int low, int high)
2838 {
2839 struct type *type = ada_check_typedef (value_type (array));
2840 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2841 struct type *index_type
2842 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2843 struct type *slice_type =
2844 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2845 LONGEST low_pos, high_pos;
2846
2847 if (!discrete_position (base_index_type, low, &low_pos)
2848 || !discrete_position (base_index_type, high, &high_pos))
2849 {
2850 warning (_("unable to get positions in slice, use bounds instead"));
2851 low_pos = low;
2852 high_pos = high;
2853 }
2854
2855 return value_cast (slice_type,
2856 value_slice (array, low, high_pos - low_pos + 1));
2857 }
2858
2859 /* If type is a record type in the form of a standard GNAT array
2860 descriptor, returns the number of dimensions for type. If arr is a
2861 simple array, returns the number of "array of"s that prefix its
2862 type designation. Otherwise, returns 0. */
2863
2864 int
2865 ada_array_arity (struct type *type)
2866 {
2867 int arity;
2868
2869 if (type == NULL)
2870 return 0;
2871
2872 type = desc_base_type (type);
2873
2874 arity = 0;
2875 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2876 return desc_arity (desc_bounds_type (type));
2877 else
2878 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2879 {
2880 arity += 1;
2881 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2882 }
2883
2884 return arity;
2885 }
2886
2887 /* If TYPE is a record type in the form of a standard GNAT array
2888 descriptor or a simple array type, returns the element type for
2889 TYPE after indexing by NINDICES indices, or by all indices if
2890 NINDICES is -1. Otherwise, returns NULL. */
2891
2892 struct type *
2893 ada_array_element_type (struct type *type, int nindices)
2894 {
2895 type = desc_base_type (type);
2896
2897 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2898 {
2899 int k;
2900 struct type *p_array_type;
2901
2902 p_array_type = desc_data_target_type (type);
2903
2904 k = ada_array_arity (type);
2905 if (k == 0)
2906 return NULL;
2907
2908 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2909 if (nindices >= 0 && k > nindices)
2910 k = nindices;
2911 while (k > 0 && p_array_type != NULL)
2912 {
2913 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2914 k -= 1;
2915 }
2916 return p_array_type;
2917 }
2918 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2919 {
2920 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2921 {
2922 type = TYPE_TARGET_TYPE (type);
2923 nindices -= 1;
2924 }
2925 return type;
2926 }
2927
2928 return NULL;
2929 }
2930
2931 /* The type of nth index in arrays of given type (n numbering from 1).
2932 Does not examine memory. Throws an error if N is invalid or TYPE
2933 is not an array type. NAME is the name of the Ada attribute being
2934 evaluated ('range, 'first, 'last, or 'length); it is used in building
2935 the error message. */
2936
2937 static struct type *
2938 ada_index_type (struct type *type, int n, const char *name)
2939 {
2940 struct type *result_type;
2941
2942 type = desc_base_type (type);
2943
2944 if (n < 0 || n > ada_array_arity (type))
2945 error (_("invalid dimension number to '%s"), name);
2946
2947 if (ada_is_simple_array_type (type))
2948 {
2949 int i;
2950
2951 for (i = 1; i < n; i += 1)
2952 type = TYPE_TARGET_TYPE (type);
2953 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2954 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2955 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2956 perhaps stabsread.c would make more sense. */
2957 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2958 result_type = NULL;
2959 }
2960 else
2961 {
2962 result_type = desc_index_type (desc_bounds_type (type), n);
2963 if (result_type == NULL)
2964 error (_("attempt to take bound of something that is not an array"));
2965 }
2966
2967 return result_type;
2968 }
2969
2970 /* Given that arr is an array type, returns the lower bound of the
2971 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2972 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2973 array-descriptor type. It works for other arrays with bounds supplied
2974 by run-time quantities other than discriminants. */
2975
2976 static LONGEST
2977 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2978 {
2979 struct type *type, *index_type_desc, *index_type;
2980 int i;
2981
2982 gdb_assert (which == 0 || which == 1);
2983
2984 if (ada_is_constrained_packed_array_type (arr_type))
2985 arr_type = decode_constrained_packed_array_type (arr_type);
2986
2987 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2988 return (LONGEST) - which;
2989
2990 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2991 type = TYPE_TARGET_TYPE (arr_type);
2992 else
2993 type = arr_type;
2994
2995 if (TYPE_FIXED_INSTANCE (type))
2996 {
2997 /* The array has already been fixed, so we do not need to
2998 check the parallel ___XA type again. That encoding has
2999 already been applied, so ignore it now. */
3000 index_type_desc = NULL;
3001 }
3002 else
3003 {
3004 index_type_desc = ada_find_parallel_type (type, "___XA");
3005 ada_fixup_array_indexes_type (index_type_desc);
3006 }
3007
3008 if (index_type_desc != NULL)
3009 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3010 NULL);
3011 else
3012 {
3013 struct type *elt_type = check_typedef (type);
3014
3015 for (i = 1; i < n; i++)
3016 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3017
3018 index_type = TYPE_INDEX_TYPE (elt_type);
3019 }
3020
3021 return
3022 (LONGEST) (which == 0
3023 ? ada_discrete_type_low_bound (index_type)
3024 : ada_discrete_type_high_bound (index_type));
3025 }
3026
3027 /* Given that arr is an array value, returns the lower bound of the
3028 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3029 WHICH is 1. This routine will also work for arrays with bounds
3030 supplied by run-time quantities other than discriminants. */
3031
3032 static LONGEST
3033 ada_array_bound (struct value *arr, int n, int which)
3034 {
3035 struct type *arr_type;
3036
3037 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3038 arr = value_ind (arr);
3039 arr_type = value_enclosing_type (arr);
3040
3041 if (ada_is_constrained_packed_array_type (arr_type))
3042 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3043 else if (ada_is_simple_array_type (arr_type))
3044 return ada_array_bound_from_type (arr_type, n, which);
3045 else
3046 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3047 }
3048
3049 /* Given that arr is an array value, returns the length of the
3050 nth index. This routine will also work for arrays with bounds
3051 supplied by run-time quantities other than discriminants.
3052 Does not work for arrays indexed by enumeration types with representation
3053 clauses at the moment. */
3054
3055 static LONGEST
3056 ada_array_length (struct value *arr, int n)
3057 {
3058 struct type *arr_type, *index_type;
3059 int low, high;
3060
3061 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3062 arr = value_ind (arr);
3063 arr_type = value_enclosing_type (arr);
3064
3065 if (ada_is_constrained_packed_array_type (arr_type))
3066 return ada_array_length (decode_constrained_packed_array (arr), n);
3067
3068 if (ada_is_simple_array_type (arr_type))
3069 {
3070 low = ada_array_bound_from_type (arr_type, n, 0);
3071 high = ada_array_bound_from_type (arr_type, n, 1);
3072 }
3073 else
3074 {
3075 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3076 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3077 }
3078
3079 arr_type = check_typedef (arr_type);
3080 index_type = TYPE_INDEX_TYPE (arr_type);
3081 if (index_type != NULL)
3082 {
3083 struct type *base_type;
3084 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3085 base_type = TYPE_TARGET_TYPE (index_type);
3086 else
3087 base_type = index_type;
3088
3089 low = pos_atr (value_from_longest (base_type, low));
3090 high = pos_atr (value_from_longest (base_type, high));
3091 }
3092 return high - low + 1;
3093 }
3094
3095 /* An empty array whose type is that of ARR_TYPE (an array type),
3096 with bounds LOW to LOW-1. */
3097
3098 static struct value *
3099 empty_array (struct type *arr_type, int low)
3100 {
3101 struct type *arr_type0 = ada_check_typedef (arr_type);
3102 struct type *index_type
3103 = create_static_range_type
3104 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3105 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3106
3107 return allocate_value (create_array_type (NULL, elt_type, index_type));
3108 }
3109 \f
3110
3111 /* Name resolution */
3112
3113 /* The "decoded" name for the user-definable Ada operator corresponding
3114 to OP. */
3115
3116 static const char *
3117 ada_decoded_op_name (enum exp_opcode op)
3118 {
3119 int i;
3120
3121 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3122 {
3123 if (ada_opname_table[i].op == op)
3124 return ada_opname_table[i].decoded;
3125 }
3126 error (_("Could not find operator name for opcode"));
3127 }
3128
3129
3130 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3131 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3132 undefined namespace) and converts operators that are
3133 user-defined into appropriate function calls. If CONTEXT_TYPE is
3134 non-null, it provides a preferred result type [at the moment, only
3135 type void has any effect---causing procedures to be preferred over
3136 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3137 return type is preferred. May change (expand) *EXP. */
3138
3139 static void
3140 resolve (struct expression **expp, int void_context_p)
3141 {
3142 struct type *context_type = NULL;
3143 int pc = 0;
3144
3145 if (void_context_p)
3146 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3147
3148 resolve_subexp (expp, &pc, 1, context_type);
3149 }
3150
3151 /* Resolve the operator of the subexpression beginning at
3152 position *POS of *EXPP. "Resolving" consists of replacing
3153 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3154 with their resolutions, replacing built-in operators with
3155 function calls to user-defined operators, where appropriate, and,
3156 when DEPROCEDURE_P is non-zero, converting function-valued variables
3157 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3158 are as in ada_resolve, above. */
3159
3160 static struct value *
3161 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3162 struct type *context_type)
3163 {
3164 int pc = *pos;
3165 int i;
3166 struct expression *exp; /* Convenience: == *expp. */
3167 enum exp_opcode op = (*expp)->elts[pc].opcode;
3168 struct value **argvec; /* Vector of operand types (alloca'ed). */
3169 int nargs; /* Number of operands. */
3170 int oplen;
3171
3172 argvec = NULL;
3173 nargs = 0;
3174 exp = *expp;
3175
3176 /* Pass one: resolve operands, saving their types and updating *pos,
3177 if needed. */
3178 switch (op)
3179 {
3180 case OP_FUNCALL:
3181 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3182 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3183 *pos += 7;
3184 else
3185 {
3186 *pos += 3;
3187 resolve_subexp (expp, pos, 0, NULL);
3188 }
3189 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3190 break;
3191
3192 case UNOP_ADDR:
3193 *pos += 1;
3194 resolve_subexp (expp, pos, 0, NULL);
3195 break;
3196
3197 case UNOP_QUAL:
3198 *pos += 3;
3199 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3200 break;
3201
3202 case OP_ATR_MODULUS:
3203 case OP_ATR_SIZE:
3204 case OP_ATR_TAG:
3205 case OP_ATR_FIRST:
3206 case OP_ATR_LAST:
3207 case OP_ATR_LENGTH:
3208 case OP_ATR_POS:
3209 case OP_ATR_VAL:
3210 case OP_ATR_MIN:
3211 case OP_ATR_MAX:
3212 case TERNOP_IN_RANGE:
3213 case BINOP_IN_BOUNDS:
3214 case UNOP_IN_RANGE:
3215 case OP_AGGREGATE:
3216 case OP_OTHERS:
3217 case OP_CHOICES:
3218 case OP_POSITIONAL:
3219 case OP_DISCRETE_RANGE:
3220 case OP_NAME:
3221 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3222 *pos += oplen;
3223 break;
3224
3225 case BINOP_ASSIGN:
3226 {
3227 struct value *arg1;
3228
3229 *pos += 1;
3230 arg1 = resolve_subexp (expp, pos, 0, NULL);
3231 if (arg1 == NULL)
3232 resolve_subexp (expp, pos, 1, NULL);
3233 else
3234 resolve_subexp (expp, pos, 1, value_type (arg1));
3235 break;
3236 }
3237
3238 case UNOP_CAST:
3239 *pos += 3;
3240 nargs = 1;
3241 break;
3242
3243 case BINOP_ADD:
3244 case BINOP_SUB:
3245 case BINOP_MUL:
3246 case BINOP_DIV:
3247 case BINOP_REM:
3248 case BINOP_MOD:
3249 case BINOP_EXP:
3250 case BINOP_CONCAT:
3251 case BINOP_LOGICAL_AND:
3252 case BINOP_LOGICAL_OR:
3253 case BINOP_BITWISE_AND:
3254 case BINOP_BITWISE_IOR:
3255 case BINOP_BITWISE_XOR:
3256
3257 case BINOP_EQUAL:
3258 case BINOP_NOTEQUAL:
3259 case BINOP_LESS:
3260 case BINOP_GTR:
3261 case BINOP_LEQ:
3262 case BINOP_GEQ:
3263
3264 case BINOP_REPEAT:
3265 case BINOP_SUBSCRIPT:
3266 case BINOP_COMMA:
3267 *pos += 1;
3268 nargs = 2;
3269 break;
3270
3271 case UNOP_NEG:
3272 case UNOP_PLUS:
3273 case UNOP_LOGICAL_NOT:
3274 case UNOP_ABS:
3275 case UNOP_IND:
3276 *pos += 1;
3277 nargs = 1;
3278 break;
3279
3280 case OP_LONG:
3281 case OP_DOUBLE:
3282 case OP_VAR_VALUE:
3283 *pos += 4;
3284 break;
3285
3286 case OP_TYPE:
3287 case OP_BOOL:
3288 case OP_LAST:
3289 case OP_INTERNALVAR:
3290 *pos += 3;
3291 break;
3292
3293 case UNOP_MEMVAL:
3294 *pos += 3;
3295 nargs = 1;
3296 break;
3297
3298 case OP_REGISTER:
3299 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3300 break;
3301
3302 case STRUCTOP_STRUCT:
3303 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3304 nargs = 1;
3305 break;
3306
3307 case TERNOP_SLICE:
3308 *pos += 1;
3309 nargs = 3;
3310 break;
3311
3312 case OP_STRING:
3313 break;
3314
3315 default:
3316 error (_("Unexpected operator during name resolution"));
3317 }
3318
3319 argvec = XALLOCAVEC (struct value *, nargs + 1);
3320 for (i = 0; i < nargs; i += 1)
3321 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3322 argvec[i] = NULL;
3323 exp = *expp;
3324
3325 /* Pass two: perform any resolution on principal operator. */
3326 switch (op)
3327 {
3328 default:
3329 break;
3330
3331 case OP_VAR_VALUE:
3332 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3333 {
3334 struct block_symbol *candidates;
3335 int n_candidates;
3336
3337 n_candidates =
3338 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3339 (exp->elts[pc + 2].symbol),
3340 exp->elts[pc + 1].block, VAR_DOMAIN,
3341 &candidates);
3342
3343 if (n_candidates > 1)
3344 {
3345 /* Types tend to get re-introduced locally, so if there
3346 are any local symbols that are not types, first filter
3347 out all types. */
3348 int j;
3349 for (j = 0; j < n_candidates; j += 1)
3350 switch (SYMBOL_CLASS (candidates[j].symbol))
3351 {
3352 case LOC_REGISTER:
3353 case LOC_ARG:
3354 case LOC_REF_ARG:
3355 case LOC_REGPARM_ADDR:
3356 case LOC_LOCAL:
3357 case LOC_COMPUTED:
3358 goto FoundNonType;
3359 default:
3360 break;
3361 }
3362 FoundNonType:
3363 if (j < n_candidates)
3364 {
3365 j = 0;
3366 while (j < n_candidates)
3367 {
3368 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3369 {
3370 candidates[j] = candidates[n_candidates - 1];
3371 n_candidates -= 1;
3372 }
3373 else
3374 j += 1;
3375 }
3376 }
3377 }
3378
3379 if (n_candidates == 0)
3380 error (_("No definition found for %s"),
3381 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3382 else if (n_candidates == 1)
3383 i = 0;
3384 else if (deprocedure_p
3385 && !is_nonfunction (candidates, n_candidates))
3386 {
3387 i = ada_resolve_function
3388 (candidates, n_candidates, NULL, 0,
3389 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3390 context_type);
3391 if (i < 0)
3392 error (_("Could not find a match for %s"),
3393 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3394 }
3395 else
3396 {
3397 printf_filtered (_("Multiple matches for %s\n"),
3398 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3399 user_select_syms (candidates, n_candidates, 1);
3400 i = 0;
3401 }
3402
3403 exp->elts[pc + 1].block = candidates[i].block;
3404 exp->elts[pc + 2].symbol = candidates[i].symbol;
3405 if (innermost_block == NULL
3406 || contained_in (candidates[i].block, innermost_block))
3407 innermost_block = candidates[i].block;
3408 }
3409
3410 if (deprocedure_p
3411 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3412 == TYPE_CODE_FUNC))
3413 {
3414 replace_operator_with_call (expp, pc, 0, 0,
3415 exp->elts[pc + 2].symbol,
3416 exp->elts[pc + 1].block);
3417 exp = *expp;
3418 }
3419 break;
3420
3421 case OP_FUNCALL:
3422 {
3423 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3424 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3425 {
3426 struct block_symbol *candidates;
3427 int n_candidates;
3428
3429 n_candidates =
3430 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3431 (exp->elts[pc + 5].symbol),
3432 exp->elts[pc + 4].block, VAR_DOMAIN,
3433 &candidates);
3434 if (n_candidates == 1)
3435 i = 0;
3436 else
3437 {
3438 i = ada_resolve_function
3439 (candidates, n_candidates,
3440 argvec, nargs,
3441 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3442 context_type);
3443 if (i < 0)
3444 error (_("Could not find a match for %s"),
3445 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3446 }
3447
3448 exp->elts[pc + 4].block = candidates[i].block;
3449 exp->elts[pc + 5].symbol = candidates[i].symbol;
3450 if (innermost_block == NULL
3451 || contained_in (candidates[i].block, innermost_block))
3452 innermost_block = candidates[i].block;
3453 }
3454 }
3455 break;
3456 case BINOP_ADD:
3457 case BINOP_SUB:
3458 case BINOP_MUL:
3459 case BINOP_DIV:
3460 case BINOP_REM:
3461 case BINOP_MOD:
3462 case BINOP_CONCAT:
3463 case BINOP_BITWISE_AND:
3464 case BINOP_BITWISE_IOR:
3465 case BINOP_BITWISE_XOR:
3466 case BINOP_EQUAL:
3467 case BINOP_NOTEQUAL:
3468 case BINOP_LESS:
3469 case BINOP_GTR:
3470 case BINOP_LEQ:
3471 case BINOP_GEQ:
3472 case BINOP_EXP:
3473 case UNOP_NEG:
3474 case UNOP_PLUS:
3475 case UNOP_LOGICAL_NOT:
3476 case UNOP_ABS:
3477 if (possible_user_operator_p (op, argvec))
3478 {
3479 struct block_symbol *candidates;
3480 int n_candidates;
3481
3482 n_candidates =
3483 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3484 (struct block *) NULL, VAR_DOMAIN,
3485 &candidates);
3486 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3487 ada_decoded_op_name (op), NULL);
3488 if (i < 0)
3489 break;
3490
3491 replace_operator_with_call (expp, pc, nargs, 1,
3492 candidates[i].symbol,
3493 candidates[i].block);
3494 exp = *expp;
3495 }
3496 break;
3497
3498 case OP_TYPE:
3499 case OP_REGISTER:
3500 return NULL;
3501 }
3502
3503 *pos = pc;
3504 return evaluate_subexp_type (exp, pos);
3505 }
3506
3507 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3508 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3509 a non-pointer. */
3510 /* The term "match" here is rather loose. The match is heuristic and
3511 liberal. */
3512
3513 static int
3514 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3515 {
3516 ftype = ada_check_typedef (ftype);
3517 atype = ada_check_typedef (atype);
3518
3519 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3520 ftype = TYPE_TARGET_TYPE (ftype);
3521 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3522 atype = TYPE_TARGET_TYPE (atype);
3523
3524 switch (TYPE_CODE (ftype))
3525 {
3526 default:
3527 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3528 case TYPE_CODE_PTR:
3529 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3530 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3531 TYPE_TARGET_TYPE (atype), 0);
3532 else
3533 return (may_deref
3534 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3535 case TYPE_CODE_INT:
3536 case TYPE_CODE_ENUM:
3537 case TYPE_CODE_RANGE:
3538 switch (TYPE_CODE (atype))
3539 {
3540 case TYPE_CODE_INT:
3541 case TYPE_CODE_ENUM:
3542 case TYPE_CODE_RANGE:
3543 return 1;
3544 default:
3545 return 0;
3546 }
3547
3548 case TYPE_CODE_ARRAY:
3549 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3550 || ada_is_array_descriptor_type (atype));
3551
3552 case TYPE_CODE_STRUCT:
3553 if (ada_is_array_descriptor_type (ftype))
3554 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3555 || ada_is_array_descriptor_type (atype));
3556 else
3557 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3558 && !ada_is_array_descriptor_type (atype));
3559
3560 case TYPE_CODE_UNION:
3561 case TYPE_CODE_FLT:
3562 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3563 }
3564 }
3565
3566 /* Return non-zero if the formals of FUNC "sufficiently match" the
3567 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3568 may also be an enumeral, in which case it is treated as a 0-
3569 argument function. */
3570
3571 static int
3572 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3573 {
3574 int i;
3575 struct type *func_type = SYMBOL_TYPE (func);
3576
3577 if (SYMBOL_CLASS (func) == LOC_CONST
3578 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3579 return (n_actuals == 0);
3580 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3581 return 0;
3582
3583 if (TYPE_NFIELDS (func_type) != n_actuals)
3584 return 0;
3585
3586 for (i = 0; i < n_actuals; i += 1)
3587 {
3588 if (actuals[i] == NULL)
3589 return 0;
3590 else
3591 {
3592 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3593 i));
3594 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3595
3596 if (!ada_type_match (ftype, atype, 1))
3597 return 0;
3598 }
3599 }
3600 return 1;
3601 }
3602
3603 /* False iff function type FUNC_TYPE definitely does not produce a value
3604 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3605 FUNC_TYPE is not a valid function type with a non-null return type
3606 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3607
3608 static int
3609 return_match (struct type *func_type, struct type *context_type)
3610 {
3611 struct type *return_type;
3612
3613 if (func_type == NULL)
3614 return 1;
3615
3616 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3617 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3618 else
3619 return_type = get_base_type (func_type);
3620 if (return_type == NULL)
3621 return 1;
3622
3623 context_type = get_base_type (context_type);
3624
3625 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3626 return context_type == NULL || return_type == context_type;
3627 else if (context_type == NULL)
3628 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3629 else
3630 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3631 }
3632
3633
3634 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3635 function (if any) that matches the types of the NARGS arguments in
3636 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3637 that returns that type, then eliminate matches that don't. If
3638 CONTEXT_TYPE is void and there is at least one match that does not
3639 return void, eliminate all matches that do.
3640
3641 Asks the user if there is more than one match remaining. Returns -1
3642 if there is no such symbol or none is selected. NAME is used
3643 solely for messages. May re-arrange and modify SYMS in
3644 the process; the index returned is for the modified vector. */
3645
3646 static int
3647 ada_resolve_function (struct block_symbol syms[],
3648 int nsyms, struct value **args, int nargs,
3649 const char *name, struct type *context_type)
3650 {
3651 int fallback;
3652 int k;
3653 int m; /* Number of hits */
3654
3655 m = 0;
3656 /* In the first pass of the loop, we only accept functions matching
3657 context_type. If none are found, we add a second pass of the loop
3658 where every function is accepted. */
3659 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3660 {
3661 for (k = 0; k < nsyms; k += 1)
3662 {
3663 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3664
3665 if (ada_args_match (syms[k].symbol, args, nargs)
3666 && (fallback || return_match (type, context_type)))
3667 {
3668 syms[m] = syms[k];
3669 m += 1;
3670 }
3671 }
3672 }
3673
3674 /* If we got multiple matches, ask the user which one to use. Don't do this
3675 interactive thing during completion, though, as the purpose of the
3676 completion is providing a list of all possible matches. Prompting the
3677 user to filter it down would be completely unexpected in this case. */
3678 if (m == 0)
3679 return -1;
3680 else if (m > 1 && !parse_completion)
3681 {
3682 printf_filtered (_("Multiple matches for %s\n"), name);
3683 user_select_syms (syms, m, 1);
3684 return 0;
3685 }
3686 return 0;
3687 }
3688
3689 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3690 in a listing of choices during disambiguation (see sort_choices, below).
3691 The idea is that overloadings of a subprogram name from the
3692 same package should sort in their source order. We settle for ordering
3693 such symbols by their trailing number (__N or $N). */
3694
3695 static int
3696 encoded_ordered_before (const char *N0, const char *N1)
3697 {
3698 if (N1 == NULL)
3699 return 0;
3700 else if (N0 == NULL)
3701 return 1;
3702 else
3703 {
3704 int k0, k1;
3705
3706 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3707 ;
3708 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3709 ;
3710 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3711 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3712 {
3713 int n0, n1;
3714
3715 n0 = k0;
3716 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3717 n0 -= 1;
3718 n1 = k1;
3719 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3720 n1 -= 1;
3721 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3722 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3723 }
3724 return (strcmp (N0, N1) < 0);
3725 }
3726 }
3727
3728 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3729 encoded names. */
3730
3731 static void
3732 sort_choices (struct block_symbol syms[], int nsyms)
3733 {
3734 int i;
3735
3736 for (i = 1; i < nsyms; i += 1)
3737 {
3738 struct block_symbol sym = syms[i];
3739 int j;
3740
3741 for (j = i - 1; j >= 0; j -= 1)
3742 {
3743 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3744 SYMBOL_LINKAGE_NAME (sym.symbol)))
3745 break;
3746 syms[j + 1] = syms[j];
3747 }
3748 syms[j + 1] = sym;
3749 }
3750 }
3751
3752 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3753 by asking the user (if necessary), returning the number selected,
3754 and setting the first elements of SYMS items. Error if no symbols
3755 selected. */
3756
3757 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3758 to be re-integrated one of these days. */
3759
3760 int
3761 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3762 {
3763 int i;
3764 int *chosen = XALLOCAVEC (int , nsyms);
3765 int n_chosen;
3766 int first_choice = (max_results == 1) ? 1 : 2;
3767 const char *select_mode = multiple_symbols_select_mode ();
3768
3769 if (max_results < 1)
3770 error (_("Request to select 0 symbols!"));
3771 if (nsyms <= 1)
3772 return nsyms;
3773
3774 if (select_mode == multiple_symbols_cancel)
3775 error (_("\
3776 canceled because the command is ambiguous\n\
3777 See set/show multiple-symbol."));
3778
3779 /* If select_mode is "all", then return all possible symbols.
3780 Only do that if more than one symbol can be selected, of course.
3781 Otherwise, display the menu as usual. */
3782 if (select_mode == multiple_symbols_all && max_results > 1)
3783 return nsyms;
3784
3785 printf_unfiltered (_("[0] cancel\n"));
3786 if (max_results > 1)
3787 printf_unfiltered (_("[1] all\n"));
3788
3789 sort_choices (syms, nsyms);
3790
3791 for (i = 0; i < nsyms; i += 1)
3792 {
3793 if (syms[i].symbol == NULL)
3794 continue;
3795
3796 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3797 {
3798 struct symtab_and_line sal =
3799 find_function_start_sal (syms[i].symbol, 1);
3800
3801 if (sal.symtab == NULL)
3802 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3803 i + first_choice,
3804 SYMBOL_PRINT_NAME (syms[i].symbol),
3805 sal.line);
3806 else
3807 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3808 SYMBOL_PRINT_NAME (syms[i].symbol),
3809 symtab_to_filename_for_display (sal.symtab),
3810 sal.line);
3811 continue;
3812 }
3813 else
3814 {
3815 int is_enumeral =
3816 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3817 && SYMBOL_TYPE (syms[i].symbol) != NULL
3818 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3819 struct symtab *symtab = NULL;
3820
3821 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3822 symtab = symbol_symtab (syms[i].symbol);
3823
3824 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3825 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3826 i + first_choice,
3827 SYMBOL_PRINT_NAME (syms[i].symbol),
3828 symtab_to_filename_for_display (symtab),
3829 SYMBOL_LINE (syms[i].symbol));
3830 else if (is_enumeral
3831 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3832 {
3833 printf_unfiltered (("[%d] "), i + first_choice);
3834 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3835 gdb_stdout, -1, 0, &type_print_raw_options);
3836 printf_unfiltered (_("'(%s) (enumeral)\n"),
3837 SYMBOL_PRINT_NAME (syms[i].symbol));
3838 }
3839 else if (symtab != NULL)
3840 printf_unfiltered (is_enumeral
3841 ? _("[%d] %s in %s (enumeral)\n")
3842 : _("[%d] %s at %s:?\n"),
3843 i + first_choice,
3844 SYMBOL_PRINT_NAME (syms[i].symbol),
3845 symtab_to_filename_for_display (symtab));
3846 else
3847 printf_unfiltered (is_enumeral
3848 ? _("[%d] %s (enumeral)\n")
3849 : _("[%d] %s at ?\n"),
3850 i + first_choice,
3851 SYMBOL_PRINT_NAME (syms[i].symbol));
3852 }
3853 }
3854
3855 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3856 "overload-choice");
3857
3858 for (i = 0; i < n_chosen; i += 1)
3859 syms[i] = syms[chosen[i]];
3860
3861 return n_chosen;
3862 }
3863
3864 /* Read and validate a set of numeric choices from the user in the
3865 range 0 .. N_CHOICES-1. Place the results in increasing
3866 order in CHOICES[0 .. N-1], and return N.
3867
3868 The user types choices as a sequence of numbers on one line
3869 separated by blanks, encoding them as follows:
3870
3871 + A choice of 0 means to cancel the selection, throwing an error.
3872 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3873 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3874
3875 The user is not allowed to choose more than MAX_RESULTS values.
3876
3877 ANNOTATION_SUFFIX, if present, is used to annotate the input
3878 prompts (for use with the -f switch). */
3879
3880 int
3881 get_selections (int *choices, int n_choices, int max_results,
3882 int is_all_choice, char *annotation_suffix)
3883 {
3884 char *args;
3885 char *prompt;
3886 int n_chosen;
3887 int first_choice = is_all_choice ? 2 : 1;
3888
3889 prompt = getenv ("PS2");
3890 if (prompt == NULL)
3891 prompt = "> ";
3892
3893 args = command_line_input (prompt, 0, annotation_suffix);
3894
3895 if (args == NULL)
3896 error_no_arg (_("one or more choice numbers"));
3897
3898 n_chosen = 0;
3899
3900 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3901 order, as given in args. Choices are validated. */
3902 while (1)
3903 {
3904 char *args2;
3905 int choice, j;
3906
3907 args = skip_spaces (args);
3908 if (*args == '\0' && n_chosen == 0)
3909 error_no_arg (_("one or more choice numbers"));
3910 else if (*args == '\0')
3911 break;
3912
3913 choice = strtol (args, &args2, 10);
3914 if (args == args2 || choice < 0
3915 || choice > n_choices + first_choice - 1)
3916 error (_("Argument must be choice number"));
3917 args = args2;
3918
3919 if (choice == 0)
3920 error (_("cancelled"));
3921
3922 if (choice < first_choice)
3923 {
3924 n_chosen = n_choices;
3925 for (j = 0; j < n_choices; j += 1)
3926 choices[j] = j;
3927 break;
3928 }
3929 choice -= first_choice;
3930
3931 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3932 {
3933 }
3934
3935 if (j < 0 || choice != choices[j])
3936 {
3937 int k;
3938
3939 for (k = n_chosen - 1; k > j; k -= 1)
3940 choices[k + 1] = choices[k];
3941 choices[j + 1] = choice;
3942 n_chosen += 1;
3943 }
3944 }
3945
3946 if (n_chosen > max_results)
3947 error (_("Select no more than %d of the above"), max_results);
3948
3949 return n_chosen;
3950 }
3951
3952 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3953 on the function identified by SYM and BLOCK, and taking NARGS
3954 arguments. Update *EXPP as needed to hold more space. */
3955
3956 static void
3957 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3958 int oplen, struct symbol *sym,
3959 const struct block *block)
3960 {
3961 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3962 symbol, -oplen for operator being replaced). */
3963 struct expression *newexp = (struct expression *)
3964 xzalloc (sizeof (struct expression)
3965 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3966 struct expression *exp = *expp;
3967
3968 newexp->nelts = exp->nelts + 7 - oplen;
3969 newexp->language_defn = exp->language_defn;
3970 newexp->gdbarch = exp->gdbarch;
3971 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3972 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3973 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3974
3975 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3976 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3977
3978 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3979 newexp->elts[pc + 4].block = block;
3980 newexp->elts[pc + 5].symbol = sym;
3981
3982 *expp = newexp;
3983 xfree (exp);
3984 }
3985
3986 /* Type-class predicates */
3987
3988 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3989 or FLOAT). */
3990
3991 static int
3992 numeric_type_p (struct type *type)
3993 {
3994 if (type == NULL)
3995 return 0;
3996 else
3997 {
3998 switch (TYPE_CODE (type))
3999 {
4000 case TYPE_CODE_INT:
4001 case TYPE_CODE_FLT:
4002 return 1;
4003 case TYPE_CODE_RANGE:
4004 return (type == TYPE_TARGET_TYPE (type)
4005 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4006 default:
4007 return 0;
4008 }
4009 }
4010 }
4011
4012 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4013
4014 static int
4015 integer_type_p (struct type *type)
4016 {
4017 if (type == NULL)
4018 return 0;
4019 else
4020 {
4021 switch (TYPE_CODE (type))
4022 {
4023 case TYPE_CODE_INT:
4024 return 1;
4025 case TYPE_CODE_RANGE:
4026 return (type == TYPE_TARGET_TYPE (type)
4027 || integer_type_p (TYPE_TARGET_TYPE (type)));
4028 default:
4029 return 0;
4030 }
4031 }
4032 }
4033
4034 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4035
4036 static int
4037 scalar_type_p (struct type *type)
4038 {
4039 if (type == NULL)
4040 return 0;
4041 else
4042 {
4043 switch (TYPE_CODE (type))
4044 {
4045 case TYPE_CODE_INT:
4046 case TYPE_CODE_RANGE:
4047 case TYPE_CODE_ENUM:
4048 case TYPE_CODE_FLT:
4049 return 1;
4050 default:
4051 return 0;
4052 }
4053 }
4054 }
4055
4056 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4057
4058 static int
4059 discrete_type_p (struct type *type)
4060 {
4061 if (type == NULL)
4062 return 0;
4063 else
4064 {
4065 switch (TYPE_CODE (type))
4066 {
4067 case TYPE_CODE_INT:
4068 case TYPE_CODE_RANGE:
4069 case TYPE_CODE_ENUM:
4070 case TYPE_CODE_BOOL:
4071 return 1;
4072 default:
4073 return 0;
4074 }
4075 }
4076 }
4077
4078 /* Returns non-zero if OP with operands in the vector ARGS could be
4079 a user-defined function. Errs on the side of pre-defined operators
4080 (i.e., result 0). */
4081
4082 static int
4083 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4084 {
4085 struct type *type0 =
4086 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4087 struct type *type1 =
4088 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4089
4090 if (type0 == NULL)
4091 return 0;
4092
4093 switch (op)
4094 {
4095 default:
4096 return 0;
4097
4098 case BINOP_ADD:
4099 case BINOP_SUB:
4100 case BINOP_MUL:
4101 case BINOP_DIV:
4102 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4103
4104 case BINOP_REM:
4105 case BINOP_MOD:
4106 case BINOP_BITWISE_AND:
4107 case BINOP_BITWISE_IOR:
4108 case BINOP_BITWISE_XOR:
4109 return (!(integer_type_p (type0) && integer_type_p (type1)));
4110
4111 case BINOP_EQUAL:
4112 case BINOP_NOTEQUAL:
4113 case BINOP_LESS:
4114 case BINOP_GTR:
4115 case BINOP_LEQ:
4116 case BINOP_GEQ:
4117 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4118
4119 case BINOP_CONCAT:
4120 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4121
4122 case BINOP_EXP:
4123 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4124
4125 case UNOP_NEG:
4126 case UNOP_PLUS:
4127 case UNOP_LOGICAL_NOT:
4128 case UNOP_ABS:
4129 return (!numeric_type_p (type0));
4130
4131 }
4132 }
4133 \f
4134 /* Renaming */
4135
4136 /* NOTES:
4137
4138 1. In the following, we assume that a renaming type's name may
4139 have an ___XD suffix. It would be nice if this went away at some
4140 point.
4141 2. We handle both the (old) purely type-based representation of
4142 renamings and the (new) variable-based encoding. At some point,
4143 it is devoutly to be hoped that the former goes away
4144 (FIXME: hilfinger-2007-07-09).
4145 3. Subprogram renamings are not implemented, although the XRS
4146 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4147
4148 /* If SYM encodes a renaming,
4149
4150 <renaming> renames <renamed entity>,
4151
4152 sets *LEN to the length of the renamed entity's name,
4153 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4154 the string describing the subcomponent selected from the renamed
4155 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4156 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4157 are undefined). Otherwise, returns a value indicating the category
4158 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4159 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4160 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4161 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4162 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4163 may be NULL, in which case they are not assigned.
