gdb: rewrite how per language primitive types are managed
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_unconstrained_packed_array_type (struct type *);
174
175 static struct value *value_subscript_packed (struct value *, int,
176 struct value **);
177
178 static struct value *coerce_unspec_val_to_type (struct value *,
179 struct type *);
180
181 static int lesseq_defined_than (struct symbol *, struct symbol *);
182
183 static int equiv_types (struct type *, struct type *);
184
185 static int is_name_suffix (const char *);
186
187 static int advance_wild_match (const char **, const char *, char);
188
189 static bool wild_match (const char *name, const char *patn);
190
191 static struct value *ada_coerce_ref (struct value *);
192
193 static LONGEST pos_atr (struct value *);
194
195 static struct value *value_pos_atr (struct type *, struct value *);
196
197 static struct value *val_atr (struct type *, LONGEST);
198
199 static struct value *value_val_atr (struct type *, struct value *);
200
201 static struct symbol *standard_lookup (const char *, const struct block *,
202 domain_enum);
203
204 static struct value *ada_search_struct_field (const char *, struct value *, int,
205 struct type *);
206
207 static int find_struct_field (const char *, struct type *, int,
208 struct type **, int *, int *, int *, int *);
209
210 static int ada_resolve_function (struct block_symbol *, int,
211 struct value **, int, const char *,
212 struct type *, int);
213
214 static int ada_is_direct_array_type (struct type *);
215
216 static struct value *ada_index_struct_field (int, struct value *, int,
217 struct type *);
218
219 static struct value *assign_aggregate (struct value *, struct value *,
220 struct expression *,
221 int *, enum noside);
222
223 static void aggregate_assign_from_choices (struct value *, struct value *,
224 struct expression *,
225 int *, LONGEST *, int *,
226 int, LONGEST, LONGEST);
227
228 static void aggregate_assign_positional (struct value *, struct value *,
229 struct expression *,
230 int *, LONGEST *, int *, int,
231 LONGEST, LONGEST);
232
233
234 static void aggregate_assign_others (struct value *, struct value *,
235 struct expression *,
236 int *, LONGEST *, int, LONGEST, LONGEST);
237
238
239 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
240
241
242 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
243 int *, enum noside);
244
245 static void ada_forward_operator_length (struct expression *, int, int *,
246 int *);
247
248 static struct type *ada_find_any_type (const char *name);
249
250 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
251 (const lookup_name_info &lookup_name);
252
253 \f
254
255 /* The result of a symbol lookup to be stored in our symbol cache. */
256
257 struct cache_entry
258 {
259 /* The name used to perform the lookup. */
260 const char *name;
261 /* The namespace used during the lookup. */
262 domain_enum domain;
263 /* The symbol returned by the lookup, or NULL if no matching symbol
264 was found. */
265 struct symbol *sym;
266 /* The block where the symbol was found, or NULL if no matching
267 symbol was found. */
268 const struct block *block;
269 /* A pointer to the next entry with the same hash. */
270 struct cache_entry *next;
271 };
272
273 /* The Ada symbol cache, used to store the result of Ada-mode symbol
274 lookups in the course of executing the user's commands.
275
276 The cache is implemented using a simple, fixed-sized hash.
277 The size is fixed on the grounds that there are not likely to be
278 all that many symbols looked up during any given session, regardless
279 of the size of the symbol table. If we decide to go to a resizable
280 table, let's just use the stuff from libiberty instead. */
281
282 #define HASH_SIZE 1009
283
284 struct ada_symbol_cache
285 {
286 /* An obstack used to store the entries in our cache. */
287 struct obstack cache_space;
288
289 /* The root of the hash table used to implement our symbol cache. */
290 struct cache_entry *root[HASH_SIZE];
291 };
292
293 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
294
295 /* Maximum-sized dynamic type. */
296 static unsigned int varsize_limit;
297
298 static const char ada_completer_word_break_characters[] =
299 #ifdef VMS
300 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
301 #else
302 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
303 #endif
304
305 /* The name of the symbol to use to get the name of the main subprogram. */
306 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
307 = "__gnat_ada_main_program_name";
308
309 /* Limit on the number of warnings to raise per expression evaluation. */
310 static int warning_limit = 2;
311
312 /* Number of warning messages issued; reset to 0 by cleanups after
313 expression evaluation. */
314 static int warnings_issued = 0;
315
316 static const char * const known_runtime_file_name_patterns[] = {
317 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
318 };
319
320 static const char * const known_auxiliary_function_name_patterns[] = {
321 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
322 };
323
324 /* Maintenance-related settings for this module. */
325
326 static struct cmd_list_element *maint_set_ada_cmdlist;
327 static struct cmd_list_element *maint_show_ada_cmdlist;
328
329 /* The "maintenance ada set/show ignore-descriptive-type" value. */
330
331 static bool ada_ignore_descriptive_types_p = false;
332
333 /* Inferior-specific data. */
334
335 /* Per-inferior data for this module. */
336
337 struct ada_inferior_data
338 {
339 /* The ada__tags__type_specific_data type, which is used when decoding
340 tagged types. With older versions of GNAT, this type was directly
341 accessible through a component ("tsd") in the object tag. But this
342 is no longer the case, so we cache it for each inferior. */
343 struct type *tsd_type = nullptr;
344
345 /* The exception_support_info data. This data is used to determine
346 how to implement support for Ada exception catchpoints in a given
347 inferior. */
348 const struct exception_support_info *exception_info = nullptr;
349 };
350
351 /* Our key to this module's inferior data. */
352 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
353
354 /* Return our inferior data for the given inferior (INF).
355
356 This function always returns a valid pointer to an allocated
357 ada_inferior_data structure. If INF's inferior data has not
358 been previously set, this functions creates a new one with all
359 fields set to zero, sets INF's inferior to it, and then returns
360 a pointer to that newly allocated ada_inferior_data. */
361
362 static struct ada_inferior_data *
363 get_ada_inferior_data (struct inferior *inf)
364 {
365 struct ada_inferior_data *data;
366
367 data = ada_inferior_data.get (inf);
368 if (data == NULL)
369 data = ada_inferior_data.emplace (inf);
370
371 return data;
372 }
373
374 /* Perform all necessary cleanups regarding our module's inferior data
375 that is required after the inferior INF just exited. */
376
377 static void
378 ada_inferior_exit (struct inferior *inf)
379 {
380 ada_inferior_data.clear (inf);
381 }
382
383
384 /* program-space-specific data. */
385
386 /* This module's per-program-space data. */
387 struct ada_pspace_data
388 {
389 ~ada_pspace_data ()
390 {
391 if (sym_cache != NULL)
392 ada_free_symbol_cache (sym_cache);
393 }
394
395 /* The Ada symbol cache. */
396 struct ada_symbol_cache *sym_cache = nullptr;
397 };
398
399 /* Key to our per-program-space data. */
400 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
401
402 /* Return this module's data for the given program space (PSPACE).
403 If not is found, add a zero'ed one now.
404
405 This function always returns a valid object. */
406
407 static struct ada_pspace_data *
408 get_ada_pspace_data (struct program_space *pspace)
409 {
410 struct ada_pspace_data *data;
411
412 data = ada_pspace_data_handle.get (pspace);
413 if (data == NULL)
414 data = ada_pspace_data_handle.emplace (pspace);
415
416 return data;
417 }
418
419 /* Utilities */
420
421 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
422 all typedef layers have been peeled. Otherwise, return TYPE.
423
424 Normally, we really expect a typedef type to only have 1 typedef layer.
425 In other words, we really expect the target type of a typedef type to be
426 a non-typedef type. This is particularly true for Ada units, because
427 the language does not have a typedef vs not-typedef distinction.
428 In that respect, the Ada compiler has been trying to eliminate as many
429 typedef definitions in the debugging information, since they generally
430 do not bring any extra information (we still use typedef under certain
431 circumstances related mostly to the GNAT encoding).
432
433 Unfortunately, we have seen situations where the debugging information
434 generated by the compiler leads to such multiple typedef layers. For
435 instance, consider the following example with stabs:
436
437 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
438 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
439
440 This is an error in the debugging information which causes type
441 pck__float_array___XUP to be defined twice, and the second time,
442 it is defined as a typedef of a typedef.
443
444 This is on the fringe of legality as far as debugging information is
445 concerned, and certainly unexpected. But it is easy to handle these
446 situations correctly, so we can afford to be lenient in this case. */
447
448 static struct type *
449 ada_typedef_target_type (struct type *type)
450 {
451 while (type->code () == TYPE_CODE_TYPEDEF)
452 type = TYPE_TARGET_TYPE (type);
453 return type;
454 }
455
456 /* Given DECODED_NAME a string holding a symbol name in its
457 decoded form (ie using the Ada dotted notation), returns
458 its unqualified name. */
459
460 static const char *
461 ada_unqualified_name (const char *decoded_name)
462 {
463 const char *result;
464
465 /* If the decoded name starts with '<', it means that the encoded
466 name does not follow standard naming conventions, and thus that
467 it is not your typical Ada symbol name. Trying to unqualify it
468 is therefore pointless and possibly erroneous. */
469 if (decoded_name[0] == '<')
470 return decoded_name;
471
472 result = strrchr (decoded_name, '.');
473 if (result != NULL)
474 result++; /* Skip the dot... */
475 else
476 result = decoded_name;
477
478 return result;
479 }
480
481 /* Return a string starting with '<', followed by STR, and '>'. */
482
483 static std::string
484 add_angle_brackets (const char *str)
485 {
486 return string_printf ("<%s>", str);
487 }
488
489 /* Assuming V points to an array of S objects, make sure that it contains at
490 least M objects, updating V and S as necessary. */
491
492 #define GROW_VECT(v, s, m) \
493 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
494
495 /* Assuming VECT points to an array of *SIZE objects of size
496 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
497 updating *SIZE as necessary and returning the (new) array. */
498
499 static void *
500 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
501 {
502 if (*size < min_size)
503 {
504 *size *= 2;
505 if (*size < min_size)
506 *size = min_size;
507 vect = xrealloc (vect, *size * element_size);
508 }
509 return vect;
510 }
511
512 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
513 suffix of FIELD_NAME beginning "___". */
514
515 static int
516 field_name_match (const char *field_name, const char *target)
517 {
518 int len = strlen (target);
519
520 return
521 (strncmp (field_name, target, len) == 0
522 && (field_name[len] == '\0'
523 || (startswith (field_name + len, "___")
524 && strcmp (field_name + strlen (field_name) - 6,
525 "___XVN") != 0)));
526 }
527
528
529 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
530 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
531 and return its index. This function also handles fields whose name
532 have ___ suffixes because the compiler sometimes alters their name
533 by adding such a suffix to represent fields with certain constraints.
534 If the field could not be found, return a negative number if
535 MAYBE_MISSING is set. Otherwise raise an error. */
536
537 int
538 ada_get_field_index (const struct type *type, const char *field_name,
539 int maybe_missing)
540 {
541 int fieldno;
542 struct type *struct_type = check_typedef ((struct type *) type);
543
544 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
545 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
546 return fieldno;
547
548 if (!maybe_missing)
549 error (_("Unable to find field %s in struct %s. Aborting"),
550 field_name, struct_type->name ());
551
552 return -1;
553 }
554
555 /* The length of the prefix of NAME prior to any "___" suffix. */
556
557 int
558 ada_name_prefix_len (const char *name)
559 {
560 if (name == NULL)
561 return 0;
562 else
563 {
564 const char *p = strstr (name, "___");
565
566 if (p == NULL)
567 return strlen (name);
568 else
569 return p - name;
570 }
571 }
572
573 /* Return non-zero if SUFFIX is a suffix of STR.
574 Return zero if STR is null. */
575
576 static int
577 is_suffix (const char *str, const char *suffix)
578 {
579 int len1, len2;
580
581 if (str == NULL)
582 return 0;
583 len1 = strlen (str);
584 len2 = strlen (suffix);
585 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
586 }
587
588 /* The contents of value VAL, treated as a value of type TYPE. The
589 result is an lval in memory if VAL is. */
590
591 static struct value *
592 coerce_unspec_val_to_type (struct value *val, struct type *type)
593 {
594 type = ada_check_typedef (type);
595 if (value_type (val) == type)
596 return val;
597 else
598 {
599 struct value *result;
600
601 /* Make sure that the object size is not unreasonable before
602 trying to allocate some memory for it. */
603 ada_ensure_varsize_limit (type);
604
605 if (value_lazy (val)
606 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
607 result = allocate_value_lazy (type);
608 else
609 {
610 result = allocate_value (type);
611 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
612 }
613 set_value_component_location (result, val);
614 set_value_bitsize (result, value_bitsize (val));
615 set_value_bitpos (result, value_bitpos (val));
616 if (VALUE_LVAL (result) == lval_memory)
617 set_value_address (result, value_address (val));
618 return result;
619 }
620 }
621
622 static const gdb_byte *
623 cond_offset_host (const gdb_byte *valaddr, long offset)
624 {
625 if (valaddr == NULL)
626 return NULL;
627 else
628 return valaddr + offset;
629 }
630
631 static CORE_ADDR
632 cond_offset_target (CORE_ADDR address, long offset)
633 {
634 if (address == 0)
635 return 0;
636 else
637 return address + offset;
638 }
639
640 /* Issue a warning (as for the definition of warning in utils.c, but
641 with exactly one argument rather than ...), unless the limit on the
642 number of warnings has passed during the evaluation of the current
643 expression. */
644
645 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
646 provided by "complaint". */
647 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
648
649 static void
650 lim_warning (const char *format, ...)
651 {
652 va_list args;
653
654 va_start (args, format);
655 warnings_issued += 1;
656 if (warnings_issued <= warning_limit)
657 vwarning (format, args);
658
659 va_end (args);
660 }
661
662 /* Issue an error if the size of an object of type T is unreasonable,
663 i.e. if it would be a bad idea to allocate a value of this type in
664 GDB. */
665
666 void
667 ada_ensure_varsize_limit (const struct type *type)
668 {
669 if (TYPE_LENGTH (type) > varsize_limit)
670 error (_("object size is larger than varsize-limit"));
671 }
672
673 /* Maximum value of a SIZE-byte signed integer type. */
674 static LONGEST
675 max_of_size (int size)
676 {
677 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
678
679 return top_bit | (top_bit - 1);
680 }
681
682 /* Minimum value of a SIZE-byte signed integer type. */
683 static LONGEST
684 min_of_size (int size)
685 {
686 return -max_of_size (size) - 1;
687 }
688
689 /* Maximum value of a SIZE-byte unsigned integer type. */
690 static ULONGEST
691 umax_of_size (int size)
692 {
693 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
694
695 return top_bit | (top_bit - 1);
696 }
697
698 /* Maximum value of integral type T, as a signed quantity. */
699 static LONGEST
700 max_of_type (struct type *t)
701 {
702 if (t->is_unsigned ())
703 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
704 else
705 return max_of_size (TYPE_LENGTH (t));
706 }
707
708 /* Minimum value of integral type T, as a signed quantity. */
709 static LONGEST
710 min_of_type (struct type *t)
711 {
712 if (t->is_unsigned ())
713 return 0;
714 else
715 return min_of_size (TYPE_LENGTH (t));
716 }
717
718 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
719 LONGEST
720 ada_discrete_type_high_bound (struct type *type)
721 {
722 type = resolve_dynamic_type (type, {}, 0);
723 switch (type->code ())
724 {
725 case TYPE_CODE_RANGE:
726 {
727 const dynamic_prop &high = type->bounds ()->high;
728
729 if (high.kind () == PROP_CONST)
730 return high.const_val ();
731 else
732 {
733 gdb_assert (high.kind () == PROP_UNDEFINED);
734
735 /* This happens when trying to evaluate a type's dynamic bound
736 without a live target. There is nothing relevant for us to
737 return here, so return 0. */
738 return 0;
739 }
740 }
741 case TYPE_CODE_ENUM:
742 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
743 case TYPE_CODE_BOOL:
744 return 1;
745 case TYPE_CODE_CHAR:
746 case TYPE_CODE_INT:
747 return max_of_type (type);
748 default:
749 error (_("Unexpected type in ada_discrete_type_high_bound."));
750 }
751 }
752
753 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
754 LONGEST
755 ada_discrete_type_low_bound (struct type *type)
756 {
757 type = resolve_dynamic_type (type, {}, 0);
758 switch (type->code ())
759 {
760 case TYPE_CODE_RANGE:
761 {
762 const dynamic_prop &low = type->bounds ()->low;
763
764 if (low.kind () == PROP_CONST)
765 return low.const_val ();
766 else
767 {
768 gdb_assert (low.kind () == PROP_UNDEFINED);
769
770 /* This happens when trying to evaluate a type's dynamic bound
771 without a live target. There is nothing relevant for us to
772 return here, so return 0. */
773 return 0;
774 }
775 }
776 case TYPE_CODE_ENUM:
777 return TYPE_FIELD_ENUMVAL (type, 0);
778 case TYPE_CODE_BOOL:
779 return 0;
780 case TYPE_CODE_CHAR:
781 case TYPE_CODE_INT:
782 return min_of_type (type);
783 default:
784 error (_("Unexpected type in ada_discrete_type_low_bound."));
785 }
786 }
787
788 /* The identity on non-range types. For range types, the underlying
789 non-range scalar type. */
790
791 static struct type *
792 get_base_type (struct type *type)
793 {
794 while (type != NULL && type->code () == TYPE_CODE_RANGE)
795 {
796 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
797 return type;
798 type = TYPE_TARGET_TYPE (type);
799 }
800 return type;
801 }
802
803 /* Return a decoded version of the given VALUE. This means returning
804 a value whose type is obtained by applying all the GNAT-specific
805 encodings, making the resulting type a static but standard description
806 of the initial type. */
807
808 struct value *
809 ada_get_decoded_value (struct value *value)
810 {
811 struct type *type = ada_check_typedef (value_type (value));
812
813 if (ada_is_array_descriptor_type (type)
814 || (ada_is_constrained_packed_array_type (type)
815 && type->code () != TYPE_CODE_PTR))
816 {
817 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
818 value = ada_coerce_to_simple_array_ptr (value);
819 else
820 value = ada_coerce_to_simple_array (value);
821 }
822 else
823 value = ada_to_fixed_value (value);
824
825 return value;
826 }
827
828 /* Same as ada_get_decoded_value, but with the given TYPE.
829 Because there is no associated actual value for this type,
830 the resulting type might be a best-effort approximation in
831 the case of dynamic types. */
832
833 struct type *
834 ada_get_decoded_type (struct type *type)
835 {
836 type = to_static_fixed_type (type);
837 if (ada_is_constrained_packed_array_type (type))
838 type = ada_coerce_to_simple_array_type (type);
839 return type;
840 }
841
842 \f
843
844 /* Language Selection */
845
846 /* If the main program is in Ada, return language_ada, otherwise return LANG
847 (the main program is in Ada iif the adainit symbol is found). */
848
849 static enum language
850 ada_update_initial_language (enum language lang)
851 {
852 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
853 return language_ada;
854
855 return lang;
856 }
857
858 /* If the main procedure is written in Ada, then return its name.
859 The result is good until the next call. Return NULL if the main
860 procedure doesn't appear to be in Ada. */
861
862 char *
863 ada_main_name (void)
864 {
865 struct bound_minimal_symbol msym;
866 static gdb::unique_xmalloc_ptr<char> main_program_name;
867
868 /* For Ada, the name of the main procedure is stored in a specific
869 string constant, generated by the binder. Look for that symbol,
870 extract its address, and then read that string. If we didn't find
871 that string, then most probably the main procedure is not written
872 in Ada. */
873 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
874
875 if (msym.minsym != NULL)
876 {
877 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
878 if (main_program_name_addr == 0)
879 error (_("Invalid address for Ada main program name."));
880
881 main_program_name = target_read_string (main_program_name_addr, 1024);
882 return main_program_name.get ();
883 }
884
885 /* The main procedure doesn't seem to be in Ada. */
886 return NULL;
887 }
888 \f
889 /* Symbols */
890
891 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
892 of NULLs. */
893
894 const struct ada_opname_map ada_opname_table[] = {
895 {"Oadd", "\"+\"", BINOP_ADD},
896 {"Osubtract", "\"-\"", BINOP_SUB},
897 {"Omultiply", "\"*\"", BINOP_MUL},
898 {"Odivide", "\"/\"", BINOP_DIV},
899 {"Omod", "\"mod\"", BINOP_MOD},
900 {"Orem", "\"rem\"", BINOP_REM},
901 {"Oexpon", "\"**\"", BINOP_EXP},
902 {"Olt", "\"<\"", BINOP_LESS},
903 {"Ole", "\"<=\"", BINOP_LEQ},
904 {"Ogt", "\">\"", BINOP_GTR},
905 {"Oge", "\">=\"", BINOP_GEQ},
906 {"Oeq", "\"=\"", BINOP_EQUAL},
907 {"One", "\"/=\"", BINOP_NOTEQUAL},
908 {"Oand", "\"and\"", BINOP_BITWISE_AND},
909 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
910 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
911 {"Oconcat", "\"&\"", BINOP_CONCAT},
912 {"Oabs", "\"abs\"", UNOP_ABS},
913 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
914 {"Oadd", "\"+\"", UNOP_PLUS},
915 {"Osubtract", "\"-\"", UNOP_NEG},
916 {NULL, NULL}
917 };
918
919 /* The "encoded" form of DECODED, according to GNAT conventions. If
920 THROW_ERRORS, throw an error if invalid operator name is found.
921 Otherwise, return the empty string in that case. */
922
923 static std::string
924 ada_encode_1 (const char *decoded, bool throw_errors)
925 {
926 if (decoded == NULL)
927 return {};
928
929 std::string encoding_buffer;
930 for (const char *p = decoded; *p != '\0'; p += 1)
931 {
932 if (*p == '.')
933 encoding_buffer.append ("__");
934 else if (*p == '"')
935 {
936 const struct ada_opname_map *mapping;
937
938 for (mapping = ada_opname_table;
939 mapping->encoded != NULL
940 && !startswith (p, mapping->decoded); mapping += 1)
941 ;
942 if (mapping->encoded == NULL)
943 {
944 if (throw_errors)
945 error (_("invalid Ada operator name: %s"), p);
946 else
947 return {};
948 }
949 encoding_buffer.append (mapping->encoded);
950 break;
951 }
952 else
953 encoding_buffer.push_back (*p);
954 }
955
956 return encoding_buffer;
957 }
958
959 /* The "encoded" form of DECODED, according to GNAT conventions. */
960
961 std::string
962 ada_encode (const char *decoded)
963 {
964 return ada_encode_1 (decoded, true);
965 }
966
967 /* Return NAME folded to lower case, or, if surrounded by single
968 quotes, unfolded, but with the quotes stripped away. Result good
969 to next call. */
970
971 static char *
972 ada_fold_name (gdb::string_view name)
973 {
974 static char *fold_buffer = NULL;
975 static size_t fold_buffer_size = 0;
976
977 int len = name.size ();
978 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
979
980 if (name[0] == '\'')
981 {
982 strncpy (fold_buffer, name.data () + 1, len - 2);
983 fold_buffer[len - 2] = '\000';
984 }
985 else
986 {
987 int i;
988
989 for (i = 0; i <= len; i += 1)
990 fold_buffer[i] = tolower (name[i]);
991 }
992
993 return fold_buffer;
994 }
995
996 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
997
998 static int
999 is_lower_alphanum (const char c)
1000 {
1001 return (isdigit (c) || (isalpha (c) && islower (c)));
1002 }
1003
1004 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1005 This function saves in LEN the length of that same symbol name but
1006 without either of these suffixes:
1007 . .{DIGIT}+
1008 . ${DIGIT}+
1009 . ___{DIGIT}+
1010 . __{DIGIT}+.
1011
1012 These are suffixes introduced by the compiler for entities such as
1013 nested subprogram for instance, in order to avoid name clashes.
1014 They do not serve any purpose for the debugger. */
1015
1016 static void
1017 ada_remove_trailing_digits (const char *encoded, int *len)
1018 {
1019 if (*len > 1 && isdigit (encoded[*len - 1]))
1020 {
1021 int i = *len - 2;
1022
1023 while (i > 0 && isdigit (encoded[i]))
1024 i--;
1025 if (i >= 0 && encoded[i] == '.')
1026 *len = i;
1027 else if (i >= 0 && encoded[i] == '$')
1028 *len = i;
1029 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1030 *len = i - 2;
1031 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1032 *len = i - 1;
1033 }
1034 }
1035
1036 /* Remove the suffix introduced by the compiler for protected object
1037 subprograms. */
1038
1039 static void
1040 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1041 {
1042 /* Remove trailing N. */
1043
1044 /* Protected entry subprograms are broken into two
1045 separate subprograms: The first one is unprotected, and has
1046 a 'N' suffix; the second is the protected version, and has
1047 the 'P' suffix. The second calls the first one after handling
1048 the protection. Since the P subprograms are internally generated,
1049 we leave these names undecoded, giving the user a clue that this
1050 entity is internal. */
1051
1052 if (*len > 1
1053 && encoded[*len - 1] == 'N'
1054 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1055 *len = *len - 1;
1056 }
1057
1058 /* If ENCODED follows the GNAT entity encoding conventions, then return
1059 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1060 replaced by ENCODED. */
1061
1062 std::string
1063 ada_decode (const char *encoded)
1064 {
1065 int i, j;
1066 int len0;
1067 const char *p;
1068 int at_start_name;
1069 std::string decoded;
1070
1071 /* With function descriptors on PPC64, the value of a symbol named
1072 ".FN", if it exists, is the entry point of the function "FN". */
1073 if (encoded[0] == '.')
1074 encoded += 1;
1075
1076 /* The name of the Ada main procedure starts with "_ada_".
1077 This prefix is not part of the decoded name, so skip this part
1078 if we see this prefix. */
1079 if (startswith (encoded, "_ada_"))
1080 encoded += 5;
1081
1082 /* If the name starts with '_', then it is not a properly encoded
1083 name, so do not attempt to decode it. Similarly, if the name
1084 starts with '<', the name should not be decoded. */
1085 if (encoded[0] == '_' || encoded[0] == '<')
1086 goto Suppress;
1087
1088 len0 = strlen (encoded);
1089
1090 ada_remove_trailing_digits (encoded, &len0);
1091 ada_remove_po_subprogram_suffix (encoded, &len0);
1092
1093 /* Remove the ___X.* suffix if present. Do not forget to verify that
1094 the suffix is located before the current "end" of ENCODED. We want
1095 to avoid re-matching parts of ENCODED that have previously been
1096 marked as discarded (by decrementing LEN0). */
1097 p = strstr (encoded, "___");
1098 if (p != NULL && p - encoded < len0 - 3)
1099 {
1100 if (p[3] == 'X')
1101 len0 = p - encoded;
1102 else
1103 goto Suppress;
1104 }
1105
1106 /* Remove any trailing TKB suffix. It tells us that this symbol
1107 is for the body of a task, but that information does not actually
1108 appear in the decoded name. */
1109
1110 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1111 len0 -= 3;
1112
1113 /* Remove any trailing TB suffix. The TB suffix is slightly different
1114 from the TKB suffix because it is used for non-anonymous task
1115 bodies. */
1116
1117 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1118 len0 -= 2;
1119
1120 /* Remove trailing "B" suffixes. */
1121 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1122
1123 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1124 len0 -= 1;
1125
1126 /* Make decoded big enough for possible expansion by operator name. */
1127
1128 decoded.resize (2 * len0 + 1, 'X');
1129
1130 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1131
1132 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1133 {
1134 i = len0 - 2;
1135 while ((i >= 0 && isdigit (encoded[i]))
1136 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1137 i -= 1;
1138 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1139 len0 = i - 1;
1140 else if (encoded[i] == '$')
1141 len0 = i;
1142 }
1143
1144 /* The first few characters that are not alphabetic are not part
1145 of any encoding we use, so we can copy them over verbatim. */
1146
1147 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1148 decoded[j] = encoded[i];
1149
1150 at_start_name = 1;
1151 while (i < len0)
1152 {
1153 /* Is this a symbol function? */
1154 if (at_start_name && encoded[i] == 'O')
1155 {
1156 int k;
1157
1158 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1159 {
1160 int op_len = strlen (ada_opname_table[k].encoded);
1161 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1162 op_len - 1) == 0)
1163 && !isalnum (encoded[i + op_len]))
1164 {
1165 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1166 at_start_name = 0;
1167 i += op_len;
1168 j += strlen (ada_opname_table[k].decoded);
1169 break;
1170 }
1171 }
1172 if (ada_opname_table[k].encoded != NULL)
1173 continue;
1174 }
1175 at_start_name = 0;
1176
1177 /* Replace "TK__" with "__", which will eventually be translated
1178 into "." (just below). */
1179
1180 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1181 i += 2;
1182
1183 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1184 be translated into "." (just below). These are internal names
1185 generated for anonymous blocks inside which our symbol is nested. */
1186
1187 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1188 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1189 && isdigit (encoded [i+4]))
1190 {
1191 int k = i + 5;
1192
1193 while (k < len0 && isdigit (encoded[k]))
1194 k++; /* Skip any extra digit. */
1195
1196 /* Double-check that the "__B_{DIGITS}+" sequence we found
1197 is indeed followed by "__". */
1198 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1199 i = k;
1200 }
1201
1202 /* Remove _E{DIGITS}+[sb] */
1203
1204 /* Just as for protected object subprograms, there are 2 categories
1205 of subprograms created by the compiler for each entry. The first
1206 one implements the actual entry code, and has a suffix following
1207 the convention above; the second one implements the barrier and
1208 uses the same convention as above, except that the 'E' is replaced
1209 by a 'B'.
1210
1211 Just as above, we do not decode the name of barrier functions
1212 to give the user a clue that the code he is debugging has been
1213 internally generated. */
1214
1215 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1216 && isdigit (encoded[i+2]))
1217 {
1218 int k = i + 3;
1219
1220 while (k < len0 && isdigit (encoded[k]))
1221 k++;
1222
1223 if (k < len0
1224 && (encoded[k] == 'b' || encoded[k] == 's'))
1225 {
1226 k++;
1227 /* Just as an extra precaution, make sure that if this
1228 suffix is followed by anything else, it is a '_'.
1229 Otherwise, we matched this sequence by accident. */
1230 if (k == len0
1231 || (k < len0 && encoded[k] == '_'))
1232 i = k;
1233 }
1234 }
1235
1236 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1237 the GNAT front-end in protected object subprograms. */
1238
1239 if (i < len0 + 3
1240 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1241 {
1242 /* Backtrack a bit up until we reach either the begining of
1243 the encoded name, or "__". Make sure that we only find
1244 digits or lowercase characters. */
1245 const char *ptr = encoded + i - 1;
1246
1247 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1248 ptr--;
1249 if (ptr < encoded
1250 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1251 i++;
1252 }
1253
1254 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1255 {
1256 /* This is a X[bn]* sequence not separated from the previous
1257 part of the name with a non-alpha-numeric character (in other
1258 words, immediately following an alpha-numeric character), then
1259 verify that it is placed at the end of the encoded name. If
1260 not, then the encoding is not valid and we should abort the
1261 decoding. Otherwise, just skip it, it is used in body-nested
1262 package names. */
1263 do
1264 i += 1;
1265 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1266 if (i < len0)
1267 goto Suppress;
1268 }
1269 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1270 {
1271 /* Replace '__' by '.'. */
1272 decoded[j] = '.';
1273 at_start_name = 1;
1274 i += 2;
1275 j += 1;
1276 }
1277 else
1278 {
1279 /* It's a character part of the decoded name, so just copy it
1280 over. */
1281 decoded[j] = encoded[i];
1282 i += 1;
1283 j += 1;
1284 }
1285 }
1286 decoded.resize (j);
1287
1288 /* Decoded names should never contain any uppercase character.
1289 Double-check this, and abort the decoding if we find one. */
1290
1291 for (i = 0; i < decoded.length(); ++i)
1292 if (isupper (decoded[i]) || decoded[i] == ' ')
1293 goto Suppress;
1294
1295 return decoded;
1296
1297 Suppress:
1298 if (encoded[0] == '<')
1299 decoded = encoded;
1300 else
1301 decoded = '<' + std::string(encoded) + '>';
1302 return decoded;
1303
1304 }
1305
1306 /* Table for keeping permanent unique copies of decoded names. Once
1307 allocated, names in this table are never released. While this is a
1308 storage leak, it should not be significant unless there are massive
1309 changes in the set of decoded names in successive versions of a
1310 symbol table loaded during a single session. */
1311 static struct htab *decoded_names_store;
1312
1313 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1314 in the language-specific part of GSYMBOL, if it has not been
1315 previously computed. Tries to save the decoded name in the same
1316 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1317 in any case, the decoded symbol has a lifetime at least that of
1318 GSYMBOL).
1319 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1320 const, but nevertheless modified to a semantically equivalent form
1321 when a decoded name is cached in it. */
1322
1323 const char *
1324 ada_decode_symbol (const struct general_symbol_info *arg)
1325 {
1326 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1327 const char **resultp =
1328 &gsymbol->language_specific.demangled_name;
1329
1330 if (!gsymbol->ada_mangled)
1331 {
1332 std::string decoded = ada_decode (gsymbol->linkage_name ());
1333 struct obstack *obstack = gsymbol->language_specific.obstack;
1334
1335 gsymbol->ada_mangled = 1;
1336
1337 if (obstack != NULL)
1338 *resultp = obstack_strdup (obstack, decoded.c_str ());
1339 else
1340 {
1341 /* Sometimes, we can't find a corresponding objfile, in
1342 which case, we put the result on the heap. Since we only
1343 decode when needed, we hope this usually does not cause a
1344 significant memory leak (FIXME). */
1345
1346 char **slot = (char **) htab_find_slot (decoded_names_store,
1347 decoded.c_str (), INSERT);
1348
1349 if (*slot == NULL)
1350 *slot = xstrdup (decoded.c_str ());
1351 *resultp = *slot;
1352 }
1353 }
1354
1355 return *resultp;
1356 }
1357
1358 static char *
1359 ada_la_decode (const char *encoded, int options)
1360 {
1361 return xstrdup (ada_decode (encoded).c_str ());
1362 }
1363
1364 \f
1365
1366 /* Arrays */
1367
1368 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describe the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391 void
1392 ada_fixup_array_indexes_type (struct type *index_desc_type)
1393 {
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (index_desc_type->num_fields () > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (index_desc_type->field (0).type ()->name () != NULL
1408 && strcmp (index_desc_type->field (0).type ()->name (),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < index_desc_type->num_fields (); i++)
1414 {
1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 index_desc_type->field (i).set_type (raw_type);
1420 }
1421 }
1422
1423 /* The desc_* routines return primitive portions of array descriptors
1424 (fat pointers). */
1425
1426 /* The descriptor or array type, if any, indicated by TYPE; removes
1427 level of indirection, if needed. */
1428
1429 static struct type *
1430 desc_base_type (struct type *type)
1431 {
1432 if (type == NULL)
1433 return NULL;
1434 type = ada_check_typedef (type);
1435 if (type->code () == TYPE_CODE_TYPEDEF)
1436 type = ada_typedef_target_type (type);
1437
1438 if (type != NULL
1439 && (type->code () == TYPE_CODE_PTR
1440 || type->code () == TYPE_CODE_REF))
1441 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1442 else
1443 return type;
1444 }
1445
1446 /* True iff TYPE indicates a "thin" array pointer type. */
1447
1448 static int
1449 is_thin_pntr (struct type *type)
1450 {
1451 return
1452 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1453 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1454 }
1455
1456 /* The descriptor type for thin pointer type TYPE. */
1457
1458 static struct type *
1459 thin_descriptor_type (struct type *type)
1460 {
1461 struct type *base_type = desc_base_type (type);
1462
1463 if (base_type == NULL)
1464 return NULL;
1465 if (is_suffix (ada_type_name (base_type), "___XVE"))
1466 return base_type;
1467 else
1468 {
1469 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1470
1471 if (alt_type == NULL)
1472 return base_type;
1473 else
1474 return alt_type;
1475 }
1476 }
1477
1478 /* A pointer to the array data for thin-pointer value VAL. */
1479
1480 static struct value *
1481 thin_data_pntr (struct value *val)
1482 {
1483 struct type *type = ada_check_typedef (value_type (val));
1484 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1485
1486 data_type = lookup_pointer_type (data_type);
1487
1488 if (type->code () == TYPE_CODE_PTR)
1489 return value_cast (data_type, value_copy (val));
1490 else
1491 return value_from_longest (data_type, value_address (val));
1492 }
1493
1494 /* True iff TYPE indicates a "thick" array pointer type. */
1495
1496 static int
1497 is_thick_pntr (struct type *type)
1498 {
1499 type = desc_base_type (type);
1500 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1501 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1502 }
1503
1504 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1505 pointer to one, the type of its bounds data; otherwise, NULL. */
1506
1507 static struct type *
1508 desc_bounds_type (struct type *type)
1509 {
1510 struct type *r;
1511
1512 type = desc_base_type (type);
1513
1514 if (type == NULL)
1515 return NULL;
1516 else if (is_thin_pntr (type))
1517 {
1518 type = thin_descriptor_type (type);
1519 if (type == NULL)
1520 return NULL;
1521 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1522 if (r != NULL)
1523 return ada_check_typedef (r);
1524 }
1525 else if (type->code () == TYPE_CODE_STRUCT)
1526 {
1527 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1528 if (r != NULL)
1529 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1530 }
1531 return NULL;
1532 }
1533
1534 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1535 one, a pointer to its bounds data. Otherwise NULL. */
1536
1537 static struct value *
1538 desc_bounds (struct value *arr)
1539 {
1540 struct type *type = ada_check_typedef (value_type (arr));
1541
1542 if (is_thin_pntr (type))
1543 {
1544 struct type *bounds_type =
1545 desc_bounds_type (thin_descriptor_type (type));
1546 LONGEST addr;
1547
1548 if (bounds_type == NULL)
1549 error (_("Bad GNAT array descriptor"));
1550
1551 /* NOTE: The following calculation is not really kosher, but
1552 since desc_type is an XVE-encoded type (and shouldn't be),
1553 the correct calculation is a real pain. FIXME (and fix GCC). */
1554 if (type->code () == TYPE_CODE_PTR)
1555 addr = value_as_long (arr);
1556 else
1557 addr = value_address (arr);
1558
1559 return
1560 value_from_longest (lookup_pointer_type (bounds_type),
1561 addr - TYPE_LENGTH (bounds_type));
1562 }
1563
1564 else if (is_thick_pntr (type))
1565 {
1566 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1567 _("Bad GNAT array descriptor"));
1568 struct type *p_bounds_type = value_type (p_bounds);
1569
1570 if (p_bounds_type
1571 && p_bounds_type->code () == TYPE_CODE_PTR)
1572 {
1573 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1574
1575 if (target_type->is_stub ())
1576 p_bounds = value_cast (lookup_pointer_type
1577 (ada_check_typedef (target_type)),
1578 p_bounds);
1579 }
1580 else
1581 error (_("Bad GNAT array descriptor"));
1582
1583 return p_bounds;
1584 }
1585 else
1586 return NULL;
1587 }
1588
1589 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1590 position of the field containing the address of the bounds data. */
1591
1592 static int
1593 fat_pntr_bounds_bitpos (struct type *type)
1594 {
1595 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1596 }
1597
1598 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1599 size of the field containing the address of the bounds data. */
1600
1601 static int
1602 fat_pntr_bounds_bitsize (struct type *type)
1603 {
1604 type = desc_base_type (type);
1605
1606 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1607 return TYPE_FIELD_BITSIZE (type, 1);
1608 else
1609 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1610 }
1611
1612 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1613 pointer to one, the type of its array data (a array-with-no-bounds type);
1614 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1615 data. */
1616
1617 static struct type *
1618 desc_data_target_type (struct type *type)
1619 {
1620 type = desc_base_type (type);
1621
1622 /* NOTE: The following is bogus; see comment in desc_bounds. */
1623 if (is_thin_pntr (type))
1624 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1625 else if (is_thick_pntr (type))
1626 {
1627 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1628
1629 if (data_type
1630 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1631 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1632 }
1633
1634 return NULL;
1635 }
1636
1637 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1638 its array data. */
1639
1640 static struct value *
1641 desc_data (struct value *arr)
1642 {
1643 struct type *type = value_type (arr);
1644
1645 if (is_thin_pntr (type))
1646 return thin_data_pntr (arr);
1647 else if (is_thick_pntr (type))
1648 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1649 _("Bad GNAT array descriptor"));
1650 else
1651 return NULL;
1652 }
1653
1654
1655 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1656 position of the field containing the address of the data. */
1657
1658 static int
1659 fat_pntr_data_bitpos (struct type *type)
1660 {
1661 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1662 }
1663
1664 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1665 size of the field containing the address of the data. */
1666
1667 static int
1668 fat_pntr_data_bitsize (struct type *type)
1669 {
1670 type = desc_base_type (type);
1671
1672 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1673 return TYPE_FIELD_BITSIZE (type, 0);
1674 else
1675 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1676 }
1677
1678 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1679 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1680 bound, if WHICH is 1. The first bound is I=1. */
1681
1682 static struct value *
1683 desc_one_bound (struct value *bounds, int i, int which)
1684 {
1685 char bound_name[20];
1686 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1687 which ? 'U' : 'L', i - 1);
1688 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1689 _("Bad GNAT array descriptor bounds"));
1690 }
1691
1692 /* If BOUNDS is an array-bounds structure type, return the bit position
1693 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
1696 static int
1697 desc_bound_bitpos (struct type *type, int i, int which)
1698 {
1699 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1700 }
1701
1702 /* If BOUNDS is an array-bounds structure type, return the bit field size
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
1706 static int
1707 desc_bound_bitsize (struct type *type, int i, int which)
1708 {
1709 type = desc_base_type (type);
1710
1711 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1712 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1713 else
1714 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1715 }
1716
1717 /* If TYPE is the type of an array-bounds structure, the type of its
1718 Ith bound (numbering from 1). Otherwise, NULL. */
1719
1720 static struct type *
1721 desc_index_type (struct type *type, int i)
1722 {
1723 type = desc_base_type (type);
1724
1725 if (type->code () == TYPE_CODE_STRUCT)
1726 {
1727 char bound_name[20];
1728 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1729 return lookup_struct_elt_type (type, bound_name, 1);
1730 }
1731 else
1732 return NULL;
1733 }
1734
1735 /* The number of index positions in the array-bounds type TYPE.
1736 Return 0 if TYPE is NULL. */
1737
1738 static int
1739 desc_arity (struct type *type)
1740 {
1741 type = desc_base_type (type);
1742
1743 if (type != NULL)
1744 return type->num_fields () / 2;
1745 return 0;
1746 }
1747
1748 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1749 an array descriptor type (representing an unconstrained array
1750 type). */
1751
1752 static int
1753 ada_is_direct_array_type (struct type *type)
1754 {
1755 if (type == NULL)
1756 return 0;
1757 type = ada_check_typedef (type);
1758 return (type->code () == TYPE_CODE_ARRAY
1759 || ada_is_array_descriptor_type (type));
1760 }
1761
1762 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1763 * to one. */
1764
1765 static int
1766 ada_is_array_type (struct type *type)
1767 {
1768 while (type != NULL
1769 && (type->code () == TYPE_CODE_PTR
1770 || type->code () == TYPE_CODE_REF))
1771 type = TYPE_TARGET_TYPE (type);
1772 return ada_is_direct_array_type (type);
1773 }
1774
1775 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1776
1777 int
1778 ada_is_simple_array_type (struct type *type)
1779 {
1780 if (type == NULL)
1781 return 0;
1782 type = ada_check_typedef (type);
1783 return (type->code () == TYPE_CODE_ARRAY
1784 || (type->code () == TYPE_CODE_PTR
1785 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1786 == TYPE_CODE_ARRAY)));
1787 }
1788
1789 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1790
1791 int
1792 ada_is_array_descriptor_type (struct type *type)
1793 {
1794 struct type *data_type = desc_data_target_type (type);
1795
1796 if (type == NULL)
1797 return 0;
1798 type = ada_check_typedef (type);
1799 return (data_type != NULL
1800 && data_type->code () == TYPE_CODE_ARRAY
1801 && desc_arity (desc_bounds_type (type)) > 0);
1802 }
1803
1804 /* Non-zero iff type is a partially mal-formed GNAT array
1805 descriptor. FIXME: This is to compensate for some problems with
1806 debugging output from GNAT. Re-examine periodically to see if it
1807 is still needed. */
1808
1809 int
1810 ada_is_bogus_array_descriptor (struct type *type)
1811 {
1812 return
1813 type != NULL
1814 && type->code () == TYPE_CODE_STRUCT
1815 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1816 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1817 && !ada_is_array_descriptor_type (type);
1818 }
1819
1820
1821 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1822 (fat pointer) returns the type of the array data described---specifically,
1823 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1824 in from the descriptor; otherwise, they are left unspecified. If
1825 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1826 returns NULL. The result is simply the type of ARR if ARR is not
1827 a descriptor. */
1828
1829 static struct type *
1830 ada_type_of_array (struct value *arr, int bounds)
1831 {
1832 if (ada_is_constrained_packed_array_type (value_type (arr)))
1833 return decode_constrained_packed_array_type (value_type (arr));
1834
1835 if (!ada_is_array_descriptor_type (value_type (arr)))
1836 return value_type (arr);
1837
1838 if (!bounds)
1839 {
1840 struct type *array_type =
1841 ada_check_typedef (desc_data_target_type (value_type (arr)));
1842
1843 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1844 TYPE_FIELD_BITSIZE (array_type, 0) =
1845 decode_packed_array_bitsize (value_type (arr));
1846
1847 return array_type;
1848 }
1849 else
1850 {
1851 struct type *elt_type;
1852 int arity;
1853 struct value *descriptor;
1854
1855 elt_type = ada_array_element_type (value_type (arr), -1);
1856 arity = ada_array_arity (value_type (arr));
1857
1858 if (elt_type == NULL || arity == 0)
1859 return ada_check_typedef (value_type (arr));
1860
1861 descriptor = desc_bounds (arr);
1862 if (value_as_long (descriptor) == 0)
1863 return NULL;
1864 while (arity > 0)
1865 {
1866 struct type *range_type = alloc_type_copy (value_type (arr));
1867 struct type *array_type = alloc_type_copy (value_type (arr));
1868 struct value *low = desc_one_bound (descriptor, arity, 0);
1869 struct value *high = desc_one_bound (descriptor, arity, 1);
1870
1871 arity -= 1;
1872 create_static_range_type (range_type, value_type (low),
1873 longest_to_int (value_as_long (low)),
1874 longest_to_int (value_as_long (high)));
1875 elt_type = create_array_type (array_type, elt_type, range_type);
1876
1877 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1878 {
1879 /* We need to store the element packed bitsize, as well as
1880 recompute the array size, because it was previously
1881 computed based on the unpacked element size. */
1882 LONGEST lo = value_as_long (low);
1883 LONGEST hi = value_as_long (high);
1884
1885 TYPE_FIELD_BITSIZE (elt_type, 0) =
1886 decode_packed_array_bitsize (value_type (arr));
1887 /* If the array has no element, then the size is already
1888 zero, and does not need to be recomputed. */
1889 if (lo < hi)
1890 {
1891 int array_bitsize =
1892 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1893
1894 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1895 }
1896 }
1897 }
1898
1899 return lookup_pointer_type (elt_type);
1900 }
1901 }
1902
1903 /* If ARR does not represent an array, returns ARR unchanged.
1904 Otherwise, returns either a standard GDB array with bounds set
1905 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1906 GDB array. Returns NULL if ARR is a null fat pointer. */
1907
1908 struct value *
1909 ada_coerce_to_simple_array_ptr (struct value *arr)
1910 {
1911 if (ada_is_array_descriptor_type (value_type (arr)))
1912 {
1913 struct type *arrType = ada_type_of_array (arr, 1);
1914
1915 if (arrType == NULL)
1916 return NULL;
1917 return value_cast (arrType, value_copy (desc_data (arr)));
1918 }
1919 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1920 return decode_constrained_packed_array (arr);
1921 else
1922 return arr;
1923 }
1924
1925 /* If ARR does not represent an array, returns ARR unchanged.
1926 Otherwise, returns a standard GDB array describing ARR (which may
1927 be ARR itself if it already is in the proper form). */
1928
1929 struct value *
1930 ada_coerce_to_simple_array (struct value *arr)
1931 {
1932 if (ada_is_array_descriptor_type (value_type (arr)))
1933 {
1934 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1935
1936 if (arrVal == NULL)
1937 error (_("Bounds unavailable for null array pointer."));
1938 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1939 return value_ind (arrVal);
1940 }
1941 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1942 return decode_constrained_packed_array (arr);
1943 else
1944 return arr;
1945 }
1946
1947 /* If TYPE represents a GNAT array type, return it translated to an
1948 ordinary GDB array type (possibly with BITSIZE fields indicating
1949 packing). For other types, is the identity. */
1950
1951 struct type *
1952 ada_coerce_to_simple_array_type (struct type *type)
1953 {
1954 if (ada_is_constrained_packed_array_type (type))
1955 return decode_constrained_packed_array_type (type);
1956
1957 if (ada_is_array_descriptor_type (type))
1958 return ada_check_typedef (desc_data_target_type (type));
1959
1960 return type;
1961 }
1962
1963 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1964
1965 static int
1966 ada_is_gnat_encoded_packed_array_type (struct type *type)
1967 {
1968 if (type == NULL)
1969 return 0;
1970 type = desc_base_type (type);
1971 type = ada_check_typedef (type);
1972 return
1973 ada_type_name (type) != NULL
1974 && strstr (ada_type_name (type), "___XP") != NULL;
1975 }
1976
1977 /* Non-zero iff TYPE represents a standard GNAT constrained
1978 packed-array type. */
1979
1980 int
1981 ada_is_constrained_packed_array_type (struct type *type)
1982 {
1983 return ada_is_gnat_encoded_packed_array_type (type)
1984 && !ada_is_array_descriptor_type (type);
1985 }
1986
1987 /* Non-zero iff TYPE represents an array descriptor for a
1988 unconstrained packed-array type. */
1989
1990 static int
1991 ada_is_unconstrained_packed_array_type (struct type *type)
1992 {
1993 if (!ada_is_array_descriptor_type (type))
1994 return 0;
1995
1996 if (ada_is_gnat_encoded_packed_array_type (type))
1997 return 1;
1998
1999 /* If we saw GNAT encodings, then the above code is sufficient.
2000 However, with minimal encodings, we will just have a thick
2001 pointer instead. */
2002 if (is_thick_pntr (type))
2003 {
2004 type = desc_base_type (type);
2005 /* The structure's first field is a pointer to an array, so this
2006 fetches the array type. */
2007 type = TYPE_TARGET_TYPE (type->field (0).type ());
2008 /* Now we can see if the array elements are packed. */
2009 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2010 }
2011
2012 return 0;
2013 }
2014
2015 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
2016 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2017
2018 static bool
2019 ada_is_any_packed_array_type (struct type *type)
2020 {
2021 return (ada_is_constrained_packed_array_type (type)
2022 || (type->code () == TYPE_CODE_ARRAY
2023 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2024 }
2025
2026 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2027 return the size of its elements in bits. */
2028
2029 static long
2030 decode_packed_array_bitsize (struct type *type)
2031 {
2032 const char *raw_name;
2033 const char *tail;
2034 long bits;
2035
2036 /* Access to arrays implemented as fat pointers are encoded as a typedef
2037 of the fat pointer type. We need the name of the fat pointer type
2038 to do the decoding, so strip the typedef layer. */
2039 if (type->code () == TYPE_CODE_TYPEDEF)
2040 type = ada_typedef_target_type (type);
2041
2042 raw_name = ada_type_name (ada_check_typedef (type));
2043 if (!raw_name)
2044 raw_name = ada_type_name (desc_base_type (type));
2045
2046 if (!raw_name)
2047 return 0;
2048
2049 tail = strstr (raw_name, "___XP");
2050 if (tail == nullptr)
2051 {
2052 gdb_assert (is_thick_pntr (type));
2053 /* The structure's first field is a pointer to an array, so this
2054 fetches the array type. */
2055 type = TYPE_TARGET_TYPE (type->field (0).type ());
2056 /* Now we can see if the array elements are packed. */
2057 return TYPE_FIELD_BITSIZE (type, 0);
2058 }
2059
2060 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2061 {
2062 lim_warning
2063 (_("could not understand bit size information on packed array"));
2064 return 0;
2065 }
2066
2067 return bits;
2068 }
2069
2070 /* Given that TYPE is a standard GDB array type with all bounds filled
2071 in, and that the element size of its ultimate scalar constituents
2072 (that is, either its elements, or, if it is an array of arrays, its
2073 elements' elements, etc.) is *ELT_BITS, return an identical type,
2074 but with the bit sizes of its elements (and those of any
2075 constituent arrays) recorded in the BITSIZE components of its
2076 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2077 in bits.
2078
2079 Note that, for arrays whose index type has an XA encoding where
2080 a bound references a record discriminant, getting that discriminant,
2081 and therefore the actual value of that bound, is not possible
2082 because none of the given parameters gives us access to the record.
