Use @defvar to document gdb.pretty_printers
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "common/vec.h"
53 #include "stack.h"
54 #include "common/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196 static int lesseq_defined_than (struct symbol *, struct symbol *);
197
198 static int equiv_types (struct type *, struct type *);
199
200 static int is_name_suffix (const char *);
201
202 static int advance_wild_match (const char **, const char *, int);
203
204 static bool wild_match (const char *name, const char *patn);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct type *, struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (const char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (const char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static int ada_resolve_function (struct block_symbol *, int,
227 struct value **, int, const char *,
228 struct type *);
229
230 static int ada_is_direct_array_type (struct type *);
231
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
234
235 static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238 static struct value *assign_aggregate (struct value *, struct value *,
239 struct expression *,
240 int *, enum noside);
241
242 static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247 static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253 static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264 static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
266
267 static struct type *ada_find_any_type (const char *name);
268
269 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
270 (const lookup_name_info &lookup_name);
271
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 static const char ada_completer_word_break_characters[] =
318 #ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320 #else
321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
322 #endif
323
324 /* The name of the symbol to use to get the name of the main subprogram. */
325 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
326 = "__gnat_ada_main_program_name";
327
328 /* Limit on the number of warnings to raise per expression evaluation. */
329 static int warning_limit = 2;
330
331 /* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333 static int warnings_issued = 0;
334
335 static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337 };
338
339 static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341 };
342
343 /* Maintenance-related settings for this module. */
344
345 static struct cmd_list_element *maint_set_ada_cmdlist;
346 static struct cmd_list_element *maint_show_ada_cmdlist;
347
348 /* Implement the "maintenance set ada" (prefix) command. */
349
350 static void
351 maint_set_ada_cmd (const char *args, int from_tty)
352 {
353 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
354 gdb_stdout);
355 }
356
357 /* Implement the "maintenance show ada" (prefix) command. */
358
359 static void
360 maint_show_ada_cmd (const char *args, int from_tty)
361 {
362 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
363 }
364
365 /* The "maintenance ada set/show ignore-descriptive-type" value. */
366
367 static int ada_ignore_descriptive_types_p = 0;
368
369 /* Inferior-specific data. */
370
371 /* Per-inferior data for this module. */
372
373 struct ada_inferior_data
374 {
375 /* The ada__tags__type_specific_data type, which is used when decoding
376 tagged types. With older versions of GNAT, this type was directly
377 accessible through a component ("tsd") in the object tag. But this
378 is no longer the case, so we cache it for each inferior. */
379 struct type *tsd_type;
380
381 /* The exception_support_info data. This data is used to determine
382 how to implement support for Ada exception catchpoints in a given
383 inferior. */
384 const struct exception_support_info *exception_info;
385 };
386
387 /* Our key to this module's inferior data. */
388 static const struct inferior_data *ada_inferior_data;
389
390 /* A cleanup routine for our inferior data. */
391 static void
392 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
393 {
394 struct ada_inferior_data *data;
395
396 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
397 if (data != NULL)
398 xfree (data);
399 }
400
401 /* Return our inferior data for the given inferior (INF).
402
403 This function always returns a valid pointer to an allocated
404 ada_inferior_data structure. If INF's inferior data has not
405 been previously set, this functions creates a new one with all
406 fields set to zero, sets INF's inferior to it, and then returns
407 a pointer to that newly allocated ada_inferior_data. */
408
409 static struct ada_inferior_data *
410 get_ada_inferior_data (struct inferior *inf)
411 {
412 struct ada_inferior_data *data;
413
414 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
415 if (data == NULL)
416 {
417 data = XCNEW (struct ada_inferior_data);
418 set_inferior_data (inf, ada_inferior_data, data);
419 }
420
421 return data;
422 }
423
424 /* Perform all necessary cleanups regarding our module's inferior data
425 that is required after the inferior INF just exited. */
426
427 static void
428 ada_inferior_exit (struct inferior *inf)
429 {
430 ada_inferior_data_cleanup (inf, NULL);
431 set_inferior_data (inf, ada_inferior_data, NULL);
432 }
433
434
435 /* program-space-specific data. */
436
437 /* This module's per-program-space data. */
438 struct ada_pspace_data
439 {
440 /* The Ada symbol cache. */
441 struct ada_symbol_cache *sym_cache;
442 };
443
444 /* Key to our per-program-space data. */
445 static const struct program_space_data *ada_pspace_data_handle;
446
447 /* Return this module's data for the given program space (PSPACE).
448 If not is found, add a zero'ed one now.
449
450 This function always returns a valid object. */
451
452 static struct ada_pspace_data *
453 get_ada_pspace_data (struct program_space *pspace)
454 {
455 struct ada_pspace_data *data;
456
457 data = ((struct ada_pspace_data *)
458 program_space_data (pspace, ada_pspace_data_handle));
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466 }
467
468 /* The cleanup callback for this module's per-program-space data. */
469
470 static void
471 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472 {
473 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478 }
479
480 /* Utilities */
481
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483 all typedef layers have been peeled. Otherwise, return TYPE.
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509 static struct type *
510 ada_typedef_target_type (struct type *type)
511 {
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515 }
516
517 /* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521 static const char *
522 ada_unqualified_name (const char *decoded_name)
523 {
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540 }
541
542 /* Return a string starting with '<', followed by STR, and '>'. */
543
544 static std::string
545 add_angle_brackets (const char *str)
546 {
547 return string_printf ("<%s>", str);
548 }
549
550 static const char *
551 ada_get_gdb_completer_word_break_characters (void)
552 {
553 return ada_completer_word_break_characters;
554 }
555
556 /* Print an array element index using the Ada syntax. */
557
558 static void
559 ada_print_array_index (struct value *index_value, struct ui_file *stream,
560 const struct value_print_options *options)
561 {
562 LA_VALUE_PRINT (index_value, stream, options);
563 fprintf_filtered (stream, " => ");
564 }
565
566 /* la_watch_location_expression for Ada. */
567
568 gdb::unique_xmalloc_ptr<char>
569 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
570 {
571 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
572 std::string name = type_to_string (type);
573 return gdb::unique_xmalloc_ptr<char>
574 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
575 }
576
577 /* Assuming VECT points to an array of *SIZE objects of size
578 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
579 updating *SIZE as necessary and returning the (new) array. */
580
581 void *
582 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
583 {
584 if (*size < min_size)
585 {
586 *size *= 2;
587 if (*size < min_size)
588 *size = min_size;
589 vect = xrealloc (vect, *size * element_size);
590 }
591 return vect;
592 }
593
594 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
595 suffix of FIELD_NAME beginning "___". */
596
597 static int
598 field_name_match (const char *field_name, const char *target)
599 {
600 int len = strlen (target);
601
602 return
603 (strncmp (field_name, target, len) == 0
604 && (field_name[len] == '\0'
605 || (startswith (field_name + len, "___")
606 && strcmp (field_name + strlen (field_name) - 6,
607 "___XVN") != 0)));
608 }
609
610
611 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
612 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
613 and return its index. This function also handles fields whose name
614 have ___ suffixes because the compiler sometimes alters their name
615 by adding such a suffix to represent fields with certain constraints.
616 If the field could not be found, return a negative number if
617 MAYBE_MISSING is set. Otherwise raise an error. */
618
619 int
620 ada_get_field_index (const struct type *type, const char *field_name,
621 int maybe_missing)
622 {
623 int fieldno;
624 struct type *struct_type = check_typedef ((struct type *) type);
625
626 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
627 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
628 return fieldno;
629
630 if (!maybe_missing)
631 error (_("Unable to find field %s in struct %s. Aborting"),
632 field_name, TYPE_NAME (struct_type));
633
634 return -1;
635 }
636
637 /* The length of the prefix of NAME prior to any "___" suffix. */
638
639 int
640 ada_name_prefix_len (const char *name)
641 {
642 if (name == NULL)
643 return 0;
644 else
645 {
646 const char *p = strstr (name, "___");
647
648 if (p == NULL)
649 return strlen (name);
650 else
651 return p - name;
652 }
653 }
654
655 /* Return non-zero if SUFFIX is a suffix of STR.
656 Return zero if STR is null. */
657
658 static int
659 is_suffix (const char *str, const char *suffix)
660 {
661 int len1, len2;
662
663 if (str == NULL)
664 return 0;
665 len1 = strlen (str);
666 len2 = strlen (suffix);
667 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
668 }
669
670 /* The contents of value VAL, treated as a value of type TYPE. The
671 result is an lval in memory if VAL is. */
672
673 static struct value *
674 coerce_unspec_val_to_type (struct value *val, struct type *type)
675 {
676 type = ada_check_typedef (type);
677 if (value_type (val) == type)
678 return val;
679 else
680 {
681 struct value *result;
682
683 /* Make sure that the object size is not unreasonable before
684 trying to allocate some memory for it. */
685 ada_ensure_varsize_limit (type);
686
687 if (value_lazy (val)
688 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
689 result = allocate_value_lazy (type);
690 else
691 {
692 result = allocate_value (type);
693 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
694 }
695 set_value_component_location (result, val);
696 set_value_bitsize (result, value_bitsize (val));
697 set_value_bitpos (result, value_bitpos (val));
698 set_value_address (result, value_address (val));
699 return result;
700 }
701 }
702
703 static const gdb_byte *
704 cond_offset_host (const gdb_byte *valaddr, long offset)
705 {
706 if (valaddr == NULL)
707 return NULL;
708 else
709 return valaddr + offset;
710 }
711
712 static CORE_ADDR
713 cond_offset_target (CORE_ADDR address, long offset)
714 {
715 if (address == 0)
716 return 0;
717 else
718 return address + offset;
719 }
720
721 /* Issue a warning (as for the definition of warning in utils.c, but
722 with exactly one argument rather than ...), unless the limit on the
723 number of warnings has passed during the evaluation of the current
724 expression. */
725
726 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
727 provided by "complaint". */
728 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
729
730 static void
731 lim_warning (const char *format, ...)
732 {
733 va_list args;
734
735 va_start (args, format);
736 warnings_issued += 1;
737 if (warnings_issued <= warning_limit)
738 vwarning (format, args);
739
740 va_end (args);
741 }
742
743 /* Issue an error if the size of an object of type T is unreasonable,
744 i.e. if it would be a bad idea to allocate a value of this type in
745 GDB. */
746
747 void
748 ada_ensure_varsize_limit (const struct type *type)
749 {
750 if (TYPE_LENGTH (type) > varsize_limit)
751 error (_("object size is larger than varsize-limit"));
752 }
753
754 /* Maximum value of a SIZE-byte signed integer type. */
755 static LONGEST
756 max_of_size (int size)
757 {
758 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
759
760 return top_bit | (top_bit - 1);
761 }
762
763 /* Minimum value of a SIZE-byte signed integer type. */
764 static LONGEST
765 min_of_size (int size)
766 {
767 return -max_of_size (size) - 1;
768 }
769
770 /* Maximum value of a SIZE-byte unsigned integer type. */
771 static ULONGEST
772 umax_of_size (int size)
773 {
774 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
775
776 return top_bit | (top_bit - 1);
777 }
778
779 /* Maximum value of integral type T, as a signed quantity. */
780 static LONGEST
781 max_of_type (struct type *t)
782 {
783 if (TYPE_UNSIGNED (t))
784 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
785 else
786 return max_of_size (TYPE_LENGTH (t));
787 }
788
789 /* Minimum value of integral type T, as a signed quantity. */
790 static LONGEST
791 min_of_type (struct type *t)
792 {
793 if (TYPE_UNSIGNED (t))
794 return 0;
795 else
796 return min_of_size (TYPE_LENGTH (t));
797 }
798
799 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
800 LONGEST
801 ada_discrete_type_high_bound (struct type *type)
802 {
803 type = resolve_dynamic_type (type, NULL, 0);
804 switch (TYPE_CODE (type))
805 {
806 case TYPE_CODE_RANGE:
807 return TYPE_HIGH_BOUND (type);
808 case TYPE_CODE_ENUM:
809 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
810 case TYPE_CODE_BOOL:
811 return 1;
812 case TYPE_CODE_CHAR:
813 case TYPE_CODE_INT:
814 return max_of_type (type);
815 default:
816 error (_("Unexpected type in ada_discrete_type_high_bound."));
817 }
818 }
819
820 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
821 LONGEST
822 ada_discrete_type_low_bound (struct type *type)
823 {
824 type = resolve_dynamic_type (type, NULL, 0);
825 switch (TYPE_CODE (type))
826 {
827 case TYPE_CODE_RANGE:
828 return TYPE_LOW_BOUND (type);
829 case TYPE_CODE_ENUM:
830 return TYPE_FIELD_ENUMVAL (type, 0);
831 case TYPE_CODE_BOOL:
832 return 0;
833 case TYPE_CODE_CHAR:
834 case TYPE_CODE_INT:
835 return min_of_type (type);
836 default:
837 error (_("Unexpected type in ada_discrete_type_low_bound."));
838 }
839 }
840
841 /* The identity on non-range types. For range types, the underlying
842 non-range scalar type. */
843
844 static struct type *
845 get_base_type (struct type *type)
846 {
847 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
848 {
849 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
850 return type;
851 type = TYPE_TARGET_TYPE (type);
852 }
853 return type;
854 }
855
856 /* Return a decoded version of the given VALUE. This means returning
857 a value whose type is obtained by applying all the GNAT-specific
858 encondings, making the resulting type a static but standard description
859 of the initial type. */
860
861 struct value *
862 ada_get_decoded_value (struct value *value)
863 {
864 struct type *type = ada_check_typedef (value_type (value));
865
866 if (ada_is_array_descriptor_type (type)
867 || (ada_is_constrained_packed_array_type (type)
868 && TYPE_CODE (type) != TYPE_CODE_PTR))
869 {
870 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
871 value = ada_coerce_to_simple_array_ptr (value);
872 else
873 value = ada_coerce_to_simple_array (value);
874 }
875 else
876 value = ada_to_fixed_value (value);
877
878 return value;
879 }
880
881 /* Same as ada_get_decoded_value, but with the given TYPE.
882 Because there is no associated actual value for this type,
883 the resulting type might be a best-effort approximation in
884 the case of dynamic types. */
885
886 struct type *
887 ada_get_decoded_type (struct type *type)
888 {
889 type = to_static_fixed_type (type);
890 if (ada_is_constrained_packed_array_type (type))
891 type = ada_coerce_to_simple_array_type (type);
892 return type;
893 }
894
895 \f
896
897 /* Language Selection */
898
899 /* If the main program is in Ada, return language_ada, otherwise return LANG
900 (the main program is in Ada iif the adainit symbol is found). */
901
902 enum language
903 ada_update_initial_language (enum language lang)
904 {
905 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
906 (struct objfile *) NULL).minsym != NULL)
907 return language_ada;
908
909 return lang;
910 }
911
912 /* If the main procedure is written in Ada, then return its name.
913 The result is good until the next call. Return NULL if the main
914 procedure doesn't appear to be in Ada. */
915
916 char *
917 ada_main_name (void)
918 {
919 struct bound_minimal_symbol msym;
920 static gdb::unique_xmalloc_ptr<char> main_program_name;
921
922 /* For Ada, the name of the main procedure is stored in a specific
923 string constant, generated by the binder. Look for that symbol,
924 extract its address, and then read that string. If we didn't find
925 that string, then most probably the main procedure is not written
926 in Ada. */
927 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
928
929 if (msym.minsym != NULL)
930 {
931 CORE_ADDR main_program_name_addr;
932 int err_code;
933
934 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
935 if (main_program_name_addr == 0)
936 error (_("Invalid address for Ada main program name."));
937
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name.get ();
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
984
985 static char *
986 ada_encode_1 (const char *decoded, bool throw_errors)
987 {
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
990 const char *p;
991 int k;
992
993 if (decoded == NULL)
994 return NULL;
995
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
998
999 k = 0;
1000 for (p = decoded; *p != '\0'; p += 1)
1001 {
1002 if (*p == '.')
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
1007 else if (*p == '"')
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1012 mapping->encoded != NULL
1013 && !startswith (p, mapping->decoded); mapping += 1)
1014 ;
1015 if (mapping->encoded == NULL)
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
1026 else
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
1031 }
1032
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
1035 }
1036
1037 /* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040 char *
1041 ada_encode (const char *decoded)
1042 {
1043 return ada_encode_1 (decoded, true);
1044 }
1045
1046 /* Return NAME folded to lower case, or, if surrounded by single
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
1050 char *
1051 ada_fold_name (const char *name)
1052 {
1053 static char *fold_buffer = NULL;
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1058
1059 if (name[0] == '\'')
1060 {
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
1063 }
1064 else
1065 {
1066 int i;
1067
1068 for (i = 0; i <= len; i += 1)
1069 fold_buffer[i] = tolower (name[i]);
1070 }
1071
1072 return fold_buffer;
1073 }
1074
1075 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077 static int
1078 is_lower_alphanum (const char c)
1079 {
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081 }
1082
1083 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
1090
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095 static void
1096 ada_remove_trailing_digits (const char *encoded, int *len)
1097 {
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
1101
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1109 *len = i - 2;
1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1111 *len = i - 1;
1112 }
1113 }
1114
1115 /* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118 static void
1119 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120 {
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
1126 the 'P' suffix. The second calls the first one after handling
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135 }
1136
1137 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139 static void
1140 ada_remove_Xbn_suffix (const char *encoded, int *len)
1141 {
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155 }
1156
1157 /* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
1160
1161 The resulting string is valid until the next call of ada_decode.
1162 If the string is unchanged by decoding, the original string pointer
1163 is returned. */
1164
1165 const char *
1166 ada_decode (const char *encoded)
1167 {
1168 int i, j;
1169 int len0;
1170 const char *p;
1171 char *decoded;
1172 int at_start_name;
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
1175
1176 /* With function descriptors on PPC64, the value of a symbol named
1177 ".FN", if it exists, is the entry point of the function "FN". */
1178 if (encoded[0] == '.')
1179 encoded += 1;
1180
1181 /* The name of the Ada main procedure starts with "_ada_".
1182 This prefix is not part of the decoded name, so skip this part
1183 if we see this prefix. */
1184 if (startswith (encoded, "_ada_"))
1185 encoded += 5;
1186
1187 /* If the name starts with '_', then it is not a properly encoded
1188 name, so do not attempt to decode it. Similarly, if the name
1189 starts with '<', the name should not be decoded. */
1190 if (encoded[0] == '_' || encoded[0] == '<')
1191 goto Suppress;
1192
1193 len0 = strlen (encoded);
1194
1195 ada_remove_trailing_digits (encoded, &len0);
1196 ada_remove_po_subprogram_suffix (encoded, &len0);
1197
1198 /* Remove the ___X.* suffix if present. Do not forget to verify that
1199 the suffix is located before the current "end" of ENCODED. We want
1200 to avoid re-matching parts of ENCODED that have previously been
1201 marked as discarded (by decrementing LEN0). */
1202 p = strstr (encoded, "___");
1203 if (p != NULL && p - encoded < len0 - 3)
1204 {
1205 if (p[3] == 'X')
1206 len0 = p - encoded;
1207 else
1208 goto Suppress;
1209 }
1210
1211 /* Remove any trailing TKB suffix. It tells us that this symbol
1212 is for the body of a task, but that information does not actually
1213 appear in the decoded name. */
1214
1215 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1216 len0 -= 3;
1217
1218 /* Remove any trailing TB suffix. The TB suffix is slightly different
1219 from the TKB suffix because it is used for non-anonymous task
1220 bodies. */
1221
1222 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1223 len0 -= 2;
1224
1225 /* Remove trailing "B" suffixes. */
1226 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1227
1228 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1229 len0 -= 1;
1230
1231 /* Make decoded big enough for possible expansion by operator name. */
1232
1233 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1234 decoded = decoding_buffer;
1235
1236 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1237
1238 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1239 {
1240 i = len0 - 2;
1241 while ((i >= 0 && isdigit (encoded[i]))
1242 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1243 i -= 1;
1244 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1245 len0 = i - 1;
1246 else if (encoded[i] == '$')
1247 len0 = i;
1248 }
1249
1250 /* The first few characters that are not alphabetic are not part
1251 of any encoding we use, so we can copy them over verbatim. */
1252
1253 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1254 decoded[j] = encoded[i];
1255
1256 at_start_name = 1;
1257 while (i < len0)
1258 {
1259 /* Is this a symbol function? */
1260 if (at_start_name && encoded[i] == 'O')
1261 {
1262 int k;
1263
1264 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1265 {
1266 int op_len = strlen (ada_opname_table[k].encoded);
1267 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1268 op_len - 1) == 0)
1269 && !isalnum (encoded[i + op_len]))
1270 {
1271 strcpy (decoded + j, ada_opname_table[k].decoded);
1272 at_start_name = 0;
1273 i += op_len;
1274 j += strlen (ada_opname_table[k].decoded);
1275 break;
1276 }
1277 }
1278 if (ada_opname_table[k].encoded != NULL)
1279 continue;
1280 }
1281 at_start_name = 0;
1282
1283 /* Replace "TK__" with "__", which will eventually be translated
1284 into "." (just below). */
1285
1286 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1287 i += 2;
1288
1289 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1290 be translated into "." (just below). These are internal names
1291 generated for anonymous blocks inside which our symbol is nested. */
1292
1293 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1294 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1295 && isdigit (encoded [i+4]))
1296 {
1297 int k = i + 5;
1298
1299 while (k < len0 && isdigit (encoded[k]))
1300 k++; /* Skip any extra digit. */
1301
1302 /* Double-check that the "__B_{DIGITS}+" sequence we found
1303 is indeed followed by "__". */
1304 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1305 i = k;
1306 }
1307
1308 /* Remove _E{DIGITS}+[sb] */
1309
1310 /* Just as for protected object subprograms, there are 2 categories
1311 of subprograms created by the compiler for each entry. The first
1312 one implements the actual entry code, and has a suffix following
1313 the convention above; the second one implements the barrier and
1314 uses the same convention as above, except that the 'E' is replaced
1315 by a 'B'.
1316
1317 Just as above, we do not decode the name of barrier functions
1318 to give the user a clue that the code he is debugging has been
1319 internally generated. */
1320
1321 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1322 && isdigit (encoded[i+2]))
1323 {
1324 int k = i + 3;
1325
1326 while (k < len0 && isdigit (encoded[k]))
1327 k++;
1328
1329 if (k < len0
1330 && (encoded[k] == 'b' || encoded[k] == 's'))
1331 {
1332 k++;
1333 /* Just as an extra precaution, make sure that if this
1334 suffix is followed by anything else, it is a '_'.
1335 Otherwise, we matched this sequence by accident. */
1336 if (k == len0
1337 || (k < len0 && encoded[k] == '_'))
1338 i = k;
1339 }
1340 }
1341
1342 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1343 the GNAT front-end in protected object subprograms. */
1344
1345 if (i < len0 + 3
1346 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1347 {
1348 /* Backtrack a bit up until we reach either the begining of
1349 the encoded name, or "__". Make sure that we only find
1350 digits or lowercase characters. */
1351 const char *ptr = encoded + i - 1;
1352
1353 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1354 ptr--;
1355 if (ptr < encoded
1356 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1357 i++;
1358 }
1359
1360 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1361 {
1362 /* This is a X[bn]* sequence not separated from the previous
1363 part of the name with a non-alpha-numeric character (in other
1364 words, immediately following an alpha-numeric character), then
1365 verify that it is placed at the end of the encoded name. If
1366 not, then the encoding is not valid and we should abort the
1367 decoding. Otherwise, just skip it, it is used in body-nested
1368 package names. */
1369 do
1370 i += 1;
1371 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1372 if (i < len0)
1373 goto Suppress;
1374 }
1375 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1376 {
1377 /* Replace '__' by '.'. */
1378 decoded[j] = '.';
1379 at_start_name = 1;
1380 i += 2;
1381 j += 1;
1382 }
1383 else
1384 {
1385 /* It's a character part of the decoded name, so just copy it
1386 over. */
1387 decoded[j] = encoded[i];
1388 i += 1;
1389 j += 1;
1390 }
1391 }
1392 decoded[j] = '\000';
1393
1394 /* Decoded names should never contain any uppercase character.
1395 Double-check this, and abort the decoding if we find one. */
1396
1397 for (i = 0; decoded[i] != '\0'; i += 1)
1398 if (isupper (decoded[i]) || decoded[i] == ' ')
1399 goto Suppress;
1400
1401 if (strcmp (decoded, encoded) == 0)
1402 return encoded;
1403 else
1404 return decoded;
1405
1406 Suppress:
1407 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1408 decoded = decoding_buffer;
1409 if (encoded[0] == '<')
1410 strcpy (decoded, encoded);
1411 else
1412 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1413 return decoded;
1414
1415 }
1416
1417 /* Table for keeping permanent unique copies of decoded names. Once
1418 allocated, names in this table are never released. While this is a
1419 storage leak, it should not be significant unless there are massive
1420 changes in the set of decoded names in successive versions of a
1421 symbol table loaded during a single session. */
1422 static struct htab *decoded_names_store;
1423
1424 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1425 in the language-specific part of GSYMBOL, if it has not been
1426 previously computed. Tries to save the decoded name in the same
1427 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1428 in any case, the decoded symbol has a lifetime at least that of
1429 GSYMBOL).
1430 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1431 const, but nevertheless modified to a semantically equivalent form
1432 when a decoded name is cached in it. */
1433
1434 const char *
1435 ada_decode_symbol (const struct general_symbol_info *arg)
1436 {
1437 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1438 const char **resultp =
1439 &gsymbol->language_specific.demangled_name;
1440
1441 if (!gsymbol->ada_mangled)
1442 {
1443 const char *decoded = ada_decode (gsymbol->name);
1444 struct obstack *obstack = gsymbol->language_specific.obstack;
1445
1446 gsymbol->ada_mangled = 1;
1447
1448 if (obstack != NULL)
1449 *resultp
1450 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1451 else
1452 {
1453 /* Sometimes, we can't find a corresponding objfile, in
1454 which case, we put the result on the heap. Since we only
1455 decode when needed, we hope this usually does not cause a
1456 significant memory leak (FIXME). */
1457
1458 char **slot = (char **) htab_find_slot (decoded_names_store,
1459 decoded, INSERT);
1460
1461 if (*slot == NULL)
1462 *slot = xstrdup (decoded);
1463 *resultp = *slot;
1464 }
1465 }
1466
1467 return *resultp;
1468 }
1469
1470 static char *
1471 ada_la_decode (const char *encoded, int options)
1472 {
1473 return xstrdup (ada_decode (encoded));
1474 }
1475
1476 /* Implement la_sniff_from_mangled_name for Ada. */
1477
1478 static int
1479 ada_sniff_from_mangled_name (const char *mangled, char **out)
1480 {
1481 const char *demangled = ada_decode (mangled);
1482
1483 *out = NULL;
1484
1485 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1486 {
1487 /* Set the gsymbol language to Ada, but still return 0.
1488 Two reasons for that:
1489
1490 1. For Ada, we prefer computing the symbol's decoded name
1491 on the fly rather than pre-compute it, in order to save
1492 memory (Ada projects are typically very large).
1493
1494 2. There are some areas in the definition of the GNAT
1495 encoding where, with a bit of bad luck, we might be able
1496 to decode a non-Ada symbol, generating an incorrect
1497 demangled name (Eg: names ending with "TB" for instance
1498 are identified as task bodies and so stripped from
1499 the decoded name returned).
1500
1501 Returning 1, here, but not setting *DEMANGLED, helps us get a
1502 little bit of the best of both worlds. Because we're last,
1503 we should not affect any of the other languages that were
1504 able to demangle the symbol before us; we get to correctly
1505 tag Ada symbols as such; and even if we incorrectly tagged a
1506 non-Ada symbol, which should be rare, any routing through the
1507 Ada language should be transparent (Ada tries to behave much
1508 like C/C++ with non-Ada symbols). */
1509 return 1;
1510 }
1511
1512 return 0;
1513 }
1514
1515 \f
1516
1517 /* Arrays */
1518
1519 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1520 generated by the GNAT compiler to describe the index type used
1521 for each dimension of an array, check whether it follows the latest
1522 known encoding. If not, fix it up to conform to the latest encoding.
1523 Otherwise, do nothing. This function also does nothing if
1524 INDEX_DESC_TYPE is NULL.
1525
1526 The GNAT encoding used to describle the array index type evolved a bit.
1527 Initially, the information would be provided through the name of each
1528 field of the structure type only, while the type of these fields was
1529 described as unspecified and irrelevant. The debugger was then expected
1530 to perform a global type lookup using the name of that field in order
1531 to get access to the full index type description. Because these global
1532 lookups can be very expensive, the encoding was later enhanced to make
1533 the global lookup unnecessary by defining the field type as being
1534 the full index type description.
1535
1536 The purpose of this routine is to allow us to support older versions
1537 of the compiler by detecting the use of the older encoding, and by
1538 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1539 we essentially replace each field's meaningless type by the associated
1540 index subtype). */
1541
1542 void
1543 ada_fixup_array_indexes_type (struct type *index_desc_type)
1544 {
1545 int i;
1546
1547 if (index_desc_type == NULL)
1548 return;
1549 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1550
1551 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1552 to check one field only, no need to check them all). If not, return
1553 now.
1554
1555 If our INDEX_DESC_TYPE was generated using the older encoding,
1556 the field type should be a meaningless integer type whose name
1557 is not equal to the field name. */
1558 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1559 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1560 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1561 return;
1562
1563 /* Fixup each field of INDEX_DESC_TYPE. */
1564 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1565 {
1566 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1567 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1568
1569 if (raw_type)
1570 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1571 }
1572 }
1573
1574 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1575
1576 static const char *bound_name[] = {
1577 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1578 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1579 };
1580
1581 /* Maximum number of array dimensions we are prepared to handle. */
1582
1583 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1584
1585
1586 /* The desc_* routines return primitive portions of array descriptors
1587 (fat pointers). */
1588
1589 /* The descriptor or array type, if any, indicated by TYPE; removes
1590 level of indirection, if needed. */
1591
1592 static struct type *
1593 desc_base_type (struct type *type)
1594 {
1595 if (type == NULL)
1596 return NULL;
1597 type = ada_check_typedef (type);
1598 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1599 type = ada_typedef_target_type (type);
1600
1601 if (type != NULL
1602 && (TYPE_CODE (type) == TYPE_CODE_PTR
1603 || TYPE_CODE (type) == TYPE_CODE_REF))
1604 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1605 else
1606 return type;
1607 }
1608
1609 /* True iff TYPE indicates a "thin" array pointer type. */
1610
1611 static int
1612 is_thin_pntr (struct type *type)
1613 {
1614 return
1615 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1616 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1617 }
1618
1619 /* The descriptor type for thin pointer type TYPE. */
1620
1621 static struct type *
1622 thin_descriptor_type (struct type *type)
1623 {
1624 struct type *base_type = desc_base_type (type);
1625
1626 if (base_type == NULL)
1627 return NULL;
1628 if (is_suffix (ada_type_name (base_type), "___XVE"))
1629 return base_type;
1630 else
1631 {
1632 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1633
1634 if (alt_type == NULL)
1635 return base_type;
1636 else
1637 return alt_type;
1638 }
1639 }
1640
1641 /* A pointer to the array data for thin-pointer value VAL. */
1642
1643 static struct value *
1644 thin_data_pntr (struct value *val)
1645 {
1646 struct type *type = ada_check_typedef (value_type (val));
1647 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1648
1649 data_type = lookup_pointer_type (data_type);
1650
1651 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1652 return value_cast (data_type, value_copy (val));
1653 else
1654 return value_from_longest (data_type, value_address (val));
1655 }
1656
1657 /* True iff TYPE indicates a "thick" array pointer type. */
1658
1659 static int
1660 is_thick_pntr (struct type *type)
1661 {
1662 type = desc_base_type (type);
1663 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1664 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1665 }
1666
1667 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1668 pointer to one, the type of its bounds data; otherwise, NULL. */
1669
1670 static struct type *
1671 desc_bounds_type (struct type *type)
1672 {
1673 struct type *r;
1674
1675 type = desc_base_type (type);
1676
1677 if (type == NULL)
1678 return NULL;
1679 else if (is_thin_pntr (type))
1680 {
1681 type = thin_descriptor_type (type);
1682 if (type == NULL)
1683 return NULL;
1684 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1685 if (r != NULL)
1686 return ada_check_typedef (r);
1687 }
1688 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1689 {
1690 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1691 if (r != NULL)
1692 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1693 }
1694 return NULL;
1695 }
1696
1697 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1698 one, a pointer to its bounds data. Otherwise NULL. */
1699
1700 static struct value *
1701 desc_bounds (struct value *arr)
1702 {
1703 struct type *type = ada_check_typedef (value_type (arr));
1704
1705 if (is_thin_pntr (type))
1706 {
1707 struct type *bounds_type =
1708 desc_bounds_type (thin_descriptor_type (type));
1709 LONGEST addr;
1710
1711 if (bounds_type == NULL)
1712 error (_("Bad GNAT array descriptor"));
1713
1714 /* NOTE: The following calculation is not really kosher, but
1715 since desc_type is an XVE-encoded type (and shouldn't be),
1716 the correct calculation is a real pain. FIXME (and fix GCC). */
1717 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1718 addr = value_as_long (arr);
1719 else
1720 addr = value_address (arr);
1721
1722 return
1723 value_from_longest (lookup_pointer_type (bounds_type),
1724 addr - TYPE_LENGTH (bounds_type));
1725 }
1726
1727 else if (is_thick_pntr (type))
1728 {
1729 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1730 _("Bad GNAT array descriptor"));
1731 struct type *p_bounds_type = value_type (p_bounds);
1732
1733 if (p_bounds_type
1734 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1735 {
1736 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1737
1738 if (TYPE_STUB (target_type))
1739 p_bounds = value_cast (lookup_pointer_type
1740 (ada_check_typedef (target_type)),
1741 p_bounds);
1742 }
1743 else
1744 error (_("Bad GNAT array descriptor"));
1745
1746 return p_bounds;
1747 }
1748 else
1749 return NULL;
1750 }
1751
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 position of the field containing the address of the bounds data. */
1754
1755 static int
1756 fat_pntr_bounds_bitpos (struct type *type)
1757 {
1758 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1759 }
1760
1761 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1762 size of the field containing the address of the bounds data. */
1763
1764 static int
1765 fat_pntr_bounds_bitsize (struct type *type)
1766 {
1767 type = desc_base_type (type);
1768
1769 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1770 return TYPE_FIELD_BITSIZE (type, 1);
1771 else
1772 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1773 }
1774
1775 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1776 pointer to one, the type of its array data (a array-with-no-bounds type);
1777 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1778 data. */
1779
1780 static struct type *
1781 desc_data_target_type (struct type *type)
1782 {
1783 type = desc_base_type (type);
1784
1785 /* NOTE: The following is bogus; see comment in desc_bounds. */
1786 if (is_thin_pntr (type))
1787 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1788 else if (is_thick_pntr (type))
1789 {
1790 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1791
1792 if (data_type
1793 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1794 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1795 }
1796
1797 return NULL;
1798 }
1799
1800 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1801 its array data. */
1802
1803 static struct value *
1804 desc_data (struct value *arr)
1805 {
1806 struct type *type = value_type (arr);
1807
1808 if (is_thin_pntr (type))
1809 return thin_data_pntr (arr);
1810 else if (is_thick_pntr (type))
1811 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1812 _("Bad GNAT array descriptor"));
1813 else
1814 return NULL;
1815 }
1816
1817
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 position of the field containing the address of the data. */
1820
1821 static int
1822 fat_pntr_data_bitpos (struct type *type)
1823 {
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1825 }
1826
1827 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1828 size of the field containing the address of the data. */
1829
1830 static int
1831 fat_pntr_data_bitsize (struct type *type)
1832 {
1833 type = desc_base_type (type);
1834
1835 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1836 return TYPE_FIELD_BITSIZE (type, 0);
1837 else
1838 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1839 }
1840
1841 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1842 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1843 bound, if WHICH is 1. The first bound is I=1. */
1844
1845 static struct value *
1846 desc_one_bound (struct value *bounds, int i, int which)
1847 {
1848 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1849 _("Bad GNAT array descriptor bounds"));
1850 }
1851
1852 /* If BOUNDS is an array-bounds structure type, return the bit position
1853 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1854 bound, if WHICH is 1. The first bound is I=1. */
1855
1856 static int
1857 desc_bound_bitpos (struct type *type, int i, int which)
1858 {
1859 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1860 }
1861
1862 /* If BOUNDS is an array-bounds structure type, return the bit field size
1863 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1864 bound, if WHICH is 1. The first bound is I=1. */
1865
1866 static int
1867 desc_bound_bitsize (struct type *type, int i, int which)
1868 {
1869 type = desc_base_type (type);
1870
1871 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1872 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1873 else
1874 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1875 }
1876
1877 /* If TYPE is the type of an array-bounds structure, the type of its
1878 Ith bound (numbering from 1). Otherwise, NULL. */
1879
1880 static struct type *
1881 desc_index_type (struct type *type, int i)
1882 {
1883 type = desc_base_type (type);
1884
1885 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1886 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1887 else
1888 return NULL;
1889 }
1890
1891 /* The number of index positions in the array-bounds type TYPE.
1892 Return 0 if TYPE is NULL. */
1893
1894 static int
1895 desc_arity (struct type *type)
1896 {
1897 type = desc_base_type (type);
1898
1899 if (type != NULL)
1900 return TYPE_NFIELDS (type) / 2;
1901 return 0;
1902 }
1903
1904 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1905 an array descriptor type (representing an unconstrained array
1906 type). */
1907
1908 static int
1909 ada_is_direct_array_type (struct type *type)
1910 {
1911 if (type == NULL)
1912 return 0;
1913 type = ada_check_typedef (type);
1914 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1915 || ada_is_array_descriptor_type (type));
1916 }
1917
1918 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1919 * to one. */
1920
1921 static int
1922 ada_is_array_type (struct type *type)
1923 {
1924 while (type != NULL
1925 && (TYPE_CODE (type) == TYPE_CODE_PTR
1926 || TYPE_CODE (type) == TYPE_CODE_REF))
1927 type = TYPE_TARGET_TYPE (type);
1928 return ada_is_direct_array_type (type);
1929 }
1930
1931 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1932
1933 int
1934 ada_is_simple_array_type (struct type *type)
1935 {
1936 if (type == NULL)
1937 return 0;
1938 type = ada_check_typedef (type);
1939 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1940 || (TYPE_CODE (type) == TYPE_CODE_PTR
1941 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1942 == TYPE_CODE_ARRAY));
1943 }
1944
1945 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1946
1947 int
1948 ada_is_array_descriptor_type (struct type *type)
1949 {
1950 struct type *data_type = desc_data_target_type (type);
1951
1952 if (type == NULL)
1953 return 0;
1954 type = ada_check_typedef (type);
1955 return (data_type != NULL
1956 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1957 && desc_arity (desc_bounds_type (type)) > 0);
1958 }
1959
1960 /* Non-zero iff type is a partially mal-formed GNAT array
1961 descriptor. FIXME: This is to compensate for some problems with
1962 debugging output from GNAT. Re-examine periodically to see if it
1963 is still needed. */
1964
1965 int
1966 ada_is_bogus_array_descriptor (struct type *type)
1967 {
1968 return
1969 type != NULL
1970 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1971 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1972 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1973 && !ada_is_array_descriptor_type (type);
1974 }
1975
1976
1977 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1978 (fat pointer) returns the type of the array data described---specifically,
1979 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1980 in from the descriptor; otherwise, they are left unspecified. If
1981 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1982 returns NULL. The result is simply the type of ARR if ARR is not
1983 a descriptor. */
1984 struct type *
1985 ada_type_of_array (struct value *arr, int bounds)
1986 {
1987 if (ada_is_constrained_packed_array_type (value_type (arr)))
1988 return decode_constrained_packed_array_type (value_type (arr));
1989
1990 if (!ada_is_array_descriptor_type (value_type (arr)))
1991 return value_type (arr);
1992
1993 if (!bounds)
1994 {
1995 struct type *array_type =
1996 ada_check_typedef (desc_data_target_type (value_type (arr)));
1997
1998 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1999 TYPE_FIELD_BITSIZE (array_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2001
2002 return array_type;
2003 }
2004 else
2005 {
2006 struct type *elt_type;
2007 int arity;
2008 struct value *descriptor;
2009
2010 elt_type = ada_array_element_type (value_type (arr), -1);
2011 arity = ada_array_arity (value_type (arr));
2012
2013 if (elt_type == NULL || arity == 0)
2014 return ada_check_typedef (value_type (arr));
2015
2016 descriptor = desc_bounds (arr);
2017 if (value_as_long (descriptor) == 0)
2018 return NULL;
2019 while (arity > 0)
2020 {
2021 struct type *range_type = alloc_type_copy (value_type (arr));
2022 struct type *array_type = alloc_type_copy (value_type (arr));
2023 struct value *low = desc_one_bound (descriptor, arity, 0);
2024 struct value *high = desc_one_bound (descriptor, arity, 1);
2025
2026 arity -= 1;
2027 create_static_range_type (range_type, value_type (low),
2028 longest_to_int (value_as_long (low)),
2029 longest_to_int (value_as_long (high)));
2030 elt_type = create_array_type (array_type, elt_type, range_type);
2031
2032 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2033 {
2034 /* We need to store the element packed bitsize, as well as
2035 recompute the array size, because it was previously
2036 computed based on the unpacked element size. */
2037 LONGEST lo = value_as_long (low);
2038 LONGEST hi = value_as_long (high);
2039
2040 TYPE_FIELD_BITSIZE (elt_type, 0) =
2041 decode_packed_array_bitsize (value_type (arr));
2042 /* If the array has no element, then the size is already
2043 zero, and does not need to be recomputed. */
2044 if (lo < hi)
2045 {
2046 int array_bitsize =
2047 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2048
2049 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2050 }
2051 }
2052 }
2053
2054 return lookup_pointer_type (elt_type);
2055 }
2056 }
2057
2058 /* If ARR does not represent an array, returns ARR unchanged.
2059 Otherwise, returns either a standard GDB array with bounds set
2060 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2061 GDB array. Returns NULL if ARR is a null fat pointer. */
2062
2063 struct value *
2064 ada_coerce_to_simple_array_ptr (struct value *arr)
2065 {
2066 if (ada_is_array_descriptor_type (value_type (arr)))
2067 {
2068 struct type *arrType = ada_type_of_array (arr, 1);
2069
2070 if (arrType == NULL)
2071 return NULL;
2072 return value_cast (arrType, value_copy (desc_data (arr)));
2073 }
2074 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2075 return decode_constrained_packed_array (arr);
2076 else
2077 return arr;
2078 }
2079
2080 /* If ARR does not represent an array, returns ARR unchanged.
2081 Otherwise, returns a standard GDB array describing ARR (which may
2082 be ARR itself if it already is in the proper form). */
2083
2084 struct value *
2085 ada_coerce_to_simple_array (struct value *arr)
2086 {
2087 if (ada_is_array_descriptor_type (value_type (arr)))
2088 {
2089 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2090
2091 if (arrVal == NULL)
2092 error (_("Bounds unavailable for null array pointer."));
2093 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2094 return value_ind (arrVal);
2095 }
2096 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2097 return decode_constrained_packed_array (arr);
2098 else
2099 return arr;
2100 }
2101
2102 /* If TYPE represents a GNAT array type, return it translated to an
2103 ordinary GDB array type (possibly with BITSIZE fields indicating
2104 packing). For other types, is the identity. */
2105
2106 struct type *
2107 ada_coerce_to_simple_array_type (struct type *type)
2108 {
2109 if (ada_is_constrained_packed_array_type (type))
2110 return decode_constrained_packed_array_type (type);
2111
2112 if (ada_is_array_descriptor_type (type))
2113 return ada_check_typedef (desc_data_target_type (type));
2114
2115 return type;
2116 }
2117
2118 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2119
2120 static int
2121 ada_is_packed_array_type (struct type *type)
2122 {
2123 if (type == NULL)
2124 return 0;
2125 type = desc_base_type (type);
2126 type = ada_check_typedef (type);
2127 return
2128 ada_type_name (type) != NULL
2129 && strstr (ada_type_name (type), "___XP") != NULL;
2130 }
2131
2132 /* Non-zero iff TYPE represents a standard GNAT constrained
2133 packed-array type. */
2134
2135 int
2136 ada_is_constrained_packed_array_type (struct type *type)
2137 {
2138 return ada_is_packed_array_type (type)
2139 && !ada_is_array_descriptor_type (type);
2140 }
2141
2142 /* Non-zero iff TYPE represents an array descriptor for a
2143 unconstrained packed-array type. */
2144
2145 static int
2146 ada_is_unconstrained_packed_array_type (struct type *type)
2147 {
2148 return ada_is_packed_array_type (type)
2149 && ada_is_array_descriptor_type (type);
2150 }
2151
2152 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2153 return the size of its elements in bits. */
2154
2155 static long
2156 decode_packed_array_bitsize (struct type *type)
2157 {
2158 const char *raw_name;
2159 const char *tail;
2160 long bits;
2161
2162 /* Access to arrays implemented as fat pointers are encoded as a typedef
2163 of the fat pointer type. We need the name of the fat pointer type
2164 to do the decoding, so strip the typedef layer. */
2165 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2166 type = ada_typedef_target_type (type);
2167
2168 raw_name = ada_type_name (ada_check_typedef (type));
2169 if (!raw_name)
2170 raw_name = ada_type_name (desc_base_type (type));
2171
2172 if (!raw_name)
2173 return 0;
2174
2175 tail = strstr (raw_name, "___XP");
2176 gdb_assert (tail != NULL);
2177
2178 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2179 {
2180 lim_warning
2181 (_("could not understand bit size information on packed array"));
2182 return 0;
2183 }
2184
2185 return bits;
2186 }
2187
2188 /* Given that TYPE is a standard GDB array type with all bounds filled
2189 in, and that the element size of its ultimate scalar constituents
2190 (that is, either its elements, or, if it is an array of arrays, its
2191 elements' elements, etc.) is *ELT_BITS, return an identical type,
2192 but with the bit sizes of its elements (and those of any
2193 constituent arrays) recorded in the BITSIZE components of its
2194 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2195 in bits.
2196
2197 Note that, for arrays whose index type has an XA encoding where
2198 a bound references a record discriminant, getting that discriminant,
2199 and therefore the actual value of that bound, is not possible
2200 because none of the given parameters gives us access to the record.
2201 This function assumes that it is OK in the context where it is being
2202 used to return an array whose bounds are still dynamic and where
2203 the length is arbitrary. */
2204
2205 static struct type *
2206 constrained_packed_array_type (struct type *type, long *elt_bits)
2207 {
2208 struct type *new_elt_type;
2209 struct type *new_type;
2210 struct type *index_type_desc;
2211 struct type *index_type;
2212 LONGEST low_bound, high_bound;
2213
2214 type = ada_check_typedef (type);
2215 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2216 return type;
2217
2218 index_type_desc = ada_find_parallel_type (type, "___XA");
2219 if (index_type_desc)
2220 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2221 NULL);
2222 else
2223 index_type = TYPE_INDEX_TYPE (type);
2224
2225 new_type = alloc_type_copy (type);
2226 new_elt_type =
2227 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2228 elt_bits);
2229 create_array_type (new_type, new_elt_type, index_type);
2230 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2231 TYPE_NAME (new_type) = ada_type_name (type);
2232
2233 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2234 && is_dynamic_type (check_typedef (index_type)))
2235 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2236 low_bound = high_bound = 0;
2237 if (high_bound < low_bound)
2238 *elt_bits = TYPE_LENGTH (new_type) = 0;
2239 else
2240 {
2241 *elt_bits *= (high_bound - low_bound + 1);
2242 TYPE_LENGTH (new_type) =
2243 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2244 }
2245
2246 TYPE_FIXED_INSTANCE (new_type) = 1;
2247 return new_type;
2248 }
2249
2250 /* The array type encoded by TYPE, where
2251 ada_is_constrained_packed_array_type (TYPE). */
2252
2253 static struct type *
2254 decode_constrained_packed_array_type (struct type *type)
2255 {
2256 const char *raw_name = ada_type_name (ada_check_typedef (type));
2257 char *name;
2258 const char *tail;
2259 struct type *shadow_type;
2260 long bits;
2261
2262 if (!raw_name)
2263 raw_name = ada_type_name (desc_base_type (type));
2264
2265 if (!raw_name)
2266 return NULL;
2267
2268 name = (char *) alloca (strlen (raw_name) + 1);
2269 tail = strstr (raw_name, "___XP");
2270 type = desc_base_type (type);
2271
2272 memcpy (name, raw_name, tail - raw_name);
2273 name[tail - raw_name] = '\000';
2274
2275 shadow_type = ada_find_parallel_type_with_name (type, name);
2276
2277 if (shadow_type == NULL)
2278 {
2279 lim_warning (_("could not find bounds information on packed array"));
2280 return NULL;
2281 }
2282 shadow_type = check_typedef (shadow_type);
2283
2284 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2285 {
2286 lim_warning (_("could not understand bounds "
2287 "information on packed array"));
2288 return NULL;
2289 }
2290
2291 bits = decode_packed_array_bitsize (type);
2292 return constrained_packed_array_type (shadow_type, &bits);
2293 }
2294
2295 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2296 array, returns a simple array that denotes that array. Its type is a
2297 standard GDB array type except that the BITSIZEs of the array
2298 target types are set to the number of bits in each element, and the
2299 type length is set appropriately. */
2300
2301 static struct value *
2302 decode_constrained_packed_array (struct value *arr)
2303 {
2304 struct type *type;
2305
2306 /* If our value is a pointer, then dereference it. Likewise if
2307 the value is a reference. Make sure that this operation does not
2308 cause the target type to be fixed, as this would indirectly cause
2309 this array to be decoded. The rest of the routine assumes that
2310 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2311 and "value_ind" routines to perform the dereferencing, as opposed
2312 to using "ada_coerce_ref" or "ada_value_ind". */
2313 arr = coerce_ref (arr);
2314 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2315 arr = value_ind (arr);
2316
2317 type = decode_constrained_packed_array_type (value_type (arr));
2318 if (type == NULL)
2319 {
2320 error (_("can't unpack array"));
2321 return NULL;
2322 }
2323
2324 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2325 && ada_is_modular_type (value_type (arr)))
2326 {
2327 /* This is a (right-justified) modular type representing a packed
2328 array with no wrapper. In order to interpret the value through
2329 the (left-justified) packed array type we just built, we must
2330 first left-justify it. */
2331 int bit_size, bit_pos;
2332 ULONGEST mod;
2333
2334 mod = ada_modulus (value_type (arr)) - 1;
2335 bit_size = 0;
2336 while (mod > 0)
2337 {
2338 bit_size += 1;
2339 mod >>= 1;
2340 }
2341 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2342 arr = ada_value_primitive_packed_val (arr, NULL,
2343 bit_pos / HOST_CHAR_BIT,
2344 bit_pos % HOST_CHAR_BIT,
2345 bit_size,
2346 type);
2347 }
2348
2349 return coerce_unspec_val_to_type (arr, type);
2350 }
2351
2352
2353 /* The value of the element of packed array ARR at the ARITY indices
2354 given in IND. ARR must be a simple array. */
2355
2356 static struct value *
2357 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2358 {
2359 int i;
2360 int bits, elt_off, bit_off;
2361 long elt_total_bit_offset;
2362 struct type *elt_type;
2363 struct value *v;
2364
2365 bits = 0;
2366 elt_total_bit_offset = 0;
2367 elt_type = ada_check_typedef (value_type (arr));
2368 for (i = 0; i < arity; i += 1)
2369 {
2370 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2371 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2372 error
2373 (_("attempt to do packed indexing of "
2374 "something other than a packed array"));
2375 else
2376 {
2377 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2378 LONGEST lowerbound, upperbound;
2379 LONGEST idx;
2380
2381 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2382 {
2383 lim_warning (_("don't know bounds of array"));
2384 lowerbound = upperbound = 0;
2385 }
2386
2387 idx = pos_atr (ind[i]);
2388 if (idx < lowerbound || idx > upperbound)
2389 lim_warning (_("packed array index %ld out of bounds"),
2390 (long) idx);
2391 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2392 elt_total_bit_offset += (idx - lowerbound) * bits;
2393 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2394 }
2395 }
2396 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2397 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2398
2399 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2400 bits, elt_type);
2401 return v;
2402 }
2403
2404 /* Non-zero iff TYPE includes negative integer values. */
2405
2406 static int
2407 has_negatives (struct type *type)
2408 {
2409 switch (TYPE_CODE (type))
2410 {
2411 default:
2412 return 0;
2413 case TYPE_CODE_INT:
2414 return !TYPE_UNSIGNED (type);
2415 case TYPE_CODE_RANGE:
2416 return TYPE_LOW_BOUND (type) < 0;
2417 }
2418 }
2419
2420 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2421 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2422 the unpacked buffer.