4164
4165 [Currently, however, GCC does not generate subprogram renamings.] */
4166
4167 enum ada_renaming_category
4168 ada_parse_renaming (struct symbol *sym,
4169 const char **renamed_entity, int *len,
4170 const char **renaming_expr)
4171 {
4172 enum ada_renaming_category kind;
4173 const char *info;
4174 const char *suffix;
4175
4176 if (sym == NULL)
4177 return ADA_NOT_RENAMING;
4178 switch (SYMBOL_CLASS (sym))
4179 {
4180 default:
4181 return ADA_NOT_RENAMING;
4182 case LOC_TYPEDEF:
4183 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4184 renamed_entity, len, renaming_expr);
4185 case LOC_LOCAL:
4186 case LOC_STATIC:
4187 case LOC_COMPUTED:
4188 case LOC_OPTIMIZED_OUT:
4189 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4190 if (info == NULL)
4191 return ADA_NOT_RENAMING;
4192 switch (info[5])
4193 {
4194 case '_':
4195 kind = ADA_OBJECT_RENAMING;
4196 info += 6;
4197 break;
4198 case 'E':
4199 kind = ADA_EXCEPTION_RENAMING;
4200 info += 7;
4201 break;
4202 case 'P':
4203 kind = ADA_PACKAGE_RENAMING;
4204 info += 7;
4205 break;
4206 case 'S':
4207 kind = ADA_SUBPROGRAM_RENAMING;
4208 info += 7;
4209 break;
4210 default:
4211 return ADA_NOT_RENAMING;
4212 }
4213 }
4214
4215 if (renamed_entity != NULL)
4216 *renamed_entity = info;
4217 suffix = strstr (info, "___XE");
4218 if (suffix == NULL || suffix == info)
4219 return ADA_NOT_RENAMING;
4220 if (len != NULL)
4221 *len = strlen (info) - strlen (suffix);
4222 suffix += 5;
4223 if (renaming_expr != NULL)
4224 *renaming_expr = suffix;
4225 return kind;
4226 }
4227
4228 /* Assuming TYPE encodes a renaming according to the old encoding in
4229 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4230 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4231 ADA_NOT_RENAMING otherwise. */
4232 static enum ada_renaming_category
4233 parse_old_style_renaming (struct type *type,
4234 const char **renamed_entity, int *len,
4235 const char **renaming_expr)
4236 {
4237 enum ada_renaming_category kind;
4238 const char *name;
4239 const char *info;
4240 const char *suffix;
4241
4242 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4243 || TYPE_NFIELDS (type) != 1)
4244 return ADA_NOT_RENAMING;
4245
4246 name = type_name_no_tag (type);
4247 if (name == NULL)
4248 return ADA_NOT_RENAMING;
4249
4250 name = strstr (name, "___XR");
4251 if (name == NULL)
4252 return ADA_NOT_RENAMING;
4253 switch (name[5])
4254 {
4255 case '\0':
4256 case '_':
4257 kind = ADA_OBJECT_RENAMING;
4258 break;
4259 case 'E':
4260 kind = ADA_EXCEPTION_RENAMING;
4261 break;
4262 case 'P':
4263 kind = ADA_PACKAGE_RENAMING;
4264 break;
4265 case 'S':
4266 kind = ADA_SUBPROGRAM_RENAMING;
4267 break;
4268 default:
4269 return ADA_NOT_RENAMING;
4270 }
4271
4272 info = TYPE_FIELD_NAME (type, 0);
4273 if (info == NULL)
4274 return ADA_NOT_RENAMING;
4275 if (renamed_entity != NULL)
4276 *renamed_entity = info;
4277 suffix = strstr (info, "___XE");
4278 if (renaming_expr != NULL)
4279 *renaming_expr = suffix + 5;
4280 if (suffix == NULL || suffix == info)
4281 return ADA_NOT_RENAMING;
4282 if (len != NULL)
4283 *len = suffix - info;
4284 return kind;
4285 }
4286
4287 /* Compute the value of the given RENAMING_SYM, which is expected to
4288 be a symbol encoding a renaming expression. BLOCK is the block
4289 used to evaluate the renaming. */
4290
4291 static struct value *
4292 ada_read_renaming_var_value (struct symbol *renaming_sym,
4293 const struct block *block)
4294 {
4295 const char *sym_name;
4296 struct expression *expr;
4297 struct value *value;
4298 struct cleanup *old_chain = NULL;
4299
4300 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4301 expr = parse_exp_1 (&sym_name, 0, block, 0);
4302 old_chain = make_cleanup (free_current_contents, &expr);
4303 value = evaluate_expression (expr);
4304
4305 do_cleanups (old_chain);
4306 return value;
4307 }
4308 \f
4309
4310 /* Evaluation: Function Calls */
4311
4312 /* Return an lvalue containing the value VAL. This is the identity on
4313 lvalues, and otherwise has the side-effect of allocating memory
4314 in the inferior where a copy of the value contents is copied. */
4315
4316 static struct value *
4317 ensure_lval (struct value *val)
4318 {
4319 if (VALUE_LVAL (val) == not_lval
4320 || VALUE_LVAL (val) == lval_internalvar)
4321 {
4322 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4323 const CORE_ADDR addr =
4324 value_as_long (value_allocate_space_in_inferior (len));
4325
4326 set_value_address (val, addr);
4327 VALUE_LVAL (val) = lval_memory;
4328 write_memory (addr, value_contents (val), len);
4329 }
4330
4331 return val;
4332 }
4333
4334 /* Return the value ACTUAL, converted to be an appropriate value for a
4335 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4336 allocating any necessary descriptors (fat pointers), or copies of
4337 values not residing in memory, updating it as needed. */
4338
4339 struct value *
4340 ada_convert_actual (struct value *actual, struct type *formal_type0)
4341 {
4342 struct type *actual_type = ada_check_typedef (value_type (actual));
4343 struct type *formal_type = ada_check_typedef (formal_type0);
4344 struct type *formal_target =
4345 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4346 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4347 struct type *actual_target =
4348 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4349 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4350
4351 if (ada_is_array_descriptor_type (formal_target)
4352 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4353 return make_array_descriptor (formal_type, actual);
4354 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4355 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4356 {
4357 struct value *result;
4358
4359 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4360 && ada_is_array_descriptor_type (actual_target))
4361 result = desc_data (actual);
4362 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4363 {
4364 if (VALUE_LVAL (actual) != lval_memory)
4365 {
4366 struct value *val;
4367
4368 actual_type = ada_check_typedef (value_type (actual));
4369 val = allocate_value (actual_type);
4370 memcpy ((char *) value_contents_raw (val),
4371 (char *) value_contents (actual),
4372 TYPE_LENGTH (actual_type));
4373 actual = ensure_lval (val);
4374 }
4375 result = value_addr (actual);
4376 }
4377 else
4378 return actual;
4379 return value_cast_pointers (formal_type, result, 0);
4380 }
4381 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4382 return ada_value_ind (actual);
4383 else if (ada_is_aligner_type (formal_type))
4384 {
4385 /* We need to turn this parameter into an aligner type
4386 as well. */
4387 struct value *aligner = allocate_value (formal_type);
4388 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4389
4390 value_assign_to_component (aligner, component, actual);
4391 return aligner;
4392 }
4393
4394 return actual;
4395 }
4396
4397 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4398 type TYPE. This is usually an inefficient no-op except on some targets
4399 (such as AVR) where the representation of a pointer and an address
4400 differs. */
4401
4402 static CORE_ADDR
4403 value_pointer (struct value *value, struct type *type)
4404 {
4405 struct gdbarch *gdbarch = get_type_arch (type);
4406 unsigned len = TYPE_LENGTH (type);
4407 gdb_byte *buf = (gdb_byte *) alloca (len);
4408 CORE_ADDR addr;
4409
4410 addr = value_address (value);
4411 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4412 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4413 return addr;
4414 }
4415
4416
4417 /* Push a descriptor of type TYPE for array value ARR on the stack at
4418 *SP, updating *SP to reflect the new descriptor. Return either
4419 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4420 to-descriptor type rather than a descriptor type), a struct value *
4421 representing a pointer to this descriptor. */
4422
4423 static struct value *
4424 make_array_descriptor (struct type *type, struct value *arr)
4425 {
4426 struct type *bounds_type = desc_bounds_type (type);
4427 struct type *desc_type = desc_base_type (type);
4428 struct value *descriptor = allocate_value (desc_type);
4429 struct value *bounds = allocate_value (bounds_type);
4430 int i;
4431
4432 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4433 i > 0; i -= 1)
4434 {
4435 modify_field (value_type (bounds), value_contents_writeable (bounds),
4436 ada_array_bound (arr, i, 0),
4437 desc_bound_bitpos (bounds_type, i, 0),
4438 desc_bound_bitsize (bounds_type, i, 0));
4439 modify_field (value_type (bounds), value_contents_writeable (bounds),
4440 ada_array_bound (arr, i, 1),
4441 desc_bound_bitpos (bounds_type, i, 1),
4442 desc_bound_bitsize (bounds_type, i, 1));
4443 }
4444
4445 bounds = ensure_lval (bounds);
4446
4447 modify_field (value_type (descriptor),
4448 value_contents_writeable (descriptor),
4449 value_pointer (ensure_lval (arr),
4450 TYPE_FIELD_TYPE (desc_type, 0)),
4451 fat_pntr_data_bitpos (desc_type),
4452 fat_pntr_data_bitsize (desc_type));
4453
4454 modify_field (value_type (descriptor),
4455 value_contents_writeable (descriptor),
4456 value_pointer (bounds,
4457 TYPE_FIELD_TYPE (desc_type, 1)),
4458 fat_pntr_bounds_bitpos (desc_type),
4459 fat_pntr_bounds_bitsize (desc_type));
4460
4461 descriptor = ensure_lval (descriptor);
4462
4463 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4464 return value_addr (descriptor);
4465 else
4466 return descriptor;
4467 }
4468 \f
4469 /* Symbol Cache Module */
4470
4471 /* Performance measurements made as of 2010-01-15 indicate that
4472 this cache does bring some noticeable improvements. Depending
4473 on the type of entity being printed, the cache can make it as much
4474 as an order of magnitude faster than without it.
4475
4476 The descriptive type DWARF extension has significantly reduced
4477 the need for this cache, at least when DWARF is being used. However,
4478 even in this case, some expensive name-based symbol searches are still
4479 sometimes necessary - to find an XVZ variable, mostly. */
4480
4481 /* Initialize the contents of SYM_CACHE. */
4482
4483 static void
4484 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4485 {
4486 obstack_init (&sym_cache->cache_space);
4487 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4488 }
4489
4490 /* Free the memory used by SYM_CACHE. */
4491
4492 static void
4493 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4494 {
4495 obstack_free (&sym_cache->cache_space, NULL);
4496 xfree (sym_cache);
4497 }
4498
4499 /* Return the symbol cache associated to the given program space PSPACE.
4500 If not allocated for this PSPACE yet, allocate and initialize one. */
4501
4502 static struct ada_symbol_cache *
4503 ada_get_symbol_cache (struct program_space *pspace)
4504 {
4505 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4506
4507 if (pspace_data->sym_cache == NULL)
4508 {
4509 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4510 ada_init_symbol_cache (pspace_data->sym_cache);
4511 }
4512
4513 return pspace_data->sym_cache;
4514 }
4515
4516 /* Clear all entries from the symbol cache. */
4517
4518 static void
4519 ada_clear_symbol_cache (void)
4520 {
4521 struct ada_symbol_cache *sym_cache
4522 = ada_get_symbol_cache (current_program_space);
4523
4524 obstack_free (&sym_cache->cache_space, NULL);
4525 ada_init_symbol_cache (sym_cache);
4526 }
4527
4528 /* Search our cache for an entry matching NAME and DOMAIN.
4529 Return it if found, or NULL otherwise. */
4530
4531 static struct cache_entry **
4532 find_entry (const char *name, domain_enum domain)
4533 {
4534 struct ada_symbol_cache *sym_cache
4535 = ada_get_symbol_cache (current_program_space);
4536 int h = msymbol_hash (name) % HASH_SIZE;
4537 struct cache_entry **e;
4538
4539 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4540 {
4541 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4542 return e;
4543 }
4544 return NULL;
4545 }
4546
4547 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4548 Return 1 if found, 0 otherwise.
4549
4550 If an entry was found and SYM is not NULL, set *SYM to the entry's
4551 SYM. Same principle for BLOCK if not NULL. */
4552
4553 static int
4554 lookup_cached_symbol (const char *name, domain_enum domain,
4555 struct symbol **sym, const struct block **block)
4556 {
4557 struct cache_entry **e = find_entry (name, domain);
4558
4559 if (e == NULL)
4560 return 0;
4561 if (sym != NULL)
4562 *sym = (*e)->sym;
4563 if (block != NULL)
4564 *block = (*e)->block;
4565 return 1;
4566 }
4567
4568 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4569 in domain DOMAIN, save this result in our symbol cache. */
4570
4571 static void
4572 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4573 const struct block *block)
4574 {
4575 struct ada_symbol_cache *sym_cache
4576 = ada_get_symbol_cache (current_program_space);
4577 int h;
4578 char *copy;
4579 struct cache_entry *e;
4580
4581 /* Symbols for builtin types don't have a block.
4582 For now don't cache such symbols. */
4583 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4584 return;
4585
4586 /* If the symbol is a local symbol, then do not cache it, as a search
4587 for that symbol depends on the context. To determine whether
4588 the symbol is local or not, we check the block where we found it
4589 against the global and static blocks of its associated symtab. */
4590 if (sym
4591 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4592 GLOBAL_BLOCK) != block
4593 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4594 STATIC_BLOCK) != block)
4595 return;
4596
4597 h = msymbol_hash (name) % HASH_SIZE;
4598 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4599 sizeof (*e));
4600 e->next = sym_cache->root[h];
4601 sym_cache->root[h] = e;
4602 e->name = copy
4603 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4604 strcpy (copy, name);
4605 e->sym = sym;
4606 e->domain = domain;
4607 e->block = block;
4608 }
4609 \f
4610 /* Symbol Lookup */
4611
4612 /* Return nonzero if wild matching should be used when searching for
4613 all symbols matching LOOKUP_NAME.
4614
4615 LOOKUP_NAME is expected to be a symbol name after transformation
4616 for Ada lookups (see ada_name_for_lookup). */
4617
4618 static int
4619 should_use_wild_match (const char *lookup_name)
4620 {
4621 return (strstr (lookup_name, "__") == NULL);
4622 }
4623
4624 /* Return the result of a standard (literal, C-like) lookup of NAME in
4625 given DOMAIN, visible from lexical block BLOCK. */
4626
4627 static struct symbol *
4628 standard_lookup (const char *name, const struct block *block,
4629 domain_enum domain)
4630 {
4631 /* Initialize it just to avoid a GCC false warning. */
4632 struct block_symbol sym = {NULL, NULL};
4633
4634 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4635 return sym.symbol;
4636 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4637 cache_symbol (name, domain, sym.symbol, sym.block);
4638 return sym.symbol;
4639 }
4640
4641
4642 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4643 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4644 since they contend in overloading in the same way. */
4645 static int
4646 is_nonfunction (struct block_symbol syms[], int n)
4647 {
4648 int i;
4649
4650 for (i = 0; i < n; i += 1)
4651 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4652 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4653 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4654 return 1;
4655
4656 return 0;
4657 }
4658
4659 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4660 struct types. Otherwise, they may not. */
4661
4662 static int
4663 equiv_types (struct type *type0, struct type *type1)
4664 {
4665 if (type0 == type1)
4666 return 1;
4667 if (type0 == NULL || type1 == NULL
4668 || TYPE_CODE (type0) != TYPE_CODE (type1))
4669 return 0;
4670 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4671 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4672 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4673 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4674 return 1;
4675
4676 return 0;
4677 }
4678
4679 /* True iff SYM0 represents the same entity as SYM1, or one that is
4680 no more defined than that of SYM1. */
4681
4682 static int
4683 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4684 {
4685 if (sym0 == sym1)
4686 return 1;
4687 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4688 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4689 return 0;
4690
4691 switch (SYMBOL_CLASS (sym0))
4692 {
4693 case LOC_UNDEF:
4694 return 1;
4695 case LOC_TYPEDEF:
4696 {
4697 struct type *type0 = SYMBOL_TYPE (sym0);
4698 struct type *type1 = SYMBOL_TYPE (sym1);
4699 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4700 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4701 int len0 = strlen (name0);
4702
4703 return
4704 TYPE_CODE (type0) == TYPE_CODE (type1)
4705 && (equiv_types (type0, type1)
4706 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4707 && startswith (name1 + len0, "___XV")));
4708 }
4709 case LOC_CONST:
4710 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4711 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4712 default:
4713 return 0;
4714 }
4715 }
4716
4717 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4718 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4719
4720 static void
4721 add_defn_to_vec (struct obstack *obstackp,
4722 struct symbol *sym,
4723 const struct block *block)
4724 {
4725 int i;
4726 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4727
4728 /* Do not try to complete stub types, as the debugger is probably
4729 already scanning all symbols matching a certain name at the
4730 time when this function is called. Trying to replace the stub
4731 type by its associated full type will cause us to restart a scan
4732 which may lead to an infinite recursion. Instead, the client
4733 collecting the matching symbols will end up collecting several
4734 matches, with at least one of them complete. It can then filter
4735 out the stub ones if needed. */
4736
4737 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4738 {
4739 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4740 return;
4741 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4742 {
4743 prevDefns[i].symbol = sym;
4744 prevDefns[i].block = block;
4745 return;
4746 }
4747 }
4748
4749 {
4750 struct block_symbol info;
4751
4752 info.symbol = sym;
4753 info.block = block;
4754 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4755 }
4756 }
4757
4758 /* Number of block_symbol structures currently collected in current vector in
4759 OBSTACKP. */
4760
4761 static int
4762 num_defns_collected (struct obstack *obstackp)
4763 {
4764 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4765 }
4766
4767 /* Vector of block_symbol structures currently collected in current vector in
4768 OBSTACKP. If FINISH, close off the vector and return its final address. */
4769
4770 static struct block_symbol *
4771 defns_collected (struct obstack *obstackp, int finish)
4772 {
4773 if (finish)
4774 return (struct block_symbol *) obstack_finish (obstackp);
4775 else
4776 return (struct block_symbol *) obstack_base (obstackp);
4777 }
4778
4779 /* Return a bound minimal symbol matching NAME according to Ada
4780 decoding rules. Returns an invalid symbol if there is no such
4781 minimal symbol. Names prefixed with "standard__" are handled
4782 specially: "standard__" is first stripped off, and only static and
4783 global symbols are searched. */
4784
4785 struct bound_minimal_symbol
4786 ada_lookup_simple_minsym (const char *name)
4787 {
4788 struct bound_minimal_symbol result;
4789 struct objfile *objfile;
4790 struct minimal_symbol *msymbol;
4791 const int wild_match_p = should_use_wild_match (name);
4792
4793 memset (&result, 0, sizeof (result));
4794
4795 /* Special case: If the user specifies a symbol name inside package
4796 Standard, do a non-wild matching of the symbol name without
4797 the "standard__" prefix. This was primarily introduced in order
4798 to allow the user to specifically access the standard exceptions
4799 using, for instance, Standard.Constraint_Error when Constraint_Error
4800 is ambiguous (due to the user defining its own Constraint_Error
4801 entity inside its program). */
4802 if (startswith (name, "standard__"))
4803 name += sizeof ("standard__") - 1;
4804
4805 ALL_MSYMBOLS (objfile, msymbol)
4806 {
4807 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4808 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4809 {
4810 result.minsym = msymbol;
4811 result.objfile = objfile;
4812 break;
4813 }
4814 }
4815
4816 return result;
4817 }
4818
4819 /* For all subprograms that statically enclose the subprogram of the
4820 selected frame, add symbols matching identifier NAME in DOMAIN
4821 and their blocks to the list of data in OBSTACKP, as for
4822 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4823 with a wildcard prefix. */
4824
4825 static void
4826 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4827 const char *name, domain_enum domain,
4828 int wild_match_p)
4829 {
4830 }
4831
4832 /* True if TYPE is definitely an artificial type supplied to a symbol
4833 for which no debugging information was given in the symbol file. */
4834
4835 static int
4836 is_nondebugging_type (struct type *type)
4837 {
4838 const char *name = ada_type_name (type);
4839
4840 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4841 }
4842
4843 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4844 that are deemed "identical" for practical purposes.
4845
4846 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4847 types and that their number of enumerals is identical (in other
4848 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4849
4850 static int
4851 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4852 {
4853 int i;
4854
4855 /* The heuristic we use here is fairly conservative. We consider
4856 that 2 enumerate types are identical if they have the same
4857 number of enumerals and that all enumerals have the same
4858 underlying value and name. */
4859
4860 /* All enums in the type should have an identical underlying value. */
4861 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4862 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4863 return 0;
4864
4865 /* All enumerals should also have the same name (modulo any numerical
4866 suffix). */
4867 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4868 {
4869 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4870 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4871 int len_1 = strlen (name_1);
4872 int len_2 = strlen (name_2);
4873
4874 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4875 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4876 if (len_1 != len_2
4877 || strncmp (TYPE_FIELD_NAME (type1, i),
4878 TYPE_FIELD_NAME (type2, i),
4879 len_1) != 0)
4880 return 0;
4881 }
4882
4883 return 1;
4884 }
4885
4886 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4887 that are deemed "identical" for practical purposes. Sometimes,
4888 enumerals are not strictly identical, but their types are so similar
4889 that they can be considered identical.
4890
4891 For instance, consider the following code:
4892
4893 type Color is (Black, Red, Green, Blue, White);
4894 type RGB_Color is new Color range Red .. Blue;
4895
4896 Type RGB_Color is a subrange of an implicit type which is a copy
4897 of type Color. If we call that implicit type RGB_ColorB ("B" is
4898 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4899 As a result, when an expression references any of the enumeral
4900 by name (Eg. "print green"), the expression is technically
4901 ambiguous and the user should be asked to disambiguate. But
4902 doing so would only hinder the user, since it wouldn't matter
4903 what choice he makes, the outcome would always be the same.
4904 So, for practical purposes, we consider them as the same. */
4905
4906 static int
4907 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
4908 {
4909 int i;
4910
4911 /* Before performing a thorough comparison check of each type,
4912 we perform a series of inexpensive checks. We expect that these
4913 checks will quickly fail in the vast majority of cases, and thus
4914 help prevent the unnecessary use of a more expensive comparison.
4915 Said comparison also expects us to make some of these checks
4916 (see ada_identical_enum_types_p). */
4917
4918 /* Quick check: All symbols should have an enum type. */
4919 for (i = 0; i < nsyms; i++)
4920 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4921 return 0;
4922
4923 /* Quick check: They should all have the same value. */
4924 for (i = 1; i < nsyms; i++)
4925 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4926 return 0;
4927
4928 /* Quick check: They should all have the same number of enumerals. */
4929 for (i = 1; i < nsyms; i++)
4930 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4931 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4932 return 0;
4933
4934 /* All the sanity checks passed, so we might have a set of
4935 identical enumeration types. Perform a more complete
4936 comparison of the type of each symbol. */
4937 for (i = 1; i < nsyms; i++)
4938 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4939 SYMBOL_TYPE (syms[0].symbol)))
4940 return 0;
4941
4942 return 1;
4943 }
4944
4945 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4946 duplicate other symbols in the list (The only case I know of where
4947 this happens is when object files containing stabs-in-ecoff are
4948 linked with files containing ordinary ecoff debugging symbols (or no
4949 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4950 Returns the number of items in the modified list. */
4951
4952 static int
4953 remove_extra_symbols (struct block_symbol *syms, int nsyms)
4954 {
4955 int i, j;
4956
4957 /* We should never be called with less than 2 symbols, as there
4958 cannot be any extra symbol in that case. But it's easy to
4959 handle, since we have nothing to do in that case. */
4960 if (nsyms < 2)
4961 return nsyms;
4962
4963 i = 0;
4964 while (i < nsyms)
4965 {
4966 int remove_p = 0;
4967
4968 /* If two symbols have the same name and one of them is a stub type,
4969 the get rid of the stub. */
4970
4971 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
4972 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
4973 {
4974 for (j = 0; j < nsyms; j++)
4975 {
4976 if (j != i
4977 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
4978 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
4979 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
4980 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
4981 remove_p = 1;
4982 }
4983 }
4984
4985 /* Two symbols with the same name, same class and same address
4986 should be identical. */
4987
4988 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
4989 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
4990 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
4991 {
4992 for (j = 0; j < nsyms; j += 1)
4993 {
4994 if (i != j
4995 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
4996 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
4997 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
4998 && SYMBOL_CLASS (syms[i].symbol)
4999 == SYMBOL_CLASS (syms[j].symbol)
5000 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5001 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5002 remove_p = 1;
5003 }
5004 }
5005
5006 if (remove_p)
5007 {
5008 for (j = i + 1; j < nsyms; j += 1)
5009 syms[j - 1] = syms[j];
5010 nsyms -= 1;
5011 }
5012
5013 i += 1;
5014 }
5015
5016 /* If all the remaining symbols are identical enumerals, then
5017 just keep the first one and discard the rest.
5018
5019 Unlike what we did previously, we do not discard any entry
5020 unless they are ALL identical. This is because the symbol
5021 comparison is not a strict comparison, but rather a practical
5022 comparison. If all symbols are considered identical, then
5023 we can just go ahead and use the first one and discard the rest.
5024 But if we cannot reduce the list to a single element, we have
5025 to ask the user to disambiguate anyways. And if we have to
5026 present a multiple-choice menu, it's less confusing if the list
5027 isn't missing some choices that were identical and yet distinct. */
5028 if (symbols_are_identical_enums (syms, nsyms))
5029 nsyms = 1;
5030
5031 return nsyms;
5032 }
5033
5034 /* Given a type that corresponds to a renaming entity, use the type name
5035 to extract the scope (package name or function name, fully qualified,
5036 and following the GNAT encoding convention) where this renaming has been
5037 defined. The string returned needs to be deallocated after use. */
5038
5039 static char *
5040 xget_renaming_scope (struct type *renaming_type)
5041 {
5042 /* The renaming types adhere to the following convention:
5043 <scope>__<rename>___<XR extension>.
5044 So, to extract the scope, we search for the "___XR" extension,
5045 and then backtrack until we find the first "__". */
5046
5047 const char *name = type_name_no_tag (renaming_type);
5048 const char *suffix = strstr (name, "___XR");
5049 const char *last;
5050 int scope_len;
5051 char *scope;
5052
5053 /* Now, backtrack a bit until we find the first "__". Start looking
5054 at suffix - 3, as the <rename> part is at least one character long. */
5055
5056 for (last = suffix - 3; last > name; last--)
5057 if (last[0] == '_' && last[1] == '_')
5058 break;
5059
5060 /* Make a copy of scope and return it. */
5061
5062 scope_len = last - name;
5063 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5064
5065 strncpy (scope, name, scope_len);
5066 scope[scope_len] = '\0';
5067
5068 return scope;
5069 }
5070
5071 /* Return nonzero if NAME corresponds to a package name. */
5072
5073 static int
5074 is_package_name (const char *name)
5075 {
5076 /* Here, We take advantage of the fact that no symbols are generated
5077 for packages, while symbols are generated for each function.
5078 So the condition for NAME represent a package becomes equivalent
5079 to NAME not existing in our list of symbols. There is only one
5080 small complication with library-level functions (see below). */
5081
5082 char *fun_name;
5083
5084 /* If it is a function that has not been defined at library level,
5085 then we should be able to look it up in the symbols. */
5086 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5087 return 0;
5088
5089 /* Library-level function names start with "_ada_". See if function
5090 "_ada_" followed by NAME can be found. */
5091
5092 /* Do a quick check that NAME does not contain "__", since library-level
5093 functions names cannot contain "__" in them. */
5094 if (strstr (name, "__") != NULL)
5095 return 0;
5096
5097 fun_name = xstrprintf ("_ada_%s", name);
5098
5099 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5100 }
5101
5102 /* Return nonzero if SYM corresponds to a renaming entity that is
5103 not visible from FUNCTION_NAME. */
5104
5105 static int
5106 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5107 {
5108 char *scope;
5109 struct cleanup *old_chain;
5110
5111 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5112 return 0;
5113
5114 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5115 old_chain = make_cleanup (xfree, scope);
5116
5117 /* If the rename has been defined in a package, then it is visible. */
5118 if (is_package_name (scope))
5119 {
5120 do_cleanups (old_chain);
5121 return 0;
5122 }
5123
5124 /* Check that the rename is in the current function scope by checking
5125 that its name starts with SCOPE. */
5126
5127 /* If the function name starts with "_ada_", it means that it is
5128 a library-level function. Strip this prefix before doing the
5129 comparison, as the encoding for the renaming does not contain
5130 this prefix. */
5131 if (startswith (function_name, "_ada_"))
5132 function_name += 5;
5133
5134 {
5135 int is_invisible = !startswith (function_name, scope);
5136
5137 do_cleanups (old_chain);
5138 return is_invisible;
5139 }
5140 }
5141
5142 /* Remove entries from SYMS that corresponds to a renaming entity that
5143 is not visible from the function associated with CURRENT_BLOCK or
5144 that is superfluous due to the presence of more specific renaming
5145 information. Places surviving symbols in the initial entries of
5146 SYMS and returns the number of surviving symbols.
5147
5148 Rationale:
5149 First, in cases where an object renaming is implemented as a
5150 reference variable, GNAT may produce both the actual reference
5151 variable and the renaming encoding. In this case, we discard the
5152 latter.
5153
5154 Second, GNAT emits a type following a specified encoding for each renaming
5155 entity. Unfortunately, STABS currently does not support the definition
5156 of types that are local to a given lexical block, so all renamings types
5157 are emitted at library level. As a consequence, if an application
5158 contains two renaming entities using the same name, and a user tries to
5159 print the value of one of these entities, the result of the ada symbol
5160 lookup will also contain the wrong renaming type.
5161
5162 This function partially covers for this limitation by attempting to
5163 remove from the SYMS list renaming symbols that should be visible
5164 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5165 method with the current information available. The implementation
5166 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5167
5168 - When the user tries to print a rename in a function while there
5169 is another rename entity defined in a package: Normally, the
5170 rename in the function has precedence over the rename in the
5171 package, so the latter should be removed from the list. This is
5172 currently not the case.
5173
5174 - This function will incorrectly remove valid renames if
5175 the CURRENT_BLOCK corresponds to a function which symbol name
5176 has been changed by an "Export" pragma. As a consequence,
5177 the user will be unable to print such rename entities. */
5178
5179 static int
5180 remove_irrelevant_renamings (struct block_symbol *syms,
5181 int nsyms, const struct block *current_block)
5182 {
5183 struct symbol *current_function;
5184 const char *current_function_name;
5185 int i;
5186 int is_new_style_renaming;
5187
5188 /* If there is both a renaming foo___XR... encoded as a variable and
5189 a simple variable foo in the same block, discard the latter.
5190 First, zero out such symbols, then compress. */
5191 is_new_style_renaming = 0;
5192 for (i = 0; i < nsyms; i += 1)
5193 {
5194 struct symbol *sym = syms[i].symbol;
5195 const struct block *block = syms[i].block;
5196 const char *name;
5197 const char *suffix;
5198
5199 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5200 continue;
5201 name = SYMBOL_LINKAGE_NAME (sym);
5202 suffix = strstr (name, "___XR");
5203
5204 if (suffix != NULL)
5205 {
5206 int name_len = suffix - name;
5207 int j;
5208
5209 is_new_style_renaming = 1;
5210 for (j = 0; j < nsyms; j += 1)
5211 if (i != j && syms[j].symbol != NULL
5212 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5213 name_len) == 0
5214 && block == syms[j].block)
5215 syms[j].symbol = NULL;
5216 }
5217 }
5218 if (is_new_style_renaming)
5219 {
5220 int j, k;
5221
5222 for (j = k = 0; j < nsyms; j += 1)
5223 if (syms[j].symbol != NULL)
5224 {
5225 syms[k] = syms[j];
5226 k += 1;
5227 }
5228 return k;
5229 }
5230
5231 /* Extract the function name associated to CURRENT_BLOCK.
5232 Abort if unable to do so. */
5233
5234 if (current_block == NULL)
5235 return nsyms;
5236
5237 current_function = block_linkage_function (current_block);
5238 if (current_function == NULL)
5239 return nsyms;
5240
5241 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5242 if (current_function_name == NULL)
5243 return nsyms;
5244
5245 /* Check each of the symbols, and remove it from the list if it is
5246 a type corresponding to a renaming that is out of the scope of
5247 the current block. */
5248
5249 i = 0;
5250 while (i < nsyms)
5251 {
5252 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5253 == ADA_OBJECT_RENAMING
5254 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5255 {
5256 int j;
5257
5258 for (j = i + 1; j < nsyms; j += 1)
5259 syms[j - 1] = syms[j];
5260 nsyms -= 1;
5261 }
5262 else
5263 i += 1;
5264 }
5265
5266 return nsyms;
5267 }
5268
5269 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5270 whose name and domain match NAME and DOMAIN respectively.
5271 If no match was found, then extend the search to "enclosing"
5272 routines (in other words, if we're inside a nested function,
5273 search the symbols defined inside the enclosing functions).
5274 If WILD_MATCH_P is nonzero, perform the naming matching in
5275 "wild" mode (see function "wild_match" for more info).
5276
5277 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5278
5279 static void
5280 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5281 const struct block *block, domain_enum domain,
5282 int wild_match_p)
5283 {
5284 int block_depth = 0;
5285
5286 while (block != NULL)
5287 {
5288 block_depth += 1;
5289 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5290 wild_match_p);
5291
5292 /* If we found a non-function match, assume that's the one. */
5293 if (is_nonfunction (defns_collected (obstackp, 0),
5294 num_defns_collected (obstackp)))
5295 return;
5296
5297 block = BLOCK_SUPERBLOCK (block);
5298 }
5299
5300 /* If no luck so far, try to find NAME as a local symbol in some lexically
5301 enclosing subprogram. */
5302 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5303 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5304 }
5305
5306 /* An object of this type is used as the user_data argument when
5307 calling the map_matching_symbols method. */
5308
5309 struct match_data
5310 {
5311 struct objfile *objfile;
5312 struct obstack *obstackp;
5313 struct symbol *arg_sym;
5314 int found_sym;
5315 };
5316
5317 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5318 to a list of symbols. DATA0 is a pointer to a struct match_data *
5319 containing the obstack that collects the symbol list, the file that SYM
5320 must come from, a flag indicating whether a non-argument symbol has
5321 been found in the current block, and the last argument symbol
5322 passed in SYM within the current block (if any). When SYM is null,
5323 marking the end of a block, the argument symbol is added if no
5324 other has been found. */
5325
5326 static int
5327 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5328 {
5329 struct match_data *data = (struct match_data *) data0;
5330
5331 if (sym == NULL)
5332 {
5333 if (!data->found_sym && data->arg_sym != NULL)
5334 add_defn_to_vec (data->obstackp,
5335 fixup_symbol_section (data->arg_sym, data->objfile),
5336 block);
5337 data->found_sym = 0;
5338 data->arg_sym = NULL;
5339 }
5340 else
5341 {
5342 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5343 return 0;
5344 else if (SYMBOL_IS_ARGUMENT (sym))
5345 data->arg_sym = sym;
5346 else
5347 {
5348 data->found_sym = 1;
5349 add_defn_to_vec (data->obstackp,
5350 fixup_symbol_section (sym, data->objfile),
5351 block);
5352 }
5353 }
5354 return 0;
5355 }
5356
5357 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5358 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5359 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5360 function "wild_match" for more information). Return whether we found such
5361 symbols. */
5362
5363 static int
5364 ada_add_block_renamings (struct obstack *obstackp,
5365 const struct block *block,
5366 const char *name,
5367 domain_enum domain,
5368 int wild_match_p)
5369 {
5370 struct using_direct *renaming;
5371 int defns_mark = num_defns_collected (obstackp);
5372
5373 for (renaming = block_using (block);
5374 renaming != NULL;
5375 renaming = renaming->next)
5376 {
5377 const char *r_name;
5378 int name_match;
5379
5380 /* Avoid infinite recursions: skip this renaming if we are actually
5381 already traversing it.
5382
5383 Currently, symbol lookup in Ada don't use the namespace machinery from
5384 C++/Fortran support: skip namespace imports that use them. */
5385 if (renaming->searched
5386 || (renaming->import_src != NULL
5387 && renaming->import_src[0] != '\0')
5388 || (renaming->import_dest != NULL
5389 && renaming->import_dest[0] != '\0'))
5390 continue;
5391 renaming->searched = 1;
5392
5393 /* TODO: here, we perform another name-based symbol lookup, which can
5394 pull its own multiple overloads. In theory, we should be able to do
5395 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5396 not a simple name. But in order to do this, we would need to enhance
5397 the DWARF reader to associate a symbol to this renaming, instead of a
5398 name. So, for now, we do something simpler: re-use the C++/Fortran
5399 namespace machinery. */
5400 r_name = (renaming->alias != NULL
5401 ? renaming->alias
5402 : renaming->declaration);
5403 name_match
5404 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5405 if (name_match == 0)
5406 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5407 1, NULL);
5408 renaming->searched = 0;
5409 }
5410 return num_defns_collected (obstackp) != defns_mark;
5411 }
5412
5413 /* Implements compare_names, but only applying the comparision using
5414 the given CASING. */
5415
5416 static int
5417 compare_names_with_case (const char *string1, const char *string2,
5418 enum case_sensitivity casing)
5419 {
5420 while (*string1 != '\0' && *string2 != '\0')
5421 {
5422 char c1, c2;
5423
5424 if (isspace (*string1) || isspace (*string2))
5425 return strcmp_iw_ordered (string1, string2);
5426
5427 if (casing == case_sensitive_off)
5428 {
5429 c1 = tolower (*string1);
5430 c2 = tolower (*string2);
5431 }
5432 else
5433 {
5434 c1 = *string1;
5435 c2 = *string2;
5436 }
5437 if (c1 != c2)
5438 break;
5439
5440 string1 += 1;
5441 string2 += 1;
5442 }
5443
5444 switch (*string1)
5445 {
5446 case '(':
5447 return strcmp_iw_ordered (string1, string2);
5448 case '_':
5449 if (*string2 == '\0')
5450 {
5451 if (is_name_suffix (string1))
5452 return 0;
5453 else
5454 return 1;
5455 }
5456 /* FALLTHROUGH */
5457 default:
5458 if (*string2 == '(')
5459 return strcmp_iw_ordered (string1, string2);
5460 else
5461 {
5462 if (casing == case_sensitive_off)
5463 return tolower (*string1) - tolower (*string2);
5464 else
5465 return *string1 - *string2;
5466 }
5467 }
5468 }
5469
5470 /* Compare STRING1 to STRING2, with results as for strcmp.
5471 Compatible with strcmp_iw_ordered in that...
5472
5473 strcmp_iw_ordered (STRING1, STRING2) <= 0
5474
5475 ... implies...
5476
5477 compare_names (STRING1, STRING2) <= 0
5478
5479 (they may differ as to what symbols compare equal). */
5480
5481 static int
5482 compare_names (const char *string1, const char *string2)
5483 {
5484 int result;
5485
5486 /* Similar to what strcmp_iw_ordered does, we need to perform
5487 a case-insensitive comparison first, and only resort to
5488 a second, case-sensitive, comparison if the first one was
5489 not sufficient to differentiate the two strings. */
5490
5491 result = compare_names_with_case (string1, string2, case_sensitive_off);
5492 if (result == 0)
5493 result = compare_names_with_case (string1, string2, case_sensitive_on);
5494
5495 return result;
5496 }
5497
5498 /* Add to OBSTACKP all non-local symbols whose name and domain match
5499 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5500 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5501
5502 static void
5503 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5504 domain_enum domain, int global,
5505 int is_wild_match)
5506 {
5507 struct objfile *objfile;
5508 struct compunit_symtab *cu;
5509 struct match_data data;
5510
5511 memset (&data, 0, sizeof data);
5512 data.obstackp = obstackp;
5513
5514 ALL_OBJFILES (objfile)
5515 {
5516 data.objfile = objfile;
5517
5518 if (is_wild_match)
5519 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5520 aux_add_nonlocal_symbols, &data,
5521 wild_match, NULL);
5522 else
5523 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5524 aux_add_nonlocal_symbols, &data,
5525 full_match, compare_names);
5526
5527 ALL_OBJFILE_COMPUNITS (objfile, cu)
5528 {
5529 const struct block *global_block
5530 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5531
5532 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5533 is_wild_match))
5534 data.found_sym = 1;
5535 }
5536 }
5537
5538 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5539 {
5540 ALL_OBJFILES (objfile)
5541 {
5542 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5543 strcpy (name1, "_ada_");
5544 strcpy (name1 + sizeof ("_ada_") - 1, name);
5545 data.objfile = objfile;
5546 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5547 global,
5548 aux_add_nonlocal_symbols,
5549 &data,
5550 full_match, compare_names);
5551 }
5552 }
5553 }
5554
5555 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5556 non-zero, enclosing scope and in global scopes, returning the number of
5557 matches. Add these to OBSTACKP.
5558
5559 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5560 symbol match within the nest of blocks whose innermost member is BLOCK,
5561 is the one match returned (no other matches in that or
5562 enclosing blocks is returned). If there are any matches in or
5563 surrounding BLOCK, then these alone are returned.
5564
5565 Names prefixed with "standard__" are handled specially: "standard__"
5566 is first stripped off, and only static and global symbols are searched.
5567
5568 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5569 to lookup global symbols. */
5570
5571 static void
5572 ada_add_all_symbols (struct obstack *obstackp,
5573 const struct block *block,
5574 const char *name,
5575 domain_enum domain,
5576 int full_search,
5577 int *made_global_lookup_p)
5578 {
5579 struct symbol *sym;
5580 const int wild_match_p = should_use_wild_match (name);
5581
5582 if (made_global_lookup_p)
5583 *made_global_lookup_p = 0;
5584
5585 /* Special case: If the user specifies a symbol name inside package
5586 Standard, do a non-wild matching of the symbol name without
5587 the "standard__" prefix. This was primarily introduced in order
5588 to allow the user to specifically access the standard exceptions
5589 using, for instance, Standard.Constraint_Error when Constraint_Error
5590 is ambiguous (due to the user defining its own Constraint_Error
5591 entity inside its program). */
5592 if (startswith (name, "standard__"))
5593 {
5594 block = NULL;
5595 name = name + sizeof ("standard__") - 1;
5596 }
5597
5598 /* Check the non-global symbols. If we have ANY match, then we're done. */
5599
5600 if (block != NULL)
5601 {
5602 if (full_search)
5603 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5604 else
5605 {
5606 /* In the !full_search case we're are being called by
5607 ada_iterate_over_symbols, and we don't want to search
5608 superblocks. */
5609 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5610 wild_match_p);
5611 }
5612 if (num_defns_collected (obstackp) > 0 || !full_search)
5613 return;
5614 }
5615
5616 /* No non-global symbols found. Check our cache to see if we have
5617 already performed this search before. If we have, then return
5618 the same result. */
5619
5620 if (lookup_cached_symbol (name, domain, &sym, &block))
5621 {
5622 if (sym != NULL)
5623 add_defn_to_vec (obstackp, sym, block);
5624 return;
5625 }
5626
5627 if (made_global_lookup_p)
5628 *made_global_lookup_p = 1;
5629
5630 /* Search symbols from all global blocks. */
5631
5632 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5633
5634 /* Now add symbols from all per-file blocks if we've gotten no hits
5635 (not strictly correct, but perhaps better than an error). */
5636
5637 if (num_defns_collected (obstackp) == 0)
5638 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5639 }
5640
5641 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5642 non-zero, enclosing scope and in global scopes, returning the number of
5643 matches.
5644 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5645 indicating the symbols found and the blocks and symbol tables (if
5646 any) in which they were found. This vector is transient---good only to
5647 the next call of ada_lookup_symbol_list.
5648
5649 When full_search is non-zero, any non-function/non-enumeral
5650 symbol match within the nest of blocks whose innermost member is BLOCK,
5651 is the one match returned (no other matches in that or
5652 enclosing blocks is returned). If there are any matches in or
5653 surrounding BLOCK, then these alone are returned.
5654
5655 Names prefixed with "standard__" are handled specially: "standard__"
5656 is first stripped off, and only static and global symbols are searched. */
5657
5658 static int
5659 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5660 domain_enum domain,
5661 struct block_symbol **results,
5662 int full_search)
5663 {
5664 const int wild_match_p = should_use_wild_match (name);
5665 int syms_from_global_search;
5666 int ndefns;
5667
5668 obstack_free (&symbol_list_obstack, NULL);
5669 obstack_init (&symbol_list_obstack);
5670 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5671 full_search, &syms_from_global_search);
5672
5673 ndefns = num_defns_collected (&symbol_list_obstack);
5674 *results = defns_collected (&symbol_list_obstack, 1);
5675
5676 ndefns = remove_extra_symbols (*results, ndefns);
5677
5678 if (ndefns == 0 && full_search && syms_from_global_search)
5679 cache_symbol (name, domain, NULL, NULL);
5680
5681 if (ndefns == 1 && full_search && syms_from_global_search)
5682 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5683
5684 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5685 return ndefns;
5686 }
5687
5688 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5689 in global scopes, returning the number of matches, and setting *RESULTS
5690 to a vector of (SYM,BLOCK) tuples.
5691 See ada_lookup_symbol_list_worker for further details. */
5692
5693 int
5694 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5695 domain_enum domain, struct block_symbol **results)
5696 {
5697 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5698 }
5699
5700 /* Implementation of the la_iterate_over_symbols method. */
5701
5702 static void
5703 ada_iterate_over_symbols (const struct block *block,
5704 const char *name, domain_enum domain,
5705 symbol_found_callback_ftype *callback,
5706 void *data)
5707 {
5708 int ndefs, i;
5709 struct block_symbol *results;
5710
5711 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5712 for (i = 0; i < ndefs; ++i)
5713 {
5714 if (! (*callback) (results[i].symbol, data))
5715 break;
5716 }
5717 }
5718
5719 /* If NAME is the name of an entity, return a string that should
5720 be used to look that entity up in Ada units. This string should
5721 be deallocated after use using xfree.
