* dg-extract-results.sh: Handle KFAILs.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 return result;
585 }
586 }
587
588 static const gdb_byte *
589 cond_offset_host (const gdb_byte *valaddr, long offset)
590 {
591 if (valaddr == NULL)
592 return NULL;
593 else
594 return valaddr + offset;
595 }
596
597 static CORE_ADDR
598 cond_offset_target (CORE_ADDR address, long offset)
599 {
600 if (address == 0)
601 return 0;
602 else
603 return address + offset;
604 }
605
606 /* Issue a warning (as for the definition of warning in utils.c, but
607 with exactly one argument rather than ...), unless the limit on the
608 number of warnings has passed during the evaluation of the current
609 expression. */
610
611 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
612 provided by "complaint". */
613 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
614
615 static void
616 lim_warning (const char *format, ...)
617 {
618 va_list args;
619
620 va_start (args, format);
621 warnings_issued += 1;
622 if (warnings_issued <= warning_limit)
623 vwarning (format, args);
624
625 va_end (args);
626 }
627
628 /* Issue an error if the size of an object of type T is unreasonable,
629 i.e. if it would be a bad idea to allocate a value of this type in
630 GDB. */
631
632 static void
633 check_size (const struct type *type)
634 {
635 if (TYPE_LENGTH (type) > varsize_limit)
636 error (_("object size is larger than varsize-limit"));
637 }
638
639 /* Maximum value of a SIZE-byte signed integer type. */
640 static LONGEST
641 max_of_size (int size)
642 {
643 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
644
645 return top_bit | (top_bit - 1);
646 }
647
648 /* Minimum value of a SIZE-byte signed integer type. */
649 static LONGEST
650 min_of_size (int size)
651 {
652 return -max_of_size (size) - 1;
653 }
654
655 /* Maximum value of a SIZE-byte unsigned integer type. */
656 static ULONGEST
657 umax_of_size (int size)
658 {
659 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
660
661 return top_bit | (top_bit - 1);
662 }
663
664 /* Maximum value of integral type T, as a signed quantity. */
665 static LONGEST
666 max_of_type (struct type *t)
667 {
668 if (TYPE_UNSIGNED (t))
669 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
670 else
671 return max_of_size (TYPE_LENGTH (t));
672 }
673
674 /* Minimum value of integral type T, as a signed quantity. */
675 static LONGEST
676 min_of_type (struct type *t)
677 {
678 if (TYPE_UNSIGNED (t))
679 return 0;
680 else
681 return min_of_size (TYPE_LENGTH (t));
682 }
683
684 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
685 LONGEST
686 ada_discrete_type_high_bound (struct type *type)
687 {
688 switch (TYPE_CODE (type))
689 {
690 case TYPE_CODE_RANGE:
691 return TYPE_HIGH_BOUND (type);
692 case TYPE_CODE_ENUM:
693 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
694 case TYPE_CODE_BOOL:
695 return 1;
696 case TYPE_CODE_CHAR:
697 case TYPE_CODE_INT:
698 return max_of_type (type);
699 default:
700 error (_("Unexpected type in ada_discrete_type_high_bound."));
701 }
702 }
703
704 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
705 LONGEST
706 ada_discrete_type_low_bound (struct type *type)
707 {
708 switch (TYPE_CODE (type))
709 {
710 case TYPE_CODE_RANGE:
711 return TYPE_LOW_BOUND (type);
712 case TYPE_CODE_ENUM:
713 return TYPE_FIELD_BITPOS (type, 0);
714 case TYPE_CODE_BOOL:
715 return 0;
716 case TYPE_CODE_CHAR:
717 case TYPE_CODE_INT:
718 return min_of_type (type);
719 default:
720 error (_("Unexpected type in ada_discrete_type_low_bound."));
721 }
722 }
723
724 /* The identity on non-range types. For range types, the underlying
725 non-range scalar type. */
726
727 static struct type *
728 get_base_type (struct type *type)
729 {
730 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
731 {
732 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
733 return type;
734 type = TYPE_TARGET_TYPE (type);
735 }
736 return type;
737 }
738
739 /* Return a decoded version of the given VALUE. This means returning
740 a value whose type is obtained by applying all the GNAT-specific
741 encondings, making the resulting type a static but standard description
742 of the initial type. */
743
744 struct value *
745 ada_get_decoded_value (struct value *value)
746 {
747 struct type *type = ada_check_typedef (value_type (value));
748
749 if (ada_is_array_descriptor_type (type)
750 || (ada_is_constrained_packed_array_type (type)
751 && TYPE_CODE (type) != TYPE_CODE_PTR))
752 {
753 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
754 value = ada_coerce_to_simple_array_ptr (value);
755 else
756 value = ada_coerce_to_simple_array (value);
757 }
758 else
759 value = ada_to_fixed_value (value);
760
761 return value;
762 }
763
764 /* Same as ada_get_decoded_value, but with the given TYPE.
765 Because there is no associated actual value for this type,
766 the resulting type might be a best-effort approximation in
767 the case of dynamic types. */
768
769 struct type *
770 ada_get_decoded_type (struct type *type)
771 {
772 type = to_static_fixed_type (type);
773 if (ada_is_constrained_packed_array_type (type))
774 type = ada_coerce_to_simple_array_type (type);
775 return type;
776 }
777
778 \f
779
780 /* Language Selection */
781
782 /* If the main program is in Ada, return language_ada, otherwise return LANG
783 (the main program is in Ada iif the adainit symbol is found). */
784
785 enum language
786 ada_update_initial_language (enum language lang)
787 {
788 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
789 (struct objfile *) NULL) != NULL)
790 return language_ada;
791
792 return lang;
793 }
794
795 /* If the main procedure is written in Ada, then return its name.
796 The result is good until the next call. Return NULL if the main
797 procedure doesn't appear to be in Ada. */
798
799 char *
800 ada_main_name (void)
801 {
802 struct minimal_symbol *msym;
803 static char *main_program_name = NULL;
804
805 /* For Ada, the name of the main procedure is stored in a specific
806 string constant, generated by the binder. Look for that symbol,
807 extract its address, and then read that string. If we didn't find
808 that string, then most probably the main procedure is not written
809 in Ada. */
810 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
811
812 if (msym != NULL)
813 {
814 CORE_ADDR main_program_name_addr;
815 int err_code;
816
817 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
818 if (main_program_name_addr == 0)
819 error (_("Invalid address for Ada main program name."));
820
821 xfree (main_program_name);
822 target_read_string (main_program_name_addr, &main_program_name,
823 1024, &err_code);
824
825 if (err_code != 0)
826 return NULL;
827 return main_program_name;
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832 }
833 \f
834 /* Symbols */
835
836 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
838
839 const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
862 };
863
864 /* The "encoded" form of DECODED, according to GNAT conventions.
865 The result is valid until the next call to ada_encode. */
866
867 char *
868 ada_encode (const char *decoded)
869 {
870 static char *encoding_buffer = NULL;
871 static size_t encoding_buffer_size = 0;
872 const char *p;
873 int k;
874
875 if (decoded == NULL)
876 return NULL;
877
878 GROW_VECT (encoding_buffer, encoding_buffer_size,
879 2 * strlen (decoded) + 10);
880
881 k = 0;
882 for (p = decoded; *p != '\0'; p += 1)
883 {
884 if (*p == '.')
885 {
886 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
887 k += 2;
888 }
889 else if (*p == '"')
890 {
891 const struct ada_opname_map *mapping;
892
893 for (mapping = ada_opname_table;
894 mapping->encoded != NULL
895 && strncmp (mapping->decoded, p,
896 strlen (mapping->decoded)) != 0; mapping += 1)
897 ;
898 if (mapping->encoded == NULL)
899 error (_("invalid Ada operator name: %s"), p);
900 strcpy (encoding_buffer + k, mapping->encoded);
901 k += strlen (mapping->encoded);
902 break;
903 }
904 else
905 {
906 encoding_buffer[k] = *p;
907 k += 1;
908 }
909 }
910
911 encoding_buffer[k] = '\0';
912 return encoding_buffer;
913 }
914
915 /* Return NAME folded to lower case, or, if surrounded by single
916 quotes, unfolded, but with the quotes stripped away. Result good
917 to next call. */
918
919 char *
920 ada_fold_name (const char *name)
921 {
922 static char *fold_buffer = NULL;
923 static size_t fold_buffer_size = 0;
924
925 int len = strlen (name);
926 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
927
928 if (name[0] == '\'')
929 {
930 strncpy (fold_buffer, name + 1, len - 2);
931 fold_buffer[len - 2] = '\000';
932 }
933 else
934 {
935 int i;
936
937 for (i = 0; i <= len; i += 1)
938 fold_buffer[i] = tolower (name[i]);
939 }
940
941 return fold_buffer;
942 }
943
944 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
945
946 static int
947 is_lower_alphanum (const char c)
948 {
949 return (isdigit (c) || (isalpha (c) && islower (c)));
950 }
951
952 /* ENCODED is the linkage name of a symbol and LEN contains its length.
953 This function saves in LEN the length of that same symbol name but
954 without either of these suffixes:
955 . .{DIGIT}+
956 . ${DIGIT}+
957 . ___{DIGIT}+
958 . __{DIGIT}+.
959
960 These are suffixes introduced by the compiler for entities such as
961 nested subprogram for instance, in order to avoid name clashes.
962 They do not serve any purpose for the debugger. */
963
964 static void
965 ada_remove_trailing_digits (const char *encoded, int *len)
966 {
967 if (*len > 1 && isdigit (encoded[*len - 1]))
968 {
969 int i = *len - 2;
970
971 while (i > 0 && isdigit (encoded[i]))
972 i--;
973 if (i >= 0 && encoded[i] == '.')
974 *len = i;
975 else if (i >= 0 && encoded[i] == '$')
976 *len = i;
977 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
978 *len = i - 2;
979 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
980 *len = i - 1;
981 }
982 }
983
984 /* Remove the suffix introduced by the compiler for protected object
985 subprograms. */
986
987 static void
988 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
989 {
990 /* Remove trailing N. */
991
992 /* Protected entry subprograms are broken into two
993 separate subprograms: The first one is unprotected, and has
994 a 'N' suffix; the second is the protected version, and has
995 the 'P' suffix. The second calls the first one after handling
996 the protection. Since the P subprograms are internally generated,
997 we leave these names undecoded, giving the user a clue that this
998 entity is internal. */
999
1000 if (*len > 1
1001 && encoded[*len - 1] == 'N'
1002 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1003 *len = *len - 1;
1004 }
1005
1006 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1007
1008 static void
1009 ada_remove_Xbn_suffix (const char *encoded, int *len)
1010 {
1011 int i = *len - 1;
1012
1013 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1014 i--;
1015
1016 if (encoded[i] != 'X')
1017 return;
1018
1019 if (i == 0)
1020 return;
1021
1022 if (isalnum (encoded[i-1]))
1023 *len = i;
1024 }
1025
1026 /* If ENCODED follows the GNAT entity encoding conventions, then return
1027 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1028 replaced by ENCODED.
1029
1030 The resulting string is valid until the next call of ada_decode.
1031 If the string is unchanged by decoding, the original string pointer
1032 is returned. */
1033
1034 const char *
1035 ada_decode (const char *encoded)
1036 {
1037 int i, j;
1038 int len0;
1039 const char *p;
1040 char *decoded;
1041 int at_start_name;
1042 static char *decoding_buffer = NULL;
1043 static size_t decoding_buffer_size = 0;
1044
1045 /* The name of the Ada main procedure starts with "_ada_".
1046 This prefix is not part of the decoded name, so skip this part
1047 if we see this prefix. */
1048 if (strncmp (encoded, "_ada_", 5) == 0)
1049 encoded += 5;
1050
1051 /* If the name starts with '_', then it is not a properly encoded
1052 name, so do not attempt to decode it. Similarly, if the name
1053 starts with '<', the name should not be decoded. */
1054 if (encoded[0] == '_' || encoded[0] == '<')
1055 goto Suppress;
1056
1057 len0 = strlen (encoded);
1058
1059 ada_remove_trailing_digits (encoded, &len0);
1060 ada_remove_po_subprogram_suffix (encoded, &len0);
1061
1062 /* Remove the ___X.* suffix if present. Do not forget to verify that
1063 the suffix is located before the current "end" of ENCODED. We want
1064 to avoid re-matching parts of ENCODED that have previously been
1065 marked as discarded (by decrementing LEN0). */
1066 p = strstr (encoded, "___");
1067 if (p != NULL && p - encoded < len0 - 3)
1068 {
1069 if (p[3] == 'X')
1070 len0 = p - encoded;
1071 else
1072 goto Suppress;
1073 }
1074
1075 /* Remove any trailing TKB suffix. It tells us that this symbol
1076 is for the body of a task, but that information does not actually
1077 appear in the decoded name. */
1078
1079 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1080 len0 -= 3;
1081
1082 /* Remove any trailing TB suffix. The TB suffix is slightly different
1083 from the TKB suffix because it is used for non-anonymous task
1084 bodies. */
1085
1086 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1087 len0 -= 2;
1088
1089 /* Remove trailing "B" suffixes. */
1090 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1091
1092 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1093 len0 -= 1;
1094
1095 /* Make decoded big enough for possible expansion by operator name. */
1096
1097 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1098 decoded = decoding_buffer;
1099
1100 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1101
1102 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1103 {
1104 i = len0 - 2;
1105 while ((i >= 0 && isdigit (encoded[i]))
1106 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1107 i -= 1;
1108 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1109 len0 = i - 1;
1110 else if (encoded[i] == '$')
1111 len0 = i;
1112 }
1113
1114 /* The first few characters that are not alphabetic are not part
1115 of any encoding we use, so we can copy them over verbatim. */
1116
1117 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1118 decoded[j] = encoded[i];
1119
1120 at_start_name = 1;
1121 while (i < len0)
1122 {
1123 /* Is this a symbol function? */
1124 if (at_start_name && encoded[i] == 'O')
1125 {
1126 int k;
1127
1128 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1129 {
1130 int op_len = strlen (ada_opname_table[k].encoded);
1131 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1132 op_len - 1) == 0)
1133 && !isalnum (encoded[i + op_len]))
1134 {
1135 strcpy (decoded + j, ada_opname_table[k].decoded);
1136 at_start_name = 0;
1137 i += op_len;
1138 j += strlen (ada_opname_table[k].decoded);
1139 break;
1140 }
1141 }
1142 if (ada_opname_table[k].encoded != NULL)
1143 continue;
1144 }
1145 at_start_name = 0;
1146
1147 /* Replace "TK__" with "__", which will eventually be translated
1148 into "." (just below). */
1149
1150 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1151 i += 2;
1152
1153 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1154 be translated into "." (just below). These are internal names
1155 generated for anonymous blocks inside which our symbol is nested. */
1156
1157 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1158 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1159 && isdigit (encoded [i+4]))
1160 {
1161 int k = i + 5;
1162
1163 while (k < len0 && isdigit (encoded[k]))
1164 k++; /* Skip any extra digit. */
1165
1166 /* Double-check that the "__B_{DIGITS}+" sequence we found
1167 is indeed followed by "__". */
1168 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1169 i = k;
1170 }
1171
1172 /* Remove _E{DIGITS}+[sb] */
1173
1174 /* Just as for protected object subprograms, there are 2 categories
1175 of subprograms created by the compiler for each entry. The first
1176 one implements the actual entry code, and has a suffix following
1177 the convention above; the second one implements the barrier and
1178 uses the same convention as above, except that the 'E' is replaced
1179 by a 'B'.
1180
1181 Just as above, we do not decode the name of barrier functions
1182 to give the user a clue that the code he is debugging has been
1183 internally generated. */
1184
1185 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1186 && isdigit (encoded[i+2]))
1187 {
1188 int k = i + 3;
1189
1190 while (k < len0 && isdigit (encoded[k]))
1191 k++;
1192
1193 if (k < len0
1194 && (encoded[k] == 'b' || encoded[k] == 's'))
1195 {
1196 k++;
1197 /* Just as an extra precaution, make sure that if this
1198 suffix is followed by anything else, it is a '_'.
1199 Otherwise, we matched this sequence by accident. */
1200 if (k == len0
1201 || (k < len0 && encoded[k] == '_'))
1202 i = k;
1203 }
1204 }
1205
1206 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1207 the GNAT front-end in protected object subprograms. */
1208
1209 if (i < len0 + 3
1210 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1211 {
1212 /* Backtrack a bit up until we reach either the begining of
1213 the encoded name, or "__". Make sure that we only find
1214 digits or lowercase characters. */
1215 const char *ptr = encoded + i - 1;
1216
1217 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1218 ptr--;
1219 if (ptr < encoded
1220 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1221 i++;
1222 }
1223
1224 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1225 {
1226 /* This is a X[bn]* sequence not separated from the previous
1227 part of the name with a non-alpha-numeric character (in other
1228 words, immediately following an alpha-numeric character), then
1229 verify that it is placed at the end of the encoded name. If
1230 not, then the encoding is not valid and we should abort the
1231 decoding. Otherwise, just skip it, it is used in body-nested
1232 package names. */
1233 do
1234 i += 1;
1235 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1236 if (i < len0)
1237 goto Suppress;
1238 }
1239 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1240 {
1241 /* Replace '__' by '.'. */
1242 decoded[j] = '.';
1243 at_start_name = 1;
1244 i += 2;
1245 j += 1;
1246 }
1247 else
1248 {
1249 /* It's a character part of the decoded name, so just copy it
1250 over. */
1251 decoded[j] = encoded[i];
1252 i += 1;
1253 j += 1;
1254 }
1255 }
1256 decoded[j] = '\000';
1257
1258 /* Decoded names should never contain any uppercase character.
1259 Double-check this, and abort the decoding if we find one. */
1260
1261 for (i = 0; decoded[i] != '\0'; i += 1)
1262 if (isupper (decoded[i]) || decoded[i] == ' ')
1263 goto Suppress;
1264
1265 if (strcmp (decoded, encoded) == 0)
1266 return encoded;
1267 else
1268 return decoded;
1269
1270 Suppress:
1271 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1272 decoded = decoding_buffer;
1273 if (encoded[0] == '<')
1274 strcpy (decoded, encoded);
1275 else
1276 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1277 return decoded;
1278
1279 }
1280
1281 /* Table for keeping permanent unique copies of decoded names. Once
1282 allocated, names in this table are never released. While this is a
1283 storage leak, it should not be significant unless there are massive
1284 changes in the set of decoded names in successive versions of a
1285 symbol table loaded during a single session. */
1286 static struct htab *decoded_names_store;
1287
1288 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1289 in the language-specific part of GSYMBOL, if it has not been
1290 previously computed. Tries to save the decoded name in the same
1291 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1292 in any case, the decoded symbol has a lifetime at least that of
1293 GSYMBOL).
1294 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1295 const, but nevertheless modified to a semantically equivalent form
1296 when a decoded name is cached in it. */
1297
1298 char *
1299 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1300 {
1301 char **resultp =
1302 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1303
1304 if (*resultp == NULL)
1305 {
1306 const char *decoded = ada_decode (gsymbol->name);
1307
1308 if (gsymbol->obj_section != NULL)
1309 {
1310 struct objfile *objf = gsymbol->obj_section->objfile;
1311
1312 *resultp = obsavestring (decoded, strlen (decoded),
1313 &objf->objfile_obstack);
1314 }
1315 /* Sometimes, we can't find a corresponding objfile, in which
1316 case, we put the result on the heap. Since we only decode
1317 when needed, we hope this usually does not cause a
1318 significant memory leak (FIXME). */
1319 if (*resultp == NULL)
1320 {
1321 char **slot = (char **) htab_find_slot (decoded_names_store,
1322 decoded, INSERT);
1323
1324 if (*slot == NULL)
1325 *slot = xstrdup (decoded);
1326 *resultp = *slot;
1327 }
1328 }
1329
1330 return *resultp;
1331 }
1332
1333 static char *
1334 ada_la_decode (const char *encoded, int options)
1335 {
1336 return xstrdup (ada_decode (encoded));
1337 }
1338
1339 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1340 suffixes that encode debugging information or leading _ada_ on
1341 SYM_NAME (see is_name_suffix commentary for the debugging
1342 information that is ignored). If WILD, then NAME need only match a
1343 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1344 either argument is NULL. */
1345
1346 static int
1347 match_name (const char *sym_name, const char *name, int wild)
1348 {
1349 if (sym_name == NULL || name == NULL)
1350 return 0;
1351 else if (wild)
1352 return wild_match (sym_name, name) == 0;
1353 else
1354 {
1355 int len_name = strlen (name);
1356
1357 return (strncmp (sym_name, name, len_name) == 0
1358 && is_name_suffix (sym_name + len_name))
1359 || (strncmp (sym_name, "_ada_", 5) == 0
1360 && strncmp (sym_name + 5, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name + 5));
1362 }
1363 }
1364 \f
1365
1366 /* Arrays */
1367
1368 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describle the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391 void
1392 ada_fixup_array_indexes_type (struct type *index_desc_type)
1393 {
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1408 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1414 {
1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1420 }
1421 }
1422
1423 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1424
1425 static char *bound_name[] = {
1426 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1427 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1428 };
1429
1430 /* Maximum number of array dimensions we are prepared to handle. */
1431
1432 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1433
1434
1435 /* The desc_* routines return primitive portions of array descriptors
1436 (fat pointers). */
1437
1438 /* The descriptor or array type, if any, indicated by TYPE; removes
1439 level of indirection, if needed. */
1440
1441 static struct type *
1442 desc_base_type (struct type *type)
1443 {
1444 if (type == NULL)
1445 return NULL;
1446 type = ada_check_typedef (type);
1447 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1448 type = ada_typedef_target_type (type);
1449
1450 if (type != NULL
1451 && (TYPE_CODE (type) == TYPE_CODE_PTR
1452 || TYPE_CODE (type) == TYPE_CODE_REF))
1453 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1454 else
1455 return type;
1456 }
1457
1458 /* True iff TYPE indicates a "thin" array pointer type. */
1459
1460 static int
1461 is_thin_pntr (struct type *type)
1462 {
1463 return
1464 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1465 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1466 }
1467
1468 /* The descriptor type for thin pointer type TYPE. */
1469
1470 static struct type *
1471 thin_descriptor_type (struct type *type)
1472 {
1473 struct type *base_type = desc_base_type (type);
1474
1475 if (base_type == NULL)
1476 return NULL;
1477 if (is_suffix (ada_type_name (base_type), "___XVE"))
1478 return base_type;
1479 else
1480 {
1481 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1482
1483 if (alt_type == NULL)
1484 return base_type;
1485 else
1486 return alt_type;
1487 }
1488 }
1489
1490 /* A pointer to the array data for thin-pointer value VAL. */
1491
1492 static struct value *
1493 thin_data_pntr (struct value *val)
1494 {
1495 struct type *type = ada_check_typedef (value_type (val));
1496 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1497
1498 data_type = lookup_pointer_type (data_type);
1499
1500 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1501 return value_cast (data_type, value_copy (val));
1502 else
1503 return value_from_longest (data_type, value_address (val));
1504 }
1505
1506 /* True iff TYPE indicates a "thick" array pointer type. */
1507
1508 static int
1509 is_thick_pntr (struct type *type)
1510 {
1511 type = desc_base_type (type);
1512 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1513 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1514 }
1515
1516 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1517 pointer to one, the type of its bounds data; otherwise, NULL. */
1518
1519 static struct type *
1520 desc_bounds_type (struct type *type)
1521 {
1522 struct type *r;
1523
1524 type = desc_base_type (type);
1525
1526 if (type == NULL)
1527 return NULL;
1528 else if (is_thin_pntr (type))
1529 {
1530 type = thin_descriptor_type (type);
1531 if (type == NULL)
1532 return NULL;
1533 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1534 if (r != NULL)
1535 return ada_check_typedef (r);
1536 }
1537 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1538 {
1539 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1540 if (r != NULL)
1541 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1542 }
1543 return NULL;
1544 }
1545
1546 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1547 one, a pointer to its bounds data. Otherwise NULL. */
1548
1549 static struct value *
1550 desc_bounds (struct value *arr)
1551 {
1552 struct type *type = ada_check_typedef (value_type (arr));
1553
1554 if (is_thin_pntr (type))
1555 {
1556 struct type *bounds_type =
1557 desc_bounds_type (thin_descriptor_type (type));
1558 LONGEST addr;
1559
1560 if (bounds_type == NULL)
1561 error (_("Bad GNAT array descriptor"));
1562
1563 /* NOTE: The following calculation is not really kosher, but
1564 since desc_type is an XVE-encoded type (and shouldn't be),
1565 the correct calculation is a real pain. FIXME (and fix GCC). */
1566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1567 addr = value_as_long (arr);
1568 else
1569 addr = value_address (arr);
1570
1571 return
1572 value_from_longest (lookup_pointer_type (bounds_type),
1573 addr - TYPE_LENGTH (bounds_type));
1574 }
1575
1576 else if (is_thick_pntr (type))
1577 {
1578 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1579 _("Bad GNAT array descriptor"));
1580 struct type *p_bounds_type = value_type (p_bounds);
1581
1582 if (p_bounds_type
1583 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1584 {
1585 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1586
1587 if (TYPE_STUB (target_type))
1588 p_bounds = value_cast (lookup_pointer_type
1589 (ada_check_typedef (target_type)),
1590 p_bounds);
1591 }
1592 else
1593 error (_("Bad GNAT array descriptor"));
1594
1595 return p_bounds;
1596 }
1597 else
1598 return NULL;
1599 }
1600
1601 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 position of the field containing the address of the bounds data. */
1603
1604 static int
1605 fat_pntr_bounds_bitpos (struct type *type)
1606 {
1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1608 }
1609
1610 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1611 size of the field containing the address of the bounds data. */
1612
1613 static int
1614 fat_pntr_bounds_bitsize (struct type *type)
1615 {
1616 type = desc_base_type (type);
1617
1618 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1619 return TYPE_FIELD_BITSIZE (type, 1);
1620 else
1621 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1622 }
1623
1624 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1625 pointer to one, the type of its array data (a array-with-no-bounds type);
1626 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1627 data. */
1628
1629 static struct type *
1630 desc_data_target_type (struct type *type)
1631 {
1632 type = desc_base_type (type);
1633
1634 /* NOTE: The following is bogus; see comment in desc_bounds. */
1635 if (is_thin_pntr (type))
1636 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1637 else if (is_thick_pntr (type))
1638 {
1639 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1640
1641 if (data_type
1642 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1643 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1644 }
1645
1646 return NULL;
1647 }
1648
1649 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1650 its array data. */
1651
1652 static struct value *
1653 desc_data (struct value *arr)
1654 {
1655 struct type *type = value_type (arr);
1656
1657 if (is_thin_pntr (type))
1658 return thin_data_pntr (arr);
1659 else if (is_thick_pntr (type))
1660 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1661 _("Bad GNAT array descriptor"));
1662 else
1663 return NULL;
1664 }
1665
1666
1667 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1668 position of the field containing the address of the data. */
1669
1670 static int
1671 fat_pntr_data_bitpos (struct type *type)
1672 {
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1674 }
1675
1676 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1677 size of the field containing the address of the data. */
1678
1679 static int
1680 fat_pntr_data_bitsize (struct type *type)
1681 {
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 0);
1686 else
1687 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1688 }
1689
1690 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1691 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
1694 static struct value *
1695 desc_one_bound (struct value *bounds, int i, int which)
1696 {
1697 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1698 _("Bad GNAT array descriptor bounds"));
1699 }
1700
1701 /* If BOUNDS is an array-bounds structure type, return the bit position
1702 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1703 bound, if WHICH is 1. The first bound is I=1. */
1704
1705 static int
1706 desc_bound_bitpos (struct type *type, int i, int which)
1707 {
1708 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1709 }
1710
1711 /* If BOUNDS is an array-bounds structure type, return the bit field size
1712 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1713 bound, if WHICH is 1. The first bound is I=1. */
1714
1715 static int
1716 desc_bound_bitsize (struct type *type, int i, int which)
1717 {
1718 type = desc_base_type (type);
1719
1720 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1721 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1722 else
1723 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1724 }
1725
1726 /* If TYPE is the type of an array-bounds structure, the type of its
1727 Ith bound (numbering from 1). Otherwise, NULL. */
1728
1729 static struct type *
1730 desc_index_type (struct type *type, int i)
1731 {
1732 type = desc_base_type (type);
1733
1734 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1735 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1736 else
1737 return NULL;
1738 }
1739
1740 /* The number of index positions in the array-bounds type TYPE.
1741 Return 0 if TYPE is NULL. */
1742
1743 static int
1744 desc_arity (struct type *type)
1745 {
1746 type = desc_base_type (type);
1747
1748 if (type != NULL)
1749 return TYPE_NFIELDS (type) / 2;
1750 return 0;
1751 }
1752
1753 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1754 an array descriptor type (representing an unconstrained array
1755 type). */
1756
1757 static int
1758 ada_is_direct_array_type (struct type *type)
1759 {
1760 if (type == NULL)
1761 return 0;
1762 type = ada_check_typedef (type);
1763 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1764 || ada_is_array_descriptor_type (type));
1765 }
1766
1767 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1768 * to one. */
1769
1770 static int
1771 ada_is_array_type (struct type *type)
1772 {
1773 while (type != NULL
1774 && (TYPE_CODE (type) == TYPE_CODE_PTR
1775 || TYPE_CODE (type) == TYPE_CODE_REF))
1776 type = TYPE_TARGET_TYPE (type);
1777 return ada_is_direct_array_type (type);
1778 }
1779
1780 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1781
1782 int
1783 ada_is_simple_array_type (struct type *type)
1784 {
1785 if (type == NULL)
1786 return 0;
1787 type = ada_check_typedef (type);
1788 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1789 || (TYPE_CODE (type) == TYPE_CODE_PTR
1790 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1791 == TYPE_CODE_ARRAY));
1792 }
1793
1794 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1795
1796 int
1797 ada_is_array_descriptor_type (struct type *type)
1798 {
1799 struct type *data_type = desc_data_target_type (type);
1800
1801 if (type == NULL)
1802 return 0;
1803 type = ada_check_typedef (type);
1804 return (data_type != NULL
1805 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1806 && desc_arity (desc_bounds_type (type)) > 0);
1807 }
1808
1809 /* Non-zero iff type is a partially mal-formed GNAT array
1810 descriptor. FIXME: This is to compensate for some problems with
1811 debugging output from GNAT. Re-examine periodically to see if it
1812 is still needed. */
1813
1814 int
1815 ada_is_bogus_array_descriptor (struct type *type)
1816 {
1817 return
1818 type != NULL
1819 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1820 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1821 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1822 && !ada_is_array_descriptor_type (type);
1823 }
1824
1825
1826 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1827 (fat pointer) returns the type of the array data described---specifically,
1828 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1829 in from the descriptor; otherwise, they are left unspecified. If
1830 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1831 returns NULL. The result is simply the type of ARR if ARR is not
1832 a descriptor. */
1833 struct type *
1834 ada_type_of_array (struct value *arr, int bounds)
1835 {
1836 if (ada_is_constrained_packed_array_type (value_type (arr)))
1837 return decode_constrained_packed_array_type (value_type (arr));
1838
1839 if (!ada_is_array_descriptor_type (value_type (arr)))
1840 return value_type (arr);
1841
1842 if (!bounds)
1843 {
1844 struct type *array_type =
1845 ada_check_typedef (desc_data_target_type (value_type (arr)));
1846
1847 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1848 TYPE_FIELD_BITSIZE (array_type, 0) =
1849 decode_packed_array_bitsize (value_type (arr));
1850
1851 return array_type;
1852 }
1853 else
1854 {
1855 struct type *elt_type;
1856 int arity;
1857 struct value *descriptor;
1858
1859 elt_type = ada_array_element_type (value_type (arr), -1);
1860 arity = ada_array_arity (value_type (arr));
1861
1862 if (elt_type == NULL || arity == 0)
1863 return ada_check_typedef (value_type (arr));
1864
1865 descriptor = desc_bounds (arr);
1866 if (value_as_long (descriptor) == 0)
1867 return NULL;
1868 while (arity > 0)
1869 {
1870 struct type *range_type = alloc_type_copy (value_type (arr));
1871 struct type *array_type = alloc_type_copy (value_type (arr));
1872 struct value *low = desc_one_bound (descriptor, arity, 0);
1873 struct value *high = desc_one_bound (descriptor, arity, 1);
1874
1875 arity -= 1;
1876 create_range_type (range_type, value_type (low),
1877 longest_to_int (value_as_long (low)),
1878 longest_to_int (value_as_long (high)));
1879 elt_type = create_array_type (array_type, elt_type, range_type);
1880
1881 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1882 {
1883 /* We need to store the element packed bitsize, as well as
1884 recompute the array size, because it was previously
1885 computed based on the unpacked element size. */
1886 LONGEST lo = value_as_long (low);
1887 LONGEST hi = value_as_long (high);
1888
1889 TYPE_FIELD_BITSIZE (elt_type, 0) =
1890 decode_packed_array_bitsize (value_type (arr));
1891 /* If the array has no element, then the size is already
1892 zero, and does not need to be recomputed. */
1893 if (lo < hi)
1894 {
1895 int array_bitsize =
1896 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1897
1898 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1899 }
1900 }
1901 }
1902
1903 return lookup_pointer_type (elt_type);
1904 }
1905 }
1906
1907 /* If ARR does not represent an array, returns ARR unchanged.
1908 Otherwise, returns either a standard GDB array with bounds set
1909 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1910 GDB array. Returns NULL if ARR is a null fat pointer. */
1911
1912 struct value *
1913 ada_coerce_to_simple_array_ptr (struct value *arr)
1914 {
1915 if (ada_is_array_descriptor_type (value_type (arr)))
1916 {
1917 struct type *arrType = ada_type_of_array (arr, 1);
1918
1919 if (arrType == NULL)
1920 return NULL;
1921 return value_cast (arrType, value_copy (desc_data (arr)));
1922 }
1923 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array (arr);
1925 else
1926 return arr;
1927 }
1928
1929 /* If ARR does not represent an array, returns ARR unchanged.