2083 This function assumes that it is OK in the context where it is being
2084 used to return an array whose bounds are still dynamic and where
2085 the length is arbitrary. */
2086
2087 static struct type *
2088 constrained_packed_array_type (struct type *type, long *elt_bits)
2089 {
2090 struct type *new_elt_type;
2091 struct type *new_type;
2092 struct type *index_type_desc;
2093 struct type *index_type;
2094 LONGEST low_bound, high_bound;
2095
2096 type = ada_check_typedef (type);
2097 if (type->code () != TYPE_CODE_ARRAY)
2098 return type;
2099
2100 index_type_desc = ada_find_parallel_type (type, "___XA");
2101 if (index_type_desc)
2102 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2103 NULL);
2104 else
2105 index_type = type->index_type ();
2106
2107 new_type = alloc_type_copy (type);
2108 new_elt_type =
2109 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2110 elt_bits);
2111 create_array_type (new_type, new_elt_type, index_type);
2112 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2113 new_type->set_name (ada_type_name (type));
2114
2115 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2116 && is_dynamic_type (check_typedef (index_type)))
2117 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2118 low_bound = high_bound = 0;
2119 if (high_bound < low_bound)
2120 *elt_bits = TYPE_LENGTH (new_type) = 0;
2121 else
2122 {
2123 *elt_bits *= (high_bound - low_bound + 1);
2124 TYPE_LENGTH (new_type) =
2125 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2126 }
2127
2128 new_type->set_is_fixed_instance (true);
2129 return new_type;
2130 }
2131
2132 /* The array type encoded by TYPE, where
2133 ada_is_constrained_packed_array_type (TYPE). */
2134
2135 static struct type *
2136 decode_constrained_packed_array_type (struct type *type)
2137 {
2138 const char *raw_name = ada_type_name (ada_check_typedef (type));
2139 char *name;
2140 const char *tail;
2141 struct type *shadow_type;
2142 long bits;
2143
2144 if (!raw_name)
2145 raw_name = ada_type_name (desc_base_type (type));
2146
2147 if (!raw_name)
2148 return NULL;
2149
2150 name = (char *) alloca (strlen (raw_name) + 1);
2151 tail = strstr (raw_name, "___XP");
2152 type = desc_base_type (type);
2153
2154 memcpy (name, raw_name, tail - raw_name);
2155 name[tail - raw_name] = '\000';
2156
2157 shadow_type = ada_find_parallel_type_with_name (type, name);
2158
2159 if (shadow_type == NULL)
2160 {
2161 lim_warning (_("could not find bounds information on packed array"));
2162 return NULL;
2163 }
2164 shadow_type = check_typedef (shadow_type);
2165
2166 if (shadow_type->code () != TYPE_CODE_ARRAY)
2167 {
2168 lim_warning (_("could not understand bounds "
2169 "information on packed array"));
2170 return NULL;
2171 }
2172
2173 bits = decode_packed_array_bitsize (type);
2174 return constrained_packed_array_type (shadow_type, &bits);
2175 }
2176
2177 /* Helper function for decode_constrained_packed_array. Set the field
2178 bitsize on a series of packed arrays. Returns the number of
2179 elements in TYPE. */
2180
2181 static LONGEST
2182 recursively_update_array_bitsize (struct type *type)
2183 {
2184 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2185
2186 LONGEST low, high;
2187 if (get_discrete_bounds (type->index_type (), &low, &high) < 0
2188 || low > high)
2189 return 0;
2190 LONGEST our_len = high - low + 1;
2191
2192 struct type *elt_type = TYPE_TARGET_TYPE (type);
2193 if (elt_type->code () == TYPE_CODE_ARRAY)
2194 {
2195 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2196 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2197 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2198
2199 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2200 / HOST_CHAR_BIT);
2201 }
2202
2203 return our_len;
2204 }
2205
2206 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2207 array, returns a simple array that denotes that array. Its type is a
2208 standard GDB array type except that the BITSIZEs of the array
2209 target types are set to the number of bits in each element, and the
2210 type length is set appropriately. */
2211
2212 static struct value *
2213 decode_constrained_packed_array (struct value *arr)
2214 {
2215 struct type *type;
2216
2217 /* If our value is a pointer, then dereference it. Likewise if
2218 the value is a reference. Make sure that this operation does not
2219 cause the target type to be fixed, as this would indirectly cause
2220 this array to be decoded. The rest of the routine assumes that
2221 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2222 and "value_ind" routines to perform the dereferencing, as opposed
2223 to using "ada_coerce_ref" or "ada_value_ind". */
2224 arr = coerce_ref (arr);
2225 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2226 arr = value_ind (arr);
2227
2228 type = decode_constrained_packed_array_type (value_type (arr));
2229 if (type == NULL)
2230 {
2231 error (_("can't unpack array"));
2232 return NULL;
2233 }
2234
2235 /* Decoding the packed array type could not correctly set the field
2236 bitsizes for any dimension except the innermost, because the
2237 bounds may be variable and were not passed to that function. So,
2238 we further resolve the array bounds here and then update the
2239 sizes. */
2240 const gdb_byte *valaddr = value_contents_for_printing (arr);
2241 CORE_ADDR address = value_address (arr);
2242 gdb::array_view<const gdb_byte> view
2243 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2244 type = resolve_dynamic_type (type, view, address);
2245 recursively_update_array_bitsize (type);
2246
2247 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2248 && ada_is_modular_type (value_type (arr)))
2249 {
2250 /* This is a (right-justified) modular type representing a packed
2251 array with no wrapper. In order to interpret the value through
2252 the (left-justified) packed array type we just built, we must
2253 first left-justify it. */
2254 int bit_size, bit_pos;
2255 ULONGEST mod;
2256
2257 mod = ada_modulus (value_type (arr)) - 1;
2258 bit_size = 0;
2259 while (mod > 0)
2260 {
2261 bit_size += 1;
2262 mod >>= 1;
2263 }
2264 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2265 arr = ada_value_primitive_packed_val (arr, NULL,
2266 bit_pos / HOST_CHAR_BIT,
2267 bit_pos % HOST_CHAR_BIT,
2268 bit_size,
2269 type);
2270 }
2271
2272 return coerce_unspec_val_to_type (arr, type);
2273 }
2274
2275
2276 /* The value of the element of packed array ARR at the ARITY indices
2277 given in IND. ARR must be a simple array. */
2278
2279 static struct value *
2280 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2281 {
2282 int i;
2283 int bits, elt_off, bit_off;
2284 long elt_total_bit_offset;
2285 struct type *elt_type;
2286 struct value *v;
2287
2288 bits = 0;
2289 elt_total_bit_offset = 0;
2290 elt_type = ada_check_typedef (value_type (arr));
2291 for (i = 0; i < arity; i += 1)
2292 {
2293 if (elt_type->code () != TYPE_CODE_ARRAY
2294 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2295 error
2296 (_("attempt to do packed indexing of "
2297 "something other than a packed array"));
2298 else
2299 {
2300 struct type *range_type = elt_type->index_type ();
2301 LONGEST lowerbound, upperbound;
2302 LONGEST idx;
2303
2304 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2305 {
2306 lim_warning (_("don't know bounds of array"));
2307 lowerbound = upperbound = 0;
2308 }
2309
2310 idx = pos_atr (ind[i]);
2311 if (idx < lowerbound || idx > upperbound)
2312 lim_warning (_("packed array index %ld out of bounds"),
2313 (long) idx);
2314 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2315 elt_total_bit_offset += (idx - lowerbound) * bits;
2316 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2317 }
2318 }
2319 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2320 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2321
2322 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2323 bits, elt_type);
2324 return v;
2325 }
2326
2327 /* Non-zero iff TYPE includes negative integer values. */
2328
2329 static int
2330 has_negatives (struct type *type)
2331 {
2332 switch (type->code ())
2333 {
2334 default:
2335 return 0;
2336 case TYPE_CODE_INT:
2337 return !type->is_unsigned ();
2338 case TYPE_CODE_RANGE:
2339 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2340 }
2341 }
2342
2343 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2344 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2345 the unpacked buffer.
2346
2347 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2348 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2349
2350 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2351 zero otherwise.
2352
2353 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2354
2355 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2356
2357 static void
2358 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2359 gdb_byte *unpacked, int unpacked_len,
2360 int is_big_endian, int is_signed_type,
2361 int is_scalar)
2362 {
2363 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2364 int src_idx; /* Index into the source area */
2365 int src_bytes_left; /* Number of source bytes left to process. */
2366 int srcBitsLeft; /* Number of source bits left to move */
2367 int unusedLS; /* Number of bits in next significant
2368 byte of source that are unused */
2369
2370 int unpacked_idx; /* Index into the unpacked buffer */
2371 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2372
2373 unsigned long accum; /* Staging area for bits being transferred */
2374 int accumSize; /* Number of meaningful bits in accum */
2375 unsigned char sign;
2376
2377 /* Transmit bytes from least to most significant; delta is the direction
2378 the indices move. */
2379 int delta = is_big_endian ? -1 : 1;
2380
2381 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2382 bits from SRC. .*/
2383 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2384 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2385 bit_size, unpacked_len);
2386
2387 srcBitsLeft = bit_size;
2388 src_bytes_left = src_len;
2389 unpacked_bytes_left = unpacked_len;
2390 sign = 0;
2391
2392 if (is_big_endian)
2393 {
2394 src_idx = src_len - 1;
2395 if (is_signed_type
2396 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2397 sign = ~0;
2398
2399 unusedLS =
2400 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2401 % HOST_CHAR_BIT;
2402
2403 if (is_scalar)
2404 {
2405 accumSize = 0;
2406 unpacked_idx = unpacked_len - 1;
2407 }
2408 else
2409 {
2410 /* Non-scalar values must be aligned at a byte boundary... */
2411 accumSize =
2412 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2413 /* ... And are placed at the beginning (most-significant) bytes
2414 of the target. */
2415 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2416 unpacked_bytes_left = unpacked_idx + 1;
2417 }
2418 }
2419 else
2420 {
2421 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2422
2423 src_idx = unpacked_idx = 0;
2424 unusedLS = bit_offset;
2425 accumSize = 0;
2426
2427 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2428 sign = ~0;
2429 }
2430
2431 accum = 0;
2432 while (src_bytes_left > 0)
2433 {
2434 /* Mask for removing bits of the next source byte that are not
2435 part of the value. */
2436 unsigned int unusedMSMask =
2437 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2438 1;
2439 /* Sign-extend bits for this byte. */
2440 unsigned int signMask = sign & ~unusedMSMask;
2441
2442 accum |=
2443 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2444 accumSize += HOST_CHAR_BIT - unusedLS;
2445 if (accumSize >= HOST_CHAR_BIT)
2446 {
2447 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2448 accumSize -= HOST_CHAR_BIT;
2449 accum >>= HOST_CHAR_BIT;
2450 unpacked_bytes_left -= 1;
2451 unpacked_idx += delta;
2452 }
2453 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2454 unusedLS = 0;
2455 src_bytes_left -= 1;
2456 src_idx += delta;
2457 }
2458 while (unpacked_bytes_left > 0)
2459 {
2460 accum |= sign << accumSize;
2461 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2462 accumSize -= HOST_CHAR_BIT;
2463 if (accumSize < 0)
2464 accumSize = 0;
2465 accum >>= HOST_CHAR_BIT;
2466 unpacked_bytes_left -= 1;
2467 unpacked_idx += delta;
2468 }
2469 }
2470
2471 /* Create a new value of type TYPE from the contents of OBJ starting
2472 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2473 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2474 assigning through the result will set the field fetched from.
2475 VALADDR is ignored unless OBJ is NULL, in which case,
2476 VALADDR+OFFSET must address the start of storage containing the
2477 packed value. The value returned in this case is never an lval.
2478 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2479
2480 struct value *
2481 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2482 long offset, int bit_offset, int bit_size,
2483 struct type *type)
2484 {
2485 struct value *v;
2486 const gdb_byte *src; /* First byte containing data to unpack */
2487 gdb_byte *unpacked;
2488 const int is_scalar = is_scalar_type (type);
2489 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2490 gdb::byte_vector staging;
2491
2492 type = ada_check_typedef (type);
2493
2494 if (obj == NULL)
2495 src = valaddr + offset;
2496 else
2497 src = value_contents (obj) + offset;
2498
2499 if (is_dynamic_type (type))
2500 {
2501 /* The length of TYPE might by dynamic, so we need to resolve
2502 TYPE in order to know its actual size, which we then use
2503 to create the contents buffer of the value we return.
2504 The difficulty is that the data containing our object is
2505 packed, and therefore maybe not at a byte boundary. So, what
2506 we do, is unpack the data into a byte-aligned buffer, and then
2507 use that buffer as our object's value for resolving the type. */
2508 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2509 staging.resize (staging_len);
2510
2511 ada_unpack_from_contents (src, bit_offset, bit_size,
2512 staging.data (), staging.size (),
2513 is_big_endian, has_negatives (type),
2514 is_scalar);
2515 type = resolve_dynamic_type (type, staging, 0);
2516 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2517 {
2518 /* This happens when the length of the object is dynamic,
2519 and is actually smaller than the space reserved for it.
2520 For instance, in an array of variant records, the bit_size
2521 we're given is the array stride, which is constant and
2522 normally equal to the maximum size of its element.
2523 But, in reality, each element only actually spans a portion
2524 of that stride. */
2525 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2526 }
2527 }
2528
2529 if (obj == NULL)
2530 {
2531 v = allocate_value (type);
2532 src = valaddr + offset;
2533 }
2534 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2535 {
2536 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2537 gdb_byte *buf;
2538
2539 v = value_at (type, value_address (obj) + offset);
2540 buf = (gdb_byte *) alloca (src_len);
2541 read_memory (value_address (v), buf, src_len);
2542 src = buf;
2543 }
2544 else
2545 {
2546 v = allocate_value (type);
2547 src = value_contents (obj) + offset;
2548 }
2549
2550 if (obj != NULL)
2551 {
2552 long new_offset = offset;
2553
2554 set_value_component_location (v, obj);
2555 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2556 set_value_bitsize (v, bit_size);
2557 if (value_bitpos (v) >= HOST_CHAR_BIT)
2558 {
2559 ++new_offset;
2560 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2561 }
2562 set_value_offset (v, new_offset);
2563
2564 /* Also set the parent value. This is needed when trying to
2565 assign a new value (in inferior memory). */
2566 set_value_parent (v, obj);
2567 }
2568 else
2569 set_value_bitsize (v, bit_size);
2570 unpacked = value_contents_writeable (v);
2571
2572 if (bit_size == 0)
2573 {
2574 memset (unpacked, 0, TYPE_LENGTH (type));
2575 return v;
2576 }
2577
2578 if (staging.size () == TYPE_LENGTH (type))
2579 {
2580 /* Small short-cut: If we've unpacked the data into a buffer
2581 of the same size as TYPE's length, then we can reuse that,
2582 instead of doing the unpacking again. */
2583 memcpy (unpacked, staging.data (), staging.size ());
2584 }
2585 else
2586 ada_unpack_from_contents (src, bit_offset, bit_size,
2587 unpacked, TYPE_LENGTH (type),
2588 is_big_endian, has_negatives (type), is_scalar);
2589
2590 return v;
2591 }
2592
2593 /* Store the contents of FROMVAL into the location of TOVAL.
2594 Return a new value with the location of TOVAL and contents of
2595 FROMVAL. Handles assignment into packed fields that have
2596 floating-point or non-scalar types. */
2597
2598 static struct value *
2599 ada_value_assign (struct value *toval, struct value *fromval)
2600 {
2601 struct type *type = value_type (toval);
2602 int bits = value_bitsize (toval);
2603
2604 toval = ada_coerce_ref (toval);
2605 fromval = ada_coerce_ref (fromval);
2606
2607 if (ada_is_direct_array_type (value_type (toval)))
2608 toval = ada_coerce_to_simple_array (toval);
2609 if (ada_is_direct_array_type (value_type (fromval)))
2610 fromval = ada_coerce_to_simple_array (fromval);
2611
2612 if (!deprecated_value_modifiable (toval))
2613 error (_("Left operand of assignment is not a modifiable lvalue."));
2614
2615 if (VALUE_LVAL (toval) == lval_memory
2616 && bits > 0
2617 && (type->code () == TYPE_CODE_FLT
2618 || type->code () == TYPE_CODE_STRUCT))
2619 {
2620 int len = (value_bitpos (toval)
2621 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2622 int from_size;
2623 gdb_byte *buffer = (gdb_byte *) alloca (len);
2624 struct value *val;
2625 CORE_ADDR to_addr = value_address (toval);
2626
2627 if (type->code () == TYPE_CODE_FLT)
2628 fromval = value_cast (type, fromval);
2629
2630 read_memory (to_addr, buffer, len);
2631 from_size = value_bitsize (fromval);
2632 if (from_size == 0)
2633 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2634
2635 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2636 ULONGEST from_offset = 0;
2637 if (is_big_endian && is_scalar_type (value_type (fromval)))
2638 from_offset = from_size - bits;
2639 copy_bitwise (buffer, value_bitpos (toval),
2640 value_contents (fromval), from_offset,
2641 bits, is_big_endian);
2642 write_memory_with_notification (to_addr, buffer, len);
2643
2644 val = value_copy (toval);
2645 memcpy (value_contents_raw (val), value_contents (fromval),
2646 TYPE_LENGTH (type));
2647 deprecated_set_value_type (val, type);
2648
2649 return val;
2650 }
2651
2652 return value_assign (toval, fromval);
2653 }
2654
2655
2656 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2657 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2658 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2659 COMPONENT, and not the inferior's memory. The current contents
2660 of COMPONENT are ignored.
2661
2662 Although not part of the initial design, this function also works
2663 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2664 had a null address, and COMPONENT had an address which is equal to
2665 its offset inside CONTAINER. */
2666
2667 static void
2668 value_assign_to_component (struct value *container, struct value *component,
2669 struct value *val)
2670 {
2671 LONGEST offset_in_container =
2672 (LONGEST) (value_address (component) - value_address (container));
2673 int bit_offset_in_container =
2674 value_bitpos (component) - value_bitpos (container);
2675 int bits;
2676
2677 val = value_cast (value_type (component), val);
2678
2679 if (value_bitsize (component) == 0)
2680 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2681 else
2682 bits = value_bitsize (component);
2683
2684 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2685 {
2686 int src_offset;
2687
2688 if (is_scalar_type (check_typedef (value_type (component))))
2689 src_offset
2690 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2691 else
2692 src_offset = 0;
2693 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2694 value_bitpos (container) + bit_offset_in_container,
2695 value_contents (val), src_offset, bits, 1);
2696 }
2697 else
2698 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2699 value_bitpos (container) + bit_offset_in_container,
2700 value_contents (val), 0, bits, 0);
2701 }
2702
2703 /* Determine if TYPE is an access to an unconstrained array. */
2704
2705 bool
2706 ada_is_access_to_unconstrained_array (struct type *type)
2707 {
2708 return (type->code () == TYPE_CODE_TYPEDEF
2709 && is_thick_pntr (ada_typedef_target_type (type)));
2710 }
2711
2712 /* The value of the element of array ARR at the ARITY indices given in IND.
2713 ARR may be either a simple array, GNAT array descriptor, or pointer
2714 thereto. */
2715
2716 struct value *
2717 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2718 {
2719 int k;
2720 struct value *elt;
2721 struct type *elt_type;
2722
2723 elt = ada_coerce_to_simple_array (arr);
2724
2725 elt_type = ada_check_typedef (value_type (elt));
2726 if (elt_type->code () == TYPE_CODE_ARRAY
2727 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2728 return value_subscript_packed (elt, arity, ind);
2729
2730 for (k = 0; k < arity; k += 1)
2731 {
2732 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2733
2734 if (elt_type->code () != TYPE_CODE_ARRAY)
2735 error (_("too many subscripts (%d expected)"), k);
2736
2737 elt = value_subscript (elt, pos_atr (ind[k]));
2738
2739 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2740 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2741 {
2742 /* The element is a typedef to an unconstrained array,
2743 except that the value_subscript call stripped the
2744 typedef layer. The typedef layer is GNAT's way to
2745 specify that the element is, at the source level, an
2746 access to the unconstrained array, rather than the
2747 unconstrained array. So, we need to restore that
2748 typedef layer, which we can do by forcing the element's
2749 type back to its original type. Otherwise, the returned
2750 value is going to be printed as the array, rather
2751 than as an access. Another symptom of the same issue
2752 would be that an expression trying to dereference the
2753 element would also be improperly rejected. */
2754 deprecated_set_value_type (elt, saved_elt_type);
2755 }
2756
2757 elt_type = ada_check_typedef (value_type (elt));
2758 }
2759
2760 return elt;
2761 }
2762
2763 /* Assuming ARR is a pointer to a GDB array, the value of the element
2764 of *ARR at the ARITY indices given in IND.
2765 Does not read the entire array into memory.
2766
2767 Note: Unlike what one would expect, this function is used instead of
2768 ada_value_subscript for basically all non-packed array types. The reason
2769 for this is that a side effect of doing our own pointer arithmetics instead
2770 of relying on value_subscript is that there is no implicit typedef peeling.
2771 This is important for arrays of array accesses, where it allows us to
2772 preserve the fact that the array's element is an array access, where the
2773 access part os encoded in a typedef layer. */
2774
2775 static struct value *
2776 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2777 {
2778 int k;
2779 struct value *array_ind = ada_value_ind (arr);
2780 struct type *type
2781 = check_typedef (value_enclosing_type (array_ind));
2782
2783 if (type->code () == TYPE_CODE_ARRAY
2784 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2785 return value_subscript_packed (array_ind, arity, ind);
2786
2787 for (k = 0; k < arity; k += 1)
2788 {
2789 LONGEST lwb, upb;
2790
2791 if (type->code () != TYPE_CODE_ARRAY)
2792 error (_("too many subscripts (%d expected)"), k);
2793 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2794 value_copy (arr));
2795 get_discrete_bounds (type->index_type (), &lwb, &upb);
2796 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2797 type = TYPE_TARGET_TYPE (type);
2798 }
2799
2800 return value_ind (arr);
2801 }
2802
2803 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2804 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2805 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2806 this array is LOW, as per Ada rules. */
2807 static struct value *
2808 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2809 int low, int high)
2810 {
2811 struct type *type0 = ada_check_typedef (type);
2812 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2813 struct type *index_type
2814 = create_static_range_type (NULL, base_index_type, low, high);
2815 struct type *slice_type = create_array_type_with_stride
2816 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2817 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2818 TYPE_FIELD_BITSIZE (type0, 0));
2819 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2820 LONGEST base_low_pos, low_pos;
2821 CORE_ADDR base;
2822
2823 if (!discrete_position (base_index_type, low, &low_pos)
2824 || !discrete_position (base_index_type, base_low, &base_low_pos))
2825 {
2826 warning (_("unable to get positions in slice, use bounds instead"));
2827 low_pos = low;
2828 base_low_pos = base_low;
2829 }
2830
2831 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2832 if (stride == 0)
2833 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2834
2835 base = value_as_address (array_ptr) + (low_pos - base_low_pos) * stride;
2836 return value_at_lazy (slice_type, base);
2837 }
2838
2839
2840 static struct value *
2841 ada_value_slice (struct value *array, int low, int high)
2842 {
2843 struct type *type = ada_check_typedef (value_type (array));
2844 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2845 struct type *index_type
2846 = create_static_range_type (NULL, type->index_type (), low, high);
2847 struct type *slice_type = create_array_type_with_stride
2848 (NULL, TYPE_TARGET_TYPE (type), index_type,
2849 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2850 TYPE_FIELD_BITSIZE (type, 0));
2851 LONGEST low_pos, high_pos;
2852
2853 if (!discrete_position (base_index_type, low, &low_pos)
2854 || !discrete_position (base_index_type, high, &high_pos))
2855 {
2856 warning (_("unable to get positions in slice, use bounds instead"));
2857 low_pos = low;
2858 high_pos = high;
2859 }
2860
2861 return value_cast (slice_type,
2862 value_slice (array, low, high_pos - low_pos + 1));
2863 }
2864
2865 /* If type is a record type in the form of a standard GNAT array
2866 descriptor, returns the number of dimensions for type. If arr is a
2867 simple array, returns the number of "array of"s that prefix its
2868 type designation. Otherwise, returns 0. */
2869
2870 int
2871 ada_array_arity (struct type *type)
2872 {
2873 int arity;
2874
2875 if (type == NULL)
2876 return 0;
2877
2878 type = desc_base_type (type);
2879
2880 arity = 0;
2881 if (type->code () == TYPE_CODE_STRUCT)
2882 return desc_arity (desc_bounds_type (type));
2883 else
2884 while (type->code () == TYPE_CODE_ARRAY)
2885 {
2886 arity += 1;
2887 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2888 }
2889
2890 return arity;
2891 }
2892
2893 /* If TYPE is a record type in the form of a standard GNAT array
2894 descriptor or a simple array type, returns the element type for
2895 TYPE after indexing by NINDICES indices, or by all indices if
2896 NINDICES is -1. Otherwise, returns NULL. */
2897
2898 struct type *
2899 ada_array_element_type (struct type *type, int nindices)
2900 {
2901 type = desc_base_type (type);
2902
2903 if (type->code () == TYPE_CODE_STRUCT)
2904 {
2905 int k;
2906 struct type *p_array_type;
2907
2908 p_array_type = desc_data_target_type (type);
2909
2910 k = ada_array_arity (type);
2911 if (k == 0)
2912 return NULL;
2913
2914 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2915 if (nindices >= 0 && k > nindices)
2916 k = nindices;
2917 while (k > 0 && p_array_type != NULL)
2918 {
2919 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2920 k -= 1;
2921 }
2922 return p_array_type;
2923 }
2924 else if (type->code () == TYPE_CODE_ARRAY)
2925 {
2926 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2927 {
2928 type = TYPE_TARGET_TYPE (type);
2929 nindices -= 1;
2930 }
2931 return type;
2932 }
2933
2934 return NULL;
2935 }
2936
2937 /* The type of nth index in arrays of given type (n numbering from 1).
2938 Does not examine memory. Throws an error if N is invalid or TYPE
2939 is not an array type. NAME is the name of the Ada attribute being
2940 evaluated ('range, 'first, 'last, or 'length); it is used in building
2941 the error message. */
2942
2943 static struct type *
2944 ada_index_type (struct type *type, int n, const char *name)
2945 {
2946 struct type *result_type;
2947
2948 type = desc_base_type (type);
2949
2950 if (n < 0 || n > ada_array_arity (type))
2951 error (_("invalid dimension number to '%s"), name);
2952
2953 if (ada_is_simple_array_type (type))
2954 {
2955 int i;
2956
2957 for (i = 1; i < n; i += 1)
2958 type = TYPE_TARGET_TYPE (type);
2959 result_type = TYPE_TARGET_TYPE (type->index_type ());
2960 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2961 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2962 perhaps stabsread.c would make more sense. */
2963 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2964 result_type = NULL;
2965 }
2966 else
2967 {
2968 result_type = desc_index_type (desc_bounds_type (type), n);
2969 if (result_type == NULL)
2970 error (_("attempt to take bound of something that is not an array"));
2971 }
2972
2973 return result_type;
2974 }
2975
2976 /* Given that arr is an array type, returns the lower bound of the
2977 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2978 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2979 array-descriptor type. It works for other arrays with bounds supplied
2980 by run-time quantities other than discriminants. */
2981
2982 static LONGEST
2983 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2984 {
2985 struct type *type, *index_type_desc, *index_type;
2986 int i;
2987
2988 gdb_assert (which == 0 || which == 1);
2989
2990 if (ada_is_constrained_packed_array_type (arr_type))
2991 arr_type = decode_constrained_packed_array_type (arr_type);
2992
2993 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2994 return (LONGEST) - which;
2995
2996 if (arr_type->code () == TYPE_CODE_PTR)
2997 type = TYPE_TARGET_TYPE (arr_type);
2998 else
2999 type = arr_type;
3000
3001 if (type->is_fixed_instance ())
3002 {
3003 /* The array has already been fixed, so we do not need to
3004 check the parallel ___XA type again. That encoding has
3005 already been applied, so ignore it now. */
3006 index_type_desc = NULL;
3007 }
3008 else
3009 {
3010 index_type_desc = ada_find_parallel_type (type, "___XA");
3011 ada_fixup_array_indexes_type (index_type_desc);
3012 }
3013
3014 if (index_type_desc != NULL)
3015 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
3016 NULL);
3017 else
3018 {
3019 struct type *elt_type = check_typedef (type);
3020
3021 for (i = 1; i < n; i++)
3022 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3023
3024 index_type = elt_type->index_type ();
3025 }
3026
3027 return
3028 (LONGEST) (which == 0
3029 ? ada_discrete_type_low_bound (index_type)
3030 : ada_discrete_type_high_bound (index_type));
3031 }
3032
3033 /* Given that arr is an array value, returns the lower bound of the
3034 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3035 WHICH is 1. This routine will also work for arrays with bounds
3036 supplied by run-time quantities other than discriminants. */
3037
3038 static LONGEST
3039 ada_array_bound (struct value *arr, int n, int which)
3040 {
3041 struct type *arr_type;
3042
3043 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3044 arr = value_ind (arr);
3045 arr_type = value_enclosing_type (arr);
3046
3047 if (ada_is_constrained_packed_array_type (arr_type))
3048 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3049 else if (ada_is_simple_array_type (arr_type))
3050 return ada_array_bound_from_type (arr_type, n, which);
3051 else
3052 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3053 }
3054
3055 /* Given that arr is an array value, returns the length of the
3056 nth index. This routine will also work for arrays with bounds
3057 supplied by run-time quantities other than discriminants.
3058 Does not work for arrays indexed by enumeration types with representation
3059 clauses at the moment. */
3060
3061 static LONGEST
3062 ada_array_length (struct value *arr, int n)
3063 {
3064 struct type *arr_type, *index_type;
3065 int low, high;
3066
3067 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3068 arr = value_ind (arr);
3069 arr_type = value_enclosing_type (arr);
3070
3071 if (ada_is_constrained_packed_array_type (arr_type))
3072 return ada_array_length (decode_constrained_packed_array (arr), n);
3073
3074 if (ada_is_simple_array_type (arr_type))
3075 {
3076 low = ada_array_bound_from_type (arr_type, n, 0);
3077 high = ada_array_bound_from_type (arr_type, n, 1);
3078 }
3079 else
3080 {
3081 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3082 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3083 }
3084
3085 arr_type = check_typedef (arr_type);
3086 index_type = ada_index_type (arr_type, n, "length");
3087 if (index_type != NULL)
3088 {
3089 struct type *base_type;
3090 if (index_type->code () == TYPE_CODE_RANGE)
3091 base_type = TYPE_TARGET_TYPE (index_type);
3092 else
3093 base_type = index_type;
3094
3095 low = pos_atr (value_from_longest (base_type, low));
3096 high = pos_atr (value_from_longest (base_type, high));
3097 }
3098 return high - low + 1;
3099 }
3100
3101 /* An array whose type is that of ARR_TYPE (an array type), with
3102 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3103 less than LOW, then LOW-1 is used. */
3104
3105 static struct value *
3106 empty_array (struct type *arr_type, int low, int high)
3107 {
3108 struct type *arr_type0 = ada_check_typedef (arr_type);
3109 struct type *index_type
3110 = create_static_range_type
3111 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3112 high < low ? low - 1 : high);
3113 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3114
3115 return allocate_value (create_array_type (NULL, elt_type, index_type));
3116 }
3117 \f
3118
3119 /* Name resolution */
3120
3121 /* The "decoded" name for the user-definable Ada operator corresponding
3122 to OP. */
3123
3124 static const char *
3125 ada_decoded_op_name (enum exp_opcode op)
3126 {
3127 int i;
3128
3129 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3130 {
3131 if (ada_opname_table[i].op == op)
3132 return ada_opname_table[i].decoded;
3133 }
3134 error (_("Could not find operator name for opcode"));
3135 }
3136
3137 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3138 in a listing of choices during disambiguation (see sort_choices, below).
3139 The idea is that overloadings of a subprogram name from the
3140 same package should sort in their source order. We settle for ordering
3141 such symbols by their trailing number (__N or $N). */
3142
3143 static int
3144 encoded_ordered_before (const char *N0, const char *N1)
3145 {
3146 if (N1 == NULL)
3147 return 0;
3148 else if (N0 == NULL)
3149 return 1;
3150 else
3151 {
3152 int k0, k1;
3153
3154 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3155 ;
3156 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3157 ;
3158 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3159 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3160 {
3161 int n0, n1;
3162
3163 n0 = k0;
3164 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3165 n0 -= 1;
3166 n1 = k1;
3167 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3168 n1 -= 1;
3169 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3170 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3171 }
3172 return (strcmp (N0, N1) < 0);
3173 }
3174 }
3175
3176 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3177 encoded names. */
3178
3179 static void
3180 sort_choices (struct block_symbol syms[], int nsyms)
3181 {
3182 int i;
3183
3184 for (i = 1; i < nsyms; i += 1)
3185 {
3186 struct block_symbol sym = syms[i];
3187 int j;
3188
3189 for (j = i - 1; j >= 0; j -= 1)
3190 {
3191 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3192 sym.symbol->linkage_name ()))
3193 break;
3194 syms[j + 1] = syms[j];
3195 }
3196 syms[j + 1] = sym;
3197 }
3198 }
3199
3200 /* Whether GDB should display formals and return types for functions in the
3201 overloads selection menu. */
3202 static bool print_signatures = true;
3203
3204 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3205 all but functions, the signature is just the name of the symbol. For
3206 functions, this is the name of the function, the list of types for formals
3207 and the return type (if any). */
3208
3209 static void
3210 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3211 const struct type_print_options *flags)
3212 {
3213 struct type *type = SYMBOL_TYPE (sym);
3214
3215 fprintf_filtered (stream, "%s", sym->print_name ());
3216 if (!print_signatures
3217 || type == NULL
3218 || type->code () != TYPE_CODE_FUNC)
3219 return;
3220
3221 if (type->num_fields () > 0)
3222 {
3223 int i;
3224
3225 fprintf_filtered (stream, " (");
3226 for (i = 0; i < type->num_fields (); ++i)
3227 {
3228 if (i > 0)
3229 fprintf_filtered (stream, "; ");
3230 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3231 flags);
3232 }
3233 fprintf_filtered (stream, ")");
3234 }
3235 if (TYPE_TARGET_TYPE (type) != NULL
3236 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3237 {
3238 fprintf_filtered (stream, " return ");
3239 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3240 }
3241 }
3242
3243 /* Read and validate a set of numeric choices from the user in the
3244 range 0 .. N_CHOICES-1. Place the results in increasing
3245 order in CHOICES[0 .. N-1], and return N.
3246
3247 The user types choices as a sequence of numbers on one line
3248 separated by blanks, encoding them as follows:
3249
3250 + A choice of 0 means to cancel the selection, throwing an error.
3251 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3252 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3253
3254 The user is not allowed to choose more than MAX_RESULTS values.
3255
3256 ANNOTATION_SUFFIX, if present, is used to annotate the input
3257 prompts (for use with the -f switch). */
3258
3259 static int
3260 get_selections (int *choices, int n_choices, int max_results,
3261 int is_all_choice, const char *annotation_suffix)
3262 {
3263 const char *args;
3264 const char *prompt;
3265 int n_chosen;
3266 int first_choice = is_all_choice ? 2 : 1;
3267
3268 prompt = getenv ("PS2");
3269 if (prompt == NULL)
3270 prompt = "> ";
3271
3272 args = command_line_input (prompt, annotation_suffix);
3273
3274 if (args == NULL)
3275 error_no_arg (_("one or more choice numbers"));
3276
3277 n_chosen = 0;
3278
3279 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3280 order, as given in args. Choices are validated. */
3281 while (1)
3282 {
3283 char *args2;
3284 int choice, j;
3285
3286 args = skip_spaces (args);
3287 if (*args == '\0' && n_chosen == 0)
3288 error_no_arg (_("one or more choice numbers"));
3289 else if (*args == '\0')
3290 break;
3291
3292 choice = strtol (args, &args2, 10);
3293 if (args == args2 || choice < 0
3294 || choice > n_choices + first_choice - 1)
3295 error (_("Argument must be choice number"));
3296 args = args2;
3297
3298 if (choice == 0)
3299 error (_("cancelled"));
3300
3301 if (choice < first_choice)
3302 {
3303 n_chosen = n_choices;
3304 for (j = 0; j < n_choices; j += 1)
3305 choices[j] = j;
3306 break;
3307 }
3308 choice -= first_choice;
3309
3310 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3311 {
3312 }
3313
3314 if (j < 0 || choice != choices[j])
3315 {
3316 int k;
3317
3318 for (k = n_chosen - 1; k > j; k -= 1)
3319 choices[k + 1] = choices[k];
3320 choices[j + 1] = choice;
3321 n_chosen += 1;
3322 }
3323 }
3324
3325 if (n_chosen > max_results)
3326 error (_("Select no more than %d of the above"), max_results);
3327
3328 return n_chosen;
3329 }
3330
3331 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3332 by asking the user (if necessary), returning the number selected,
3333 and setting the first elements of SYMS items. Error if no symbols
3334 selected. */
3335
3336 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3337 to be re-integrated one of these days. */
3338
3339 static int
3340 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3341 {
3342 int i;
3343 int *chosen = XALLOCAVEC (int , nsyms);
3344 int n_chosen;
3345 int first_choice = (max_results == 1) ? 1 : 2;
3346 const char *select_mode = multiple_symbols_select_mode ();
3347
3348 if (max_results < 1)
3349 error (_("Request to select 0 symbols!"));
3350 if (nsyms <= 1)
3351 return nsyms;
3352
3353 if (select_mode == multiple_symbols_cancel)
3354 error (_("\
3355 canceled because the command is ambiguous\n\
3356 See set/show multiple-symbol."));
3357
3358 /* If select_mode is "all", then return all possible symbols.
3359 Only do that if more than one symbol can be selected, of course.
3360 Otherwise, display the menu as usual. */
3361 if (select_mode == multiple_symbols_all && max_results > 1)
3362 return nsyms;
3363
3364 printf_filtered (_("[0] cancel\n"));
3365 if (max_results > 1)
3366 printf_filtered (_("[1] all\n"));
3367
3368 sort_choices (syms, nsyms);
3369
3370 for (i = 0; i < nsyms; i += 1)
3371 {
3372 if (syms[i].symbol == NULL)
3373 continue;
3374
3375 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3376 {
3377 struct symtab_and_line sal =
3378 find_function_start_sal (syms[i].symbol, 1);
3379
3380 printf_filtered ("[%d] ", i + first_choice);
3381 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3382 &type_print_raw_options);
3383 if (sal.symtab == NULL)
3384 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3385 metadata_style.style ().ptr (), nullptr, sal.line);
3386 else
3387 printf_filtered
3388 (_(" at %ps:%d\n"),
3389 styled_string (file_name_style.style (),
3390 symtab_to_filename_for_display (sal.symtab)),
3391 sal.line);
3392 continue;
3393 }
3394 else
3395 {
3396 int is_enumeral =
3397 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3398 && SYMBOL_TYPE (syms[i].symbol) != NULL
3399 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3400 struct symtab *symtab = NULL;
3401
3402 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3403 symtab = symbol_symtab (syms[i].symbol);
3404
3405 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3406 {
3407 printf_filtered ("[%d] ", i + first_choice);
3408 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3409 &type_print_raw_options);
3410 printf_filtered (_(" at %s:%d\n"),
3411 symtab_to_filename_for_display (symtab),
3412 SYMBOL_LINE (syms[i].symbol));
3413 }
3414 else if (is_enumeral
3415 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3416 {
3417 printf_filtered (("[%d] "), i + first_choice);
3418 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3419 gdb_stdout, -1, 0, &type_print_raw_options);
3420 printf_filtered (_("'(%s) (enumeral)\n"),
3421 syms[i].symbol->print_name ());
3422 }
3423 else
3424 {
3425 printf_filtered ("[%d] ", i + first_choice);
3426 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3427 &type_print_raw_options);
3428
3429 if (symtab != NULL)
3430 printf_filtered (is_enumeral
3431 ? _(" in %s (enumeral)\n")
3432 : _(" at %s:?\n"),
3433 symtab_to_filename_for_display (symtab));
3434 else
3435 printf_filtered (is_enumeral
3436 ? _(" (enumeral)\n")
3437 : _(" at ?\n"));
3438 }
3439 }
3440 }
3441
3442 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3443 "overload-choice");
3444
3445 for (i = 0; i < n_chosen; i += 1)
3446 syms[i] = syms[chosen[i]];
3447
3448 return n_chosen;
3449 }
3450
3451 /* Resolve the operator of the subexpression beginning at
3452 position *POS of *EXPP. "Resolving" consists of replacing
3453 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3454 with their resolutions, replacing built-in operators with
3455 function calls to user-defined operators, where appropriate, and,
3456 when DEPROCEDURE_P is non-zero, converting function-valued variables
3457 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3458 are as in ada_resolve, above. */
3459
3460 static struct value *
3461 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3462 struct type *context_type, int parse_completion,
3463 innermost_block_tracker *tracker)
3464 {
3465 int pc = *pos;
3466 int i;
3467 struct expression *exp; /* Convenience: == *expp. */
3468 enum exp_opcode op = (*expp)->elts[pc].opcode;
3469 struct value **argvec; /* Vector of operand types (alloca'ed). */
3470 int nargs; /* Number of operands. */
3471 int oplen;
3472
3473 argvec = NULL;
3474 nargs = 0;
3475 exp = expp->get ();
3476
3477 /* Pass one: resolve operands, saving their types and updating *pos,
3478 if needed. */
3479 switch (op)
3480 {
3481 case OP_FUNCALL:
3482 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3483 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3484 *pos += 7;
3485 else
3486 {
3487 *pos += 3;
3488 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3489 }
3490 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3491 break;
3492
3493 case UNOP_ADDR:
3494 *pos += 1;
3495 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3496 break;
3497
3498 case UNOP_QUAL:
3499 *pos += 3;
3500 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3501 parse_completion, tracker);
3502 break;
3503
3504 case OP_ATR_MODULUS:
3505 case OP_ATR_SIZE:
3506 case OP_ATR_TAG:
3507 case OP_ATR_FIRST:
3508 case OP_ATR_LAST:
3509 case OP_ATR_LENGTH:
3510 case OP_ATR_POS:
3511 case OP_ATR_VAL:
3512 case OP_ATR_MIN:
3513 case OP_ATR_MAX:
3514 case TERNOP_IN_RANGE:
3515 case BINOP_IN_BOUNDS:
3516 case UNOP_IN_RANGE:
3517 case OP_AGGREGATE:
3518 case OP_OTHERS:
3519 case OP_CHOICES:
3520 case OP_POSITIONAL:
3521 case OP_DISCRETE_RANGE:
3522 case OP_NAME:
3523 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3524 *pos += oplen;
3525 break;
3526
3527 case BINOP_ASSIGN:
3528 {
3529 struct value *arg1;
3530
3531 *pos += 1;
3532 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3533 if (arg1 == NULL)
3534 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3535 else
3536 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3537 tracker);
3538 break;
3539 }
3540
3541 case UNOP_CAST:
3542 *pos += 3;
3543 nargs = 1;
3544 break;
3545
3546 case BINOP_ADD:
3547 case BINOP_SUB:
3548 case BINOP_MUL:
3549 case BINOP_DIV:
3550 case BINOP_REM:
3551 case BINOP_MOD:
3552 case BINOP_EXP:
3553 case BINOP_CONCAT:
3554 case BINOP_LOGICAL_AND:
3555 case BINOP_LOGICAL_OR:
3556 case BINOP_BITWISE_AND:
3557 case BINOP_BITWISE_IOR:
3558 case BINOP_BITWISE_XOR:
3559
3560 case BINOP_EQUAL:
3561 case BINOP_NOTEQUAL:
3562 case BINOP_LESS:
3563 case BINOP_GTR:
3564 case BINOP_LEQ:
3565 case BINOP_GEQ:
3566
3567 case BINOP_REPEAT:
3568 case BINOP_SUBSCRIPT:
3569 case BINOP_COMMA:
3570 *pos += 1;
3571 nargs = 2;
3572 break;
3573
3574 case UNOP_NEG:
3575 case UNOP_PLUS:
3576 case UNOP_LOGICAL_NOT:
3577 case UNOP_ABS:
3578 case UNOP_IND:
3579 *pos += 1;
3580 nargs = 1;
3581 break;
3582
3583 case OP_LONG:
3584 case OP_FLOAT:
3585 case OP_VAR_VALUE:
3586 case OP_VAR_MSYM_VALUE:
3587 *pos += 4;
3588 break;
3589
3590 case OP_TYPE:
3591 case OP_BOOL:
3592 case OP_LAST:
3593 case OP_INTERNALVAR:
3594 *pos += 3;
3595 break;
3596
3597 case UNOP_MEMVAL:
3598 *pos += 3;
3599 nargs = 1;
3600 break;
3601
3602 case OP_REGISTER:
3603 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3604 break;
3605
3606 case STRUCTOP_STRUCT:
3607 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3608 nargs = 1;
3609 break;
3610
3611 case TERNOP_SLICE:
3612 *pos += 1;
3613 nargs = 3;
3614 break;
3615
3616 case OP_STRING:
3617 break;
3618
3619 default:
3620 error (_("Unexpected operator during name resolution"));
3621 }
3622
3623 argvec = XALLOCAVEC (struct value *, nargs + 1);
3624 for (i = 0; i < nargs; i += 1)
3625 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3626 tracker);
3627 argvec[i] = NULL;
3628 exp = expp->get ();
3629
3630 /* Pass two: perform any resolution on principal operator. */
3631 switch (op)
3632 {
3633 default:
3634 break;
3635
3636 case OP_VAR_VALUE:
3637 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3638 {
3639 std::vector<struct block_symbol> candidates;
3640 int n_candidates;
3641
3642 n_candidates =
3643 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3644 exp->elts[pc + 1].block, VAR_DOMAIN,
3645 &candidates);
3646
3647 if (n_candidates > 1)
3648 {
3649 /* Types tend to get re-introduced locally, so if there
3650 are any local symbols that are not types, first filter
3651 out all types. */
3652 int j;
3653 for (j = 0; j < n_candidates; j += 1)
3654 switch (SYMBOL_CLASS (candidates[j].symbol))
3655 {
3656 case LOC_REGISTER:
3657 case LOC_ARG:
3658 case LOC_REF_ARG:
3659 case LOC_REGPARM_ADDR:
3660 case LOC_LOCAL:
3661 case LOC_COMPUTED:
3662 goto FoundNonType;
3663 default:
3664 break;
3665 }
3666 FoundNonType:
3667 if (j < n_candidates)
3668 {
3669 j = 0;
3670 while (j < n_candidates)
3671 {
3672 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3673 {
3674 candidates[j] = candidates[n_candidates - 1];
3675 n_candidates -= 1;
3676 }
3677 else
3678 j += 1;
3679 }
3680 }
3681 }
3682
3683 if (n_candidates == 0)
3684 error (_("No definition found for %s"),
3685 exp->elts[pc + 2].symbol->print_name ());
3686 else if (n_candidates == 1)
3687 i = 0;
3688 else if (deprocedure_p
3689 && !is_nonfunction (candidates.data (), n_candidates))
3690 {
3691 i = ada_resolve_function
3692 (candidates.data (), n_candidates, NULL, 0,
3693 exp->elts[pc + 2].symbol->linkage_name (),
3694 context_type, parse_completion);
3695 if (i < 0)
3696 error (_("Could not find a match for %s"),
3697 exp->elts[pc + 2].symbol->print_name ());
3698 }
3699 else
3700 {
3701 printf_filtered (_("Multiple matches for %s\n"),
3702 exp->elts[pc + 2].symbol->print_name ());
3703 user_select_syms (candidates.data (), n_candidates, 1);
3704 i = 0;
3705 }
3706
3707 exp->elts[pc + 1].block = candidates[i].block;
3708 exp->elts[pc + 2].symbol = candidates[i].symbol;
3709 tracker->update (candidates[i]);
3710 }
3711
3712 if (deprocedure_p
3713 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3714 == TYPE_CODE_FUNC))
3715 {
3716 replace_operator_with_call (expp, pc, 0, 4,
3717 exp->elts[pc + 2].symbol,
3718 exp->elts[pc + 1].block);
3719 exp = expp->get ();
3720 }
3721 break;
3722
3723 case OP_FUNCALL:
3724 {
3725 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3726 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3727 {
3728 std::vector<struct block_symbol> candidates;
3729 int n_candidates;
3730
3731 n_candidates =
3732 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3733 exp->elts[pc + 4].block, VAR_DOMAIN,
3734 &candidates);
3735
3736 if (n_candidates == 1)
3737 i = 0;
3738 else
3739 {
3740 i = ada_resolve_function
3741 (candidates.data (), n_candidates,
3742 argvec, nargs,
3743 exp->elts[pc + 5].symbol->linkage_name (),
3744 context_type, parse_completion);
3745 if (i < 0)
3746 error (_("Could not find a match for %s"),
3747 exp->elts[pc + 5].symbol->print_name ());
3748 }
3749
3750 exp->elts[pc + 4].block = candidates[i].block;
3751 exp->elts[pc + 5].symbol = candidates[i].symbol;
3752 tracker->update (candidates[i]);
3753 }
3754 }
3755 break;
3756 case BINOP_ADD:
3757 case BINOP_SUB:
3758 case BINOP_MUL:
3759 case BINOP_DIV:
3760 case BINOP_REM:
3761 case BINOP_MOD:
3762 case BINOP_CONCAT:
3763 case BINOP_BITWISE_AND:
3764 case BINOP_BITWISE_IOR:
3765 case BINOP_BITWISE_XOR:
3766 case BINOP_EQUAL:
3767 case BINOP_NOTEQUAL:
3768 case BINOP_LESS:
3769 case BINOP_GTR:
3770 case BINOP_LEQ:
3771 case BINOP_GEQ:
3772 case BINOP_EXP:
3773 case UNOP_NEG:
3774 case UNOP_PLUS:
3775 case UNOP_LOGICAL_NOT:
3776 case UNOP_ABS:
3777 if (possible_user_operator_p (op, argvec))
3778 {
3779 std::vector<struct block_symbol> candidates;
3780 int n_candidates;
3781
3782 n_candidates =
3783 ada_lookup_symbol_list (ada_decoded_op_name (op),
3784 NULL, VAR_DOMAIN,
3785 &candidates);
3786
3787 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3788 nargs, ada_decoded_op_name (op), NULL,
3789 parse_completion);
3790 if (i < 0)
3791 break;
3792
3793 replace_operator_with_call (expp, pc, nargs, 1,
3794 candidates[i].symbol,
3795 candidates[i].block);
3796 exp = expp->get ();
3797 }
3798 break;
3799
3800 case OP_TYPE:
3801 case OP_REGISTER:
3802 return NULL;
3803 }
3804
3805 *pos = pc;
3806 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3807 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3808 exp->elts[pc + 1].objfile,
3809 exp->elts[pc + 2].msymbol);
3810 else
3811 return evaluate_subexp_type (exp, pos);
3812 }
3813
3814 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3815 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3816 a non-pointer. */
3817 /* The term "match" here is rather loose. The match is heuristic and
3818 liberal. */
3819
3820 static int
3821 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3822 {
3823 ftype = ada_check_typedef (ftype);
3824 atype = ada_check_typedef (atype);
3825
3826 if (ftype->code () == TYPE_CODE_REF)
3827 ftype = TYPE_TARGET_TYPE (ftype);
3828 if (atype->code () == TYPE_CODE_REF)
3829 atype = TYPE_TARGET_TYPE (atype);
3830
3831 switch (ftype->code ())
3832 {
3833 default:
3834 return ftype->code () == atype->code ();
3835 case TYPE_CODE_PTR:
3836 if (atype->code () == TYPE_CODE_PTR)
3837 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3838 TYPE_TARGET_TYPE (atype), 0);
3839 else
3840 return (may_deref
3841 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3842 case TYPE_CODE_INT:
3843 case TYPE_CODE_ENUM:
3844 case TYPE_CODE_RANGE:
3845 switch (atype->code ())
3846 {
3847 case TYPE_CODE_INT:
3848 case TYPE_CODE_ENUM:
3849 case TYPE_CODE_RANGE:
3850 return 1;
3851 default:
3852 return 0;
3853 }
3854
3855 case TYPE_CODE_ARRAY:
3856 return (atype->code () == TYPE_CODE_ARRAY
3857 || ada_is_array_descriptor_type (atype));
3858
3859 case TYPE_CODE_STRUCT:
3860 if (ada_is_array_descriptor_type (ftype))
3861 return (atype->code () == TYPE_CODE_ARRAY
3862 || ada_is_array_descriptor_type (atype));
3863 else
3864 return (atype->code () == TYPE_CODE_STRUCT
3865 && !ada_is_array_descriptor_type (atype));
3866
3867 case TYPE_CODE_UNION:
3868 case TYPE_CODE_FLT:
3869 return (atype->code () == ftype->code ());
3870 }
3871 }
3872
3873 /* Return non-zero if the formals of FUNC "sufficiently match" the
3874 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3875 may also be an enumeral, in which case it is treated as a 0-
3876 argument function. */
3877
3878 static int
3879 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3880 {
3881 int i;
3882 struct type *func_type = SYMBOL_TYPE (func);
3883
3884 if (SYMBOL_CLASS (func) == LOC_CONST
3885 && func_type->code () == TYPE_CODE_ENUM)
3886 return (n_actuals == 0);
3887 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3888 return 0;
3889
3890 if (func_type->num_fields () != n_actuals)
3891 return 0;
3892
3893 for (i = 0; i < n_actuals; i += 1)
3894 {
3895 if (actuals[i] == NULL)
3896 return 0;
3897 else
3898 {
3899 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3900 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3901
3902 if (!ada_type_match (ftype, atype, 1))
3903 return 0;
3904 }
3905 }
3906 return 1;
3907 }
3908
3909 /* False iff function type FUNC_TYPE definitely does not produce a value
3910 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3911 FUNC_TYPE is not a valid function type with a non-null return type
3912 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3913
3914 static int
3915 return_match (struct type *func_type, struct type *context_type)
3916 {
3917 struct type *return_type;
3918
3919 if (func_type == NULL)
3920 return 1;
3921
3922 if (func_type->code () == TYPE_CODE_FUNC)
3923 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3924 else
3925 return_type = get_base_type (func_type);
3926 if (return_type == NULL)
3927 return 1;
3928
3929 context_type = get_base_type (context_type);
3930
3931 if (return_type->code () == TYPE_CODE_ENUM)
3932 return context_type == NULL || return_type == context_type;
3933 else if (context_type == NULL)
3934 return return_type->code () != TYPE_CODE_VOID;
3935 else
3936 return return_type->code () == context_type->code ();
3937 }
3938
3939
3940 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3941 function (if any) that matches the types of the NARGS arguments in
3942 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3943 that returns that type, then eliminate matches that don't. If
3944 CONTEXT_TYPE is void and there is at least one match that does not
3945 return void, eliminate all matches that do.