5722
5723 NAME can have any form that the "break" or "print" commands might
5724 recognize. In other words, it does not have to be the "natural"
5725 name, or the "encoded" name. */
5726
5727 char *
5728 ada_name_for_lookup (const char *name)
5729 {
5730 char *canon;
5731 int nlen = strlen (name);
5732
5733 if (name[0] == '<' && name[nlen - 1] == '>')
5734 {
5735 canon = (char *) xmalloc (nlen - 1);
5736 memcpy (canon, name + 1, nlen - 2);
5737 canon[nlen - 2] = '\0';
5738 }
5739 else
5740 canon = xstrdup (ada_encode (ada_fold_name (name)));
5741 return canon;
5742 }
5743
5744 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5745 to 1, but choosing the first symbol found if there are multiple
5746 choices.
5747
5748 The result is stored in *INFO, which must be non-NULL.
5749 If no match is found, INFO->SYM is set to NULL. */
5750
5751 void
5752 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5753 domain_enum domain,
5754 struct block_symbol *info)
5755 {
5756 struct block_symbol *candidates;
5757 int n_candidates;
5758
5759 gdb_assert (info != NULL);
5760 memset (info, 0, sizeof (struct block_symbol));
5761
5762 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5763 if (n_candidates == 0)
5764 return;
5765
5766 *info = candidates[0];
5767 info->symbol = fixup_symbol_section (info->symbol, NULL);
5768 }
5769
5770 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5771 scope and in global scopes, or NULL if none. NAME is folded and
5772 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5773 choosing the first symbol if there are multiple choices.
5774 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5775
5776 struct block_symbol
5777 ada_lookup_symbol (const char *name, const struct block *block0,
5778 domain_enum domain, int *is_a_field_of_this)
5779 {
5780 struct block_symbol info;
5781
5782 if (is_a_field_of_this != NULL)
5783 *is_a_field_of_this = 0;
5784
5785 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5786 block0, domain, &info);
5787 return info;
5788 }
5789
5790 static struct block_symbol
5791 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5792 const char *name,
5793 const struct block *block,
5794 const domain_enum domain)
5795 {
5796 struct block_symbol sym;
5797
5798 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5799 if (sym.symbol != NULL)
5800 return sym;
5801
5802 /* If we haven't found a match at this point, try the primitive
5803 types. In other languages, this search is performed before
5804 searching for global symbols in order to short-circuit that
5805 global-symbol search if it happens that the name corresponds
5806 to a primitive type. But we cannot do the same in Ada, because
5807 it is perfectly legitimate for a program to declare a type which
5808 has the same name as a standard type. If looking up a type in
5809 that situation, we have traditionally ignored the primitive type
5810 in favor of user-defined types. This is why, unlike most other
5811 languages, we search the primitive types this late and only after
5812 having searched the global symbols without success. */
5813
5814 if (domain == VAR_DOMAIN)
5815 {
5816 struct gdbarch *gdbarch;
5817
5818 if (block == NULL)
5819 gdbarch = target_gdbarch ();
5820 else
5821 gdbarch = block_gdbarch (block);
5822 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5823 if (sym.symbol != NULL)
5824 return sym;
5825 }
5826
5827 return (struct block_symbol) {NULL, NULL};
5828 }
5829
5830
5831 /* True iff STR is a possible encoded suffix of a normal Ada name
5832 that is to be ignored for matching purposes. Suffixes of parallel
5833 names (e.g., XVE) are not included here. Currently, the possible suffixes
5834 are given by any of the regular expressions:
5835
5836 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5837 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5838 TKB [subprogram suffix for task bodies]
5839 _E[0-9]+[bs]$ [protected object entry suffixes]
5840 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5841
5842 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5843 match is performed. This sequence is used to differentiate homonyms,
5844 is an optional part of a valid name suffix. */
5845
5846 static int
5847 is_name_suffix (const char *str)
5848 {
5849 int k;
5850 const char *matching;
5851 const int len = strlen (str);
5852
5853 /* Skip optional leading __[0-9]+. */
5854
5855 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5856 {
5857 str += 3;
5858 while (isdigit (str[0]))
5859 str += 1;
5860 }
5861
5862 /* [.$][0-9]+ */
5863
5864 if (str[0] == '.' || str[0] == '$')
5865 {
5866 matching = str + 1;
5867 while (isdigit (matching[0]))
5868 matching += 1;
5869 if (matching[0] == '\0')
5870 return 1;
5871 }
5872
5873 /* ___[0-9]+ */
5874
5875 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5876 {
5877 matching = str + 3;
5878 while (isdigit (matching[0]))
5879 matching += 1;
5880 if (matching[0] == '\0')
5881 return 1;
5882 }
5883
5884 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5885
5886 if (strcmp (str, "TKB") == 0)
5887 return 1;
5888
5889 #if 0
5890 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5891 with a N at the end. Unfortunately, the compiler uses the same
5892 convention for other internal types it creates. So treating
5893 all entity names that end with an "N" as a name suffix causes
5894 some regressions. For instance, consider the case of an enumerated
5895 type. To support the 'Image attribute, it creates an array whose
5896 name ends with N.
5897 Having a single character like this as a suffix carrying some
5898 information is a bit risky. Perhaps we should change the encoding
5899 to be something like "_N" instead. In the meantime, do not do
5900 the following check. */
5901 /* Protected Object Subprograms */
5902 if (len == 1 && str [0] == 'N')
5903 return 1;
5904 #endif
5905
5906 /* _E[0-9]+[bs]$ */
5907 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5908 {
5909 matching = str + 3;
5910 while (isdigit (matching[0]))
5911 matching += 1;
5912 if ((matching[0] == 'b' || matching[0] == 's')
5913 && matching [1] == '\0')
5914 return 1;
5915 }
5916
5917 /* ??? We should not modify STR directly, as we are doing below. This
5918 is fine in this case, but may become problematic later if we find
5919 that this alternative did not work, and want to try matching
5920 another one from the begining of STR. Since we modified it, we
5921 won't be able to find the begining of the string anymore! */
5922 if (str[0] == 'X')
5923 {
5924 str += 1;
5925 while (str[0] != '_' && str[0] != '\0')
5926 {
5927 if (str[0] != 'n' && str[0] != 'b')
5928 return 0;
5929 str += 1;
5930 }
5931 }
5932
5933 if (str[0] == '\000')
5934 return 1;
5935
5936 if (str[0] == '_')
5937 {
5938 if (str[1] != '_' || str[2] == '\000')
5939 return 0;
5940 if (str[2] == '_')
5941 {
5942 if (strcmp (str + 3, "JM") == 0)
5943 return 1;
5944 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5945 the LJM suffix in favor of the JM one. But we will
5946 still accept LJM as a valid suffix for a reasonable
5947 amount of time, just to allow ourselves to debug programs
5948 compiled using an older version of GNAT. */
5949 if (strcmp (str + 3, "LJM") == 0)
5950 return 1;
5951 if (str[3] != 'X')
5952 return 0;
5953 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5954 || str[4] == 'U' || str[4] == 'P')
5955 return 1;
5956 if (str[4] == 'R' && str[5] != 'T')
5957 return 1;
5958 return 0;
5959 }
5960 if (!isdigit (str[2]))
5961 return 0;
5962 for (k = 3; str[k] != '\0'; k += 1)
5963 if (!isdigit (str[k]) && str[k] != '_')
5964 return 0;
5965 return 1;
5966 }
5967 if (str[0] == '$' && isdigit (str[1]))
5968 {
5969 for (k = 2; str[k] != '\0'; k += 1)
5970 if (!isdigit (str[k]) && str[k] != '_')
5971 return 0;
5972 return 1;
5973 }
5974 return 0;
5975 }
5976
5977 /* Return non-zero if the string starting at NAME and ending before
5978 NAME_END contains no capital letters. */
5979
5980 static int
5981 is_valid_name_for_wild_match (const char *name0)
5982 {
5983 const char *decoded_name = ada_decode (name0);
5984 int i;
5985
5986 /* If the decoded name starts with an angle bracket, it means that
5987 NAME0 does not follow the GNAT encoding format. It should then
5988 not be allowed as a possible wild match. */
5989 if (decoded_name[0] == '<')
5990 return 0;
5991
5992 for (i=0; decoded_name[i] != '\0'; i++)
5993 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5994 return 0;
5995
5996 return 1;
5997 }
5998
5999 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6000 that could start a simple name. Assumes that *NAMEP points into
6001 the string beginning at NAME0. */
6002
6003 static int
6004 advance_wild_match (const char **namep, const char *name0, int target0)
6005 {
6006 const char *name = *namep;
6007
6008 while (1)
6009 {
6010 int t0, t1;
6011
6012 t0 = *name;
6013 if (t0 == '_')
6014 {
6015 t1 = name[1];
6016 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6017 {
6018 name += 1;
6019 if (name == name0 + 5 && startswith (name0, "_ada"))
6020 break;
6021 else
6022 name += 1;
6023 }
6024 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6025 || name[2] == target0))
6026 {
6027 name += 2;
6028 break;
6029 }
6030 else
6031 return 0;
6032 }
6033 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6034 name += 1;
6035 else
6036 return 0;
6037 }
6038
6039 *namep = name;
6040 return 1;
6041 }
6042
6043 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6044 informational suffixes of NAME (i.e., for which is_name_suffix is
6045 true). Assumes that PATN is a lower-cased Ada simple name. */
6046
6047 static int
6048 wild_match (const char *name, const char *patn)
6049 {
6050 const char *p;
6051 const char *name0 = name;
6052
6053 while (1)
6054 {
6055 const char *match = name;
6056
6057 if (*name == *patn)
6058 {
6059 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6060 if (*p != *name)
6061 break;
6062 if (*p == '\0' && is_name_suffix (name))
6063 return match != name0 && !is_valid_name_for_wild_match (name0);
6064
6065 if (name[-1] == '_')
6066 name -= 1;
6067 }
6068 if (!advance_wild_match (&name, name0, *patn))
6069 return 1;
6070 }
6071 }
6072
6073 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6074 informational suffix. */
6075
6076 static int
6077 full_match (const char *sym_name, const char *search_name)
6078 {
6079 return !match_name (sym_name, search_name, 0);
6080 }
6081
6082
6083 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6084 vector *defn_symbols, updating the list of symbols in OBSTACKP
6085 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6086 OBJFILE is the section containing BLOCK. */
6087
6088 static void
6089 ada_add_block_symbols (struct obstack *obstackp,
6090 const struct block *block, const char *name,
6091 domain_enum domain, struct objfile *objfile,
6092 int wild)
6093 {
6094 struct block_iterator iter;
6095 int name_len = strlen (name);
6096 /* A matching argument symbol, if any. */
6097 struct symbol *arg_sym;
6098 /* Set true when we find a matching non-argument symbol. */
6099 int found_sym;
6100 struct symbol *sym;
6101
6102 arg_sym = NULL;
6103 found_sym = 0;
6104 if (wild)
6105 {
6106 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6107 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6108 {
6109 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6110 SYMBOL_DOMAIN (sym), domain)
6111 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6112 {
6113 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6114 continue;
6115 else if (SYMBOL_IS_ARGUMENT (sym))
6116 arg_sym = sym;
6117 else
6118 {
6119 found_sym = 1;
6120 add_defn_to_vec (obstackp,
6121 fixup_symbol_section (sym, objfile),
6122 block);
6123 }
6124 }
6125 }
6126 }
6127 else
6128 {
6129 for (sym = block_iter_match_first (block, name, full_match, &iter);
6130 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6131 {
6132 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6133 SYMBOL_DOMAIN (sym), domain))
6134 {
6135 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6136 {
6137 if (SYMBOL_IS_ARGUMENT (sym))
6138 arg_sym = sym;
6139 else
6140 {
6141 found_sym = 1;
6142 add_defn_to_vec (obstackp,
6143 fixup_symbol_section (sym, objfile),
6144 block);
6145 }
6146 }
6147 }
6148 }
6149 }
6150
6151 /* Handle renamings. */
6152
6153 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6154 found_sym = 1;
6155
6156 if (!found_sym && arg_sym != NULL)
6157 {
6158 add_defn_to_vec (obstackp,
6159 fixup_symbol_section (arg_sym, objfile),
6160 block);
6161 }
6162
6163 if (!wild)
6164 {
6165 arg_sym = NULL;
6166 found_sym = 0;
6167
6168 ALL_BLOCK_SYMBOLS (block, iter, sym)
6169 {
6170 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6171 SYMBOL_DOMAIN (sym), domain))
6172 {
6173 int cmp;
6174
6175 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6176 if (cmp == 0)
6177 {
6178 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6179 if (cmp == 0)
6180 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6181 name_len);
6182 }
6183
6184 if (cmp == 0
6185 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6186 {
6187 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6188 {
6189 if (SYMBOL_IS_ARGUMENT (sym))
6190 arg_sym = sym;
6191 else
6192 {
6193 found_sym = 1;
6194 add_defn_to_vec (obstackp,
6195 fixup_symbol_section (sym, objfile),
6196 block);
6197 }
6198 }
6199 }
6200 }
6201 }
6202
6203 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6204 They aren't parameters, right? */
6205 if (!found_sym && arg_sym != NULL)
6206 {
6207 add_defn_to_vec (obstackp,
6208 fixup_symbol_section (arg_sym, objfile),
6209 block);
6210 }
6211 }
6212 }
6213 \f
6214
6215 /* Symbol Completion */
6216
6217 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6218 name in a form that's appropriate for the completion. The result
6219 does not need to be deallocated, but is only good until the next call.
6220
6221 TEXT_LEN is equal to the length of TEXT.
6222 Perform a wild match if WILD_MATCH_P is set.
6223 ENCODED_P should be set if TEXT represents the start of a symbol name
6224 in its encoded form. */
6225
6226 static const char *
6227 symbol_completion_match (const char *sym_name,
6228 const char *text, int text_len,
6229 int wild_match_p, int encoded_p)
6230 {
6231 const int verbatim_match = (text[0] == '<');
6232 int match = 0;
6233
6234 if (verbatim_match)
6235 {
6236 /* Strip the leading angle bracket. */
6237 text = text + 1;
6238 text_len--;
6239 }
6240
6241 /* First, test against the fully qualified name of the symbol. */
6242
6243 if (strncmp (sym_name, text, text_len) == 0)
6244 match = 1;
6245
6246 if (match && !encoded_p)
6247 {
6248 /* One needed check before declaring a positive match is to verify
6249 that iff we are doing a verbatim match, the decoded version
6250 of the symbol name starts with '<'. Otherwise, this symbol name
6251 is not a suitable completion. */
6252 const char *sym_name_copy = sym_name;
6253 int has_angle_bracket;
6254
6255 sym_name = ada_decode (sym_name);
6256 has_angle_bracket = (sym_name[0] == '<');
6257 match = (has_angle_bracket == verbatim_match);
6258 sym_name = sym_name_copy;
6259 }
6260
6261 if (match && !verbatim_match)
6262 {
6263 /* When doing non-verbatim match, another check that needs to
6264 be done is to verify that the potentially matching symbol name
6265 does not include capital letters, because the ada-mode would
6266 not be able to understand these symbol names without the
6267 angle bracket notation. */
6268 const char *tmp;
6269
6270 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6271 if (*tmp != '\0')
6272 match = 0;
6273 }
6274
6275 /* Second: Try wild matching... */
6276
6277 if (!match && wild_match_p)
6278 {
6279 /* Since we are doing wild matching, this means that TEXT
6280 may represent an unqualified symbol name. We therefore must
6281 also compare TEXT against the unqualified name of the symbol. */
6282 sym_name = ada_unqualified_name (ada_decode (sym_name));
6283
6284 if (strncmp (sym_name, text, text_len) == 0)
6285 match = 1;
6286 }
6287
6288 /* Finally: If we found a mach, prepare the result to return. */
6289
6290 if (!match)
6291 return NULL;
6292
6293 if (verbatim_match)
6294 sym_name = add_angle_brackets (sym_name);
6295
6296 if (!encoded_p)
6297 sym_name = ada_decode (sym_name);
6298
6299 return sym_name;
6300 }
6301
6302 /* A companion function to ada_make_symbol_completion_list().
6303 Check if SYM_NAME represents a symbol which name would be suitable
6304 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6305 it is appended at the end of the given string vector SV.
6306
6307 ORIG_TEXT is the string original string from the user command
6308 that needs to be completed. WORD is the entire command on which
6309 completion should be performed. These two parameters are used to
6310 determine which part of the symbol name should be added to the
6311 completion vector.
6312 if WILD_MATCH_P is set, then wild matching is performed.
6313 ENCODED_P should be set if TEXT represents a symbol name in its
6314 encoded formed (in which case the completion should also be
6315 encoded). */
6316
6317 static void
6318 symbol_completion_add (VEC(char_ptr) **sv,
6319 const char *sym_name,
6320 const char *text, int text_len,
6321 const char *orig_text, const char *word,
6322 int wild_match_p, int encoded_p)
6323 {
6324 const char *match = symbol_completion_match (sym_name, text, text_len,
6325 wild_match_p, encoded_p);
6326 char *completion;
6327
6328 if (match == NULL)
6329 return;
6330
6331 /* We found a match, so add the appropriate completion to the given
6332 string vector. */
6333
6334 if (word == orig_text)
6335 {
6336 completion = (char *) xmalloc (strlen (match) + 5);
6337 strcpy (completion, match);
6338 }
6339 else if (word > orig_text)
6340 {
6341 /* Return some portion of sym_name. */
6342 completion = (char *) xmalloc (strlen (match) + 5);
6343 strcpy (completion, match + (word - orig_text));
6344 }
6345 else
6346 {
6347 /* Return some of ORIG_TEXT plus sym_name. */
6348 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6349 strncpy (completion, word, orig_text - word);
6350 completion[orig_text - word] = '\0';
6351 strcat (completion, match);
6352 }
6353
6354 VEC_safe_push (char_ptr, *sv, completion);
6355 }
6356
6357 /* An object of this type is passed as the user_data argument to the
6358 expand_symtabs_matching method. */
6359 struct add_partial_datum
6360 {
6361 VEC(char_ptr) **completions;
6362 const char *text;
6363 int text_len;
6364 const char *text0;
6365 const char *word;
6366 int wild_match;
6367 int encoded;
6368 };
6369
6370 /* A callback for expand_symtabs_matching. */
6371
6372 static int
6373 ada_complete_symbol_matcher (const char *name, void *user_data)
6374 {
6375 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
6376
6377 return symbol_completion_match (name, data->text, data->text_len,
6378 data->wild_match, data->encoded) != NULL;
6379 }
6380
6381 /* Return a list of possible symbol names completing TEXT0. WORD is
6382 the entire command on which completion is made. */
6383
6384 static VEC (char_ptr) *
6385 ada_make_symbol_completion_list (const char *text0, const char *word,
6386 enum type_code code)
6387 {
6388 char *text;
6389 int text_len;
6390 int wild_match_p;
6391 int encoded_p;
6392 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6393 struct symbol *sym;
6394 struct compunit_symtab *s;
6395 struct minimal_symbol *msymbol;
6396 struct objfile *objfile;
6397 const struct block *b, *surrounding_static_block = 0;
6398 int i;
6399 struct block_iterator iter;
6400 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6401
6402 gdb_assert (code == TYPE_CODE_UNDEF);
6403
6404 if (text0[0] == '<')
6405 {
6406 text = xstrdup (text0);
6407 make_cleanup (xfree, text);
6408 text_len = strlen (text);
6409 wild_match_p = 0;
6410 encoded_p = 1;
6411 }
6412 else
6413 {
6414 text = xstrdup (ada_encode (text0));
6415 make_cleanup (xfree, text);
6416 text_len = strlen (text);
6417 for (i = 0; i < text_len; i++)
6418 text[i] = tolower (text[i]);
6419
6420 encoded_p = (strstr (text0, "__") != NULL);
6421 /* If the name contains a ".", then the user is entering a fully
6422 qualified entity name, and the match must not be done in wild
6423 mode. Similarly, if the user wants to complete what looks like
6424 an encoded name, the match must not be done in wild mode. */
6425 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6426 }
6427
6428 /* First, look at the partial symtab symbols. */
6429 {
6430 struct add_partial_datum data;
6431
6432 data.completions = &completions;
6433 data.text = text;
6434 data.text_len = text_len;
6435 data.text0 = text0;
6436 data.word = word;
6437 data.wild_match = wild_match_p;
6438 data.encoded = encoded_p;
6439 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6440 ALL_DOMAIN, &data);
6441 }
6442
6443 /* At this point scan through the misc symbol vectors and add each
6444 symbol you find to the list. Eventually we want to ignore
6445 anything that isn't a text symbol (everything else will be
6446 handled by the psymtab code above). */
6447
6448 ALL_MSYMBOLS (objfile, msymbol)
6449 {
6450 QUIT;
6451 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6452 text, text_len, text0, word, wild_match_p,
6453 encoded_p);
6454 }
6455
6456 /* Search upwards from currently selected frame (so that we can
6457 complete on local vars. */
6458
6459 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6460 {
6461 if (!BLOCK_SUPERBLOCK (b))
6462 surrounding_static_block = b; /* For elmin of dups */
6463
6464 ALL_BLOCK_SYMBOLS (b, iter, sym)
6465 {
6466 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6467 text, text_len, text0, word,
6468 wild_match_p, encoded_p);
6469 }
6470 }
6471
6472 /* Go through the symtabs and check the externs and statics for
6473 symbols which match. */
6474
6475 ALL_COMPUNITS (objfile, s)
6476 {
6477 QUIT;
6478 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6479 ALL_BLOCK_SYMBOLS (b, iter, sym)
6480 {
6481 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6482 text, text_len, text0, word,
6483 wild_match_p, encoded_p);
6484 }
6485 }
6486
6487 ALL_COMPUNITS (objfile, s)
6488 {
6489 QUIT;
6490 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6491 /* Don't do this block twice. */
6492 if (b == surrounding_static_block)
6493 continue;
6494 ALL_BLOCK_SYMBOLS (b, iter, sym)
6495 {
6496 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6497 text, text_len, text0, word,
6498 wild_match_p, encoded_p);
6499 }
6500 }
6501
6502 do_cleanups (old_chain);
6503 return completions;
6504 }
6505
6506 /* Field Access */
6507
6508 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6509 for tagged types. */
6510
6511 static int
6512 ada_is_dispatch_table_ptr_type (struct type *type)
6513 {
6514 const char *name;
6515
6516 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6517 return 0;
6518
6519 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6520 if (name == NULL)
6521 return 0;
6522
6523 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6524 }
6525
6526 /* Return non-zero if TYPE is an interface tag. */
6527
6528 static int
6529 ada_is_interface_tag (struct type *type)
6530 {
6531 const char *name = TYPE_NAME (type);
6532
6533 if (name == NULL)
6534 return 0;
6535
6536 return (strcmp (name, "ada__tags__interface_tag") == 0);
6537 }
6538
6539 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6540 to be invisible to users. */
6541
6542 int
6543 ada_is_ignored_field (struct type *type, int field_num)
6544 {
6545 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6546 return 1;
6547
6548 /* Check the name of that field. */
6549 {
6550 const char *name = TYPE_FIELD_NAME (type, field_num);
6551
6552 /* Anonymous field names should not be printed.
6553 brobecker/2007-02-20: I don't think this can actually happen
6554 but we don't want to print the value of annonymous fields anyway. */
6555 if (name == NULL)
6556 return 1;
6557
6558 /* Normally, fields whose name start with an underscore ("_")
6559 are fields that have been internally generated by the compiler,
6560 and thus should not be printed. The "_parent" field is special,
6561 however: This is a field internally generated by the compiler
6562 for tagged types, and it contains the components inherited from
6563 the parent type. This field should not be printed as is, but
6564 should not be ignored either. */
6565 if (name[0] == '_' && !startswith (name, "_parent"))
6566 return 1;
6567 }
6568
6569 /* If this is the dispatch table of a tagged type or an interface tag,
6570 then ignore. */
6571 if (ada_is_tagged_type (type, 1)
6572 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6573 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6574 return 1;
6575
6576 /* Not a special field, so it should not be ignored. */
6577 return 0;
6578 }
6579
6580 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6581 pointer or reference type whose ultimate target has a tag field. */
6582
6583 int
6584 ada_is_tagged_type (struct type *type, int refok)
6585 {
6586 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6587 }
6588
6589 /* True iff TYPE represents the type of X'Tag */
6590
6591 int
6592 ada_is_tag_type (struct type *type)
6593 {
6594 type = ada_check_typedef (type);
6595
6596 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6597 return 0;
6598 else
6599 {
6600 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6601
6602 return (name != NULL
6603 && strcmp (name, "ada__tags__dispatch_table") == 0);
6604 }
6605 }
6606
6607 /* The type of the tag on VAL. */
6608
6609 struct type *
6610 ada_tag_type (struct value *val)
6611 {
6612 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6613 }
6614
6615 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6616 retired at Ada 05). */
6617
6618 static int
6619 is_ada95_tag (struct value *tag)
6620 {
6621 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6622 }
6623
6624 /* The value of the tag on VAL. */
6625
6626 struct value *
6627 ada_value_tag (struct value *val)
6628 {
6629 return ada_value_struct_elt (val, "_tag", 0);
6630 }
6631
6632 /* The value of the tag on the object of type TYPE whose contents are
6633 saved at VALADDR, if it is non-null, or is at memory address
6634 ADDRESS. */
6635
6636 static struct value *
6637 value_tag_from_contents_and_address (struct type *type,
6638 const gdb_byte *valaddr,
6639 CORE_ADDR address)
6640 {
6641 int tag_byte_offset;
6642 struct type *tag_type;
6643
6644 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6645 NULL, NULL, NULL))
6646 {
6647 const gdb_byte *valaddr1 = ((valaddr == NULL)
6648 ? NULL
6649 : valaddr + tag_byte_offset);
6650 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6651
6652 return value_from_contents_and_address (tag_type, valaddr1, address1);
6653 }
6654 return NULL;
6655 }
6656
6657 static struct type *
6658 type_from_tag (struct value *tag)
6659 {
6660 const char *type_name = ada_tag_name (tag);
6661
6662 if (type_name != NULL)
6663 return ada_find_any_type (ada_encode (type_name));
6664 return NULL;
6665 }
6666
6667 /* Given a value OBJ of a tagged type, return a value of this
6668 type at the base address of the object. The base address, as
6669 defined in Ada.Tags, it is the address of the primary tag of
6670 the object, and therefore where the field values of its full
6671 view can be fetched. */
6672
6673 struct value *
6674 ada_tag_value_at_base_address (struct value *obj)
6675 {
6676 struct value *val;
6677 LONGEST offset_to_top = 0;
6678 struct type *ptr_type, *obj_type;
6679 struct value *tag;
6680 CORE_ADDR base_address;
6681
6682 obj_type = value_type (obj);
6683
6684 /* It is the responsability of the caller to deref pointers. */
6685
6686 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6687 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6688 return obj;
6689
6690 tag = ada_value_tag (obj);
6691 if (!tag)
6692 return obj;
6693
6694 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6695
6696 if (is_ada95_tag (tag))
6697 return obj;
6698
6699 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6700 ptr_type = lookup_pointer_type (ptr_type);
6701 val = value_cast (ptr_type, tag);
6702 if (!val)
6703 return obj;
6704
6705 /* It is perfectly possible that an exception be raised while
6706 trying to determine the base address, just like for the tag;
6707 see ada_tag_name for more details. We do not print the error
6708 message for the same reason. */
6709
6710 TRY
6711 {
6712 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6713 }
6714
6715 CATCH (e, RETURN_MASK_ERROR)
6716 {
6717 return obj;
6718 }
6719 END_CATCH
6720
6721 /* If offset is null, nothing to do. */
6722
6723 if (offset_to_top == 0)
6724 return obj;
6725
6726 /* -1 is a special case in Ada.Tags; however, what should be done
6727 is not quite clear from the documentation. So do nothing for
6728 now. */
6729
6730 if (offset_to_top == -1)
6731 return obj;
6732
6733 base_address = value_address (obj) - offset_to_top;
6734 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6735
6736 /* Make sure that we have a proper tag at the new address.
6737 Otherwise, offset_to_top is bogus (which can happen when
6738 the object is not initialized yet). */
6739
6740 if (!tag)
6741 return obj;
6742
6743 obj_type = type_from_tag (tag);
6744
6745 if (!obj_type)
6746 return obj;
6747
6748 return value_from_contents_and_address (obj_type, NULL, base_address);
6749 }
6750
6751 /* Return the "ada__tags__type_specific_data" type. */
6752
6753 static struct type *
6754 ada_get_tsd_type (struct inferior *inf)
6755 {
6756 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6757
6758 if (data->tsd_type == 0)
6759 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6760 return data->tsd_type;
6761 }
6762
6763 /* Return the TSD (type-specific data) associated to the given TAG.
6764 TAG is assumed to be the tag of a tagged-type entity.
6765
6766 May return NULL if we are unable to get the TSD. */
6767
6768 static struct value *
6769 ada_get_tsd_from_tag (struct value *tag)
6770 {
6771 struct value *val;
6772 struct type *type;
6773
6774 /* First option: The TSD is simply stored as a field of our TAG.
6775 Only older versions of GNAT would use this format, but we have
6776 to test it first, because there are no visible markers for
6777 the current approach except the absence of that field. */
6778
6779 val = ada_value_struct_elt (tag, "tsd", 1);
6780 if (val)
6781 return val;
6782
6783 /* Try the second representation for the dispatch table (in which
6784 there is no explicit 'tsd' field in the referent of the tag pointer,
6785 and instead the tsd pointer is stored just before the dispatch
6786 table. */
6787
6788 type = ada_get_tsd_type (current_inferior());
6789 if (type == NULL)
6790 return NULL;
6791 type = lookup_pointer_type (lookup_pointer_type (type));
6792 val = value_cast (type, tag);
6793 if (val == NULL)
6794 return NULL;
6795 return value_ind (value_ptradd (val, -1));
6796 }
6797
6798 /* Given the TSD of a tag (type-specific data), return a string
6799 containing the name of the associated type.
6800
6801 The returned value is good until the next call. May return NULL
6802 if we are unable to determine the tag name. */
6803
6804 static char *
6805 ada_tag_name_from_tsd (struct value *tsd)
6806 {
6807 static char name[1024];
6808 char *p;
6809 struct value *val;
6810
6811 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6812 if (val == NULL)
6813 return NULL;
6814 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6815 for (p = name; *p != '\0'; p += 1)
6816 if (isalpha (*p))
6817 *p = tolower (*p);
6818 return name;
6819 }
6820
6821 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6822 a C string.
6823
6824 Return NULL if the TAG is not an Ada tag, or if we were unable to
6825 determine the name of that tag. The result is good until the next
6826 call. */
6827
6828 const char *
6829 ada_tag_name (struct value *tag)
6830 {
6831 char *name = NULL;
6832
6833 if (!ada_is_tag_type (value_type (tag)))
6834 return NULL;
6835
6836 /* It is perfectly possible that an exception be raised while trying
6837 to determine the TAG's name, even under normal circumstances:
6838 The associated variable may be uninitialized or corrupted, for
6839 instance. We do not let any exception propagate past this point.
6840 instead we return NULL.
6841
6842 We also do not print the error message either (which often is very
6843 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6844 the caller print a more meaningful message if necessary. */
6845 TRY
6846 {
6847 struct value *tsd = ada_get_tsd_from_tag (tag);
6848
6849 if (tsd != NULL)
6850 name = ada_tag_name_from_tsd (tsd);
6851 }
6852 CATCH (e, RETURN_MASK_ERROR)
6853 {
6854 }
6855 END_CATCH
6856
6857 return name;
6858 }
6859
6860 /* The parent type of TYPE, or NULL if none. */
6861
6862 struct type *
6863 ada_parent_type (struct type *type)
6864 {
6865 int i;
6866
6867 type = ada_check_typedef (type);
6868
6869 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6870 return NULL;
6871
6872 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6873 if (ada_is_parent_field (type, i))
6874 {
6875 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6876
6877 /* If the _parent field is a pointer, then dereference it. */
6878 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6879 parent_type = TYPE_TARGET_TYPE (parent_type);
6880 /* If there is a parallel XVS type, get the actual base type. */
6881 parent_type = ada_get_base_type (parent_type);
6882
6883 return ada_check_typedef (parent_type);
6884 }
6885
6886 return NULL;
6887 }
6888
6889 /* True iff field number FIELD_NUM of structure type TYPE contains the
6890 parent-type (inherited) fields of a derived type. Assumes TYPE is
6891 a structure type with at least FIELD_NUM+1 fields. */
6892
6893 int
6894 ada_is_parent_field (struct type *type, int field_num)
6895 {
6896 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6897
6898 return (name != NULL
6899 && (startswith (name, "PARENT")
6900 || startswith (name, "_parent")));
6901 }
6902
6903 /* True iff field number FIELD_NUM of structure type TYPE is a
6904 transparent wrapper field (which should be silently traversed when doing
6905 field selection and flattened when printing). Assumes TYPE is a
6906 structure type with at least FIELD_NUM+1 fields. Such fields are always
6907 structures. */
6908
6909 int
6910 ada_is_wrapper_field (struct type *type, int field_num)
6911 {
6912 const char *name = TYPE_FIELD_NAME (type, field_num);
6913
6914 return (name != NULL
6915 && (startswith (name, "PARENT")
6916 || strcmp (name, "REP") == 0
6917 || startswith (name, "_parent")
6918 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6919 }
6920
6921 /* True iff field number FIELD_NUM of structure or union type TYPE
6922 is a variant wrapper. Assumes TYPE is a structure type with at least
6923 FIELD_NUM+1 fields. */
6924
6925 int
6926 ada_is_variant_part (struct type *type, int field_num)
6927 {
6928 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6929
6930 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6931 || (is_dynamic_field (type, field_num)
6932 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6933 == TYPE_CODE_UNION)));
6934 }
6935
6936 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6937 whose discriminants are contained in the record type OUTER_TYPE,
6938 returns the type of the controlling discriminant for the variant.
6939 May return NULL if the type could not be found. */
6940
6941 struct type *
6942 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6943 {
6944 char *name = ada_variant_discrim_name (var_type);
6945
6946 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6947 }
6948
6949 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6950 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6951 represents a 'when others' clause; otherwise 0. */
6952
6953 int
6954 ada_is_others_clause (struct type *type, int field_num)
6955 {
6956 const char *name = TYPE_FIELD_NAME (type, field_num);
6957
6958 return (name != NULL && name[0] == 'O');
6959 }
6960
6961 /* Assuming that TYPE0 is the type of the variant part of a record,
6962 returns the name of the discriminant controlling the variant.
6963 The value is valid until the next call to ada_variant_discrim_name. */
6964
6965 char *
6966 ada_variant_discrim_name (struct type *type0)
6967 {
6968 static char *result = NULL;
6969 static size_t result_len = 0;
6970 struct type *type;
6971 const char *name;
6972 const char *discrim_end;
6973 const char *discrim_start;
6974
6975 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6976 type = TYPE_TARGET_TYPE (type0);
6977 else
6978 type = type0;
6979
6980 name = ada_type_name (type);
6981
6982 if (name == NULL || name[0] == '\000')
6983 return "";
6984
6985 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6986 discrim_end -= 1)
6987 {
6988 if (startswith (discrim_end, "___XVN"))
6989 break;
6990 }
6991 if (discrim_end == name)
6992 return "";
6993
6994 for (discrim_start = discrim_end; discrim_start != name + 3;
6995 discrim_start -= 1)
6996 {
6997 if (discrim_start == name + 1)
6998 return "";
6999 if ((discrim_start > name + 3
7000 && startswith (discrim_start - 3, "___"))
7001 || discrim_start[-1] == '.')
7002 break;
7003 }
7004
7005 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7006 strncpy (result, discrim_start, discrim_end - discrim_start);
7007 result[discrim_end - discrim_start] = '\0';
7008 return result;
7009 }
7010
7011 /* Scan STR for a subtype-encoded number, beginning at position K.
7012 Put the position of the character just past the number scanned in
7013 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7014 Return 1 if there was a valid number at the given position, and 0
7015 otherwise. A "subtype-encoded" number consists of the absolute value
7016 in decimal, followed by the letter 'm' to indicate a negative number.
7017 Assumes 0m does not occur. */
7018
7019 int
7020 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7021 {
7022 ULONGEST RU;
7023
7024 if (!isdigit (str[k]))
7025 return 0;
7026
7027 /* Do it the hard way so as not to make any assumption about
7028 the relationship of unsigned long (%lu scan format code) and
7029 LONGEST. */
7030 RU = 0;
7031 while (isdigit (str[k]))
7032 {
7033 RU = RU * 10 + (str[k] - '0');
7034 k += 1;
7035 }
7036
7037 if (str[k] == 'm')
7038 {
7039 if (R != NULL)
7040 *R = (-(LONGEST) (RU - 1)) - 1;
7041 k += 1;
7042 }
7043 else if (R != NULL)
7044 *R = (LONGEST) RU;
7045
7046 /* NOTE on the above: Technically, C does not say what the results of
7047 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7048 number representable as a LONGEST (although either would probably work
7049 in most implementations). When RU>0, the locution in the then branch
7050 above is always equivalent to the negative of RU. */
7051
7052 if (new_k != NULL)
7053 *new_k = k;
7054 return 1;
7055 }
7056
7057 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7058 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7059 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7060
7061 int
7062 ada_in_variant (LONGEST val, struct type *type, int field_num)
7063 {
7064 const char *name = TYPE_FIELD_NAME (type, field_num);
7065 int p;
7066
7067 p = 0;
7068 while (1)
7069 {
7070 switch (name[p])
7071 {
7072 case '\0':
7073 return 0;
7074 case 'S':
7075 {
7076 LONGEST W;
7077
7078 if (!ada_scan_number (name, p + 1, &W, &p))
7079 return 0;
7080 if (val == W)
7081 return 1;
7082 break;
7083 }
7084 case 'R':
7085 {
7086 LONGEST L, U;
7087
7088 if (!ada_scan_number (name, p + 1, &L, &p)
7089 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7090 return 0;
7091 if (val >= L && val <= U)
7092 return 1;
7093 break;
7094 }
7095 case 'O':
7096 return 1;
7097 default:
7098 return 0;
7099 }
7100 }
7101 }
7102
7103 /* FIXME: Lots of redundancy below. Try to consolidate. */
7104
7105 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7106 ARG_TYPE, extract and return the value of one of its (non-static)
7107 fields. FIELDNO says which field. Differs from value_primitive_field
7108 only in that it can handle packed values of arbitrary type. */
7109
7110 static struct value *
7111 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7112 struct type *arg_type)
7113 {
7114 struct type *type;
7115
7116 arg_type = ada_check_typedef (arg_type);
7117 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7118
7119 /* Handle packed fields. */
7120
7121 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7122 {
7123 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7124 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7125
7126 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7127 offset + bit_pos / 8,
7128 bit_pos % 8, bit_size, type);
7129 }
7130 else
7131 return value_primitive_field (arg1, offset, fieldno, arg_type);
7132 }
7133
7134 /* Find field with name NAME in object of type TYPE. If found,
7135 set the following for each argument that is non-null:
7136 - *FIELD_TYPE_P to the field's type;
7137 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7138 an object of that type;
7139 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7140 - *BIT_SIZE_P to its size in bits if the field is packed, and
7141 0 otherwise;
7142 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7143 fields up to but not including the desired field, or by the total
7144 number of fields if not found. A NULL value of NAME never
7145 matches; the function just counts visible fields in this case.
7146
7147 Returns 1 if found, 0 otherwise. */
7148
7149 static int
7150 find_struct_field (const char *name, struct type *type, int offset,
7151 struct type **field_type_p,
7152 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7153 int *index_p)
7154 {
7155 int i;
7156
7157 type = ada_check_typedef (type);
7158
7159 if (field_type_p != NULL)
7160 *field_type_p = NULL;
7161 if (byte_offset_p != NULL)
7162 *byte_offset_p = 0;
7163 if (bit_offset_p != NULL)
7164 *bit_offset_p = 0;
7165 if (bit_size_p != NULL)
7166 *bit_size_p = 0;
7167
7168 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7169 {
7170 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7171 int fld_offset = offset + bit_pos / 8;
7172 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7173
7174 if (t_field_name == NULL)
7175 continue;
7176
7177 else if (name != NULL && field_name_match (t_field_name, name))
7178 {
7179 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7180
7181 if (field_type_p != NULL)
7182 *field_type_p = TYPE_FIELD_TYPE (type, i);
7183 if (byte_offset_p != NULL)
7184 *byte_offset_p = fld_offset;
7185 if (bit_offset_p != NULL)
7186 *bit_offset_p = bit_pos % 8;
7187 if (bit_size_p != NULL)
7188 *bit_size_p = bit_size;
7189 return 1;
7190 }
7191 else if (ada_is_wrapper_field (type, i))
7192 {
7193 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7194 field_type_p, byte_offset_p, bit_offset_p,
7195 bit_size_p, index_p))
7196 return 1;
7197 }
7198 else if (ada_is_variant_part (type, i))
7199 {
7200 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7201 fixed type?? */
7202 int j;
7203 struct type *field_type
7204 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7205
7206 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7207 {
7208 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7209 fld_offset
7210 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7211 field_type_p, byte_offset_p,
7212 bit_offset_p, bit_size_p, index_p))
7213 return 1;
7214 }
7215 }
7216 else if (index_p != NULL)
7217 *index_p += 1;
7218 }
7219 return 0;
7220 }
7221
7222 /* Number of user-visible fields in record type TYPE. */
7223
7224 static int
7225 num_visible_fields (struct type *type)
7226 {
7227 int n;
7228
7229 n = 0;
7230 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7231 return n;
7232 }
7233
7234 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7235 and search in it assuming it has (class) type TYPE.