1930 Otherwise, returns a standard GDB array describing ARR (which may
1931 be ARR itself if it already is in the proper form). */
1932
1933 struct value *
1934 ada_coerce_to_simple_array (struct value *arr)
1935 {
1936 if (ada_is_array_descriptor_type (value_type (arr)))
1937 {
1938 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1939
1940 if (arrVal == NULL)
1941 error (_("Bounds unavailable for null array pointer."));
1942 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1943 return value_ind (arrVal);
1944 }
1945 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array (arr);
1947 else
1948 return arr;
1949 }
1950
1951 /* If TYPE represents a GNAT array type, return it translated to an
1952 ordinary GDB array type (possibly with BITSIZE fields indicating
1953 packing). For other types, is the identity. */
1954
1955 struct type *
1956 ada_coerce_to_simple_array_type (struct type *type)
1957 {
1958 if (ada_is_constrained_packed_array_type (type))
1959 return decode_constrained_packed_array_type (type);
1960
1961 if (ada_is_array_descriptor_type (type))
1962 return ada_check_typedef (desc_data_target_type (type));
1963
1964 return type;
1965 }
1966
1967 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1968
1969 static int
1970 ada_is_packed_array_type (struct type *type)
1971 {
1972 if (type == NULL)
1973 return 0;
1974 type = desc_base_type (type);
1975 type = ada_check_typedef (type);
1976 return
1977 ada_type_name (type) != NULL
1978 && strstr (ada_type_name (type), "___XP") != NULL;
1979 }
1980
1981 /* Non-zero iff TYPE represents a standard GNAT constrained
1982 packed-array type. */
1983
1984 int
1985 ada_is_constrained_packed_array_type (struct type *type)
1986 {
1987 return ada_is_packed_array_type (type)
1988 && !ada_is_array_descriptor_type (type);
1989 }
1990
1991 /* Non-zero iff TYPE represents an array descriptor for a
1992 unconstrained packed-array type. */
1993
1994 static int
1995 ada_is_unconstrained_packed_array_type (struct type *type)
1996 {
1997 return ada_is_packed_array_type (type)
1998 && ada_is_array_descriptor_type (type);
1999 }
2000
2001 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2002 return the size of its elements in bits. */
2003
2004 static long
2005 decode_packed_array_bitsize (struct type *type)
2006 {
2007 const char *raw_name;
2008 const char *tail;
2009 long bits;
2010
2011 /* Access to arrays implemented as fat pointers are encoded as a typedef
2012 of the fat pointer type. We need the name of the fat pointer type
2013 to do the decoding, so strip the typedef layer. */
2014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2015 type = ada_typedef_target_type (type);
2016
2017 raw_name = ada_type_name (ada_check_typedef (type));
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return 0;
2023
2024 tail = strstr (raw_name, "___XP");
2025 gdb_assert (tail != NULL);
2026
2027 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2028 {
2029 lim_warning
2030 (_("could not understand bit size information on packed array"));
2031 return 0;
2032 }
2033
2034 return bits;
2035 }
2036
2037 /* Given that TYPE is a standard GDB array type with all bounds filled
2038 in, and that the element size of its ultimate scalar constituents
2039 (that is, either its elements, or, if it is an array of arrays, its
2040 elements' elements, etc.) is *ELT_BITS, return an identical type,
2041 but with the bit sizes of its elements (and those of any
2042 constituent arrays) recorded in the BITSIZE components of its
2043 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2044 in bits. */
2045
2046 static struct type *
2047 constrained_packed_array_type (struct type *type, long *elt_bits)
2048 {
2049 struct type *new_elt_type;
2050 struct type *new_type;
2051 struct type *index_type_desc;
2052 struct type *index_type;
2053 LONGEST low_bound, high_bound;
2054
2055 type = ada_check_typedef (type);
2056 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2057 return type;
2058
2059 index_type_desc = ada_find_parallel_type (type, "___XA");
2060 if (index_type_desc)
2061 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2062 NULL);
2063 else
2064 index_type = TYPE_INDEX_TYPE (type);
2065
2066 new_type = alloc_type_copy (type);
2067 new_elt_type =
2068 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2069 elt_bits);
2070 create_array_type (new_type, new_elt_type, index_type);
2071 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2072 TYPE_NAME (new_type) = ada_type_name (type);
2073
2074 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2075 low_bound = high_bound = 0;
2076 if (high_bound < low_bound)
2077 *elt_bits = TYPE_LENGTH (new_type) = 0;
2078 else
2079 {
2080 *elt_bits *= (high_bound - low_bound + 1);
2081 TYPE_LENGTH (new_type) =
2082 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2083 }
2084
2085 TYPE_FIXED_INSTANCE (new_type) = 1;
2086 return new_type;
2087 }
2088
2089 /* The array type encoded by TYPE, where
2090 ada_is_constrained_packed_array_type (TYPE). */
2091
2092 static struct type *
2093 decode_constrained_packed_array_type (struct type *type)
2094 {
2095 const char *raw_name = ada_type_name (ada_check_typedef (type));
2096 char *name;
2097 const char *tail;
2098 struct type *shadow_type;
2099 long bits;
2100
2101 if (!raw_name)
2102 raw_name = ada_type_name (desc_base_type (type));
2103
2104 if (!raw_name)
2105 return NULL;
2106
2107 name = (char *) alloca (strlen (raw_name) + 1);
2108 tail = strstr (raw_name, "___XP");
2109 type = desc_base_type (type);
2110
2111 memcpy (name, raw_name, tail - raw_name);
2112 name[tail - raw_name] = '\000';
2113
2114 shadow_type = ada_find_parallel_type_with_name (type, name);
2115
2116 if (shadow_type == NULL)
2117 {
2118 lim_warning (_("could not find bounds information on packed array"));
2119 return NULL;
2120 }
2121 CHECK_TYPEDEF (shadow_type);
2122
2123 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2124 {
2125 lim_warning (_("could not understand bounds "
2126 "information on packed array"));
2127 return NULL;
2128 }
2129
2130 bits = decode_packed_array_bitsize (type);
2131 return constrained_packed_array_type (shadow_type, &bits);
2132 }
2133
2134 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2135 array, returns a simple array that denotes that array. Its type is a
2136 standard GDB array type except that the BITSIZEs of the array
2137 target types are set to the number of bits in each element, and the
2138 type length is set appropriately. */
2139
2140 static struct value *
2141 decode_constrained_packed_array (struct value *arr)
2142 {
2143 struct type *type;
2144
2145 arr = ada_coerce_ref (arr);
2146
2147 /* If our value is a pointer, then dererence it. Make sure that
2148 this operation does not cause the target type to be fixed, as
2149 this would indirectly cause this array to be decoded. The rest
2150 of the routine assumes that the array hasn't been decoded yet,
2151 so we use the basic "value_ind" routine to perform the dereferencing,
2152 as opposed to using "ada_value_ind". */
2153 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2154 arr = value_ind (arr);
2155
2156 type = decode_constrained_packed_array_type (value_type (arr));
2157 if (type == NULL)
2158 {
2159 error (_("can't unpack array"));
2160 return NULL;
2161 }
2162
2163 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2164 && ada_is_modular_type (value_type (arr)))
2165 {
2166 /* This is a (right-justified) modular type representing a packed
2167 array with no wrapper. In order to interpret the value through
2168 the (left-justified) packed array type we just built, we must
2169 first left-justify it. */
2170 int bit_size, bit_pos;
2171 ULONGEST mod;
2172
2173 mod = ada_modulus (value_type (arr)) - 1;
2174 bit_size = 0;
2175 while (mod > 0)
2176 {
2177 bit_size += 1;
2178 mod >>= 1;
2179 }
2180 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2181 arr = ada_value_primitive_packed_val (arr, NULL,
2182 bit_pos / HOST_CHAR_BIT,
2183 bit_pos % HOST_CHAR_BIT,
2184 bit_size,
2185 type);
2186 }
2187
2188 return coerce_unspec_val_to_type (arr, type);
2189 }
2190
2191
2192 /* The value of the element of packed array ARR at the ARITY indices
2193 given in IND. ARR must be a simple array. */
2194
2195 static struct value *
2196 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2197 {
2198 int i;
2199 int bits, elt_off, bit_off;
2200 long elt_total_bit_offset;
2201 struct type *elt_type;
2202 struct value *v;
2203
2204 bits = 0;
2205 elt_total_bit_offset = 0;
2206 elt_type = ada_check_typedef (value_type (arr));
2207 for (i = 0; i < arity; i += 1)
2208 {
2209 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2210 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2211 error
2212 (_("attempt to do packed indexing of "
2213 "something other than a packed array"));
2214 else
2215 {
2216 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2217 LONGEST lowerbound, upperbound;
2218 LONGEST idx;
2219
2220 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2221 {
2222 lim_warning (_("don't know bounds of array"));
2223 lowerbound = upperbound = 0;
2224 }
2225
2226 idx = pos_atr (ind[i]);
2227 if (idx < lowerbound || idx > upperbound)
2228 lim_warning (_("packed array index %ld out of bounds"),
2229 (long) idx);
2230 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2231 elt_total_bit_offset += (idx - lowerbound) * bits;
2232 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2233 }
2234 }
2235 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2236 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2237
2238 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2239 bits, elt_type);
2240 return v;
2241 }
2242
2243 /* Non-zero iff TYPE includes negative integer values. */
2244
2245 static int
2246 has_negatives (struct type *type)
2247 {
2248 switch (TYPE_CODE (type))
2249 {
2250 default:
2251 return 0;
2252 case TYPE_CODE_INT:
2253 return !TYPE_UNSIGNED (type);
2254 case TYPE_CODE_RANGE:
2255 return TYPE_LOW_BOUND (type) < 0;
2256 }
2257 }
2258
2259
2260 /* Create a new value of type TYPE from the contents of OBJ starting
2261 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2262 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2263 assigning through the result will set the field fetched from.
2264 VALADDR is ignored unless OBJ is NULL, in which case,
2265 VALADDR+OFFSET must address the start of storage containing the
2266 packed value. The value returned in this case is never an lval.
2267 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2268
2269 struct value *
2270 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2271 long offset, int bit_offset, int bit_size,
2272 struct type *type)
2273 {
2274 struct value *v;
2275 int src, /* Index into the source area */
2276 targ, /* Index into the target area */
2277 srcBitsLeft, /* Number of source bits left to move */
2278 nsrc, ntarg, /* Number of source and target bytes */
2279 unusedLS, /* Number of bits in next significant
2280 byte of source that are unused */
2281 accumSize; /* Number of meaningful bits in accum */
2282 unsigned char *bytes; /* First byte containing data to unpack */
2283 unsigned char *unpacked;
2284 unsigned long accum; /* Staging area for bits being transferred */
2285 unsigned char sign;
2286 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2287 /* Transmit bytes from least to most significant; delta is the direction
2288 the indices move. */
2289 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2290
2291 type = ada_check_typedef (type);
2292
2293 if (obj == NULL)
2294 {
2295 v = allocate_value (type);
2296 bytes = (unsigned char *) (valaddr + offset);
2297 }
2298 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2299 {
2300 v = value_at (type, value_address (obj));
2301 bytes = (unsigned char *) alloca (len);
2302 read_memory (value_address (v) + offset, bytes, len);
2303 }
2304 else
2305 {
2306 v = allocate_value (type);
2307 bytes = (unsigned char *) value_contents (obj) + offset;
2308 }
2309
2310 if (obj != NULL)
2311 {
2312 long new_offset = offset;
2313
2314 set_value_component_location (v, obj);
2315 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2316 set_value_bitsize (v, bit_size);
2317 if (value_bitpos (v) >= HOST_CHAR_BIT)
2318 {
2319 ++new_offset;
2320 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2321 }
2322 set_value_offset (v, new_offset);
2323
2324 /* Also set the parent value. This is needed when trying to
2325 assign a new value (in inferior memory). */
2326 set_value_parent (v, obj);
2327 value_incref (obj);
2328 }
2329 else
2330 set_value_bitsize (v, bit_size);
2331 unpacked = (unsigned char *) value_contents (v);
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2343 {
2344 src = len - 1;
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2347 sign = ~0;
2348
2349 unusedLS =
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
2352
2353 switch (TYPE_CODE (type))
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2364 ntarg = targ + 1;
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
2371 }
2372 else
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2381 sign = ~0;
2382 }
2383
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
2388 part of the value. */
2389 unsigned int unusedMSMask =
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
2393 unsigned int signMask = sign & ~unusedMSMask;
2394
2395 accum |=
2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2397 accumSize += HOST_CHAR_BIT - unusedLS;
2398 if (accumSize >= HOST_CHAR_BIT)
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422 }
2423
2424 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2426 not overlap. */
2427 static void
2428 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2429 int src_offset, int n, int bits_big_endian_p)
2430 {
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
2438 if (bits_big_endian_p)
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
2444 while (n > 0)
2445 {
2446 int unused_right;
2447
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
2471 while (n > 0)
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
2487 }
2488 }
2489
2490 /* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
2493 floating-point or non-scalar types. */
2494
2495 static struct value *
2496 ada_value_assign (struct value *toval, struct value *fromval)
2497 {
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
2500
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
2509 if (!deprecated_value_modifiable (toval))
2510 error (_("Left operand of assignment is not a modifiable lvalue."));
2511
2512 if (VALUE_LVAL (toval) == lval_memory
2513 && bits > 0
2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2516 {
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2519 int from_size;
2520 char *buffer = (char *) alloca (len);
2521 struct value *val;
2522 CORE_ADDR to_addr = value_address (toval);
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2525 fromval = value_cast (type, fromval);
2526
2527 read_memory (to_addr, buffer, len);
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), from_size - bits, bits, 1);
2534 else
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
2537 write_memory (to_addr, buffer, len);
2538 observer_notify_memory_changed (to_addr, len, buffer);
2539
2540 val = value_copy (toval);
2541 memcpy (value_contents_raw (val), value_contents (fromval),
2542 TYPE_LENGTH (type));
2543 deprecated_set_value_type (val, type);
2544
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549 }
2550
2551
2552 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557 static void
2558 value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560 {
2561 LONGEST offset_in_container =
2562 (LONGEST) (value_address (component) - value_address (container));
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2579 bits, 1);
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
2583 value_contents (val), 0, bits, 0);
2584 }
2585
2586 /* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
2588 thereto. */
2589
2590 struct value *
2591 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2592 {
2593 int k;
2594 struct value *elt;
2595 struct type *elt_type;
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
2599 elt_type = ada_check_typedef (value_type (elt));
2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2607 error (_("too many subscripts (%d expected)"), k);
2608 elt = value_subscript (elt, pos_atr (ind[k]));
2609 }
2610 return elt;
2611 }
2612
2613 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
2615 IND. Does not read the entire array into memory. */
2616
2617 static struct value *
2618 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2619 struct value **ind)
2620 {
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2628 error (_("too many subscripts (%d expected)"), k);
2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2630 value_copy (arr));
2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637 }
2638
2639 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
2642 per Ada rules. */
2643 static struct value *
2644 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
2646 {
2647 struct type *type0 = ada_check_typedef (type);
2648 CORE_ADDR base = value_as_address (array_ptr)
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2651 struct type *index_type =
2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2653 low, high);
2654 struct type *slice_type =
2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2656
2657 return value_at_lazy (slice_type, base);
2658 }
2659
2660
2661 static struct value *
2662 ada_value_slice (struct value *array, int low, int high)
2663 {
2664 struct type *type = ada_check_typedef (value_type (array));
2665 struct type *index_type =
2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2667 struct type *slice_type =
2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2669
2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2671 }
2672
2673 /* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
2676 type designation. Otherwise, returns 0. */
2677
2678 int
2679 ada_array_arity (struct type *type)
2680 {
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2690 return desc_arity (desc_bounds_type (type));
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2693 {
2694 arity += 1;
2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2696 }
2697
2698 return arity;
2699 }
2700
2701 /* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
2704 NINDICES is -1. Otherwise, returns NULL. */
2705
2706 struct type *
2707 ada_array_element_type (struct type *type, int nindices)
2708 {
2709 type = desc_base_type (type);
2710
2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2712 {
2713 int k;
2714 struct type *p_array_type;
2715
2716 p_array_type = desc_data_target_type (type);
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
2720 return NULL;
2721
2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2723 if (nindices >= 0 && k > nindices)
2724 k = nindices;
2725 while (k > 0 && p_array_type != NULL)
2726 {
2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2728 k -= 1;
2729 }
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
2739 return type;
2740 }
2741
2742 return NULL;
2743 }
2744
2745 /* The type of nth index in arrays of given type (n numbering from 1).
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
2750
2751 static struct type *
2752 ada_index_type (struct type *type, int n, const char *name)
2753 {
2754 struct type *result_type;
2755
2756 type = desc_base_type (type);
2757
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
2760
2761 if (ada_is_simple_array_type (type))
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
2766 type = TYPE_TARGET_TYPE (type);
2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2770 perhaps stabsread.c would make more sense. */
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
2773 }
2774 else
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
2782 }
2783
2784 /* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
2789
2790 static LONGEST
2791 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2792 {
2793 struct type *type, *elt_type, *index_type_desc, *index_type;
2794 int i;
2795
2796 gdb_assert (which == 0 || which == 1);
2797
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
2800
2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2802 return (LONGEST) - which;
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
2813 index_type_desc = ada_find_parallel_type (type, "___XA");
2814 ada_fixup_array_indexes_type (index_type_desc);
2815 if (index_type_desc != NULL)
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
2818 else
2819 index_type = TYPE_INDEX_TYPE (elt_type);
2820
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
2825 }
2826
2827 /* Given that arr is an array value, returns the lower bound of the
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
2830 supplied by run-time quantities other than discriminants. */
2831
2832 static LONGEST
2833 ada_array_bound (struct value *arr, int n, int which)
2834 {
2835 struct type *arr_type = value_type (arr);
2836
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2839 else if (ada_is_simple_array_type (arr_type))
2840 return ada_array_bound_from_type (arr_type, n, which);
2841 else
2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2843 }
2844
2845 /* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
2850
2851 static LONGEST
2852 ada_array_length (struct value *arr, int n)
2853 {
2854 struct type *arr_type = ada_check_typedef (value_type (arr));
2855
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
2858
2859 if (ada_is_simple_array_type (arr_type))
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2862 else
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2865 }
2866
2867 /* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870 static struct value *
2871 empty_array (struct type *arr_type, int low)
2872 {
2873 struct type *arr_type0 = ada_check_typedef (arr_type);
2874 struct type *index_type =
2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2876 low, low - 1);
2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2878
2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
2880 }
2881 \f
2882
2883 /* Name resolution */
2884
2885 /* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
2887
2888 static const char *
2889 ada_decoded_op_name (enum exp_opcode op)
2890 {
2891 int i;
2892
2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2894 {
2895 if (ada_opname_table[i].op == op)
2896 return ada_opname_table[i].decoded;
2897 }
2898 error (_("Could not find operator name for opcode"));
2899 }
2900
2901
2902 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2909 return type is preferred. May change (expand) *EXP. */
2910
2911 static void
2912 resolve (struct expression **expp, int void_context_p)
2913 {
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
2921 }
2922
2923 /* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
2931
2932 static struct value *
2933 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2934 struct type *context_type)
2935 {
2936 int pc = *pos;
2937 int i;
2938 struct expression *exp; /* Convenience: == *expp. */
2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
2942 int oplen;
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
2950 switch (op)
2951 {
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2962 break;
2963
2964 case UNOP_ADDR:
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
2969 case UNOP_QUAL:
2970 *pos += 3;
2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2972 break;
2973
2974 case OP_ATR_MODULUS:
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
3006 resolve_subexp (expp, pos, 1, value_type (arg1));
3007 break;
3008 }
3009
3010 case UNOP_CAST:
3011 *pos += 3;
3012 nargs = 1;
3013 break;
3014
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
3028
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
3035
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
3039 *pos += 1;
3040 nargs = 2;
3041 break;
3042
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
3051
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
3057
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
3064
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
3079 case TERNOP_SLICE:
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
3084 case OP_STRING:
3085 break;
3086
3087 default:
3088 error (_("Unexpected operator during name resolution"));
3089 }
3090
3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
3103 case OP_VAR_VALUE:
3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
3113 &candidates, 1);
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
3129 case LOC_COMPUTED:
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
3152 error (_("No definition found for %s"),
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
3163 if (i < 0)
3164 error (_("Could not find a match for %s"),
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
3169 printf_filtered (_("Multiple matches for %s\n"),
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
3205 &candidates, 1);
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
3215 if (i < 0)
3216 error (_("Could not find a match for %s"),
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
3224 innermost_block = candidates[i].block;
3225 }
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
3257 &candidates, 1);
3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3259 ada_decoded_op_name (op), NULL);
3260 if (i < 0)
3261 break;
3262
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
3265 exp = *expp;
3266 }
3267 break;
3268
3269 case OP_TYPE:
3270 case OP_REGISTER:
3271 return NULL;
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276 }
3277
3278 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3280 a non-pointer. */
3281 /* The term "match" here is rather loose. The match is heuristic and
3282 liberal. */
3283
3284 static int
3285 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3286 {
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
3295 switch (TYPE_CODE (ftype))
3296 {
3297 default:
3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
3303 else
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
3318
3319 case TYPE_CODE_ARRAY:
3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3321 || ada_is_array_descriptor_type (atype));
3322
3323 case TYPE_CODE_STRUCT:
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
3327 else
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335 }
3336
3337 /* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
3340 argument function. */
3341
3342 static int
3343 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3344 {
3345 int i;
3346 struct type *func_type = SYMBOL_TYPE (func);
3347
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
3359 if (actuals[i] == NULL)
3360 return 0;
3361 else
3362 {
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3366
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
3370 }
3371 return 1;
3372 }
3373
3374 /* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379 static int
3380 return_match (struct type *func_type, struct type *context_type)
3381 {
3382 struct type *return_type;
3383
3384 if (func_type == NULL)
3385 return 1;
3386
3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3389 else
3390 return_type = get_base_type (func_type);
3391 if (return_type == NULL)
3392 return 1;
3393
3394 context_type = get_base_type (context_type);
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402 }
3403
3404
3405 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3406 function (if any) that matches the types of the NARGS arguments in
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
3416
3417 static int
3418 ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
3421 {
3422 int fallback;
3423 int k;
3424 int m; /* Number of hits */
3425
3426 m = 0;
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3431 {
3432 for (k = 0; k < nsyms; k += 1)
3433 {
3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
3437 && (fallback || return_match (type, context_type)))
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
3449 printf_filtered (_("Multiple matches for %s\n"), name);
3450 user_select_syms (syms, m, 1);
3451 return 0;
3452 }
3453 return 0;
3454 }
3455
3456 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
3462 static int
3463 encoded_ordered_before (const char *N0, const char *N1)
3464 {
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
3472
3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3474 ;
3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3476 ;
3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
3481
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
3491 return (strcmp (N0, N1) < 0);
3492 }
3493 }
3494
3495 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
3498 static void
3499 sort_choices (struct ada_symbol_info syms[], int nsyms)
3500 {
3501 int i;
3502
3503 for (i = 1; i < nsyms; i += 1)
3504 {
3505 struct ada_symbol_info sym = syms[i];
3506 int j;
3507
3508 for (j = i - 1; j >= 0; j -= 1)
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
3515 syms[j + 1] = sym;
3516 }
3517 }
3518
3519 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
3523
3524 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3525 to be re-integrated one of these days. */
3526
3527 int
3528 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3529 {
3530 int i;
3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
3534 const char *select_mode = multiple_symbols_select_mode ();
3535
3536 if (max_results < 1)
3537 error (_("Request to select 0 symbols!"));
3538 if (nsyms <= 1)
3539 return nsyms;
3540
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543 canceled because the command is ambiguous\n\
3544 See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
3552 printf_unfiltered (_("[0] cancel\n"));
3553 if (max_results > 1)
3554 printf_unfiltered (_("[1] all\n"));
3555
3556 sort_choices (syms, nsyms);
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
3567
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 sal.symtab->filename, sal.line);
3577 continue;
3578 }
3579 else
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3585 struct symtab *symtab = syms[i].sym->symtab;
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
3591 symtab->filename, SYMBOL_LINE (syms[i].sym));
3592 else if (is_enumeral
3593 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3594 {
3595 printf_unfiltered (("[%d] "), i + first_choice);
3596 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3597 gdb_stdout, -1, 0);
3598 printf_unfiltered (_("'(%s) (enumeral)\n"),
3599 SYMBOL_PRINT_NAME (syms[i].sym));
3600 }
3601 else if (symtab != NULL)
3602 printf_unfiltered (is_enumeral
3603 ? _("[%d] %s in %s (enumeral)\n")
3604 : _("[%d] %s at %s:?\n"),
3605 i + first_choice,
3606 SYMBOL_PRINT_NAME (syms[i].sym),
3607 symtab->filename);
3608 else
3609 printf_unfiltered (is_enumeral
3610 ? _("[%d] %s (enumeral)\n")
3611 : _("[%d] %s at ?\n"),
3612 i + first_choice,
3613 SYMBOL_PRINT_NAME (syms[i].sym));
3614 }
3615 }
3616
3617 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3618 "overload-choice");
3619
3620 for (i = 0; i < n_chosen; i += 1)
3621 syms[i] = syms[chosen[i]];
3622
3623 return n_chosen;
3624 }
3625
3626 /* Read and validate a set of numeric choices from the user in the
3627 range 0 .. N_CHOICES-1. Place the results in increasing
3628 order in CHOICES[0 .. N-1], and return N.
3629
3630 The user types choices as a sequence of numbers on one line
3631 separated by blanks, encoding them as follows:
3632
3633 + A choice of 0 means to cancel the selection, throwing an error.
3634 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3635 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3636
3637 The user is not allowed to choose more than MAX_RESULTS values.
3638
3639 ANNOTATION_SUFFIX, if present, is used to annotate the input
3640 prompts (for use with the -f switch). */
3641
3642 int
3643 get_selections (int *choices, int n_choices, int max_results,
3644 int is_all_choice, char *annotation_suffix)
3645 {
3646 char *args;
3647 char *prompt;
3648 int n_chosen;
3649 int first_choice = is_all_choice ? 2 : 1;
3650
3651 prompt = getenv ("PS2");
3652 if (prompt == NULL)
3653 prompt = "> ";
3654
3655 args = command_line_input (prompt, 0, annotation_suffix);
3656
3657 if (args == NULL)
3658 error_no_arg (_("one or more choice numbers"));
3659
3660 n_chosen = 0;
3661
3662 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3663 order, as given in args. Choices are validated. */
3664 while (1)
3665 {
3666 char *args2;
3667 int choice, j;
3668
3669 args = skip_spaces (args);
3670 if (*args == '\0' && n_chosen == 0)
3671 error_no_arg (_("one or more choice numbers"));
3672 else if (*args == '\0')
3673 break;
3674
3675 choice = strtol (args, &args2, 10);
3676 if (args == args2 || choice < 0
3677 || choice > n_choices + first_choice - 1)
3678 error (_("Argument must be choice number"));
3679 args = args2;
3680
3681 if (choice == 0)
3682 error (_("cancelled"));
3683
3684 if (choice < first_choice)
3685 {
3686 n_chosen = n_choices;
3687 for (j = 0; j < n_choices; j += 1)
3688 choices[j] = j;
3689 break;
3690 }
3691 choice -= first_choice;
3692
3693 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3694 {
3695 }
3696
3697 if (j < 0 || choice != choices[j])
3698 {
3699 int k;
3700
3701 for (k = n_chosen - 1; k > j; k -= 1)
3702 choices[k + 1] = choices[k];
3703 choices[j + 1] = choice;
3704 n_chosen += 1;
3705 }
3706 }
3707
3708 if (n_chosen > max_results)
3709 error (_("Select no more than %d of the above"), max_results);
3710
3711 return n_chosen;
3712 }
3713
3714 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3715 on the function identified by SYM and BLOCK, and taking NARGS
3716 arguments. Update *EXPP as needed to hold more space. */
3717
3718 static void
3719 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3720 int oplen, struct symbol *sym,
3721 struct block *block)
3722 {
3723 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3724 symbol, -oplen for operator being replaced). */
3725 struct expression *newexp = (struct expression *)
3726 xzalloc (sizeof (struct expression)
3727 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3728 struct expression *exp = *expp;
3729
3730 newexp->nelts = exp->nelts + 7 - oplen;
3731 newexp->language_defn = exp->language_defn;
3732 newexp->gdbarch = exp->gdbarch;
3733 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3734 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3735 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3736
3737 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3738 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3739
3740 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3741 newexp->elts[pc + 4].block = block;
3742 newexp->elts[pc + 5].symbol = sym;
3743
3744 *expp = newexp;
3745 xfree (exp);
3746 }
3747
3748 /* Type-class predicates */
3749
3750 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3751 or FLOAT). */
3752
3753 static int
3754 numeric_type_p (struct type *type)
3755 {
3756 if (type == NULL)
3757 return 0;
3758 else
3759 {
3760 switch (TYPE_CODE (type))
3761 {
3762 case TYPE_CODE_INT:
3763 case TYPE_CODE_FLT:
3764 return 1;
3765 case TYPE_CODE_RANGE:
3766 return (type == TYPE_TARGET_TYPE (type)
3767 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3768 default:
3769 return 0;
3770 }
3771 }
3772 }
3773
3774 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3775
3776 static int
3777 integer_type_p (struct type *type)
3778 {
3779 if (type == NULL)
3780 return 0;
3781 else
3782 {
3783 switch (TYPE_CODE (type))
3784 {
3785 case TYPE_CODE_INT:
3786 return 1;
3787 case TYPE_CODE_RANGE:
3788 return (type == TYPE_TARGET_TYPE (type)
3789 || integer_type_p (TYPE_TARGET_TYPE (type)));
3790 default:
3791 return 0;
3792 }
3793 }
3794 }
3795
3796 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3797
3798 static int
3799 scalar_type_p (struct type *type)
3800 {
3801 if (type == NULL)
3802 return 0;
3803 else
3804 {
3805 switch (TYPE_CODE (type))
3806 {
3807 case TYPE_CODE_INT:
3808 case TYPE_CODE_RANGE:
3809 case TYPE_CODE_ENUM:
3810 case TYPE_CODE_FLT:
3811 return 1;
3812 default:
3813 return 0;
3814 }
3815 }
3816 }
3817
3818 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3819
3820 static int
3821 discrete_type_p (struct type *type)
3822 {
3823 if (type == NULL)
3824 return 0;
3825 else
3826 {
3827 switch (TYPE_CODE (type))
3828 {
3829 case TYPE_CODE_INT:
3830 case TYPE_CODE_RANGE:
3831 case TYPE_CODE_ENUM:
3832 case TYPE_CODE_BOOL:
3833 return 1;
3834 default:
3835 return 0;
3836 }
3837 }
3838 }
3839
3840 /* Returns non-zero if OP with operands in the vector ARGS could be
3841 a user-defined function. Errs on the side of pre-defined operators
3842 (i.e., result 0). */
3843
3844 static int
3845 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3846 {
3847 struct type *type0 =
3848 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3849 struct type *type1 =
3850 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3851
3852 if (type0 == NULL)
3853 return 0;
3854
3855 switch (op)
3856 {
3857 default:
3858 return 0;
3859
3860 case BINOP_ADD:
3861 case BINOP_SUB:
3862 case BINOP_MUL:
3863 case BINOP_DIV:
3864 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3865
3866 case BINOP_REM:
3867 case BINOP_MOD:
3868 case BINOP_BITWISE_AND:
3869 case BINOP_BITWISE_IOR:
3870 case BINOP_BITWISE_XOR:
3871 return (!(integer_type_p (type0) && integer_type_p (type1)));
3872
3873 case BINOP_EQUAL:
3874 case BINOP_NOTEQUAL:
3875 case BINOP_LESS:
3876 case BINOP_GTR:
3877 case BINOP_LEQ:
3878 case BINOP_GEQ:
3879 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3880
3881 case BINOP_CONCAT:
3882 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3883
3884 case BINOP_EXP:
3885 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3886
3887 case UNOP_NEG:
3888 case UNOP_PLUS:
3889 case UNOP_LOGICAL_NOT:
3890 case UNOP_ABS:
3891 return (!numeric_type_p (type0));
3892
3893 }
3894 }
3895 \f
3896 /* Renaming */
3897
3898 /* NOTES:
3899
3900 1. In the following, we assume that a renaming type's name may
3901 have an ___XD suffix. It would be nice if this went away at some
3902 point.
3903 2. We handle both the (old) purely type-based representation of
3904 renamings and the (new) variable-based encoding. At some point,
3905 it is devoutly to be hoped that the former goes away
3906 (FIXME: hilfinger-2007-07-09).
3907 3. Subprogram renamings are not implemented, although the XRS
3908 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3909
3910 /* If SYM encodes a renaming,
3911
3912 <renaming> renames <renamed entity>,
3913
3914 sets *LEN to the length of the renamed entity's name,
3915 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3916 the string describing the subcomponent selected from the renamed
3917 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3918 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3919 are undefined). Otherwise, returns a value indicating the category
3920 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3921 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3922 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3923 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3924 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3925 may be NULL, in which case they are not assigned.