3946
3947 Asks the user if there is more than one match remaining. Returns -1
3948 if there is no such symbol or none is selected. NAME is used
3949 solely for messages. May re-arrange and modify SYMS in
3950 the process; the index returned is for the modified vector. */
3951
3952 static int
3953 ada_resolve_function (struct block_symbol syms[],
3954 int nsyms, struct value **args, int nargs,
3955 const char *name, struct type *context_type,
3956 int parse_completion)
3957 {
3958 int fallback;
3959 int k;
3960 int m; /* Number of hits */
3961
3962 m = 0;
3963 /* In the first pass of the loop, we only accept functions matching
3964 context_type. If none are found, we add a second pass of the loop
3965 where every function is accepted. */
3966 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3967 {
3968 for (k = 0; k < nsyms; k += 1)
3969 {
3970 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3971
3972 if (ada_args_match (syms[k].symbol, args, nargs)
3973 && (fallback || return_match (type, context_type)))
3974 {
3975 syms[m] = syms[k];
3976 m += 1;
3977 }
3978 }
3979 }
3980
3981 /* If we got multiple matches, ask the user which one to use. Don't do this
3982 interactive thing during completion, though, as the purpose of the
3983 completion is providing a list of all possible matches. Prompting the
3984 user to filter it down would be completely unexpected in this case. */
3985 if (m == 0)
3986 return -1;
3987 else if (m > 1 && !parse_completion)
3988 {
3989 printf_filtered (_("Multiple matches for %s\n"), name);
3990 user_select_syms (syms, m, 1);
3991 return 0;
3992 }
3993 return 0;
3994 }
3995
3996 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3997 on the function identified by SYM and BLOCK, and taking NARGS
3998 arguments. Update *EXPP as needed to hold more space. */
3999
4000 static void
4001 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4002 int oplen, struct symbol *sym,
4003 const struct block *block)
4004 {
4005 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4006 symbol, -oplen for operator being replaced). */
4007 struct expression *newexp = (struct expression *)
4008 xzalloc (sizeof (struct expression)
4009 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4010 struct expression *exp = expp->get ();
4011
4012 newexp->nelts = exp->nelts + 7 - oplen;
4013 newexp->language_defn = exp->language_defn;
4014 newexp->gdbarch = exp->gdbarch;
4015 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4016 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4017 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4018
4019 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4020 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4021
4022 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4023 newexp->elts[pc + 4].block = block;
4024 newexp->elts[pc + 5].symbol = sym;
4025
4026 expp->reset (newexp);
4027 }
4028
4029 /* Type-class predicates */
4030
4031 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4032 or FLOAT). */
4033
4034 static int
4035 numeric_type_p (struct type *type)
4036 {
4037 if (type == NULL)
4038 return 0;
4039 else
4040 {
4041 switch (type->code ())
4042 {
4043 case TYPE_CODE_INT:
4044 case TYPE_CODE_FLT:
4045 return 1;
4046 case TYPE_CODE_RANGE:
4047 return (type == TYPE_TARGET_TYPE (type)
4048 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4049 default:
4050 return 0;
4051 }
4052 }
4053 }
4054
4055 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4056
4057 static int
4058 integer_type_p (struct type *type)
4059 {
4060 if (type == NULL)
4061 return 0;
4062 else
4063 {
4064 switch (type->code ())
4065 {
4066 case TYPE_CODE_INT:
4067 return 1;
4068 case TYPE_CODE_RANGE:
4069 return (type == TYPE_TARGET_TYPE (type)
4070 || integer_type_p (TYPE_TARGET_TYPE (type)));
4071 default:
4072 return 0;
4073 }
4074 }
4075 }
4076
4077 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4078
4079 static int
4080 scalar_type_p (struct type *type)
4081 {
4082 if (type == NULL)
4083 return 0;
4084 else
4085 {
4086 switch (type->code ())
4087 {
4088 case TYPE_CODE_INT:
4089 case TYPE_CODE_RANGE:
4090 case TYPE_CODE_ENUM:
4091 case TYPE_CODE_FLT:
4092 return 1;
4093 default:
4094 return 0;
4095 }
4096 }
4097 }
4098
4099 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4100
4101 static int
4102 discrete_type_p (struct type *type)
4103 {
4104 if (type == NULL)
4105 return 0;
4106 else
4107 {
4108 switch (type->code ())
4109 {
4110 case TYPE_CODE_INT:
4111 case TYPE_CODE_RANGE:
4112 case TYPE_CODE_ENUM:
4113 case TYPE_CODE_BOOL:
4114 return 1;
4115 default:
4116 return 0;
4117 }
4118 }
4119 }
4120
4121 /* Returns non-zero if OP with operands in the vector ARGS could be
4122 a user-defined function. Errs on the side of pre-defined operators
4123 (i.e., result 0). */
4124
4125 static int
4126 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4127 {
4128 struct type *type0 =
4129 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4130 struct type *type1 =
4131 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4132
4133 if (type0 == NULL)
4134 return 0;
4135
4136 switch (op)
4137 {
4138 default:
4139 return 0;
4140
4141 case BINOP_ADD:
4142 case BINOP_SUB:
4143 case BINOP_MUL:
4144 case BINOP_DIV:
4145 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4146
4147 case BINOP_REM:
4148 case BINOP_MOD:
4149 case BINOP_BITWISE_AND:
4150 case BINOP_BITWISE_IOR:
4151 case BINOP_BITWISE_XOR:
4152 return (!(integer_type_p (type0) && integer_type_p (type1)));
4153
4154 case BINOP_EQUAL:
4155 case BINOP_NOTEQUAL:
4156 case BINOP_LESS:
4157 case BINOP_GTR:
4158 case BINOP_LEQ:
4159 case BINOP_GEQ:
4160 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4161
4162 case BINOP_CONCAT:
4163 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4164
4165 case BINOP_EXP:
4166 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4167
4168 case UNOP_NEG:
4169 case UNOP_PLUS:
4170 case UNOP_LOGICAL_NOT:
4171 case UNOP_ABS:
4172 return (!numeric_type_p (type0));
4173
4174 }
4175 }
4176 \f
4177 /* Renaming */
4178
4179 /* NOTES:
4180
4181 1. In the following, we assume that a renaming type's name may
4182 have an ___XD suffix. It would be nice if this went away at some
4183 point.
4184 2. We handle both the (old) purely type-based representation of
4185 renamings and the (new) variable-based encoding. At some point,
4186 it is devoutly to be hoped that the former goes away
4187 (FIXME: hilfinger-2007-07-09).
4188 3. Subprogram renamings are not implemented, although the XRS
4189 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4190
4191 /* If SYM encodes a renaming,
4192
4193 <renaming> renames <renamed entity>,
4194
4195 sets *LEN to the length of the renamed entity's name,
4196 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4197 the string describing the subcomponent selected from the renamed
4198 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4199 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4200 are undefined). Otherwise, returns a value indicating the category
4201 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4202 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4203 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4204 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4205 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4206 may be NULL, in which case they are not assigned.
4207
4208 [Currently, however, GCC does not generate subprogram renamings.] */
4209
4210 enum ada_renaming_category
4211 ada_parse_renaming (struct symbol *sym,
4212 const char **renamed_entity, int *len,
4213 const char **renaming_expr)
4214 {
4215 enum ada_renaming_category kind;
4216 const char *info;
4217 const char *suffix;
4218
4219 if (sym == NULL)
4220 return ADA_NOT_RENAMING;
4221 switch (SYMBOL_CLASS (sym))
4222 {
4223 default:
4224 return ADA_NOT_RENAMING;
4225 case LOC_LOCAL:
4226 case LOC_STATIC:
4227 case LOC_COMPUTED:
4228 case LOC_OPTIMIZED_OUT:
4229 info = strstr (sym->linkage_name (), "___XR");
4230 if (info == NULL)
4231 return ADA_NOT_RENAMING;
4232 switch (info[5])
4233 {
4234 case '_':
4235 kind = ADA_OBJECT_RENAMING;
4236 info += 6;
4237 break;
4238 case 'E':
4239 kind = ADA_EXCEPTION_RENAMING;
4240 info += 7;
4241 break;
4242 case 'P':
4243 kind = ADA_PACKAGE_RENAMING;
4244 info += 7;
4245 break;
4246 case 'S':
4247 kind = ADA_SUBPROGRAM_RENAMING;
4248 info += 7;
4249 break;
4250 default:
4251 return ADA_NOT_RENAMING;
4252 }
4253 }
4254
4255 if (renamed_entity != NULL)
4256 *renamed_entity = info;
4257 suffix = strstr (info, "___XE");
4258 if (suffix == NULL || suffix == info)
4259 return ADA_NOT_RENAMING;
4260 if (len != NULL)
4261 *len = strlen (info) - strlen (suffix);
4262 suffix += 5;
4263 if (renaming_expr != NULL)
4264 *renaming_expr = suffix;
4265 return kind;
4266 }
4267
4268 /* Compute the value of the given RENAMING_SYM, which is expected to
4269 be a symbol encoding a renaming expression. BLOCK is the block
4270 used to evaluate the renaming. */
4271
4272 static struct value *
4273 ada_read_renaming_var_value (struct symbol *renaming_sym,
4274 const struct block *block)
4275 {
4276 const char *sym_name;
4277
4278 sym_name = renaming_sym->linkage_name ();
4279 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4280 return evaluate_expression (expr.get ());
4281 }
4282 \f
4283
4284 /* Evaluation: Function Calls */
4285
4286 /* Return an lvalue containing the value VAL. This is the identity on
4287 lvalues, and otherwise has the side-effect of allocating memory
4288 in the inferior where a copy of the value contents is copied. */
4289
4290 static struct value *
4291 ensure_lval (struct value *val)
4292 {
4293 if (VALUE_LVAL (val) == not_lval
4294 || VALUE_LVAL (val) == lval_internalvar)
4295 {
4296 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4297 const CORE_ADDR addr =
4298 value_as_long (value_allocate_space_in_inferior (len));
4299
4300 VALUE_LVAL (val) = lval_memory;
4301 set_value_address (val, addr);
4302 write_memory (addr, value_contents (val), len);
4303 }
4304
4305 return val;
4306 }
4307
4308 /* Given ARG, a value of type (pointer or reference to a)*
4309 structure/union, extract the component named NAME from the ultimate
4310 target structure/union and return it as a value with its
4311 appropriate type.
4312
4313 The routine searches for NAME among all members of the structure itself
4314 and (recursively) among all members of any wrapper members
4315 (e.g., '_parent').
4316
4317 If NO_ERR, then simply return NULL in case of error, rather than
4318 calling error. */
4319
4320 static struct value *
4321 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4322 {
4323 struct type *t, *t1;
4324 struct value *v;
4325 int check_tag;
4326
4327 v = NULL;
4328 t1 = t = ada_check_typedef (value_type (arg));
4329 if (t->code () == TYPE_CODE_REF)
4330 {
4331 t1 = TYPE_TARGET_TYPE (t);
4332 if (t1 == NULL)
4333 goto BadValue;
4334 t1 = ada_check_typedef (t1);
4335 if (t1->code () == TYPE_CODE_PTR)
4336 {
4337 arg = coerce_ref (arg);
4338 t = t1;
4339 }
4340 }
4341
4342 while (t->code () == TYPE_CODE_PTR)
4343 {
4344 t1 = TYPE_TARGET_TYPE (t);
4345 if (t1 == NULL)
4346 goto BadValue;
4347 t1 = ada_check_typedef (t1);
4348 if (t1->code () == TYPE_CODE_PTR)
4349 {
4350 arg = value_ind (arg);
4351 t = t1;
4352 }
4353 else
4354 break;
4355 }
4356
4357 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4358 goto BadValue;
4359
4360 if (t1 == t)
4361 v = ada_search_struct_field (name, arg, 0, t);
4362 else
4363 {
4364 int bit_offset, bit_size, byte_offset;
4365 struct type *field_type;
4366 CORE_ADDR address;
4367
4368 if (t->code () == TYPE_CODE_PTR)
4369 address = value_address (ada_value_ind (arg));
4370 else
4371 address = value_address (ada_coerce_ref (arg));
4372
4373 /* Check to see if this is a tagged type. We also need to handle
4374 the case where the type is a reference to a tagged type, but
4375 we have to be careful to exclude pointers to tagged types.
4376 The latter should be shown as usual (as a pointer), whereas
4377 a reference should mostly be transparent to the user. */
4378
4379 if (ada_is_tagged_type (t1, 0)
4380 || (t1->code () == TYPE_CODE_REF
4381 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4382 {
4383 /* We first try to find the searched field in the current type.
4384 If not found then let's look in the fixed type. */
4385
4386 if (!find_struct_field (name, t1, 0,
4387 &field_type, &byte_offset, &bit_offset,
4388 &bit_size, NULL))
4389 check_tag = 1;
4390 else
4391 check_tag = 0;
4392 }
4393 else
4394 check_tag = 0;
4395
4396 /* Convert to fixed type in all cases, so that we have proper
4397 offsets to each field in unconstrained record types. */
4398 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4399 address, NULL, check_tag);
4400
4401 /* Resolve the dynamic type as well. */
4402 arg = value_from_contents_and_address (t1, nullptr, address);
4403 t1 = value_type (arg);
4404
4405 if (find_struct_field (name, t1, 0,
4406 &field_type, &byte_offset, &bit_offset,
4407 &bit_size, NULL))
4408 {
4409 if (bit_size != 0)
4410 {
4411 if (t->code () == TYPE_CODE_REF)
4412 arg = ada_coerce_ref (arg);
4413 else
4414 arg = ada_value_ind (arg);
4415 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4416 bit_offset, bit_size,
4417 field_type);
4418 }
4419 else
4420 v = value_at_lazy (field_type, address + byte_offset);
4421 }
4422 }
4423
4424 if (v != NULL || no_err)
4425 return v;
4426 else
4427 error (_("There is no member named %s."), name);
4428
4429 BadValue:
4430 if (no_err)
4431 return NULL;
4432 else
4433 error (_("Attempt to extract a component of "
4434 "a value that is not a record."));
4435 }
4436
4437 /* Return the value ACTUAL, converted to be an appropriate value for a
4438 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4439 allocating any necessary descriptors (fat pointers), or copies of
4440 values not residing in memory, updating it as needed. */
4441
4442 struct value *
4443 ada_convert_actual (struct value *actual, struct type *formal_type0)
4444 {
4445 struct type *actual_type = ada_check_typedef (value_type (actual));
4446 struct type *formal_type = ada_check_typedef (formal_type0);
4447 struct type *formal_target =
4448 formal_type->code () == TYPE_CODE_PTR
4449 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4450 struct type *actual_target =
4451 actual_type->code () == TYPE_CODE_PTR
4452 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4453
4454 if (ada_is_array_descriptor_type (formal_target)
4455 && actual_target->code () == TYPE_CODE_ARRAY)
4456 return make_array_descriptor (formal_type, actual);
4457 else if (formal_type->code () == TYPE_CODE_PTR
4458 || formal_type->code () == TYPE_CODE_REF)
4459 {
4460 struct value *result;
4461
4462 if (formal_target->code () == TYPE_CODE_ARRAY
4463 && ada_is_array_descriptor_type (actual_target))
4464 result = desc_data (actual);
4465 else if (formal_type->code () != TYPE_CODE_PTR)
4466 {
4467 if (VALUE_LVAL (actual) != lval_memory)
4468 {
4469 struct value *val;
4470
4471 actual_type = ada_check_typedef (value_type (actual));
4472 val = allocate_value (actual_type);
4473 memcpy ((char *) value_contents_raw (val),
4474 (char *) value_contents (actual),
4475 TYPE_LENGTH (actual_type));
4476 actual = ensure_lval (val);
4477 }
4478 result = value_addr (actual);
4479 }
4480 else
4481 return actual;
4482 return value_cast_pointers (formal_type, result, 0);
4483 }
4484 else if (actual_type->code () == TYPE_CODE_PTR)
4485 return ada_value_ind (actual);
4486 else if (ada_is_aligner_type (formal_type))
4487 {
4488 /* We need to turn this parameter into an aligner type
4489 as well. */
4490 struct value *aligner = allocate_value (formal_type);
4491 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4492
4493 value_assign_to_component (aligner, component, actual);
4494 return aligner;
4495 }
4496
4497 return actual;
4498 }
4499
4500 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4501 type TYPE. This is usually an inefficient no-op except on some targets
4502 (such as AVR) where the representation of a pointer and an address
4503 differs. */
4504
4505 static CORE_ADDR
4506 value_pointer (struct value *value, struct type *type)
4507 {
4508 struct gdbarch *gdbarch = get_type_arch (type);
4509 unsigned len = TYPE_LENGTH (type);
4510 gdb_byte *buf = (gdb_byte *) alloca (len);
4511 CORE_ADDR addr;
4512
4513 addr = value_address (value);
4514 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4515 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4516 return addr;
4517 }
4518
4519
4520 /* Push a descriptor of type TYPE for array value ARR on the stack at
4521 *SP, updating *SP to reflect the new descriptor. Return either
4522 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4523 to-descriptor type rather than a descriptor type), a struct value *
4524 representing a pointer to this descriptor. */
4525
4526 static struct value *
4527 make_array_descriptor (struct type *type, struct value *arr)
4528 {
4529 struct type *bounds_type = desc_bounds_type (type);
4530 struct type *desc_type = desc_base_type (type);
4531 struct value *descriptor = allocate_value (desc_type);
4532 struct value *bounds = allocate_value (bounds_type);
4533 int i;
4534
4535 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4536 i > 0; i -= 1)
4537 {
4538 modify_field (value_type (bounds), value_contents_writeable (bounds),
4539 ada_array_bound (arr, i, 0),
4540 desc_bound_bitpos (bounds_type, i, 0),
4541 desc_bound_bitsize (bounds_type, i, 0));
4542 modify_field (value_type (bounds), value_contents_writeable (bounds),
4543 ada_array_bound (arr, i, 1),
4544 desc_bound_bitpos (bounds_type, i, 1),
4545 desc_bound_bitsize (bounds_type, i, 1));
4546 }
4547
4548 bounds = ensure_lval (bounds);
4549
4550 modify_field (value_type (descriptor),
4551 value_contents_writeable (descriptor),
4552 value_pointer (ensure_lval (arr),
4553 desc_type->field (0).type ()),
4554 fat_pntr_data_bitpos (desc_type),
4555 fat_pntr_data_bitsize (desc_type));
4556
4557 modify_field (value_type (descriptor),
4558 value_contents_writeable (descriptor),
4559 value_pointer (bounds,
4560 desc_type->field (1).type ()),
4561 fat_pntr_bounds_bitpos (desc_type),
4562 fat_pntr_bounds_bitsize (desc_type));
4563
4564 descriptor = ensure_lval (descriptor);
4565
4566 if (type->code () == TYPE_CODE_PTR)
4567 return value_addr (descriptor);
4568 else
4569 return descriptor;
4570 }
4571 \f
4572 /* Symbol Cache Module */
4573
4574 /* Performance measurements made as of 2010-01-15 indicate that
4575 this cache does bring some noticeable improvements. Depending
4576 on the type of entity being printed, the cache can make it as much
4577 as an order of magnitude faster than without it.
4578
4579 The descriptive type DWARF extension has significantly reduced
4580 the need for this cache, at least when DWARF is being used. However,
4581 even in this case, some expensive name-based symbol searches are still
4582 sometimes necessary - to find an XVZ variable, mostly. */
4583
4584 /* Initialize the contents of SYM_CACHE. */
4585
4586 static void
4587 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4588 {
4589 obstack_init (&sym_cache->cache_space);
4590 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4591 }
4592
4593 /* Free the memory used by SYM_CACHE. */
4594
4595 static void
4596 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4597 {
4598 obstack_free (&sym_cache->cache_space, NULL);
4599 xfree (sym_cache);
4600 }
4601
4602 /* Return the symbol cache associated to the given program space PSPACE.
4603 If not allocated for this PSPACE yet, allocate and initialize one. */
4604
4605 static struct ada_symbol_cache *
4606 ada_get_symbol_cache (struct program_space *pspace)
4607 {
4608 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4609
4610 if (pspace_data->sym_cache == NULL)
4611 {
4612 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4613 ada_init_symbol_cache (pspace_data->sym_cache);
4614 }
4615
4616 return pspace_data->sym_cache;
4617 }
4618
4619 /* Clear all entries from the symbol cache. */
4620
4621 static void
4622 ada_clear_symbol_cache (void)
4623 {
4624 struct ada_symbol_cache *sym_cache
4625 = ada_get_symbol_cache (current_program_space);
4626
4627 obstack_free (&sym_cache->cache_space, NULL);
4628 ada_init_symbol_cache (sym_cache);
4629 }
4630
4631 /* Search our cache for an entry matching NAME and DOMAIN.
4632 Return it if found, or NULL otherwise. */
4633
4634 static struct cache_entry **
4635 find_entry (const char *name, domain_enum domain)
4636 {
4637 struct ada_symbol_cache *sym_cache
4638 = ada_get_symbol_cache (current_program_space);
4639 int h = msymbol_hash (name) % HASH_SIZE;
4640 struct cache_entry **e;
4641
4642 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4643 {
4644 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4645 return e;
4646 }
4647 return NULL;
4648 }
4649
4650 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4651 Return 1 if found, 0 otherwise.
4652
4653 If an entry was found and SYM is not NULL, set *SYM to the entry's
4654 SYM. Same principle for BLOCK if not NULL. */
4655
4656 static int
4657 lookup_cached_symbol (const char *name, domain_enum domain,
4658 struct symbol **sym, const struct block **block)
4659 {
4660 struct cache_entry **e = find_entry (name, domain);
4661
4662 if (e == NULL)
4663 return 0;
4664 if (sym != NULL)
4665 *sym = (*e)->sym;
4666 if (block != NULL)
4667 *block = (*e)->block;
4668 return 1;
4669 }
4670
4671 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4672 in domain DOMAIN, save this result in our symbol cache. */
4673
4674 static void
4675 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4676 const struct block *block)
4677 {
4678 struct ada_symbol_cache *sym_cache
4679 = ada_get_symbol_cache (current_program_space);
4680 int h;
4681 struct cache_entry *e;
4682
4683 /* Symbols for builtin types don't have a block.
4684 For now don't cache such symbols. */
4685 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4686 return;
4687
4688 /* If the symbol is a local symbol, then do not cache it, as a search
4689 for that symbol depends on the context. To determine whether
4690 the symbol is local or not, we check the block where we found it
4691 against the global and static blocks of its associated symtab. */
4692 if (sym
4693 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4694 GLOBAL_BLOCK) != block
4695 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4696 STATIC_BLOCK) != block)
4697 return;
4698
4699 h = msymbol_hash (name) % HASH_SIZE;
4700 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4701 e->next = sym_cache->root[h];
4702 sym_cache->root[h] = e;
4703 e->name = obstack_strdup (&sym_cache->cache_space, name);
4704 e->sym = sym;
4705 e->domain = domain;
4706 e->block = block;
4707 }
4708 \f
4709 /* Symbol Lookup */
4710
4711 /* Return the symbol name match type that should be used used when
4712 searching for all symbols matching LOOKUP_NAME.
4713
4714 LOOKUP_NAME is expected to be a symbol name after transformation
4715 for Ada lookups. */
4716
4717 static symbol_name_match_type
4718 name_match_type_from_name (const char *lookup_name)
4719 {
4720 return (strstr (lookup_name, "__") == NULL
4721 ? symbol_name_match_type::WILD
4722 : symbol_name_match_type::FULL);
4723 }
4724
4725 /* Return the result of a standard (literal, C-like) lookup of NAME in
4726 given DOMAIN, visible from lexical block BLOCK. */
4727
4728 static struct symbol *
4729 standard_lookup (const char *name, const struct block *block,
4730 domain_enum domain)
4731 {
4732 /* Initialize it just to avoid a GCC false warning. */
4733 struct block_symbol sym = {};
4734
4735 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4736 return sym.symbol;
4737 ada_lookup_encoded_symbol (name, block, domain, &sym);
4738 cache_symbol (name, domain, sym.symbol, sym.block);
4739 return sym.symbol;
4740 }
4741
4742
4743 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4744 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4745 since they contend in overloading in the same way. */
4746 static int
4747 is_nonfunction (struct block_symbol syms[], int n)
4748 {
4749 int i;
4750
4751 for (i = 0; i < n; i += 1)
4752 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4753 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4754 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4755 return 1;
4756
4757 return 0;
4758 }
4759
4760 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4761 struct types. Otherwise, they may not. */
4762
4763 static int
4764 equiv_types (struct type *type0, struct type *type1)
4765 {
4766 if (type0 == type1)
4767 return 1;
4768 if (type0 == NULL || type1 == NULL
4769 || type0->code () != type1->code ())
4770 return 0;
4771 if ((type0->code () == TYPE_CODE_STRUCT
4772 || type0->code () == TYPE_CODE_ENUM)
4773 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4774 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4775 return 1;
4776
4777 return 0;
4778 }
4779
4780 /* True iff SYM0 represents the same entity as SYM1, or one that is
4781 no more defined than that of SYM1. */
4782
4783 static int
4784 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4785 {
4786 if (sym0 == sym1)
4787 return 1;
4788 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4789 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4790 return 0;
4791
4792 switch (SYMBOL_CLASS (sym0))
4793 {
4794 case LOC_UNDEF:
4795 return 1;
4796 case LOC_TYPEDEF:
4797 {
4798 struct type *type0 = SYMBOL_TYPE (sym0);
4799 struct type *type1 = SYMBOL_TYPE (sym1);
4800 const char *name0 = sym0->linkage_name ();
4801 const char *name1 = sym1->linkage_name ();
4802 int len0 = strlen (name0);
4803
4804 return
4805 type0->code () == type1->code ()
4806 && (equiv_types (type0, type1)
4807 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4808 && startswith (name1 + len0, "___XV")));
4809 }
4810 case LOC_CONST:
4811 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4812 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4813
4814 case LOC_STATIC:
4815 {
4816 const char *name0 = sym0->linkage_name ();
4817 const char *name1 = sym1->linkage_name ();
4818 return (strcmp (name0, name1) == 0
4819 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4820 }
4821
4822 default:
4823 return 0;
4824 }
4825 }
4826
4827 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4828 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4829
4830 static void
4831 add_defn_to_vec (struct obstack *obstackp,
4832 struct symbol *sym,
4833 const struct block *block)
4834 {
4835 int i;
4836 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4837
4838 /* Do not try to complete stub types, as the debugger is probably
4839 already scanning all symbols matching a certain name at the
4840 time when this function is called. Trying to replace the stub
4841 type by its associated full type will cause us to restart a scan
4842 which may lead to an infinite recursion. Instead, the client
4843 collecting the matching symbols will end up collecting several
4844 matches, with at least one of them complete. It can then filter
4845 out the stub ones if needed. */
4846
4847 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4848 {
4849 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4850 return;
4851 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4852 {
4853 prevDefns[i].symbol = sym;
4854 prevDefns[i].block = block;
4855 return;
4856 }
4857 }
4858
4859 {
4860 struct block_symbol info;
4861
4862 info.symbol = sym;
4863 info.block = block;
4864 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4865 }
4866 }
4867
4868 /* Number of block_symbol structures currently collected in current vector in
4869 OBSTACKP. */
4870
4871 static int
4872 num_defns_collected (struct obstack *obstackp)
4873 {
4874 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4875 }
4876
4877 /* Vector of block_symbol structures currently collected in current vector in
4878 OBSTACKP. If FINISH, close off the vector and return its final address. */
4879
4880 static struct block_symbol *
4881 defns_collected (struct obstack *obstackp, int finish)
4882 {
4883 if (finish)
4884 return (struct block_symbol *) obstack_finish (obstackp);
4885 else
4886 return (struct block_symbol *) obstack_base (obstackp);
4887 }
4888
4889 /* Return a bound minimal symbol matching NAME according to Ada
4890 decoding rules. Returns an invalid symbol if there is no such
4891 minimal symbol. Names prefixed with "standard__" are handled
4892 specially: "standard__" is first stripped off, and only static and
4893 global symbols are searched. */
4894
4895 struct bound_minimal_symbol
4896 ada_lookup_simple_minsym (const char *name)
4897 {
4898 struct bound_minimal_symbol result;
4899
4900 memset (&result, 0, sizeof (result));
4901
4902 symbol_name_match_type match_type = name_match_type_from_name (name);
4903 lookup_name_info lookup_name (name, match_type);
4904
4905 symbol_name_matcher_ftype *match_name
4906 = ada_get_symbol_name_matcher (lookup_name);
4907
4908 for (objfile *objfile : current_program_space->objfiles ())
4909 {
4910 for (minimal_symbol *msymbol : objfile->msymbols ())
4911 {
4912 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4913 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4914 {
4915 result.minsym = msymbol;
4916 result.objfile = objfile;
4917 break;
4918 }
4919 }
4920 }
4921
4922 return result;
4923 }
4924
4925 /* For all subprograms that statically enclose the subprogram of the
4926 selected frame, add symbols matching identifier NAME in DOMAIN
4927 and their blocks to the list of data in OBSTACKP, as for
4928 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4929 with a wildcard prefix. */
4930
4931 static void
4932 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4933 const lookup_name_info &lookup_name,
4934 domain_enum domain)
4935 {
4936 }
4937
4938 /* True if TYPE is definitely an artificial type supplied to a symbol
4939 for which no debugging information was given in the symbol file. */
4940
4941 static int
4942 is_nondebugging_type (struct type *type)
4943 {
4944 const char *name = ada_type_name (type);
4945
4946 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4947 }
4948
4949 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4950 that are deemed "identical" for practical purposes.
4951
4952 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4953 types and that their number of enumerals is identical (in other
4954 words, type1->num_fields () == type2->num_fields ()). */
4955
4956 static int
4957 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4958 {
4959 int i;
4960
4961 /* The heuristic we use here is fairly conservative. We consider
4962 that 2 enumerate types are identical if they have the same
4963 number of enumerals and that all enumerals have the same
4964 underlying value and name. */
4965
4966 /* All enums in the type should have an identical underlying value. */
4967 for (i = 0; i < type1->num_fields (); i++)
4968 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4969 return 0;
4970
4971 /* All enumerals should also have the same name (modulo any numerical
4972 suffix). */
4973 for (i = 0; i < type1->num_fields (); i++)
4974 {
4975 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4976 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4977 int len_1 = strlen (name_1);
4978 int len_2 = strlen (name_2);
4979
4980 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4981 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4982 if (len_1 != len_2
4983 || strncmp (TYPE_FIELD_NAME (type1, i),
4984 TYPE_FIELD_NAME (type2, i),
4985 len_1) != 0)
4986 return 0;
4987 }
4988
4989 return 1;
4990 }
4991
4992 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4993 that are deemed "identical" for practical purposes. Sometimes,
4994 enumerals are not strictly identical, but their types are so similar
4995 that they can be considered identical.
4996
4997 For instance, consider the following code:
4998
4999 type Color is (Black, Red, Green, Blue, White);
5000 type RGB_Color is new Color range Red .. Blue;
5001
5002 Type RGB_Color is a subrange of an implicit type which is a copy
5003 of type Color. If we call that implicit type RGB_ColorB ("B" is
5004 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5005 As a result, when an expression references any of the enumeral
5006 by name (Eg. "print green"), the expression is technically
5007 ambiguous and the user should be asked to disambiguate. But
5008 doing so would only hinder the user, since it wouldn't matter
5009 what choice he makes, the outcome would always be the same.
5010 So, for practical purposes, we consider them as the same. */
5011
5012 static int
5013 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5014 {
5015 int i;
5016
5017 /* Before performing a thorough comparison check of each type,
5018 we perform a series of inexpensive checks. We expect that these
5019 checks will quickly fail in the vast majority of cases, and thus
5020 help prevent the unnecessary use of a more expensive comparison.
5021 Said comparison also expects us to make some of these checks
5022 (see ada_identical_enum_types_p). */
5023
5024 /* Quick check: All symbols should have an enum type. */
5025 for (i = 0; i < syms.size (); i++)
5026 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
5027 return 0;
5028
5029 /* Quick check: They should all have the same value. */
5030 for (i = 1; i < syms.size (); i++)
5031 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5032 return 0;
5033
5034 /* Quick check: They should all have the same number of enumerals. */
5035 for (i = 1; i < syms.size (); i++)
5036 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
5037 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
5038 return 0;
5039
5040 /* All the sanity checks passed, so we might have a set of
5041 identical enumeration types. Perform a more complete
5042 comparison of the type of each symbol. */
5043 for (i = 1; i < syms.size (); i++)
5044 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5045 SYMBOL_TYPE (syms[0].symbol)))
5046 return 0;
5047
5048 return 1;
5049 }
5050
5051 /* Remove any non-debugging symbols in SYMS that definitely
5052 duplicate other symbols in the list (The only case I know of where
5053 this happens is when object files containing stabs-in-ecoff are
5054 linked with files containing ordinary ecoff debugging symbols (or no
5055 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5056 Returns the number of items in the modified list. */
5057
5058 static int
5059 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5060 {
5061 int i, j;
5062
5063 /* We should never be called with less than 2 symbols, as there
5064 cannot be any extra symbol in that case. But it's easy to
5065 handle, since we have nothing to do in that case. */
5066 if (syms->size () < 2)
5067 return syms->size ();
5068
5069 i = 0;
5070 while (i < syms->size ())
5071 {
5072 int remove_p = 0;
5073
5074 /* If two symbols have the same name and one of them is a stub type,
5075 the get rid of the stub. */
5076
5077 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
5078 && (*syms)[i].symbol->linkage_name () != NULL)
5079 {
5080 for (j = 0; j < syms->size (); j++)
5081 {
5082 if (j != i
5083 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
5084 && (*syms)[j].symbol->linkage_name () != NULL
5085 && strcmp ((*syms)[i].symbol->linkage_name (),
5086 (*syms)[j].symbol->linkage_name ()) == 0)
5087 remove_p = 1;
5088 }
5089 }
5090
5091 /* Two symbols with the same name, same class and same address
5092 should be identical. */
5093
5094 else if ((*syms)[i].symbol->linkage_name () != NULL
5095 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5096 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5097 {
5098 for (j = 0; j < syms->size (); j += 1)
5099 {
5100 if (i != j
5101 && (*syms)[j].symbol->linkage_name () != NULL
5102 && strcmp ((*syms)[i].symbol->linkage_name (),
5103 (*syms)[j].symbol->linkage_name ()) == 0
5104 && SYMBOL_CLASS ((*syms)[i].symbol)
5105 == SYMBOL_CLASS ((*syms)[j].symbol)
5106 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5107 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5108 remove_p = 1;
5109 }
5110 }
5111
5112 if (remove_p)
5113 syms->erase (syms->begin () + i);
5114 else
5115 i += 1;
5116 }
5117
5118 /* If all the remaining symbols are identical enumerals, then
5119 just keep the first one and discard the rest.
5120
5121 Unlike what we did previously, we do not discard any entry
5122 unless they are ALL identical. This is because the symbol
5123 comparison is not a strict comparison, but rather a practical
5124 comparison. If all symbols are considered identical, then
5125 we can just go ahead and use the first one and discard the rest.
5126 But if we cannot reduce the list to a single element, we have
5127 to ask the user to disambiguate anyways. And if we have to
5128 present a multiple-choice menu, it's less confusing if the list
5129 isn't missing some choices that were identical and yet distinct. */
5130 if (symbols_are_identical_enums (*syms))
5131 syms->resize (1);
5132
5133 return syms->size ();
5134 }
5135
5136 /* Given a type that corresponds to a renaming entity, use the type name
5137 to extract the scope (package name or function name, fully qualified,
5138 and following the GNAT encoding convention) where this renaming has been
5139 defined. */
5140
5141 static std::string
5142 xget_renaming_scope (struct type *renaming_type)
5143 {
5144 /* The renaming types adhere to the following convention:
5145 <scope>__<rename>___<XR extension>.
5146 So, to extract the scope, we search for the "___XR" extension,
5147 and then backtrack until we find the first "__". */
5148
5149 const char *name = renaming_type->name ();
5150 const char *suffix = strstr (name, "___XR");
5151 const char *last;
5152
5153 /* Now, backtrack a bit until we find the first "__". Start looking
5154 at suffix - 3, as the <rename> part is at least one character long. */
5155
5156 for (last = suffix - 3; last > name; last--)
5157 if (last[0] == '_' && last[1] == '_')
5158 break;
5159
5160 /* Make a copy of scope and return it. */
5161 return std::string (name, last);
5162 }
5163
5164 /* Return nonzero if NAME corresponds to a package name. */
5165
5166 static int
5167 is_package_name (const char *name)
5168 {
5169 /* Here, We take advantage of the fact that no symbols are generated
5170 for packages, while symbols are generated for each function.
5171 So the condition for NAME represent a package becomes equivalent
5172 to NAME not existing in our list of symbols. There is only one
5173 small complication with library-level functions (see below). */
5174
5175 /* If it is a function that has not been defined at library level,
5176 then we should be able to look it up in the symbols. */
5177 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5178 return 0;
5179
5180 /* Library-level function names start with "_ada_". See if function
5181 "_ada_" followed by NAME can be found. */
5182
5183 /* Do a quick check that NAME does not contain "__", since library-level
5184 functions names cannot contain "__" in them. */
5185 if (strstr (name, "__") != NULL)
5186 return 0;
5187
5188 std::string fun_name = string_printf ("_ada_%s", name);
5189
5190 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5191 }
5192
5193 /* Return nonzero if SYM corresponds to a renaming entity that is
5194 not visible from FUNCTION_NAME. */
5195
5196 static int
5197 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5198 {
5199 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5200 return 0;
5201
5202 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5203
5204 /* If the rename has been defined in a package, then it is visible. */
5205 if (is_package_name (scope.c_str ()))
5206 return 0;
5207
5208 /* Check that the rename is in the current function scope by checking
5209 that its name starts with SCOPE. */
5210
5211 /* If the function name starts with "_ada_", it means that it is
5212 a library-level function. Strip this prefix before doing the
5213 comparison, as the encoding for the renaming does not contain
5214 this prefix. */
5215 if (startswith (function_name, "_ada_"))
5216 function_name += 5;
5217
5218 return !startswith (function_name, scope.c_str ());
5219 }
5220
5221 /* Remove entries from SYMS that corresponds to a renaming entity that
5222 is not visible from the function associated with CURRENT_BLOCK or
5223 that is superfluous due to the presence of more specific renaming
5224 information. Places surviving symbols in the initial entries of
5225 SYMS and returns the number of surviving symbols.
5226
5227 Rationale:
5228 First, in cases where an object renaming is implemented as a
5229 reference variable, GNAT may produce both the actual reference
5230 variable and the renaming encoding. In this case, we discard the
5231 latter.
5232
5233 Second, GNAT emits a type following a specified encoding for each renaming
5234 entity. Unfortunately, STABS currently does not support the definition
5235 of types that are local to a given lexical block, so all renamings types
5236 are emitted at library level. As a consequence, if an application
5237 contains two renaming entities using the same name, and a user tries to
5238 print the value of one of these entities, the result of the ada symbol
5239 lookup will also contain the wrong renaming type.
5240
5241 This function partially covers for this limitation by attempting to
5242 remove from the SYMS list renaming symbols that should be visible
5243 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5244 method with the current information available. The implementation
5245 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5246
5247 - When the user tries to print a rename in a function while there
5248 is another rename entity defined in a package: Normally, the
5249 rename in the function has precedence over the rename in the
5250 package, so the latter should be removed from the list. This is
5251 currently not the case.
5252
5253 - This function will incorrectly remove valid renames if
5254 the CURRENT_BLOCK corresponds to a function which symbol name
5255 has been changed by an "Export" pragma. As a consequence,
5256 the user will be unable to print such rename entities. */
5257
5258 static int
5259 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5260 const struct block *current_block)
5261 {
5262 struct symbol *current_function;
5263 const char *current_function_name;
5264 int i;
5265 int is_new_style_renaming;
5266
5267 /* If there is both a renaming foo___XR... encoded as a variable and
5268 a simple variable foo in the same block, discard the latter.
5269 First, zero out such symbols, then compress. */
5270 is_new_style_renaming = 0;
5271 for (i = 0; i < syms->size (); i += 1)
5272 {
5273 struct symbol *sym = (*syms)[i].symbol;
5274 const struct block *block = (*syms)[i].block;
5275 const char *name;
5276 const char *suffix;
5277
5278 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5279 continue;
5280 name = sym->linkage_name ();
5281 suffix = strstr (name, "___XR");
5282
5283 if (suffix != NULL)
5284 {
5285 int name_len = suffix - name;
5286 int j;
5287
5288 is_new_style_renaming = 1;
5289 for (j = 0; j < syms->size (); j += 1)
5290 if (i != j && (*syms)[j].symbol != NULL
5291 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5292 name_len) == 0
5293 && block == (*syms)[j].block)
5294 (*syms)[j].symbol = NULL;
5295 }
5296 }
5297 if (is_new_style_renaming)
5298 {
5299 int j, k;
5300
5301 for (j = k = 0; j < syms->size (); j += 1)
5302 if ((*syms)[j].symbol != NULL)
5303 {
5304 (*syms)[k] = (*syms)[j];
5305 k += 1;
5306 }
5307 return k;
5308 }
5309
5310 /* Extract the function name associated to CURRENT_BLOCK.
5311 Abort if unable to do so. */
5312
5313 if (current_block == NULL)
5314 return syms->size ();
5315
5316 current_function = block_linkage_function (current_block);
5317 if (current_function == NULL)
5318 return syms->size ();
5319
5320 current_function_name = current_function->linkage_name ();
5321 if (current_function_name == NULL)
5322 return syms->size ();
5323
5324 /* Check each of the symbols, and remove it from the list if it is
5325 a type corresponding to a renaming that is out of the scope of
5326 the current block. */
5327
5328 i = 0;
5329 while (i < syms->size ())
5330 {
5331 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5332 == ADA_OBJECT_RENAMING
5333 && old_renaming_is_invisible ((*syms)[i].symbol,
5334 current_function_name))
5335 syms->erase (syms->begin () + i);
5336 else
5337 i += 1;
5338 }
5339
5340 return syms->size ();
5341 }
5342
5343 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5344 whose name and domain match NAME and DOMAIN respectively.
5345 If no match was found, then extend the search to "enclosing"
5346 routines (in other words, if we're inside a nested function,
5347 search the symbols defined inside the enclosing functions).
5348 If WILD_MATCH_P is nonzero, perform the naming matching in
5349 "wild" mode (see function "wild_match" for more info).
5350
5351 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5352
5353 static void
5354 ada_add_local_symbols (struct obstack *obstackp,
5355 const lookup_name_info &lookup_name,
5356 const struct block *block, domain_enum domain)
5357 {
5358 int block_depth = 0;
5359
5360 while (block != NULL)
5361 {
5362 block_depth += 1;
5363 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5364
5365 /* If we found a non-function match, assume that's the one. */
5366 if (is_nonfunction (defns_collected (obstackp, 0),
5367 num_defns_collected (obstackp)))
5368 return;
5369
5370 block = BLOCK_SUPERBLOCK (block);
5371 }
5372
5373 /* If no luck so far, try to find NAME as a local symbol in some lexically
5374 enclosing subprogram. */
5375 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5376 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5377 }
5378
5379 /* An object of this type is used as the user_data argument when
5380 calling the map_matching_symbols method. */
5381
5382 struct match_data
5383 {
5384 struct objfile *objfile;
5385 struct obstack *obstackp;
5386 struct symbol *arg_sym;
5387 int found_sym;
5388 };
5389
5390 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5391 to a list of symbols. DATA is a pointer to a struct match_data *
5392 containing the obstack that collects the symbol list, the file that SYM
5393 must come from, a flag indicating whether a non-argument symbol has
5394 been found in the current block, and the last argument symbol
5395 passed in SYM within the current block (if any). When SYM is null,
5396 marking the end of a block, the argument symbol is added if no
5397 other has been found. */
5398
5399 static bool
5400 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5401 struct match_data *data)
5402 {
5403 const struct block *block = bsym->block;
5404 struct symbol *sym = bsym->symbol;
5405
5406 if (sym == NULL)
5407 {
5408 if (!data->found_sym && data->arg_sym != NULL)
5409 add_defn_to_vec (data->obstackp,
5410 fixup_symbol_section (data->arg_sym, data->objfile),
5411 block);
5412 data->found_sym = 0;
5413 data->arg_sym = NULL;
5414 }
5415 else
5416 {
5417 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5418 return true;
5419 else if (SYMBOL_IS_ARGUMENT (sym))
5420 data->arg_sym = sym;
5421 else
5422 {
5423 data->found_sym = 1;
5424 add_defn_to_vec (data->obstackp,
5425 fixup_symbol_section (sym, data->objfile),
5426 block);
5427 }
5428 }
5429 return true;
5430 }
5431
5432 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5433 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5434 symbols to OBSTACKP. Return whether we found such symbols. */
5435
5436 static int
5437 ada_add_block_renamings (struct obstack *obstackp,
5438 const struct block *block,
5439 const lookup_name_info &lookup_name,
5440 domain_enum domain)
5441 {
5442 struct using_direct *renaming;
5443 int defns_mark = num_defns_collected (obstackp);
5444
5445 symbol_name_matcher_ftype *name_match
5446 = ada_get_symbol_name_matcher (lookup_name);
5447
5448 for (renaming = block_using (block);
5449 renaming != NULL;
5450 renaming = renaming->next)
5451 {
5452 const char *r_name;
5453
5454 /* Avoid infinite recursions: skip this renaming if we are actually
5455 already traversing it.
5456
5457 Currently, symbol lookup in Ada don't use the namespace machinery from
5458 C++/Fortran support: skip namespace imports that use them. */
5459 if (renaming->searched
5460 || (renaming->import_src != NULL
5461 && renaming->import_src[0] != '\0')
5462 || (renaming->import_dest != NULL
5463 && renaming->import_dest[0] != '\0'))
5464 continue;
5465 renaming->searched = 1;
5466
5467 /* TODO: here, we perform another name-based symbol lookup, which can
5468 pull its own multiple overloads. In theory, we should be able to do
5469 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5470 not a simple name. But in order to do this, we would need to enhance
5471 the DWARF reader to associate a symbol to this renaming, instead of a
5472 name. So, for now, we do something simpler: re-use the C++/Fortran
5473 namespace machinery. */
5474 r_name = (renaming->alias != NULL
5475 ? renaming->alias
5476 : renaming->declaration);
5477 if (name_match (r_name, lookup_name, NULL))
5478 {
5479 lookup_name_info decl_lookup_name (renaming->declaration,
5480 lookup_name.match_type ());
5481 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5482 1, NULL);
5483 }
5484 renaming->searched = 0;
5485 }
5486 return num_defns_collected (obstackp) != defns_mark;
5487 }
5488
5489 /* Implements compare_names, but only applying the comparision using
5490 the given CASING. */
5491
5492 static int
5493 compare_names_with_case (const char *string1, const char *string2,
5494 enum case_sensitivity casing)
5495 {
5496 while (*string1 != '\0' && *string2 != '\0')
5497 {
5498 char c1, c2;
5499
5500 if (isspace (*string1) || isspace (*string2))
5501 return strcmp_iw_ordered (string1, string2);
5502
5503 if (casing == case_sensitive_off)
5504 {
5505 c1 = tolower (*string1);
5506 c2 = tolower (*string2);
5507 }
5508 else
5509 {
5510 c1 = *string1;
5511 c2 = *string2;
5512 }
5513 if (c1 != c2)
5514 break;
5515
5516 string1 += 1;
5517 string2 += 1;
5518 }
5519
5520 switch (*string1)
5521 {
5522 case '(':
5523 return strcmp_iw_ordered (string1, string2);
5524 case '_':
5525 if (*string2 == '\0')
5526 {
5527 if (is_name_suffix (string1))
5528 return 0;
5529 else
5530 return 1;
5531 }
5532 /* FALLTHROUGH */
5533 default:
5534 if (*string2 == '(')
5535 return strcmp_iw_ordered (string1, string2);
5536 else
5537 {
5538 if (casing == case_sensitive_off)
5539 return tolower (*string1) - tolower (*string2);
5540 else
5541 return *string1 - *string2;
5542 }
5543 }
5544 }
5545
5546 /* Compare STRING1 to STRING2, with results as for strcmp.
5547 Compatible with strcmp_iw_ordered in that...
5548
5549 strcmp_iw_ordered (STRING1, STRING2) <= 0
5550
5551 ... implies...
5552
5553 compare_names (STRING1, STRING2) <= 0
5554
5555 (they may differ as to what symbols compare equal). */
5556
5557 static int
5558 compare_names (const char *string1, const char *string2)
5559 {
5560 int result;
5561
5562 /* Similar to what strcmp_iw_ordered does, we need to perform
5563 a case-insensitive comparison first, and only resort to
5564 a second, case-sensitive, comparison if the first one was
5565 not sufficient to differentiate the two strings. */
5566
5567 result = compare_names_with_case (string1, string2, case_sensitive_off);
5568 if (result == 0)
5569 result = compare_names_with_case (string1, string2, case_sensitive_on);
5570
5571 return result;
5572 }
5573
5574 /* Convenience function to get at the Ada encoded lookup name for
5575 LOOKUP_NAME, as a C string. */
5576
5577 static const char *
5578 ada_lookup_name (const lookup_name_info &lookup_name)
5579 {
5580 return lookup_name.ada ().lookup_name ().c_str ();
5581 }
5582
5583 /* Add to OBSTACKP all non-local symbols whose name and domain match
5584 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5585 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5586 symbols otherwise. */
5587
5588 static void
5589 add_nonlocal_symbols (struct obstack *obstackp,
5590 const lookup_name_info &lookup_name,
5591 domain_enum domain, int global)
5592 {
5593 struct match_data data;
5594
5595 memset (&data, 0, sizeof data);
5596 data.obstackp = obstackp;
5597
5598 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5599
5600 auto callback = [&] (struct block_symbol *bsym)
5601 {
5602 return aux_add_nonlocal_symbols (bsym, &data);
5603 };
5604
5605 for (objfile *objfile : current_program_space->objfiles ())
5606 {
5607 data.objfile = objfile;
5608
5609 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5610 domain, global, callback,
5611 (is_wild_match
5612 ? NULL : compare_names));
5613
5614 for (compunit_symtab *cu : objfile->compunits ())
5615 {
5616 const struct block *global_block
5617 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5618
5619 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5620 domain))
5621 data.found_sym = 1;
5622 }
5623 }
5624
5625 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5626 {
5627 const char *name = ada_lookup_name (lookup_name);
5628 std::string bracket_name = std::string ("<_ada_") + name + '>';
5629 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5630
5631 for (objfile *objfile : current_program_space->objfiles ())
5632 {
5633 data.objfile = objfile;
5634 objfile->sf->qf->map_matching_symbols (objfile, name1,
5635 domain, global, callback,
5636 compare_names);
5637 }
5638 }
5639 }
5640
5641 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5642 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5643 returning the number of matches. Add these to OBSTACKP.
5644
5645 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5646 symbol match within the nest of blocks whose innermost member is BLOCK,
5647 is the one match returned (no other matches in that or
5648 enclosing blocks is returned). If there are any matches in or
5649 surrounding BLOCK, then these alone are returned.
5650
5651 Names prefixed with "standard__" are handled specially:
5652 "standard__" is first stripped off (by the lookup_name
5653 constructor), and only static and global symbols are searched.