7236 If found, return value, else return NULL.
7237
7238 Searches recursively through wrapper fields (e.g., '_parent'). */
7239
7240 static struct value *
7241 ada_search_struct_field (const char *name, struct value *arg, int offset,
7242 struct type *type)
7243 {
7244 int i;
7245
7246 type = ada_check_typedef (type);
7247 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7248 {
7249 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7250
7251 if (t_field_name == NULL)
7252 continue;
7253
7254 else if (field_name_match (t_field_name, name))
7255 return ada_value_primitive_field (arg, offset, i, type);
7256
7257 else if (ada_is_wrapper_field (type, i))
7258 {
7259 struct value *v = /* Do not let indent join lines here. */
7260 ada_search_struct_field (name, arg,
7261 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7262 TYPE_FIELD_TYPE (type, i));
7263
7264 if (v != NULL)
7265 return v;
7266 }
7267
7268 else if (ada_is_variant_part (type, i))
7269 {
7270 /* PNH: Do we ever get here? See find_struct_field. */
7271 int j;
7272 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7273 i));
7274 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7275
7276 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7277 {
7278 struct value *v = ada_search_struct_field /* Force line
7279 break. */
7280 (name, arg,
7281 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7282 TYPE_FIELD_TYPE (field_type, j));
7283
7284 if (v != NULL)
7285 return v;
7286 }
7287 }
7288 }
7289 return NULL;
7290 }
7291
7292 static struct value *ada_index_struct_field_1 (int *, struct value *,
7293 int, struct type *);
7294
7295
7296 /* Return field #INDEX in ARG, where the index is that returned by
7297 * find_struct_field through its INDEX_P argument. Adjust the address
7298 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7299 * If found, return value, else return NULL. */
7300
7301 static struct value *
7302 ada_index_struct_field (int index, struct value *arg, int offset,
7303 struct type *type)
7304 {
7305 return ada_index_struct_field_1 (&index, arg, offset, type);
7306 }
7307
7308
7309 /* Auxiliary function for ada_index_struct_field. Like
7310 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7311 * *INDEX_P. */
7312
7313 static struct value *
7314 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7315 struct type *type)
7316 {
7317 int i;
7318 type = ada_check_typedef (type);
7319
7320 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7321 {
7322 if (TYPE_FIELD_NAME (type, i) == NULL)
7323 continue;
7324 else if (ada_is_wrapper_field (type, i))
7325 {
7326 struct value *v = /* Do not let indent join lines here. */
7327 ada_index_struct_field_1 (index_p, arg,
7328 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7329 TYPE_FIELD_TYPE (type, i));
7330
7331 if (v != NULL)
7332 return v;
7333 }
7334
7335 else if (ada_is_variant_part (type, i))
7336 {
7337 /* PNH: Do we ever get here? See ada_search_struct_field,
7338 find_struct_field. */
7339 error (_("Cannot assign this kind of variant record"));
7340 }
7341 else if (*index_p == 0)
7342 return ada_value_primitive_field (arg, offset, i, type);
7343 else
7344 *index_p -= 1;
7345 }
7346 return NULL;
7347 }
7348
7349 /* Given ARG, a value of type (pointer or reference to a)*
7350 structure/union, extract the component named NAME from the ultimate
7351 target structure/union and return it as a value with its
7352 appropriate type.
7353
7354 The routine searches for NAME among all members of the structure itself
7355 and (recursively) among all members of any wrapper members
7356 (e.g., '_parent').
7357
7358 If NO_ERR, then simply return NULL in case of error, rather than
7359 calling error. */
7360
7361 struct value *
7362 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7363 {
7364 struct type *t, *t1;
7365 struct value *v;
7366
7367 v = NULL;
7368 t1 = t = ada_check_typedef (value_type (arg));
7369 if (TYPE_CODE (t) == TYPE_CODE_REF)
7370 {
7371 t1 = TYPE_TARGET_TYPE (t);
7372 if (t1 == NULL)
7373 goto BadValue;
7374 t1 = ada_check_typedef (t1);
7375 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7376 {
7377 arg = coerce_ref (arg);
7378 t = t1;
7379 }
7380 }
7381
7382 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7383 {
7384 t1 = TYPE_TARGET_TYPE (t);
7385 if (t1 == NULL)
7386 goto BadValue;
7387 t1 = ada_check_typedef (t1);
7388 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7389 {
7390 arg = value_ind (arg);
7391 t = t1;
7392 }
7393 else
7394 break;
7395 }
7396
7397 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7398 goto BadValue;
7399
7400 if (t1 == t)
7401 v = ada_search_struct_field (name, arg, 0, t);
7402 else
7403 {
7404 int bit_offset, bit_size, byte_offset;
7405 struct type *field_type;
7406 CORE_ADDR address;
7407
7408 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7409 address = value_address (ada_value_ind (arg));
7410 else
7411 address = value_address (ada_coerce_ref (arg));
7412
7413 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7414 if (find_struct_field (name, t1, 0,
7415 &field_type, &byte_offset, &bit_offset,
7416 &bit_size, NULL))
7417 {
7418 if (bit_size != 0)
7419 {
7420 if (TYPE_CODE (t) == TYPE_CODE_REF)
7421 arg = ada_coerce_ref (arg);
7422 else
7423 arg = ada_value_ind (arg);
7424 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7425 bit_offset, bit_size,
7426 field_type);
7427 }
7428 else
7429 v = value_at_lazy (field_type, address + byte_offset);
7430 }
7431 }
7432
7433 if (v != NULL || no_err)
7434 return v;
7435 else
7436 error (_("There is no member named %s."), name);
7437
7438 BadValue:
7439 if (no_err)
7440 return NULL;
7441 else
7442 error (_("Attempt to extract a component of "
7443 "a value that is not a record."));
7444 }
7445
7446 /* Given a type TYPE, look up the type of the component of type named NAME.
7447 If DISPP is non-null, add its byte displacement from the beginning of a
7448 structure (pointed to by a value) of type TYPE to *DISPP (does not
7449 work for packed fields).
7450
7451 Matches any field whose name has NAME as a prefix, possibly
7452 followed by "___".
7453
7454 TYPE can be either a struct or union. If REFOK, TYPE may also
7455 be a (pointer or reference)+ to a struct or union, and the
7456 ultimate target type will be searched.
7457
7458 Looks recursively into variant clauses and parent types.
7459
7460 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7461 TYPE is not a type of the right kind. */
7462
7463 static struct type *
7464 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7465 int noerr, int *dispp)
7466 {
7467 int i;
7468
7469 if (name == NULL)
7470 goto BadName;
7471
7472 if (refok && type != NULL)
7473 while (1)
7474 {
7475 type = ada_check_typedef (type);
7476 if (TYPE_CODE (type) != TYPE_CODE_PTR
7477 && TYPE_CODE (type) != TYPE_CODE_REF)
7478 break;
7479 type = TYPE_TARGET_TYPE (type);
7480 }
7481
7482 if (type == NULL
7483 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7484 && TYPE_CODE (type) != TYPE_CODE_UNION))
7485 {
7486 if (noerr)
7487 return NULL;
7488 else
7489 {
7490 target_terminal_ours ();
7491 gdb_flush (gdb_stdout);
7492 if (type == NULL)
7493 error (_("Type (null) is not a structure or union type"));
7494 else
7495 {
7496 /* XXX: type_sprint */
7497 fprintf_unfiltered (gdb_stderr, _("Type "));
7498 type_print (type, "", gdb_stderr, -1);
7499 error (_(" is not a structure or union type"));
7500 }
7501 }
7502 }
7503
7504 type = to_static_fixed_type (type);
7505
7506 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7507 {
7508 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7509 struct type *t;
7510 int disp;
7511
7512 if (t_field_name == NULL)
7513 continue;
7514
7515 else if (field_name_match (t_field_name, name))
7516 {
7517 if (dispp != NULL)
7518 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7519 return TYPE_FIELD_TYPE (type, i);
7520 }
7521
7522 else if (ada_is_wrapper_field (type, i))
7523 {
7524 disp = 0;
7525 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7526 0, 1, &disp);
7527 if (t != NULL)
7528 {
7529 if (dispp != NULL)
7530 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7531 return t;
7532 }
7533 }
7534
7535 else if (ada_is_variant_part (type, i))
7536 {
7537 int j;
7538 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7539 i));
7540
7541 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7542 {
7543 /* FIXME pnh 2008/01/26: We check for a field that is
7544 NOT wrapped in a struct, since the compiler sometimes
7545 generates these for unchecked variant types. Revisit
7546 if the compiler changes this practice. */
7547 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7548 disp = 0;
7549 if (v_field_name != NULL
7550 && field_name_match (v_field_name, name))
7551 t = TYPE_FIELD_TYPE (field_type, j);
7552 else
7553 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7554 j),
7555 name, 0, 1, &disp);
7556
7557 if (t != NULL)
7558 {
7559 if (dispp != NULL)
7560 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7561 return t;
7562 }
7563 }
7564 }
7565
7566 }
7567
7568 BadName:
7569 if (!noerr)
7570 {
7571 target_terminal_ours ();
7572 gdb_flush (gdb_stdout);
7573 if (name == NULL)
7574 {
7575 /* XXX: type_sprint */
7576 fprintf_unfiltered (gdb_stderr, _("Type "));
7577 type_print (type, "", gdb_stderr, -1);
7578 error (_(" has no component named <null>"));
7579 }
7580 else
7581 {
7582 /* XXX: type_sprint */
7583 fprintf_unfiltered (gdb_stderr, _("Type "));
7584 type_print (type, "", gdb_stderr, -1);
7585 error (_(" has no component named %s"), name);
7586 }
7587 }
7588
7589 return NULL;
7590 }
7591
7592 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7593 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7594 represents an unchecked union (that is, the variant part of a
7595 record that is named in an Unchecked_Union pragma). */
7596
7597 static int
7598 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7599 {
7600 char *discrim_name = ada_variant_discrim_name (var_type);
7601
7602 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7603 == NULL);
7604 }
7605
7606
7607 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7608 within a value of type OUTER_TYPE that is stored in GDB at
7609 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7610 numbering from 0) is applicable. Returns -1 if none are. */
7611
7612 int
7613 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7614 const gdb_byte *outer_valaddr)
7615 {
7616 int others_clause;
7617 int i;
7618 char *discrim_name = ada_variant_discrim_name (var_type);
7619 struct value *outer;
7620 struct value *discrim;
7621 LONGEST discrim_val;
7622
7623 /* Using plain value_from_contents_and_address here causes problems
7624 because we will end up trying to resolve a type that is currently
7625 being constructed. */
7626 outer = value_from_contents_and_address_unresolved (outer_type,
7627 outer_valaddr, 0);
7628 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7629 if (discrim == NULL)
7630 return -1;
7631 discrim_val = value_as_long (discrim);
7632
7633 others_clause = -1;
7634 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7635 {
7636 if (ada_is_others_clause (var_type, i))
7637 others_clause = i;
7638 else if (ada_in_variant (discrim_val, var_type, i))
7639 return i;
7640 }
7641
7642 return others_clause;
7643 }
7644 \f
7645
7646
7647 /* Dynamic-Sized Records */
7648
7649 /* Strategy: The type ostensibly attached to a value with dynamic size
7650 (i.e., a size that is not statically recorded in the debugging
7651 data) does not accurately reflect the size or layout of the value.
7652 Our strategy is to convert these values to values with accurate,
7653 conventional types that are constructed on the fly. */
7654
7655 /* There is a subtle and tricky problem here. In general, we cannot
7656 determine the size of dynamic records without its data. However,
7657 the 'struct value' data structure, which GDB uses to represent
7658 quantities in the inferior process (the target), requires the size
7659 of the type at the time of its allocation in order to reserve space
7660 for GDB's internal copy of the data. That's why the
7661 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7662 rather than struct value*s.
7663
7664 However, GDB's internal history variables ($1, $2, etc.) are
7665 struct value*s containing internal copies of the data that are not, in
7666 general, the same as the data at their corresponding addresses in
7667 the target. Fortunately, the types we give to these values are all
7668 conventional, fixed-size types (as per the strategy described
7669 above), so that we don't usually have to perform the
7670 'to_fixed_xxx_type' conversions to look at their values.
7671 Unfortunately, there is one exception: if one of the internal
7672 history variables is an array whose elements are unconstrained
7673 records, then we will need to create distinct fixed types for each
7674 element selected. */
7675
7676 /* The upshot of all of this is that many routines take a (type, host
7677 address, target address) triple as arguments to represent a value.
7678 The host address, if non-null, is supposed to contain an internal
7679 copy of the relevant data; otherwise, the program is to consult the
7680 target at the target address. */
7681
7682 /* Assuming that VAL0 represents a pointer value, the result of
7683 dereferencing it. Differs from value_ind in its treatment of
7684 dynamic-sized types. */
7685
7686 struct value *
7687 ada_value_ind (struct value *val0)
7688 {
7689 struct value *val = value_ind (val0);
7690
7691 if (ada_is_tagged_type (value_type (val), 0))
7692 val = ada_tag_value_at_base_address (val);
7693
7694 return ada_to_fixed_value (val);
7695 }
7696
7697 /* The value resulting from dereferencing any "reference to"
7698 qualifiers on VAL0. */
7699
7700 static struct value *
7701 ada_coerce_ref (struct value *val0)
7702 {
7703 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7704 {
7705 struct value *val = val0;
7706
7707 val = coerce_ref (val);
7708
7709 if (ada_is_tagged_type (value_type (val), 0))
7710 val = ada_tag_value_at_base_address (val);
7711
7712 return ada_to_fixed_value (val);
7713 }
7714 else
7715 return val0;
7716 }
7717
7718 /* Return OFF rounded upward if necessary to a multiple of
7719 ALIGNMENT (a power of 2). */
7720
7721 static unsigned int
7722 align_value (unsigned int off, unsigned int alignment)
7723 {
7724 return (off + alignment - 1) & ~(alignment - 1);
7725 }
7726
7727 /* Return the bit alignment required for field #F of template type TYPE. */
7728
7729 static unsigned int
7730 field_alignment (struct type *type, int f)
7731 {
7732 const char *name = TYPE_FIELD_NAME (type, f);
7733 int len;
7734 int align_offset;
7735
7736 /* The field name should never be null, unless the debugging information
7737 is somehow malformed. In this case, we assume the field does not
7738 require any alignment. */
7739 if (name == NULL)
7740 return 1;
7741
7742 len = strlen (name);
7743
7744 if (!isdigit (name[len - 1]))
7745 return 1;
7746
7747 if (isdigit (name[len - 2]))
7748 align_offset = len - 2;
7749 else
7750 align_offset = len - 1;
7751
7752 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7753 return TARGET_CHAR_BIT;
7754
7755 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7756 }
7757
7758 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7759
7760 static struct symbol *
7761 ada_find_any_type_symbol (const char *name)
7762 {
7763 struct symbol *sym;
7764
7765 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7766 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7767 return sym;
7768
7769 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7770 return sym;
7771 }
7772
7773 /* Find a type named NAME. Ignores ambiguity. This routine will look
7774 solely for types defined by debug info, it will not search the GDB
7775 primitive types. */
7776
7777 static struct type *
7778 ada_find_any_type (const char *name)
7779 {
7780 struct symbol *sym = ada_find_any_type_symbol (name);
7781
7782 if (sym != NULL)
7783 return SYMBOL_TYPE (sym);
7784
7785 return NULL;
7786 }
7787
7788 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7789 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7790 symbol, in which case it is returned. Otherwise, this looks for
7791 symbols whose name is that of NAME_SYM suffixed with "___XR".
7792 Return symbol if found, and NULL otherwise. */
7793
7794 struct symbol *
7795 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7796 {
7797 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7798 struct symbol *sym;
7799
7800 if (strstr (name, "___XR") != NULL)
7801 return name_sym;
7802
7803 sym = find_old_style_renaming_symbol (name, block);
7804
7805 if (sym != NULL)
7806 return sym;
7807
7808 /* Not right yet. FIXME pnh 7/20/2007. */
7809 sym = ada_find_any_type_symbol (name);
7810 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7811 return sym;
7812 else
7813 return NULL;
7814 }
7815
7816 static struct symbol *
7817 find_old_style_renaming_symbol (const char *name, const struct block *block)
7818 {
7819 const struct symbol *function_sym = block_linkage_function (block);
7820 char *rename;
7821
7822 if (function_sym != NULL)
7823 {
7824 /* If the symbol is defined inside a function, NAME is not fully
7825 qualified. This means we need to prepend the function name
7826 as well as adding the ``___XR'' suffix to build the name of
7827 the associated renaming symbol. */
7828 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7829 /* Function names sometimes contain suffixes used
7830 for instance to qualify nested subprograms. When building
7831 the XR type name, we need to make sure that this suffix is
7832 not included. So do not include any suffix in the function
7833 name length below. */
7834 int function_name_len = ada_name_prefix_len (function_name);
7835 const int rename_len = function_name_len + 2 /* "__" */
7836 + strlen (name) + 6 /* "___XR\0" */ ;
7837
7838 /* Strip the suffix if necessary. */
7839 ada_remove_trailing_digits (function_name, &function_name_len);
7840 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7841 ada_remove_Xbn_suffix (function_name, &function_name_len);
7842
7843 /* Library-level functions are a special case, as GNAT adds
7844 a ``_ada_'' prefix to the function name to avoid namespace
7845 pollution. However, the renaming symbols themselves do not
7846 have this prefix, so we need to skip this prefix if present. */
7847 if (function_name_len > 5 /* "_ada_" */
7848 && strstr (function_name, "_ada_") == function_name)
7849 {
7850 function_name += 5;
7851 function_name_len -= 5;
7852 }
7853
7854 rename = (char *) alloca (rename_len * sizeof (char));
7855 strncpy (rename, function_name, function_name_len);
7856 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7857 "__%s___XR", name);
7858 }
7859 else
7860 {
7861 const int rename_len = strlen (name) + 6;
7862
7863 rename = (char *) alloca (rename_len * sizeof (char));
7864 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7865 }
7866
7867 return ada_find_any_type_symbol (rename);
7868 }
7869
7870 /* Because of GNAT encoding conventions, several GDB symbols may match a
7871 given type name. If the type denoted by TYPE0 is to be preferred to
7872 that of TYPE1 for purposes of type printing, return non-zero;
7873 otherwise return 0. */
7874
7875 int
7876 ada_prefer_type (struct type *type0, struct type *type1)
7877 {
7878 if (type1 == NULL)
7879 return 1;
7880 else if (type0 == NULL)
7881 return 0;
7882 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7883 return 1;
7884 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7885 return 0;
7886 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7887 return 1;
7888 else if (ada_is_constrained_packed_array_type (type0))
7889 return 1;
7890 else if (ada_is_array_descriptor_type (type0)
7891 && !ada_is_array_descriptor_type (type1))
7892 return 1;
7893 else
7894 {
7895 const char *type0_name = type_name_no_tag (type0);
7896 const char *type1_name = type_name_no_tag (type1);
7897
7898 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7899 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7900 return 1;
7901 }
7902 return 0;
7903 }
7904
7905 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7906 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7907
7908 const char *
7909 ada_type_name (struct type *type)
7910 {
7911 if (type == NULL)
7912 return NULL;
7913 else if (TYPE_NAME (type) != NULL)
7914 return TYPE_NAME (type);
7915 else
7916 return TYPE_TAG_NAME (type);
7917 }
7918
7919 /* Search the list of "descriptive" types associated to TYPE for a type
7920 whose name is NAME. */
7921
7922 static struct type *
7923 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7924 {
7925 struct type *result, *tmp;
7926
7927 if (ada_ignore_descriptive_types_p)
7928 return NULL;
7929
7930 /* If there no descriptive-type info, then there is no parallel type
7931 to be found. */
7932 if (!HAVE_GNAT_AUX_INFO (type))
7933 return NULL;
7934
7935 result = TYPE_DESCRIPTIVE_TYPE (type);
7936 while (result != NULL)
7937 {
7938 const char *result_name = ada_type_name (result);
7939
7940 if (result_name == NULL)
7941 {
7942 warning (_("unexpected null name on descriptive type"));
7943 return NULL;
7944 }
7945
7946 /* If the names match, stop. */
7947 if (strcmp (result_name, name) == 0)
7948 break;
7949
7950 /* Otherwise, look at the next item on the list, if any. */
7951 if (HAVE_GNAT_AUX_INFO (result))
7952 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7953 else
7954 tmp = NULL;
7955
7956 /* If not found either, try after having resolved the typedef. */
7957 if (tmp != NULL)
7958 result = tmp;
7959 else
7960 {
7961 result = check_typedef (result);
7962 if (HAVE_GNAT_AUX_INFO (result))
7963 result = TYPE_DESCRIPTIVE_TYPE (result);
7964 else
7965 result = NULL;
7966 }
7967 }
7968
7969 /* If we didn't find a match, see whether this is a packed array. With
7970 older compilers, the descriptive type information is either absent or
7971 irrelevant when it comes to packed arrays so the above lookup fails.
7972 Fall back to using a parallel lookup by name in this case. */
7973 if (result == NULL && ada_is_constrained_packed_array_type (type))
7974 return ada_find_any_type (name);
7975
7976 return result;
7977 }
7978
7979 /* Find a parallel type to TYPE with the specified NAME, using the
7980 descriptive type taken from the debugging information, if available,
7981 and otherwise using the (slower) name-based method. */
7982
7983 static struct type *
7984 ada_find_parallel_type_with_name (struct type *type, const char *name)
7985 {
7986 struct type *result = NULL;
7987
7988 if (HAVE_GNAT_AUX_INFO (type))
7989 result = find_parallel_type_by_descriptive_type (type, name);
7990 else
7991 result = ada_find_any_type (name);
7992
7993 return result;
7994 }
7995
7996 /* Same as above, but specify the name of the parallel type by appending
7997 SUFFIX to the name of TYPE. */
7998
7999 struct type *
8000 ada_find_parallel_type (struct type *type, const char *suffix)
8001 {
8002 char *name;
8003 const char *type_name = ada_type_name (type);
8004 int len;
8005
8006 if (type_name == NULL)
8007 return NULL;
8008
8009 len = strlen (type_name);
8010
8011 name = (char *) alloca (len + strlen (suffix) + 1);
8012
8013 strcpy (name, type_name);
8014 strcpy (name + len, suffix);
8015
8016 return ada_find_parallel_type_with_name (type, name);
8017 }
8018
8019 /* If TYPE is a variable-size record type, return the corresponding template
8020 type describing its fields. Otherwise, return NULL. */
8021
8022 static struct type *
8023 dynamic_template_type (struct type *type)
8024 {
8025 type = ada_check_typedef (type);
8026
8027 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8028 || ada_type_name (type) == NULL)
8029 return NULL;
8030 else
8031 {
8032 int len = strlen (ada_type_name (type));
8033
8034 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8035 return type;
8036 else
8037 return ada_find_parallel_type (type, "___XVE");
8038 }
8039 }
8040
8041 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8042 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8043
8044 static int
8045 is_dynamic_field (struct type *templ_type, int field_num)
8046 {
8047 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8048
8049 return name != NULL
8050 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8051 && strstr (name, "___XVL") != NULL;
8052 }
8053
8054 /* The index of the variant field of TYPE, or -1 if TYPE does not
8055 represent a variant record type. */
8056
8057 static int
8058 variant_field_index (struct type *type)
8059 {
8060 int f;
8061
8062 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8063 return -1;
8064
8065 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8066 {
8067 if (ada_is_variant_part (type, f))
8068 return f;
8069 }
8070 return -1;
8071 }
8072
8073 /* A record type with no fields. */
8074
8075 static struct type *
8076 empty_record (struct type *templ)
8077 {
8078 struct type *type = alloc_type_copy (templ);
8079
8080 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8081 TYPE_NFIELDS (type) = 0;
8082 TYPE_FIELDS (type) = NULL;
8083 INIT_CPLUS_SPECIFIC (type);
8084 TYPE_NAME (type) = "<empty>";
8085 TYPE_TAG_NAME (type) = NULL;
8086 TYPE_LENGTH (type) = 0;
8087 return type;
8088 }
8089
8090 /* An ordinary record type (with fixed-length fields) that describes
8091 the value of type TYPE at VALADDR or ADDRESS (see comments at
8092 the beginning of this section) VAL according to GNAT conventions.
8093 DVAL0 should describe the (portion of a) record that contains any
8094 necessary discriminants. It should be NULL if value_type (VAL) is
8095 an outer-level type (i.e., as opposed to a branch of a variant.) A
8096 variant field (unless unchecked) is replaced by a particular branch
8097 of the variant.
8098
8099 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8100 length are not statically known are discarded. As a consequence,
8101 VALADDR, ADDRESS and DVAL0 are ignored.
8102
8103 NOTE: Limitations: For now, we assume that dynamic fields and
8104 variants occupy whole numbers of bytes. However, they need not be
8105 byte-aligned. */
8106
8107 struct type *
8108 ada_template_to_fixed_record_type_1 (struct type *type,
8109 const gdb_byte *valaddr,
8110 CORE_ADDR address, struct value *dval0,
8111 int keep_dynamic_fields)
8112 {
8113 struct value *mark = value_mark ();
8114 struct value *dval;
8115 struct type *rtype;
8116 int nfields, bit_len;
8117 int variant_field;
8118 long off;
8119 int fld_bit_len;
8120 int f;
8121
8122 /* Compute the number of fields in this record type that are going
8123 to be processed: unless keep_dynamic_fields, this includes only
8124 fields whose position and length are static will be processed. */
8125 if (keep_dynamic_fields)
8126 nfields = TYPE_NFIELDS (type);
8127 else
8128 {
8129 nfields = 0;
8130 while (nfields < TYPE_NFIELDS (type)
8131 && !ada_is_variant_part (type, nfields)
8132 && !is_dynamic_field (type, nfields))
8133 nfields++;
8134 }
8135
8136 rtype = alloc_type_copy (type);
8137 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8138 INIT_CPLUS_SPECIFIC (rtype);
8139 TYPE_NFIELDS (rtype) = nfields;
8140 TYPE_FIELDS (rtype) = (struct field *)
8141 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8142 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8143 TYPE_NAME (rtype) = ada_type_name (type);
8144 TYPE_TAG_NAME (rtype) = NULL;
8145 TYPE_FIXED_INSTANCE (rtype) = 1;
8146
8147 off = 0;
8148 bit_len = 0;
8149 variant_field = -1;
8150
8151 for (f = 0; f < nfields; f += 1)
8152 {
8153 off = align_value (off, field_alignment (type, f))
8154 + TYPE_FIELD_BITPOS (type, f);
8155 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8156 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8157
8158 if (ada_is_variant_part (type, f))
8159 {
8160 variant_field = f;
8161 fld_bit_len = 0;
8162 }
8163 else if (is_dynamic_field (type, f))
8164 {
8165 const gdb_byte *field_valaddr = valaddr;
8166 CORE_ADDR field_address = address;
8167 struct type *field_type =
8168 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8169
8170 if (dval0 == NULL)
8171 {
8172 /* rtype's length is computed based on the run-time
8173 value of discriminants. If the discriminants are not
8174 initialized, the type size may be completely bogus and
8175 GDB may fail to allocate a value for it. So check the
8176 size first before creating the value. */
8177 ada_ensure_varsize_limit (rtype);
8178 /* Using plain value_from_contents_and_address here
8179 causes problems because we will end up trying to
8180 resolve a type that is currently being
8181 constructed. */
8182 dval = value_from_contents_and_address_unresolved (rtype,
8183 valaddr,
8184 address);
8185 rtype = value_type (dval);
8186 }
8187 else
8188 dval = dval0;
8189
8190 /* If the type referenced by this field is an aligner type, we need
8191 to unwrap that aligner type, because its size might not be set.
8192 Keeping the aligner type would cause us to compute the wrong
8193 size for this field, impacting the offset of the all the fields
8194 that follow this one. */
8195 if (ada_is_aligner_type (field_type))
8196 {
8197 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8198
8199 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8200 field_address = cond_offset_target (field_address, field_offset);
8201 field_type = ada_aligned_type (field_type);
8202 }
8203
8204 field_valaddr = cond_offset_host (field_valaddr,
8205 off / TARGET_CHAR_BIT);
8206 field_address = cond_offset_target (field_address,
8207 off / TARGET_CHAR_BIT);
8208
8209 /* Get the fixed type of the field. Note that, in this case,
8210 we do not want to get the real type out of the tag: if
8211 the current field is the parent part of a tagged record,
8212 we will get the tag of the object. Clearly wrong: the real
8213 type of the parent is not the real type of the child. We
8214 would end up in an infinite loop. */
8215 field_type = ada_get_base_type (field_type);
8216 field_type = ada_to_fixed_type (field_type, field_valaddr,
8217 field_address, dval, 0);
8218 /* If the field size is already larger than the maximum
8219 object size, then the record itself will necessarily
8220 be larger than the maximum object size. We need to make
8221 this check now, because the size might be so ridiculously
8222 large (due to an uninitialized variable in the inferior)
8223 that it would cause an overflow when adding it to the
8224 record size. */
8225 ada_ensure_varsize_limit (field_type);
8226
8227 TYPE_FIELD_TYPE (rtype, f) = field_type;
8228 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8229 /* The multiplication can potentially overflow. But because
8230 the field length has been size-checked just above, and
8231 assuming that the maximum size is a reasonable value,
8232 an overflow should not happen in practice. So rather than
8233 adding overflow recovery code to this already complex code,
8234 we just assume that it's not going to happen. */
8235 fld_bit_len =
8236 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8237 }
8238 else
8239 {
8240 /* Note: If this field's type is a typedef, it is important
8241 to preserve the typedef layer.
8242
8243 Otherwise, we might be transforming a typedef to a fat
8244 pointer (encoding a pointer to an unconstrained array),
8245 into a basic fat pointer (encoding an unconstrained
8246 array). As both types are implemented using the same
8247 structure, the typedef is the only clue which allows us
8248 to distinguish between the two options. Stripping it
8249 would prevent us from printing this field appropriately. */
8250 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8251 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8252 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8253 fld_bit_len =
8254 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8255 else
8256 {
8257 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8258
8259 /* We need to be careful of typedefs when computing
8260 the length of our field. If this is a typedef,
8261 get the length of the target type, not the length
8262 of the typedef. */
8263 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8264 field_type = ada_typedef_target_type (field_type);
8265
8266 fld_bit_len =
8267 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8268 }
8269 }
8270 if (off + fld_bit_len > bit_len)
8271 bit_len = off + fld_bit_len;
8272 off += fld_bit_len;
8273 TYPE_LENGTH (rtype) =
8274 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8275 }
8276
8277 /* We handle the variant part, if any, at the end because of certain
8278 odd cases in which it is re-ordered so as NOT to be the last field of
8279 the record. This can happen in the presence of representation
8280 clauses. */
8281 if (variant_field >= 0)
8282 {
8283 struct type *branch_type;
8284
8285 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8286
8287 if (dval0 == NULL)
8288 {
8289 /* Using plain value_from_contents_and_address here causes
8290 problems because we will end up trying to resolve a type
8291 that is currently being constructed. */
8292 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8293 address);
8294 rtype = value_type (dval);
8295 }
8296 else
8297 dval = dval0;
8298
8299 branch_type =
8300 to_fixed_variant_branch_type
8301 (TYPE_FIELD_TYPE (type, variant_field),
8302 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8303 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8304 if (branch_type == NULL)
8305 {
8306 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8307 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8308 TYPE_NFIELDS (rtype) -= 1;
8309 }
8310 else
8311 {
8312 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8313 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8314 fld_bit_len =
8315 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8316 TARGET_CHAR_BIT;
8317 if (off + fld_bit_len > bit_len)
8318 bit_len = off + fld_bit_len;
8319 TYPE_LENGTH (rtype) =
8320 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8321 }
8322 }
8323
8324 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8325 should contain the alignment of that record, which should be a strictly
8326 positive value. If null or negative, then something is wrong, most
8327 probably in the debug info. In that case, we don't round up the size
8328 of the resulting type. If this record is not part of another structure,
8329 the current RTYPE length might be good enough for our purposes. */
8330 if (TYPE_LENGTH (type) <= 0)
8331 {
8332 if (TYPE_NAME (rtype))
8333 warning (_("Invalid type size for `%s' detected: %d."),
8334 TYPE_NAME (rtype), TYPE_LENGTH (type));
8335 else
8336 warning (_("Invalid type size for <unnamed> detected: %d."),
8337 TYPE_LENGTH (type));
8338 }
8339 else
8340 {
8341 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8342 TYPE_LENGTH (type));
8343 }
8344
8345 value_free_to_mark (mark);
8346 if (TYPE_LENGTH (rtype) > varsize_limit)
8347 error (_("record type with dynamic size is larger than varsize-limit"));
8348 return rtype;
8349 }
8350
8351 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8352 of 1. */
8353
8354 static struct type *
8355 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8356 CORE_ADDR address, struct value *dval0)
8357 {
8358 return ada_template_to_fixed_record_type_1 (type, valaddr,
8359 address, dval0, 1);
8360 }
8361
8362 /* An ordinary record type in which ___XVL-convention fields and
8363 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8364 static approximations, containing all possible fields. Uses
8365 no runtime values. Useless for use in values, but that's OK,
8366 since the results are used only for type determinations. Works on both
8367 structs and unions. Representation note: to save space, we memorize
8368 the result of this function in the TYPE_TARGET_TYPE of the
8369 template type. */
8370
8371 static struct type *
8372 template_to_static_fixed_type (struct type *type0)
8373 {
8374 struct type *type;
8375 int nfields;
8376 int f;
8377
8378 /* No need no do anything if the input type is already fixed. */
8379 if (TYPE_FIXED_INSTANCE (type0))
8380 return type0;
8381
8382 /* Likewise if we already have computed the static approximation. */
8383 if (TYPE_TARGET_TYPE (type0) != NULL)
8384 return TYPE_TARGET_TYPE (type0);
8385
8386 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8387 type = type0;
8388 nfields = TYPE_NFIELDS (type0);
8389
8390 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8391 recompute all over next time. */
8392 TYPE_TARGET_TYPE (type0) = type;
8393
8394 for (f = 0; f < nfields; f += 1)
8395 {
8396 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8397 struct type *new_type;
8398
8399 if (is_dynamic_field (type0, f))
8400 {
8401 field_type = ada_check_typedef (field_type);
8402 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8403 }
8404 else
8405 new_type = static_unwrap_type (field_type);
8406
8407 if (new_type != field_type)
8408 {
8409 /* Clone TYPE0 only the first time we get a new field type. */
8410 if (type == type0)
8411 {
8412 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8413 TYPE_CODE (type) = TYPE_CODE (type0);
8414 INIT_CPLUS_SPECIFIC (type);
8415 TYPE_NFIELDS (type) = nfields;
8416 TYPE_FIELDS (type) = (struct field *)
8417 TYPE_ALLOC (type, nfields * sizeof (struct field));
8418 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8419 sizeof (struct field) * nfields);
8420 TYPE_NAME (type) = ada_type_name (type0);
8421 TYPE_TAG_NAME (type) = NULL;
8422 TYPE_FIXED_INSTANCE (type) = 1;
8423 TYPE_LENGTH (type) = 0;
8424 }
8425 TYPE_FIELD_TYPE (type, f) = new_type;
8426 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8427 }
8428 }
8429
8430 return type;
8431 }
8432
8433 /* Given an object of type TYPE whose contents are at VALADDR and
8434 whose address in memory is ADDRESS, returns a revision of TYPE,
8435 which should be a non-dynamic-sized record, in which the variant
8436 part, if any, is replaced with the appropriate branch. Looks
8437 for discriminant values in DVAL0, which can be NULL if the record
8438 contains the necessary discriminant values. */
8439
8440 static struct type *
8441 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8442 CORE_ADDR address, struct value *dval0)
8443 {
8444 struct value *mark = value_mark ();
8445 struct value *dval;
8446 struct type *rtype;
8447 struct type *branch_type;
8448 int nfields = TYPE_NFIELDS (type);
8449 int variant_field = variant_field_index (type);
8450
8451 if (variant_field == -1)
8452 return type;
8453
8454 if (dval0 == NULL)
8455 {
8456 dval = value_from_contents_and_address (type, valaddr, address);
8457 type = value_type (dval);
8458 }
8459 else
8460 dval = dval0;
8461
8462 rtype = alloc_type_copy (type);
8463 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8464 INIT_CPLUS_SPECIFIC (rtype);
8465 TYPE_NFIELDS (rtype) = nfields;
8466 TYPE_FIELDS (rtype) =
8467 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8468 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8469 sizeof (struct field) * nfields);
8470 TYPE_NAME (rtype) = ada_type_name (type);
8471 TYPE_TAG_NAME (rtype) = NULL;
8472 TYPE_FIXED_INSTANCE (rtype) = 1;
8473 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8474
8475 branch_type = to_fixed_variant_branch_type
8476 (TYPE_FIELD_TYPE (type, variant_field),
8477 cond_offset_host (valaddr,
8478 TYPE_FIELD_BITPOS (type, variant_field)
8479 / TARGET_CHAR_BIT),
8480 cond_offset_target (address,
8481 TYPE_FIELD_BITPOS (type, variant_field)
8482 / TARGET_CHAR_BIT), dval);
8483 if (branch_type == NULL)
8484 {
8485 int f;
8486
8487 for (f = variant_field + 1; f < nfields; f += 1)
8488 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8489 TYPE_NFIELDS (rtype) -= 1;
8490 }
8491 else
8492 {
8493 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8494 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8495 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8496 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8497 }
8498 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8499
8500 value_free_to_mark (mark);
8501 return rtype;
8502 }
8503
8504 /* An ordinary record type (with fixed-length fields) that describes
8505 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8506 beginning of this section]. Any necessary discriminants' values
8507 should be in DVAL, a record value; it may be NULL if the object
8508 at ADDR itself contains any necessary discriminant values.
8509 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8510 values from the record are needed. Except in the case that DVAL,
8511 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8512 unchecked) is replaced by a particular branch of the variant.
8513
8514 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8515 is questionable and may be removed. It can arise during the
8516 processing of an unconstrained-array-of-record type where all the
8517 variant branches have exactly the same size. This is because in
8518 such cases, the compiler does not bother to use the XVS convention
8519 when encoding the record. I am currently dubious of this
8520 shortcut and suspect the compiler should be altered. FIXME. */
8521
8522 static struct type *
8523 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8524 CORE_ADDR address, struct value *dval)
8525 {
8526 struct type *templ_type;
8527
8528 if (TYPE_FIXED_INSTANCE (type0))
8529 return type0;
8530
8531 templ_type = dynamic_template_type (type0);
8532
8533 if (templ_type != NULL)
8534 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8535 else if (variant_field_index (type0) >= 0)
8536 {
8537 if (dval == NULL && valaddr == NULL && address == 0)
8538 return type0;
8539 return to_record_with_fixed_variant_part (type0, valaddr, address,
8540 dval);
8541 }
8542 else
8543 {
8544 TYPE_FIXED_INSTANCE (type0) = 1;
8545 return type0;
8546 }
8547
8548 }
8549
8550 /* An ordinary record type (with fixed-length fields) that describes
8551 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8552 union type. Any necessary discriminants' values should be in DVAL,
8553 a record value. That is, this routine selects the appropriate
8554 branch of the union at ADDR according to the discriminant value
8555 indicated in the union's type name. Returns VAR_TYPE0 itself if
8556 it represents a variant subject to a pragma Unchecked_Union. */
8557
8558 static struct type *
8559 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8560 CORE_ADDR address, struct value *dval)
8561 {
8562 int which;
8563 struct type *templ_type;
8564 struct type *var_type;
8565
8566 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8567 var_type = TYPE_TARGET_TYPE (var_type0);
8568 else
8569 var_type = var_type0;
8570
8571 templ_type = ada_find_parallel_type (var_type, "___XVU");
8572
8573 if (templ_type != NULL)
8574 var_type = templ_type;
8575
8576 if (is_unchecked_variant (var_type, value_type (dval)))
8577 return var_type0;
8578 which =
8579 ada_which_variant_applies (var_type,
8580 value_type (dval), value_contents (dval));
8581
8582 if (which < 0)
8583 return empty_record (var_type);
8584 else if (is_dynamic_field (var_type, which))
8585 return to_fixed_record_type
8586 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8587 valaddr, address, dval);
8588 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8589 return
8590 to_fixed_record_type
8591 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8592 else
8593 return TYPE_FIELD_TYPE (var_type, which);
8594 }
8595
8596 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8597 ENCODING_TYPE, a type following the GNAT conventions for discrete
8598 type encodings, only carries redundant information. */
8599
8600 static int
8601 ada_is_redundant_range_encoding (struct type *range_type,
8602 struct type *encoding_type)
8603 {
8604 struct type *fixed_range_type;
8605 const char *bounds_str;
8606 int n;
8607 LONGEST lo, hi;
8608
8609 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8610
8611 if (TYPE_CODE (get_base_type (range_type))
8612 != TYPE_CODE (get_base_type (encoding_type)))
8613 {
8614 /* The compiler probably used a simple base type to describe
8615 the range type instead of the range's actual base type,
8616 expecting us to get the real base type from the encoding
8617 anyway. In this situation, the encoding cannot be ignored
8618 as redundant. */
8619 return 0;
8620 }
8621
8622 if (is_dynamic_type (range_type))
8623 return 0;
8624
8625 if (TYPE_NAME (encoding_type) == NULL)
8626 return 0;
8627
8628 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8629 if (bounds_str == NULL)
8630 return 0;
8631
8632 n = 8; /* Skip "___XDLU_". */
8633 if (!ada_scan_number (bounds_str, n, &lo, &n))
8634 return 0;
8635 if (TYPE_LOW_BOUND (range_type) != lo)
8636 return 0;
8637
8638 n += 2; /* Skip the "__" separator between the two bounds. */
8639 if (!ada_scan_number (bounds_str, n, &hi, &n))
8640 return 0;
8641 if (TYPE_HIGH_BOUND (range_type) != hi)
8642 return 0;
8643
8644 return 1;
8645 }
8646
8647 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8648 a type following the GNAT encoding for describing array type
8649 indices, only carries redundant information. */
8650
8651 static int
8652 ada_is_redundant_index_type_desc (struct type *array_type,
8653 struct type *desc_type)
8654 {
8655 struct type *this_layer = check_typedef (array_type);
8656 int i;
8657
8658 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8659 {
8660 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8661 TYPE_FIELD_TYPE (desc_type, i)))
8662 return 0;
8663 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8664 }
8665
8666 return 1;
8667 }
8668
8669 /* Assuming that TYPE0 is an array type describing the type of a value
8670 at ADDR, and that DVAL describes a record containing any
8671 discriminants used in TYPE0, returns a type for the value that
8672 contains no dynamic components (that is, no components whose sizes
8673 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8674 true, gives an error message if the resulting type's size is over
8675 varsize_limit. */
8676
8677 static struct type *
8678 to_fixed_array_type (struct type *type0, struct value *dval,
8679 int ignore_too_big)
8680 {
8681 struct type *index_type_desc;
8682 struct type *result;
8683 int constrained_packed_array_p;
8684 static const char *xa_suffix = "___XA";
8685
8686 type0 = ada_check_typedef (type0);
8687 if (TYPE_FIXED_INSTANCE (type0))
8688 return type0;
8689
8690 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8691 if (constrained_packed_array_p)
8692 type0 = decode_constrained_packed_array_type (type0);
8693
8694 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8695
8696 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8697 encoding suffixed with 'P' may still be generated. If so,
8698 it should be used to find the XA type. */
8699
8700 if (index_type_desc == NULL)
8701 {
8702 const char *type_name = ada_type_name (type0);
8703
8704 if (type_name != NULL)
8705 {
8706 const int len = strlen (type_name);
8707 char *name = (char *) alloca (len + strlen (xa_suffix));
8708
8709 if (type_name[len - 1] == 'P')
8710 {
8711 strcpy (name, type_name);
8712 strcpy (name + len - 1, xa_suffix);
8713 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8714 }
8715 }
8716 }
8717
8718 ada_fixup_array_indexes_type (index_type_desc);
8719 if (index_type_desc != NULL
8720 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8721 {
8722 /* Ignore this ___XA parallel type, as it does not bring any
8723 useful information. This allows us to avoid creating fixed
8724 versions of the array's index types, which would be identical
8725 to the original ones. This, in turn, can also help avoid
8726 the creation of fixed versions of the array itself. */
8727 index_type_desc = NULL;
8728 }
8729
8730 if (index_type_desc == NULL)
8731 {
8732 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8733
8734 /* NOTE: elt_type---the fixed version of elt_type0---should never
8735 depend on the contents of the array in properly constructed
8736 debugging data. */
8737 /* Create a fixed version of the array element type.