2423
2424 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2425 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2426
2427 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2428 zero otherwise.
2429
2430 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2431
2432 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2433
2434 static void
2435 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2436 gdb_byte *unpacked, int unpacked_len,
2437 int is_big_endian, int is_signed_type,
2438 int is_scalar)
2439 {
2440 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2441 int src_idx; /* Index into the source area */
2442 int src_bytes_left; /* Number of source bytes left to process. */
2443 int srcBitsLeft; /* Number of source bits left to move */
2444 int unusedLS; /* Number of bits in next significant
2445 byte of source that are unused */
2446
2447 int unpacked_idx; /* Index into the unpacked buffer */
2448 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2449
2450 unsigned long accum; /* Staging area for bits being transferred */
2451 int accumSize; /* Number of meaningful bits in accum */
2452 unsigned char sign;
2453
2454 /* Transmit bytes from least to most significant; delta is the direction
2455 the indices move. */
2456 int delta = is_big_endian ? -1 : 1;
2457
2458 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2459 bits from SRC. .*/
2460 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2461 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2462 bit_size, unpacked_len);
2463
2464 srcBitsLeft = bit_size;
2465 src_bytes_left = src_len;
2466 unpacked_bytes_left = unpacked_len;
2467 sign = 0;
2468
2469 if (is_big_endian)
2470 {
2471 src_idx = src_len - 1;
2472 if (is_signed_type
2473 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2474 sign = ~0;
2475
2476 unusedLS =
2477 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2478 % HOST_CHAR_BIT;
2479
2480 if (is_scalar)
2481 {
2482 accumSize = 0;
2483 unpacked_idx = unpacked_len - 1;
2484 }
2485 else
2486 {
2487 /* Non-scalar values must be aligned at a byte boundary... */
2488 accumSize =
2489 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2490 /* ... And are placed at the beginning (most-significant) bytes
2491 of the target. */
2492 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2493 unpacked_bytes_left = unpacked_idx + 1;
2494 }
2495 }
2496 else
2497 {
2498 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2499
2500 src_idx = unpacked_idx = 0;
2501 unusedLS = bit_offset;
2502 accumSize = 0;
2503
2504 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2505 sign = ~0;
2506 }
2507
2508 accum = 0;
2509 while (src_bytes_left > 0)
2510 {
2511 /* Mask for removing bits of the next source byte that are not
2512 part of the value. */
2513 unsigned int unusedMSMask =
2514 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2515 1;
2516 /* Sign-extend bits for this byte. */
2517 unsigned int signMask = sign & ~unusedMSMask;
2518
2519 accum |=
2520 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2521 accumSize += HOST_CHAR_BIT - unusedLS;
2522 if (accumSize >= HOST_CHAR_BIT)
2523 {
2524 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2525 accumSize -= HOST_CHAR_BIT;
2526 accum >>= HOST_CHAR_BIT;
2527 unpacked_bytes_left -= 1;
2528 unpacked_idx += delta;
2529 }
2530 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2531 unusedLS = 0;
2532 src_bytes_left -= 1;
2533 src_idx += delta;
2534 }
2535 while (unpacked_bytes_left > 0)
2536 {
2537 accum |= sign << accumSize;
2538 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2539 accumSize -= HOST_CHAR_BIT;
2540 if (accumSize < 0)
2541 accumSize = 0;
2542 accum >>= HOST_CHAR_BIT;
2543 unpacked_bytes_left -= 1;
2544 unpacked_idx += delta;
2545 }
2546 }
2547
2548 /* Create a new value of type TYPE from the contents of OBJ starting
2549 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2550 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2551 assigning through the result will set the field fetched from.
2552 VALADDR is ignored unless OBJ is NULL, in which case,
2553 VALADDR+OFFSET must address the start of storage containing the
2554 packed value. The value returned in this case is never an lval.
2555 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2556
2557 struct value *
2558 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2559 long offset, int bit_offset, int bit_size,
2560 struct type *type)
2561 {
2562 struct value *v;
2563 const gdb_byte *src; /* First byte containing data to unpack */
2564 gdb_byte *unpacked;
2565 const int is_scalar = is_scalar_type (type);
2566 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2567 gdb::byte_vector staging;
2568
2569 type = ada_check_typedef (type);
2570
2571 if (obj == NULL)
2572 src = valaddr + offset;
2573 else
2574 src = value_contents (obj) + offset;
2575
2576 if (is_dynamic_type (type))
2577 {
2578 /* The length of TYPE might by dynamic, so we need to resolve
2579 TYPE in order to know its actual size, which we then use
2580 to create the contents buffer of the value we return.
2581 The difficulty is that the data containing our object is
2582 packed, and therefore maybe not at a byte boundary. So, what
2583 we do, is unpack the data into a byte-aligned buffer, and then
2584 use that buffer as our object's value for resolving the type. */
2585 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2586 staging.resize (staging_len);
2587
2588 ada_unpack_from_contents (src, bit_offset, bit_size,
2589 staging.data (), staging.size (),
2590 is_big_endian, has_negatives (type),
2591 is_scalar);
2592 type = resolve_dynamic_type (type, staging.data (), 0);
2593 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2594 {
2595 /* This happens when the length of the object is dynamic,
2596 and is actually smaller than the space reserved for it.
2597 For instance, in an array of variant records, the bit_size
2598 we're given is the array stride, which is constant and
2599 normally equal to the maximum size of its element.
2600 But, in reality, each element only actually spans a portion
2601 of that stride. */
2602 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2603 }
2604 }
2605
2606 if (obj == NULL)
2607 {
2608 v = allocate_value (type);
2609 src = valaddr + offset;
2610 }
2611 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2612 {
2613 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2614 gdb_byte *buf;
2615
2616 v = value_at (type, value_address (obj) + offset);
2617 buf = (gdb_byte *) alloca (src_len);
2618 read_memory (value_address (v), buf, src_len);
2619 src = buf;
2620 }
2621 else
2622 {
2623 v = allocate_value (type);
2624 src = value_contents (obj) + offset;
2625 }
2626
2627 if (obj != NULL)
2628 {
2629 long new_offset = offset;
2630
2631 set_value_component_location (v, obj);
2632 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2633 set_value_bitsize (v, bit_size);
2634 if (value_bitpos (v) >= HOST_CHAR_BIT)
2635 {
2636 ++new_offset;
2637 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2638 }
2639 set_value_offset (v, new_offset);
2640
2641 /* Also set the parent value. This is needed when trying to
2642 assign a new value (in inferior memory). */
2643 set_value_parent (v, obj);
2644 }
2645 else
2646 set_value_bitsize (v, bit_size);
2647 unpacked = value_contents_writeable (v);
2648
2649 if (bit_size == 0)
2650 {
2651 memset (unpacked, 0, TYPE_LENGTH (type));
2652 return v;
2653 }
2654
2655 if (staging.size () == TYPE_LENGTH (type))
2656 {
2657 /* Small short-cut: If we've unpacked the data into a buffer
2658 of the same size as TYPE's length, then we can reuse that,
2659 instead of doing the unpacking again. */
2660 memcpy (unpacked, staging.data (), staging.size ());
2661 }
2662 else
2663 ada_unpack_from_contents (src, bit_offset, bit_size,
2664 unpacked, TYPE_LENGTH (type),
2665 is_big_endian, has_negatives (type), is_scalar);
2666
2667 return v;
2668 }
2669
2670 /* Store the contents of FROMVAL into the location of TOVAL.
2671 Return a new value with the location of TOVAL and contents of
2672 FROMVAL. Handles assignment into packed fields that have
2673 floating-point or non-scalar types. */
2674
2675 static struct value *
2676 ada_value_assign (struct value *toval, struct value *fromval)
2677 {
2678 struct type *type = value_type (toval);
2679 int bits = value_bitsize (toval);
2680
2681 toval = ada_coerce_ref (toval);
2682 fromval = ada_coerce_ref (fromval);
2683
2684 if (ada_is_direct_array_type (value_type (toval)))
2685 toval = ada_coerce_to_simple_array (toval);
2686 if (ada_is_direct_array_type (value_type (fromval)))
2687 fromval = ada_coerce_to_simple_array (fromval);
2688
2689 if (!deprecated_value_modifiable (toval))
2690 error (_("Left operand of assignment is not a modifiable lvalue."));
2691
2692 if (VALUE_LVAL (toval) == lval_memory
2693 && bits > 0
2694 && (TYPE_CODE (type) == TYPE_CODE_FLT
2695 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2696 {
2697 int len = (value_bitpos (toval)
2698 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2699 int from_size;
2700 gdb_byte *buffer = (gdb_byte *) alloca (len);
2701 struct value *val;
2702 CORE_ADDR to_addr = value_address (toval);
2703
2704 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2705 fromval = value_cast (type, fromval);
2706
2707 read_memory (to_addr, buffer, len);
2708 from_size = value_bitsize (fromval);
2709 if (from_size == 0)
2710 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2711 if (gdbarch_bits_big_endian (get_type_arch (type)))
2712 copy_bitwise (buffer, value_bitpos (toval),
2713 value_contents (fromval), from_size - bits, bits, 1);
2714 else
2715 copy_bitwise (buffer, value_bitpos (toval),
2716 value_contents (fromval), 0, bits, 0);
2717 write_memory_with_notification (to_addr, buffer, len);
2718
2719 val = value_copy (toval);
2720 memcpy (value_contents_raw (val), value_contents (fromval),
2721 TYPE_LENGTH (type));
2722 deprecated_set_value_type (val, type);
2723
2724 return val;
2725 }
2726
2727 return value_assign (toval, fromval);
2728 }
2729
2730
2731 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2732 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2733 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2734 COMPONENT, and not the inferior's memory. The current contents
2735 of COMPONENT are ignored.
2736
2737 Although not part of the initial design, this function also works
2738 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2739 had a null address, and COMPONENT had an address which is equal to
2740 its offset inside CONTAINER. */
2741
2742 static void
2743 value_assign_to_component (struct value *container, struct value *component,
2744 struct value *val)
2745 {
2746 LONGEST offset_in_container =
2747 (LONGEST) (value_address (component) - value_address (container));
2748 int bit_offset_in_container =
2749 value_bitpos (component) - value_bitpos (container);
2750 int bits;
2751
2752 val = value_cast (value_type (component), val);
2753
2754 if (value_bitsize (component) == 0)
2755 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2756 else
2757 bits = value_bitsize (component);
2758
2759 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2760 {
2761 int src_offset;
2762
2763 if (is_scalar_type (check_typedef (value_type (component))))
2764 src_offset
2765 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2766 else
2767 src_offset = 0;
2768 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2769 value_bitpos (container) + bit_offset_in_container,
2770 value_contents (val), src_offset, bits, 1);
2771 }
2772 else
2773 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2774 value_bitpos (container) + bit_offset_in_container,
2775 value_contents (val), 0, bits, 0);
2776 }
2777
2778 /* Determine if TYPE is an access to an unconstrained array. */
2779
2780 bool
2781 ada_is_access_to_unconstrained_array (struct type *type)
2782 {
2783 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2784 && is_thick_pntr (ada_typedef_target_type (type)));
2785 }
2786
2787 /* The value of the element of array ARR at the ARITY indices given in IND.
2788 ARR may be either a simple array, GNAT array descriptor, or pointer
2789 thereto. */
2790
2791 struct value *
2792 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2793 {
2794 int k;
2795 struct value *elt;
2796 struct type *elt_type;
2797
2798 elt = ada_coerce_to_simple_array (arr);
2799
2800 elt_type = ada_check_typedef (value_type (elt));
2801 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2802 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2803 return value_subscript_packed (elt, arity, ind);
2804
2805 for (k = 0; k < arity; k += 1)
2806 {
2807 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2808
2809 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2810 error (_("too many subscripts (%d expected)"), k);
2811
2812 elt = value_subscript (elt, pos_atr (ind[k]));
2813
2814 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2815 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2816 {
2817 /* The element is a typedef to an unconstrained array,
2818 except that the value_subscript call stripped the
2819 typedef layer. The typedef layer is GNAT's way to
2820 specify that the element is, at the source level, an
2821 access to the unconstrained array, rather than the
2822 unconstrained array. So, we need to restore that
2823 typedef layer, which we can do by forcing the element's
2824 type back to its original type. Otherwise, the returned
2825 value is going to be printed as the array, rather
2826 than as an access. Another symptom of the same issue
2827 would be that an expression trying to dereference the
2828 element would also be improperly rejected. */
2829 deprecated_set_value_type (elt, saved_elt_type);
2830 }
2831
2832 elt_type = ada_check_typedef (value_type (elt));
2833 }
2834
2835 return elt;
2836 }
2837
2838 /* Assuming ARR is a pointer to a GDB array, the value of the element
2839 of *ARR at the ARITY indices given in IND.
2840 Does not read the entire array into memory.
2841
2842 Note: Unlike what one would expect, this function is used instead of
2843 ada_value_subscript for basically all non-packed array types. The reason
2844 for this is that a side effect of doing our own pointer arithmetics instead
2845 of relying on value_subscript is that there is no implicit typedef peeling.
2846 This is important for arrays of array accesses, where it allows us to
2847 preserve the fact that the array's element is an array access, where the
2848 access part os encoded in a typedef layer. */
2849
2850 static struct value *
2851 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2852 {
2853 int k;
2854 struct value *array_ind = ada_value_ind (arr);
2855 struct type *type
2856 = check_typedef (value_enclosing_type (array_ind));
2857
2858 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2859 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2860 return value_subscript_packed (array_ind, arity, ind);
2861
2862 for (k = 0; k < arity; k += 1)
2863 {
2864 LONGEST lwb, upb;
2865 struct value *lwb_value;
2866
2867 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2868 error (_("too many subscripts (%d expected)"), k);
2869 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2870 value_copy (arr));
2871 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2872 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2873 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2874 type = TYPE_TARGET_TYPE (type);
2875 }
2876
2877 return value_ind (arr);
2878 }
2879
2880 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2881 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2882 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2883 this array is LOW, as per Ada rules. */
2884 static struct value *
2885 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2886 int low, int high)
2887 {
2888 struct type *type0 = ada_check_typedef (type);
2889 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2890 struct type *index_type
2891 = create_static_range_type (NULL, base_index_type, low, high);
2892 struct type *slice_type = create_array_type_with_stride
2893 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2894 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2895 TYPE_FIELD_BITSIZE (type0, 0));
2896 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2897 LONGEST base_low_pos, low_pos;
2898 CORE_ADDR base;
2899
2900 if (!discrete_position (base_index_type, low, &low_pos)
2901 || !discrete_position (base_index_type, base_low, &base_low_pos))
2902 {
2903 warning (_("unable to get positions in slice, use bounds instead"));
2904 low_pos = low;
2905 base_low_pos = base_low;
2906 }
2907
2908 base = value_as_address (array_ptr)
2909 + ((low_pos - base_low_pos)
2910 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2911 return value_at_lazy (slice_type, base);
2912 }
2913
2914
2915 static struct value *
2916 ada_value_slice (struct value *array, int low, int high)
2917 {
2918 struct type *type = ada_check_typedef (value_type (array));
2919 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2920 struct type *index_type
2921 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2922 struct type *slice_type = create_array_type_with_stride
2923 (NULL, TYPE_TARGET_TYPE (type), index_type,
2924 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2925 TYPE_FIELD_BITSIZE (type, 0));
2926 LONGEST low_pos, high_pos;
2927
2928 if (!discrete_position (base_index_type, low, &low_pos)
2929 || !discrete_position (base_index_type, high, &high_pos))
2930 {
2931 warning (_("unable to get positions in slice, use bounds instead"));
2932 low_pos = low;
2933 high_pos = high;
2934 }
2935
2936 return value_cast (slice_type,
2937 value_slice (array, low, high_pos - low_pos + 1));
2938 }
2939
2940 /* If type is a record type in the form of a standard GNAT array
2941 descriptor, returns the number of dimensions for type. If arr is a
2942 simple array, returns the number of "array of"s that prefix its
2943 type designation. Otherwise, returns 0. */
2944
2945 int
2946 ada_array_arity (struct type *type)
2947 {
2948 int arity;
2949
2950 if (type == NULL)
2951 return 0;
2952
2953 type = desc_base_type (type);
2954
2955 arity = 0;
2956 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2957 return desc_arity (desc_bounds_type (type));
2958 else
2959 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2960 {
2961 arity += 1;
2962 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2963 }
2964
2965 return arity;
2966 }
2967
2968 /* If TYPE is a record type in the form of a standard GNAT array
2969 descriptor or a simple array type, returns the element type for
2970 TYPE after indexing by NINDICES indices, or by all indices if
2971 NINDICES is -1. Otherwise, returns NULL. */
2972
2973 struct type *
2974 ada_array_element_type (struct type *type, int nindices)
2975 {
2976 type = desc_base_type (type);
2977
2978 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2979 {
2980 int k;
2981 struct type *p_array_type;
2982
2983 p_array_type = desc_data_target_type (type);
2984
2985 k = ada_array_arity (type);
2986 if (k == 0)
2987 return NULL;
2988
2989 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2990 if (nindices >= 0 && k > nindices)
2991 k = nindices;
2992 while (k > 0 && p_array_type != NULL)
2993 {
2994 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2995 k -= 1;
2996 }
2997 return p_array_type;
2998 }
2999 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3000 {
3001 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3002 {
3003 type = TYPE_TARGET_TYPE (type);
3004 nindices -= 1;
3005 }
3006 return type;
3007 }
3008
3009 return NULL;
3010 }
3011
3012 /* The type of nth index in arrays of given type (n numbering from 1).
3013 Does not examine memory. Throws an error if N is invalid or TYPE
3014 is not an array type. NAME is the name of the Ada attribute being
3015 evaluated ('range, 'first, 'last, or 'length); it is used in building
3016 the error message. */
3017
3018 static struct type *
3019 ada_index_type (struct type *type, int n, const char *name)
3020 {
3021 struct type *result_type;
3022
3023 type = desc_base_type (type);
3024
3025 if (n < 0 || n > ada_array_arity (type))
3026 error (_("invalid dimension number to '%s"), name);
3027
3028 if (ada_is_simple_array_type (type))
3029 {
3030 int i;
3031
3032 for (i = 1; i < n; i += 1)
3033 type = TYPE_TARGET_TYPE (type);
3034 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3035 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3036 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3037 perhaps stabsread.c would make more sense. */
3038 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3039 result_type = NULL;
3040 }
3041 else
3042 {
3043 result_type = desc_index_type (desc_bounds_type (type), n);
3044 if (result_type == NULL)
3045 error (_("attempt to take bound of something that is not an array"));
3046 }
3047
3048 return result_type;
3049 }
3050
3051 /* Given that arr is an array type, returns the lower bound of the
3052 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3053 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3054 array-descriptor type. It works for other arrays with bounds supplied
3055 by run-time quantities other than discriminants. */
3056
3057 static LONGEST
3058 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3059 {
3060 struct type *type, *index_type_desc, *index_type;
3061 int i;
3062
3063 gdb_assert (which == 0 || which == 1);
3064
3065 if (ada_is_constrained_packed_array_type (arr_type))
3066 arr_type = decode_constrained_packed_array_type (arr_type);
3067
3068 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3069 return (LONGEST) - which;
3070
3071 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3072 type = TYPE_TARGET_TYPE (arr_type);
3073 else
3074 type = arr_type;
3075
3076 if (TYPE_FIXED_INSTANCE (type))
3077 {
3078 /* The array has already been fixed, so we do not need to
3079 check the parallel ___XA type again. That encoding has
3080 already been applied, so ignore it now. */
3081 index_type_desc = NULL;
3082 }
3083 else
3084 {
3085 index_type_desc = ada_find_parallel_type (type, "___XA");
3086 ada_fixup_array_indexes_type (index_type_desc);
3087 }
3088
3089 if (index_type_desc != NULL)
3090 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3091 NULL);
3092 else
3093 {
3094 struct type *elt_type = check_typedef (type);
3095
3096 for (i = 1; i < n; i++)
3097 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3098
3099 index_type = TYPE_INDEX_TYPE (elt_type);
3100 }
3101
3102 return
3103 (LONGEST) (which == 0
3104 ? ada_discrete_type_low_bound (index_type)
3105 : ada_discrete_type_high_bound (index_type));
3106 }
3107
3108 /* Given that arr is an array value, returns the lower bound of the
3109 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3110 WHICH is 1. This routine will also work for arrays with bounds
3111 supplied by run-time quantities other than discriminants. */
3112
3113 static LONGEST
3114 ada_array_bound (struct value *arr, int n, int which)
3115 {
3116 struct type *arr_type;
3117
3118 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3119 arr = value_ind (arr);
3120 arr_type = value_enclosing_type (arr);
3121
3122 if (ada_is_constrained_packed_array_type (arr_type))
3123 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3124 else if (ada_is_simple_array_type (arr_type))
3125 return ada_array_bound_from_type (arr_type, n, which);
3126 else
3127 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3128 }
3129
3130 /* Given that arr is an array value, returns the length of the
3131 nth index. This routine will also work for arrays with bounds
3132 supplied by run-time quantities other than discriminants.
3133 Does not work for arrays indexed by enumeration types with representation
3134 clauses at the moment. */
3135
3136 static LONGEST
3137 ada_array_length (struct value *arr, int n)
3138 {
3139 struct type *arr_type, *index_type;
3140 int low, high;
3141
3142 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3143 arr = value_ind (arr);
3144 arr_type = value_enclosing_type (arr);
3145
3146 if (ada_is_constrained_packed_array_type (arr_type))
3147 return ada_array_length (decode_constrained_packed_array (arr), n);
3148
3149 if (ada_is_simple_array_type (arr_type))
3150 {
3151 low = ada_array_bound_from_type (arr_type, n, 0);
3152 high = ada_array_bound_from_type (arr_type, n, 1);
3153 }
3154 else
3155 {
3156 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3157 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3158 }
3159
3160 arr_type = check_typedef (arr_type);
3161 index_type = ada_index_type (arr_type, n, "length");
3162 if (index_type != NULL)
3163 {
3164 struct type *base_type;
3165 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3166 base_type = TYPE_TARGET_TYPE (index_type);
3167 else
3168 base_type = index_type;
3169
3170 low = pos_atr (value_from_longest (base_type, low));
3171 high = pos_atr (value_from_longest (base_type, high));
3172 }
3173 return high - low + 1;
3174 }
3175
3176 /* An array whose type is that of ARR_TYPE (an array type), with
3177 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3178 less than LOW, then LOW-1 is used. */
3179
3180 static struct value *
3181 empty_array (struct type *arr_type, int low, int high)
3182 {
3183 struct type *arr_type0 = ada_check_typedef (arr_type);
3184 struct type *index_type
3185 = create_static_range_type
3186 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3187 high < low ? low - 1 : high);
3188 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3189
3190 return allocate_value (create_array_type (NULL, elt_type, index_type));
3191 }
3192 \f
3193
3194 /* Name resolution */
3195
3196 /* The "decoded" name for the user-definable Ada operator corresponding
3197 to OP. */
3198
3199 static const char *
3200 ada_decoded_op_name (enum exp_opcode op)
3201 {
3202 int i;
3203
3204 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3205 {
3206 if (ada_opname_table[i].op == op)
3207 return ada_opname_table[i].decoded;
3208 }
3209 error (_("Could not find operator name for opcode"));
3210 }
3211
3212
3213 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3214 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3215 undefined namespace) and converts operators that are
3216 user-defined into appropriate function calls. If CONTEXT_TYPE is
3217 non-null, it provides a preferred result type [at the moment, only
3218 type void has any effect---causing procedures to be preferred over
3219 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3220 return type is preferred. May change (expand) *EXP. */
3221
3222 static void
3223 resolve (expression_up *expp, int void_context_p)
3224 {
3225 struct type *context_type = NULL;
3226 int pc = 0;
3227
3228 if (void_context_p)
3229 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3230
3231 resolve_subexp (expp, &pc, 1, context_type);
3232 }
3233
3234 /* Resolve the operator of the subexpression beginning at
3235 position *POS of *EXPP. "Resolving" consists of replacing
3236 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3237 with their resolutions, replacing built-in operators with
3238 function calls to user-defined operators, where appropriate, and,
3239 when DEPROCEDURE_P is non-zero, converting function-valued variables
3240 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3241 are as in ada_resolve, above. */
3242
3243 static struct value *
3244 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3245 struct type *context_type)
3246 {
3247 int pc = *pos;
3248 int i;
3249 struct expression *exp; /* Convenience: == *expp. */
3250 enum exp_opcode op = (*expp)->elts[pc].opcode;
3251 struct value **argvec; /* Vector of operand types (alloca'ed). */
3252 int nargs; /* Number of operands. */
3253 int oplen;
3254
3255 argvec = NULL;
3256 nargs = 0;
3257 exp = expp->get ();
3258
3259 /* Pass one: resolve operands, saving their types and updating *pos,
3260 if needed. */
3261 switch (op)
3262 {
3263 case OP_FUNCALL:
3264 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3265 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3266 *pos += 7;
3267 else
3268 {
3269 *pos += 3;
3270 resolve_subexp (expp, pos, 0, NULL);
3271 }
3272 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3273 break;
3274
3275 case UNOP_ADDR:
3276 *pos += 1;
3277 resolve_subexp (expp, pos, 0, NULL);
3278 break;
3279
3280 case UNOP_QUAL:
3281 *pos += 3;
3282 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3283 break;
3284
3285 case OP_ATR_MODULUS:
3286 case OP_ATR_SIZE:
3287 case OP_ATR_TAG:
3288 case OP_ATR_FIRST:
3289 case OP_ATR_LAST:
3290 case OP_ATR_LENGTH:
3291 case OP_ATR_POS:
3292 case OP_ATR_VAL:
3293 case OP_ATR_MIN:
3294 case OP_ATR_MAX:
3295 case TERNOP_IN_RANGE:
3296 case BINOP_IN_BOUNDS:
3297 case UNOP_IN_RANGE:
3298 case OP_AGGREGATE:
3299 case OP_OTHERS:
3300 case OP_CHOICES:
3301 case OP_POSITIONAL:
3302 case OP_DISCRETE_RANGE:
3303 case OP_NAME:
3304 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3305 *pos += oplen;
3306 break;
3307
3308 case BINOP_ASSIGN:
3309 {
3310 struct value *arg1;
3311
3312 *pos += 1;
3313 arg1 = resolve_subexp (expp, pos, 0, NULL);
3314 if (arg1 == NULL)
3315 resolve_subexp (expp, pos, 1, NULL);
3316 else
3317 resolve_subexp (expp, pos, 1, value_type (arg1));
3318 break;
3319 }
3320
3321 case UNOP_CAST:
3322 *pos += 3;
3323 nargs = 1;
3324 break;
3325
3326 case BINOP_ADD:
3327 case BINOP_SUB:
3328 case BINOP_MUL:
3329 case BINOP_DIV:
3330 case BINOP_REM:
3331 case BINOP_MOD:
3332 case BINOP_EXP:
3333 case BINOP_CONCAT:
3334 case BINOP_LOGICAL_AND:
3335 case BINOP_LOGICAL_OR:
3336 case BINOP_BITWISE_AND:
3337 case BINOP_BITWISE_IOR:
3338 case BINOP_BITWISE_XOR:
3339
3340 case BINOP_EQUAL:
3341 case BINOP_NOTEQUAL:
3342 case BINOP_LESS:
3343 case BINOP_GTR:
3344 case BINOP_LEQ:
3345 case BINOP_GEQ:
3346
3347 case BINOP_REPEAT:
3348 case BINOP_SUBSCRIPT:
3349 case BINOP_COMMA:
3350 *pos += 1;
3351 nargs = 2;
3352 break;
3353
3354 case UNOP_NEG:
3355 case UNOP_PLUS:
3356 case UNOP_LOGICAL_NOT:
3357 case UNOP_ABS:
3358 case UNOP_IND:
3359 *pos += 1;
3360 nargs = 1;
3361 break;
3362
3363 case OP_LONG:
3364 case OP_FLOAT:
3365 case OP_VAR_VALUE:
3366 case OP_VAR_MSYM_VALUE:
3367 *pos += 4;
3368 break;
3369
3370 case OP_TYPE:
3371 case OP_BOOL:
3372 case OP_LAST:
3373 case OP_INTERNALVAR:
3374 *pos += 3;
3375 break;
3376
3377 case UNOP_MEMVAL:
3378 *pos += 3;
3379 nargs = 1;
3380 break;
3381
3382 case OP_REGISTER:
3383 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3384 break;
3385
3386 case STRUCTOP_STRUCT:
3387 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3388 nargs = 1;
3389 break;
3390
3391 case TERNOP_SLICE:
3392 *pos += 1;
3393 nargs = 3;
3394 break;
3395
3396 case OP_STRING:
3397 break;
3398
3399 default:
3400 error (_("Unexpected operator during name resolution"));
3401 }
3402
3403 argvec = XALLOCAVEC (struct value *, nargs + 1);
3404 for (i = 0; i < nargs; i += 1)
3405 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3406 argvec[i] = NULL;
3407 exp = expp->get ();
3408
3409 /* Pass two: perform any resolution on principal operator. */
3410 switch (op)
3411 {
3412 default:
3413 break;
3414
3415 case OP_VAR_VALUE:
3416 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3417 {
3418 std::vector<struct block_symbol> candidates;
3419 int n_candidates;
3420
3421 n_candidates =
3422 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3423 (exp->elts[pc + 2].symbol),
3424 exp->elts[pc + 1].block, VAR_DOMAIN,
3425 &candidates);
3426
3427 if (n_candidates > 1)
3428 {
3429 /* Types tend to get re-introduced locally, so if there
3430 are any local symbols that are not types, first filter
3431 out all types. */
3432 int j;
3433 for (j = 0; j < n_candidates; j += 1)
3434 switch (SYMBOL_CLASS (candidates[j].symbol))
3435 {
3436 case LOC_REGISTER:
3437 case LOC_ARG:
3438 case LOC_REF_ARG:
3439 case LOC_REGPARM_ADDR:
3440 case LOC_LOCAL:
3441 case LOC_COMPUTED:
3442 goto FoundNonType;
3443 default:
3444 break;
3445 }
3446 FoundNonType:
3447 if (j < n_candidates)
3448 {
3449 j = 0;
3450 while (j < n_candidates)
3451 {
3452 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3453 {
3454 candidates[j] = candidates[n_candidates - 1];
3455 n_candidates -= 1;
3456 }
3457 else
3458 j += 1;
3459 }
3460 }
3461 }
3462
3463 if (n_candidates == 0)
3464 error (_("No definition found for %s"),
3465 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3466 else if (n_candidates == 1)
3467 i = 0;
3468 else if (deprocedure_p
3469 && !is_nonfunction (candidates.data (), n_candidates))
3470 {
3471 i = ada_resolve_function
3472 (candidates.data (), n_candidates, NULL, 0,
3473 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3474 context_type);
3475 if (i < 0)
3476 error (_("Could not find a match for %s"),
3477 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3478 }
3479 else
3480 {
3481 printf_filtered (_("Multiple matches for %s\n"),
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 user_select_syms (candidates.data (), n_candidates, 1);
3484 i = 0;
3485 }
3486
3487 exp->elts[pc + 1].block = candidates[i].block;
3488 exp->elts[pc + 2].symbol = candidates[i].symbol;
3489 innermost_block.update (candidates[i]);
3490 }
3491
3492 if (deprocedure_p
3493 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3494 == TYPE_CODE_FUNC))
3495 {
3496 replace_operator_with_call (expp, pc, 0, 4,
3497 exp->elts[pc + 2].symbol,
3498 exp->elts[pc + 1].block);
3499 exp = expp->get ();
3500 }
3501 break;
3502
3503 case OP_FUNCALL:
3504 {
3505 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3506 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3507 {
3508 std::vector<struct block_symbol> candidates;
3509 int n_candidates;
3510
3511 n_candidates =
3512 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3513 (exp->elts[pc + 5].symbol),
3514 exp->elts[pc + 4].block, VAR_DOMAIN,
3515 &candidates);
3516
3517 if (n_candidates == 1)
3518 i = 0;
3519 else
3520 {
3521 i = ada_resolve_function
3522 (candidates.data (), n_candidates,
3523 argvec, nargs,
3524 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3525 context_type);
3526 if (i < 0)
3527 error (_("Could not find a match for %s"),
3528 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3529 }
3530
3531 exp->elts[pc + 4].block = candidates[i].block;
3532 exp->elts[pc + 5].symbol = candidates[i].symbol;
3533 innermost_block.update (candidates[i]);
3534 }
3535 }
3536 break;
3537 case BINOP_ADD:
3538 case BINOP_SUB:
3539 case BINOP_MUL:
3540 case BINOP_DIV:
3541 case BINOP_REM:
3542 case BINOP_MOD:
3543 case BINOP_CONCAT:
3544 case BINOP_BITWISE_AND:
3545 case BINOP_BITWISE_IOR:
3546 case BINOP_BITWISE_XOR:
3547 case BINOP_EQUAL:
3548 case BINOP_NOTEQUAL:
3549 case BINOP_LESS:
3550 case BINOP_GTR:
3551 case BINOP_LEQ:
3552 case BINOP_GEQ:
3553 case BINOP_EXP:
3554 case UNOP_NEG:
3555 case UNOP_PLUS:
3556 case UNOP_LOGICAL_NOT:
3557 case UNOP_ABS:
3558 if (possible_user_operator_p (op, argvec))
3559 {
3560 std::vector<struct block_symbol> candidates;
3561 int n_candidates;
3562
3563 n_candidates =
3564 ada_lookup_symbol_list (ada_decoded_op_name (op),
3565 (struct block *) NULL, VAR_DOMAIN,
3566 &candidates);
3567
3568 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3569 nargs, ada_decoded_op_name (op), NULL);
3570 if (i < 0)
3571 break;
3572
3573 replace_operator_with_call (expp, pc, nargs, 1,
3574 candidates[i].symbol,
3575 candidates[i].block);
3576 exp = expp->get ();
3577 }
3578 break;
3579
3580 case OP_TYPE:
3581 case OP_REGISTER:
3582 return NULL;
3583 }
3584
3585 *pos = pc;
3586 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3587 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3588 exp->elts[pc + 1].objfile,
3589 exp->elts[pc + 2].msymbol);
3590 else
3591 return evaluate_subexp_type (exp, pos);
3592 }
3593
3594 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3595 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3596 a non-pointer. */
3597 /* The term "match" here is rather loose. The match is heuristic and
3598 liberal. */
3599
3600 static int
3601 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3602 {
3603 ftype = ada_check_typedef (ftype);
3604 atype = ada_check_typedef (atype);
3605
3606 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3607 ftype = TYPE_TARGET_TYPE (ftype);
3608 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3609 atype = TYPE_TARGET_TYPE (atype);
3610
3611 switch (TYPE_CODE (ftype))
3612 {
3613 default:
3614 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3615 case TYPE_CODE_PTR:
3616 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3617 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3618 TYPE_TARGET_TYPE (atype), 0);
3619 else
3620 return (may_deref
3621 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3622 case TYPE_CODE_INT:
3623 case TYPE_CODE_ENUM:
3624 case TYPE_CODE_RANGE:
3625 switch (TYPE_CODE (atype))
3626 {
3627 case TYPE_CODE_INT:
3628 case TYPE_CODE_ENUM:
3629 case TYPE_CODE_RANGE:
3630 return 1;
3631 default:
3632 return 0;
3633 }
3634
3635 case TYPE_CODE_ARRAY:
3636 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3637 || ada_is_array_descriptor_type (atype));
3638
3639 case TYPE_CODE_STRUCT:
3640 if (ada_is_array_descriptor_type (ftype))
3641 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3642 || ada_is_array_descriptor_type (atype));
3643 else
3644 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3645 && !ada_is_array_descriptor_type (atype));
3646
3647 case TYPE_CODE_UNION:
3648 case TYPE_CODE_FLT:
3649 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3650 }
3651 }
3652
3653 /* Return non-zero if the formals of FUNC "sufficiently match" the
3654 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3655 may also be an enumeral, in which case it is treated as a 0-
3656 argument function. */
3657
3658 static int
3659 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3660 {
3661 int i;
3662 struct type *func_type = SYMBOL_TYPE (func);
3663
3664 if (SYMBOL_CLASS (func) == LOC_CONST
3665 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3666 return (n_actuals == 0);
3667 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3668 return 0;
3669
3670 if (TYPE_NFIELDS (func_type) != n_actuals)
3671 return 0;
3672
3673 for (i = 0; i < n_actuals; i += 1)
3674 {
3675 if (actuals[i] == NULL)
3676 return 0;
3677 else
3678 {
3679 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3680 i));
3681 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3682
3683 if (!ada_type_match (ftype, atype, 1))
3684 return 0;
3685 }
3686 }
3687 return 1;
3688 }
3689
3690 /* False iff function type FUNC_TYPE definitely does not produce a value
3691 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3692 FUNC_TYPE is not a valid function type with a non-null return type
3693 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3694
3695 static int
3696 return_match (struct type *func_type, struct type *context_type)
3697 {
3698 struct type *return_type;
3699
3700 if (func_type == NULL)
3701 return 1;
3702
3703 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3704 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3705 else
3706 return_type = get_base_type (func_type);
3707 if (return_type == NULL)
3708 return 1;
3709
3710 context_type = get_base_type (context_type);
3711
3712 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3713 return context_type == NULL || return_type == context_type;
3714 else if (context_type == NULL)
3715 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3716 else
3717 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3718 }
3719
3720
3721 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3722 function (if any) that matches the types of the NARGS arguments in
3723 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3724 that returns that type, then eliminate matches that don't. If
3725 CONTEXT_TYPE is void and there is at least one match that does not
3726 return void, eliminate all matches that do.
3727
3728 Asks the user if there is more than one match remaining. Returns -1
3729 if there is no such symbol or none is selected. NAME is used
3730 solely for messages. May re-arrange and modify SYMS in
3731 the process; the index returned is for the modified vector. */
3732
3733 static int
3734 ada_resolve_function (struct block_symbol syms[],
3735 int nsyms, struct value **args, int nargs,
3736 const char *name, struct type *context_type)
3737 {
3738 int fallback;
3739 int k;
3740 int m; /* Number of hits */
3741
3742 m = 0;
3743 /* In the first pass of the loop, we only accept functions matching
3744 context_type. If none are found, we add a second pass of the loop
3745 where every function is accepted. */
3746 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3747 {
3748 for (k = 0; k < nsyms; k += 1)
3749 {
3750 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3751
3752 if (ada_args_match (syms[k].symbol, args, nargs)
3753 && (fallback || return_match (type, context_type)))
3754 {
3755 syms[m] = syms[k];
3756 m += 1;
3757 }
3758 }
3759 }
3760
3761 /* If we got multiple matches, ask the user which one to use. Don't do this
3762 interactive thing during completion, though, as the purpose of the
3763 completion is providing a list of all possible matches. Prompting the
3764 user to filter it down would be completely unexpected in this case. */
3765 if (m == 0)
3766 return -1;
3767 else if (m > 1 && !parse_completion)
3768 {
3769 printf_filtered (_("Multiple matches for %s\n"), name);
3770 user_select_syms (syms, m, 1);
3771 return 0;
3772 }
3773 return 0;
3774 }
3775
3776 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3777 in a listing of choices during disambiguation (see sort_choices, below).
3778 The idea is that overloadings of a subprogram name from the
3779 same package should sort in their source order. We settle for ordering
3780 such symbols by their trailing number (__N or $N). */
3781
3782 static int
3783 encoded_ordered_before (const char *N0, const char *N1)
3784 {
3785 if (N1 == NULL)
3786 return 0;
3787 else if (N0 == NULL)
3788 return 1;
3789 else
3790 {
3791 int k0, k1;
3792
3793 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3794 ;
3795 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3796 ;
3797 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3798 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3799 {
3800 int n0, n1;
3801
3802 n0 = k0;
3803 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3804 n0 -= 1;
3805 n1 = k1;
3806 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3807 n1 -= 1;
3808 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3809 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3810 }
3811 return (strcmp (N0, N1) < 0);
3812 }
3813 }
3814
3815 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3816 encoded names. */
3817
3818 static void
3819 sort_choices (struct block_symbol syms[], int nsyms)
3820 {
3821 int i;
3822
3823 for (i = 1; i < nsyms; i += 1)
3824 {
3825 struct block_symbol sym = syms[i];
3826 int j;
3827
3828 for (j = i - 1; j >= 0; j -= 1)
3829 {
3830 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3831 SYMBOL_LINKAGE_NAME (sym.symbol)))
3832 break;
3833 syms[j + 1] = syms[j];
3834 }
3835 syms[j + 1] = sym;
3836 }
3837 }
3838
3839 /* Whether GDB should display formals and return types for functions in the
3840 overloads selection menu. */
3841 static int print_signatures = 1;
3842
3843 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3844 all but functions, the signature is just the name of the symbol. For
3845 functions, this is the name of the function, the list of types for formals
3846 and the return type (if any). */
3847
3848 static void
3849 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3850 const struct type_print_options *flags)
3851 {
3852 struct type *type = SYMBOL_TYPE (sym);
3853
3854 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3855 if (!print_signatures
3856 || type == NULL
3857 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3858 return;
3859
3860 if (TYPE_NFIELDS (type) > 0)
3861 {
3862 int i;
3863
3864 fprintf_filtered (stream, " (");
3865 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3866 {
3867 if (i > 0)
3868 fprintf_filtered (stream, "; ");
3869 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3870 flags);
3871 }
3872 fprintf_filtered (stream, ")");
3873 }
3874 if (TYPE_TARGET_TYPE (type) != NULL
3875 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3876 {
3877 fprintf_filtered (stream, " return ");
3878 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3879 }
3880 }
3881
3882 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3883 by asking the user (if necessary), returning the number selected,
3884 and setting the first elements of SYMS items. Error if no symbols
3885 selected. */
3886
3887 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3888 to be re-integrated one of these days. */
3889
3890 int
3891 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3892 {
3893 int i;
3894 int *chosen = XALLOCAVEC (int , nsyms);
3895 int n_chosen;
3896 int first_choice = (max_results == 1) ? 1 : 2;
3897 const char *select_mode = multiple_symbols_select_mode ();
3898
3899 if (max_results < 1)
3900 error (_("Request to select 0 symbols!"));
3901 if (nsyms <= 1)
3902 return nsyms;
3903
3904 if (select_mode == multiple_symbols_cancel)
3905 error (_("\
3906 canceled because the command is ambiguous\n\
3907 See set/show multiple-symbol."));
3908
3909 /* If select_mode is "all", then return all possible symbols.
3910 Only do that if more than one symbol can be selected, of course.
3911 Otherwise, display the menu as usual. */
3912 if (select_mode == multiple_symbols_all && max_results > 1)
3913 return nsyms;
3914
3915 printf_filtered (_("[0] cancel\n"));
3916 if (max_results > 1)
3917 printf_filtered (_("[1] all\n"));
3918
3919 sort_choices (syms, nsyms);
3920
3921 for (i = 0; i < nsyms; i += 1)
3922 {
3923 if (syms[i].symbol == NULL)
3924 continue;
3925
3926 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3927 {
3928 struct symtab_and_line sal =
3929 find_function_start_sal (syms[i].symbol, 1);
3930
3931 printf_filtered ("[%d] ", i + first_choice);
3932 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3933 &type_print_raw_options);
3934 if (sal.symtab == NULL)
3935 printf_filtered (_(" at <no source file available>:%d\n"),
3936 sal.line);
3937 else
3938 printf_filtered (_(" at %s:%d\n"),
3939 symtab_to_filename_for_display (sal.symtab),
3940 sal.line);
3941 continue;
3942 }
3943 else
3944 {
3945 int is_enumeral =
3946 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3947 && SYMBOL_TYPE (syms[i].symbol) != NULL
3948 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3949 struct symtab *symtab = NULL;
3950
3951 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3952 symtab = symbol_symtab (syms[i].symbol);
3953
3954 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3955 {
3956 printf_filtered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
3959 printf_filtered (_(" at %s:%d\n"),
3960 symtab_to_filename_for_display (symtab),
3961 SYMBOL_LINE (syms[i].symbol));
3962 }
3963 else if (is_enumeral
3964 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3965 {
3966 printf_filtered (("[%d] "), i + first_choice);
3967 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3968 gdb_stdout, -1, 0, &type_print_raw_options);
3969 printf_filtered (_("'(%s) (enumeral)\n"),
3970 SYMBOL_PRINT_NAME (syms[i].symbol));
3971 }
3972 else
3973 {
3974 printf_filtered ("[%d] ", i + first_choice);
3975 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3976 &type_print_raw_options);
3977
3978 if (symtab != NULL)
3979 printf_filtered (is_enumeral
3980 ? _(" in %s (enumeral)\n")
3981 : _(" at %s:?\n"),
3982 symtab_to_filename_for_display (symtab));
3983 else
3984 printf_filtered (is_enumeral
3985 ? _(" (enumeral)\n")
3986 : _(" at ?\n"));
3987 }
3988 }
3989 }
3990
3991 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3992 "overload-choice");
3993
3994 for (i = 0; i < n_chosen; i += 1)
3995 syms[i] = syms[chosen[i]];
3996
3997 return n_chosen;
3998 }
3999
4000 /* Read and validate a set of numeric choices from the user in the
4001 range 0 .. N_CHOICES-1. Place the results in increasing
4002 order in CHOICES[0 .. N-1], and return N.
4003
4004 The user types choices as a sequence of numbers on one line
4005 separated by blanks, encoding them as follows:
4006
4007 + A choice of 0 means to cancel the selection, throwing an error.
4008 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4009 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4010
4011 The user is not allowed to choose more than MAX_RESULTS values.
4012
4013 ANNOTATION_SUFFIX, if present, is used to annotate the input
4014 prompts (for use with the -f switch). */
4015
4016 int
4017 get_selections (int *choices, int n_choices, int max_results,
4018 int is_all_choice, const char *annotation_suffix)
4019 {
4020 char *args;
4021 const char *prompt;
4022 int n_chosen;
4023 int first_choice = is_all_choice ? 2 : 1;
4024
4025 prompt = getenv ("PS2");
4026 if (prompt == NULL)
4027 prompt = "> ";
4028
4029 args = command_line_input (prompt, annotation_suffix);
4030
4031 if (args == NULL)
4032 error_no_arg (_("one or more choice numbers"));
4033
4034 n_chosen = 0;
4035
4036 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4037 order, as given in args. Choices are validated. */
4038 while (1)
4039 {
4040 char *args2;
4041 int choice, j;
4042
4043 args = skip_spaces (args);
4044 if (*args == '\0' && n_chosen == 0)
4045 error_no_arg (_("one or more choice numbers"));
4046 else if (*args == '\0')
4047 break;
4048
4049 choice = strtol (args, &args2, 10);
4050 if (args == args2 || choice < 0
4051 || choice > n_choices + first_choice - 1)
4052 error (_("Argument must be choice number"));
4053 args = args2;
4054
4055 if (choice == 0)
4056 error (_("cancelled"));
4057
4058 if (choice < first_choice)
4059 {
4060 n_chosen = n_choices;
4061 for (j = 0; j < n_choices; j += 1)
4062 choices[j] = j;
4063 break;
4064 }
4065 choice -= first_choice;
4066
4067 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4068 {
4069 }
4070
4071 if (j < 0 || choice != choices[j])
4072 {
4073 int k;
4074
4075 for (k = n_chosen - 1; k > j; k -= 1)
4076 choices[k + 1] = choices[k];
4077 choices[j + 1] = choice;
4078 n_chosen += 1;
4079 }
4080 }
4081
4082 if (n_chosen > max_results)
4083 error (_("Select no more than %d of the above"), max_results);
4084
4085 return n_chosen;
4086 }
4087
4088 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4089 on the function identified by SYM and BLOCK, and taking NARGS
4090 arguments. Update *EXPP as needed to hold more space. */
4091
4092 static void
4093 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4094 int oplen, struct symbol *sym,
4095 const struct block *block)
4096 {
4097 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4098 symbol, -oplen for operator being replaced). */
4099 struct expression *newexp = (struct expression *)
4100 xzalloc (sizeof (struct expression)
4101 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4102 struct expression *exp = expp->get ();
4103
4104 newexp->nelts = exp->nelts + 7 - oplen;
4105 newexp->language_defn = exp->language_defn;
4106 newexp->gdbarch = exp->gdbarch;
4107 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4108 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4109 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4110
4111 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4112 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4113
4114 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4115 newexp->elts[pc + 4].block = block;
4116 newexp->elts[pc + 5].symbol = sym;
4117
4118 expp->reset (newexp);
4119 }
4120
4121 /* Type-class predicates */
4122
4123 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4124 or FLOAT). */
4125
4126 static int
4127 numeric_type_p (struct type *type)
4128 {
4129 if (type == NULL)
4130 return 0;
4131 else
4132 {
4133 switch (TYPE_CODE (type))
4134 {
4135 case TYPE_CODE_INT:
4136 case TYPE_CODE_FLT:
4137 return 1;
4138 case TYPE_CODE_RANGE:
4139 return (type == TYPE_TARGET_TYPE (type)
4140 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4141 default:
4142 return 0;
4143 }
4144 }
4145 }
4146
4147 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4148
4149 static int
4150 integer_type_p (struct type *type)
4151 {
4152 if (type == NULL)
4153 return 0;
4154 else
4155 {
4156 switch (TYPE_CODE (type))
4157 {
4158 case TYPE_CODE_INT:
4159 return 1;
4160 case TYPE_CODE_RANGE:
4161 return (type == TYPE_TARGET_TYPE (type)
4162 || integer_type_p (TYPE_TARGET_TYPE (type)));
4163 default:
4164 return 0;
4165 }
4166 }
4167 }
4168
4169 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4170
4171 static int
4172 scalar_type_p (struct type *type)
4173 {
4174 if (type == NULL)
4175 return 0;
4176 else
4177 {
4178 switch (TYPE_CODE (type))
4179 {
4180 case TYPE_CODE_INT:
4181 case TYPE_CODE_RANGE:
4182 case TYPE_CODE_ENUM:
4183 case TYPE_CODE_FLT:
4184 return 1;
4185 default:
4186 return 0;
4187 }
4188 }
4189 }
4190
4191 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4192
4193 static int
4194 discrete_type_p (struct type *type)
4195 {
4196 if (type == NULL)
4197 return 0;
4198 else
4199 {
4200 switch (TYPE_CODE (type))
4201 {
4202 case TYPE_CODE_INT:
4203 case TYPE_CODE_RANGE:
4204 case TYPE_CODE_ENUM:
4205 case TYPE_CODE_BOOL:
4206 return 1;
4207 default:
4208 return 0;
4209 }
4210 }
4211 }
4212
4213 /* Returns non-zero if OP with operands in the vector ARGS could be
4214 a user-defined function. Errs on the side of pre-defined operators
4215 (i.e., result 0). */
4216
4217 static int
4218 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4219 {
4220 struct type *type0 =
4221 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4222 struct type *type1 =
4223 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4224
4225 if (type0 == NULL)
4226 return 0;
4227
4228 switch (op)
4229 {
4230 default:
4231 return 0;
4232
4233 case BINOP_ADD:
4234 case BINOP_SUB:
4235 case BINOP_MUL:
4236 case BINOP_DIV:
4237 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4238
4239 case BINOP_REM:
4240 case BINOP_MOD:
4241 case BINOP_BITWISE_AND:
4242 case BINOP_BITWISE_IOR:
4243 case BINOP_BITWISE_XOR:
4244 return (!(integer_type_p (type0) && integer_type_p (type1)));
4245
4246 case BINOP_EQUAL:
4247 case BINOP_NOTEQUAL:
4248 case BINOP_LESS:
4249 case BINOP_GTR:
4250 case BINOP_LEQ:
4251 case BINOP_GEQ:
4252 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4253
4254 case BINOP_CONCAT:
4255 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4256
4257 case BINOP_EXP:
4258 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4259
4260 case UNOP_NEG:
4261 case UNOP_PLUS:
4262 case UNOP_LOGICAL_NOT:
4263 case UNOP_ABS:
4264 return (!numeric_type_p (type0));
4265
4266 }
4267 }
4268 \f
4269 /* Renaming */
4270
4271 /* NOTES:
4272
4273 1. In the following, we assume that a renaming type's name may
4274 have an ___XD suffix. It would be nice if this went away at some
4275 point.