5654
5655 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5656 to lookup global symbols. */
5657
5658 static void
5659 ada_add_all_symbols (struct obstack *obstackp,
5660 const struct block *block,
5661 const lookup_name_info &lookup_name,
5662 domain_enum domain,
5663 int full_search,
5664 int *made_global_lookup_p)
5665 {
5666 struct symbol *sym;
5667
5668 if (made_global_lookup_p)
5669 *made_global_lookup_p = 0;
5670
5671 /* Special case: If the user specifies a symbol name inside package
5672 Standard, do a non-wild matching of the symbol name without
5673 the "standard__" prefix. This was primarily introduced in order
5674 to allow the user to specifically access the standard exceptions
5675 using, for instance, Standard.Constraint_Error when Constraint_Error
5676 is ambiguous (due to the user defining its own Constraint_Error
5677 entity inside its program). */
5678 if (lookup_name.ada ().standard_p ())
5679 block = NULL;
5680
5681 /* Check the non-global symbols. If we have ANY match, then we're done. */
5682
5683 if (block != NULL)
5684 {
5685 if (full_search)
5686 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5687 else
5688 {
5689 /* In the !full_search case we're are being called by
5690 iterate_over_symbols, and we don't want to search
5691 superblocks. */
5692 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5693 }
5694 if (num_defns_collected (obstackp) > 0 || !full_search)
5695 return;
5696 }
5697
5698 /* No non-global symbols found. Check our cache to see if we have
5699 already performed this search before. If we have, then return
5700 the same result. */
5701
5702 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5703 domain, &sym, &block))
5704 {
5705 if (sym != NULL)
5706 add_defn_to_vec (obstackp, sym, block);
5707 return;
5708 }
5709
5710 if (made_global_lookup_p)
5711 *made_global_lookup_p = 1;
5712
5713 /* Search symbols from all global blocks. */
5714
5715 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5716
5717 /* Now add symbols from all per-file blocks if we've gotten no hits
5718 (not strictly correct, but perhaps better than an error). */
5719
5720 if (num_defns_collected (obstackp) == 0)
5721 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5722 }
5723
5724 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5725 is non-zero, enclosing scope and in global scopes, returning the number of
5726 matches.
5727 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5728 found and the blocks and symbol tables (if any) in which they were
5729 found.
5730
5731 When full_search is non-zero, any non-function/non-enumeral
5732 symbol match within the nest of blocks whose innermost member is BLOCK,
5733 is the one match returned (no other matches in that or
5734 enclosing blocks is returned). If there are any matches in or
5735 surrounding BLOCK, then these alone are returned.
5736
5737 Names prefixed with "standard__" are handled specially: "standard__"
5738 is first stripped off, and only static and global symbols are searched. */
5739
5740 static int
5741 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5742 const struct block *block,
5743 domain_enum domain,
5744 std::vector<struct block_symbol> *results,
5745 int full_search)
5746 {
5747 int syms_from_global_search;
5748 int ndefns;
5749 auto_obstack obstack;
5750
5751 ada_add_all_symbols (&obstack, block, lookup_name,
5752 domain, full_search, &syms_from_global_search);
5753
5754 ndefns = num_defns_collected (&obstack);
5755
5756 struct block_symbol *base = defns_collected (&obstack, 1);
5757 for (int i = 0; i < ndefns; ++i)
5758 results->push_back (base[i]);
5759
5760 ndefns = remove_extra_symbols (results);
5761
5762 if (ndefns == 0 && full_search && syms_from_global_search)
5763 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5764
5765 if (ndefns == 1 && full_search && syms_from_global_search)
5766 cache_symbol (ada_lookup_name (lookup_name), domain,
5767 (*results)[0].symbol, (*results)[0].block);
5768
5769 ndefns = remove_irrelevant_renamings (results, block);
5770
5771 return ndefns;
5772 }
5773
5774 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5775 in global scopes, returning the number of matches, and filling *RESULTS
5776 with (SYM,BLOCK) tuples.
5777
5778 See ada_lookup_symbol_list_worker for further details. */
5779
5780 int
5781 ada_lookup_symbol_list (const char *name, const struct block *block,
5782 domain_enum domain,
5783 std::vector<struct block_symbol> *results)
5784 {
5785 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5786 lookup_name_info lookup_name (name, name_match_type);
5787
5788 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5789 }
5790
5791 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5792 to 1, but choosing the first symbol found if there are multiple
5793 choices.
5794
5795 The result is stored in *INFO, which must be non-NULL.
5796 If no match is found, INFO->SYM is set to NULL. */
5797
5798 void
5799 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5800 domain_enum domain,
5801 struct block_symbol *info)
5802 {
5803 /* Since we already have an encoded name, wrap it in '<>' to force a
5804 verbatim match. Otherwise, if the name happens to not look like
5805 an encoded name (because it doesn't include a "__"),
5806 ada_lookup_name_info would re-encode/fold it again, and that
5807 would e.g., incorrectly lowercase object renaming names like
5808 "R28b" -> "r28b". */
5809 std::string verbatim = std::string ("<") + name + '>';
5810
5811 gdb_assert (info != NULL);
5812 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5813 }
5814
5815 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5816 scope and in global scopes, or NULL if none. NAME is folded and
5817 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5818 choosing the first symbol if there are multiple choices. */
5819
5820 struct block_symbol
5821 ada_lookup_symbol (const char *name, const struct block *block0,
5822 domain_enum domain)
5823 {
5824 std::vector<struct block_symbol> candidates;
5825 int n_candidates;
5826
5827 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5828
5829 if (n_candidates == 0)
5830 return {};
5831
5832 block_symbol info = candidates[0];
5833 info.symbol = fixup_symbol_section (info.symbol, NULL);
5834 return info;
5835 }
5836
5837
5838 /* True iff STR is a possible encoded suffix of a normal Ada name
5839 that is to be ignored for matching purposes. Suffixes of parallel
5840 names (e.g., XVE) are not included here. Currently, the possible suffixes
5841 are given by any of the regular expressions:
5842
5843 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5844 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5845 TKB [subprogram suffix for task bodies]
5846 _E[0-9]+[bs]$ [protected object entry suffixes]
5847 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5848
5849 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5850 match is performed. This sequence is used to differentiate homonyms,
5851 is an optional part of a valid name suffix. */
5852
5853 static int
5854 is_name_suffix (const char *str)
5855 {
5856 int k;
5857 const char *matching;
5858 const int len = strlen (str);
5859
5860 /* Skip optional leading __[0-9]+. */
5861
5862 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5863 {
5864 str += 3;
5865 while (isdigit (str[0]))
5866 str += 1;
5867 }
5868
5869 /* [.$][0-9]+ */
5870
5871 if (str[0] == '.' || str[0] == '$')
5872 {
5873 matching = str + 1;
5874 while (isdigit (matching[0]))
5875 matching += 1;
5876 if (matching[0] == '\0')
5877 return 1;
5878 }
5879
5880 /* ___[0-9]+ */
5881
5882 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5883 {
5884 matching = str + 3;
5885 while (isdigit (matching[0]))
5886 matching += 1;
5887 if (matching[0] == '\0')
5888 return 1;
5889 }
5890
5891 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5892
5893 if (strcmp (str, "TKB") == 0)
5894 return 1;
5895
5896 #if 0
5897 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5898 with a N at the end. Unfortunately, the compiler uses the same
5899 convention for other internal types it creates. So treating
5900 all entity names that end with an "N" as a name suffix causes
5901 some regressions. For instance, consider the case of an enumerated
5902 type. To support the 'Image attribute, it creates an array whose
5903 name ends with N.
5904 Having a single character like this as a suffix carrying some
5905 information is a bit risky. Perhaps we should change the encoding
5906 to be something like "_N" instead. In the meantime, do not do
5907 the following check. */
5908 /* Protected Object Subprograms */
5909 if (len == 1 && str [0] == 'N')
5910 return 1;
5911 #endif
5912
5913 /* _E[0-9]+[bs]$ */
5914 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5915 {
5916 matching = str + 3;
5917 while (isdigit (matching[0]))
5918 matching += 1;
5919 if ((matching[0] == 'b' || matching[0] == 's')
5920 && matching [1] == '\0')
5921 return 1;
5922 }
5923
5924 /* ??? We should not modify STR directly, as we are doing below. This
5925 is fine in this case, but may become problematic later if we find
5926 that this alternative did not work, and want to try matching
5927 another one from the begining of STR. Since we modified it, we
5928 won't be able to find the begining of the string anymore! */
5929 if (str[0] == 'X')
5930 {
5931 str += 1;
5932 while (str[0] != '_' && str[0] != '\0')
5933 {
5934 if (str[0] != 'n' && str[0] != 'b')
5935 return 0;
5936 str += 1;
5937 }
5938 }
5939
5940 if (str[0] == '\000')
5941 return 1;
5942
5943 if (str[0] == '_')
5944 {
5945 if (str[1] != '_' || str[2] == '\000')
5946 return 0;
5947 if (str[2] == '_')
5948 {
5949 if (strcmp (str + 3, "JM") == 0)
5950 return 1;
5951 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5952 the LJM suffix in favor of the JM one. But we will
5953 still accept LJM as a valid suffix for a reasonable
5954 amount of time, just to allow ourselves to debug programs
5955 compiled using an older version of GNAT. */
5956 if (strcmp (str + 3, "LJM") == 0)
5957 return 1;
5958 if (str[3] != 'X')
5959 return 0;
5960 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5961 || str[4] == 'U' || str[4] == 'P')
5962 return 1;
5963 if (str[4] == 'R' && str[5] != 'T')
5964 return 1;
5965 return 0;
5966 }
5967 if (!isdigit (str[2]))
5968 return 0;
5969 for (k = 3; str[k] != '\0'; k += 1)
5970 if (!isdigit (str[k]) && str[k] != '_')
5971 return 0;
5972 return 1;
5973 }
5974 if (str[0] == '$' && isdigit (str[1]))
5975 {
5976 for (k = 2; str[k] != '\0'; k += 1)
5977 if (!isdigit (str[k]) && str[k] != '_')
5978 return 0;
5979 return 1;
5980 }
5981 return 0;
5982 }
5983
5984 /* Return non-zero if the string starting at NAME and ending before
5985 NAME_END contains no capital letters. */
5986
5987 static int
5988 is_valid_name_for_wild_match (const char *name0)
5989 {
5990 std::string decoded_name = ada_decode (name0);
5991 int i;
5992
5993 /* If the decoded name starts with an angle bracket, it means that
5994 NAME0 does not follow the GNAT encoding format. It should then
5995 not be allowed as a possible wild match. */
5996 if (decoded_name[0] == '<')
5997 return 0;
5998
5999 for (i=0; decoded_name[i] != '\0'; i++)
6000 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6001 return 0;
6002
6003 return 1;
6004 }
6005
6006 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
6007 character which could start a simple name. Assumes that *NAMEP points
6008 somewhere inside the string beginning at NAME0. */
6009
6010 static int
6011 advance_wild_match (const char **namep, const char *name0, char target0)
6012 {
6013 const char *name = *namep;
6014
6015 while (1)
6016 {
6017 char t0, t1;
6018
6019 t0 = *name;
6020 if (t0 == '_')
6021 {
6022 t1 = name[1];
6023 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6024 {
6025 name += 1;
6026 if (name == name0 + 5 && startswith (name0, "_ada"))
6027 break;
6028 else
6029 name += 1;
6030 }
6031 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6032 || name[2] == target0))
6033 {
6034 name += 2;
6035 break;
6036 }
6037 else
6038 return 0;
6039 }
6040 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6041 name += 1;
6042 else
6043 return 0;
6044 }
6045
6046 *namep = name;
6047 return 1;
6048 }
6049
6050 /* Return true iff NAME encodes a name of the form prefix.PATN.
6051 Ignores any informational suffixes of NAME (i.e., for which
6052 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6053 simple name. */
6054
6055 static bool
6056 wild_match (const char *name, const char *patn)
6057 {
6058 const char *p;
6059 const char *name0 = name;
6060
6061 while (1)
6062 {
6063 const char *match = name;
6064
6065 if (*name == *patn)
6066 {
6067 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6068 if (*p != *name)
6069 break;
6070 if (*p == '\0' && is_name_suffix (name))
6071 return match == name0 || is_valid_name_for_wild_match (name0);
6072
6073 if (name[-1] == '_')
6074 name -= 1;
6075 }
6076 if (!advance_wild_match (&name, name0, *patn))
6077 return false;
6078 }
6079 }
6080
6081 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6082 any trailing suffixes that encode debugging information or leading
6083 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6084 information that is ignored). */
6085
6086 static bool
6087 full_match (const char *sym_name, const char *search_name)
6088 {
6089 size_t search_name_len = strlen (search_name);
6090
6091 if (strncmp (sym_name, search_name, search_name_len) == 0
6092 && is_name_suffix (sym_name + search_name_len))
6093 return true;
6094
6095 if (startswith (sym_name, "_ada_")
6096 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6097 && is_name_suffix (sym_name + search_name_len + 5))
6098 return true;
6099
6100 return false;
6101 }
6102
6103 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6104 *defn_symbols, updating the list of symbols in OBSTACKP (if
6105 necessary). OBJFILE is the section containing BLOCK. */
6106
6107 static void
6108 ada_add_block_symbols (struct obstack *obstackp,
6109 const struct block *block,
6110 const lookup_name_info &lookup_name,
6111 domain_enum domain, struct objfile *objfile)
6112 {
6113 struct block_iterator iter;
6114 /* A matching argument symbol, if any. */
6115 struct symbol *arg_sym;
6116 /* Set true when we find a matching non-argument symbol. */
6117 int found_sym;
6118 struct symbol *sym;
6119
6120 arg_sym = NULL;
6121 found_sym = 0;
6122 for (sym = block_iter_match_first (block, lookup_name, &iter);
6123 sym != NULL;
6124 sym = block_iter_match_next (lookup_name, &iter))
6125 {
6126 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6127 {
6128 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6129 {
6130 if (SYMBOL_IS_ARGUMENT (sym))
6131 arg_sym = sym;
6132 else
6133 {
6134 found_sym = 1;
6135 add_defn_to_vec (obstackp,
6136 fixup_symbol_section (sym, objfile),
6137 block);
6138 }
6139 }
6140 }
6141 }
6142
6143 /* Handle renamings. */
6144
6145 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6146 found_sym = 1;
6147
6148 if (!found_sym && arg_sym != NULL)
6149 {
6150 add_defn_to_vec (obstackp,
6151 fixup_symbol_section (arg_sym, objfile),
6152 block);
6153 }
6154
6155 if (!lookup_name.ada ().wild_match_p ())
6156 {
6157 arg_sym = NULL;
6158 found_sym = 0;
6159 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6160 const char *name = ada_lookup_name.c_str ();
6161 size_t name_len = ada_lookup_name.size ();
6162
6163 ALL_BLOCK_SYMBOLS (block, iter, sym)
6164 {
6165 if (symbol_matches_domain (sym->language (),
6166 SYMBOL_DOMAIN (sym), domain))
6167 {
6168 int cmp;
6169
6170 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6171 if (cmp == 0)
6172 {
6173 cmp = !startswith (sym->linkage_name (), "_ada_");
6174 if (cmp == 0)
6175 cmp = strncmp (name, sym->linkage_name () + 5,
6176 name_len);
6177 }
6178
6179 if (cmp == 0
6180 && is_name_suffix (sym->linkage_name () + name_len + 5))
6181 {
6182 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6183 {
6184 if (SYMBOL_IS_ARGUMENT (sym))
6185 arg_sym = sym;
6186 else
6187 {
6188 found_sym = 1;
6189 add_defn_to_vec (obstackp,
6190 fixup_symbol_section (sym, objfile),
6191 block);
6192 }
6193 }
6194 }
6195 }
6196 }
6197
6198 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6199 They aren't parameters, right? */
6200 if (!found_sym && arg_sym != NULL)
6201 {
6202 add_defn_to_vec (obstackp,
6203 fixup_symbol_section (arg_sym, objfile),
6204 block);
6205 }
6206 }
6207 }
6208 \f
6209
6210 /* Symbol Completion */
6211
6212 /* See symtab.h. */
6213
6214 bool
6215 ada_lookup_name_info::matches
6216 (const char *sym_name,
6217 symbol_name_match_type match_type,
6218 completion_match_result *comp_match_res) const
6219 {
6220 bool match = false;
6221 const char *text = m_encoded_name.c_str ();
6222 size_t text_len = m_encoded_name.size ();
6223
6224 /* First, test against the fully qualified name of the symbol. */
6225
6226 if (strncmp (sym_name, text, text_len) == 0)
6227 match = true;
6228
6229 std::string decoded_name = ada_decode (sym_name);
6230 if (match && !m_encoded_p)
6231 {
6232 /* One needed check before declaring a positive match is to verify
6233 that iff we are doing a verbatim match, the decoded version
6234 of the symbol name starts with '<'. Otherwise, this symbol name
6235 is not a suitable completion. */
6236
6237 bool has_angle_bracket = (decoded_name[0] == '<');
6238 match = (has_angle_bracket == m_verbatim_p);
6239 }
6240
6241 if (match && !m_verbatim_p)
6242 {
6243 /* When doing non-verbatim match, another check that needs to
6244 be done is to verify that the potentially matching symbol name
6245 does not include capital letters, because the ada-mode would
6246 not be able to understand these symbol names without the
6247 angle bracket notation. */
6248 const char *tmp;
6249
6250 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6251 if (*tmp != '\0')
6252 match = false;
6253 }
6254
6255 /* Second: Try wild matching... */
6256
6257 if (!match && m_wild_match_p)
6258 {
6259 /* Since we are doing wild matching, this means that TEXT
6260 may represent an unqualified symbol name. We therefore must
6261 also compare TEXT against the unqualified name of the symbol. */
6262 sym_name = ada_unqualified_name (decoded_name.c_str ());
6263
6264 if (strncmp (sym_name, text, text_len) == 0)
6265 match = true;
6266 }
6267
6268 /* Finally: If we found a match, prepare the result to return. */
6269
6270 if (!match)
6271 return false;
6272
6273 if (comp_match_res != NULL)
6274 {
6275 std::string &match_str = comp_match_res->match.storage ();
6276
6277 if (!m_encoded_p)
6278 match_str = ada_decode (sym_name);
6279 else
6280 {
6281 if (m_verbatim_p)
6282 match_str = add_angle_brackets (sym_name);
6283 else
6284 match_str = sym_name;
6285
6286 }
6287
6288 comp_match_res->set_match (match_str.c_str ());
6289 }
6290
6291 return true;
6292 }
6293
6294 /* Field Access */
6295
6296 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6297 for tagged types. */
6298
6299 static int
6300 ada_is_dispatch_table_ptr_type (struct type *type)
6301 {
6302 const char *name;
6303
6304 if (type->code () != TYPE_CODE_PTR)
6305 return 0;
6306
6307 name = TYPE_TARGET_TYPE (type)->name ();
6308 if (name == NULL)
6309 return 0;
6310
6311 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6312 }
6313
6314 /* Return non-zero if TYPE is an interface tag. */
6315
6316 static int
6317 ada_is_interface_tag (struct type *type)
6318 {
6319 const char *name = type->name ();
6320
6321 if (name == NULL)
6322 return 0;
6323
6324 return (strcmp (name, "ada__tags__interface_tag") == 0);
6325 }
6326
6327 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6328 to be invisible to users. */
6329
6330 int
6331 ada_is_ignored_field (struct type *type, int field_num)
6332 {
6333 if (field_num < 0 || field_num > type->num_fields ())
6334 return 1;
6335
6336 /* Check the name of that field. */
6337 {
6338 const char *name = TYPE_FIELD_NAME (type, field_num);
6339
6340 /* Anonymous field names should not be printed.
6341 brobecker/2007-02-20: I don't think this can actually happen
6342 but we don't want to print the value of anonymous fields anyway. */
6343 if (name == NULL)
6344 return 1;
6345
6346 /* Normally, fields whose name start with an underscore ("_")
6347 are fields that have been internally generated by the compiler,
6348 and thus should not be printed. The "_parent" field is special,
6349 however: This is a field internally generated by the compiler
6350 for tagged types, and it contains the components inherited from
6351 the parent type. This field should not be printed as is, but
6352 should not be ignored either. */
6353 if (name[0] == '_' && !startswith (name, "_parent"))
6354 return 1;
6355 }
6356
6357 /* If this is the dispatch table of a tagged type or an interface tag,
6358 then ignore. */
6359 if (ada_is_tagged_type (type, 1)
6360 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6361 || ada_is_interface_tag (type->field (field_num).type ())))
6362 return 1;
6363
6364 /* Not a special field, so it should not be ignored. */
6365 return 0;
6366 }
6367
6368 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6369 pointer or reference type whose ultimate target has a tag field. */
6370
6371 int
6372 ada_is_tagged_type (struct type *type, int refok)
6373 {
6374 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6375 }
6376
6377 /* True iff TYPE represents the type of X'Tag */
6378
6379 int
6380 ada_is_tag_type (struct type *type)
6381 {
6382 type = ada_check_typedef (type);
6383
6384 if (type == NULL || type->code () != TYPE_CODE_PTR)
6385 return 0;
6386 else
6387 {
6388 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6389
6390 return (name != NULL
6391 && strcmp (name, "ada__tags__dispatch_table") == 0);
6392 }
6393 }
6394
6395 /* The type of the tag on VAL. */
6396
6397 static struct type *
6398 ada_tag_type (struct value *val)
6399 {
6400 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6401 }
6402
6403 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6404 retired at Ada 05). */
6405
6406 static int
6407 is_ada95_tag (struct value *tag)
6408 {
6409 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6410 }
6411
6412 /* The value of the tag on VAL. */
6413
6414 static struct value *
6415 ada_value_tag (struct value *val)
6416 {
6417 return ada_value_struct_elt (val, "_tag", 0);
6418 }
6419
6420 /* The value of the tag on the object of type TYPE whose contents are
6421 saved at VALADDR, if it is non-null, or is at memory address
6422 ADDRESS. */
6423
6424 static struct value *
6425 value_tag_from_contents_and_address (struct type *type,
6426 const gdb_byte *valaddr,
6427 CORE_ADDR address)
6428 {
6429 int tag_byte_offset;
6430 struct type *tag_type;
6431
6432 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6433 NULL, NULL, NULL))
6434 {
6435 const gdb_byte *valaddr1 = ((valaddr == NULL)
6436 ? NULL
6437 : valaddr + tag_byte_offset);
6438 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6439
6440 return value_from_contents_and_address (tag_type, valaddr1, address1);
6441 }
6442 return NULL;
6443 }
6444
6445 static struct type *
6446 type_from_tag (struct value *tag)
6447 {
6448 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6449
6450 if (type_name != NULL)
6451 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6452 return NULL;
6453 }
6454
6455 /* Given a value OBJ of a tagged type, return a value of this
6456 type at the base address of the object. The base address, as
6457 defined in Ada.Tags, it is the address of the primary tag of
6458 the object, and therefore where the field values of its full
6459 view can be fetched. */
6460
6461 struct value *
6462 ada_tag_value_at_base_address (struct value *obj)
6463 {
6464 struct value *val;
6465 LONGEST offset_to_top = 0;
6466 struct type *ptr_type, *obj_type;
6467 struct value *tag;
6468 CORE_ADDR base_address;
6469
6470 obj_type = value_type (obj);
6471
6472 /* It is the responsability of the caller to deref pointers. */
6473
6474 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6475 return obj;
6476
6477 tag = ada_value_tag (obj);
6478 if (!tag)
6479 return obj;
6480
6481 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6482
6483 if (is_ada95_tag (tag))
6484 return obj;
6485
6486 ptr_type = language_lookup_primitive_type
6487 (language_def (language_ada), target_gdbarch(), "storage_offset");
6488 ptr_type = lookup_pointer_type (ptr_type);
6489 val = value_cast (ptr_type, tag);
6490 if (!val)
6491 return obj;
6492
6493 /* It is perfectly possible that an exception be raised while
6494 trying to determine the base address, just like for the tag;
6495 see ada_tag_name for more details. We do not print the error
6496 message for the same reason. */
6497
6498 try
6499 {
6500 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6501 }
6502
6503 catch (const gdb_exception_error &e)
6504 {
6505 return obj;
6506 }
6507
6508 /* If offset is null, nothing to do. */
6509
6510 if (offset_to_top == 0)
6511 return obj;
6512
6513 /* -1 is a special case in Ada.Tags; however, what should be done
6514 is not quite clear from the documentation. So do nothing for
6515 now. */
6516
6517 if (offset_to_top == -1)
6518 return obj;
6519
6520 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6521 from the base address. This was however incompatible with
6522 C++ dispatch table: C++ uses a *negative* value to *add*
6523 to the base address. Ada's convention has therefore been
6524 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6525 use the same convention. Here, we support both cases by
6526 checking the sign of OFFSET_TO_TOP. */
6527
6528 if (offset_to_top > 0)
6529 offset_to_top = -offset_to_top;
6530
6531 base_address = value_address (obj) + offset_to_top;
6532 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6533
6534 /* Make sure that we have a proper tag at the new address.
6535 Otherwise, offset_to_top is bogus (which can happen when
6536 the object is not initialized yet). */
6537
6538 if (!tag)
6539 return obj;
6540
6541 obj_type = type_from_tag (tag);
6542
6543 if (!obj_type)
6544 return obj;
6545
6546 return value_from_contents_and_address (obj_type, NULL, base_address);
6547 }
6548
6549 /* Return the "ada__tags__type_specific_data" type. */
6550
6551 static struct type *
6552 ada_get_tsd_type (struct inferior *inf)
6553 {
6554 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6555
6556 if (data->tsd_type == 0)
6557 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6558 return data->tsd_type;
6559 }
6560
6561 /* Return the TSD (type-specific data) associated to the given TAG.
6562 TAG is assumed to be the tag of a tagged-type entity.
6563
6564 May return NULL if we are unable to get the TSD. */
6565
6566 static struct value *
6567 ada_get_tsd_from_tag (struct value *tag)
6568 {
6569 struct value *val;
6570 struct type *type;
6571
6572 /* First option: The TSD is simply stored as a field of our TAG.
6573 Only older versions of GNAT would use this format, but we have
6574 to test it first, because there are no visible markers for
6575 the current approach except the absence of that field. */
6576
6577 val = ada_value_struct_elt (tag, "tsd", 1);
6578 if (val)
6579 return val;
6580
6581 /* Try the second representation for the dispatch table (in which
6582 there is no explicit 'tsd' field in the referent of the tag pointer,
6583 and instead the tsd pointer is stored just before the dispatch
6584 table. */
6585
6586 type = ada_get_tsd_type (current_inferior());
6587 if (type == NULL)
6588 return NULL;
6589 type = lookup_pointer_type (lookup_pointer_type (type));
6590 val = value_cast (type, tag);
6591 if (val == NULL)
6592 return NULL;
6593 return value_ind (value_ptradd (val, -1));
6594 }
6595
6596 /* Given the TSD of a tag (type-specific data), return a string
6597 containing the name of the associated type.
6598
6599 May return NULL if we are unable to determine the tag name. */
6600
6601 static gdb::unique_xmalloc_ptr<char>
6602 ada_tag_name_from_tsd (struct value *tsd)
6603 {
6604 char *p;
6605 struct value *val;
6606
6607 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6608 if (val == NULL)
6609 return NULL;
6610 gdb::unique_xmalloc_ptr<char> buffer
6611 = target_read_string (value_as_address (val), INT_MAX);
6612 if (buffer == nullptr)
6613 return nullptr;
6614
6615 for (p = buffer.get (); *p != '\0'; ++p)
6616 {
6617 if (isalpha (*p))
6618 *p = tolower (*p);
6619 }
6620
6621 return buffer;
6622 }
6623
6624 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6625 a C string.
6626
6627 Return NULL if the TAG is not an Ada tag, or if we were unable to
6628 determine the name of that tag. */
6629
6630 gdb::unique_xmalloc_ptr<char>
6631 ada_tag_name (struct value *tag)
6632 {
6633 gdb::unique_xmalloc_ptr<char> name;
6634
6635 if (!ada_is_tag_type (value_type (tag)))
6636 return NULL;
6637
6638 /* It is perfectly possible that an exception be raised while trying
6639 to determine the TAG's name, even under normal circumstances:
6640 The associated variable may be uninitialized or corrupted, for
6641 instance. We do not let any exception propagate past this point.
6642 instead we return NULL.
6643
6644 We also do not print the error message either (which often is very
6645 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6646 the caller print a more meaningful message if necessary. */
6647 try
6648 {
6649 struct value *tsd = ada_get_tsd_from_tag (tag);
6650
6651 if (tsd != NULL)
6652 name = ada_tag_name_from_tsd (tsd);
6653 }
6654 catch (const gdb_exception_error &e)
6655 {
6656 }
6657
6658 return name;
6659 }
6660
6661 /* The parent type of TYPE, or NULL if none. */
6662
6663 struct type *
6664 ada_parent_type (struct type *type)
6665 {
6666 int i;
6667
6668 type = ada_check_typedef (type);
6669
6670 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6671 return NULL;
6672
6673 for (i = 0; i < type->num_fields (); i += 1)
6674 if (ada_is_parent_field (type, i))
6675 {
6676 struct type *parent_type = type->field (i).type ();
6677
6678 /* If the _parent field is a pointer, then dereference it. */
6679 if (parent_type->code () == TYPE_CODE_PTR)
6680 parent_type = TYPE_TARGET_TYPE (parent_type);
6681 /* If there is a parallel XVS type, get the actual base type. */
6682 parent_type = ada_get_base_type (parent_type);
6683
6684 return ada_check_typedef (parent_type);
6685 }
6686
6687 return NULL;
6688 }
6689
6690 /* True iff field number FIELD_NUM of structure type TYPE contains the
6691 parent-type (inherited) fields of a derived type. Assumes TYPE is
6692 a structure type with at least FIELD_NUM+1 fields. */
6693
6694 int
6695 ada_is_parent_field (struct type *type, int field_num)
6696 {
6697 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6698
6699 return (name != NULL
6700 && (startswith (name, "PARENT")
6701 || startswith (name, "_parent")));
6702 }
6703
6704 /* True iff field number FIELD_NUM of structure type TYPE is a
6705 transparent wrapper field (which should be silently traversed when doing
6706 field selection and flattened when printing). Assumes TYPE is a
6707 structure type with at least FIELD_NUM+1 fields. Such fields are always
6708 structures. */
6709
6710 int
6711 ada_is_wrapper_field (struct type *type, int field_num)
6712 {
6713 const char *name = TYPE_FIELD_NAME (type, field_num);
6714
6715 if (name != NULL && strcmp (name, "RETVAL") == 0)
6716 {
6717 /* This happens in functions with "out" or "in out" parameters
6718 which are passed by copy. For such functions, GNAT describes
6719 the function's return type as being a struct where the return
6720 value is in a field called RETVAL, and where the other "out"
6721 or "in out" parameters are fields of that struct. This is not
6722 a wrapper. */
6723 return 0;
6724 }
6725
6726 return (name != NULL
6727 && (startswith (name, "PARENT")
6728 || strcmp (name, "REP") == 0
6729 || startswith (name, "_parent")
6730 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6731 }
6732
6733 /* True iff field number FIELD_NUM of structure or union type TYPE
6734 is a variant wrapper. Assumes TYPE is a structure type with at least
6735 FIELD_NUM+1 fields. */
6736
6737 int
6738 ada_is_variant_part (struct type *type, int field_num)
6739 {
6740 /* Only Ada types are eligible. */
6741 if (!ADA_TYPE_P (type))
6742 return 0;
6743
6744 struct type *field_type = type->field (field_num).type ();
6745
6746 return (field_type->code () == TYPE_CODE_UNION
6747 || (is_dynamic_field (type, field_num)
6748 && (TYPE_TARGET_TYPE (field_type)->code ()
6749 == TYPE_CODE_UNION)));
6750 }
6751
6752 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6753 whose discriminants are contained in the record type OUTER_TYPE,
6754 returns the type of the controlling discriminant for the variant.
6755 May return NULL if the type could not be found. */
6756
6757 struct type *
6758 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6759 {
6760 const char *name = ada_variant_discrim_name (var_type);
6761
6762 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6763 }
6764
6765 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6766 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6767 represents a 'when others' clause; otherwise 0. */
6768
6769 static int
6770 ada_is_others_clause (struct type *type, int field_num)
6771 {
6772 const char *name = TYPE_FIELD_NAME (type, field_num);
6773
6774 return (name != NULL && name[0] == 'O');
6775 }
6776
6777 /* Assuming that TYPE0 is the type of the variant part of a record,
6778 returns the name of the discriminant controlling the variant.
6779 The value is valid until the next call to ada_variant_discrim_name. */
6780
6781 const char *
6782 ada_variant_discrim_name (struct type *type0)
6783 {
6784 static char *result = NULL;
6785 static size_t result_len = 0;
6786 struct type *type;
6787 const char *name;
6788 const char *discrim_end;
6789 const char *discrim_start;
6790
6791 if (type0->code () == TYPE_CODE_PTR)
6792 type = TYPE_TARGET_TYPE (type0);
6793 else
6794 type = type0;
6795
6796 name = ada_type_name (type);
6797
6798 if (name == NULL || name[0] == '\000')
6799 return "";
6800
6801 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6802 discrim_end -= 1)
6803 {
6804 if (startswith (discrim_end, "___XVN"))
6805 break;
6806 }
6807 if (discrim_end == name)
6808 return "";
6809
6810 for (discrim_start = discrim_end; discrim_start != name + 3;
6811 discrim_start -= 1)
6812 {
6813 if (discrim_start == name + 1)
6814 return "";
6815 if ((discrim_start > name + 3
6816 && startswith (discrim_start - 3, "___"))
6817 || discrim_start[-1] == '.')
6818 break;
6819 }
6820
6821 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6822 strncpy (result, discrim_start, discrim_end - discrim_start);
6823 result[discrim_end - discrim_start] = '\0';
6824 return result;
6825 }
6826
6827 /* Scan STR for a subtype-encoded number, beginning at position K.
6828 Put the position of the character just past the number scanned in
6829 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6830 Return 1 if there was a valid number at the given position, and 0
6831 otherwise. A "subtype-encoded" number consists of the absolute value
6832 in decimal, followed by the letter 'm' to indicate a negative number.
6833 Assumes 0m does not occur. */
6834
6835 int
6836 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6837 {
6838 ULONGEST RU;
6839
6840 if (!isdigit (str[k]))
6841 return 0;
6842
6843 /* Do it the hard way so as not to make any assumption about
6844 the relationship of unsigned long (%lu scan format code) and
6845 LONGEST. */
6846 RU = 0;
6847 while (isdigit (str[k]))
6848 {
6849 RU = RU * 10 + (str[k] - '0');
6850 k += 1;
6851 }
6852
6853 if (str[k] == 'm')
6854 {
6855 if (R != NULL)
6856 *R = (-(LONGEST) (RU - 1)) - 1;
6857 k += 1;
6858 }
6859 else if (R != NULL)
6860 *R = (LONGEST) RU;
6861
6862 /* NOTE on the above: Technically, C does not say what the results of
6863 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6864 number representable as a LONGEST (although either would probably work
6865 in most implementations). When RU>0, the locution in the then branch
6866 above is always equivalent to the negative of RU. */
6867
6868 if (new_k != NULL)
6869 *new_k = k;
6870 return 1;
6871 }
6872
6873 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6874 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6875 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6876
6877 static int
6878 ada_in_variant (LONGEST val, struct type *type, int field_num)
6879 {
6880 const char *name = TYPE_FIELD_NAME (type, field_num);
6881 int p;
6882
6883 p = 0;
6884 while (1)
6885 {
6886 switch (name[p])
6887 {
6888 case '\0':
6889 return 0;
6890 case 'S':
6891 {
6892 LONGEST W;
6893
6894 if (!ada_scan_number (name, p + 1, &W, &p))
6895 return 0;
6896 if (val == W)
6897 return 1;
6898 break;
6899 }
6900 case 'R':
6901 {
6902 LONGEST L, U;
6903
6904 if (!ada_scan_number (name, p + 1, &L, &p)
6905 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6906 return 0;
6907 if (val >= L && val <= U)
6908 return 1;
6909 break;
6910 }
6911 case 'O':
6912 return 1;
6913 default:
6914 return 0;
6915 }
6916 }
6917 }
6918
6919 /* FIXME: Lots of redundancy below. Try to consolidate. */
6920
6921 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6922 ARG_TYPE, extract and return the value of one of its (non-static)
6923 fields. FIELDNO says which field. Differs from value_primitive_field
6924 only in that it can handle packed values of arbitrary type. */
6925
6926 struct value *
6927 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6928 struct type *arg_type)
6929 {
6930 struct type *type;
6931
6932 arg_type = ada_check_typedef (arg_type);
6933 type = arg_type->field (fieldno).type ();
6934
6935 /* Handle packed fields. It might be that the field is not packed
6936 relative to its containing structure, but the structure itself is
6937 packed; in this case we must take the bit-field path. */
6938 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6939 {
6940 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6941 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6942
6943 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6944 offset + bit_pos / 8,
6945 bit_pos % 8, bit_size, type);
6946 }
6947 else
6948 return value_primitive_field (arg1, offset, fieldno, arg_type);
6949 }
6950
6951 /* Find field with name NAME in object of type TYPE. If found,
6952 set the following for each argument that is non-null:
6953 - *FIELD_TYPE_P to the field's type;
6954 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6955 an object of that type;
6956 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6957 - *BIT_SIZE_P to its size in bits if the field is packed, and
6958 0 otherwise;
6959 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6960 fields up to but not including the desired field, or by the total
6961 number of fields if not found. A NULL value of NAME never
6962 matches; the function just counts visible fields in this case.
6963
6964 Notice that we need to handle when a tagged record hierarchy
6965 has some components with the same name, like in this scenario:
6966
6967 type Top_T is tagged record
6968 N : Integer := 1;
6969 U : Integer := 974;
6970 A : Integer := 48;
6971 end record;
6972
6973 type Middle_T is new Top.Top_T with record
6974 N : Character := 'a';
6975 C : Integer := 3;
6976 end record;
6977
6978 type Bottom_T is new Middle.Middle_T with record
6979 N : Float := 4.0;
6980 C : Character := '5';
6981 X : Integer := 6;
6982 A : Character := 'J';
6983 end record;
6984
6985 Let's say we now have a variable declared and initialized as follow:
6986
6987 TC : Top_A := new Bottom_T;
6988
6989 And then we use this variable to call this function
6990
6991 procedure Assign (Obj: in out Top_T; TV : Integer);
6992
6993 as follow:
6994
6995 Assign (Top_T (B), 12);
6996
6997 Now, we're in the debugger, and we're inside that procedure
6998 then and we want to print the value of obj.c:
6999
7000 Usually, the tagged record or one of the parent type owns the
7001 component to print and there's no issue but in this particular
7002 case, what does it mean to ask for Obj.C? Since the actual
7003 type for object is type Bottom_T, it could mean two things: type
7004 component C from the Middle_T view, but also component C from
7005 Bottom_T. So in that "undefined" case, when the component is
7006 not found in the non-resolved type (which includes all the
7007 components of the parent type), then resolve it and see if we
7008 get better luck once expanded.
7009
7010 In the case of homonyms in the derived tagged type, we don't
7011 guaranty anything, and pick the one that's easiest for us
7012 to program.
7013
7014 Returns 1 if found, 0 otherwise. */
7015
7016 static int
7017 find_struct_field (const char *name, struct type *type, int offset,
7018 struct type **field_type_p,
7019 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7020 int *index_p)
7021 {
7022 int i;
7023 int parent_offset = -1;
7024
7025 type = ada_check_typedef (type);
7026
7027 if (field_type_p != NULL)
7028 *field_type_p = NULL;
7029 if (byte_offset_p != NULL)
7030 *byte_offset_p = 0;
7031 if (bit_offset_p != NULL)
7032 *bit_offset_p = 0;
7033 if (bit_size_p != NULL)
7034 *bit_size_p = 0;
7035
7036 for (i = 0; i < type->num_fields (); i += 1)
7037 {
7038 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7039 int fld_offset = offset + bit_pos / 8;
7040 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7041
7042 if (t_field_name == NULL)
7043 continue;
7044
7045 else if (ada_is_parent_field (type, i))
7046 {
7047 /* This is a field pointing us to the parent type of a tagged
7048 type. As hinted in this function's documentation, we give
7049 preference to fields in the current record first, so what
7050 we do here is just record the index of this field before
7051 we skip it. If it turns out we couldn't find our field
7052 in the current record, then we'll get back to it and search
7053 inside it whether the field might exist in the parent. */
7054
7055 parent_offset = i;
7056 continue;
7057 }
7058
7059 else if (name != NULL && field_name_match (t_field_name, name))
7060 {
7061 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7062
7063 if (field_type_p != NULL)
7064 *field_type_p = type->field (i).type ();
7065 if (byte_offset_p != NULL)
7066 *byte_offset_p = fld_offset;
7067 if (bit_offset_p != NULL)
7068 *bit_offset_p = bit_pos % 8;
7069 if (bit_size_p != NULL)
7070 *bit_size_p = bit_size;
7071 return 1;
7072 }
7073 else if (ada_is_wrapper_field (type, i))
7074 {
7075 if (find_struct_field (name, type->field (i).type (), fld_offset,
7076 field_type_p, byte_offset_p, bit_offset_p,
7077 bit_size_p, index_p))
7078 return 1;
7079 }
7080 else if (ada_is_variant_part (type, i))
7081 {
7082 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7083 fixed type?? */
7084 int j;
7085 struct type *field_type
7086 = ada_check_typedef (type->field (i).type ());
7087
7088 for (j = 0; j < field_type->num_fields (); j += 1)
7089 {
7090 if (find_struct_field (name, field_type->field (j).type (),
7091 fld_offset
7092 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7093 field_type_p, byte_offset_p,
7094 bit_offset_p, bit_size_p, index_p))
7095 return 1;
7096 }
7097 }
7098 else if (index_p != NULL)
7099 *index_p += 1;
7100 }
7101
7102 /* Field not found so far. If this is a tagged type which
7103 has a parent, try finding that field in the parent now. */
7104
7105 if (parent_offset != -1)
7106 {
7107 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7108 int fld_offset = offset + bit_pos / 8;
7109
7110 if (find_struct_field (name, type->field (parent_offset).type (),
7111 fld_offset, field_type_p, byte_offset_p,
7112 bit_offset_p, bit_size_p, index_p))
7113 return 1;
7114 }
7115
7116 return 0;
7117 }
7118
7119 /* Number of user-visible fields in record type TYPE. */
7120
7121 static int
7122 num_visible_fields (struct type *type)
7123 {
7124 int n;
7125
7126 n = 0;
7127 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7128 return n;
7129 }
7130
7131 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7132 and search in it assuming it has (class) type TYPE.
7133 If found, return value, else return NULL.
7134
7135 Searches recursively through wrapper fields (e.g., '_parent').
7136
7137 In the case of homonyms in the tagged types, please refer to the
7138 long explanation in find_struct_field's function documentation. */
7139
7140 static struct value *
7141 ada_search_struct_field (const char *name, struct value *arg, int offset,
7142 struct type *type)
7143 {
7144 int i;
7145 int parent_offset = -1;
7146
7147 type = ada_check_typedef (type);
7148 for (i = 0; i < type->num_fields (); i += 1)
7149 {
7150 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7151
7152 if (t_field_name == NULL)
7153 continue;
7154
7155 else if (ada_is_parent_field (type, i))
7156 {
7157 /* This is a field pointing us to the parent type of a tagged
7158 type. As hinted in this function's documentation, we give
7159 preference to fields in the current record first, so what
7160 we do here is just record the index of this field before
7161 we skip it. If it turns out we couldn't find our field
7162 in the current record, then we'll get back to it and search
7163 inside it whether the field might exist in the parent. */
7164
7165 parent_offset = i;
7166 continue;
7167 }
7168
7169 else if (field_name_match (t_field_name, name))
7170 return ada_value_primitive_field (arg, offset, i, type);
7171
7172 else if (ada_is_wrapper_field (type, i))
7173 {
7174 struct value *v = /* Do not let indent join lines here. */
7175 ada_search_struct_field (name, arg,
7176 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7177 type->field (i).type ());
7178
7179 if (v != NULL)
7180 return v;
7181 }
7182
7183 else if (ada_is_variant_part (type, i))
7184 {
7185 /* PNH: Do we ever get here? See find_struct_field. */
7186 int j;
7187 struct type *field_type = ada_check_typedef (type->field (i).type ());
7188 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7189
7190 for (j = 0; j < field_type->num_fields (); j += 1)
7191 {
7192 struct value *v = ada_search_struct_field /* Force line
7193 break. */
7194 (name, arg,
7195 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7196 field_type->field (j).type ());
7197
7198 if (v != NULL)
7199 return v;
7200 }
7201 }
7202 }
7203
7204 /* Field not found so far. If this is a tagged type which
7205 has a parent, try finding that field in the parent now. */
7206
7207 if (parent_offset != -1)
7208 {
7209 struct value *v = ada_search_struct_field (
7210 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7211 type->field (parent_offset).type ());
7212
7213 if (v != NULL)
7214 return v;
7215 }
7216
7217 return NULL;
7218 }
7219
7220 static struct value *ada_index_struct_field_1 (int *, struct value *,
7221 int, struct type *);
7222
7223
7224 /* Return field #INDEX in ARG, where the index is that returned by
7225 * find_struct_field through its INDEX_P argument. Adjust the address
7226 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7227 * If found, return value, else return NULL. */
7228
7229 static struct value *
7230 ada_index_struct_field (int index, struct value *arg, int offset,
7231 struct type *type)
7232 {
7233 return ada_index_struct_field_1 (&index, arg, offset, type);
7234 }
7235
7236
7237 /* Auxiliary function for ada_index_struct_field. Like
7238 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7239 * *INDEX_P. */
7240
7241 static struct value *
7242 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7243 struct type *type)
7244 {
7245 int i;
7246 type = ada_check_typedef (type);
7247
7248 for (i = 0; i < type->num_fields (); i += 1)
7249 {
7250 if (TYPE_FIELD_NAME (type, i) == NULL)
7251 continue;
7252 else if (ada_is_wrapper_field (type, i))
7253 {
7254 struct value *v = /* Do not let indent join lines here. */
7255 ada_index_struct_field_1 (index_p, arg,
7256 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7257 type->field (i).type ());
7258
7259 if (v != NULL)
7260 return v;
7261 }
7262
7263 else if (ada_is_variant_part (type, i))
7264 {
7265 /* PNH: Do we ever get here? See ada_search_struct_field,
7266 find_struct_field. */
7267 error (_("Cannot assign this kind of variant record"));
7268 }
7269 else if (*index_p == 0)
7270 return ada_value_primitive_field (arg, offset, i, type);
7271 else
7272 *index_p -= 1;
7273 }
7274 return NULL;
7275 }
7276
7277 /* Return a string representation of type TYPE. */
7278
7279 static std::string
7280 type_as_string (struct type *type)
7281 {
7282 string_file tmp_stream;
7283
7284 type_print (type, "", &tmp_stream, -1);
7285
7286 return std::move (tmp_stream.string ());
7287 }
7288
7289 /* Given a type TYPE, look up the type of the component of type named NAME.
7290 If DISPP is non-null, add its byte displacement from the beginning of a
7291 structure (pointed to by a value) of type TYPE to *DISPP (does not
7292 work for packed fields).
7293
7294 Matches any field whose name has NAME as a prefix, possibly
7295 followed by "___".
7296
7297 TYPE can be either a struct or union. If REFOK, TYPE may also
7298 be a (pointer or reference)+ to a struct or union, and the
7299 ultimate target type will be searched.
7300
7301 Looks recursively into variant clauses and parent types.
7302
7303 In the case of homonyms in the tagged types, please refer to the
7304 long explanation in find_struct_field's function documentation.
7305
7306 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7307 TYPE is not a type of the right kind. */
7308
7309 static struct type *
7310 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7311 int noerr)
7312 {
7313 int i;
7314 int parent_offset = -1;
7315
7316 if (name == NULL)
7317 goto BadName;
7318
7319 if (refok && type != NULL)
7320 while (1)
7321 {
7322 type = ada_check_typedef (type);
7323 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7324 break;
7325 type = TYPE_TARGET_TYPE (type);
7326 }
7327
7328 if (type == NULL
7329 || (type->code () != TYPE_CODE_STRUCT
7330 && type->code () != TYPE_CODE_UNION))
7331 {
7332 if (noerr)
7333 return NULL;
7334
7335 error (_("Type %s is not a structure or union type"),
7336 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7337 }
7338
7339 type = to_static_fixed_type (type);
7340
7341 for (i = 0; i < type->num_fields (); i += 1)
7342 {
7343 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7344 struct type *t;
7345
7346 if (t_field_name == NULL)
7347 continue;
7348
7349 else if (ada_is_parent_field (type, i))
7350 {
7351 /* This is a field pointing us to the parent type of a tagged
7352 type. As hinted in this function's documentation, we give
7353 preference to fields in the current record first, so what
7354 we do here is just record the index of this field before
7355 we skip it. If it turns out we couldn't find our field
7356 in the current record, then we'll get back to it and search
7357 inside it whether the field might exist in the parent. */
7358
7359 parent_offset = i;
7360 continue;
7361 }
7362
7363 else if (field_name_match (t_field_name, name))
7364 return type->field (i).type ();
7365
7366 else if (ada_is_wrapper_field (type, i))
7367 {
7368 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7369 0, 1);
7370 if (t != NULL)
7371 return t;
7372 }
7373
7374 else if (ada_is_variant_part (type, i))
7375 {
7376 int j;
7377 struct type *field_type = ada_check_typedef (type->field (i).type ());
7378
7379 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7380 {
7381 /* FIXME pnh 2008/01/26: We check for a field that is
7382 NOT wrapped in a struct, since the compiler sometimes
7383 generates these for unchecked variant types. Revisit
7384 if the compiler changes this practice. */
7385 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7386
7387 if (v_field_name != NULL
7388 && field_name_match (v_field_name, name))
7389 t = field_type->field (j).type ();
7390 else
7391 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7392 name, 0, 1);
7393
7394 if (t != NULL)
7395 return t;
7396 }
7397 }
7398
7399 }
7400
7401 /* Field not found so far. If this is a tagged type which
7402 has a parent, try finding that field in the parent now. */
7403
7404 if (parent_offset != -1)
7405 {
7406 struct type *t;
7407
7408 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7409 name, 0, 1);
7410 if (t != NULL)
7411 return t;
7412 }
7413
7414 BadName:
7415 if (!noerr)
7416 {
7417 const char *name_str = name != NULL ? name : _("<null>");
7418
7419 error (_("Type %s has no component named %s"),
7420 type_as_string (type).c_str (), name_str);
7421 }
7422
7423 return NULL;
7424 }
7425
7426 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7427 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7428 represents an unchecked union (that is, the variant part of a
7429 record that is named in an Unchecked_Union pragma). */
7430
7431 static int
7432 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7433 {
7434 const char *discrim_name = ada_variant_discrim_name (var_type);
7435
7436 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7437 }
7438
7439
7440 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7441 within OUTER, determine which variant clause (field number in VAR_TYPE,
7442 numbering from 0) is applicable. Returns -1 if none are. */
7443
7444 int
7445 ada_which_variant_applies (struct type *var_type, struct value *outer)
7446 {
7447 int others_clause;
7448 int i;
7449 const char *discrim_name = ada_variant_discrim_name (var_type);
7450 struct value *discrim;
7451 LONGEST discrim_val;
7452
7453 /* Using plain value_from_contents_and_address here causes problems
7454 because we will end up trying to resolve a type that is currently
7455 being constructed. */
7456 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7457 if (discrim == NULL)
7458 return -1;
7459 discrim_val = value_as_long (discrim);
7460
7461 others_clause = -1;
7462 for (i = 0; i < var_type->num_fields (); i += 1)
7463 {
7464 if (ada_is_others_clause (var_type, i))
7465 others_clause = i;
7466 else if (ada_in_variant (discrim_val, var_type, i))
7467 return i;
7468 }
7469
7470 return others_clause;
7471 }
7472 \f
7473
7474
7475 /* Dynamic-Sized Records */
7476
7477 /* Strategy: The type ostensibly attached to a value with dynamic size
7478 (i.e., a size that is not statically recorded in the debugging
7479 data) does not accurately reflect the size or layout of the value.
7480 Our strategy is to convert these values to values with accurate,
7481 conventional types that are constructed on the fly. */
7482
7483 /* There is a subtle and tricky problem here. In general, we cannot
7484 determine the size of dynamic records without its data. However,
7485 the 'struct value' data structure, which GDB uses to represent
7486 quantities in the inferior process (the target), requires the size
7487 of the type at the time of its allocation in order to reserve space
7488 for GDB's internal copy of the data. That's why the
7489 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7490 rather than struct value*s.
7491
7492 However, GDB's internal history variables ($1, $2, etc.) are
7493 struct value*s containing internal copies of the data that are not, in
7494 general, the same as the data at their corresponding addresses in
7495 the target. Fortunately, the types we give to these values are all
7496 conventional, fixed-size types (as per the strategy described
7497 above), so that we don't usually have to perform the
7498 'to_fixed_xxx_type' conversions to look at their values.
7499 Unfortunately, there is one exception: if one of the internal
7500 history variables is an array whose elements are unconstrained
7501 records, then we will need to create distinct fixed types for each
7502 element selected. */
7503
7504 /* The upshot of all of this is that many routines take a (type, host
7505 address, target address) triple as arguments to represent a value.