8738 We're not providing the address of an element here,
8739 and thus the actual object value cannot be inspected to do
8740 the conversion. This should not be a problem, since arrays of
8741 unconstrained objects are not allowed. In particular, all
8742 the elements of an array of a tagged type should all be of
8743 the same type specified in the debugging info. No need to
8744 consult the object tag. */
8745 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8746
8747 /* Make sure we always create a new array type when dealing with
8748 packed array types, since we're going to fix-up the array
8749 type length and element bitsize a little further down. */
8750 if (elt_type0 == elt_type && !constrained_packed_array_p)
8751 result = type0;
8752 else
8753 result = create_array_type (alloc_type_copy (type0),
8754 elt_type, TYPE_INDEX_TYPE (type0));
8755 }
8756 else
8757 {
8758 int i;
8759 struct type *elt_type0;
8760
8761 elt_type0 = type0;
8762 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8763 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8764
8765 /* NOTE: result---the fixed version of elt_type0---should never
8766 depend on the contents of the array in properly constructed
8767 debugging data. */
8768 /* Create a fixed version of the array element type.
8769 We're not providing the address of an element here,
8770 and thus the actual object value cannot be inspected to do
8771 the conversion. This should not be a problem, since arrays of
8772 unconstrained objects are not allowed. In particular, all
8773 the elements of an array of a tagged type should all be of
8774 the same type specified in the debugging info. No need to
8775 consult the object tag. */
8776 result =
8777 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8778
8779 elt_type0 = type0;
8780 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8781 {
8782 struct type *range_type =
8783 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8784
8785 result = create_array_type (alloc_type_copy (elt_type0),
8786 result, range_type);
8787 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8788 }
8789 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8790 error (_("array type with dynamic size is larger than varsize-limit"));
8791 }
8792
8793 /* We want to preserve the type name. This can be useful when
8794 trying to get the type name of a value that has already been
8795 printed (for instance, if the user did "print VAR; whatis $". */
8796 TYPE_NAME (result) = TYPE_NAME (type0);
8797
8798 if (constrained_packed_array_p)
8799 {
8800 /* So far, the resulting type has been created as if the original
8801 type was a regular (non-packed) array type. As a result, the
8802 bitsize of the array elements needs to be set again, and the array
8803 length needs to be recomputed based on that bitsize. */
8804 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8805 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8806
8807 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8808 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8809 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8810 TYPE_LENGTH (result)++;
8811 }
8812
8813 TYPE_FIXED_INSTANCE (result) = 1;
8814 return result;
8815 }
8816
8817
8818 /* A standard type (containing no dynamically sized components)
8819 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8820 DVAL describes a record containing any discriminants used in TYPE0,
8821 and may be NULL if there are none, or if the object of type TYPE at
8822 ADDRESS or in VALADDR contains these discriminants.
8823
8824 If CHECK_TAG is not null, in the case of tagged types, this function
8825 attempts to locate the object's tag and use it to compute the actual
8826 type. However, when ADDRESS is null, we cannot use it to determine the
8827 location of the tag, and therefore compute the tagged type's actual type.
8828 So we return the tagged type without consulting the tag. */
8829
8830 static struct type *
8831 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8832 CORE_ADDR address, struct value *dval, int check_tag)
8833 {
8834 type = ada_check_typedef (type);
8835 switch (TYPE_CODE (type))
8836 {
8837 default:
8838 return type;
8839 case TYPE_CODE_STRUCT:
8840 {
8841 struct type *static_type = to_static_fixed_type (type);
8842 struct type *fixed_record_type =
8843 to_fixed_record_type (type, valaddr, address, NULL);
8844
8845 /* If STATIC_TYPE is a tagged type and we know the object's address,
8846 then we can determine its tag, and compute the object's actual
8847 type from there. Note that we have to use the fixed record
8848 type (the parent part of the record may have dynamic fields
8849 and the way the location of _tag is expressed may depend on
8850 them). */
8851
8852 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8853 {
8854 struct value *tag =
8855 value_tag_from_contents_and_address
8856 (fixed_record_type,
8857 valaddr,
8858 address);
8859 struct type *real_type = type_from_tag (tag);
8860 struct value *obj =
8861 value_from_contents_and_address (fixed_record_type,
8862 valaddr,
8863 address);
8864 fixed_record_type = value_type (obj);
8865 if (real_type != NULL)
8866 return to_fixed_record_type
8867 (real_type, NULL,
8868 value_address (ada_tag_value_at_base_address (obj)), NULL);
8869 }
8870
8871 /* Check to see if there is a parallel ___XVZ variable.
8872 If there is, then it provides the actual size of our type. */
8873 else if (ada_type_name (fixed_record_type) != NULL)
8874 {
8875 const char *name = ada_type_name (fixed_record_type);
8876 char *xvz_name
8877 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8878 int xvz_found = 0;
8879 LONGEST size;
8880
8881 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8882 size = get_int_var_value (xvz_name, &xvz_found);
8883 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8884 {
8885 fixed_record_type = copy_type (fixed_record_type);
8886 TYPE_LENGTH (fixed_record_type) = size;
8887
8888 /* The FIXED_RECORD_TYPE may have be a stub. We have
8889 observed this when the debugging info is STABS, and
8890 apparently it is something that is hard to fix.
8891
8892 In practice, we don't need the actual type definition
8893 at all, because the presence of the XVZ variable allows us
8894 to assume that there must be a XVS type as well, which we
8895 should be able to use later, when we need the actual type
8896 definition.
8897
8898 In the meantime, pretend that the "fixed" type we are
8899 returning is NOT a stub, because this can cause trouble
8900 when using this type to create new types targeting it.
8901 Indeed, the associated creation routines often check
8902 whether the target type is a stub and will try to replace
8903 it, thus using a type with the wrong size. This, in turn,
8904 might cause the new type to have the wrong size too.
8905 Consider the case of an array, for instance, where the size
8906 of the array is computed from the number of elements in
8907 our array multiplied by the size of its element. */
8908 TYPE_STUB (fixed_record_type) = 0;
8909 }
8910 }
8911 return fixed_record_type;
8912 }
8913 case TYPE_CODE_ARRAY:
8914 return to_fixed_array_type (type, dval, 1);
8915 case TYPE_CODE_UNION:
8916 if (dval == NULL)
8917 return type;
8918 else
8919 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8920 }
8921 }
8922
8923 /* The same as ada_to_fixed_type_1, except that it preserves the type
8924 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8925
8926 The typedef layer needs be preserved in order to differentiate between
8927 arrays and array pointers when both types are implemented using the same
8928 fat pointer. In the array pointer case, the pointer is encoded as
8929 a typedef of the pointer type. For instance, considering:
8930
8931 type String_Access is access String;
8932 S1 : String_Access := null;
8933
8934 To the debugger, S1 is defined as a typedef of type String. But
8935 to the user, it is a pointer. So if the user tries to print S1,
8936 we should not dereference the array, but print the array address
8937 instead.
8938
8939 If we didn't preserve the typedef layer, we would lose the fact that
8940 the type is to be presented as a pointer (needs de-reference before
8941 being printed). And we would also use the source-level type name. */
8942
8943 struct type *
8944 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8945 CORE_ADDR address, struct value *dval, int check_tag)
8946
8947 {
8948 struct type *fixed_type =
8949 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8950
8951 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8952 then preserve the typedef layer.
8953
8954 Implementation note: We can only check the main-type portion of
8955 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8956 from TYPE now returns a type that has the same instance flags
8957 as TYPE. For instance, if TYPE is a "typedef const", and its
8958 target type is a "struct", then the typedef elimination will return
8959 a "const" version of the target type. See check_typedef for more
8960 details about how the typedef layer elimination is done.
8961
8962 brobecker/2010-11-19: It seems to me that the only case where it is
8963 useful to preserve the typedef layer is when dealing with fat pointers.
8964 Perhaps, we could add a check for that and preserve the typedef layer
8965 only in that situation. But this seems unecessary so far, probably
8966 because we call check_typedef/ada_check_typedef pretty much everywhere.
8967 */
8968 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8969 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8970 == TYPE_MAIN_TYPE (fixed_type)))
8971 return type;
8972
8973 return fixed_type;
8974 }
8975
8976 /* A standard (static-sized) type corresponding as well as possible to
8977 TYPE0, but based on no runtime data. */
8978
8979 static struct type *
8980 to_static_fixed_type (struct type *type0)
8981 {
8982 struct type *type;
8983
8984 if (type0 == NULL)
8985 return NULL;
8986
8987 if (TYPE_FIXED_INSTANCE (type0))
8988 return type0;
8989
8990 type0 = ada_check_typedef (type0);
8991
8992 switch (TYPE_CODE (type0))
8993 {
8994 default:
8995 return type0;
8996 case TYPE_CODE_STRUCT:
8997 type = dynamic_template_type (type0);
8998 if (type != NULL)
8999 return template_to_static_fixed_type (type);
9000 else
9001 return template_to_static_fixed_type (type0);
9002 case TYPE_CODE_UNION:
9003 type = ada_find_parallel_type (type0, "___XVU");
9004 if (type != NULL)
9005 return template_to_static_fixed_type (type);
9006 else
9007 return template_to_static_fixed_type (type0);
9008 }
9009 }
9010
9011 /* A static approximation of TYPE with all type wrappers removed. */
9012
9013 static struct type *
9014 static_unwrap_type (struct type *type)
9015 {
9016 if (ada_is_aligner_type (type))
9017 {
9018 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9019 if (ada_type_name (type1) == NULL)
9020 TYPE_NAME (type1) = ada_type_name (type);
9021
9022 return static_unwrap_type (type1);
9023 }
9024 else
9025 {
9026 struct type *raw_real_type = ada_get_base_type (type);
9027
9028 if (raw_real_type == type)
9029 return type;
9030 else
9031 return to_static_fixed_type (raw_real_type);
9032 }
9033 }
9034
9035 /* In some cases, incomplete and private types require
9036 cross-references that are not resolved as records (for example,
9037 type Foo;
9038 type FooP is access Foo;
9039 V: FooP;
9040 type Foo is array ...;
9041 ). In these cases, since there is no mechanism for producing
9042 cross-references to such types, we instead substitute for FooP a
9043 stub enumeration type that is nowhere resolved, and whose tag is
9044 the name of the actual type. Call these types "non-record stubs". */
9045
9046 /* A type equivalent to TYPE that is not a non-record stub, if one
9047 exists, otherwise TYPE. */
9048
9049 struct type *
9050 ada_check_typedef (struct type *type)
9051 {
9052 if (type == NULL)
9053 return NULL;
9054
9055 /* If our type is a typedef type of a fat pointer, then we're done.
9056 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9057 what allows us to distinguish between fat pointers that represent
9058 array types, and fat pointers that represent array access types
9059 (in both cases, the compiler implements them as fat pointers). */
9060 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9061 && is_thick_pntr (ada_typedef_target_type (type)))
9062 return type;
9063
9064 type = check_typedef (type);
9065 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9066 || !TYPE_STUB (type)
9067 || TYPE_TAG_NAME (type) == NULL)
9068 return type;
9069 else
9070 {
9071 const char *name = TYPE_TAG_NAME (type);
9072 struct type *type1 = ada_find_any_type (name);
9073
9074 if (type1 == NULL)
9075 return type;
9076
9077 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9078 stubs pointing to arrays, as we don't create symbols for array
9079 types, only for the typedef-to-array types). If that's the case,
9080 strip the typedef layer. */
9081 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9082 type1 = ada_check_typedef (type1);
9083
9084 return type1;
9085 }
9086 }
9087
9088 /* A value representing the data at VALADDR/ADDRESS as described by
9089 type TYPE0, but with a standard (static-sized) type that correctly
9090 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9091 type, then return VAL0 [this feature is simply to avoid redundant
9092 creation of struct values]. */
9093
9094 static struct value *
9095 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9096 struct value *val0)
9097 {
9098 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9099
9100 if (type == type0 && val0 != NULL)
9101 return val0;
9102 else
9103 return value_from_contents_and_address (type, 0, address);
9104 }
9105
9106 /* A value representing VAL, but with a standard (static-sized) type
9107 that correctly describes it. Does not necessarily create a new
9108 value. */
9109
9110 struct value *
9111 ada_to_fixed_value (struct value *val)
9112 {
9113 val = unwrap_value (val);
9114 val = ada_to_fixed_value_create (value_type (val),
9115 value_address (val),
9116 val);
9117 return val;
9118 }
9119 \f
9120
9121 /* Attributes */
9122
9123 /* Table mapping attribute numbers to names.
9124 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9125
9126 static const char *attribute_names[] = {
9127 "<?>",
9128
9129 "first",
9130 "last",
9131 "length",
9132 "image",
9133 "max",
9134 "min",
9135 "modulus",
9136 "pos",
9137 "size",
9138 "tag",
9139 "val",
9140 0
9141 };
9142
9143 const char *
9144 ada_attribute_name (enum exp_opcode n)
9145 {
9146 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9147 return attribute_names[n - OP_ATR_FIRST + 1];
9148 else
9149 return attribute_names[0];
9150 }
9151
9152 /* Evaluate the 'POS attribute applied to ARG. */
9153
9154 static LONGEST
9155 pos_atr (struct value *arg)
9156 {
9157 struct value *val = coerce_ref (arg);
9158 struct type *type = value_type (val);
9159 LONGEST result;
9160
9161 if (!discrete_type_p (type))
9162 error (_("'POS only defined on discrete types"));
9163
9164 if (!discrete_position (type, value_as_long (val), &result))
9165 error (_("enumeration value is invalid: can't find 'POS"));
9166
9167 return result;
9168 }
9169
9170 static struct value *
9171 value_pos_atr (struct type *type, struct value *arg)
9172 {
9173 return value_from_longest (type, pos_atr (arg));
9174 }
9175
9176 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9177
9178 static struct value *
9179 value_val_atr (struct type *type, struct value *arg)
9180 {
9181 if (!discrete_type_p (type))
9182 error (_("'VAL only defined on discrete types"));
9183 if (!integer_type_p (value_type (arg)))
9184 error (_("'VAL requires integral argument"));
9185
9186 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9187 {
9188 long pos = value_as_long (arg);
9189
9190 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9191 error (_("argument to 'VAL out of range"));
9192 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9193 }
9194 else
9195 return value_from_longest (type, value_as_long (arg));
9196 }
9197 \f
9198
9199 /* Evaluation */
9200
9201 /* True if TYPE appears to be an Ada character type.
9202 [At the moment, this is true only for Character and Wide_Character;
9203 It is a heuristic test that could stand improvement]. */
9204
9205 int
9206 ada_is_character_type (struct type *type)
9207 {
9208 const char *name;
9209
9210 /* If the type code says it's a character, then assume it really is,
9211 and don't check any further. */
9212 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9213 return 1;
9214
9215 /* Otherwise, assume it's a character type iff it is a discrete type
9216 with a known character type name. */
9217 name = ada_type_name (type);
9218 return (name != NULL
9219 && (TYPE_CODE (type) == TYPE_CODE_INT
9220 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9221 && (strcmp (name, "character") == 0
9222 || strcmp (name, "wide_character") == 0
9223 || strcmp (name, "wide_wide_character") == 0
9224 || strcmp (name, "unsigned char") == 0));
9225 }
9226
9227 /* True if TYPE appears to be an Ada string type. */
9228
9229 int
9230 ada_is_string_type (struct type *type)
9231 {
9232 type = ada_check_typedef (type);
9233 if (type != NULL
9234 && TYPE_CODE (type) != TYPE_CODE_PTR
9235 && (ada_is_simple_array_type (type)
9236 || ada_is_array_descriptor_type (type))
9237 && ada_array_arity (type) == 1)
9238 {
9239 struct type *elttype = ada_array_element_type (type, 1);
9240
9241 return ada_is_character_type (elttype);
9242 }
9243 else
9244 return 0;
9245 }
9246
9247 /* The compiler sometimes provides a parallel XVS type for a given
9248 PAD type. Normally, it is safe to follow the PAD type directly,
9249 but older versions of the compiler have a bug that causes the offset
9250 of its "F" field to be wrong. Following that field in that case
9251 would lead to incorrect results, but this can be worked around
9252 by ignoring the PAD type and using the associated XVS type instead.
9253
9254 Set to True if the debugger should trust the contents of PAD types.
9255 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9256 static int trust_pad_over_xvs = 1;
9257
9258 /* True if TYPE is a struct type introduced by the compiler to force the
9259 alignment of a value. Such types have a single field with a
9260 distinctive name. */
9261
9262 int
9263 ada_is_aligner_type (struct type *type)
9264 {
9265 type = ada_check_typedef (type);
9266
9267 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9268 return 0;
9269
9270 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9271 && TYPE_NFIELDS (type) == 1
9272 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9273 }
9274
9275 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9276 the parallel type. */
9277
9278 struct type *
9279 ada_get_base_type (struct type *raw_type)
9280 {
9281 struct type *real_type_namer;
9282 struct type *raw_real_type;
9283
9284 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9285 return raw_type;
9286
9287 if (ada_is_aligner_type (raw_type))
9288 /* The encoding specifies that we should always use the aligner type.
9289 So, even if this aligner type has an associated XVS type, we should
9290 simply ignore it.
9291
9292 According to the compiler gurus, an XVS type parallel to an aligner
9293 type may exist because of a stabs limitation. In stabs, aligner
9294 types are empty because the field has a variable-sized type, and
9295 thus cannot actually be used as an aligner type. As a result,
9296 we need the associated parallel XVS type to decode the type.
9297 Since the policy in the compiler is to not change the internal
9298 representation based on the debugging info format, we sometimes
9299 end up having a redundant XVS type parallel to the aligner type. */
9300 return raw_type;
9301
9302 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9303 if (real_type_namer == NULL
9304 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9305 || TYPE_NFIELDS (real_type_namer) != 1)
9306 return raw_type;
9307
9308 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9309 {
9310 /* This is an older encoding form where the base type needs to be
9311 looked up by name. We prefer the newer enconding because it is
9312 more efficient. */
9313 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9314 if (raw_real_type == NULL)
9315 return raw_type;
9316 else
9317 return raw_real_type;
9318 }
9319
9320 /* The field in our XVS type is a reference to the base type. */
9321 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9322 }
9323
9324 /* The type of value designated by TYPE, with all aligners removed. */
9325
9326 struct type *
9327 ada_aligned_type (struct type *type)
9328 {
9329 if (ada_is_aligner_type (type))
9330 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9331 else
9332 return ada_get_base_type (type);
9333 }
9334
9335
9336 /* The address of the aligned value in an object at address VALADDR
9337 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9338
9339 const gdb_byte *
9340 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9341 {
9342 if (ada_is_aligner_type (type))
9343 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9344 valaddr +
9345 TYPE_FIELD_BITPOS (type,
9346 0) / TARGET_CHAR_BIT);
9347 else
9348 return valaddr;
9349 }
9350
9351
9352
9353 /* The printed representation of an enumeration literal with encoded
9354 name NAME. The value is good to the next call of ada_enum_name. */
9355 const char *
9356 ada_enum_name (const char *name)
9357 {
9358 static char *result;
9359 static size_t result_len = 0;
9360 char *tmp;
9361
9362 /* First, unqualify the enumeration name:
9363 1. Search for the last '.' character. If we find one, then skip
9364 all the preceding characters, the unqualified name starts
9365 right after that dot.
9366 2. Otherwise, we may be debugging on a target where the compiler
9367 translates dots into "__". Search forward for double underscores,
9368 but stop searching when we hit an overloading suffix, which is
9369 of the form "__" followed by digits. */
9370
9371 tmp = strrchr (name, '.');
9372 if (tmp != NULL)
9373 name = tmp + 1;
9374 else
9375 {
9376 while ((tmp = strstr (name, "__")) != NULL)
9377 {
9378 if (isdigit (tmp[2]))
9379 break;
9380 else
9381 name = tmp + 2;
9382 }
9383 }
9384
9385 if (name[0] == 'Q')
9386 {
9387 int v;
9388
9389 if (name[1] == 'U' || name[1] == 'W')
9390 {
9391 if (sscanf (name + 2, "%x", &v) != 1)
9392 return name;
9393 }
9394 else
9395 return name;
9396
9397 GROW_VECT (result, result_len, 16);
9398 if (isascii (v) && isprint (v))
9399 xsnprintf (result, result_len, "'%c'", v);
9400 else if (name[1] == 'U')
9401 xsnprintf (result, result_len, "[\"%02x\"]", v);
9402 else
9403 xsnprintf (result, result_len, "[\"%04x\"]", v);
9404
9405 return result;
9406 }
9407 else
9408 {
9409 tmp = strstr (name, "__");
9410 if (tmp == NULL)
9411 tmp = strstr (name, "$");
9412 if (tmp != NULL)
9413 {
9414 GROW_VECT (result, result_len, tmp - name + 1);
9415 strncpy (result, name, tmp - name);
9416 result[tmp - name] = '\0';
9417 return result;
9418 }
9419
9420 return name;
9421 }
9422 }
9423
9424 /* Evaluate the subexpression of EXP starting at *POS as for
9425 evaluate_type, updating *POS to point just past the evaluated
9426 expression. */
9427
9428 static struct value *
9429 evaluate_subexp_type (struct expression *exp, int *pos)
9430 {
9431 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9432 }
9433
9434 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9435 value it wraps. */
9436
9437 static struct value *
9438 unwrap_value (struct value *val)
9439 {
9440 struct type *type = ada_check_typedef (value_type (val));
9441
9442 if (ada_is_aligner_type (type))
9443 {
9444 struct value *v = ada_value_struct_elt (val, "F", 0);
9445 struct type *val_type = ada_check_typedef (value_type (v));
9446
9447 if (ada_type_name (val_type) == NULL)
9448 TYPE_NAME (val_type) = ada_type_name (type);
9449
9450 return unwrap_value (v);
9451 }
9452 else
9453 {
9454 struct type *raw_real_type =
9455 ada_check_typedef (ada_get_base_type (type));
9456
9457 /* If there is no parallel XVS or XVE type, then the value is
9458 already unwrapped. Return it without further modification. */
9459 if ((type == raw_real_type)
9460 && ada_find_parallel_type (type, "___XVE") == NULL)
9461 return val;
9462
9463 return
9464 coerce_unspec_val_to_type
9465 (val, ada_to_fixed_type (raw_real_type, 0,
9466 value_address (val),
9467 NULL, 1));
9468 }
9469 }
9470
9471 static struct value *
9472 cast_to_fixed (struct type *type, struct value *arg)
9473 {
9474 LONGEST val;
9475
9476 if (type == value_type (arg))
9477 return arg;
9478 else if (ada_is_fixed_point_type (value_type (arg)))
9479 val = ada_float_to_fixed (type,
9480 ada_fixed_to_float (value_type (arg),
9481 value_as_long (arg)));
9482 else
9483 {
9484 DOUBLEST argd = value_as_double (arg);
9485
9486 val = ada_float_to_fixed (type, argd);
9487 }
9488
9489 return value_from_longest (type, val);
9490 }
9491
9492 static struct value *
9493 cast_from_fixed (struct type *type, struct value *arg)
9494 {
9495 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9496 value_as_long (arg));
9497
9498 return value_from_double (type, val);
9499 }
9500
9501 /* Given two array types T1 and T2, return nonzero iff both arrays
9502 contain the same number of elements. */
9503
9504 static int
9505 ada_same_array_size_p (struct type *t1, struct type *t2)
9506 {
9507 LONGEST lo1, hi1, lo2, hi2;
9508
9509 /* Get the array bounds in order to verify that the size of
9510 the two arrays match. */
9511 if (!get_array_bounds (t1, &lo1, &hi1)
9512 || !get_array_bounds (t2, &lo2, &hi2))
9513 error (_("unable to determine array bounds"));
9514
9515 /* To make things easier for size comparison, normalize a bit
9516 the case of empty arrays by making sure that the difference
9517 between upper bound and lower bound is always -1. */
9518 if (lo1 > hi1)
9519 hi1 = lo1 - 1;
9520 if (lo2 > hi2)
9521 hi2 = lo2 - 1;
9522
9523 return (hi1 - lo1 == hi2 - lo2);
9524 }
9525
9526 /* Assuming that VAL is an array of integrals, and TYPE represents
9527 an array with the same number of elements, but with wider integral
9528 elements, return an array "casted" to TYPE. In practice, this
9529 means that the returned array is built by casting each element
9530 of the original array into TYPE's (wider) element type. */
9531
9532 static struct value *
9533 ada_promote_array_of_integrals (struct type *type, struct value *val)
9534 {
9535 struct type *elt_type = TYPE_TARGET_TYPE (type);
9536 LONGEST lo, hi;
9537 struct value *res;
9538 LONGEST i;
9539
9540 /* Verify that both val and type are arrays of scalars, and
9541 that the size of val's elements is smaller than the size
9542 of type's element. */
9543 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9544 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9545 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9546 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9547 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9548 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9549
9550 if (!get_array_bounds (type, &lo, &hi))
9551 error (_("unable to determine array bounds"));
9552
9553 res = allocate_value (type);
9554
9555 /* Promote each array element. */
9556 for (i = 0; i < hi - lo + 1; i++)
9557 {
9558 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9559
9560 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9561 value_contents_all (elt), TYPE_LENGTH (elt_type));
9562 }
9563
9564 return res;
9565 }
9566
9567 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9568 return the converted value. */
9569
9570 static struct value *
9571 coerce_for_assign (struct type *type, struct value *val)
9572 {
9573 struct type *type2 = value_type (val);
9574
9575 if (type == type2)
9576 return val;
9577
9578 type2 = ada_check_typedef (type2);
9579 type = ada_check_typedef (type);
9580
9581 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9582 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9583 {
9584 val = ada_value_ind (val);
9585 type2 = value_type (val);
9586 }
9587
9588 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9589 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9590 {
9591 if (!ada_same_array_size_p (type, type2))
9592 error (_("cannot assign arrays of different length"));
9593
9594 if (is_integral_type (TYPE_TARGET_TYPE (type))
9595 && is_integral_type (TYPE_TARGET_TYPE (type2))
9596 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9597 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9598 {
9599 /* Allow implicit promotion of the array elements to
9600 a wider type. */
9601 return ada_promote_array_of_integrals (type, val);
9602 }
9603
9604 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9605 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9606 error (_("Incompatible types in assignment"));
9607 deprecated_set_value_type (val, type);
9608 }
9609 return val;
9610 }
9611
9612 static struct value *
9613 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9614 {
9615 struct value *val;
9616 struct type *type1, *type2;
9617 LONGEST v, v1, v2;
9618
9619 arg1 = coerce_ref (arg1);
9620 arg2 = coerce_ref (arg2);
9621 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9622 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9623
9624 if (TYPE_CODE (type1) != TYPE_CODE_INT
9625 || TYPE_CODE (type2) != TYPE_CODE_INT)
9626 return value_binop (arg1, arg2, op);
9627
9628 switch (op)
9629 {
9630 case BINOP_MOD:
9631 case BINOP_DIV:
9632 case BINOP_REM:
9633 break;
9634 default:
9635 return value_binop (arg1, arg2, op);
9636 }
9637
9638 v2 = value_as_long (arg2);
9639 if (v2 == 0)
9640 error (_("second operand of %s must not be zero."), op_string (op));
9641
9642 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9643 return value_binop (arg1, arg2, op);
9644
9645 v1 = value_as_long (arg1);
9646 switch (op)
9647 {
9648 case BINOP_DIV:
9649 v = v1 / v2;
9650 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9651 v += v > 0 ? -1 : 1;
9652 break;
9653 case BINOP_REM:
9654 v = v1 % v2;
9655 if (v * v1 < 0)
9656 v -= v2;
9657 break;
9658 default:
9659 /* Should not reach this point. */
9660 v = 0;
9661 }
9662
9663 val = allocate_value (type1);
9664 store_unsigned_integer (value_contents_raw (val),
9665 TYPE_LENGTH (value_type (val)),
9666 gdbarch_byte_order (get_type_arch (type1)), v);
9667 return val;
9668 }
9669
9670 static int
9671 ada_value_equal (struct value *arg1, struct value *arg2)
9672 {
9673 if (ada_is_direct_array_type (value_type (arg1))
9674 || ada_is_direct_array_type (value_type (arg2)))
9675 {
9676 /* Automatically dereference any array reference before
9677 we attempt to perform the comparison. */
9678 arg1 = ada_coerce_ref (arg1);
9679 arg2 = ada_coerce_ref (arg2);
9680
9681 arg1 = ada_coerce_to_simple_array (arg1);
9682 arg2 = ada_coerce_to_simple_array (arg2);
9683 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9684 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9685 error (_("Attempt to compare array with non-array"));
9686 /* FIXME: The following works only for types whose
9687 representations use all bits (no padding or undefined bits)
9688 and do not have user-defined equality. */
9689 return
9690 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9691 && memcmp (value_contents (arg1), value_contents (arg2),
9692 TYPE_LENGTH (value_type (arg1))) == 0;
9693 }
9694 return value_equal (arg1, arg2);
9695 }
9696
9697 /* Total number of component associations in the aggregate starting at
9698 index PC in EXP. Assumes that index PC is the start of an
9699 OP_AGGREGATE. */
9700
9701 static int
9702 num_component_specs (struct expression *exp, int pc)
9703 {
9704 int n, m, i;
9705
9706 m = exp->elts[pc + 1].longconst;
9707 pc += 3;
9708 n = 0;
9709 for (i = 0; i < m; i += 1)
9710 {
9711 switch (exp->elts[pc].opcode)
9712 {
9713 default:
9714 n += 1;
9715 break;
9716 case OP_CHOICES:
9717 n += exp->elts[pc + 1].longconst;
9718 break;
9719 }
9720 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9721 }
9722 return n;
9723 }
9724
9725 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9726 component of LHS (a simple array or a record), updating *POS past
9727 the expression, assuming that LHS is contained in CONTAINER. Does
9728 not modify the inferior's memory, nor does it modify LHS (unless
9729 LHS == CONTAINER). */
9730
9731 static void
9732 assign_component (struct value *container, struct value *lhs, LONGEST index,
9733 struct expression *exp, int *pos)
9734 {
9735 struct value *mark = value_mark ();
9736 struct value *elt;
9737
9738 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9739 {
9740 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9741 struct value *index_val = value_from_longest (index_type, index);
9742
9743 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9744 }
9745 else
9746 {
9747 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9748 elt = ada_to_fixed_value (elt);
9749 }
9750
9751 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9752 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9753 else
9754 value_assign_to_component (container, elt,
9755 ada_evaluate_subexp (NULL, exp, pos,
9756 EVAL_NORMAL));
9757
9758 value_free_to_mark (mark);
9759 }
9760
9761 /* Assuming that LHS represents an lvalue having a record or array
9762 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9763 of that aggregate's value to LHS, advancing *POS past the
9764 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9765 lvalue containing LHS (possibly LHS itself). Does not modify
9766 the inferior's memory, nor does it modify the contents of
9767 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9768
9769 static struct value *
9770 assign_aggregate (struct value *container,
9771 struct value *lhs, struct expression *exp,
9772 int *pos, enum noside noside)
9773 {
9774 struct type *lhs_type;
9775 int n = exp->elts[*pos+1].longconst;
9776 LONGEST low_index, high_index;
9777 int num_specs;
9778 LONGEST *indices;
9779 int max_indices, num_indices;
9780 int i;
9781
9782 *pos += 3;
9783 if (noside != EVAL_NORMAL)
9784 {
9785 for (i = 0; i < n; i += 1)
9786 ada_evaluate_subexp (NULL, exp, pos, noside);
9787 return container;
9788 }
9789
9790 container = ada_coerce_ref (container);
9791 if (ada_is_direct_array_type (value_type (container)))
9792 container = ada_coerce_to_simple_array (container);
9793 lhs = ada_coerce_ref (lhs);
9794 if (!deprecated_value_modifiable (lhs))
9795 error (_("Left operand of assignment is not a modifiable lvalue."));
9796
9797 lhs_type = value_type (lhs);
9798 if (ada_is_direct_array_type (lhs_type))
9799 {
9800 lhs = ada_coerce_to_simple_array (lhs);
9801 lhs_type = value_type (lhs);
9802 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9803 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9804 }
9805 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9806 {
9807 low_index = 0;
9808 high_index = num_visible_fields (lhs_type) - 1;
9809 }
9810 else
9811 error (_("Left-hand side must be array or record."));
9812
9813 num_specs = num_component_specs (exp, *pos - 3);
9814 max_indices = 4 * num_specs + 4;
9815 indices = XALLOCAVEC (LONGEST, max_indices);
9816 indices[0] = indices[1] = low_index - 1;
9817 indices[2] = indices[3] = high_index + 1;
9818 num_indices = 4;
9819
9820 for (i = 0; i < n; i += 1)
9821 {
9822 switch (exp->elts[*pos].opcode)
9823 {
9824 case OP_CHOICES:
9825 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9826 &num_indices, max_indices,
9827 low_index, high_index);
9828 break;
9829 case OP_POSITIONAL:
9830 aggregate_assign_positional (container, lhs, exp, pos, indices,
9831 &num_indices, max_indices,
9832 low_index, high_index);
9833 break;
9834 case OP_OTHERS:
9835 if (i != n-1)
9836 error (_("Misplaced 'others' clause"));
9837 aggregate_assign_others (container, lhs, exp, pos, indices,
9838 num_indices, low_index, high_index);
9839 break;
9840 default:
9841 error (_("Internal error: bad aggregate clause"));
9842 }
9843 }
9844
9845 return container;
9846 }
9847
9848 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9849 construct at *POS, updating *POS past the construct, given that
9850 the positions are relative to lower bound LOW, where HIGH is the
9851 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9852 updating *NUM_INDICES as needed. CONTAINER is as for
9853 assign_aggregate. */
9854 static void
9855 aggregate_assign_positional (struct value *container,
9856 struct value *lhs, struct expression *exp,
9857 int *pos, LONGEST *indices, int *num_indices,
9858 int max_indices, LONGEST low, LONGEST high)
9859 {
9860 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9861
9862 if (ind - 1 == high)
9863 warning (_("Extra components in aggregate ignored."));
9864 if (ind <= high)
9865 {
9866 add_component_interval (ind, ind, indices, num_indices, max_indices);
9867 *pos += 3;
9868 assign_component (container, lhs, ind, exp, pos);
9869 }
9870 else
9871 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9872 }
9873
9874 /* Assign into the components of LHS indexed by the OP_CHOICES
9875 construct at *POS, updating *POS past the construct, given that
9876 the allowable indices are LOW..HIGH. Record the indices assigned
9877 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9878 needed. CONTAINER is as for assign_aggregate. */
9879 static void
9880 aggregate_assign_from_choices (struct value *container,
9881 struct value *lhs, struct expression *exp,
9882 int *pos, LONGEST *indices, int *num_indices,
9883 int max_indices, LONGEST low, LONGEST high)
9884 {
9885 int j;
9886 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9887 int choice_pos, expr_pc;
9888 int is_array = ada_is_direct_array_type (value_type (lhs));
9889
9890 choice_pos = *pos += 3;
9891
9892 for (j = 0; j < n_choices; j += 1)
9893 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9894 expr_pc = *pos;
9895 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9896
9897 for (j = 0; j < n_choices; j += 1)
9898 {
9899 LONGEST lower, upper;
9900 enum exp_opcode op = exp->elts[choice_pos].opcode;
9901
9902 if (op == OP_DISCRETE_RANGE)
9903 {
9904 choice_pos += 1;
9905 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9906 EVAL_NORMAL));
9907 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9908 EVAL_NORMAL));
9909 }
9910 else if (is_array)
9911 {
9912 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9913 EVAL_NORMAL));
9914 upper = lower;
9915 }
9916 else
9917 {
9918 int ind;
9919 const char *name;
9920
9921 switch (op)
9922 {
9923 case OP_NAME:
9924 name = &exp->elts[choice_pos + 2].string;
9925 break;
9926 case OP_VAR_VALUE:
9927 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9928 break;
9929 default:
9930 error (_("Invalid record component association."));
9931 }
9932 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9933 ind = 0;
9934 if (! find_struct_field (name, value_type (lhs), 0,
9935 NULL, NULL, NULL, NULL, &ind))
9936 error (_("Unknown component name: %s."), name);
9937 lower = upper = ind;
9938 }
9939
9940 if (lower <= upper && (lower < low || upper > high))
9941 error (_("Index in component association out of bounds."));
9942
9943 add_component_interval (lower, upper, indices, num_indices,
9944 max_indices);
9945 while (lower <= upper)
9946 {
9947 int pos1;
9948
9949 pos1 = expr_pc;
9950 assign_component (container, lhs, lower, exp, &pos1);
9951 lower += 1;
9952 }
9953 }
9954 }
9955
9956 /* Assign the value of the expression in the OP_OTHERS construct in
9957 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9958 have not been previously assigned. The index intervals already assigned
9959 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9960 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9961 static void
9962 aggregate_assign_others (struct value *container,
9963 struct value *lhs, struct expression *exp,
9964 int *pos, LONGEST *indices, int num_indices,
9965 LONGEST low, LONGEST high)
9966 {
9967 int i;
9968 int expr_pc = *pos + 1;
9969
9970 for (i = 0; i < num_indices - 2; i += 2)
9971 {
9972 LONGEST ind;
9973
9974 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9975 {
9976 int localpos;
9977
9978 localpos = expr_pc;
9979 assign_component (container, lhs, ind, exp, &localpos);
9980 }
9981 }
9982 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9983 }
9984
9985 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9986 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9987 modifying *SIZE as needed. It is an error if *SIZE exceeds
9988 MAX_SIZE. The resulting intervals do not overlap. */
9989 static void
9990 add_component_interval (LONGEST low, LONGEST high,
9991 LONGEST* indices, int *size, int max_size)
9992 {
9993 int i, j;
9994
9995 for (i = 0; i < *size; i += 2) {
9996 if (high >= indices[i] && low <= indices[i + 1])
9997 {
9998 int kh;
9999
10000 for (kh = i + 2; kh < *size; kh += 2)
10001 if (high < indices[kh])
10002 break;
10003 if (low < indices[i])
10004 indices[i] = low;
10005 indices[i + 1] = indices[kh - 1];
10006 if (high > indices[i + 1])
10007 indices[i + 1] = high;
10008 memcpy (indices + i + 2, indices + kh, *size - kh);
10009 *size -= kh - i - 2;
10010 return;
10011 }
10012 else if (high < indices[i])
10013 break;
10014 }
10015
10016 if (*size == max_size)
10017 error (_("Internal error: miscounted aggregate components."));
10018 *size += 2;
10019 for (j = *size-1; j >= i+2; j -= 1)
10020 indices[j] = indices[j - 2];
10021 indices[i] = low;
10022 indices[i + 1] = high;
10023 }
10024
10025 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10026 is different. */
10027
10028 static struct value *
10029 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10030 {
10031 if (type == ada_check_typedef (value_type (arg2)))
10032 return arg2;
10033
10034 if (ada_is_fixed_point_type (type))
10035 return (cast_to_fixed (type, arg2));
10036
10037 if (ada_is_fixed_point_type (value_type (arg2)))
10038 return cast_from_fixed (type, arg2);
10039
10040 return value_cast (type, arg2);
10041 }
10042
10043 /* Evaluating Ada expressions, and printing their result.