3926
3927 [Currently, however, GCC does not generate subprogram renamings.] */
3928
3929 enum ada_renaming_category
3930 ada_parse_renaming (struct symbol *sym,
3931 const char **renamed_entity, int *len,
3932 const char **renaming_expr)
3933 {
3934 enum ada_renaming_category kind;
3935 const char *info;
3936 const char *suffix;
3937
3938 if (sym == NULL)
3939 return ADA_NOT_RENAMING;
3940 switch (SYMBOL_CLASS (sym))
3941 {
3942 default:
3943 return ADA_NOT_RENAMING;
3944 case LOC_TYPEDEF:
3945 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3946 renamed_entity, len, renaming_expr);
3947 case LOC_LOCAL:
3948 case LOC_STATIC:
3949 case LOC_COMPUTED:
3950 case LOC_OPTIMIZED_OUT:
3951 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3952 if (info == NULL)
3953 return ADA_NOT_RENAMING;
3954 switch (info[5])
3955 {
3956 case '_':
3957 kind = ADA_OBJECT_RENAMING;
3958 info += 6;
3959 break;
3960 case 'E':
3961 kind = ADA_EXCEPTION_RENAMING;
3962 info += 7;
3963 break;
3964 case 'P':
3965 kind = ADA_PACKAGE_RENAMING;
3966 info += 7;
3967 break;
3968 case 'S':
3969 kind = ADA_SUBPROGRAM_RENAMING;
3970 info += 7;
3971 break;
3972 default:
3973 return ADA_NOT_RENAMING;
3974 }
3975 }
3976
3977 if (renamed_entity != NULL)
3978 *renamed_entity = info;
3979 suffix = strstr (info, "___XE");
3980 if (suffix == NULL || suffix == info)
3981 return ADA_NOT_RENAMING;
3982 if (len != NULL)
3983 *len = strlen (info) - strlen (suffix);
3984 suffix += 5;
3985 if (renaming_expr != NULL)
3986 *renaming_expr = suffix;
3987 return kind;
3988 }
3989
3990 /* Assuming TYPE encodes a renaming according to the old encoding in
3991 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3992 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3993 ADA_NOT_RENAMING otherwise. */
3994 static enum ada_renaming_category
3995 parse_old_style_renaming (struct type *type,
3996 const char **renamed_entity, int *len,
3997 const char **renaming_expr)
3998 {
3999 enum ada_renaming_category kind;
4000 const char *name;
4001 const char *info;
4002 const char *suffix;
4003
4004 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4005 || TYPE_NFIELDS (type) != 1)
4006 return ADA_NOT_RENAMING;
4007
4008 name = type_name_no_tag (type);
4009 if (name == NULL)
4010 return ADA_NOT_RENAMING;
4011
4012 name = strstr (name, "___XR");
4013 if (name == NULL)
4014 return ADA_NOT_RENAMING;
4015 switch (name[5])
4016 {
4017 case '\0':
4018 case '_':
4019 kind = ADA_OBJECT_RENAMING;
4020 break;
4021 case 'E':
4022 kind = ADA_EXCEPTION_RENAMING;
4023 break;
4024 case 'P':
4025 kind = ADA_PACKAGE_RENAMING;
4026 break;
4027 case 'S':
4028 kind = ADA_SUBPROGRAM_RENAMING;
4029 break;
4030 default:
4031 return ADA_NOT_RENAMING;
4032 }
4033
4034 info = TYPE_FIELD_NAME (type, 0);
4035 if (info == NULL)
4036 return ADA_NOT_RENAMING;
4037 if (renamed_entity != NULL)
4038 *renamed_entity = info;
4039 suffix = strstr (info, "___XE");
4040 if (renaming_expr != NULL)
4041 *renaming_expr = suffix + 5;
4042 if (suffix == NULL || suffix == info)
4043 return ADA_NOT_RENAMING;
4044 if (len != NULL)
4045 *len = suffix - info;
4046 return kind;
4047 }
4048
4049 /* Compute the value of the given RENAMING_SYM, which is expected to
4050 be a symbol encoding a renaming expression. BLOCK is the block
4051 used to evaluate the renaming. */
4052
4053 static struct value *
4054 ada_read_renaming_var_value (struct symbol *renaming_sym,
4055 struct block *block)
4056 {
4057 char *sym_name;
4058 struct expression *expr;
4059 struct value *value;
4060 struct cleanup *old_chain = NULL;
4061
4062 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4063 old_chain = make_cleanup (xfree, sym_name);
4064 expr = parse_exp_1 (&sym_name, block, 0);
4065 make_cleanup (free_current_contents, &expr);
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070 }
4071 \f
4072
4073 /* Evaluation: Function Calls */
4074
4075 /* Return an lvalue containing the value VAL. This is the identity on
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
4078
4079 static struct value *
4080 ensure_lval (struct value *val)
4081 {
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
4084 {
4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
4088
4089 set_value_address (val, addr);
4090 VALUE_LVAL (val) = lval_memory;
4091 write_memory (addr, value_contents (val), len);
4092 }
4093
4094 return val;
4095 }
4096
4097 /* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4100 values not residing in memory, updating it as needed. */
4101
4102 struct value *
4103 ada_convert_actual (struct value *actual, struct type *formal_type0)
4104 {
4105 struct type *actual_type = ada_check_typedef (value_type (actual));
4106 struct type *formal_type = ada_check_typedef (formal_type0);
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4113
4114 if (ada_is_array_descriptor_type (formal_target)
4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4116 return make_array_descriptor (formal_type, actual);
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4119 {
4120 struct value *result;
4121
4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4123 && ada_is_array_descriptor_type (actual_target))
4124 result = desc_data (actual);
4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
4130
4131 actual_type = ada_check_typedef (value_type (actual));
4132 val = allocate_value (actual_type);
4133 memcpy ((char *) value_contents_raw (val),
4134 (char *) value_contents (actual),
4135 TYPE_LENGTH (actual_type));
4136 actual = ensure_lval (val);
4137 }
4138 result = value_addr (actual);
4139 }
4140 else
4141 return actual;
4142 return value_cast_pointers (formal_type, result);
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148 }
4149
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155 static CORE_ADDR
4156 value_pointer (struct value *value, struct type *type)
4157 {
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167 }
4168
4169
4170 /* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
4175
4176 static struct value *
4177 make_array_descriptor (struct type *type, struct value *arr)
4178 {
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
4183 int i;
4184
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
4187 {
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
4196 }
4197
4198 bounds = ensure_lval (bounds);
4199
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
4213
4214 descriptor = ensure_lval (descriptor);
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220 }
4221 \f
4222 /* Dummy definitions for an experimental caching module that is not
4223 * used in the public sources. */
4224
4225 static int
4226 lookup_cached_symbol (const char *name, domain_enum namespace,
4227 struct symbol **sym, struct block **block)
4228 {
4229 return 0;
4230 }
4231
4232 static void
4233 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4234 struct block *block)
4235 {
4236 }
4237 \f
4238 /* Symbol Lookup */
4239
4240 /* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246 static int
4247 should_use_wild_match (const char *lookup_name)
4248 {
4249 return (strstr (lookup_name, "__") == NULL);
4250 }
4251
4252 /* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255 static struct symbol *
4256 standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258 {
4259 struct symbol *sym;
4260
4261 if (lookup_cached_symbol (name, domain, &sym, NULL))
4262 return sym;
4263 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4264 cache_symbol (name, domain, sym, block_found);
4265 return sym;
4266 }
4267
4268
4269 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4270 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4271 since they contend in overloading in the same way. */
4272 static int
4273 is_nonfunction (struct ada_symbol_info syms[], int n)
4274 {
4275 int i;
4276
4277 for (i = 0; i < n; i += 1)
4278 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4279 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4280 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4281 return 1;
4282
4283 return 0;
4284 }
4285
4286 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4287 struct types. Otherwise, they may not. */
4288
4289 static int
4290 equiv_types (struct type *type0, struct type *type1)
4291 {
4292 if (type0 == type1)
4293 return 1;
4294 if (type0 == NULL || type1 == NULL
4295 || TYPE_CODE (type0) != TYPE_CODE (type1))
4296 return 0;
4297 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4298 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4299 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4300 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4301 return 1;
4302
4303 return 0;
4304 }
4305
4306 /* True iff SYM0 represents the same entity as SYM1, or one that is
4307 no more defined than that of SYM1. */
4308
4309 static int
4310 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4311 {
4312 if (sym0 == sym1)
4313 return 1;
4314 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4315 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4316 return 0;
4317
4318 switch (SYMBOL_CLASS (sym0))
4319 {
4320 case LOC_UNDEF:
4321 return 1;
4322 case LOC_TYPEDEF:
4323 {
4324 struct type *type0 = SYMBOL_TYPE (sym0);
4325 struct type *type1 = SYMBOL_TYPE (sym1);
4326 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4327 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4328 int len0 = strlen (name0);
4329
4330 return
4331 TYPE_CODE (type0) == TYPE_CODE (type1)
4332 && (equiv_types (type0, type1)
4333 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4334 && strncmp (name1 + len0, "___XV", 5) == 0));
4335 }
4336 case LOC_CONST:
4337 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4338 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4339 default:
4340 return 0;
4341 }
4342 }
4343
4344 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4345 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4346
4347 static void
4348 add_defn_to_vec (struct obstack *obstackp,
4349 struct symbol *sym,
4350 struct block *block)
4351 {
4352 int i;
4353 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4354
4355 /* Do not try to complete stub types, as the debugger is probably
4356 already scanning all symbols matching a certain name at the
4357 time when this function is called. Trying to replace the stub
4358 type by its associated full type will cause us to restart a scan
4359 which may lead to an infinite recursion. Instead, the client
4360 collecting the matching symbols will end up collecting several
4361 matches, with at least one of them complete. It can then filter
4362 out the stub ones if needed. */
4363
4364 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4365 {
4366 if (lesseq_defined_than (sym, prevDefns[i].sym))
4367 return;
4368 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4369 {
4370 prevDefns[i].sym = sym;
4371 prevDefns[i].block = block;
4372 return;
4373 }
4374 }
4375
4376 {
4377 struct ada_symbol_info info;
4378
4379 info.sym = sym;
4380 info.block = block;
4381 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4382 }
4383 }
4384
4385 /* Number of ada_symbol_info structures currently collected in
4386 current vector in *OBSTACKP. */
4387
4388 static int
4389 num_defns_collected (struct obstack *obstackp)
4390 {
4391 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4392 }
4393
4394 /* Vector of ada_symbol_info structures currently collected in current
4395 vector in *OBSTACKP. If FINISH, close off the vector and return
4396 its final address. */
4397
4398 static struct ada_symbol_info *
4399 defns_collected (struct obstack *obstackp, int finish)
4400 {
4401 if (finish)
4402 return obstack_finish (obstackp);
4403 else
4404 return (struct ada_symbol_info *) obstack_base (obstackp);
4405 }
4406
4407 /* Return a minimal symbol matching NAME according to Ada decoding
4408 rules. Returns NULL if there is no such minimal symbol. Names
4409 prefixed with "standard__" are handled specially: "standard__" is
4410 first stripped off, and only static and global symbols are searched. */
4411
4412 struct minimal_symbol *
4413 ada_lookup_simple_minsym (const char *name)
4414 {
4415 struct objfile *objfile;
4416 struct minimal_symbol *msymbol;
4417 const int wild_match = should_use_wild_match (name);
4418
4419 /* Special case: If the user specifies a symbol name inside package
4420 Standard, do a non-wild matching of the symbol name without
4421 the "standard__" prefix. This was primarily introduced in order
4422 to allow the user to specifically access the standard exceptions
4423 using, for instance, Standard.Constraint_Error when Constraint_Error
4424 is ambiguous (due to the user defining its own Constraint_Error
4425 entity inside its program). */
4426 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4427 name += sizeof ("standard__") - 1;
4428
4429 ALL_MSYMBOLS (objfile, msymbol)
4430 {
4431 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4432 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4433 return msymbol;
4434 }
4435
4436 return NULL;
4437 }
4438
4439 /* For all subprograms that statically enclose the subprogram of the
4440 selected frame, add symbols matching identifier NAME in DOMAIN
4441 and their blocks to the list of data in OBSTACKP, as for
4442 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4443 wildcard prefix. */
4444
4445 static void
4446 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4447 const char *name, domain_enum namespace,
4448 int wild_match)
4449 {
4450 }
4451
4452 /* True if TYPE is definitely an artificial type supplied to a symbol
4453 for which no debugging information was given in the symbol file. */
4454
4455 static int
4456 is_nondebugging_type (struct type *type)
4457 {
4458 const char *name = ada_type_name (type);
4459
4460 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4461 }
4462
4463 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4464 that are deemed "identical" for practical purposes.
4465
4466 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4467 types and that their number of enumerals is identical (in other
4468 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4469
4470 static int
4471 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4472 {
4473 int i;
4474
4475 /* The heuristic we use here is fairly conservative. We consider
4476 that 2 enumerate types are identical if they have the same
4477 number of enumerals and that all enumerals have the same
4478 underlying value and name. */
4479
4480 /* All enums in the type should have an identical underlying value. */
4481 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4482 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4483 return 0;
4484
4485 /* All enumerals should also have the same name (modulo any numerical
4486 suffix). */
4487 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4488 {
4489 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4490 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4491 int len_1 = strlen (name_1);
4492 int len_2 = strlen (name_2);
4493
4494 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4496 if (len_1 != len_2
4497 || strncmp (TYPE_FIELD_NAME (type1, i),
4498 TYPE_FIELD_NAME (type2, i),
4499 len_1) != 0)
4500 return 0;
4501 }
4502
4503 return 1;
4504 }
4505
4506 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4507 that are deemed "identical" for practical purposes. Sometimes,
4508 enumerals are not strictly identical, but their types are so similar
4509 that they can be considered identical.
4510
4511 For instance, consider the following code:
4512
4513 type Color is (Black, Red, Green, Blue, White);
4514 type RGB_Color is new Color range Red .. Blue;
4515
4516 Type RGB_Color is a subrange of an implicit type which is a copy
4517 of type Color. If we call that implicit type RGB_ColorB ("B" is
4518 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4519 As a result, when an expression references any of the enumeral
4520 by name (Eg. "print green"), the expression is technically
4521 ambiguous and the user should be asked to disambiguate. But
4522 doing so would only hinder the user, since it wouldn't matter
4523 what choice he makes, the outcome would always be the same.
4524 So, for practical purposes, we consider them as the same. */
4525
4526 static int
4527 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4528 {
4529 int i;
4530
4531 /* Before performing a thorough comparison check of each type,
4532 we perform a series of inexpensive checks. We expect that these
4533 checks will quickly fail in the vast majority of cases, and thus
4534 help prevent the unnecessary use of a more expensive comparison.
4535 Said comparison also expects us to make some of these checks
4536 (see ada_identical_enum_types_p). */
4537
4538 /* Quick check: All symbols should have an enum type. */
4539 for (i = 0; i < nsyms; i++)
4540 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4541 return 0;
4542
4543 /* Quick check: They should all have the same value. */
4544 for (i = 1; i < nsyms; i++)
4545 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4546 return 0;
4547
4548 /* Quick check: They should all have the same number of enumerals. */
4549 for (i = 1; i < nsyms; i++)
4550 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4551 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4552 return 0;
4553
4554 /* All the sanity checks passed, so we might have a set of
4555 identical enumeration types. Perform a more complete
4556 comparison of the type of each symbol. */
4557 for (i = 1; i < nsyms; i++)
4558 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4559 SYMBOL_TYPE (syms[0].sym)))
4560 return 0;
4561
4562 return 1;
4563 }
4564
4565 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4566 duplicate other symbols in the list (The only case I know of where
4567 this happens is when object files containing stabs-in-ecoff are
4568 linked with files containing ordinary ecoff debugging symbols (or no
4569 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4570 Returns the number of items in the modified list. */
4571
4572 static int
4573 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4574 {
4575 int i, j;
4576
4577 /* We should never be called with less than 2 symbols, as there
4578 cannot be any extra symbol in that case. But it's easy to
4579 handle, since we have nothing to do in that case. */
4580 if (nsyms < 2)
4581 return nsyms;
4582
4583 i = 0;
4584 while (i < nsyms)
4585 {
4586 int remove_p = 0;
4587
4588 /* If two symbols have the same name and one of them is a stub type,
4589 the get rid of the stub. */
4590
4591 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4592 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4593 {
4594 for (j = 0; j < nsyms; j++)
4595 {
4596 if (j != i
4597 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4598 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4599 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4600 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4601 remove_p = 1;
4602 }
4603 }
4604
4605 /* Two symbols with the same name, same class and same address
4606 should be identical. */
4607
4608 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4609 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4610 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4611 {
4612 for (j = 0; j < nsyms; j += 1)
4613 {
4614 if (i != j
4615 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4616 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4617 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4618 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4619 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4620 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4621 remove_p = 1;
4622 }
4623 }
4624
4625 if (remove_p)
4626 {
4627 for (j = i + 1; j < nsyms; j += 1)
4628 syms[j - 1] = syms[j];
4629 nsyms -= 1;
4630 }
4631
4632 i += 1;
4633 }
4634
4635 /* If all the remaining symbols are identical enumerals, then
4636 just keep the first one and discard the rest.
4637
4638 Unlike what we did previously, we do not discard any entry
4639 unless they are ALL identical. This is because the symbol
4640 comparison is not a strict comparison, but rather a practical
4641 comparison. If all symbols are considered identical, then
4642 we can just go ahead and use the first one and discard the rest.
4643 But if we cannot reduce the list to a single element, we have
4644 to ask the user to disambiguate anyways. And if we have to
4645 present a multiple-choice menu, it's less confusing if the list
4646 isn't missing some choices that were identical and yet distinct. */
4647 if (symbols_are_identical_enums (syms, nsyms))
4648 nsyms = 1;
4649
4650 return nsyms;
4651 }
4652
4653 /* Given a type that corresponds to a renaming entity, use the type name
4654 to extract the scope (package name or function name, fully qualified,
4655 and following the GNAT encoding convention) where this renaming has been
4656 defined. The string returned needs to be deallocated after use. */
4657
4658 static char *
4659 xget_renaming_scope (struct type *renaming_type)
4660 {
4661 /* The renaming types adhere to the following convention:
4662 <scope>__<rename>___<XR extension>.
4663 So, to extract the scope, we search for the "___XR" extension,
4664 and then backtrack until we find the first "__". */
4665
4666 const char *name = type_name_no_tag (renaming_type);
4667 char *suffix = strstr (name, "___XR");
4668 char *last;
4669 int scope_len;
4670 char *scope;
4671
4672 /* Now, backtrack a bit until we find the first "__". Start looking
4673 at suffix - 3, as the <rename> part is at least one character long. */
4674
4675 for (last = suffix - 3; last > name; last--)
4676 if (last[0] == '_' && last[1] == '_')
4677 break;
4678
4679 /* Make a copy of scope and return it. */
4680
4681 scope_len = last - name;
4682 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4683
4684 strncpy (scope, name, scope_len);
4685 scope[scope_len] = '\0';
4686
4687 return scope;
4688 }
4689
4690 /* Return nonzero if NAME corresponds to a package name. */
4691
4692 static int
4693 is_package_name (const char *name)
4694 {
4695 /* Here, We take advantage of the fact that no symbols are generated
4696 for packages, while symbols are generated for each function.
4697 So the condition for NAME represent a package becomes equivalent
4698 to NAME not existing in our list of symbols. There is only one
4699 small complication with library-level functions (see below). */
4700
4701 char *fun_name;
4702
4703 /* If it is a function that has not been defined at library level,
4704 then we should be able to look it up in the symbols. */
4705 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4706 return 0;
4707
4708 /* Library-level function names start with "_ada_". See if function
4709 "_ada_" followed by NAME can be found. */
4710
4711 /* Do a quick check that NAME does not contain "__", since library-level
4712 functions names cannot contain "__" in them. */
4713 if (strstr (name, "__") != NULL)
4714 return 0;
4715
4716 fun_name = xstrprintf ("_ada_%s", name);
4717
4718 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4719 }
4720
4721 /* Return nonzero if SYM corresponds to a renaming entity that is
4722 not visible from FUNCTION_NAME. */
4723
4724 static int
4725 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4726 {
4727 char *scope;
4728
4729 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4730 return 0;
4731
4732 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4733
4734 make_cleanup (xfree, scope);
4735
4736 /* If the rename has been defined in a package, then it is visible. */
4737 if (is_package_name (scope))
4738 return 0;
4739
4740 /* Check that the rename is in the current function scope by checking
4741 that its name starts with SCOPE. */
4742
4743 /* If the function name starts with "_ada_", it means that it is
4744 a library-level function. Strip this prefix before doing the
4745 comparison, as the encoding for the renaming does not contain
4746 this prefix. */
4747 if (strncmp (function_name, "_ada_", 5) == 0)
4748 function_name += 5;
4749
4750 return (strncmp (function_name, scope, strlen (scope)) != 0);
4751 }
4752
4753 /* Remove entries from SYMS that corresponds to a renaming entity that
4754 is not visible from the function associated with CURRENT_BLOCK or
4755 that is superfluous due to the presence of more specific renaming
4756 information. Places surviving symbols in the initial entries of
4757 SYMS and returns the number of surviving symbols.
4758
4759 Rationale:
4760 First, in cases where an object renaming is implemented as a
4761 reference variable, GNAT may produce both the actual reference
4762 variable and the renaming encoding. In this case, we discard the
4763 latter.
4764
4765 Second, GNAT emits a type following a specified encoding for each renaming
4766 entity. Unfortunately, STABS currently does not support the definition
4767 of types that are local to a given lexical block, so all renamings types
4768 are emitted at library level. As a consequence, if an application
4769 contains two renaming entities using the same name, and a user tries to
4770 print the value of one of these entities, the result of the ada symbol
4771 lookup will also contain the wrong renaming type.
4772
4773 This function partially covers for this limitation by attempting to
4774 remove from the SYMS list renaming symbols that should be visible
4775 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4776 method with the current information available. The implementation
4777 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4778
4779 - When the user tries to print a rename in a function while there
4780 is another rename entity defined in a package: Normally, the
4781 rename in the function has precedence over the rename in the
4782 package, so the latter should be removed from the list. This is
4783 currently not the case.
4784
4785 - This function will incorrectly remove valid renames if
4786 the CURRENT_BLOCK corresponds to a function which symbol name
4787 has been changed by an "Export" pragma. As a consequence,
4788 the user will be unable to print such rename entities. */
4789
4790 static int
4791 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4792 int nsyms, const struct block *current_block)
4793 {
4794 struct symbol *current_function;
4795 const char *current_function_name;
4796 int i;
4797 int is_new_style_renaming;
4798
4799 /* If there is both a renaming foo___XR... encoded as a variable and
4800 a simple variable foo in the same block, discard the latter.
4801 First, zero out such symbols, then compress. */
4802 is_new_style_renaming = 0;
4803 for (i = 0; i < nsyms; i += 1)
4804 {
4805 struct symbol *sym = syms[i].sym;
4806 struct block *block = syms[i].block;
4807 const char *name;
4808 const char *suffix;
4809
4810 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4811 continue;
4812 name = SYMBOL_LINKAGE_NAME (sym);
4813 suffix = strstr (name, "___XR");
4814
4815 if (suffix != NULL)
4816 {
4817 int name_len = suffix - name;
4818 int j;
4819
4820 is_new_style_renaming = 1;
4821 for (j = 0; j < nsyms; j += 1)
4822 if (i != j && syms[j].sym != NULL
4823 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4824 name_len) == 0
4825 && block == syms[j].block)
4826 syms[j].sym = NULL;
4827 }
4828 }
4829 if (is_new_style_renaming)
4830 {
4831 int j, k;
4832
4833 for (j = k = 0; j < nsyms; j += 1)
4834 if (syms[j].sym != NULL)
4835 {
4836 syms[k] = syms[j];
4837 k += 1;
4838 }
4839 return k;
4840 }
4841
4842 /* Extract the function name associated to CURRENT_BLOCK.
4843 Abort if unable to do so. */
4844
4845 if (current_block == NULL)
4846 return nsyms;
4847
4848 current_function = block_linkage_function (current_block);
4849 if (current_function == NULL)
4850 return nsyms;
4851
4852 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4853 if (current_function_name == NULL)
4854 return nsyms;
4855
4856 /* Check each of the symbols, and remove it from the list if it is
4857 a type corresponding to a renaming that is out of the scope of
4858 the current block. */
4859
4860 i = 0;
4861 while (i < nsyms)
4862 {
4863 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4864 == ADA_OBJECT_RENAMING
4865 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4866 {
4867 int j;
4868
4869 for (j = i + 1; j < nsyms; j += 1)
4870 syms[j - 1] = syms[j];
4871 nsyms -= 1;
4872 }
4873 else
4874 i += 1;
4875 }
4876
4877 return nsyms;
4878 }
4879
4880 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4881 whose name and domain match NAME and DOMAIN respectively.
4882 If no match was found, then extend the search to "enclosing"
4883 routines (in other words, if we're inside a nested function,
4884 search the symbols defined inside the enclosing functions).
4885
4886 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4887
4888 static void
4889 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4890 struct block *block, domain_enum domain,
4891 int wild_match)
4892 {
4893 int block_depth = 0;
4894
4895 while (block != NULL)
4896 {
4897 block_depth += 1;
4898 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4899
4900 /* If we found a non-function match, assume that's the one. */
4901 if (is_nonfunction (defns_collected (obstackp, 0),
4902 num_defns_collected (obstackp)))
4903 return;
4904
4905 block = BLOCK_SUPERBLOCK (block);
4906 }
4907
4908 /* If no luck so far, try to find NAME as a local symbol in some lexically
4909 enclosing subprogram. */
4910 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4911 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4912 }
4913
4914 /* An object of this type is used as the user_data argument when
4915 calling the map_matching_symbols method. */
4916
4917 struct match_data
4918 {
4919 struct objfile *objfile;
4920 struct obstack *obstackp;
4921 struct symbol *arg_sym;
4922 int found_sym;
4923 };
4924
4925 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4926 to a list of symbols. DATA0 is a pointer to a struct match_data *
4927 containing the obstack that collects the symbol list, the file that SYM
4928 must come from, a flag indicating whether a non-argument symbol has
4929 been found in the current block, and the last argument symbol
4930 passed in SYM within the current block (if any). When SYM is null,
4931 marking the end of a block, the argument symbol is added if no
4932 other has been found. */
4933
4934 static int
4935 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4936 {
4937 struct match_data *data = (struct match_data *) data0;
4938
4939 if (sym == NULL)
4940 {
4941 if (!data->found_sym && data->arg_sym != NULL)
4942 add_defn_to_vec (data->obstackp,
4943 fixup_symbol_section (data->arg_sym, data->objfile),
4944 block);
4945 data->found_sym = 0;
4946 data->arg_sym = NULL;
4947 }
4948 else
4949 {
4950 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4951 return 0;
4952 else if (SYMBOL_IS_ARGUMENT (sym))
4953 data->arg_sym = sym;
4954 else
4955 {
4956 data->found_sym = 1;
4957 add_defn_to_vec (data->obstackp,
4958 fixup_symbol_section (sym, data->objfile),
4959 block);
4960 }
4961 }
4962 return 0;
4963 }
4964
4965 /* Compare STRING1 to STRING2, with results as for strcmp.
4966 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4967 implies compare_names (STRING1, STRING2) (they may differ as to
4968 what symbols compare equal). */
4969
4970 static int
4971 compare_names (const char *string1, const char *string2)
4972 {
4973 while (*string1 != '\0' && *string2 != '\0')
4974 {
4975 if (isspace (*string1) || isspace (*string2))
4976 return strcmp_iw_ordered (string1, string2);
4977 if (*string1 != *string2)
4978 break;
4979 string1 += 1;
4980 string2 += 1;
4981 }
4982 switch (*string1)
4983 {
4984 case '(':
4985 return strcmp_iw_ordered (string1, string2);
4986 case '_':
4987 if (*string2 == '\0')
4988 {
4989 if (is_name_suffix (string1))
4990 return 0;
4991 else
4992 return 1;
4993 }
4994 /* FALLTHROUGH */
4995 default:
4996 if (*string2 == '(')
4997 return strcmp_iw_ordered (string1, string2);
4998 else
4999 return *string1 - *string2;
5000 }
5001 }
5002
5003 /* Add to OBSTACKP all non-local symbols whose name and domain match
5004 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5005 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5006
5007 static void
5008 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5009 domain_enum domain, int global,
5010 int is_wild_match)
5011 {
5012 struct objfile *objfile;
5013 struct match_data data;
5014
5015 memset (&data, 0, sizeof data);
5016 data.obstackp = obstackp;
5017
5018 ALL_OBJFILES (objfile)
5019 {
5020 data.objfile = objfile;
5021
5022 if (is_wild_match)
5023 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5024 aux_add_nonlocal_symbols, &data,
5025 wild_match, NULL);
5026 else
5027 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5028 aux_add_nonlocal_symbols, &data,
5029 full_match, compare_names);
5030 }
5031
5032 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5033 {
5034 ALL_OBJFILES (objfile)
5035 {
5036 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5037 strcpy (name1, "_ada_");
5038 strcpy (name1 + sizeof ("_ada_") - 1, name);
5039 data.objfile = objfile;
5040 objfile->sf->qf->map_matching_symbols (name1, domain,
5041 objfile, global,
5042 aux_add_nonlocal_symbols,
5043 &data,
5044 full_match, compare_names);
5045 }
5046 }
5047 }
5048
5049 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5050 scope and in global scopes, returning the number of matches. Sets
5051 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5052 indicating the symbols found and the blocks and symbol tables (if
5053 any) in which they were found. This vector are transient---good only to
5054 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5055 symbol match within the nest of blocks whose innermost member is BLOCK0,
5056 is the one match returned (no other matches in that or
5057 enclosing blocks is returned). If there are any matches in or
5058 surrounding BLOCK0, then these alone are returned. Otherwise, if
5059 FULL_SEARCH is non-zero, then the search extends to global and
5060 file-scope (static) symbol tables.
5061 Names prefixed with "standard__" are handled specially: "standard__"
5062 is first stripped off, and only static and global symbols are searched. */
5063
5064 int
5065 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5066 domain_enum namespace,
5067 struct ada_symbol_info **results,
5068 int full_search)
5069 {
5070 struct symbol *sym;
5071 struct block *block;
5072 const char *name;
5073 const int wild_match = should_use_wild_match (name0);
5074 int cacheIfUnique;
5075 int ndefns;
5076
5077 obstack_free (&symbol_list_obstack, NULL);
5078 obstack_init (&symbol_list_obstack);
5079
5080 cacheIfUnique = 0;
5081
5082 /* Search specified block and its superiors. */
5083
5084 name = name0;
5085 block = (struct block *) block0; /* FIXME: No cast ought to be
5086 needed, but adding const will
5087 have a cascade effect. */
5088
5089 /* Special case: If the user specifies a symbol name inside package
5090 Standard, do a non-wild matching of the symbol name without
5091 the "standard__" prefix. This was primarily introduced in order
5092 to allow the user to specifically access the standard exceptions
5093 using, for instance, Standard.Constraint_Error when Constraint_Error
5094 is ambiguous (due to the user defining its own Constraint_Error
5095 entity inside its program). */
5096 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5097 {
5098 block = NULL;
5099 name = name0 + sizeof ("standard__") - 1;
5100 }
5101
5102 /* Check the non-global symbols. If we have ANY match, then we're done. */
5103
5104 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5105 wild_match);
5106 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5107 goto done;
5108
5109 /* No non-global symbols found. Check our cache to see if we have
5110 already performed this search before. If we have, then return
5111 the same result. */
5112
5113 cacheIfUnique = 1;
5114 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5115 {
5116 if (sym != NULL)
5117 add_defn_to_vec (&symbol_list_obstack, sym, block);
5118 goto done;
5119 }
5120
5121 /* Search symbols from all global blocks. */
5122
5123 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5124 wild_match);
5125
5126 /* Now add symbols from all per-file blocks if we've gotten no hits
5127 (not strictly correct, but perhaps better than an error). */
5128
5129 if (num_defns_collected (&symbol_list_obstack) == 0)
5130 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5131 wild_match);
5132
5133 done:
5134 ndefns = num_defns_collected (&symbol_list_obstack);
5135 *results = defns_collected (&symbol_list_obstack, 1);
5136
5137 ndefns = remove_extra_symbols (*results, ndefns);
5138
5139 if (ndefns == 0 && full_search)
5140 cache_symbol (name0, namespace, NULL, NULL);
5141
5142 if (ndefns == 1 && full_search && cacheIfUnique)
5143 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5144
5145 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5146
5147 return ndefns;
5148 }
5149
5150 /* If NAME is the name of an entity, return a string that should
5151 be used to look that entity up in Ada units. This string should
5152 be deallocated after use using xfree.
5153
5154 NAME can have any form that the "break" or "print" commands might
5155 recognize. In other words, it does not have to be the "natural"
5156 name, or the "encoded" name. */
5157
5158 char *
5159 ada_name_for_lookup (const char *name)
5160 {
5161 char *canon;
5162 int nlen = strlen (name);
5163
5164 if (name[0] == '<' && name[nlen - 1] == '>')
5165 {
5166 canon = xmalloc (nlen - 1);
5167 memcpy (canon, name + 1, nlen - 2);
5168 canon[nlen - 2] = '\0';
5169 }
5170 else
5171 canon = xstrdup (ada_encode (ada_fold_name (name)));
5172 return canon;
5173 }
5174
5175 /* Implementation of the la_iterate_over_symbols method. */
5176
5177 static void
5178 ada_iterate_over_symbols (const struct block *block,
5179 const char *name, domain_enum domain,
5180 symbol_found_callback_ftype *callback,
5181 void *data)
5182 {
5183 int ndefs, i;
5184 struct ada_symbol_info *results;
5185
5186 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5187 for (i = 0; i < ndefs; ++i)
5188 {
5189 if (! (*callback) (results[i].sym, data))
5190 break;
5191 }
5192 }
5193
5194 struct symbol *
5195 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
5196 domain_enum namespace, struct block **block_found)
5197 {
5198 struct ada_symbol_info *candidates;
5199 int n_candidates;
5200
5201 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates,
5202 1);
5203
5204 if (n_candidates == 0)
5205 return NULL;
5206
5207 if (block_found != NULL)
5208 *block_found = candidates[0].block;
5209
5210 return fixup_symbol_section (candidates[0].sym, NULL);
5211 }
5212
5213 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5214 scope and in global scopes, or NULL if none. NAME is folded and
5215 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5216 choosing the first symbol if there are multiple choices.
5217 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5218 table in which the symbol was found (in both cases, these
5219 assignments occur only if the pointers are non-null). */
5220 struct symbol *
5221 ada_lookup_symbol (const char *name, const struct block *block0,
5222 domain_enum namespace, int *is_a_field_of_this)
5223 {
5224 if (is_a_field_of_this != NULL)
5225 *is_a_field_of_this = 0;
5226
5227 return
5228 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5229 block0, namespace, NULL);
5230 }
5231
5232 static struct symbol *
5233 ada_lookup_symbol_nonlocal (const char *name,
5234 const struct block *block,
5235 const domain_enum domain)
5236 {
5237 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5238 }
5239
5240
5241 /* True iff STR is a possible encoded suffix of a normal Ada name
5242 that is to be ignored for matching purposes. Suffixes of parallel
5243 names (e.g., XVE) are not included here. Currently, the possible suffixes
5244 are given by any of the regular expressions:
5245
5246 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5247 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5248 TKB [subprogram suffix for task bodies]
5249 _E[0-9]+[bs]$ [protected object entry suffixes]
5250 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5251
5252 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5253 match is performed. This sequence is used to differentiate homonyms,
5254 is an optional part of a valid name suffix. */
5255
5256 static int
5257 is_name_suffix (const char *str)
5258 {
5259 int k;
5260 const char *matching;
5261 const int len = strlen (str);
5262
5263 /* Skip optional leading __[0-9]+. */
5264
5265 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5266 {
5267 str += 3;
5268 while (isdigit (str[0]))
5269 str += 1;
5270 }
5271
5272 /* [.$][0-9]+ */
5273
5274 if (str[0] == '.' || str[0] == '$')
5275 {
5276 matching = str + 1;
5277 while (isdigit (matching[0]))
5278 matching += 1;
5279 if (matching[0] == '\0')
5280 return 1;
5281 }
5282
5283 /* ___[0-9]+ */
5284
5285 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5286 {
5287 matching = str + 3;
5288 while (isdigit (matching[0]))
5289 matching += 1;
5290 if (matching[0] == '\0')
5291 return 1;
5292 }
5293
5294 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5295
5296 if (strcmp (str, "TKB") == 0)
5297 return 1;
5298
5299 #if 0
5300 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5301 with a N at the end. Unfortunately, the compiler uses the same
5302 convention for other internal types it creates. So treating
5303 all entity names that end with an "N" as a name suffix causes
5304 some regressions. For instance, consider the case of an enumerated
5305 type. To support the 'Image attribute, it creates an array whose
5306 name ends with N.
5307 Having a single character like this as a suffix carrying some
5308 information is a bit risky. Perhaps we should change the encoding
5309 to be something like "_N" instead. In the meantime, do not do
5310 the following check. */
5311 /* Protected Object Subprograms */
5312 if (len == 1 && str [0] == 'N')
5313 return 1;
5314 #endif
5315
5316 /* _E[0-9]+[bs]$ */
5317 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5318 {
5319 matching = str + 3;
5320 while (isdigit (matching[0]))
5321 matching += 1;
5322 if ((matching[0] == 'b' || matching[0] == 's')
5323 && matching [1] == '\0')
5324 return 1;
5325 }
5326
5327 /* ??? We should not modify STR directly, as we are doing below. This
5328 is fine in this case, but may become problematic later if we find
5329 that this alternative did not work, and want to try matching
5330 another one from the begining of STR. Since we modified it, we
5331 won't be able to find the begining of the string anymore! */
5332 if (str[0] == 'X')
5333 {
5334 str += 1;
5335 while (str[0] != '_' && str[0] != '\0')
5336 {
5337 if (str[0] != 'n' && str[0] != 'b')
5338 return 0;
5339 str += 1;
5340 }
5341 }
5342
5343 if (str[0] == '\000')
5344 return 1;
5345
5346 if (str[0] == '_')
5347 {
5348 if (str[1] != '_' || str[2] == '\000')
5349 return 0;
5350 if (str[2] == '_')
5351 {
5352 if (strcmp (str + 3, "JM") == 0)
5353 return 1;
5354 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5355 the LJM suffix in favor of the JM one. But we will
5356 still accept LJM as a valid suffix for a reasonable
5357 amount of time, just to allow ourselves to debug programs
5358 compiled using an older version of GNAT. */
5359 if (strcmp (str + 3, "LJM") == 0)
5360 return 1;
5361 if (str[3] != 'X')
5362 return 0;
5363 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5364 || str[4] == 'U' || str[4] == 'P')
5365 return 1;
5366 if (str[4] == 'R' && str[5] != 'T')
5367 return 1;
5368 return 0;
5369 }
5370 if (!isdigit (str[2]))
5371 return 0;
5372 for (k = 3; str[k] != '\0'; k += 1)
5373 if (!isdigit (str[k]) && str[k] != '_')
5374 return 0;
5375 return 1;
5376 }
5377 if (str[0] == '$' && isdigit (str[1]))
5378 {
5379 for (k = 2; str[k] != '\0'; k += 1)
5380 if (!isdigit (str[k]) && str[k] != '_')
5381 return 0;
5382 return 1;
5383 }
5384 return 0;
5385 }
5386
5387 /* Return non-zero if the string starting at NAME and ending before
5388 NAME_END contains no capital letters. */
5389
5390 static int
5391 is_valid_name_for_wild_match (const char *name0)
5392 {
5393 const char *decoded_name = ada_decode (name0);
5394 int i;
5395
5396 /* If the decoded name starts with an angle bracket, it means that
5397 NAME0 does not follow the GNAT encoding format. It should then
5398 not be allowed as a possible wild match. */
5399 if (decoded_name[0] == '<')
5400 return 0;
5401
5402 for (i=0; decoded_name[i] != '\0'; i++)
5403 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5404 return 0;
5405
5406 return 1;
5407 }
5408
5409 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5410 that could start a simple name. Assumes that *NAMEP points into
5411 the string beginning at NAME0. */
5412
5413 static int
5414 advance_wild_match (const char **namep, const char *name0, int target0)
5415 {
5416 const char *name = *namep;
5417
5418 while (1)
5419 {
5420 int t0, t1;
5421
5422 t0 = *name;
5423 if (t0 == '_')
5424 {
5425 t1 = name[1];
5426 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5427 {
5428 name += 1;
5429 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5430 break;
5431 else
5432 name += 1;
5433 }
5434 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5435 || name[2] == target0))
5436 {
5437 name += 2;
5438 break;
5439 }
5440 else
5441 return 0;
5442 }
5443 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5444 name += 1;
5445 else
5446 return 0;
5447 }
5448
5449 *namep = name;
5450 return 1;
5451 }
5452
5453 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5454 informational suffixes of NAME (i.e., for which is_name_suffix is
5455 true). Assumes that PATN is a lower-cased Ada simple name. */
5456
5457 static int
5458 wild_match (const char *name, const char *patn)
5459 {
5460 const char *p, *n;
5461 const char *name0 = name;
5462
5463 while (1)
5464 {
5465 const char *match = name;
5466
5467 if (*name == *patn)
5468 {
5469 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5470 if (*p != *name)
5471 break;
5472 if (*p == '\0' && is_name_suffix (name))
5473 return match != name0 && !is_valid_name_for_wild_match (name0);
5474
5475 if (name[-1] == '_')
5476 name -= 1;
5477 }
5478 if (!advance_wild_match (&name, name0, *patn))
5479 return 1;
5480 }
5481 }
5482
5483 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5484 informational suffix. */
5485
5486 static int
5487 full_match (const char *sym_name, const char *search_name)
5488 {
5489 return !match_name (sym_name, search_name, 0);
5490 }
5491
5492
5493 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5494 vector *defn_symbols, updating the list of symbols in OBSTACKP
5495 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5496 OBJFILE is the section containing BLOCK.