7506 The host address, if non-null, is supposed to contain an internal
7507 copy of the relevant data; otherwise, the program is to consult the
7508 target at the target address. */
7509
7510 /* Assuming that VAL0 represents a pointer value, the result of
7511 dereferencing it. Differs from value_ind in its treatment of
7512 dynamic-sized types. */
7513
7514 struct value *
7515 ada_value_ind (struct value *val0)
7516 {
7517 struct value *val = value_ind (val0);
7518
7519 if (ada_is_tagged_type (value_type (val), 0))
7520 val = ada_tag_value_at_base_address (val);
7521
7522 return ada_to_fixed_value (val);
7523 }
7524
7525 /* The value resulting from dereferencing any "reference to"
7526 qualifiers on VAL0. */
7527
7528 static struct value *
7529 ada_coerce_ref (struct value *val0)
7530 {
7531 if (value_type (val0)->code () == TYPE_CODE_REF)
7532 {
7533 struct value *val = val0;
7534
7535 val = coerce_ref (val);
7536
7537 if (ada_is_tagged_type (value_type (val), 0))
7538 val = ada_tag_value_at_base_address (val);
7539
7540 return ada_to_fixed_value (val);
7541 }
7542 else
7543 return val0;
7544 }
7545
7546 /* Return the bit alignment required for field #F of template type TYPE. */
7547
7548 static unsigned int
7549 field_alignment (struct type *type, int f)
7550 {
7551 const char *name = TYPE_FIELD_NAME (type, f);
7552 int len;
7553 int align_offset;
7554
7555 /* The field name should never be null, unless the debugging information
7556 is somehow malformed. In this case, we assume the field does not
7557 require any alignment. */
7558 if (name == NULL)
7559 return 1;
7560
7561 len = strlen (name);
7562
7563 if (!isdigit (name[len - 1]))
7564 return 1;
7565
7566 if (isdigit (name[len - 2]))
7567 align_offset = len - 2;
7568 else
7569 align_offset = len - 1;
7570
7571 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7572 return TARGET_CHAR_BIT;
7573
7574 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7575 }
7576
7577 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7578
7579 static struct symbol *
7580 ada_find_any_type_symbol (const char *name)
7581 {
7582 struct symbol *sym;
7583
7584 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7585 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7586 return sym;
7587
7588 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7589 return sym;
7590 }
7591
7592 /* Find a type named NAME. Ignores ambiguity. This routine will look
7593 solely for types defined by debug info, it will not search the GDB
7594 primitive types. */
7595
7596 static struct type *
7597 ada_find_any_type (const char *name)
7598 {
7599 struct symbol *sym = ada_find_any_type_symbol (name);
7600
7601 if (sym != NULL)
7602 return SYMBOL_TYPE (sym);
7603
7604 return NULL;
7605 }
7606
7607 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7608 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7609 symbol, in which case it is returned. Otherwise, this looks for
7610 symbols whose name is that of NAME_SYM suffixed with "___XR".
7611 Return symbol if found, and NULL otherwise. */
7612
7613 static bool
7614 ada_is_renaming_symbol (struct symbol *name_sym)
7615 {
7616 const char *name = name_sym->linkage_name ();
7617 return strstr (name, "___XR") != NULL;
7618 }
7619
7620 /* Because of GNAT encoding conventions, several GDB symbols may match a
7621 given type name. If the type denoted by TYPE0 is to be preferred to
7622 that of TYPE1 for purposes of type printing, return non-zero;
7623 otherwise return 0. */
7624
7625 int
7626 ada_prefer_type (struct type *type0, struct type *type1)
7627 {
7628 if (type1 == NULL)
7629 return 1;
7630 else if (type0 == NULL)
7631 return 0;
7632 else if (type1->code () == TYPE_CODE_VOID)
7633 return 1;
7634 else if (type0->code () == TYPE_CODE_VOID)
7635 return 0;
7636 else if (type1->name () == NULL && type0->name () != NULL)
7637 return 1;
7638 else if (ada_is_constrained_packed_array_type (type0))
7639 return 1;
7640 else if (ada_is_array_descriptor_type (type0)
7641 && !ada_is_array_descriptor_type (type1))
7642 return 1;
7643 else
7644 {
7645 const char *type0_name = type0->name ();
7646 const char *type1_name = type1->name ();
7647
7648 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7649 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7650 return 1;
7651 }
7652 return 0;
7653 }
7654
7655 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7656 null. */
7657
7658 const char *
7659 ada_type_name (struct type *type)
7660 {
7661 if (type == NULL)
7662 return NULL;
7663 return type->name ();
7664 }
7665
7666 /* Search the list of "descriptive" types associated to TYPE for a type
7667 whose name is NAME. */
7668
7669 static struct type *
7670 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7671 {
7672 struct type *result, *tmp;
7673
7674 if (ada_ignore_descriptive_types_p)
7675 return NULL;
7676
7677 /* If there no descriptive-type info, then there is no parallel type
7678 to be found. */
7679 if (!HAVE_GNAT_AUX_INFO (type))
7680 return NULL;
7681
7682 result = TYPE_DESCRIPTIVE_TYPE (type);
7683 while (result != NULL)
7684 {
7685 const char *result_name = ada_type_name (result);
7686
7687 if (result_name == NULL)
7688 {
7689 warning (_("unexpected null name on descriptive type"));
7690 return NULL;
7691 }
7692
7693 /* If the names match, stop. */
7694 if (strcmp (result_name, name) == 0)
7695 break;
7696
7697 /* Otherwise, look at the next item on the list, if any. */
7698 if (HAVE_GNAT_AUX_INFO (result))
7699 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7700 else
7701 tmp = NULL;
7702
7703 /* If not found either, try after having resolved the typedef. */
7704 if (tmp != NULL)
7705 result = tmp;
7706 else
7707 {
7708 result = check_typedef (result);
7709 if (HAVE_GNAT_AUX_INFO (result))
7710 result = TYPE_DESCRIPTIVE_TYPE (result);
7711 else
7712 result = NULL;
7713 }
7714 }
7715
7716 /* If we didn't find a match, see whether this is a packed array. With
7717 older compilers, the descriptive type information is either absent or
7718 irrelevant when it comes to packed arrays so the above lookup fails.
7719 Fall back to using a parallel lookup by name in this case. */
7720 if (result == NULL && ada_is_constrained_packed_array_type (type))
7721 return ada_find_any_type (name);
7722
7723 return result;
7724 }
7725
7726 /* Find a parallel type to TYPE with the specified NAME, using the
7727 descriptive type taken from the debugging information, if available,
7728 and otherwise using the (slower) name-based method. */
7729
7730 static struct type *
7731 ada_find_parallel_type_with_name (struct type *type, const char *name)
7732 {
7733 struct type *result = NULL;
7734
7735 if (HAVE_GNAT_AUX_INFO (type))
7736 result = find_parallel_type_by_descriptive_type (type, name);
7737 else
7738 result = ada_find_any_type (name);
7739
7740 return result;
7741 }
7742
7743 /* Same as above, but specify the name of the parallel type by appending
7744 SUFFIX to the name of TYPE. */
7745
7746 struct type *
7747 ada_find_parallel_type (struct type *type, const char *suffix)
7748 {
7749 char *name;
7750 const char *type_name = ada_type_name (type);
7751 int len;
7752
7753 if (type_name == NULL)
7754 return NULL;
7755
7756 len = strlen (type_name);
7757
7758 name = (char *) alloca (len + strlen (suffix) + 1);
7759
7760 strcpy (name, type_name);
7761 strcpy (name + len, suffix);
7762
7763 return ada_find_parallel_type_with_name (type, name);
7764 }
7765
7766 /* If TYPE is a variable-size record type, return the corresponding template
7767 type describing its fields. Otherwise, return NULL. */
7768
7769 static struct type *
7770 dynamic_template_type (struct type *type)
7771 {
7772 type = ada_check_typedef (type);
7773
7774 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7775 || ada_type_name (type) == NULL)
7776 return NULL;
7777 else
7778 {
7779 int len = strlen (ada_type_name (type));
7780
7781 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7782 return type;
7783 else
7784 return ada_find_parallel_type (type, "___XVE");
7785 }
7786 }
7787
7788 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7789 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7790
7791 static int
7792 is_dynamic_field (struct type *templ_type, int field_num)
7793 {
7794 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7795
7796 return name != NULL
7797 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7798 && strstr (name, "___XVL") != NULL;
7799 }
7800
7801 /* The index of the variant field of TYPE, or -1 if TYPE does not
7802 represent a variant record type. */
7803
7804 static int
7805 variant_field_index (struct type *type)
7806 {
7807 int f;
7808
7809 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7810 return -1;
7811
7812 for (f = 0; f < type->num_fields (); f += 1)
7813 {
7814 if (ada_is_variant_part (type, f))
7815 return f;
7816 }
7817 return -1;
7818 }
7819
7820 /* A record type with no fields. */
7821
7822 static struct type *
7823 empty_record (struct type *templ)
7824 {
7825 struct type *type = alloc_type_copy (templ);
7826
7827 type->set_code (TYPE_CODE_STRUCT);
7828 INIT_NONE_SPECIFIC (type);
7829 type->set_name ("<empty>");
7830 TYPE_LENGTH (type) = 0;
7831 return type;
7832 }
7833
7834 /* An ordinary record type (with fixed-length fields) that describes
7835 the value of type TYPE at VALADDR or ADDRESS (see comments at
7836 the beginning of this section) VAL according to GNAT conventions.
7837 DVAL0 should describe the (portion of a) record that contains any
7838 necessary discriminants. It should be NULL if value_type (VAL) is
7839 an outer-level type (i.e., as opposed to a branch of a variant.) A
7840 variant field (unless unchecked) is replaced by a particular branch
7841 of the variant.
7842
7843 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7844 length are not statically known are discarded. As a consequence,
7845 VALADDR, ADDRESS and DVAL0 are ignored.
7846
7847 NOTE: Limitations: For now, we assume that dynamic fields and
7848 variants occupy whole numbers of bytes. However, they need not be
7849 byte-aligned. */
7850
7851 struct type *
7852 ada_template_to_fixed_record_type_1 (struct type *type,
7853 const gdb_byte *valaddr,
7854 CORE_ADDR address, struct value *dval0,
7855 int keep_dynamic_fields)
7856 {
7857 struct value *mark = value_mark ();
7858 struct value *dval;
7859 struct type *rtype;
7860 int nfields, bit_len;
7861 int variant_field;
7862 long off;
7863 int fld_bit_len;
7864 int f;
7865
7866 /* Compute the number of fields in this record type that are going
7867 to be processed: unless keep_dynamic_fields, this includes only
7868 fields whose position and length are static will be processed. */
7869 if (keep_dynamic_fields)
7870 nfields = type->num_fields ();
7871 else
7872 {
7873 nfields = 0;
7874 while (nfields < type->num_fields ()
7875 && !ada_is_variant_part (type, nfields)
7876 && !is_dynamic_field (type, nfields))
7877 nfields++;
7878 }
7879
7880 rtype = alloc_type_copy (type);
7881 rtype->set_code (TYPE_CODE_STRUCT);
7882 INIT_NONE_SPECIFIC (rtype);
7883 rtype->set_num_fields (nfields);
7884 rtype->set_fields
7885 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7886 rtype->set_name (ada_type_name (type));
7887 rtype->set_is_fixed_instance (true);
7888
7889 off = 0;
7890 bit_len = 0;
7891 variant_field = -1;
7892
7893 for (f = 0; f < nfields; f += 1)
7894 {
7895 off = align_up (off, field_alignment (type, f))
7896 + TYPE_FIELD_BITPOS (type, f);
7897 SET_FIELD_BITPOS (rtype->field (f), off);
7898 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7899
7900 if (ada_is_variant_part (type, f))
7901 {
7902 variant_field = f;
7903 fld_bit_len = 0;
7904 }
7905 else if (is_dynamic_field (type, f))
7906 {
7907 const gdb_byte *field_valaddr = valaddr;
7908 CORE_ADDR field_address = address;
7909 struct type *field_type =
7910 TYPE_TARGET_TYPE (type->field (f).type ());
7911
7912 if (dval0 == NULL)
7913 {
7914 /* rtype's length is computed based on the run-time
7915 value of discriminants. If the discriminants are not
7916 initialized, the type size may be completely bogus and
7917 GDB may fail to allocate a value for it. So check the
7918 size first before creating the value. */
7919 ada_ensure_varsize_limit (rtype);
7920 /* Using plain value_from_contents_and_address here
7921 causes problems because we will end up trying to
7922 resolve a type that is currently being
7923 constructed. */
7924 dval = value_from_contents_and_address_unresolved (rtype,
7925 valaddr,
7926 address);
7927 rtype = value_type (dval);
7928 }
7929 else
7930 dval = dval0;
7931
7932 /* If the type referenced by this field is an aligner type, we need
7933 to unwrap that aligner type, because its size might not be set.
7934 Keeping the aligner type would cause us to compute the wrong
7935 size for this field, impacting the offset of the all the fields
7936 that follow this one. */
7937 if (ada_is_aligner_type (field_type))
7938 {
7939 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7940
7941 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7942 field_address = cond_offset_target (field_address, field_offset);
7943 field_type = ada_aligned_type (field_type);
7944 }
7945
7946 field_valaddr = cond_offset_host (field_valaddr,
7947 off / TARGET_CHAR_BIT);
7948 field_address = cond_offset_target (field_address,
7949 off / TARGET_CHAR_BIT);
7950
7951 /* Get the fixed type of the field. Note that, in this case,
7952 we do not want to get the real type out of the tag: if
7953 the current field is the parent part of a tagged record,
7954 we will get the tag of the object. Clearly wrong: the real
7955 type of the parent is not the real type of the child. We
7956 would end up in an infinite loop. */
7957 field_type = ada_get_base_type (field_type);
7958 field_type = ada_to_fixed_type (field_type, field_valaddr,
7959 field_address, dval, 0);
7960 /* If the field size is already larger than the maximum
7961 object size, then the record itself will necessarily
7962 be larger than the maximum object size. We need to make
7963 this check now, because the size might be so ridiculously
7964 large (due to an uninitialized variable in the inferior)
7965 that it would cause an overflow when adding it to the
7966 record size. */
7967 ada_ensure_varsize_limit (field_type);
7968
7969 rtype->field (f).set_type (field_type);
7970 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7971 /* The multiplication can potentially overflow. But because
7972 the field length has been size-checked just above, and
7973 assuming that the maximum size is a reasonable value,
7974 an overflow should not happen in practice. So rather than
7975 adding overflow recovery code to this already complex code,
7976 we just assume that it's not going to happen. */
7977 fld_bit_len =
7978 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7979 }
7980 else
7981 {
7982 /* Note: If this field's type is a typedef, it is important
7983 to preserve the typedef layer.
7984
7985 Otherwise, we might be transforming a typedef to a fat
7986 pointer (encoding a pointer to an unconstrained array),
7987 into a basic fat pointer (encoding an unconstrained
7988 array). As both types are implemented using the same
7989 structure, the typedef is the only clue which allows us
7990 to distinguish between the two options. Stripping it
7991 would prevent us from printing this field appropriately. */
7992 rtype->field (f).set_type (type->field (f).type ());
7993 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7994 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7995 fld_bit_len =
7996 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7997 else
7998 {
7999 struct type *field_type = type->field (f).type ();
8000
8001 /* We need to be careful of typedefs when computing
8002 the length of our field. If this is a typedef,
8003 get the length of the target type, not the length
8004 of the typedef. */
8005 if (field_type->code () == TYPE_CODE_TYPEDEF)
8006 field_type = ada_typedef_target_type (field_type);
8007
8008 fld_bit_len =
8009 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8010 }
8011 }
8012 if (off + fld_bit_len > bit_len)
8013 bit_len = off + fld_bit_len;
8014 off += fld_bit_len;
8015 TYPE_LENGTH (rtype) =
8016 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8017 }
8018
8019 /* We handle the variant part, if any, at the end because of certain
8020 odd cases in which it is re-ordered so as NOT to be the last field of
8021 the record. This can happen in the presence of representation
8022 clauses. */
8023 if (variant_field >= 0)
8024 {
8025 struct type *branch_type;
8026
8027 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8028
8029 if (dval0 == NULL)
8030 {
8031 /* Using plain value_from_contents_and_address here causes
8032 problems because we will end up trying to resolve a type
8033 that is currently being constructed. */
8034 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8035 address);
8036 rtype = value_type (dval);
8037 }
8038 else
8039 dval = dval0;
8040
8041 branch_type =
8042 to_fixed_variant_branch_type
8043 (type->field (variant_field).type (),
8044 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8045 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8046 if (branch_type == NULL)
8047 {
8048 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8049 rtype->field (f - 1) = rtype->field (f);
8050 rtype->set_num_fields (rtype->num_fields () - 1);
8051 }
8052 else
8053 {
8054 rtype->field (variant_field).set_type (branch_type);
8055 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8056 fld_bit_len =
8057 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8058 TARGET_CHAR_BIT;
8059 if (off + fld_bit_len > bit_len)
8060 bit_len = off + fld_bit_len;
8061 TYPE_LENGTH (rtype) =
8062 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8063 }
8064 }
8065
8066 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8067 should contain the alignment of that record, which should be a strictly
8068 positive value. If null or negative, then something is wrong, most
8069 probably in the debug info. In that case, we don't round up the size
8070 of the resulting type. If this record is not part of another structure,
8071 the current RTYPE length might be good enough for our purposes. */
8072 if (TYPE_LENGTH (type) <= 0)
8073 {
8074 if (rtype->name ())
8075 warning (_("Invalid type size for `%s' detected: %s."),
8076 rtype->name (), pulongest (TYPE_LENGTH (type)));
8077 else
8078 warning (_("Invalid type size for <unnamed> detected: %s."),
8079 pulongest (TYPE_LENGTH (type)));
8080 }
8081 else
8082 {
8083 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8084 TYPE_LENGTH (type));
8085 }
8086
8087 value_free_to_mark (mark);
8088 if (TYPE_LENGTH (rtype) > varsize_limit)
8089 error (_("record type with dynamic size is larger than varsize-limit"));
8090 return rtype;
8091 }
8092
8093 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8094 of 1. */
8095
8096 static struct type *
8097 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8098 CORE_ADDR address, struct value *dval0)
8099 {
8100 return ada_template_to_fixed_record_type_1 (type, valaddr,
8101 address, dval0, 1);
8102 }
8103
8104 /* An ordinary record type in which ___XVL-convention fields and
8105 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8106 static approximations, containing all possible fields. Uses
8107 no runtime values. Useless for use in values, but that's OK,
8108 since the results are used only for type determinations. Works on both
8109 structs and unions. Representation note: to save space, we memorize
8110 the result of this function in the TYPE_TARGET_TYPE of the
8111 template type. */
8112
8113 static struct type *
8114 template_to_static_fixed_type (struct type *type0)
8115 {
8116 struct type *type;
8117 int nfields;
8118 int f;
8119
8120 /* No need no do anything if the input type is already fixed. */
8121 if (type0->is_fixed_instance ())
8122 return type0;
8123
8124 /* Likewise if we already have computed the static approximation. */
8125 if (TYPE_TARGET_TYPE (type0) != NULL)
8126 return TYPE_TARGET_TYPE (type0);
8127
8128 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8129 type = type0;
8130 nfields = type0->num_fields ();
8131
8132 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8133 recompute all over next time. */
8134 TYPE_TARGET_TYPE (type0) = type;
8135
8136 for (f = 0; f < nfields; f += 1)
8137 {
8138 struct type *field_type = type0->field (f).type ();
8139 struct type *new_type;
8140
8141 if (is_dynamic_field (type0, f))
8142 {
8143 field_type = ada_check_typedef (field_type);
8144 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8145 }
8146 else
8147 new_type = static_unwrap_type (field_type);
8148
8149 if (new_type != field_type)
8150 {
8151 /* Clone TYPE0 only the first time we get a new field type. */
8152 if (type == type0)
8153 {
8154 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8155 type->set_code (type0->code ());
8156 INIT_NONE_SPECIFIC (type);
8157 type->set_num_fields (nfields);
8158
8159 field *fields =
8160 ((struct field *)
8161 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8162 memcpy (fields, type0->fields (),
8163 sizeof (struct field) * nfields);
8164 type->set_fields (fields);
8165
8166 type->set_name (ada_type_name (type0));
8167 type->set_is_fixed_instance (true);
8168 TYPE_LENGTH (type) = 0;
8169 }
8170 type->field (f).set_type (new_type);
8171 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8172 }
8173 }
8174
8175 return type;
8176 }
8177
8178 /* Given an object of type TYPE whose contents are at VALADDR and
8179 whose address in memory is ADDRESS, returns a revision of TYPE,
8180 which should be a non-dynamic-sized record, in which the variant
8181 part, if any, is replaced with the appropriate branch. Looks
8182 for discriminant values in DVAL0, which can be NULL if the record
8183 contains the necessary discriminant values. */
8184
8185 static struct type *
8186 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8187 CORE_ADDR address, struct value *dval0)
8188 {
8189 struct value *mark = value_mark ();
8190 struct value *dval;
8191 struct type *rtype;
8192 struct type *branch_type;
8193 int nfields = type->num_fields ();
8194 int variant_field = variant_field_index (type);
8195
8196 if (variant_field == -1)
8197 return type;
8198
8199 if (dval0 == NULL)
8200 {
8201 dval = value_from_contents_and_address (type, valaddr, address);
8202 type = value_type (dval);
8203 }
8204 else
8205 dval = dval0;
8206
8207 rtype = alloc_type_copy (type);
8208 rtype->set_code (TYPE_CODE_STRUCT);
8209 INIT_NONE_SPECIFIC (rtype);
8210 rtype->set_num_fields (nfields);
8211
8212 field *fields =
8213 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8214 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8215 rtype->set_fields (fields);
8216
8217 rtype->set_name (ada_type_name (type));
8218 rtype->set_is_fixed_instance (true);
8219 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8220
8221 branch_type = to_fixed_variant_branch_type
8222 (type->field (variant_field).type (),
8223 cond_offset_host (valaddr,
8224 TYPE_FIELD_BITPOS (type, variant_field)
8225 / TARGET_CHAR_BIT),
8226 cond_offset_target (address,
8227 TYPE_FIELD_BITPOS (type, variant_field)
8228 / TARGET_CHAR_BIT), dval);
8229 if (branch_type == NULL)
8230 {
8231 int f;
8232
8233 for (f = variant_field + 1; f < nfields; f += 1)
8234 rtype->field (f - 1) = rtype->field (f);
8235 rtype->set_num_fields (rtype->num_fields () - 1);
8236 }
8237 else
8238 {
8239 rtype->field (variant_field).set_type (branch_type);
8240 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8241 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8242 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8243 }
8244 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8245
8246 value_free_to_mark (mark);
8247 return rtype;
8248 }
8249
8250 /* An ordinary record type (with fixed-length fields) that describes
8251 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8252 beginning of this section]. Any necessary discriminants' values
8253 should be in DVAL, a record value; it may be NULL if the object
8254 at ADDR itself contains any necessary discriminant values.
8255 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8256 values from the record are needed. Except in the case that DVAL,
8257 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8258 unchecked) is replaced by a particular branch of the variant.
8259
8260 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8261 is questionable and may be removed. It can arise during the
8262 processing of an unconstrained-array-of-record type where all the
8263 variant branches have exactly the same size. This is because in
8264 such cases, the compiler does not bother to use the XVS convention
8265 when encoding the record. I am currently dubious of this
8266 shortcut and suspect the compiler should be altered. FIXME. */
8267
8268 static struct type *
8269 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8270 CORE_ADDR address, struct value *dval)
8271 {
8272 struct type *templ_type;
8273
8274 if (type0->is_fixed_instance ())
8275 return type0;
8276
8277 templ_type = dynamic_template_type (type0);
8278
8279 if (templ_type != NULL)
8280 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8281 else if (variant_field_index (type0) >= 0)
8282 {
8283 if (dval == NULL && valaddr == NULL && address == 0)
8284 return type0;
8285 return to_record_with_fixed_variant_part (type0, valaddr, address,
8286 dval);
8287 }
8288 else
8289 {
8290 type0->set_is_fixed_instance (true);
8291 return type0;
8292 }
8293
8294 }
8295
8296 /* An ordinary record type (with fixed-length fields) that describes
8297 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8298 union type. Any necessary discriminants' values should be in DVAL,
8299 a record value. That is, this routine selects the appropriate
8300 branch of the union at ADDR according to the discriminant value
8301 indicated in the union's type name. Returns VAR_TYPE0 itself if
8302 it represents a variant subject to a pragma Unchecked_Union. */
8303
8304 static struct type *
8305 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8306 CORE_ADDR address, struct value *dval)
8307 {
8308 int which;
8309 struct type *templ_type;
8310 struct type *var_type;
8311
8312 if (var_type0->code () == TYPE_CODE_PTR)
8313 var_type = TYPE_TARGET_TYPE (var_type0);
8314 else
8315 var_type = var_type0;
8316
8317 templ_type = ada_find_parallel_type (var_type, "___XVU");
8318
8319 if (templ_type != NULL)
8320 var_type = templ_type;
8321
8322 if (is_unchecked_variant (var_type, value_type (dval)))
8323 return var_type0;
8324 which = ada_which_variant_applies (var_type, dval);
8325
8326 if (which < 0)
8327 return empty_record (var_type);
8328 else if (is_dynamic_field (var_type, which))
8329 return to_fixed_record_type
8330 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8331 valaddr, address, dval);
8332 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8333 return
8334 to_fixed_record_type
8335 (var_type->field (which).type (), valaddr, address, dval);
8336 else
8337 return var_type->field (which).type ();
8338 }
8339
8340 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8341 ENCODING_TYPE, a type following the GNAT conventions for discrete
8342 type encodings, only carries redundant information. */
8343
8344 static int
8345 ada_is_redundant_range_encoding (struct type *range_type,
8346 struct type *encoding_type)
8347 {
8348 const char *bounds_str;
8349 int n;
8350 LONGEST lo, hi;
8351
8352 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8353
8354 if (get_base_type (range_type)->code ()
8355 != get_base_type (encoding_type)->code ())
8356 {
8357 /* The compiler probably used a simple base type to describe
8358 the range type instead of the range's actual base type,
8359 expecting us to get the real base type from the encoding
8360 anyway. In this situation, the encoding cannot be ignored
8361 as redundant. */
8362 return 0;
8363 }
8364
8365 if (is_dynamic_type (range_type))
8366 return 0;
8367
8368 if (encoding_type->name () == NULL)
8369 return 0;
8370
8371 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8372 if (bounds_str == NULL)
8373 return 0;
8374
8375 n = 8; /* Skip "___XDLU_". */
8376 if (!ada_scan_number (bounds_str, n, &lo, &n))
8377 return 0;
8378 if (range_type->bounds ()->low.const_val () != lo)
8379 return 0;
8380
8381 n += 2; /* Skip the "__" separator between the two bounds. */
8382 if (!ada_scan_number (bounds_str, n, &hi, &n))
8383 return 0;
8384 if (range_type->bounds ()->high.const_val () != hi)
8385 return 0;
8386
8387 return 1;
8388 }
8389
8390 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8391 a type following the GNAT encoding for describing array type
8392 indices, only carries redundant information. */
8393
8394 static int
8395 ada_is_redundant_index_type_desc (struct type *array_type,
8396 struct type *desc_type)
8397 {
8398 struct type *this_layer = check_typedef (array_type);
8399 int i;
8400
8401 for (i = 0; i < desc_type->num_fields (); i++)
8402 {
8403 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8404 desc_type->field (i).type ()))
8405 return 0;
8406 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8407 }
8408
8409 return 1;
8410 }
8411
8412 /* Assuming that TYPE0 is an array type describing the type of a value
8413 at ADDR, and that DVAL describes a record containing any
8414 discriminants used in TYPE0, returns a type for the value that
8415 contains no dynamic components (that is, no components whose sizes
8416 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8417 true, gives an error message if the resulting type's size is over
8418 varsize_limit. */
8419
8420 static struct type *
8421 to_fixed_array_type (struct type *type0, struct value *dval,
8422 int ignore_too_big)
8423 {
8424 struct type *index_type_desc;
8425 struct type *result;
8426 int constrained_packed_array_p;
8427 static const char *xa_suffix = "___XA";
8428
8429 type0 = ada_check_typedef (type0);
8430 if (type0->is_fixed_instance ())
8431 return type0;
8432
8433 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8434 if (constrained_packed_array_p)
8435 {
8436 type0 = decode_constrained_packed_array_type (type0);
8437 if (type0 == nullptr)
8438 error (_("could not decode constrained packed array type"));
8439 }
8440
8441 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8442
8443 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8444 encoding suffixed with 'P' may still be generated. If so,
8445 it should be used to find the XA type. */
8446
8447 if (index_type_desc == NULL)
8448 {
8449 const char *type_name = ada_type_name (type0);
8450
8451 if (type_name != NULL)
8452 {
8453 const int len = strlen (type_name);
8454 char *name = (char *) alloca (len + strlen (xa_suffix));
8455
8456 if (type_name[len - 1] == 'P')
8457 {
8458 strcpy (name, type_name);
8459 strcpy (name + len - 1, xa_suffix);
8460 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8461 }
8462 }
8463 }
8464
8465 ada_fixup_array_indexes_type (index_type_desc);
8466 if (index_type_desc != NULL
8467 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8468 {
8469 /* Ignore this ___XA parallel type, as it does not bring any
8470 useful information. This allows us to avoid creating fixed
8471 versions of the array's index types, which would be identical
8472 to the original ones. This, in turn, can also help avoid
8473 the creation of fixed versions of the array itself. */
8474 index_type_desc = NULL;
8475 }
8476
8477 if (index_type_desc == NULL)
8478 {
8479 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8480
8481 /* NOTE: elt_type---the fixed version of elt_type0---should never
8482 depend on the contents of the array in properly constructed
8483 debugging data. */
8484 /* Create a fixed version of the array element type.
8485 We're not providing the address of an element here,
8486 and thus the actual object value cannot be inspected to do
8487 the conversion. This should not be a problem, since arrays of
8488 unconstrained objects are not allowed. In particular, all
8489 the elements of an array of a tagged type should all be of
8490 the same type specified in the debugging info. No need to
8491 consult the object tag. */
8492 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8493
8494 /* Make sure we always create a new array type when dealing with
8495 packed array types, since we're going to fix-up the array
8496 type length and element bitsize a little further down. */
8497 if (elt_type0 == elt_type && !constrained_packed_array_p)
8498 result = type0;
8499 else
8500 result = create_array_type (alloc_type_copy (type0),
8501 elt_type, type0->index_type ());
8502 }
8503 else
8504 {
8505 int i;
8506 struct type *elt_type0;
8507
8508 elt_type0 = type0;
8509 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8510 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8511
8512 /* NOTE: result---the fixed version of elt_type0---should never
8513 depend on the contents of the array in properly constructed
8514 debugging data. */
8515 /* Create a fixed version of the array element type.
8516 We're not providing the address of an element here,
8517 and thus the actual object value cannot be inspected to do
8518 the conversion. This should not be a problem, since arrays of
8519 unconstrained objects are not allowed. In particular, all
8520 the elements of an array of a tagged type should all be of
8521 the same type specified in the debugging info. No need to
8522 consult the object tag. */
8523 result =
8524 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8525
8526 elt_type0 = type0;
8527 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8528 {
8529 struct type *range_type =
8530 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8531
8532 result = create_array_type (alloc_type_copy (elt_type0),
8533 result, range_type);
8534 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8535 }
8536 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8537 error (_("array type with dynamic size is larger than varsize-limit"));
8538 }
8539
8540 /* We want to preserve the type name. This can be useful when
8541 trying to get the type name of a value that has already been
8542 printed (for instance, if the user did "print VAR; whatis $". */
8543 result->set_name (type0->name ());
8544
8545 if (constrained_packed_array_p)
8546 {
8547 /* So far, the resulting type has been created as if the original
8548 type was a regular (non-packed) array type. As a result, the
8549 bitsize of the array elements needs to be set again, and the array
8550 length needs to be recomputed based on that bitsize. */
8551 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8552 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8553
8554 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8555 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8556 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8557 TYPE_LENGTH (result)++;
8558 }
8559
8560 result->set_is_fixed_instance (true);
8561 return result;
8562 }
8563
8564
8565 /* A standard type (containing no dynamically sized components)
8566 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8567 DVAL describes a record containing any discriminants used in TYPE0,
8568 and may be NULL if there are none, or if the object of type TYPE at
8569 ADDRESS or in VALADDR contains these discriminants.
8570
8571 If CHECK_TAG is not null, in the case of tagged types, this function
8572 attempts to locate the object's tag and use it to compute the actual
8573 type. However, when ADDRESS is null, we cannot use it to determine the
8574 location of the tag, and therefore compute the tagged type's actual type.
8575 So we return the tagged type without consulting the tag. */
8576
8577 static struct type *
8578 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8579 CORE_ADDR address, struct value *dval, int check_tag)
8580 {
8581 type = ada_check_typedef (type);
8582
8583 /* Only un-fixed types need to be handled here. */
8584 if (!HAVE_GNAT_AUX_INFO (type))
8585 return type;
8586
8587 switch (type->code ())
8588 {
8589 default:
8590 return type;
8591 case TYPE_CODE_STRUCT:
8592 {
8593 struct type *static_type = to_static_fixed_type (type);
8594 struct type *fixed_record_type =
8595 to_fixed_record_type (type, valaddr, address, NULL);
8596
8597 /* If STATIC_TYPE is a tagged type and we know the object's address,
8598 then we can determine its tag, and compute the object's actual
8599 type from there. Note that we have to use the fixed record
8600 type (the parent part of the record may have dynamic fields
8601 and the way the location of _tag is expressed may depend on
8602 them). */
8603
8604 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8605 {
8606 struct value *tag =
8607 value_tag_from_contents_and_address
8608 (fixed_record_type,
8609 valaddr,
8610 address);
8611 struct type *real_type = type_from_tag (tag);
8612 struct value *obj =
8613 value_from_contents_and_address (fixed_record_type,
8614 valaddr,
8615 address);
8616 fixed_record_type = value_type (obj);
8617 if (real_type != NULL)
8618 return to_fixed_record_type
8619 (real_type, NULL,
8620 value_address (ada_tag_value_at_base_address (obj)), NULL);
8621 }
8622
8623 /* Check to see if there is a parallel ___XVZ variable.
8624 If there is, then it provides the actual size of our type. */
8625 else if (ada_type_name (fixed_record_type) != NULL)
8626 {
8627 const char *name = ada_type_name (fixed_record_type);
8628 char *xvz_name
8629 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8630 bool xvz_found = false;
8631 LONGEST size;
8632
8633 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8634 try
8635 {
8636 xvz_found = get_int_var_value (xvz_name, size);
8637 }
8638 catch (const gdb_exception_error &except)
8639 {
8640 /* We found the variable, but somehow failed to read
8641 its value. Rethrow the same error, but with a little
8642 bit more information, to help the user understand
8643 what went wrong (Eg: the variable might have been
8644 optimized out). */
8645 throw_error (except.error,
8646 _("unable to read value of %s (%s)"),
8647 xvz_name, except.what ());
8648 }
8649
8650 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8651 {
8652 fixed_record_type = copy_type (fixed_record_type);
8653 TYPE_LENGTH (fixed_record_type) = size;
8654
8655 /* The FIXED_RECORD_TYPE may have be a stub. We have
8656 observed this when the debugging info is STABS, and
8657 apparently it is something that is hard to fix.
8658
8659 In practice, we don't need the actual type definition
8660 at all, because the presence of the XVZ variable allows us
8661 to assume that there must be a XVS type as well, which we
8662 should be able to use later, when we need the actual type
8663 definition.
8664
8665 In the meantime, pretend that the "fixed" type we are
8666 returning is NOT a stub, because this can cause trouble
8667 when using this type to create new types targeting it.
8668 Indeed, the associated creation routines often check
8669 whether the target type is a stub and will try to replace
8670 it, thus using a type with the wrong size. This, in turn,
8671 might cause the new type to have the wrong size too.
8672 Consider the case of an array, for instance, where the size
8673 of the array is computed from the number of elements in
8674 our array multiplied by the size of its element. */
8675 fixed_record_type->set_is_stub (false);
8676 }
8677 }
8678 return fixed_record_type;
8679 }
8680 case TYPE_CODE_ARRAY:
8681 return to_fixed_array_type (type, dval, 1);
8682 case TYPE_CODE_UNION:
8683 if (dval == NULL)
8684 return type;
8685 else
8686 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8687 }
8688 }
8689
8690 /* The same as ada_to_fixed_type_1, except that it preserves the type
8691 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8692
8693 The typedef layer needs be preserved in order to differentiate between
8694 arrays and array pointers when both types are implemented using the same
8695 fat pointer. In the array pointer case, the pointer is encoded as
8696 a typedef of the pointer type. For instance, considering:
8697
8698 type String_Access is access String;
8699 S1 : String_Access := null;
8700
8701 To the debugger, S1 is defined as a typedef of type String. But
8702 to the user, it is a pointer. So if the user tries to print S1,
8703 we should not dereference the array, but print the array address
8704 instead.
8705
8706 If we didn't preserve the typedef layer, we would lose the fact that
8707 the type is to be presented as a pointer (needs de-reference before
8708 being printed). And we would also use the source-level type name. */
8709
8710 struct type *
8711 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8712 CORE_ADDR address, struct value *dval, int check_tag)
8713
8714 {
8715 struct type *fixed_type =
8716 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8717
8718 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8719 then preserve the typedef layer.
8720
8721 Implementation note: We can only check the main-type portion of
8722 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8723 from TYPE now returns a type that has the same instance flags
8724 as TYPE. For instance, if TYPE is a "typedef const", and its
8725 target type is a "struct", then the typedef elimination will return
8726 a "const" version of the target type. See check_typedef for more
8727 details about how the typedef layer elimination is done.
8728
8729 brobecker/2010-11-19: It seems to me that the only case where it is
8730 useful to preserve the typedef layer is when dealing with fat pointers.
8731 Perhaps, we could add a check for that and preserve the typedef layer
8732 only in that situation. But this seems unnecessary so far, probably
8733 because we call check_typedef/ada_check_typedef pretty much everywhere.
8734 */
8735 if (type->code () == TYPE_CODE_TYPEDEF
8736 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8737 == TYPE_MAIN_TYPE (fixed_type)))
8738 return type;
8739
8740 return fixed_type;
8741 }
8742
8743 /* A standard (static-sized) type corresponding as well as possible to
8744 TYPE0, but based on no runtime data. */
8745
8746 static struct type *
8747 to_static_fixed_type (struct type *type0)
8748 {
8749 struct type *type;
8750
8751 if (type0 == NULL)
8752 return NULL;
8753
8754 if (type0->is_fixed_instance ())
8755 return type0;
8756
8757 type0 = ada_check_typedef (type0);
8758
8759 switch (type0->code ())
8760 {
8761 default:
8762 return type0;
8763 case TYPE_CODE_STRUCT:
8764 type = dynamic_template_type (type0);
8765 if (type != NULL)
8766 return template_to_static_fixed_type (type);
8767 else
8768 return template_to_static_fixed_type (type0);
8769 case TYPE_CODE_UNION:
8770 type = ada_find_parallel_type (type0, "___XVU");
8771 if (type != NULL)
8772 return template_to_static_fixed_type (type);
8773 else
8774 return template_to_static_fixed_type (type0);
8775 }
8776 }
8777
8778 /* A static approximation of TYPE with all type wrappers removed. */
8779
8780 static struct type *
8781 static_unwrap_type (struct type *type)
8782 {
8783 if (ada_is_aligner_type (type))
8784 {
8785 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8786 if (ada_type_name (type1) == NULL)
8787 type1->set_name (ada_type_name (type));
8788
8789 return static_unwrap_type (type1);
8790 }
8791 else
8792 {
8793 struct type *raw_real_type = ada_get_base_type (type);
8794
8795 if (raw_real_type == type)
8796 return type;
8797 else
8798 return to_static_fixed_type (raw_real_type);
8799 }
8800 }
8801
8802 /* In some cases, incomplete and private types require
8803 cross-references that are not resolved as records (for example,
8804 type Foo;
8805 type FooP is access Foo;
8806 V: FooP;
8807 type Foo is array ...;
8808 ). In these cases, since there is no mechanism for producing
8809 cross-references to such types, we instead substitute for FooP a
8810 stub enumeration type that is nowhere resolved, and whose tag is
8811 the name of the actual type. Call these types "non-record stubs". */
8812
8813 /* A type equivalent to TYPE that is not a non-record stub, if one
8814 exists, otherwise TYPE. */
8815
8816 struct type *
8817 ada_check_typedef (struct type *type)
8818 {
8819 if (type == NULL)
8820 return NULL;
8821
8822 /* If our type is an access to an unconstrained array, which is encoded
8823 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8824 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8825 what allows us to distinguish between fat pointers that represent
8826 array types, and fat pointers that represent array access types
8827 (in both cases, the compiler implements them as fat pointers). */
8828 if (ada_is_access_to_unconstrained_array (type))
8829 return type;
8830
8831 type = check_typedef (type);
8832 if (type == NULL || type->code () != TYPE_CODE_ENUM
8833 || !type->is_stub ()
8834 || type->name () == NULL)
8835 return type;
8836 else
8837 {
8838 const char *name = type->name ();
8839 struct type *type1 = ada_find_any_type (name);
8840
8841 if (type1 == NULL)
8842 return type;
8843
8844 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8845 stubs pointing to arrays, as we don't create symbols for array
8846 types, only for the typedef-to-array types). If that's the case,
8847 strip the typedef layer. */
8848 if (type1->code () == TYPE_CODE_TYPEDEF)
8849 type1 = ada_check_typedef (type1);
8850
8851 return type1;
8852 }
8853 }
8854
8855 /* A value representing the data at VALADDR/ADDRESS as described by
8856 type TYPE0, but with a standard (static-sized) type that correctly
8857 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8858 type, then return VAL0 [this feature is simply to avoid redundant
8859 creation of struct values]. */
8860
8861 static struct value *
8862 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8863 struct value *val0)
8864 {
8865 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8866
8867 if (type == type0 && val0 != NULL)
8868 return val0;
8869
8870 if (VALUE_LVAL (val0) != lval_memory)
8871 {
8872 /* Our value does not live in memory; it could be a convenience
8873 variable, for instance. Create a not_lval value using val0's
8874 contents. */
8875 return value_from_contents (type, value_contents (val0));
8876 }
8877
8878 return value_from_contents_and_address (type, 0, address);
8879 }
8880
8881 /* A value representing VAL, but with a standard (static-sized) type
8882 that correctly describes it. Does not necessarily create a new
8883 value. */
8884
8885 struct value *
8886 ada_to_fixed_value (struct value *val)
8887 {
8888 val = unwrap_value (val);
8889 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8890 return val;
8891 }
8892 \f
8893
8894 /* Attributes */
8895
8896 /* Table mapping attribute numbers to names.
8897 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8898
8899 static const char * const attribute_names[] = {
8900 "<?>",
8901
8902 "first",
8903 "last",
8904 "length",
8905 "image",
8906 "max",
8907 "min",
8908 "modulus",
8909 "pos",
8910 "size",
8911 "tag",
8912 "val",
8913 0
8914 };
8915
8916 static const char *
8917 ada_attribute_name (enum exp_opcode n)
8918 {
8919 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8920 return attribute_names[n - OP_ATR_FIRST + 1];
8921 else
8922 return attribute_names[0];
8923 }
8924
8925 /* Evaluate the 'POS attribute applied to ARG. */
8926
8927 static LONGEST
8928 pos_atr (struct value *arg)
8929 {
8930 struct value *val = coerce_ref (arg);
8931 struct type *type = value_type (val);
8932 LONGEST result;
8933
8934 if (!discrete_type_p (type))
8935 error (_("'POS only defined on discrete types"));
8936
8937 if (!discrete_position (type, value_as_long (val), &result))
8938 error (_("enumeration value is invalid: can't find 'POS"));
8939
8940 return result;
8941 }
8942
8943 static struct value *
8944 value_pos_atr (struct type *type, struct value *arg)
8945 {
8946 return value_from_longest (type, pos_atr (arg));
8947 }
8948
8949 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8950
8951 static struct value *
8952 val_atr (struct type *type, LONGEST val)
8953 {
8954 gdb_assert (discrete_type_p (type));
8955 if (type->code () == TYPE_CODE_RANGE)
8956 type = TYPE_TARGET_TYPE (type);
8957 if (type->code () == TYPE_CODE_ENUM)
8958 {
8959 if (val < 0 || val >= type->num_fields ())
8960 error (_("argument to 'VAL out of range"));
8961 val = TYPE_FIELD_ENUMVAL (type, val);
8962 }
8963 return value_from_longest (type, val);
8964 }
8965
8966 static struct value *
8967 value_val_atr (struct type *type, struct value *arg)
8968 {
8969 if (!discrete_type_p (type))
8970 error (_("'VAL only defined on discrete types"));
8971 if (!integer_type_p (value_type (arg)))
8972 error (_("'VAL requires integral argument"));
8973
8974 return val_atr (type, value_as_long (arg));
8975 }
8976 \f
8977
8978 /* Evaluation */
8979
8980 /* True if TYPE appears to be an Ada character type.
8981 [At the moment, this is true only for Character and Wide_Character;
8982 It is a heuristic test that could stand improvement]. */
8983
8984 bool
8985 ada_is_character_type (struct type *type)
8986 {
8987 const char *name;
8988
8989 /* If the type code says it's a character, then assume it really is,
8990 and don't check any further. */
8991 if (type->code () == TYPE_CODE_CHAR)
8992 return true;
8993
8994 /* Otherwise, assume it's a character type iff it is a discrete type
8995 with a known character type name. */
8996 name = ada_type_name (type);
8997 return (name != NULL
8998 && (type->code () == TYPE_CODE_INT
8999 || type->code () == TYPE_CODE_RANGE)
9000 && (strcmp (name, "character") == 0
9001 || strcmp (name, "wide_character") == 0
9002 || strcmp (name, "wide_wide_character") == 0
9003 || strcmp (name, "unsigned char") == 0));
9004 }
9005
9006 /* True if TYPE appears to be an Ada string type. */
9007
9008 bool
9009 ada_is_string_type (struct type *type)
9010 {
9011 type = ada_check_typedef (type);
9012 if (type != NULL
9013 && type->code () != TYPE_CODE_PTR
9014 && (ada_is_simple_array_type (type)
9015 || ada_is_array_descriptor_type (type))
9016 && ada_array_arity (type) == 1)
9017 {
9018 struct type *elttype = ada_array_element_type (type, 1);
9019
9020 return ada_is_character_type (elttype);
9021 }
9022 else
9023 return false;
9024 }
9025
9026 /* The compiler sometimes provides a parallel XVS type for a given
9027 PAD type. Normally, it is safe to follow the PAD type directly,
9028 but older versions of the compiler have a bug that causes the offset
9029 of its "F" field to be wrong. Following that field in that case
9030 would lead to incorrect results, but this can be worked around
9031 by ignoring the PAD type and using the associated XVS type instead.
9032
9033 Set to True if the debugger should trust the contents of PAD types.
9034 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9035 static bool trust_pad_over_xvs = true;
9036
9037 /* True if TYPE is a struct type introduced by the compiler to force the
9038 alignment of a value. Such types have a single field with a
9039 distinctive name. */
9040
9041 int
9042 ada_is_aligner_type (struct type *type)
9043 {
9044 type = ada_check_typedef (type);
9045
9046 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9047 return 0;
9048
9049 return (type->code () == TYPE_CODE_STRUCT
9050 && type->num_fields () == 1
9051 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9052 }
9053
9054 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9055 the parallel type. */
9056
9057 struct type *
9058 ada_get_base_type (struct type *raw_type)
9059 {
9060 struct type *real_type_namer;
9061 struct type *raw_real_type;
9062
9063 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9064 return raw_type;
9065
9066 if (ada_is_aligner_type (raw_type))
9067 /* The encoding specifies that we should always use the aligner type.
9068 So, even if this aligner type has an associated XVS type, we should
9069 simply ignore it.
9070
9071 According to the compiler gurus, an XVS type parallel to an aligner
9072 type may exist because of a stabs limitation. In stabs, aligner
9073 types are empty because the field has a variable-sized type, and
9074 thus cannot actually be used as an aligner type. As a result,
9075 we need the associated parallel XVS type to decode the type.
9076 Since the policy in the compiler is to not change the internal
9077 representation based on the debugging info format, we sometimes
9078 end up having a redundant XVS type parallel to the aligner type. */
9079 return raw_type;
9080
9081 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9082 if (real_type_namer == NULL
9083 || real_type_namer->code () != TYPE_CODE_STRUCT
9084 || real_type_namer->num_fields () != 1)
9085 return raw_type;
9086
9087 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9088 {
9089 /* This is an older encoding form where the base type needs to be
9090 looked up by name. We prefer the newer encoding because it is
9091 more efficient. */
9092 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9093 if (raw_real_type == NULL)
9094 return raw_type;
9095 else
9096 return raw_real_type;
9097 }
9098
9099 /* The field in our XVS type is a reference to the base type. */
9100 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9101 }
9102
9103 /* The type of value designated by TYPE, with all aligners removed. */
9104
9105 struct type *
9106 ada_aligned_type (struct type *type)
9107 {
9108 if (ada_is_aligner_type (type))
9109 return ada_aligned_type (type->field (0).type ());
9110 else
9111 return ada_get_base_type (type);
9112 }
9113
9114
9115 /* The address of the aligned value in an object at address VALADDR
9116 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9117
9118 const gdb_byte *
9119 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9120 {
9121 if (ada_is_aligner_type (type))
9122 return ada_aligned_value_addr (type->field (0).type (),
9123 valaddr +
9124 TYPE_FIELD_BITPOS (type,
9125 0) / TARGET_CHAR_BIT);
9126 else
9127 return valaddr;
9128 }
9129
9130
9131
9132 /* The printed representation of an enumeration literal with encoded
9133 name NAME. The value is good to the next call of ada_enum_name. */
9134 const char *
9135 ada_enum_name (const char *name)
9136 {
9137 static char *result;
9138 static size_t result_len = 0;
9139 const char *tmp;
9140
9141 /* First, unqualify the enumeration name:
9142 1. Search for the last '.' character. If we find one, then skip
9143 all the preceding characters, the unqualified name starts
9144 right after that dot.