4276 2. We handle both the (old) purely type-based representation of
4277 renamings and the (new) variable-based encoding. At some point,
4278 it is devoutly to be hoped that the former goes away
4279 (FIXME: hilfinger-2007-07-09).
4280 3. Subprogram renamings are not implemented, although the XRS
4281 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4282
4283 /* If SYM encodes a renaming,
4284
4285 <renaming> renames <renamed entity>,
4286
4287 sets *LEN to the length of the renamed entity's name,
4288 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4289 the string describing the subcomponent selected from the renamed
4290 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4291 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4292 are undefined). Otherwise, returns a value indicating the category
4293 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4294 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4295 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4296 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4297 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4298 may be NULL, in which case they are not assigned.
4299
4300 [Currently, however, GCC does not generate subprogram renamings.] */
4301
4302 enum ada_renaming_category
4303 ada_parse_renaming (struct symbol *sym,
4304 const char **renamed_entity, int *len,
4305 const char **renaming_expr)
4306 {
4307 enum ada_renaming_category kind;
4308 const char *info;
4309 const char *suffix;
4310
4311 if (sym == NULL)
4312 return ADA_NOT_RENAMING;
4313 switch (SYMBOL_CLASS (sym))
4314 {
4315 default:
4316 return ADA_NOT_RENAMING;
4317 case LOC_TYPEDEF:
4318 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4319 renamed_entity, len, renaming_expr);
4320 case LOC_LOCAL:
4321 case LOC_STATIC:
4322 case LOC_COMPUTED:
4323 case LOC_OPTIMIZED_OUT:
4324 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4325 if (info == NULL)
4326 return ADA_NOT_RENAMING;
4327 switch (info[5])
4328 {
4329 case '_':
4330 kind = ADA_OBJECT_RENAMING;
4331 info += 6;
4332 break;
4333 case 'E':
4334 kind = ADA_EXCEPTION_RENAMING;
4335 info += 7;
4336 break;
4337 case 'P':
4338 kind = ADA_PACKAGE_RENAMING;
4339 info += 7;
4340 break;
4341 case 'S':
4342 kind = ADA_SUBPROGRAM_RENAMING;
4343 info += 7;
4344 break;
4345 default:
4346 return ADA_NOT_RENAMING;
4347 }
4348 }
4349
4350 if (renamed_entity != NULL)
4351 *renamed_entity = info;
4352 suffix = strstr (info, "___XE");
4353 if (suffix == NULL || suffix == info)
4354 return ADA_NOT_RENAMING;
4355 if (len != NULL)
4356 *len = strlen (info) - strlen (suffix);
4357 suffix += 5;
4358 if (renaming_expr != NULL)
4359 *renaming_expr = suffix;
4360 return kind;
4361 }
4362
4363 /* Assuming TYPE encodes a renaming according to the old encoding in
4364 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4365 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4366 ADA_NOT_RENAMING otherwise. */
4367 static enum ada_renaming_category
4368 parse_old_style_renaming (struct type *type,
4369 const char **renamed_entity, int *len,
4370 const char **renaming_expr)
4371 {
4372 enum ada_renaming_category kind;
4373 const char *name;
4374 const char *info;
4375 const char *suffix;
4376
4377 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4378 || TYPE_NFIELDS (type) != 1)
4379 return ADA_NOT_RENAMING;
4380
4381 name = TYPE_NAME (type);
4382 if (name == NULL)
4383 return ADA_NOT_RENAMING;
4384
4385 name = strstr (name, "___XR");
4386 if (name == NULL)
4387 return ADA_NOT_RENAMING;
4388 switch (name[5])
4389 {
4390 case '\0':
4391 case '_':
4392 kind = ADA_OBJECT_RENAMING;
4393 break;
4394 case 'E':
4395 kind = ADA_EXCEPTION_RENAMING;
4396 break;
4397 case 'P':
4398 kind = ADA_PACKAGE_RENAMING;
4399 break;
4400 case 'S':
4401 kind = ADA_SUBPROGRAM_RENAMING;
4402 break;
4403 default:
4404 return ADA_NOT_RENAMING;
4405 }
4406
4407 info = TYPE_FIELD_NAME (type, 0);
4408 if (info == NULL)
4409 return ADA_NOT_RENAMING;
4410 if (renamed_entity != NULL)
4411 *renamed_entity = info;
4412 suffix = strstr (info, "___XE");
4413 if (renaming_expr != NULL)
4414 *renaming_expr = suffix + 5;
4415 if (suffix == NULL || suffix == info)
4416 return ADA_NOT_RENAMING;
4417 if (len != NULL)
4418 *len = suffix - info;
4419 return kind;
4420 }
4421
4422 /* Compute the value of the given RENAMING_SYM, which is expected to
4423 be a symbol encoding a renaming expression. BLOCK is the block
4424 used to evaluate the renaming. */
4425
4426 static struct value *
4427 ada_read_renaming_var_value (struct symbol *renaming_sym,
4428 const struct block *block)
4429 {
4430 const char *sym_name;
4431
4432 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4433 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4434 return evaluate_expression (expr.get ());
4435 }
4436 \f
4437
4438 /* Evaluation: Function Calls */
4439
4440 /* Return an lvalue containing the value VAL. This is the identity on
4441 lvalues, and otherwise has the side-effect of allocating memory
4442 in the inferior where a copy of the value contents is copied. */
4443
4444 static struct value *
4445 ensure_lval (struct value *val)
4446 {
4447 if (VALUE_LVAL (val) == not_lval
4448 || VALUE_LVAL (val) == lval_internalvar)
4449 {
4450 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4451 const CORE_ADDR addr =
4452 value_as_long (value_allocate_space_in_inferior (len));
4453
4454 VALUE_LVAL (val) = lval_memory;
4455 set_value_address (val, addr);
4456 write_memory (addr, value_contents (val), len);
4457 }
4458
4459 return val;
4460 }
4461
4462 /* Return the value ACTUAL, converted to be an appropriate value for a
4463 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4464 allocating any necessary descriptors (fat pointers), or copies of
4465 values not residing in memory, updating it as needed. */
4466
4467 struct value *
4468 ada_convert_actual (struct value *actual, struct type *formal_type0)
4469 {
4470 struct type *actual_type = ada_check_typedef (value_type (actual));
4471 struct type *formal_type = ada_check_typedef (formal_type0);
4472 struct type *formal_target =
4473 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4474 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4475 struct type *actual_target =
4476 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4477 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4478
4479 if (ada_is_array_descriptor_type (formal_target)
4480 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4481 return make_array_descriptor (formal_type, actual);
4482 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4483 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4484 {
4485 struct value *result;
4486
4487 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4488 && ada_is_array_descriptor_type (actual_target))
4489 result = desc_data (actual);
4490 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4491 {
4492 if (VALUE_LVAL (actual) != lval_memory)
4493 {
4494 struct value *val;
4495
4496 actual_type = ada_check_typedef (value_type (actual));
4497 val = allocate_value (actual_type);
4498 memcpy ((char *) value_contents_raw (val),
4499 (char *) value_contents (actual),
4500 TYPE_LENGTH (actual_type));
4501 actual = ensure_lval (val);
4502 }
4503 result = value_addr (actual);
4504 }
4505 else
4506 return actual;
4507 return value_cast_pointers (formal_type, result, 0);
4508 }
4509 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4510 return ada_value_ind (actual);
4511 else if (ada_is_aligner_type (formal_type))
4512 {
4513 /* We need to turn this parameter into an aligner type
4514 as well. */
4515 struct value *aligner = allocate_value (formal_type);
4516 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4517
4518 value_assign_to_component (aligner, component, actual);
4519 return aligner;
4520 }
4521
4522 return actual;
4523 }
4524
4525 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4526 type TYPE. This is usually an inefficient no-op except on some targets
4527 (such as AVR) where the representation of a pointer and an address
4528 differs. */
4529
4530 static CORE_ADDR
4531 value_pointer (struct value *value, struct type *type)
4532 {
4533 struct gdbarch *gdbarch = get_type_arch (type);
4534 unsigned len = TYPE_LENGTH (type);
4535 gdb_byte *buf = (gdb_byte *) alloca (len);
4536 CORE_ADDR addr;
4537
4538 addr = value_address (value);
4539 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4540 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4541 return addr;
4542 }
4543
4544
4545 /* Push a descriptor of type TYPE for array value ARR on the stack at
4546 *SP, updating *SP to reflect the new descriptor. Return either
4547 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4548 to-descriptor type rather than a descriptor type), a struct value *
4549 representing a pointer to this descriptor. */
4550
4551 static struct value *
4552 make_array_descriptor (struct type *type, struct value *arr)
4553 {
4554 struct type *bounds_type = desc_bounds_type (type);
4555 struct type *desc_type = desc_base_type (type);
4556 struct value *descriptor = allocate_value (desc_type);
4557 struct value *bounds = allocate_value (bounds_type);
4558 int i;
4559
4560 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4561 i > 0; i -= 1)
4562 {
4563 modify_field (value_type (bounds), value_contents_writeable (bounds),
4564 ada_array_bound (arr, i, 0),
4565 desc_bound_bitpos (bounds_type, i, 0),
4566 desc_bound_bitsize (bounds_type, i, 0));
4567 modify_field (value_type (bounds), value_contents_writeable (bounds),
4568 ada_array_bound (arr, i, 1),
4569 desc_bound_bitpos (bounds_type, i, 1),
4570 desc_bound_bitsize (bounds_type, i, 1));
4571 }
4572
4573 bounds = ensure_lval (bounds);
4574
4575 modify_field (value_type (descriptor),
4576 value_contents_writeable (descriptor),
4577 value_pointer (ensure_lval (arr),
4578 TYPE_FIELD_TYPE (desc_type, 0)),
4579 fat_pntr_data_bitpos (desc_type),
4580 fat_pntr_data_bitsize (desc_type));
4581
4582 modify_field (value_type (descriptor),
4583 value_contents_writeable (descriptor),
4584 value_pointer (bounds,
4585 TYPE_FIELD_TYPE (desc_type, 1)),
4586 fat_pntr_bounds_bitpos (desc_type),
4587 fat_pntr_bounds_bitsize (desc_type));
4588
4589 descriptor = ensure_lval (descriptor);
4590
4591 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4592 return value_addr (descriptor);
4593 else
4594 return descriptor;
4595 }
4596 \f
4597 /* Symbol Cache Module */
4598
4599 /* Performance measurements made as of 2010-01-15 indicate that
4600 this cache does bring some noticeable improvements. Depending
4601 on the type of entity being printed, the cache can make it as much
4602 as an order of magnitude faster than without it.
4603
4604 The descriptive type DWARF extension has significantly reduced
4605 the need for this cache, at least when DWARF is being used. However,
4606 even in this case, some expensive name-based symbol searches are still
4607 sometimes necessary - to find an XVZ variable, mostly. */
4608
4609 /* Initialize the contents of SYM_CACHE. */
4610
4611 static void
4612 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4613 {
4614 obstack_init (&sym_cache->cache_space);
4615 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4616 }
4617
4618 /* Free the memory used by SYM_CACHE. */
4619
4620 static void
4621 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4622 {
4623 obstack_free (&sym_cache->cache_space, NULL);
4624 xfree (sym_cache);
4625 }
4626
4627 /* Return the symbol cache associated to the given program space PSPACE.
4628 If not allocated for this PSPACE yet, allocate and initialize one. */
4629
4630 static struct ada_symbol_cache *
4631 ada_get_symbol_cache (struct program_space *pspace)
4632 {
4633 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4634
4635 if (pspace_data->sym_cache == NULL)
4636 {
4637 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4638 ada_init_symbol_cache (pspace_data->sym_cache);
4639 }
4640
4641 return pspace_data->sym_cache;
4642 }
4643
4644 /* Clear all entries from the symbol cache. */
4645
4646 static void
4647 ada_clear_symbol_cache (void)
4648 {
4649 struct ada_symbol_cache *sym_cache
4650 = ada_get_symbol_cache (current_program_space);
4651
4652 obstack_free (&sym_cache->cache_space, NULL);
4653 ada_init_symbol_cache (sym_cache);
4654 }
4655
4656 /* Search our cache for an entry matching NAME and DOMAIN.
4657 Return it if found, or NULL otherwise. */
4658
4659 static struct cache_entry **
4660 find_entry (const char *name, domain_enum domain)
4661 {
4662 struct ada_symbol_cache *sym_cache
4663 = ada_get_symbol_cache (current_program_space);
4664 int h = msymbol_hash (name) % HASH_SIZE;
4665 struct cache_entry **e;
4666
4667 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4668 {
4669 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4670 return e;
4671 }
4672 return NULL;
4673 }
4674
4675 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4676 Return 1 if found, 0 otherwise.
4677
4678 If an entry was found and SYM is not NULL, set *SYM to the entry's
4679 SYM. Same principle for BLOCK if not NULL. */
4680
4681 static int
4682 lookup_cached_symbol (const char *name, domain_enum domain,
4683 struct symbol **sym, const struct block **block)
4684 {
4685 struct cache_entry **e = find_entry (name, domain);
4686
4687 if (e == NULL)
4688 return 0;
4689 if (sym != NULL)
4690 *sym = (*e)->sym;
4691 if (block != NULL)
4692 *block = (*e)->block;
4693 return 1;
4694 }
4695
4696 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4697 in domain DOMAIN, save this result in our symbol cache. */
4698
4699 static void
4700 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4701 const struct block *block)
4702 {
4703 struct ada_symbol_cache *sym_cache
4704 = ada_get_symbol_cache (current_program_space);
4705 int h;
4706 char *copy;
4707 struct cache_entry *e;
4708
4709 /* Symbols for builtin types don't have a block.
4710 For now don't cache such symbols. */
4711 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4712 return;
4713
4714 /* If the symbol is a local symbol, then do not cache it, as a search
4715 for that symbol depends on the context. To determine whether
4716 the symbol is local or not, we check the block where we found it
4717 against the global and static blocks of its associated symtab. */
4718 if (sym
4719 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4720 GLOBAL_BLOCK) != block
4721 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4722 STATIC_BLOCK) != block)
4723 return;
4724
4725 h = msymbol_hash (name) % HASH_SIZE;
4726 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4727 e->next = sym_cache->root[h];
4728 sym_cache->root[h] = e;
4729 e->name = copy
4730 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4731 strcpy (copy, name);
4732 e->sym = sym;
4733 e->domain = domain;
4734 e->block = block;
4735 }
4736 \f
4737 /* Symbol Lookup */
4738
4739 /* Return the symbol name match type that should be used used when
4740 searching for all symbols matching LOOKUP_NAME.
4741
4742 LOOKUP_NAME is expected to be a symbol name after transformation
4743 for Ada lookups. */
4744
4745 static symbol_name_match_type
4746 name_match_type_from_name (const char *lookup_name)
4747 {
4748 return (strstr (lookup_name, "__") == NULL
4749 ? symbol_name_match_type::WILD
4750 : symbol_name_match_type::FULL);
4751 }
4752
4753 /* Return the result of a standard (literal, C-like) lookup of NAME in
4754 given DOMAIN, visible from lexical block BLOCK. */
4755
4756 static struct symbol *
4757 standard_lookup (const char *name, const struct block *block,
4758 domain_enum domain)
4759 {
4760 /* Initialize it just to avoid a GCC false warning. */
4761 struct block_symbol sym = {NULL, NULL};
4762
4763 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4764 return sym.symbol;
4765 ada_lookup_encoded_symbol (name, block, domain, &sym);
4766 cache_symbol (name, domain, sym.symbol, sym.block);
4767 return sym.symbol;
4768 }
4769
4770
4771 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4772 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4773 since they contend in overloading in the same way. */
4774 static int
4775 is_nonfunction (struct block_symbol syms[], int n)
4776 {
4777 int i;
4778
4779 for (i = 0; i < n; i += 1)
4780 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4781 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4782 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4783 return 1;
4784
4785 return 0;
4786 }
4787
4788 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4789 struct types. Otherwise, they may not. */
4790
4791 static int
4792 equiv_types (struct type *type0, struct type *type1)
4793 {
4794 if (type0 == type1)
4795 return 1;
4796 if (type0 == NULL || type1 == NULL
4797 || TYPE_CODE (type0) != TYPE_CODE (type1))
4798 return 0;
4799 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4800 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4801 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4802 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4803 return 1;
4804
4805 return 0;
4806 }
4807
4808 /* True iff SYM0 represents the same entity as SYM1, or one that is
4809 no more defined than that of SYM1. */
4810
4811 static int
4812 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4813 {
4814 if (sym0 == sym1)
4815 return 1;
4816 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4817 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4818 return 0;
4819
4820 switch (SYMBOL_CLASS (sym0))
4821 {
4822 case LOC_UNDEF:
4823 return 1;
4824 case LOC_TYPEDEF:
4825 {
4826 struct type *type0 = SYMBOL_TYPE (sym0);
4827 struct type *type1 = SYMBOL_TYPE (sym1);
4828 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4829 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4830 int len0 = strlen (name0);
4831
4832 return
4833 TYPE_CODE (type0) == TYPE_CODE (type1)
4834 && (equiv_types (type0, type1)
4835 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4836 && startswith (name1 + len0, "___XV")));
4837 }
4838 case LOC_CONST:
4839 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4840 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4841 default:
4842 return 0;
4843 }
4844 }
4845
4846 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4847 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4848
4849 static void
4850 add_defn_to_vec (struct obstack *obstackp,
4851 struct symbol *sym,
4852 const struct block *block)
4853 {
4854 int i;
4855 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4856
4857 /* Do not try to complete stub types, as the debugger is probably
4858 already scanning all symbols matching a certain name at the
4859 time when this function is called. Trying to replace the stub
4860 type by its associated full type will cause us to restart a scan
4861 which may lead to an infinite recursion. Instead, the client
4862 collecting the matching symbols will end up collecting several
4863 matches, with at least one of them complete. It can then filter
4864 out the stub ones if needed. */
4865
4866 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4867 {
4868 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4869 return;
4870 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4871 {
4872 prevDefns[i].symbol = sym;
4873 prevDefns[i].block = block;
4874 return;
4875 }
4876 }
4877
4878 {
4879 struct block_symbol info;
4880
4881 info.symbol = sym;
4882 info.block = block;
4883 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4884 }
4885 }
4886
4887 /* Number of block_symbol structures currently collected in current vector in
4888 OBSTACKP. */
4889
4890 static int
4891 num_defns_collected (struct obstack *obstackp)
4892 {
4893 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4894 }
4895
4896 /* Vector of block_symbol structures currently collected in current vector in
4897 OBSTACKP. If FINISH, close off the vector and return its final address. */
4898
4899 static struct block_symbol *
4900 defns_collected (struct obstack *obstackp, int finish)
4901 {
4902 if (finish)
4903 return (struct block_symbol *) obstack_finish (obstackp);
4904 else
4905 return (struct block_symbol *) obstack_base (obstackp);
4906 }
4907
4908 /* Return a bound minimal symbol matching NAME according to Ada
4909 decoding rules. Returns an invalid symbol if there is no such
4910 minimal symbol. Names prefixed with "standard__" are handled
4911 specially: "standard__" is first stripped off, and only static and
4912 global symbols are searched. */
4913
4914 struct bound_minimal_symbol
4915 ada_lookup_simple_minsym (const char *name)
4916 {
4917 struct bound_minimal_symbol result;
4918
4919 memset (&result, 0, sizeof (result));
4920
4921 symbol_name_match_type match_type = name_match_type_from_name (name);
4922 lookup_name_info lookup_name (name, match_type);
4923
4924 symbol_name_matcher_ftype *match_name
4925 = ada_get_symbol_name_matcher (lookup_name);
4926
4927 for (objfile *objfile : current_program_space->objfiles ())
4928 {
4929 for (minimal_symbol *msymbol : objfile->msymbols ())
4930 {
4931 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4932 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4933 {
4934 result.minsym = msymbol;
4935 result.objfile = objfile;
4936 break;
4937 }
4938 }
4939 }
4940
4941 return result;
4942 }
4943
4944 /* For all subprograms that statically enclose the subprogram of the
4945 selected frame, add symbols matching identifier NAME in DOMAIN
4946 and their blocks to the list of data in OBSTACKP, as for
4947 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4948 with a wildcard prefix. */
4949
4950 static void
4951 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4952 const lookup_name_info &lookup_name,
4953 domain_enum domain)
4954 {
4955 }
4956
4957 /* True if TYPE is definitely an artificial type supplied to a symbol
4958 for which no debugging information was given in the symbol file. */
4959
4960 static int
4961 is_nondebugging_type (struct type *type)
4962 {
4963 const char *name = ada_type_name (type);
4964
4965 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4966 }
4967
4968 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4969 that are deemed "identical" for practical purposes.
4970
4971 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4972 types and that their number of enumerals is identical (in other
4973 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4974
4975 static int
4976 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4977 {
4978 int i;
4979
4980 /* The heuristic we use here is fairly conservative. We consider
4981 that 2 enumerate types are identical if they have the same
4982 number of enumerals and that all enumerals have the same
4983 underlying value and name. */
4984
4985 /* All enums in the type should have an identical underlying value. */
4986 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4987 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4988 return 0;
4989
4990 /* All enumerals should also have the same name (modulo any numerical
4991 suffix). */
4992 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4993 {
4994 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4995 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4996 int len_1 = strlen (name_1);
4997 int len_2 = strlen (name_2);
4998
4999 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5000 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5001 if (len_1 != len_2
5002 || strncmp (TYPE_FIELD_NAME (type1, i),
5003 TYPE_FIELD_NAME (type2, i),
5004 len_1) != 0)
5005 return 0;
5006 }
5007
5008 return 1;
5009 }
5010
5011 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5012 that are deemed "identical" for practical purposes. Sometimes,
5013 enumerals are not strictly identical, but their types are so similar
5014 that they can be considered identical.
5015
5016 For instance, consider the following code:
5017
5018 type Color is (Black, Red, Green, Blue, White);
5019 type RGB_Color is new Color range Red .. Blue;
5020
5021 Type RGB_Color is a subrange of an implicit type which is a copy
5022 of type Color. If we call that implicit type RGB_ColorB ("B" is
5023 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5024 As a result, when an expression references any of the enumeral
5025 by name (Eg. "print green"), the expression is technically
5026 ambiguous and the user should be asked to disambiguate. But
5027 doing so would only hinder the user, since it wouldn't matter
5028 what choice he makes, the outcome would always be the same.
5029 So, for practical purposes, we consider them as the same. */
5030
5031 static int
5032 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5033 {
5034 int i;
5035
5036 /* Before performing a thorough comparison check of each type,
5037 we perform a series of inexpensive checks. We expect that these
5038 checks will quickly fail in the vast majority of cases, and thus
5039 help prevent the unnecessary use of a more expensive comparison.
5040 Said comparison also expects us to make some of these checks
5041 (see ada_identical_enum_types_p). */
5042
5043 /* Quick check: All symbols should have an enum type. */
5044 for (i = 0; i < syms.size (); i++)
5045 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5046 return 0;
5047
5048 /* Quick check: They should all have the same value. */
5049 for (i = 1; i < syms.size (); i++)
5050 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5051 return 0;
5052
5053 /* Quick check: They should all have the same number of enumerals. */
5054 for (i = 1; i < syms.size (); i++)
5055 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5056 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5057 return 0;
5058
5059 /* All the sanity checks passed, so we might have a set of
5060 identical enumeration types. Perform a more complete
5061 comparison of the type of each symbol. */
5062 for (i = 1; i < syms.size (); i++)
5063 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5064 SYMBOL_TYPE (syms[0].symbol)))
5065 return 0;
5066
5067 return 1;
5068 }
5069
5070 /* Remove any non-debugging symbols in SYMS that definitely
5071 duplicate other symbols in the list (The only case I know of where
5072 this happens is when object files containing stabs-in-ecoff are
5073 linked with files containing ordinary ecoff debugging symbols (or no
5074 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5075 Returns the number of items in the modified list. */
5076
5077 static int
5078 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5079 {
5080 int i, j;
5081
5082 /* We should never be called with less than 2 symbols, as there
5083 cannot be any extra symbol in that case. But it's easy to
5084 handle, since we have nothing to do in that case. */
5085 if (syms->size () < 2)
5086 return syms->size ();
5087
5088 i = 0;
5089 while (i < syms->size ())
5090 {
5091 int remove_p = 0;
5092
5093 /* If two symbols have the same name and one of them is a stub type,
5094 the get rid of the stub. */
5095
5096 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5097 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5098 {
5099 for (j = 0; j < syms->size (); j++)
5100 {
5101 if (j != i
5102 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5103 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5104 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5105 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5106 remove_p = 1;
5107 }
5108 }
5109
5110 /* Two symbols with the same name, same class and same address
5111 should be identical. */
5112
5113 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5114 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5115 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5116 {
5117 for (j = 0; j < syms->size (); j += 1)
5118 {
5119 if (i != j
5120 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5121 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5122 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5123 && SYMBOL_CLASS ((*syms)[i].symbol)
5124 == SYMBOL_CLASS ((*syms)[j].symbol)
5125 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5126 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5127 remove_p = 1;
5128 }
5129 }
5130
5131 if (remove_p)
5132 syms->erase (syms->begin () + i);
5133
5134 i += 1;
5135 }
5136
5137 /* If all the remaining symbols are identical enumerals, then
5138 just keep the first one and discard the rest.
5139
5140 Unlike what we did previously, we do not discard any entry
5141 unless they are ALL identical. This is because the symbol
5142 comparison is not a strict comparison, but rather a practical
5143 comparison. If all symbols are considered identical, then
5144 we can just go ahead and use the first one and discard the rest.
5145 But if we cannot reduce the list to a single element, we have
5146 to ask the user to disambiguate anyways. And if we have to
5147 present a multiple-choice menu, it's less confusing if the list
5148 isn't missing some choices that were identical and yet distinct. */
5149 if (symbols_are_identical_enums (*syms))
5150 syms->resize (1);
5151
5152 return syms->size ();
5153 }
5154
5155 /* Given a type that corresponds to a renaming entity, use the type name
5156 to extract the scope (package name or function name, fully qualified,
5157 and following the GNAT encoding convention) where this renaming has been
5158 defined. */
5159
5160 static std::string
5161 xget_renaming_scope (struct type *renaming_type)
5162 {
5163 /* The renaming types adhere to the following convention:
5164 <scope>__<rename>___<XR extension>.
5165 So, to extract the scope, we search for the "___XR" extension,
5166 and then backtrack until we find the first "__". */
5167
5168 const char *name = TYPE_NAME (renaming_type);
5169 const char *suffix = strstr (name, "___XR");
5170 const char *last;
5171
5172 /* Now, backtrack a bit until we find the first "__". Start looking
5173 at suffix - 3, as the <rename> part is at least one character long. */
5174
5175 for (last = suffix - 3; last > name; last--)
5176 if (last[0] == '_' && last[1] == '_')
5177 break;
5178
5179 /* Make a copy of scope and return it. */
5180 return std::string (name, last);
5181 }
5182
5183 /* Return nonzero if NAME corresponds to a package name. */
5184
5185 static int
5186 is_package_name (const char *name)
5187 {
5188 /* Here, We take advantage of the fact that no symbols are generated
5189 for packages, while symbols are generated for each function.
5190 So the condition for NAME represent a package becomes equivalent
5191 to NAME not existing in our list of symbols. There is only one
5192 small complication with library-level functions (see below). */
5193
5194 /* If it is a function that has not been defined at library level,
5195 then we should be able to look it up in the symbols. */
5196 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5197 return 0;
5198
5199 /* Library-level function names start with "_ada_". See if function
5200 "_ada_" followed by NAME can be found. */
5201
5202 /* Do a quick check that NAME does not contain "__", since library-level
5203 functions names cannot contain "__" in them. */
5204 if (strstr (name, "__") != NULL)
5205 return 0;
5206
5207 std::string fun_name = string_printf ("_ada_%s", name);
5208
5209 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5210 }
5211
5212 /* Return nonzero if SYM corresponds to a renaming entity that is
5213 not visible from FUNCTION_NAME. */
5214
5215 static int
5216 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5217 {
5218 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5219 return 0;
5220
5221 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5222
5223 /* If the rename has been defined in a package, then it is visible. */
5224 if (is_package_name (scope.c_str ()))
5225 return 0;
5226
5227 /* Check that the rename is in the current function scope by checking
5228 that its name starts with SCOPE. */
5229
5230 /* If the function name starts with "_ada_", it means that it is
5231 a library-level function. Strip this prefix before doing the
5232 comparison, as the encoding for the renaming does not contain
5233 this prefix. */
5234 if (startswith (function_name, "_ada_"))
5235 function_name += 5;
5236
5237 return !startswith (function_name, scope.c_str ());
5238 }
5239
5240 /* Remove entries from SYMS that corresponds to a renaming entity that
5241 is not visible from the function associated with CURRENT_BLOCK or
5242 that is superfluous due to the presence of more specific renaming
5243 information. Places surviving symbols in the initial entries of
5244 SYMS and returns the number of surviving symbols.
5245
5246 Rationale:
5247 First, in cases where an object renaming is implemented as a
5248 reference variable, GNAT may produce both the actual reference
5249 variable and the renaming encoding. In this case, we discard the
5250 latter.
5251
5252 Second, GNAT emits a type following a specified encoding for each renaming
5253 entity. Unfortunately, STABS currently does not support the definition
5254 of types that are local to a given lexical block, so all renamings types
5255 are emitted at library level. As a consequence, if an application
5256 contains two renaming entities using the same name, and a user tries to
5257 print the value of one of these entities, the result of the ada symbol
5258 lookup will also contain the wrong renaming type.
5259
5260 This function partially covers for this limitation by attempting to
5261 remove from the SYMS list renaming symbols that should be visible
5262 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5263 method with the current information available. The implementation
5264 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5265
5266 - When the user tries to print a rename in a function while there
5267 is another rename entity defined in a package: Normally, the
5268 rename in the function has precedence over the rename in the
5269 package, so the latter should be removed from the list. This is
5270 currently not the case.
5271
5272 - This function will incorrectly remove valid renames if
5273 the CURRENT_BLOCK corresponds to a function which symbol name
5274 has been changed by an "Export" pragma. As a consequence,
5275 the user will be unable to print such rename entities. */
5276
5277 static int
5278 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5279 const struct block *current_block)
5280 {
5281 struct symbol *current_function;
5282 const char *current_function_name;
5283 int i;
5284 int is_new_style_renaming;
5285
5286 /* If there is both a renaming foo___XR... encoded as a variable and
5287 a simple variable foo in the same block, discard the latter.
5288 First, zero out such symbols, then compress. */
5289 is_new_style_renaming = 0;
5290 for (i = 0; i < syms->size (); i += 1)
5291 {
5292 struct symbol *sym = (*syms)[i].symbol;
5293 const struct block *block = (*syms)[i].block;
5294 const char *name;
5295 const char *suffix;
5296
5297 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5298 continue;
5299 name = SYMBOL_LINKAGE_NAME (sym);
5300 suffix = strstr (name, "___XR");
5301
5302 if (suffix != NULL)
5303 {
5304 int name_len = suffix - name;
5305 int j;
5306
5307 is_new_style_renaming = 1;
5308 for (j = 0; j < syms->size (); j += 1)
5309 if (i != j && (*syms)[j].symbol != NULL
5310 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5311 name_len) == 0
5312 && block == (*syms)[j].block)
5313 (*syms)[j].symbol = NULL;
5314 }
5315 }
5316 if (is_new_style_renaming)
5317 {
5318 int j, k;
5319
5320 for (j = k = 0; j < syms->size (); j += 1)
5321 if ((*syms)[j].symbol != NULL)
5322 {
5323 (*syms)[k] = (*syms)[j];
5324 k += 1;
5325 }
5326 return k;
5327 }
5328
5329 /* Extract the function name associated to CURRENT_BLOCK.
5330 Abort if unable to do so. */
5331
5332 if (current_block == NULL)
5333 return syms->size ();
5334
5335 current_function = block_linkage_function (current_block);
5336 if (current_function == NULL)
5337 return syms->size ();
5338
5339 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5340 if (current_function_name == NULL)
5341 return syms->size ();
5342
5343 /* Check each of the symbols, and remove it from the list if it is
5344 a type corresponding to a renaming that is out of the scope of
5345 the current block. */
5346
5347 i = 0;
5348 while (i < syms->size ())
5349 {
5350 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5351 == ADA_OBJECT_RENAMING
5352 && old_renaming_is_invisible ((*syms)[i].symbol,
5353 current_function_name))
5354 syms->erase (syms->begin () + i);
5355 else
5356 i += 1;
5357 }
5358
5359 return syms->size ();
5360 }
5361
5362 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5363 whose name and domain match NAME and DOMAIN respectively.
5364 If no match was found, then extend the search to "enclosing"
5365 routines (in other words, if we're inside a nested function,
5366 search the symbols defined inside the enclosing functions).
5367 If WILD_MATCH_P is nonzero, perform the naming matching in
5368 "wild" mode (see function "wild_match" for more info).
5369
5370 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5371
5372 static void
5373 ada_add_local_symbols (struct obstack *obstackp,
5374 const lookup_name_info &lookup_name,
5375 const struct block *block, domain_enum domain)
5376 {
5377 int block_depth = 0;
5378
5379 while (block != NULL)
5380 {
5381 block_depth += 1;
5382 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5383
5384 /* If we found a non-function match, assume that's the one. */
5385 if (is_nonfunction (defns_collected (obstackp, 0),
5386 num_defns_collected (obstackp)))
5387 return;
5388
5389 block = BLOCK_SUPERBLOCK (block);
5390 }
5391
5392 /* If no luck so far, try to find NAME as a local symbol in some lexically
5393 enclosing subprogram. */
5394 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5395 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5396 }
5397
5398 /* An object of this type is used as the user_data argument when
5399 calling the map_matching_symbols method. */
5400
5401 struct match_data
5402 {
5403 struct objfile *objfile;
5404 struct obstack *obstackp;
5405 struct symbol *arg_sym;
5406 int found_sym;
5407 };
5408
5409 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5410 to a list of symbols. DATA0 is a pointer to a struct match_data *
5411 containing the obstack that collects the symbol list, the file that SYM
5412 must come from, a flag indicating whether a non-argument symbol has
5413 been found in the current block, and the last argument symbol
5414 passed in SYM within the current block (if any). When SYM is null,
5415 marking the end of a block, the argument symbol is added if no
5416 other has been found. */
5417
5418 static int
5419 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5420 {
5421 struct match_data *data = (struct match_data *) data0;
5422
5423 if (sym == NULL)
5424 {
5425 if (!data->found_sym && data->arg_sym != NULL)
5426 add_defn_to_vec (data->obstackp,
5427 fixup_symbol_section (data->arg_sym, data->objfile),
5428 block);
5429 data->found_sym = 0;
5430 data->arg_sym = NULL;
5431 }
5432 else
5433 {
5434 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5435 return 0;
5436 else if (SYMBOL_IS_ARGUMENT (sym))
5437 data->arg_sym = sym;
5438 else
5439 {
5440 data->found_sym = 1;
5441 add_defn_to_vec (data->obstackp,
5442 fixup_symbol_section (sym, data->objfile),
5443 block);
5444 }
5445 }
5446 return 0;
5447 }
5448
5449 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5450 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5451 symbols to OBSTACKP. Return whether we found such symbols. */
5452
5453 static int
5454 ada_add_block_renamings (struct obstack *obstackp,
5455 const struct block *block,
5456 const lookup_name_info &lookup_name,
5457 domain_enum domain)
5458 {
5459 struct using_direct *renaming;
5460 int defns_mark = num_defns_collected (obstackp);
5461
5462 symbol_name_matcher_ftype *name_match
5463 = ada_get_symbol_name_matcher (lookup_name);
5464
5465 for (renaming = block_using (block);
5466 renaming != NULL;
5467 renaming = renaming->next)
5468 {
5469 const char *r_name;
5470
5471 /* Avoid infinite recursions: skip this renaming if we are actually
5472 already traversing it.
5473
5474 Currently, symbol lookup in Ada don't use the namespace machinery from
5475 C++/Fortran support: skip namespace imports that use them. */
5476 if (renaming->searched
5477 || (renaming->import_src != NULL
5478 && renaming->import_src[0] != '\0')
5479 || (renaming->import_dest != NULL
5480 && renaming->import_dest[0] != '\0'))
5481 continue;
5482 renaming->searched = 1;
5483
5484 /* TODO: here, we perform another name-based symbol lookup, which can
5485 pull its own multiple overloads. In theory, we should be able to do
5486 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5487 not a simple name. But in order to do this, we would need to enhance
5488 the DWARF reader to associate a symbol to this renaming, instead of a
5489 name. So, for now, we do something simpler: re-use the C++/Fortran
5490 namespace machinery. */
5491 r_name = (renaming->alias != NULL
5492 ? renaming->alias
5493 : renaming->declaration);
5494 if (name_match (r_name, lookup_name, NULL))
5495 {
5496 lookup_name_info decl_lookup_name (renaming->declaration,
5497 lookup_name.match_type ());
5498 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5499 1, NULL);
5500 }
5501 renaming->searched = 0;
5502 }
5503 return num_defns_collected (obstackp) != defns_mark;
5504 }
5505
5506 /* Implements compare_names, but only applying the comparision using
5507 the given CASING. */
5508
5509 static int
5510 compare_names_with_case (const char *string1, const char *string2,
5511 enum case_sensitivity casing)
5512 {
5513 while (*string1 != '\0' && *string2 != '\0')
5514 {
5515 char c1, c2;
5516
5517 if (isspace (*string1) || isspace (*string2))
5518 return strcmp_iw_ordered (string1, string2);
5519
5520 if (casing == case_sensitive_off)
5521 {
5522 c1 = tolower (*string1);
5523 c2 = tolower (*string2);
5524 }
5525 else
5526 {
5527 c1 = *string1;
5528 c2 = *string2;
5529 }
5530 if (c1 != c2)
5531 break;
5532
5533 string1 += 1;
5534 string2 += 1;
5535 }
5536
5537 switch (*string1)
5538 {
5539 case '(':
5540 return strcmp_iw_ordered (string1, string2);
5541 case '_':
5542 if (*string2 == '\0')
5543 {
5544 if (is_name_suffix (string1))
5545 return 0;
5546 else
5547 return 1;
5548 }
5549 /* FALLTHROUGH */
5550 default:
5551 if (*string2 == '(')
5552 return strcmp_iw_ordered (string1, string2);
5553 else
5554 {
5555 if (casing == case_sensitive_off)
5556 return tolower (*string1) - tolower (*string2);
5557 else
5558 return *string1 - *string2;
5559 }
5560 }
5561 }
5562
5563 /* Compare STRING1 to STRING2, with results as for strcmp.
5564 Compatible with strcmp_iw_ordered in that...
5565
5566 strcmp_iw_ordered (STRING1, STRING2) <= 0
5567
5568 ... implies...
5569
5570 compare_names (STRING1, STRING2) <= 0
5571
5572 (they may differ as to what symbols compare equal). */
5573
5574 static int
5575 compare_names (const char *string1, const char *string2)
5576 {
5577 int result;
5578
5579 /* Similar to what strcmp_iw_ordered does, we need to perform
5580 a case-insensitive comparison first, and only resort to
5581 a second, case-sensitive, comparison if the first one was
5582 not sufficient to differentiate the two strings. */
5583
5584 result = compare_names_with_case (string1, string2, case_sensitive_off);
5585 if (result == 0)
5586 result = compare_names_with_case (string1, string2, case_sensitive_on);
5587
5588 return result;
5589 }
5590
5591 /* Convenience function to get at the Ada encoded lookup name for
5592 LOOKUP_NAME, as a C string. */
5593
5594 static const char *
5595 ada_lookup_name (const lookup_name_info &lookup_name)
5596 {
5597 return lookup_name.ada ().lookup_name ().c_str ();
5598 }
5599
5600 /* Add to OBSTACKP all non-local symbols whose name and domain match
5601 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5602 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5603 symbols otherwise. */
5604
5605 static void
5606 add_nonlocal_symbols (struct obstack *obstackp,
5607 const lookup_name_info &lookup_name,
5608 domain_enum domain, int global)
5609 {
5610 struct match_data data;
5611
5612 memset (&data, 0, sizeof data);
5613 data.obstackp = obstackp;
5614
5615 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5616
5617 for (objfile *objfile : current_program_space->objfiles ())
5618 {
5619 data.objfile = objfile;
5620
5621 if (is_wild_match)
5622 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5623 domain, global,
5624 aux_add_nonlocal_symbols, &data,
5625 symbol_name_match_type::WILD,
5626 NULL);
5627 else
5628 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5629 domain, global,
5630 aux_add_nonlocal_symbols, &data,
5631 symbol_name_match_type::FULL,
5632 compare_names);
5633
5634 for (compunit_symtab *cu : objfile->compunits ())
5635 {
5636 const struct block *global_block
5637 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5638
5639 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5640 domain))
5641 data.found_sym = 1;
5642 }
5643 }
5644
5645 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5646 {
5647 const char *name = ada_lookup_name (lookup_name);
5648 std::string name1 = std::string ("<_ada_") + name + '>';
5649
5650 for (objfile *objfile : current_program_space->objfiles ())
5651 {
5652 data.objfile = objfile;
5653 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5654 domain, global,
5655 aux_add_nonlocal_symbols,
5656 &data,
5657 symbol_name_match_type::FULL,
5658 compare_names);
5659 }
5660 }
5661 }
5662
5663 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5664 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5665 returning the number of matches. Add these to OBSTACKP.
5666
5667 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5668 symbol match within the nest of blocks whose innermost member is BLOCK,
5669 is the one match returned (no other matches in that or
5670 enclosing blocks is returned). If there are any matches in or
5671 surrounding BLOCK, then these alone are returned.
5672
5673 Names prefixed with "standard__" are handled specially:
5674 "standard__" is first stripped off (by the lookup_name
5675 constructor), and only static and global symbols are searched.
5676
5677 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5678 to lookup global symbols. */
5679
5680 static void
5681 ada_add_all_symbols (struct obstack *obstackp,
5682 const struct block *block,
5683 const lookup_name_info &lookup_name,
5684 domain_enum domain,
5685 int full_search,
5686 int *made_global_lookup_p)
5687 {
5688 struct symbol *sym;
5689
5690 if (made_global_lookup_p)
5691 *made_global_lookup_p = 0;
5692
5693 /* Special case: If the user specifies a symbol name inside package
5694 Standard, do a non-wild matching of the symbol name without
5695 the "standard__" prefix. This was primarily introduced in order
5696 to allow the user to specifically access the standard exceptions
5697 using, for instance, Standard.Constraint_Error when Constraint_Error
5698 is ambiguous (due to the user defining its own Constraint_Error
5699 entity inside its program). */
5700 if (lookup_name.ada ().standard_p ())
5701 block = NULL;
5702
5703 /* Check the non-global symbols. If we have ANY match, then we're done. */
5704
5705 if (block != NULL)
5706 {
5707 if (full_search)
5708 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5709 else
5710 {
5711 /* In the !full_search case we're are being called by
5712 ada_iterate_over_symbols, and we don't want to search
5713 superblocks. */
5714 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5715 }
5716 if (num_defns_collected (obstackp) > 0 || !full_search)
5717 return;
5718 }
5719
5720 /* No non-global symbols found. Check our cache to see if we have
5721 already performed this search before. If we have, then return
5722 the same result. */
5723
5724 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5725 domain, &sym, &block))
5726 {
5727 if (sym != NULL)
5728 add_defn_to_vec (obstackp, sym, block);
5729 return;
5730 }
5731
5732 if (made_global_lookup_p)
5733 *made_global_lookup_p = 1;
5734
5735 /* Search symbols from all global blocks. */
5736
5737 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5738
5739 /* Now add symbols from all per-file blocks if we've gotten no hits
5740 (not strictly correct, but perhaps better than an error). */
5741
5742 if (num_defns_collected (obstackp) == 0)
5743 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5744 }
5745
5746 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5747 is non-zero, enclosing scope and in global scopes, returning the number of
5748 matches.
5749 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5750 found and the blocks and symbol tables (if any) in which they were
5751 found.
5752
5753 When full_search is non-zero, any non-function/non-enumeral
5754 symbol match within the nest of blocks whose innermost member is BLOCK,
5755 is the one match returned (no other matches in that or
5756 enclosing blocks is returned). If there are any matches in or
5757 surrounding BLOCK, then these alone are returned.
5758
5759 Names prefixed with "standard__" are handled specially: "standard__"
5760 is first stripped off, and only static and global symbols are searched. */
5761
5762 static int
5763 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5764 const struct block *block,
5765 domain_enum domain,
5766 std::vector<struct block_symbol> *results,
5767 int full_search)
5768 {
5769 int syms_from_global_search;
5770 int ndefns;
5771 auto_obstack obstack;
5772
5773 ada_add_all_symbols (&obstack, block, lookup_name,
5774 domain, full_search, &syms_from_global_search);
5775
5776 ndefns = num_defns_collected (&obstack);
5777
5778 struct block_symbol *base = defns_collected (&obstack, 1);
5779 for (int i = 0; i < ndefns; ++i)
5780 results->push_back (base[i]);
5781
5782 ndefns = remove_extra_symbols (results);
5783
5784 if (ndefns == 0 && full_search && syms_from_global_search)
5785 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5786
5787 if (ndefns == 1 && full_search && syms_from_global_search)
5788 cache_symbol (ada_lookup_name (lookup_name), domain,
5789 (*results)[0].symbol, (*results)[0].block);
5790
5791 ndefns = remove_irrelevant_renamings (results, block);
5792
5793 return ndefns;
5794 }
5795
5796 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5797 in global scopes, returning the number of matches, and filling *RESULTS
5798 with (SYM,BLOCK) tuples.
5799
5800 See ada_lookup_symbol_list_worker for further details. */
5801
5802 int
5803 ada_lookup_symbol_list (const char *name, const struct block *block,
5804 domain_enum domain,
5805 std::vector<struct block_symbol> *results)
5806 {
5807 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5808 lookup_name_info lookup_name (name, name_match_type);
5809
5810 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5811 }
5812
5813 /* Implementation of the la_iterate_over_symbols method. */
5814
5815 static void
5816 ada_iterate_over_symbols
5817 (const struct block *block, const lookup_name_info &name,
5818 domain_enum domain,
5819 gdb::function_view<symbol_found_callback_ftype> callback)
5820 {
5821 int ndefs, i;
5822 std::vector<struct block_symbol> results;
5823
5824 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5825
5826 for (i = 0; i < ndefs; ++i)
5827 {
5828 if (!callback (&results[i]))
5829 break;
5830 }
5831 }
5832
5833 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5834 to 1, but choosing the first symbol found if there are multiple
5835 choices.
5836
5837 The result is stored in *INFO, which must be non-NULL.
5838 If no match is found, INFO->SYM is set to NULL. */
5839
5840 void
5841 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5842 domain_enum domain,
5843 struct block_symbol *info)
5844 {
5845 /* Since we already have an encoded name, wrap it in '<>' to force a
5846 verbatim match. Otherwise, if the name happens to not look like
5847 an encoded name (because it doesn't include a "__"),
5848 ada_lookup_name_info would re-encode/fold it again, and that
5849 would e.g., incorrectly lowercase object renaming names like
5850 "R28b" -> "r28b". */
5851 std::string verbatim = std::string ("<") + name + '>';
5852
5853 gdb_assert (info != NULL);
5854 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5855 }
5856
5857 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5858 scope and in global scopes, or NULL if none. NAME is folded and
5859 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5860 choosing the first symbol if there are multiple choices.
5861 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5862
5863 struct block_symbol
5864 ada_lookup_symbol (const char *name, const struct block *block0,
5865 domain_enum domain, int *is_a_field_of_this)
5866 {
5867 if (is_a_field_of_this != NULL)
5868 *is_a_field_of_this = 0;
5869
5870 std::vector<struct block_symbol> candidates;
5871 int n_candidates;
5872
5873 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5874
5875 if (n_candidates == 0)
5876 return {};
5877
5878 block_symbol info = candidates[0];
5879 info.symbol = fixup_symbol_section (info.symbol, NULL);
5880 return info;
5881 }
5882
5883 static struct block_symbol
5884 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5885 const char *name,
5886 const struct block *block,
5887 const domain_enum domain)
5888 {
5889 struct block_symbol sym;
5890
5891 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5892 if (sym.symbol != NULL)
5893 return sym;
5894
5895 /* If we haven't found a match at this point, try the primitive
5896 types. In other languages, this search is performed before
5897 searching for global symbols in order to short-circuit that
5898 global-symbol search if it happens that the name corresponds
5899 to a primitive type. But we cannot do the same in Ada, because
5900 it is perfectly legitimate for a program to declare a type which
5901 has the same name as a standard type. If looking up a type in
5902 that situation, we have traditionally ignored the primitive type
5903 in favor of user-defined types. This is why, unlike most other
5904 languages, we search the primitive types this late and only after
5905 having searched the global symbols without success. */
5906
5907 if (domain == VAR_DOMAIN)
5908 {
5909 struct gdbarch *gdbarch;
5910
5911 if (block == NULL)
5912 gdbarch = target_gdbarch ();
5913 else
5914 gdbarch = block_gdbarch (block);
5915 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5916 if (sym.symbol != NULL)
5917 return sym;
5918 }
5919
5920 return (struct block_symbol) {NULL, NULL};
5921 }
5922
5923
5924 /* True iff STR is a possible encoded suffix of a normal Ada name
5925 that is to be ignored for matching purposes. Suffixes of parallel
5926 names (e.g., XVE) are not included here. Currently, the possible suffixes
5927 are given by any of the regular expressions:
5928
5929 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5930 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5931 TKB [subprogram suffix for task bodies]
5932 _E[0-9]+[bs]$ [protected object entry suffixes]
5933 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5934
5935 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5936 match is performed. This sequence is used to differentiate homonyms,
5937 is an optional part of a valid name suffix. */
5938
5939 static int
5940 is_name_suffix (const char *str)
5941 {
5942 int k;
5943 const char *matching;
5944 const int len = strlen (str);
5945
5946 /* Skip optional leading __[0-9]+. */
5947
5948 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5949 {
5950 str += 3;
5951 while (isdigit (str[0]))
5952 str += 1;
5953 }
5954
5955 /* [.$][0-9]+ */
5956
5957 if (str[0] == '.' || str[0] == '$')
5958 {
5959 matching = str + 1;
5960 while (isdigit (matching[0]))
5961 matching += 1;
5962 if (matching[0] == '\0')
5963 return 1;
5964 }
5965
5966 /* ___[0-9]+ */
5967
5968 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5969 {
5970 matching = str + 3;
5971 while (isdigit (matching[0]))
5972 matching += 1;
5973 if (matching[0] == '\0')
5974 return 1;
5975 }
5976
5977 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5978
5979 if (strcmp (str, "TKB") == 0)
5980 return 1;
5981
5982 #if 0
5983 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5984 with a N at the end. Unfortunately, the compiler uses the same
5985 convention for other internal types it creates. So treating
5986 all entity names that end with an "N" as a name suffix causes
5987 some regressions. For instance, consider the case of an enumerated
5988 type. To support the 'Image attribute, it creates an array whose
5989 name ends with N.