5497 SYMTAB is recorded with each symbol added. */
5498
5499 static void
5500 ada_add_block_symbols (struct obstack *obstackp,
5501 struct block *block, const char *name,
5502 domain_enum domain, struct objfile *objfile,
5503 int wild)
5504 {
5505 struct dict_iterator iter;
5506 int name_len = strlen (name);
5507 /* A matching argument symbol, if any. */
5508 struct symbol *arg_sym;
5509 /* Set true when we find a matching non-argument symbol. */
5510 int found_sym;
5511 struct symbol *sym;
5512
5513 arg_sym = NULL;
5514 found_sym = 0;
5515 if (wild)
5516 {
5517 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5518 wild_match, &iter);
5519 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5520 {
5521 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5522 SYMBOL_DOMAIN (sym), domain)
5523 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5524 {
5525 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5526 continue;
5527 else if (SYMBOL_IS_ARGUMENT (sym))
5528 arg_sym = sym;
5529 else
5530 {
5531 found_sym = 1;
5532 add_defn_to_vec (obstackp,
5533 fixup_symbol_section (sym, objfile),
5534 block);
5535 }
5536 }
5537 }
5538 }
5539 else
5540 {
5541 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5542 full_match, &iter);
5543 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5544 {
5545 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5546 SYMBOL_DOMAIN (sym), domain))
5547 {
5548 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5549 {
5550 if (SYMBOL_IS_ARGUMENT (sym))
5551 arg_sym = sym;
5552 else
5553 {
5554 found_sym = 1;
5555 add_defn_to_vec (obstackp,
5556 fixup_symbol_section (sym, objfile),
5557 block);
5558 }
5559 }
5560 }
5561 }
5562 }
5563
5564 if (!found_sym && arg_sym != NULL)
5565 {
5566 add_defn_to_vec (obstackp,
5567 fixup_symbol_section (arg_sym, objfile),
5568 block);
5569 }
5570
5571 if (!wild)
5572 {
5573 arg_sym = NULL;
5574 found_sym = 0;
5575
5576 ALL_BLOCK_SYMBOLS (block, iter, sym)
5577 {
5578 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5579 SYMBOL_DOMAIN (sym), domain))
5580 {
5581 int cmp;
5582
5583 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5584 if (cmp == 0)
5585 {
5586 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5587 if (cmp == 0)
5588 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5589 name_len);
5590 }
5591
5592 if (cmp == 0
5593 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5594 {
5595 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5596 {
5597 if (SYMBOL_IS_ARGUMENT (sym))
5598 arg_sym = sym;
5599 else
5600 {
5601 found_sym = 1;
5602 add_defn_to_vec (obstackp,
5603 fixup_symbol_section (sym, objfile),
5604 block);
5605 }
5606 }
5607 }
5608 }
5609 }
5610
5611 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5612 They aren't parameters, right? */
5613 if (!found_sym && arg_sym != NULL)
5614 {
5615 add_defn_to_vec (obstackp,
5616 fixup_symbol_section (arg_sym, objfile),
5617 block);
5618 }
5619 }
5620 }
5621 \f
5622
5623 /* Symbol Completion */
5624
5625 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5626 name in a form that's appropriate for the completion. The result
5627 does not need to be deallocated, but is only good until the next call.
5628
5629 TEXT_LEN is equal to the length of TEXT.
5630 Perform a wild match if WILD_MATCH is set.
5631 ENCODED should be set if TEXT represents the start of a symbol name
5632 in its encoded form. */
5633
5634 static const char *
5635 symbol_completion_match (const char *sym_name,
5636 const char *text, int text_len,
5637 int wild_match, int encoded)
5638 {
5639 const int verbatim_match = (text[0] == '<');
5640 int match = 0;
5641
5642 if (verbatim_match)
5643 {
5644 /* Strip the leading angle bracket. */
5645 text = text + 1;
5646 text_len--;
5647 }
5648
5649 /* First, test against the fully qualified name of the symbol. */
5650
5651 if (strncmp (sym_name, text, text_len) == 0)
5652 match = 1;
5653
5654 if (match && !encoded)
5655 {
5656 /* One needed check before declaring a positive match is to verify
5657 that iff we are doing a verbatim match, the decoded version
5658 of the symbol name starts with '<'. Otherwise, this symbol name
5659 is not a suitable completion. */
5660 const char *sym_name_copy = sym_name;
5661 int has_angle_bracket;
5662
5663 sym_name = ada_decode (sym_name);
5664 has_angle_bracket = (sym_name[0] == '<');
5665 match = (has_angle_bracket == verbatim_match);
5666 sym_name = sym_name_copy;
5667 }
5668
5669 if (match && !verbatim_match)
5670 {
5671 /* When doing non-verbatim match, another check that needs to
5672 be done is to verify that the potentially matching symbol name
5673 does not include capital letters, because the ada-mode would
5674 not be able to understand these symbol names without the
5675 angle bracket notation. */
5676 const char *tmp;
5677
5678 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5679 if (*tmp != '\0')
5680 match = 0;
5681 }
5682
5683 /* Second: Try wild matching... */
5684
5685 if (!match && wild_match)
5686 {
5687 /* Since we are doing wild matching, this means that TEXT
5688 may represent an unqualified symbol name. We therefore must
5689 also compare TEXT against the unqualified name of the symbol. */
5690 sym_name = ada_unqualified_name (ada_decode (sym_name));
5691
5692 if (strncmp (sym_name, text, text_len) == 0)
5693 match = 1;
5694 }
5695
5696 /* Finally: If we found a mach, prepare the result to return. */
5697
5698 if (!match)
5699 return NULL;
5700
5701 if (verbatim_match)
5702 sym_name = add_angle_brackets (sym_name);
5703
5704 if (!encoded)
5705 sym_name = ada_decode (sym_name);
5706
5707 return sym_name;
5708 }
5709
5710 /* A companion function to ada_make_symbol_completion_list().
5711 Check if SYM_NAME represents a symbol which name would be suitable
5712 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5713 it is appended at the end of the given string vector SV.
5714
5715 ORIG_TEXT is the string original string from the user command
5716 that needs to be completed. WORD is the entire command on which
5717 completion should be performed. These two parameters are used to
5718 determine which part of the symbol name should be added to the
5719 completion vector.
5720 if WILD_MATCH is set, then wild matching is performed.
5721 ENCODED should be set if TEXT represents a symbol name in its
5722 encoded formed (in which case the completion should also be
5723 encoded). */
5724
5725 static void
5726 symbol_completion_add (VEC(char_ptr) **sv,
5727 const char *sym_name,
5728 const char *text, int text_len,
5729 const char *orig_text, const char *word,
5730 int wild_match, int encoded)
5731 {
5732 const char *match = symbol_completion_match (sym_name, text, text_len,
5733 wild_match, encoded);
5734 char *completion;
5735
5736 if (match == NULL)
5737 return;
5738
5739 /* We found a match, so add the appropriate completion to the given
5740 string vector. */
5741
5742 if (word == orig_text)
5743 {
5744 completion = xmalloc (strlen (match) + 5);
5745 strcpy (completion, match);
5746 }
5747 else if (word > orig_text)
5748 {
5749 /* Return some portion of sym_name. */
5750 completion = xmalloc (strlen (match) + 5);
5751 strcpy (completion, match + (word - orig_text));
5752 }
5753 else
5754 {
5755 /* Return some of ORIG_TEXT plus sym_name. */
5756 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5757 strncpy (completion, word, orig_text - word);
5758 completion[orig_text - word] = '\0';
5759 strcat (completion, match);
5760 }
5761
5762 VEC_safe_push (char_ptr, *sv, completion);
5763 }
5764
5765 /* An object of this type is passed as the user_data argument to the
5766 expand_partial_symbol_names method. */
5767 struct add_partial_datum
5768 {
5769 VEC(char_ptr) **completions;
5770 char *text;
5771 int text_len;
5772 char *text0;
5773 char *word;
5774 int wild_match;
5775 int encoded;
5776 };
5777
5778 /* A callback for expand_partial_symbol_names. */
5779 static int
5780 ada_expand_partial_symbol_name (const char *name, void *user_data)
5781 {
5782 struct add_partial_datum *data = user_data;
5783
5784 return symbol_completion_match (name, data->text, data->text_len,
5785 data->wild_match, data->encoded) != NULL;
5786 }
5787
5788 /* Return a list of possible symbol names completing TEXT0. The list
5789 is NULL terminated. WORD is the entire command on which completion
5790 is made. */
5791
5792 static char **
5793 ada_make_symbol_completion_list (char *text0, char *word)
5794 {
5795 char *text;
5796 int text_len;
5797 int wild_match;
5798 int encoded;
5799 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5800 struct symbol *sym;
5801 struct symtab *s;
5802 struct minimal_symbol *msymbol;
5803 struct objfile *objfile;
5804 struct block *b, *surrounding_static_block = 0;
5805 int i;
5806 struct dict_iterator iter;
5807
5808 if (text0[0] == '<')
5809 {
5810 text = xstrdup (text0);
5811 make_cleanup (xfree, text);
5812 text_len = strlen (text);
5813 wild_match = 0;
5814 encoded = 1;
5815 }
5816 else
5817 {
5818 text = xstrdup (ada_encode (text0));
5819 make_cleanup (xfree, text);
5820 text_len = strlen (text);
5821 for (i = 0; i < text_len; i++)
5822 text[i] = tolower (text[i]);
5823
5824 encoded = (strstr (text0, "__") != NULL);
5825 /* If the name contains a ".", then the user is entering a fully
5826 qualified entity name, and the match must not be done in wild
5827 mode. Similarly, if the user wants to complete what looks like
5828 an encoded name, the match must not be done in wild mode. */
5829 wild_match = (strchr (text0, '.') == NULL && !encoded);
5830 }
5831
5832 /* First, look at the partial symtab symbols. */
5833 {
5834 struct add_partial_datum data;
5835
5836 data.completions = &completions;
5837 data.text = text;
5838 data.text_len = text_len;
5839 data.text0 = text0;
5840 data.word = word;
5841 data.wild_match = wild_match;
5842 data.encoded = encoded;
5843 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5844 }
5845
5846 /* At this point scan through the misc symbol vectors and add each
5847 symbol you find to the list. Eventually we want to ignore
5848 anything that isn't a text symbol (everything else will be
5849 handled by the psymtab code above). */
5850
5851 ALL_MSYMBOLS (objfile, msymbol)
5852 {
5853 QUIT;
5854 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5855 text, text_len, text0, word, wild_match, encoded);
5856 }
5857
5858 /* Search upwards from currently selected frame (so that we can
5859 complete on local vars. */
5860
5861 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5862 {
5863 if (!BLOCK_SUPERBLOCK (b))
5864 surrounding_static_block = b; /* For elmin of dups */
5865
5866 ALL_BLOCK_SYMBOLS (b, iter, sym)
5867 {
5868 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5869 text, text_len, text0, word,
5870 wild_match, encoded);
5871 }
5872 }
5873
5874 /* Go through the symtabs and check the externs and statics for
5875 symbols which match. */
5876
5877 ALL_SYMTABS (objfile, s)
5878 {
5879 QUIT;
5880 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5881 ALL_BLOCK_SYMBOLS (b, iter, sym)
5882 {
5883 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5884 text, text_len, text0, word,
5885 wild_match, encoded);
5886 }
5887 }
5888
5889 ALL_SYMTABS (objfile, s)
5890 {
5891 QUIT;
5892 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5893 /* Don't do this block twice. */
5894 if (b == surrounding_static_block)
5895 continue;
5896 ALL_BLOCK_SYMBOLS (b, iter, sym)
5897 {
5898 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5899 text, text_len, text0, word,
5900 wild_match, encoded);
5901 }
5902 }
5903
5904 /* Append the closing NULL entry. */
5905 VEC_safe_push (char_ptr, completions, NULL);
5906
5907 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5908 return the copy. It's unfortunate that we have to make a copy
5909 of an array that we're about to destroy, but there is nothing much
5910 we can do about it. Fortunately, it's typically not a very large
5911 array. */
5912 {
5913 const size_t completions_size =
5914 VEC_length (char_ptr, completions) * sizeof (char *);
5915 char **result = xmalloc (completions_size);
5916
5917 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5918
5919 VEC_free (char_ptr, completions);
5920 return result;
5921 }
5922 }
5923
5924 /* Field Access */
5925
5926 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5927 for tagged types. */
5928
5929 static int
5930 ada_is_dispatch_table_ptr_type (struct type *type)
5931 {
5932 const char *name;
5933
5934 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5935 return 0;
5936
5937 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5938 if (name == NULL)
5939 return 0;
5940
5941 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5942 }
5943
5944 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5945 to be invisible to users. */
5946
5947 int
5948 ada_is_ignored_field (struct type *type, int field_num)
5949 {
5950 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5951 return 1;
5952
5953 /* Check the name of that field. */
5954 {
5955 const char *name = TYPE_FIELD_NAME (type, field_num);
5956
5957 /* Anonymous field names should not be printed.
5958 brobecker/2007-02-20: I don't think this can actually happen
5959 but we don't want to print the value of annonymous fields anyway. */
5960 if (name == NULL)
5961 return 1;
5962
5963 /* Normally, fields whose name start with an underscore ("_")
5964 are fields that have been internally generated by the compiler,
5965 and thus should not be printed. The "_parent" field is special,
5966 however: This is a field internally generated by the compiler
5967 for tagged types, and it contains the components inherited from
5968 the parent type. This field should not be printed as is, but
5969 should not be ignored either. */
5970 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5971 return 1;
5972 }
5973
5974 /* If this is the dispatch table of a tagged type, then ignore. */
5975 if (ada_is_tagged_type (type, 1)
5976 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5977 return 1;
5978
5979 /* Not a special field, so it should not be ignored. */
5980 return 0;
5981 }
5982
5983 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5984 pointer or reference type whose ultimate target has a tag field. */
5985
5986 int
5987 ada_is_tagged_type (struct type *type, int refok)
5988 {
5989 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5990 }
5991
5992 /* True iff TYPE represents the type of X'Tag */
5993
5994 int
5995 ada_is_tag_type (struct type *type)
5996 {
5997 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5998 return 0;
5999 else
6000 {
6001 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6002
6003 return (name != NULL
6004 && strcmp (name, "ada__tags__dispatch_table") == 0);
6005 }
6006 }
6007
6008 /* The type of the tag on VAL. */
6009
6010 struct type *
6011 ada_tag_type (struct value *val)
6012 {
6013 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6014 }
6015
6016 /* The value of the tag on VAL. */
6017
6018 struct value *
6019 ada_value_tag (struct value *val)
6020 {
6021 return ada_value_struct_elt (val, "_tag", 0);
6022 }
6023
6024 /* The value of the tag on the object of type TYPE whose contents are
6025 saved at VALADDR, if it is non-null, or is at memory address
6026 ADDRESS. */
6027
6028 static struct value *
6029 value_tag_from_contents_and_address (struct type *type,
6030 const gdb_byte *valaddr,
6031 CORE_ADDR address)
6032 {
6033 int tag_byte_offset;
6034 struct type *tag_type;
6035
6036 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6037 NULL, NULL, NULL))
6038 {
6039 const gdb_byte *valaddr1 = ((valaddr == NULL)
6040 ? NULL
6041 : valaddr + tag_byte_offset);
6042 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6043
6044 return value_from_contents_and_address (tag_type, valaddr1, address1);
6045 }
6046 return NULL;
6047 }
6048
6049 static struct type *
6050 type_from_tag (struct value *tag)
6051 {
6052 const char *type_name = ada_tag_name (tag);
6053
6054 if (type_name != NULL)
6055 return ada_find_any_type (ada_encode (type_name));
6056 return NULL;
6057 }
6058
6059 /* Return the "ada__tags__type_specific_data" type. */
6060
6061 static struct type *
6062 ada_get_tsd_type (struct inferior *inf)
6063 {
6064 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6065
6066 if (data->tsd_type == 0)
6067 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6068 return data->tsd_type;
6069 }
6070
6071 /* Return the TSD (type-specific data) associated to the given TAG.
6072 TAG is assumed to be the tag of a tagged-type entity.
6073
6074 May return NULL if we are unable to get the TSD. */
6075
6076 static struct value *
6077 ada_get_tsd_from_tag (struct value *tag)
6078 {
6079 struct value *val;
6080 struct type *type;
6081
6082 /* First option: The TSD is simply stored as a field of our TAG.
6083 Only older versions of GNAT would use this format, but we have
6084 to test it first, because there are no visible markers for
6085 the current approach except the absence of that field. */
6086
6087 val = ada_value_struct_elt (tag, "tsd", 1);
6088 if (val)
6089 return val;
6090
6091 /* Try the second representation for the dispatch table (in which
6092 there is no explicit 'tsd' field in the referent of the tag pointer,
6093 and instead the tsd pointer is stored just before the dispatch
6094 table. */
6095
6096 type = ada_get_tsd_type (current_inferior());
6097 if (type == NULL)
6098 return NULL;
6099 type = lookup_pointer_type (lookup_pointer_type (type));
6100 val = value_cast (type, tag);
6101 if (val == NULL)
6102 return NULL;
6103 return value_ind (value_ptradd (val, -1));
6104 }
6105
6106 /* Given the TSD of a tag (type-specific data), return a string
6107 containing the name of the associated type.
6108
6109 The returned value is good until the next call. May return NULL
6110 if we are unable to determine the tag name. */
6111
6112 static char *
6113 ada_tag_name_from_tsd (struct value *tsd)
6114 {
6115 static char name[1024];
6116 char *p;
6117 struct value *val;
6118
6119 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6120 if (val == NULL)
6121 return NULL;
6122 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6123 for (p = name; *p != '\0'; p += 1)
6124 if (isalpha (*p))
6125 *p = tolower (*p);
6126 return name;
6127 }
6128
6129 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6130 a C string.
6131
6132 Return NULL if the TAG is not an Ada tag, or if we were unable to
6133 determine the name of that tag. The result is good until the next
6134 call. */
6135
6136 const char *
6137 ada_tag_name (struct value *tag)
6138 {
6139 volatile struct gdb_exception e;
6140 char *name = NULL;
6141
6142 if (!ada_is_tag_type (value_type (tag)))
6143 return NULL;
6144
6145 /* It is perfectly possible that an exception be raised while trying
6146 to determine the TAG's name, even under normal circumstances:
6147 The associated variable may be uninitialized or corrupted, for
6148 instance. We do not let any exception propagate past this point.
6149 instead we return NULL.
6150
6151 We also do not print the error message either (which often is very
6152 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6153 the caller print a more meaningful message if necessary. */
6154 TRY_CATCH (e, RETURN_MASK_ERROR)
6155 {
6156 struct value *tsd = ada_get_tsd_from_tag (tag);
6157
6158 if (tsd != NULL)
6159 name = ada_tag_name_from_tsd (tsd);
6160 }
6161
6162 return name;
6163 }
6164
6165 /* The parent type of TYPE, or NULL if none. */
6166
6167 struct type *
6168 ada_parent_type (struct type *type)
6169 {
6170 int i;
6171
6172 type = ada_check_typedef (type);
6173
6174 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6175 return NULL;
6176
6177 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6178 if (ada_is_parent_field (type, i))
6179 {
6180 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6181
6182 /* If the _parent field is a pointer, then dereference it. */
6183 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6184 parent_type = TYPE_TARGET_TYPE (parent_type);
6185 /* If there is a parallel XVS type, get the actual base type. */
6186 parent_type = ada_get_base_type (parent_type);
6187
6188 return ada_check_typedef (parent_type);
6189 }
6190
6191 return NULL;
6192 }
6193
6194 /* True iff field number FIELD_NUM of structure type TYPE contains the
6195 parent-type (inherited) fields of a derived type. Assumes TYPE is
6196 a structure type with at least FIELD_NUM+1 fields. */
6197
6198 int
6199 ada_is_parent_field (struct type *type, int field_num)
6200 {
6201 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6202
6203 return (name != NULL
6204 && (strncmp (name, "PARENT", 6) == 0
6205 || strncmp (name, "_parent", 7) == 0));
6206 }
6207
6208 /* True iff field number FIELD_NUM of structure type TYPE is a
6209 transparent wrapper field (which should be silently traversed when doing
6210 field selection and flattened when printing). Assumes TYPE is a
6211 structure type with at least FIELD_NUM+1 fields. Such fields are always
6212 structures. */
6213
6214 int
6215 ada_is_wrapper_field (struct type *type, int field_num)
6216 {
6217 const char *name = TYPE_FIELD_NAME (type, field_num);
6218
6219 return (name != NULL
6220 && (strncmp (name, "PARENT", 6) == 0
6221 || strcmp (name, "REP") == 0
6222 || strncmp (name, "_parent", 7) == 0
6223 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6224 }
6225
6226 /* True iff field number FIELD_NUM of structure or union type TYPE
6227 is a variant wrapper. Assumes TYPE is a structure type with at least
6228 FIELD_NUM+1 fields. */
6229
6230 int
6231 ada_is_variant_part (struct type *type, int field_num)
6232 {
6233 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6234
6235 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6236 || (is_dynamic_field (type, field_num)
6237 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6238 == TYPE_CODE_UNION)));
6239 }
6240
6241 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6242 whose discriminants are contained in the record type OUTER_TYPE,
6243 returns the type of the controlling discriminant for the variant.
6244 May return NULL if the type could not be found. */
6245
6246 struct type *
6247 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6248 {
6249 char *name = ada_variant_discrim_name (var_type);
6250
6251 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6252 }
6253
6254 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6255 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6256 represents a 'when others' clause; otherwise 0. */
6257
6258 int
6259 ada_is_others_clause (struct type *type, int field_num)
6260 {
6261 const char *name = TYPE_FIELD_NAME (type, field_num);
6262
6263 return (name != NULL && name[0] == 'O');
6264 }
6265
6266 /* Assuming that TYPE0 is the type of the variant part of a record,
6267 returns the name of the discriminant controlling the variant.
6268 The value is valid until the next call to ada_variant_discrim_name. */
6269
6270 char *
6271 ada_variant_discrim_name (struct type *type0)
6272 {
6273 static char *result = NULL;
6274 static size_t result_len = 0;
6275 struct type *type;
6276 const char *name;
6277 const char *discrim_end;
6278 const char *discrim_start;
6279
6280 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6281 type = TYPE_TARGET_TYPE (type0);
6282 else
6283 type = type0;
6284
6285 name = ada_type_name (type);
6286
6287 if (name == NULL || name[0] == '\000')
6288 return "";
6289
6290 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6291 discrim_end -= 1)
6292 {
6293 if (strncmp (discrim_end, "___XVN", 6) == 0)
6294 break;
6295 }
6296 if (discrim_end == name)
6297 return "";
6298
6299 for (discrim_start = discrim_end; discrim_start != name + 3;
6300 discrim_start -= 1)
6301 {
6302 if (discrim_start == name + 1)
6303 return "";
6304 if ((discrim_start > name + 3
6305 && strncmp (discrim_start - 3, "___", 3) == 0)
6306 || discrim_start[-1] == '.')
6307 break;
6308 }
6309
6310 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6311 strncpy (result, discrim_start, discrim_end - discrim_start);
6312 result[discrim_end - discrim_start] = '\0';
6313 return result;
6314 }
6315
6316 /* Scan STR for a subtype-encoded number, beginning at position K.
6317 Put the position of the character just past the number scanned in
6318 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6319 Return 1 if there was a valid number at the given position, and 0
6320 otherwise. A "subtype-encoded" number consists of the absolute value
6321 in decimal, followed by the letter 'm' to indicate a negative number.
6322 Assumes 0m does not occur. */
6323
6324 int
6325 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6326 {
6327 ULONGEST RU;
6328
6329 if (!isdigit (str[k]))
6330 return 0;
6331
6332 /* Do it the hard way so as not to make any assumption about
6333 the relationship of unsigned long (%lu scan format code) and
6334 LONGEST. */
6335 RU = 0;
6336 while (isdigit (str[k]))
6337 {
6338 RU = RU * 10 + (str[k] - '0');
6339 k += 1;
6340 }
6341
6342 if (str[k] == 'm')
6343 {
6344 if (R != NULL)
6345 *R = (-(LONGEST) (RU - 1)) - 1;
6346 k += 1;
6347 }
6348 else if (R != NULL)
6349 *R = (LONGEST) RU;
6350
6351 /* NOTE on the above: Technically, C does not say what the results of
6352 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6353 number representable as a LONGEST (although either would probably work
6354 in most implementations). When RU>0, the locution in the then branch
6355 above is always equivalent to the negative of RU. */
6356
6357 if (new_k != NULL)
6358 *new_k = k;
6359 return 1;
6360 }
6361
6362 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6363 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6364 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6365
6366 int
6367 ada_in_variant (LONGEST val, struct type *type, int field_num)
6368 {
6369 const char *name = TYPE_FIELD_NAME (type, field_num);
6370 int p;
6371
6372 p = 0;
6373 while (1)
6374 {
6375 switch (name[p])
6376 {
6377 case '\0':
6378 return 0;
6379 case 'S':
6380 {
6381 LONGEST W;
6382
6383 if (!ada_scan_number (name, p + 1, &W, &p))
6384 return 0;
6385 if (val == W)
6386 return 1;
6387 break;
6388 }
6389 case 'R':
6390 {
6391 LONGEST L, U;
6392
6393 if (!ada_scan_number (name, p + 1, &L, &p)
6394 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6395 return 0;
6396 if (val >= L && val <= U)
6397 return 1;
6398 break;
6399 }
6400 case 'O':
6401 return 1;
6402 default:
6403 return 0;
6404 }
6405 }
6406 }
6407
6408 /* FIXME: Lots of redundancy below. Try to consolidate. */
6409
6410 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6411 ARG_TYPE, extract and return the value of one of its (non-static)
6412 fields. FIELDNO says which field. Differs from value_primitive_field
6413 only in that it can handle packed values of arbitrary type. */
6414
6415 static struct value *
6416 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6417 struct type *arg_type)
6418 {
6419 struct type *type;
6420
6421 arg_type = ada_check_typedef (arg_type);
6422 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6423
6424 /* Handle packed fields. */
6425
6426 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6427 {
6428 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6429 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6430
6431 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6432 offset + bit_pos / 8,
6433 bit_pos % 8, bit_size, type);
6434 }
6435 else
6436 return value_primitive_field (arg1, offset, fieldno, arg_type);
6437 }
6438
6439 /* Find field with name NAME in object of type TYPE. If found,
6440 set the following for each argument that is non-null:
6441 - *FIELD_TYPE_P to the field's type;
6442 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6443 an object of that type;
6444 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6445 - *BIT_SIZE_P to its size in bits if the field is packed, and
6446 0 otherwise;
6447 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6448 fields up to but not including the desired field, or by the total
6449 number of fields if not found. A NULL value of NAME never
6450 matches; the function just counts visible fields in this case.
6451
6452 Returns 1 if found, 0 otherwise. */
6453
6454 static int
6455 find_struct_field (const char *name, struct type *type, int offset,
6456 struct type **field_type_p,
6457 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6458 int *index_p)
6459 {
6460 int i;
6461
6462 type = ada_check_typedef (type);
6463
6464 if (field_type_p != NULL)
6465 *field_type_p = NULL;
6466 if (byte_offset_p != NULL)
6467 *byte_offset_p = 0;
6468 if (bit_offset_p != NULL)
6469 *bit_offset_p = 0;
6470 if (bit_size_p != NULL)
6471 *bit_size_p = 0;
6472
6473 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6474 {
6475 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6476 int fld_offset = offset + bit_pos / 8;
6477 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6478
6479 if (t_field_name == NULL)
6480 continue;
6481
6482 else if (name != NULL && field_name_match (t_field_name, name))
6483 {
6484 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6485
6486 if (field_type_p != NULL)
6487 *field_type_p = TYPE_FIELD_TYPE (type, i);
6488 if (byte_offset_p != NULL)
6489 *byte_offset_p = fld_offset;
6490 if (bit_offset_p != NULL)
6491 *bit_offset_p = bit_pos % 8;
6492 if (bit_size_p != NULL)
6493 *bit_size_p = bit_size;
6494 return 1;
6495 }
6496 else if (ada_is_wrapper_field (type, i))
6497 {
6498 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6499 field_type_p, byte_offset_p, bit_offset_p,
6500 bit_size_p, index_p))
6501 return 1;
6502 }
6503 else if (ada_is_variant_part (type, i))
6504 {
6505 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6506 fixed type?? */
6507 int j;
6508 struct type *field_type
6509 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6510
6511 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6512 {
6513 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6514 fld_offset
6515 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6516 field_type_p, byte_offset_p,
6517 bit_offset_p, bit_size_p, index_p))
6518 return 1;
6519 }
6520 }
6521 else if (index_p != NULL)
6522 *index_p += 1;
6523 }
6524 return 0;
6525 }
6526
6527 /* Number of user-visible fields in record type TYPE. */
6528
6529 static int
6530 num_visible_fields (struct type *type)
6531 {
6532 int n;
6533
6534 n = 0;
6535 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6536 return n;
6537 }
6538
6539 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6540 and search in it assuming it has (class) type TYPE.
6541 If found, return value, else return NULL.
6542
6543 Searches recursively through wrapper fields (e.g., '_parent'). */
6544
6545 static struct value *
6546 ada_search_struct_field (char *name, struct value *arg, int offset,
6547 struct type *type)
6548 {
6549 int i;
6550
6551 type = ada_check_typedef (type);
6552 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6553 {
6554 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6555
6556 if (t_field_name == NULL)
6557 continue;
6558
6559 else if (field_name_match (t_field_name, name))
6560 return ada_value_primitive_field (arg, offset, i, type);
6561
6562 else if (ada_is_wrapper_field (type, i))
6563 {
6564 struct value *v = /* Do not let indent join lines here. */
6565 ada_search_struct_field (name, arg,
6566 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6567 TYPE_FIELD_TYPE (type, i));
6568
6569 if (v != NULL)
6570 return v;
6571 }
6572
6573 else if (ada_is_variant_part (type, i))
6574 {
6575 /* PNH: Do we ever get here? See find_struct_field. */
6576 int j;
6577 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6578 i));
6579 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6580
6581 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6582 {
6583 struct value *v = ada_search_struct_field /* Force line
6584 break. */
6585 (name, arg,
6586 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6587 TYPE_FIELD_TYPE (field_type, j));
6588
6589 if (v != NULL)
6590 return v;
6591 }
6592 }
6593 }
6594 return NULL;
6595 }
6596
6597 static struct value *ada_index_struct_field_1 (int *, struct value *,
6598 int, struct type *);
6599
6600
6601 /* Return field #INDEX in ARG, where the index is that returned by
6602 * find_struct_field through its INDEX_P argument. Adjust the address
6603 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6604 * If found, return value, else return NULL. */
6605
6606 static struct value *
6607 ada_index_struct_field (int index, struct value *arg, int offset,
6608 struct type *type)
6609 {
6610 return ada_index_struct_field_1 (&index, arg, offset, type);
6611 }
6612
6613
6614 /* Auxiliary function for ada_index_struct_field. Like
6615 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6616 * *INDEX_P. */
6617
6618 static struct value *
6619 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6620 struct type *type)
6621 {
6622 int i;
6623 type = ada_check_typedef (type);
6624
6625 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6626 {
6627 if (TYPE_FIELD_NAME (type, i) == NULL)
6628 continue;
6629 else if (ada_is_wrapper_field (type, i))
6630 {
6631 struct value *v = /* Do not let indent join lines here. */
6632 ada_index_struct_field_1 (index_p, arg,
6633 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6634 TYPE_FIELD_TYPE (type, i));
6635
6636 if (v != NULL)
6637 return v;
6638 }
6639
6640 else if (ada_is_variant_part (type, i))
6641 {
6642 /* PNH: Do we ever get here? See ada_search_struct_field,
6643 find_struct_field. */
6644 error (_("Cannot assign this kind of variant record"));
6645 }
6646 else if (*index_p == 0)
6647 return ada_value_primitive_field (arg, offset, i, type);
6648 else
6649 *index_p -= 1;
6650 }
6651 return NULL;
6652 }
6653
6654 /* Given ARG, a value of type (pointer or reference to a)*
6655 structure/union, extract the component named NAME from the ultimate
6656 target structure/union and return it as a value with its
6657 appropriate type.
6658
6659 The routine searches for NAME among all members of the structure itself
6660 and (recursively) among all members of any wrapper members
6661 (e.g., '_parent').
6662
6663 If NO_ERR, then simply return NULL in case of error, rather than
6664 calling error. */
6665
6666 struct value *
6667 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6668 {
6669 struct type *t, *t1;
6670 struct value *v;
6671
6672 v = NULL;
6673 t1 = t = ada_check_typedef (value_type (arg));
6674 if (TYPE_CODE (t) == TYPE_CODE_REF)
6675 {
6676 t1 = TYPE_TARGET_TYPE (t);
6677 if (t1 == NULL)
6678 goto BadValue;
6679 t1 = ada_check_typedef (t1);
6680 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6681 {
6682 arg = coerce_ref (arg);
6683 t = t1;
6684 }
6685 }
6686
6687 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6688 {
6689 t1 = TYPE_TARGET_TYPE (t);
6690 if (t1 == NULL)
6691 goto BadValue;
6692 t1 = ada_check_typedef (t1);
6693 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6694 {
6695 arg = value_ind (arg);
6696 t = t1;
6697 }
6698 else
6699 break;
6700 }
6701
6702 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6703 goto BadValue;
6704
6705 if (t1 == t)
6706 v = ada_search_struct_field (name, arg, 0, t);
6707 else
6708 {
6709 int bit_offset, bit_size, byte_offset;
6710 struct type *field_type;
6711 CORE_ADDR address;
6712
6713 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6714 address = value_as_address (arg);
6715 else
6716 address = unpack_pointer (t, value_contents (arg));
6717
6718 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6719 if (find_struct_field (name, t1, 0,
6720 &field_type, &byte_offset, &bit_offset,
6721 &bit_size, NULL))
6722 {
6723 if (bit_size != 0)
6724 {
6725 if (TYPE_CODE (t) == TYPE_CODE_REF)
6726 arg = ada_coerce_ref (arg);
6727 else
6728 arg = ada_value_ind (arg);
6729 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6730 bit_offset, bit_size,
6731 field_type);
6732 }
6733 else
6734 v = value_at_lazy (field_type, address + byte_offset);
6735 }
6736 }
6737
6738 if (v != NULL || no_err)
6739 return v;
6740 else
6741 error (_("There is no member named %s."), name);
6742
6743 BadValue:
6744 if (no_err)
6745 return NULL;
6746 else
6747 error (_("Attempt to extract a component of "
6748 "a value that is not a record."));
6749 }
6750
6751 /* Given a type TYPE, look up the type of the component of type named NAME.
6752 If DISPP is non-null, add its byte displacement from the beginning of a
6753 structure (pointed to by a value) of type TYPE to *DISPP (does not
6754 work for packed fields).
6755
6756 Matches any field whose name has NAME as a prefix, possibly
6757 followed by "___".
6758
6759 TYPE can be either a struct or union. If REFOK, TYPE may also
6760 be a (pointer or reference)+ to a struct or union, and the
6761 ultimate target type will be searched.