9145 2. Otherwise, we may be debugging on a target where the compiler
9146 translates dots into "__". Search forward for double underscores,
9147 but stop searching when we hit an overloading suffix, which is
9148 of the form "__" followed by digits. */
9149
9150 tmp = strrchr (name, '.');
9151 if (tmp != NULL)
9152 name = tmp + 1;
9153 else
9154 {
9155 while ((tmp = strstr (name, "__")) != NULL)
9156 {
9157 if (isdigit (tmp[2]))
9158 break;
9159 else
9160 name = tmp + 2;
9161 }
9162 }
9163
9164 if (name[0] == 'Q')
9165 {
9166 int v;
9167
9168 if (name[1] == 'U' || name[1] == 'W')
9169 {
9170 if (sscanf (name + 2, "%x", &v) != 1)
9171 return name;
9172 }
9173 else if (((name[1] >= '0' && name[1] <= '9')
9174 || (name[1] >= 'a' && name[1] <= 'z'))
9175 && name[2] == '\0')
9176 {
9177 GROW_VECT (result, result_len, 4);
9178 xsnprintf (result, result_len, "'%c'", name[1]);
9179 return result;
9180 }
9181 else
9182 return name;
9183
9184 GROW_VECT (result, result_len, 16);
9185 if (isascii (v) && isprint (v))
9186 xsnprintf (result, result_len, "'%c'", v);
9187 else if (name[1] == 'U')
9188 xsnprintf (result, result_len, "[\"%02x\"]", v);
9189 else
9190 xsnprintf (result, result_len, "[\"%04x\"]", v);
9191
9192 return result;
9193 }
9194 else
9195 {
9196 tmp = strstr (name, "__");
9197 if (tmp == NULL)
9198 tmp = strstr (name, "$");
9199 if (tmp != NULL)
9200 {
9201 GROW_VECT (result, result_len, tmp - name + 1);
9202 strncpy (result, name, tmp - name);
9203 result[tmp - name] = '\0';
9204 return result;
9205 }
9206
9207 return name;
9208 }
9209 }
9210
9211 /* Evaluate the subexpression of EXP starting at *POS as for
9212 evaluate_type, updating *POS to point just past the evaluated
9213 expression. */
9214
9215 static struct value *
9216 evaluate_subexp_type (struct expression *exp, int *pos)
9217 {
9218 return evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9219 }
9220
9221 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9222 value it wraps. */
9223
9224 static struct value *
9225 unwrap_value (struct value *val)
9226 {
9227 struct type *type = ada_check_typedef (value_type (val));
9228
9229 if (ada_is_aligner_type (type))
9230 {
9231 struct value *v = ada_value_struct_elt (val, "F", 0);
9232 struct type *val_type = ada_check_typedef (value_type (v));
9233
9234 if (ada_type_name (val_type) == NULL)
9235 val_type->set_name (ada_type_name (type));
9236
9237 return unwrap_value (v);
9238 }
9239 else
9240 {
9241 struct type *raw_real_type =
9242 ada_check_typedef (ada_get_base_type (type));
9243
9244 /* If there is no parallel XVS or XVE type, then the value is
9245 already unwrapped. Return it without further modification. */
9246 if ((type == raw_real_type)
9247 && ada_find_parallel_type (type, "___XVE") == NULL)
9248 return val;
9249
9250 return
9251 coerce_unspec_val_to_type
9252 (val, ada_to_fixed_type (raw_real_type, 0,
9253 value_address (val),
9254 NULL, 1));
9255 }
9256 }
9257
9258 static struct value *
9259 cast_from_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
9260 {
9261 struct value *scale
9262 = gnat_encoded_fixed_point_scaling_factor (value_type (arg));
9263 arg = value_cast (value_type (scale), arg);
9264
9265 arg = value_binop (arg, scale, BINOP_MUL);
9266 return value_cast (type, arg);
9267 }
9268
9269 static struct value *
9270 cast_to_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
9271 {
9272 if (type == value_type (arg))
9273 return arg;
9274
9275 struct value *scale = gnat_encoded_fixed_point_scaling_factor (type);
9276 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9277 arg = cast_from_gnat_encoded_fixed_point_type (value_type (scale), arg);
9278 else
9279 arg = value_cast (value_type (scale), arg);
9280
9281 arg = value_binop (arg, scale, BINOP_DIV);
9282 return value_cast (type, arg);
9283 }
9284
9285 /* Given two array types T1 and T2, return nonzero iff both arrays
9286 contain the same number of elements. */
9287
9288 static int
9289 ada_same_array_size_p (struct type *t1, struct type *t2)
9290 {
9291 LONGEST lo1, hi1, lo2, hi2;
9292
9293 /* Get the array bounds in order to verify that the size of
9294 the two arrays match. */
9295 if (!get_array_bounds (t1, &lo1, &hi1)
9296 || !get_array_bounds (t2, &lo2, &hi2))
9297 error (_("unable to determine array bounds"));
9298
9299 /* To make things easier for size comparison, normalize a bit
9300 the case of empty arrays by making sure that the difference
9301 between upper bound and lower bound is always -1. */
9302 if (lo1 > hi1)
9303 hi1 = lo1 - 1;
9304 if (lo2 > hi2)
9305 hi2 = lo2 - 1;
9306
9307 return (hi1 - lo1 == hi2 - lo2);
9308 }
9309
9310 /* Assuming that VAL is an array of integrals, and TYPE represents
9311 an array with the same number of elements, but with wider integral
9312 elements, return an array "casted" to TYPE. In practice, this
9313 means that the returned array is built by casting each element
9314 of the original array into TYPE's (wider) element type. */
9315
9316 static struct value *
9317 ada_promote_array_of_integrals (struct type *type, struct value *val)
9318 {
9319 struct type *elt_type = TYPE_TARGET_TYPE (type);
9320 LONGEST lo, hi;
9321 struct value *res;
9322 LONGEST i;
9323
9324 /* Verify that both val and type are arrays of scalars, and
9325 that the size of val's elements is smaller than the size
9326 of type's element. */
9327 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9328 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9329 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9330 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9331 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9332 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9333
9334 if (!get_array_bounds (type, &lo, &hi))
9335 error (_("unable to determine array bounds"));
9336
9337 res = allocate_value (type);
9338
9339 /* Promote each array element. */
9340 for (i = 0; i < hi - lo + 1; i++)
9341 {
9342 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9343
9344 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9345 value_contents_all (elt), TYPE_LENGTH (elt_type));
9346 }
9347
9348 return res;
9349 }
9350
9351 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9352 return the converted value. */
9353
9354 static struct value *
9355 coerce_for_assign (struct type *type, struct value *val)
9356 {
9357 struct type *type2 = value_type (val);
9358
9359 if (type == type2)
9360 return val;
9361
9362 type2 = ada_check_typedef (type2);
9363 type = ada_check_typedef (type);
9364
9365 if (type2->code () == TYPE_CODE_PTR
9366 && type->code () == TYPE_CODE_ARRAY)
9367 {
9368 val = ada_value_ind (val);
9369 type2 = value_type (val);
9370 }
9371
9372 if (type2->code () == TYPE_CODE_ARRAY
9373 && type->code () == TYPE_CODE_ARRAY)
9374 {
9375 if (!ada_same_array_size_p (type, type2))
9376 error (_("cannot assign arrays of different length"));
9377
9378 if (is_integral_type (TYPE_TARGET_TYPE (type))
9379 && is_integral_type (TYPE_TARGET_TYPE (type2))
9380 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9381 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9382 {
9383 /* Allow implicit promotion of the array elements to
9384 a wider type. */
9385 return ada_promote_array_of_integrals (type, val);
9386 }
9387
9388 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9389 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9390 error (_("Incompatible types in assignment"));
9391 deprecated_set_value_type (val, type);
9392 }
9393 return val;
9394 }
9395
9396 static struct value *
9397 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9398 {
9399 struct value *val;
9400 struct type *type1, *type2;
9401 LONGEST v, v1, v2;
9402
9403 arg1 = coerce_ref (arg1);
9404 arg2 = coerce_ref (arg2);
9405 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9406 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9407
9408 if (type1->code () != TYPE_CODE_INT
9409 || type2->code () != TYPE_CODE_INT)
9410 return value_binop (arg1, arg2, op);
9411
9412 switch (op)
9413 {
9414 case BINOP_MOD:
9415 case BINOP_DIV:
9416 case BINOP_REM:
9417 break;
9418 default:
9419 return value_binop (arg1, arg2, op);
9420 }
9421
9422 v2 = value_as_long (arg2);
9423 if (v2 == 0)
9424 error (_("second operand of %s must not be zero."), op_string (op));
9425
9426 if (type1->is_unsigned () || op == BINOP_MOD)
9427 return value_binop (arg1, arg2, op);
9428
9429 v1 = value_as_long (arg1);
9430 switch (op)
9431 {
9432 case BINOP_DIV:
9433 v = v1 / v2;
9434 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9435 v += v > 0 ? -1 : 1;
9436 break;
9437 case BINOP_REM:
9438 v = v1 % v2;
9439 if (v * v1 < 0)
9440 v -= v2;
9441 break;
9442 default:
9443 /* Should not reach this point. */
9444 v = 0;
9445 }
9446
9447 val = allocate_value (type1);
9448 store_unsigned_integer (value_contents_raw (val),
9449 TYPE_LENGTH (value_type (val)),
9450 type_byte_order (type1), v);
9451 return val;
9452 }
9453
9454 static int
9455 ada_value_equal (struct value *arg1, struct value *arg2)
9456 {
9457 if (ada_is_direct_array_type (value_type (arg1))
9458 || ada_is_direct_array_type (value_type (arg2)))
9459 {
9460 struct type *arg1_type, *arg2_type;
9461
9462 /* Automatically dereference any array reference before
9463 we attempt to perform the comparison. */
9464 arg1 = ada_coerce_ref (arg1);
9465 arg2 = ada_coerce_ref (arg2);
9466
9467 arg1 = ada_coerce_to_simple_array (arg1);
9468 arg2 = ada_coerce_to_simple_array (arg2);
9469
9470 arg1_type = ada_check_typedef (value_type (arg1));
9471 arg2_type = ada_check_typedef (value_type (arg2));
9472
9473 if (arg1_type->code () != TYPE_CODE_ARRAY
9474 || arg2_type->code () != TYPE_CODE_ARRAY)
9475 error (_("Attempt to compare array with non-array"));
9476 /* FIXME: The following works only for types whose
9477 representations use all bits (no padding or undefined bits)
9478 and do not have user-defined equality. */
9479 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9480 && memcmp (value_contents (arg1), value_contents (arg2),
9481 TYPE_LENGTH (arg1_type)) == 0);
9482 }
9483 return value_equal (arg1, arg2);
9484 }
9485
9486 /* Total number of component associations in the aggregate starting at
9487 index PC in EXP. Assumes that index PC is the start of an
9488 OP_AGGREGATE. */
9489
9490 static int
9491 num_component_specs (struct expression *exp, int pc)
9492 {
9493 int n, m, i;
9494
9495 m = exp->elts[pc + 1].longconst;
9496 pc += 3;
9497 n = 0;
9498 for (i = 0; i < m; i += 1)
9499 {
9500 switch (exp->elts[pc].opcode)
9501 {
9502 default:
9503 n += 1;
9504 break;
9505 case OP_CHOICES:
9506 n += exp->elts[pc + 1].longconst;
9507 break;
9508 }
9509 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9510 }
9511 return n;
9512 }
9513
9514 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9515 component of LHS (a simple array or a record), updating *POS past
9516 the expression, assuming that LHS is contained in CONTAINER. Does
9517 not modify the inferior's memory, nor does it modify LHS (unless
9518 LHS == CONTAINER). */
9519
9520 static void
9521 assign_component (struct value *container, struct value *lhs, LONGEST index,
9522 struct expression *exp, int *pos)
9523 {
9524 struct value *mark = value_mark ();
9525 struct value *elt;
9526 struct type *lhs_type = check_typedef (value_type (lhs));
9527
9528 if (lhs_type->code () == TYPE_CODE_ARRAY)
9529 {
9530 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9531 struct value *index_val = value_from_longest (index_type, index);
9532
9533 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9534 }
9535 else
9536 {
9537 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9538 elt = ada_to_fixed_value (elt);
9539 }
9540
9541 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9542 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9543 else
9544 value_assign_to_component (container, elt,
9545 ada_evaluate_subexp (NULL, exp, pos,
9546 EVAL_NORMAL));
9547
9548 value_free_to_mark (mark);
9549 }
9550
9551 /* Assuming that LHS represents an lvalue having a record or array
9552 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9553 of that aggregate's value to LHS, advancing *POS past the
9554 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9555 lvalue containing LHS (possibly LHS itself). Does not modify
9556 the inferior's memory, nor does it modify the contents of
9557 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9558
9559 static struct value *
9560 assign_aggregate (struct value *container,
9561 struct value *lhs, struct expression *exp,
9562 int *pos, enum noside noside)
9563 {
9564 struct type *lhs_type;
9565 int n = exp->elts[*pos+1].longconst;
9566 LONGEST low_index, high_index;
9567 int num_specs;
9568 LONGEST *indices;
9569 int max_indices, num_indices;
9570 int i;
9571
9572 *pos += 3;
9573 if (noside != EVAL_NORMAL)
9574 {
9575 for (i = 0; i < n; i += 1)
9576 ada_evaluate_subexp (NULL, exp, pos, noside);
9577 return container;
9578 }
9579
9580 container = ada_coerce_ref (container);
9581 if (ada_is_direct_array_type (value_type (container)))
9582 container = ada_coerce_to_simple_array (container);
9583 lhs = ada_coerce_ref (lhs);
9584 if (!deprecated_value_modifiable (lhs))
9585 error (_("Left operand of assignment is not a modifiable lvalue."));
9586
9587 lhs_type = check_typedef (value_type (lhs));
9588 if (ada_is_direct_array_type (lhs_type))
9589 {
9590 lhs = ada_coerce_to_simple_array (lhs);
9591 lhs_type = check_typedef (value_type (lhs));
9592 low_index = lhs_type->bounds ()->low.const_val ();
9593 high_index = lhs_type->bounds ()->high.const_val ();
9594 }
9595 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9596 {
9597 low_index = 0;
9598 high_index = num_visible_fields (lhs_type) - 1;
9599 }
9600 else
9601 error (_("Left-hand side must be array or record."));
9602
9603 num_specs = num_component_specs (exp, *pos - 3);
9604 max_indices = 4 * num_specs + 4;
9605 indices = XALLOCAVEC (LONGEST, max_indices);
9606 indices[0] = indices[1] = low_index - 1;
9607 indices[2] = indices[3] = high_index + 1;
9608 num_indices = 4;
9609
9610 for (i = 0; i < n; i += 1)
9611 {
9612 switch (exp->elts[*pos].opcode)
9613 {
9614 case OP_CHOICES:
9615 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9616 &num_indices, max_indices,
9617 low_index, high_index);
9618 break;
9619 case OP_POSITIONAL:
9620 aggregate_assign_positional (container, lhs, exp, pos, indices,
9621 &num_indices, max_indices,
9622 low_index, high_index);
9623 break;
9624 case OP_OTHERS:
9625 if (i != n-1)
9626 error (_("Misplaced 'others' clause"));
9627 aggregate_assign_others (container, lhs, exp, pos, indices,
9628 num_indices, low_index, high_index);
9629 break;
9630 default:
9631 error (_("Internal error: bad aggregate clause"));
9632 }
9633 }
9634
9635 return container;
9636 }
9637
9638 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9639 construct at *POS, updating *POS past the construct, given that
9640 the positions are relative to lower bound LOW, where HIGH is the
9641 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9642 updating *NUM_INDICES as needed. CONTAINER is as for
9643 assign_aggregate. */
9644 static void
9645 aggregate_assign_positional (struct value *container,
9646 struct value *lhs, struct expression *exp,
9647 int *pos, LONGEST *indices, int *num_indices,
9648 int max_indices, LONGEST low, LONGEST high)
9649 {
9650 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9651
9652 if (ind - 1 == high)
9653 warning (_("Extra components in aggregate ignored."));
9654 if (ind <= high)
9655 {
9656 add_component_interval (ind, ind, indices, num_indices, max_indices);
9657 *pos += 3;
9658 assign_component (container, lhs, ind, exp, pos);
9659 }
9660 else
9661 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9662 }
9663
9664 /* Assign into the components of LHS indexed by the OP_CHOICES
9665 construct at *POS, updating *POS past the construct, given that
9666 the allowable indices are LOW..HIGH. Record the indices assigned
9667 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9668 needed. CONTAINER is as for assign_aggregate. */
9669 static void
9670 aggregate_assign_from_choices (struct value *container,
9671 struct value *lhs, struct expression *exp,
9672 int *pos, LONGEST *indices, int *num_indices,
9673 int max_indices, LONGEST low, LONGEST high)
9674 {
9675 int j;
9676 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9677 int choice_pos, expr_pc;
9678 int is_array = ada_is_direct_array_type (value_type (lhs));
9679
9680 choice_pos = *pos += 3;
9681
9682 for (j = 0; j < n_choices; j += 1)
9683 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9684 expr_pc = *pos;
9685 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9686
9687 for (j = 0; j < n_choices; j += 1)
9688 {
9689 LONGEST lower, upper;
9690 enum exp_opcode op = exp->elts[choice_pos].opcode;
9691
9692 if (op == OP_DISCRETE_RANGE)
9693 {
9694 choice_pos += 1;
9695 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9696 EVAL_NORMAL));
9697 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9698 EVAL_NORMAL));
9699 }
9700 else if (is_array)
9701 {
9702 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9703 EVAL_NORMAL));
9704 upper = lower;
9705 }
9706 else
9707 {
9708 int ind;
9709 const char *name;
9710
9711 switch (op)
9712 {
9713 case OP_NAME:
9714 name = &exp->elts[choice_pos + 2].string;
9715 break;
9716 case OP_VAR_VALUE:
9717 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9718 break;
9719 default:
9720 error (_("Invalid record component association."));
9721 }
9722 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9723 ind = 0;
9724 if (! find_struct_field (name, value_type (lhs), 0,
9725 NULL, NULL, NULL, NULL, &ind))
9726 error (_("Unknown component name: %s."), name);
9727 lower = upper = ind;
9728 }
9729
9730 if (lower <= upper && (lower < low || upper > high))
9731 error (_("Index in component association out of bounds."));
9732
9733 add_component_interval (lower, upper, indices, num_indices,
9734 max_indices);
9735 while (lower <= upper)
9736 {
9737 int pos1;
9738
9739 pos1 = expr_pc;
9740 assign_component (container, lhs, lower, exp, &pos1);
9741 lower += 1;
9742 }
9743 }
9744 }
9745
9746 /* Assign the value of the expression in the OP_OTHERS construct in
9747 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9748 have not been previously assigned. The index intervals already assigned
9749 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9750 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9751 static void
9752 aggregate_assign_others (struct value *container,
9753 struct value *lhs, struct expression *exp,
9754 int *pos, LONGEST *indices, int num_indices,
9755 LONGEST low, LONGEST high)
9756 {
9757 int i;
9758 int expr_pc = *pos + 1;
9759
9760 for (i = 0; i < num_indices - 2; i += 2)
9761 {
9762 LONGEST ind;
9763
9764 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9765 {
9766 int localpos;
9767
9768 localpos = expr_pc;
9769 assign_component (container, lhs, ind, exp, &localpos);
9770 }
9771 }
9772 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9773 }
9774
9775 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9776 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9777 modifying *SIZE as needed. It is an error if *SIZE exceeds
9778 MAX_SIZE. The resulting intervals do not overlap. */
9779 static void
9780 add_component_interval (LONGEST low, LONGEST high,
9781 LONGEST* indices, int *size, int max_size)
9782 {
9783 int i, j;
9784
9785 for (i = 0; i < *size; i += 2) {
9786 if (high >= indices[i] && low <= indices[i + 1])
9787 {
9788 int kh;
9789
9790 for (kh = i + 2; kh < *size; kh += 2)
9791 if (high < indices[kh])
9792 break;
9793 if (low < indices[i])
9794 indices[i] = low;
9795 indices[i + 1] = indices[kh - 1];
9796 if (high > indices[i + 1])
9797 indices[i + 1] = high;
9798 memcpy (indices + i + 2, indices + kh, *size - kh);
9799 *size -= kh - i - 2;
9800 return;
9801 }
9802 else if (high < indices[i])
9803 break;
9804 }
9805
9806 if (*size == max_size)
9807 error (_("Internal error: miscounted aggregate components."));
9808 *size += 2;
9809 for (j = *size-1; j >= i+2; j -= 1)
9810 indices[j] = indices[j - 2];
9811 indices[i] = low;
9812 indices[i + 1] = high;
9813 }
9814
9815 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9816 is different. */
9817
9818 static struct value *
9819 ada_value_cast (struct type *type, struct value *arg2)
9820 {
9821 if (type == ada_check_typedef (value_type (arg2)))
9822 return arg2;
9823
9824 if (ada_is_gnat_encoded_fixed_point_type (type))
9825 return cast_to_gnat_encoded_fixed_point_type (type, arg2);
9826
9827 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
9828 return cast_from_gnat_encoded_fixed_point_type (type, arg2);
9829
9830 return value_cast (type, arg2);
9831 }
9832
9833 /* Evaluating Ada expressions, and printing their result.
9834 ------------------------------------------------------
9835
9836 1. Introduction:
9837 ----------------
9838
9839 We usually evaluate an Ada expression in order to print its value.
9840 We also evaluate an expression in order to print its type, which
9841 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9842 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9843 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9844 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9845 similar.
9846
9847 Evaluating expressions is a little more complicated for Ada entities
9848 than it is for entities in languages such as C. The main reason for
9849 this is that Ada provides types whose definition might be dynamic.
9850 One example of such types is variant records. Or another example
9851 would be an array whose bounds can only be known at run time.
9852
9853 The following description is a general guide as to what should be
9854 done (and what should NOT be done) in order to evaluate an expression
9855 involving such types, and when. This does not cover how the semantic
9856 information is encoded by GNAT as this is covered separatly. For the
9857 document used as the reference for the GNAT encoding, see exp_dbug.ads
9858 in the GNAT sources.
9859
9860 Ideally, we should embed each part of this description next to its
9861 associated code. Unfortunately, the amount of code is so vast right
9862 now that it's hard to see whether the code handling a particular
9863 situation might be duplicated or not. One day, when the code is
9864 cleaned up, this guide might become redundant with the comments
9865 inserted in the code, and we might want to remove it.
9866
9867 2. ``Fixing'' an Entity, the Simple Case:
9868 -----------------------------------------
9869
9870 When evaluating Ada expressions, the tricky issue is that they may
9871 reference entities whose type contents and size are not statically
9872 known. Consider for instance a variant record:
9873
9874 type Rec (Empty : Boolean := True) is record
9875 case Empty is
9876 when True => null;
9877 when False => Value : Integer;
9878 end case;
9879 end record;
9880 Yes : Rec := (Empty => False, Value => 1);
9881 No : Rec := (empty => True);
9882
9883 The size and contents of that record depends on the value of the
9884 descriminant (Rec.Empty). At this point, neither the debugging
9885 information nor the associated type structure in GDB are able to
9886 express such dynamic types. So what the debugger does is to create
9887 "fixed" versions of the type that applies to the specific object.
9888 We also informally refer to this operation as "fixing" an object,
9889 which means creating its associated fixed type.
9890
9891 Example: when printing the value of variable "Yes" above, its fixed
9892 type would look like this:
9893
9894 type Rec is record
9895 Empty : Boolean;
9896 Value : Integer;
9897 end record;
9898
9899 On the other hand, if we printed the value of "No", its fixed type
9900 would become:
9901
9902 type Rec is record
9903 Empty : Boolean;
9904 end record;
9905
9906 Things become a little more complicated when trying to fix an entity
9907 with a dynamic type that directly contains another dynamic type,
9908 such as an array of variant records, for instance. There are
9909 two possible cases: Arrays, and records.
9910
9911 3. ``Fixing'' Arrays:
9912 ---------------------
9913
9914 The type structure in GDB describes an array in terms of its bounds,
9915 and the type of its elements. By design, all elements in the array
9916 have the same type and we cannot represent an array of variant elements
9917 using the current type structure in GDB. When fixing an array,
9918 we cannot fix the array element, as we would potentially need one
9919 fixed type per element of the array. As a result, the best we can do
9920 when fixing an array is to produce an array whose bounds and size
9921 are correct (allowing us to read it from memory), but without having
9922 touched its element type. Fixing each element will be done later,
9923 when (if) necessary.
9924
9925 Arrays are a little simpler to handle than records, because the same
9926 amount of memory is allocated for each element of the array, even if
9927 the amount of space actually used by each element differs from element
9928 to element. Consider for instance the following array of type Rec:
9929
9930 type Rec_Array is array (1 .. 2) of Rec;
9931
9932 The actual amount of memory occupied by each element might be different
9933 from element to element, depending on the value of their discriminant.
9934 But the amount of space reserved for each element in the array remains
9935 fixed regardless. So we simply need to compute that size using
9936 the debugging information available, from which we can then determine
9937 the array size (we multiply the number of elements of the array by
9938 the size of each element).
9939
9940 The simplest case is when we have an array of a constrained element
9941 type. For instance, consider the following type declarations:
9942
9943 type Bounded_String (Max_Size : Integer) is
9944 Length : Integer;
9945 Buffer : String (1 .. Max_Size);
9946 end record;
9947 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9948
9949 In this case, the compiler describes the array as an array of
9950 variable-size elements (identified by its XVS suffix) for which
9951 the size can be read in the parallel XVZ variable.
9952
9953 In the case of an array of an unconstrained element type, the compiler
9954 wraps the array element inside a private PAD type. This type should not
9955 be shown to the user, and must be "unwrap"'ed before printing. Note
9956 that we also use the adjective "aligner" in our code to designate
9957 these wrapper types.
9958
9959 In some cases, the size allocated for each element is statically
9960 known. In that case, the PAD type already has the correct size,
9961 and the array element should remain unfixed.
9962
9963 But there are cases when this size is not statically known.
9964 For instance, assuming that "Five" is an integer variable:
9965
9966 type Dynamic is array (1 .. Five) of Integer;
9967 type Wrapper (Has_Length : Boolean := False) is record
9968 Data : Dynamic;
9969 case Has_Length is
9970 when True => Length : Integer;
9971 when False => null;
9972 end case;
9973 end record;
9974 type Wrapper_Array is array (1 .. 2) of Wrapper;
9975
9976 Hello : Wrapper_Array := (others => (Has_Length => True,
9977 Data => (others => 17),
9978 Length => 1));
9979
9980
9981 The debugging info would describe variable Hello as being an
9982 array of a PAD type. The size of that PAD type is not statically
9983 known, but can be determined using a parallel XVZ variable.
9984 In that case, a copy of the PAD type with the correct size should
9985 be used for the fixed array.
9986
9987 3. ``Fixing'' record type objects:
9988 ----------------------------------
9989
9990 Things are slightly different from arrays in the case of dynamic
9991 record types. In this case, in order to compute the associated
9992 fixed type, we need to determine the size and offset of each of
9993 its components. This, in turn, requires us to compute the fixed
9994 type of each of these components.
9995
9996 Consider for instance the example:
9997
9998 type Bounded_String (Max_Size : Natural) is record
9999 Str : String (1 .. Max_Size);
10000 Length : Natural;
10001 end record;
10002 My_String : Bounded_String (Max_Size => 10);
10003
10004 In that case, the position of field "Length" depends on the size
10005 of field Str, which itself depends on the value of the Max_Size
10006 discriminant. In order to fix the type of variable My_String,
10007 we need to fix the type of field Str. Therefore, fixing a variant
10008 record requires us to fix each of its components.
10009
10010 However, if a component does not have a dynamic size, the component
10011 should not be fixed. In particular, fields that use a PAD type
10012 should not fixed. Here is an example where this might happen
10013 (assuming type Rec above):
10014
10015 type Container (Big : Boolean) is record
10016 First : Rec;
10017 After : Integer;
10018 case Big is
10019 when True => Another : Integer;
10020 when False => null;
10021 end case;
10022 end record;
10023 My_Container : Container := (Big => False,
10024 First => (Empty => True),
10025 After => 42);
10026
10027 In that example, the compiler creates a PAD type for component First,
10028 whose size is constant, and then positions the component After just
10029 right after it. The offset of component After is therefore constant
10030 in this case.
10031
10032 The debugger computes the position of each field based on an algorithm
10033 that uses, among other things, the actual position and size of the field
10034 preceding it. Let's now imagine that the user is trying to print
10035 the value of My_Container. If the type fixing was recursive, we would
10036 end up computing the offset of field After based on the size of the
10037 fixed version of field First. And since in our example First has
10038 only one actual field, the size of the fixed type is actually smaller
10039 than the amount of space allocated to that field, and thus we would
10040 compute the wrong offset of field After.
10041
10042 To make things more complicated, we need to watch out for dynamic
10043 components of variant records (identified by the ___XVL suffix in
10044 the component name). Even if the target type is a PAD type, the size
10045 of that type might not be statically known. So the PAD type needs
10046 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10047 we might end up with the wrong size for our component. This can be
10048 observed with the following type declarations:
10049
10050 type Octal is new Integer range 0 .. 7;
10051 type Octal_Array is array (Positive range <>) of Octal;
10052 pragma Pack (Octal_Array);
10053
10054 type Octal_Buffer (Size : Positive) is record
10055 Buffer : Octal_Array (1 .. Size);
10056 Length : Integer;
10057 end record;
10058
10059 In that case, Buffer is a PAD type whose size is unset and needs
10060 to be computed by fixing the unwrapped type.
10061
10062 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10063 ----------------------------------------------------------
10064
10065 Lastly, when should the sub-elements of an entity that remained unfixed
10066 thus far, be actually fixed?
10067
10068 The answer is: Only when referencing that element. For instance
10069 when selecting one component of a record, this specific component
10070 should be fixed at that point in time. Or when printing the value
10071 of a record, each component should be fixed before its value gets
10072 printed. Similarly for arrays, the element of the array should be
10073 fixed when printing each element of the array, or when extracting
10074 one element out of that array. On the other hand, fixing should
10075 not be performed on the elements when taking a slice of an array!
10076
10077 Note that one of the side effects of miscomputing the offset and
10078 size of each field is that we end up also miscomputing the size
10079 of the containing type. This can have adverse results when computing
10080 the value of an entity. GDB fetches the value of an entity based
10081 on the size of its type, and thus a wrong size causes GDB to fetch
10082 the wrong amount of memory. In the case where the computed size is
10083 too small, GDB fetches too little data to print the value of our
10084 entity. Results in this case are unpredictable, as we usually read
10085 past the buffer containing the data =:-o. */
10086
10087 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10088 for that subexpression cast to TO_TYPE. Advance *POS over the
10089 subexpression. */
10090
10091 static value *
10092 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10093 enum noside noside, struct type *to_type)
10094 {
10095 int pc = *pos;
10096
10097 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10098 || exp->elts[pc].opcode == OP_VAR_VALUE)
10099 {
10100 (*pos) += 4;
10101
10102 value *val;
10103 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10104 {
10105 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10106 return value_zero (to_type, not_lval);
10107
10108 val = evaluate_var_msym_value (noside,
10109 exp->elts[pc + 1].objfile,
10110 exp->elts[pc + 2].msymbol);
10111 }
10112 else
10113 val = evaluate_var_value (noside,
10114 exp->elts[pc + 1].block,
10115 exp->elts[pc + 2].symbol);
10116
10117 if (noside == EVAL_SKIP)
10118 return eval_skip_value (exp);
10119
10120 val = ada_value_cast (to_type, val);
10121
10122 /* Follow the Ada language semantics that do not allow taking
10123 an address of the result of a cast (view conversion in Ada). */
10124 if (VALUE_LVAL (val) == lval_memory)
10125 {
10126 if (value_lazy (val))
10127 value_fetch_lazy (val);
10128 VALUE_LVAL (val) = not_lval;
10129 }
10130 return val;
10131 }
10132
10133 value *val = evaluate_subexp (to_type, exp, pos, noside);
10134 if (noside == EVAL_SKIP)
10135 return eval_skip_value (exp);
10136 return ada_value_cast (to_type, val);
10137 }
10138
10139 /* Implement the evaluate_exp routine in the exp_descriptor structure
10140 for the Ada language. */
10141
10142 static struct value *
10143 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10144 int *pos, enum noside noside)
10145 {
10146 enum exp_opcode op;
10147 int tem;
10148 int pc;
10149 int preeval_pos;
10150 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10151 struct type *type;
10152 int nargs, oplen;
10153 struct value **argvec;
10154
10155 pc = *pos;
10156 *pos += 1;
10157 op = exp->elts[pc].opcode;
10158
10159 switch (op)
10160 {
10161 default:
10162 *pos -= 1;
10163 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10164
10165 if (noside == EVAL_NORMAL)
10166 arg1 = unwrap_value (arg1);
10167
10168 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10169 then we need to perform the conversion manually, because
10170 evaluate_subexp_standard doesn't do it. This conversion is
10171 necessary in Ada because the different kinds of float/fixed
10172 types in Ada have different representations.
10173
10174 Similarly, we need to perform the conversion from OP_LONG
10175 ourselves. */
10176 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10177 arg1 = ada_value_cast (expect_type, arg1);
10178
10179 return arg1;
10180
10181 case OP_STRING:
10182 {
10183 struct value *result;
10184
10185 *pos -= 1;
10186 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10187 /* The result type will have code OP_STRING, bashed there from
10188 OP_ARRAY. Bash it back. */
10189 if (value_type (result)->code () == TYPE_CODE_STRING)
10190 value_type (result)->set_code (TYPE_CODE_ARRAY);
10191 return result;
10192 }
10193
10194 case UNOP_CAST:
10195 (*pos) += 2;
10196 type = exp->elts[pc + 1].type;
10197 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10198
10199 case UNOP_QUAL:
10200 (*pos) += 2;
10201 type = exp->elts[pc + 1].type;
10202 return ada_evaluate_subexp (type, exp, pos, noside);
10203
10204 case BINOP_ASSIGN:
10205 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10206 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10207 {
10208 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10209 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10210 return arg1;
10211 return ada_value_assign (arg1, arg1);
10212 }
10213 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10214 except if the lhs of our assignment is a convenience variable.
10215 In the case of assigning to a convenience variable, the lhs
10216 should be exactly the result of the evaluation of the rhs. */
10217 type = value_type (arg1);
10218 if (VALUE_LVAL (arg1) == lval_internalvar)
10219 type = NULL;
10220 arg2 = evaluate_subexp (type, exp, pos, noside);
10221 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10222 return arg1;
10223 if (VALUE_LVAL (arg1) == lval_internalvar)
10224 {
10225 /* Nothing. */
10226 }
10227 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10228 arg2 = cast_to_gnat_encoded_fixed_point_type (value_type (arg1), arg2);
10229 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10230 error
10231 (_("Fixed-point values must be assigned to fixed-point variables"));
10232 else
10233 arg2 = coerce_for_assign (value_type (arg1), arg2);
10234 return ada_value_assign (arg1, arg2);
10235
10236 case BINOP_ADD:
10237 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10238 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10239 if (noside == EVAL_SKIP)
10240 goto nosideret;
10241 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10242 return (value_from_longest
10243 (value_type (arg1),
10244 value_as_long (arg1) + value_as_long (arg2)));
10245 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10246 return (value_from_longest
10247 (value_type (arg2),
10248 value_as_long (arg1) + value_as_long (arg2)));
10249 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10250 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10251 && value_type (arg1) != value_type (arg2))
10252 error (_("Operands of fixed-point addition must have the same type"));
10253 /* Do the addition, and cast the result to the type of the first
10254 argument. We cannot cast the result to a reference type, so if
10255 ARG1 is a reference type, find its underlying type. */
10256 type = value_type (arg1);
10257 while (type->code () == TYPE_CODE_REF)
10258 type = TYPE_TARGET_TYPE (type);
10259 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10260 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10261
10262 case BINOP_SUB:
10263 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10264 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10265 if (noside == EVAL_SKIP)
10266 goto nosideret;
10267 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10268 return (value_from_longest
10269 (value_type (arg1),
10270 value_as_long (arg1) - value_as_long (arg2)));
10271 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10272 return (value_from_longest
10273 (value_type (arg2),
10274 value_as_long (arg1) - value_as_long (arg2)));
10275 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10276 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10277 && value_type (arg1) != value_type (arg2))
10278 error (_("Operands of fixed-point subtraction "
10279 "must have the same type"));
10280 /* Do the substraction, and cast the result to the type of the first
10281 argument. We cannot cast the result to a reference type, so if
10282 ARG1 is a reference type, find its underlying type. */
10283 type = value_type (arg1);
10284 while (type->code () == TYPE_CODE_REF)
10285 type = TYPE_TARGET_TYPE (type);
10286 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10287 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10288
10289 case BINOP_MUL:
10290 case BINOP_DIV:
10291 case BINOP_REM:
10292 case BINOP_MOD:
10293 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10294 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10295 if (noside == EVAL_SKIP)
10296 goto nosideret;
10297 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10298 {
10299 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10300 return value_zero (value_type (arg1), not_lval);
10301 }
10302 else
10303 {
10304 type = builtin_type (exp->gdbarch)->builtin_double;
10305 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10306 arg1 = cast_from_gnat_encoded_fixed_point_type (type, arg1);
10307 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10308 arg2 = cast_from_gnat_encoded_fixed_point_type (type, arg2);
10309 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10310 return ada_value_binop (arg1, arg2, op);
10311 }
10312
10313 case BINOP_EQUAL:
10314 case BINOP_NOTEQUAL:
10315 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10316 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10317 if (noside == EVAL_SKIP)
10318 goto nosideret;
10319 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10320 tem = 0;
10321 else
10322 {
10323 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10324 tem = ada_value_equal (arg1, arg2);
10325 }
10326 if (op == BINOP_NOTEQUAL)
10327 tem = !tem;
10328 type = language_bool_type (exp->language_defn, exp->gdbarch);
10329 return value_from_longest (type, (LONGEST) tem);
10330
10331 case UNOP_NEG:
10332 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10333 if (noside == EVAL_SKIP)
10334 goto nosideret;
10335 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10336 return value_cast (value_type (arg1), value_neg (arg1));
10337 else
10338 {
10339 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10340 return value_neg (arg1);
10341 }
10342
10343 case BINOP_LOGICAL_AND:
10344 case BINOP_LOGICAL_OR:
10345 case UNOP_LOGICAL_NOT:
10346 {
10347 struct value *val;
10348
10349 *pos -= 1;
10350 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10351 type = language_bool_type (exp->language_defn, exp->gdbarch);
10352 return value_cast (type, val);
10353 }
10354
10355 case BINOP_BITWISE_AND:
10356 case BINOP_BITWISE_IOR:
10357 case BINOP_BITWISE_XOR:
10358 {
10359 struct value *val;
10360
10361 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10362 *pos = pc;
10363 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10364
10365 return value_cast (value_type (arg1), val);
10366 }
10367
10368 case OP_VAR_VALUE:
10369 *pos -= 1;
10370
10371 if (noside == EVAL_SKIP)
10372 {
10373 *pos += 4;
10374 goto nosideret;
10375 }
10376
10377 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10378 /* Only encountered when an unresolved symbol occurs in a
10379 context other than a function call, in which case, it is
10380 invalid. */
10381 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10382 exp->elts[pc + 2].symbol->print_name ());
10383
10384 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10385 {
10386 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10387 /* Check to see if this is a tagged type. We also need to handle
10388 the case where the type is a reference to a tagged type, but
10389 we have to be careful to exclude pointers to tagged types.
10390 The latter should be shown as usual (as a pointer), whereas
10391 a reference should mostly be transparent to the user. */
10392 if (ada_is_tagged_type (type, 0)
10393 || (type->code () == TYPE_CODE_REF
10394 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10395 {
10396 /* Tagged types are a little special in the fact that the real
10397 type is dynamic and can only be determined by inspecting the
10398 object's tag. This means that we need to get the object's
10399 value first (EVAL_NORMAL) and then extract the actual object
10400 type from its tag.
10401
10402 Note that we cannot skip the final step where we extract
10403 the object type from its tag, because the EVAL_NORMAL phase
10404 results in dynamic components being resolved into fixed ones.
10405 This can cause problems when trying to print the type
10406 description of tagged types whose parent has a dynamic size:
10407 We use the type name of the "_parent" component in order
10408 to print the name of the ancestor type in the type description.
10409 If that component had a dynamic size, the resolution into
10410 a fixed type would result in the loss of that type name,
10411 thus preventing us from printing the name of the ancestor
10412 type in the type description. */
10413 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
10414
10415 if (type->code () != TYPE_CODE_REF)
10416 {
10417 struct type *actual_type;
10418
10419 actual_type = type_from_tag (ada_value_tag (arg1));
10420 if (actual_type == NULL)
10421 /* If, for some reason, we were unable to determine
10422 the actual type from the tag, then use the static
10423 approximation that we just computed as a fallback.
10424 This can happen if the debugging information is
10425 incomplete, for instance. */
10426 actual_type = type;
10427 return value_zero (actual_type, not_lval);
10428 }
10429 else
10430 {
10431 /* In the case of a ref, ada_coerce_ref takes care
10432 of determining the actual type. But the evaluation
10433 should return a ref as it should be valid to ask
10434 for its address; so rebuild a ref after coerce. */
10435 arg1 = ada_coerce_ref (arg1);
10436 return value_ref (arg1, TYPE_CODE_REF);
10437 }
10438 }
10439
10440 /* Records and unions for which GNAT encodings have been
10441 generated need to be statically fixed as well.
10442 Otherwise, non-static fixing produces a type where
10443 all dynamic properties are removed, which prevents "ptype"
10444 from being able to completely describe the type.
10445 For instance, a case statement in a variant record would be
10446 replaced by the relevant components based on the actual
10447 value of the discriminants. */
10448 if ((type->code () == TYPE_CODE_STRUCT
10449 && dynamic_template_type (type) != NULL)
10450 || (type->code () == TYPE_CODE_UNION
10451 && ada_find_parallel_type (type, "___XVU") != NULL))
10452 {
10453 *pos += 4;
10454 return value_zero (to_static_fixed_type (type), not_lval);
10455 }
10456 }
10457
10458 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10459 return ada_to_fixed_value (arg1);
10460
10461 case OP_FUNCALL:
10462 (*pos) += 2;
10463
10464 /* Allocate arg vector, including space for the function to be
10465 called in argvec[0] and a terminating NULL. */
10466 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10467 argvec = XALLOCAVEC (struct value *, nargs + 2);
10468
10469 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10470 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10471 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10472 exp->elts[pc + 5].symbol->print_name ());
10473 else
10474 {
10475 for (tem = 0; tem <= nargs; tem += 1)
10476 argvec[tem] = evaluate_subexp (nullptr, exp, pos, noside);
10477 argvec[tem] = 0;
10478
10479 if (noside == EVAL_SKIP)
10480 goto nosideret;
10481 }
10482
10483 if (ada_is_constrained_packed_array_type
10484 (desc_base_type (value_type (argvec[0]))))
10485 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10486 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10487 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10488 /* This is a packed array that has already been fixed, and
10489 therefore already coerced to a simple array. Nothing further
10490 to do. */
10491 ;
10492 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10493 {
10494 /* Make sure we dereference references so that all the code below
10495 feels like it's really handling the referenced value. Wrapping
10496 types (for alignment) may be there, so make sure we strip them as
10497 well. */
10498 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10499 }
10500 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10501 && VALUE_LVAL (argvec[0]) == lval_memory)
10502 argvec[0] = value_addr (argvec[0]);
10503
10504 type = ada_check_typedef (value_type (argvec[0]));
10505
10506 /* Ada allows us to implicitly dereference arrays when subscripting
10507 them. So, if this is an array typedef (encoding use for array
10508 access types encoded as fat pointers), strip it now. */
10509 if (type->code () == TYPE_CODE_TYPEDEF)
10510 type = ada_typedef_target_type (type);
10511
10512 if (type->code () == TYPE_CODE_PTR)
10513 {
10514 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10515 {
10516 case TYPE_CODE_FUNC:
10517 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10518 break;
10519 case TYPE_CODE_ARRAY:
10520 break;
10521 case TYPE_CODE_STRUCT:
10522 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10523 argvec[0] = ada_value_ind (argvec[0]);
10524 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10525 break;
10526 default:
10527 error (_("cannot subscript or call something of type `%s'"),
10528 ada_type_name (value_type (argvec[0])));
10529 break;
10530 }
10531 }
10532
10533 switch (type->code ())
10534 {
10535 case TYPE_CODE_FUNC:
10536 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10537 {
10538 if (TYPE_TARGET_TYPE (type) == NULL)
10539 error_call_unknown_return_type (NULL);
10540 return allocate_value (TYPE_TARGET_TYPE (type));
10541 }
10542 return call_function_by_hand (argvec[0], NULL,
10543 gdb::make_array_view (argvec + 1,
10544 nargs));
10545 case TYPE_CODE_INTERNAL_FUNCTION:
10546 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10547 /* We don't know anything about what the internal
10548 function might return, but we have to return
10549 something. */
10550 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10551 not_lval);
10552 else
10553 return call_internal_function (exp->gdbarch, exp->language_defn,
10554 argvec[0], nargs, argvec + 1);
10555
10556 case TYPE_CODE_STRUCT:
10557 {
10558 int arity;
10559
10560 arity = ada_array_arity (type);
10561 type = ada_array_element_type (type, nargs);
10562 if (type == NULL)
10563 error (_("cannot subscript or call a record"));
10564 if (arity != nargs)
10565 error (_("wrong number of subscripts; expecting %d"), arity);
10566 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10567 return value_zero (ada_aligned_type (type), lval_memory);
10568 return
10569 unwrap_value (ada_value_subscript
10570 (argvec[0], nargs, argvec + 1));
10571 }
10572 case TYPE_CODE_ARRAY:
10573 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10574 {
10575 type = ada_array_element_type (type, nargs);
10576 if (type == NULL)
10577 error (_("element type of array unknown"));
10578 else
10579 return value_zero (ada_aligned_type (type), lval_memory);
10580 }
10581 return
10582 unwrap_value (ada_value_subscript
10583 (ada_coerce_to_simple_array (argvec[0]),
10584 nargs, argvec + 1));
10585 case TYPE_CODE_PTR: /* Pointer to array */
10586 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10587 {
10588 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10589 type = ada_array_element_type (type, nargs);
10590 if (type == NULL)
10591 error (_("element type of array unknown"));
10592 else
10593 return value_zero (ada_aligned_type (type), lval_memory);
10594 }
10595 return
10596 unwrap_value (ada_value_ptr_subscript (argvec[0],
10597 nargs, argvec + 1));
10598
10599 default:
10600 error (_("Attempt to index or call something other than an "
10601 "array or function"));
10602 }
10603
10604 case TERNOP_SLICE:
10605 {
10606 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
10607 struct value *low_bound_val
10608 = evaluate_subexp (nullptr, exp, pos, noside);
10609 struct value *high_bound_val
10610 = evaluate_subexp (nullptr, exp, pos, noside);
10611 LONGEST low_bound;
10612 LONGEST high_bound;
10613
10614 low_bound_val = coerce_ref (low_bound_val);
10615 high_bound_val = coerce_ref (high_bound_val);
10616 low_bound = value_as_long (low_bound_val);
10617 high_bound = value_as_long (high_bound_val);
10618
10619 if (noside == EVAL_SKIP)
10620 goto nosideret;
10621
10622 /* If this is a reference to an aligner type, then remove all
10623 the aligners. */
10624 if (value_type (array)->code () == TYPE_CODE_REF
10625 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10626 TYPE_TARGET_TYPE (value_type (array)) =
10627 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10628
10629 if (ada_is_any_packed_array_type (value_type (array)))
10630 error (_("cannot slice a packed array"));
10631
10632 /* If this is a reference to an array or an array lvalue,
10633 convert to a pointer. */
10634 if (value_type (array)->code () == TYPE_CODE_REF
10635 || (value_type (array)->code () == TYPE_CODE_ARRAY
10636 && VALUE_LVAL (array) == lval_memory))
10637 array = value_addr (array);
10638
10639 if (noside == EVAL_AVOID_SIDE_EFFECTS
10640 && ada_is_array_descriptor_type (ada_check_typedef
10641 (value_type (array))))
10642 return empty_array (ada_type_of_array (array, 0), low_bound,
10643 high_bound);
10644
10645 array = ada_coerce_to_simple_array_ptr (array);
10646
10647 /* If we have more than one level of pointer indirection,
10648 dereference the value until we get only one level. */
10649 while (value_type (array)->code () == TYPE_CODE_PTR
10650 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10651 == TYPE_CODE_PTR))
10652 array = value_ind (array);
10653
10654 /* Make sure we really do have an array type before going further,
10655 to avoid a SEGV when trying to get the index type or the target
10656 type later down the road if the debug info generated by
10657 the compiler is incorrect or incomplete. */
10658 if (!ada_is_simple_array_type (value_type (array)))
10659 error (_("cannot take slice of non-array"));
10660
10661 if (ada_check_typedef (value_type (array))->code ()
10662 == TYPE_CODE_PTR)
10663 {
10664 struct type *type0 = ada_check_typedef (value_type (array));
10665
10666 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10667 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10668 else
10669 {
10670 struct type *arr_type0 =
10671 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10672
10673 return ada_value_slice_from_ptr (array, arr_type0,
10674 longest_to_int (low_bound),
10675 longest_to_int (high_bound));
10676 }
10677 }
10678 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10679 return array;
10680 else if (high_bound < low_bound)
10681 return empty_array (value_type (array), low_bound, high_bound);
10682 else
10683 return ada_value_slice (array, longest_to_int (low_bound),
10684 longest_to_int (high_bound));
10685 }
10686
10687 case UNOP_IN_RANGE:
10688 (*pos) += 2;
10689 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10690 type = check_typedef (exp->elts[pc + 1].type);
10691
10692 if (noside == EVAL_SKIP)
10693 goto nosideret;
10694
10695 switch (type->code ())
10696 {
10697 default:
10698 lim_warning (_("Membership test incompletely implemented; "
10699 "always returns true"));
10700 type = language_bool_type (exp->language_defn, exp->gdbarch);
10701 return value_from_longest (type, (LONGEST) 1);
10702
10703 case TYPE_CODE_RANGE:
10704 arg2 = value_from_longest (type,
10705 type->bounds ()->low.const_val ());
10706 arg3 = value_from_longest (type,
10707 type->bounds ()->high.const_val ());
10708 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10709 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10710 type = language_bool_type (exp->language_defn, exp->gdbarch);
10711 return
10712 value_from_longest (type,
10713 (value_less (arg1, arg3)
10714 || value_equal (arg1, arg3))
10715 && (value_less (arg2, arg1)
10716 || value_equal (arg2, arg1)));
10717 }
10718
10719 case BINOP_IN_BOUNDS:
10720 (*pos) += 2;
10721 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10722 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10723
10724 if (noside == EVAL_SKIP)
10725 goto nosideret;
10726
10727 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10728 {
10729 type = language_bool_type (exp->language_defn, exp->gdbarch);
10730 return value_zero (type, not_lval);
10731 }
10732
10733 tem = longest_to_int (exp->elts[pc + 1].longconst);
10734
10735 type = ada_index_type (value_type (arg2), tem, "range");
10736 if (!type)
10737 type = value_type (arg1);
10738
10739 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10740 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10741
10742 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10743 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10744 type = language_bool_type (exp->language_defn, exp->gdbarch);
10745 return
10746 value_from_longest (type,
10747 (value_less (arg1, arg3)
10748 || value_equal (arg1, arg3))
10749 && (value_less (arg2, arg1)
10750 || value_equal (arg2, arg1)));
10751
10752 case TERNOP_IN_RANGE:
10753 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10754 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10755 arg3 = evaluate_subexp (nullptr, exp, pos, noside);
10756
10757 if (noside == EVAL_SKIP)
10758 goto nosideret;
10759
10760 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10761 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10762 type = language_bool_type (exp->language_defn, exp->gdbarch);
10763 return
10764 value_from_longest (type,
10765 (value_less (arg1, arg3)
10766 || value_equal (arg1, arg3))
10767 && (value_less (arg2, arg1)
10768 || value_equal (arg2, arg1)));
10769
10770 case OP_ATR_FIRST:
10771 case OP_ATR_LAST:
10772 case OP_ATR_LENGTH:
10773 {
10774 struct type *type_arg;
10775
10776 if (exp->elts[*pos].opcode == OP_TYPE)
10777 {
10778 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10779 arg1 = NULL;
10780 type_arg = check_typedef (exp->elts[pc + 2].type);
10781 }
10782 else
10783 {
10784 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10785 type_arg = NULL;
10786 }
10787
10788 if (exp->elts[*pos].opcode != OP_LONG)
10789 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10790 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10791 *pos += 4;
10792
10793 if (noside == EVAL_SKIP)
10794 goto nosideret;
10795 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10796 {
10797 if (type_arg == NULL)
10798 type_arg = value_type (arg1);
10799
10800 if (ada_is_constrained_packed_array_type (type_arg))
10801 type_arg = decode_constrained_packed_array_type (type_arg);
10802
10803 if (!discrete_type_p (type_arg))
10804 {
10805 switch (op)
10806 {
10807 default: /* Should never happen. */
10808 error (_("unexpected attribute encountered"));
10809 case OP_ATR_FIRST:
10810 case OP_ATR_LAST:
10811 type_arg = ada_index_type (type_arg, tem,
10812 ada_attribute_name (op));
10813 break;
10814 case OP_ATR_LENGTH:
10815 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10816 break;
10817 }
10818 }
10819
10820 return value_zero (type_arg, not_lval);
10821 }
10822 else if (type_arg == NULL)
10823 {
10824 arg1 = ada_coerce_ref (arg1);
10825
10826 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10827 arg1 = ada_coerce_to_simple_array (arg1);
10828
10829 if (op == OP_ATR_LENGTH)
10830 type = builtin_type (exp->gdbarch)->builtin_int;
10831 else
10832 {
10833 type = ada_index_type (value_type (arg1), tem,
10834 ada_attribute_name (op));
10835 if (type == NULL)
10836 type = builtin_type (exp->gdbarch)->builtin_int;
10837 }
10838
10839 switch (op)
10840 {
10841 default: /* Should never happen. */
10842 error (_("unexpected attribute encountered"));
10843 case OP_ATR_FIRST:
10844 return value_from_longest
10845 (type, ada_array_bound (arg1, tem, 0));
10846 case OP_ATR_LAST:
10847 return value_from_longest
10848 (type, ada_array_bound (arg1, tem, 1));
10849 case OP_ATR_LENGTH:
10850 return value_from_longest
10851 (type, ada_array_length (arg1, tem));
10852 }
10853 }
10854 else if (discrete_type_p (type_arg))
10855 {
10856 struct type *range_type;
10857 const char *name = ada_type_name (type_arg);
10858
10859 range_type = NULL;
10860 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10861 range_type = to_fixed_range_type (type_arg, NULL);
10862 if (range_type == NULL)
10863 range_type = type_arg;
10864 switch (op)
10865 {
10866 default:
10867 error (_("unexpected attribute encountered"));
10868 case OP_ATR_FIRST:
10869 return value_from_longest
10870 (range_type, ada_discrete_type_low_bound (range_type));
10871 case OP_ATR_LAST:
10872 return value_from_longest
10873 (range_type, ada_discrete_type_high_bound (range_type));
10874 case OP_ATR_LENGTH:
10875 error (_("the 'length attribute applies only to array types"));
10876 }
10877 }
10878 else if (type_arg->code () == TYPE_CODE_FLT)
10879 error (_("unimplemented type attribute"));
10880 else
10881 {
10882 LONGEST low, high;
10883
10884 if (ada_is_constrained_packed_array_type (type_arg))
10885 type_arg = decode_constrained_packed_array_type (type_arg);
10886
10887 if (op == OP_ATR_LENGTH)
10888 type = builtin_type (exp->gdbarch)->builtin_int;
10889 else
10890 {
10891 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10892 if (type == NULL)
10893 type = builtin_type (exp->gdbarch)->builtin_int;
10894 }
10895
10896 switch (op)
10897 {
10898 default:
10899 error (_("unexpected attribute encountered"));
10900 case OP_ATR_FIRST:
10901 low = ada_array_bound_from_type (type_arg, tem, 0);
10902 return value_from_longest (type, low);
10903 case OP_ATR_LAST:
10904 high = ada_array_bound_from_type (type_arg, tem, 1);
10905 return value_from_longest (type, high);
10906 case OP_ATR_LENGTH:
10907 low = ada_array_bound_from_type (type_arg, tem, 0);
10908 high = ada_array_bound_from_type (type_arg, tem, 1);
10909 return value_from_longest (type, high - low + 1);
10910 }
10911 }
10912 }
10913
10914 case OP_ATR_TAG:
10915 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10916 if (noside == EVAL_SKIP)
10917 goto nosideret;
10918
10919 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10920 return value_zero (ada_tag_type (arg1), not_lval);
10921
10922 return ada_value_tag (arg1);
10923
10924 case OP_ATR_MIN:
10925 case OP_ATR_MAX:
10926 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10927 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10928 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10929 if (noside == EVAL_SKIP)
10930 goto nosideret;
10931 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10932 return value_zero (value_type (arg1), not_lval);
10933 else
10934 {
10935 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10936 return value_binop (arg1, arg2,
10937 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10938 }
10939
10940 case OP_ATR_MODULUS:
10941 {
10942 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10943
10944 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10945 if (noside == EVAL_SKIP)
10946 goto nosideret;
10947
10948 if (!ada_is_modular_type (type_arg))
10949 error (_("'modulus must be applied to modular type"));
10950
10951 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10952 ada_modulus (type_arg));
10953 }
10954
10955
10956 case OP_ATR_POS:
10957 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10958 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10959 if (noside == EVAL_SKIP)
10960 goto nosideret;
10961 type = builtin_type (exp->gdbarch)->builtin_int;
10962 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10963 return value_zero (type, not_lval);
10964 else
10965 return value_pos_atr (type, arg1);
10966
10967 case OP_ATR_SIZE:
10968 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10969 type = value_type (arg1);
10970
10971 /* If the argument is a reference, then dereference its type, since
10972 the user is really asking for the size of the actual object,
10973 not the size of the pointer. */
10974 if (type->code () == TYPE_CODE_REF)
10975 type = TYPE_TARGET_TYPE (type);
10976
10977 if (noside == EVAL_SKIP)
10978 goto nosideret;
10979 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10980 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10981 else
10982 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10983 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10984
10985 case OP_ATR_VAL:
10986 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10987 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10988 type = exp->elts[pc + 2].type;
10989 if (noside == EVAL_SKIP)
10990 goto nosideret;
10991 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10992 return value_zero (type, not_lval);
10993 else
10994 return value_val_atr (type, arg1);
10995
10996 case BINOP_EXP:
10997 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10998 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10999 if (noside == EVAL_SKIP)
11000 goto nosideret;
11001 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11002 return value_zero (value_type (arg1), not_lval);
11003 else
11004 {
11005 /* For integer exponentiation operations,
11006 only promote the first argument. */
11007 if (is_integral_type (value_type (arg2)))
11008 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11009 else
11010 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11011
11012 return value_binop (arg1, arg2, op);
11013 }
11014
11015 case UNOP_PLUS:
11016 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11017 if (noside == EVAL_SKIP)
11018 goto nosideret;
11019 else
11020 return arg1;
11021
11022 case UNOP_ABS:
11023 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11024 if (noside == EVAL_SKIP)
11025 goto nosideret;
11026 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11027 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11028 return value_neg (arg1);
11029 else
11030 return arg1;
11031
11032 case UNOP_IND:
11033 preeval_pos = *pos;
11034 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11035 if (noside == EVAL_SKIP)
11036 goto nosideret;
11037 type = ada_check_typedef (value_type (arg1));
11038 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11039 {
11040 if (ada_is_array_descriptor_type (type))
11041 /* GDB allows dereferencing GNAT array descriptors. */
11042 {
11043 struct type *arrType = ada_type_of_array (arg1, 0);
11044
11045 if (arrType == NULL)
11046 error (_("Attempt to dereference null array pointer."));
11047 return value_at_lazy (arrType, 0);
11048 }
11049 else if (type->code () == TYPE_CODE_PTR
11050 || type->code () == TYPE_CODE_REF
11051 /* In C you can dereference an array to get the 1st elt. */
11052 || type->code () == TYPE_CODE_ARRAY)
11053 {
11054 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11055 only be determined by inspecting the object's tag.