5990 Having a single character like this as a suffix carrying some
5991 information is a bit risky. Perhaps we should change the encoding
5992 to be something like "_N" instead. In the meantime, do not do
5993 the following check. */
5994 /* Protected Object Subprograms */
5995 if (len == 1 && str [0] == 'N')
5996 return 1;
5997 #endif
5998
5999 /* _E[0-9]+[bs]$ */
6000 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6001 {
6002 matching = str + 3;
6003 while (isdigit (matching[0]))
6004 matching += 1;
6005 if ((matching[0] == 'b' || matching[0] == 's')
6006 && matching [1] == '\0')
6007 return 1;
6008 }
6009
6010 /* ??? We should not modify STR directly, as we are doing below. This
6011 is fine in this case, but may become problematic later if we find
6012 that this alternative did not work, and want to try matching
6013 another one from the begining of STR. Since we modified it, we
6014 won't be able to find the begining of the string anymore! */
6015 if (str[0] == 'X')
6016 {
6017 str += 1;
6018 while (str[0] != '_' && str[0] != '\0')
6019 {
6020 if (str[0] != 'n' && str[0] != 'b')
6021 return 0;
6022 str += 1;
6023 }
6024 }
6025
6026 if (str[0] == '\000')
6027 return 1;
6028
6029 if (str[0] == '_')
6030 {
6031 if (str[1] != '_' || str[2] == '\000')
6032 return 0;
6033 if (str[2] == '_')
6034 {
6035 if (strcmp (str + 3, "JM") == 0)
6036 return 1;
6037 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6038 the LJM suffix in favor of the JM one. But we will
6039 still accept LJM as a valid suffix for a reasonable
6040 amount of time, just to allow ourselves to debug programs
6041 compiled using an older version of GNAT. */
6042 if (strcmp (str + 3, "LJM") == 0)
6043 return 1;
6044 if (str[3] != 'X')
6045 return 0;
6046 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6047 || str[4] == 'U' || str[4] == 'P')
6048 return 1;
6049 if (str[4] == 'R' && str[5] != 'T')
6050 return 1;
6051 return 0;
6052 }
6053 if (!isdigit (str[2]))
6054 return 0;
6055 for (k = 3; str[k] != '\0'; k += 1)
6056 if (!isdigit (str[k]) && str[k] != '_')
6057 return 0;
6058 return 1;
6059 }
6060 if (str[0] == '$' && isdigit (str[1]))
6061 {
6062 for (k = 2; str[k] != '\0'; k += 1)
6063 if (!isdigit (str[k]) && str[k] != '_')
6064 return 0;
6065 return 1;
6066 }
6067 return 0;
6068 }
6069
6070 /* Return non-zero if the string starting at NAME and ending before
6071 NAME_END contains no capital letters. */
6072
6073 static int
6074 is_valid_name_for_wild_match (const char *name0)
6075 {
6076 const char *decoded_name = ada_decode (name0);
6077 int i;
6078
6079 /* If the decoded name starts with an angle bracket, it means that
6080 NAME0 does not follow the GNAT encoding format. It should then
6081 not be allowed as a possible wild match. */
6082 if (decoded_name[0] == '<')
6083 return 0;
6084
6085 for (i=0; decoded_name[i] != '\0'; i++)
6086 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6087 return 0;
6088
6089 return 1;
6090 }
6091
6092 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6093 that could start a simple name. Assumes that *NAMEP points into
6094 the string beginning at NAME0. */
6095
6096 static int
6097 advance_wild_match (const char **namep, const char *name0, int target0)
6098 {
6099 const char *name = *namep;
6100
6101 while (1)
6102 {
6103 int t0, t1;
6104
6105 t0 = *name;
6106 if (t0 == '_')
6107 {
6108 t1 = name[1];
6109 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6110 {
6111 name += 1;
6112 if (name == name0 + 5 && startswith (name0, "_ada"))
6113 break;
6114 else
6115 name += 1;
6116 }
6117 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6118 || name[2] == target0))
6119 {
6120 name += 2;
6121 break;
6122 }
6123 else
6124 return 0;
6125 }
6126 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6127 name += 1;
6128 else
6129 return 0;
6130 }
6131
6132 *namep = name;
6133 return 1;
6134 }
6135
6136 /* Return true iff NAME encodes a name of the form prefix.PATN.
6137 Ignores any informational suffixes of NAME (i.e., for which
6138 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6139 simple name. */
6140
6141 static bool
6142 wild_match (const char *name, const char *patn)
6143 {
6144 const char *p;
6145 const char *name0 = name;
6146
6147 while (1)
6148 {
6149 const char *match = name;
6150
6151 if (*name == *patn)
6152 {
6153 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6154 if (*p != *name)
6155 break;
6156 if (*p == '\0' && is_name_suffix (name))
6157 return match == name0 || is_valid_name_for_wild_match (name0);
6158
6159 if (name[-1] == '_')
6160 name -= 1;
6161 }
6162 if (!advance_wild_match (&name, name0, *patn))
6163 return false;
6164 }
6165 }
6166
6167 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6168 any trailing suffixes that encode debugging information or leading
6169 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6170 information that is ignored). */
6171
6172 static bool
6173 full_match (const char *sym_name, const char *search_name)
6174 {
6175 size_t search_name_len = strlen (search_name);
6176
6177 if (strncmp (sym_name, search_name, search_name_len) == 0
6178 && is_name_suffix (sym_name + search_name_len))
6179 return true;
6180
6181 if (startswith (sym_name, "_ada_")
6182 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6183 && is_name_suffix (sym_name + search_name_len + 5))
6184 return true;
6185
6186 return false;
6187 }
6188
6189 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6190 *defn_symbols, updating the list of symbols in OBSTACKP (if
6191 necessary). OBJFILE is the section containing BLOCK. */
6192
6193 static void
6194 ada_add_block_symbols (struct obstack *obstackp,
6195 const struct block *block,
6196 const lookup_name_info &lookup_name,
6197 domain_enum domain, struct objfile *objfile)
6198 {
6199 struct block_iterator iter;
6200 /* A matching argument symbol, if any. */
6201 struct symbol *arg_sym;
6202 /* Set true when we find a matching non-argument symbol. */
6203 int found_sym;
6204 struct symbol *sym;
6205
6206 arg_sym = NULL;
6207 found_sym = 0;
6208 for (sym = block_iter_match_first (block, lookup_name, &iter);
6209 sym != NULL;
6210 sym = block_iter_match_next (lookup_name, &iter))
6211 {
6212 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6213 SYMBOL_DOMAIN (sym), domain))
6214 {
6215 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6216 {
6217 if (SYMBOL_IS_ARGUMENT (sym))
6218 arg_sym = sym;
6219 else
6220 {
6221 found_sym = 1;
6222 add_defn_to_vec (obstackp,
6223 fixup_symbol_section (sym, objfile),
6224 block);
6225 }
6226 }
6227 }
6228 }
6229
6230 /* Handle renamings. */
6231
6232 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6233 found_sym = 1;
6234
6235 if (!found_sym && arg_sym != NULL)
6236 {
6237 add_defn_to_vec (obstackp,
6238 fixup_symbol_section (arg_sym, objfile),
6239 block);
6240 }
6241
6242 if (!lookup_name.ada ().wild_match_p ())
6243 {
6244 arg_sym = NULL;
6245 found_sym = 0;
6246 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6247 const char *name = ada_lookup_name.c_str ();
6248 size_t name_len = ada_lookup_name.size ();
6249
6250 ALL_BLOCK_SYMBOLS (block, iter, sym)
6251 {
6252 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6253 SYMBOL_DOMAIN (sym), domain))
6254 {
6255 int cmp;
6256
6257 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6258 if (cmp == 0)
6259 {
6260 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6261 if (cmp == 0)
6262 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6263 name_len);
6264 }
6265
6266 if (cmp == 0
6267 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6268 {
6269 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6270 {
6271 if (SYMBOL_IS_ARGUMENT (sym))
6272 arg_sym = sym;
6273 else
6274 {
6275 found_sym = 1;
6276 add_defn_to_vec (obstackp,
6277 fixup_symbol_section (sym, objfile),
6278 block);
6279 }
6280 }
6281 }
6282 }
6283 }
6284
6285 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6286 They aren't parameters, right? */
6287 if (!found_sym && arg_sym != NULL)
6288 {
6289 add_defn_to_vec (obstackp,
6290 fixup_symbol_section (arg_sym, objfile),
6291 block);
6292 }
6293 }
6294 }
6295 \f
6296
6297 /* Symbol Completion */
6298
6299 /* See symtab.h. */
6300
6301 bool
6302 ada_lookup_name_info::matches
6303 (const char *sym_name,
6304 symbol_name_match_type match_type,
6305 completion_match_result *comp_match_res) const
6306 {
6307 bool match = false;
6308 const char *text = m_encoded_name.c_str ();
6309 size_t text_len = m_encoded_name.size ();
6310
6311 /* First, test against the fully qualified name of the symbol. */
6312
6313 if (strncmp (sym_name, text, text_len) == 0)
6314 match = true;
6315
6316 if (match && !m_encoded_p)
6317 {
6318 /* One needed check before declaring a positive match is to verify
6319 that iff we are doing a verbatim match, the decoded version
6320 of the symbol name starts with '<'. Otherwise, this symbol name
6321 is not a suitable completion. */
6322 const char *sym_name_copy = sym_name;
6323 bool has_angle_bracket;
6324
6325 sym_name = ada_decode (sym_name);
6326 has_angle_bracket = (sym_name[0] == '<');
6327 match = (has_angle_bracket == m_verbatim_p);
6328 sym_name = sym_name_copy;
6329 }
6330
6331 if (match && !m_verbatim_p)
6332 {
6333 /* When doing non-verbatim match, another check that needs to
6334 be done is to verify that the potentially matching symbol name
6335 does not include capital letters, because the ada-mode would
6336 not be able to understand these symbol names without the
6337 angle bracket notation. */
6338 const char *tmp;
6339
6340 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6341 if (*tmp != '\0')
6342 match = false;
6343 }
6344
6345 /* Second: Try wild matching... */
6346
6347 if (!match && m_wild_match_p)
6348 {
6349 /* Since we are doing wild matching, this means that TEXT
6350 may represent an unqualified symbol name. We therefore must
6351 also compare TEXT against the unqualified name of the symbol. */
6352 sym_name = ada_unqualified_name (ada_decode (sym_name));
6353
6354 if (strncmp (sym_name, text, text_len) == 0)
6355 match = true;
6356 }
6357
6358 /* Finally: If we found a match, prepare the result to return. */
6359
6360 if (!match)
6361 return false;
6362
6363 if (comp_match_res != NULL)
6364 {
6365 std::string &match_str = comp_match_res->match.storage ();
6366
6367 if (!m_encoded_p)
6368 match_str = ada_decode (sym_name);
6369 else
6370 {
6371 if (m_verbatim_p)
6372 match_str = add_angle_brackets (sym_name);
6373 else
6374 match_str = sym_name;
6375
6376 }
6377
6378 comp_match_res->set_match (match_str.c_str ());
6379 }
6380
6381 return true;
6382 }
6383
6384 /* Add the list of possible symbol names completing TEXT to TRACKER.
6385 WORD is the entire command on which completion is made. */
6386
6387 static void
6388 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6389 complete_symbol_mode mode,
6390 symbol_name_match_type name_match_type,
6391 const char *text, const char *word,
6392 enum type_code code)
6393 {
6394 struct symbol *sym;
6395 const struct block *b, *surrounding_static_block = 0;
6396 struct block_iterator iter;
6397
6398 gdb_assert (code == TYPE_CODE_UNDEF);
6399
6400 lookup_name_info lookup_name (text, name_match_type, true);
6401
6402 /* First, look at the partial symtab symbols. */
6403 expand_symtabs_matching (NULL,
6404 lookup_name,
6405 NULL,
6406 NULL,
6407 ALL_DOMAIN);
6408
6409 /* At this point scan through the misc symbol vectors and add each
6410 symbol you find to the list. Eventually we want to ignore
6411 anything that isn't a text symbol (everything else will be
6412 handled by the psymtab code above). */
6413
6414 for (objfile *objfile : current_program_space->objfiles ())
6415 {
6416 for (minimal_symbol *msymbol : objfile->msymbols ())
6417 {
6418 QUIT;
6419
6420 if (completion_skip_symbol (mode, msymbol))
6421 continue;
6422
6423 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6424
6425 /* Ada minimal symbols won't have their language set to Ada. If
6426 we let completion_list_add_name compare using the
6427 default/C-like matcher, then when completing e.g., symbols in a
6428 package named "pck", we'd match internal Ada symbols like
6429 "pckS", which are invalid in an Ada expression, unless you wrap
6430 them in '<' '>' to request a verbatim match.
6431
6432 Unfortunately, some Ada encoded names successfully demangle as
6433 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6434 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6435 with the wrong language set. Paper over that issue here. */
6436 if (symbol_language == language_auto
6437 || symbol_language == language_cplus)
6438 symbol_language = language_ada;
6439
6440 completion_list_add_name (tracker,
6441 symbol_language,
6442 MSYMBOL_LINKAGE_NAME (msymbol),
6443 lookup_name, text, word);
6444 }
6445 }
6446
6447 /* Search upwards from currently selected frame (so that we can
6448 complete on local vars. */
6449
6450 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6451 {
6452 if (!BLOCK_SUPERBLOCK (b))
6453 surrounding_static_block = b; /* For elmin of dups */
6454
6455 ALL_BLOCK_SYMBOLS (b, iter, sym)
6456 {
6457 if (completion_skip_symbol (mode, sym))
6458 continue;
6459
6460 completion_list_add_name (tracker,
6461 SYMBOL_LANGUAGE (sym),
6462 SYMBOL_LINKAGE_NAME (sym),
6463 lookup_name, text, word);
6464 }
6465 }
6466
6467 /* Go through the symtabs and check the externs and statics for
6468 symbols which match. */
6469
6470 for (objfile *objfile : current_program_space->objfiles ())
6471 {
6472 for (compunit_symtab *s : objfile->compunits ())
6473 {
6474 QUIT;
6475 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6476 ALL_BLOCK_SYMBOLS (b, iter, sym)
6477 {
6478 if (completion_skip_symbol (mode, sym))
6479 continue;
6480
6481 completion_list_add_name (tracker,
6482 SYMBOL_LANGUAGE (sym),
6483 SYMBOL_LINKAGE_NAME (sym),
6484 lookup_name, text, word);
6485 }
6486 }
6487 }
6488
6489 for (objfile *objfile : current_program_space->objfiles ())
6490 {
6491 for (compunit_symtab *s : objfile->compunits ())
6492 {
6493 QUIT;
6494 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6495 /* Don't do this block twice. */
6496 if (b == surrounding_static_block)
6497 continue;
6498 ALL_BLOCK_SYMBOLS (b, iter, sym)
6499 {
6500 if (completion_skip_symbol (mode, sym))
6501 continue;
6502
6503 completion_list_add_name (tracker,
6504 SYMBOL_LANGUAGE (sym),
6505 SYMBOL_LINKAGE_NAME (sym),
6506 lookup_name, text, word);
6507 }
6508 }
6509 }
6510 }
6511
6512 /* Field Access */
6513
6514 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6515 for tagged types. */
6516
6517 static int
6518 ada_is_dispatch_table_ptr_type (struct type *type)
6519 {
6520 const char *name;
6521
6522 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6523 return 0;
6524
6525 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6526 if (name == NULL)
6527 return 0;
6528
6529 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6530 }
6531
6532 /* Return non-zero if TYPE is an interface tag. */
6533
6534 static int
6535 ada_is_interface_tag (struct type *type)
6536 {
6537 const char *name = TYPE_NAME (type);
6538
6539 if (name == NULL)
6540 return 0;
6541
6542 return (strcmp (name, "ada__tags__interface_tag") == 0);
6543 }
6544
6545 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6546 to be invisible to users. */
6547
6548 int
6549 ada_is_ignored_field (struct type *type, int field_num)
6550 {
6551 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6552 return 1;
6553
6554 /* Check the name of that field. */
6555 {
6556 const char *name = TYPE_FIELD_NAME (type, field_num);
6557
6558 /* Anonymous field names should not be printed.
6559 brobecker/2007-02-20: I don't think this can actually happen
6560 but we don't want to print the value of annonymous fields anyway. */
6561 if (name == NULL)
6562 return 1;
6563
6564 /* Normally, fields whose name start with an underscore ("_")
6565 are fields that have been internally generated by the compiler,
6566 and thus should not be printed. The "_parent" field is special,
6567 however: This is a field internally generated by the compiler
6568 for tagged types, and it contains the components inherited from
6569 the parent type. This field should not be printed as is, but
6570 should not be ignored either. */
6571 if (name[0] == '_' && !startswith (name, "_parent"))
6572 return 1;
6573 }
6574
6575 /* If this is the dispatch table of a tagged type or an interface tag,
6576 then ignore. */
6577 if (ada_is_tagged_type (type, 1)
6578 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6579 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6580 return 1;
6581
6582 /* Not a special field, so it should not be ignored. */
6583 return 0;
6584 }
6585
6586 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6587 pointer or reference type whose ultimate target has a tag field. */
6588
6589 int
6590 ada_is_tagged_type (struct type *type, int refok)
6591 {
6592 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6593 }
6594
6595 /* True iff TYPE represents the type of X'Tag */
6596
6597 int
6598 ada_is_tag_type (struct type *type)
6599 {
6600 type = ada_check_typedef (type);
6601
6602 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6603 return 0;
6604 else
6605 {
6606 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6607
6608 return (name != NULL
6609 && strcmp (name, "ada__tags__dispatch_table") == 0);
6610 }
6611 }
6612
6613 /* The type of the tag on VAL. */
6614
6615 struct type *
6616 ada_tag_type (struct value *val)
6617 {
6618 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6619 }
6620
6621 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6622 retired at Ada 05). */
6623
6624 static int
6625 is_ada95_tag (struct value *tag)
6626 {
6627 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6628 }
6629
6630 /* The value of the tag on VAL. */
6631
6632 struct value *
6633 ada_value_tag (struct value *val)
6634 {
6635 return ada_value_struct_elt (val, "_tag", 0);
6636 }
6637
6638 /* The value of the tag on the object of type TYPE whose contents are
6639 saved at VALADDR, if it is non-null, or is at memory address
6640 ADDRESS. */
6641
6642 static struct value *
6643 value_tag_from_contents_and_address (struct type *type,
6644 const gdb_byte *valaddr,
6645 CORE_ADDR address)
6646 {
6647 int tag_byte_offset;
6648 struct type *tag_type;
6649
6650 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6651 NULL, NULL, NULL))
6652 {
6653 const gdb_byte *valaddr1 = ((valaddr == NULL)
6654 ? NULL
6655 : valaddr + tag_byte_offset);
6656 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6657
6658 return value_from_contents_and_address (tag_type, valaddr1, address1);
6659 }
6660 return NULL;
6661 }
6662
6663 static struct type *
6664 type_from_tag (struct value *tag)
6665 {
6666 const char *type_name = ada_tag_name (tag);
6667
6668 if (type_name != NULL)
6669 return ada_find_any_type (ada_encode (type_name));
6670 return NULL;
6671 }
6672
6673 /* Given a value OBJ of a tagged type, return a value of this
6674 type at the base address of the object. The base address, as
6675 defined in Ada.Tags, it is the address of the primary tag of
6676 the object, and therefore where the field values of its full
6677 view can be fetched. */
6678
6679 struct value *
6680 ada_tag_value_at_base_address (struct value *obj)
6681 {
6682 struct value *val;
6683 LONGEST offset_to_top = 0;
6684 struct type *ptr_type, *obj_type;
6685 struct value *tag;
6686 CORE_ADDR base_address;
6687
6688 obj_type = value_type (obj);
6689
6690 /* It is the responsability of the caller to deref pointers. */
6691
6692 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6693 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6694 return obj;
6695
6696 tag = ada_value_tag (obj);
6697 if (!tag)
6698 return obj;
6699
6700 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6701
6702 if (is_ada95_tag (tag))
6703 return obj;
6704
6705 ptr_type = language_lookup_primitive_type
6706 (language_def (language_ada), target_gdbarch(), "storage_offset");
6707 ptr_type = lookup_pointer_type (ptr_type);
6708 val = value_cast (ptr_type, tag);
6709 if (!val)
6710 return obj;
6711
6712 /* It is perfectly possible that an exception be raised while
6713 trying to determine the base address, just like for the tag;
6714 see ada_tag_name for more details. We do not print the error
6715 message for the same reason. */
6716
6717 TRY
6718 {
6719 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6720 }
6721
6722 CATCH (e, RETURN_MASK_ERROR)
6723 {
6724 return obj;
6725 }
6726 END_CATCH
6727
6728 /* If offset is null, nothing to do. */
6729
6730 if (offset_to_top == 0)
6731 return obj;
6732
6733 /* -1 is a special case in Ada.Tags; however, what should be done
6734 is not quite clear from the documentation. So do nothing for
6735 now. */
6736
6737 if (offset_to_top == -1)
6738 return obj;
6739
6740 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6741 from the base address. This was however incompatible with
6742 C++ dispatch table: C++ uses a *negative* value to *add*
6743 to the base address. Ada's convention has therefore been
6744 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6745 use the same convention. Here, we support both cases by
6746 checking the sign of OFFSET_TO_TOP. */
6747
6748 if (offset_to_top > 0)
6749 offset_to_top = -offset_to_top;
6750
6751 base_address = value_address (obj) + offset_to_top;
6752 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6753
6754 /* Make sure that we have a proper tag at the new address.
6755 Otherwise, offset_to_top is bogus (which can happen when
6756 the object is not initialized yet). */
6757
6758 if (!tag)
6759 return obj;
6760
6761 obj_type = type_from_tag (tag);
6762
6763 if (!obj_type)
6764 return obj;
6765
6766 return value_from_contents_and_address (obj_type, NULL, base_address);
6767 }
6768
6769 /* Return the "ada__tags__type_specific_data" type. */
6770
6771 static struct type *
6772 ada_get_tsd_type (struct inferior *inf)
6773 {
6774 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6775
6776 if (data->tsd_type == 0)
6777 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6778 return data->tsd_type;
6779 }
6780
6781 /* Return the TSD (type-specific data) associated to the given TAG.
6782 TAG is assumed to be the tag of a tagged-type entity.
6783
6784 May return NULL if we are unable to get the TSD. */
6785
6786 static struct value *
6787 ada_get_tsd_from_tag (struct value *tag)
6788 {
6789 struct value *val;
6790 struct type *type;
6791
6792 /* First option: The TSD is simply stored as a field of our TAG.
6793 Only older versions of GNAT would use this format, but we have
6794 to test it first, because there are no visible markers for
6795 the current approach except the absence of that field. */
6796
6797 val = ada_value_struct_elt (tag, "tsd", 1);
6798 if (val)
6799 return val;
6800
6801 /* Try the second representation for the dispatch table (in which
6802 there is no explicit 'tsd' field in the referent of the tag pointer,
6803 and instead the tsd pointer is stored just before the dispatch
6804 table. */
6805
6806 type = ada_get_tsd_type (current_inferior());
6807 if (type == NULL)
6808 return NULL;
6809 type = lookup_pointer_type (lookup_pointer_type (type));
6810 val = value_cast (type, tag);
6811 if (val == NULL)
6812 return NULL;
6813 return value_ind (value_ptradd (val, -1));
6814 }
6815
6816 /* Given the TSD of a tag (type-specific data), return a string
6817 containing the name of the associated type.
6818
6819 The returned value is good until the next call. May return NULL
6820 if we are unable to determine the tag name. */
6821
6822 static char *
6823 ada_tag_name_from_tsd (struct value *tsd)
6824 {
6825 static char name[1024];
6826 char *p;
6827 struct value *val;
6828
6829 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6830 if (val == NULL)
6831 return NULL;
6832 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6833 for (p = name; *p != '\0'; p += 1)
6834 if (isalpha (*p))
6835 *p = tolower (*p);
6836 return name;
6837 }
6838
6839 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6840 a C string.
6841
6842 Return NULL if the TAG is not an Ada tag, or if we were unable to
6843 determine the name of that tag. The result is good until the next
6844 call. */
6845
6846 const char *
6847 ada_tag_name (struct value *tag)
6848 {
6849 char *name = NULL;
6850
6851 if (!ada_is_tag_type (value_type (tag)))
6852 return NULL;
6853
6854 /* It is perfectly possible that an exception be raised while trying
6855 to determine the TAG's name, even under normal circumstances:
6856 The associated variable may be uninitialized or corrupted, for
6857 instance. We do not let any exception propagate past this point.
6858 instead we return NULL.
6859
6860 We also do not print the error message either (which often is very
6861 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6862 the caller print a more meaningful message if necessary. */
6863 TRY
6864 {
6865 struct value *tsd = ada_get_tsd_from_tag (tag);
6866
6867 if (tsd != NULL)
6868 name = ada_tag_name_from_tsd (tsd);
6869 }
6870 CATCH (e, RETURN_MASK_ERROR)
6871 {
6872 }
6873 END_CATCH
6874
6875 return name;
6876 }
6877
6878 /* The parent type of TYPE, or NULL if none. */
6879
6880 struct type *
6881 ada_parent_type (struct type *type)
6882 {
6883 int i;
6884
6885 type = ada_check_typedef (type);
6886
6887 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6888 return NULL;
6889
6890 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6891 if (ada_is_parent_field (type, i))
6892 {
6893 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6894
6895 /* If the _parent field is a pointer, then dereference it. */
6896 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6897 parent_type = TYPE_TARGET_TYPE (parent_type);
6898 /* If there is a parallel XVS type, get the actual base type. */
6899 parent_type = ada_get_base_type (parent_type);
6900
6901 return ada_check_typedef (parent_type);
6902 }
6903
6904 return NULL;
6905 }
6906
6907 /* True iff field number FIELD_NUM of structure type TYPE contains the
6908 parent-type (inherited) fields of a derived type. Assumes TYPE is
6909 a structure type with at least FIELD_NUM+1 fields. */
6910
6911 int
6912 ada_is_parent_field (struct type *type, int field_num)
6913 {
6914 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6915
6916 return (name != NULL
6917 && (startswith (name, "PARENT")
6918 || startswith (name, "_parent")));
6919 }
6920
6921 /* True iff field number FIELD_NUM of structure type TYPE is a
6922 transparent wrapper field (which should be silently traversed when doing
6923 field selection and flattened when printing). Assumes TYPE is a
6924 structure type with at least FIELD_NUM+1 fields. Such fields are always
6925 structures. */
6926
6927 int
6928 ada_is_wrapper_field (struct type *type, int field_num)
6929 {
6930 const char *name = TYPE_FIELD_NAME (type, field_num);
6931
6932 if (name != NULL && strcmp (name, "RETVAL") == 0)
6933 {
6934 /* This happens in functions with "out" or "in out" parameters
6935 which are passed by copy. For such functions, GNAT describes
6936 the function's return type as being a struct where the return
6937 value is in a field called RETVAL, and where the other "out"
6938 or "in out" parameters are fields of that struct. This is not
6939 a wrapper. */
6940 return 0;
6941 }
6942
6943 return (name != NULL
6944 && (startswith (name, "PARENT")
6945 || strcmp (name, "REP") == 0
6946 || startswith (name, "_parent")
6947 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6948 }
6949
6950 /* True iff field number FIELD_NUM of structure or union type TYPE
6951 is a variant wrapper. Assumes TYPE is a structure type with at least
6952 FIELD_NUM+1 fields. */
6953
6954 int
6955 ada_is_variant_part (struct type *type, int field_num)
6956 {
6957 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6958
6959 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6960 || (is_dynamic_field (type, field_num)
6961 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6962 == TYPE_CODE_UNION)));
6963 }
6964
6965 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6966 whose discriminants are contained in the record type OUTER_TYPE,
6967 returns the type of the controlling discriminant for the variant.
6968 May return NULL if the type could not be found. */
6969
6970 struct type *
6971 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6972 {
6973 const char *name = ada_variant_discrim_name (var_type);
6974
6975 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6976 }
6977
6978 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6979 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6980 represents a 'when others' clause; otherwise 0. */
6981
6982 int
6983 ada_is_others_clause (struct type *type, int field_num)
6984 {
6985 const char *name = TYPE_FIELD_NAME (type, field_num);
6986
6987 return (name != NULL && name[0] == 'O');
6988 }
6989
6990 /* Assuming that TYPE0 is the type of the variant part of a record,
6991 returns the name of the discriminant controlling the variant.
6992 The value is valid until the next call to ada_variant_discrim_name. */
6993
6994 const char *
6995 ada_variant_discrim_name (struct type *type0)
6996 {
6997 static char *result = NULL;
6998 static size_t result_len = 0;
6999 struct type *type;
7000 const char *name;
7001 const char *discrim_end;
7002 const char *discrim_start;
7003
7004 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7005 type = TYPE_TARGET_TYPE (type0);
7006 else
7007 type = type0;
7008
7009 name = ada_type_name (type);
7010
7011 if (name == NULL || name[0] == '\000')
7012 return "";
7013
7014 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7015 discrim_end -= 1)
7016 {
7017 if (startswith (discrim_end, "___XVN"))
7018 break;
7019 }
7020 if (discrim_end == name)
7021 return "";
7022
7023 for (discrim_start = discrim_end; discrim_start != name + 3;
7024 discrim_start -= 1)
7025 {
7026 if (discrim_start == name + 1)
7027 return "";
7028 if ((discrim_start > name + 3
7029 && startswith (discrim_start - 3, "___"))
7030 || discrim_start[-1] == '.')
7031 break;
7032 }
7033
7034 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7035 strncpy (result, discrim_start, discrim_end - discrim_start);
7036 result[discrim_end - discrim_start] = '\0';
7037 return result;
7038 }
7039
7040 /* Scan STR for a subtype-encoded number, beginning at position K.
7041 Put the position of the character just past the number scanned in
7042 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7043 Return 1 if there was a valid number at the given position, and 0
7044 otherwise. A "subtype-encoded" number consists of the absolute value
7045 in decimal, followed by the letter 'm' to indicate a negative number.
7046 Assumes 0m does not occur. */
7047
7048 int
7049 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7050 {
7051 ULONGEST RU;
7052
7053 if (!isdigit (str[k]))
7054 return 0;
7055
7056 /* Do it the hard way so as not to make any assumption about
7057 the relationship of unsigned long (%lu scan format code) and
7058 LONGEST. */
7059 RU = 0;
7060 while (isdigit (str[k]))
7061 {
7062 RU = RU * 10 + (str[k] - '0');
7063 k += 1;
7064 }
7065
7066 if (str[k] == 'm')
7067 {
7068 if (R != NULL)
7069 *R = (-(LONGEST) (RU - 1)) - 1;
7070 k += 1;
7071 }
7072 else if (R != NULL)
7073 *R = (LONGEST) RU;
7074
7075 /* NOTE on the above: Technically, C does not say what the results of
7076 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7077 number representable as a LONGEST (although either would probably work
7078 in most implementations). When RU>0, the locution in the then branch
7079 above is always equivalent to the negative of RU. */
7080
7081 if (new_k != NULL)
7082 *new_k = k;
7083 return 1;
7084 }
7085
7086 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7087 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7088 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7089
7090 int
7091 ada_in_variant (LONGEST val, struct type *type, int field_num)
7092 {
7093 const char *name = TYPE_FIELD_NAME (type, field_num);
7094 int p;
7095
7096 p = 0;
7097 while (1)
7098 {
7099 switch (name[p])
7100 {
7101 case '\0':
7102 return 0;
7103 case 'S':
7104 {
7105 LONGEST W;
7106
7107 if (!ada_scan_number (name, p + 1, &W, &p))
7108 return 0;
7109 if (val == W)
7110 return 1;
7111 break;
7112 }
7113 case 'R':
7114 {
7115 LONGEST L, U;
7116
7117 if (!ada_scan_number (name, p + 1, &L, &p)
7118 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7119 return 0;
7120 if (val >= L && val <= U)
7121 return 1;
7122 break;
7123 }
7124 case 'O':
7125 return 1;
7126 default:
7127 return 0;
7128 }
7129 }
7130 }
7131
7132 /* FIXME: Lots of redundancy below. Try to consolidate. */
7133
7134 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7135 ARG_TYPE, extract and return the value of one of its (non-static)
7136 fields. FIELDNO says which field. Differs from value_primitive_field
7137 only in that it can handle packed values of arbitrary type. */
7138
7139 static struct value *
7140 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7141 struct type *arg_type)
7142 {
7143 struct type *type;
7144
7145 arg_type = ada_check_typedef (arg_type);
7146 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7147
7148 /* Handle packed fields. */
7149
7150 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7151 {
7152 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7153 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7154
7155 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7156 offset + bit_pos / 8,
7157 bit_pos % 8, bit_size, type);
7158 }
7159 else
7160 return value_primitive_field (arg1, offset, fieldno, arg_type);
7161 }
7162
7163 /* Find field with name NAME in object of type TYPE. If found,
7164 set the following for each argument that is non-null:
7165 - *FIELD_TYPE_P to the field's type;
7166 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7167 an object of that type;
7168 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7169 - *BIT_SIZE_P to its size in bits if the field is packed, and
7170 0 otherwise;
7171 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7172 fields up to but not including the desired field, or by the total
7173 number of fields if not found. A NULL value of NAME never
7174 matches; the function just counts visible fields in this case.
7175
7176 Notice that we need to handle when a tagged record hierarchy
7177 has some components with the same name, like in this scenario:
7178
7179 type Top_T is tagged record
7180 N : Integer := 1;
7181 U : Integer := 974;
7182 A : Integer := 48;
7183 end record;
7184
7185 type Middle_T is new Top.Top_T with record
7186 N : Character := 'a';
7187 C : Integer := 3;
7188 end record;
7189
7190 type Bottom_T is new Middle.Middle_T with record
7191 N : Float := 4.0;
7192 C : Character := '5';
7193 X : Integer := 6;
7194 A : Character := 'J';
7195 end record;
7196
7197 Let's say we now have a variable declared and initialized as follow:
7198
7199 TC : Top_A := new Bottom_T;
7200
7201 And then we use this variable to call this function
7202
7203 procedure Assign (Obj: in out Top_T; TV : Integer);
7204
7205 as follow:
7206
7207 Assign (Top_T (B), 12);
7208
7209 Now, we're in the debugger, and we're inside that procedure
7210 then and we want to print the value of obj.c:
7211
7212 Usually, the tagged record or one of the parent type owns the
7213 component to print and there's no issue but in this particular
7214 case, what does it mean to ask for Obj.C? Since the actual
7215 type for object is type Bottom_T, it could mean two things: type
7216 component C from the Middle_T view, but also component C from
7217 Bottom_T. So in that "undefined" case, when the component is
7218 not found in the non-resolved type (which includes all the
7219 components of the parent type), then resolve it and see if we
7220 get better luck once expanded.
7221
7222 In the case of homonyms in the derived tagged type, we don't
7223 guaranty anything, and pick the one that's easiest for us
7224 to program.
7225
7226 Returns 1 if found, 0 otherwise. */
7227
7228 static int
7229 find_struct_field (const char *name, struct type *type, int offset,
7230 struct type **field_type_p,
7231 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7232 int *index_p)
7233 {
7234 int i;
7235 int parent_offset = -1;
7236
7237 type = ada_check_typedef (type);
7238
7239 if (field_type_p != NULL)
7240 *field_type_p = NULL;
7241 if (byte_offset_p != NULL)
7242 *byte_offset_p = 0;
7243 if (bit_offset_p != NULL)
7244 *bit_offset_p = 0;
7245 if (bit_size_p != NULL)
7246 *bit_size_p = 0;
7247
7248 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7249 {
7250 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7251 int fld_offset = offset + bit_pos / 8;
7252 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7253
7254 if (t_field_name == NULL)
7255 continue;
7256
7257 else if (ada_is_parent_field (type, i))
7258 {
7259 /* This is a field pointing us to the parent type of a tagged
7260 type. As hinted in this function's documentation, we give
7261 preference to fields in the current record first, so what
7262 we do here is just record the index of this field before
7263 we skip it. If it turns out we couldn't find our field
7264 in the current record, then we'll get back to it and search
7265 inside it whether the field might exist in the parent. */
7266
7267 parent_offset = i;
7268 continue;
7269 }
7270
7271 else if (name != NULL && field_name_match (t_field_name, name))
7272 {
7273 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7274
7275 if (field_type_p != NULL)
7276 *field_type_p = TYPE_FIELD_TYPE (type, i);
7277 if (byte_offset_p != NULL)
7278 *byte_offset_p = fld_offset;
7279 if (bit_offset_p != NULL)
7280 *bit_offset_p = bit_pos % 8;
7281 if (bit_size_p != NULL)
7282 *bit_size_p = bit_size;
7283 return 1;
7284 }
7285 else if (ada_is_wrapper_field (type, i))
7286 {
7287 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7288 field_type_p, byte_offset_p, bit_offset_p,
7289 bit_size_p, index_p))
7290 return 1;
7291 }
7292 else if (ada_is_variant_part (type, i))
7293 {
7294 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7295 fixed type?? */
7296 int j;
7297 struct type *field_type
7298 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7299
7300 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7301 {
7302 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7303 fld_offset
7304 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7305 field_type_p, byte_offset_p,
7306 bit_offset_p, bit_size_p, index_p))
7307 return 1;
7308 }
7309 }
7310 else if (index_p != NULL)
7311 *index_p += 1;
7312 }
7313
7314 /* Field not found so far. If this is a tagged type which
7315 has a parent, try finding that field in the parent now. */
7316
7317 if (parent_offset != -1)
7318 {
7319 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7320 int fld_offset = offset + bit_pos / 8;
7321
7322 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7323 fld_offset, field_type_p, byte_offset_p,
7324 bit_offset_p, bit_size_p, index_p))
7325 return 1;
7326 }
7327
7328 return 0;
7329 }
7330
7331 /* Number of user-visible fields in record type TYPE. */
7332
7333 static int
7334 num_visible_fields (struct type *type)
7335 {
7336 int n;
7337
7338 n = 0;
7339 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7340 return n;
7341 }
7342
7343 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7344 and search in it assuming it has (class) type TYPE.
7345 If found, return value, else return NULL.
7346
7347 Searches recursively through wrapper fields (e.g., '_parent').
7348
7349 In the case of homonyms in the tagged types, please refer to the
7350 long explanation in find_struct_field's function documentation. */
7351
7352 static struct value *
7353 ada_search_struct_field (const char *name, struct value *arg, int offset,
7354 struct type *type)
7355 {
7356 int i;
7357 int parent_offset = -1;
7358
7359 type = ada_check_typedef (type);
7360 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7361 {
7362 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7363
7364 if (t_field_name == NULL)
7365 continue;
7366
7367 else if (ada_is_parent_field (type, i))
7368 {
7369 /* This is a field pointing us to the parent type of a tagged
7370 type. As hinted in this function's documentation, we give
7371 preference to fields in the current record first, so what
7372 we do here is just record the index of this field before
7373 we skip it. If it turns out we couldn't find our field
7374 in the current record, then we'll get back to it and search
7375 inside it whether the field might exist in the parent. */
7376
7377 parent_offset = i;
7378 continue;
7379 }
7380
7381 else if (field_name_match (t_field_name, name))
7382 return ada_value_primitive_field (arg, offset, i, type);
7383
7384 else if (ada_is_wrapper_field (type, i))
7385 {
7386 struct value *v = /* Do not let indent join lines here. */
7387 ada_search_struct_field (name, arg,
7388 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7389 TYPE_FIELD_TYPE (type, i));
7390
7391 if (v != NULL)
7392 return v;
7393 }
7394
7395 else if (ada_is_variant_part (type, i))
7396 {
7397 /* PNH: Do we ever get here? See find_struct_field. */
7398 int j;
7399 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7400 i));
7401 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7402
7403 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7404 {
7405 struct value *v = ada_search_struct_field /* Force line
7406 break. */
7407 (name, arg,
7408 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7409 TYPE_FIELD_TYPE (field_type, j));
7410
7411 if (v != NULL)
7412 return v;
7413 }
7414 }
7415 }
7416
7417 /* Field not found so far. If this is a tagged type which
7418 has a parent, try finding that field in the parent now. */
7419
7420 if (parent_offset != -1)
7421 {
7422 struct value *v = ada_search_struct_field (
7423 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7424 TYPE_FIELD_TYPE (type, parent_offset));
7425
7426 if (v != NULL)
7427 return v;
7428 }
7429
7430 return NULL;
7431 }
7432
7433 static struct value *ada_index_struct_field_1 (int *, struct value *,
7434 int, struct type *);
7435
7436
7437 /* Return field #INDEX in ARG, where the index is that returned by
7438 * find_struct_field through its INDEX_P argument. Adjust the address
7439 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7440 * If found, return value, else return NULL. */
7441
7442 static struct value *
7443 ada_index_struct_field (int index, struct value *arg, int offset,
7444 struct type *type)
7445 {
7446 return ada_index_struct_field_1 (&index, arg, offset, type);
7447 }
7448
7449
7450 /* Auxiliary function for ada_index_struct_field. Like
7451 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7452 * *INDEX_P. */
7453
7454 static struct value *
7455 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7456 struct type *type)
7457 {
7458 int i;
7459 type = ada_check_typedef (type);
7460
7461 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7462 {
7463 if (TYPE_FIELD_NAME (type, i) == NULL)
7464 continue;
7465 else if (ada_is_wrapper_field (type, i))
7466 {
7467 struct value *v = /* Do not let indent join lines here. */
7468 ada_index_struct_field_1 (index_p, arg,
7469 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7470 TYPE_FIELD_TYPE (type, i));
7471
7472 if (v != NULL)
7473 return v;
7474 }
7475
7476 else if (ada_is_variant_part (type, i))
7477 {
7478 /* PNH: Do we ever get here? See ada_search_struct_field,
7479 find_struct_field. */
7480 error (_("Cannot assign this kind of variant record"));
7481 }
7482 else if (*index_p == 0)
7483 return ada_value_primitive_field (arg, offset, i, type);
7484 else
7485 *index_p -= 1;
7486 }
7487 return NULL;
7488 }
7489
7490 /* Given ARG, a value of type (pointer or reference to a)*
7491 structure/union, extract the component named NAME from the ultimate
7492 target structure/union and return it as a value with its
7493 appropriate type.
7494
7495 The routine searches for NAME among all members of the structure itself
7496 and (recursively) among all members of any wrapper members
7497 (e.g., '_parent').
7498
7499 If NO_ERR, then simply return NULL in case of error, rather than
7500 calling error. */
7501
7502 struct value *
7503 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7504 {
7505 struct type *t, *t1;
7506 struct value *v;
7507 int check_tag;
7508
7509 v = NULL;
7510 t1 = t = ada_check_typedef (value_type (arg));
7511 if (TYPE_CODE (t) == TYPE_CODE_REF)
7512 {
7513 t1 = TYPE_TARGET_TYPE (t);
7514 if (t1 == NULL)
7515 goto BadValue;
7516 t1 = ada_check_typedef (t1);
7517 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7518 {
7519 arg = coerce_ref (arg);
7520 t = t1;
7521 }
7522 }
7523
7524 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7525 {
7526 t1 = TYPE_TARGET_TYPE (t);
7527 if (t1 == NULL)
7528 goto BadValue;
7529 t1 = ada_check_typedef (t1);
7530 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7531 {
7532 arg = value_ind (arg);
7533 t = t1;
7534 }
7535 else
7536 break;
7537 }
7538
7539 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7540 goto BadValue;
7541
7542 if (t1 == t)
7543 v = ada_search_struct_field (name, arg, 0, t);
7544 else
7545 {
7546 int bit_offset, bit_size, byte_offset;
7547 struct type *field_type;
7548 CORE_ADDR address;
7549
7550 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7551 address = value_address (ada_value_ind (arg));
7552 else
7553 address = value_address (ada_coerce_ref (arg));
7554
7555 /* Check to see if this is a tagged type. We also need to handle
7556 the case where the type is a reference to a tagged type, but
7557 we have to be careful to exclude pointers to tagged types.
7558 The latter should be shown as usual (as a pointer), whereas
7559 a reference should mostly be transparent to the user. */
7560
7561 if (ada_is_tagged_type (t1, 0)
7562 || (TYPE_CODE (t1) == TYPE_CODE_REF
7563 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7564 {
7565 /* We first try to find the searched field in the current type.
7566 If not found then let's look in the fixed type. */
7567
7568 if (!find_struct_field (name, t1, 0,
7569 &field_type, &byte_offset, &bit_offset,
7570 &bit_size, NULL))
7571 check_tag = 1;
7572 else
7573 check_tag = 0;
7574 }
7575 else
7576 check_tag = 0;
7577
7578 /* Convert to fixed type in all cases, so that we have proper
7579 offsets to each field in unconstrained record types. */
7580 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7581 address, NULL, check_tag);
7582
7583 if (find_struct_field (name, t1, 0,
7584 &field_type, &byte_offset, &bit_offset,
7585 &bit_size, NULL))
7586 {
7587 if (bit_size != 0)
7588 {
7589 if (TYPE_CODE (t) == TYPE_CODE_REF)
7590 arg = ada_coerce_ref (arg);
7591 else
7592 arg = ada_value_ind (arg);
7593 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7594 bit_offset, bit_size,
7595 field_type);
7596 }
7597 else
7598 v = value_at_lazy (field_type, address + byte_offset);
7599 }
7600 }
7601
7602 if (v != NULL || no_err)
7603 return v;
7604 else
7605 error (_("There is no member named %s."), name);
7606
7607 BadValue:
7608 if (no_err)
7609 return NULL;
7610 else
7611 error (_("Attempt to extract a component of "
7612 "a value that is not a record."));
7613 }
7614
7615 /* Return a string representation of type TYPE. */
7616
7617 static std::string
7618 type_as_string (struct type *type)
7619 {
7620 string_file tmp_stream;
7621
7622 type_print (type, "", &tmp_stream, -1);
7623
7624 return std::move (tmp_stream.string ());
7625 }
7626
7627 /* Given a type TYPE, look up the type of the component of type named NAME.
7628 If DISPP is non-null, add its byte displacement from the beginning of a
7629 structure (pointed to by a value) of type TYPE to *DISPP (does not
7630 work for packed fields).
7631
7632 Matches any field whose name has NAME as a prefix, possibly
7633 followed by "___".
7634
7635 TYPE can be either a struct or union. If REFOK, TYPE may also
7636 be a (pointer or reference)+ to a struct or union, and the
7637 ultimate target type will be searched.
7638
7639 Looks recursively into variant clauses and parent types.
7640
7641 In the case of homonyms in the tagged types, please refer to the
7642 long explanation in find_struct_field's function documentation.
7643
7644 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7645 TYPE is not a type of the right kind. */
7646
7647 static struct type *
7648 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7649 int noerr)
7650 {
7651 int i;
7652 int parent_offset = -1;
7653
7654 if (name == NULL)
7655 goto BadName;
7656
7657 if (refok && type != NULL)
7658 while (1)
7659 {
7660 type = ada_check_typedef (type);
7661 if (TYPE_CODE (type) != TYPE_CODE_PTR
7662 && TYPE_CODE (type) != TYPE_CODE_REF)
7663 break;
7664 type = TYPE_TARGET_TYPE (type);
7665 }
7666
7667 if (type == NULL
7668 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7669 && TYPE_CODE (type) != TYPE_CODE_UNION))
7670 {
7671 if (noerr)
7672 return NULL;
7673
7674 error (_("Type %s is not a structure or union type"),
7675 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7676 }
7677
7678 type = to_static_fixed_type (type);
7679
7680 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7681 {
7682 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7683 struct type *t;
7684
7685 if (t_field_name == NULL)
7686 continue;
7687
7688 else if (ada_is_parent_field (type, i))
7689 {
7690 /* This is a field pointing us to the parent type of a tagged
7691 type. As hinted in this function's documentation, we give
7692 preference to fields in the current record first, so what
7693 we do here is just record the index of this field before
7694 we skip it. If it turns out we couldn't find our field
7695 in the current record, then we'll get back to it and search
7696 inside it whether the field might exist in the parent. */
7697
7698 parent_offset = i;
7699 continue;
7700 }
7701
7702 else if (field_name_match (t_field_name, name))
7703 return TYPE_FIELD_TYPE (type, i);
7704
7705 else if (ada_is_wrapper_field (type, i))
7706 {
7707 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7708 0, 1);
7709 if (t != NULL)
7710 return t;
7711 }
7712
7713 else if (ada_is_variant_part (type, i))
7714 {
7715 int j;
7716 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7717 i));
7718
7719 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7720 {
7721 /* FIXME pnh 2008/01/26: We check for a field that is
7722 NOT wrapped in a struct, since the compiler sometimes
7723 generates these for unchecked variant types. Revisit
7724 if the compiler changes this practice. */
7725 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7726
7727 if (v_field_name != NULL
7728 && field_name_match (v_field_name, name))
7729 t = TYPE_FIELD_TYPE (field_type, j);
7730 else
7731 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7732 j),
7733 name, 0, 1);
7734
7735 if (t != NULL)
7736 return t;
7737 }
7738 }
7739
7740 }
7741
7742 /* Field not found so far. If this is a tagged type which
7743 has a parent, try finding that field in the parent now. */
7744
7745 if (parent_offset != -1)
7746 {
7747 struct type *t;
7748
7749 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7750 name, 0, 1);
7751 if (t != NULL)
7752 return t;
7753 }
7754
7755 BadName:
7756 if (!noerr)
7757 {
7758 const char *name_str = name != NULL ? name : _("<null>");
7759
7760 error (_("Type %s has no component named %s"),
7761 type_as_string (type).c_str (), name_str);
7762 }
7763
7764 return NULL;
7765 }
7766
7767 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7768 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7769 represents an unchecked union (that is, the variant part of a
7770 record that is named in an Unchecked_Union pragma). */
7771
7772 static int
7773 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7774 {
7775 const char *discrim_name = ada_variant_discrim_name (var_type);
7776
7777 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7778 }
7779
7780
7781 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7782 within a value of type OUTER_TYPE that is stored in GDB at
7783 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7784 numbering from 0) is applicable. Returns -1 if none are. */
7785
7786 int
7787 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7788 const gdb_byte *outer_valaddr)
7789 {
7790 int others_clause;
7791 int i;
7792 const char *discrim_name = ada_variant_discrim_name (var_type);
7793 struct value *outer;
7794 struct value *discrim;
7795 LONGEST discrim_val;
7796
7797 /* Using plain value_from_contents_and_address here causes problems
7798 because we will end up trying to resolve a type that is currently
7799 being constructed. */
7800 outer = value_from_contents_and_address_unresolved (outer_type,
7801 outer_valaddr, 0);
7802 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7803 if (discrim == NULL)
7804 return -1;
7805 discrim_val = value_as_long (discrim);
7806
7807 others_clause = -1;
7808 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7809 {
7810 if (ada_is_others_clause (var_type, i))
7811 others_clause = i;
7812 else if (ada_in_variant (discrim_val, var_type, i))
7813 return i;
7814 }
7815
7816 return others_clause;
7817 }
7818 \f
7819
7820
7821 /* Dynamic-Sized Records */
7822
7823 /* Strategy: The type ostensibly attached to a value with dynamic size
7824 (i.e., a size that is not statically recorded in the debugging
7825 data) does not accurately reflect the size or layout of the value.