6762
6763 Looks recursively into variant clauses and parent types.
6764
6765 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6766 TYPE is not a type of the right kind. */
6767
6768 static struct type *
6769 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6770 int noerr, int *dispp)
6771 {
6772 int i;
6773
6774 if (name == NULL)
6775 goto BadName;
6776
6777 if (refok && type != NULL)
6778 while (1)
6779 {
6780 type = ada_check_typedef (type);
6781 if (TYPE_CODE (type) != TYPE_CODE_PTR
6782 && TYPE_CODE (type) != TYPE_CODE_REF)
6783 break;
6784 type = TYPE_TARGET_TYPE (type);
6785 }
6786
6787 if (type == NULL
6788 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6789 && TYPE_CODE (type) != TYPE_CODE_UNION))
6790 {
6791 if (noerr)
6792 return NULL;
6793 else
6794 {
6795 target_terminal_ours ();
6796 gdb_flush (gdb_stdout);
6797 if (type == NULL)
6798 error (_("Type (null) is not a structure or union type"));
6799 else
6800 {
6801 /* XXX: type_sprint */
6802 fprintf_unfiltered (gdb_stderr, _("Type "));
6803 type_print (type, "", gdb_stderr, -1);
6804 error (_(" is not a structure or union type"));
6805 }
6806 }
6807 }
6808
6809 type = to_static_fixed_type (type);
6810
6811 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6812 {
6813 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6814 struct type *t;
6815 int disp;
6816
6817 if (t_field_name == NULL)
6818 continue;
6819
6820 else if (field_name_match (t_field_name, name))
6821 {
6822 if (dispp != NULL)
6823 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6824 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6825 }
6826
6827 else if (ada_is_wrapper_field (type, i))
6828 {
6829 disp = 0;
6830 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6831 0, 1, &disp);
6832 if (t != NULL)
6833 {
6834 if (dispp != NULL)
6835 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6836 return t;
6837 }
6838 }
6839
6840 else if (ada_is_variant_part (type, i))
6841 {
6842 int j;
6843 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6844 i));
6845
6846 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6847 {
6848 /* FIXME pnh 2008/01/26: We check for a field that is
6849 NOT wrapped in a struct, since the compiler sometimes
6850 generates these for unchecked variant types. Revisit
6851 if the compiler changes this practice. */
6852 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6853 disp = 0;
6854 if (v_field_name != NULL
6855 && field_name_match (v_field_name, name))
6856 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6857 else
6858 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6859 j),
6860 name, 0, 1, &disp);
6861
6862 if (t != NULL)
6863 {
6864 if (dispp != NULL)
6865 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6866 return t;
6867 }
6868 }
6869 }
6870
6871 }
6872
6873 BadName:
6874 if (!noerr)
6875 {
6876 target_terminal_ours ();
6877 gdb_flush (gdb_stdout);
6878 if (name == NULL)
6879 {
6880 /* XXX: type_sprint */
6881 fprintf_unfiltered (gdb_stderr, _("Type "));
6882 type_print (type, "", gdb_stderr, -1);
6883 error (_(" has no component named <null>"));
6884 }
6885 else
6886 {
6887 /* XXX: type_sprint */
6888 fprintf_unfiltered (gdb_stderr, _("Type "));
6889 type_print (type, "", gdb_stderr, -1);
6890 error (_(" has no component named %s"), name);
6891 }
6892 }
6893
6894 return NULL;
6895 }
6896
6897 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6898 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6899 represents an unchecked union (that is, the variant part of a
6900 record that is named in an Unchecked_Union pragma). */
6901
6902 static int
6903 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6904 {
6905 char *discrim_name = ada_variant_discrim_name (var_type);
6906
6907 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6908 == NULL);
6909 }
6910
6911
6912 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6913 within a value of type OUTER_TYPE that is stored in GDB at
6914 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6915 numbering from 0) is applicable. Returns -1 if none are. */
6916
6917 int
6918 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6919 const gdb_byte *outer_valaddr)
6920 {
6921 int others_clause;
6922 int i;
6923 char *discrim_name = ada_variant_discrim_name (var_type);
6924 struct value *outer;
6925 struct value *discrim;
6926 LONGEST discrim_val;
6927
6928 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6929 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6930 if (discrim == NULL)
6931 return -1;
6932 discrim_val = value_as_long (discrim);
6933
6934 others_clause = -1;
6935 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6936 {
6937 if (ada_is_others_clause (var_type, i))
6938 others_clause = i;
6939 else if (ada_in_variant (discrim_val, var_type, i))
6940 return i;
6941 }
6942
6943 return others_clause;
6944 }
6945 \f
6946
6947
6948 /* Dynamic-Sized Records */
6949
6950 /* Strategy: The type ostensibly attached to a value with dynamic size
6951 (i.e., a size that is not statically recorded in the debugging
6952 data) does not accurately reflect the size or layout of the value.
6953 Our strategy is to convert these values to values with accurate,
6954 conventional types that are constructed on the fly. */
6955
6956 /* There is a subtle and tricky problem here. In general, we cannot
6957 determine the size of dynamic records without its data. However,
6958 the 'struct value' data structure, which GDB uses to represent
6959 quantities in the inferior process (the target), requires the size
6960 of the type at the time of its allocation in order to reserve space
6961 for GDB's internal copy of the data. That's why the
6962 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6963 rather than struct value*s.
6964
6965 However, GDB's internal history variables ($1, $2, etc.) are
6966 struct value*s containing internal copies of the data that are not, in
6967 general, the same as the data at their corresponding addresses in
6968 the target. Fortunately, the types we give to these values are all
6969 conventional, fixed-size types (as per the strategy described
6970 above), so that we don't usually have to perform the
6971 'to_fixed_xxx_type' conversions to look at their values.
6972 Unfortunately, there is one exception: if one of the internal
6973 history variables is an array whose elements are unconstrained
6974 records, then we will need to create distinct fixed types for each
6975 element selected. */
6976
6977 /* The upshot of all of this is that many routines take a (type, host
6978 address, target address) triple as arguments to represent a value.
6979 The host address, if non-null, is supposed to contain an internal
6980 copy of the relevant data; otherwise, the program is to consult the
6981 target at the target address. */
6982
6983 /* Assuming that VAL0 represents a pointer value, the result of
6984 dereferencing it. Differs from value_ind in its treatment of
6985 dynamic-sized types. */
6986
6987 struct value *
6988 ada_value_ind (struct value *val0)
6989 {
6990 struct value *val = value_ind (val0);
6991
6992 return ada_to_fixed_value (val);
6993 }
6994
6995 /* The value resulting from dereferencing any "reference to"
6996 qualifiers on VAL0. */
6997
6998 static struct value *
6999 ada_coerce_ref (struct value *val0)
7000 {
7001 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7002 {
7003 struct value *val = val0;
7004
7005 val = coerce_ref (val);
7006 return ada_to_fixed_value (val);
7007 }
7008 else
7009 return val0;
7010 }
7011
7012 /* Return OFF rounded upward if necessary to a multiple of
7013 ALIGNMENT (a power of 2). */
7014
7015 static unsigned int
7016 align_value (unsigned int off, unsigned int alignment)
7017 {
7018 return (off + alignment - 1) & ~(alignment - 1);
7019 }
7020
7021 /* Return the bit alignment required for field #F of template type TYPE. */
7022
7023 static unsigned int
7024 field_alignment (struct type *type, int f)
7025 {
7026 const char *name = TYPE_FIELD_NAME (type, f);
7027 int len;
7028 int align_offset;
7029
7030 /* The field name should never be null, unless the debugging information
7031 is somehow malformed. In this case, we assume the field does not
7032 require any alignment. */
7033 if (name == NULL)
7034 return 1;
7035
7036 len = strlen (name);
7037
7038 if (!isdigit (name[len - 1]))
7039 return 1;
7040
7041 if (isdigit (name[len - 2]))
7042 align_offset = len - 2;
7043 else
7044 align_offset = len - 1;
7045
7046 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7047 return TARGET_CHAR_BIT;
7048
7049 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7050 }
7051
7052 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7053
7054 static struct symbol *
7055 ada_find_any_type_symbol (const char *name)
7056 {
7057 struct symbol *sym;
7058
7059 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7060 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7061 return sym;
7062
7063 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7064 return sym;
7065 }
7066
7067 /* Find a type named NAME. Ignores ambiguity. This routine will look
7068 solely for types defined by debug info, it will not search the GDB
7069 primitive types. */
7070
7071 static struct type *
7072 ada_find_any_type (const char *name)
7073 {
7074 struct symbol *sym = ada_find_any_type_symbol (name);
7075
7076 if (sym != NULL)
7077 return SYMBOL_TYPE (sym);
7078
7079 return NULL;
7080 }
7081
7082 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7083 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7084 symbol, in which case it is returned. Otherwise, this looks for
7085 symbols whose name is that of NAME_SYM suffixed with "___XR".
7086 Return symbol if found, and NULL otherwise. */
7087
7088 struct symbol *
7089 ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
7090 {
7091 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7092 struct symbol *sym;
7093
7094 if (strstr (name, "___XR") != NULL)
7095 return name_sym;
7096
7097 sym = find_old_style_renaming_symbol (name, block);
7098
7099 if (sym != NULL)
7100 return sym;
7101
7102 /* Not right yet. FIXME pnh 7/20/2007. */
7103 sym = ada_find_any_type_symbol (name);
7104 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7105 return sym;
7106 else
7107 return NULL;
7108 }
7109
7110 static struct symbol *
7111 find_old_style_renaming_symbol (const char *name, struct block *block)
7112 {
7113 const struct symbol *function_sym = block_linkage_function (block);
7114 char *rename;
7115
7116 if (function_sym != NULL)
7117 {
7118 /* If the symbol is defined inside a function, NAME is not fully
7119 qualified. This means we need to prepend the function name
7120 as well as adding the ``___XR'' suffix to build the name of
7121 the associated renaming symbol. */
7122 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7123 /* Function names sometimes contain suffixes used
7124 for instance to qualify nested subprograms. When building
7125 the XR type name, we need to make sure that this suffix is
7126 not included. So do not include any suffix in the function
7127 name length below. */
7128 int function_name_len = ada_name_prefix_len (function_name);
7129 const int rename_len = function_name_len + 2 /* "__" */
7130 + strlen (name) + 6 /* "___XR\0" */ ;
7131
7132 /* Strip the suffix if necessary. */
7133 ada_remove_trailing_digits (function_name, &function_name_len);
7134 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7135 ada_remove_Xbn_suffix (function_name, &function_name_len);
7136
7137 /* Library-level functions are a special case, as GNAT adds
7138 a ``_ada_'' prefix to the function name to avoid namespace
7139 pollution. However, the renaming symbols themselves do not
7140 have this prefix, so we need to skip this prefix if present. */
7141 if (function_name_len > 5 /* "_ada_" */
7142 && strstr (function_name, "_ada_") == function_name)
7143 {
7144 function_name += 5;
7145 function_name_len -= 5;
7146 }
7147
7148 rename = (char *) alloca (rename_len * sizeof (char));
7149 strncpy (rename, function_name, function_name_len);
7150 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7151 "__%s___XR", name);
7152 }
7153 else
7154 {
7155 const int rename_len = strlen (name) + 6;
7156
7157 rename = (char *) alloca (rename_len * sizeof (char));
7158 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7159 }
7160
7161 return ada_find_any_type_symbol (rename);
7162 }
7163
7164 /* Because of GNAT encoding conventions, several GDB symbols may match a
7165 given type name. If the type denoted by TYPE0 is to be preferred to
7166 that of TYPE1 for purposes of type printing, return non-zero;
7167 otherwise return 0. */
7168
7169 int
7170 ada_prefer_type (struct type *type0, struct type *type1)
7171 {
7172 if (type1 == NULL)
7173 return 1;
7174 else if (type0 == NULL)
7175 return 0;
7176 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7177 return 1;
7178 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7179 return 0;
7180 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7181 return 1;
7182 else if (ada_is_constrained_packed_array_type (type0))
7183 return 1;
7184 else if (ada_is_array_descriptor_type (type0)
7185 && !ada_is_array_descriptor_type (type1))
7186 return 1;
7187 else
7188 {
7189 const char *type0_name = type_name_no_tag (type0);
7190 const char *type1_name = type_name_no_tag (type1);
7191
7192 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7193 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7194 return 1;
7195 }
7196 return 0;
7197 }
7198
7199 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7200 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7201
7202 const char *
7203 ada_type_name (struct type *type)
7204 {
7205 if (type == NULL)
7206 return NULL;
7207 else if (TYPE_NAME (type) != NULL)
7208 return TYPE_NAME (type);
7209 else
7210 return TYPE_TAG_NAME (type);
7211 }
7212
7213 /* Search the list of "descriptive" types associated to TYPE for a type
7214 whose name is NAME. */
7215
7216 static struct type *
7217 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7218 {
7219 struct type *result;
7220
7221 /* If there no descriptive-type info, then there is no parallel type
7222 to be found. */
7223 if (!HAVE_GNAT_AUX_INFO (type))
7224 return NULL;
7225
7226 result = TYPE_DESCRIPTIVE_TYPE (type);
7227 while (result != NULL)
7228 {
7229 const char *result_name = ada_type_name (result);
7230
7231 if (result_name == NULL)
7232 {
7233 warning (_("unexpected null name on descriptive type"));
7234 return NULL;
7235 }
7236
7237 /* If the names match, stop. */
7238 if (strcmp (result_name, name) == 0)
7239 break;
7240
7241 /* Otherwise, look at the next item on the list, if any. */
7242 if (HAVE_GNAT_AUX_INFO (result))
7243 result = TYPE_DESCRIPTIVE_TYPE (result);
7244 else
7245 result = NULL;
7246 }
7247
7248 /* If we didn't find a match, see whether this is a packed array. With
7249 older compilers, the descriptive type information is either absent or
7250 irrelevant when it comes to packed arrays so the above lookup fails.
7251 Fall back to using a parallel lookup by name in this case. */
7252 if (result == NULL && ada_is_constrained_packed_array_type (type))
7253 return ada_find_any_type (name);
7254
7255 return result;
7256 }
7257
7258 /* Find a parallel type to TYPE with the specified NAME, using the
7259 descriptive type taken from the debugging information, if available,
7260 and otherwise using the (slower) name-based method. */
7261
7262 static struct type *
7263 ada_find_parallel_type_with_name (struct type *type, const char *name)
7264 {
7265 struct type *result = NULL;
7266
7267 if (HAVE_GNAT_AUX_INFO (type))
7268 result = find_parallel_type_by_descriptive_type (type, name);
7269 else
7270 result = ada_find_any_type (name);
7271
7272 return result;
7273 }
7274
7275 /* Same as above, but specify the name of the parallel type by appending
7276 SUFFIX to the name of TYPE. */
7277
7278 struct type *
7279 ada_find_parallel_type (struct type *type, const char *suffix)
7280 {
7281 char *name;
7282 const char *typename = ada_type_name (type);
7283 int len;
7284
7285 if (typename == NULL)
7286 return NULL;
7287
7288 len = strlen (typename);
7289
7290 name = (char *) alloca (len + strlen (suffix) + 1);
7291
7292 strcpy (name, typename);
7293 strcpy (name + len, suffix);
7294
7295 return ada_find_parallel_type_with_name (type, name);
7296 }
7297
7298 /* If TYPE is a variable-size record type, return the corresponding template
7299 type describing its fields. Otherwise, return NULL. */
7300
7301 static struct type *
7302 dynamic_template_type (struct type *type)
7303 {
7304 type = ada_check_typedef (type);
7305
7306 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7307 || ada_type_name (type) == NULL)
7308 return NULL;
7309 else
7310 {
7311 int len = strlen (ada_type_name (type));
7312
7313 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7314 return type;
7315 else
7316 return ada_find_parallel_type (type, "___XVE");
7317 }
7318 }
7319
7320 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7321 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7322
7323 static int
7324 is_dynamic_field (struct type *templ_type, int field_num)
7325 {
7326 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7327
7328 return name != NULL
7329 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7330 && strstr (name, "___XVL") != NULL;
7331 }
7332
7333 /* The index of the variant field of TYPE, or -1 if TYPE does not
7334 represent a variant record type. */
7335
7336 static int
7337 variant_field_index (struct type *type)
7338 {
7339 int f;
7340
7341 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7342 return -1;
7343
7344 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7345 {
7346 if (ada_is_variant_part (type, f))
7347 return f;
7348 }
7349 return -1;
7350 }
7351
7352 /* A record type with no fields. */
7353
7354 static struct type *
7355 empty_record (struct type *template)
7356 {
7357 struct type *type = alloc_type_copy (template);
7358
7359 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7360 TYPE_NFIELDS (type) = 0;
7361 TYPE_FIELDS (type) = NULL;
7362 INIT_CPLUS_SPECIFIC (type);
7363 TYPE_NAME (type) = "<empty>";
7364 TYPE_TAG_NAME (type) = NULL;
7365 TYPE_LENGTH (type) = 0;
7366 return type;
7367 }
7368
7369 /* An ordinary record type (with fixed-length fields) that describes
7370 the value of type TYPE at VALADDR or ADDRESS (see comments at
7371 the beginning of this section) VAL according to GNAT conventions.
7372 DVAL0 should describe the (portion of a) record that contains any
7373 necessary discriminants. It should be NULL if value_type (VAL) is
7374 an outer-level type (i.e., as opposed to a branch of a variant.) A
7375 variant field (unless unchecked) is replaced by a particular branch
7376 of the variant.
7377
7378 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7379 length are not statically known are discarded. As a consequence,
7380 VALADDR, ADDRESS and DVAL0 are ignored.
7381
7382 NOTE: Limitations: For now, we assume that dynamic fields and
7383 variants occupy whole numbers of bytes. However, they need not be
7384 byte-aligned. */
7385
7386 struct type *
7387 ada_template_to_fixed_record_type_1 (struct type *type,
7388 const gdb_byte *valaddr,
7389 CORE_ADDR address, struct value *dval0,
7390 int keep_dynamic_fields)
7391 {
7392 struct value *mark = value_mark ();
7393 struct value *dval;
7394 struct type *rtype;
7395 int nfields, bit_len;
7396 int variant_field;
7397 long off;
7398 int fld_bit_len;
7399 int f;
7400
7401 /* Compute the number of fields in this record type that are going
7402 to be processed: unless keep_dynamic_fields, this includes only
7403 fields whose position and length are static will be processed. */
7404 if (keep_dynamic_fields)
7405 nfields = TYPE_NFIELDS (type);
7406 else
7407 {
7408 nfields = 0;
7409 while (nfields < TYPE_NFIELDS (type)
7410 && !ada_is_variant_part (type, nfields)
7411 && !is_dynamic_field (type, nfields))
7412 nfields++;
7413 }
7414
7415 rtype = alloc_type_copy (type);
7416 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7417 INIT_CPLUS_SPECIFIC (rtype);
7418 TYPE_NFIELDS (rtype) = nfields;
7419 TYPE_FIELDS (rtype) = (struct field *)
7420 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7421 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7422 TYPE_NAME (rtype) = ada_type_name (type);
7423 TYPE_TAG_NAME (rtype) = NULL;
7424 TYPE_FIXED_INSTANCE (rtype) = 1;
7425
7426 off = 0;
7427 bit_len = 0;
7428 variant_field = -1;
7429
7430 for (f = 0; f < nfields; f += 1)
7431 {
7432 off = align_value (off, field_alignment (type, f))
7433 + TYPE_FIELD_BITPOS (type, f);
7434 TYPE_FIELD_BITPOS (rtype, f) = off;
7435 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7436
7437 if (ada_is_variant_part (type, f))
7438 {
7439 variant_field = f;
7440 fld_bit_len = 0;
7441 }
7442 else if (is_dynamic_field (type, f))
7443 {
7444 const gdb_byte *field_valaddr = valaddr;
7445 CORE_ADDR field_address = address;
7446 struct type *field_type =
7447 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7448
7449 if (dval0 == NULL)
7450 {
7451 /* rtype's length is computed based on the run-time
7452 value of discriminants. If the discriminants are not
7453 initialized, the type size may be completely bogus and
7454 GDB may fail to allocate a value for it. So check the
7455 size first before creating the value. */
7456 check_size (rtype);
7457 dval = value_from_contents_and_address (rtype, valaddr, address);
7458 }
7459 else
7460 dval = dval0;
7461
7462 /* If the type referenced by this field is an aligner type, we need
7463 to unwrap that aligner type, because its size might not be set.
7464 Keeping the aligner type would cause us to compute the wrong
7465 size for this field, impacting the offset of the all the fields
7466 that follow this one. */
7467 if (ada_is_aligner_type (field_type))
7468 {
7469 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7470
7471 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7472 field_address = cond_offset_target (field_address, field_offset);
7473 field_type = ada_aligned_type (field_type);
7474 }
7475
7476 field_valaddr = cond_offset_host (field_valaddr,
7477 off / TARGET_CHAR_BIT);
7478 field_address = cond_offset_target (field_address,
7479 off / TARGET_CHAR_BIT);
7480
7481 /* Get the fixed type of the field. Note that, in this case,
7482 we do not want to get the real type out of the tag: if
7483 the current field is the parent part of a tagged record,
7484 we will get the tag of the object. Clearly wrong: the real
7485 type of the parent is not the real type of the child. We
7486 would end up in an infinite loop. */
7487 field_type = ada_get_base_type (field_type);
7488 field_type = ada_to_fixed_type (field_type, field_valaddr,
7489 field_address, dval, 0);
7490 /* If the field size is already larger than the maximum
7491 object size, then the record itself will necessarily
7492 be larger than the maximum object size. We need to make
7493 this check now, because the size might be so ridiculously
7494 large (due to an uninitialized variable in the inferior)
7495 that it would cause an overflow when adding it to the
7496 record size. */
7497 check_size (field_type);
7498
7499 TYPE_FIELD_TYPE (rtype, f) = field_type;
7500 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7501 /* The multiplication can potentially overflow. But because
7502 the field length has been size-checked just above, and
7503 assuming that the maximum size is a reasonable value,
7504 an overflow should not happen in practice. So rather than
7505 adding overflow recovery code to this already complex code,
7506 we just assume that it's not going to happen. */
7507 fld_bit_len =
7508 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7509 }
7510 else
7511 {
7512 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7513
7514 /* If our field is a typedef type (most likely a typedef of
7515 a fat pointer, encoding an array access), then we need to
7516 look at its target type to determine its characteristics.
7517 In particular, we would miscompute the field size if we took
7518 the size of the typedef (zero), instead of the size of
7519 the target type. */
7520 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7521 field_type = ada_typedef_target_type (field_type);
7522
7523 TYPE_FIELD_TYPE (rtype, f) = field_type;
7524 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7525 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7526 fld_bit_len =
7527 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7528 else
7529 fld_bit_len =
7530 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7531 }
7532 if (off + fld_bit_len > bit_len)
7533 bit_len = off + fld_bit_len;
7534 off += fld_bit_len;
7535 TYPE_LENGTH (rtype) =
7536 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7537 }
7538
7539 /* We handle the variant part, if any, at the end because of certain
7540 odd cases in which it is re-ordered so as NOT to be the last field of
7541 the record. This can happen in the presence of representation
7542 clauses. */
7543 if (variant_field >= 0)
7544 {
7545 struct type *branch_type;
7546
7547 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7548
7549 if (dval0 == NULL)
7550 dval = value_from_contents_and_address (rtype, valaddr, address);
7551 else
7552 dval = dval0;
7553
7554 branch_type =
7555 to_fixed_variant_branch_type
7556 (TYPE_FIELD_TYPE (type, variant_field),
7557 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7558 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7559 if (branch_type == NULL)
7560 {
7561 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7562 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7563 TYPE_NFIELDS (rtype) -= 1;
7564 }
7565 else
7566 {
7567 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7568 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7569 fld_bit_len =
7570 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7571 TARGET_CHAR_BIT;
7572 if (off + fld_bit_len > bit_len)
7573 bit_len = off + fld_bit_len;
7574 TYPE_LENGTH (rtype) =
7575 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7576 }
7577 }
7578
7579 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7580 should contain the alignment of that record, which should be a strictly
7581 positive value. If null or negative, then something is wrong, most
7582 probably in the debug info. In that case, we don't round up the size
7583 of the resulting type. If this record is not part of another structure,
7584 the current RTYPE length might be good enough for our purposes. */
7585 if (TYPE_LENGTH (type) <= 0)
7586 {
7587 if (TYPE_NAME (rtype))
7588 warning (_("Invalid type size for `%s' detected: %d."),
7589 TYPE_NAME (rtype), TYPE_LENGTH (type));
7590 else
7591 warning (_("Invalid type size for <unnamed> detected: %d."),
7592 TYPE_LENGTH (type));
7593 }
7594 else
7595 {
7596 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7597 TYPE_LENGTH (type));
7598 }
7599
7600 value_free_to_mark (mark);
7601 if (TYPE_LENGTH (rtype) > varsize_limit)
7602 error (_("record type with dynamic size is larger than varsize-limit"));
7603 return rtype;
7604 }
7605
7606 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7607 of 1. */
7608
7609 static struct type *
7610 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7611 CORE_ADDR address, struct value *dval0)
7612 {
7613 return ada_template_to_fixed_record_type_1 (type, valaddr,
7614 address, dval0, 1);
7615 }
7616
7617 /* An ordinary record type in which ___XVL-convention fields and
7618 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7619 static approximations, containing all possible fields. Uses
7620 no runtime values. Useless for use in values, but that's OK,
7621 since the results are used only for type determinations. Works on both
7622 structs and unions. Representation note: to save space, we memorize
7623 the result of this function in the TYPE_TARGET_TYPE of the
7624 template type. */
7625
7626 static struct type *
7627 template_to_static_fixed_type (struct type *type0)
7628 {
7629 struct type *type;
7630 int nfields;
7631 int f;
7632
7633 if (TYPE_TARGET_TYPE (type0) != NULL)
7634 return TYPE_TARGET_TYPE (type0);
7635
7636 nfields = TYPE_NFIELDS (type0);
7637 type = type0;
7638
7639 for (f = 0; f < nfields; f += 1)
7640 {
7641 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7642 struct type *new_type;
7643
7644 if (is_dynamic_field (type0, f))
7645 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7646 else
7647 new_type = static_unwrap_type (field_type);
7648 if (type == type0 && new_type != field_type)
7649 {
7650 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7651 TYPE_CODE (type) = TYPE_CODE (type0);
7652 INIT_CPLUS_SPECIFIC (type);
7653 TYPE_NFIELDS (type) = nfields;
7654 TYPE_FIELDS (type) = (struct field *)
7655 TYPE_ALLOC (type, nfields * sizeof (struct field));
7656 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7657 sizeof (struct field) * nfields);
7658 TYPE_NAME (type) = ada_type_name (type0);
7659 TYPE_TAG_NAME (type) = NULL;
7660 TYPE_FIXED_INSTANCE (type) = 1;
7661 TYPE_LENGTH (type) = 0;
7662 }
7663 TYPE_FIELD_TYPE (type, f) = new_type;
7664 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7665 }
7666 return type;
7667 }
7668
7669 /* Given an object of type TYPE whose contents are at VALADDR and
7670 whose address in memory is ADDRESS, returns a revision of TYPE,
7671 which should be a non-dynamic-sized record, in which the variant
7672 part, if any, is replaced with the appropriate branch. Looks
7673 for discriminant values in DVAL0, which can be NULL if the record
7674 contains the necessary discriminant values. */
7675
7676 static struct type *
7677 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7678 CORE_ADDR address, struct value *dval0)
7679 {
7680 struct value *mark = value_mark ();
7681 struct value *dval;
7682 struct type *rtype;
7683 struct type *branch_type;
7684 int nfields = TYPE_NFIELDS (type);
7685 int variant_field = variant_field_index (type);
7686
7687 if (variant_field == -1)
7688 return type;
7689
7690 if (dval0 == NULL)
7691 dval = value_from_contents_and_address (type, valaddr, address);
7692 else
7693 dval = dval0;
7694
7695 rtype = alloc_type_copy (type);
7696 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7697 INIT_CPLUS_SPECIFIC (rtype);
7698 TYPE_NFIELDS (rtype) = nfields;
7699 TYPE_FIELDS (rtype) =
7700 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7701 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7702 sizeof (struct field) * nfields);
7703 TYPE_NAME (rtype) = ada_type_name (type);
7704 TYPE_TAG_NAME (rtype) = NULL;
7705 TYPE_FIXED_INSTANCE (rtype) = 1;
7706 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7707
7708 branch_type = to_fixed_variant_branch_type
7709 (TYPE_FIELD_TYPE (type, variant_field),
7710 cond_offset_host (valaddr,
7711 TYPE_FIELD_BITPOS (type, variant_field)
7712 / TARGET_CHAR_BIT),
7713 cond_offset_target (address,
7714 TYPE_FIELD_BITPOS (type, variant_field)
7715 / TARGET_CHAR_BIT), dval);
7716 if (branch_type == NULL)
7717 {
7718 int f;
7719
7720 for (f = variant_field + 1; f < nfields; f += 1)
7721 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7722 TYPE_NFIELDS (rtype) -= 1;
7723 }
7724 else
7725 {
7726 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7727 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7728 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7729 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7730 }
7731 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7732
7733 value_free_to_mark (mark);
7734 return rtype;
7735 }
7736
7737 /* An ordinary record type (with fixed-length fields) that describes
7738 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7739 beginning of this section]. Any necessary discriminants' values
7740 should be in DVAL, a record value; it may be NULL if the object
7741 at ADDR itself contains any necessary discriminant values.
7742 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7743 values from the record are needed. Except in the case that DVAL,
7744 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7745 unchecked) is replaced by a particular branch of the variant.
7746
7747 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7748 is questionable and may be removed. It can arise during the
7749 processing of an unconstrained-array-of-record type where all the
7750 variant branches have exactly the same size. This is because in
7751 such cases, the compiler does not bother to use the XVS convention
7752 when encoding the record. I am currently dubious of this
7753 shortcut and suspect the compiler should be altered. FIXME. */
7754
7755 static struct type *
7756 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7757 CORE_ADDR address, struct value *dval)
7758 {
7759 struct type *templ_type;
7760
7761 if (TYPE_FIXED_INSTANCE (type0))
7762 return type0;
7763
7764 templ_type = dynamic_template_type (type0);
7765
7766 if (templ_type != NULL)
7767 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7768 else if (variant_field_index (type0) >= 0)
7769 {
7770 if (dval == NULL && valaddr == NULL && address == 0)
7771 return type0;
7772 return to_record_with_fixed_variant_part (type0, valaddr, address,
7773 dval);
7774 }
7775 else
7776 {
7777 TYPE_FIXED_INSTANCE (type0) = 1;
7778 return type0;
7779 }
7780
7781 }
7782
7783 /* An ordinary record type (with fixed-length fields) that describes
7784 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7785 union type. Any necessary discriminants' values should be in DVAL,
7786 a record value. That is, this routine selects the appropriate
7787 branch of the union at ADDR according to the discriminant value
7788 indicated in the union's type name. Returns VAR_TYPE0 itself if
7789 it represents a variant subject to a pragma Unchecked_Union. */
7790
7791 static struct type *
7792 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7793 CORE_ADDR address, struct value *dval)
7794 {
7795 int which;
7796 struct type *templ_type;
7797 struct type *var_type;
7798
7799 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7800 var_type = TYPE_TARGET_TYPE (var_type0);
7801 else
7802 var_type = var_type0;
7803
7804 templ_type = ada_find_parallel_type (var_type, "___XVU");
7805
7806 if (templ_type != NULL)
7807 var_type = templ_type;
7808
7809 if (is_unchecked_variant (var_type, value_type (dval)))
7810 return var_type0;
7811 which =
7812 ada_which_variant_applies (var_type,
7813 value_type (dval), value_contents (dval));
7814
7815 if (which < 0)
7816 return empty_record (var_type);
7817 else if (is_dynamic_field (var_type, which))
7818 return to_fixed_record_type
7819 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7820 valaddr, address, dval);
7821 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7822 return
7823 to_fixed_record_type
7824 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7825 else
7826 return TYPE_FIELD_TYPE (var_type, which);
7827 }
7828
7829 /* Assuming that TYPE0 is an array type describing the type of a value
7830 at ADDR, and that DVAL describes a record containing any
7831 discriminants used in TYPE0, returns a type for the value that
7832 contains no dynamic components (that is, no components whose sizes
7833 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7834 true, gives an error message if the resulting type's size is over
7835 varsize_limit. */
7836
7837 static struct type *
7838 to_fixed_array_type (struct type *type0, struct value *dval,
7839 int ignore_too_big)
7840 {
7841 struct type *index_type_desc;
7842 struct type *result;
7843 int constrained_packed_array_p;
7844
7845 type0 = ada_check_typedef (type0);
7846 if (TYPE_FIXED_INSTANCE (type0))
7847 return type0;
7848
7849 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7850 if (constrained_packed_array_p)
7851 type0 = decode_constrained_packed_array_type (type0);
7852
7853 index_type_desc = ada_find_parallel_type (type0, "___XA");
7854 ada_fixup_array_indexes_type (index_type_desc);
7855 if (index_type_desc == NULL)
7856 {
7857 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7858
7859 /* NOTE: elt_type---the fixed version of elt_type0---should never
7860 depend on the contents of the array in properly constructed
7861 debugging data. */
7862 /* Create a fixed version of the array element type.
7863 We're not providing the address of an element here,
7864 and thus the actual object value cannot be inspected to do
7865 the conversion. This should not be a problem, since arrays of
7866 unconstrained objects are not allowed. In particular, all
7867 the elements of an array of a tagged type should all be of
7868 the same type specified in the debugging info. No need to
7869 consult the object tag. */
7870 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7871
7872 /* Make sure we always create a new array type when dealing with
7873 packed array types, since we're going to fix-up the array
7874 type length and element bitsize a little further down. */
7875 if (elt_type0 == elt_type && !constrained_packed_array_p)
7876 result = type0;
7877 else
7878 result = create_array_type (alloc_type_copy (type0),
7879 elt_type, TYPE_INDEX_TYPE (type0));
7880 }
7881 else
7882 {
7883 int i;
7884 struct type *elt_type0;
7885
7886 elt_type0 = type0;
7887 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7888 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7889
7890 /* NOTE: result---the fixed version of elt_type0---should never
7891 depend on the contents of the array in properly constructed
7892 debugging data. */
7893 /* Create a fixed version of the array element type.
7894 We're not providing the address of an element here,
7895 and thus the actual object value cannot be inspected to do
7896 the conversion. This should not be a problem, since arrays of
7897 unconstrained objects are not allowed. In particular, all
7898 the elements of an array of a tagged type should all be of
7899 the same type specified in the debugging info. No need to
7900 consult the object tag. */
7901 result =
7902 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7903
7904 elt_type0 = type0;
7905 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7906 {
7907 struct type *range_type =
7908 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7909
7910 result = create_array_type (alloc_type_copy (elt_type0),
7911 result, range_type);
7912 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7913 }
7914 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7915 error (_("array type with dynamic size is larger than varsize-limit"));
7916 }
7917
7918 /* We want to preserve the type name. This can be useful when
7919 trying to get the type name of a value that has already been
7920 printed (for instance, if the user did "print VAR; whatis $". */
7921 TYPE_NAME (result) = TYPE_NAME (type0);
7922
7923 if (constrained_packed_array_p)
7924 {
7925 /* So far, the resulting type has been created as if the original
7926 type was a regular (non-packed) array type. As a result, the
7927 bitsize of the array elements needs to be set again, and the array
7928 length needs to be recomputed based on that bitsize. */
7929 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7930 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7931
7932 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7933 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7934 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7935 TYPE_LENGTH (result)++;
7936 }
7937
7938 TYPE_FIXED_INSTANCE (result) = 1;
7939 return result;
7940 }
7941
7942
7943 /* A standard type (containing no dynamically sized components)
7944 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7945 DVAL describes a record containing any discriminants used in TYPE0,
7946 and may be NULL if there are none, or if the object of type TYPE at
7947 ADDRESS or in VALADDR contains these discriminants.
7948
7949 If CHECK_TAG is not null, in the case of tagged types, this function
7950 attempts to locate the object's tag and use it to compute the actual
7951 type. However, when ADDRESS is null, we cannot use it to determine the
7952 location of the tag, and therefore compute the tagged type's actual type.
7953 So we return the tagged type without consulting the tag. */
7954
7955 static struct type *
7956 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7957 CORE_ADDR address, struct value *dval, int check_tag)
7958 {
7959 type = ada_check_typedef (type);
7960 switch (TYPE_CODE (type))
7961 {
7962 default:
7963 return type;
7964 case TYPE_CODE_STRUCT:
7965 {
7966 struct type *static_type = to_static_fixed_type (type);
7967 struct type *fixed_record_type =
7968 to_fixed_record_type (type, valaddr, address, NULL);
7969
7970 /* If STATIC_TYPE is a tagged type and we know the object's address,
7971 then we can determine its tag, and compute the object's actual
7972 type from there. Note that we have to use the fixed record
7973 type (the parent part of the record may have dynamic fields
7974 and the way the location of _tag is expressed may depend on
7975 them). */
7976
7977 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7978 {
7979 struct type *real_type =
7980 type_from_tag (value_tag_from_contents_and_address
7981 (fixed_record_type,
7982 valaddr,
7983 address));
7984
7985 if (real_type != NULL)
7986 return to_fixed_record_type (real_type, valaddr, address, NULL);
7987 }
7988
7989 /* Check to see if there is a parallel ___XVZ variable.
7990 If there is, then it provides the actual size of our type. */
7991 else if (ada_type_name (fixed_record_type) != NULL)
7992 {
7993 const char *name = ada_type_name (fixed_record_type);
7994 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7995 int xvz_found = 0;
7996 LONGEST size;
7997
7998 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7999 size = get_int_var_value (xvz_name, &xvz_found);
8000 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8001 {
8002 fixed_record_type = copy_type (fixed_record_type);
8003 TYPE_LENGTH (fixed_record_type) = size;
8004
8005 /* The FIXED_RECORD_TYPE may have be a stub. We have
8006 observed this when the debugging info is STABS, and
8007 apparently it is something that is hard to fix.