11056 This means that we need to evaluate completely the
11057 expression in order to get its type. */
11058
11059 if ((type->code () == TYPE_CODE_REF
11060 || type->code () == TYPE_CODE_PTR)
11061 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11062 {
11063 arg1
11064 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
11065 type = value_type (ada_value_ind (arg1));
11066 }
11067 else
11068 {
11069 type = to_static_fixed_type
11070 (ada_aligned_type
11071 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11072 }
11073 ada_ensure_varsize_limit (type);
11074 return value_zero (type, lval_memory);
11075 }
11076 else if (type->code () == TYPE_CODE_INT)
11077 {
11078 /* GDB allows dereferencing an int. */
11079 if (expect_type == NULL)
11080 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11081 lval_memory);
11082 else
11083 {
11084 expect_type =
11085 to_static_fixed_type (ada_aligned_type (expect_type));
11086 return value_zero (expect_type, lval_memory);
11087 }
11088 }
11089 else
11090 error (_("Attempt to take contents of a non-pointer value."));
11091 }
11092 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11093 type = ada_check_typedef (value_type (arg1));
11094
11095 if (type->code () == TYPE_CODE_INT)
11096 /* GDB allows dereferencing an int. If we were given
11097 the expect_type, then use that as the target type.
11098 Otherwise, assume that the target type is an int. */
11099 {
11100 if (expect_type != NULL)
11101 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11102 arg1));
11103 else
11104 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11105 (CORE_ADDR) value_as_address (arg1));
11106 }
11107
11108 if (ada_is_array_descriptor_type (type))
11109 /* GDB allows dereferencing GNAT array descriptors. */
11110 return ada_coerce_to_simple_array (arg1);
11111 else
11112 return ada_value_ind (arg1);
11113
11114 case STRUCTOP_STRUCT:
11115 tem = longest_to_int (exp->elts[pc + 1].longconst);
11116 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11117 preeval_pos = *pos;
11118 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11119 if (noside == EVAL_SKIP)
11120 goto nosideret;
11121 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11122 {
11123 struct type *type1 = value_type (arg1);
11124
11125 if (ada_is_tagged_type (type1, 1))
11126 {
11127 type = ada_lookup_struct_elt_type (type1,
11128 &exp->elts[pc + 2].string,
11129 1, 1);
11130
11131 /* If the field is not found, check if it exists in the
11132 extension of this object's type. This means that we
11133 need to evaluate completely the expression. */
11134
11135 if (type == NULL)
11136 {
11137 arg1
11138 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
11139 arg1 = ada_value_struct_elt (arg1,
11140 &exp->elts[pc + 2].string,
11141 0);
11142 arg1 = unwrap_value (arg1);
11143 type = value_type (ada_to_fixed_value (arg1));
11144 }
11145 }
11146 else
11147 type =
11148 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11149 0);
11150
11151 return value_zero (ada_aligned_type (type), lval_memory);
11152 }
11153 else
11154 {
11155 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11156 arg1 = unwrap_value (arg1);
11157 return ada_to_fixed_value (arg1);
11158 }
11159
11160 case OP_TYPE:
11161 /* The value is not supposed to be used. This is here to make it
11162 easier to accommodate expressions that contain types. */
11163 (*pos) += 2;
11164 if (noside == EVAL_SKIP)
11165 goto nosideret;
11166 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11167 return allocate_value (exp->elts[pc + 1].type);
11168 else
11169 error (_("Attempt to use a type name as an expression"));
11170
11171 case OP_AGGREGATE:
11172 case OP_CHOICES:
11173 case OP_OTHERS:
11174 case OP_DISCRETE_RANGE:
11175 case OP_POSITIONAL:
11176 case OP_NAME:
11177 if (noside == EVAL_NORMAL)
11178 switch (op)
11179 {
11180 case OP_NAME:
11181 error (_("Undefined name, ambiguous name, or renaming used in "
11182 "component association: %s."), &exp->elts[pc+2].string);
11183 case OP_AGGREGATE:
11184 error (_("Aggregates only allowed on the right of an assignment"));
11185 default:
11186 internal_error (__FILE__, __LINE__,
11187 _("aggregate apparently mangled"));
11188 }
11189
11190 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11191 *pos += oplen - 1;
11192 for (tem = 0; tem < nargs; tem += 1)
11193 ada_evaluate_subexp (NULL, exp, pos, noside);
11194 goto nosideret;
11195 }
11196
11197 nosideret:
11198 return eval_skip_value (exp);
11199 }
11200 \f
11201
11202 /* Fixed point */
11203
11204 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11205 type name that encodes the 'small and 'delta information.
11206 Otherwise, return NULL. */
11207
11208 static const char *
11209 gnat_encoded_fixed_point_type_info (struct type *type)
11210 {
11211 const char *name = ada_type_name (type);
11212 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11213
11214 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11215 {
11216 const char *tail = strstr (name, "___XF_");
11217
11218 if (tail == NULL)
11219 return NULL;
11220 else
11221 return tail + 5;
11222 }
11223 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11224 return gnat_encoded_fixed_point_type_info (TYPE_TARGET_TYPE (type));
11225 else
11226 return NULL;
11227 }
11228
11229 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11230
11231 int
11232 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11233 {
11234 return gnat_encoded_fixed_point_type_info (type) != NULL;
11235 }
11236
11237 /* Return non-zero iff TYPE represents a System.Address type. */
11238
11239 int
11240 ada_is_system_address_type (struct type *type)
11241 {
11242 return (type->name () && strcmp (type->name (), "system__address") == 0);
11243 }
11244
11245 /* Assuming that TYPE is the representation of an Ada fixed-point
11246 type, return the target floating-point type to be used to represent
11247 of this type during internal computation. */
11248
11249 static struct type *
11250 ada_scaling_type (struct type *type)
11251 {
11252 return builtin_type (get_type_arch (type))->builtin_long_double;
11253 }
11254
11255 /* Assuming that TYPE is the representation of an Ada fixed-point
11256 type, return its delta, or NULL if the type is malformed and the
11257 delta cannot be determined. */
11258
11259 struct value *
11260 gnat_encoded_fixed_point_delta (struct type *type)
11261 {
11262 const char *encoding = gnat_encoded_fixed_point_type_info (type);
11263 struct type *scale_type = ada_scaling_type (type);
11264
11265 long long num, den;
11266
11267 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11268 return nullptr;
11269 else
11270 return value_binop (value_from_longest (scale_type, num),
11271 value_from_longest (scale_type, den), BINOP_DIV);
11272 }
11273
11274 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11275 the scaling factor ('SMALL value) associated with the type. */
11276
11277 struct value *
11278 gnat_encoded_fixed_point_scaling_factor (struct type *type)
11279 {
11280 const char *encoding = gnat_encoded_fixed_point_type_info (type);
11281 struct type *scale_type = ada_scaling_type (type);
11282
11283 long long num0, den0, num1, den1;
11284 int n;
11285
11286 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11287 &num0, &den0, &num1, &den1);
11288
11289 if (n < 2)
11290 return value_from_longest (scale_type, 1);
11291 else if (n == 4)
11292 return value_binop (value_from_longest (scale_type, num1),
11293 value_from_longest (scale_type, den1), BINOP_DIV);
11294 else
11295 return value_binop (value_from_longest (scale_type, num0),
11296 value_from_longest (scale_type, den0), BINOP_DIV);
11297 }
11298
11299 \f
11300
11301 /* Range types */
11302
11303 /* Scan STR beginning at position K for a discriminant name, and
11304 return the value of that discriminant field of DVAL in *PX. If
11305 PNEW_K is not null, put the position of the character beyond the
11306 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11307 not alter *PX and *PNEW_K if unsuccessful. */
11308
11309 static int
11310 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11311 int *pnew_k)
11312 {
11313 static char *bound_buffer = NULL;
11314 static size_t bound_buffer_len = 0;
11315 const char *pstart, *pend, *bound;
11316 struct value *bound_val;
11317
11318 if (dval == NULL || str == NULL || str[k] == '\0')
11319 return 0;
11320
11321 pstart = str + k;
11322 pend = strstr (pstart, "__");
11323 if (pend == NULL)
11324 {
11325 bound = pstart;
11326 k += strlen (bound);
11327 }
11328 else
11329 {
11330 int len = pend - pstart;
11331
11332 /* Strip __ and beyond. */
11333 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11334 strncpy (bound_buffer, pstart, len);
11335 bound_buffer[len] = '\0';
11336
11337 bound = bound_buffer;
11338 k = pend - str;
11339 }
11340
11341 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11342 if (bound_val == NULL)
11343 return 0;
11344
11345 *px = value_as_long (bound_val);
11346 if (pnew_k != NULL)
11347 *pnew_k = k;
11348 return 1;
11349 }
11350
11351 /* Value of variable named NAME in the current environment. If
11352 no such variable found, then if ERR_MSG is null, returns 0, and
11353 otherwise causes an error with message ERR_MSG. */
11354
11355 static struct value *
11356 get_var_value (const char *name, const char *err_msg)
11357 {
11358 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11359
11360 std::vector<struct block_symbol> syms;
11361 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11362 get_selected_block (0),
11363 VAR_DOMAIN, &syms, 1);
11364
11365 if (nsyms != 1)
11366 {
11367 if (err_msg == NULL)
11368 return 0;
11369 else
11370 error (("%s"), err_msg);
11371 }
11372
11373 return value_of_variable (syms[0].symbol, syms[0].block);
11374 }
11375
11376 /* Value of integer variable named NAME in the current environment.
11377 If no such variable is found, returns false. Otherwise, sets VALUE
11378 to the variable's value and returns true. */
11379
11380 bool
11381 get_int_var_value (const char *name, LONGEST &value)
11382 {
11383 struct value *var_val = get_var_value (name, 0);
11384
11385 if (var_val == 0)
11386 return false;
11387
11388 value = value_as_long (var_val);
11389 return true;
11390 }
11391
11392
11393 /* Return a range type whose base type is that of the range type named
11394 NAME in the current environment, and whose bounds are calculated
11395 from NAME according to the GNAT range encoding conventions.
11396 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11397 corresponding range type from debug information; fall back to using it
11398 if symbol lookup fails. If a new type must be created, allocate it
11399 like ORIG_TYPE was. The bounds information, in general, is encoded
11400 in NAME, the base type given in the named range type. */
11401
11402 static struct type *
11403 to_fixed_range_type (struct type *raw_type, struct value *dval)
11404 {
11405 const char *name;
11406 struct type *base_type;
11407 const char *subtype_info;
11408
11409 gdb_assert (raw_type != NULL);
11410 gdb_assert (raw_type->name () != NULL);
11411
11412 if (raw_type->code () == TYPE_CODE_RANGE)
11413 base_type = TYPE_TARGET_TYPE (raw_type);
11414 else
11415 base_type = raw_type;
11416
11417 name = raw_type->name ();
11418 subtype_info = strstr (name, "___XD");
11419 if (subtype_info == NULL)
11420 {
11421 LONGEST L = ada_discrete_type_low_bound (raw_type);
11422 LONGEST U = ada_discrete_type_high_bound (raw_type);
11423
11424 if (L < INT_MIN || U > INT_MAX)
11425 return raw_type;
11426 else
11427 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11428 L, U);
11429 }
11430 else
11431 {
11432 static char *name_buf = NULL;
11433 static size_t name_len = 0;
11434 int prefix_len = subtype_info - name;
11435 LONGEST L, U;
11436 struct type *type;
11437 const char *bounds_str;
11438 int n;
11439
11440 GROW_VECT (name_buf, name_len, prefix_len + 5);
11441 strncpy (name_buf, name, prefix_len);
11442 name_buf[prefix_len] = '\0';
11443
11444 subtype_info += 5;
11445 bounds_str = strchr (subtype_info, '_');
11446 n = 1;
11447
11448 if (*subtype_info == 'L')
11449 {
11450 if (!ada_scan_number (bounds_str, n, &L, &n)
11451 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11452 return raw_type;
11453 if (bounds_str[n] == '_')
11454 n += 2;
11455 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11456 n += 1;
11457 subtype_info += 1;
11458 }
11459 else
11460 {
11461 strcpy (name_buf + prefix_len, "___L");
11462 if (!get_int_var_value (name_buf, L))
11463 {
11464 lim_warning (_("Unknown lower bound, using 1."));
11465 L = 1;
11466 }
11467 }
11468
11469 if (*subtype_info == 'U')
11470 {
11471 if (!ada_scan_number (bounds_str, n, &U, &n)
11472 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11473 return raw_type;
11474 }
11475 else
11476 {
11477 strcpy (name_buf + prefix_len, "___U");
11478 if (!get_int_var_value (name_buf, U))
11479 {
11480 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11481 U = L;
11482 }
11483 }
11484
11485 type = create_static_range_type (alloc_type_copy (raw_type),
11486 base_type, L, U);
11487 /* create_static_range_type alters the resulting type's length
11488 to match the size of the base_type, which is not what we want.
11489 Set it back to the original range type's length. */
11490 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11491 type->set_name (name);
11492 return type;
11493 }
11494 }
11495
11496 /* True iff NAME is the name of a range type. */
11497
11498 int
11499 ada_is_range_type_name (const char *name)
11500 {
11501 return (name != NULL && strstr (name, "___XD"));
11502 }
11503 \f
11504
11505 /* Modular types */
11506
11507 /* True iff TYPE is an Ada modular type. */
11508
11509 int
11510 ada_is_modular_type (struct type *type)
11511 {
11512 struct type *subranged_type = get_base_type (type);
11513
11514 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11515 && subranged_type->code () == TYPE_CODE_INT
11516 && subranged_type->is_unsigned ());
11517 }
11518
11519 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11520
11521 ULONGEST
11522 ada_modulus (struct type *type)
11523 {
11524 const dynamic_prop &high = type->bounds ()->high;
11525
11526 if (high.kind () == PROP_CONST)
11527 return (ULONGEST) high.const_val () + 1;
11528
11529 /* If TYPE is unresolved, the high bound might be a location list. Return
11530 0, for lack of a better value to return. */
11531 return 0;
11532 }
11533 \f
11534
11535 /* Ada exception catchpoint support:
11536 ---------------------------------
11537
11538 We support 3 kinds of exception catchpoints:
11539 . catchpoints on Ada exceptions
11540 . catchpoints on unhandled Ada exceptions
11541 . catchpoints on failed assertions
11542
11543 Exceptions raised during failed assertions, or unhandled exceptions
11544 could perfectly be caught with the general catchpoint on Ada exceptions.
11545 However, we can easily differentiate these two special cases, and having
11546 the option to distinguish these two cases from the rest can be useful
11547 to zero-in on certain situations.
11548
11549 Exception catchpoints are a specialized form of breakpoint,
11550 since they rely on inserting breakpoints inside known routines
11551 of the GNAT runtime. The implementation therefore uses a standard
11552 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11553 of breakpoint_ops.
11554
11555 Support in the runtime for exception catchpoints have been changed
11556 a few times already, and these changes affect the implementation
11557 of these catchpoints. In order to be able to support several
11558 variants of the runtime, we use a sniffer that will determine
11559 the runtime variant used by the program being debugged. */
11560
11561 /* Ada's standard exceptions.
11562
11563 The Ada 83 standard also defined Numeric_Error. But there so many
11564 situations where it was unclear from the Ada 83 Reference Manual
11565 (RM) whether Constraint_Error or Numeric_Error should be raised,
11566 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11567 Interpretation saying that anytime the RM says that Numeric_Error
11568 should be raised, the implementation may raise Constraint_Error.
11569 Ada 95 went one step further and pretty much removed Numeric_Error
11570 from the list of standard exceptions (it made it a renaming of
11571 Constraint_Error, to help preserve compatibility when compiling
11572 an Ada83 compiler). As such, we do not include Numeric_Error from
11573 this list of standard exceptions. */
11574
11575 static const char * const standard_exc[] = {
11576 "constraint_error",
11577 "program_error",
11578 "storage_error",
11579 "tasking_error"
11580 };
11581
11582 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11583
11584 /* A structure that describes how to support exception catchpoints
11585 for a given executable. */
11586
11587 struct exception_support_info
11588 {
11589 /* The name of the symbol to break on in order to insert
11590 a catchpoint on exceptions. */
11591 const char *catch_exception_sym;
11592
11593 /* The name of the symbol to break on in order to insert
11594 a catchpoint on unhandled exceptions. */
11595 const char *catch_exception_unhandled_sym;
11596
11597 /* The name of the symbol to break on in order to insert
11598 a catchpoint on failed assertions. */
11599 const char *catch_assert_sym;
11600
11601 /* The name of the symbol to break on in order to insert
11602 a catchpoint on exception handling. */
11603 const char *catch_handlers_sym;
11604
11605 /* Assuming that the inferior just triggered an unhandled exception
11606 catchpoint, this function is responsible for returning the address
11607 in inferior memory where the name of that exception is stored.
11608 Return zero if the address could not be computed. */
11609 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11610 };
11611
11612 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11613 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11614
11615 /* The following exception support info structure describes how to
11616 implement exception catchpoints with the latest version of the
11617 Ada runtime (as of 2019-08-??). */
11618
11619 static const struct exception_support_info default_exception_support_info =
11620 {
11621 "__gnat_debug_raise_exception", /* catch_exception_sym */
11622 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11623 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11624 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11625 ada_unhandled_exception_name_addr
11626 };
11627
11628 /* The following exception support info structure describes how to
11629 implement exception catchpoints with an earlier version of the
11630 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11631
11632 static const struct exception_support_info exception_support_info_v0 =
11633 {
11634 "__gnat_debug_raise_exception", /* catch_exception_sym */
11635 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11636 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11637 "__gnat_begin_handler", /* catch_handlers_sym */
11638 ada_unhandled_exception_name_addr
11639 };
11640
11641 /* The following exception support info structure describes how to
11642 implement exception catchpoints with a slightly older version
11643 of the Ada runtime. */
11644
11645 static const struct exception_support_info exception_support_info_fallback =
11646 {
11647 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11648 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11649 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11650 "__gnat_begin_handler", /* catch_handlers_sym */
11651 ada_unhandled_exception_name_addr_from_raise
11652 };
11653
11654 /* Return nonzero if we can detect the exception support routines
11655 described in EINFO.
11656
11657 This function errors out if an abnormal situation is detected
11658 (for instance, if we find the exception support routines, but
11659 that support is found to be incomplete). */
11660
11661 static int
11662 ada_has_this_exception_support (const struct exception_support_info *einfo)
11663 {
11664 struct symbol *sym;
11665
11666 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11667 that should be compiled with debugging information. As a result, we
11668 expect to find that symbol in the symtabs. */
11669
11670 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11671 if (sym == NULL)
11672 {
11673 /* Perhaps we did not find our symbol because the Ada runtime was
11674 compiled without debugging info, or simply stripped of it.
11675 It happens on some GNU/Linux distributions for instance, where
11676 users have to install a separate debug package in order to get
11677 the runtime's debugging info. In that situation, let the user
11678 know why we cannot insert an Ada exception catchpoint.
11679
11680 Note: Just for the purpose of inserting our Ada exception
11681 catchpoint, we could rely purely on the associated minimal symbol.
11682 But we would be operating in degraded mode anyway, since we are
11683 still lacking the debugging info needed later on to extract
11684 the name of the exception being raised (this name is printed in
11685 the catchpoint message, and is also used when trying to catch
11686 a specific exception). We do not handle this case for now. */
11687 struct bound_minimal_symbol msym
11688 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11689
11690 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11691 error (_("Your Ada runtime appears to be missing some debugging "
11692 "information.\nCannot insert Ada exception catchpoint "
11693 "in this configuration."));
11694
11695 return 0;
11696 }
11697
11698 /* Make sure that the symbol we found corresponds to a function. */
11699
11700 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11701 {
11702 error (_("Symbol \"%s\" is not a function (class = %d)"),
11703 sym->linkage_name (), SYMBOL_CLASS (sym));
11704 return 0;
11705 }
11706
11707 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11708 if (sym == NULL)
11709 {
11710 struct bound_minimal_symbol msym
11711 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11712
11713 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11714 error (_("Your Ada runtime appears to be missing some debugging "
11715 "information.\nCannot insert Ada exception catchpoint "
11716 "in this configuration."));
11717
11718 return 0;
11719 }
11720
11721 /* Make sure that the symbol we found corresponds to a function. */
11722
11723 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11724 {
11725 error (_("Symbol \"%s\" is not a function (class = %d)"),
11726 sym->linkage_name (), SYMBOL_CLASS (sym));
11727 return 0;
11728 }
11729
11730 return 1;
11731 }
11732
11733 /* Inspect the Ada runtime and determine which exception info structure
11734 should be used to provide support for exception catchpoints.
11735
11736 This function will always set the per-inferior exception_info,
11737 or raise an error. */
11738
11739 static void
11740 ada_exception_support_info_sniffer (void)
11741 {
11742 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11743
11744 /* If the exception info is already known, then no need to recompute it. */
11745 if (data->exception_info != NULL)
11746 return;
11747
11748 /* Check the latest (default) exception support info. */
11749 if (ada_has_this_exception_support (&default_exception_support_info))
11750 {
11751 data->exception_info = &default_exception_support_info;
11752 return;
11753 }
11754
11755 /* Try the v0 exception suport info. */
11756 if (ada_has_this_exception_support (&exception_support_info_v0))
11757 {
11758 data->exception_info = &exception_support_info_v0;
11759 return;
11760 }
11761
11762 /* Try our fallback exception suport info. */
11763 if (ada_has_this_exception_support (&exception_support_info_fallback))
11764 {
11765 data->exception_info = &exception_support_info_fallback;
11766 return;
11767 }
11768
11769 /* Sometimes, it is normal for us to not be able to find the routine
11770 we are looking for. This happens when the program is linked with
11771 the shared version of the GNAT runtime, and the program has not been
11772 started yet. Inform the user of these two possible causes if
11773 applicable. */
11774
11775 if (ada_update_initial_language (language_unknown) != language_ada)
11776 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11777
11778 /* If the symbol does not exist, then check that the program is
11779 already started, to make sure that shared libraries have been
11780 loaded. If it is not started, this may mean that the symbol is
11781 in a shared library. */
11782
11783 if (inferior_ptid.pid () == 0)
11784 error (_("Unable to insert catchpoint. Try to start the program first."));
11785
11786 /* At this point, we know that we are debugging an Ada program and
11787 that the inferior has been started, but we still are not able to
11788 find the run-time symbols. That can mean that we are in
11789 configurable run time mode, or that a-except as been optimized
11790 out by the linker... In any case, at this point it is not worth
11791 supporting this feature. */
11792
11793 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11794 }
11795
11796 /* True iff FRAME is very likely to be that of a function that is
11797 part of the runtime system. This is all very heuristic, but is
11798 intended to be used as advice as to what frames are uninteresting
11799 to most users. */
11800
11801 static int
11802 is_known_support_routine (struct frame_info *frame)
11803 {
11804 enum language func_lang;
11805 int i;
11806 const char *fullname;
11807
11808 /* If this code does not have any debugging information (no symtab),
11809 This cannot be any user code. */
11810
11811 symtab_and_line sal = find_frame_sal (frame);
11812 if (sal.symtab == NULL)
11813 return 1;
11814
11815 /* If there is a symtab, but the associated source file cannot be
11816 located, then assume this is not user code: Selecting a frame
11817 for which we cannot display the code would not be very helpful
11818 for the user. This should also take care of case such as VxWorks
11819 where the kernel has some debugging info provided for a few units. */
11820
11821 fullname = symtab_to_fullname (sal.symtab);
11822 if (access (fullname, R_OK) != 0)
11823 return 1;
11824
11825 /* Check the unit filename against the Ada runtime file naming.
11826 We also check the name of the objfile against the name of some
11827 known system libraries that sometimes come with debugging info
11828 too. */
11829
11830 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11831 {
11832 re_comp (known_runtime_file_name_patterns[i]);
11833 if (re_exec (lbasename (sal.symtab->filename)))
11834 return 1;
11835 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11836 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11837 return 1;
11838 }
11839
11840 /* Check whether the function is a GNAT-generated entity. */
11841
11842 gdb::unique_xmalloc_ptr<char> func_name
11843 = find_frame_funname (frame, &func_lang, NULL);
11844 if (func_name == NULL)
11845 return 1;
11846
11847 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11848 {
11849 re_comp (known_auxiliary_function_name_patterns[i]);
11850 if (re_exec (func_name.get ()))
11851 return 1;
11852 }
11853
11854 return 0;
11855 }
11856
11857 /* Find the first frame that contains debugging information and that is not
11858 part of the Ada run-time, starting from FI and moving upward. */
11859
11860 void
11861 ada_find_printable_frame (struct frame_info *fi)
11862 {
11863 for (; fi != NULL; fi = get_prev_frame (fi))
11864 {
11865 if (!is_known_support_routine (fi))
11866 {
11867 select_frame (fi);
11868 break;
11869 }
11870 }
11871
11872 }
11873
11874 /* Assuming that the inferior just triggered an unhandled exception
11875 catchpoint, return the address in inferior memory where the name
11876 of the exception is stored.
11877
11878 Return zero if the address could not be computed. */
11879
11880 static CORE_ADDR
11881 ada_unhandled_exception_name_addr (void)
11882 {
11883 return parse_and_eval_address ("e.full_name");
11884 }
11885
11886 /* Same as ada_unhandled_exception_name_addr, except that this function
11887 should be used when the inferior uses an older version of the runtime,
11888 where the exception name needs to be extracted from a specific frame
11889 several frames up in the callstack. */
11890
11891 static CORE_ADDR
11892 ada_unhandled_exception_name_addr_from_raise (void)
11893 {
11894 int frame_level;
11895 struct frame_info *fi;
11896 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11897
11898 /* To determine the name of this exception, we need to select
11899 the frame corresponding to RAISE_SYM_NAME. This frame is
11900 at least 3 levels up, so we simply skip the first 3 frames
11901 without checking the name of their associated function. */
11902 fi = get_current_frame ();
11903 for (frame_level = 0; frame_level < 3; frame_level += 1)
11904 if (fi != NULL)
11905 fi = get_prev_frame (fi);
11906
11907 while (fi != NULL)
11908 {
11909 enum language func_lang;
11910
11911 gdb::unique_xmalloc_ptr<char> func_name
11912 = find_frame_funname (fi, &func_lang, NULL);
11913 if (func_name != NULL)
11914 {
11915 if (strcmp (func_name.get (),
11916 data->exception_info->catch_exception_sym) == 0)
11917 break; /* We found the frame we were looking for... */
11918 }
11919 fi = get_prev_frame (fi);
11920 }
11921
11922 if (fi == NULL)
11923 return 0;
11924
11925 select_frame (fi);
11926 return parse_and_eval_address ("id.full_name");
11927 }
11928
11929 /* Assuming the inferior just triggered an Ada exception catchpoint
11930 (of any type), return the address in inferior memory where the name
11931 of the exception is stored, if applicable.
11932
11933 Assumes the selected frame is the current frame.
11934
11935 Return zero if the address could not be computed, or if not relevant. */
11936
11937 static CORE_ADDR
11938 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11939 struct breakpoint *b)
11940 {
11941 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11942
11943 switch (ex)
11944 {
11945 case ada_catch_exception:
11946 return (parse_and_eval_address ("e.full_name"));
11947 break;
11948
11949 case ada_catch_exception_unhandled:
11950 return data->exception_info->unhandled_exception_name_addr ();
11951 break;
11952
11953 case ada_catch_handlers:
11954 return 0; /* The runtimes does not provide access to the exception
11955 name. */
11956 break;
11957
11958 case ada_catch_assert:
11959 return 0; /* Exception name is not relevant in this case. */
11960 break;
11961
11962 default:
11963 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11964 break;
11965 }
11966
11967 return 0; /* Should never be reached. */
11968 }
11969
11970 /* Assuming the inferior is stopped at an exception catchpoint,
11971 return the message which was associated to the exception, if
11972 available. Return NULL if the message could not be retrieved.
11973
11974 Note: The exception message can be associated to an exception
11975 either through the use of the Raise_Exception function, or
11976 more simply (Ada 2005 and later), via:
11977
11978 raise Exception_Name with "exception message";
11979
11980 */
11981
11982 static gdb::unique_xmalloc_ptr<char>
11983 ada_exception_message_1 (void)
11984 {
11985 struct value *e_msg_val;
11986 int e_msg_len;
11987
11988 /* For runtimes that support this feature, the exception message
11989 is passed as an unbounded string argument called "message". */
11990 e_msg_val = parse_and_eval ("message");
11991 if (e_msg_val == NULL)
11992 return NULL; /* Exception message not supported. */
11993
11994 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11995 gdb_assert (e_msg_val != NULL);
11996 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11997
11998 /* If the message string is empty, then treat it as if there was
11999 no exception message. */
12000 if (e_msg_len <= 0)
12001 return NULL;
12002
12003 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12004 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
12005 e_msg_len);
12006 e_msg.get ()[e_msg_len] = '\0';
12007
12008 return e_msg;
12009 }
12010
12011 /* Same as ada_exception_message_1, except that all exceptions are
12012 contained here (returning NULL instead). */
12013
12014 static gdb::unique_xmalloc_ptr<char>
12015 ada_exception_message (void)
12016 {
12017 gdb::unique_xmalloc_ptr<char> e_msg;
12018
12019 try
12020 {
12021 e_msg = ada_exception_message_1 ();
12022 }
12023 catch (const gdb_exception_error &e)
12024 {
12025 e_msg.reset (nullptr);
12026 }
12027
12028 return e_msg;
12029 }
12030
12031 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12032 any error that ada_exception_name_addr_1 might cause to be thrown.
12033 When an error is intercepted, a warning with the error message is printed,
12034 and zero is returned. */
12035
12036 static CORE_ADDR
12037 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12038 struct breakpoint *b)
12039 {
12040 CORE_ADDR result = 0;
12041
12042 try
12043 {
12044 result = ada_exception_name_addr_1 (ex, b);
12045 }
12046
12047 catch (const gdb_exception_error &e)
12048 {
12049 warning (_("failed to get exception name: %s"), e.what ());
12050 return 0;
12051 }
12052
12053 return result;
12054 }
12055
12056 static std::string ada_exception_catchpoint_cond_string
12057 (const char *excep_string,
12058 enum ada_exception_catchpoint_kind ex);
12059
12060 /* Ada catchpoints.
12061
12062 In the case of catchpoints on Ada exceptions, the catchpoint will
12063 stop the target on every exception the program throws. When a user
12064 specifies the name of a specific exception, we translate this
12065 request into a condition expression (in text form), and then parse
12066 it into an expression stored in each of the catchpoint's locations.
12067 We then use this condition to check whether the exception that was
12068 raised is the one the user is interested in. If not, then the
12069 target is resumed again. We store the name of the requested
12070 exception, in order to be able to re-set the condition expression
12071 when symbols change. */
12072
12073 /* An instance of this type is used to represent an Ada catchpoint
12074 breakpoint location. */
12075
12076 class ada_catchpoint_location : public bp_location
12077 {
12078 public:
12079 ada_catchpoint_location (breakpoint *owner)
12080 : bp_location (owner, bp_loc_software_breakpoint)
12081 {}
12082
12083 /* The condition that checks whether the exception that was raised
12084 is the specific exception the user specified on catchpoint
12085 creation. */
12086 expression_up excep_cond_expr;
12087 };
12088
12089 /* An instance of this type is used to represent an Ada catchpoint. */
12090
12091 struct ada_catchpoint : public breakpoint
12092 {
12093 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12094 : m_kind (kind)
12095 {
12096 }
12097
12098 /* The name of the specific exception the user specified. */
12099 std::string excep_string;
12100
12101 /* What kind of catchpoint this is. */
12102 enum ada_exception_catchpoint_kind m_kind;
12103 };
12104
12105 /* Parse the exception condition string in the context of each of the
12106 catchpoint's locations, and store them for later evaluation. */
12107
12108 static void
12109 create_excep_cond_exprs (struct ada_catchpoint *c,
12110 enum ada_exception_catchpoint_kind ex)
12111 {
12112 struct bp_location *bl;
12113
12114 /* Nothing to do if there's no specific exception to catch. */
12115 if (c->excep_string.empty ())
12116 return;
12117
12118 /* Same if there are no locations... */
12119 if (c->loc == NULL)
12120 return;
12121
12122 /* Compute the condition expression in text form, from the specific
12123 expection we want to catch. */
12124 std::string cond_string
12125 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12126
12127 /* Iterate over all the catchpoint's locations, and parse an
12128 expression for each. */
12129 for (bl = c->loc; bl != NULL; bl = bl->next)
12130 {
12131 struct ada_catchpoint_location *ada_loc
12132 = (struct ada_catchpoint_location *) bl;
12133 expression_up exp;
12134
12135 if (!bl->shlib_disabled)
12136 {
12137 const char *s;
12138
12139 s = cond_string.c_str ();
12140 try
12141 {
12142 exp = parse_exp_1 (&s, bl->address,
12143 block_for_pc (bl->address),
12144 0);
12145 }
12146 catch (const gdb_exception_error &e)
12147 {
12148 warning (_("failed to reevaluate internal exception condition "
12149 "for catchpoint %d: %s"),
12150 c->number, e.what ());
12151 }
12152 }
12153
12154 ada_loc->excep_cond_expr = std::move (exp);
12155 }
12156 }
12157
12158 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12159 structure for all exception catchpoint kinds. */
12160
12161 static struct bp_location *
12162 allocate_location_exception (struct breakpoint *self)
12163 {
12164 return new ada_catchpoint_location (self);
12165 }
12166
12167 /* Implement the RE_SET method in the breakpoint_ops structure for all
12168 exception catchpoint kinds. */
12169
12170 static void
12171 re_set_exception (struct breakpoint *b)
12172 {
12173 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12174
12175 /* Call the base class's method. This updates the catchpoint's
12176 locations. */
12177 bkpt_breakpoint_ops.re_set (b);
12178
12179 /* Reparse the exception conditional expressions. One for each
12180 location. */
12181 create_excep_cond_exprs (c, c->m_kind);
12182 }
12183
12184 /* Returns true if we should stop for this breakpoint hit. If the
12185 user specified a specific exception, we only want to cause a stop
12186 if the program thrown that exception. */
12187
12188 static int
12189 should_stop_exception (const struct bp_location *bl)
12190 {
12191 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12192 const struct ada_catchpoint_location *ada_loc
12193 = (const struct ada_catchpoint_location *) bl;
12194 int stop;
12195
12196 struct internalvar *var = lookup_internalvar ("_ada_exception");
12197 if (c->m_kind == ada_catch_assert)
12198 clear_internalvar (var);
12199 else
12200 {
12201 try
12202 {
12203 const char *expr;
12204
12205 if (c->m_kind == ada_catch_handlers)
12206 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12207 ".all.occurrence.id");
12208 else
12209 expr = "e";
12210
12211 struct value *exc = parse_and_eval (expr);
12212 set_internalvar (var, exc);
12213 }
12214 catch (const gdb_exception_error &ex)
12215 {
12216 clear_internalvar (var);
12217 }
12218 }
12219
12220 /* With no specific exception, should always stop. */
12221 if (c->excep_string.empty ())
12222 return 1;
12223
12224 if (ada_loc->excep_cond_expr == NULL)
12225 {
12226 /* We will have a NULL expression if back when we were creating
12227 the expressions, this location's had failed to parse. */
12228 return 1;
12229 }
12230
12231 stop = 1;
12232 try
12233 {
12234 struct value *mark;
12235
12236 mark = value_mark ();
12237 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12238 value_free_to_mark (mark);
12239 }
12240 catch (const gdb_exception &ex)
12241 {
12242 exception_fprintf (gdb_stderr, ex,
12243 _("Error in testing exception condition:\n"));
12244 }
12245
12246 return stop;
12247 }
12248
12249 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12250 for all exception catchpoint kinds. */
12251
12252 static void
12253 check_status_exception (bpstat bs)
12254 {
12255 bs->stop = should_stop_exception (bs->bp_location_at);
12256 }
12257
12258 /* Implement the PRINT_IT method in the breakpoint_ops structure
12259 for all exception catchpoint kinds. */
12260
12261 static enum print_stop_action
12262 print_it_exception (bpstat bs)
12263 {
12264 struct ui_out *uiout = current_uiout;
12265 struct breakpoint *b = bs->breakpoint_at;
12266
12267 annotate_catchpoint (b->number);
12268
12269 if (uiout->is_mi_like_p ())
12270 {
12271 uiout->field_string ("reason",
12272 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12273 uiout->field_string ("disp", bpdisp_text (b->disposition));
12274 }
12275
12276 uiout->text (b->disposition == disp_del
12277 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12278 uiout->field_signed ("bkptno", b->number);
12279 uiout->text (", ");
12280
12281 /* ada_exception_name_addr relies on the selected frame being the
12282 current frame. Need to do this here because this function may be
12283 called more than once when printing a stop, and below, we'll
12284 select the first frame past the Ada run-time (see
12285 ada_find_printable_frame). */
12286 select_frame (get_current_frame ());
12287
12288 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12289 switch (c->m_kind)
12290 {
12291 case ada_catch_exception:
12292 case ada_catch_exception_unhandled:
12293 case ada_catch_handlers:
12294 {
12295 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12296 char exception_name[256];
12297
12298 if (addr != 0)
12299 {
12300 read_memory (addr, (gdb_byte *) exception_name,
12301 sizeof (exception_name) - 1);
12302 exception_name [sizeof (exception_name) - 1] = '\0';
12303 }
12304 else
12305 {
12306 /* For some reason, we were unable to read the exception
12307 name. This could happen if the Runtime was compiled
12308 without debugging info, for instance. In that case,
12309 just replace the exception name by the generic string
12310 "exception" - it will read as "an exception" in the
12311 notification we are about to print. */
12312 memcpy (exception_name, "exception", sizeof ("exception"));
12313 }
12314 /* In the case of unhandled exception breakpoints, we print
12315 the exception name as "unhandled EXCEPTION_NAME", to make
12316 it clearer to the user which kind of catchpoint just got
12317 hit. We used ui_out_text to make sure that this extra
12318 info does not pollute the exception name in the MI case. */
12319 if (c->m_kind == ada_catch_exception_unhandled)
12320 uiout->text ("unhandled ");
12321 uiout->field_string ("exception-name", exception_name);
12322 }
12323 break;
12324 case ada_catch_assert:
12325 /* In this case, the name of the exception is not really
12326 important. Just print "failed assertion" to make it clearer
12327 that his program just hit an assertion-failure catchpoint.
12328 We used ui_out_text because this info does not belong in
12329 the MI output. */
12330 uiout->text ("failed assertion");
12331 break;
12332 }
12333
12334 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12335 if (exception_message != NULL)
12336 {
12337 uiout->text (" (");
12338 uiout->field_string ("exception-message", exception_message.get ());
12339 uiout->text (")");
12340 }
12341
12342 uiout->text (" at ");
12343 ada_find_printable_frame (get_current_frame ());
12344
12345 return PRINT_SRC_AND_LOC;
12346 }
12347
12348 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12349 for all exception catchpoint kinds. */
12350
12351 static void
12352 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12353 {
12354 struct ui_out *uiout = current_uiout;
12355 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12356 struct value_print_options opts;
12357
12358 get_user_print_options (&opts);
12359
12360 if (opts.addressprint)
12361 uiout->field_skip ("addr");
12362
12363 annotate_field (5);
12364 switch (c->m_kind)
12365 {
12366 case ada_catch_exception:
12367 if (!c->excep_string.empty ())
12368 {
12369 std::string msg = string_printf (_("`%s' Ada exception"),
12370 c->excep_string.c_str ());
12371
12372 uiout->field_string ("what", msg);
12373 }
12374 else
12375 uiout->field_string ("what", "all Ada exceptions");
12376
12377 break;
12378
12379 case ada_catch_exception_unhandled:
12380 uiout->field_string ("what", "unhandled Ada exceptions");
12381 break;
12382
12383 case ada_catch_handlers:
12384 if (!c->excep_string.empty ())
12385 {
12386 uiout->field_fmt ("what",
12387 _("`%s' Ada exception handlers"),
12388 c->excep_string.c_str ());
12389 }
12390 else
12391 uiout->field_string ("what", "all Ada exceptions handlers");
12392 break;
12393
12394 case ada_catch_assert:
12395 uiout->field_string ("what", "failed Ada assertions");
12396 break;
12397
12398 default:
12399 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12400 break;
12401 }
12402 }
12403
12404 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12405 for all exception catchpoint kinds. */
12406
12407 static void
12408 print_mention_exception (struct breakpoint *b)
12409 {
12410 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12411 struct ui_out *uiout = current_uiout;
12412
12413 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12414 : _("Catchpoint "));
12415 uiout->field_signed ("bkptno", b->number);
12416 uiout->text (": ");
12417
12418 switch (c->m_kind)
12419 {
12420 case ada_catch_exception:
12421 if (!c->excep_string.empty ())
12422 {
12423 std::string info = string_printf (_("`%s' Ada exception"),
12424 c->excep_string.c_str ());
12425 uiout->text (info.c_str ());
12426 }
12427 else
12428 uiout->text (_("all Ada exceptions"));
12429 break;
12430
12431 case ada_catch_exception_unhandled:
12432 uiout->text (_("unhandled Ada exceptions"));
12433 break;
12434
12435 case ada_catch_handlers:
12436 if (!c->excep_string.empty ())
12437 {
12438 std::string info
12439 = string_printf (_("`%s' Ada exception handlers"),
12440 c->excep_string.c_str ());
12441 uiout->text (info.c_str ());
12442 }
12443 else
12444 uiout->text (_("all Ada exceptions handlers"));
12445 break;
12446
12447 case ada_catch_assert:
12448 uiout->text (_("failed Ada assertions"));
12449 break;
12450
12451 default:
12452 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12453 break;
12454 }
12455 }
12456
12457 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12458 for all exception catchpoint kinds. */
12459
12460 static void
12461 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12462 {
12463 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12464
12465 switch (c->m_kind)
12466 {
12467 case ada_catch_exception:
12468 fprintf_filtered (fp, "catch exception");
12469 if (!c->excep_string.empty ())
12470 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12471 break;
12472
12473 case ada_catch_exception_unhandled:
12474 fprintf_filtered (fp, "catch exception unhandled");
12475 break;
12476
12477 case ada_catch_handlers:
12478 fprintf_filtered (fp, "catch handlers");
12479 break;
12480
12481 case ada_catch_assert:
12482 fprintf_filtered (fp, "catch assert");
12483 break;
12484
12485 default:
12486 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12487 }
12488 print_recreate_thread (b, fp);
12489 }
12490
12491 /* Virtual tables for various breakpoint types. */
12492 static struct breakpoint_ops catch_exception_breakpoint_ops;
12493 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12494 static struct breakpoint_ops catch_assert_breakpoint_ops;
12495 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12496
12497 /* See ada-lang.h. */
12498
12499 bool
12500 is_ada_exception_catchpoint (breakpoint *bp)
12501 {
12502 return (bp->ops == &catch_exception_breakpoint_ops
12503 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12504 || bp->ops == &catch_assert_breakpoint_ops
12505 || bp->ops == &catch_handlers_breakpoint_ops);
12506 }
12507
12508 /* Split the arguments specified in a "catch exception" command.
12509 Set EX to the appropriate catchpoint type.
12510 Set EXCEP_STRING to the name of the specific exception if
12511 specified by the user.
12512 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12513 "catch handlers" command. False otherwise.
12514 If a condition is found at the end of the arguments, the condition
12515 expression is stored in COND_STRING (memory must be deallocated
12516 after use). Otherwise COND_STRING is set to NULL. */
12517
12518 static void
12519 catch_ada_exception_command_split (const char *args,
12520 bool is_catch_handlers_cmd,
12521 enum ada_exception_catchpoint_kind *ex,
12522 std::string *excep_string,
12523 std::string *cond_string)
12524 {
12525 std::string exception_name;
12526
12527 exception_name = extract_arg (&args);
12528 if (exception_name == "if")
12529 {
12530 /* This is not an exception name; this is the start of a condition
12531 expression for a catchpoint on all exceptions. So, "un-get"
12532 this token, and set exception_name to NULL. */
12533 exception_name.clear ();
12534 args -= 2;
12535 }
12536
12537 /* Check to see if we have a condition. */
12538
12539 args = skip_spaces (args);
12540 if (startswith (args, "if")
12541 && (isspace (args[2]) || args[2] == '\0'))
12542 {
12543 args += 2;
12544 args = skip_spaces (args);
12545
12546 if (args[0] == '\0')
12547 error (_("Condition missing after `if' keyword"));
12548 *cond_string = args;
12549
12550 args += strlen (args);
12551 }
12552
12553 /* Check that we do not have any more arguments. Anything else
12554 is unexpected. */
12555
12556 if (args[0] != '\0')
12557 error (_("Junk at end of expression"));
12558
12559 if (is_catch_handlers_cmd)
12560 {
12561 /* Catch handling of exceptions. */
12562 *ex = ada_catch_handlers;
12563 *excep_string = exception_name;
12564 }
12565 else if (exception_name.empty ())
12566 {
12567 /* Catch all exceptions. */
12568 *ex = ada_catch_exception;
12569 excep_string->clear ();
12570 }
12571 else if (exception_name == "unhandled")
12572 {
12573 /* Catch unhandled exceptions. */
12574 *ex = ada_catch_exception_unhandled;
12575 excep_string->clear ();
12576 }
12577 else
12578 {
12579 /* Catch a specific exception. */
12580 *ex = ada_catch_exception;
12581 *excep_string = exception_name;
12582 }
12583 }
12584
12585 /* Return the name of the symbol on which we should break in order to
12586 implement a catchpoint of the EX kind. */
12587
12588 static const char *
12589 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12590 {
12591 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12592
12593 gdb_assert (data->exception_info != NULL);
12594
12595 switch (ex)
12596 {
12597 case ada_catch_exception:
12598 return (data->exception_info->catch_exception_sym);
12599 break;
12600 case ada_catch_exception_unhandled:
12601 return (data->exception_info->catch_exception_unhandled_sym);
12602 break;
12603 case ada_catch_assert:
12604 return (data->exception_info->catch_assert_sym);
12605 break;
12606 case ada_catch_handlers:
12607 return (data->exception_info->catch_handlers_sym);
12608 break;
12609 default:
12610 internal_error (__FILE__, __LINE__,
12611 _("unexpected catchpoint kind (%d)"), ex);
12612 }
12613 }
12614
12615 /* Return the breakpoint ops "virtual table" used for catchpoints
12616 of the EX kind. */
12617
12618 static const struct breakpoint_ops *
12619 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12620 {
12621 switch (ex)
12622 {
12623 case ada_catch_exception:
12624 return (&catch_exception_breakpoint_ops);
12625 break;
12626 case ada_catch_exception_unhandled:
12627 return (&catch_exception_unhandled_breakpoint_ops);
12628 break;
12629 case ada_catch_assert:
12630 return (&catch_assert_breakpoint_ops);
12631 break;
12632 case ada_catch_handlers:
12633 return (&catch_handlers_breakpoint_ops);
12634 break;
12635 default:
12636 internal_error (__FILE__, __LINE__,
12637 _("unexpected catchpoint kind (%d)"), ex);
12638 }
12639 }
12640
12641 /* Return the condition that will be used to match the current exception
12642 being raised with the exception that the user wants to catch. This
12643 assumes that this condition is used when the inferior just triggered
12644 an exception catchpoint.
12645 EX: the type of catchpoints used for catching Ada exceptions. */
12646
12647 static std::string
12648 ada_exception_catchpoint_cond_string (const char *excep_string,
12649 enum ada_exception_catchpoint_kind ex)
12650 {
12651 int i;
12652 bool is_standard_exc = false;
12653 std::string result;
12654
12655 if (ex == ada_catch_handlers)
12656 {
12657 /* For exception handlers catchpoints, the condition string does
12658 not use the same parameter as for the other exceptions. */
12659 result = ("long_integer (GNAT_GCC_exception_Access"
12660 "(gcc_exception).all.occurrence.id)");
12661 }
12662 else
12663 result = "long_integer (e)";
12664
12665 /* The standard exceptions are a special case. They are defined in
12666 runtime units that have been compiled without debugging info; if
12667 EXCEP_STRING is the not-fully-qualified name of a standard
12668 exception (e.g. "constraint_error") then, during the evaluation
12669 of the condition expression, the symbol lookup on this name would
12670 *not* return this standard exception. The catchpoint condition
12671 may then be set only on user-defined exceptions which have the
12672 same not-fully-qualified name (e.g. my_package.constraint_error).
12673
12674 To avoid this unexcepted behavior, these standard exceptions are
12675 systematically prefixed by "standard". This means that "catch
12676 exception constraint_error" is rewritten into "catch exception
12677 standard.constraint_error".