7826 Our strategy is to convert these values to values with accurate,
7827 conventional types that are constructed on the fly. */
7828
7829 /* There is a subtle and tricky problem here. In general, we cannot
7830 determine the size of dynamic records without its data. However,
7831 the 'struct value' data structure, which GDB uses to represent
7832 quantities in the inferior process (the target), requires the size
7833 of the type at the time of its allocation in order to reserve space
7834 for GDB's internal copy of the data. That's why the
7835 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7836 rather than struct value*s.
7837
7838 However, GDB's internal history variables ($1, $2, etc.) are
7839 struct value*s containing internal copies of the data that are not, in
7840 general, the same as the data at their corresponding addresses in
7841 the target. Fortunately, the types we give to these values are all
7842 conventional, fixed-size types (as per the strategy described
7843 above), so that we don't usually have to perform the
7844 'to_fixed_xxx_type' conversions to look at their values.
7845 Unfortunately, there is one exception: if one of the internal
7846 history variables is an array whose elements are unconstrained
7847 records, then we will need to create distinct fixed types for each
7848 element selected. */
7849
7850 /* The upshot of all of this is that many routines take a (type, host
7851 address, target address) triple as arguments to represent a value.
7852 The host address, if non-null, is supposed to contain an internal
7853 copy of the relevant data; otherwise, the program is to consult the
7854 target at the target address. */
7855
7856 /* Assuming that VAL0 represents a pointer value, the result of
7857 dereferencing it. Differs from value_ind in its treatment of
7858 dynamic-sized types. */
7859
7860 struct value *
7861 ada_value_ind (struct value *val0)
7862 {
7863 struct value *val = value_ind (val0);
7864
7865 if (ada_is_tagged_type (value_type (val), 0))
7866 val = ada_tag_value_at_base_address (val);
7867
7868 return ada_to_fixed_value (val);
7869 }
7870
7871 /* The value resulting from dereferencing any "reference to"
7872 qualifiers on VAL0. */
7873
7874 static struct value *
7875 ada_coerce_ref (struct value *val0)
7876 {
7877 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7878 {
7879 struct value *val = val0;
7880
7881 val = coerce_ref (val);
7882
7883 if (ada_is_tagged_type (value_type (val), 0))
7884 val = ada_tag_value_at_base_address (val);
7885
7886 return ada_to_fixed_value (val);
7887 }
7888 else
7889 return val0;
7890 }
7891
7892 /* Return OFF rounded upward if necessary to a multiple of
7893 ALIGNMENT (a power of 2). */
7894
7895 static unsigned int
7896 align_value (unsigned int off, unsigned int alignment)
7897 {
7898 return (off + alignment - 1) & ~(alignment - 1);
7899 }
7900
7901 /* Return the bit alignment required for field #F of template type TYPE. */
7902
7903 static unsigned int
7904 field_alignment (struct type *type, int f)
7905 {
7906 const char *name = TYPE_FIELD_NAME (type, f);
7907 int len;
7908 int align_offset;
7909
7910 /* The field name should never be null, unless the debugging information
7911 is somehow malformed. In this case, we assume the field does not
7912 require any alignment. */
7913 if (name == NULL)
7914 return 1;
7915
7916 len = strlen (name);
7917
7918 if (!isdigit (name[len - 1]))
7919 return 1;
7920
7921 if (isdigit (name[len - 2]))
7922 align_offset = len - 2;
7923 else
7924 align_offset = len - 1;
7925
7926 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7927 return TARGET_CHAR_BIT;
7928
7929 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7930 }
7931
7932 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7933
7934 static struct symbol *
7935 ada_find_any_type_symbol (const char *name)
7936 {
7937 struct symbol *sym;
7938
7939 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7940 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7941 return sym;
7942
7943 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7944 return sym;
7945 }
7946
7947 /* Find a type named NAME. Ignores ambiguity. This routine will look
7948 solely for types defined by debug info, it will not search the GDB
7949 primitive types. */
7950
7951 static struct type *
7952 ada_find_any_type (const char *name)
7953 {
7954 struct symbol *sym = ada_find_any_type_symbol (name);
7955
7956 if (sym != NULL)
7957 return SYMBOL_TYPE (sym);
7958
7959 return NULL;
7960 }
7961
7962 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7963 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7964 symbol, in which case it is returned. Otherwise, this looks for
7965 symbols whose name is that of NAME_SYM suffixed with "___XR".
7966 Return symbol if found, and NULL otherwise. */
7967
7968 struct symbol *
7969 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7970 {
7971 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7972 struct symbol *sym;
7973
7974 if (strstr (name, "___XR") != NULL)
7975 return name_sym;
7976
7977 sym = find_old_style_renaming_symbol (name, block);
7978
7979 if (sym != NULL)
7980 return sym;
7981
7982 /* Not right yet. FIXME pnh 7/20/2007. */
7983 sym = ada_find_any_type_symbol (name);
7984 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7985 return sym;
7986 else
7987 return NULL;
7988 }
7989
7990 static struct symbol *
7991 find_old_style_renaming_symbol (const char *name, const struct block *block)
7992 {
7993 const struct symbol *function_sym = block_linkage_function (block);
7994 char *rename;
7995
7996 if (function_sym != NULL)
7997 {
7998 /* If the symbol is defined inside a function, NAME is not fully
7999 qualified. This means we need to prepend the function name
8000 as well as adding the ``___XR'' suffix to build the name of
8001 the associated renaming symbol. */
8002 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8003 /* Function names sometimes contain suffixes used
8004 for instance to qualify nested subprograms. When building
8005 the XR type name, we need to make sure that this suffix is
8006 not included. So do not include any suffix in the function
8007 name length below. */
8008 int function_name_len = ada_name_prefix_len (function_name);
8009 const int rename_len = function_name_len + 2 /* "__" */
8010 + strlen (name) + 6 /* "___XR\0" */ ;
8011
8012 /* Strip the suffix if necessary. */
8013 ada_remove_trailing_digits (function_name, &function_name_len);
8014 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8015 ada_remove_Xbn_suffix (function_name, &function_name_len);
8016
8017 /* Library-level functions are a special case, as GNAT adds
8018 a ``_ada_'' prefix to the function name to avoid namespace
8019 pollution. However, the renaming symbols themselves do not
8020 have this prefix, so we need to skip this prefix if present. */
8021 if (function_name_len > 5 /* "_ada_" */
8022 && strstr (function_name, "_ada_") == function_name)
8023 {
8024 function_name += 5;
8025 function_name_len -= 5;
8026 }
8027
8028 rename = (char *) alloca (rename_len * sizeof (char));
8029 strncpy (rename, function_name, function_name_len);
8030 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8031 "__%s___XR", name);
8032 }
8033 else
8034 {
8035 const int rename_len = strlen (name) + 6;
8036
8037 rename = (char *) alloca (rename_len * sizeof (char));
8038 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8039 }
8040
8041 return ada_find_any_type_symbol (rename);
8042 }
8043
8044 /* Because of GNAT encoding conventions, several GDB symbols may match a
8045 given type name. If the type denoted by TYPE0 is to be preferred to
8046 that of TYPE1 for purposes of type printing, return non-zero;
8047 otherwise return 0. */
8048
8049 int
8050 ada_prefer_type (struct type *type0, struct type *type1)
8051 {
8052 if (type1 == NULL)
8053 return 1;
8054 else if (type0 == NULL)
8055 return 0;
8056 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8057 return 1;
8058 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8059 return 0;
8060 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8061 return 1;
8062 else if (ada_is_constrained_packed_array_type (type0))
8063 return 1;
8064 else if (ada_is_array_descriptor_type (type0)
8065 && !ada_is_array_descriptor_type (type1))
8066 return 1;
8067 else
8068 {
8069 const char *type0_name = TYPE_NAME (type0);
8070 const char *type1_name = TYPE_NAME (type1);
8071
8072 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8073 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8074 return 1;
8075 }
8076 return 0;
8077 }
8078
8079 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8080 null. */
8081
8082 const char *
8083 ada_type_name (struct type *type)
8084 {
8085 if (type == NULL)
8086 return NULL;
8087 return TYPE_NAME (type);
8088 }
8089
8090 /* Search the list of "descriptive" types associated to TYPE for a type
8091 whose name is NAME. */
8092
8093 static struct type *
8094 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8095 {
8096 struct type *result, *tmp;
8097
8098 if (ada_ignore_descriptive_types_p)
8099 return NULL;
8100
8101 /* If there no descriptive-type info, then there is no parallel type
8102 to be found. */
8103 if (!HAVE_GNAT_AUX_INFO (type))
8104 return NULL;
8105
8106 result = TYPE_DESCRIPTIVE_TYPE (type);
8107 while (result != NULL)
8108 {
8109 const char *result_name = ada_type_name (result);
8110
8111 if (result_name == NULL)
8112 {
8113 warning (_("unexpected null name on descriptive type"));
8114 return NULL;
8115 }
8116
8117 /* If the names match, stop. */
8118 if (strcmp (result_name, name) == 0)
8119 break;
8120
8121 /* Otherwise, look at the next item on the list, if any. */
8122 if (HAVE_GNAT_AUX_INFO (result))
8123 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8124 else
8125 tmp = NULL;
8126
8127 /* If not found either, try after having resolved the typedef. */
8128 if (tmp != NULL)
8129 result = tmp;
8130 else
8131 {
8132 result = check_typedef (result);
8133 if (HAVE_GNAT_AUX_INFO (result))
8134 result = TYPE_DESCRIPTIVE_TYPE (result);
8135 else
8136 result = NULL;
8137 }
8138 }
8139
8140 /* If we didn't find a match, see whether this is a packed array. With
8141 older compilers, the descriptive type information is either absent or
8142 irrelevant when it comes to packed arrays so the above lookup fails.
8143 Fall back to using a parallel lookup by name in this case. */
8144 if (result == NULL && ada_is_constrained_packed_array_type (type))
8145 return ada_find_any_type (name);
8146
8147 return result;
8148 }
8149
8150 /* Find a parallel type to TYPE with the specified NAME, using the
8151 descriptive type taken from the debugging information, if available,
8152 and otherwise using the (slower) name-based method. */
8153
8154 static struct type *
8155 ada_find_parallel_type_with_name (struct type *type, const char *name)
8156 {
8157 struct type *result = NULL;
8158
8159 if (HAVE_GNAT_AUX_INFO (type))
8160 result = find_parallel_type_by_descriptive_type (type, name);
8161 else
8162 result = ada_find_any_type (name);
8163
8164 return result;
8165 }
8166
8167 /* Same as above, but specify the name of the parallel type by appending
8168 SUFFIX to the name of TYPE. */
8169
8170 struct type *
8171 ada_find_parallel_type (struct type *type, const char *suffix)
8172 {
8173 char *name;
8174 const char *type_name = ada_type_name (type);
8175 int len;
8176
8177 if (type_name == NULL)
8178 return NULL;
8179
8180 len = strlen (type_name);
8181
8182 name = (char *) alloca (len + strlen (suffix) + 1);
8183
8184 strcpy (name, type_name);
8185 strcpy (name + len, suffix);
8186
8187 return ada_find_parallel_type_with_name (type, name);
8188 }
8189
8190 /* If TYPE is a variable-size record type, return the corresponding template
8191 type describing its fields. Otherwise, return NULL. */
8192
8193 static struct type *
8194 dynamic_template_type (struct type *type)
8195 {
8196 type = ada_check_typedef (type);
8197
8198 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8199 || ada_type_name (type) == NULL)
8200 return NULL;
8201 else
8202 {
8203 int len = strlen (ada_type_name (type));
8204
8205 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8206 return type;
8207 else
8208 return ada_find_parallel_type (type, "___XVE");
8209 }
8210 }
8211
8212 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8213 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8214
8215 static int
8216 is_dynamic_field (struct type *templ_type, int field_num)
8217 {
8218 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8219
8220 return name != NULL
8221 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8222 && strstr (name, "___XVL") != NULL;
8223 }
8224
8225 /* The index of the variant field of TYPE, or -1 if TYPE does not
8226 represent a variant record type. */
8227
8228 static int
8229 variant_field_index (struct type *type)
8230 {
8231 int f;
8232
8233 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8234 return -1;
8235
8236 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8237 {
8238 if (ada_is_variant_part (type, f))
8239 return f;
8240 }
8241 return -1;
8242 }
8243
8244 /* A record type with no fields. */
8245
8246 static struct type *
8247 empty_record (struct type *templ)
8248 {
8249 struct type *type = alloc_type_copy (templ);
8250
8251 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8252 TYPE_NFIELDS (type) = 0;
8253 TYPE_FIELDS (type) = NULL;
8254 INIT_CPLUS_SPECIFIC (type);
8255 TYPE_NAME (type) = "<empty>";
8256 TYPE_LENGTH (type) = 0;
8257 return type;
8258 }
8259
8260 /* An ordinary record type (with fixed-length fields) that describes
8261 the value of type TYPE at VALADDR or ADDRESS (see comments at
8262 the beginning of this section) VAL according to GNAT conventions.
8263 DVAL0 should describe the (portion of a) record that contains any
8264 necessary discriminants. It should be NULL if value_type (VAL) is
8265 an outer-level type (i.e., as opposed to a branch of a variant.) A
8266 variant field (unless unchecked) is replaced by a particular branch
8267 of the variant.
8268
8269 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8270 length are not statically known are discarded. As a consequence,
8271 VALADDR, ADDRESS and DVAL0 are ignored.
8272
8273 NOTE: Limitations: For now, we assume that dynamic fields and
8274 variants occupy whole numbers of bytes. However, they need not be
8275 byte-aligned. */
8276
8277 struct type *
8278 ada_template_to_fixed_record_type_1 (struct type *type,
8279 const gdb_byte *valaddr,
8280 CORE_ADDR address, struct value *dval0,
8281 int keep_dynamic_fields)
8282 {
8283 struct value *mark = value_mark ();
8284 struct value *dval;
8285 struct type *rtype;
8286 int nfields, bit_len;
8287 int variant_field;
8288 long off;
8289 int fld_bit_len;
8290 int f;
8291
8292 /* Compute the number of fields in this record type that are going
8293 to be processed: unless keep_dynamic_fields, this includes only
8294 fields whose position and length are static will be processed. */
8295 if (keep_dynamic_fields)
8296 nfields = TYPE_NFIELDS (type);
8297 else
8298 {
8299 nfields = 0;
8300 while (nfields < TYPE_NFIELDS (type)
8301 && !ada_is_variant_part (type, nfields)
8302 && !is_dynamic_field (type, nfields))
8303 nfields++;
8304 }
8305
8306 rtype = alloc_type_copy (type);
8307 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8308 INIT_CPLUS_SPECIFIC (rtype);
8309 TYPE_NFIELDS (rtype) = nfields;
8310 TYPE_FIELDS (rtype) = (struct field *)
8311 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8312 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8313 TYPE_NAME (rtype) = ada_type_name (type);
8314 TYPE_FIXED_INSTANCE (rtype) = 1;
8315
8316 off = 0;
8317 bit_len = 0;
8318 variant_field = -1;
8319
8320 for (f = 0; f < nfields; f += 1)
8321 {
8322 off = align_value (off, field_alignment (type, f))
8323 + TYPE_FIELD_BITPOS (type, f);
8324 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8325 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8326
8327 if (ada_is_variant_part (type, f))
8328 {
8329 variant_field = f;
8330 fld_bit_len = 0;
8331 }
8332 else if (is_dynamic_field (type, f))
8333 {
8334 const gdb_byte *field_valaddr = valaddr;
8335 CORE_ADDR field_address = address;
8336 struct type *field_type =
8337 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8338
8339 if (dval0 == NULL)
8340 {
8341 /* rtype's length is computed based on the run-time
8342 value of discriminants. If the discriminants are not
8343 initialized, the type size may be completely bogus and
8344 GDB may fail to allocate a value for it. So check the
8345 size first before creating the value. */
8346 ada_ensure_varsize_limit (rtype);
8347 /* Using plain value_from_contents_and_address here
8348 causes problems because we will end up trying to
8349 resolve a type that is currently being
8350 constructed. */
8351 dval = value_from_contents_and_address_unresolved (rtype,
8352 valaddr,
8353 address);
8354 rtype = value_type (dval);
8355 }
8356 else
8357 dval = dval0;
8358
8359 /* If the type referenced by this field is an aligner type, we need
8360 to unwrap that aligner type, because its size might not be set.
8361 Keeping the aligner type would cause us to compute the wrong
8362 size for this field, impacting the offset of the all the fields
8363 that follow this one. */
8364 if (ada_is_aligner_type (field_type))
8365 {
8366 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8367
8368 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8369 field_address = cond_offset_target (field_address, field_offset);
8370 field_type = ada_aligned_type (field_type);
8371 }
8372
8373 field_valaddr = cond_offset_host (field_valaddr,
8374 off / TARGET_CHAR_BIT);
8375 field_address = cond_offset_target (field_address,
8376 off / TARGET_CHAR_BIT);
8377
8378 /* Get the fixed type of the field. Note that, in this case,
8379 we do not want to get the real type out of the tag: if
8380 the current field is the parent part of a tagged record,
8381 we will get the tag of the object. Clearly wrong: the real
8382 type of the parent is not the real type of the child. We
8383 would end up in an infinite loop. */
8384 field_type = ada_get_base_type (field_type);
8385 field_type = ada_to_fixed_type (field_type, field_valaddr,
8386 field_address, dval, 0);
8387 /* If the field size is already larger than the maximum
8388 object size, then the record itself will necessarily
8389 be larger than the maximum object size. We need to make
8390 this check now, because the size might be so ridiculously
8391 large (due to an uninitialized variable in the inferior)
8392 that it would cause an overflow when adding it to the
8393 record size. */
8394 ada_ensure_varsize_limit (field_type);
8395
8396 TYPE_FIELD_TYPE (rtype, f) = field_type;
8397 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8398 /* The multiplication can potentially overflow. But because
8399 the field length has been size-checked just above, and
8400 assuming that the maximum size is a reasonable value,
8401 an overflow should not happen in practice. So rather than
8402 adding overflow recovery code to this already complex code,
8403 we just assume that it's not going to happen. */
8404 fld_bit_len =
8405 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8406 }
8407 else
8408 {
8409 /* Note: If this field's type is a typedef, it is important
8410 to preserve the typedef layer.
8411
8412 Otherwise, we might be transforming a typedef to a fat
8413 pointer (encoding a pointer to an unconstrained array),
8414 into a basic fat pointer (encoding an unconstrained
8415 array). As both types are implemented using the same
8416 structure, the typedef is the only clue which allows us
8417 to distinguish between the two options. Stripping it
8418 would prevent us from printing this field appropriately. */
8419 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8420 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8421 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8422 fld_bit_len =
8423 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8424 else
8425 {
8426 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8427
8428 /* We need to be careful of typedefs when computing
8429 the length of our field. If this is a typedef,
8430 get the length of the target type, not the length
8431 of the typedef. */
8432 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8433 field_type = ada_typedef_target_type (field_type);
8434
8435 fld_bit_len =
8436 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8437 }
8438 }
8439 if (off + fld_bit_len > bit_len)
8440 bit_len = off + fld_bit_len;
8441 off += fld_bit_len;
8442 TYPE_LENGTH (rtype) =
8443 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8444 }
8445
8446 /* We handle the variant part, if any, at the end because of certain
8447 odd cases in which it is re-ordered so as NOT to be the last field of
8448 the record. This can happen in the presence of representation
8449 clauses. */
8450 if (variant_field >= 0)
8451 {
8452 struct type *branch_type;
8453
8454 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8455
8456 if (dval0 == NULL)
8457 {
8458 /* Using plain value_from_contents_and_address here causes
8459 problems because we will end up trying to resolve a type
8460 that is currently being constructed. */
8461 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8462 address);
8463 rtype = value_type (dval);
8464 }
8465 else
8466 dval = dval0;
8467
8468 branch_type =
8469 to_fixed_variant_branch_type
8470 (TYPE_FIELD_TYPE (type, variant_field),
8471 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8472 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8473 if (branch_type == NULL)
8474 {
8475 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8476 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8477 TYPE_NFIELDS (rtype) -= 1;
8478 }
8479 else
8480 {
8481 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8482 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8483 fld_bit_len =
8484 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8485 TARGET_CHAR_BIT;
8486 if (off + fld_bit_len > bit_len)
8487 bit_len = off + fld_bit_len;
8488 TYPE_LENGTH (rtype) =
8489 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8490 }
8491 }
8492
8493 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8494 should contain the alignment of that record, which should be a strictly
8495 positive value. If null or negative, then something is wrong, most
8496 probably in the debug info. In that case, we don't round up the size
8497 of the resulting type. If this record is not part of another structure,
8498 the current RTYPE length might be good enough for our purposes. */
8499 if (TYPE_LENGTH (type) <= 0)
8500 {
8501 if (TYPE_NAME (rtype))
8502 warning (_("Invalid type size for `%s' detected: %d."),
8503 TYPE_NAME (rtype), TYPE_LENGTH (type));
8504 else
8505 warning (_("Invalid type size for <unnamed> detected: %d."),
8506 TYPE_LENGTH (type));
8507 }
8508 else
8509 {
8510 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8511 TYPE_LENGTH (type));
8512 }
8513
8514 value_free_to_mark (mark);
8515 if (TYPE_LENGTH (rtype) > varsize_limit)
8516 error (_("record type with dynamic size is larger than varsize-limit"));
8517 return rtype;
8518 }
8519
8520 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8521 of 1. */
8522
8523 static struct type *
8524 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8525 CORE_ADDR address, struct value *dval0)
8526 {
8527 return ada_template_to_fixed_record_type_1 (type, valaddr,
8528 address, dval0, 1);
8529 }
8530
8531 /* An ordinary record type in which ___XVL-convention fields and
8532 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8533 static approximations, containing all possible fields. Uses
8534 no runtime values. Useless for use in values, but that's OK,
8535 since the results are used only for type determinations. Works on both
8536 structs and unions. Representation note: to save space, we memorize
8537 the result of this function in the TYPE_TARGET_TYPE of the
8538 template type. */
8539
8540 static struct type *
8541 template_to_static_fixed_type (struct type *type0)
8542 {
8543 struct type *type;
8544 int nfields;
8545 int f;
8546
8547 /* No need no do anything if the input type is already fixed. */
8548 if (TYPE_FIXED_INSTANCE (type0))
8549 return type0;
8550
8551 /* Likewise if we already have computed the static approximation. */
8552 if (TYPE_TARGET_TYPE (type0) != NULL)
8553 return TYPE_TARGET_TYPE (type0);
8554
8555 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8556 type = type0;
8557 nfields = TYPE_NFIELDS (type0);
8558
8559 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8560 recompute all over next time. */
8561 TYPE_TARGET_TYPE (type0) = type;
8562
8563 for (f = 0; f < nfields; f += 1)
8564 {
8565 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8566 struct type *new_type;
8567
8568 if (is_dynamic_field (type0, f))
8569 {
8570 field_type = ada_check_typedef (field_type);
8571 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8572 }
8573 else
8574 new_type = static_unwrap_type (field_type);
8575
8576 if (new_type != field_type)
8577 {
8578 /* Clone TYPE0 only the first time we get a new field type. */
8579 if (type == type0)
8580 {
8581 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8582 TYPE_CODE (type) = TYPE_CODE (type0);
8583 INIT_CPLUS_SPECIFIC (type);
8584 TYPE_NFIELDS (type) = nfields;
8585 TYPE_FIELDS (type) = (struct field *)
8586 TYPE_ALLOC (type, nfields * sizeof (struct field));
8587 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8588 sizeof (struct field) * nfields);
8589 TYPE_NAME (type) = ada_type_name (type0);
8590 TYPE_FIXED_INSTANCE (type) = 1;
8591 TYPE_LENGTH (type) = 0;
8592 }
8593 TYPE_FIELD_TYPE (type, f) = new_type;
8594 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8595 }
8596 }
8597
8598 return type;
8599 }
8600
8601 /* Given an object of type TYPE whose contents are at VALADDR and
8602 whose address in memory is ADDRESS, returns a revision of TYPE,
8603 which should be a non-dynamic-sized record, in which the variant
8604 part, if any, is replaced with the appropriate branch. Looks
8605 for discriminant values in DVAL0, which can be NULL if the record
8606 contains the necessary discriminant values. */
8607
8608 static struct type *
8609 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8610 CORE_ADDR address, struct value *dval0)
8611 {
8612 struct value *mark = value_mark ();
8613 struct value *dval;
8614 struct type *rtype;
8615 struct type *branch_type;
8616 int nfields = TYPE_NFIELDS (type);
8617 int variant_field = variant_field_index (type);
8618
8619 if (variant_field == -1)
8620 return type;
8621
8622 if (dval0 == NULL)
8623 {
8624 dval = value_from_contents_and_address (type, valaddr, address);
8625 type = value_type (dval);
8626 }
8627 else
8628 dval = dval0;
8629
8630 rtype = alloc_type_copy (type);
8631 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8632 INIT_CPLUS_SPECIFIC (rtype);
8633 TYPE_NFIELDS (rtype) = nfields;
8634 TYPE_FIELDS (rtype) =
8635 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8636 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8637 sizeof (struct field) * nfields);
8638 TYPE_NAME (rtype) = ada_type_name (type);
8639 TYPE_FIXED_INSTANCE (rtype) = 1;
8640 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8641
8642 branch_type = to_fixed_variant_branch_type
8643 (TYPE_FIELD_TYPE (type, variant_field),
8644 cond_offset_host (valaddr,
8645 TYPE_FIELD_BITPOS (type, variant_field)
8646 / TARGET_CHAR_BIT),
8647 cond_offset_target (address,
8648 TYPE_FIELD_BITPOS (type, variant_field)
8649 / TARGET_CHAR_BIT), dval);
8650 if (branch_type == NULL)
8651 {
8652 int f;
8653
8654 for (f = variant_field + 1; f < nfields; f += 1)
8655 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8656 TYPE_NFIELDS (rtype) -= 1;
8657 }
8658 else
8659 {
8660 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8661 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8662 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8663 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8664 }
8665 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8666
8667 value_free_to_mark (mark);
8668 return rtype;
8669 }
8670
8671 /* An ordinary record type (with fixed-length fields) that describes
8672 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8673 beginning of this section]. Any necessary discriminants' values
8674 should be in DVAL, a record value; it may be NULL if the object
8675 at ADDR itself contains any necessary discriminant values.
8676 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8677 values from the record are needed. Except in the case that DVAL,
8678 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8679 unchecked) is replaced by a particular branch of the variant.
8680
8681 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8682 is questionable and may be removed. It can arise during the
8683 processing of an unconstrained-array-of-record type where all the
8684 variant branches have exactly the same size. This is because in
8685 such cases, the compiler does not bother to use the XVS convention
8686 when encoding the record. I am currently dubious of this
8687 shortcut and suspect the compiler should be altered. FIXME. */
8688
8689 static struct type *
8690 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8691 CORE_ADDR address, struct value *dval)
8692 {
8693 struct type *templ_type;
8694
8695 if (TYPE_FIXED_INSTANCE (type0))
8696 return type0;
8697
8698 templ_type = dynamic_template_type (type0);
8699
8700 if (templ_type != NULL)
8701 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8702 else if (variant_field_index (type0) >= 0)
8703 {
8704 if (dval == NULL && valaddr == NULL && address == 0)
8705 return type0;
8706 return to_record_with_fixed_variant_part (type0, valaddr, address,
8707 dval);
8708 }
8709 else
8710 {
8711 TYPE_FIXED_INSTANCE (type0) = 1;
8712 return type0;
8713 }
8714
8715 }
8716
8717 /* An ordinary record type (with fixed-length fields) that describes
8718 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8719 union type. Any necessary discriminants' values should be in DVAL,
8720 a record value. That is, this routine selects the appropriate
8721 branch of the union at ADDR according to the discriminant value
8722 indicated in the union's type name. Returns VAR_TYPE0 itself if
8723 it represents a variant subject to a pragma Unchecked_Union. */
8724
8725 static struct type *
8726 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8727 CORE_ADDR address, struct value *dval)
8728 {
8729 int which;
8730 struct type *templ_type;
8731 struct type *var_type;
8732
8733 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8734 var_type = TYPE_TARGET_TYPE (var_type0);
8735 else
8736 var_type = var_type0;
8737
8738 templ_type = ada_find_parallel_type (var_type, "___XVU");
8739
8740 if (templ_type != NULL)
8741 var_type = templ_type;
8742
8743 if (is_unchecked_variant (var_type, value_type (dval)))
8744 return var_type0;
8745 which =
8746 ada_which_variant_applies (var_type,
8747 value_type (dval), value_contents (dval));
8748
8749 if (which < 0)
8750 return empty_record (var_type);
8751 else if (is_dynamic_field (var_type, which))
8752 return to_fixed_record_type
8753 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8754 valaddr, address, dval);
8755 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8756 return
8757 to_fixed_record_type
8758 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8759 else
8760 return TYPE_FIELD_TYPE (var_type, which);
8761 }
8762
8763 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8764 ENCODING_TYPE, a type following the GNAT conventions for discrete
8765 type encodings, only carries redundant information. */
8766
8767 static int
8768 ada_is_redundant_range_encoding (struct type *range_type,
8769 struct type *encoding_type)
8770 {
8771 const char *bounds_str;
8772 int n;
8773 LONGEST lo, hi;
8774
8775 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8776
8777 if (TYPE_CODE (get_base_type (range_type))
8778 != TYPE_CODE (get_base_type (encoding_type)))
8779 {
8780 /* The compiler probably used a simple base type to describe
8781 the range type instead of the range's actual base type,
8782 expecting us to get the real base type from the encoding
8783 anyway. In this situation, the encoding cannot be ignored
8784 as redundant. */
8785 return 0;
8786 }
8787
8788 if (is_dynamic_type (range_type))
8789 return 0;
8790
8791 if (TYPE_NAME (encoding_type) == NULL)
8792 return 0;
8793
8794 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8795 if (bounds_str == NULL)
8796 return 0;
8797
8798 n = 8; /* Skip "___XDLU_". */
8799 if (!ada_scan_number (bounds_str, n, &lo, &n))
8800 return 0;
8801 if (TYPE_LOW_BOUND (range_type) != lo)
8802 return 0;
8803
8804 n += 2; /* Skip the "__" separator between the two bounds. */
8805 if (!ada_scan_number (bounds_str, n, &hi, &n))
8806 return 0;
8807 if (TYPE_HIGH_BOUND (range_type) != hi)
8808 return 0;
8809
8810 return 1;
8811 }
8812
8813 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8814 a type following the GNAT encoding for describing array type
8815 indices, only carries redundant information. */
8816
8817 static int
8818 ada_is_redundant_index_type_desc (struct type *array_type,
8819 struct type *desc_type)
8820 {
8821 struct type *this_layer = check_typedef (array_type);
8822 int i;
8823
8824 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8825 {
8826 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8827 TYPE_FIELD_TYPE (desc_type, i)))
8828 return 0;
8829 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8830 }
8831
8832 return 1;
8833 }
8834
8835 /* Assuming that TYPE0 is an array type describing the type of a value
8836 at ADDR, and that DVAL describes a record containing any
8837 discriminants used in TYPE0, returns a type for the value that
8838 contains no dynamic components (that is, no components whose sizes
8839 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8840 true, gives an error message if the resulting type's size is over
8841 varsize_limit. */
8842
8843 static struct type *
8844 to_fixed_array_type (struct type *type0, struct value *dval,
8845 int ignore_too_big)
8846 {
8847 struct type *index_type_desc;
8848 struct type *result;
8849 int constrained_packed_array_p;
8850 static const char *xa_suffix = "___XA";
8851
8852 type0 = ada_check_typedef (type0);
8853 if (TYPE_FIXED_INSTANCE (type0))
8854 return type0;
8855
8856 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8857 if (constrained_packed_array_p)
8858 type0 = decode_constrained_packed_array_type (type0);
8859
8860 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8861
8862 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8863 encoding suffixed with 'P' may still be generated. If so,
8864 it should be used to find the XA type. */
8865
8866 if (index_type_desc == NULL)
8867 {
8868 const char *type_name = ada_type_name (type0);
8869
8870 if (type_name != NULL)
8871 {
8872 const int len = strlen (type_name);
8873 char *name = (char *) alloca (len + strlen (xa_suffix));
8874
8875 if (type_name[len - 1] == 'P')
8876 {
8877 strcpy (name, type_name);
8878 strcpy (name + len - 1, xa_suffix);
8879 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8880 }
8881 }
8882 }
8883
8884 ada_fixup_array_indexes_type (index_type_desc);
8885 if (index_type_desc != NULL
8886 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8887 {
8888 /* Ignore this ___XA parallel type, as it does not bring any
8889 useful information. This allows us to avoid creating fixed
8890 versions of the array's index types, which would be identical
8891 to the original ones. This, in turn, can also help avoid
8892 the creation of fixed versions of the array itself. */
8893 index_type_desc = NULL;
8894 }
8895
8896 if (index_type_desc == NULL)
8897 {
8898 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8899
8900 /* NOTE: elt_type---the fixed version of elt_type0---should never
8901 depend on the contents of the array in properly constructed
8902 debugging data. */
8903 /* Create a fixed version of the array element type.
8904 We're not providing the address of an element here,
8905 and thus the actual object value cannot be inspected to do
8906 the conversion. This should not be a problem, since arrays of
8907 unconstrained objects are not allowed. In particular, all
8908 the elements of an array of a tagged type should all be of
8909 the same type specified in the debugging info. No need to
8910 consult the object tag. */
8911 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8912
8913 /* Make sure we always create a new array type when dealing with
8914 packed array types, since we're going to fix-up the array
8915 type length and element bitsize a little further down. */
8916 if (elt_type0 == elt_type && !constrained_packed_array_p)
8917 result = type0;
8918 else
8919 result = create_array_type (alloc_type_copy (type0),
8920 elt_type, TYPE_INDEX_TYPE (type0));
8921 }
8922 else
8923 {
8924 int i;
8925 struct type *elt_type0;
8926
8927 elt_type0 = type0;
8928 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8929 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8930
8931 /* NOTE: result---the fixed version of elt_type0---should never
8932 depend on the contents of the array in properly constructed
8933 debugging data. */
8934 /* Create a fixed version of the array element type.
8935 We're not providing the address of an element here,
8936 and thus the actual object value cannot be inspected to do
8937 the conversion. This should not be a problem, since arrays of
8938 unconstrained objects are not allowed. In particular, all
8939 the elements of an array of a tagged type should all be of
8940 the same type specified in the debugging info. No need to
8941 consult the object tag. */
8942 result =
8943 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8944
8945 elt_type0 = type0;
8946 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8947 {
8948 struct type *range_type =
8949 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8950
8951 result = create_array_type (alloc_type_copy (elt_type0),
8952 result, range_type);
8953 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8954 }
8955 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8956 error (_("array type with dynamic size is larger than varsize-limit"));
8957 }
8958
8959 /* We want to preserve the type name. This can be useful when
8960 trying to get the type name of a value that has already been
8961 printed (for instance, if the user did "print VAR; whatis $". */
8962 TYPE_NAME (result) = TYPE_NAME (type0);
8963
8964 if (constrained_packed_array_p)
8965 {
8966 /* So far, the resulting type has been created as if the original
8967 type was a regular (non-packed) array type. As a result, the
8968 bitsize of the array elements needs to be set again, and the array
8969 length needs to be recomputed based on that bitsize. */
8970 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8971 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8972
8973 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8974 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8975 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8976 TYPE_LENGTH (result)++;
8977 }
8978
8979 TYPE_FIXED_INSTANCE (result) = 1;
8980 return result;
8981 }
8982
8983
8984 /* A standard type (containing no dynamically sized components)
8985 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8986 DVAL describes a record containing any discriminants used in TYPE0,
8987 and may be NULL if there are none, or if the object of type TYPE at
8988 ADDRESS or in VALADDR contains these discriminants.
8989
8990 If CHECK_TAG is not null, in the case of tagged types, this function
8991 attempts to locate the object's tag and use it to compute the actual
8992 type. However, when ADDRESS is null, we cannot use it to determine the
8993 location of the tag, and therefore compute the tagged type's actual type.
8994 So we return the tagged type without consulting the tag. */
8995
8996 static struct type *
8997 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8998 CORE_ADDR address, struct value *dval, int check_tag)
8999 {
9000 type = ada_check_typedef (type);
9001 switch (TYPE_CODE (type))
9002 {
9003 default:
9004 return type;
9005 case TYPE_CODE_STRUCT:
9006 {
9007 struct type *static_type = to_static_fixed_type (type);
9008 struct type *fixed_record_type =
9009 to_fixed_record_type (type, valaddr, address, NULL);
9010
9011 /* If STATIC_TYPE is a tagged type and we know the object's address,
9012 then we can determine its tag, and compute the object's actual
9013 type from there. Note that we have to use the fixed record
9014 type (the parent part of the record may have dynamic fields
9015 and the way the location of _tag is expressed may depend on
9016 them). */
9017
9018 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9019 {
9020 struct value *tag =
9021 value_tag_from_contents_and_address
9022 (fixed_record_type,
9023 valaddr,
9024 address);
9025 struct type *real_type = type_from_tag (tag);
9026 struct value *obj =
9027 value_from_contents_and_address (fixed_record_type,
9028 valaddr,
9029 address);
9030 fixed_record_type = value_type (obj);
9031 if (real_type != NULL)
9032 return to_fixed_record_type
9033 (real_type, NULL,
9034 value_address (ada_tag_value_at_base_address (obj)), NULL);
9035 }
9036
9037 /* Check to see if there is a parallel ___XVZ variable.
9038 If there is, then it provides the actual size of our type. */
9039 else if (ada_type_name (fixed_record_type) != NULL)
9040 {
9041 const char *name = ada_type_name (fixed_record_type);
9042 char *xvz_name
9043 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9044 bool xvz_found = false;
9045 LONGEST size;
9046
9047 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9048 TRY
9049 {
9050 xvz_found = get_int_var_value (xvz_name, size);
9051 }
9052 CATCH (except, RETURN_MASK_ERROR)
9053 {
9054 /* We found the variable, but somehow failed to read
9055 its value. Rethrow the same error, but with a little
9056 bit more information, to help the user understand
9057 what went wrong (Eg: the variable might have been
9058 optimized out). */
9059 throw_error (except.error,
9060 _("unable to read value of %s (%s)"),
9061 xvz_name, except.message);
9062 }
9063 END_CATCH
9064
9065 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9066 {
9067 fixed_record_type = copy_type (fixed_record_type);
9068 TYPE_LENGTH (fixed_record_type) = size;
9069
9070 /* The FIXED_RECORD_TYPE may have be a stub. We have
9071 observed this when the debugging info is STABS, and
9072 apparently it is something that is hard to fix.
9073
9074 In practice, we don't need the actual type definition
9075 at all, because the presence of the XVZ variable allows us
9076 to assume that there must be a XVS type as well, which we
9077 should be able to use later, when we need the actual type
9078 definition.
9079
9080 In the meantime, pretend that the "fixed" type we are
9081 returning is NOT a stub, because this can cause trouble
9082 when using this type to create new types targeting it.
9083 Indeed, the associated creation routines often check
9084 whether the target type is a stub and will try to replace
9085 it, thus using a type with the wrong size. This, in turn,
9086 might cause the new type to have the wrong size too.
9087 Consider the case of an array, for instance, where the size
9088 of the array is computed from the number of elements in
9089 our array multiplied by the size of its element. */
9090 TYPE_STUB (fixed_record_type) = 0;
9091 }
9092 }
9093 return fixed_record_type;
9094 }
9095 case TYPE_CODE_ARRAY:
9096 return to_fixed_array_type (type, dval, 1);
9097 case TYPE_CODE_UNION:
9098 if (dval == NULL)
9099 return type;
9100 else
9101 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9102 }
9103 }
9104
9105 /* The same as ada_to_fixed_type_1, except that it preserves the type
9106 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9107
9108 The typedef layer needs be preserved in order to differentiate between
9109 arrays and array pointers when both types are implemented using the same
9110 fat pointer. In the array pointer case, the pointer is encoded as
9111 a typedef of the pointer type. For instance, considering:
9112
9113 type String_Access is access String;
9114 S1 : String_Access := null;
9115
9116 To the debugger, S1 is defined as a typedef of type String. But
9117 to the user, it is a pointer. So if the user tries to print S1,
9118 we should not dereference the array, but print the array address
9119 instead.
9120
9121 If we didn't preserve the typedef layer, we would lose the fact that
9122 the type is to be presented as a pointer (needs de-reference before
9123 being printed). And we would also use the source-level type name. */
9124
9125 struct type *
9126 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9127 CORE_ADDR address, struct value *dval, int check_tag)
9128
9129 {
9130 struct type *fixed_type =
9131 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9132
9133 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9134 then preserve the typedef layer.
9135
9136 Implementation note: We can only check the main-type portion of
9137 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9138 from TYPE now returns a type that has the same instance flags
9139 as TYPE. For instance, if TYPE is a "typedef const", and its
9140 target type is a "struct", then the typedef elimination will return
9141 a "const" version of the target type. See check_typedef for more
9142 details about how the typedef layer elimination is done.
9143
9144 brobecker/2010-11-19: It seems to me that the only case where it is
9145 useful to preserve the typedef layer is when dealing with fat pointers.
9146 Perhaps, we could add a check for that and preserve the typedef layer
9147 only in that situation. But this seems unecessary so far, probably
9148 because we call check_typedef/ada_check_typedef pretty much everywhere.
9149 */
9150 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9151 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9152 == TYPE_MAIN_TYPE (fixed_type)))
9153 return type;
9154
9155 return fixed_type;
9156 }
9157
9158 /* A standard (static-sized) type corresponding as well as possible to
9159 TYPE0, but based on no runtime data. */
9160
9161 static struct type *
9162 to_static_fixed_type (struct type *type0)
9163 {
9164 struct type *type;
9165
9166 if (type0 == NULL)
9167 return NULL;
9168
9169 if (TYPE_FIXED_INSTANCE (type0))
9170 return type0;
9171
9172 type0 = ada_check_typedef (type0);
9173
9174 switch (TYPE_CODE (type0))
9175 {
9176 default:
9177 return type0;
9178 case TYPE_CODE_STRUCT:
9179 type = dynamic_template_type (type0);
9180 if (type != NULL)
9181 return template_to_static_fixed_type (type);
9182 else
9183 return template_to_static_fixed_type (type0);
9184 case TYPE_CODE_UNION:
9185 type = ada_find_parallel_type (type0, "___XVU");
9186 if (type != NULL)
9187 return template_to_static_fixed_type (type);
9188 else
9189 return template_to_static_fixed_type (type0);
9190 }
9191 }
9192
9193 /* A static approximation of TYPE with all type wrappers removed. */
9194
9195 static struct type *
9196 static_unwrap_type (struct type *type)
9197 {
9198 if (ada_is_aligner_type (type))
9199 {
9200 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9201 if (ada_type_name (type1) == NULL)
9202 TYPE_NAME (type1) = ada_type_name (type);
9203
9204 return static_unwrap_type (type1);
9205 }
9206 else
9207 {
9208 struct type *raw_real_type = ada_get_base_type (type);
9209
9210 if (raw_real_type == type)
9211 return type;
9212 else
9213 return to_static_fixed_type (raw_real_type);
9214 }
9215 }
9216
9217 /* In some cases, incomplete and private types require
9218 cross-references that are not resolved as records (for example,
9219 type Foo;
9220 type FooP is access Foo;
9221 V: FooP;
9222 type Foo is array ...;
9223 ). In these cases, since there is no mechanism for producing
9224 cross-references to such types, we instead substitute for FooP a
9225 stub enumeration type that is nowhere resolved, and whose tag is
9226 the name of the actual type. Call these types "non-record stubs". */
9227
9228 /* A type equivalent to TYPE that is not a non-record stub, if one
9229 exists, otherwise TYPE. */
9230
9231 struct type *
9232 ada_check_typedef (struct type *type)
9233 {
9234 if (type == NULL)
9235 return NULL;
9236
9237 /* If our type is an access to an unconstrained array, which is encoded
9238 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9239 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9240 what allows us to distinguish between fat pointers that represent
9241 array types, and fat pointers that represent array access types
9242 (in both cases, the compiler implements them as fat pointers). */
9243 if (ada_is_access_to_unconstrained_array (type))
9244 return type;
9245
9246 type = check_typedef (type);
9247 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9248 || !TYPE_STUB (type)
9249 || TYPE_NAME (type) == NULL)
9250 return type;
9251 else
9252 {
9253 const char *name = TYPE_NAME (type);
9254 struct type *type1 = ada_find_any_type (name);
9255
9256 if (type1 == NULL)
9257 return type;
9258
9259 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9260 stubs pointing to arrays, as we don't create symbols for array
9261 types, only for the typedef-to-array types). If that's the case,
9262 strip the typedef layer. */
9263 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9264 type1 = ada_check_typedef (type1);
9265
9266 return type1;
9267 }
9268 }
9269
9270 /* A value representing the data at VALADDR/ADDRESS as described by
9271 type TYPE0, but with a standard (static-sized) type that correctly
9272 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9273 type, then return VAL0 [this feature is simply to avoid redundant
9274 creation of struct values]. */
9275
9276 static struct value *
9277 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9278 struct value *val0)
9279 {
9280 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9281
9282 if (type == type0 && val0 != NULL)
9283 return val0;
9284
9285 if (VALUE_LVAL (val0) != lval_memory)
9286 {
9287 /* Our value does not live in memory; it could be a convenience
9288 variable, for instance. Create a not_lval value using val0's
9289 contents. */
9290 return value_from_contents (type, value_contents (val0));
9291 }
9292
9293 return value_from_contents_and_address (type, 0, address);
9294 }
9295
9296 /* A value representing VAL, but with a standard (static-sized) type
9297 that correctly describes it. Does not necessarily create a new
9298 value. */
9299
9300 struct value *
9301 ada_to_fixed_value (struct value *val)
9302 {
9303 val = unwrap_value (val);
9304 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9305 return val;
9306 }
9307 \f
9308
9309 /* Attributes */
9310
9311 /* Table mapping attribute numbers to names.
9312 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9313
9314 static const char *attribute_names[] = {
9315 "<?>",
9316
9317 "first",
9318 "last",
9319 "length",
9320 "image",
9321 "max",
9322 "min",
9323 "modulus",
9324 "pos",
9325 "size",
9326 "tag",
9327 "val",
9328 0
9329 };
9330
9331 const char *
9332 ada_attribute_name (enum exp_opcode n)
9333 {
9334 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9335 return attribute_names[n - OP_ATR_FIRST + 1];
9336 else
9337 return attribute_names[0];
9338 }
9339
9340 /* Evaluate the 'POS attribute applied to ARG. */
9341
9342 static LONGEST
9343 pos_atr (struct value *arg)
9344 {
9345 struct value *val = coerce_ref (arg);
9346 struct type *type = value_type (val);
9347 LONGEST result;
9348
9349 if (!discrete_type_p (type))
9350 error (_("'POS only defined on discrete types"));
9351
9352 if (!discrete_position (type, value_as_long (val), &result))
9353 error (_("enumeration value is invalid: can't find 'POS"));
9354
9355 return result;
9356 }
9357
9358 static struct value *
9359 value_pos_atr (struct type *type, struct value *arg)
9360 {
9361 return value_from_longest (type, pos_atr (arg));
9362 }
9363
9364 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9365
9366 static struct value *
9367 value_val_atr (struct type *type, struct value *arg)
9368 {
9369 if (!discrete_type_p (type))
9370 error (_("'VAL only defined on discrete types"));
9371 if (!integer_type_p (value_type (arg)))
9372 error (_("'VAL requires integral argument"));
9373
9374 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9375 {
9376 long pos = value_as_long (arg);
9377
9378 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9379 error (_("argument to 'VAL out of range"));
9380 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9381 }
9382 else
9383 return value_from_longest (type, value_as_long (arg));
9384 }
9385 \f
9386
9387 /* Evaluation */
9388
9389 /* True if TYPE appears to be an Ada character type.
9390 [At the moment, this is true only for Character and Wide_Character;
9391 It is a heuristic test that could stand improvement]. */
9392
9393 int
9394 ada_is_character_type (struct type *type)
9395 {
9396 const char *name;
9397
9398 /* If the type code says it's a character, then assume it really is,
9399 and don't check any further. */
9400 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9401 return 1;
9402
9403 /* Otherwise, assume it's a character type iff it is a discrete type
9404 with a known character type name. */
9405 name = ada_type_name (type);
9406 return (name != NULL
9407 && (TYPE_CODE (type) == TYPE_CODE_INT
9408 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9409 && (strcmp (name, "character") == 0
9410 || strcmp (name, "wide_character") == 0
9411 || strcmp (name, "wide_wide_character") == 0
9412 || strcmp (name, "unsigned char") == 0));
9413 }
9414
9415 /* True if TYPE appears to be an Ada string type. */
9416
9417 int
9418 ada_is_string_type (struct type *type)
9419 {
9420 type = ada_check_typedef (type);
9421 if (type != NULL
9422 && TYPE_CODE (type) != TYPE_CODE_PTR
9423 && (ada_is_simple_array_type (type)
9424 || ada_is_array_descriptor_type (type))
9425 && ada_array_arity (type) == 1)
9426 {
9427 struct type *elttype = ada_array_element_type (type, 1);
9428
9429 return ada_is_character_type (elttype);
9430 }
9431 else
9432 return 0;
9433 }
9434
9435 /* The compiler sometimes provides a parallel XVS type for a given
9436 PAD type. Normally, it is safe to follow the PAD type directly,
9437 but older versions of the compiler have a bug that causes the offset
9438 of its "F" field to be wrong. Following that field in that case
9439 would lead to incorrect results, but this can be worked around
9440 by ignoring the PAD type and using the associated XVS type instead.
9441
9442 Set to True if the debugger should trust the contents of PAD types.
9443 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9444 static int trust_pad_over_xvs = 1;
9445
9446 /* True if TYPE is a struct type introduced by the compiler to force the
9447 alignment of a value. Such types have a single field with a
9448 distinctive name. */
9449
9450 int
9451 ada_is_aligner_type (struct type *type)
9452 {
9453 type = ada_check_typedef (type);
9454
9455 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9456 return 0;
9457
9458 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9459 && TYPE_NFIELDS (type) == 1
9460 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9461 }
9462
9463 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9464 the parallel type. */
9465
9466 struct type *
9467 ada_get_base_type (struct type *raw_type)
9468 {
9469 struct type *real_type_namer;
9470 struct type *raw_real_type;
9471
9472 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9473 return raw_type;
9474
9475 if (ada_is_aligner_type (raw_type))
9476 /* The encoding specifies that we should always use the aligner type.
9477 So, even if this aligner type has an associated XVS type, we should
9478 simply ignore it.
9479
9480 According to the compiler gurus, an XVS type parallel to an aligner
9481 type may exist because of a stabs limitation. In stabs, aligner
9482 types are empty because the field has a variable-sized type, and
9483 thus cannot actually be used as an aligner type. As a result,
9484 we need the associated parallel XVS type to decode the type.