10044 ------------------------------------------------------
10045
10046 1. Introduction:
10047 ----------------
10048
10049 We usually evaluate an Ada expression in order to print its value.
10050 We also evaluate an expression in order to print its type, which
10051 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10052 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10053 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10054 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10055 similar.
10056
10057 Evaluating expressions is a little more complicated for Ada entities
10058 than it is for entities in languages such as C. The main reason for
10059 this is that Ada provides types whose definition might be dynamic.
10060 One example of such types is variant records. Or another example
10061 would be an array whose bounds can only be known at run time.
10062
10063 The following description is a general guide as to what should be
10064 done (and what should NOT be done) in order to evaluate an expression
10065 involving such types, and when. This does not cover how the semantic
10066 information is encoded by GNAT as this is covered separatly. For the
10067 document used as the reference for the GNAT encoding, see exp_dbug.ads
10068 in the GNAT sources.
10069
10070 Ideally, we should embed each part of this description next to its
10071 associated code. Unfortunately, the amount of code is so vast right
10072 now that it's hard to see whether the code handling a particular
10073 situation might be duplicated or not. One day, when the code is
10074 cleaned up, this guide might become redundant with the comments
10075 inserted in the code, and we might want to remove it.
10076
10077 2. ``Fixing'' an Entity, the Simple Case:
10078 -----------------------------------------
10079
10080 When evaluating Ada expressions, the tricky issue is that they may
10081 reference entities whose type contents and size are not statically
10082 known. Consider for instance a variant record:
10083
10084 type Rec (Empty : Boolean := True) is record
10085 case Empty is
10086 when True => null;
10087 when False => Value : Integer;
10088 end case;
10089 end record;
10090 Yes : Rec := (Empty => False, Value => 1);
10091 No : Rec := (empty => True);
10092
10093 The size and contents of that record depends on the value of the
10094 descriminant (Rec.Empty). At this point, neither the debugging
10095 information nor the associated type structure in GDB are able to
10096 express such dynamic types. So what the debugger does is to create
10097 "fixed" versions of the type that applies to the specific object.
10098 We also informally refer to this opperation as "fixing" an object,
10099 which means creating its associated fixed type.
10100
10101 Example: when printing the value of variable "Yes" above, its fixed
10102 type would look like this:
10103
10104 type Rec is record
10105 Empty : Boolean;
10106 Value : Integer;
10107 end record;
10108
10109 On the other hand, if we printed the value of "No", its fixed type
10110 would become:
10111
10112 type Rec is record
10113 Empty : Boolean;
10114 end record;
10115
10116 Things become a little more complicated when trying to fix an entity
10117 with a dynamic type that directly contains another dynamic type,
10118 such as an array of variant records, for instance. There are
10119 two possible cases: Arrays, and records.
10120
10121 3. ``Fixing'' Arrays:
10122 ---------------------
10123
10124 The type structure in GDB describes an array in terms of its bounds,
10125 and the type of its elements. By design, all elements in the array
10126 have the same type and we cannot represent an array of variant elements
10127 using the current type structure in GDB. When fixing an array,
10128 we cannot fix the array element, as we would potentially need one
10129 fixed type per element of the array. As a result, the best we can do
10130 when fixing an array is to produce an array whose bounds and size
10131 are correct (allowing us to read it from memory), but without having
10132 touched its element type. Fixing each element will be done later,
10133 when (if) necessary.
10134
10135 Arrays are a little simpler to handle than records, because the same
10136 amount of memory is allocated for each element of the array, even if
10137 the amount of space actually used by each element differs from element
10138 to element. Consider for instance the following array of type Rec:
10139
10140 type Rec_Array is array (1 .. 2) of Rec;
10141
10142 The actual amount of memory occupied by each element might be different
10143 from element to element, depending on the value of their discriminant.
10144 But the amount of space reserved for each element in the array remains
10145 fixed regardless. So we simply need to compute that size using
10146 the debugging information available, from which we can then determine
10147 the array size (we multiply the number of elements of the array by
10148 the size of each element).
10149
10150 The simplest case is when we have an array of a constrained element
10151 type. For instance, consider the following type declarations:
10152
10153 type Bounded_String (Max_Size : Integer) is
10154 Length : Integer;
10155 Buffer : String (1 .. Max_Size);
10156 end record;
10157 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10158
10159 In this case, the compiler describes the array as an array of
10160 variable-size elements (identified by its XVS suffix) for which
10161 the size can be read in the parallel XVZ variable.
10162
10163 In the case of an array of an unconstrained element type, the compiler
10164 wraps the array element inside a private PAD type. This type should not
10165 be shown to the user, and must be "unwrap"'ed before printing. Note
10166 that we also use the adjective "aligner" in our code to designate
10167 these wrapper types.
10168
10169 In some cases, the size allocated for each element is statically
10170 known. In that case, the PAD type already has the correct size,
10171 and the array element should remain unfixed.
10172
10173 But there are cases when this size is not statically known.
10174 For instance, assuming that "Five" is an integer variable:
10175
10176 type Dynamic is array (1 .. Five) of Integer;
10177 type Wrapper (Has_Length : Boolean := False) is record
10178 Data : Dynamic;
10179 case Has_Length is
10180 when True => Length : Integer;
10181 when False => null;
10182 end case;
10183 end record;
10184 type Wrapper_Array is array (1 .. 2) of Wrapper;
10185
10186 Hello : Wrapper_Array := (others => (Has_Length => True,
10187 Data => (others => 17),
10188 Length => 1));
10189
10190
10191 The debugging info would describe variable Hello as being an
10192 array of a PAD type. The size of that PAD type is not statically
10193 known, but can be determined using a parallel XVZ variable.
10194 In that case, a copy of the PAD type with the correct size should
10195 be used for the fixed array.
10196
10197 3. ``Fixing'' record type objects:
10198 ----------------------------------
10199
10200 Things are slightly different from arrays in the case of dynamic
10201 record types. In this case, in order to compute the associated
10202 fixed type, we need to determine the size and offset of each of
10203 its components. This, in turn, requires us to compute the fixed
10204 type of each of these components.
10205
10206 Consider for instance the example:
10207
10208 type Bounded_String (Max_Size : Natural) is record
10209 Str : String (1 .. Max_Size);
10210 Length : Natural;
10211 end record;
10212 My_String : Bounded_String (Max_Size => 10);
10213
10214 In that case, the position of field "Length" depends on the size
10215 of field Str, which itself depends on the value of the Max_Size
10216 discriminant. In order to fix the type of variable My_String,
10217 we need to fix the type of field Str. Therefore, fixing a variant
10218 record requires us to fix each of its components.
10219
10220 However, if a component does not have a dynamic size, the component
10221 should not be fixed. In particular, fields that use a PAD type
10222 should not fixed. Here is an example where this might happen
10223 (assuming type Rec above):
10224
10225 type Container (Big : Boolean) is record
10226 First : Rec;
10227 After : Integer;
10228 case Big is
10229 when True => Another : Integer;
10230 when False => null;
10231 end case;
10232 end record;
10233 My_Container : Container := (Big => False,
10234 First => (Empty => True),
10235 After => 42);
10236
10237 In that example, the compiler creates a PAD type for component First,
10238 whose size is constant, and then positions the component After just
10239 right after it. The offset of component After is therefore constant
10240 in this case.
10241
10242 The debugger computes the position of each field based on an algorithm
10243 that uses, among other things, the actual position and size of the field
10244 preceding it. Let's now imagine that the user is trying to print
10245 the value of My_Container. If the type fixing was recursive, we would
10246 end up computing the offset of field After based on the size of the
10247 fixed version of field First. And since in our example First has
10248 only one actual field, the size of the fixed type is actually smaller
10249 than the amount of space allocated to that field, and thus we would
10250 compute the wrong offset of field After.
10251
10252 To make things more complicated, we need to watch out for dynamic
10253 components of variant records (identified by the ___XVL suffix in
10254 the component name). Even if the target type is a PAD type, the size
10255 of that type might not be statically known. So the PAD type needs
10256 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10257 we might end up with the wrong size for our component. This can be
10258 observed with the following type declarations:
10259
10260 type Octal is new Integer range 0 .. 7;
10261 type Octal_Array is array (Positive range <>) of Octal;
10262 pragma Pack (Octal_Array);
10263
10264 type Octal_Buffer (Size : Positive) is record
10265 Buffer : Octal_Array (1 .. Size);
10266 Length : Integer;
10267 end record;
10268
10269 In that case, Buffer is a PAD type whose size is unset and needs
10270 to be computed by fixing the unwrapped type.
10271
10272 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10273 ----------------------------------------------------------
10274
10275 Lastly, when should the sub-elements of an entity that remained unfixed
10276 thus far, be actually fixed?
10277
10278 The answer is: Only when referencing that element. For instance
10279 when selecting one component of a record, this specific component
10280 should be fixed at that point in time. Or when printing the value
10281 of a record, each component should be fixed before its value gets
10282 printed. Similarly for arrays, the element of the array should be
10283 fixed when printing each element of the array, or when extracting
10284 one element out of that array. On the other hand, fixing should
10285 not be performed on the elements when taking a slice of an array!
10286
10287 Note that one of the side-effects of miscomputing the offset and
10288 size of each field is that we end up also miscomputing the size
10289 of the containing type. This can have adverse results when computing
10290 the value of an entity. GDB fetches the value of an entity based
10291 on the size of its type, and thus a wrong size causes GDB to fetch
10292 the wrong amount of memory. In the case where the computed size is
10293 too small, GDB fetches too little data to print the value of our
10294 entiry. Results in this case as unpredicatble, as we usually read
10295 past the buffer containing the data =:-o. */
10296
10297 /* Implement the evaluate_exp routine in the exp_descriptor structure
10298 for the Ada language. */
10299
10300 static struct value *
10301 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10302 int *pos, enum noside noside)
10303 {
10304 enum exp_opcode op;
10305 int tem;
10306 int pc;
10307 int preeval_pos;
10308 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10309 struct type *type;
10310 int nargs, oplen;
10311 struct value **argvec;
10312
10313 pc = *pos;
10314 *pos += 1;
10315 op = exp->elts[pc].opcode;
10316
10317 switch (op)
10318 {
10319 default:
10320 *pos -= 1;
10321 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10322
10323 if (noside == EVAL_NORMAL)
10324 arg1 = unwrap_value (arg1);
10325
10326 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10327 then we need to perform the conversion manually, because
10328 evaluate_subexp_standard doesn't do it. This conversion is
10329 necessary in Ada because the different kinds of float/fixed
10330 types in Ada have different representations.
10331
10332 Similarly, we need to perform the conversion from OP_LONG
10333 ourselves. */
10334 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10335 arg1 = ada_value_cast (expect_type, arg1, noside);
10336
10337 return arg1;
10338
10339 case OP_STRING:
10340 {
10341 struct value *result;
10342
10343 *pos -= 1;
10344 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10345 /* The result type will have code OP_STRING, bashed there from
10346 OP_ARRAY. Bash it back. */
10347 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10348 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10349 return result;
10350 }
10351
10352 case UNOP_CAST:
10353 (*pos) += 2;
10354 type = exp->elts[pc + 1].type;
10355 arg1 = evaluate_subexp (type, exp, pos, noside);
10356 if (noside == EVAL_SKIP)
10357 goto nosideret;
10358 arg1 = ada_value_cast (type, arg1, noside);
10359 return arg1;
10360
10361 case UNOP_QUAL:
10362 (*pos) += 2;
10363 type = exp->elts[pc + 1].type;
10364 return ada_evaluate_subexp (type, exp, pos, noside);
10365
10366 case BINOP_ASSIGN:
10367 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10368 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10369 {
10370 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10371 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10372 return arg1;
10373 return ada_value_assign (arg1, arg1);
10374 }
10375 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10376 except if the lhs of our assignment is a convenience variable.
10377 In the case of assigning to a convenience variable, the lhs
10378 should be exactly the result of the evaluation of the rhs. */
10379 type = value_type (arg1);
10380 if (VALUE_LVAL (arg1) == lval_internalvar)
10381 type = NULL;
10382 arg2 = evaluate_subexp (type, exp, pos, noside);
10383 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10384 return arg1;
10385 if (ada_is_fixed_point_type (value_type (arg1)))
10386 arg2 = cast_to_fixed (value_type (arg1), arg2);
10387 else if (ada_is_fixed_point_type (value_type (arg2)))
10388 error
10389 (_("Fixed-point values must be assigned to fixed-point variables"));
10390 else
10391 arg2 = coerce_for_assign (value_type (arg1), arg2);
10392 return ada_value_assign (arg1, arg2);
10393
10394 case BINOP_ADD:
10395 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10396 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10397 if (noside == EVAL_SKIP)
10398 goto nosideret;
10399 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10400 return (value_from_longest
10401 (value_type (arg1),
10402 value_as_long (arg1) + value_as_long (arg2)));
10403 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10404 return (value_from_longest
10405 (value_type (arg2),
10406 value_as_long (arg1) + value_as_long (arg2)));
10407 if ((ada_is_fixed_point_type (value_type (arg1))
10408 || ada_is_fixed_point_type (value_type (arg2)))
10409 && value_type (arg1) != value_type (arg2))
10410 error (_("Operands of fixed-point addition must have the same type"));
10411 /* Do the addition, and cast the result to the type of the first
10412 argument. We cannot cast the result to a reference type, so if
10413 ARG1 is a reference type, find its underlying type. */
10414 type = value_type (arg1);
10415 while (TYPE_CODE (type) == TYPE_CODE_REF)
10416 type = TYPE_TARGET_TYPE (type);
10417 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10418 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10419
10420 case BINOP_SUB:
10421 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10422 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10423 if (noside == EVAL_SKIP)
10424 goto nosideret;
10425 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10426 return (value_from_longest
10427 (value_type (arg1),
10428 value_as_long (arg1) - value_as_long (arg2)));
10429 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10430 return (value_from_longest
10431 (value_type (arg2),
10432 value_as_long (arg1) - value_as_long (arg2)));
10433 if ((ada_is_fixed_point_type (value_type (arg1))
10434 || ada_is_fixed_point_type (value_type (arg2)))
10435 && value_type (arg1) != value_type (arg2))
10436 error (_("Operands of fixed-point subtraction "
10437 "must have the same type"));
10438 /* Do the substraction, and cast the result to the type of the first
10439 argument. We cannot cast the result to a reference type, so if
10440 ARG1 is a reference type, find its underlying type. */
10441 type = value_type (arg1);
10442 while (TYPE_CODE (type) == TYPE_CODE_REF)
10443 type = TYPE_TARGET_TYPE (type);
10444 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10445 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10446
10447 case BINOP_MUL:
10448 case BINOP_DIV:
10449 case BINOP_REM:
10450 case BINOP_MOD:
10451 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10452 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10453 if (noside == EVAL_SKIP)
10454 goto nosideret;
10455 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10456 {
10457 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10458 return value_zero (value_type (arg1), not_lval);
10459 }
10460 else
10461 {
10462 type = builtin_type (exp->gdbarch)->builtin_double;
10463 if (ada_is_fixed_point_type (value_type (arg1)))
10464 arg1 = cast_from_fixed (type, arg1);
10465 if (ada_is_fixed_point_type (value_type (arg2)))
10466 arg2 = cast_from_fixed (type, arg2);
10467 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10468 return ada_value_binop (arg1, arg2, op);
10469 }
10470
10471 case BINOP_EQUAL:
10472 case BINOP_NOTEQUAL:
10473 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10474 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10475 if (noside == EVAL_SKIP)
10476 goto nosideret;
10477 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10478 tem = 0;
10479 else
10480 {
10481 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10482 tem = ada_value_equal (arg1, arg2);
10483 }
10484 if (op == BINOP_NOTEQUAL)
10485 tem = !tem;
10486 type = language_bool_type (exp->language_defn, exp->gdbarch);
10487 return value_from_longest (type, (LONGEST) tem);
10488
10489 case UNOP_NEG:
10490 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10491 if (noside == EVAL_SKIP)
10492 goto nosideret;
10493 else if (ada_is_fixed_point_type (value_type (arg1)))
10494 return value_cast (value_type (arg1), value_neg (arg1));
10495 else
10496 {
10497 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10498 return value_neg (arg1);
10499 }
10500
10501 case BINOP_LOGICAL_AND:
10502 case BINOP_LOGICAL_OR:
10503 case UNOP_LOGICAL_NOT:
10504 {
10505 struct value *val;
10506
10507 *pos -= 1;
10508 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10509 type = language_bool_type (exp->language_defn, exp->gdbarch);
10510 return value_cast (type, val);
10511 }
10512
10513 case BINOP_BITWISE_AND:
10514 case BINOP_BITWISE_IOR:
10515 case BINOP_BITWISE_XOR:
10516 {
10517 struct value *val;
10518
10519 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10520 *pos = pc;
10521 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10522
10523 return value_cast (value_type (arg1), val);
10524 }
10525
10526 case OP_VAR_VALUE:
10527 *pos -= 1;
10528
10529 if (noside == EVAL_SKIP)
10530 {
10531 *pos += 4;
10532 goto nosideret;
10533 }
10534
10535 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10536 /* Only encountered when an unresolved symbol occurs in a
10537 context other than a function call, in which case, it is
10538 invalid. */
10539 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10540 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10541
10542 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10543 {
10544 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10545 /* Check to see if this is a tagged type. We also need to handle
10546 the case where the type is a reference to a tagged type, but
10547 we have to be careful to exclude pointers to tagged types.
10548 The latter should be shown as usual (as a pointer), whereas
10549 a reference should mostly be transparent to the user. */
10550 if (ada_is_tagged_type (type, 0)
10551 || (TYPE_CODE (type) == TYPE_CODE_REF
10552 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10553 {
10554 /* Tagged types are a little special in the fact that the real
10555 type is dynamic and can only be determined by inspecting the
10556 object's tag. This means that we need to get the object's
10557 value first (EVAL_NORMAL) and then extract the actual object
10558 type from its tag.
10559
10560 Note that we cannot skip the final step where we extract
10561 the object type from its tag, because the EVAL_NORMAL phase
10562 results in dynamic components being resolved into fixed ones.
10563 This can cause problems when trying to print the type
10564 description of tagged types whose parent has a dynamic size:
10565 We use the type name of the "_parent" component in order
10566 to print the name of the ancestor type in the type description.
10567 If that component had a dynamic size, the resolution into
10568 a fixed type would result in the loss of that type name,
10569 thus preventing us from printing the name of the ancestor
10570 type in the type description. */
10571 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10572
10573 if (TYPE_CODE (type) != TYPE_CODE_REF)
10574 {
10575 struct type *actual_type;
10576
10577 actual_type = type_from_tag (ada_value_tag (arg1));
10578 if (actual_type == NULL)
10579 /* If, for some reason, we were unable to determine
10580 the actual type from the tag, then use the static
10581 approximation that we just computed as a fallback.
10582 This can happen if the debugging information is
10583 incomplete, for instance. */
10584 actual_type = type;
10585 return value_zero (actual_type, not_lval);
10586 }
10587 else
10588 {
10589 /* In the case of a ref, ada_coerce_ref takes care
10590 of determining the actual type. But the evaluation
10591 should return a ref as it should be valid to ask
10592 for its address; so rebuild a ref after coerce. */
10593 arg1 = ada_coerce_ref (arg1);
10594 return value_ref (arg1);
10595 }
10596 }
10597
10598 /* Records and unions for which GNAT encodings have been
10599 generated need to be statically fixed as well.
10600 Otherwise, non-static fixing produces a type where
10601 all dynamic properties are removed, which prevents "ptype"
10602 from being able to completely describe the type.
10603 For instance, a case statement in a variant record would be
10604 replaced by the relevant components based on the actual
10605 value of the discriminants. */
10606 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10607 && dynamic_template_type (type) != NULL)
10608 || (TYPE_CODE (type) == TYPE_CODE_UNION
10609 && ada_find_parallel_type (type, "___XVU") != NULL))
10610 {
10611 *pos += 4;
10612 return value_zero (to_static_fixed_type (type), not_lval);
10613 }
10614 }
10615
10616 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10617 return ada_to_fixed_value (arg1);
10618
10619 case OP_FUNCALL:
10620 (*pos) += 2;
10621
10622 /* Allocate arg vector, including space for the function to be
10623 called in argvec[0] and a terminating NULL. */
10624 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10625 argvec = XALLOCAVEC (struct value *, nargs + 2);
10626
10627 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10628 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10629 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10630 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10631 else
10632 {
10633 for (tem = 0; tem <= nargs; tem += 1)
10634 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10635 argvec[tem] = 0;
10636
10637 if (noside == EVAL_SKIP)
10638 goto nosideret;
10639 }
10640
10641 if (ada_is_constrained_packed_array_type
10642 (desc_base_type (value_type (argvec[0]))))
10643 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10644 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10645 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10646 /* This is a packed array that has already been fixed, and
10647 therefore already coerced to a simple array. Nothing further
10648 to do. */
10649 ;
10650 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10651 {
10652 /* Make sure we dereference references so that all the code below
10653 feels like it's really handling the referenced value. Wrapping
10654 types (for alignment) may be there, so make sure we strip them as
10655 well. */
10656 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10657 }
10658 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10659 && VALUE_LVAL (argvec[0]) == lval_memory)
10660 argvec[0] = value_addr (argvec[0]);
10661
10662 type = ada_check_typedef (value_type (argvec[0]));
10663
10664 /* Ada allows us to implicitly dereference arrays when subscripting
10665 them. So, if this is an array typedef (encoding use for array
10666 access types encoded as fat pointers), strip it now. */
10667 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10668 type = ada_typedef_target_type (type);
10669
10670 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10671 {
10672 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10673 {
10674 case TYPE_CODE_FUNC:
10675 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10676 break;
10677 case TYPE_CODE_ARRAY:
10678 break;
10679 case TYPE_CODE_STRUCT:
10680 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10681 argvec[0] = ada_value_ind (argvec[0]);
10682 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10683 break;
10684 default:
10685 error (_("cannot subscript or call something of type `%s'"),
10686 ada_type_name (value_type (argvec[0])));
10687 break;
10688 }
10689 }
10690
10691 switch (TYPE_CODE (type))
10692 {
10693 case TYPE_CODE_FUNC:
10694 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10695 {
10696 struct type *rtype = TYPE_TARGET_TYPE (type);
10697
10698 if (TYPE_GNU_IFUNC (type))
10699 return allocate_value (TYPE_TARGET_TYPE (rtype));
10700 return allocate_value (rtype);
10701 }
10702 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10703 case TYPE_CODE_INTERNAL_FUNCTION:
10704 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10705 /* We don't know anything about what the internal
10706 function might return, but we have to return
10707 something. */
10708 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10709 not_lval);
10710 else
10711 return call_internal_function (exp->gdbarch, exp->language_defn,
10712 argvec[0], nargs, argvec + 1);
10713
10714 case TYPE_CODE_STRUCT:
10715 {
10716 int arity;
10717
10718 arity = ada_array_arity (type);
10719 type = ada_array_element_type (type, nargs);
10720 if (type == NULL)
10721 error (_("cannot subscript or call a record"));
10722 if (arity != nargs)
10723 error (_("wrong number of subscripts; expecting %d"), arity);
10724 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10725 return value_zero (ada_aligned_type (type), lval_memory);
10726 return
10727 unwrap_value (ada_value_subscript
10728 (argvec[0], nargs, argvec + 1));
10729 }
10730 case TYPE_CODE_ARRAY:
10731 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10732 {
10733 type = ada_array_element_type (type, nargs);
10734 if (type == NULL)
10735 error (_("element type of array unknown"));
10736 else
10737 return value_zero (ada_aligned_type (type), lval_memory);
10738 }
10739 return
10740 unwrap_value (ada_value_subscript
10741 (ada_coerce_to_simple_array (argvec[0]),
10742 nargs, argvec + 1));
10743 case TYPE_CODE_PTR: /* Pointer to array */
10744 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10745 {
10746 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10747 type = ada_array_element_type (type, nargs);
10748 if (type == NULL)
10749 error (_("element type of array unknown"));
10750 else
10751 return value_zero (ada_aligned_type (type), lval_memory);
10752 }
10753 return
10754 unwrap_value (ada_value_ptr_subscript (argvec[0],
10755 nargs, argvec + 1));
10756
10757 default:
10758 error (_("Attempt to index or call something other than an "
10759 "array or function"));
10760 }
10761
10762 case TERNOP_SLICE:
10763 {
10764 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10765 struct value *low_bound_val =
10766 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10767 struct value *high_bound_val =
10768 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10769 LONGEST low_bound;
10770 LONGEST high_bound;
10771
10772 low_bound_val = coerce_ref (low_bound_val);
10773 high_bound_val = coerce_ref (high_bound_val);
10774 low_bound = value_as_long (low_bound_val);
10775 high_bound = value_as_long (high_bound_val);
10776
10777 if (noside == EVAL_SKIP)
10778 goto nosideret;
10779
10780 /* If this is a reference to an aligner type, then remove all
10781 the aligners. */
10782 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10783 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10784 TYPE_TARGET_TYPE (value_type (array)) =
10785 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10786
10787 if (ada_is_constrained_packed_array_type (value_type (array)))
10788 error (_("cannot slice a packed array"));
10789
10790 /* If this is a reference to an array or an array lvalue,
10791 convert to a pointer. */
10792 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10793 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10794 && VALUE_LVAL (array) == lval_memory))
10795 array = value_addr (array);
10796
10797 if (noside == EVAL_AVOID_SIDE_EFFECTS
10798 && ada_is_array_descriptor_type (ada_check_typedef
10799 (value_type (array))))
10800 return empty_array (ada_type_of_array (array, 0), low_bound);
10801
10802 array = ada_coerce_to_simple_array_ptr (array);
10803
10804 /* If we have more than one level of pointer indirection,
10805 dereference the value until we get only one level. */
10806 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10807 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10808 == TYPE_CODE_PTR))
10809 array = value_ind (array);
10810
10811 /* Make sure we really do have an array type before going further,
10812 to avoid a SEGV when trying to get the index type or the target
10813 type later down the road if the debug info generated by
10814 the compiler is incorrect or incomplete. */
10815 if (!ada_is_simple_array_type (value_type (array)))
10816 error (_("cannot take slice of non-array"));
10817
10818 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10819 == TYPE_CODE_PTR)
10820 {
10821 struct type *type0 = ada_check_typedef (value_type (array));
10822
10823 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10824 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10825 else
10826 {
10827 struct type *arr_type0 =
10828 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10829
10830 return ada_value_slice_from_ptr (array, arr_type0,
10831 longest_to_int (low_bound),
10832 longest_to_int (high_bound));
10833 }
10834 }
10835 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10836 return array;
10837 else if (high_bound < low_bound)
10838 return empty_array (value_type (array), low_bound);
10839 else
10840 return ada_value_slice (array, longest_to_int (low_bound),
10841 longest_to_int (high_bound));
10842 }
10843
10844 case UNOP_IN_RANGE:
10845 (*pos) += 2;
10846 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10847 type = check_typedef (exp->elts[pc + 1].type);
10848
10849 if (noside == EVAL_SKIP)
10850 goto nosideret;
10851
10852 switch (TYPE_CODE (type))
10853 {
10854 default:
10855 lim_warning (_("Membership test incompletely implemented; "
10856 "always returns true"));
10857 type = language_bool_type (exp->language_defn, exp->gdbarch);
10858 return value_from_longest (type, (LONGEST) 1);
10859
10860 case TYPE_CODE_RANGE:
10861 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10862 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10863 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10864 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10865 type = language_bool_type (exp->language_defn, exp->gdbarch);
10866 return
10867 value_from_longest (type,
10868 (value_less (arg1, arg3)
10869 || value_equal (arg1, arg3))
10870 && (value_less (arg2, arg1)
10871 || value_equal (arg2, arg1)));
10872 }
10873
10874 case BINOP_IN_BOUNDS:
10875 (*pos) += 2;
10876 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10877 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10878
10879 if (noside == EVAL_SKIP)
10880 goto nosideret;
10881
10882 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10883 {
10884 type = language_bool_type (exp->language_defn, exp->gdbarch);
10885 return value_zero (type, not_lval);
10886 }
10887
10888 tem = longest_to_int (exp->elts[pc + 1].longconst);
10889
10890 type = ada_index_type (value_type (arg2), tem, "range");
10891 if (!type)
10892 type = value_type (arg1);
10893
10894 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10895 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10896
10897 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10898 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10899 type = language_bool_type (exp->language_defn, exp->gdbarch);
10900 return
10901 value_from_longest (type,
10902 (value_less (arg1, arg3)
10903 || value_equal (arg1, arg3))
10904 && (value_less (arg2, arg1)
10905 || value_equal (arg2, arg1)));
10906
10907 case TERNOP_IN_RANGE:
10908 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10909 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10910 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10911
10912 if (noside == EVAL_SKIP)
10913 goto nosideret;
10914
10915 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10916 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10917 type = language_bool_type (exp->language_defn, exp->gdbarch);
10918 return
10919 value_from_longest (type,
10920 (value_less (arg1, arg3)
10921 || value_equal (arg1, arg3))
10922 && (value_less (arg2, arg1)
10923 || value_equal (arg2, arg1)));
10924
10925 case OP_ATR_FIRST:
10926 case OP_ATR_LAST:
10927 case OP_ATR_LENGTH:
10928 {
10929 struct type *type_arg;
10930
10931 if (exp->elts[*pos].opcode == OP_TYPE)
10932 {
10933 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10934 arg1 = NULL;
10935 type_arg = check_typedef (exp->elts[pc + 2].type);
10936 }
10937 else
10938 {
10939 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10940 type_arg = NULL;
10941 }
10942
10943 if (exp->elts[*pos].opcode != OP_LONG)
10944 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10945 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10946 *pos += 4;
10947
10948 if (noside == EVAL_SKIP)
10949 goto nosideret;
10950
10951 if (type_arg == NULL)
10952 {
10953 arg1 = ada_coerce_ref (arg1);
10954
10955 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10956 arg1 = ada_coerce_to_simple_array (arg1);
10957
10958 if (op == OP_ATR_LENGTH)
10959 type = builtin_type (exp->gdbarch)->builtin_int;
10960 else
10961 {
10962 type = ada_index_type (value_type (arg1), tem,
10963 ada_attribute_name (op));
10964 if (type == NULL)
10965 type = builtin_type (exp->gdbarch)->builtin_int;
10966 }
10967
10968 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10969 return allocate_value (type);
10970
10971 switch (op)
10972 {
10973 default: /* Should never happen. */
10974 error (_("unexpected attribute encountered"));
10975 case OP_ATR_FIRST:
10976 return value_from_longest
10977 (type, ada_array_bound (arg1, tem, 0));
10978 case OP_ATR_LAST:
10979 return value_from_longest
10980 (type, ada_array_bound (arg1, tem, 1));
10981 case OP_ATR_LENGTH:
10982 return value_from_longest
10983 (type, ada_array_length (arg1, tem));
10984 }
10985 }
10986 else if (discrete_type_p (type_arg))
10987 {
10988 struct type *range_type;
10989 const char *name = ada_type_name (type_arg);
10990
10991 range_type = NULL;
10992 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10993 range_type = to_fixed_range_type (type_arg, NULL);
10994 if (range_type == NULL)
10995 range_type = type_arg;
10996 switch (op)
10997 {
10998 default:
10999 error (_("unexpected attribute encountered"));
11000 case OP_ATR_FIRST:
11001 return value_from_longest
11002 (range_type, ada_discrete_type_low_bound (range_type));
11003 case OP_ATR_LAST:
11004 return value_from_longest
11005 (range_type, ada_discrete_type_high_bound (range_type));
11006 case OP_ATR_LENGTH:
11007 error (_("the 'length attribute applies only to array types"));
11008 }
11009 }
11010 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11011 error (_("unimplemented type attribute"));
11012 else
11013 {
11014 LONGEST low, high;
11015
11016 if (ada_is_constrained_packed_array_type (type_arg))
11017 type_arg = decode_constrained_packed_array_type (type_arg);
11018
11019 if (op == OP_ATR_LENGTH)
11020 type = builtin_type (exp->gdbarch)->builtin_int;
11021 else
11022 {
11023 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11024 if (type == NULL)
11025 type = builtin_type (exp->gdbarch)->builtin_int;
11026 }
11027
11028 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11029 return allocate_value (type);
11030
11031 switch (op)
11032 {
11033 default:
11034 error (_("unexpected attribute encountered"));
11035 case OP_ATR_FIRST:
11036 low = ada_array_bound_from_type (type_arg, tem, 0);
11037 return value_from_longest (type, low);
11038 case OP_ATR_LAST:
11039 high = ada_array_bound_from_type (type_arg, tem, 1);
11040 return value_from_longest (type, high);
11041 case OP_ATR_LENGTH:
11042 low = ada_array_bound_from_type (type_arg, tem, 0);
11043 high = ada_array_bound_from_type (type_arg, tem, 1);
11044 return value_from_longest (type, high - low + 1);
11045 }
11046 }
11047 }
11048
11049 case OP_ATR_TAG:
11050 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11051 if (noside == EVAL_SKIP)
11052 goto nosideret;
11053
11054 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11055 return value_zero (ada_tag_type (arg1), not_lval);
11056
11057 return ada_value_tag (arg1);
11058
11059 case OP_ATR_MIN:
11060 case OP_ATR_MAX:
11061 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11062 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11063 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11064 if (noside == EVAL_SKIP)
11065 goto nosideret;
11066 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11067 return value_zero (value_type (arg1), not_lval);
11068 else
11069 {
11070 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11071 return value_binop (arg1, arg2,
11072 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11073 }
11074
11075 case OP_ATR_MODULUS:
11076 {
11077 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11078
11079 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11080 if (noside == EVAL_SKIP)
11081 goto nosideret;
11082
11083 if (!ada_is_modular_type (type_arg))
11084 error (_("'modulus must be applied to modular type"));
11085
11086 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11087 ada_modulus (type_arg));
11088 }
11089
11090
11091 case OP_ATR_POS:
11092 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11093 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11094 if (noside == EVAL_SKIP)
11095 goto nosideret;
11096 type = builtin_type (exp->gdbarch)->builtin_int;
11097 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11098 return value_zero (type, not_lval);
11099 else
11100 return value_pos_atr (type, arg1);
11101
11102 case OP_ATR_SIZE:
11103 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11104 type = value_type (arg1);
11105
11106 /* If the argument is a reference, then dereference its type, since
11107 the user is really asking for the size of the actual object,
11108 not the size of the pointer. */
11109 if (TYPE_CODE (type) == TYPE_CODE_REF)
11110 type = TYPE_TARGET_TYPE (type);
11111
11112 if (noside == EVAL_SKIP)
11113 goto nosideret;
11114 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11115 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11116 else
11117 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11118 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11119
11120 case OP_ATR_VAL:
11121 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11122 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11123 type = exp->elts[pc + 2].type;
11124 if (noside == EVAL_SKIP)
11125 goto nosideret;
11126 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11127 return value_zero (type, not_lval);
11128 else
11129 return value_val_atr (type, arg1);
11130
11131 case BINOP_EXP:
11132 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11133 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11134 if (noside == EVAL_SKIP)
11135 goto nosideret;
11136 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11137 return value_zero (value_type (arg1), not_lval);
11138 else
11139 {
11140 /* For integer exponentiation operations,
11141 only promote the first argument. */
11142 if (is_integral_type (value_type (arg2)))
11143 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11144 else
11145 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11146
11147 return value_binop (arg1, arg2, op);
11148 }
11149
11150 case UNOP_PLUS:
11151 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11152 if (noside == EVAL_SKIP)
11153 goto nosideret;
11154 else
11155 return arg1;
11156
11157 case UNOP_ABS:
11158 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11159 if (noside == EVAL_SKIP)
11160 goto nosideret;
11161 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11162 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11163 return value_neg (arg1);
11164 else
11165 return arg1;
11166
11167 case UNOP_IND:
11168 preeval_pos = *pos;
11169 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11170 if (noside == EVAL_SKIP)
11171 goto nosideret;
11172 type = ada_check_typedef (value_type (arg1));
11173 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11174 {
11175 if (ada_is_array_descriptor_type (type))
11176 /* GDB allows dereferencing GNAT array descriptors. */
11177 {
11178 struct type *arrType = ada_type_of_array (arg1, 0);
11179
11180 if (arrType == NULL)
11181 error (_("Attempt to dereference null array pointer."));
11182 return value_at_lazy (arrType, 0);
11183 }
11184 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11185 || TYPE_CODE (type) == TYPE_CODE_REF
11186 /* In C you can dereference an array to get the 1st elt. */
11187 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11188 {
11189 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11190 only be determined by inspecting the object's tag.
11191 This means that we need to evaluate completely the
11192 expression in order to get its type. */
11193
11194 if ((TYPE_CODE (type) == TYPE_CODE_REF
11195 || TYPE_CODE (type) == TYPE_CODE_PTR)
11196 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11197 {
11198 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11199 EVAL_NORMAL);
11200 type = value_type (ada_value_ind (arg1));
11201 }
11202 else
11203 {
11204 type = to_static_fixed_type
11205 (ada_aligned_type
11206 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11207 }
11208 ada_ensure_varsize_limit (type);
11209 return value_zero (type, lval_memory);
11210 }
11211 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11212 {
11213 /* GDB allows dereferencing an int. */
11214 if (expect_type == NULL)
11215 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11216 lval_memory);
11217 else
11218 {
11219 expect_type =
11220 to_static_fixed_type (ada_aligned_type (expect_type));
11221 return value_zero (expect_type, lval_memory);
11222 }
11223 }
11224 else
11225 error (_("Attempt to take contents of a non-pointer value."));
11226 }
11227 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11228 type = ada_check_typedef (value_type (arg1));
11229
11230 if (TYPE_CODE (type) == TYPE_CODE_INT)
11231 /* GDB allows dereferencing an int. If we were given
11232 the expect_type, then use that as the target type.
11233 Otherwise, assume that the target type is an int. */
11234 {
11235 if (expect_type != NULL)
11236 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11237 arg1));
11238 else
11239 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11240 (CORE_ADDR) value_as_address (arg1));
11241 }
11242
11243 if (ada_is_array_descriptor_type (type))
11244 /* GDB allows dereferencing GNAT array descriptors. */
11245 return ada_coerce_to_simple_array (arg1);
11246 else
11247 return ada_value_ind (arg1);
11248
11249 case STRUCTOP_STRUCT:
11250 tem = longest_to_int (exp->elts[pc + 1].longconst);
11251 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11252 preeval_pos = *pos;
11253 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11254 if (noside == EVAL_SKIP)
11255 goto nosideret;
11256 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11257 {
11258 struct type *type1 = value_type (arg1);
11259
11260 if (ada_is_tagged_type (type1, 1))
11261 {
11262 type = ada_lookup_struct_elt_type (type1,
11263 &exp->elts[pc + 2].string,
11264 1, 1, NULL);
11265
11266 /* If the field is not found, check if it exists in the
11267 extension of this object's type. This means that we
11268 need to evaluate completely the expression. */
11269
11270 if (type == NULL)
11271 {
11272 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11273 EVAL_NORMAL);
11274 arg1 = ada_value_struct_elt (arg1,
11275 &exp->elts[pc + 2].string,
11276 0);
11277 arg1 = unwrap_value (arg1);
11278 type = value_type (ada_to_fixed_value (arg1));
11279 }
11280 }
11281 else
11282 type =
11283 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11284 0, NULL);
11285
11286 return value_zero (ada_aligned_type (type), lval_memory);
11287 }
11288 else
11289 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11290 arg1 = unwrap_value (arg1);
11291 return ada_to_fixed_value (arg1);
11292
11293 case OP_TYPE:
11294 /* The value is not supposed to be used. This is here to make it
11295 easier to accommodate expressions that contain types. */
11296 (*pos) += 2;
11297 if (noside == EVAL_SKIP)
11298 goto nosideret;
11299 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11300 return allocate_value (exp->elts[pc + 1].type);
11301 else
11302 error (_("Attempt to use a type name as an expression"));
11303
11304 case OP_AGGREGATE:
11305 case OP_CHOICES:
11306 case OP_OTHERS:
11307 case OP_DISCRETE_RANGE:
11308 case OP_POSITIONAL:
11309 case OP_NAME:
11310 if (noside == EVAL_NORMAL)
11311 switch (op)
11312 {
11313 case OP_NAME:
11314 error (_("Undefined name, ambiguous name, or renaming used in "
11315 "component association: %s."), &exp->elts[pc+2].string);
11316 case OP_AGGREGATE:
11317 error (_("Aggregates only allowed on the right of an assignment"));
11318 default:
11319 internal_error (__FILE__, __LINE__,
11320 _("aggregate apparently mangled"));
11321 }
11322
11323 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11324 *pos += oplen - 1;
11325 for (tem = 0; tem < nargs; tem += 1)
11326 ada_evaluate_subexp (NULL, exp, pos, noside);
11327 goto nosideret;
11328 }
11329
11330 nosideret:
11331 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11332 }
11333 \f
11334
11335 /* Fixed point */
11336
11337 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11338 type name that encodes the 'small and 'delta information.