8008
8009 In practice, we don't need the actual type definition
8010 at all, because the presence of the XVZ variable allows us
8011 to assume that there must be a XVS type as well, which we
8012 should be able to use later, when we need the actual type
8013 definition.
8014
8015 In the meantime, pretend that the "fixed" type we are
8016 returning is NOT a stub, because this can cause trouble
8017 when using this type to create new types targeting it.
8018 Indeed, the associated creation routines often check
8019 whether the target type is a stub and will try to replace
8020 it, thus using a type with the wrong size. This, in turn,
8021 might cause the new type to have the wrong size too.
8022 Consider the case of an array, for instance, where the size
8023 of the array is computed from the number of elements in
8024 our array multiplied by the size of its element. */
8025 TYPE_STUB (fixed_record_type) = 0;
8026 }
8027 }
8028 return fixed_record_type;
8029 }
8030 case TYPE_CODE_ARRAY:
8031 return to_fixed_array_type (type, dval, 1);
8032 case TYPE_CODE_UNION:
8033 if (dval == NULL)
8034 return type;
8035 else
8036 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8037 }
8038 }
8039
8040 /* The same as ada_to_fixed_type_1, except that it preserves the type
8041 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8042
8043 The typedef layer needs be preserved in order to differentiate between
8044 arrays and array pointers when both types are implemented using the same
8045 fat pointer. In the array pointer case, the pointer is encoded as
8046 a typedef of the pointer type. For instance, considering:
8047
8048 type String_Access is access String;
8049 S1 : String_Access := null;
8050
8051 To the debugger, S1 is defined as a typedef of type String. But
8052 to the user, it is a pointer. So if the user tries to print S1,
8053 we should not dereference the array, but print the array address
8054 instead.
8055
8056 If we didn't preserve the typedef layer, we would lose the fact that
8057 the type is to be presented as a pointer (needs de-reference before
8058 being printed). And we would also use the source-level type name. */
8059
8060 struct type *
8061 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8062 CORE_ADDR address, struct value *dval, int check_tag)
8063
8064 {
8065 struct type *fixed_type =
8066 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8067
8068 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8069 then preserve the typedef layer.
8070
8071 Implementation note: We can only check the main-type portion of
8072 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8073 from TYPE now returns a type that has the same instance flags
8074 as TYPE. For instance, if TYPE is a "typedef const", and its
8075 target type is a "struct", then the typedef elimination will return
8076 a "const" version of the target type. See check_typedef for more
8077 details about how the typedef layer elimination is done.
8078
8079 brobecker/2010-11-19: It seems to me that the only case where it is
8080 useful to preserve the typedef layer is when dealing with fat pointers.
8081 Perhaps, we could add a check for that and preserve the typedef layer
8082 only in that situation. But this seems unecessary so far, probably
8083 because we call check_typedef/ada_check_typedef pretty much everywhere.
8084 */
8085 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8086 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8087 == TYPE_MAIN_TYPE (fixed_type)))
8088 return type;
8089
8090 return fixed_type;
8091 }
8092
8093 /* A standard (static-sized) type corresponding as well as possible to
8094 TYPE0, but based on no runtime data. */
8095
8096 static struct type *
8097 to_static_fixed_type (struct type *type0)
8098 {
8099 struct type *type;
8100
8101 if (type0 == NULL)
8102 return NULL;
8103
8104 if (TYPE_FIXED_INSTANCE (type0))
8105 return type0;
8106
8107 type0 = ada_check_typedef (type0);
8108
8109 switch (TYPE_CODE (type0))
8110 {
8111 default:
8112 return type0;
8113 case TYPE_CODE_STRUCT:
8114 type = dynamic_template_type (type0);
8115 if (type != NULL)
8116 return template_to_static_fixed_type (type);
8117 else
8118 return template_to_static_fixed_type (type0);
8119 case TYPE_CODE_UNION:
8120 type = ada_find_parallel_type (type0, "___XVU");
8121 if (type != NULL)
8122 return template_to_static_fixed_type (type);
8123 else
8124 return template_to_static_fixed_type (type0);
8125 }
8126 }
8127
8128 /* A static approximation of TYPE with all type wrappers removed. */
8129
8130 static struct type *
8131 static_unwrap_type (struct type *type)
8132 {
8133 if (ada_is_aligner_type (type))
8134 {
8135 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8136 if (ada_type_name (type1) == NULL)
8137 TYPE_NAME (type1) = ada_type_name (type);
8138
8139 return static_unwrap_type (type1);
8140 }
8141 else
8142 {
8143 struct type *raw_real_type = ada_get_base_type (type);
8144
8145 if (raw_real_type == type)
8146 return type;
8147 else
8148 return to_static_fixed_type (raw_real_type);
8149 }
8150 }
8151
8152 /* In some cases, incomplete and private types require
8153 cross-references that are not resolved as records (for example,
8154 type Foo;
8155 type FooP is access Foo;
8156 V: FooP;
8157 type Foo is array ...;
8158 ). In these cases, since there is no mechanism for producing
8159 cross-references to such types, we instead substitute for FooP a
8160 stub enumeration type that is nowhere resolved, and whose tag is
8161 the name of the actual type. Call these types "non-record stubs". */
8162
8163 /* A type equivalent to TYPE that is not a non-record stub, if one
8164 exists, otherwise TYPE. */
8165
8166 struct type *
8167 ada_check_typedef (struct type *type)
8168 {
8169 if (type == NULL)
8170 return NULL;
8171
8172 /* If our type is a typedef type of a fat pointer, then we're done.
8173 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8174 what allows us to distinguish between fat pointers that represent
8175 array types, and fat pointers that represent array access types
8176 (in both cases, the compiler implements them as fat pointers). */
8177 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8178 && is_thick_pntr (ada_typedef_target_type (type)))
8179 return type;
8180
8181 CHECK_TYPEDEF (type);
8182 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8183 || !TYPE_STUB (type)
8184 || TYPE_TAG_NAME (type) == NULL)
8185 return type;
8186 else
8187 {
8188 const char *name = TYPE_TAG_NAME (type);
8189 struct type *type1 = ada_find_any_type (name);
8190
8191 if (type1 == NULL)
8192 return type;
8193
8194 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8195 stubs pointing to arrays, as we don't create symbols for array
8196 types, only for the typedef-to-array types). If that's the case,
8197 strip the typedef layer. */
8198 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8199 type1 = ada_check_typedef (type1);
8200
8201 return type1;
8202 }
8203 }
8204
8205 /* A value representing the data at VALADDR/ADDRESS as described by
8206 type TYPE0, but with a standard (static-sized) type that correctly
8207 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8208 type, then return VAL0 [this feature is simply to avoid redundant
8209 creation of struct values]. */
8210
8211 static struct value *
8212 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8213 struct value *val0)
8214 {
8215 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8216
8217 if (type == type0 && val0 != NULL)
8218 return val0;
8219 else
8220 return value_from_contents_and_address (type, 0, address);
8221 }
8222
8223 /* A value representing VAL, but with a standard (static-sized) type
8224 that correctly describes it. Does not necessarily create a new
8225 value. */
8226
8227 struct value *
8228 ada_to_fixed_value (struct value *val)
8229 {
8230 val = unwrap_value (val);
8231 val = ada_to_fixed_value_create (value_type (val),
8232 value_address (val),
8233 val);
8234 return val;
8235 }
8236 \f
8237
8238 /* Attributes */
8239
8240 /* Table mapping attribute numbers to names.
8241 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8242
8243 static const char *attribute_names[] = {
8244 "<?>",
8245
8246 "first",
8247 "last",
8248 "length",
8249 "image",
8250 "max",
8251 "min",
8252 "modulus",
8253 "pos",
8254 "size",
8255 "tag",
8256 "val",
8257 0
8258 };
8259
8260 const char *
8261 ada_attribute_name (enum exp_opcode n)
8262 {
8263 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8264 return attribute_names[n - OP_ATR_FIRST + 1];
8265 else
8266 return attribute_names[0];
8267 }
8268
8269 /* Evaluate the 'POS attribute applied to ARG. */
8270
8271 static LONGEST
8272 pos_atr (struct value *arg)
8273 {
8274 struct value *val = coerce_ref (arg);
8275 struct type *type = value_type (val);
8276
8277 if (!discrete_type_p (type))
8278 error (_("'POS only defined on discrete types"));
8279
8280 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8281 {
8282 int i;
8283 LONGEST v = value_as_long (val);
8284
8285 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8286 {
8287 if (v == TYPE_FIELD_BITPOS (type, i))
8288 return i;
8289 }
8290 error (_("enumeration value is invalid: can't find 'POS"));
8291 }
8292 else
8293 return value_as_long (val);
8294 }
8295
8296 static struct value *
8297 value_pos_atr (struct type *type, struct value *arg)
8298 {
8299 return value_from_longest (type, pos_atr (arg));
8300 }
8301
8302 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8303
8304 static struct value *
8305 value_val_atr (struct type *type, struct value *arg)
8306 {
8307 if (!discrete_type_p (type))
8308 error (_("'VAL only defined on discrete types"));
8309 if (!integer_type_p (value_type (arg)))
8310 error (_("'VAL requires integral argument"));
8311
8312 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8313 {
8314 long pos = value_as_long (arg);
8315
8316 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8317 error (_("argument to 'VAL out of range"));
8318 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8319 }
8320 else
8321 return value_from_longest (type, value_as_long (arg));
8322 }
8323 \f
8324
8325 /* Evaluation */
8326
8327 /* True if TYPE appears to be an Ada character type.
8328 [At the moment, this is true only for Character and Wide_Character;
8329 It is a heuristic test that could stand improvement]. */
8330
8331 int
8332 ada_is_character_type (struct type *type)
8333 {
8334 const char *name;
8335
8336 /* If the type code says it's a character, then assume it really is,
8337 and don't check any further. */
8338 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8339 return 1;
8340
8341 /* Otherwise, assume it's a character type iff it is a discrete type
8342 with a known character type name. */
8343 name = ada_type_name (type);
8344 return (name != NULL
8345 && (TYPE_CODE (type) == TYPE_CODE_INT
8346 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8347 && (strcmp (name, "character") == 0
8348 || strcmp (name, "wide_character") == 0
8349 || strcmp (name, "wide_wide_character") == 0
8350 || strcmp (name, "unsigned char") == 0));
8351 }
8352
8353 /* True if TYPE appears to be an Ada string type. */
8354
8355 int
8356 ada_is_string_type (struct type *type)
8357 {
8358 type = ada_check_typedef (type);
8359 if (type != NULL
8360 && TYPE_CODE (type) != TYPE_CODE_PTR
8361 && (ada_is_simple_array_type (type)
8362 || ada_is_array_descriptor_type (type))
8363 && ada_array_arity (type) == 1)
8364 {
8365 struct type *elttype = ada_array_element_type (type, 1);
8366
8367 return ada_is_character_type (elttype);
8368 }
8369 else
8370 return 0;
8371 }
8372
8373 /* The compiler sometimes provides a parallel XVS type for a given
8374 PAD type. Normally, it is safe to follow the PAD type directly,
8375 but older versions of the compiler have a bug that causes the offset
8376 of its "F" field to be wrong. Following that field in that case
8377 would lead to incorrect results, but this can be worked around
8378 by ignoring the PAD type and using the associated XVS type instead.
8379
8380 Set to True if the debugger should trust the contents of PAD types.
8381 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8382 static int trust_pad_over_xvs = 1;
8383
8384 /* True if TYPE is a struct type introduced by the compiler to force the
8385 alignment of a value. Such types have a single field with a
8386 distinctive name. */
8387
8388 int
8389 ada_is_aligner_type (struct type *type)
8390 {
8391 type = ada_check_typedef (type);
8392
8393 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8394 return 0;
8395
8396 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8397 && TYPE_NFIELDS (type) == 1
8398 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8399 }
8400
8401 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8402 the parallel type. */
8403
8404 struct type *
8405 ada_get_base_type (struct type *raw_type)
8406 {
8407 struct type *real_type_namer;
8408 struct type *raw_real_type;
8409
8410 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8411 return raw_type;
8412
8413 if (ada_is_aligner_type (raw_type))
8414 /* The encoding specifies that we should always use the aligner type.
8415 So, even if this aligner type has an associated XVS type, we should
8416 simply ignore it.
8417
8418 According to the compiler gurus, an XVS type parallel to an aligner
8419 type may exist because of a stabs limitation. In stabs, aligner
8420 types are empty because the field has a variable-sized type, and
8421 thus cannot actually be used as an aligner type. As a result,
8422 we need the associated parallel XVS type to decode the type.
8423 Since the policy in the compiler is to not change the internal
8424 representation based on the debugging info format, we sometimes
8425 end up having a redundant XVS type parallel to the aligner type. */
8426 return raw_type;
8427
8428 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8429 if (real_type_namer == NULL
8430 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8431 || TYPE_NFIELDS (real_type_namer) != 1)
8432 return raw_type;
8433
8434 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8435 {
8436 /* This is an older encoding form where the base type needs to be
8437 looked up by name. We prefer the newer enconding because it is
8438 more efficient. */
8439 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8440 if (raw_real_type == NULL)
8441 return raw_type;
8442 else
8443 return raw_real_type;
8444 }
8445
8446 /* The field in our XVS type is a reference to the base type. */
8447 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8448 }
8449
8450 /* The type of value designated by TYPE, with all aligners removed. */
8451
8452 struct type *
8453 ada_aligned_type (struct type *type)
8454 {
8455 if (ada_is_aligner_type (type))
8456 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8457 else
8458 return ada_get_base_type (type);
8459 }
8460
8461
8462 /* The address of the aligned value in an object at address VALADDR
8463 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8464
8465 const gdb_byte *
8466 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8467 {
8468 if (ada_is_aligner_type (type))
8469 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8470 valaddr +
8471 TYPE_FIELD_BITPOS (type,
8472 0) / TARGET_CHAR_BIT);
8473 else
8474 return valaddr;
8475 }
8476
8477
8478
8479 /* The printed representation of an enumeration literal with encoded
8480 name NAME. The value is good to the next call of ada_enum_name. */
8481 const char *
8482 ada_enum_name (const char *name)
8483 {
8484 static char *result;
8485 static size_t result_len = 0;
8486 char *tmp;
8487
8488 /* First, unqualify the enumeration name:
8489 1. Search for the last '.' character. If we find one, then skip
8490 all the preceding characters, the unqualified name starts
8491 right after that dot.
8492 2. Otherwise, we may be debugging on a target where the compiler
8493 translates dots into "__". Search forward for double underscores,
8494 but stop searching when we hit an overloading suffix, which is
8495 of the form "__" followed by digits. */
8496
8497 tmp = strrchr (name, '.');
8498 if (tmp != NULL)
8499 name = tmp + 1;
8500 else
8501 {
8502 while ((tmp = strstr (name, "__")) != NULL)
8503 {
8504 if (isdigit (tmp[2]))
8505 break;
8506 else
8507 name = tmp + 2;
8508 }
8509 }
8510
8511 if (name[0] == 'Q')
8512 {
8513 int v;
8514
8515 if (name[1] == 'U' || name[1] == 'W')
8516 {
8517 if (sscanf (name + 2, "%x", &v) != 1)
8518 return name;
8519 }
8520 else
8521 return name;
8522
8523 GROW_VECT (result, result_len, 16);
8524 if (isascii (v) && isprint (v))
8525 xsnprintf (result, result_len, "'%c'", v);
8526 else if (name[1] == 'U')
8527 xsnprintf (result, result_len, "[\"%02x\"]", v);
8528 else
8529 xsnprintf (result, result_len, "[\"%04x\"]", v);
8530
8531 return result;
8532 }
8533 else
8534 {
8535 tmp = strstr (name, "__");
8536 if (tmp == NULL)
8537 tmp = strstr (name, "$");
8538 if (tmp != NULL)
8539 {
8540 GROW_VECT (result, result_len, tmp - name + 1);
8541 strncpy (result, name, tmp - name);
8542 result[tmp - name] = '\0';
8543 return result;
8544 }
8545
8546 return name;
8547 }
8548 }
8549
8550 /* Evaluate the subexpression of EXP starting at *POS as for
8551 evaluate_type, updating *POS to point just past the evaluated
8552 expression. */
8553
8554 static struct value *
8555 evaluate_subexp_type (struct expression *exp, int *pos)
8556 {
8557 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8558 }
8559
8560 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8561 value it wraps. */
8562
8563 static struct value *
8564 unwrap_value (struct value *val)
8565 {
8566 struct type *type = ada_check_typedef (value_type (val));
8567
8568 if (ada_is_aligner_type (type))
8569 {
8570 struct value *v = ada_value_struct_elt (val, "F", 0);
8571 struct type *val_type = ada_check_typedef (value_type (v));
8572
8573 if (ada_type_name (val_type) == NULL)
8574 TYPE_NAME (val_type) = ada_type_name (type);
8575
8576 return unwrap_value (v);
8577 }
8578 else
8579 {
8580 struct type *raw_real_type =
8581 ada_check_typedef (ada_get_base_type (type));
8582
8583 /* If there is no parallel XVS or XVE type, then the value is
8584 already unwrapped. Return it without further modification. */
8585 if ((type == raw_real_type)
8586 && ada_find_parallel_type (type, "___XVE") == NULL)
8587 return val;
8588
8589 return
8590 coerce_unspec_val_to_type
8591 (val, ada_to_fixed_type (raw_real_type, 0,
8592 value_address (val),
8593 NULL, 1));
8594 }
8595 }
8596
8597 static struct value *
8598 cast_to_fixed (struct type *type, struct value *arg)
8599 {
8600 LONGEST val;
8601
8602 if (type == value_type (arg))
8603 return arg;
8604 else if (ada_is_fixed_point_type (value_type (arg)))
8605 val = ada_float_to_fixed (type,
8606 ada_fixed_to_float (value_type (arg),
8607 value_as_long (arg)));
8608 else
8609 {
8610 DOUBLEST argd = value_as_double (arg);
8611
8612 val = ada_float_to_fixed (type, argd);
8613 }
8614
8615 return value_from_longest (type, val);
8616 }
8617
8618 static struct value *
8619 cast_from_fixed (struct type *type, struct value *arg)
8620 {
8621 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8622 value_as_long (arg));
8623
8624 return value_from_double (type, val);
8625 }
8626
8627 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8628 return the converted value. */
8629
8630 static struct value *
8631 coerce_for_assign (struct type *type, struct value *val)
8632 {
8633 struct type *type2 = value_type (val);
8634
8635 if (type == type2)
8636 return val;
8637
8638 type2 = ada_check_typedef (type2);
8639 type = ada_check_typedef (type);
8640
8641 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8642 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8643 {
8644 val = ada_value_ind (val);
8645 type2 = value_type (val);
8646 }
8647
8648 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8649 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8650 {
8651 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8652 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8653 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8654 error (_("Incompatible types in assignment"));
8655 deprecated_set_value_type (val, type);
8656 }
8657 return val;
8658 }
8659
8660 static struct value *
8661 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8662 {
8663 struct value *val;
8664 struct type *type1, *type2;
8665 LONGEST v, v1, v2;
8666
8667 arg1 = coerce_ref (arg1);
8668 arg2 = coerce_ref (arg2);
8669 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8670 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8671
8672 if (TYPE_CODE (type1) != TYPE_CODE_INT
8673 || TYPE_CODE (type2) != TYPE_CODE_INT)
8674 return value_binop (arg1, arg2, op);
8675
8676 switch (op)
8677 {
8678 case BINOP_MOD:
8679 case BINOP_DIV:
8680 case BINOP_REM:
8681 break;
8682 default:
8683 return value_binop (arg1, arg2, op);
8684 }
8685
8686 v2 = value_as_long (arg2);
8687 if (v2 == 0)
8688 error (_("second operand of %s must not be zero."), op_string (op));
8689
8690 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8691 return value_binop (arg1, arg2, op);
8692
8693 v1 = value_as_long (arg1);
8694 switch (op)
8695 {
8696 case BINOP_DIV:
8697 v = v1 / v2;
8698 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8699 v += v > 0 ? -1 : 1;
8700 break;
8701 case BINOP_REM:
8702 v = v1 % v2;
8703 if (v * v1 < 0)
8704 v -= v2;
8705 break;
8706 default:
8707 /* Should not reach this point. */
8708 v = 0;
8709 }
8710
8711 val = allocate_value (type1);
8712 store_unsigned_integer (value_contents_raw (val),
8713 TYPE_LENGTH (value_type (val)),
8714 gdbarch_byte_order (get_type_arch (type1)), v);
8715 return val;
8716 }
8717
8718 static int
8719 ada_value_equal (struct value *arg1, struct value *arg2)
8720 {
8721 if (ada_is_direct_array_type (value_type (arg1))
8722 || ada_is_direct_array_type (value_type (arg2)))
8723 {
8724 /* Automatically dereference any array reference before
8725 we attempt to perform the comparison. */
8726 arg1 = ada_coerce_ref (arg1);
8727 arg2 = ada_coerce_ref (arg2);
8728
8729 arg1 = ada_coerce_to_simple_array (arg1);
8730 arg2 = ada_coerce_to_simple_array (arg2);
8731 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8732 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8733 error (_("Attempt to compare array with non-array"));
8734 /* FIXME: The following works only for types whose
8735 representations use all bits (no padding or undefined bits)
8736 and do not have user-defined equality. */
8737 return
8738 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8739 && memcmp (value_contents (arg1), value_contents (arg2),
8740 TYPE_LENGTH (value_type (arg1))) == 0;
8741 }
8742 return value_equal (arg1, arg2);
8743 }
8744
8745 /* Total number of component associations in the aggregate starting at
8746 index PC in EXP. Assumes that index PC is the start of an
8747 OP_AGGREGATE. */
8748
8749 static int
8750 num_component_specs (struct expression *exp, int pc)
8751 {
8752 int n, m, i;
8753
8754 m = exp->elts[pc + 1].longconst;
8755 pc += 3;
8756 n = 0;
8757 for (i = 0; i < m; i += 1)
8758 {
8759 switch (exp->elts[pc].opcode)
8760 {
8761 default:
8762 n += 1;
8763 break;
8764 case OP_CHOICES:
8765 n += exp->elts[pc + 1].longconst;
8766 break;
8767 }
8768 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8769 }
8770 return n;
8771 }
8772
8773 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8774 component of LHS (a simple array or a record), updating *POS past
8775 the expression, assuming that LHS is contained in CONTAINER. Does
8776 not modify the inferior's memory, nor does it modify LHS (unless
8777 LHS == CONTAINER). */
8778
8779 static void
8780 assign_component (struct value *container, struct value *lhs, LONGEST index,
8781 struct expression *exp, int *pos)
8782 {
8783 struct value *mark = value_mark ();
8784 struct value *elt;
8785
8786 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8787 {
8788 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8789 struct value *index_val = value_from_longest (index_type, index);
8790
8791 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8792 }
8793 else
8794 {
8795 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8796 elt = ada_to_fixed_value (elt);
8797 }
8798
8799 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8800 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8801 else
8802 value_assign_to_component (container, elt,
8803 ada_evaluate_subexp (NULL, exp, pos,
8804 EVAL_NORMAL));
8805
8806 value_free_to_mark (mark);
8807 }
8808
8809 /* Assuming that LHS represents an lvalue having a record or array
8810 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8811 of that aggregate's value to LHS, advancing *POS past the
8812 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8813 lvalue containing LHS (possibly LHS itself). Does not modify
8814 the inferior's memory, nor does it modify the contents of
8815 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8816
8817 static struct value *
8818 assign_aggregate (struct value *container,
8819 struct value *lhs, struct expression *exp,
8820 int *pos, enum noside noside)
8821 {
8822 struct type *lhs_type;
8823 int n = exp->elts[*pos+1].longconst;
8824 LONGEST low_index, high_index;
8825 int num_specs;
8826 LONGEST *indices;
8827 int max_indices, num_indices;
8828 int is_array_aggregate;
8829 int i;
8830
8831 *pos += 3;
8832 if (noside != EVAL_NORMAL)
8833 {
8834 for (i = 0; i < n; i += 1)
8835 ada_evaluate_subexp (NULL, exp, pos, noside);
8836 return container;
8837 }
8838
8839 container = ada_coerce_ref (container);
8840 if (ada_is_direct_array_type (value_type (container)))
8841 container = ada_coerce_to_simple_array (container);
8842 lhs = ada_coerce_ref (lhs);
8843 if (!deprecated_value_modifiable (lhs))
8844 error (_("Left operand of assignment is not a modifiable lvalue."));
8845
8846 lhs_type = value_type (lhs);
8847 if (ada_is_direct_array_type (lhs_type))
8848 {
8849 lhs = ada_coerce_to_simple_array (lhs);
8850 lhs_type = value_type (lhs);
8851 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8852 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8853 is_array_aggregate = 1;
8854 }
8855 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8856 {
8857 low_index = 0;
8858 high_index = num_visible_fields (lhs_type) - 1;
8859 is_array_aggregate = 0;
8860 }
8861 else
8862 error (_("Left-hand side must be array or record."));
8863
8864 num_specs = num_component_specs (exp, *pos - 3);
8865 max_indices = 4 * num_specs + 4;
8866 indices = alloca (max_indices * sizeof (indices[0]));
8867 indices[0] = indices[1] = low_index - 1;
8868 indices[2] = indices[3] = high_index + 1;
8869 num_indices = 4;
8870
8871 for (i = 0; i < n; i += 1)
8872 {
8873 switch (exp->elts[*pos].opcode)
8874 {
8875 case OP_CHOICES:
8876 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8877 &num_indices, max_indices,
8878 low_index, high_index);
8879 break;
8880 case OP_POSITIONAL:
8881 aggregate_assign_positional (container, lhs, exp, pos, indices,
8882 &num_indices, max_indices,
8883 low_index, high_index);
8884 break;
8885 case OP_OTHERS:
8886 if (i != n-1)
8887 error (_("Misplaced 'others' clause"));
8888 aggregate_assign_others (container, lhs, exp, pos, indices,
8889 num_indices, low_index, high_index);
8890 break;
8891 default:
8892 error (_("Internal error: bad aggregate clause"));
8893 }
8894 }
8895
8896 return container;
8897 }
8898
8899 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8900 construct at *POS, updating *POS past the construct, given that
8901 the positions are relative to lower bound LOW, where HIGH is the
8902 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8903 updating *NUM_INDICES as needed. CONTAINER is as for
8904 assign_aggregate. */
8905 static void
8906 aggregate_assign_positional (struct value *container,
8907 struct value *lhs, struct expression *exp,
8908 int *pos, LONGEST *indices, int *num_indices,
8909 int max_indices, LONGEST low, LONGEST high)
8910 {
8911 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8912
8913 if (ind - 1 == high)
8914 warning (_("Extra components in aggregate ignored."));
8915 if (ind <= high)
8916 {
8917 add_component_interval (ind, ind, indices, num_indices, max_indices);
8918 *pos += 3;
8919 assign_component (container, lhs, ind, exp, pos);
8920 }
8921 else
8922 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8923 }
8924
8925 /* Assign into the components of LHS indexed by the OP_CHOICES
8926 construct at *POS, updating *POS past the construct, given that
8927 the allowable indices are LOW..HIGH. Record the indices assigned
8928 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8929 needed. CONTAINER is as for assign_aggregate. */
8930 static void
8931 aggregate_assign_from_choices (struct value *container,
8932 struct value *lhs, struct expression *exp,
8933 int *pos, LONGEST *indices, int *num_indices,
8934 int max_indices, LONGEST low, LONGEST high)
8935 {
8936 int j;
8937 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8938 int choice_pos, expr_pc;
8939 int is_array = ada_is_direct_array_type (value_type (lhs));
8940
8941 choice_pos = *pos += 3;
8942
8943 for (j = 0; j < n_choices; j += 1)
8944 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8945 expr_pc = *pos;
8946 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8947
8948 for (j = 0; j < n_choices; j += 1)
8949 {
8950 LONGEST lower, upper;
8951 enum exp_opcode op = exp->elts[choice_pos].opcode;
8952
8953 if (op == OP_DISCRETE_RANGE)
8954 {
8955 choice_pos += 1;
8956 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8957 EVAL_NORMAL));
8958 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8959 EVAL_NORMAL));
8960 }
8961 else if (is_array)
8962 {
8963 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8964 EVAL_NORMAL));
8965 upper = lower;
8966 }
8967 else
8968 {
8969 int ind;
8970 const char *name;
8971
8972 switch (op)
8973 {
8974 case OP_NAME:
8975 name = &exp->elts[choice_pos + 2].string;
8976 break;
8977 case OP_VAR_VALUE:
8978 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8979 break;
8980 default:
8981 error (_("Invalid record component association."));
8982 }
8983 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8984 ind = 0;
8985 if (! find_struct_field (name, value_type (lhs), 0,
8986 NULL, NULL, NULL, NULL, &ind))
8987 error (_("Unknown component name: %s."), name);
8988 lower = upper = ind;
8989 }
8990
8991 if (lower <= upper && (lower < low || upper > high))
8992 error (_("Index in component association out of bounds."));
8993
8994 add_component_interval (lower, upper, indices, num_indices,
8995 max_indices);
8996 while (lower <= upper)
8997 {
8998 int pos1;
8999
9000 pos1 = expr_pc;
9001 assign_component (container, lhs, lower, exp, &pos1);
9002 lower += 1;
9003 }
9004 }
9005 }
9006
9007 /* Assign the value of the expression in the OP_OTHERS construct in
9008 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9009 have not been previously assigned. The index intervals already assigned
9010 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9011 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9012 static void
9013 aggregate_assign_others (struct value *container,
9014 struct value *lhs, struct expression *exp,
9015 int *pos, LONGEST *indices, int num_indices,
9016 LONGEST low, LONGEST high)
9017 {
9018 int i;
9019 int expr_pc = *pos + 1;
9020
9021 for (i = 0; i < num_indices - 2; i += 2)
9022 {
9023 LONGEST ind;
9024
9025 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9026 {
9027 int localpos;
9028
9029 localpos = expr_pc;
9030 assign_component (container, lhs, ind, exp, &localpos);
9031 }
9032 }
9033 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9034 }
9035
9036 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9037 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9038 modifying *SIZE as needed. It is an error if *SIZE exceeds
9039 MAX_SIZE. The resulting intervals do not overlap. */
9040 static void
9041 add_component_interval (LONGEST low, LONGEST high,
9042 LONGEST* indices, int *size, int max_size)
9043 {
9044 int i, j;
9045
9046 for (i = 0; i < *size; i += 2) {
9047 if (high >= indices[i] && low <= indices[i + 1])
9048 {
9049 int kh;
9050
9051 for (kh = i + 2; kh < *size; kh += 2)
9052 if (high < indices[kh])
9053 break;
9054 if (low < indices[i])
9055 indices[i] = low;
9056 indices[i + 1] = indices[kh - 1];
9057 if (high > indices[i + 1])
9058 indices[i + 1] = high;
9059 memcpy (indices + i + 2, indices + kh, *size - kh);
9060 *size -= kh - i - 2;
9061 return;
9062 }
9063 else if (high < indices[i])
9064 break;
9065 }
9066
9067 if (*size == max_size)
9068 error (_("Internal error: miscounted aggregate components."));
9069 *size += 2;
9070 for (j = *size-1; j >= i+2; j -= 1)
9071 indices[j] = indices[j - 2];
9072 indices[i] = low;
9073 indices[i + 1] = high;
9074 }
9075
9076 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9077 is different. */
9078
9079 static struct value *
9080 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9081 {
9082 if (type == ada_check_typedef (value_type (arg2)))
9083 return arg2;
9084
9085 if (ada_is_fixed_point_type (type))
9086 return (cast_to_fixed (type, arg2));
9087
9088 if (ada_is_fixed_point_type (value_type (arg2)))
9089 return cast_from_fixed (type, arg2);
9090
9091 return value_cast (type, arg2);
9092 }
9093
9094 /* Evaluating Ada expressions, and printing their result.
9095 ------------------------------------------------------
9096
9097 1. Introduction:
9098 ----------------
9099
9100 We usually evaluate an Ada expression in order to print its value.
9101 We also evaluate an expression in order to print its type, which
9102 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9103 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9104 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9105 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9106 similar.
9107
9108 Evaluating expressions is a little more complicated for Ada entities
9109 than it is for entities in languages such as C. The main reason for
9110 this is that Ada provides types whose definition might be dynamic.
9111 One example of such types is variant records. Or another example
9112 would be an array whose bounds can only be known at run time.
9113
9114 The following description is a general guide as to what should be
9115 done (and what should NOT be done) in order to evaluate an expression
9116 involving such types, and when. This does not cover how the semantic
9117 information is encoded by GNAT as this is covered separatly. For the
9118 document used as the reference for the GNAT encoding, see exp_dbug.ads
9119 in the GNAT sources.
9120
9121 Ideally, we should embed each part of this description next to its
9122 associated code. Unfortunately, the amount of code is so vast right
9123 now that it's hard to see whether the code handling a particular
9124 situation might be duplicated or not. One day, when the code is
9125 cleaned up, this guide might become redundant with the comments
9126 inserted in the code, and we might want to remove it.
9127
9128 2. ``Fixing'' an Entity, the Simple Case:
9129 -----------------------------------------
9130
9131 When evaluating Ada expressions, the tricky issue is that they may
9132 reference entities whose type contents and size are not statically
9133 known. Consider for instance a variant record:
9134
9135 type Rec (Empty : Boolean := True) is record
9136 case Empty is
9137 when True => null;
9138 when False => Value : Integer;
9139 end case;
9140 end record;
9141 Yes : Rec := (Empty => False, Value => 1);
9142 No : Rec := (empty => True);
9143
9144 The size and contents of that record depends on the value of the
9145 descriminant (Rec.Empty). At this point, neither the debugging
9146 information nor the associated type structure in GDB are able to
9147 express such dynamic types. So what the debugger does is to create
9148 "fixed" versions of the type that applies to the specific object.
9149 We also informally refer to this opperation as "fixing" an object,
9150 which means creating its associated fixed type.
9151
9152 Example: when printing the value of variable "Yes" above, its fixed
9153 type would look like this:
9154
9155 type Rec is record
9156 Empty : Boolean;
9157 Value : Integer;
9158 end record;
9159
9160 On the other hand, if we printed the value of "No", its fixed type
9161 would become:
9162
9163 type Rec is record
9164 Empty : Boolean;
9165 end record;
9166
9167 Things become a little more complicated when trying to fix an entity
9168 with a dynamic type that directly contains another dynamic type,
9169 such as an array of variant records, for instance. There are
9170 two possible cases: Arrays, and records.
9171
9172 3. ``Fixing'' Arrays:
9173 ---------------------
9174
9175 The type structure in GDB describes an array in terms of its bounds,
9176 and the type of its elements. By design, all elements in the array
9177 have the same type and we cannot represent an array of variant elements
9178 using the current type structure in GDB. When fixing an array,
9179 we cannot fix the array element, as we would potentially need one
9180 fixed type per element of the array. As a result, the best we can do
9181 when fixing an array is to produce an array whose bounds and size
9182 are correct (allowing us to read it from memory), but without having
9183 touched its element type. Fixing each element will be done later,
9184 when (if) necessary.
9185
9186 Arrays are a little simpler to handle than records, because the same
9187 amount of memory is allocated for each element of the array, even if
9188 the amount of space actually used by each element differs from element
9189 to element. Consider for instance the following array of type Rec:
9190
9191 type Rec_Array is array (1 .. 2) of Rec;
9192
9193 The actual amount of memory occupied by each element might be different
9194 from element to element, depending on the value of their discriminant.
9195 But the amount of space reserved for each element in the array remains
9196 fixed regardless. So we simply need to compute that size using
9197 the debugging information available, from which we can then determine
9198 the array size (we multiply the number of elements of the array by
9199 the size of each element).
9200
9201 The simplest case is when we have an array of a constrained element
9202 type. For instance, consider the following type declarations:
9203
9204 type Bounded_String (Max_Size : Integer) is
9205 Length : Integer;
9206 Buffer : String (1 .. Max_Size);
9207 end record;
9208 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9209
9210 In this case, the compiler describes the array as an array of
9211 variable-size elements (identified by its XVS suffix) for which
9212 the size can be read in the parallel XVZ variable.
9213
9214 In the case of an array of an unconstrained element type, the compiler
9215 wraps the array element inside a private PAD type. This type should not
9216 be shown to the user, and must be "unwrap"'ed before printing. Note
9217 that we also use the adjective "aligner" in our code to designate
9218 these wrapper types.