9485 Since the policy in the compiler is to not change the internal
9486 representation based on the debugging info format, we sometimes
9487 end up having a redundant XVS type parallel to the aligner type. */
9488 return raw_type;
9489
9490 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9491 if (real_type_namer == NULL
9492 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9493 || TYPE_NFIELDS (real_type_namer) != 1)
9494 return raw_type;
9495
9496 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9497 {
9498 /* This is an older encoding form where the base type needs to be
9499 looked up by name. We prefer the newer enconding because it is
9500 more efficient. */
9501 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9502 if (raw_real_type == NULL)
9503 return raw_type;
9504 else
9505 return raw_real_type;
9506 }
9507
9508 /* The field in our XVS type is a reference to the base type. */
9509 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9510 }
9511
9512 /* The type of value designated by TYPE, with all aligners removed. */
9513
9514 struct type *
9515 ada_aligned_type (struct type *type)
9516 {
9517 if (ada_is_aligner_type (type))
9518 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9519 else
9520 return ada_get_base_type (type);
9521 }
9522
9523
9524 /* The address of the aligned value in an object at address VALADDR
9525 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9526
9527 const gdb_byte *
9528 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9529 {
9530 if (ada_is_aligner_type (type))
9531 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9532 valaddr +
9533 TYPE_FIELD_BITPOS (type,
9534 0) / TARGET_CHAR_BIT);
9535 else
9536 return valaddr;
9537 }
9538
9539
9540
9541 /* The printed representation of an enumeration literal with encoded
9542 name NAME. The value is good to the next call of ada_enum_name. */
9543 const char *
9544 ada_enum_name (const char *name)
9545 {
9546 static char *result;
9547 static size_t result_len = 0;
9548 const char *tmp;
9549
9550 /* First, unqualify the enumeration name:
9551 1. Search for the last '.' character. If we find one, then skip
9552 all the preceding characters, the unqualified name starts
9553 right after that dot.
9554 2. Otherwise, we may be debugging on a target where the compiler
9555 translates dots into "__". Search forward for double underscores,
9556 but stop searching when we hit an overloading suffix, which is
9557 of the form "__" followed by digits. */
9558
9559 tmp = strrchr (name, '.');
9560 if (tmp != NULL)
9561 name = tmp + 1;
9562 else
9563 {
9564 while ((tmp = strstr (name, "__")) != NULL)
9565 {
9566 if (isdigit (tmp[2]))
9567 break;
9568 else
9569 name = tmp + 2;
9570 }
9571 }
9572
9573 if (name[0] == 'Q')
9574 {
9575 int v;
9576
9577 if (name[1] == 'U' || name[1] == 'W')
9578 {
9579 if (sscanf (name + 2, "%x", &v) != 1)
9580 return name;
9581 }
9582 else
9583 return name;
9584
9585 GROW_VECT (result, result_len, 16);
9586 if (isascii (v) && isprint (v))
9587 xsnprintf (result, result_len, "'%c'", v);
9588 else if (name[1] == 'U')
9589 xsnprintf (result, result_len, "[\"%02x\"]", v);
9590 else
9591 xsnprintf (result, result_len, "[\"%04x\"]", v);
9592
9593 return result;
9594 }
9595 else
9596 {
9597 tmp = strstr (name, "__");
9598 if (tmp == NULL)
9599 tmp = strstr (name, "$");
9600 if (tmp != NULL)
9601 {
9602 GROW_VECT (result, result_len, tmp - name + 1);
9603 strncpy (result, name, tmp - name);
9604 result[tmp - name] = '\0';
9605 return result;
9606 }
9607
9608 return name;
9609 }
9610 }
9611
9612 /* Evaluate the subexpression of EXP starting at *POS as for
9613 evaluate_type, updating *POS to point just past the evaluated
9614 expression. */
9615
9616 static struct value *
9617 evaluate_subexp_type (struct expression *exp, int *pos)
9618 {
9619 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9620 }
9621
9622 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9623 value it wraps. */
9624
9625 static struct value *
9626 unwrap_value (struct value *val)
9627 {
9628 struct type *type = ada_check_typedef (value_type (val));
9629
9630 if (ada_is_aligner_type (type))
9631 {
9632 struct value *v = ada_value_struct_elt (val, "F", 0);
9633 struct type *val_type = ada_check_typedef (value_type (v));
9634
9635 if (ada_type_name (val_type) == NULL)
9636 TYPE_NAME (val_type) = ada_type_name (type);
9637
9638 return unwrap_value (v);
9639 }
9640 else
9641 {
9642 struct type *raw_real_type =
9643 ada_check_typedef (ada_get_base_type (type));
9644
9645 /* If there is no parallel XVS or XVE type, then the value is
9646 already unwrapped. Return it without further modification. */
9647 if ((type == raw_real_type)
9648 && ada_find_parallel_type (type, "___XVE") == NULL)
9649 return val;
9650
9651 return
9652 coerce_unspec_val_to_type
9653 (val, ada_to_fixed_type (raw_real_type, 0,
9654 value_address (val),
9655 NULL, 1));
9656 }
9657 }
9658
9659 static struct value *
9660 cast_from_fixed (struct type *type, struct value *arg)
9661 {
9662 struct value *scale = ada_scaling_factor (value_type (arg));
9663 arg = value_cast (value_type (scale), arg);
9664
9665 arg = value_binop (arg, scale, BINOP_MUL);
9666 return value_cast (type, arg);
9667 }
9668
9669 static struct value *
9670 cast_to_fixed (struct type *type, struct value *arg)
9671 {
9672 if (type == value_type (arg))
9673 return arg;
9674
9675 struct value *scale = ada_scaling_factor (type);
9676 if (ada_is_fixed_point_type (value_type (arg)))
9677 arg = cast_from_fixed (value_type (scale), arg);
9678 else
9679 arg = value_cast (value_type (scale), arg);
9680
9681 arg = value_binop (arg, scale, BINOP_DIV);
9682 return value_cast (type, arg);
9683 }
9684
9685 /* Given two array types T1 and T2, return nonzero iff both arrays
9686 contain the same number of elements. */
9687
9688 static int
9689 ada_same_array_size_p (struct type *t1, struct type *t2)
9690 {
9691 LONGEST lo1, hi1, lo2, hi2;
9692
9693 /* Get the array bounds in order to verify that the size of
9694 the two arrays match. */
9695 if (!get_array_bounds (t1, &lo1, &hi1)
9696 || !get_array_bounds (t2, &lo2, &hi2))
9697 error (_("unable to determine array bounds"));
9698
9699 /* To make things easier for size comparison, normalize a bit
9700 the case of empty arrays by making sure that the difference
9701 between upper bound and lower bound is always -1. */
9702 if (lo1 > hi1)
9703 hi1 = lo1 - 1;
9704 if (lo2 > hi2)
9705 hi2 = lo2 - 1;
9706
9707 return (hi1 - lo1 == hi2 - lo2);
9708 }
9709
9710 /* Assuming that VAL is an array of integrals, and TYPE represents
9711 an array with the same number of elements, but with wider integral
9712 elements, return an array "casted" to TYPE. In practice, this
9713 means that the returned array is built by casting each element
9714 of the original array into TYPE's (wider) element type. */
9715
9716 static struct value *
9717 ada_promote_array_of_integrals (struct type *type, struct value *val)
9718 {
9719 struct type *elt_type = TYPE_TARGET_TYPE (type);
9720 LONGEST lo, hi;
9721 struct value *res;
9722 LONGEST i;
9723
9724 /* Verify that both val and type are arrays of scalars, and
9725 that the size of val's elements is smaller than the size
9726 of type's element. */
9727 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9728 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9729 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9730 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9731 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9732 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9733
9734 if (!get_array_bounds (type, &lo, &hi))
9735 error (_("unable to determine array bounds"));
9736
9737 res = allocate_value (type);
9738
9739 /* Promote each array element. */
9740 for (i = 0; i < hi - lo + 1; i++)
9741 {
9742 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9743
9744 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9745 value_contents_all (elt), TYPE_LENGTH (elt_type));
9746 }
9747
9748 return res;
9749 }
9750
9751 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9752 return the converted value. */
9753
9754 static struct value *
9755 coerce_for_assign (struct type *type, struct value *val)
9756 {
9757 struct type *type2 = value_type (val);
9758
9759 if (type == type2)
9760 return val;
9761
9762 type2 = ada_check_typedef (type2);
9763 type = ada_check_typedef (type);
9764
9765 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9766 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9767 {
9768 val = ada_value_ind (val);
9769 type2 = value_type (val);
9770 }
9771
9772 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9773 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9774 {
9775 if (!ada_same_array_size_p (type, type2))
9776 error (_("cannot assign arrays of different length"));
9777
9778 if (is_integral_type (TYPE_TARGET_TYPE (type))
9779 && is_integral_type (TYPE_TARGET_TYPE (type2))
9780 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9781 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9782 {
9783 /* Allow implicit promotion of the array elements to
9784 a wider type. */
9785 return ada_promote_array_of_integrals (type, val);
9786 }
9787
9788 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9789 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9790 error (_("Incompatible types in assignment"));
9791 deprecated_set_value_type (val, type);
9792 }
9793 return val;
9794 }
9795
9796 static struct value *
9797 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9798 {
9799 struct value *val;
9800 struct type *type1, *type2;
9801 LONGEST v, v1, v2;
9802
9803 arg1 = coerce_ref (arg1);
9804 arg2 = coerce_ref (arg2);
9805 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9806 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9807
9808 if (TYPE_CODE (type1) != TYPE_CODE_INT
9809 || TYPE_CODE (type2) != TYPE_CODE_INT)
9810 return value_binop (arg1, arg2, op);
9811
9812 switch (op)
9813 {
9814 case BINOP_MOD:
9815 case BINOP_DIV:
9816 case BINOP_REM:
9817 break;
9818 default:
9819 return value_binop (arg1, arg2, op);
9820 }
9821
9822 v2 = value_as_long (arg2);
9823 if (v2 == 0)
9824 error (_("second operand of %s must not be zero."), op_string (op));
9825
9826 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9827 return value_binop (arg1, arg2, op);
9828
9829 v1 = value_as_long (arg1);
9830 switch (op)
9831 {
9832 case BINOP_DIV:
9833 v = v1 / v2;
9834 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9835 v += v > 0 ? -1 : 1;
9836 break;
9837 case BINOP_REM:
9838 v = v1 % v2;
9839 if (v * v1 < 0)
9840 v -= v2;
9841 break;
9842 default:
9843 /* Should not reach this point. */
9844 v = 0;
9845 }
9846
9847 val = allocate_value (type1);
9848 store_unsigned_integer (value_contents_raw (val),
9849 TYPE_LENGTH (value_type (val)),
9850 gdbarch_byte_order (get_type_arch (type1)), v);
9851 return val;
9852 }
9853
9854 static int
9855 ada_value_equal (struct value *arg1, struct value *arg2)
9856 {
9857 if (ada_is_direct_array_type (value_type (arg1))
9858 || ada_is_direct_array_type (value_type (arg2)))
9859 {
9860 struct type *arg1_type, *arg2_type;
9861
9862 /* Automatically dereference any array reference before
9863 we attempt to perform the comparison. */
9864 arg1 = ada_coerce_ref (arg1);
9865 arg2 = ada_coerce_ref (arg2);
9866
9867 arg1 = ada_coerce_to_simple_array (arg1);
9868 arg2 = ada_coerce_to_simple_array (arg2);
9869
9870 arg1_type = ada_check_typedef (value_type (arg1));
9871 arg2_type = ada_check_typedef (value_type (arg2));
9872
9873 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9874 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9875 error (_("Attempt to compare array with non-array"));
9876 /* FIXME: The following works only for types whose
9877 representations use all bits (no padding or undefined bits)
9878 and do not have user-defined equality. */
9879 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9880 && memcmp (value_contents (arg1), value_contents (arg2),
9881 TYPE_LENGTH (arg1_type)) == 0);
9882 }
9883 return value_equal (arg1, arg2);
9884 }
9885
9886 /* Total number of component associations in the aggregate starting at
9887 index PC in EXP. Assumes that index PC is the start of an
9888 OP_AGGREGATE. */
9889
9890 static int
9891 num_component_specs (struct expression *exp, int pc)
9892 {
9893 int n, m, i;
9894
9895 m = exp->elts[pc + 1].longconst;
9896 pc += 3;
9897 n = 0;
9898 for (i = 0; i < m; i += 1)
9899 {
9900 switch (exp->elts[pc].opcode)
9901 {
9902 default:
9903 n += 1;
9904 break;
9905 case OP_CHOICES:
9906 n += exp->elts[pc + 1].longconst;
9907 break;
9908 }
9909 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9910 }
9911 return n;
9912 }
9913
9914 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9915 component of LHS (a simple array or a record), updating *POS past
9916 the expression, assuming that LHS is contained in CONTAINER. Does
9917 not modify the inferior's memory, nor does it modify LHS (unless
9918 LHS == CONTAINER). */
9919
9920 static void
9921 assign_component (struct value *container, struct value *lhs, LONGEST index,
9922 struct expression *exp, int *pos)
9923 {
9924 struct value *mark = value_mark ();
9925 struct value *elt;
9926 struct type *lhs_type = check_typedef (value_type (lhs));
9927
9928 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9929 {
9930 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9931 struct value *index_val = value_from_longest (index_type, index);
9932
9933 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9934 }
9935 else
9936 {
9937 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9938 elt = ada_to_fixed_value (elt);
9939 }
9940
9941 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9942 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9943 else
9944 value_assign_to_component (container, elt,
9945 ada_evaluate_subexp (NULL, exp, pos,
9946 EVAL_NORMAL));
9947
9948 value_free_to_mark (mark);
9949 }
9950
9951 /* Assuming that LHS represents an lvalue having a record or array
9952 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9953 of that aggregate's value to LHS, advancing *POS past the
9954 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9955 lvalue containing LHS (possibly LHS itself). Does not modify
9956 the inferior's memory, nor does it modify the contents of
9957 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9958
9959 static struct value *
9960 assign_aggregate (struct value *container,
9961 struct value *lhs, struct expression *exp,
9962 int *pos, enum noside noside)
9963 {
9964 struct type *lhs_type;
9965 int n = exp->elts[*pos+1].longconst;
9966 LONGEST low_index, high_index;
9967 int num_specs;
9968 LONGEST *indices;
9969 int max_indices, num_indices;
9970 int i;
9971
9972 *pos += 3;
9973 if (noside != EVAL_NORMAL)
9974 {
9975 for (i = 0; i < n; i += 1)
9976 ada_evaluate_subexp (NULL, exp, pos, noside);
9977 return container;
9978 }
9979
9980 container = ada_coerce_ref (container);
9981 if (ada_is_direct_array_type (value_type (container)))
9982 container = ada_coerce_to_simple_array (container);
9983 lhs = ada_coerce_ref (lhs);
9984 if (!deprecated_value_modifiable (lhs))
9985 error (_("Left operand of assignment is not a modifiable lvalue."));
9986
9987 lhs_type = check_typedef (value_type (lhs));
9988 if (ada_is_direct_array_type (lhs_type))
9989 {
9990 lhs = ada_coerce_to_simple_array (lhs);
9991 lhs_type = check_typedef (value_type (lhs));
9992 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9993 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9994 }
9995 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9996 {
9997 low_index = 0;
9998 high_index = num_visible_fields (lhs_type) - 1;
9999 }
10000 else
10001 error (_("Left-hand side must be array or record."));
10002
10003 num_specs = num_component_specs (exp, *pos - 3);
10004 max_indices = 4 * num_specs + 4;
10005 indices = XALLOCAVEC (LONGEST, max_indices);
10006 indices[0] = indices[1] = low_index - 1;
10007 indices[2] = indices[3] = high_index + 1;
10008 num_indices = 4;
10009
10010 for (i = 0; i < n; i += 1)
10011 {
10012 switch (exp->elts[*pos].opcode)
10013 {
10014 case OP_CHOICES:
10015 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10016 &num_indices, max_indices,
10017 low_index, high_index);
10018 break;
10019 case OP_POSITIONAL:
10020 aggregate_assign_positional (container, lhs, exp, pos, indices,
10021 &num_indices, max_indices,
10022 low_index, high_index);
10023 break;
10024 case OP_OTHERS:
10025 if (i != n-1)
10026 error (_("Misplaced 'others' clause"));
10027 aggregate_assign_others (container, lhs, exp, pos, indices,
10028 num_indices, low_index, high_index);
10029 break;
10030 default:
10031 error (_("Internal error: bad aggregate clause"));
10032 }
10033 }
10034
10035 return container;
10036 }
10037
10038 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10039 construct at *POS, updating *POS past the construct, given that
10040 the positions are relative to lower bound LOW, where HIGH is the
10041 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10042 updating *NUM_INDICES as needed. CONTAINER is as for
10043 assign_aggregate. */
10044 static void
10045 aggregate_assign_positional (struct value *container,
10046 struct value *lhs, struct expression *exp,
10047 int *pos, LONGEST *indices, int *num_indices,
10048 int max_indices, LONGEST low, LONGEST high)
10049 {
10050 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10051
10052 if (ind - 1 == high)
10053 warning (_("Extra components in aggregate ignored."));
10054 if (ind <= high)
10055 {
10056 add_component_interval (ind, ind, indices, num_indices, max_indices);
10057 *pos += 3;
10058 assign_component (container, lhs, ind, exp, pos);
10059 }
10060 else
10061 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10062 }
10063
10064 /* Assign into the components of LHS indexed by the OP_CHOICES
10065 construct at *POS, updating *POS past the construct, given that
10066 the allowable indices are LOW..HIGH. Record the indices assigned
10067 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10068 needed. CONTAINER is as for assign_aggregate. */
10069 static void
10070 aggregate_assign_from_choices (struct value *container,
10071 struct value *lhs, struct expression *exp,
10072 int *pos, LONGEST *indices, int *num_indices,
10073 int max_indices, LONGEST low, LONGEST high)
10074 {
10075 int j;
10076 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10077 int choice_pos, expr_pc;
10078 int is_array = ada_is_direct_array_type (value_type (lhs));
10079
10080 choice_pos = *pos += 3;
10081
10082 for (j = 0; j < n_choices; j += 1)
10083 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10084 expr_pc = *pos;
10085 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10086
10087 for (j = 0; j < n_choices; j += 1)
10088 {
10089 LONGEST lower, upper;
10090 enum exp_opcode op = exp->elts[choice_pos].opcode;
10091
10092 if (op == OP_DISCRETE_RANGE)
10093 {
10094 choice_pos += 1;
10095 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10096 EVAL_NORMAL));
10097 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10098 EVAL_NORMAL));
10099 }
10100 else if (is_array)
10101 {
10102 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10103 EVAL_NORMAL));
10104 upper = lower;
10105 }
10106 else
10107 {
10108 int ind;
10109 const char *name;
10110
10111 switch (op)
10112 {
10113 case OP_NAME:
10114 name = &exp->elts[choice_pos + 2].string;
10115 break;
10116 case OP_VAR_VALUE:
10117 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10118 break;
10119 default:
10120 error (_("Invalid record component association."));
10121 }
10122 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10123 ind = 0;
10124 if (! find_struct_field (name, value_type (lhs), 0,
10125 NULL, NULL, NULL, NULL, &ind))
10126 error (_("Unknown component name: %s."), name);
10127 lower = upper = ind;
10128 }
10129
10130 if (lower <= upper && (lower < low || upper > high))
10131 error (_("Index in component association out of bounds."));
10132
10133 add_component_interval (lower, upper, indices, num_indices,
10134 max_indices);
10135 while (lower <= upper)
10136 {
10137 int pos1;
10138
10139 pos1 = expr_pc;
10140 assign_component (container, lhs, lower, exp, &pos1);
10141 lower += 1;
10142 }
10143 }
10144 }
10145
10146 /* Assign the value of the expression in the OP_OTHERS construct in
10147 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10148 have not been previously assigned. The index intervals already assigned
10149 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10150 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10151 static void
10152 aggregate_assign_others (struct value *container,
10153 struct value *lhs, struct expression *exp,
10154 int *pos, LONGEST *indices, int num_indices,
10155 LONGEST low, LONGEST high)
10156 {
10157 int i;
10158 int expr_pc = *pos + 1;
10159
10160 for (i = 0; i < num_indices - 2; i += 2)
10161 {
10162 LONGEST ind;
10163
10164 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10165 {
10166 int localpos;
10167
10168 localpos = expr_pc;
10169 assign_component (container, lhs, ind, exp, &localpos);
10170 }
10171 }
10172 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10173 }
10174
10175 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10176 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10177 modifying *SIZE as needed. It is an error if *SIZE exceeds
10178 MAX_SIZE. The resulting intervals do not overlap. */
10179 static void
10180 add_component_interval (LONGEST low, LONGEST high,
10181 LONGEST* indices, int *size, int max_size)
10182 {
10183 int i, j;
10184
10185 for (i = 0; i < *size; i += 2) {
10186 if (high >= indices[i] && low <= indices[i + 1])
10187 {
10188 int kh;
10189
10190 for (kh = i + 2; kh < *size; kh += 2)
10191 if (high < indices[kh])
10192 break;
10193 if (low < indices[i])
10194 indices[i] = low;
10195 indices[i + 1] = indices[kh - 1];
10196 if (high > indices[i + 1])
10197 indices[i + 1] = high;
10198 memcpy (indices + i + 2, indices + kh, *size - kh);
10199 *size -= kh - i - 2;
10200 return;
10201 }
10202 else if (high < indices[i])
10203 break;
10204 }
10205
10206 if (*size == max_size)
10207 error (_("Internal error: miscounted aggregate components."));
10208 *size += 2;
10209 for (j = *size-1; j >= i+2; j -= 1)
10210 indices[j] = indices[j - 2];
10211 indices[i] = low;
10212 indices[i + 1] = high;
10213 }
10214
10215 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10216 is different. */
10217
10218 static struct value *
10219 ada_value_cast (struct type *type, struct value *arg2)
10220 {
10221 if (type == ada_check_typedef (value_type (arg2)))
10222 return arg2;
10223
10224 if (ada_is_fixed_point_type (type))
10225 return cast_to_fixed (type, arg2);
10226
10227 if (ada_is_fixed_point_type (value_type (arg2)))
10228 return cast_from_fixed (type, arg2);
10229
10230 return value_cast (type, arg2);
10231 }
10232
10233 /* Evaluating Ada expressions, and printing their result.
10234 ------------------------------------------------------
10235
10236 1. Introduction:
10237 ----------------
10238
10239 We usually evaluate an Ada expression in order to print its value.
10240 We also evaluate an expression in order to print its type, which
10241 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10242 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10243 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10244 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10245 similar.
10246
10247 Evaluating expressions is a little more complicated for Ada entities
10248 than it is for entities in languages such as C. The main reason for
10249 this is that Ada provides types whose definition might be dynamic.
10250 One example of such types is variant records. Or another example
10251 would be an array whose bounds can only be known at run time.
10252
10253 The following description is a general guide as to what should be
10254 done (and what should NOT be done) in order to evaluate an expression
10255 involving such types, and when. This does not cover how the semantic
10256 information is encoded by GNAT as this is covered separatly. For the
10257 document used as the reference for the GNAT encoding, see exp_dbug.ads
10258 in the GNAT sources.
10259
10260 Ideally, we should embed each part of this description next to its
10261 associated code. Unfortunately, the amount of code is so vast right
10262 now that it's hard to see whether the code handling a particular
10263 situation might be duplicated or not. One day, when the code is
10264 cleaned up, this guide might become redundant with the comments
10265 inserted in the code, and we might want to remove it.
10266
10267 2. ``Fixing'' an Entity, the Simple Case:
10268 -----------------------------------------
10269
10270 When evaluating Ada expressions, the tricky issue is that they may
10271 reference entities whose type contents and size are not statically
10272 known. Consider for instance a variant record:
10273
10274 type Rec (Empty : Boolean := True) is record
10275 case Empty is
10276 when True => null;
10277 when False => Value : Integer;
10278 end case;
10279 end record;
10280 Yes : Rec := (Empty => False, Value => 1);
10281 No : Rec := (empty => True);
10282
10283 The size and contents of that record depends on the value of the
10284 descriminant (Rec.Empty). At this point, neither the debugging
10285 information nor the associated type structure in GDB are able to
10286 express such dynamic types. So what the debugger does is to create
10287 "fixed" versions of the type that applies to the specific object.
10288 We also informally refer to this opperation as "fixing" an object,
10289 which means creating its associated fixed type.
10290
10291 Example: when printing the value of variable "Yes" above, its fixed
10292 type would look like this:
10293
10294 type Rec is record
10295 Empty : Boolean;
10296 Value : Integer;
10297 end record;
10298
10299 On the other hand, if we printed the value of "No", its fixed type
10300 would become:
10301
10302 type Rec is record
10303 Empty : Boolean;
10304 end record;
10305
10306 Things become a little more complicated when trying to fix an entity
10307 with a dynamic type that directly contains another dynamic type,
10308 such as an array of variant records, for instance. There are
10309 two possible cases: Arrays, and records.
10310
10311 3. ``Fixing'' Arrays:
10312 ---------------------
10313
10314 The type structure in GDB describes an array in terms of its bounds,
10315 and the type of its elements. By design, all elements in the array
10316 have the same type and we cannot represent an array of variant elements
10317 using the current type structure in GDB. When fixing an array,
10318 we cannot fix the array element, as we would potentially need one
10319 fixed type per element of the array. As a result, the best we can do
10320 when fixing an array is to produce an array whose bounds and size
10321 are correct (allowing us to read it from memory), but without having
10322 touched its element type. Fixing each element will be done later,
10323 when (if) necessary.
10324
10325 Arrays are a little simpler to handle than records, because the same
10326 amount of memory is allocated for each element of the array, even if
10327 the amount of space actually used by each element differs from element
10328 to element. Consider for instance the following array of type Rec:
10329
10330 type Rec_Array is array (1 .. 2) of Rec;
10331
10332 The actual amount of memory occupied by each element might be different
10333 from element to element, depending on the value of their discriminant.
10334 But the amount of space reserved for each element in the array remains
10335 fixed regardless. So we simply need to compute that size using
10336 the debugging information available, from which we can then determine
10337 the array size (we multiply the number of elements of the array by
10338 the size of each element).
10339
10340 The simplest case is when we have an array of a constrained element
10341 type. For instance, consider the following type declarations:
10342
10343 type Bounded_String (Max_Size : Integer) is
10344 Length : Integer;
10345 Buffer : String (1 .. Max_Size);
10346 end record;
10347 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10348
10349 In this case, the compiler describes the array as an array of
10350 variable-size elements (identified by its XVS suffix) for which
10351 the size can be read in the parallel XVZ variable.
10352
10353 In the case of an array of an unconstrained element type, the compiler
10354 wraps the array element inside a private PAD type. This type should not
10355 be shown to the user, and must be "unwrap"'ed before printing. Note
10356 that we also use the adjective "aligner" in our code to designate
10357 these wrapper types.
10358
10359 In some cases, the size allocated for each element is statically
10360 known. In that case, the PAD type already has the correct size,
10361 and the array element should remain unfixed.
10362
10363 But there are cases when this size is not statically known.
10364 For instance, assuming that "Five" is an integer variable:
10365
10366 type Dynamic is array (1 .. Five) of Integer;
10367 type Wrapper (Has_Length : Boolean := False) is record
10368 Data : Dynamic;
10369 case Has_Length is
10370 when True => Length : Integer;
10371 when False => null;
10372 end case;
10373 end record;
10374 type Wrapper_Array is array (1 .. 2) of Wrapper;
10375
10376 Hello : Wrapper_Array := (others => (Has_Length => True,
10377 Data => (others => 17),
10378 Length => 1));
10379
10380
10381 The debugging info would describe variable Hello as being an
10382 array of a PAD type. The size of that PAD type is not statically
10383 known, but can be determined using a parallel XVZ variable.
10384 In that case, a copy of the PAD type with the correct size should
10385 be used for the fixed array.
10386
10387 3. ``Fixing'' record type objects:
10388 ----------------------------------
10389
10390 Things are slightly different from arrays in the case of dynamic
10391 record types. In this case, in order to compute the associated
10392 fixed type, we need to determine the size and offset of each of
10393 its components. This, in turn, requires us to compute the fixed
10394 type of each of these components.
10395
10396 Consider for instance the example:
10397
10398 type Bounded_String (Max_Size : Natural) is record
10399 Str : String (1 .. Max_Size);
10400 Length : Natural;
10401 end record;
10402 My_String : Bounded_String (Max_Size => 10);
10403
10404 In that case, the position of field "Length" depends on the size
10405 of field Str, which itself depends on the value of the Max_Size
10406 discriminant. In order to fix the type of variable My_String,
10407 we need to fix the type of field Str. Therefore, fixing a variant
10408 record requires us to fix each of its components.
10409
10410 However, if a component does not have a dynamic size, the component
10411 should not be fixed. In particular, fields that use a PAD type
10412 should not fixed. Here is an example where this might happen
10413 (assuming type Rec above):
10414
10415 type Container (Big : Boolean) is record
10416 First : Rec;
10417 After : Integer;
10418 case Big is
10419 when True => Another : Integer;
10420 when False => null;
10421 end case;
10422 end record;
10423 My_Container : Container := (Big => False,
10424 First => (Empty => True),
10425 After => 42);
10426
10427 In that example, the compiler creates a PAD type for component First,
10428 whose size is constant, and then positions the component After just
10429 right after it. The offset of component After is therefore constant
10430 in this case.
10431
10432 The debugger computes the position of each field based on an algorithm
10433 that uses, among other things, the actual position and size of the field
10434 preceding it. Let's now imagine that the user is trying to print
10435 the value of My_Container. If the type fixing was recursive, we would
10436 end up computing the offset of field After based on the size of the
10437 fixed version of field First. And since in our example First has
10438 only one actual field, the size of the fixed type is actually smaller
10439 than the amount of space allocated to that field, and thus we would
10440 compute the wrong offset of field After.
10441
10442 To make things more complicated, we need to watch out for dynamic
10443 components of variant records (identified by the ___XVL suffix in
10444 the component name). Even if the target type is a PAD type, the size
10445 of that type might not be statically known. So the PAD type needs
10446 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10447 we might end up with the wrong size for our component. This can be
10448 observed with the following type declarations:
10449
10450 type Octal is new Integer range 0 .. 7;
10451 type Octal_Array is array (Positive range <>) of Octal;
10452 pragma Pack (Octal_Array);
10453
10454 type Octal_Buffer (Size : Positive) is record
10455 Buffer : Octal_Array (1 .. Size);
10456 Length : Integer;
10457 end record;
10458
10459 In that case, Buffer is a PAD type whose size is unset and needs
10460 to be computed by fixing the unwrapped type.
10461
10462 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10463 ----------------------------------------------------------
10464
10465 Lastly, when should the sub-elements of an entity that remained unfixed
10466 thus far, be actually fixed?
10467
10468 The answer is: Only when referencing that element. For instance
10469 when selecting one component of a record, this specific component
10470 should be fixed at that point in time. Or when printing the value
10471 of a record, each component should be fixed before its value gets
10472 printed. Similarly for arrays, the element of the array should be
10473 fixed when printing each element of the array, or when extracting
10474 one element out of that array. On the other hand, fixing should
10475 not be performed on the elements when taking a slice of an array!
10476
10477 Note that one of the side effects of miscomputing the offset and
10478 size of each field is that we end up also miscomputing the size
10479 of the containing type. This can have adverse results when computing
10480 the value of an entity. GDB fetches the value of an entity based
10481 on the size of its type, and thus a wrong size causes GDB to fetch
10482 the wrong amount of memory. In the case where the computed size is
10483 too small, GDB fetches too little data to print the value of our
10484 entity. Results in this case are unpredictable, as we usually read
10485 past the buffer containing the data =:-o. */
10486
10487 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10488 for that subexpression cast to TO_TYPE. Advance *POS over the
10489 subexpression. */
10490
10491 static value *
10492 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10493 enum noside noside, struct type *to_type)
10494 {
10495 int pc = *pos;
10496
10497 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10498 || exp->elts[pc].opcode == OP_VAR_VALUE)
10499 {
10500 (*pos) += 4;
10501
10502 value *val;
10503 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10504 {
10505 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10506 return value_zero (to_type, not_lval);
10507
10508 val = evaluate_var_msym_value (noside,
10509 exp->elts[pc + 1].objfile,
10510 exp->elts[pc + 2].msymbol);
10511 }
10512 else
10513 val = evaluate_var_value (noside,
10514 exp->elts[pc + 1].block,
10515 exp->elts[pc + 2].symbol);
10516
10517 if (noside == EVAL_SKIP)
10518 return eval_skip_value (exp);
10519
10520 val = ada_value_cast (to_type, val);
10521
10522 /* Follow the Ada language semantics that do not allow taking
10523 an address of the result of a cast (view conversion in Ada). */
10524 if (VALUE_LVAL (val) == lval_memory)
10525 {
10526 if (value_lazy (val))
10527 value_fetch_lazy (val);
10528 VALUE_LVAL (val) = not_lval;
10529 }
10530 return val;
10531 }
10532
10533 value *val = evaluate_subexp (to_type, exp, pos, noside);
10534 if (noside == EVAL_SKIP)
10535 return eval_skip_value (exp);
10536 return ada_value_cast (to_type, val);
10537 }
10538
10539 /* Implement the evaluate_exp routine in the exp_descriptor structure
10540 for the Ada language. */
10541
10542 static struct value *
10543 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10544 int *pos, enum noside noside)
10545 {
10546 enum exp_opcode op;
10547 int tem;
10548 int pc;
10549 int preeval_pos;
10550 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10551 struct type *type;
10552 int nargs, oplen;
10553 struct value **argvec;
10554
10555 pc = *pos;
10556 *pos += 1;
10557 op = exp->elts[pc].opcode;
10558
10559 switch (op)
10560 {
10561 default:
10562 *pos -= 1;
10563 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10564
10565 if (noside == EVAL_NORMAL)
10566 arg1 = unwrap_value (arg1);
10567
10568 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10569 then we need to perform the conversion manually, because
10570 evaluate_subexp_standard doesn't do it. This conversion is
10571 necessary in Ada because the different kinds of float/fixed
10572 types in Ada have different representations.
10573
10574 Similarly, we need to perform the conversion from OP_LONG
10575 ourselves. */
10576 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10577 arg1 = ada_value_cast (expect_type, arg1);
10578
10579 return arg1;
10580
10581 case OP_STRING:
10582 {
10583 struct value *result;
10584
10585 *pos -= 1;
10586 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10587 /* The result type will have code OP_STRING, bashed there from
10588 OP_ARRAY. Bash it back. */
10589 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10590 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10591 return result;
10592 }
10593
10594 case UNOP_CAST:
10595 (*pos) += 2;
10596 type = exp->elts[pc + 1].type;
10597 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10598
10599 case UNOP_QUAL:
10600 (*pos) += 2;
10601 type = exp->elts[pc + 1].type;
10602 return ada_evaluate_subexp (type, exp, pos, noside);
10603
10604 case BINOP_ASSIGN:
10605 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10606 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10607 {
10608 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10609 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10610 return arg1;
10611 return ada_value_assign (arg1, arg1);
10612 }
10613 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10614 except if the lhs of our assignment is a convenience variable.
10615 In the case of assigning to a convenience variable, the lhs
10616 should be exactly the result of the evaluation of the rhs. */
10617 type = value_type (arg1);
10618 if (VALUE_LVAL (arg1) == lval_internalvar)
10619 type = NULL;
10620 arg2 = evaluate_subexp (type, exp, pos, noside);
10621 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10622 return arg1;
10623 if (ada_is_fixed_point_type (value_type (arg1)))
10624 arg2 = cast_to_fixed (value_type (arg1), arg2);
10625 else if (ada_is_fixed_point_type (value_type (arg2)))
10626 error
10627 (_("Fixed-point values must be assigned to fixed-point variables"));
10628 else
10629 arg2 = coerce_for_assign (value_type (arg1), arg2);
10630 return ada_value_assign (arg1, arg2);
10631
10632 case BINOP_ADD:
10633 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10634 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10635 if (noside == EVAL_SKIP)
10636 goto nosideret;
10637 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10638 return (value_from_longest
10639 (value_type (arg1),
10640 value_as_long (arg1) + value_as_long (arg2)));
10641 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10642 return (value_from_longest
10643 (value_type (arg2),
10644 value_as_long (arg1) + value_as_long (arg2)));
10645 if ((ada_is_fixed_point_type (value_type (arg1))
10646 || ada_is_fixed_point_type (value_type (arg2)))
10647 && value_type (arg1) != value_type (arg2))
10648 error (_("Operands of fixed-point addition must have the same type"));
10649 /* Do the addition, and cast the result to the type of the first
10650 argument. We cannot cast the result to a reference type, so if
10651 ARG1 is a reference type, find its underlying type. */
10652 type = value_type (arg1);
10653 while (TYPE_CODE (type) == TYPE_CODE_REF)
10654 type = TYPE_TARGET_TYPE (type);
10655 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10656 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10657
10658 case BINOP_SUB:
10659 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10660 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10661 if (noside == EVAL_SKIP)
10662 goto nosideret;
10663 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10664 return (value_from_longest
10665 (value_type (arg1),
10666 value_as_long (arg1) - value_as_long (arg2)));
10667 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10668 return (value_from_longest
10669 (value_type (arg2),
10670 value_as_long (arg1) - value_as_long (arg2)));
10671 if ((ada_is_fixed_point_type (value_type (arg1))
10672 || ada_is_fixed_point_type (value_type (arg2)))
10673 && value_type (arg1) != value_type (arg2))
10674 error (_("Operands of fixed-point subtraction "
10675 "must have the same type"));
10676 /* Do the substraction, and cast the result to the type of the first
10677 argument. We cannot cast the result to a reference type, so if
10678 ARG1 is a reference type, find its underlying type. */
10679 type = value_type (arg1);
10680 while (TYPE_CODE (type) == TYPE_CODE_REF)
10681 type = TYPE_TARGET_TYPE (type);
10682 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10683 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10684
10685 case BINOP_MUL:
10686 case BINOP_DIV:
10687 case BINOP_REM:
10688 case BINOP_MOD:
10689 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10690 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10691 if (noside == EVAL_SKIP)
10692 goto nosideret;
10693 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10694 {
10695 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10696 return value_zero (value_type (arg1), not_lval);
10697 }
10698 else
10699 {
10700 type = builtin_type (exp->gdbarch)->builtin_double;
10701 if (ada_is_fixed_point_type (value_type (arg1)))
10702 arg1 = cast_from_fixed (type, arg1);
10703 if (ada_is_fixed_point_type (value_type (arg2)))
10704 arg2 = cast_from_fixed (type, arg2);
10705 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10706 return ada_value_binop (arg1, arg2, op);
10707 }
10708
10709 case BINOP_EQUAL:
10710 case BINOP_NOTEQUAL:
10711 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10712 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10713 if (noside == EVAL_SKIP)
10714 goto nosideret;
10715 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10716 tem = 0;
10717 else
10718 {
10719 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10720 tem = ada_value_equal (arg1, arg2);
10721 }
10722 if (op == BINOP_NOTEQUAL)
10723 tem = !tem;
10724 type = language_bool_type (exp->language_defn, exp->gdbarch);
10725 return value_from_longest (type, (LONGEST) tem);
10726
10727 case UNOP_NEG:
10728 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10729 if (noside == EVAL_SKIP)
10730 goto nosideret;
10731 else if (ada_is_fixed_point_type (value_type (arg1)))
10732 return value_cast (value_type (arg1), value_neg (arg1));
10733 else
10734 {
10735 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10736 return value_neg (arg1);
10737 }
10738
10739 case BINOP_LOGICAL_AND:
10740 case BINOP_LOGICAL_OR:
10741 case UNOP_LOGICAL_NOT:
10742 {
10743 struct value *val;
10744
10745 *pos -= 1;
10746 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10747 type = language_bool_type (exp->language_defn, exp->gdbarch);
10748 return value_cast (type, val);
10749 }
10750
10751 case BINOP_BITWISE_AND:
10752 case BINOP_BITWISE_IOR:
10753 case BINOP_BITWISE_XOR:
10754 {
10755 struct value *val;
10756
10757 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10758 *pos = pc;
10759 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10760
10761 return value_cast (value_type (arg1), val);
10762 }
10763
10764 case OP_VAR_VALUE:
10765 *pos -= 1;
10766
10767 if (noside == EVAL_SKIP)
10768 {
10769 *pos += 4;
10770 goto nosideret;
10771 }
10772
10773 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10774 /* Only encountered when an unresolved symbol occurs in a
10775 context other than a function call, in which case, it is
10776 invalid. */
10777 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10778 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10779
10780 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10781 {
10782 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10783 /* Check to see if this is a tagged type. We also need to handle
10784 the case where the type is a reference to a tagged type, but
10785 we have to be careful to exclude pointers to tagged types.
10786 The latter should be shown as usual (as a pointer), whereas
10787 a reference should mostly be transparent to the user. */
10788 if (ada_is_tagged_type (type, 0)
10789 || (TYPE_CODE (type) == TYPE_CODE_REF
10790 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10791 {
10792 /* Tagged types are a little special in the fact that the real
10793 type is dynamic and can only be determined by inspecting the
10794 object's tag. This means that we need to get the object's
10795 value first (EVAL_NORMAL) and then extract the actual object
10796 type from its tag.
10797
10798 Note that we cannot skip the final step where we extract
10799 the object type from its tag, because the EVAL_NORMAL phase
10800 results in dynamic components being resolved into fixed ones.
10801 This can cause problems when trying to print the type
10802 description of tagged types whose parent has a dynamic size:
10803 We use the type name of the "_parent" component in order
10804 to print the name of the ancestor type in the type description.
10805 If that component had a dynamic size, the resolution into
10806 a fixed type would result in the loss of that type name,
10807 thus preventing us from printing the name of the ancestor
10808 type in the type description. */
10809 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10810
10811 if (TYPE_CODE (type) != TYPE_CODE_REF)
10812 {
10813 struct type *actual_type;
10814
10815 actual_type = type_from_tag (ada_value_tag (arg1));
10816 if (actual_type == NULL)
10817 /* If, for some reason, we were unable to determine
10818 the actual type from the tag, then use the static
10819 approximation that we just computed as a fallback.
10820 This can happen if the debugging information is
10821 incomplete, for instance. */
10822 actual_type = type;
10823 return value_zero (actual_type, not_lval);
10824 }
10825 else
10826 {
10827 /* In the case of a ref, ada_coerce_ref takes care
10828 of determining the actual type. But the evaluation
10829 should return a ref as it should be valid to ask
10830 for its address; so rebuild a ref after coerce. */
10831 arg1 = ada_coerce_ref (arg1);
10832 return value_ref (arg1, TYPE_CODE_REF);
10833 }
10834 }
10835
10836 /* Records and unions for which GNAT encodings have been
10837 generated need to be statically fixed as well.
10838 Otherwise, non-static fixing produces a type where
10839 all dynamic properties are removed, which prevents "ptype"
10840 from being able to completely describe the type.