11339 Otherwise, return NULL. */
11340
11341 static const char *
11342 fixed_type_info (struct type *type)
11343 {
11344 const char *name = ada_type_name (type);
11345 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11346
11347 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11348 {
11349 const char *tail = strstr (name, "___XF_");
11350
11351 if (tail == NULL)
11352 return NULL;
11353 else
11354 return tail + 5;
11355 }
11356 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11357 return fixed_type_info (TYPE_TARGET_TYPE (type));
11358 else
11359 return NULL;
11360 }
11361
11362 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11363
11364 int
11365 ada_is_fixed_point_type (struct type *type)
11366 {
11367 return fixed_type_info (type) != NULL;
11368 }
11369
11370 /* Return non-zero iff TYPE represents a System.Address type. */
11371
11372 int
11373 ada_is_system_address_type (struct type *type)
11374 {
11375 return (TYPE_NAME (type)
11376 && strcmp (TYPE_NAME (type), "system__address") == 0);
11377 }
11378
11379 /* Assuming that TYPE is the representation of an Ada fixed-point
11380 type, return its delta, or -1 if the type is malformed and the
11381 delta cannot be determined. */
11382
11383 DOUBLEST
11384 ada_delta (struct type *type)
11385 {
11386 const char *encoding = fixed_type_info (type);
11387 DOUBLEST num, den;
11388
11389 /* Strictly speaking, num and den are encoded as integer. However,
11390 they may not fit into a long, and they will have to be converted
11391 to DOUBLEST anyway. So scan them as DOUBLEST. */
11392 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11393 &num, &den) < 2)
11394 return -1.0;
11395 else
11396 return num / den;
11397 }
11398
11399 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11400 factor ('SMALL value) associated with the type. */
11401
11402 static DOUBLEST
11403 scaling_factor (struct type *type)
11404 {
11405 const char *encoding = fixed_type_info (type);
11406 DOUBLEST num0, den0, num1, den1;
11407 int n;
11408
11409 /* Strictly speaking, num's and den's are encoded as integer. However,
11410 they may not fit into a long, and they will have to be converted
11411 to DOUBLEST anyway. So scan them as DOUBLEST. */
11412 n = sscanf (encoding,
11413 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11414 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11415 &num0, &den0, &num1, &den1);
11416
11417 if (n < 2)
11418 return 1.0;
11419 else if (n == 4)
11420 return num1 / den1;
11421 else
11422 return num0 / den0;
11423 }
11424
11425
11426 /* Assuming that X is the representation of a value of fixed-point
11427 type TYPE, return its floating-point equivalent. */
11428
11429 DOUBLEST
11430 ada_fixed_to_float (struct type *type, LONGEST x)
11431 {
11432 return (DOUBLEST) x *scaling_factor (type);
11433 }
11434
11435 /* The representation of a fixed-point value of type TYPE
11436 corresponding to the value X. */
11437
11438 LONGEST
11439 ada_float_to_fixed (struct type *type, DOUBLEST x)
11440 {
11441 return (LONGEST) (x / scaling_factor (type) + 0.5);
11442 }
11443
11444 \f
11445
11446 /* Range types */
11447
11448 /* Scan STR beginning at position K for a discriminant name, and
11449 return the value of that discriminant field of DVAL in *PX. If
11450 PNEW_K is not null, put the position of the character beyond the
11451 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11452 not alter *PX and *PNEW_K if unsuccessful. */
11453
11454 static int
11455 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11456 int *pnew_k)
11457 {
11458 static char *bound_buffer = NULL;
11459 static size_t bound_buffer_len = 0;
11460 const char *pstart, *pend, *bound;
11461 struct value *bound_val;
11462
11463 if (dval == NULL || str == NULL || str[k] == '\0')
11464 return 0;
11465
11466 pstart = str + k;
11467 pend = strstr (pstart, "__");
11468 if (pend == NULL)
11469 {
11470 bound = pstart;
11471 k += strlen (bound);
11472 }
11473 else
11474 {
11475 int len = pend - pstart;
11476
11477 /* Strip __ and beyond. */
11478 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11479 strncpy (bound_buffer, pstart, len);
11480 bound_buffer[len] = '\0';
11481
11482 bound = bound_buffer;
11483 k = pend - str;
11484 }
11485
11486 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11487 if (bound_val == NULL)
11488 return 0;
11489
11490 *px = value_as_long (bound_val);
11491 if (pnew_k != NULL)
11492 *pnew_k = k;
11493 return 1;
11494 }
11495
11496 /* Value of variable named NAME in the current environment. If
11497 no such variable found, then if ERR_MSG is null, returns 0, and
11498 otherwise causes an error with message ERR_MSG. */
11499
11500 static struct value *
11501 get_var_value (char *name, char *err_msg)
11502 {
11503 struct block_symbol *syms;
11504 int nsyms;
11505
11506 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11507 &syms);
11508
11509 if (nsyms != 1)
11510 {
11511 if (err_msg == NULL)
11512 return 0;
11513 else
11514 error (("%s"), err_msg);
11515 }
11516
11517 return value_of_variable (syms[0].symbol, syms[0].block);
11518 }
11519
11520 /* Value of integer variable named NAME in the current environment. If
11521 no such variable found, returns 0, and sets *FLAG to 0. If
11522 successful, sets *FLAG to 1. */
11523
11524 LONGEST
11525 get_int_var_value (char *name, int *flag)
11526 {
11527 struct value *var_val = get_var_value (name, 0);
11528
11529 if (var_val == 0)
11530 {
11531 if (flag != NULL)
11532 *flag = 0;
11533 return 0;
11534 }
11535 else
11536 {
11537 if (flag != NULL)
11538 *flag = 1;
11539 return value_as_long (var_val);
11540 }
11541 }
11542
11543
11544 /* Return a range type whose base type is that of the range type named
11545 NAME in the current environment, and whose bounds are calculated
11546 from NAME according to the GNAT range encoding conventions.
11547 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11548 corresponding range type from debug information; fall back to using it
11549 if symbol lookup fails. If a new type must be created, allocate it
11550 like ORIG_TYPE was. The bounds information, in general, is encoded
11551 in NAME, the base type given in the named range type. */
11552
11553 static struct type *
11554 to_fixed_range_type (struct type *raw_type, struct value *dval)
11555 {
11556 const char *name;
11557 struct type *base_type;
11558 const char *subtype_info;
11559
11560 gdb_assert (raw_type != NULL);
11561 gdb_assert (TYPE_NAME (raw_type) != NULL);
11562
11563 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11564 base_type = TYPE_TARGET_TYPE (raw_type);
11565 else
11566 base_type = raw_type;
11567
11568 name = TYPE_NAME (raw_type);
11569 subtype_info = strstr (name, "___XD");
11570 if (subtype_info == NULL)
11571 {
11572 LONGEST L = ada_discrete_type_low_bound (raw_type);
11573 LONGEST U = ada_discrete_type_high_bound (raw_type);
11574
11575 if (L < INT_MIN || U > INT_MAX)
11576 return raw_type;
11577 else
11578 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11579 L, U);
11580 }
11581 else
11582 {
11583 static char *name_buf = NULL;
11584 static size_t name_len = 0;
11585 int prefix_len = subtype_info - name;
11586 LONGEST L, U;
11587 struct type *type;
11588 const char *bounds_str;
11589 int n;
11590
11591 GROW_VECT (name_buf, name_len, prefix_len + 5);
11592 strncpy (name_buf, name, prefix_len);
11593 name_buf[prefix_len] = '\0';
11594
11595 subtype_info += 5;
11596 bounds_str = strchr (subtype_info, '_');
11597 n = 1;
11598
11599 if (*subtype_info == 'L')
11600 {
11601 if (!ada_scan_number (bounds_str, n, &L, &n)
11602 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11603 return raw_type;
11604 if (bounds_str[n] == '_')
11605 n += 2;
11606 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11607 n += 1;
11608 subtype_info += 1;
11609 }
11610 else
11611 {
11612 int ok;
11613
11614 strcpy (name_buf + prefix_len, "___L");
11615 L = get_int_var_value (name_buf, &ok);
11616 if (!ok)
11617 {
11618 lim_warning (_("Unknown lower bound, using 1."));
11619 L = 1;
11620 }
11621 }
11622
11623 if (*subtype_info == 'U')
11624 {
11625 if (!ada_scan_number (bounds_str, n, &U, &n)
11626 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11627 return raw_type;
11628 }
11629 else
11630 {
11631 int ok;
11632
11633 strcpy (name_buf + prefix_len, "___U");
11634 U = get_int_var_value (name_buf, &ok);
11635 if (!ok)
11636 {
11637 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11638 U = L;
11639 }
11640 }
11641
11642 type = create_static_range_type (alloc_type_copy (raw_type),
11643 base_type, L, U);
11644 TYPE_NAME (type) = name;
11645 return type;
11646 }
11647 }
11648
11649 /* True iff NAME is the name of a range type. */
11650
11651 int
11652 ada_is_range_type_name (const char *name)
11653 {
11654 return (name != NULL && strstr (name, "___XD"));
11655 }
11656 \f
11657
11658 /* Modular types */
11659
11660 /* True iff TYPE is an Ada modular type. */
11661
11662 int
11663 ada_is_modular_type (struct type *type)
11664 {
11665 struct type *subranged_type = get_base_type (type);
11666
11667 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11668 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11669 && TYPE_UNSIGNED (subranged_type));
11670 }
11671
11672 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11673
11674 ULONGEST
11675 ada_modulus (struct type *type)
11676 {
11677 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11678 }
11679 \f
11680
11681 /* Ada exception catchpoint support:
11682 ---------------------------------
11683
11684 We support 3 kinds of exception catchpoints:
11685 . catchpoints on Ada exceptions
11686 . catchpoints on unhandled Ada exceptions
11687 . catchpoints on failed assertions
11688
11689 Exceptions raised during failed assertions, or unhandled exceptions
11690 could perfectly be caught with the general catchpoint on Ada exceptions.
11691 However, we can easily differentiate these two special cases, and having
11692 the option to distinguish these two cases from the rest can be useful
11693 to zero-in on certain situations.
11694
11695 Exception catchpoints are a specialized form of breakpoint,
11696 since they rely on inserting breakpoints inside known routines
11697 of the GNAT runtime. The implementation therefore uses a standard
11698 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11699 of breakpoint_ops.
11700
11701 Support in the runtime for exception catchpoints have been changed
11702 a few times already, and these changes affect the implementation
11703 of these catchpoints. In order to be able to support several
11704 variants of the runtime, we use a sniffer that will determine
11705 the runtime variant used by the program being debugged. */
11706
11707 /* Ada's standard exceptions.
11708
11709 The Ada 83 standard also defined Numeric_Error. But there so many
11710 situations where it was unclear from the Ada 83 Reference Manual
11711 (RM) whether Constraint_Error or Numeric_Error should be raised,
11712 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11713 Interpretation saying that anytime the RM says that Numeric_Error
11714 should be raised, the implementation may raise Constraint_Error.
11715 Ada 95 went one step further and pretty much removed Numeric_Error
11716 from the list of standard exceptions (it made it a renaming of
11717 Constraint_Error, to help preserve compatibility when compiling
11718 an Ada83 compiler). As such, we do not include Numeric_Error from
11719 this list of standard exceptions. */
11720
11721 static char *standard_exc[] = {
11722 "constraint_error",
11723 "program_error",
11724 "storage_error",
11725 "tasking_error"
11726 };
11727
11728 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11729
11730 /* A structure that describes how to support exception catchpoints
11731 for a given executable. */
11732
11733 struct exception_support_info
11734 {
11735 /* The name of the symbol to break on in order to insert
11736 a catchpoint on exceptions. */
11737 const char *catch_exception_sym;
11738
11739 /* The name of the symbol to break on in order to insert
11740 a catchpoint on unhandled exceptions. */
11741 const char *catch_exception_unhandled_sym;
11742
11743 /* The name of the symbol to break on in order to insert
11744 a catchpoint on failed assertions. */
11745 const char *catch_assert_sym;
11746
11747 /* Assuming that the inferior just triggered an unhandled exception
11748 catchpoint, this function is responsible for returning the address
11749 in inferior memory where the name of that exception is stored.
11750 Return zero if the address could not be computed. */
11751 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11752 };
11753
11754 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11755 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11756
11757 /* The following exception support info structure describes how to
11758 implement exception catchpoints with the latest version of the
11759 Ada runtime (as of 2007-03-06). */
11760
11761 static const struct exception_support_info default_exception_support_info =
11762 {
11763 "__gnat_debug_raise_exception", /* catch_exception_sym */
11764 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11765 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11766 ada_unhandled_exception_name_addr
11767 };
11768
11769 /* The following exception support info structure describes how to
11770 implement exception catchpoints with a slightly older version
11771 of the Ada runtime. */
11772
11773 static const struct exception_support_info exception_support_info_fallback =
11774 {
11775 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11776 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11777 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11778 ada_unhandled_exception_name_addr_from_raise
11779 };
11780
11781 /* Return nonzero if we can detect the exception support routines
11782 described in EINFO.
11783
11784 This function errors out if an abnormal situation is detected
11785 (for instance, if we find the exception support routines, but
11786 that support is found to be incomplete). */
11787
11788 static int
11789 ada_has_this_exception_support (const struct exception_support_info *einfo)
11790 {
11791 struct symbol *sym;
11792
11793 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11794 that should be compiled with debugging information. As a result, we
11795 expect to find that symbol in the symtabs. */
11796
11797 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11798 if (sym == NULL)
11799 {
11800 /* Perhaps we did not find our symbol because the Ada runtime was
11801 compiled without debugging info, or simply stripped of it.
11802 It happens on some GNU/Linux distributions for instance, where
11803 users have to install a separate debug package in order to get
11804 the runtime's debugging info. In that situation, let the user
11805 know why we cannot insert an Ada exception catchpoint.
11806
11807 Note: Just for the purpose of inserting our Ada exception
11808 catchpoint, we could rely purely on the associated minimal symbol.
11809 But we would be operating in degraded mode anyway, since we are
11810 still lacking the debugging info needed later on to extract
11811 the name of the exception being raised (this name is printed in
11812 the catchpoint message, and is also used when trying to catch
11813 a specific exception). We do not handle this case for now. */
11814 struct bound_minimal_symbol msym
11815 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11816
11817 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11818 error (_("Your Ada runtime appears to be missing some debugging "
11819 "information.\nCannot insert Ada exception catchpoint "
11820 "in this configuration."));
11821
11822 return 0;
11823 }
11824
11825 /* Make sure that the symbol we found corresponds to a function. */
11826
11827 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11828 error (_("Symbol \"%s\" is not a function (class = %d)"),
11829 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11830
11831 return 1;
11832 }
11833
11834 /* Inspect the Ada runtime and determine which exception info structure
11835 should be used to provide support for exception catchpoints.
11836
11837 This function will always set the per-inferior exception_info,
11838 or raise an error. */
11839
11840 static void
11841 ada_exception_support_info_sniffer (void)
11842 {
11843 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11844
11845 /* If the exception info is already known, then no need to recompute it. */
11846 if (data->exception_info != NULL)
11847 return;
11848
11849 /* Check the latest (default) exception support info. */
11850 if (ada_has_this_exception_support (&default_exception_support_info))
11851 {
11852 data->exception_info = &default_exception_support_info;
11853 return;
11854 }
11855
11856 /* Try our fallback exception suport info. */
11857 if (ada_has_this_exception_support (&exception_support_info_fallback))
11858 {
11859 data->exception_info = &exception_support_info_fallback;
11860 return;
11861 }
11862
11863 /* Sometimes, it is normal for us to not be able to find the routine
11864 we are looking for. This happens when the program is linked with
11865 the shared version of the GNAT runtime, and the program has not been
11866 started yet. Inform the user of these two possible causes if
11867 applicable. */
11868
11869 if (ada_update_initial_language (language_unknown) != language_ada)
11870 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11871
11872 /* If the symbol does not exist, then check that the program is
11873 already started, to make sure that shared libraries have been
11874 loaded. If it is not started, this may mean that the symbol is
11875 in a shared library. */
11876
11877 if (ptid_get_pid (inferior_ptid) == 0)
11878 error (_("Unable to insert catchpoint. Try to start the program first."));
11879
11880 /* At this point, we know that we are debugging an Ada program and
11881 that the inferior has been started, but we still are not able to
11882 find the run-time symbols. That can mean that we are in
11883 configurable run time mode, or that a-except as been optimized
11884 out by the linker... In any case, at this point it is not worth
11885 supporting this feature. */
11886
11887 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11888 }
11889
11890 /* True iff FRAME is very likely to be that of a function that is
11891 part of the runtime system. This is all very heuristic, but is
11892 intended to be used as advice as to what frames are uninteresting
11893 to most users. */
11894
11895 static int
11896 is_known_support_routine (struct frame_info *frame)
11897 {
11898 struct symtab_and_line sal;
11899 char *func_name;
11900 enum language func_lang;
11901 int i;
11902 const char *fullname;
11903
11904 /* If this code does not have any debugging information (no symtab),
11905 This cannot be any user code. */
11906
11907 find_frame_sal (frame, &sal);
11908 if (sal.symtab == NULL)
11909 return 1;
11910
11911 /* If there is a symtab, but the associated source file cannot be
11912 located, then assume this is not user code: Selecting a frame
11913 for which we cannot display the code would not be very helpful
11914 for the user. This should also take care of case such as VxWorks
11915 where the kernel has some debugging info provided for a few units. */
11916
11917 fullname = symtab_to_fullname (sal.symtab);
11918 if (access (fullname, R_OK) != 0)
11919 return 1;
11920
11921 /* Check the unit filename againt the Ada runtime file naming.
11922 We also check the name of the objfile against the name of some
11923 known system libraries that sometimes come with debugging info
11924 too. */
11925
11926 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11927 {
11928 re_comp (known_runtime_file_name_patterns[i]);
11929 if (re_exec (lbasename (sal.symtab->filename)))
11930 return 1;
11931 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11932 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11933 return 1;
11934 }
11935
11936 /* Check whether the function is a GNAT-generated entity. */
11937
11938 find_frame_funname (frame, &func_name, &func_lang, NULL);
11939 if (func_name == NULL)
11940 return 1;
11941
11942 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11943 {
11944 re_comp (known_auxiliary_function_name_patterns[i]);
11945 if (re_exec (func_name))
11946 {
11947 xfree (func_name);
11948 return 1;
11949 }
11950 }
11951
11952 xfree (func_name);
11953 return 0;
11954 }
11955
11956 /* Find the first frame that contains debugging information and that is not
11957 part of the Ada run-time, starting from FI and moving upward. */
11958
11959 void
11960 ada_find_printable_frame (struct frame_info *fi)
11961 {
11962 for (; fi != NULL; fi = get_prev_frame (fi))
11963 {
11964 if (!is_known_support_routine (fi))
11965 {
11966 select_frame (fi);
11967 break;
11968 }
11969 }
11970
11971 }
11972
11973 /* Assuming that the inferior just triggered an unhandled exception
11974 catchpoint, return the address in inferior memory where the name
11975 of the exception is stored.
11976
11977 Return zero if the address could not be computed. */
11978
11979 static CORE_ADDR
11980 ada_unhandled_exception_name_addr (void)
11981 {
11982 return parse_and_eval_address ("e.full_name");
11983 }
11984
11985 /* Same as ada_unhandled_exception_name_addr, except that this function
11986 should be used when the inferior uses an older version of the runtime,
11987 where the exception name needs to be extracted from a specific frame
11988 several frames up in the callstack. */
11989
11990 static CORE_ADDR
11991 ada_unhandled_exception_name_addr_from_raise (void)
11992 {
11993 int frame_level;
11994 struct frame_info *fi;
11995 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11996 struct cleanup *old_chain;
11997
11998 /* To determine the name of this exception, we need to select
11999 the frame corresponding to RAISE_SYM_NAME. This frame is
12000 at least 3 levels up, so we simply skip the first 3 frames
12001 without checking the name of their associated function. */
12002 fi = get_current_frame ();
12003 for (frame_level = 0; frame_level < 3; frame_level += 1)
12004 if (fi != NULL)
12005 fi = get_prev_frame (fi);
12006
12007 old_chain = make_cleanup (null_cleanup, NULL);
12008 while (fi != NULL)
12009 {
12010 char *func_name;
12011 enum language func_lang;
12012
12013 find_frame_funname (fi, &func_name, &func_lang, NULL);
12014 if (func_name != NULL)
12015 {
12016 make_cleanup (xfree, func_name);
12017
12018 if (strcmp (func_name,
12019 data->exception_info->catch_exception_sym) == 0)
12020 break; /* We found the frame we were looking for... */
12021 fi = get_prev_frame (fi);
12022 }
12023 }
12024 do_cleanups (old_chain);
12025
12026 if (fi == NULL)
12027 return 0;
12028
12029 select_frame (fi);
12030 return parse_and_eval_address ("id.full_name");
12031 }
12032
12033 /* Assuming the inferior just triggered an Ada exception catchpoint
12034 (of any type), return the address in inferior memory where the name
12035 of the exception is stored, if applicable.
12036
12037 Return zero if the address could not be computed, or if not relevant. */
12038
12039 static CORE_ADDR
12040 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12041 struct breakpoint *b)
12042 {
12043 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12044
12045 switch (ex)
12046 {
12047 case ada_catch_exception:
12048 return (parse_and_eval_address ("e.full_name"));
12049 break;
12050
12051 case ada_catch_exception_unhandled:
12052 return data->exception_info->unhandled_exception_name_addr ();
12053 break;
12054
12055 case ada_catch_assert:
12056 return 0; /* Exception name is not relevant in this case. */
12057 break;
12058
12059 default:
12060 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12061 break;
12062 }
12063
12064 return 0; /* Should never be reached. */
12065 }
12066
12067 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12068 any error that ada_exception_name_addr_1 might cause to be thrown.
12069 When an error is intercepted, a warning with the error message is printed,
12070 and zero is returned. */
12071
12072 static CORE_ADDR
12073 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12074 struct breakpoint *b)
12075 {
12076 CORE_ADDR result = 0;
12077
12078 TRY
12079 {
12080 result = ada_exception_name_addr_1 (ex, b);
12081 }
12082
12083 CATCH (e, RETURN_MASK_ERROR)
12084 {
12085 warning (_("failed to get exception name: %s"), e.message);
12086 return 0;
12087 }
12088 END_CATCH
12089
12090 return result;
12091 }
12092
12093 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12094
12095 /* Ada catchpoints.
12096
12097 In the case of catchpoints on Ada exceptions, the catchpoint will
12098 stop the target on every exception the program throws. When a user
12099 specifies the name of a specific exception, we translate this
12100 request into a condition expression (in text form), and then parse
12101 it into an expression stored in each of the catchpoint's locations.
12102 We then use this condition to check whether the exception that was
12103 raised is the one the user is interested in. If not, then the
12104 target is resumed again. We store the name of the requested
12105 exception, in order to be able to re-set the condition expression
12106 when symbols change. */
12107
12108 /* An instance of this type is used to represent an Ada catchpoint
12109 breakpoint location. It includes a "struct bp_location" as a kind
12110 of base class; users downcast to "struct bp_location *" when
12111 needed. */
12112
12113 struct ada_catchpoint_location
12114 {
12115 /* The base class. */
12116 struct bp_location base;
12117
12118 /* The condition that checks whether the exception that was raised
12119 is the specific exception the user specified on catchpoint
12120 creation. */
12121 struct expression *excep_cond_expr;
12122 };
12123
12124 /* Implement the DTOR method in the bp_location_ops structure for all
12125 Ada exception catchpoint kinds. */
12126
12127 static void
12128 ada_catchpoint_location_dtor (struct bp_location *bl)
12129 {
12130 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12131
12132 xfree (al->excep_cond_expr);
12133 }
12134
12135 /* The vtable to be used in Ada catchpoint locations. */
12136
12137 static const struct bp_location_ops ada_catchpoint_location_ops =
12138 {
12139 ada_catchpoint_location_dtor
12140 };
12141
12142 /* An instance of this type is used to represent an Ada catchpoint.
12143 It includes a "struct breakpoint" as a kind of base class; users
12144 downcast to "struct breakpoint *" when needed. */
12145
12146 struct ada_catchpoint
12147 {
12148 /* The base class. */
12149 struct breakpoint base;
12150
12151 /* The name of the specific exception the user specified. */
12152 char *excep_string;
12153 };
12154
12155 /* Parse the exception condition string in the context of each of the
12156 catchpoint's locations, and store them for later evaluation. */
12157
12158 static void
12159 create_excep_cond_exprs (struct ada_catchpoint *c)
12160 {
12161 struct cleanup *old_chain;
12162 struct bp_location *bl;
12163 char *cond_string;
12164
12165 /* Nothing to do if there's no specific exception to catch. */
12166 if (c->excep_string == NULL)
12167 return;
12168
12169 /* Same if there are no locations... */
12170 if (c->base.loc == NULL)
12171 return;
12172
12173 /* Compute the condition expression in text form, from the specific
12174 expection we want to catch. */
12175 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12176 old_chain = make_cleanup (xfree, cond_string);
12177
12178 /* Iterate over all the catchpoint's locations, and parse an
12179 expression for each. */
12180 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12181 {
12182 struct ada_catchpoint_location *ada_loc
12183 = (struct ada_catchpoint_location *) bl;
12184 struct expression *exp = NULL;
12185
12186 if (!bl->shlib_disabled)
12187 {
12188 const char *s;
12189
12190 s = cond_string;
12191 TRY
12192 {
12193 exp = parse_exp_1 (&s, bl->address,
12194 block_for_pc (bl->address), 0);
12195 }
12196 CATCH (e, RETURN_MASK_ERROR)
12197 {
12198 warning (_("failed to reevaluate internal exception condition "
12199 "for catchpoint %d: %s"),
12200 c->base.number, e.message);
12201 /* There is a bug in GCC on sparc-solaris when building with
12202 optimization which causes EXP to change unexpectedly
12203 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12204 The problem should be fixed starting with GCC 4.9.
12205 In the meantime, work around it by forcing EXP back
12206 to NULL. */
12207 exp = NULL;
12208 }
12209 END_CATCH
12210 }
12211
12212 ada_loc->excep_cond_expr = exp;
12213 }
12214
12215 do_cleanups (old_chain);
12216 }
12217
12218 /* Implement the DTOR method in the breakpoint_ops structure for all
12219 exception catchpoint kinds. */
12220
12221 static void
12222 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12223 {
12224 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12225
12226 xfree (c->excep_string);
12227
12228 bkpt_breakpoint_ops.dtor (b);
12229 }
12230
12231 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12232 structure for all exception catchpoint kinds. */
12233
12234 static struct bp_location *
12235 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12236 struct breakpoint *self)
12237 {
12238 struct ada_catchpoint_location *loc;
12239
12240 loc = XNEW (struct ada_catchpoint_location);
12241 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12242 loc->excep_cond_expr = NULL;
12243 return &loc->base;
12244 }
12245
12246 /* Implement the RE_SET method in the breakpoint_ops structure for all
12247 exception catchpoint kinds. */
12248
12249 static void
12250 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12251 {
12252 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12253
12254 /* Call the base class's method. This updates the catchpoint's
12255 locations. */
12256 bkpt_breakpoint_ops.re_set (b);
12257
12258 /* Reparse the exception conditional expressions. One for each
12259 location. */
12260 create_excep_cond_exprs (c);
12261 }
12262
12263 /* Returns true if we should stop for this breakpoint hit. If the
12264 user specified a specific exception, we only want to cause a stop
12265 if the program thrown that exception. */
12266
12267 static int
12268 should_stop_exception (const struct bp_location *bl)
12269 {
12270 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12271 const struct ada_catchpoint_location *ada_loc
12272 = (const struct ada_catchpoint_location *) bl;
12273 int stop;
12274
12275 /* With no specific exception, should always stop. */
12276 if (c->excep_string == NULL)
12277 return 1;
12278
12279 if (ada_loc->excep_cond_expr == NULL)
12280 {
12281 /* We will have a NULL expression if back when we were creating
12282 the expressions, this location's had failed to parse. */
12283 return 1;
12284 }
12285
12286 stop = 1;
12287 TRY
12288 {
12289 struct value *mark;
12290
12291 mark = value_mark ();
12292 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12293 value_free_to_mark (mark);
12294 }
12295 CATCH (ex, RETURN_MASK_ALL)
12296 {
12297 exception_fprintf (gdb_stderr, ex,
12298 _("Error in testing exception condition:\n"));
12299 }
12300 END_CATCH
12301
12302 return stop;
12303 }
12304
12305 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12306 for all exception catchpoint kinds. */
12307
12308 static void
12309 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12310 {
12311 bs->stop = should_stop_exception (bs->bp_location_at);
12312 }
12313
12314 /* Implement the PRINT_IT method in the breakpoint_ops structure
12315 for all exception catchpoint kinds. */
12316
12317 static enum print_stop_action
12318 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12319 {
12320 struct ui_out *uiout = current_uiout;
12321 struct breakpoint *b = bs->breakpoint_at;
12322
12323 annotate_catchpoint (b->number);
12324
12325 if (ui_out_is_mi_like_p (uiout))
12326 {
12327 ui_out_field_string (uiout, "reason",
12328 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12329 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12330 }
12331
12332 ui_out_text (uiout,
12333 b->disposition == disp_del ? "\nTemporary catchpoint "
12334 : "\nCatchpoint ");
12335 ui_out_field_int (uiout, "bkptno", b->number);
12336 ui_out_text (uiout, ", ");
12337
12338 switch (ex)
12339 {
12340 case ada_catch_exception:
12341 case ada_catch_exception_unhandled:
12342 {
12343 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12344 char exception_name[256];
12345
12346 if (addr != 0)
12347 {
12348 read_memory (addr, (gdb_byte *) exception_name,
12349 sizeof (exception_name) - 1);
12350 exception_name [sizeof (exception_name) - 1] = '\0';
12351 }
12352 else
12353 {
12354 /* For some reason, we were unable to read the exception
12355 name. This could happen if the Runtime was compiled
12356 without debugging info, for instance. In that case,
12357 just replace the exception name by the generic string
12358 "exception" - it will read as "an exception" in the
12359 notification we are about to print. */
12360 memcpy (exception_name, "exception", sizeof ("exception"));
12361 }
12362 /* In the case of unhandled exception breakpoints, we print
12363 the exception name as "unhandled EXCEPTION_NAME", to make
12364 it clearer to the user which kind of catchpoint just got
12365 hit. We used ui_out_text to make sure that this extra
12366 info does not pollute the exception name in the MI case. */
12367 if (ex == ada_catch_exception_unhandled)
12368 ui_out_text (uiout, "unhandled ");
12369 ui_out_field_string (uiout, "exception-name", exception_name);
12370 }
12371 break;
12372 case ada_catch_assert:
12373 /* In this case, the name of the exception is not really
12374 important. Just print "failed assertion" to make it clearer
12375 that his program just hit an assertion-failure catchpoint.
12376 We used ui_out_text because this info does not belong in
12377 the MI output. */
12378 ui_out_text (uiout, "failed assertion");
12379 break;
12380 }
12381 ui_out_text (uiout, " at ");
12382 ada_find_printable_frame (get_current_frame ());
12383
12384 return PRINT_SRC_AND_LOC;
12385 }
12386
12387 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12388 for all exception catchpoint kinds. */
12389
12390 static void
12391 print_one_exception (enum ada_exception_catchpoint_kind ex,
12392 struct breakpoint *b, struct bp_location **last_loc)
12393 {
12394 struct ui_out *uiout = current_uiout;
12395 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12396 struct value_print_options opts;
12397
12398 get_user_print_options (&opts);
12399 if (opts.addressprint)
12400 {
12401 annotate_field (4);
12402 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12403 }
12404
12405 annotate_field (5);
12406 *last_loc = b->loc;
12407 switch (ex)
12408 {
12409 case ada_catch_exception:
12410 if (c->excep_string != NULL)
12411 {
12412 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12413
12414 ui_out_field_string (uiout, "what", msg);
12415 xfree (msg);
12416 }
12417 else
12418 ui_out_field_string (uiout, "what", "all Ada exceptions");
12419
12420 break;
12421
12422 case ada_catch_exception_unhandled:
12423 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12424 break;
12425
12426 case ada_catch_assert:
12427 ui_out_field_string (uiout, "what", "failed Ada assertions");
12428 break;
12429
12430 default:
12431 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12432 break;
12433 }
12434 }
12435
12436 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12437 for all exception catchpoint kinds. */
12438
12439 static void
12440 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12441 struct breakpoint *b)
12442 {
12443 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12444 struct ui_out *uiout = current_uiout;
12445
12446 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12447 : _("Catchpoint "));
12448 ui_out_field_int (uiout, "bkptno", b->number);
12449 ui_out_text (uiout, ": ");
12450
12451 switch (ex)
12452 {
12453 case ada_catch_exception:
12454 if (c->excep_string != NULL)
12455 {
12456 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12457 struct cleanup *old_chain = make_cleanup (xfree, info);
12458
12459 ui_out_text (uiout, info);
12460 do_cleanups (old_chain);
12461 }
12462 else
12463 ui_out_text (uiout, _("all Ada exceptions"));
12464 break;
12465
12466 case ada_catch_exception_unhandled:
12467 ui_out_text (uiout, _("unhandled Ada exceptions"));
12468 break;
12469
12470 case ada_catch_assert:
12471 ui_out_text (uiout, _("failed Ada assertions"));
12472 break;
12473
12474 default:
12475 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12476 break;
12477 }
12478 }
12479
12480 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12481 for all exception catchpoint kinds. */
12482
12483 static void
12484 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12485 struct breakpoint *b, struct ui_file *fp)
12486 {
12487 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12488
12489 switch (ex)
12490 {
12491 case ada_catch_exception:
12492 fprintf_filtered (fp, "catch exception");
12493 if (c->excep_string != NULL)
12494 fprintf_filtered (fp, " %s", c->excep_string);
12495 break;
12496
12497 case ada_catch_exception_unhandled:
12498 fprintf_filtered (fp, "catch exception unhandled");
12499 break;
12500
12501 case ada_catch_assert:
12502 fprintf_filtered (fp, "catch assert");
12503 break;
12504
12505 default:
12506 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12507 }
12508 print_recreate_thread (b, fp);
12509 }
12510
12511 /* Virtual table for "catch exception" breakpoints. */
12512
12513 static void
12514 dtor_catch_exception (struct breakpoint *b)
12515 {
12516 dtor_exception (ada_catch_exception, b);
12517 }
12518
12519 static struct bp_location *
12520 allocate_location_catch_exception (struct breakpoint *self)
12521 {
12522 return allocate_location_exception (ada_catch_exception, self);
12523 }
12524
12525 static void
12526 re_set_catch_exception (struct breakpoint *b)
12527 {
12528 re_set_exception (ada_catch_exception, b);
12529 }
12530
12531 static void
12532 check_status_catch_exception (bpstat bs)
12533 {
12534 check_status_exception (ada_catch_exception, bs);
12535 }
12536
12537 static enum print_stop_action
12538 print_it_catch_exception (bpstat bs)
12539 {
12540 return print_it_exception (ada_catch_exception, bs);
12541 }
12542
12543 static void
12544 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12545 {
12546 print_one_exception (ada_catch_exception, b, last_loc);
12547 }
12548
12549 static void
12550 print_mention_catch_exception (struct breakpoint *b)
12551 {
12552 print_mention_exception (ada_catch_exception, b);
12553 }
12554
12555 static void
12556 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12557 {
12558 print_recreate_exception (ada_catch_exception, b, fp);
12559 }
12560
12561 static struct breakpoint_ops catch_exception_breakpoint_ops;
12562
12563 /* Virtual table for "catch exception unhandled" breakpoints. */
12564
12565 static void
12566 dtor_catch_exception_unhandled (struct breakpoint *b)
12567 {
12568 dtor_exception (ada_catch_exception_unhandled, b);
12569 }
12570
12571 static struct bp_location *
12572 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12573 {
12574 return allocate_location_exception (ada_catch_exception_unhandled, self);
12575 }
12576
12577 static void
12578 re_set_catch_exception_unhandled (struct breakpoint *b)
12579 {
12580 re_set_exception (ada_catch_exception_unhandled, b);
12581 }
12582
12583 static void
12584 check_status_catch_exception_unhandled (bpstat bs)
12585 {
12586 check_status_exception (ada_catch_exception_unhandled, bs);
12587 }
12588
12589 static enum print_stop_action
12590 print_it_catch_exception_unhandled (bpstat bs)
12591 {
12592 return print_it_exception (ada_catch_exception_unhandled, bs);
12593 }
12594
12595 static void
12596 print_one_catch_exception_unhandled (struct breakpoint *b,
12597 struct bp_location **last_loc)
12598 {
12599 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12600 }
12601
12602 static void
12603 print_mention_catch_exception_unhandled (struct breakpoint *b)
12604 {
12605 print_mention_exception (ada_catch_exception_unhandled, b);
12606 }
12607
12608 static void
12609 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12610 struct ui_file *fp)
12611 {
12612 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12613 }
12614
12615 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12616
12617 /* Virtual table for "catch assert" breakpoints. */
12618
12619 static void
12620 dtor_catch_assert (struct breakpoint *b)
12621 {
12622 dtor_exception (ada_catch_assert, b);
12623 }
12624
12625 static struct bp_location *
12626 allocate_location_catch_assert (struct breakpoint *self)
12627 {
12628 return allocate_location_exception (ada_catch_assert, self);
12629 }
12630
12631 static void
12632 re_set_catch_assert (struct breakpoint *b)
12633 {
12634 re_set_exception (ada_catch_assert, b);
12635 }
12636
12637 static void
12638 check_status_catch_assert (bpstat bs)
12639 {
12640 check_status_exception (ada_catch_assert, bs);
12641 }
12642
12643 static enum print_stop_action
12644 print_it_catch_assert (bpstat bs)
12645 {
12646 return print_it_exception (ada_catch_assert, bs);
12647 }
12648
12649 static void
12650 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12651 {
12652 print_one_exception (ada_catch_assert, b, last_loc);
12653 }
12654
12655 static void
12656 print_mention_catch_assert (struct breakpoint *b)
12657 {
12658 print_mention_exception (ada_catch_assert, b);
12659 }
12660
12661 static void
12662 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12663 {
12664 print_recreate_exception (ada_catch_assert, b, fp);
12665 }
12666
12667 static struct breakpoint_ops catch_assert_breakpoint_ops;
12668
12669 /* Return a newly allocated copy of the first space-separated token
12670 in ARGSP, and then adjust ARGSP to point immediately after that
12671 token.
12672
12673 Return NULL if ARGPS does not contain any more tokens. */
12674
12675 static char *
12676 ada_get_next_arg (char **argsp)
12677 {
12678 char *args = *argsp;
12679 char *end;
12680 char *result;
12681
12682 args = skip_spaces (args);
12683 if (args[0] == '\0')
12684 return NULL; /* No more arguments. */
12685
12686 /* Find the end of the current argument. */
12687
12688 end = skip_to_space (args);
12689
12690 /* Adjust ARGSP to point to the start of the next argument. */
12691
12692 *argsp = end;
12693
12694 /* Make a copy of the current argument and return it. */
12695
12696 result = (char *) xmalloc (end - args + 1);
12697 strncpy (result, args, end - args);
12698 result[end - args] = '\0';
12699
12700 return result;
12701 }
12702
12703 /* Split the arguments specified in a "catch exception" command.
12704 Set EX to the appropriate catchpoint type.
12705 Set EXCEP_STRING to the name of the specific exception if
12706 specified by the user.
12707 If a condition is found at the end of the arguments, the condition
12708 expression is stored in COND_STRING (memory must be deallocated
12709 after use). Otherwise COND_STRING is set to NULL. */
12710
12711 static void
12712 catch_ada_exception_command_split (char *args,
12713 enum ada_exception_catchpoint_kind *ex,
12714 char **excep_string,
12715 char **cond_string)
12716 {
12717 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12718 char *exception_name;
12719 char *cond = NULL;
12720
12721 exception_name = ada_get_next_arg (&args);
12722 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12723 {
12724 /* This is not an exception name; this is the start of a condition
12725 expression for a catchpoint on all exceptions. So, "un-get"
12726 this token, and set exception_name to NULL. */
12727 xfree (exception_name);
12728 exception_name = NULL;
12729 args -= 2;
12730 }
12731 make_cleanup (xfree, exception_name);
12732
12733 /* Check to see if we have a condition. */
12734
12735 args = skip_spaces (args);
12736 if (startswith (args, "if")
12737 && (isspace (args[2]) || args[2] == '\0'))
12738 {
12739 args += 2;
12740 args = skip_spaces (args);
12741
12742 if (args[0] == '\0')
12743 error (_("Condition missing after `if' keyword"));
12744 cond = xstrdup (args);
12745 make_cleanup (xfree, cond);
12746
12747 args += strlen (args);
12748 }
12749
12750 /* Check that we do not have any more arguments. Anything else
12751 is unexpected. */
12752
12753 if (args[0] != '\0')
12754 error (_("Junk at end of expression"));
12755
12756 discard_cleanups (old_chain);
12757
12758 if (exception_name == NULL)
12759 {
12760 /* Catch all exceptions. */
12761 *ex = ada_catch_exception;
12762 *excep_string = NULL;
12763 }
12764 else if (strcmp (exception_name, "unhandled") == 0)
12765 {
12766 /* Catch unhandled exceptions. */
12767 *ex = ada_catch_exception_unhandled;
12768 *excep_string = NULL;
12769 }
12770 else
12771 {
12772 /* Catch a specific exception. */
12773 *ex = ada_catch_exception;
12774 *excep_string = exception_name;
12775 }
12776 *cond_string = cond;
12777 }
12778
12779 /* Return the name of the symbol on which we should break in order to
12780 implement a catchpoint of the EX kind. */
12781
12782 static const char *
12783 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12784 {
12785 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12786
12787 gdb_assert (data->exception_info != NULL);
12788
12789 switch (ex)
12790 {
12791 case ada_catch_exception:
12792 return (data->exception_info->catch_exception_sym);
12793 break;
12794 case ada_catch_exception_unhandled:
12795 return (data->exception_info->catch_exception_unhandled_sym);
12796 break;
12797 case ada_catch_assert:
12798 return (data->exception_info->catch_assert_sym);
12799 break;
12800 default:
12801 internal_error (__FILE__, __LINE__,
12802 _("unexpected catchpoint kind (%d)"), ex);
12803 }
12804 }
12805
12806 /* Return the breakpoint ops "virtual table" used for catchpoints
12807 of the EX kind. */
12808
12809 static const struct breakpoint_ops *
12810 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12811 {
12812 switch (ex)
12813 {
12814 case ada_catch_exception:
12815 return (&catch_exception_breakpoint_ops);
12816 break;
12817 case ada_catch_exception_unhandled:
12818 return (&catch_exception_unhandled_breakpoint_ops);
12819 break;
12820 case ada_catch_assert:
12821 return (&catch_assert_breakpoint_ops);
12822 break;
12823 default:
12824 internal_error (__FILE__, __LINE__,
12825 _("unexpected catchpoint kind (%d)"), ex);
12826 }
12827 }
12828
12829 /* Return the condition that will be used to match the current exception
12830 being raised with the exception that the user wants to catch. This
12831 assumes that this condition is used when the inferior just triggered
12832 an exception catchpoint.