9219
9220 In some cases, the size allocated for each element is statically
9221 known. In that case, the PAD type already has the correct size,
9222 and the array element should remain unfixed.
9223
9224 But there are cases when this size is not statically known.
9225 For instance, assuming that "Five" is an integer variable:
9226
9227 type Dynamic is array (1 .. Five) of Integer;
9228 type Wrapper (Has_Length : Boolean := False) is record
9229 Data : Dynamic;
9230 case Has_Length is
9231 when True => Length : Integer;
9232 when False => null;
9233 end case;
9234 end record;
9235 type Wrapper_Array is array (1 .. 2) of Wrapper;
9236
9237 Hello : Wrapper_Array := (others => (Has_Length => True,
9238 Data => (others => 17),
9239 Length => 1));
9240
9241
9242 The debugging info would describe variable Hello as being an
9243 array of a PAD type. The size of that PAD type is not statically
9244 known, but can be determined using a parallel XVZ variable.
9245 In that case, a copy of the PAD type with the correct size should
9246 be used for the fixed array.
9247
9248 3. ``Fixing'' record type objects:
9249 ----------------------------------
9250
9251 Things are slightly different from arrays in the case of dynamic
9252 record types. In this case, in order to compute the associated
9253 fixed type, we need to determine the size and offset of each of
9254 its components. This, in turn, requires us to compute the fixed
9255 type of each of these components.
9256
9257 Consider for instance the example:
9258
9259 type Bounded_String (Max_Size : Natural) is record
9260 Str : String (1 .. Max_Size);
9261 Length : Natural;
9262 end record;
9263 My_String : Bounded_String (Max_Size => 10);
9264
9265 In that case, the position of field "Length" depends on the size
9266 of field Str, which itself depends on the value of the Max_Size
9267 discriminant. In order to fix the type of variable My_String,
9268 we need to fix the type of field Str. Therefore, fixing a variant
9269 record requires us to fix each of its components.
9270
9271 However, if a component does not have a dynamic size, the component
9272 should not be fixed. In particular, fields that use a PAD type
9273 should not fixed. Here is an example where this might happen
9274 (assuming type Rec above):
9275
9276 type Container (Big : Boolean) is record
9277 First : Rec;
9278 After : Integer;
9279 case Big is
9280 when True => Another : Integer;
9281 when False => null;
9282 end case;
9283 end record;
9284 My_Container : Container := (Big => False,
9285 First => (Empty => True),
9286 After => 42);
9287
9288 In that example, the compiler creates a PAD type for component First,
9289 whose size is constant, and then positions the component After just
9290 right after it. The offset of component After is therefore constant
9291 in this case.
9292
9293 The debugger computes the position of each field based on an algorithm
9294 that uses, among other things, the actual position and size of the field
9295 preceding it. Let's now imagine that the user is trying to print
9296 the value of My_Container. If the type fixing was recursive, we would
9297 end up computing the offset of field After based on the size of the
9298 fixed version of field First. And since in our example First has
9299 only one actual field, the size of the fixed type is actually smaller
9300 than the amount of space allocated to that field, and thus we would
9301 compute the wrong offset of field After.
9302
9303 To make things more complicated, we need to watch out for dynamic
9304 components of variant records (identified by the ___XVL suffix in
9305 the component name). Even if the target type is a PAD type, the size
9306 of that type might not be statically known. So the PAD type needs
9307 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9308 we might end up with the wrong size for our component. This can be
9309 observed with the following type declarations:
9310
9311 type Octal is new Integer range 0 .. 7;
9312 type Octal_Array is array (Positive range <>) of Octal;
9313 pragma Pack (Octal_Array);
9314
9315 type Octal_Buffer (Size : Positive) is record
9316 Buffer : Octal_Array (1 .. Size);
9317 Length : Integer;
9318 end record;
9319
9320 In that case, Buffer is a PAD type whose size is unset and needs
9321 to be computed by fixing the unwrapped type.
9322
9323 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9324 ----------------------------------------------------------
9325
9326 Lastly, when should the sub-elements of an entity that remained unfixed
9327 thus far, be actually fixed?
9328
9329 The answer is: Only when referencing that element. For instance
9330 when selecting one component of a record, this specific component
9331 should be fixed at that point in time. Or when printing the value
9332 of a record, each component should be fixed before its value gets
9333 printed. Similarly for arrays, the element of the array should be
9334 fixed when printing each element of the array, or when extracting
9335 one element out of that array. On the other hand, fixing should
9336 not be performed on the elements when taking a slice of an array!
9337
9338 Note that one of the side-effects of miscomputing the offset and
9339 size of each field is that we end up also miscomputing the size
9340 of the containing type. This can have adverse results when computing
9341 the value of an entity. GDB fetches the value of an entity based
9342 on the size of its type, and thus a wrong size causes GDB to fetch
9343 the wrong amount of memory. In the case where the computed size is
9344 too small, GDB fetches too little data to print the value of our
9345 entiry. Results in this case as unpredicatble, as we usually read
9346 past the buffer containing the data =:-o. */
9347
9348 /* Implement the evaluate_exp routine in the exp_descriptor structure
9349 for the Ada language. */
9350
9351 static struct value *
9352 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9353 int *pos, enum noside noside)
9354 {
9355 enum exp_opcode op;
9356 int tem;
9357 int pc;
9358 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9359 struct type *type;
9360 int nargs, oplen;
9361 struct value **argvec;
9362
9363 pc = *pos;
9364 *pos += 1;
9365 op = exp->elts[pc].opcode;
9366
9367 switch (op)
9368 {
9369 default:
9370 *pos -= 1;
9371 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9372 arg1 = unwrap_value (arg1);
9373
9374 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9375 then we need to perform the conversion manually, because
9376 evaluate_subexp_standard doesn't do it. This conversion is
9377 necessary in Ada because the different kinds of float/fixed
9378 types in Ada have different representations.
9379
9380 Similarly, we need to perform the conversion from OP_LONG
9381 ourselves. */
9382 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9383 arg1 = ada_value_cast (expect_type, arg1, noside);
9384
9385 return arg1;
9386
9387 case OP_STRING:
9388 {
9389 struct value *result;
9390
9391 *pos -= 1;
9392 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9393 /* The result type will have code OP_STRING, bashed there from
9394 OP_ARRAY. Bash it back. */
9395 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9396 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9397 return result;
9398 }
9399
9400 case UNOP_CAST:
9401 (*pos) += 2;
9402 type = exp->elts[pc + 1].type;
9403 arg1 = evaluate_subexp (type, exp, pos, noside);
9404 if (noside == EVAL_SKIP)
9405 goto nosideret;
9406 arg1 = ada_value_cast (type, arg1, noside);
9407 return arg1;
9408
9409 case UNOP_QUAL:
9410 (*pos) += 2;
9411 type = exp->elts[pc + 1].type;
9412 return ada_evaluate_subexp (type, exp, pos, noside);
9413
9414 case BINOP_ASSIGN:
9415 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9416 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9417 {
9418 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9419 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9420 return arg1;
9421 return ada_value_assign (arg1, arg1);
9422 }
9423 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9424 except if the lhs of our assignment is a convenience variable.
9425 In the case of assigning to a convenience variable, the lhs
9426 should be exactly the result of the evaluation of the rhs. */
9427 type = value_type (arg1);
9428 if (VALUE_LVAL (arg1) == lval_internalvar)
9429 type = NULL;
9430 arg2 = evaluate_subexp (type, exp, pos, noside);
9431 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9432 return arg1;
9433 if (ada_is_fixed_point_type (value_type (arg1)))
9434 arg2 = cast_to_fixed (value_type (arg1), arg2);
9435 else if (ada_is_fixed_point_type (value_type (arg2)))
9436 error
9437 (_("Fixed-point values must be assigned to fixed-point variables"));
9438 else
9439 arg2 = coerce_for_assign (value_type (arg1), arg2);
9440 return ada_value_assign (arg1, arg2);
9441
9442 case BINOP_ADD:
9443 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9444 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9445 if (noside == EVAL_SKIP)
9446 goto nosideret;
9447 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9448 return (value_from_longest
9449 (value_type (arg1),
9450 value_as_long (arg1) + value_as_long (arg2)));
9451 if ((ada_is_fixed_point_type (value_type (arg1))
9452 || ada_is_fixed_point_type (value_type (arg2)))
9453 && value_type (arg1) != value_type (arg2))
9454 error (_("Operands of fixed-point addition must have the same type"));
9455 /* Do the addition, and cast the result to the type of the first
9456 argument. We cannot cast the result to a reference type, so if
9457 ARG1 is a reference type, find its underlying type. */
9458 type = value_type (arg1);
9459 while (TYPE_CODE (type) == TYPE_CODE_REF)
9460 type = TYPE_TARGET_TYPE (type);
9461 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9462 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9463
9464 case BINOP_SUB:
9465 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9466 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9467 if (noside == EVAL_SKIP)
9468 goto nosideret;
9469 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9470 return (value_from_longest
9471 (value_type (arg1),
9472 value_as_long (arg1) - value_as_long (arg2)));
9473 if ((ada_is_fixed_point_type (value_type (arg1))
9474 || ada_is_fixed_point_type (value_type (arg2)))
9475 && value_type (arg1) != value_type (arg2))
9476 error (_("Operands of fixed-point subtraction "
9477 "must have the same type"));
9478 /* Do the substraction, and cast the result to the type of the first
9479 argument. We cannot cast the result to a reference type, so if
9480 ARG1 is a reference type, find its underlying type. */
9481 type = value_type (arg1);
9482 while (TYPE_CODE (type) == TYPE_CODE_REF)
9483 type = TYPE_TARGET_TYPE (type);
9484 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9485 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9486
9487 case BINOP_MUL:
9488 case BINOP_DIV:
9489 case BINOP_REM:
9490 case BINOP_MOD:
9491 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9492 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9493 if (noside == EVAL_SKIP)
9494 goto nosideret;
9495 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9496 {
9497 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9498 return value_zero (value_type (arg1), not_lval);
9499 }
9500 else
9501 {
9502 type = builtin_type (exp->gdbarch)->builtin_double;
9503 if (ada_is_fixed_point_type (value_type (arg1)))
9504 arg1 = cast_from_fixed (type, arg1);
9505 if (ada_is_fixed_point_type (value_type (arg2)))
9506 arg2 = cast_from_fixed (type, arg2);
9507 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9508 return ada_value_binop (arg1, arg2, op);
9509 }
9510
9511 case BINOP_EQUAL:
9512 case BINOP_NOTEQUAL:
9513 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9514 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9515 if (noside == EVAL_SKIP)
9516 goto nosideret;
9517 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9518 tem = 0;
9519 else
9520 {
9521 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9522 tem = ada_value_equal (arg1, arg2);
9523 }
9524 if (op == BINOP_NOTEQUAL)
9525 tem = !tem;
9526 type = language_bool_type (exp->language_defn, exp->gdbarch);
9527 return value_from_longest (type, (LONGEST) tem);
9528
9529 case UNOP_NEG:
9530 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9531 if (noside == EVAL_SKIP)
9532 goto nosideret;
9533 else if (ada_is_fixed_point_type (value_type (arg1)))
9534 return value_cast (value_type (arg1), value_neg (arg1));
9535 else
9536 {
9537 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9538 return value_neg (arg1);
9539 }
9540
9541 case BINOP_LOGICAL_AND:
9542 case BINOP_LOGICAL_OR:
9543 case UNOP_LOGICAL_NOT:
9544 {
9545 struct value *val;
9546
9547 *pos -= 1;
9548 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9549 type = language_bool_type (exp->language_defn, exp->gdbarch);
9550 return value_cast (type, val);
9551 }
9552
9553 case BINOP_BITWISE_AND:
9554 case BINOP_BITWISE_IOR:
9555 case BINOP_BITWISE_XOR:
9556 {
9557 struct value *val;
9558
9559 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9560 *pos = pc;
9561 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9562
9563 return value_cast (value_type (arg1), val);
9564 }
9565
9566 case OP_VAR_VALUE:
9567 *pos -= 1;
9568
9569 if (noside == EVAL_SKIP)
9570 {
9571 *pos += 4;
9572 goto nosideret;
9573 }
9574 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9575 /* Only encountered when an unresolved symbol occurs in a
9576 context other than a function call, in which case, it is
9577 invalid. */
9578 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9579 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9580 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9581 {
9582 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9583 /* Check to see if this is a tagged type. We also need to handle
9584 the case where the type is a reference to a tagged type, but
9585 we have to be careful to exclude pointers to tagged types.
9586 The latter should be shown as usual (as a pointer), whereas
9587 a reference should mostly be transparent to the user. */
9588 if (ada_is_tagged_type (type, 0)
9589 || (TYPE_CODE(type) == TYPE_CODE_REF
9590 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9591 {
9592 /* Tagged types are a little special in the fact that the real
9593 type is dynamic and can only be determined by inspecting the
9594 object's tag. This means that we need to get the object's
9595 value first (EVAL_NORMAL) and then extract the actual object
9596 type from its tag.
9597
9598 Note that we cannot skip the final step where we extract
9599 the object type from its tag, because the EVAL_NORMAL phase
9600 results in dynamic components being resolved into fixed ones.
9601 This can cause problems when trying to print the type
9602 description of tagged types whose parent has a dynamic size:
9603 We use the type name of the "_parent" component in order
9604 to print the name of the ancestor type in the type description.
9605 If that component had a dynamic size, the resolution into
9606 a fixed type would result in the loss of that type name,
9607 thus preventing us from printing the name of the ancestor
9608 type in the type description. */
9609 struct type *actual_type;
9610
9611 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9612 actual_type = type_from_tag (ada_value_tag (arg1));
9613 if (actual_type == NULL)
9614 /* If, for some reason, we were unable to determine
9615 the actual type from the tag, then use the static
9616 approximation that we just computed as a fallback.
9617 This can happen if the debugging information is
9618 incomplete, for instance. */
9619 actual_type = type;
9620
9621 return value_zero (actual_type, not_lval);
9622 }
9623
9624 *pos += 4;
9625 return value_zero
9626 (to_static_fixed_type
9627 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9628 not_lval);
9629 }
9630 else
9631 {
9632 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9633 return ada_to_fixed_value (arg1);
9634 }
9635
9636 case OP_FUNCALL:
9637 (*pos) += 2;
9638
9639 /* Allocate arg vector, including space for the function to be
9640 called in argvec[0] and a terminating NULL. */
9641 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9642 argvec =
9643 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9644
9645 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9646 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9647 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9648 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9649 else
9650 {
9651 for (tem = 0; tem <= nargs; tem += 1)
9652 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9653 argvec[tem] = 0;
9654
9655 if (noside == EVAL_SKIP)
9656 goto nosideret;
9657 }
9658
9659 if (ada_is_constrained_packed_array_type
9660 (desc_base_type (value_type (argvec[0]))))
9661 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9662 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9663 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9664 /* This is a packed array that has already been fixed, and
9665 therefore already coerced to a simple array. Nothing further
9666 to do. */
9667 ;
9668 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9669 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9670 && VALUE_LVAL (argvec[0]) == lval_memory))
9671 argvec[0] = value_addr (argvec[0]);
9672
9673 type = ada_check_typedef (value_type (argvec[0]));
9674
9675 /* Ada allows us to implicitly dereference arrays when subscripting
9676 them. So, if this is an array typedef (encoding use for array
9677 access types encoded as fat pointers), strip it now. */
9678 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9679 type = ada_typedef_target_type (type);
9680
9681 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9682 {
9683 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9684 {
9685 case TYPE_CODE_FUNC:
9686 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9687 break;
9688 case TYPE_CODE_ARRAY:
9689 break;
9690 case TYPE_CODE_STRUCT:
9691 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9692 argvec[0] = ada_value_ind (argvec[0]);
9693 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9694 break;
9695 default:
9696 error (_("cannot subscript or call something of type `%s'"),
9697 ada_type_name (value_type (argvec[0])));
9698 break;
9699 }
9700 }
9701
9702 switch (TYPE_CODE (type))
9703 {
9704 case TYPE_CODE_FUNC:
9705 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9706 return allocate_value (TYPE_TARGET_TYPE (type));
9707 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9708 case TYPE_CODE_STRUCT:
9709 {
9710 int arity;
9711
9712 arity = ada_array_arity (type);
9713 type = ada_array_element_type (type, nargs);
9714 if (type == NULL)
9715 error (_("cannot subscript or call a record"));
9716 if (arity != nargs)
9717 error (_("wrong number of subscripts; expecting %d"), arity);
9718 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9719 return value_zero (ada_aligned_type (type), lval_memory);
9720 return
9721 unwrap_value (ada_value_subscript
9722 (argvec[0], nargs, argvec + 1));
9723 }
9724 case TYPE_CODE_ARRAY:
9725 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9726 {
9727 type = ada_array_element_type (type, nargs);
9728 if (type == NULL)
9729 error (_("element type of array unknown"));
9730 else
9731 return value_zero (ada_aligned_type (type), lval_memory);
9732 }
9733 return
9734 unwrap_value (ada_value_subscript
9735 (ada_coerce_to_simple_array (argvec[0]),
9736 nargs, argvec + 1));
9737 case TYPE_CODE_PTR: /* Pointer to array */
9738 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9739 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9740 {
9741 type = ada_array_element_type (type, nargs);
9742 if (type == NULL)
9743 error (_("element type of array unknown"));
9744 else
9745 return value_zero (ada_aligned_type (type), lval_memory);
9746 }
9747 return
9748 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9749 nargs, argvec + 1));
9750
9751 default:
9752 error (_("Attempt to index or call something other than an "
9753 "array or function"));
9754 }
9755
9756 case TERNOP_SLICE:
9757 {
9758 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9759 struct value *low_bound_val =
9760 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9761 struct value *high_bound_val =
9762 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9763 LONGEST low_bound;
9764 LONGEST high_bound;
9765
9766 low_bound_val = coerce_ref (low_bound_val);
9767 high_bound_val = coerce_ref (high_bound_val);
9768 low_bound = pos_atr (low_bound_val);
9769 high_bound = pos_atr (high_bound_val);
9770
9771 if (noside == EVAL_SKIP)
9772 goto nosideret;
9773
9774 /* If this is a reference to an aligner type, then remove all
9775 the aligners. */
9776 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9777 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9778 TYPE_TARGET_TYPE (value_type (array)) =
9779 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9780
9781 if (ada_is_constrained_packed_array_type (value_type (array)))
9782 error (_("cannot slice a packed array"));
9783
9784 /* If this is a reference to an array or an array lvalue,
9785 convert to a pointer. */
9786 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9787 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9788 && VALUE_LVAL (array) == lval_memory))
9789 array = value_addr (array);
9790
9791 if (noside == EVAL_AVOID_SIDE_EFFECTS
9792 && ada_is_array_descriptor_type (ada_check_typedef
9793 (value_type (array))))
9794 return empty_array (ada_type_of_array (array, 0), low_bound);
9795
9796 array = ada_coerce_to_simple_array_ptr (array);
9797
9798 /* If we have more than one level of pointer indirection,
9799 dereference the value until we get only one level. */
9800 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9801 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9802 == TYPE_CODE_PTR))
9803 array = value_ind (array);
9804
9805 /* Make sure we really do have an array type before going further,
9806 to avoid a SEGV when trying to get the index type or the target
9807 type later down the road if the debug info generated by
9808 the compiler is incorrect or incomplete. */
9809 if (!ada_is_simple_array_type (value_type (array)))
9810 error (_("cannot take slice of non-array"));
9811
9812 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9813 == TYPE_CODE_PTR)
9814 {
9815 struct type *type0 = ada_check_typedef (value_type (array));
9816
9817 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9818 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9819 else
9820 {
9821 struct type *arr_type0 =
9822 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9823
9824 return ada_value_slice_from_ptr (array, arr_type0,
9825 longest_to_int (low_bound),
9826 longest_to_int (high_bound));
9827 }
9828 }
9829 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9830 return array;
9831 else if (high_bound < low_bound)
9832 return empty_array (value_type (array), low_bound);
9833 else
9834 return ada_value_slice (array, longest_to_int (low_bound),
9835 longest_to_int (high_bound));
9836 }
9837
9838 case UNOP_IN_RANGE:
9839 (*pos) += 2;
9840 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9841 type = check_typedef (exp->elts[pc + 1].type);
9842
9843 if (noside == EVAL_SKIP)
9844 goto nosideret;
9845
9846 switch (TYPE_CODE (type))
9847 {
9848 default:
9849 lim_warning (_("Membership test incompletely implemented; "
9850 "always returns true"));
9851 type = language_bool_type (exp->language_defn, exp->gdbarch);
9852 return value_from_longest (type, (LONGEST) 1);
9853
9854 case TYPE_CODE_RANGE:
9855 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9856 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9857 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9858 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9859 type = language_bool_type (exp->language_defn, exp->gdbarch);
9860 return
9861 value_from_longest (type,
9862 (value_less (arg1, arg3)
9863 || value_equal (arg1, arg3))
9864 && (value_less (arg2, arg1)
9865 || value_equal (arg2, arg1)));
9866 }
9867
9868 case BINOP_IN_BOUNDS:
9869 (*pos) += 2;
9870 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9871 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9872
9873 if (noside == EVAL_SKIP)
9874 goto nosideret;
9875
9876 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9877 {
9878 type = language_bool_type (exp->language_defn, exp->gdbarch);
9879 return value_zero (type, not_lval);
9880 }
9881
9882 tem = longest_to_int (exp->elts[pc + 1].longconst);
9883
9884 type = ada_index_type (value_type (arg2), tem, "range");
9885 if (!type)
9886 type = value_type (arg1);
9887
9888 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9889 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9890
9891 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9892 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9893 type = language_bool_type (exp->language_defn, exp->gdbarch);
9894 return
9895 value_from_longest (type,
9896 (value_less (arg1, arg3)
9897 || value_equal (arg1, arg3))
9898 && (value_less (arg2, arg1)
9899 || value_equal (arg2, arg1)));
9900
9901 case TERNOP_IN_RANGE:
9902 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9903 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9904 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9905
9906 if (noside == EVAL_SKIP)
9907 goto nosideret;
9908
9909 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9910 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9911 type = language_bool_type (exp->language_defn, exp->gdbarch);
9912 return
9913 value_from_longest (type,
9914 (value_less (arg1, arg3)
9915 || value_equal (arg1, arg3))
9916 && (value_less (arg2, arg1)
9917 || value_equal (arg2, arg1)));
9918
9919 case OP_ATR_FIRST:
9920 case OP_ATR_LAST:
9921 case OP_ATR_LENGTH:
9922 {
9923 struct type *type_arg;
9924
9925 if (exp->elts[*pos].opcode == OP_TYPE)
9926 {
9927 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9928 arg1 = NULL;
9929 type_arg = check_typedef (exp->elts[pc + 2].type);
9930 }
9931 else
9932 {
9933 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9934 type_arg = NULL;
9935 }
9936
9937 if (exp->elts[*pos].opcode != OP_LONG)
9938 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9939 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9940 *pos += 4;
9941
9942 if (noside == EVAL_SKIP)
9943 goto nosideret;
9944
9945 if (type_arg == NULL)
9946 {
9947 arg1 = ada_coerce_ref (arg1);
9948
9949 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9950 arg1 = ada_coerce_to_simple_array (arg1);
9951
9952 type = ada_index_type (value_type (arg1), tem,
9953 ada_attribute_name (op));
9954 if (type == NULL)
9955 type = builtin_type (exp->gdbarch)->builtin_int;
9956
9957 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9958 return allocate_value (type);
9959
9960 switch (op)
9961 {
9962 default: /* Should never happen. */
9963 error (_("unexpected attribute encountered"));
9964 case OP_ATR_FIRST:
9965 return value_from_longest
9966 (type, ada_array_bound (arg1, tem, 0));
9967 case OP_ATR_LAST:
9968 return value_from_longest
9969 (type, ada_array_bound (arg1, tem, 1));
9970 case OP_ATR_LENGTH:
9971 return value_from_longest
9972 (type, ada_array_length (arg1, tem));
9973 }
9974 }
9975 else if (discrete_type_p (type_arg))
9976 {
9977 struct type *range_type;
9978 const char *name = ada_type_name (type_arg);
9979
9980 range_type = NULL;
9981 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9982 range_type = to_fixed_range_type (type_arg, NULL);
9983 if (range_type == NULL)
9984 range_type = type_arg;
9985 switch (op)
9986 {
9987 default:
9988 error (_("unexpected attribute encountered"));
9989 case OP_ATR_FIRST:
9990 return value_from_longest
9991 (range_type, ada_discrete_type_low_bound (range_type));
9992 case OP_ATR_LAST:
9993 return value_from_longest
9994 (range_type, ada_discrete_type_high_bound (range_type));
9995 case OP_ATR_LENGTH:
9996 error (_("the 'length attribute applies only to array types"));
9997 }
9998 }
9999 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10000 error (_("unimplemented type attribute"));
10001 else
10002 {
10003 LONGEST low, high;
10004
10005 if (ada_is_constrained_packed_array_type (type_arg))
10006 type_arg = decode_constrained_packed_array_type (type_arg);
10007
10008 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10009 if (type == NULL)
10010 type = builtin_type (exp->gdbarch)->builtin_int;
10011
10012 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10013 return allocate_value (type);
10014
10015 switch (op)
10016 {
10017 default:
10018 error (_("unexpected attribute encountered"));
10019 case OP_ATR_FIRST:
10020 low = ada_array_bound_from_type (type_arg, tem, 0);
10021 return value_from_longest (type, low);
10022 case OP_ATR_LAST:
10023 high = ada_array_bound_from_type (type_arg, tem, 1);
10024 return value_from_longest (type, high);
10025 case OP_ATR_LENGTH:
10026 low = ada_array_bound_from_type (type_arg, tem, 0);
10027 high = ada_array_bound_from_type (type_arg, tem, 1);
10028 return value_from_longest (type, high - low + 1);
10029 }
10030 }
10031 }
10032
10033 case OP_ATR_TAG:
10034 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10035 if (noside == EVAL_SKIP)
10036 goto nosideret;
10037
10038 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10039 return value_zero (ada_tag_type (arg1), not_lval);
10040
10041 return ada_value_tag (arg1);
10042
10043 case OP_ATR_MIN:
10044 case OP_ATR_MAX:
10045 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10046 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10047 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10048 if (noside == EVAL_SKIP)
10049 goto nosideret;
10050 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10051 return value_zero (value_type (arg1), not_lval);
10052 else
10053 {
10054 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10055 return value_binop (arg1, arg2,
10056 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10057 }
10058
10059 case OP_ATR_MODULUS:
10060 {
10061 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10062
10063 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10064 if (noside == EVAL_SKIP)
10065 goto nosideret;
10066
10067 if (!ada_is_modular_type (type_arg))
10068 error (_("'modulus must be applied to modular type"));
10069
10070 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10071 ada_modulus (type_arg));
10072 }
10073
10074
10075 case OP_ATR_POS:
10076 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10077 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10078 if (noside == EVAL_SKIP)
10079 goto nosideret;
10080 type = builtin_type (exp->gdbarch)->builtin_int;
10081 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10082 return value_zero (type, not_lval);
10083 else
10084 return value_pos_atr (type, arg1);
10085
10086 case OP_ATR_SIZE:
10087 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10088 type = value_type (arg1);
10089
10090 /* If the argument is a reference, then dereference its type, since
10091 the user is really asking for the size of the actual object,
10092 not the size of the pointer. */
10093 if (TYPE_CODE (type) == TYPE_CODE_REF)
10094 type = TYPE_TARGET_TYPE (type);
10095
10096 if (noside == EVAL_SKIP)
10097 goto nosideret;
10098 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10099 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10100 else
10101 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10102 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10103
10104 case OP_ATR_VAL:
10105 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10106 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10107 type = exp->elts[pc + 2].type;
10108 if (noside == EVAL_SKIP)
10109 goto nosideret;
10110 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10111 return value_zero (type, not_lval);
10112 else
10113 return value_val_atr (type, arg1);
10114
10115 case BINOP_EXP:
10116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10117 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10118 if (noside == EVAL_SKIP)
10119 goto nosideret;
10120 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10121 return value_zero (value_type (arg1), not_lval);
10122 else
10123 {
10124 /* For integer exponentiation operations,
10125 only promote the first argument. */
10126 if (is_integral_type (value_type (arg2)))
10127 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10128 else
10129 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10130
10131 return value_binop (arg1, arg2, op);
10132 }
10133
10134 case UNOP_PLUS:
10135 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10136 if (noside == EVAL_SKIP)
10137 goto nosideret;
10138 else
10139 return arg1;
10140
10141 case UNOP_ABS:
10142 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10143 if (noside == EVAL_SKIP)
10144 goto nosideret;
10145 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10146 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10147 return value_neg (arg1);
10148 else
10149 return arg1;
10150
10151 case UNOP_IND:
10152 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10153 if (noside == EVAL_SKIP)
10154 goto nosideret;
10155 type = ada_check_typedef (value_type (arg1));
10156 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10157 {
10158 if (ada_is_array_descriptor_type (type))
10159 /* GDB allows dereferencing GNAT array descriptors. */
10160 {
10161 struct type *arrType = ada_type_of_array (arg1, 0);
10162
10163 if (arrType == NULL)
10164 error (_("Attempt to dereference null array pointer."));
10165 return value_at_lazy (arrType, 0);
10166 }
10167 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10168 || TYPE_CODE (type) == TYPE_CODE_REF
10169 /* In C you can dereference an array to get the 1st elt. */
10170 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10171 {
10172 type = to_static_fixed_type
10173 (ada_aligned_type
10174 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10175 check_size (type);
10176 return value_zero (type, lval_memory);
10177 }
10178 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10179 {
10180 /* GDB allows dereferencing an int. */
10181 if (expect_type == NULL)
10182 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10183 lval_memory);
10184 else
10185 {
10186 expect_type =
10187 to_static_fixed_type (ada_aligned_type (expect_type));
10188 return value_zero (expect_type, lval_memory);
10189 }
10190 }
10191 else
10192 error (_("Attempt to take contents of a non-pointer value."));
10193 }
10194 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10195 type = ada_check_typedef (value_type (arg1));
10196
10197 if (TYPE_CODE (type) == TYPE_CODE_INT)
10198 /* GDB allows dereferencing an int. If we were given
10199 the expect_type, then use that as the target type.
10200 Otherwise, assume that the target type is an int. */
10201 {
10202 if (expect_type != NULL)
10203 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10204 arg1));
10205 else
10206 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10207 (CORE_ADDR) value_as_address (arg1));
10208 }
10209
10210 if (ada_is_array_descriptor_type (type))
10211 /* GDB allows dereferencing GNAT array descriptors. */
10212 return ada_coerce_to_simple_array (arg1);
10213 else
10214 return ada_value_ind (arg1);
10215
10216 case STRUCTOP_STRUCT:
10217 tem = longest_to_int (exp->elts[pc + 1].longconst);
10218 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10220 if (noside == EVAL_SKIP)
10221 goto nosideret;
10222 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10223 {
10224 struct type *type1 = value_type (arg1);
10225
10226 if (ada_is_tagged_type (type1, 1))
10227 {
10228 type = ada_lookup_struct_elt_type (type1,
10229 &exp->elts[pc + 2].string,
10230 1, 1, NULL);
10231 if (type == NULL)
10232 /* In this case, we assume that the field COULD exist
10233 in some extension of the type. Return an object of
10234 "type" void, which will match any formal
10235 (see ada_type_match). */
10236 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10237 lval_memory);
10238 }
10239 else
10240 type =
10241 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10242 0, NULL);
10243
10244 return value_zero (ada_aligned_type (type), lval_memory);
10245 }
10246 else
10247 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10248 arg1 = unwrap_value (arg1);
10249 return ada_to_fixed_value (arg1);
10250
10251 case OP_TYPE:
10252 /* The value is not supposed to be used. This is here to make it
10253 easier to accommodate expressions that contain types. */
10254 (*pos) += 2;
10255 if (noside == EVAL_SKIP)
10256 goto nosideret;
10257 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10258 return allocate_value (exp->elts[pc + 1].type);
10259 else
10260 error (_("Attempt to use a type name as an expression"));
10261
10262 case OP_AGGREGATE:
10263 case OP_CHOICES:
10264 case OP_OTHERS:
10265 case OP_DISCRETE_RANGE:
10266 case OP_POSITIONAL:
10267 case OP_NAME:
10268 if (noside == EVAL_NORMAL)
10269 switch (op)
10270 {
10271 case OP_NAME:
10272 error (_("Undefined name, ambiguous name, or renaming used in "
10273 "component association: %s."), &exp->elts[pc+2].string);
10274 case OP_AGGREGATE:
10275 error (_("Aggregates only allowed on the right of an assignment"));
10276 default:
10277 internal_error (__FILE__, __LINE__,
10278 _("aggregate apparently mangled"));
10279 }
10280
10281 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10282 *pos += oplen - 1;
10283 for (tem = 0; tem < nargs; tem += 1)
10284 ada_evaluate_subexp (NULL, exp, pos, noside);
10285 goto nosideret;
10286 }
10287
10288 nosideret:
10289 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10290 }
10291 \f
10292
10293 /* Fixed point */
10294
10295 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10296 type name that encodes the 'small and 'delta information.
10297 Otherwise, return NULL. */
10298
10299 static const char *
10300 fixed_type_info (struct type *type)
10301 {
10302 const char *name = ada_type_name (type);
10303 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10304
10305 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10306 {
10307 const char *tail = strstr (name, "___XF_");
10308
10309 if (tail == NULL)
10310 return NULL;
10311 else
10312 return tail + 5;
10313 }
10314 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10315 return fixed_type_info (TYPE_TARGET_TYPE (type));
10316 else
10317 return NULL;
10318 }
10319
10320 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10321
10322 int
10323 ada_is_fixed_point_type (struct type *type)
10324 {
10325 return fixed_type_info (type) != NULL;
10326 }
10327
10328 /* Return non-zero iff TYPE represents a System.Address type. */
10329
10330 int
10331 ada_is_system_address_type (struct type *type)
10332 {
10333 return (TYPE_NAME (type)
10334 && strcmp (TYPE_NAME (type), "system__address") == 0);
10335 }
10336
10337 /* Assuming that TYPE is the representation of an Ada fixed-point
10338 type, return its delta, or -1 if the type is malformed and the
10339 delta cannot be determined. */
10340
10341 DOUBLEST
10342 ada_delta (struct type *type)
10343 {
10344 const char *encoding = fixed_type_info (type);
10345 DOUBLEST num, den;
10346
10347 /* Strictly speaking, num and den are encoded as integer. However,
10348 they may not fit into a long, and they will have to be converted
10349 to DOUBLEST anyway. So scan them as DOUBLEST. */
10350 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10351 &num, &den) < 2)
10352 return -1.0;
10353 else
10354 return num / den;
10355 }
10356
10357 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10358 factor ('SMALL value) associated with the type. */
10359
10360 static DOUBLEST
10361 scaling_factor (struct type *type)
10362 {
10363 const char *encoding = fixed_type_info (type);
10364 DOUBLEST num0, den0, num1, den1;
10365 int n;
10366
10367 /* Strictly speaking, num's and den's are encoded as integer. However,
10368 they may not fit into a long, and they will have to be converted
10369 to DOUBLEST anyway. So scan them as DOUBLEST. */
10370 n = sscanf (encoding,
10371 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10372 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10373 &num0, &den0, &num1, &den1);
10374
10375 if (n < 2)
10376 return 1.0;
10377 else if (n == 4)
10378 return num1 / den1;
10379 else
10380 return num0 / den0;
10381 }
10382
10383
10384 /* Assuming that X is the representation of a value of fixed-point
10385 type TYPE, return its floating-point equivalent. */
10386
10387 DOUBLEST
10388 ada_fixed_to_float (struct type *type, LONGEST x)
10389 {
10390 return (DOUBLEST) x *scaling_factor (type);
10391 }
10392
10393 /* The representation of a fixed-point value of type TYPE
10394 corresponding to the value X. */
10395
10396 LONGEST
10397 ada_float_to_fixed (struct type *type, DOUBLEST x)
10398 {
10399 return (LONGEST) (x / scaling_factor (type) + 0.5);
10400 }
10401
10402 \f
10403
10404 /* Range types */
10405
10406 /* Scan STR beginning at position K for a discriminant name, and
10407 return the value of that discriminant field of DVAL in *PX. If
10408 PNEW_K is not null, put the position of the character beyond the
10409 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10410 not alter *PX and *PNEW_K if unsuccessful. */
10411
10412 static int
10413 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10414 int *pnew_k)
10415 {
10416 static char *bound_buffer = NULL;
10417 static size_t bound_buffer_len = 0;
10418 char *bound;
10419 char *pend;
10420 struct value *bound_val;
10421
10422 if (dval == NULL || str == NULL || str[k] == '\0')
10423 return 0;
10424
10425 pend = strstr (str + k, "__");
10426 if (pend == NULL)
10427 {
10428 bound = str + k;
10429 k += strlen (bound);
10430 }
10431 else
10432 {
10433 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10434 bound = bound_buffer;
10435 strncpy (bound_buffer, str + k, pend - (str + k));
10436 bound[pend - (str + k)] = '\0';
10437 k = pend - str;
10438 }
10439
10440 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10441 if (bound_val == NULL)
10442 return 0;
10443
10444 *px = value_as_long (bound_val);
10445 if (pnew_k != NULL)
10446 *pnew_k = k;
10447 return 1;
10448 }
10449
10450 /* Value of variable named NAME in the current environment. If
10451 no such variable found, then if ERR_MSG is null, returns 0, and
10452 otherwise causes an error with message ERR_MSG. */
10453
10454 static struct value *
10455 get_var_value (char *name, char *err_msg)
10456 {
10457 struct ada_symbol_info *syms;
10458 int nsyms;
10459
10460 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10461 &syms, 1);
10462
10463 if (nsyms != 1)
10464 {
10465 if (err_msg == NULL)
10466 return 0;
10467 else
10468 error (("%s"), err_msg);
10469 }
10470
10471 return value_of_variable (syms[0].sym, syms[0].block);
10472 }
10473
10474 /* Value of integer variable named NAME in the current environment. If
10475 no such variable found, returns 0, and sets *FLAG to 0. If
10476 successful, sets *FLAG to 1. */
10477
10478 LONGEST
10479 get_int_var_value (char *name, int *flag)
10480 {
10481 struct value *var_val = get_var_value (name, 0);
10482
10483 if (var_val == 0)
10484 {
10485 if (flag != NULL)
10486 *flag = 0;
10487 return 0;
10488 }
10489 else
10490 {
10491 if (flag != NULL)
10492 *flag = 1;
10493 return value_as_long (var_val);
10494 }
10495 }
10496
10497
10498 /* Return a range type whose base type is that of the range type named
10499 NAME in the current environment, and whose bounds are calculated
10500 from NAME according to the GNAT range encoding conventions.