10841 For instance, a case statement in a variant record would be
10842 replaced by the relevant components based on the actual
10843 value of the discriminants. */
10844 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10845 && dynamic_template_type (type) != NULL)
10846 || (TYPE_CODE (type) == TYPE_CODE_UNION
10847 && ada_find_parallel_type (type, "___XVU") != NULL))
10848 {
10849 *pos += 4;
10850 return value_zero (to_static_fixed_type (type), not_lval);
10851 }
10852 }
10853
10854 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10855 return ada_to_fixed_value (arg1);
10856
10857 case OP_FUNCALL:
10858 (*pos) += 2;
10859
10860 /* Allocate arg vector, including space for the function to be
10861 called in argvec[0] and a terminating NULL. */
10862 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10863 argvec = XALLOCAVEC (struct value *, nargs + 2);
10864
10865 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10866 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10867 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10868 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10869 else
10870 {
10871 for (tem = 0; tem <= nargs; tem += 1)
10872 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10873 argvec[tem] = 0;
10874
10875 if (noside == EVAL_SKIP)
10876 goto nosideret;
10877 }
10878
10879 if (ada_is_constrained_packed_array_type
10880 (desc_base_type (value_type (argvec[0]))))
10881 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10882 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10883 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10884 /* This is a packed array that has already been fixed, and
10885 therefore already coerced to a simple array. Nothing further
10886 to do. */
10887 ;
10888 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10889 {
10890 /* Make sure we dereference references so that all the code below
10891 feels like it's really handling the referenced value. Wrapping
10892 types (for alignment) may be there, so make sure we strip them as
10893 well. */
10894 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10895 }
10896 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10897 && VALUE_LVAL (argvec[0]) == lval_memory)
10898 argvec[0] = value_addr (argvec[0]);
10899
10900 type = ada_check_typedef (value_type (argvec[0]));
10901
10902 /* Ada allows us to implicitly dereference arrays when subscripting
10903 them. So, if this is an array typedef (encoding use for array
10904 access types encoded as fat pointers), strip it now. */
10905 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10906 type = ada_typedef_target_type (type);
10907
10908 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10909 {
10910 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10911 {
10912 case TYPE_CODE_FUNC:
10913 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10914 break;
10915 case TYPE_CODE_ARRAY:
10916 break;
10917 case TYPE_CODE_STRUCT:
10918 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10919 argvec[0] = ada_value_ind (argvec[0]);
10920 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10921 break;
10922 default:
10923 error (_("cannot subscript or call something of type `%s'"),
10924 ada_type_name (value_type (argvec[0])));
10925 break;
10926 }
10927 }
10928
10929 switch (TYPE_CODE (type))
10930 {
10931 case TYPE_CODE_FUNC:
10932 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10933 {
10934 if (TYPE_TARGET_TYPE (type) == NULL)
10935 error_call_unknown_return_type (NULL);
10936 return allocate_value (TYPE_TARGET_TYPE (type));
10937 }
10938 return call_function_by_hand (argvec[0], NULL,
10939 gdb::make_array_view (argvec + 1,
10940 nargs));
10941 case TYPE_CODE_INTERNAL_FUNCTION:
10942 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10943 /* We don't know anything about what the internal
10944 function might return, but we have to return
10945 something. */
10946 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10947 not_lval);
10948 else
10949 return call_internal_function (exp->gdbarch, exp->language_defn,
10950 argvec[0], nargs, argvec + 1);
10951
10952 case TYPE_CODE_STRUCT:
10953 {
10954 int arity;
10955
10956 arity = ada_array_arity (type);
10957 type = ada_array_element_type (type, nargs);
10958 if (type == NULL)
10959 error (_("cannot subscript or call a record"));
10960 if (arity != nargs)
10961 error (_("wrong number of subscripts; expecting %d"), arity);
10962 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10963 return value_zero (ada_aligned_type (type), lval_memory);
10964 return
10965 unwrap_value (ada_value_subscript
10966 (argvec[0], nargs, argvec + 1));
10967 }
10968 case TYPE_CODE_ARRAY:
10969 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10970 {
10971 type = ada_array_element_type (type, nargs);
10972 if (type == NULL)
10973 error (_("element type of array unknown"));
10974 else
10975 return value_zero (ada_aligned_type (type), lval_memory);
10976 }
10977 return
10978 unwrap_value (ada_value_subscript
10979 (ada_coerce_to_simple_array (argvec[0]),
10980 nargs, argvec + 1));
10981 case TYPE_CODE_PTR: /* Pointer to array */
10982 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10983 {
10984 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10985 type = ada_array_element_type (type, nargs);
10986 if (type == NULL)
10987 error (_("element type of array unknown"));
10988 else
10989 return value_zero (ada_aligned_type (type), lval_memory);
10990 }
10991 return
10992 unwrap_value (ada_value_ptr_subscript (argvec[0],
10993 nargs, argvec + 1));
10994
10995 default:
10996 error (_("Attempt to index or call something other than an "
10997 "array or function"));
10998 }
10999
11000 case TERNOP_SLICE:
11001 {
11002 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11003 struct value *low_bound_val =
11004 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11005 struct value *high_bound_val =
11006 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11007 LONGEST low_bound;
11008 LONGEST high_bound;
11009
11010 low_bound_val = coerce_ref (low_bound_val);
11011 high_bound_val = coerce_ref (high_bound_val);
11012 low_bound = value_as_long (low_bound_val);
11013 high_bound = value_as_long (high_bound_val);
11014
11015 if (noside == EVAL_SKIP)
11016 goto nosideret;
11017
11018 /* If this is a reference to an aligner type, then remove all
11019 the aligners. */
11020 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11021 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11022 TYPE_TARGET_TYPE (value_type (array)) =
11023 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11024
11025 if (ada_is_constrained_packed_array_type (value_type (array)))
11026 error (_("cannot slice a packed array"));
11027
11028 /* If this is a reference to an array or an array lvalue,
11029 convert to a pointer. */
11030 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11031 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11032 && VALUE_LVAL (array) == lval_memory))
11033 array = value_addr (array);
11034
11035 if (noside == EVAL_AVOID_SIDE_EFFECTS
11036 && ada_is_array_descriptor_type (ada_check_typedef
11037 (value_type (array))))
11038 return empty_array (ada_type_of_array (array, 0), low_bound,
11039 high_bound);
11040
11041 array = ada_coerce_to_simple_array_ptr (array);
11042
11043 /* If we have more than one level of pointer indirection,
11044 dereference the value until we get only one level. */
11045 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11046 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11047 == TYPE_CODE_PTR))
11048 array = value_ind (array);
11049
11050 /* Make sure we really do have an array type before going further,
11051 to avoid a SEGV when trying to get the index type or the target
11052 type later down the road if the debug info generated by
11053 the compiler is incorrect or incomplete. */
11054 if (!ada_is_simple_array_type (value_type (array)))
11055 error (_("cannot take slice of non-array"));
11056
11057 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11058 == TYPE_CODE_PTR)
11059 {
11060 struct type *type0 = ada_check_typedef (value_type (array));
11061
11062 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11063 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
11064 else
11065 {
11066 struct type *arr_type0 =
11067 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11068
11069 return ada_value_slice_from_ptr (array, arr_type0,
11070 longest_to_int (low_bound),
11071 longest_to_int (high_bound));
11072 }
11073 }
11074 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11075 return array;
11076 else if (high_bound < low_bound)
11077 return empty_array (value_type (array), low_bound, high_bound);
11078 else
11079 return ada_value_slice (array, longest_to_int (low_bound),
11080 longest_to_int (high_bound));
11081 }
11082
11083 case UNOP_IN_RANGE:
11084 (*pos) += 2;
11085 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11086 type = check_typedef (exp->elts[pc + 1].type);
11087
11088 if (noside == EVAL_SKIP)
11089 goto nosideret;
11090
11091 switch (TYPE_CODE (type))
11092 {
11093 default:
11094 lim_warning (_("Membership test incompletely implemented; "
11095 "always returns true"));
11096 type = language_bool_type (exp->language_defn, exp->gdbarch);
11097 return value_from_longest (type, (LONGEST) 1);
11098
11099 case TYPE_CODE_RANGE:
11100 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11101 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11102 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11103 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11104 type = language_bool_type (exp->language_defn, exp->gdbarch);
11105 return
11106 value_from_longest (type,
11107 (value_less (arg1, arg3)
11108 || value_equal (arg1, arg3))
11109 && (value_less (arg2, arg1)
11110 || value_equal (arg2, arg1)));
11111 }
11112
11113 case BINOP_IN_BOUNDS:
11114 (*pos) += 2;
11115 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11116 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11117
11118 if (noside == EVAL_SKIP)
11119 goto nosideret;
11120
11121 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11122 {
11123 type = language_bool_type (exp->language_defn, exp->gdbarch);
11124 return value_zero (type, not_lval);
11125 }
11126
11127 tem = longest_to_int (exp->elts[pc + 1].longconst);
11128
11129 type = ada_index_type (value_type (arg2), tem, "range");
11130 if (!type)
11131 type = value_type (arg1);
11132
11133 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11134 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11135
11136 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11137 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11138 type = language_bool_type (exp->language_defn, exp->gdbarch);
11139 return
11140 value_from_longest (type,
11141 (value_less (arg1, arg3)
11142 || value_equal (arg1, arg3))
11143 && (value_less (arg2, arg1)
11144 || value_equal (arg2, arg1)));
11145
11146 case TERNOP_IN_RANGE:
11147 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11148 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11149 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11150
11151 if (noside == EVAL_SKIP)
11152 goto nosideret;
11153
11154 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11155 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11156 type = language_bool_type (exp->language_defn, exp->gdbarch);
11157 return
11158 value_from_longest (type,
11159 (value_less (arg1, arg3)
11160 || value_equal (arg1, arg3))
11161 && (value_less (arg2, arg1)
11162 || value_equal (arg2, arg1)));
11163
11164 case OP_ATR_FIRST:
11165 case OP_ATR_LAST:
11166 case OP_ATR_LENGTH:
11167 {
11168 struct type *type_arg;
11169
11170 if (exp->elts[*pos].opcode == OP_TYPE)
11171 {
11172 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11173 arg1 = NULL;
11174 type_arg = check_typedef (exp->elts[pc + 2].type);
11175 }
11176 else
11177 {
11178 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11179 type_arg = NULL;
11180 }
11181
11182 if (exp->elts[*pos].opcode != OP_LONG)
11183 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11184 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11185 *pos += 4;
11186
11187 if (noside == EVAL_SKIP)
11188 goto nosideret;
11189
11190 if (type_arg == NULL)
11191 {
11192 arg1 = ada_coerce_ref (arg1);
11193
11194 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11195 arg1 = ada_coerce_to_simple_array (arg1);
11196
11197 if (op == OP_ATR_LENGTH)
11198 type = builtin_type (exp->gdbarch)->builtin_int;
11199 else
11200 {
11201 type = ada_index_type (value_type (arg1), tem,
11202 ada_attribute_name (op));
11203 if (type == NULL)
11204 type = builtin_type (exp->gdbarch)->builtin_int;
11205 }
11206
11207 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11208 return allocate_value (type);
11209
11210 switch (op)
11211 {
11212 default: /* Should never happen. */
11213 error (_("unexpected attribute encountered"));
11214 case OP_ATR_FIRST:
11215 return value_from_longest
11216 (type, ada_array_bound (arg1, tem, 0));
11217 case OP_ATR_LAST:
11218 return value_from_longest
11219 (type, ada_array_bound (arg1, tem, 1));
11220 case OP_ATR_LENGTH:
11221 return value_from_longest
11222 (type, ada_array_length (arg1, tem));
11223 }
11224 }
11225 else if (discrete_type_p (type_arg))
11226 {
11227 struct type *range_type;
11228 const char *name = ada_type_name (type_arg);
11229
11230 range_type = NULL;
11231 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11232 range_type = to_fixed_range_type (type_arg, NULL);
11233 if (range_type == NULL)
11234 range_type = type_arg;
11235 switch (op)
11236 {
11237 default:
11238 error (_("unexpected attribute encountered"));
11239 case OP_ATR_FIRST:
11240 return value_from_longest
11241 (range_type, ada_discrete_type_low_bound (range_type));
11242 case OP_ATR_LAST:
11243 return value_from_longest
11244 (range_type, ada_discrete_type_high_bound (range_type));
11245 case OP_ATR_LENGTH:
11246 error (_("the 'length attribute applies only to array types"));
11247 }
11248 }
11249 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11250 error (_("unimplemented type attribute"));
11251 else
11252 {
11253 LONGEST low, high;
11254
11255 if (ada_is_constrained_packed_array_type (type_arg))
11256 type_arg = decode_constrained_packed_array_type (type_arg);
11257
11258 if (op == OP_ATR_LENGTH)
11259 type = builtin_type (exp->gdbarch)->builtin_int;
11260 else
11261 {
11262 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11263 if (type == NULL)
11264 type = builtin_type (exp->gdbarch)->builtin_int;
11265 }
11266
11267 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11268 return allocate_value (type);
11269
11270 switch (op)
11271 {
11272 default:
11273 error (_("unexpected attribute encountered"));
11274 case OP_ATR_FIRST:
11275 low = ada_array_bound_from_type (type_arg, tem, 0);
11276 return value_from_longest (type, low);
11277 case OP_ATR_LAST:
11278 high = ada_array_bound_from_type (type_arg, tem, 1);
11279 return value_from_longest (type, high);
11280 case OP_ATR_LENGTH:
11281 low = ada_array_bound_from_type (type_arg, tem, 0);
11282 high = ada_array_bound_from_type (type_arg, tem, 1);
11283 return value_from_longest (type, high - low + 1);
11284 }
11285 }
11286 }
11287
11288 case OP_ATR_TAG:
11289 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11290 if (noside == EVAL_SKIP)
11291 goto nosideret;
11292
11293 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11294 return value_zero (ada_tag_type (arg1), not_lval);
11295
11296 return ada_value_tag (arg1);
11297
11298 case OP_ATR_MIN:
11299 case OP_ATR_MAX:
11300 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11301 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11302 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11303 if (noside == EVAL_SKIP)
11304 goto nosideret;
11305 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11306 return value_zero (value_type (arg1), not_lval);
11307 else
11308 {
11309 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11310 return value_binop (arg1, arg2,
11311 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11312 }
11313
11314 case OP_ATR_MODULUS:
11315 {
11316 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11317
11318 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11319 if (noside == EVAL_SKIP)
11320 goto nosideret;
11321
11322 if (!ada_is_modular_type (type_arg))
11323 error (_("'modulus must be applied to modular type"));
11324
11325 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11326 ada_modulus (type_arg));
11327 }
11328
11329
11330 case OP_ATR_POS:
11331 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11332 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11333 if (noside == EVAL_SKIP)
11334 goto nosideret;
11335 type = builtin_type (exp->gdbarch)->builtin_int;
11336 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11337 return value_zero (type, not_lval);
11338 else
11339 return value_pos_atr (type, arg1);
11340
11341 case OP_ATR_SIZE:
11342 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11343 type = value_type (arg1);
11344
11345 /* If the argument is a reference, then dereference its type, since
11346 the user is really asking for the size of the actual object,
11347 not the size of the pointer. */
11348 if (TYPE_CODE (type) == TYPE_CODE_REF)
11349 type = TYPE_TARGET_TYPE (type);
11350
11351 if (noside == EVAL_SKIP)
11352 goto nosideret;
11353 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11354 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11355 else
11356 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11357 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11358
11359 case OP_ATR_VAL:
11360 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11361 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11362 type = exp->elts[pc + 2].type;
11363 if (noside == EVAL_SKIP)
11364 goto nosideret;
11365 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11366 return value_zero (type, not_lval);
11367 else
11368 return value_val_atr (type, arg1);
11369
11370 case BINOP_EXP:
11371 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11372 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11373 if (noside == EVAL_SKIP)
11374 goto nosideret;
11375 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11376 return value_zero (value_type (arg1), not_lval);
11377 else
11378 {
11379 /* For integer exponentiation operations,
11380 only promote the first argument. */
11381 if (is_integral_type (value_type (arg2)))
11382 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11383 else
11384 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11385
11386 return value_binop (arg1, arg2, op);
11387 }
11388
11389 case UNOP_PLUS:
11390 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11391 if (noside == EVAL_SKIP)
11392 goto nosideret;
11393 else
11394 return arg1;
11395
11396 case UNOP_ABS:
11397 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11398 if (noside == EVAL_SKIP)
11399 goto nosideret;
11400 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11401 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11402 return value_neg (arg1);
11403 else
11404 return arg1;
11405
11406 case UNOP_IND:
11407 preeval_pos = *pos;
11408 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11409 if (noside == EVAL_SKIP)
11410 goto nosideret;
11411 type = ada_check_typedef (value_type (arg1));
11412 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11413 {
11414 if (ada_is_array_descriptor_type (type))
11415 /* GDB allows dereferencing GNAT array descriptors. */
11416 {
11417 struct type *arrType = ada_type_of_array (arg1, 0);
11418
11419 if (arrType == NULL)
11420 error (_("Attempt to dereference null array pointer."));
11421 return value_at_lazy (arrType, 0);
11422 }
11423 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11424 || TYPE_CODE (type) == TYPE_CODE_REF
11425 /* In C you can dereference an array to get the 1st elt. */
11426 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11427 {
11428 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11429 only be determined by inspecting the object's tag.
11430 This means that we need to evaluate completely the
11431 expression in order to get its type. */
11432
11433 if ((TYPE_CODE (type) == TYPE_CODE_REF
11434 || TYPE_CODE (type) == TYPE_CODE_PTR)
11435 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11436 {
11437 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11438 EVAL_NORMAL);
11439 type = value_type (ada_value_ind (arg1));
11440 }
11441 else
11442 {
11443 type = to_static_fixed_type
11444 (ada_aligned_type
11445 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11446 }
11447 ada_ensure_varsize_limit (type);
11448 return value_zero (type, lval_memory);
11449 }
11450 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11451 {
11452 /* GDB allows dereferencing an int. */
11453 if (expect_type == NULL)
11454 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11455 lval_memory);
11456 else
11457 {
11458 expect_type =
11459 to_static_fixed_type (ada_aligned_type (expect_type));
11460 return value_zero (expect_type, lval_memory);
11461 }
11462 }
11463 else
11464 error (_("Attempt to take contents of a non-pointer value."));
11465 }
11466 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11467 type = ada_check_typedef (value_type (arg1));
11468
11469 if (TYPE_CODE (type) == TYPE_CODE_INT)
11470 /* GDB allows dereferencing an int. If we were given
11471 the expect_type, then use that as the target type.
11472 Otherwise, assume that the target type is an int. */
11473 {
11474 if (expect_type != NULL)
11475 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11476 arg1));
11477 else
11478 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11479 (CORE_ADDR) value_as_address (arg1));
11480 }
11481
11482 if (ada_is_array_descriptor_type (type))
11483 /* GDB allows dereferencing GNAT array descriptors. */
11484 return ada_coerce_to_simple_array (arg1);
11485 else
11486 return ada_value_ind (arg1);
11487
11488 case STRUCTOP_STRUCT:
11489 tem = longest_to_int (exp->elts[pc + 1].longconst);
11490 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11491 preeval_pos = *pos;
11492 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11493 if (noside == EVAL_SKIP)
11494 goto nosideret;
11495 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11496 {
11497 struct type *type1 = value_type (arg1);
11498
11499 if (ada_is_tagged_type (type1, 1))
11500 {
11501 type = ada_lookup_struct_elt_type (type1,
11502 &exp->elts[pc + 2].string,
11503 1, 1);
11504
11505 /* If the field is not found, check if it exists in the
11506 extension of this object's type. This means that we
11507 need to evaluate completely the expression. */
11508
11509 if (type == NULL)
11510 {
11511 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11512 EVAL_NORMAL);
11513 arg1 = ada_value_struct_elt (arg1,
11514 &exp->elts[pc + 2].string,
11515 0);
11516 arg1 = unwrap_value (arg1);
11517 type = value_type (ada_to_fixed_value (arg1));
11518 }
11519 }
11520 else
11521 type =
11522 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11523 0);
11524
11525 return value_zero (ada_aligned_type (type), lval_memory);
11526 }
11527 else
11528 {
11529 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11530 arg1 = unwrap_value (arg1);
11531 return ada_to_fixed_value (arg1);
11532 }
11533
11534 case OP_TYPE:
11535 /* The value is not supposed to be used. This is here to make it
11536 easier to accommodate expressions that contain types. */
11537 (*pos) += 2;
11538 if (noside == EVAL_SKIP)
11539 goto nosideret;
11540 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11541 return allocate_value (exp->elts[pc + 1].type);
11542 else
11543 error (_("Attempt to use a type name as an expression"));
11544
11545 case OP_AGGREGATE:
11546 case OP_CHOICES:
11547 case OP_OTHERS:
11548 case OP_DISCRETE_RANGE:
11549 case OP_POSITIONAL:
11550 case OP_NAME:
11551 if (noside == EVAL_NORMAL)
11552 switch (op)
11553 {
11554 case OP_NAME:
11555 error (_("Undefined name, ambiguous name, or renaming used in "
11556 "component association: %s."), &exp->elts[pc+2].string);
11557 case OP_AGGREGATE:
11558 error (_("Aggregates only allowed on the right of an assignment"));
11559 default:
11560 internal_error (__FILE__, __LINE__,
11561 _("aggregate apparently mangled"));
11562 }
11563
11564 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11565 *pos += oplen - 1;
11566 for (tem = 0; tem < nargs; tem += 1)
11567 ada_evaluate_subexp (NULL, exp, pos, noside);
11568 goto nosideret;
11569 }
11570
11571 nosideret:
11572 return eval_skip_value (exp);
11573 }
11574 \f
11575
11576 /* Fixed point */
11577
11578 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11579 type name that encodes the 'small and 'delta information.
11580 Otherwise, return NULL. */
11581
11582 static const char *
11583 fixed_type_info (struct type *type)
11584 {
11585 const char *name = ada_type_name (type);
11586 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11587
11588 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11589 {
11590 const char *tail = strstr (name, "___XF_");
11591
11592 if (tail == NULL)
11593 return NULL;
11594 else
11595 return tail + 5;
11596 }
11597 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11598 return fixed_type_info (TYPE_TARGET_TYPE (type));
11599 else
11600 return NULL;
11601 }
11602
11603 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11604
11605 int
11606 ada_is_fixed_point_type (struct type *type)
11607 {
11608 return fixed_type_info (type) != NULL;
11609 }
11610
11611 /* Return non-zero iff TYPE represents a System.Address type. */
11612
11613 int
11614 ada_is_system_address_type (struct type *type)
11615 {
11616 return (TYPE_NAME (type)
11617 && strcmp (TYPE_NAME (type), "system__address") == 0);
11618 }
11619
11620 /* Assuming that TYPE is the representation of an Ada fixed-point
11621 type, return the target floating-point type to be used to represent
11622 of this type during internal computation. */
11623
11624 static struct type *
11625 ada_scaling_type (struct type *type)
11626 {
11627 return builtin_type (get_type_arch (type))->builtin_long_double;
11628 }
11629
11630 /* Assuming that TYPE is the representation of an Ada fixed-point
11631 type, return its delta, or NULL if the type is malformed and the
11632 delta cannot be determined. */
11633
11634 struct value *
11635 ada_delta (struct type *type)
11636 {
11637 const char *encoding = fixed_type_info (type);
11638 struct type *scale_type = ada_scaling_type (type);
11639
11640 long long num, den;
11641
11642 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11643 return nullptr;
11644 else
11645 return value_binop (value_from_longest (scale_type, num),
11646 value_from_longest (scale_type, den), BINOP_DIV);
11647 }
11648
11649 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11650 factor ('SMALL value) associated with the type. */
11651
11652 struct value *
11653 ada_scaling_factor (struct type *type)
11654 {
11655 const char *encoding = fixed_type_info (type);
11656 struct type *scale_type = ada_scaling_type (type);
11657
11658 long long num0, den0, num1, den1;
11659 int n;
11660
11661 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11662 &num0, &den0, &num1, &den1);
11663
11664 if (n < 2)
11665 return value_from_longest (scale_type, 1);
11666 else if (n == 4)
11667 return value_binop (value_from_longest (scale_type, num1),
11668 value_from_longest (scale_type, den1), BINOP_DIV);
11669 else
11670 return value_binop (value_from_longest (scale_type, num0),
11671 value_from_longest (scale_type, den0), BINOP_DIV);
11672 }
11673
11674 \f
11675
11676 /* Range types */
11677
11678 /* Scan STR beginning at position K for a discriminant name, and
11679 return the value of that discriminant field of DVAL in *PX. If
11680 PNEW_K is not null, put the position of the character beyond the
11681 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11682 not alter *PX and *PNEW_K if unsuccessful. */
11683
11684 static int
11685 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11686 int *pnew_k)
11687 {
11688 static char *bound_buffer = NULL;
11689 static size_t bound_buffer_len = 0;
11690 const char *pstart, *pend, *bound;
11691 struct value *bound_val;
11692
11693 if (dval == NULL || str == NULL || str[k] == '\0')
11694 return 0;
11695
11696 pstart = str + k;
11697 pend = strstr (pstart, "__");
11698 if (pend == NULL)
11699 {
11700 bound = pstart;
11701 k += strlen (bound);
11702 }
11703 else
11704 {
11705 int len = pend - pstart;
11706
11707 /* Strip __ and beyond. */
11708 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11709 strncpy (bound_buffer, pstart, len);
11710 bound_buffer[len] = '\0';
11711
11712 bound = bound_buffer;
11713 k = pend - str;
11714 }
11715
11716 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11717 if (bound_val == NULL)
11718 return 0;
11719
11720 *px = value_as_long (bound_val);
11721 if (pnew_k != NULL)
11722 *pnew_k = k;
11723 return 1;
11724 }
11725
11726 /* Value of variable named NAME in the current environment. If
11727 no such variable found, then if ERR_MSG is null, returns 0, and
11728 otherwise causes an error with message ERR_MSG. */
11729
11730 static struct value *
11731 get_var_value (const char *name, const char *err_msg)
11732 {
11733 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11734
11735 std::vector<struct block_symbol> syms;
11736 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11737 get_selected_block (0),
11738 VAR_DOMAIN, &syms, 1);
11739
11740 if (nsyms != 1)
11741 {
11742 if (err_msg == NULL)
11743 return 0;
11744 else
11745 error (("%s"), err_msg);
11746 }
11747
11748 return value_of_variable (syms[0].symbol, syms[0].block);
11749 }
11750
11751 /* Value of integer variable named NAME in the current environment.
11752 If no such variable is found, returns false. Otherwise, sets VALUE
11753 to the variable's value and returns true. */
11754
11755 bool
11756 get_int_var_value (const char *name, LONGEST &value)
11757 {
11758 struct value *var_val = get_var_value (name, 0);
11759
11760 if (var_val == 0)
11761 return false;
11762
11763 value = value_as_long (var_val);
11764 return true;
11765 }
11766
11767
11768 /* Return a range type whose base type is that of the range type named
11769 NAME in the current environment, and whose bounds are calculated
11770 from NAME according to the GNAT range encoding conventions.
11771 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11772 corresponding range type from debug information; fall back to using it
11773 if symbol lookup fails. If a new type must be created, allocate it
11774 like ORIG_TYPE was. The bounds information, in general, is encoded
11775 in NAME, the base type given in the named range type. */
11776
11777 static struct type *
11778 to_fixed_range_type (struct type *raw_type, struct value *dval)
11779 {
11780 const char *name;
11781 struct type *base_type;
11782 const char *subtype_info;
11783
11784 gdb_assert (raw_type != NULL);
11785 gdb_assert (TYPE_NAME (raw_type) != NULL);
11786
11787 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11788 base_type = TYPE_TARGET_TYPE (raw_type);
11789 else
11790 base_type = raw_type;
11791
11792 name = TYPE_NAME (raw_type);
11793 subtype_info = strstr (name, "___XD");
11794 if (subtype_info == NULL)
11795 {
11796 LONGEST L = ada_discrete_type_low_bound (raw_type);
11797 LONGEST U = ada_discrete_type_high_bound (raw_type);
11798
11799 if (L < INT_MIN || U > INT_MAX)
11800 return raw_type;
11801 else
11802 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11803 L, U);
11804 }
11805 else
11806 {
11807 static char *name_buf = NULL;
11808 static size_t name_len = 0;
11809 int prefix_len = subtype_info - name;
11810 LONGEST L, U;
11811 struct type *type;
11812 const char *bounds_str;
11813 int n;
11814
11815 GROW_VECT (name_buf, name_len, prefix_len + 5);
11816 strncpy (name_buf, name, prefix_len);
11817 name_buf[prefix_len] = '\0';
11818
11819 subtype_info += 5;
11820 bounds_str = strchr (subtype_info, '_');
11821 n = 1;
11822
11823 if (*subtype_info == 'L')
11824 {
11825 if (!ada_scan_number (bounds_str, n, &L, &n)
11826 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11827 return raw_type;
11828 if (bounds_str[n] == '_')
11829 n += 2;
11830 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11831 n += 1;
11832 subtype_info += 1;
11833 }
11834 else
11835 {
11836 strcpy (name_buf + prefix_len, "___L");
11837 if (!get_int_var_value (name_buf, L))
11838 {
11839 lim_warning (_("Unknown lower bound, using 1."));
11840 L = 1;
11841 }
11842 }
11843
11844 if (*subtype_info == 'U')
11845 {
11846 if (!ada_scan_number (bounds_str, n, &U, &n)
11847 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11848 return raw_type;
11849 }
11850 else
11851 {
11852 strcpy (name_buf + prefix_len, "___U");
11853 if (!get_int_var_value (name_buf, U))
11854 {
11855 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11856 U = L;
11857 }
11858 }
11859
11860 type = create_static_range_type (alloc_type_copy (raw_type),
11861 base_type, L, U);
11862 /* create_static_range_type alters the resulting type's length
11863 to match the size of the base_type, which is not what we want.
11864 Set it back to the original range type's length. */
11865 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11866 TYPE_NAME (type) = name;
11867 return type;
11868 }
11869 }
11870
11871 /* True iff NAME is the name of a range type. */
11872
11873 int
11874 ada_is_range_type_name (const char *name)
11875 {
11876 return (name != NULL && strstr (name, "___XD"));
11877 }
11878 \f
11879
11880 /* Modular types */
11881
11882 /* True iff TYPE is an Ada modular type. */
11883
11884 int
11885 ada_is_modular_type (struct type *type)
11886 {
11887 struct type *subranged_type = get_base_type (type);
11888
11889 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11890 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11891 && TYPE_UNSIGNED (subranged_type));
11892 }
11893
11894 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11895
11896 ULONGEST
11897 ada_modulus (struct type *type)
11898 {
11899 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11900 }
11901 \f
11902
11903 /* Ada exception catchpoint support:
11904 ---------------------------------
11905
11906 We support 3 kinds of exception catchpoints:
11907 . catchpoints on Ada exceptions
11908 . catchpoints on unhandled Ada exceptions
11909 . catchpoints on failed assertions
11910
11911 Exceptions raised during failed assertions, or unhandled exceptions
11912 could perfectly be caught with the general catchpoint on Ada exceptions.
11913 However, we can easily differentiate these two special cases, and having
11914 the option to distinguish these two cases from the rest can be useful
11915 to zero-in on certain situations.
11916
11917 Exception catchpoints are a specialized form of breakpoint,
11918 since they rely on inserting breakpoints inside known routines
11919 of the GNAT runtime. The implementation therefore uses a standard
11920 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11921 of breakpoint_ops.
11922
11923 Support in the runtime for exception catchpoints have been changed
11924 a few times already, and these changes affect the implementation
11925 of these catchpoints. In order to be able to support several
11926 variants of the runtime, we use a sniffer that will determine
11927 the runtime variant used by the program being debugged. */
11928
11929 /* Ada's standard exceptions.
11930
11931 The Ada 83 standard also defined Numeric_Error. But there so many
11932 situations where it was unclear from the Ada 83 Reference Manual
11933 (RM) whether Constraint_Error or Numeric_Error should be raised,
11934 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11935 Interpretation saying that anytime the RM says that Numeric_Error
11936 should be raised, the implementation may raise Constraint_Error.
11937 Ada 95 went one step further and pretty much removed Numeric_Error
11938 from the list of standard exceptions (it made it a renaming of
11939 Constraint_Error, to help preserve compatibility when compiling
11940 an Ada83 compiler). As such, we do not include Numeric_Error from
11941 this list of standard exceptions. */
11942
11943 static const char *standard_exc[] = {
11944 "constraint_error",
11945 "program_error",
11946 "storage_error",
11947 "tasking_error"
11948 };
11949
11950 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11951
11952 /* A structure that describes how to support exception catchpoints
11953 for a given executable. */
11954
11955 struct exception_support_info
11956 {
11957 /* The name of the symbol to break on in order to insert
11958 a catchpoint on exceptions. */
11959 const char *catch_exception_sym;
11960
11961 /* The name of the symbol to break on in order to insert
11962 a catchpoint on unhandled exceptions. */
11963 const char *catch_exception_unhandled_sym;
11964
11965 /* The name of the symbol to break on in order to insert
11966 a catchpoint on failed assertions. */
11967 const char *catch_assert_sym;
11968
11969 /* The name of the symbol to break on in order to insert
11970 a catchpoint on exception handling. */
11971 const char *catch_handlers_sym;
11972
11973 /* Assuming that the inferior just triggered an unhandled exception
11974 catchpoint, this function is responsible for returning the address
11975 in inferior memory where the name of that exception is stored.
11976 Return zero if the address could not be computed. */
11977 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11978 };
11979
11980 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11981 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11982
11983 /* The following exception support info structure describes how to
11984 implement exception catchpoints with the latest version of the
11985 Ada runtime (as of 2007-03-06). */
11986
11987 static const struct exception_support_info default_exception_support_info =
11988 {
11989 "__gnat_debug_raise_exception", /* catch_exception_sym */
11990 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11991 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11992 "__gnat_begin_handler", /* catch_handlers_sym */
11993 ada_unhandled_exception_name_addr
11994 };
11995
11996 /* The following exception support info structure describes how to
11997 implement exception catchpoints with a slightly older version
11998 of the Ada runtime. */
11999
12000 static const struct exception_support_info exception_support_info_fallback =
12001 {
12002 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12003 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12004 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12005 "__gnat_begin_handler", /* catch_handlers_sym */
12006 ada_unhandled_exception_name_addr_from_raise
12007 };
12008
12009 /* Return nonzero if we can detect the exception support routines
12010 described in EINFO.
12011
12012 This function errors out if an abnormal situation is detected
12013 (for instance, if we find the exception support routines, but
12014 that support is found to be incomplete). */
12015
12016 static int
12017 ada_has_this_exception_support (const struct exception_support_info *einfo)
12018 {
12019 struct symbol *sym;
12020
12021 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12022 that should be compiled with debugging information. As a result, we
12023 expect to find that symbol in the symtabs. */
12024
12025 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12026 if (sym == NULL)
12027 {
12028 /* Perhaps we did not find our symbol because the Ada runtime was
12029 compiled without debugging info, or simply stripped of it.
12030 It happens on some GNU/Linux distributions for instance, where
12031 users have to install a separate debug package in order to get
12032 the runtime's debugging info. In that situation, let the user
12033 know why we cannot insert an Ada exception catchpoint.
12034
12035 Note: Just for the purpose of inserting our Ada exception
12036 catchpoint, we could rely purely on the associated minimal symbol.
12037 But we would be operating in degraded mode anyway, since we are
12038 still lacking the debugging info needed later on to extract
12039 the name of the exception being raised (this name is printed in
12040 the catchpoint message, and is also used when trying to catch
12041 a specific exception). We do not handle this case for now. */
12042 struct bound_minimal_symbol msym
12043 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12044
12045 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12046 error (_("Your Ada runtime appears to be missing some debugging "
12047 "information.\nCannot insert Ada exception catchpoint "
12048 "in this configuration."));
12049
12050 return 0;
12051 }
12052
12053 /* Make sure that the symbol we found corresponds to a function. */
12054
12055 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12056 error (_("Symbol \"%s\" is not a function (class = %d)"),
12057 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12058
12059 return 1;
12060 }
12061
12062 /* Inspect the Ada runtime and determine which exception info structure
12063 should be used to provide support for exception catchpoints.
12064
12065 This function will always set the per-inferior exception_info,
12066 or raise an error. */
12067
12068 static void
12069 ada_exception_support_info_sniffer (void)
12070 {
12071 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12072
12073 /* If the exception info is already known, then no need to recompute it. */
12074 if (data->exception_info != NULL)
12075 return;
12076
12077 /* Check the latest (default) exception support info. */
12078 if (ada_has_this_exception_support (&default_exception_support_info))
12079 {
12080 data->exception_info = &default_exception_support_info;
12081 return;
12082 }
12083
12084 /* Try our fallback exception suport info. */
12085 if (ada_has_this_exception_support (&exception_support_info_fallback))
12086 {
12087 data->exception_info = &exception_support_info_fallback;
12088 return;
12089 }
12090
12091 /* Sometimes, it is normal for us to not be able to find the routine
12092 we are looking for. This happens when the program is linked with
12093 the shared version of the GNAT runtime, and the program has not been
12094 started yet. Inform the user of these two possible causes if
12095 applicable. */
12096
12097 if (ada_update_initial_language (language_unknown) != language_ada)
12098 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12099
12100 /* If the symbol does not exist, then check that the program is
12101 already started, to make sure that shared libraries have been
12102 loaded. If it is not started, this may mean that the symbol is
12103 in a shared library. */
12104
12105 if (inferior_ptid.pid () == 0)
12106 error (_("Unable to insert catchpoint. Try to start the program first."));
12107
12108 /* At this point, we know that we are debugging an Ada program and
12109 that the inferior has been started, but we still are not able to
12110 find the run-time symbols. That can mean that we are in
12111 configurable run time mode, or that a-except as been optimized
12112 out by the linker... In any case, at this point it is not worth
12113 supporting this feature. */
12114
12115 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12116 }
12117
12118 /* True iff FRAME is very likely to be that of a function that is
12119 part of the runtime system. This is all very heuristic, but is
12120 intended to be used as advice as to what frames are uninteresting
12121 to most users. */
12122
12123 static int
12124 is_known_support_routine (struct frame_info *frame)
12125 {
12126 enum language func_lang;
12127 int i;
12128 const char *fullname;
12129
12130 /* If this code does not have any debugging information (no symtab),
12131 This cannot be any user code. */
12132
12133 symtab_and_line sal = find_frame_sal (frame);
12134 if (sal.symtab == NULL)
12135 return 1;
12136
12137 /* If there is a symtab, but the associated source file cannot be
12138 located, then assume this is not user code: Selecting a frame
12139 for which we cannot display the code would not be very helpful
12140 for the user. This should also take care of case such as VxWorks
12141 where the kernel has some debugging info provided for a few units. */
12142
12143 fullname = symtab_to_fullname (sal.symtab);
12144 if (access (fullname, R_OK) != 0)
12145 return 1;
12146
12147 /* Check the unit filename againt the Ada runtime file naming.
12148 We also check the name of the objfile against the name of some
12149 known system libraries that sometimes come with debugging info
12150 too. */
12151
12152 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12153 {
12154 re_comp (known_runtime_file_name_patterns[i]);
12155 if (re_exec (lbasename (sal.symtab->filename)))
12156 return 1;
12157 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12158 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12159 return 1;
12160 }
12161
12162 /* Check whether the function is a GNAT-generated entity. */
12163
12164 gdb::unique_xmalloc_ptr<char> func_name
12165 = find_frame_funname (frame, &func_lang, NULL);
12166 if (func_name == NULL)
12167 return 1;
12168
12169 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12170 {
12171 re_comp (known_auxiliary_function_name_patterns[i]);
12172 if (re_exec (func_name.get ()))
12173 return 1;
12174 }
12175
12176 return 0;
12177 }
12178
12179 /* Find the first frame that contains debugging information and that is not
12180 part of the Ada run-time, starting from FI and moving upward. */
12181
12182 void
12183 ada_find_printable_frame (struct frame_info *fi)
12184 {
12185 for (; fi != NULL; fi = get_prev_frame (fi))
12186 {
12187 if (!is_known_support_routine (fi))
12188 {
12189 select_frame (fi);
12190 break;
12191 }
12192 }
12193
12194 }
12195
12196 /* Assuming that the inferior just triggered an unhandled exception
12197 catchpoint, return the address in inferior memory where the name
12198 of the exception is stored.
12199
12200 Return zero if the address could not be computed. */
12201
12202 static CORE_ADDR
12203 ada_unhandled_exception_name_addr (void)
12204 {
12205 return parse_and_eval_address ("e.full_name");
12206 }
12207
12208 /* Same as ada_unhandled_exception_name_addr, except that this function
12209 should be used when the inferior uses an older version of the runtime,
12210 where the exception name needs to be extracted from a specific frame
12211 several frames up in the callstack. */
12212
12213 static CORE_ADDR
12214 ada_unhandled_exception_name_addr_from_raise (void)
12215 {
12216 int frame_level;
12217 struct frame_info *fi;
12218 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12219
12220 /* To determine the name of this exception, we need to select
12221 the frame corresponding to RAISE_SYM_NAME. This frame is
12222 at least 3 levels up, so we simply skip the first 3 frames
12223 without checking the name of their associated function. */
12224 fi = get_current_frame ();
12225 for (frame_level = 0; frame_level < 3; frame_level += 1)
12226 if (fi != NULL)
12227 fi = get_prev_frame (fi);
12228
12229 while (fi != NULL)
12230 {
12231 enum language func_lang;
12232
12233 gdb::unique_xmalloc_ptr<char> func_name
12234 = find_frame_funname (fi, &func_lang, NULL);
12235 if (func_name != NULL)
12236 {
12237 if (strcmp (func_name.get (),
12238 data->exception_info->catch_exception_sym) == 0)
12239 break; /* We found the frame we were looking for... */
12240 }
12241 fi = get_prev_frame (fi);
12242 }
12243
12244 if (fi == NULL)
12245 return 0;
12246
12247 select_frame (fi);
12248 return parse_and_eval_address ("id.full_name");
12249 }
12250
12251 /* Assuming the inferior just triggered an Ada exception catchpoint
12252 (of any type), return the address in inferior memory where the name
12253 of the exception is stored, if applicable.
12254
12255 Assumes the selected frame is the current frame.
12256
12257 Return zero if the address could not be computed, or if not relevant. */
12258
12259 static CORE_ADDR
12260 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12261 struct breakpoint *b)
12262 {
12263 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12264
12265 switch (ex)
12266 {
12267 case ada_catch_exception:
12268 return (parse_and_eval_address ("e.full_name"));
12269 break;
12270
12271 case ada_catch_exception_unhandled:
12272 return data->exception_info->unhandled_exception_name_addr ();
12273 break;
12274
12275 case ada_catch_handlers:
12276 return 0; /* The runtimes does not provide access to the exception
12277 name. */
12278 break;
12279
12280 case ada_catch_assert:
12281 return 0; /* Exception name is not relevant in this case. */
12282 break;
12283
12284 default:
12285 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12286 break;
12287 }
12288
12289 return 0; /* Should never be reached. */
12290 }
12291
12292 /* Assuming the inferior is stopped at an exception catchpoint,
12293 return the message which was associated to the exception, if
12294 available. Return NULL if the message could not be retrieved.
12295
12296 Note: The exception message can be associated to an exception
12297 either through the use of the Raise_Exception function, or
12298 more simply (Ada 2005 and later), via:
12299
12300 raise Exception_Name with "exception message";
12301
12302 */
12303
12304 static gdb::unique_xmalloc_ptr<char>
12305 ada_exception_message_1 (void)
12306 {
12307 struct value *e_msg_val;
12308 int e_msg_len;
12309
12310 /* For runtimes that support this feature, the exception message
12311 is passed as an unbounded string argument called "message". */
12312 e_msg_val = parse_and_eval ("message");
12313 if (e_msg_val == NULL)
12314 return NULL; /* Exception message not supported. */
12315
12316 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12317 gdb_assert (e_msg_val != NULL);
12318 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12319
12320 /* If the message string is empty, then treat it as if there was
12321 no exception message. */
12322 if (e_msg_len <= 0)
12323 return NULL;
12324
12325 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12326 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12327 e_msg.get ()[e_msg_len] = '\0';
12328
12329 return e_msg;
12330 }
12331
12332 /* Same as ada_exception_message_1, except that all exceptions are
12333 contained here (returning NULL instead). */
12334
12335 static gdb::unique_xmalloc_ptr<char>
12336 ada_exception_message (void)
12337 {
12338 gdb::unique_xmalloc_ptr<char> e_msg;
12339
12340 TRY
12341 {
12342 e_msg = ada_exception_message_1 ();
12343 }
12344 CATCH (e, RETURN_MASK_ERROR)
12345 {
12346 e_msg.reset (nullptr);
12347 }
12348 END_CATCH
12349
12350 return e_msg;
12351 }
12352
12353 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12354 any error that ada_exception_name_addr_1 might cause to be thrown.
12355 When an error is intercepted, a warning with the error message is printed,
12356 and zero is returned. */
12357
12358 static CORE_ADDR
12359 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12360 struct breakpoint *b)
12361 {
12362 CORE_ADDR result = 0;
12363
12364 TRY
12365 {
12366 result = ada_exception_name_addr_1 (ex, b);
12367 }
12368
12369 CATCH (e, RETURN_MASK_ERROR)
12370 {
12371 warning (_("failed to get exception name: %s"), e.message);
12372 return 0;
12373 }
12374 END_CATCH
12375
12376 return result;
12377 }
12378
12379 static std::string ada_exception_catchpoint_cond_string
12380 (const char *excep_string,
12381 enum ada_exception_catchpoint_kind ex);
12382
12383 /* Ada catchpoints.
12384
12385 In the case of catchpoints on Ada exceptions, the catchpoint will
12386 stop the target on every exception the program throws. When a user
12387 specifies the name of a specific exception, we translate this
12388 request into a condition expression (in text form), and then parse
12389 it into an expression stored in each of the catchpoint's locations.
12390 We then use this condition to check whether the exception that was
12391 raised is the one the user is interested in. If not, then the
12392 target is resumed again. We store the name of the requested
12393 exception, in order to be able to re-set the condition expression
12394 when symbols change. */
12395
12396 /* An instance of this type is used to represent an Ada catchpoint
12397 breakpoint location. */
12398
12399 class ada_catchpoint_location : public bp_location
12400 {
12401 public:
12402 ada_catchpoint_location (breakpoint *owner)
12403 : bp_location (owner)
12404 {}
12405
12406 /* The condition that checks whether the exception that was raised
12407 is the specific exception the user specified on catchpoint
12408 creation. */
12409 expression_up excep_cond_expr;
12410 };
12411
12412 /* An instance of this type is used to represent an Ada catchpoint. */
12413
12414 struct ada_catchpoint : public breakpoint
12415 {
12416 /* The name of the specific exception the user specified. */
12417 std::string excep_string;
12418 };
12419
12420 /* Parse the exception condition string in the context of each of the
12421 catchpoint's locations, and store them for later evaluation. */
12422
12423 static void
12424 create_excep_cond_exprs (struct ada_catchpoint *c,
12425 enum ada_exception_catchpoint_kind ex)
12426 {
12427 struct bp_location *bl;
12428
12429 /* Nothing to do if there's no specific exception to catch. */
12430 if (c->excep_string.empty ())
12431 return;
12432
12433 /* Same if there are no locations... */
12434 if (c->loc == NULL)
12435 return;
12436
12437 /* Compute the condition expression in text form, from the specific
12438 expection we want to catch. */
12439 std::string cond_string
12440 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12441
12442 /* Iterate over all the catchpoint's locations, and parse an
12443 expression for each. */
12444 for (bl = c->loc; bl != NULL; bl = bl->next)
12445 {
12446 struct ada_catchpoint_location *ada_loc
12447 = (struct ada_catchpoint_location *) bl;
12448 expression_up exp;
12449
12450 if (!bl->shlib_disabled)
12451 {
12452 const char *s;
12453
12454 s = cond_string.c_str ();
12455 TRY
12456 {
12457 exp = parse_exp_1 (&s, bl->address,
12458 block_for_pc (bl->address),
12459 0);
12460 }
12461 CATCH (e, RETURN_MASK_ERROR)
12462 {
12463 warning (_("failed to reevaluate internal exception condition "
12464 "for catchpoint %d: %s"),
12465 c->number, e.message);
12466 }
12467 END_CATCH
12468 }
12469
12470 ada_loc->excep_cond_expr = std::move (exp);
12471 }
12472 }
12473
12474 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12475 structure for all exception catchpoint kinds. */
12476
12477 static struct bp_location *
12478 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12479 struct breakpoint *self)
12480 {
12481 return new ada_catchpoint_location (self);
12482 }
12483
12484 /* Implement the RE_SET method in the breakpoint_ops structure for all
12485 exception catchpoint kinds. */
12486
12487 static void
12488 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12489 {
12490 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12491
12492 /* Call the base class's method. This updates the catchpoint's
12493 locations. */
12494 bkpt_breakpoint_ops.re_set (b);
12495
12496 /* Reparse the exception conditional expressions. One for each
12497 location. */
12498 create_excep_cond_exprs (c, ex);
12499 }
12500
12501 /* Returns true if we should stop for this breakpoint hit. If the
12502 user specified a specific exception, we only want to cause a stop
12503 if the program thrown that exception. */
12504
12505 static int
12506 should_stop_exception (const struct bp_location *bl)
12507 {
12508 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12509 const struct ada_catchpoint_location *ada_loc
12510 = (const struct ada_catchpoint_location *) bl;
12511 int stop;
12512
12513 /* With no specific exception, should always stop. */
12514 if (c->excep_string.empty ())
12515 return 1;
12516
12517 if (ada_loc->excep_cond_expr == NULL)
12518 {
12519 /* We will have a NULL expression if back when we were creating
12520 the expressions, this location's had failed to parse. */
12521 return 1;
12522 }
12523
12524 stop = 1;
12525 TRY
12526 {
12527 struct value *mark;
12528
12529 mark = value_mark ();
12530 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12531 value_free_to_mark (mark);
12532 }
12533 CATCH (ex, RETURN_MASK_ALL)
12534 {
12535 exception_fprintf (gdb_stderr, ex,
12536 _("Error in testing exception condition:\n"));
12537 }
12538 END_CATCH
12539
12540 return stop;
12541 }
12542
12543 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12544 for all exception catchpoint kinds. */
12545
12546 static void
12547 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12548 {
12549 bs->stop = should_stop_exception (bs->bp_location_at);
12550 }
12551
12552 /* Implement the PRINT_IT method in the breakpoint_ops structure
12553 for all exception catchpoint kinds. */
12554
12555 static enum print_stop_action
12556 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12557 {
12558 struct ui_out *uiout = current_uiout;
12559 struct breakpoint *b = bs->breakpoint_at;
12560
12561 annotate_catchpoint (b->number);
12562
12563 if (uiout->is_mi_like_p ())
12564 {
12565 uiout->field_string ("reason",
12566 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12567 uiout->field_string ("disp", bpdisp_text (b->disposition));
12568 }
12569
12570 uiout->text (b->disposition == disp_del
12571 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12572 uiout->field_int ("bkptno", b->number);
12573 uiout->text (", ");
12574
12575 /* ada_exception_name_addr relies on the selected frame being the
12576 current frame. Need to do this here because this function may be
12577 called more than once when printing a stop, and below, we'll
12578 select the first frame past the Ada run-time (see
12579 ada_find_printable_frame). */
12580 select_frame (get_current_frame ());
12581
12582 switch (ex)
12583 {
12584 case ada_catch_exception:
12585 case ada_catch_exception_unhandled:
12586 case ada_catch_handlers:
12587 {
12588 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12589 char exception_name[256];
12590
12591 if (addr != 0)
12592 {
12593 read_memory (addr, (gdb_byte *) exception_name,
12594 sizeof (exception_name) - 1);
12595 exception_name [sizeof (exception_name) - 1] = '\0';
12596 }
12597 else
12598 {
12599 /* For some reason, we were unable to read the exception
12600 name. This could happen if the Runtime was compiled
12601 without debugging info, for instance. In that case,
12602 just replace the exception name by the generic string
12603 "exception" - it will read as "an exception" in the
12604 notification we are about to print. */
12605 memcpy (exception_name, "exception", sizeof ("exception"));
12606 }
12607 /* In the case of unhandled exception breakpoints, we print
12608 the exception name as "unhandled EXCEPTION_NAME", to make
12609 it clearer to the user which kind of catchpoint just got
12610 hit. We used ui_out_text to make sure that this extra
12611 info does not pollute the exception name in the MI case. */
12612 if (ex == ada_catch_exception_unhandled)
12613 uiout->text ("unhandled ");
12614 uiout->field_string ("exception-name", exception_name);
12615 }
12616 break;
12617 case ada_catch_assert:
12618 /* In this case, the name of the exception is not really
12619 important. Just print "failed assertion" to make it clearer
12620 that his program just hit an assertion-failure catchpoint.
12621 We used ui_out_text because this info does not belong in
12622 the MI output. */
12623 uiout->text ("failed assertion");
12624 break;
12625 }
12626
12627 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12628 if (exception_message != NULL)
12629 {
12630 uiout->text (" (");
12631 uiout->field_string ("exception-message", exception_message.get ());
12632 uiout->text (")");
12633 }
12634
12635 uiout->text (" at ");
12636 ada_find_printable_frame (get_current_frame ());
12637
12638 return PRINT_SRC_AND_LOC;
12639 }
12640
12641 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12642 for all exception catchpoint kinds. */
12643
12644 static void
12645 print_one_exception (enum ada_exception_catchpoint_kind ex,
12646 struct breakpoint *b, struct bp_location **last_loc)
12647 {
12648 struct ui_out *uiout = current_uiout;
12649 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12650 struct value_print_options opts;
12651
12652 get_user_print_options (&opts);
12653 if (opts.addressprint)
12654 {
12655 annotate_field (4);
12656 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12657 }
12658
12659 annotate_field (5);
12660 *last_loc = b->loc;
12661 switch (ex)
12662 {
12663 case ada_catch_exception:
12664 if (!c->excep_string.empty ())
12665 {
12666 std::string msg = string_printf (_("`%s' Ada exception"),
12667 c->excep_string.c_str ());
12668
12669 uiout->field_string ("what", msg);
12670 }
12671 else
12672 uiout->field_string ("what", "all Ada exceptions");
12673
12674 break;
12675
12676 case ada_catch_exception_unhandled:
12677 uiout->field_string ("what", "unhandled Ada exceptions");
12678 break;
12679
12680 case ada_catch_handlers:
12681 if (!c->excep_string.empty ())
12682 {
12683 uiout->field_fmt ("what",
12684 _("`%s' Ada exception handlers"),
12685 c->excep_string.c_str ());
12686 }
12687 else
12688 uiout->field_string ("what", "all Ada exceptions handlers");
12689 break;
12690
12691 case ada_catch_assert:
12692 uiout->field_string ("what", "failed Ada assertions");
12693 break;
12694
12695 default:
12696 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12697 break;
12698 }
12699 }
12700
12701 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12702 for all exception catchpoint kinds. */
12703
12704 static void
12705 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12706 struct breakpoint *b)
12707 {
12708 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12709 struct ui_out *uiout = current_uiout;
12710
12711 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12712 : _("Catchpoint "));
12713 uiout->field_int ("bkptno", b->number);
12714 uiout->text (": ");
12715
12716 switch (ex)
12717 {
12718 case ada_catch_exception:
12719 if (!c->excep_string.empty ())
12720 {
12721 std::string info = string_printf (_("`%s' Ada exception"),
12722 c->excep_string.c_str ());
12723 uiout->text (info.c_str ());
12724 }
12725 else
12726 uiout->text (_("all Ada exceptions"));
12727 break;
12728
12729 case ada_catch_exception_unhandled:
12730 uiout->text (_("unhandled Ada exceptions"));
12731 break;
12732
12733 case ada_catch_handlers:
12734 if (!c->excep_string.empty ())
12735 {
12736 std::string info
12737 = string_printf (_("`%s' Ada exception handlers"),
12738 c->excep_string.c_str ());
12739 uiout->text (info.c_str ());
12740 }
12741 else
12742 uiout->text (_("all Ada exceptions handlers"));
12743 break;
12744
12745 case ada_catch_assert:
12746 uiout->text (_("failed Ada assertions"));
12747 break;
12748
12749 default:
12750 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12751 break;
12752 }
12753 }
12754
12755 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12756 for all exception catchpoint kinds. */
12757
12758 static void
12759 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12760 struct breakpoint *b, struct ui_file *fp)
12761 {
12762 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12763
12764 switch (ex)
12765 {
12766 case ada_catch_exception:
12767 fprintf_filtered (fp, "catch exception");
12768 if (!c->excep_string.empty ())
12769 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12770 break;
12771
12772 case ada_catch_exception_unhandled:
12773 fprintf_filtered (fp, "catch exception unhandled");
12774 break;
12775
12776 case ada_catch_handlers:
12777 fprintf_filtered (fp, "catch handlers");
12778 break;
12779
12780 case ada_catch_assert:
12781 fprintf_filtered (fp, "catch assert");
12782 break;
12783
12784 default:
12785 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12786 }
12787 print_recreate_thread (b, fp);
12788 }
12789
12790 /* Virtual table for "catch exception" breakpoints. */
12791
12792 static struct bp_location *
12793 allocate_location_catch_exception (struct breakpoint *self)
12794 {
12795 return allocate_location_exception (ada_catch_exception, self);
12796 }
12797
12798 static void
12799 re_set_catch_exception (struct breakpoint *b)
12800 {
12801 re_set_exception (ada_catch_exception, b);
12802 }
12803
12804 static void
12805 check_status_catch_exception (bpstat bs)
12806 {
12807 check_status_exception (ada_catch_exception, bs);
12808 }
12809
12810 static enum print_stop_action
12811 print_it_catch_exception (bpstat bs)
12812 {
12813 return print_it_exception (ada_catch_exception, bs);
12814 }
12815
12816 static void
12817 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12818 {
12819 print_one_exception (ada_catch_exception, b, last_loc);
12820 }
12821
12822 static void
12823 print_mention_catch_exception (struct breakpoint *b)
12824 {
12825 print_mention_exception (ada_catch_exception, b);
12826 }
12827
12828 static void
12829 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12830 {
12831 print_recreate_exception (ada_catch_exception, b, fp);
12832 }
12833
12834 static struct breakpoint_ops catch_exception_breakpoint_ops;
12835
12836 /* Virtual table for "catch exception unhandled" breakpoints. */
12837
12838 static struct bp_location *
12839 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12840 {
12841 return allocate_location_exception (ada_catch_exception_unhandled, self);
12842 }
12843
12844 static void
12845 re_set_catch_exception_unhandled (struct breakpoint *b)
12846 {
12847 re_set_exception (ada_catch_exception_unhandled, b);
12848 }
12849
12850 static void
12851 check_status_catch_exception_unhandled (bpstat bs)
12852 {
12853 check_status_exception (ada_catch_exception_unhandled, bs);
12854 }
12855
12856 static enum print_stop_action
12857 print_it_catch_exception_unhandled (bpstat bs)
12858 {
12859 return print_it_exception (ada_catch_exception_unhandled, bs);
12860 }
12861
12862 static void
12863 print_one_catch_exception_unhandled (struct breakpoint *b,
12864 struct bp_location **last_loc)
12865 {
12866 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12867 }
12868
12869 static void
12870 print_mention_catch_exception_unhandled (struct breakpoint *b)
12871 {
12872 print_mention_exception (ada_catch_exception_unhandled, b);
12873 }
12874
12875 static void
12876 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12877 struct ui_file *fp)
12878 {
12879 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12880 }
12881
12882 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12883
12884 /* Virtual table for "catch assert" breakpoints. */
12885
12886 static struct bp_location *
12887 allocate_location_catch_assert (struct breakpoint *self)
12888 {
12889 return allocate_location_exception (ada_catch_assert, self);
12890 }
12891
12892 static void
12893 re_set_catch_assert (struct breakpoint *b)
12894 {
12895 re_set_exception (ada_catch_assert, b);
12896 }
12897
12898 static void
12899 check_status_catch_assert (bpstat bs)
12900 {
12901 check_status_exception (ada_catch_assert, bs);
12902 }
12903
12904 static enum print_stop_action
12905 print_it_catch_assert (bpstat bs)
12906 {
12907 return print_it_exception (ada_catch_assert, bs);
12908 }
12909
12910 static void
12911 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12912 {
12913 print_one_exception (ada_catch_assert, b, last_loc);
12914 }
12915
12916 static void
12917 print_mention_catch_assert (struct breakpoint *b)
12918 {
12919 print_mention_exception (ada_catch_assert, b);
12920 }
12921
12922 static void
12923 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12924 {
12925 print_recreate_exception (ada_catch_assert, b, fp);
12926 }
12927
12928 static struct breakpoint_ops catch_assert_breakpoint_ops;
12929
12930 /* Virtual table for "catch handlers" breakpoints. */
12931
12932 static struct bp_location *
12933 allocate_location_catch_handlers (struct breakpoint *self)
12934 {
12935 return allocate_location_exception (ada_catch_handlers, self);
12936 }
12937
12938 static void
12939 re_set_catch_handlers (struct breakpoint *b)
12940 {
12941 re_set_exception (ada_catch_handlers, b);
12942 }
12943
12944 static void
12945 check_status_catch_handlers (bpstat bs)
12946 {
12947 check_status_exception (ada_catch_handlers, bs);
12948 }
12949
12950 static enum print_stop_action
12951 print_it_catch_handlers (bpstat bs)
12952 {
12953 return print_it_exception (ada_catch_handlers, bs);
12954 }
12955
12956 static void
12957 print_one_catch_handlers (struct breakpoint *b,
12958 struct bp_location **last_loc)
12959 {
12960 print_one_exception (ada_catch_handlers, b, last_loc);
12961 }
12962
12963 static void
12964 print_mention_catch_handlers (struct breakpoint *b)
12965 {
12966 print_mention_exception (ada_catch_handlers, b);
12967 }
12968
12969 static void
12970 print_recreate_catch_handlers (struct breakpoint *b,
12971 struct ui_file *fp)
12972 {
12973 print_recreate_exception (ada_catch_handlers, b, fp);
12974 }
12975
12976 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12977
12978 /* Split the arguments specified in a "catch exception" command.