12833
12834 The string returned is a newly allocated string that needs to be
12835 deallocated later. */
12836
12837 static char *
12838 ada_exception_catchpoint_cond_string (const char *excep_string)
12839 {
12840 int i;
12841
12842 /* The standard exceptions are a special case. They are defined in
12843 runtime units that have been compiled without debugging info; if
12844 EXCEP_STRING is the not-fully-qualified name of a standard
12845 exception (e.g. "constraint_error") then, during the evaluation
12846 of the condition expression, the symbol lookup on this name would
12847 *not* return this standard exception. The catchpoint condition
12848 may then be set only on user-defined exceptions which have the
12849 same not-fully-qualified name (e.g. my_package.constraint_error).
12850
12851 To avoid this unexcepted behavior, these standard exceptions are
12852 systematically prefixed by "standard". This means that "catch
12853 exception constraint_error" is rewritten into "catch exception
12854 standard.constraint_error".
12855
12856 If an exception named contraint_error is defined in another package of
12857 the inferior program, then the only way to specify this exception as a
12858 breakpoint condition is to use its fully-qualified named:
12859 e.g. my_package.constraint_error. */
12860
12861 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12862 {
12863 if (strcmp (standard_exc [i], excep_string) == 0)
12864 {
12865 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12866 excep_string);
12867 }
12868 }
12869 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12870 }
12871
12872 /* Return the symtab_and_line that should be used to insert an exception
12873 catchpoint of the TYPE kind.
12874
12875 EXCEP_STRING should contain the name of a specific exception that
12876 the catchpoint should catch, or NULL otherwise.
12877
12878 ADDR_STRING returns the name of the function where the real
12879 breakpoint that implements the catchpoints is set, depending on the
12880 type of catchpoint we need to create. */
12881
12882 static struct symtab_and_line
12883 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12884 char **addr_string, const struct breakpoint_ops **ops)
12885 {
12886 const char *sym_name;
12887 struct symbol *sym;
12888
12889 /* First, find out which exception support info to use. */
12890 ada_exception_support_info_sniffer ();
12891
12892 /* Then lookup the function on which we will break in order to catch
12893 the Ada exceptions requested by the user. */
12894 sym_name = ada_exception_sym_name (ex);
12895 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12896
12897 /* We can assume that SYM is not NULL at this stage. If the symbol
12898 did not exist, ada_exception_support_info_sniffer would have
12899 raised an exception.
12900
12901 Also, ada_exception_support_info_sniffer should have already
12902 verified that SYM is a function symbol. */
12903 gdb_assert (sym != NULL);
12904 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12905
12906 /* Set ADDR_STRING. */
12907 *addr_string = xstrdup (sym_name);
12908
12909 /* Set OPS. */
12910 *ops = ada_exception_breakpoint_ops (ex);
12911
12912 return find_function_start_sal (sym, 1);
12913 }
12914
12915 /* Create an Ada exception catchpoint.
12916
12917 EX_KIND is the kind of exception catchpoint to be created.
12918
12919 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12920 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12921 of the exception to which this catchpoint applies. When not NULL,
12922 the string must be allocated on the heap, and its deallocation
12923 is no longer the responsibility of the caller.
12924
12925 COND_STRING, if not NULL, is the catchpoint condition. This string
12926 must be allocated on the heap, and its deallocation is no longer
12927 the responsibility of the caller.
12928
12929 TEMPFLAG, if nonzero, means that the underlying breakpoint
12930 should be temporary.
12931
12932 FROM_TTY is the usual argument passed to all commands implementations. */
12933
12934 void
12935 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12936 enum ada_exception_catchpoint_kind ex_kind,
12937 char *excep_string,
12938 char *cond_string,
12939 int tempflag,
12940 int disabled,
12941 int from_tty)
12942 {
12943 struct ada_catchpoint *c;
12944 char *addr_string = NULL;
12945 const struct breakpoint_ops *ops = NULL;
12946 struct symtab_and_line sal
12947 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12948
12949 c = XNEW (struct ada_catchpoint);
12950 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12951 ops, tempflag, disabled, from_tty);
12952 c->excep_string = excep_string;
12953 create_excep_cond_exprs (c);
12954 if (cond_string != NULL)
12955 set_breakpoint_condition (&c->base, cond_string, from_tty);
12956 install_breakpoint (0, &c->base, 1);
12957 }
12958
12959 /* Implement the "catch exception" command. */
12960
12961 static void
12962 catch_ada_exception_command (char *arg, int from_tty,
12963 struct cmd_list_element *command)
12964 {
12965 struct gdbarch *gdbarch = get_current_arch ();
12966 int tempflag;
12967 enum ada_exception_catchpoint_kind ex_kind;
12968 char *excep_string = NULL;
12969 char *cond_string = NULL;
12970
12971 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12972
12973 if (!arg)
12974 arg = "";
12975 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12976 &cond_string);
12977 create_ada_exception_catchpoint (gdbarch, ex_kind,
12978 excep_string, cond_string,
12979 tempflag, 1 /* enabled */,
12980 from_tty);
12981 }
12982
12983 /* Split the arguments specified in a "catch assert" command.
12984
12985 ARGS contains the command's arguments (or the empty string if
12986 no arguments were passed).
12987
12988 If ARGS contains a condition, set COND_STRING to that condition
12989 (the memory needs to be deallocated after use). */
12990
12991 static void
12992 catch_ada_assert_command_split (char *args, char **cond_string)
12993 {
12994 args = skip_spaces (args);
12995
12996 /* Check whether a condition was provided. */
12997 if (startswith (args, "if")
12998 && (isspace (args[2]) || args[2] == '\0'))
12999 {
13000 args += 2;
13001 args = skip_spaces (args);
13002 if (args[0] == '\0')
13003 error (_("condition missing after `if' keyword"));
13004 *cond_string = xstrdup (args);
13005 }
13006
13007 /* Otherwise, there should be no other argument at the end of
13008 the command. */
13009 else if (args[0] != '\0')
13010 error (_("Junk at end of arguments."));
13011 }
13012
13013 /* Implement the "catch assert" command. */
13014
13015 static void
13016 catch_assert_command (char *arg, int from_tty,
13017 struct cmd_list_element *command)
13018 {
13019 struct gdbarch *gdbarch = get_current_arch ();
13020 int tempflag;
13021 char *cond_string = NULL;
13022
13023 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13024
13025 if (!arg)
13026 arg = "";
13027 catch_ada_assert_command_split (arg, &cond_string);
13028 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13029 NULL, cond_string,
13030 tempflag, 1 /* enabled */,
13031 from_tty);
13032 }
13033
13034 /* Return non-zero if the symbol SYM is an Ada exception object. */
13035
13036 static int
13037 ada_is_exception_sym (struct symbol *sym)
13038 {
13039 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13040
13041 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13042 && SYMBOL_CLASS (sym) != LOC_BLOCK
13043 && SYMBOL_CLASS (sym) != LOC_CONST
13044 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13045 && type_name != NULL && strcmp (type_name, "exception") == 0);
13046 }
13047
13048 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13049 Ada exception object. This matches all exceptions except the ones
13050 defined by the Ada language. */
13051
13052 static int
13053 ada_is_non_standard_exception_sym (struct symbol *sym)
13054 {
13055 int i;
13056
13057 if (!ada_is_exception_sym (sym))
13058 return 0;
13059
13060 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13061 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13062 return 0; /* A standard exception. */
13063
13064 /* Numeric_Error is also a standard exception, so exclude it.
13065 See the STANDARD_EXC description for more details as to why
13066 this exception is not listed in that array. */
13067 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13068 return 0;
13069
13070 return 1;
13071 }
13072
13073 /* A helper function for qsort, comparing two struct ada_exc_info
13074 objects.
13075
13076 The comparison is determined first by exception name, and then
13077 by exception address. */
13078
13079 static int
13080 compare_ada_exception_info (const void *a, const void *b)
13081 {
13082 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13083 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13084 int result;
13085
13086 result = strcmp (exc_a->name, exc_b->name);
13087 if (result != 0)
13088 return result;
13089
13090 if (exc_a->addr < exc_b->addr)
13091 return -1;
13092 if (exc_a->addr > exc_b->addr)
13093 return 1;
13094
13095 return 0;
13096 }
13097
13098 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13099 routine, but keeping the first SKIP elements untouched.
13100
13101 All duplicates are also removed. */
13102
13103 static void
13104 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13105 int skip)
13106 {
13107 struct ada_exc_info *to_sort
13108 = VEC_address (ada_exc_info, *exceptions) + skip;
13109 int to_sort_len
13110 = VEC_length (ada_exc_info, *exceptions) - skip;
13111 int i, j;
13112
13113 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13114 compare_ada_exception_info);
13115
13116 for (i = 1, j = 1; i < to_sort_len; i++)
13117 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13118 to_sort[j++] = to_sort[i];
13119 to_sort_len = j;
13120 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13121 }
13122
13123 /* A function intended as the "name_matcher" callback in the struct
13124 quick_symbol_functions' expand_symtabs_matching method.
13125
13126 SEARCH_NAME is the symbol's search name.
13127
13128 If USER_DATA is not NULL, it is a pointer to a regext_t object
13129 used to match the symbol (by natural name). Otherwise, when USER_DATA
13130 is null, no filtering is performed, and all symbols are a positive
13131 match. */
13132
13133 static int
13134 ada_exc_search_name_matches (const char *search_name, void *user_data)
13135 {
13136 regex_t *preg = (regex_t *) user_data;
13137
13138 if (preg == NULL)
13139 return 1;
13140
13141 /* In Ada, the symbol "search name" is a linkage name, whereas
13142 the regular expression used to do the matching refers to
13143 the natural name. So match against the decoded name. */
13144 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13145 }
13146
13147 /* Add all exceptions defined by the Ada standard whose name match
13148 a regular expression.
13149
13150 If PREG is not NULL, then this regexp_t object is used to
13151 perform the symbol name matching. Otherwise, no name-based
13152 filtering is performed.
13153
13154 EXCEPTIONS is a vector of exceptions to which matching exceptions
13155 gets pushed. */
13156
13157 static void
13158 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13159 {
13160 int i;
13161
13162 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13163 {
13164 if (preg == NULL
13165 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13166 {
13167 struct bound_minimal_symbol msymbol
13168 = ada_lookup_simple_minsym (standard_exc[i]);
13169
13170 if (msymbol.minsym != NULL)
13171 {
13172 struct ada_exc_info info
13173 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13174
13175 VEC_safe_push (ada_exc_info, *exceptions, &info);
13176 }
13177 }
13178 }
13179 }
13180
13181 /* Add all Ada exceptions defined locally and accessible from the given
13182 FRAME.
13183
13184 If PREG is not NULL, then this regexp_t object is used to
13185 perform the symbol name matching. Otherwise, no name-based
13186 filtering is performed.
13187
13188 EXCEPTIONS is a vector of exceptions to which matching exceptions
13189 gets pushed. */
13190
13191 static void
13192 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13193 VEC(ada_exc_info) **exceptions)
13194 {
13195 const struct block *block = get_frame_block (frame, 0);
13196
13197 while (block != 0)
13198 {
13199 struct block_iterator iter;
13200 struct symbol *sym;
13201
13202 ALL_BLOCK_SYMBOLS (block, iter, sym)
13203 {
13204 switch (SYMBOL_CLASS (sym))
13205 {
13206 case LOC_TYPEDEF:
13207 case LOC_BLOCK:
13208 case LOC_CONST:
13209 break;
13210 default:
13211 if (ada_is_exception_sym (sym))
13212 {
13213 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13214 SYMBOL_VALUE_ADDRESS (sym)};
13215
13216 VEC_safe_push (ada_exc_info, *exceptions, &info);
13217 }
13218 }
13219 }
13220 if (BLOCK_FUNCTION (block) != NULL)
13221 break;
13222 block = BLOCK_SUPERBLOCK (block);
13223 }
13224 }
13225
13226 /* Add all exceptions defined globally whose name name match
13227 a regular expression, excluding standard exceptions.
13228
13229 The reason we exclude standard exceptions is that they need
13230 to be handled separately: Standard exceptions are defined inside
13231 a runtime unit which is normally not compiled with debugging info,
13232 and thus usually do not show up in our symbol search. However,
13233 if the unit was in fact built with debugging info, we need to
13234 exclude them because they would duplicate the entry we found
13235 during the special loop that specifically searches for those
13236 standard exceptions.
13237
13238 If PREG is not NULL, then this regexp_t object is used to
13239 perform the symbol name matching. Otherwise, no name-based
13240 filtering is performed.
13241
13242 EXCEPTIONS is a vector of exceptions to which matching exceptions
13243 gets pushed. */
13244
13245 static void
13246 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13247 {
13248 struct objfile *objfile;
13249 struct compunit_symtab *s;
13250
13251 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13252 VARIABLES_DOMAIN, preg);
13253
13254 ALL_COMPUNITS (objfile, s)
13255 {
13256 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13257 int i;
13258
13259 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13260 {
13261 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13262 struct block_iterator iter;
13263 struct symbol *sym;
13264
13265 ALL_BLOCK_SYMBOLS (b, iter, sym)
13266 if (ada_is_non_standard_exception_sym (sym)
13267 && (preg == NULL
13268 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13269 0, NULL, 0) == 0))
13270 {
13271 struct ada_exc_info info
13272 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13273
13274 VEC_safe_push (ada_exc_info, *exceptions, &info);
13275 }
13276 }
13277 }
13278 }
13279
13280 /* Implements ada_exceptions_list with the regular expression passed
13281 as a regex_t, rather than a string.
13282
13283 If not NULL, PREG is used to filter out exceptions whose names
13284 do not match. Otherwise, all exceptions are listed. */
13285
13286 static VEC(ada_exc_info) *
13287 ada_exceptions_list_1 (regex_t *preg)
13288 {
13289 VEC(ada_exc_info) *result = NULL;
13290 struct cleanup *old_chain
13291 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13292 int prev_len;
13293
13294 /* First, list the known standard exceptions. These exceptions
13295 need to be handled separately, as they are usually defined in
13296 runtime units that have been compiled without debugging info. */
13297
13298 ada_add_standard_exceptions (preg, &result);
13299
13300 /* Next, find all exceptions whose scope is local and accessible
13301 from the currently selected frame. */
13302
13303 if (has_stack_frames ())
13304 {
13305 prev_len = VEC_length (ada_exc_info, result);
13306 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13307 &result);
13308 if (VEC_length (ada_exc_info, result) > prev_len)
13309 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13310 }
13311
13312 /* Add all exceptions whose scope is global. */
13313
13314 prev_len = VEC_length (ada_exc_info, result);
13315 ada_add_global_exceptions (preg, &result);
13316 if (VEC_length (ada_exc_info, result) > prev_len)
13317 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13318
13319 discard_cleanups (old_chain);
13320 return result;
13321 }
13322
13323 /* Return a vector of ada_exc_info.
13324
13325 If REGEXP is NULL, all exceptions are included in the result.
13326 Otherwise, it should contain a valid regular expression,
13327 and only the exceptions whose names match that regular expression
13328 are included in the result.
13329
13330 The exceptions are sorted in the following order:
13331 - Standard exceptions (defined by the Ada language), in
13332 alphabetical order;
13333 - Exceptions only visible from the current frame, in
13334 alphabetical order;
13335 - Exceptions whose scope is global, in alphabetical order. */
13336
13337 VEC(ada_exc_info) *
13338 ada_exceptions_list (const char *regexp)
13339 {
13340 VEC(ada_exc_info) *result = NULL;
13341 struct cleanup *old_chain = NULL;
13342 regex_t reg;
13343
13344 if (regexp != NULL)
13345 old_chain = compile_rx_or_error (&reg, regexp,
13346 _("invalid regular expression"));
13347
13348 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13349
13350 if (old_chain != NULL)
13351 do_cleanups (old_chain);
13352 return result;
13353 }
13354
13355 /* Implement the "info exceptions" command. */
13356
13357 static void
13358 info_exceptions_command (char *regexp, int from_tty)
13359 {
13360 VEC(ada_exc_info) *exceptions;
13361 struct cleanup *cleanup;
13362 struct gdbarch *gdbarch = get_current_arch ();
13363 int ix;
13364 struct ada_exc_info *info;
13365
13366 exceptions = ada_exceptions_list (regexp);
13367 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13368
13369 if (regexp != NULL)
13370 printf_filtered
13371 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13372 else
13373 printf_filtered (_("All defined Ada exceptions:\n"));
13374
13375 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13376 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13377
13378 do_cleanups (cleanup);
13379 }
13380
13381 /* Operators */
13382 /* Information about operators given special treatment in functions
13383 below. */
13384 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13385
13386 #define ADA_OPERATORS \
13387 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13388 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13389 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13390 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13391 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13392 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13393 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13394 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13395 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13396 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13397 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13398 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13399 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13400 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13401 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13402 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13403 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13404 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13405 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13406
13407 static void
13408 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13409 int *argsp)
13410 {
13411 switch (exp->elts[pc - 1].opcode)
13412 {
13413 default:
13414 operator_length_standard (exp, pc, oplenp, argsp);
13415 break;
13416
13417 #define OP_DEFN(op, len, args, binop) \
13418 case op: *oplenp = len; *argsp = args; break;
13419 ADA_OPERATORS;
13420 #undef OP_DEFN
13421
13422 case OP_AGGREGATE:
13423 *oplenp = 3;
13424 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13425 break;
13426
13427 case OP_CHOICES:
13428 *oplenp = 3;
13429 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13430 break;
13431 }
13432 }
13433
13434 /* Implementation of the exp_descriptor method operator_check. */
13435
13436 static int
13437 ada_operator_check (struct expression *exp, int pos,
13438 int (*objfile_func) (struct objfile *objfile, void *data),
13439 void *data)
13440 {
13441 const union exp_element *const elts = exp->elts;
13442 struct type *type = NULL;
13443
13444 switch (elts[pos].opcode)
13445 {
13446 case UNOP_IN_RANGE:
13447 case UNOP_QUAL:
13448 type = elts[pos + 1].type;
13449 break;
13450
13451 default:
13452 return operator_check_standard (exp, pos, objfile_func, data);
13453 }
13454
13455 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13456
13457 if (type && TYPE_OBJFILE (type)
13458 && (*objfile_func) (TYPE_OBJFILE (type), data))
13459 return 1;
13460
13461 return 0;
13462 }
13463
13464 static char *
13465 ada_op_name (enum exp_opcode opcode)
13466 {
13467 switch (opcode)
13468 {
13469 default:
13470 return op_name_standard (opcode);
13471
13472 #define OP_DEFN(op, len, args, binop) case op: return #op;
13473 ADA_OPERATORS;
13474 #undef OP_DEFN
13475
13476 case OP_AGGREGATE:
13477 return "OP_AGGREGATE";
13478 case OP_CHOICES:
13479 return "OP_CHOICES";
13480 case OP_NAME:
13481 return "OP_NAME";
13482 }
13483 }
13484
13485 /* As for operator_length, but assumes PC is pointing at the first
13486 element of the operator, and gives meaningful results only for the
13487 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13488
13489 static void
13490 ada_forward_operator_length (struct expression *exp, int pc,
13491 int *oplenp, int *argsp)
13492 {
13493 switch (exp->elts[pc].opcode)
13494 {
13495 default:
13496 *oplenp = *argsp = 0;
13497 break;
13498
13499 #define OP_DEFN(op, len, args, binop) \
13500 case op: *oplenp = len; *argsp = args; break;
13501 ADA_OPERATORS;
13502 #undef OP_DEFN
13503
13504 case OP_AGGREGATE:
13505 *oplenp = 3;
13506 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13507 break;
13508
13509 case OP_CHOICES:
13510 *oplenp = 3;
13511 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13512 break;
13513
13514 case OP_STRING:
13515 case OP_NAME:
13516 {
13517 int len = longest_to_int (exp->elts[pc + 1].longconst);
13518
13519 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13520 *argsp = 0;
13521 break;
13522 }
13523 }
13524 }
13525
13526 static int
13527 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13528 {
13529 enum exp_opcode op = exp->elts[elt].opcode;
13530 int oplen, nargs;
13531 int pc = elt;
13532 int i;
13533
13534 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13535
13536 switch (op)
13537 {
13538 /* Ada attributes ('Foo). */
13539 case OP_ATR_FIRST:
13540 case OP_ATR_LAST:
13541 case OP_ATR_LENGTH:
13542 case OP_ATR_IMAGE:
13543 case OP_ATR_MAX:
13544 case OP_ATR_MIN:
13545 case OP_ATR_MODULUS:
13546 case OP_ATR_POS:
13547 case OP_ATR_SIZE:
13548 case OP_ATR_TAG:
13549 case OP_ATR_VAL:
13550 break;
13551
13552 case UNOP_IN_RANGE:
13553 case UNOP_QUAL:
13554 /* XXX: gdb_sprint_host_address, type_sprint */
13555 fprintf_filtered (stream, _("Type @"));
13556 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13557 fprintf_filtered (stream, " (");
13558 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13559 fprintf_filtered (stream, ")");
13560 break;
13561 case BINOP_IN_BOUNDS:
13562 fprintf_filtered (stream, " (%d)",
13563 longest_to_int (exp->elts[pc + 2].longconst));
13564 break;
13565 case TERNOP_IN_RANGE:
13566 break;
13567
13568 case OP_AGGREGATE:
13569 case OP_OTHERS:
13570 case OP_DISCRETE_RANGE:
13571 case OP_POSITIONAL:
13572 case OP_CHOICES:
13573 break;
13574
13575 case OP_NAME:
13576 case OP_STRING:
13577 {
13578 char *name = &exp->elts[elt + 2].string;
13579 int len = longest_to_int (exp->elts[elt + 1].longconst);
13580
13581 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13582 break;
13583 }
13584
13585 default:
13586 return dump_subexp_body_standard (exp, stream, elt);
13587 }
13588
13589 elt += oplen;
13590 for (i = 0; i < nargs; i += 1)
13591 elt = dump_subexp (exp, stream, elt);
13592
13593 return elt;
13594 }
13595
13596 /* The Ada extension of print_subexp (q.v.). */
13597
13598 static void
13599 ada_print_subexp (struct expression *exp, int *pos,
13600 struct ui_file *stream, enum precedence prec)
13601 {
13602 int oplen, nargs, i;
13603 int pc = *pos;
13604 enum exp_opcode op = exp->elts[pc].opcode;
13605
13606 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13607
13608 *pos += oplen;
13609 switch (op)
13610 {
13611 default:
13612 *pos -= oplen;
13613 print_subexp_standard (exp, pos, stream, prec);
13614 return;
13615
13616 case OP_VAR_VALUE:
13617 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13618 return;
13619
13620 case BINOP_IN_BOUNDS:
13621 /* XXX: sprint_subexp */
13622 print_subexp (exp, pos, stream, PREC_SUFFIX);
13623 fputs_filtered (" in ", stream);
13624 print_subexp (exp, pos, stream, PREC_SUFFIX);
13625 fputs_filtered ("'range", stream);
13626 if (exp->elts[pc + 1].longconst > 1)
13627 fprintf_filtered (stream, "(%ld)",
13628 (long) exp->elts[pc + 1].longconst);
13629 return;
13630
13631 case TERNOP_IN_RANGE:
13632 if (prec >= PREC_EQUAL)
13633 fputs_filtered ("(", stream);
13634 /* XXX: sprint_subexp */
13635 print_subexp (exp, pos, stream, PREC_SUFFIX);
13636 fputs_filtered (" in ", stream);
13637 print_subexp (exp, pos, stream, PREC_EQUAL);
13638 fputs_filtered (" .. ", stream);
13639 print_subexp (exp, pos, stream, PREC_EQUAL);
13640 if (prec >= PREC_EQUAL)
13641 fputs_filtered (")", stream);
13642 return;
13643
13644 case OP_ATR_FIRST:
13645 case OP_ATR_LAST:
13646 case OP_ATR_LENGTH:
13647 case OP_ATR_IMAGE:
13648 case OP_ATR_MAX:
13649 case OP_ATR_MIN:
13650 case OP_ATR_MODULUS:
13651 case OP_ATR_POS:
13652 case OP_ATR_SIZE:
13653 case OP_ATR_TAG:
13654 case OP_ATR_VAL:
13655 if (exp->elts[*pos].opcode == OP_TYPE)
13656 {
13657 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13658 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13659 &type_print_raw_options);
13660 *pos += 3;
13661 }
13662 else
13663 print_subexp (exp, pos, stream, PREC_SUFFIX);
13664 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13665 if (nargs > 1)
13666 {
13667 int tem;
13668
13669 for (tem = 1; tem < nargs; tem += 1)
13670 {
13671 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13672 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13673 }
13674 fputs_filtered (")", stream);
13675 }
13676 return;
13677
13678 case UNOP_QUAL:
13679 type_print (exp->elts[pc + 1].type, "", stream, 0);
13680 fputs_filtered ("'(", stream);
13681 print_subexp (exp, pos, stream, PREC_PREFIX);
13682 fputs_filtered (")", stream);
13683 return;
13684
13685 case UNOP_IN_RANGE:
13686 /* XXX: sprint_subexp */
13687 print_subexp (exp, pos, stream, PREC_SUFFIX);
13688 fputs_filtered (" in ", stream);
13689 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13690 &type_print_raw_options);
13691 return;
13692
13693 case OP_DISCRETE_RANGE:
13694 print_subexp (exp, pos, stream, PREC_SUFFIX);
13695 fputs_filtered ("..", stream);
13696 print_subexp (exp, pos, stream, PREC_SUFFIX);
13697 return;
13698
13699 case OP_OTHERS:
13700 fputs_filtered ("others => ", stream);
13701 print_subexp (exp, pos, stream, PREC_SUFFIX);
13702 return;
13703
13704 case OP_CHOICES:
13705 for (i = 0; i < nargs-1; i += 1)
13706 {
13707 if (i > 0)
13708 fputs_filtered ("|", stream);
13709 print_subexp (exp, pos, stream, PREC_SUFFIX);
13710 }
13711 fputs_filtered (" => ", stream);
13712 print_subexp (exp, pos, stream, PREC_SUFFIX);
13713 return;
13714
13715 case OP_POSITIONAL:
13716 print_subexp (exp, pos, stream, PREC_SUFFIX);
13717 return;
13718
13719 case OP_AGGREGATE:
13720 fputs_filtered ("(", stream);
13721 for (i = 0; i < nargs; i += 1)
13722 {
13723 if (i > 0)
13724 fputs_filtered (", ", stream);
13725 print_subexp (exp, pos, stream, PREC_SUFFIX);
13726 }
13727 fputs_filtered (")", stream);
13728 return;
13729 }
13730 }
13731
13732 /* Table mapping opcodes into strings for printing operators
13733 and precedences of the operators. */
13734
13735 static const struct op_print ada_op_print_tab[] = {
13736 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13737 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13738 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13739 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13740 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13741 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13742 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13743 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13744 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13745 {">=", BINOP_GEQ, PREC_ORDER, 0},
13746 {">", BINOP_GTR, PREC_ORDER, 0},
13747 {"<", BINOP_LESS, PREC_ORDER, 0},
13748 {">>", BINOP_RSH, PREC_SHIFT, 0},
13749 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13750 {"+", BINOP_ADD, PREC_ADD, 0},
13751 {"-", BINOP_SUB, PREC_ADD, 0},
13752 {"&", BINOP_CONCAT, PREC_ADD, 0},
13753 {"*", BINOP_MUL, PREC_MUL, 0},
13754 {"/", BINOP_DIV, PREC_MUL, 0},
13755 {"rem", BINOP_REM, PREC_MUL, 0},
13756 {"mod", BINOP_MOD, PREC_MUL, 0},
13757 {"**", BINOP_EXP, PREC_REPEAT, 0},
13758 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13759 {"-", UNOP_NEG, PREC_PREFIX, 0},
13760 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13761 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13762 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13763 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13764 {".all", UNOP_IND, PREC_SUFFIX, 1},
13765 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13766 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13767 {NULL, OP_NULL, PREC_SUFFIX, 0}
13768 };
13769 \f
13770 enum ada_primitive_types {
13771 ada_primitive_type_int,
13772 ada_primitive_type_long,
13773 ada_primitive_type_short,
13774 ada_primitive_type_char,
13775 ada_primitive_type_float,
13776 ada_primitive_type_double,
13777 ada_primitive_type_void,
13778 ada_primitive_type_long_long,
13779 ada_primitive_type_long_double,
13780 ada_primitive_type_natural,
13781 ada_primitive_type_positive,
13782 ada_primitive_type_system_address,
13783 nr_ada_primitive_types
13784 };
13785
13786 static void
13787 ada_language_arch_info (struct gdbarch *gdbarch,
13788 struct language_arch_info *lai)
13789 {
13790 const struct builtin_type *builtin = builtin_type (gdbarch);
13791
13792 lai->primitive_type_vector
13793 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13794 struct type *);
13795
13796 lai->primitive_type_vector [ada_primitive_type_int]
13797 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13798 0, "integer");
13799 lai->primitive_type_vector [ada_primitive_type_long]
13800 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13801 0, "long_integer");
13802 lai->primitive_type_vector [ada_primitive_type_short]
13803 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13804 0, "short_integer");
13805 lai->string_char_type
13806 = lai->primitive_type_vector [ada_primitive_type_char]
13807 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13808 lai->primitive_type_vector [ada_primitive_type_float]
13809 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13810 "float", NULL);
13811 lai->primitive_type_vector [ada_primitive_type_double]
13812 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13813 "long_float", NULL);
13814 lai->primitive_type_vector [ada_primitive_type_long_long]
13815 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13816 0, "long_long_integer");
13817 lai->primitive_type_vector [ada_primitive_type_long_double]
13818 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13819 "long_long_float", NULL);
13820 lai->primitive_type_vector [ada_primitive_type_natural]
13821 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13822 0, "natural");
13823 lai->primitive_type_vector [ada_primitive_type_positive]
13824 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13825 0, "positive");
13826 lai->primitive_type_vector [ada_primitive_type_void]
13827 = builtin->builtin_void;
13828
13829 lai->primitive_type_vector [ada_primitive_type_system_address]
13830 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13831 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13832 = "system__address";
13833
13834 lai->bool_type_symbol = NULL;
13835 lai->bool_type_default = builtin->builtin_bool;
13836 }
13837 \f
13838 /* Language vector */
13839
13840 /* Not really used, but needed in the ada_language_defn. */
13841
13842 static void
13843 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13844 {
13845 ada_emit_char (c, type, stream, quoter, 1);
13846 }
13847
13848 static int
13849 parse (struct parser_state *ps)
13850 {
13851 warnings_issued = 0;
13852 return ada_parse (ps);
13853 }
13854
13855 static const struct exp_descriptor ada_exp_descriptor = {
13856 ada_print_subexp,
13857 ada_operator_length,
13858 ada_operator_check,
13859 ada_op_name,
13860 ada_dump_subexp_body,
13861 ada_evaluate_subexp
13862 };
13863
13864 /* Implement the "la_get_symbol_name_cmp" language_defn method
13865 for Ada. */
13866
13867 static symbol_name_cmp_ftype
13868 ada_get_symbol_name_cmp (const char *lookup_name)
13869 {
13870 if (should_use_wild_match (lookup_name))
13871 return wild_match;
13872 else
13873 return compare_names;
13874 }
13875
13876 /* Implement the "la_read_var_value" language_defn method for Ada. */
13877
13878 static struct value *
13879 ada_read_var_value (struct symbol *var, const struct block *var_block,
13880 struct frame_info *frame)
13881 {
13882 const struct block *frame_block = NULL;
13883 struct symbol *renaming_sym = NULL;
13884
13885 /* The only case where default_read_var_value is not sufficient
13886 is when VAR is a renaming... */
13887 if (frame)
13888 frame_block = get_frame_block (frame, NULL);
13889 if (frame_block)
13890 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13891 if (renaming_sym != NULL)
13892 return ada_read_renaming_var_value (renaming_sym, frame_block);
13893
13894 /* This is a typical case where we expect the default_read_var_value
13895 function to work. */
13896 return default_read_var_value (var, var_block, frame);
13897 }
13898
13899 const struct language_defn ada_language_defn = {
13900 "ada", /* Language name */
13901 "Ada",
13902 language_ada,
13903 range_check_off,
13904 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13905 that's not quite what this means. */
13906 array_row_major,
13907 macro_expansion_no,
13908 &ada_exp_descriptor,
13909 parse,
13910 ada_error,
13911 resolve,
13912 ada_printchar, /* Print a character constant */
13913 ada_printstr, /* Function to print string constant */
13914 emit_char, /* Function to print single char (not used) */
13915 ada_print_type, /* Print a type using appropriate syntax */
13916 ada_print_typedef, /* Print a typedef using appropriate syntax */
13917 ada_val_print, /* Print a value using appropriate syntax */
13918 ada_value_print, /* Print a top-level value */
13919 ada_read_var_value, /* la_read_var_value */
13920 NULL, /* Language specific skip_trampoline */
13921 NULL, /* name_of_this */
13922 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13923 basic_lookup_transparent_type, /* lookup_transparent_type */
13924 ada_la_decode, /* Language specific symbol demangler */
13925 NULL, /* Language specific
13926 class_name_from_physname */
13927 ada_op_print_tab, /* expression operators for printing */
13928 0, /* c-style arrays */
13929 1, /* String lower bound */
13930 ada_get_gdb_completer_word_break_characters,
13931 ada_make_symbol_completion_list,
13932 ada_language_arch_info,
13933 ada_print_array_index,
13934 default_pass_by_reference,
13935 c_get_string,
13936 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13937 ada_iterate_over_symbols,
13938 &ada_varobj_ops,
13939 NULL,
13940 NULL,
13941 LANG_MAGIC
13942 };
13943
13944 /* Provide a prototype to silence -Wmissing-prototypes. */
13945 extern initialize_file_ftype _initialize_ada_language;
13946
13947 /* Command-list for the "set/show ada" prefix command. */
13948 static struct cmd_list_element *set_ada_list;
13949 static struct cmd_list_element *show_ada_list;
13950
13951 /* Implement the "set ada" prefix command. */
13952
13953 static void
13954 set_ada_command (char *arg, int from_tty)
13955 {
13956 printf_unfiltered (_(\
13957 "\"set ada\" must be followed by the name of a setting.\n"));
13958 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13959 }
13960
13961 /* Implement the "show ada" prefix command. */
13962
13963 static void
13964 show_ada_command (char *args, int from_tty)
13965 {
13966 cmd_show_list (show_ada_list, from_tty, "");
13967 }
13968
13969 static void
13970 initialize_ada_catchpoint_ops (void)
13971 {
13972 struct breakpoint_ops *ops;
13973
13974 initialize_breakpoint_ops ();
13975
13976 ops = &catch_exception_breakpoint_ops;
13977 *ops = bkpt_breakpoint_ops;
13978 ops->dtor = dtor_catch_exception;
13979 ops->allocate_location = allocate_location_catch_exception;
13980 ops->re_set = re_set_catch_exception;
13981 ops->check_status = check_status_catch_exception;
13982 ops->print_it = print_it_catch_exception;
13983 ops->print_one = print_one_catch_exception;
13984 ops->print_mention = print_mention_catch_exception;
13985 ops->print_recreate = print_recreate_catch_exception;
13986
13987 ops = &catch_exception_unhandled_breakpoint_ops;
13988 *ops = bkpt_breakpoint_ops;
13989 ops->dtor = dtor_catch_exception_unhandled;
13990 ops->allocate_location = allocate_location_catch_exception_unhandled;
13991 ops->re_set = re_set_catch_exception_unhandled;
13992 ops->check_status = check_status_catch_exception_unhandled;
13993 ops->print_it = print_it_catch_exception_unhandled;
13994 ops->print_one = print_one_catch_exception_unhandled;
13995 ops->print_mention = print_mention_catch_exception_unhandled;
13996 ops->print_recreate = print_recreate_catch_exception_unhandled;
13997
13998 ops = &catch_assert_breakpoint_ops;
13999 *ops = bkpt_breakpoint_ops;
14000 ops->dtor = dtor_catch_assert;
14001 ops->allocate_location = allocate_location_catch_assert;
14002 ops->re_set = re_set_catch_assert;
14003 ops->check_status = check_status_catch_assert;
14004 ops->print_it = print_it_catch_assert;
14005 ops->print_one = print_one_catch_assert;
14006 ops->print_mention = print_mention_catch_assert;
14007 ops->print_recreate = print_recreate_catch_assert;
14008 }
14009
14010 /* This module's 'new_objfile' observer. */
14011
14012 static void
14013 ada_new_objfile_observer (struct objfile *objfile)
14014 {
14015 ada_clear_symbol_cache ();
14016 }
14017
14018 /* This module's 'free_objfile' observer. */
14019
14020 static void
14021 ada_free_objfile_observer (struct objfile *objfile)
14022 {
14023 ada_clear_symbol_cache ();
14024 }
14025
14026 void
14027 _initialize_ada_language (void)
14028 {
14029 add_language (&ada_language_defn);
14030
14031 initialize_ada_catchpoint_ops ();
14032
14033 add_prefix_cmd ("ada", no_class, set_ada_command,
14034 _("Prefix command for changing Ada-specfic settings"),
14035 &set_ada_list, "set ada ", 0, &setlist);
14036
14037 add_prefix_cmd ("ada", no_class, show_ada_command,
14038 _("Generic command for showing Ada-specific settings."),
14039 &show_ada_list, "show ada ", 0, &showlist);
14040
14041 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14042 &trust_pad_over_xvs, _("\
14043 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14044 Show whether an optimization trusting PAD types over XVS types is activated"),
14045 _("\
14046 This is related to the encoding used by the GNAT compiler. The debugger\n\
14047 should normally trust the contents of PAD types, but certain older versions\n\
14048 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14049 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14050 work around this bug. It is always safe to turn this option \"off\", but\n\
14051 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14052 this option to \"off\" unless necessary."),
14053 NULL, NULL, &set_ada_list, &show_ada_list);
14054
14055 add_catch_command ("exception", _("\
14056 Catch Ada exceptions, when raised.\n\
14057 With an argument, catch only exceptions with the given name."),
14058 catch_ada_exception_command,
14059 NULL,
14060 CATCH_PERMANENT,
14061 CATCH_TEMPORARY);
14062 add_catch_command ("assert", _("\
14063 Catch failed Ada assertions, when raised.\n\
14064 With an argument, catch only exceptions with the given name."),
14065 catch_assert_command,
14066 NULL,
14067 CATCH_PERMANENT,
14068 CATCH_TEMPORARY);
14069
14070 varsize_limit = 65536;
14071
14072 add_info ("exceptions", info_exceptions_command,
14073 _("\
14074 List all Ada exception names.\n\
14075 If a regular expression is passed as an argument, only those matching\n\
14076 the regular expression are listed."));
14077
14078 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14079 _("Set Ada maintenance-related variables."),
14080 &maint_set_ada_cmdlist, "maintenance set ada ",
14081 0/*allow-unknown*/, &maintenance_set_cmdlist);
14082
14083 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14084 _("Show Ada maintenance-related variables"),
14085 &maint_show_ada_cmdlist, "maintenance show ada ",
14086 0/*allow-unknown*/, &maintenance_show_cmdlist);
14087
14088 add_setshow_boolean_cmd
14089 ("ignore-descriptive-types", class_maintenance,
14090 &ada_ignore_descriptive_types_p,
14091 _("Set whether descriptive types generated by GNAT should be ignored."),
14092 _("Show whether descriptive types generated by GNAT should be ignored."),
14093 _("\
14094 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14095 DWARF attribute."),
14096 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14097
14098 obstack_init (&symbol_list_obstack);
14099
14100 decoded_names_store = htab_create_alloc
14101 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14102 NULL, xcalloc, xfree);
14103
14104 /* The ada-lang observers. */
14105 observer_attach_new_objfile (ada_new_objfile_observer);
14106 observer_attach_free_objfile (ada_free_objfile_observer);
14107 observer_attach_inferior_exit (ada_inferior_exit);
14108
14109 /* Setup various context-specific data. */
14110 ada_inferior_data
14111 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14112 ada_pspace_data_handle
14113 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14114 }
This page took 0.325339 seconds and 4 git commands to generate.