12678
12679 If an exception named constraint_error is defined in another package of
12680 the inferior program, then the only way to specify this exception as a
12681 breakpoint condition is to use its fully-qualified named:
12682 e.g. my_package.constraint_error. */
12683
12684 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12685 {
12686 if (strcmp (standard_exc [i], excep_string) == 0)
12687 {
12688 is_standard_exc = true;
12689 break;
12690 }
12691 }
12692
12693 result += " = ";
12694
12695 if (is_standard_exc)
12696 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12697 else
12698 string_appendf (result, "long_integer (&%s)", excep_string);
12699
12700 return result;
12701 }
12702
12703 /* Return the symtab_and_line that should be used to insert an exception
12704 catchpoint of the TYPE kind.
12705
12706 ADDR_STRING returns the name of the function where the real
12707 breakpoint that implements the catchpoints is set, depending on the
12708 type of catchpoint we need to create. */
12709
12710 static struct symtab_and_line
12711 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12712 std::string *addr_string, const struct breakpoint_ops **ops)
12713 {
12714 const char *sym_name;
12715 struct symbol *sym;
12716
12717 /* First, find out which exception support info to use. */
12718 ada_exception_support_info_sniffer ();
12719
12720 /* Then lookup the function on which we will break in order to catch
12721 the Ada exceptions requested by the user. */
12722 sym_name = ada_exception_sym_name (ex);
12723 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12724
12725 if (sym == NULL)
12726 error (_("Catchpoint symbol not found: %s"), sym_name);
12727
12728 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12729 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12730
12731 /* Set ADDR_STRING. */
12732 *addr_string = sym_name;
12733
12734 /* Set OPS. */
12735 *ops = ada_exception_breakpoint_ops (ex);
12736
12737 return find_function_start_sal (sym, 1);
12738 }
12739
12740 /* Create an Ada exception catchpoint.
12741
12742 EX_KIND is the kind of exception catchpoint to be created.
12743
12744 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12745 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12746 of the exception to which this catchpoint applies.
12747
12748 COND_STRING, if not empty, is the catchpoint condition.
12749
12750 TEMPFLAG, if nonzero, means that the underlying breakpoint
12751 should be temporary.
12752
12753 FROM_TTY is the usual argument passed to all commands implementations. */
12754
12755 void
12756 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12757 enum ada_exception_catchpoint_kind ex_kind,
12758 const std::string &excep_string,
12759 const std::string &cond_string,
12760 int tempflag,
12761 int disabled,
12762 int from_tty)
12763 {
12764 std::string addr_string;
12765 const struct breakpoint_ops *ops = NULL;
12766 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12767
12768 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12769 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12770 ops, tempflag, disabled, from_tty);
12771 c->excep_string = excep_string;
12772 create_excep_cond_exprs (c.get (), ex_kind);
12773 if (!cond_string.empty ())
12774 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12775 install_breakpoint (0, std::move (c), 1);
12776 }
12777
12778 /* Implement the "catch exception" command. */
12779
12780 static void
12781 catch_ada_exception_command (const char *arg_entry, int from_tty,
12782 struct cmd_list_element *command)
12783 {
12784 const char *arg = arg_entry;
12785 struct gdbarch *gdbarch = get_current_arch ();
12786 int tempflag;
12787 enum ada_exception_catchpoint_kind ex_kind;
12788 std::string excep_string;
12789 std::string cond_string;
12790
12791 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12792
12793 if (!arg)
12794 arg = "";
12795 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12796 &cond_string);
12797 create_ada_exception_catchpoint (gdbarch, ex_kind,
12798 excep_string, cond_string,
12799 tempflag, 1 /* enabled */,
12800 from_tty);
12801 }
12802
12803 /* Implement the "catch handlers" command. */
12804
12805 static void
12806 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12807 struct cmd_list_element *command)
12808 {
12809 const char *arg = arg_entry;
12810 struct gdbarch *gdbarch = get_current_arch ();
12811 int tempflag;
12812 enum ada_exception_catchpoint_kind ex_kind;
12813 std::string excep_string;
12814 std::string cond_string;
12815
12816 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12817
12818 if (!arg)
12819 arg = "";
12820 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12821 &cond_string);
12822 create_ada_exception_catchpoint (gdbarch, ex_kind,
12823 excep_string, cond_string,
12824 tempflag, 1 /* enabled */,
12825 from_tty);
12826 }
12827
12828 /* Completion function for the Ada "catch" commands. */
12829
12830 static void
12831 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12832 const char *text, const char *word)
12833 {
12834 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12835
12836 for (const ada_exc_info &info : exceptions)
12837 {
12838 if (startswith (info.name, word))
12839 tracker.add_completion (make_unique_xstrdup (info.name));
12840 }
12841 }
12842
12843 /* Split the arguments specified in a "catch assert" command.
12844
12845 ARGS contains the command's arguments (or the empty string if
12846 no arguments were passed).
12847
12848 If ARGS contains a condition, set COND_STRING to that condition
12849 (the memory needs to be deallocated after use). */
12850
12851 static void
12852 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12853 {
12854 args = skip_spaces (args);
12855
12856 /* Check whether a condition was provided. */
12857 if (startswith (args, "if")
12858 && (isspace (args[2]) || args[2] == '\0'))
12859 {
12860 args += 2;
12861 args = skip_spaces (args);
12862 if (args[0] == '\0')
12863 error (_("condition missing after `if' keyword"));
12864 cond_string.assign (args);
12865 }
12866
12867 /* Otherwise, there should be no other argument at the end of
12868 the command. */
12869 else if (args[0] != '\0')
12870 error (_("Junk at end of arguments."));
12871 }
12872
12873 /* Implement the "catch assert" command. */
12874
12875 static void
12876 catch_assert_command (const char *arg_entry, int from_tty,
12877 struct cmd_list_element *command)
12878 {
12879 const char *arg = arg_entry;
12880 struct gdbarch *gdbarch = get_current_arch ();
12881 int tempflag;
12882 std::string cond_string;
12883
12884 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12885
12886 if (!arg)
12887 arg = "";
12888 catch_ada_assert_command_split (arg, cond_string);
12889 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12890 "", cond_string,
12891 tempflag, 1 /* enabled */,
12892 from_tty);
12893 }
12894
12895 /* Return non-zero if the symbol SYM is an Ada exception object. */
12896
12897 static int
12898 ada_is_exception_sym (struct symbol *sym)
12899 {
12900 const char *type_name = SYMBOL_TYPE (sym)->name ();
12901
12902 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12903 && SYMBOL_CLASS (sym) != LOC_BLOCK
12904 && SYMBOL_CLASS (sym) != LOC_CONST
12905 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12906 && type_name != NULL && strcmp (type_name, "exception") == 0);
12907 }
12908
12909 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12910 Ada exception object. This matches all exceptions except the ones
12911 defined by the Ada language. */
12912
12913 static int
12914 ada_is_non_standard_exception_sym (struct symbol *sym)
12915 {
12916 int i;
12917
12918 if (!ada_is_exception_sym (sym))
12919 return 0;
12920
12921 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12922 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12923 return 0; /* A standard exception. */
12924
12925 /* Numeric_Error is also a standard exception, so exclude it.
12926 See the STANDARD_EXC description for more details as to why
12927 this exception is not listed in that array. */
12928 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12929 return 0;
12930
12931 return 1;
12932 }
12933
12934 /* A helper function for std::sort, comparing two struct ada_exc_info
12935 objects.
12936
12937 The comparison is determined first by exception name, and then
12938 by exception address. */
12939
12940 bool
12941 ada_exc_info::operator< (const ada_exc_info &other) const
12942 {
12943 int result;
12944
12945 result = strcmp (name, other.name);
12946 if (result < 0)
12947 return true;
12948 if (result == 0 && addr < other.addr)
12949 return true;
12950 return false;
12951 }
12952
12953 bool
12954 ada_exc_info::operator== (const ada_exc_info &other) const
12955 {
12956 return addr == other.addr && strcmp (name, other.name) == 0;
12957 }
12958
12959 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12960 routine, but keeping the first SKIP elements untouched.
12961
12962 All duplicates are also removed. */
12963
12964 static void
12965 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12966 int skip)
12967 {
12968 std::sort (exceptions->begin () + skip, exceptions->end ());
12969 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12970 exceptions->end ());
12971 }
12972
12973 /* Add all exceptions defined by the Ada standard whose name match
12974 a regular expression.
12975
12976 If PREG is not NULL, then this regexp_t object is used to
12977 perform the symbol name matching. Otherwise, no name-based
12978 filtering is performed.
12979
12980 EXCEPTIONS is a vector of exceptions to which matching exceptions
12981 gets pushed. */
12982
12983 static void
12984 ada_add_standard_exceptions (compiled_regex *preg,
12985 std::vector<ada_exc_info> *exceptions)
12986 {
12987 int i;
12988
12989 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12990 {
12991 if (preg == NULL
12992 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12993 {
12994 struct bound_minimal_symbol msymbol
12995 = ada_lookup_simple_minsym (standard_exc[i]);
12996
12997 if (msymbol.minsym != NULL)
12998 {
12999 struct ada_exc_info info
13000 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13001
13002 exceptions->push_back (info);
13003 }
13004 }
13005 }
13006 }
13007
13008 /* Add all Ada exceptions defined locally and accessible from the given
13009 FRAME.
13010
13011 If PREG is not NULL, then this regexp_t object is used to
13012 perform the symbol name matching. Otherwise, no name-based
13013 filtering is performed.
13014
13015 EXCEPTIONS is a vector of exceptions to which matching exceptions
13016 gets pushed. */
13017
13018 static void
13019 ada_add_exceptions_from_frame (compiled_regex *preg,
13020 struct frame_info *frame,
13021 std::vector<ada_exc_info> *exceptions)
13022 {
13023 const struct block *block = get_frame_block (frame, 0);
13024
13025 while (block != 0)
13026 {
13027 struct block_iterator iter;
13028 struct symbol *sym;
13029
13030 ALL_BLOCK_SYMBOLS (block, iter, sym)
13031 {
13032 switch (SYMBOL_CLASS (sym))
13033 {
13034 case LOC_TYPEDEF:
13035 case LOC_BLOCK:
13036 case LOC_CONST:
13037 break;
13038 default:
13039 if (ada_is_exception_sym (sym))
13040 {
13041 struct ada_exc_info info = {sym->print_name (),
13042 SYMBOL_VALUE_ADDRESS (sym)};
13043
13044 exceptions->push_back (info);
13045 }
13046 }
13047 }
13048 if (BLOCK_FUNCTION (block) != NULL)
13049 break;
13050 block = BLOCK_SUPERBLOCK (block);
13051 }
13052 }
13053
13054 /* Return true if NAME matches PREG or if PREG is NULL. */
13055
13056 static bool
13057 name_matches_regex (const char *name, compiled_regex *preg)
13058 {
13059 return (preg == NULL
13060 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13061 }
13062
13063 /* Add all exceptions defined globally whose name name match
13064 a regular expression, excluding standard exceptions.
13065
13066 The reason we exclude standard exceptions is that they need
13067 to be handled separately: Standard exceptions are defined inside
13068 a runtime unit which is normally not compiled with debugging info,
13069 and thus usually do not show up in our symbol search. However,
13070 if the unit was in fact built with debugging info, we need to
13071 exclude them because they would duplicate the entry we found
13072 during the special loop that specifically searches for those
13073 standard exceptions.
13074
13075 If PREG is not NULL, then this regexp_t object is used to
13076 perform the symbol name matching. Otherwise, no name-based
13077 filtering is performed.
13078
13079 EXCEPTIONS is a vector of exceptions to which matching exceptions
13080 gets pushed. */
13081
13082 static void
13083 ada_add_global_exceptions (compiled_regex *preg,
13084 std::vector<ada_exc_info> *exceptions)
13085 {
13086 /* In Ada, the symbol "search name" is a linkage name, whereas the
13087 regular expression used to do the matching refers to the natural
13088 name. So match against the decoded name. */
13089 expand_symtabs_matching (NULL,
13090 lookup_name_info::match_any (),
13091 [&] (const char *search_name)
13092 {
13093 std::string decoded = ada_decode (search_name);
13094 return name_matches_regex (decoded.c_str (), preg);
13095 },
13096 NULL,
13097 VARIABLES_DOMAIN);
13098
13099 for (objfile *objfile : current_program_space->objfiles ())
13100 {
13101 for (compunit_symtab *s : objfile->compunits ())
13102 {
13103 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13104 int i;
13105
13106 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13107 {
13108 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13109 struct block_iterator iter;
13110 struct symbol *sym;
13111
13112 ALL_BLOCK_SYMBOLS (b, iter, sym)
13113 if (ada_is_non_standard_exception_sym (sym)
13114 && name_matches_regex (sym->natural_name (), preg))
13115 {
13116 struct ada_exc_info info
13117 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13118
13119 exceptions->push_back (info);
13120 }
13121 }
13122 }
13123 }
13124 }
13125
13126 /* Implements ada_exceptions_list with the regular expression passed
13127 as a regex_t, rather than a string.
13128
13129 If not NULL, PREG is used to filter out exceptions whose names
13130 do not match. Otherwise, all exceptions are listed. */
13131
13132 static std::vector<ada_exc_info>
13133 ada_exceptions_list_1 (compiled_regex *preg)
13134 {
13135 std::vector<ada_exc_info> result;
13136 int prev_len;
13137
13138 /* First, list the known standard exceptions. These exceptions
13139 need to be handled separately, as they are usually defined in
13140 runtime units that have been compiled without debugging info. */
13141
13142 ada_add_standard_exceptions (preg, &result);
13143
13144 /* Next, find all exceptions whose scope is local and accessible
13145 from the currently selected frame. */
13146
13147 if (has_stack_frames ())
13148 {
13149 prev_len = result.size ();
13150 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13151 &result);
13152 if (result.size () > prev_len)
13153 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13154 }
13155
13156 /* Add all exceptions whose scope is global. */
13157
13158 prev_len = result.size ();
13159 ada_add_global_exceptions (preg, &result);
13160 if (result.size () > prev_len)
13161 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13162
13163 return result;
13164 }
13165
13166 /* Return a vector of ada_exc_info.
13167
13168 If REGEXP is NULL, all exceptions are included in the result.
13169 Otherwise, it should contain a valid regular expression,
13170 and only the exceptions whose names match that regular expression
13171 are included in the result.
13172
13173 The exceptions are sorted in the following order:
13174 - Standard exceptions (defined by the Ada language), in
13175 alphabetical order;
13176 - Exceptions only visible from the current frame, in
13177 alphabetical order;
13178 - Exceptions whose scope is global, in alphabetical order. */
13179
13180 std::vector<ada_exc_info>
13181 ada_exceptions_list (const char *regexp)
13182 {
13183 if (regexp == NULL)
13184 return ada_exceptions_list_1 (NULL);
13185
13186 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13187 return ada_exceptions_list_1 (&reg);
13188 }
13189
13190 /* Implement the "info exceptions" command. */
13191
13192 static void
13193 info_exceptions_command (const char *regexp, int from_tty)
13194 {
13195 struct gdbarch *gdbarch = get_current_arch ();
13196
13197 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13198
13199 if (regexp != NULL)
13200 printf_filtered
13201 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13202 else
13203 printf_filtered (_("All defined Ada exceptions:\n"));
13204
13205 for (const ada_exc_info &info : exceptions)
13206 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13207 }
13208
13209 /* Operators */
13210 /* Information about operators given special treatment in functions
13211 below. */
13212 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13213
13214 #define ADA_OPERATORS \
13215 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13216 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13217 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13218 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13219 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13220 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13221 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13222 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13223 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13224 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13225 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13226 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13227 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13228 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13229 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13230 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13231 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13232 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13233 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13234
13235 static void
13236 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13237 int *argsp)
13238 {
13239 switch (exp->elts[pc - 1].opcode)
13240 {
13241 default:
13242 operator_length_standard (exp, pc, oplenp, argsp);
13243 break;
13244
13245 #define OP_DEFN(op, len, args, binop) \
13246 case op: *oplenp = len; *argsp = args; break;
13247 ADA_OPERATORS;
13248 #undef OP_DEFN
13249
13250 case OP_AGGREGATE:
13251 *oplenp = 3;
13252 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13253 break;
13254
13255 case OP_CHOICES:
13256 *oplenp = 3;
13257 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13258 break;
13259 }
13260 }
13261
13262 /* Implementation of the exp_descriptor method operator_check. */
13263
13264 static int
13265 ada_operator_check (struct expression *exp, int pos,
13266 int (*objfile_func) (struct objfile *objfile, void *data),
13267 void *data)
13268 {
13269 const union exp_element *const elts = exp->elts;
13270 struct type *type = NULL;
13271
13272 switch (elts[pos].opcode)
13273 {
13274 case UNOP_IN_RANGE:
13275 case UNOP_QUAL:
13276 type = elts[pos + 1].type;
13277 break;
13278
13279 default:
13280 return operator_check_standard (exp, pos, objfile_func, data);
13281 }
13282
13283 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13284
13285 if (type && TYPE_OBJFILE (type)
13286 && (*objfile_func) (TYPE_OBJFILE (type), data))
13287 return 1;
13288
13289 return 0;
13290 }
13291
13292 static const char *
13293 ada_op_name (enum exp_opcode opcode)
13294 {
13295 switch (opcode)
13296 {
13297 default:
13298 return op_name_standard (opcode);
13299
13300 #define OP_DEFN(op, len, args, binop) case op: return #op;
13301 ADA_OPERATORS;
13302 #undef OP_DEFN
13303
13304 case OP_AGGREGATE:
13305 return "OP_AGGREGATE";
13306 case OP_CHOICES:
13307 return "OP_CHOICES";
13308 case OP_NAME:
13309 return "OP_NAME";
13310 }
13311 }
13312
13313 /* As for operator_length, but assumes PC is pointing at the first
13314 element of the operator, and gives meaningful results only for the
13315 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13316
13317 static void
13318 ada_forward_operator_length (struct expression *exp, int pc,
13319 int *oplenp, int *argsp)
13320 {
13321 switch (exp->elts[pc].opcode)
13322 {
13323 default:
13324 *oplenp = *argsp = 0;
13325 break;
13326
13327 #define OP_DEFN(op, len, args, binop) \
13328 case op: *oplenp = len; *argsp = args; break;
13329 ADA_OPERATORS;
13330 #undef OP_DEFN
13331
13332 case OP_AGGREGATE:
13333 *oplenp = 3;
13334 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13335 break;
13336
13337 case OP_CHOICES:
13338 *oplenp = 3;
13339 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13340 break;
13341
13342 case OP_STRING:
13343 case OP_NAME:
13344 {
13345 int len = longest_to_int (exp->elts[pc + 1].longconst);
13346
13347 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13348 *argsp = 0;
13349 break;
13350 }
13351 }
13352 }
13353
13354 static int
13355 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13356 {
13357 enum exp_opcode op = exp->elts[elt].opcode;
13358 int oplen, nargs;
13359 int pc = elt;
13360 int i;
13361
13362 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13363
13364 switch (op)
13365 {
13366 /* Ada attributes ('Foo). */
13367 case OP_ATR_FIRST:
13368 case OP_ATR_LAST:
13369 case OP_ATR_LENGTH:
13370 case OP_ATR_IMAGE:
13371 case OP_ATR_MAX:
13372 case OP_ATR_MIN:
13373 case OP_ATR_MODULUS:
13374 case OP_ATR_POS:
13375 case OP_ATR_SIZE:
13376 case OP_ATR_TAG:
13377 case OP_ATR_VAL:
13378 break;
13379
13380 case UNOP_IN_RANGE:
13381 case UNOP_QUAL:
13382 /* XXX: gdb_sprint_host_address, type_sprint */
13383 fprintf_filtered (stream, _("Type @"));
13384 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13385 fprintf_filtered (stream, " (");
13386 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13387 fprintf_filtered (stream, ")");
13388 break;
13389 case BINOP_IN_BOUNDS:
13390 fprintf_filtered (stream, " (%d)",
13391 longest_to_int (exp->elts[pc + 2].longconst));
13392 break;
13393 case TERNOP_IN_RANGE:
13394 break;
13395
13396 case OP_AGGREGATE:
13397 case OP_OTHERS:
13398 case OP_DISCRETE_RANGE:
13399 case OP_POSITIONAL:
13400 case OP_CHOICES:
13401 break;
13402
13403 case OP_NAME:
13404 case OP_STRING:
13405 {
13406 char *name = &exp->elts[elt + 2].string;
13407 int len = longest_to_int (exp->elts[elt + 1].longconst);
13408
13409 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13410 break;
13411 }
13412
13413 default:
13414 return dump_subexp_body_standard (exp, stream, elt);
13415 }
13416
13417 elt += oplen;
13418 for (i = 0; i < nargs; i += 1)
13419 elt = dump_subexp (exp, stream, elt);
13420
13421 return elt;
13422 }
13423
13424 /* The Ada extension of print_subexp (q.v.). */
13425
13426 static void
13427 ada_print_subexp (struct expression *exp, int *pos,
13428 struct ui_file *stream, enum precedence prec)
13429 {
13430 int oplen, nargs, i;
13431 int pc = *pos;
13432 enum exp_opcode op = exp->elts[pc].opcode;
13433
13434 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13435
13436 *pos += oplen;
13437 switch (op)
13438 {
13439 default:
13440 *pos -= oplen;
13441 print_subexp_standard (exp, pos, stream, prec);
13442 return;
13443
13444 case OP_VAR_VALUE:
13445 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13446 return;
13447
13448 case BINOP_IN_BOUNDS:
13449 /* XXX: sprint_subexp */
13450 print_subexp (exp, pos, stream, PREC_SUFFIX);
13451 fputs_filtered (" in ", stream);
13452 print_subexp (exp, pos, stream, PREC_SUFFIX);
13453 fputs_filtered ("'range", stream);
13454 if (exp->elts[pc + 1].longconst > 1)
13455 fprintf_filtered (stream, "(%ld)",
13456 (long) exp->elts[pc + 1].longconst);
13457 return;
13458
13459 case TERNOP_IN_RANGE:
13460 if (prec >= PREC_EQUAL)
13461 fputs_filtered ("(", stream);
13462 /* XXX: sprint_subexp */
13463 print_subexp (exp, pos, stream, PREC_SUFFIX);
13464 fputs_filtered (" in ", stream);
13465 print_subexp (exp, pos, stream, PREC_EQUAL);
13466 fputs_filtered (" .. ", stream);
13467 print_subexp (exp, pos, stream, PREC_EQUAL);
13468 if (prec >= PREC_EQUAL)
13469 fputs_filtered (")", stream);
13470 return;
13471
13472 case OP_ATR_FIRST:
13473 case OP_ATR_LAST:
13474 case OP_ATR_LENGTH:
13475 case OP_ATR_IMAGE:
13476 case OP_ATR_MAX:
13477 case OP_ATR_MIN:
13478 case OP_ATR_MODULUS:
13479 case OP_ATR_POS:
13480 case OP_ATR_SIZE:
13481 case OP_ATR_TAG:
13482 case OP_ATR_VAL:
13483 if (exp->elts[*pos].opcode == OP_TYPE)
13484 {
13485 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13486 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13487 &type_print_raw_options);
13488 *pos += 3;
13489 }
13490 else
13491 print_subexp (exp, pos, stream, PREC_SUFFIX);
13492 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13493 if (nargs > 1)
13494 {
13495 int tem;
13496
13497 for (tem = 1; tem < nargs; tem += 1)
13498 {
13499 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13500 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13501 }
13502 fputs_filtered (")", stream);
13503 }
13504 return;
13505
13506 case UNOP_QUAL:
13507 type_print (exp->elts[pc + 1].type, "", stream, 0);
13508 fputs_filtered ("'(", stream);
13509 print_subexp (exp, pos, stream, PREC_PREFIX);
13510 fputs_filtered (")", stream);
13511 return;
13512
13513 case UNOP_IN_RANGE:
13514 /* XXX: sprint_subexp */
13515 print_subexp (exp, pos, stream, PREC_SUFFIX);
13516 fputs_filtered (" in ", stream);
13517 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13518 &type_print_raw_options);
13519 return;
13520
13521 case OP_DISCRETE_RANGE:
13522 print_subexp (exp, pos, stream, PREC_SUFFIX);
13523 fputs_filtered ("..", stream);
13524 print_subexp (exp, pos, stream, PREC_SUFFIX);
13525 return;
13526
13527 case OP_OTHERS:
13528 fputs_filtered ("others => ", stream);
13529 print_subexp (exp, pos, stream, PREC_SUFFIX);
13530 return;
13531
13532 case OP_CHOICES:
13533 for (i = 0; i < nargs-1; i += 1)
13534 {
13535 if (i > 0)
13536 fputs_filtered ("|", stream);
13537 print_subexp (exp, pos, stream, PREC_SUFFIX);
13538 }
13539 fputs_filtered (" => ", stream);
13540 print_subexp (exp, pos, stream, PREC_SUFFIX);
13541 return;
13542
13543 case OP_POSITIONAL:
13544 print_subexp (exp, pos, stream, PREC_SUFFIX);
13545 return;
13546
13547 case OP_AGGREGATE:
13548 fputs_filtered ("(", stream);
13549 for (i = 0; i < nargs; i += 1)
13550 {
13551 if (i > 0)
13552 fputs_filtered (", ", stream);
13553 print_subexp (exp, pos, stream, PREC_SUFFIX);
13554 }
13555 fputs_filtered (")", stream);
13556 return;
13557 }
13558 }
13559
13560 /* Table mapping opcodes into strings for printing operators
13561 and precedences of the operators. */
13562
13563 static const struct op_print ada_op_print_tab[] = {
13564 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13565 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13566 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13567 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13568 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13569 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13570 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13571 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13572 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13573 {">=", BINOP_GEQ, PREC_ORDER, 0},
13574 {">", BINOP_GTR, PREC_ORDER, 0},
13575 {"<", BINOP_LESS, PREC_ORDER, 0},
13576 {">>", BINOP_RSH, PREC_SHIFT, 0},
13577 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13578 {"+", BINOP_ADD, PREC_ADD, 0},
13579 {"-", BINOP_SUB, PREC_ADD, 0},
13580 {"&", BINOP_CONCAT, PREC_ADD, 0},
13581 {"*", BINOP_MUL, PREC_MUL, 0},
13582 {"/", BINOP_DIV, PREC_MUL, 0},
13583 {"rem", BINOP_REM, PREC_MUL, 0},
13584 {"mod", BINOP_MOD, PREC_MUL, 0},
13585 {"**", BINOP_EXP, PREC_REPEAT, 0},
13586 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13587 {"-", UNOP_NEG, PREC_PREFIX, 0},
13588 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13589 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13590 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13591 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13592 {".all", UNOP_IND, PREC_SUFFIX, 1},
13593 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13594 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13595 {NULL, OP_NULL, PREC_SUFFIX, 0}
13596 };
13597 \f
13598 /* Language vector */
13599
13600 static const struct exp_descriptor ada_exp_descriptor = {
13601 ada_print_subexp,
13602 ada_operator_length,
13603 ada_operator_check,
13604 ada_op_name,
13605 ada_dump_subexp_body,
13606 ada_evaluate_subexp
13607 };
13608
13609 /* symbol_name_matcher_ftype adapter for wild_match. */
13610
13611 static bool
13612 do_wild_match (const char *symbol_search_name,
13613 const lookup_name_info &lookup_name,
13614 completion_match_result *comp_match_res)
13615 {
13616 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13617 }
13618
13619 /* symbol_name_matcher_ftype adapter for full_match. */
13620
13621 static bool
13622 do_full_match (const char *symbol_search_name,
13623 const lookup_name_info &lookup_name,
13624 completion_match_result *comp_match_res)
13625 {
13626 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13627 }
13628
13629 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13630
13631 static bool
13632 do_exact_match (const char *symbol_search_name,
13633 const lookup_name_info &lookup_name,
13634 completion_match_result *comp_match_res)
13635 {
13636 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13637 }
13638
13639 /* Build the Ada lookup name for LOOKUP_NAME. */
13640
13641 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13642 {
13643 gdb::string_view user_name = lookup_name.name ();
13644
13645 if (user_name[0] == '<')
13646 {
13647 if (user_name.back () == '>')
13648 m_encoded_name
13649 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
13650 else
13651 m_encoded_name
13652 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
13653 m_encoded_p = true;
13654 m_verbatim_p = true;
13655 m_wild_match_p = false;
13656 m_standard_p = false;
13657 }
13658 else
13659 {
13660 m_verbatim_p = false;
13661
13662 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13663
13664 if (!m_encoded_p)
13665 {
13666 const char *folded = ada_fold_name (user_name);
13667 m_encoded_name = ada_encode_1 (folded, false);
13668 if (m_encoded_name.empty ())
13669 m_encoded_name = gdb::to_string (user_name);
13670 }
13671 else
13672 m_encoded_name = gdb::to_string (user_name);
13673
13674 /* Handle the 'package Standard' special case. See description
13675 of m_standard_p. */
13676 if (startswith (m_encoded_name.c_str (), "standard__"))
13677 {
13678 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13679 m_standard_p = true;
13680 }
13681 else
13682 m_standard_p = false;
13683
13684 /* If the name contains a ".", then the user is entering a fully
13685 qualified entity name, and the match must not be done in wild
13686 mode. Similarly, if the user wants to complete what looks
13687 like an encoded name, the match must not be done in wild
13688 mode. Also, in the standard__ special case always do
13689 non-wild matching. */
13690 m_wild_match_p
13691 = (lookup_name.match_type () != symbol_name_match_type::FULL
13692 && !m_encoded_p
13693 && !m_standard_p
13694 && user_name.find ('.') == std::string::npos);
13695 }
13696 }
13697
13698 /* symbol_name_matcher_ftype method for Ada. This only handles
13699 completion mode. */
13700
13701 static bool
13702 ada_symbol_name_matches (const char *symbol_search_name,
13703 const lookup_name_info &lookup_name,
13704 completion_match_result *comp_match_res)
13705 {
13706 return lookup_name.ada ().matches (symbol_search_name,
13707 lookup_name.match_type (),
13708 comp_match_res);
13709 }
13710
13711 /* A name matcher that matches the symbol name exactly, with
13712 strcmp. */
13713
13714 static bool
13715 literal_symbol_name_matcher (const char *symbol_search_name,
13716 const lookup_name_info &lookup_name,
13717 completion_match_result *comp_match_res)
13718 {
13719 gdb::string_view name_view = lookup_name.name ();
13720
13721 if (lookup_name.completion_mode ()
13722 ? (strncmp (symbol_search_name, name_view.data (),
13723 name_view.size ()) == 0)
13724 : symbol_search_name == name_view)
13725 {
13726 if (comp_match_res != NULL)
13727 comp_match_res->set_match (symbol_search_name);
13728 return true;
13729 }
13730 else
13731 return false;
13732 }
13733
13734 /* Implement the "get_symbol_name_matcher" language_defn method for
13735 Ada. */
13736
13737 static symbol_name_matcher_ftype *
13738 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13739 {
13740 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13741 return literal_symbol_name_matcher;
13742
13743 if (lookup_name.completion_mode ())
13744 return ada_symbol_name_matches;
13745 else
13746 {
13747 if (lookup_name.ada ().wild_match_p ())
13748 return do_wild_match;
13749 else if (lookup_name.ada ().verbatim_p ())
13750 return do_exact_match;
13751 else
13752 return do_full_match;
13753 }
13754 }
13755
13756 /* Class representing the Ada language. */
13757
13758 class ada_language : public language_defn
13759 {
13760 public:
13761 ada_language ()
13762 : language_defn (language_ada)
13763 { /* Nothing. */ }
13764
13765 /* See language.h. */
13766
13767 const char *name () const override
13768 { return "ada"; }
13769
13770 /* See language.h. */
13771
13772 const char *natural_name () const override
13773 { return "Ada"; }
13774
13775 /* See language.h. */
13776
13777 const std::vector<const char *> &filename_extensions () const override
13778 {
13779 static const std::vector<const char *> extensions
13780 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13781 return extensions;
13782 }
13783
13784 /* Print an array element index using the Ada syntax. */
13785
13786 void print_array_index (struct type *index_type,
13787 LONGEST index,
13788 struct ui_file *stream,
13789 const value_print_options *options) const override
13790 {
13791 struct value *index_value = val_atr (index_type, index);
13792
13793 value_print (index_value, stream, options);
13794 fprintf_filtered (stream, " => ");
13795 }
13796
13797 /* Implement the "read_var_value" language_defn method for Ada. */
13798
13799 struct value *read_var_value (struct symbol *var,
13800 const struct block *var_block,
13801 struct frame_info *frame) const override
13802 {
13803 /* The only case where default_read_var_value is not sufficient
13804 is when VAR is a renaming... */
13805 if (frame != nullptr)
13806 {
13807 const struct block *frame_block = get_frame_block (frame, NULL);
13808 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13809 return ada_read_renaming_var_value (var, frame_block);
13810 }
13811
13812 /* This is a typical case where we expect the default_read_var_value
13813 function to work. */
13814 return language_defn::read_var_value (var, var_block, frame);
13815 }
13816
13817 /* See language.h. */
13818 void language_arch_info (struct gdbarch *gdbarch,
13819 struct language_arch_info *lai) const override
13820 {
13821 const struct builtin_type *builtin = builtin_type (gdbarch);
13822
13823 /* Helper function to allow shorter lines below. */
13824 auto add = [&] (struct type *t)
13825 {
13826 lai->add_primitive_type (t);
13827 };
13828
13829 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13830 0, "integer"));
13831 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13832 0, "long_integer"));
13833 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13834 0, "short_integer"));
13835 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13836 0, "character");
13837 lai->set_string_char_type (char_type);
13838 add (char_type);
13839 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13840 "float", gdbarch_float_format (gdbarch)));
13841 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13842 "long_float", gdbarch_double_format (gdbarch)));
13843 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13844 0, "long_long_integer"));
13845 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13846 "long_long_float",
13847 gdbarch_long_double_format (gdbarch)));
13848 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13849 0, "natural"));
13850 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13851 0, "positive"));
13852 add (builtin->builtin_void);
13853
13854 struct type *system_addr_ptr
13855 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13856 "void"));
13857 system_addr_ptr->set_name ("system__address");
13858 add (system_addr_ptr);
13859
13860 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13861 type. This is a signed integral type whose size is the same as
13862 the size of addresses. */
13863 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13864 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13865 "storage_offset"));
13866
13867 lai->set_bool_type (builtin->builtin_bool);
13868 }
13869
13870 /* See language.h. */
13871
13872 bool iterate_over_symbols
13873 (const struct block *block, const lookup_name_info &name,
13874 domain_enum domain,
13875 gdb::function_view<symbol_found_callback_ftype> callback) const override
13876 {
13877 std::vector<struct block_symbol> results;
13878
13879 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13880 for (block_symbol &sym : results)
13881 {
13882 if (!callback (&sym))
13883 return false;
13884 }
13885
13886 return true;
13887 }
13888
13889 /* See language.h. */
13890 bool sniff_from_mangled_name (const char *mangled,
13891 char **out) const override
13892 {
13893 std::string demangled = ada_decode (mangled);
13894
13895 *out = NULL;
13896
13897 if (demangled != mangled && demangled[0] != '<')
13898 {
13899 /* Set the gsymbol language to Ada, but still return 0.
13900 Two reasons for that:
13901
13902 1. For Ada, we prefer computing the symbol's decoded name
13903 on the fly rather than pre-compute it, in order to save
13904 memory (Ada projects are typically very large).
13905
13906 2. There are some areas in the definition of the GNAT
13907 encoding where, with a bit of bad luck, we might be able
13908 to decode a non-Ada symbol, generating an incorrect
13909 demangled name (Eg: names ending with "TB" for instance
13910 are identified as task bodies and so stripped from
13911 the decoded name returned).
13912
13913 Returning true, here, but not setting *DEMANGLED, helps us get
13914 a little bit of the best of both worlds. Because we're last,
13915 we should not affect any of the other languages that were
13916 able to demangle the symbol before us; we get to correctly
13917 tag Ada symbols as such; and even if we incorrectly tagged a
13918 non-Ada symbol, which should be rare, any routing through the
13919 Ada language should be transparent (Ada tries to behave much
13920 like C/C++ with non-Ada symbols). */
13921 return true;
13922 }
13923
13924 return false;
13925 }
13926
13927 /* See language.h. */
13928
13929 char *demangle_symbol (const char *mangled, int options) const override
13930 {
13931 return ada_la_decode (mangled, options);
13932 }
13933
13934 /* See language.h. */
13935
13936 void print_type (struct type *type, const char *varstring,
13937 struct ui_file *stream, int show, int level,
13938 const struct type_print_options *flags) const override
13939 {
13940 ada_print_type (type, varstring, stream, show, level, flags);
13941 }
13942
13943 /* See language.h. */
13944
13945 const char *word_break_characters (void) const override
13946 {
13947 return ada_completer_word_break_characters;
13948 }
13949
13950 /* See language.h. */
13951
13952 void collect_symbol_completion_matches (completion_tracker &tracker,
13953 complete_symbol_mode mode,
13954 symbol_name_match_type name_match_type,
13955 const char *text, const char *word,
13956 enum type_code code) const override
13957 {
13958 struct symbol *sym;
13959 const struct block *b, *surrounding_static_block = 0;
13960 struct block_iterator iter;
13961
13962 gdb_assert (code == TYPE_CODE_UNDEF);
13963
13964 lookup_name_info lookup_name (text, name_match_type, true);
13965
13966 /* First, look at the partial symtab symbols. */
13967 expand_symtabs_matching (NULL,
13968 lookup_name,
13969 NULL,
13970 NULL,
13971 ALL_DOMAIN);
13972
13973 /* At this point scan through the misc symbol vectors and add each
13974 symbol you find to the list. Eventually we want to ignore
13975 anything that isn't a text symbol (everything else will be
13976 handled by the psymtab code above). */
13977
13978 for (objfile *objfile : current_program_space->objfiles ())
13979 {
13980 for (minimal_symbol *msymbol : objfile->msymbols ())
13981 {
13982 QUIT;
13983
13984 if (completion_skip_symbol (mode, msymbol))
13985 continue;
13986
13987 language symbol_language = msymbol->language ();
13988
13989 /* Ada minimal symbols won't have their language set to Ada. If
13990 we let completion_list_add_name compare using the
13991 default/C-like matcher, then when completing e.g., symbols in a
13992 package named "pck", we'd match internal Ada symbols like
13993 "pckS", which are invalid in an Ada expression, unless you wrap
13994 them in '<' '>' to request a verbatim match.
13995
13996 Unfortunately, some Ada encoded names successfully demangle as
13997 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13998 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13999 with the wrong language set. Paper over that issue here. */
14000 if (symbol_language == language_auto
14001 || symbol_language == language_cplus)
14002 symbol_language = language_ada;
14003
14004 completion_list_add_name (tracker,
14005 symbol_language,
14006 msymbol->linkage_name (),
14007 lookup_name, text, word);
14008 }
14009 }
14010
14011 /* Search upwards from currently selected frame (so that we can
14012 complete on local vars. */
14013
14014 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
14015 {
14016 if (!BLOCK_SUPERBLOCK (b))
14017 surrounding_static_block = b; /* For elmin of dups */
14018
14019 ALL_BLOCK_SYMBOLS (b, iter, sym)
14020 {
14021 if (completion_skip_symbol (mode, sym))
14022 continue;
14023
14024 completion_list_add_name (tracker,
14025 sym->language (),
14026 sym->linkage_name (),
14027 lookup_name, text, word);
14028 }
14029 }
14030
14031 /* Go through the symtabs and check the externs and statics for
14032 symbols which match. */
14033
14034 for (objfile *objfile : current_program_space->objfiles ())
14035 {
14036 for (compunit_symtab *s : objfile->compunits ())
14037 {
14038 QUIT;
14039 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
14040 ALL_BLOCK_SYMBOLS (b, iter, sym)
14041 {
14042 if (completion_skip_symbol (mode, sym))
14043 continue;
14044
14045 completion_list_add_name (tracker,
14046 sym->language (),
14047 sym->linkage_name (),
14048 lookup_name, text, word);
14049 }
14050 }
14051 }
14052
14053 for (objfile *objfile : current_program_space->objfiles ())
14054 {
14055 for (compunit_symtab *s : objfile->compunits ())
14056 {
14057 QUIT;
14058 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14059 /* Don't do this block twice. */
14060 if (b == surrounding_static_block)
14061 continue;
14062 ALL_BLOCK_SYMBOLS (b, iter, sym)
14063 {
14064 if (completion_skip_symbol (mode, sym))
14065 continue;
14066
14067 completion_list_add_name (tracker,
14068 sym->language (),
14069 sym->linkage_name (),
14070 lookup_name, text, word);
14071 }
14072 }
14073 }
14074 }
14075
14076 /* See language.h. */
14077
14078 gdb::unique_xmalloc_ptr<char> watch_location_expression
14079 (struct type *type, CORE_ADDR addr) const override
14080 {
14081 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14082 std::string name = type_to_string (type);
14083 return gdb::unique_xmalloc_ptr<char>
14084 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14085 }
14086
14087 /* See language.h. */
14088
14089 void value_print (struct value *val, struct ui_file *stream,
14090 const struct value_print_options *options) const override
14091 {
14092 return ada_value_print (val, stream, options);
14093 }
14094
14095 /* See language.h. */
14096
14097 void value_print_inner
14098 (struct value *val, struct ui_file *stream, int recurse,
14099 const struct value_print_options *options) const override
14100 {
14101 return ada_value_print_inner (val, stream, recurse, options);
14102 }
14103
14104 /* See language.h. */
14105
14106 struct block_symbol lookup_symbol_nonlocal
14107 (const char *name, const struct block *block,
14108 const domain_enum domain) const override
14109 {
14110 struct block_symbol sym;
14111
14112 sym = ada_lookup_symbol (name, block_static_block (block), domain);
14113 if (sym.symbol != NULL)
14114 return sym;
14115
14116 /* If we haven't found a match at this point, try the primitive
14117 types. In other languages, this search is performed before
14118 searching for global symbols in order to short-circuit that
14119 global-symbol search if it happens that the name corresponds
14120 to a primitive type. But we cannot do the same in Ada, because
14121 it is perfectly legitimate for a program to declare a type which
14122 has the same name as a standard type. If looking up a type in
14123 that situation, we have traditionally ignored the primitive type
14124 in favor of user-defined types. This is why, unlike most other
14125 languages, we search the primitive types this late and only after
14126 having searched the global symbols without success. */
14127
14128 if (domain == VAR_DOMAIN)
14129 {
14130 struct gdbarch *gdbarch;
14131
14132 if (block == NULL)
14133 gdbarch = target_gdbarch ();
14134 else
14135 gdbarch = block_gdbarch (block);
14136 sym.symbol
14137 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
14138 if (sym.symbol != NULL)
14139 return sym;
14140 }
14141
14142 return {};
14143 }
14144
14145 /* See language.h. */
14146
14147 int parser (struct parser_state *ps) const override
14148 {
14149 warnings_issued = 0;
14150 return ada_parse (ps);
14151 }
14152
14153 /* See language.h.
14154
14155 Same as evaluate_type (*EXP), but resolves ambiguous symbol references
14156 (marked by OP_VAR_VALUE nodes in which the symbol has an undefined
14157 namespace) and converts operators that are user-defined into
14158 appropriate function calls. If CONTEXT_TYPE is non-null, it provides
14159 a preferred result type [at the moment, only type void has any
14160 effect---causing procedures to be preferred over functions in calls].
14161 A null CONTEXT_TYPE indicates that a non-void return type is
14162 preferred. May change (expand) *EXP. */
14163
14164 void post_parser (expression_up *expp, int void_context_p, int completing,
14165 innermost_block_tracker *tracker) const override
14166 {
14167 struct type *context_type = NULL;
14168 int pc = 0;
14169
14170 if (void_context_p)
14171 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14172
14173 resolve_subexp (expp, &pc, 1, context_type, completing, tracker);
14174 }
14175
14176 /* See language.h. */
14177
14178 void emitchar (int ch, struct type *chtype,
14179 struct ui_file *stream, int quoter) const override
14180 {
14181 ada_emit_char (ch, chtype, stream, quoter, 1);
14182 }
14183
14184 /* See language.h. */
14185
14186 void printchar (int ch, struct type *chtype,
14187 struct ui_file *stream) const override
14188 {
14189 ada_printchar (ch, chtype, stream);
14190 }
14191
14192 /* See language.h. */
14193
14194 void printstr (struct ui_file *stream, struct type *elttype,
14195 const gdb_byte *string, unsigned int length,
14196 const char *encoding, int force_ellipses,
14197 const struct value_print_options *options) const override
14198 {
14199 ada_printstr (stream, elttype, string, length, encoding,
14200 force_ellipses, options);
14201 }
14202
14203 /* See language.h. */
14204
14205 void print_typedef (struct type *type, struct symbol *new_symbol,
14206 struct ui_file *stream) const override
14207 {
14208 ada_print_typedef (type, new_symbol, stream);
14209 }
14210
14211 /* See language.h. */
14212
14213 bool is_string_type_p (struct type *type) const override
14214 {
14215 return ada_is_string_type (type);
14216 }
14217
14218 /* See language.h. */
14219
14220 const char *struct_too_deep_ellipsis () const override
14221 { return "(...)"; }
14222
14223 /* See language.h. */
14224
14225 bool c_style_arrays_p () const override
14226 { return false; }
14227
14228 /* See language.h. */
14229
14230 bool store_sym_names_in_linkage_form_p () const override
14231 { return true; }
14232
14233 /* See language.h. */
14234
14235 const struct lang_varobj_ops *varobj_ops () const override
14236 { return &ada_varobj_ops; }
14237
14238 /* See language.h. */
14239
14240 const struct exp_descriptor *expression_ops () const override
14241 { return &ada_exp_descriptor; }
14242
14243 /* See language.h. */
14244
14245 const struct op_print *opcode_print_table () const override
14246 { return ada_op_print_tab; }
14247
14248 protected:
14249 /* See language.h. */
14250
14251 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14252 (const lookup_name_info &lookup_name) const override
14253 {
14254 return ada_get_symbol_name_matcher (lookup_name);
14255 }
14256 };
14257
14258 /* Single instance of the Ada language class. */
14259
14260 static ada_language ada_language_defn;
14261
14262 /* Command-list for the "set/show ada" prefix command. */
14263 static struct cmd_list_element *set_ada_list;
14264 static struct cmd_list_element *show_ada_list;
14265
14266 static void
14267 initialize_ada_catchpoint_ops (void)
14268 {
14269 struct breakpoint_ops *ops;
14270
14271 initialize_breakpoint_ops ();
14272
14273 ops = &catch_exception_breakpoint_ops;
14274 *ops = bkpt_breakpoint_ops;
14275 ops->allocate_location = allocate_location_exception;
14276 ops->re_set = re_set_exception;
14277 ops->check_status = check_status_exception;
14278 ops->print_it = print_it_exception;
14279 ops->print_one = print_one_exception;
14280 ops->print_mention = print_mention_exception;
14281 ops->print_recreate = print_recreate_exception;
14282
14283 ops = &catch_exception_unhandled_breakpoint_ops;
14284 *ops = bkpt_breakpoint_ops;
14285 ops->allocate_location = allocate_location_exception;
14286 ops->re_set = re_set_exception;
14287 ops->check_status = check_status_exception;
14288 ops->print_it = print_it_exception;
14289 ops->print_one = print_one_exception;
14290 ops->print_mention = print_mention_exception;
14291 ops->print_recreate = print_recreate_exception;
14292
14293 ops = &catch_assert_breakpoint_ops;
14294 *ops = bkpt_breakpoint_ops;
14295 ops->allocate_location = allocate_location_exception;
14296 ops->re_set = re_set_exception;
14297 ops->check_status = check_status_exception;
14298 ops->print_it = print_it_exception;
14299 ops->print_one = print_one_exception;
14300 ops->print_mention = print_mention_exception;
14301 ops->print_recreate = print_recreate_exception;
14302
14303 ops = &catch_handlers_breakpoint_ops;
14304 *ops = bkpt_breakpoint_ops;
14305 ops->allocate_location = allocate_location_exception;
14306 ops->re_set = re_set_exception;
14307 ops->check_status = check_status_exception;
14308 ops->print_it = print_it_exception;
14309 ops->print_one = print_one_exception;
14310 ops->print_mention = print_mention_exception;
14311 ops->print_recreate = print_recreate_exception;
14312 }
14313
14314 /* This module's 'new_objfile' observer. */
14315
14316 static void
14317 ada_new_objfile_observer (struct objfile *objfile)
14318 {
14319 ada_clear_symbol_cache ();
14320 }
14321
14322 /* This module's 'free_objfile' observer. */
14323
14324 static void
14325 ada_free_objfile_observer (struct objfile *objfile)
14326 {
14327 ada_clear_symbol_cache ();
14328 }
14329
14330 void _initialize_ada_language ();
14331 void
14332 _initialize_ada_language ()
14333 {
14334 initialize_ada_catchpoint_ops ();
14335
14336 add_basic_prefix_cmd ("ada", no_class,
14337 _("Prefix command for changing Ada-specific settings."),
14338 &set_ada_list, "set ada ", 0, &setlist);
14339
14340 add_show_prefix_cmd ("ada", no_class,
14341 _("Generic command for showing Ada-specific settings."),
14342 &show_ada_list, "show ada ", 0, &showlist);
14343
14344 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14345 &trust_pad_over_xvs, _("\
14346 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14347 Show whether an optimization trusting PAD types over XVS types is activated."),
14348 _("\
14349 This is related to the encoding used by the GNAT compiler. The debugger\n\
14350 should normally trust the contents of PAD types, but certain older versions\n\
14351 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14352 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14353 work around this bug. It is always safe to turn this option \"off\", but\n\
14354 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14355 this option to \"off\" unless necessary."),
14356 NULL, NULL, &set_ada_list, &show_ada_list);
14357
14358 add_setshow_boolean_cmd ("print-signatures", class_vars,
14359 &print_signatures, _("\
14360 Enable or disable the output of formal and return types for functions in the \
14361 overloads selection menu."), _("\
14362 Show whether the output of formal and return types for functions in the \
14363 overloads selection menu is activated."),
14364 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14365
14366 add_catch_command ("exception", _("\
14367 Catch Ada exceptions, when raised.\n\
14368 Usage: catch exception [ARG] [if CONDITION]\n\
14369 Without any argument, stop when any Ada exception is raised.\n\
14370 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14371 being raised does not have a handler (and will therefore lead to the task's\n\
14372 termination).\n\
14373 Otherwise, the catchpoint only stops when the name of the exception being\n\
14374 raised is the same as ARG.\n\
14375 CONDITION is a boolean expression that is evaluated to see whether the\n\
14376 exception should cause a stop."),
14377 catch_ada_exception_command,
14378 catch_ada_completer,
14379 CATCH_PERMANENT,
14380 CATCH_TEMPORARY);
14381
14382 add_catch_command ("handlers", _("\
14383 Catch Ada exceptions, when handled.\n\
14384 Usage: catch handlers [ARG] [if CONDITION]\n\
14385 Without any argument, stop when any Ada exception is handled.\n\
14386 With an argument, catch only exceptions with the given name.\n\
14387 CONDITION is a boolean expression that is evaluated to see whether the\n\
14388 exception should cause a stop."),
14389 catch_ada_handlers_command,
14390 catch_ada_completer,
14391 CATCH_PERMANENT,
14392 CATCH_TEMPORARY);
14393 add_catch_command ("assert", _("\
14394 Catch failed Ada assertions, when raised.\n\
14395 Usage: catch assert [if CONDITION]\n\
14396 CONDITION is a boolean expression that is evaluated to see whether the\n\
14397 exception should cause a stop."),
14398 catch_assert_command,
14399 NULL,
14400 CATCH_PERMANENT,
14401 CATCH_TEMPORARY);
14402
14403 varsize_limit = 65536;
14404 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14405 &varsize_limit, _("\
14406 Set the maximum number of bytes allowed in a variable-size object."), _("\
14407 Show the maximum number of bytes allowed in a variable-size object."), _("\
14408 Attempts to access an object whose size is not a compile-time constant\n\
14409 and exceeds this limit will cause an error."),
14410 NULL, NULL, &setlist, &showlist);
14411
14412 add_info ("exceptions", info_exceptions_command,
14413 _("\
14414 List all Ada exception names.\n\
14415 Usage: info exceptions [REGEXP]\n\
14416 If a regular expression is passed as an argument, only those matching\n\
14417 the regular expression are listed."));
14418
14419 add_basic_prefix_cmd ("ada", class_maintenance,
14420 _("Set Ada maintenance-related variables."),
14421 &maint_set_ada_cmdlist, "maintenance set ada ",
14422 0/*allow-unknown*/, &maintenance_set_cmdlist);
14423
14424 add_show_prefix_cmd ("ada", class_maintenance,
14425 _("Show Ada maintenance-related variables."),
14426 &maint_show_ada_cmdlist, "maintenance show ada ",
14427 0/*allow-unknown*/, &maintenance_show_cmdlist);
14428
14429 add_setshow_boolean_cmd
14430 ("ignore-descriptive-types", class_maintenance,
14431 &ada_ignore_descriptive_types_p,
14432 _("Set whether descriptive types generated by GNAT should be ignored."),
14433 _("Show whether descriptive types generated by GNAT should be ignored."),
14434 _("\
14435 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14436 DWARF attribute."),
14437 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14438
14439 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14440 NULL, xcalloc, xfree);
14441
14442 /* The ada-lang observers. */
14443 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14444 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14445 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14446 }
This page took 0.334725 seconds and 4 git commands to generate.