12979 Set EX to the appropriate catchpoint type.
12980 Set EXCEP_STRING to the name of the specific exception if
12981 specified by the user.
12982 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12983 "catch handlers" command. False otherwise.
12984 If a condition is found at the end of the arguments, the condition
12985 expression is stored in COND_STRING (memory must be deallocated
12986 after use). Otherwise COND_STRING is set to NULL. */
12987
12988 static void
12989 catch_ada_exception_command_split (const char *args,
12990 bool is_catch_handlers_cmd,
12991 enum ada_exception_catchpoint_kind *ex,
12992 std::string *excep_string,
12993 std::string *cond_string)
12994 {
12995 std::string exception_name;
12996
12997 exception_name = extract_arg (&args);
12998 if (exception_name == "if")
12999 {
13000 /* This is not an exception name; this is the start of a condition
13001 expression for a catchpoint on all exceptions. So, "un-get"
13002 this token, and set exception_name to NULL. */
13003 exception_name.clear ();
13004 args -= 2;
13005 }
13006
13007 /* Check to see if we have a condition. */
13008
13009 args = skip_spaces (args);
13010 if (startswith (args, "if")
13011 && (isspace (args[2]) || args[2] == '\0'))
13012 {
13013 args += 2;
13014 args = skip_spaces (args);
13015
13016 if (args[0] == '\0')
13017 error (_("Condition missing after `if' keyword"));
13018 *cond_string = args;
13019
13020 args += strlen (args);
13021 }
13022
13023 /* Check that we do not have any more arguments. Anything else
13024 is unexpected. */
13025
13026 if (args[0] != '\0')
13027 error (_("Junk at end of expression"));
13028
13029 if (is_catch_handlers_cmd)
13030 {
13031 /* Catch handling of exceptions. */
13032 *ex = ada_catch_handlers;
13033 *excep_string = exception_name;
13034 }
13035 else if (exception_name.empty ())
13036 {
13037 /* Catch all exceptions. */
13038 *ex = ada_catch_exception;
13039 excep_string->clear ();
13040 }
13041 else if (exception_name == "unhandled")
13042 {
13043 /* Catch unhandled exceptions. */
13044 *ex = ada_catch_exception_unhandled;
13045 excep_string->clear ();
13046 }
13047 else
13048 {
13049 /* Catch a specific exception. */
13050 *ex = ada_catch_exception;
13051 *excep_string = exception_name;
13052 }
13053 }
13054
13055 /* Return the name of the symbol on which we should break in order to
13056 implement a catchpoint of the EX kind. */
13057
13058 static const char *
13059 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13060 {
13061 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13062
13063 gdb_assert (data->exception_info != NULL);
13064
13065 switch (ex)
13066 {
13067 case ada_catch_exception:
13068 return (data->exception_info->catch_exception_sym);
13069 break;
13070 case ada_catch_exception_unhandled:
13071 return (data->exception_info->catch_exception_unhandled_sym);
13072 break;
13073 case ada_catch_assert:
13074 return (data->exception_info->catch_assert_sym);
13075 break;
13076 case ada_catch_handlers:
13077 return (data->exception_info->catch_handlers_sym);
13078 break;
13079 default:
13080 internal_error (__FILE__, __LINE__,
13081 _("unexpected catchpoint kind (%d)"), ex);
13082 }
13083 }
13084
13085 /* Return the breakpoint ops "virtual table" used for catchpoints
13086 of the EX kind. */
13087
13088 static const struct breakpoint_ops *
13089 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13090 {
13091 switch (ex)
13092 {
13093 case ada_catch_exception:
13094 return (&catch_exception_breakpoint_ops);
13095 break;
13096 case ada_catch_exception_unhandled:
13097 return (&catch_exception_unhandled_breakpoint_ops);
13098 break;
13099 case ada_catch_assert:
13100 return (&catch_assert_breakpoint_ops);
13101 break;
13102 case ada_catch_handlers:
13103 return (&catch_handlers_breakpoint_ops);
13104 break;
13105 default:
13106 internal_error (__FILE__, __LINE__,
13107 _("unexpected catchpoint kind (%d)"), ex);
13108 }
13109 }
13110
13111 /* Return the condition that will be used to match the current exception
13112 being raised with the exception that the user wants to catch. This
13113 assumes that this condition is used when the inferior just triggered
13114 an exception catchpoint.
13115 EX: the type of catchpoints used for catching Ada exceptions. */
13116
13117 static std::string
13118 ada_exception_catchpoint_cond_string (const char *excep_string,
13119 enum ada_exception_catchpoint_kind ex)
13120 {
13121 int i;
13122 bool is_standard_exc = false;
13123 std::string result;
13124
13125 if (ex == ada_catch_handlers)
13126 {
13127 /* For exception handlers catchpoints, the condition string does
13128 not use the same parameter as for the other exceptions. */
13129 result = ("long_integer (GNAT_GCC_exception_Access"
13130 "(gcc_exception).all.occurrence.id)");
13131 }
13132 else
13133 result = "long_integer (e)";
13134
13135 /* The standard exceptions are a special case. They are defined in
13136 runtime units that have been compiled without debugging info; if
13137 EXCEP_STRING is the not-fully-qualified name of a standard
13138 exception (e.g. "constraint_error") then, during the evaluation
13139 of the condition expression, the symbol lookup on this name would
13140 *not* return this standard exception. The catchpoint condition
13141 may then be set only on user-defined exceptions which have the
13142 same not-fully-qualified name (e.g. my_package.constraint_error).
13143
13144 To avoid this unexcepted behavior, these standard exceptions are
13145 systematically prefixed by "standard". This means that "catch
13146 exception constraint_error" is rewritten into "catch exception
13147 standard.constraint_error".
13148
13149 If an exception named contraint_error is defined in another package of
13150 the inferior program, then the only way to specify this exception as a
13151 breakpoint condition is to use its fully-qualified named:
13152 e.g. my_package.constraint_error. */
13153
13154 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13155 {
13156 if (strcmp (standard_exc [i], excep_string) == 0)
13157 {
13158 is_standard_exc = true;
13159 break;
13160 }
13161 }
13162
13163 result += " = ";
13164
13165 if (is_standard_exc)
13166 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13167 else
13168 string_appendf (result, "long_integer (&%s)", excep_string);
13169
13170 return result;
13171 }
13172
13173 /* Return the symtab_and_line that should be used to insert an exception
13174 catchpoint of the TYPE kind.
13175
13176 ADDR_STRING returns the name of the function where the real
13177 breakpoint that implements the catchpoints is set, depending on the
13178 type of catchpoint we need to create. */
13179
13180 static struct symtab_and_line
13181 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13182 std::string *addr_string, const struct breakpoint_ops **ops)
13183 {
13184 const char *sym_name;
13185 struct symbol *sym;
13186
13187 /* First, find out which exception support info to use. */
13188 ada_exception_support_info_sniffer ();
13189
13190 /* Then lookup the function on which we will break in order to catch
13191 the Ada exceptions requested by the user. */
13192 sym_name = ada_exception_sym_name (ex);
13193 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13194
13195 if (sym == NULL)
13196 error (_("Catchpoint symbol not found: %s"), sym_name);
13197
13198 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13199 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13200
13201 /* Set ADDR_STRING. */
13202 *addr_string = sym_name;
13203
13204 /* Set OPS. */
13205 *ops = ada_exception_breakpoint_ops (ex);
13206
13207 return find_function_start_sal (sym, 1);
13208 }
13209
13210 /* Create an Ada exception catchpoint.
13211
13212 EX_KIND is the kind of exception catchpoint to be created.
13213
13214 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13215 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13216 of the exception to which this catchpoint applies.
13217
13218 COND_STRING, if not empty, is the catchpoint condition.
13219
13220 TEMPFLAG, if nonzero, means that the underlying breakpoint
13221 should be temporary.
13222
13223 FROM_TTY is the usual argument passed to all commands implementations. */
13224
13225 void
13226 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13227 enum ada_exception_catchpoint_kind ex_kind,
13228 const std::string &excep_string,
13229 const std::string &cond_string,
13230 int tempflag,
13231 int disabled,
13232 int from_tty)
13233 {
13234 std::string addr_string;
13235 const struct breakpoint_ops *ops = NULL;
13236 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13237
13238 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13239 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13240 ops, tempflag, disabled, from_tty);
13241 c->excep_string = excep_string;
13242 create_excep_cond_exprs (c.get (), ex_kind);
13243 if (!cond_string.empty ())
13244 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13245 install_breakpoint (0, std::move (c), 1);
13246 }
13247
13248 /* Implement the "catch exception" command. */
13249
13250 static void
13251 catch_ada_exception_command (const char *arg_entry, int from_tty,
13252 struct cmd_list_element *command)
13253 {
13254 const char *arg = arg_entry;
13255 struct gdbarch *gdbarch = get_current_arch ();
13256 int tempflag;
13257 enum ada_exception_catchpoint_kind ex_kind;
13258 std::string excep_string;
13259 std::string cond_string;
13260
13261 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13262
13263 if (!arg)
13264 arg = "";
13265 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13266 &cond_string);
13267 create_ada_exception_catchpoint (gdbarch, ex_kind,
13268 excep_string, cond_string,
13269 tempflag, 1 /* enabled */,
13270 from_tty);
13271 }
13272
13273 /* Implement the "catch handlers" command. */
13274
13275 static void
13276 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13277 struct cmd_list_element *command)
13278 {
13279 const char *arg = arg_entry;
13280 struct gdbarch *gdbarch = get_current_arch ();
13281 int tempflag;
13282 enum ada_exception_catchpoint_kind ex_kind;
13283 std::string excep_string;
13284 std::string cond_string;
13285
13286 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13287
13288 if (!arg)
13289 arg = "";
13290 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13291 &cond_string);
13292 create_ada_exception_catchpoint (gdbarch, ex_kind,
13293 excep_string, cond_string,
13294 tempflag, 1 /* enabled */,
13295 from_tty);
13296 }
13297
13298 /* Split the arguments specified in a "catch assert" command.
13299
13300 ARGS contains the command's arguments (or the empty string if
13301 no arguments were passed).
13302
13303 If ARGS contains a condition, set COND_STRING to that condition
13304 (the memory needs to be deallocated after use). */
13305
13306 static void
13307 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13308 {
13309 args = skip_spaces (args);
13310
13311 /* Check whether a condition was provided. */
13312 if (startswith (args, "if")
13313 && (isspace (args[2]) || args[2] == '\0'))
13314 {
13315 args += 2;
13316 args = skip_spaces (args);
13317 if (args[0] == '\0')
13318 error (_("condition missing after `if' keyword"));
13319 cond_string.assign (args);
13320 }
13321
13322 /* Otherwise, there should be no other argument at the end of
13323 the command. */
13324 else if (args[0] != '\0')
13325 error (_("Junk at end of arguments."));
13326 }
13327
13328 /* Implement the "catch assert" command. */
13329
13330 static void
13331 catch_assert_command (const char *arg_entry, int from_tty,
13332 struct cmd_list_element *command)
13333 {
13334 const char *arg = arg_entry;
13335 struct gdbarch *gdbarch = get_current_arch ();
13336 int tempflag;
13337 std::string cond_string;
13338
13339 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13340
13341 if (!arg)
13342 arg = "";
13343 catch_ada_assert_command_split (arg, cond_string);
13344 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13345 "", cond_string,
13346 tempflag, 1 /* enabled */,
13347 from_tty);
13348 }
13349
13350 /* Return non-zero if the symbol SYM is an Ada exception object. */
13351
13352 static int
13353 ada_is_exception_sym (struct symbol *sym)
13354 {
13355 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13356
13357 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13358 && SYMBOL_CLASS (sym) != LOC_BLOCK
13359 && SYMBOL_CLASS (sym) != LOC_CONST
13360 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13361 && type_name != NULL && strcmp (type_name, "exception") == 0);
13362 }
13363
13364 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13365 Ada exception object. This matches all exceptions except the ones
13366 defined by the Ada language. */
13367
13368 static int
13369 ada_is_non_standard_exception_sym (struct symbol *sym)
13370 {
13371 int i;
13372
13373 if (!ada_is_exception_sym (sym))
13374 return 0;
13375
13376 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13377 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13378 return 0; /* A standard exception. */
13379
13380 /* Numeric_Error is also a standard exception, so exclude it.
13381 See the STANDARD_EXC description for more details as to why
13382 this exception is not listed in that array. */
13383 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13384 return 0;
13385
13386 return 1;
13387 }
13388
13389 /* A helper function for std::sort, comparing two struct ada_exc_info
13390 objects.
13391
13392 The comparison is determined first by exception name, and then
13393 by exception address. */
13394
13395 bool
13396 ada_exc_info::operator< (const ada_exc_info &other) const
13397 {
13398 int result;
13399
13400 result = strcmp (name, other.name);
13401 if (result < 0)
13402 return true;
13403 if (result == 0 && addr < other.addr)
13404 return true;
13405 return false;
13406 }
13407
13408 bool
13409 ada_exc_info::operator== (const ada_exc_info &other) const
13410 {
13411 return addr == other.addr && strcmp (name, other.name) == 0;
13412 }
13413
13414 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13415 routine, but keeping the first SKIP elements untouched.
13416
13417 All duplicates are also removed. */
13418
13419 static void
13420 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13421 int skip)
13422 {
13423 std::sort (exceptions->begin () + skip, exceptions->end ());
13424 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13425 exceptions->end ());
13426 }
13427
13428 /* Add all exceptions defined by the Ada standard whose name match
13429 a regular expression.
13430
13431 If PREG is not NULL, then this regexp_t object is used to
13432 perform the symbol name matching. Otherwise, no name-based
13433 filtering is performed.
13434
13435 EXCEPTIONS is a vector of exceptions to which matching exceptions
13436 gets pushed. */
13437
13438 static void
13439 ada_add_standard_exceptions (compiled_regex *preg,
13440 std::vector<ada_exc_info> *exceptions)
13441 {
13442 int i;
13443
13444 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13445 {
13446 if (preg == NULL
13447 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13448 {
13449 struct bound_minimal_symbol msymbol
13450 = ada_lookup_simple_minsym (standard_exc[i]);
13451
13452 if (msymbol.minsym != NULL)
13453 {
13454 struct ada_exc_info info
13455 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13456
13457 exceptions->push_back (info);
13458 }
13459 }
13460 }
13461 }
13462
13463 /* Add all Ada exceptions defined locally and accessible from the given
13464 FRAME.
13465
13466 If PREG is not NULL, then this regexp_t object is used to
13467 perform the symbol name matching. Otherwise, no name-based
13468 filtering is performed.
13469
13470 EXCEPTIONS is a vector of exceptions to which matching exceptions
13471 gets pushed. */
13472
13473 static void
13474 ada_add_exceptions_from_frame (compiled_regex *preg,
13475 struct frame_info *frame,
13476 std::vector<ada_exc_info> *exceptions)
13477 {
13478 const struct block *block = get_frame_block (frame, 0);
13479
13480 while (block != 0)
13481 {
13482 struct block_iterator iter;
13483 struct symbol *sym;
13484
13485 ALL_BLOCK_SYMBOLS (block, iter, sym)
13486 {
13487 switch (SYMBOL_CLASS (sym))
13488 {
13489 case LOC_TYPEDEF:
13490 case LOC_BLOCK:
13491 case LOC_CONST:
13492 break;
13493 default:
13494 if (ada_is_exception_sym (sym))
13495 {
13496 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13497 SYMBOL_VALUE_ADDRESS (sym)};
13498
13499 exceptions->push_back (info);
13500 }
13501 }
13502 }
13503 if (BLOCK_FUNCTION (block) != NULL)
13504 break;
13505 block = BLOCK_SUPERBLOCK (block);
13506 }
13507 }
13508
13509 /* Return true if NAME matches PREG or if PREG is NULL. */
13510
13511 static bool
13512 name_matches_regex (const char *name, compiled_regex *preg)
13513 {
13514 return (preg == NULL
13515 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13516 }
13517
13518 /* Add all exceptions defined globally whose name name match
13519 a regular expression, excluding standard exceptions.
13520
13521 The reason we exclude standard exceptions is that they need
13522 to be handled separately: Standard exceptions are defined inside
13523 a runtime unit which is normally not compiled with debugging info,
13524 and thus usually do not show up in our symbol search. However,
13525 if the unit was in fact built with debugging info, we need to
13526 exclude them because they would duplicate the entry we found
13527 during the special loop that specifically searches for those
13528 standard exceptions.
13529
13530 If PREG is not NULL, then this regexp_t object is used to
13531 perform the symbol name matching. Otherwise, no name-based
13532 filtering is performed.
13533
13534 EXCEPTIONS is a vector of exceptions to which matching exceptions
13535 gets pushed. */
13536
13537 static void
13538 ada_add_global_exceptions (compiled_regex *preg,
13539 std::vector<ada_exc_info> *exceptions)
13540 {
13541 /* In Ada, the symbol "search name" is a linkage name, whereas the
13542 regular expression used to do the matching refers to the natural
13543 name. So match against the decoded name. */
13544 expand_symtabs_matching (NULL,
13545 lookup_name_info::match_any (),
13546 [&] (const char *search_name)
13547 {
13548 const char *decoded = ada_decode (search_name);
13549 return name_matches_regex (decoded, preg);
13550 },
13551 NULL,
13552 VARIABLES_DOMAIN);
13553
13554 for (objfile *objfile : current_program_space->objfiles ())
13555 {
13556 for (compunit_symtab *s : objfile->compunits ())
13557 {
13558 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13559 int i;
13560
13561 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13562 {
13563 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13564 struct block_iterator iter;
13565 struct symbol *sym;
13566
13567 ALL_BLOCK_SYMBOLS (b, iter, sym)
13568 if (ada_is_non_standard_exception_sym (sym)
13569 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13570 {
13571 struct ada_exc_info info
13572 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13573
13574 exceptions->push_back (info);
13575 }
13576 }
13577 }
13578 }
13579 }
13580
13581 /* Implements ada_exceptions_list with the regular expression passed
13582 as a regex_t, rather than a string.
13583
13584 If not NULL, PREG is used to filter out exceptions whose names
13585 do not match. Otherwise, all exceptions are listed. */
13586
13587 static std::vector<ada_exc_info>
13588 ada_exceptions_list_1 (compiled_regex *preg)
13589 {
13590 std::vector<ada_exc_info> result;
13591 int prev_len;
13592
13593 /* First, list the known standard exceptions. These exceptions
13594 need to be handled separately, as they are usually defined in
13595 runtime units that have been compiled without debugging info. */
13596
13597 ada_add_standard_exceptions (preg, &result);
13598
13599 /* Next, find all exceptions whose scope is local and accessible
13600 from the currently selected frame. */
13601
13602 if (has_stack_frames ())
13603 {
13604 prev_len = result.size ();
13605 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13606 &result);
13607 if (result.size () > prev_len)
13608 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13609 }
13610
13611 /* Add all exceptions whose scope is global. */
13612
13613 prev_len = result.size ();
13614 ada_add_global_exceptions (preg, &result);
13615 if (result.size () > prev_len)
13616 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13617
13618 return result;
13619 }
13620
13621 /* Return a vector of ada_exc_info.
13622
13623 If REGEXP is NULL, all exceptions are included in the result.
13624 Otherwise, it should contain a valid regular expression,
13625 and only the exceptions whose names match that regular expression
13626 are included in the result.
13627
13628 The exceptions are sorted in the following order:
13629 - Standard exceptions (defined by the Ada language), in
13630 alphabetical order;
13631 - Exceptions only visible from the current frame, in
13632 alphabetical order;
13633 - Exceptions whose scope is global, in alphabetical order. */
13634
13635 std::vector<ada_exc_info>
13636 ada_exceptions_list (const char *regexp)
13637 {
13638 if (regexp == NULL)
13639 return ada_exceptions_list_1 (NULL);
13640
13641 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13642 return ada_exceptions_list_1 (&reg);
13643 }
13644
13645 /* Implement the "info exceptions" command. */
13646
13647 static void
13648 info_exceptions_command (const char *regexp, int from_tty)
13649 {
13650 struct gdbarch *gdbarch = get_current_arch ();
13651
13652 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13653
13654 if (regexp != NULL)
13655 printf_filtered
13656 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13657 else
13658 printf_filtered (_("All defined Ada exceptions:\n"));
13659
13660 for (const ada_exc_info &info : exceptions)
13661 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13662 }
13663
13664 /* Operators */
13665 /* Information about operators given special treatment in functions
13666 below. */
13667 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13668
13669 #define ADA_OPERATORS \
13670 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13671 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13672 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13673 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13674 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13675 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13676 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13677 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13678 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13679 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13680 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13681 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13682 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13683 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13684 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13685 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13686 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13687 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13688 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13689
13690 static void
13691 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13692 int *argsp)
13693 {
13694 switch (exp->elts[pc - 1].opcode)
13695 {
13696 default:
13697 operator_length_standard (exp, pc, oplenp, argsp);
13698 break;
13699
13700 #define OP_DEFN(op, len, args, binop) \
13701 case op: *oplenp = len; *argsp = args; break;
13702 ADA_OPERATORS;
13703 #undef OP_DEFN
13704
13705 case OP_AGGREGATE:
13706 *oplenp = 3;
13707 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13708 break;
13709
13710 case OP_CHOICES:
13711 *oplenp = 3;
13712 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13713 break;
13714 }
13715 }
13716
13717 /* Implementation of the exp_descriptor method operator_check. */
13718
13719 static int
13720 ada_operator_check (struct expression *exp, int pos,
13721 int (*objfile_func) (struct objfile *objfile, void *data),
13722 void *data)
13723 {
13724 const union exp_element *const elts = exp->elts;
13725 struct type *type = NULL;
13726
13727 switch (elts[pos].opcode)
13728 {
13729 case UNOP_IN_RANGE:
13730 case UNOP_QUAL:
13731 type = elts[pos + 1].type;
13732 break;
13733
13734 default:
13735 return operator_check_standard (exp, pos, objfile_func, data);
13736 }
13737
13738 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13739
13740 if (type && TYPE_OBJFILE (type)
13741 && (*objfile_func) (TYPE_OBJFILE (type), data))
13742 return 1;
13743
13744 return 0;
13745 }
13746
13747 static const char *
13748 ada_op_name (enum exp_opcode opcode)
13749 {
13750 switch (opcode)
13751 {
13752 default:
13753 return op_name_standard (opcode);
13754
13755 #define OP_DEFN(op, len, args, binop) case op: return #op;
13756 ADA_OPERATORS;
13757 #undef OP_DEFN
13758
13759 case OP_AGGREGATE:
13760 return "OP_AGGREGATE";
13761 case OP_CHOICES:
13762 return "OP_CHOICES";
13763 case OP_NAME:
13764 return "OP_NAME";
13765 }
13766 }
13767
13768 /* As for operator_length, but assumes PC is pointing at the first
13769 element of the operator, and gives meaningful results only for the
13770 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13771
13772 static void
13773 ada_forward_operator_length (struct expression *exp, int pc,
13774 int *oplenp, int *argsp)
13775 {
13776 switch (exp->elts[pc].opcode)
13777 {
13778 default:
13779 *oplenp = *argsp = 0;
13780 break;
13781
13782 #define OP_DEFN(op, len, args, binop) \
13783 case op: *oplenp = len; *argsp = args; break;
13784 ADA_OPERATORS;
13785 #undef OP_DEFN
13786
13787 case OP_AGGREGATE:
13788 *oplenp = 3;
13789 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13790 break;
13791
13792 case OP_CHOICES:
13793 *oplenp = 3;
13794 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13795 break;
13796
13797 case OP_STRING:
13798 case OP_NAME:
13799 {
13800 int len = longest_to_int (exp->elts[pc + 1].longconst);
13801
13802 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13803 *argsp = 0;
13804 break;
13805 }
13806 }
13807 }
13808
13809 static int
13810 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13811 {
13812 enum exp_opcode op = exp->elts[elt].opcode;
13813 int oplen, nargs;
13814 int pc = elt;
13815 int i;
13816
13817 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13818
13819 switch (op)
13820 {
13821 /* Ada attributes ('Foo). */
13822 case OP_ATR_FIRST:
13823 case OP_ATR_LAST:
13824 case OP_ATR_LENGTH:
13825 case OP_ATR_IMAGE:
13826 case OP_ATR_MAX:
13827 case OP_ATR_MIN:
13828 case OP_ATR_MODULUS:
13829 case OP_ATR_POS:
13830 case OP_ATR_SIZE:
13831 case OP_ATR_TAG:
13832 case OP_ATR_VAL:
13833 break;
13834
13835 case UNOP_IN_RANGE:
13836 case UNOP_QUAL:
13837 /* XXX: gdb_sprint_host_address, type_sprint */
13838 fprintf_filtered (stream, _("Type @"));
13839 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13840 fprintf_filtered (stream, " (");
13841 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13842 fprintf_filtered (stream, ")");
13843 break;
13844 case BINOP_IN_BOUNDS:
13845 fprintf_filtered (stream, " (%d)",
13846 longest_to_int (exp->elts[pc + 2].longconst));
13847 break;
13848 case TERNOP_IN_RANGE:
13849 break;
13850
13851 case OP_AGGREGATE:
13852 case OP_OTHERS:
13853 case OP_DISCRETE_RANGE:
13854 case OP_POSITIONAL:
13855 case OP_CHOICES:
13856 break;
13857
13858 case OP_NAME:
13859 case OP_STRING:
13860 {
13861 char *name = &exp->elts[elt + 2].string;
13862 int len = longest_to_int (exp->elts[elt + 1].longconst);
13863
13864 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13865 break;
13866 }
13867
13868 default:
13869 return dump_subexp_body_standard (exp, stream, elt);
13870 }
13871
13872 elt += oplen;
13873 for (i = 0; i < nargs; i += 1)
13874 elt = dump_subexp (exp, stream, elt);
13875
13876 return elt;
13877 }
13878
13879 /* The Ada extension of print_subexp (q.v.). */
13880
13881 static void
13882 ada_print_subexp (struct expression *exp, int *pos,
13883 struct ui_file *stream, enum precedence prec)
13884 {
13885 int oplen, nargs, i;
13886 int pc = *pos;
13887 enum exp_opcode op = exp->elts[pc].opcode;
13888
13889 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13890
13891 *pos += oplen;
13892 switch (op)
13893 {
13894 default:
13895 *pos -= oplen;
13896 print_subexp_standard (exp, pos, stream, prec);
13897 return;
13898
13899 case OP_VAR_VALUE:
13900 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13901 return;
13902
13903 case BINOP_IN_BOUNDS:
13904 /* XXX: sprint_subexp */
13905 print_subexp (exp, pos, stream, PREC_SUFFIX);
13906 fputs_filtered (" in ", stream);
13907 print_subexp (exp, pos, stream, PREC_SUFFIX);
13908 fputs_filtered ("'range", stream);
13909 if (exp->elts[pc + 1].longconst > 1)
13910 fprintf_filtered (stream, "(%ld)",
13911 (long) exp->elts[pc + 1].longconst);
13912 return;
13913
13914 case TERNOP_IN_RANGE:
13915 if (prec >= PREC_EQUAL)
13916 fputs_filtered ("(", stream);
13917 /* XXX: sprint_subexp */
13918 print_subexp (exp, pos, stream, PREC_SUFFIX);
13919 fputs_filtered (" in ", stream);
13920 print_subexp (exp, pos, stream, PREC_EQUAL);
13921 fputs_filtered (" .. ", stream);
13922 print_subexp (exp, pos, stream, PREC_EQUAL);
13923 if (prec >= PREC_EQUAL)
13924 fputs_filtered (")", stream);
13925 return;
13926
13927 case OP_ATR_FIRST:
13928 case OP_ATR_LAST:
13929 case OP_ATR_LENGTH:
13930 case OP_ATR_IMAGE:
13931 case OP_ATR_MAX:
13932 case OP_ATR_MIN:
13933 case OP_ATR_MODULUS:
13934 case OP_ATR_POS:
13935 case OP_ATR_SIZE:
13936 case OP_ATR_TAG:
13937 case OP_ATR_VAL:
13938 if (exp->elts[*pos].opcode == OP_TYPE)
13939 {
13940 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13941 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13942 &type_print_raw_options);
13943 *pos += 3;
13944 }
13945 else
13946 print_subexp (exp, pos, stream, PREC_SUFFIX);
13947 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13948 if (nargs > 1)
13949 {
13950 int tem;
13951
13952 for (tem = 1; tem < nargs; tem += 1)
13953 {
13954 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13955 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13956 }
13957 fputs_filtered (")", stream);
13958 }
13959 return;
13960
13961 case UNOP_QUAL:
13962 type_print (exp->elts[pc + 1].type, "", stream, 0);
13963 fputs_filtered ("'(", stream);
13964 print_subexp (exp, pos, stream, PREC_PREFIX);
13965 fputs_filtered (")", stream);
13966 return;
13967
13968 case UNOP_IN_RANGE:
13969 /* XXX: sprint_subexp */
13970 print_subexp (exp, pos, stream, PREC_SUFFIX);
13971 fputs_filtered (" in ", stream);
13972 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13973 &type_print_raw_options);
13974 return;
13975
13976 case OP_DISCRETE_RANGE:
13977 print_subexp (exp, pos, stream, PREC_SUFFIX);
13978 fputs_filtered ("..", stream);
13979 print_subexp (exp, pos, stream, PREC_SUFFIX);
13980 return;
13981
13982 case OP_OTHERS:
13983 fputs_filtered ("others => ", stream);
13984 print_subexp (exp, pos, stream, PREC_SUFFIX);
13985 return;
13986
13987 case OP_CHOICES:
13988 for (i = 0; i < nargs-1; i += 1)
13989 {
13990 if (i > 0)
13991 fputs_filtered ("|", stream);
13992 print_subexp (exp, pos, stream, PREC_SUFFIX);
13993 }
13994 fputs_filtered (" => ", stream);
13995 print_subexp (exp, pos, stream, PREC_SUFFIX);
13996 return;
13997
13998 case OP_POSITIONAL:
13999 print_subexp (exp, pos, stream, PREC_SUFFIX);
14000 return;
14001
14002 case OP_AGGREGATE:
14003 fputs_filtered ("(", stream);
14004 for (i = 0; i < nargs; i += 1)
14005 {
14006 if (i > 0)
14007 fputs_filtered (", ", stream);
14008 print_subexp (exp, pos, stream, PREC_SUFFIX);
14009 }
14010 fputs_filtered (")", stream);
14011 return;
14012 }
14013 }
14014
14015 /* Table mapping opcodes into strings for printing operators
14016 and precedences of the operators. */
14017
14018 static const struct op_print ada_op_print_tab[] = {
14019 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14020 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14021 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14022 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14023 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14024 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14025 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14026 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14027 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14028 {">=", BINOP_GEQ, PREC_ORDER, 0},
14029 {">", BINOP_GTR, PREC_ORDER, 0},
14030 {"<", BINOP_LESS, PREC_ORDER, 0},
14031 {">>", BINOP_RSH, PREC_SHIFT, 0},
14032 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14033 {"+", BINOP_ADD, PREC_ADD, 0},
14034 {"-", BINOP_SUB, PREC_ADD, 0},
14035 {"&", BINOP_CONCAT, PREC_ADD, 0},
14036 {"*", BINOP_MUL, PREC_MUL, 0},
14037 {"/", BINOP_DIV, PREC_MUL, 0},
14038 {"rem", BINOP_REM, PREC_MUL, 0},
14039 {"mod", BINOP_MOD, PREC_MUL, 0},
14040 {"**", BINOP_EXP, PREC_REPEAT, 0},
14041 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14042 {"-", UNOP_NEG, PREC_PREFIX, 0},
14043 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14044 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14045 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14046 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14047 {".all", UNOP_IND, PREC_SUFFIX, 1},
14048 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14049 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14050 {NULL, OP_NULL, PREC_SUFFIX, 0}
14051 };
14052 \f
14053 enum ada_primitive_types {
14054 ada_primitive_type_int,
14055 ada_primitive_type_long,
14056 ada_primitive_type_short,
14057 ada_primitive_type_char,
14058 ada_primitive_type_float,
14059 ada_primitive_type_double,
14060 ada_primitive_type_void,
14061 ada_primitive_type_long_long,
14062 ada_primitive_type_long_double,
14063 ada_primitive_type_natural,
14064 ada_primitive_type_positive,
14065 ada_primitive_type_system_address,
14066 ada_primitive_type_storage_offset,
14067 nr_ada_primitive_types
14068 };
14069
14070 static void
14071 ada_language_arch_info (struct gdbarch *gdbarch,
14072 struct language_arch_info *lai)
14073 {
14074 const struct builtin_type *builtin = builtin_type (gdbarch);
14075
14076 lai->primitive_type_vector
14077 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14078 struct type *);
14079
14080 lai->primitive_type_vector [ada_primitive_type_int]
14081 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14082 0, "integer");
14083 lai->primitive_type_vector [ada_primitive_type_long]
14084 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14085 0, "long_integer");
14086 lai->primitive_type_vector [ada_primitive_type_short]
14087 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14088 0, "short_integer");
14089 lai->string_char_type
14090 = lai->primitive_type_vector [ada_primitive_type_char]
14091 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14092 lai->primitive_type_vector [ada_primitive_type_float]
14093 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14094 "float", gdbarch_float_format (gdbarch));
14095 lai->primitive_type_vector [ada_primitive_type_double]
14096 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14097 "long_float", gdbarch_double_format (gdbarch));
14098 lai->primitive_type_vector [ada_primitive_type_long_long]
14099 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14100 0, "long_long_integer");
14101 lai->primitive_type_vector [ada_primitive_type_long_double]
14102 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14103 "long_long_float", gdbarch_long_double_format (gdbarch));
14104 lai->primitive_type_vector [ada_primitive_type_natural]
14105 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14106 0, "natural");
14107 lai->primitive_type_vector [ada_primitive_type_positive]
14108 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14109 0, "positive");
14110 lai->primitive_type_vector [ada_primitive_type_void]
14111 = builtin->builtin_void;
14112
14113 lai->primitive_type_vector [ada_primitive_type_system_address]
14114 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14115 "void"));
14116 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14117 = "system__address";
14118
14119 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14120 type. This is a signed integral type whose size is the same as
14121 the size of addresses. */
14122 {
14123 unsigned int addr_length = TYPE_LENGTH
14124 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14125
14126 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14127 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14128 "storage_offset");
14129 }
14130
14131 lai->bool_type_symbol = NULL;
14132 lai->bool_type_default = builtin->builtin_bool;
14133 }
14134 \f
14135 /* Language vector */
14136
14137 /* Not really used, but needed in the ada_language_defn. */
14138
14139 static void
14140 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14141 {
14142 ada_emit_char (c, type, stream, quoter, 1);
14143 }
14144
14145 static int
14146 parse (struct parser_state *ps)
14147 {
14148 warnings_issued = 0;
14149 return ada_parse (ps);
14150 }
14151
14152 static const struct exp_descriptor ada_exp_descriptor = {
14153 ada_print_subexp,
14154 ada_operator_length,
14155 ada_operator_check,
14156 ada_op_name,
14157 ada_dump_subexp_body,
14158 ada_evaluate_subexp
14159 };
14160
14161 /* symbol_name_matcher_ftype adapter for wild_match. */
14162
14163 static bool
14164 do_wild_match (const char *symbol_search_name,
14165 const lookup_name_info &lookup_name,
14166 completion_match_result *comp_match_res)
14167 {
14168 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14169 }
14170
14171 /* symbol_name_matcher_ftype adapter for full_match. */
14172
14173 static bool
14174 do_full_match (const char *symbol_search_name,
14175 const lookup_name_info &lookup_name,
14176 completion_match_result *comp_match_res)
14177 {
14178 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14179 }
14180
14181 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14182
14183 static bool
14184 do_exact_match (const char *symbol_search_name,
14185 const lookup_name_info &lookup_name,
14186 completion_match_result *comp_match_res)
14187 {
14188 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14189 }
14190
14191 /* Build the Ada lookup name for LOOKUP_NAME. */
14192
14193 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14194 {
14195 const std::string &user_name = lookup_name.name ();
14196
14197 if (user_name[0] == '<')
14198 {
14199 if (user_name.back () == '>')
14200 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14201 else
14202 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14203 m_encoded_p = true;
14204 m_verbatim_p = true;
14205 m_wild_match_p = false;
14206 m_standard_p = false;
14207 }
14208 else
14209 {
14210 m_verbatim_p = false;
14211
14212 m_encoded_p = user_name.find ("__") != std::string::npos;
14213
14214 if (!m_encoded_p)
14215 {
14216 const char *folded = ada_fold_name (user_name.c_str ());
14217 const char *encoded = ada_encode_1 (folded, false);
14218 if (encoded != NULL)
14219 m_encoded_name = encoded;
14220 else
14221 m_encoded_name = user_name;
14222 }
14223 else
14224 m_encoded_name = user_name;
14225
14226 /* Handle the 'package Standard' special case. See description
14227 of m_standard_p. */
14228 if (startswith (m_encoded_name.c_str (), "standard__"))
14229 {
14230 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14231 m_standard_p = true;
14232 }
14233 else
14234 m_standard_p = false;
14235
14236 /* If the name contains a ".", then the user is entering a fully
14237 qualified entity name, and the match must not be done in wild
14238 mode. Similarly, if the user wants to complete what looks
14239 like an encoded name, the match must not be done in wild
14240 mode. Also, in the standard__ special case always do
14241 non-wild matching. */
14242 m_wild_match_p
14243 = (lookup_name.match_type () != symbol_name_match_type::FULL
14244 && !m_encoded_p
14245 && !m_standard_p
14246 && user_name.find ('.') == std::string::npos);
14247 }
14248 }
14249
14250 /* symbol_name_matcher_ftype method for Ada. This only handles
14251 completion mode. */
14252
14253 static bool
14254 ada_symbol_name_matches (const char *symbol_search_name,
14255 const lookup_name_info &lookup_name,
14256 completion_match_result *comp_match_res)
14257 {
14258 return lookup_name.ada ().matches (symbol_search_name,
14259 lookup_name.match_type (),
14260 comp_match_res);
14261 }
14262
14263 /* A name matcher that matches the symbol name exactly, with
14264 strcmp. */
14265
14266 static bool
14267 literal_symbol_name_matcher (const char *symbol_search_name,
14268 const lookup_name_info &lookup_name,
14269 completion_match_result *comp_match_res)
14270 {
14271 const std::string &name = lookup_name.name ();
14272
14273 int cmp = (lookup_name.completion_mode ()
14274 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14275 : strcmp (symbol_search_name, name.c_str ()));
14276 if (cmp == 0)
14277 {
14278 if (comp_match_res != NULL)
14279 comp_match_res->set_match (symbol_search_name);
14280 return true;
14281 }
14282 else
14283 return false;
14284 }
14285
14286 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14287 Ada. */
14288
14289 static symbol_name_matcher_ftype *
14290 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14291 {
14292 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14293 return literal_symbol_name_matcher;
14294
14295 if (lookup_name.completion_mode ())
14296 return ada_symbol_name_matches;
14297 else
14298 {
14299 if (lookup_name.ada ().wild_match_p ())
14300 return do_wild_match;
14301 else if (lookup_name.ada ().verbatim_p ())
14302 return do_exact_match;
14303 else
14304 return do_full_match;
14305 }
14306 }
14307
14308 /* Implement the "la_read_var_value" language_defn method for Ada. */
14309
14310 static struct value *
14311 ada_read_var_value (struct symbol *var, const struct block *var_block,
14312 struct frame_info *frame)
14313 {
14314 const struct block *frame_block = NULL;
14315 struct symbol *renaming_sym = NULL;
14316
14317 /* The only case where default_read_var_value is not sufficient
14318 is when VAR is a renaming... */
14319 if (frame)
14320 frame_block = get_frame_block (frame, NULL);
14321 if (frame_block)
14322 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14323 if (renaming_sym != NULL)
14324 return ada_read_renaming_var_value (renaming_sym, frame_block);
14325
14326 /* This is a typical case where we expect the default_read_var_value
14327 function to work. */
14328 return default_read_var_value (var, var_block, frame);
14329 }
14330
14331 static const char *ada_extensions[] =
14332 {
14333 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14334 };
14335
14336 extern const struct language_defn ada_language_defn = {
14337 "ada", /* Language name */
14338 "Ada",
14339 language_ada,
14340 range_check_off,
14341 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14342 that's not quite what this means. */
14343 array_row_major,
14344 macro_expansion_no,
14345 ada_extensions,
14346 &ada_exp_descriptor,
14347 parse,
14348 resolve,
14349 ada_printchar, /* Print a character constant */
14350 ada_printstr, /* Function to print string constant */
14351 emit_char, /* Function to print single char (not used) */
14352 ada_print_type, /* Print a type using appropriate syntax */
14353 ada_print_typedef, /* Print a typedef using appropriate syntax */
14354 ada_val_print, /* Print a value using appropriate syntax */
14355 ada_value_print, /* Print a top-level value */
14356 ada_read_var_value, /* la_read_var_value */
14357 NULL, /* Language specific skip_trampoline */
14358 NULL, /* name_of_this */
14359 true, /* la_store_sym_names_in_linkage_form_p */
14360 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14361 basic_lookup_transparent_type, /* lookup_transparent_type */
14362 ada_la_decode, /* Language specific symbol demangler */
14363 ada_sniff_from_mangled_name,
14364 NULL, /* Language specific
14365 class_name_from_physname */
14366 ada_op_print_tab, /* expression operators for printing */
14367 0, /* c-style arrays */
14368 1, /* String lower bound */
14369 ada_get_gdb_completer_word_break_characters,
14370 ada_collect_symbol_completion_matches,
14371 ada_language_arch_info,
14372 ada_print_array_index,
14373 default_pass_by_reference,
14374 c_get_string,
14375 ada_watch_location_expression,
14376 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14377 ada_iterate_over_symbols,
14378 default_search_name_hash,
14379 &ada_varobj_ops,
14380 NULL,
14381 NULL,
14382 LANG_MAGIC
14383 };
14384
14385 /* Command-list for the "set/show ada" prefix command. */
14386 static struct cmd_list_element *set_ada_list;
14387 static struct cmd_list_element *show_ada_list;
14388
14389 /* Implement the "set ada" prefix command. */
14390
14391 static void
14392 set_ada_command (const char *arg, int from_tty)
14393 {
14394 printf_unfiltered (_(\
14395 "\"set ada\" must be followed by the name of a setting.\n"));
14396 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14397 }
14398
14399 /* Implement the "show ada" prefix command. */
14400
14401 static void
14402 show_ada_command (const char *args, int from_tty)
14403 {
14404 cmd_show_list (show_ada_list, from_tty, "");
14405 }
14406
14407 static void
14408 initialize_ada_catchpoint_ops (void)
14409 {
14410 struct breakpoint_ops *ops;
14411
14412 initialize_breakpoint_ops ();
14413
14414 ops = &catch_exception_breakpoint_ops;
14415 *ops = bkpt_breakpoint_ops;
14416 ops->allocate_location = allocate_location_catch_exception;
14417 ops->re_set = re_set_catch_exception;
14418 ops->check_status = check_status_catch_exception;
14419 ops->print_it = print_it_catch_exception;
14420 ops->print_one = print_one_catch_exception;
14421 ops->print_mention = print_mention_catch_exception;
14422 ops->print_recreate = print_recreate_catch_exception;
14423
14424 ops = &catch_exception_unhandled_breakpoint_ops;
14425 *ops = bkpt_breakpoint_ops;
14426 ops->allocate_location = allocate_location_catch_exception_unhandled;
14427 ops->re_set = re_set_catch_exception_unhandled;
14428 ops->check_status = check_status_catch_exception_unhandled;
14429 ops->print_it = print_it_catch_exception_unhandled;
14430 ops->print_one = print_one_catch_exception_unhandled;
14431 ops->print_mention = print_mention_catch_exception_unhandled;
14432 ops->print_recreate = print_recreate_catch_exception_unhandled;
14433
14434 ops = &catch_assert_breakpoint_ops;
14435 *ops = bkpt_breakpoint_ops;
14436 ops->allocate_location = allocate_location_catch_assert;
14437 ops->re_set = re_set_catch_assert;
14438 ops->check_status = check_status_catch_assert;
14439 ops->print_it = print_it_catch_assert;
14440 ops->print_one = print_one_catch_assert;
14441 ops->print_mention = print_mention_catch_assert;
14442 ops->print_recreate = print_recreate_catch_assert;
14443
14444 ops = &catch_handlers_breakpoint_ops;
14445 *ops = bkpt_breakpoint_ops;
14446 ops->allocate_location = allocate_location_catch_handlers;
14447 ops->re_set = re_set_catch_handlers;
14448 ops->check_status = check_status_catch_handlers;
14449 ops->print_it = print_it_catch_handlers;
14450 ops->print_one = print_one_catch_handlers;
14451 ops->print_mention = print_mention_catch_handlers;
14452 ops->print_recreate = print_recreate_catch_handlers;
14453 }
14454
14455 /* This module's 'new_objfile' observer. */
14456
14457 static void
14458 ada_new_objfile_observer (struct objfile *objfile)
14459 {
14460 ada_clear_symbol_cache ();
14461 }
14462
14463 /* This module's 'free_objfile' observer. */
14464
14465 static void
14466 ada_free_objfile_observer (struct objfile *objfile)
14467 {
14468 ada_clear_symbol_cache ();
14469 }
14470
14471 void
14472 _initialize_ada_language (void)
14473 {
14474 initialize_ada_catchpoint_ops ();
14475
14476 add_prefix_cmd ("ada", no_class, set_ada_command,
14477 _("Prefix command for changing Ada-specific settings"),
14478 &set_ada_list, "set ada ", 0, &setlist);
14479
14480 add_prefix_cmd ("ada", no_class, show_ada_command,
14481 _("Generic command for showing Ada-specific settings."),
14482 &show_ada_list, "show ada ", 0, &showlist);
14483
14484 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14485 &trust_pad_over_xvs, _("\
14486 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14487 Show whether an optimization trusting PAD types over XVS types is activated"),
14488 _("\
14489 This is related to the encoding used by the GNAT compiler. The debugger\n\
14490 should normally trust the contents of PAD types, but certain older versions\n\
14491 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14492 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14493 work around this bug. It is always safe to turn this option \"off\", but\n\
14494 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14495 this option to \"off\" unless necessary."),
14496 NULL, NULL, &set_ada_list, &show_ada_list);
14497
14498 add_setshow_boolean_cmd ("print-signatures", class_vars,
14499 &print_signatures, _("\
14500 Enable or disable the output of formal and return types for functions in the \
14501 overloads selection menu"), _("\
14502 Show whether the output of formal and return types for functions in the \
14503 overloads selection menu is activated"),
14504 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14505
14506 add_catch_command ("exception", _("\
14507 Catch Ada exceptions, when raised.\n\
14508 Usage: catch exception [ ARG ]\n\
14509 \n\
14510 Without any argument, stop when any Ada exception is raised.\n\
14511 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14512 being raised does not have a handler (and will therefore lead to the task's\n\
14513 termination).\n\
14514 Otherwise, the catchpoint only stops when the name of the exception being\n\
14515 raised is the same as ARG."),
14516 catch_ada_exception_command,
14517 NULL,
14518 CATCH_PERMANENT,
14519 CATCH_TEMPORARY);
14520
14521 add_catch_command ("handlers", _("\
14522 Catch Ada exceptions, when handled.\n\
14523 With an argument, catch only exceptions with the given name."),
14524 catch_ada_handlers_command,
14525 NULL,
14526 CATCH_PERMANENT,
14527 CATCH_TEMPORARY);
14528 add_catch_command ("assert", _("\
14529 Catch failed Ada assertions, when raised.\n\
14530 With an argument, catch only exceptions with the given name."),
14531 catch_assert_command,
14532 NULL,
14533 CATCH_PERMANENT,
14534 CATCH_TEMPORARY);
14535
14536 varsize_limit = 65536;
14537 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14538 &varsize_limit, _("\
14539 Set the maximum number of bytes allowed in a variable-size object."), _("\
14540 Show the maximum number of bytes allowed in a variable-size object."), _("\
14541 Attempts to access an object whose size is not a compile-time constant\n\
14542 and exceeds this limit will cause an error."),
14543 NULL, NULL, &setlist, &showlist);
14544
14545 add_info ("exceptions", info_exceptions_command,
14546 _("\
14547 List all Ada exception names.\n\
14548 If a regular expression is passed as an argument, only those matching\n\
14549 the regular expression are listed."));
14550
14551 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14552 _("Set Ada maintenance-related variables."),
14553 &maint_set_ada_cmdlist, "maintenance set ada ",
14554 0/*allow-unknown*/, &maintenance_set_cmdlist);
14555
14556 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14557 _("Show Ada maintenance-related variables"),
14558 &maint_show_ada_cmdlist, "maintenance show ada ",
14559 0/*allow-unknown*/, &maintenance_show_cmdlist);
14560
14561 add_setshow_boolean_cmd
14562 ("ignore-descriptive-types", class_maintenance,
14563 &ada_ignore_descriptive_types_p,
14564 _("Set whether descriptive types generated by GNAT should be ignored."),
14565 _("Show whether descriptive types generated by GNAT should be ignored."),
14566 _("\
14567 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14568 DWARF attribute."),
14569 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14570
14571 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14572 NULL, xcalloc, xfree);
14573
14574 /* The ada-lang observers. */
14575 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14576 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14577 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14578
14579 /* Setup various context-specific data. */
14580 ada_inferior_data
14581 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14582 ada_pspace_data_handle
14583 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14584 }
This page took 0.329039 seconds and 4 git commands to generate.