10501 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10502 corresponding range type from debug information; fall back to using it
10503 if symbol lookup fails. If a new type must be created, allocate it
10504 like ORIG_TYPE was. The bounds information, in general, is encoded
10505 in NAME, the base type given in the named range type. */
10506
10507 static struct type *
10508 to_fixed_range_type (struct type *raw_type, struct value *dval)
10509 {
10510 const char *name;
10511 struct type *base_type;
10512 char *subtype_info;
10513
10514 gdb_assert (raw_type != NULL);
10515 gdb_assert (TYPE_NAME (raw_type) != NULL);
10516
10517 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10518 base_type = TYPE_TARGET_TYPE (raw_type);
10519 else
10520 base_type = raw_type;
10521
10522 name = TYPE_NAME (raw_type);
10523 subtype_info = strstr (name, "___XD");
10524 if (subtype_info == NULL)
10525 {
10526 LONGEST L = ada_discrete_type_low_bound (raw_type);
10527 LONGEST U = ada_discrete_type_high_bound (raw_type);
10528
10529 if (L < INT_MIN || U > INT_MAX)
10530 return raw_type;
10531 else
10532 return create_range_type (alloc_type_copy (raw_type), raw_type,
10533 ada_discrete_type_low_bound (raw_type),
10534 ada_discrete_type_high_bound (raw_type));
10535 }
10536 else
10537 {
10538 static char *name_buf = NULL;
10539 static size_t name_len = 0;
10540 int prefix_len = subtype_info - name;
10541 LONGEST L, U;
10542 struct type *type;
10543 char *bounds_str;
10544 int n;
10545
10546 GROW_VECT (name_buf, name_len, prefix_len + 5);
10547 strncpy (name_buf, name, prefix_len);
10548 name_buf[prefix_len] = '\0';
10549
10550 subtype_info += 5;
10551 bounds_str = strchr (subtype_info, '_');
10552 n = 1;
10553
10554 if (*subtype_info == 'L')
10555 {
10556 if (!ada_scan_number (bounds_str, n, &L, &n)
10557 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10558 return raw_type;
10559 if (bounds_str[n] == '_')
10560 n += 2;
10561 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10562 n += 1;
10563 subtype_info += 1;
10564 }
10565 else
10566 {
10567 int ok;
10568
10569 strcpy (name_buf + prefix_len, "___L");
10570 L = get_int_var_value (name_buf, &ok);
10571 if (!ok)
10572 {
10573 lim_warning (_("Unknown lower bound, using 1."));
10574 L = 1;
10575 }
10576 }
10577
10578 if (*subtype_info == 'U')
10579 {
10580 if (!ada_scan_number (bounds_str, n, &U, &n)
10581 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10582 return raw_type;
10583 }
10584 else
10585 {
10586 int ok;
10587
10588 strcpy (name_buf + prefix_len, "___U");
10589 U = get_int_var_value (name_buf, &ok);
10590 if (!ok)
10591 {
10592 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10593 U = L;
10594 }
10595 }
10596
10597 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10598 TYPE_NAME (type) = name;
10599 return type;
10600 }
10601 }
10602
10603 /* True iff NAME is the name of a range type. */
10604
10605 int
10606 ada_is_range_type_name (const char *name)
10607 {
10608 return (name != NULL && strstr (name, "___XD"));
10609 }
10610 \f
10611
10612 /* Modular types */
10613
10614 /* True iff TYPE is an Ada modular type. */
10615
10616 int
10617 ada_is_modular_type (struct type *type)
10618 {
10619 struct type *subranged_type = get_base_type (type);
10620
10621 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10622 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10623 && TYPE_UNSIGNED (subranged_type));
10624 }
10625
10626 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10627
10628 ULONGEST
10629 ada_modulus (struct type *type)
10630 {
10631 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10632 }
10633 \f
10634
10635 /* Ada exception catchpoint support:
10636 ---------------------------------
10637
10638 We support 3 kinds of exception catchpoints:
10639 . catchpoints on Ada exceptions
10640 . catchpoints on unhandled Ada exceptions
10641 . catchpoints on failed assertions
10642
10643 Exceptions raised during failed assertions, or unhandled exceptions
10644 could perfectly be caught with the general catchpoint on Ada exceptions.
10645 However, we can easily differentiate these two special cases, and having
10646 the option to distinguish these two cases from the rest can be useful
10647 to zero-in on certain situations.
10648
10649 Exception catchpoints are a specialized form of breakpoint,
10650 since they rely on inserting breakpoints inside known routines
10651 of the GNAT runtime. The implementation therefore uses a standard
10652 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10653 of breakpoint_ops.
10654
10655 Support in the runtime for exception catchpoints have been changed
10656 a few times already, and these changes affect the implementation
10657 of these catchpoints. In order to be able to support several
10658 variants of the runtime, we use a sniffer that will determine
10659 the runtime variant used by the program being debugged. */
10660
10661 /* The different types of catchpoints that we introduced for catching
10662 Ada exceptions. */
10663
10664 enum exception_catchpoint_kind
10665 {
10666 ex_catch_exception,
10667 ex_catch_exception_unhandled,
10668 ex_catch_assert
10669 };
10670
10671 /* Ada's standard exceptions. */
10672
10673 static char *standard_exc[] = {
10674 "constraint_error",
10675 "program_error",
10676 "storage_error",
10677 "tasking_error"
10678 };
10679
10680 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10681
10682 /* A structure that describes how to support exception catchpoints
10683 for a given executable. */
10684
10685 struct exception_support_info
10686 {
10687 /* The name of the symbol to break on in order to insert
10688 a catchpoint on exceptions. */
10689 const char *catch_exception_sym;
10690
10691 /* The name of the symbol to break on in order to insert
10692 a catchpoint on unhandled exceptions. */
10693 const char *catch_exception_unhandled_sym;
10694
10695 /* The name of the symbol to break on in order to insert
10696 a catchpoint on failed assertions. */
10697 const char *catch_assert_sym;
10698
10699 /* Assuming that the inferior just triggered an unhandled exception
10700 catchpoint, this function is responsible for returning the address
10701 in inferior memory where the name of that exception is stored.
10702 Return zero if the address could not be computed. */
10703 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10704 };
10705
10706 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10707 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10708
10709 /* The following exception support info structure describes how to
10710 implement exception catchpoints with the latest version of the
10711 Ada runtime (as of 2007-03-06). */
10712
10713 static const struct exception_support_info default_exception_support_info =
10714 {
10715 "__gnat_debug_raise_exception", /* catch_exception_sym */
10716 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10717 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10718 ada_unhandled_exception_name_addr
10719 };
10720
10721 /* The following exception support info structure describes how to
10722 implement exception catchpoints with a slightly older version
10723 of the Ada runtime. */
10724
10725 static const struct exception_support_info exception_support_info_fallback =
10726 {
10727 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10728 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10729 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10730 ada_unhandled_exception_name_addr_from_raise
10731 };
10732
10733 /* Return nonzero if we can detect the exception support routines
10734 described in EINFO.
10735
10736 This function errors out if an abnormal situation is detected
10737 (for instance, if we find the exception support routines, but
10738 that support is found to be incomplete). */
10739
10740 static int
10741 ada_has_this_exception_support (const struct exception_support_info *einfo)
10742 {
10743 struct symbol *sym;
10744
10745 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10746 that should be compiled with debugging information. As a result, we
10747 expect to find that symbol in the symtabs. */
10748
10749 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10750 if (sym == NULL)
10751 {
10752 /* Perhaps we did not find our symbol because the Ada runtime was
10753 compiled without debugging info, or simply stripped of it.
10754 It happens on some GNU/Linux distributions for instance, where
10755 users have to install a separate debug package in order to get
10756 the runtime's debugging info. In that situation, let the user
10757 know why we cannot insert an Ada exception catchpoint.
10758
10759 Note: Just for the purpose of inserting our Ada exception
10760 catchpoint, we could rely purely on the associated minimal symbol.
10761 But we would be operating in degraded mode anyway, since we are
10762 still lacking the debugging info needed later on to extract
10763 the name of the exception being raised (this name is printed in
10764 the catchpoint message, and is also used when trying to catch
10765 a specific exception). We do not handle this case for now. */
10766 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10767 error (_("Your Ada runtime appears to be missing some debugging "
10768 "information.\nCannot insert Ada exception catchpoint "
10769 "in this configuration."));
10770
10771 return 0;
10772 }
10773
10774 /* Make sure that the symbol we found corresponds to a function. */
10775
10776 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10777 error (_("Symbol \"%s\" is not a function (class = %d)"),
10778 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10779
10780 return 1;
10781 }
10782
10783 /* Inspect the Ada runtime and determine which exception info structure
10784 should be used to provide support for exception catchpoints.
10785
10786 This function will always set the per-inferior exception_info,
10787 or raise an error. */
10788
10789 static void
10790 ada_exception_support_info_sniffer (void)
10791 {
10792 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10793 struct symbol *sym;
10794
10795 /* If the exception info is already known, then no need to recompute it. */
10796 if (data->exception_info != NULL)
10797 return;
10798
10799 /* Check the latest (default) exception support info. */
10800 if (ada_has_this_exception_support (&default_exception_support_info))
10801 {
10802 data->exception_info = &default_exception_support_info;
10803 return;
10804 }
10805
10806 /* Try our fallback exception suport info. */
10807 if (ada_has_this_exception_support (&exception_support_info_fallback))
10808 {
10809 data->exception_info = &exception_support_info_fallback;
10810 return;
10811 }
10812
10813 /* Sometimes, it is normal for us to not be able to find the routine
10814 we are looking for. This happens when the program is linked with
10815 the shared version of the GNAT runtime, and the program has not been
10816 started yet. Inform the user of these two possible causes if
10817 applicable. */
10818
10819 if (ada_update_initial_language (language_unknown) != language_ada)
10820 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10821
10822 /* If the symbol does not exist, then check that the program is
10823 already started, to make sure that shared libraries have been
10824 loaded. If it is not started, this may mean that the symbol is
10825 in a shared library. */
10826
10827 if (ptid_get_pid (inferior_ptid) == 0)
10828 error (_("Unable to insert catchpoint. Try to start the program first."));
10829
10830 /* At this point, we know that we are debugging an Ada program and
10831 that the inferior has been started, but we still are not able to
10832 find the run-time symbols. That can mean that we are in
10833 configurable run time mode, or that a-except as been optimized
10834 out by the linker... In any case, at this point it is not worth
10835 supporting this feature. */
10836
10837 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10838 }
10839
10840 /* True iff FRAME is very likely to be that of a function that is
10841 part of the runtime system. This is all very heuristic, but is
10842 intended to be used as advice as to what frames are uninteresting
10843 to most users. */
10844
10845 static int
10846 is_known_support_routine (struct frame_info *frame)
10847 {
10848 struct symtab_and_line sal;
10849 const char *func_name;
10850 enum language func_lang;
10851 int i;
10852
10853 /* If this code does not have any debugging information (no symtab),
10854 This cannot be any user code. */
10855
10856 find_frame_sal (frame, &sal);
10857 if (sal.symtab == NULL)
10858 return 1;
10859
10860 /* If there is a symtab, but the associated source file cannot be
10861 located, then assume this is not user code: Selecting a frame
10862 for which we cannot display the code would not be very helpful
10863 for the user. This should also take care of case such as VxWorks
10864 where the kernel has some debugging info provided for a few units. */
10865
10866 if (symtab_to_fullname (sal.symtab) == NULL)
10867 return 1;
10868
10869 /* Check the unit filename againt the Ada runtime file naming.
10870 We also check the name of the objfile against the name of some
10871 known system libraries that sometimes come with debugging info
10872 too. */
10873
10874 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10875 {
10876 re_comp (known_runtime_file_name_patterns[i]);
10877 if (re_exec (sal.symtab->filename))
10878 return 1;
10879 if (sal.symtab->objfile != NULL
10880 && re_exec (sal.symtab->objfile->name))
10881 return 1;
10882 }
10883
10884 /* Check whether the function is a GNAT-generated entity. */
10885
10886 find_frame_funname (frame, &func_name, &func_lang, NULL);
10887 if (func_name == NULL)
10888 return 1;
10889
10890 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10891 {
10892 re_comp (known_auxiliary_function_name_patterns[i]);
10893 if (re_exec (func_name))
10894 return 1;
10895 }
10896
10897 return 0;
10898 }
10899
10900 /* Find the first frame that contains debugging information and that is not
10901 part of the Ada run-time, starting from FI and moving upward. */
10902
10903 void
10904 ada_find_printable_frame (struct frame_info *fi)
10905 {
10906 for (; fi != NULL; fi = get_prev_frame (fi))
10907 {
10908 if (!is_known_support_routine (fi))
10909 {
10910 select_frame (fi);
10911 break;
10912 }
10913 }
10914
10915 }
10916
10917 /* Assuming that the inferior just triggered an unhandled exception
10918 catchpoint, return the address in inferior memory where the name
10919 of the exception is stored.
10920
10921 Return zero if the address could not be computed. */
10922
10923 static CORE_ADDR
10924 ada_unhandled_exception_name_addr (void)
10925 {
10926 return parse_and_eval_address ("e.full_name");
10927 }
10928
10929 /* Same as ada_unhandled_exception_name_addr, except that this function
10930 should be used when the inferior uses an older version of the runtime,
10931 where the exception name needs to be extracted from a specific frame
10932 several frames up in the callstack. */
10933
10934 static CORE_ADDR
10935 ada_unhandled_exception_name_addr_from_raise (void)
10936 {
10937 int frame_level;
10938 struct frame_info *fi;
10939 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10940
10941 /* To determine the name of this exception, we need to select
10942 the frame corresponding to RAISE_SYM_NAME. This frame is
10943 at least 3 levels up, so we simply skip the first 3 frames
10944 without checking the name of their associated function. */
10945 fi = get_current_frame ();
10946 for (frame_level = 0; frame_level < 3; frame_level += 1)
10947 if (fi != NULL)
10948 fi = get_prev_frame (fi);
10949
10950 while (fi != NULL)
10951 {
10952 const char *func_name;
10953 enum language func_lang;
10954
10955 find_frame_funname (fi, &func_name, &func_lang, NULL);
10956 if (func_name != NULL
10957 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10958 break; /* We found the frame we were looking for... */
10959 fi = get_prev_frame (fi);
10960 }
10961
10962 if (fi == NULL)
10963 return 0;
10964
10965 select_frame (fi);
10966 return parse_and_eval_address ("id.full_name");
10967 }
10968
10969 /* Assuming the inferior just triggered an Ada exception catchpoint
10970 (of any type), return the address in inferior memory where the name
10971 of the exception is stored, if applicable.
10972
10973 Return zero if the address could not be computed, or if not relevant. */
10974
10975 static CORE_ADDR
10976 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10977 struct breakpoint *b)
10978 {
10979 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10980
10981 switch (ex)
10982 {
10983 case ex_catch_exception:
10984 return (parse_and_eval_address ("e.full_name"));
10985 break;
10986
10987 case ex_catch_exception_unhandled:
10988 return data->exception_info->unhandled_exception_name_addr ();
10989 break;
10990
10991 case ex_catch_assert:
10992 return 0; /* Exception name is not relevant in this case. */
10993 break;
10994
10995 default:
10996 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10997 break;
10998 }
10999
11000 return 0; /* Should never be reached. */
11001 }
11002
11003 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11004 any error that ada_exception_name_addr_1 might cause to be thrown.
11005 When an error is intercepted, a warning with the error message is printed,
11006 and zero is returned. */
11007
11008 static CORE_ADDR
11009 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11010 struct breakpoint *b)
11011 {
11012 volatile struct gdb_exception e;
11013 CORE_ADDR result = 0;
11014
11015 TRY_CATCH (e, RETURN_MASK_ERROR)
11016 {
11017 result = ada_exception_name_addr_1 (ex, b);
11018 }
11019
11020 if (e.reason < 0)
11021 {
11022 warning (_("failed to get exception name: %s"), e.message);
11023 return 0;
11024 }
11025
11026 return result;
11027 }
11028
11029 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11030 char *, char **,
11031 const struct breakpoint_ops **);
11032 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11033
11034 /* Ada catchpoints.
11035
11036 In the case of catchpoints on Ada exceptions, the catchpoint will
11037 stop the target on every exception the program throws. When a user
11038 specifies the name of a specific exception, we translate this
11039 request into a condition expression (in text form), and then parse
11040 it into an expression stored in each of the catchpoint's locations.
11041 We then use this condition to check whether the exception that was
11042 raised is the one the user is interested in. If not, then the
11043 target is resumed again. We store the name of the requested
11044 exception, in order to be able to re-set the condition expression
11045 when symbols change. */
11046
11047 /* An instance of this type is used to represent an Ada catchpoint
11048 breakpoint location. It includes a "struct bp_location" as a kind
11049 of base class; users downcast to "struct bp_location *" when
11050 needed. */
11051
11052 struct ada_catchpoint_location
11053 {
11054 /* The base class. */
11055 struct bp_location base;
11056
11057 /* The condition that checks whether the exception that was raised
11058 is the specific exception the user specified on catchpoint
11059 creation. */
11060 struct expression *excep_cond_expr;
11061 };
11062
11063 /* Implement the DTOR method in the bp_location_ops structure for all
11064 Ada exception catchpoint kinds. */
11065
11066 static void
11067 ada_catchpoint_location_dtor (struct bp_location *bl)
11068 {
11069 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11070
11071 xfree (al->excep_cond_expr);
11072 }
11073
11074 /* The vtable to be used in Ada catchpoint locations. */
11075
11076 static const struct bp_location_ops ada_catchpoint_location_ops =
11077 {
11078 ada_catchpoint_location_dtor
11079 };
11080
11081 /* An instance of this type is used to represent an Ada catchpoint.
11082 It includes a "struct breakpoint" as a kind of base class; users
11083 downcast to "struct breakpoint *" when needed. */
11084
11085 struct ada_catchpoint
11086 {
11087 /* The base class. */
11088 struct breakpoint base;
11089
11090 /* The name of the specific exception the user specified. */
11091 char *excep_string;
11092 };
11093
11094 /* Parse the exception condition string in the context of each of the
11095 catchpoint's locations, and store them for later evaluation. */
11096
11097 static void
11098 create_excep_cond_exprs (struct ada_catchpoint *c)
11099 {
11100 struct cleanup *old_chain;
11101 struct bp_location *bl;
11102 char *cond_string;
11103
11104 /* Nothing to do if there's no specific exception to catch. */
11105 if (c->excep_string == NULL)
11106 return;
11107
11108 /* Same if there are no locations... */
11109 if (c->base.loc == NULL)
11110 return;
11111
11112 /* Compute the condition expression in text form, from the specific
11113 expection we want to catch. */
11114 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11115 old_chain = make_cleanup (xfree, cond_string);
11116
11117 /* Iterate over all the catchpoint's locations, and parse an
11118 expression for each. */
11119 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11120 {
11121 struct ada_catchpoint_location *ada_loc
11122 = (struct ada_catchpoint_location *) bl;
11123 struct expression *exp = NULL;
11124
11125 if (!bl->shlib_disabled)
11126 {
11127 volatile struct gdb_exception e;
11128 char *s;
11129
11130 s = cond_string;
11131 TRY_CATCH (e, RETURN_MASK_ERROR)
11132 {
11133 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11134 }
11135 if (e.reason < 0)
11136 warning (_("failed to reevaluate internal exception condition "
11137 "for catchpoint %d: %s"),
11138 c->base.number, e.message);
11139 }
11140
11141 ada_loc->excep_cond_expr = exp;
11142 }
11143
11144 do_cleanups (old_chain);
11145 }
11146
11147 /* Implement the DTOR method in the breakpoint_ops structure for all
11148 exception catchpoint kinds. */
11149
11150 static void
11151 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11152 {
11153 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11154
11155 xfree (c->excep_string);
11156
11157 bkpt_breakpoint_ops.dtor (b);
11158 }
11159
11160 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11161 structure for all exception catchpoint kinds. */
11162
11163 static struct bp_location *
11164 allocate_location_exception (enum exception_catchpoint_kind ex,
11165 struct breakpoint *self)
11166 {
11167 struct ada_catchpoint_location *loc;
11168
11169 loc = XNEW (struct ada_catchpoint_location);
11170 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11171 loc->excep_cond_expr = NULL;
11172 return &loc->base;
11173 }
11174
11175 /* Implement the RE_SET method in the breakpoint_ops structure for all
11176 exception catchpoint kinds. */
11177
11178 static void
11179 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11180 {
11181 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11182
11183 /* Call the base class's method. This updates the catchpoint's
11184 locations. */
11185 bkpt_breakpoint_ops.re_set (b);
11186
11187 /* Reparse the exception conditional expressions. One for each
11188 location. */
11189 create_excep_cond_exprs (c);
11190 }
11191
11192 /* Returns true if we should stop for this breakpoint hit. If the
11193 user specified a specific exception, we only want to cause a stop
11194 if the program thrown that exception. */
11195
11196 static int
11197 should_stop_exception (const struct bp_location *bl)
11198 {
11199 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11200 const struct ada_catchpoint_location *ada_loc
11201 = (const struct ada_catchpoint_location *) bl;
11202 volatile struct gdb_exception ex;
11203 int stop;
11204
11205 /* With no specific exception, should always stop. */
11206 if (c->excep_string == NULL)
11207 return 1;
11208
11209 if (ada_loc->excep_cond_expr == NULL)
11210 {
11211 /* We will have a NULL expression if back when we were creating
11212 the expressions, this location's had failed to parse. */
11213 return 1;
11214 }
11215
11216 stop = 1;
11217 TRY_CATCH (ex, RETURN_MASK_ALL)
11218 {
11219 struct value *mark;
11220
11221 mark = value_mark ();
11222 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11223 value_free_to_mark (mark);
11224 }
11225 if (ex.reason < 0)
11226 exception_fprintf (gdb_stderr, ex,
11227 _("Error in testing exception condition:\n"));
11228 return stop;
11229 }
11230
11231 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11232 for all exception catchpoint kinds. */
11233
11234 static void
11235 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11236 {
11237 bs->stop = should_stop_exception (bs->bp_location_at);
11238 }
11239
11240 /* Implement the PRINT_IT method in the breakpoint_ops structure
11241 for all exception catchpoint kinds. */
11242
11243 static enum print_stop_action
11244 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11245 {
11246 struct ui_out *uiout = current_uiout;
11247 struct breakpoint *b = bs->breakpoint_at;
11248
11249 annotate_catchpoint (b->number);
11250
11251 if (ui_out_is_mi_like_p (uiout))
11252 {
11253 ui_out_field_string (uiout, "reason",
11254 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11255 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11256 }
11257
11258 ui_out_text (uiout,
11259 b->disposition == disp_del ? "\nTemporary catchpoint "
11260 : "\nCatchpoint ");
11261 ui_out_field_int (uiout, "bkptno", b->number);
11262 ui_out_text (uiout, ", ");
11263
11264 switch (ex)
11265 {
11266 case ex_catch_exception:
11267 case ex_catch_exception_unhandled:
11268 {
11269 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11270 char exception_name[256];
11271
11272 if (addr != 0)
11273 {
11274 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11275 exception_name [sizeof (exception_name) - 1] = '\0';
11276 }
11277 else
11278 {
11279 /* For some reason, we were unable to read the exception
11280 name. This could happen if the Runtime was compiled
11281 without debugging info, for instance. In that case,
11282 just replace the exception name by the generic string
11283 "exception" - it will read as "an exception" in the
11284 notification we are about to print. */
11285 memcpy (exception_name, "exception", sizeof ("exception"));
11286 }
11287 /* In the case of unhandled exception breakpoints, we print
11288 the exception name as "unhandled EXCEPTION_NAME", to make
11289 it clearer to the user which kind of catchpoint just got
11290 hit. We used ui_out_text to make sure that this extra
11291 info does not pollute the exception name in the MI case. */
11292 if (ex == ex_catch_exception_unhandled)
11293 ui_out_text (uiout, "unhandled ");
11294 ui_out_field_string (uiout, "exception-name", exception_name);
11295 }
11296 break;
11297 case ex_catch_assert:
11298 /* In this case, the name of the exception is not really
11299 important. Just print "failed assertion" to make it clearer
11300 that his program just hit an assertion-failure catchpoint.
11301 We used ui_out_text because this info does not belong in
11302 the MI output. */
11303 ui_out_text (uiout, "failed assertion");
11304 break;
11305 }
11306 ui_out_text (uiout, " at ");
11307 ada_find_printable_frame (get_current_frame ());
11308
11309 return PRINT_SRC_AND_LOC;
11310 }
11311
11312 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11313 for all exception catchpoint kinds. */
11314
11315 static void
11316 print_one_exception (enum exception_catchpoint_kind ex,
11317 struct breakpoint *b, struct bp_location **last_loc)
11318 {
11319 struct ui_out *uiout = current_uiout;
11320 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11321 struct value_print_options opts;
11322
11323 get_user_print_options (&opts);
11324 if (opts.addressprint)
11325 {
11326 annotate_field (4);
11327 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11328 }
11329
11330 annotate_field (5);
11331 *last_loc = b->loc;
11332 switch (ex)
11333 {
11334 case ex_catch_exception:
11335 if (c->excep_string != NULL)
11336 {
11337 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11338
11339 ui_out_field_string (uiout, "what", msg);
11340 xfree (msg);
11341 }
11342 else
11343 ui_out_field_string (uiout, "what", "all Ada exceptions");
11344
11345 break;
11346
11347 case ex_catch_exception_unhandled:
11348 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11349 break;
11350
11351 case ex_catch_assert:
11352 ui_out_field_string (uiout, "what", "failed Ada assertions");
11353 break;
11354
11355 default:
11356 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11357 break;
11358 }
11359 }
11360
11361 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11362 for all exception catchpoint kinds. */
11363
11364 static void
11365 print_mention_exception (enum exception_catchpoint_kind ex,
11366 struct breakpoint *b)
11367 {
11368 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11369 struct ui_out *uiout = current_uiout;
11370
11371 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11372 : _("Catchpoint "));
11373 ui_out_field_int (uiout, "bkptno", b->number);
11374 ui_out_text (uiout, ": ");
11375
11376 switch (ex)
11377 {
11378 case ex_catch_exception:
11379 if (c->excep_string != NULL)
11380 {
11381 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11382 struct cleanup *old_chain = make_cleanup (xfree, info);
11383
11384 ui_out_text (uiout, info);
11385 do_cleanups (old_chain);
11386 }
11387 else
11388 ui_out_text (uiout, _("all Ada exceptions"));
11389 break;
11390
11391 case ex_catch_exception_unhandled:
11392 ui_out_text (uiout, _("unhandled Ada exceptions"));
11393 break;
11394
11395 case ex_catch_assert:
11396 ui_out_text (uiout, _("failed Ada assertions"));
11397 break;
11398
11399 default:
11400 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11401 break;
11402 }
11403 }
11404
11405 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11406 for all exception catchpoint kinds. */
11407
11408 static void
11409 print_recreate_exception (enum exception_catchpoint_kind ex,
11410 struct breakpoint *b, struct ui_file *fp)
11411 {
11412 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11413
11414 switch (ex)
11415 {
11416 case ex_catch_exception:
11417 fprintf_filtered (fp, "catch exception");
11418 if (c->excep_string != NULL)
11419 fprintf_filtered (fp, " %s", c->excep_string);
11420 break;
11421
11422 case ex_catch_exception_unhandled:
11423 fprintf_filtered (fp, "catch exception unhandled");
11424 break;
11425
11426 case ex_catch_assert:
11427 fprintf_filtered (fp, "catch assert");
11428 break;
11429
11430 default:
11431 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11432 }
11433 print_recreate_thread (b, fp);
11434 }
11435
11436 /* Virtual table for "catch exception" breakpoints. */
11437
11438 static void
11439 dtor_catch_exception (struct breakpoint *b)
11440 {
11441 dtor_exception (ex_catch_exception, b);
11442 }
11443
11444 static struct bp_location *
11445 allocate_location_catch_exception (struct breakpoint *self)
11446 {
11447 return allocate_location_exception (ex_catch_exception, self);
11448 }
11449
11450 static void
11451 re_set_catch_exception (struct breakpoint *b)
11452 {
11453 re_set_exception (ex_catch_exception, b);
11454 }
11455
11456 static void
11457 check_status_catch_exception (bpstat bs)
11458 {
11459 check_status_exception (ex_catch_exception, bs);
11460 }
11461
11462 static enum print_stop_action
11463 print_it_catch_exception (bpstat bs)
11464 {
11465 return print_it_exception (ex_catch_exception, bs);
11466 }
11467
11468 static void
11469 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11470 {
11471 print_one_exception (ex_catch_exception, b, last_loc);
11472 }
11473
11474 static void
11475 print_mention_catch_exception (struct breakpoint *b)
11476 {
11477 print_mention_exception (ex_catch_exception, b);
11478 }
11479
11480 static void
11481 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11482 {
11483 print_recreate_exception (ex_catch_exception, b, fp);
11484 }
11485
11486 static struct breakpoint_ops catch_exception_breakpoint_ops;
11487
11488 /* Virtual table for "catch exception unhandled" breakpoints. */
11489
11490 static void
11491 dtor_catch_exception_unhandled (struct breakpoint *b)
11492 {
11493 dtor_exception (ex_catch_exception_unhandled, b);
11494 }
11495
11496 static struct bp_location *
11497 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11498 {
11499 return allocate_location_exception (ex_catch_exception_unhandled, self);
11500 }
11501
11502 static void
11503 re_set_catch_exception_unhandled (struct breakpoint *b)
11504 {
11505 re_set_exception (ex_catch_exception_unhandled, b);
11506 }
11507
11508 static void
11509 check_status_catch_exception_unhandled (bpstat bs)
11510 {
11511 check_status_exception (ex_catch_exception_unhandled, bs);
11512 }
11513
11514 static enum print_stop_action
11515 print_it_catch_exception_unhandled (bpstat bs)
11516 {
11517 return print_it_exception (ex_catch_exception_unhandled, bs);
11518 }
11519
11520 static void
11521 print_one_catch_exception_unhandled (struct breakpoint *b,
11522 struct bp_location **last_loc)
11523 {
11524 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11525 }
11526
11527 static void
11528 print_mention_catch_exception_unhandled (struct breakpoint *b)
11529 {
11530 print_mention_exception (ex_catch_exception_unhandled, b);
11531 }
11532
11533 static void
11534 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11535 struct ui_file *fp)
11536 {
11537 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11538 }
11539
11540 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11541
11542 /* Virtual table for "catch assert" breakpoints. */
11543
11544 static void
11545 dtor_catch_assert (struct breakpoint *b)
11546 {
11547 dtor_exception (ex_catch_assert, b);
11548 }
11549
11550 static struct bp_location *
11551 allocate_location_catch_assert (struct breakpoint *self)
11552 {
11553 return allocate_location_exception (ex_catch_assert, self);
11554 }
11555
11556 static void
11557 re_set_catch_assert (struct breakpoint *b)
11558 {
11559 return re_set_exception (ex_catch_assert, b);
11560 }
11561
11562 static void
11563 check_status_catch_assert (bpstat bs)
11564 {
11565 check_status_exception (ex_catch_assert, bs);
11566 }
11567
11568 static enum print_stop_action
11569 print_it_catch_assert (bpstat bs)
11570 {
11571 return print_it_exception (ex_catch_assert, bs);
11572 }
11573
11574 static void
11575 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11576 {
11577 print_one_exception (ex_catch_assert, b, last_loc);
11578 }
11579
11580 static void
11581 print_mention_catch_assert (struct breakpoint *b)
11582 {
11583 print_mention_exception (ex_catch_assert, b);
11584 }
11585
11586 static void
11587 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11588 {
11589 print_recreate_exception (ex_catch_assert, b, fp);
11590 }
11591
11592 static struct breakpoint_ops catch_assert_breakpoint_ops;
11593
11594 /* Return a newly allocated copy of the first space-separated token
11595 in ARGSP, and then adjust ARGSP to point immediately after that
11596 token.
11597
11598 Return NULL if ARGPS does not contain any more tokens. */
11599
11600 static char *
11601 ada_get_next_arg (char **argsp)
11602 {
11603 char *args = *argsp;
11604 char *end;
11605 char *result;
11606
11607 args = skip_spaces (args);
11608 if (args[0] == '\0')
11609 return NULL; /* No more arguments. */
11610
11611 /* Find the end of the current argument. */
11612
11613 end = skip_to_space (args);
11614
11615 /* Adjust ARGSP to point to the start of the next argument. */
11616
11617 *argsp = end;
11618
11619 /* Make a copy of the current argument and return it. */
11620
11621 result = xmalloc (end - args + 1);
11622 strncpy (result, args, end - args);
11623 result[end - args] = '\0';
11624
11625 return result;
11626 }
11627
11628 /* Split the arguments specified in a "catch exception" command.
11629 Set EX to the appropriate catchpoint type.
11630 Set EXCEP_STRING to the name of the specific exception if
11631 specified by the user.
11632 If a condition is found at the end of the arguments, the condition
11633 expression is stored in COND_STRING (memory must be deallocated
11634 after use). Otherwise COND_STRING is set to NULL. */
11635
11636 static void
11637 catch_ada_exception_command_split (char *args,
11638 enum exception_catchpoint_kind *ex,
11639 char **excep_string,
11640 char **cond_string)
11641 {
11642 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11643 char *exception_name;
11644 char *cond = NULL;
11645
11646 exception_name = ada_get_next_arg (&args);
11647 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11648 {
11649 /* This is not an exception name; this is the start of a condition
11650 expression for a catchpoint on all exceptions. So, "un-get"
11651 this token, and set exception_name to NULL. */
11652 xfree (exception_name);
11653 exception_name = NULL;
11654 args -= 2;
11655 }
11656 make_cleanup (xfree, exception_name);
11657
11658 /* Check to see if we have a condition. */
11659
11660 args = skip_spaces (args);
11661 if (strncmp (args, "if", 2) == 0
11662 && (isspace (args[2]) || args[2] == '\0'))
11663 {
11664 args += 2;
11665 args = skip_spaces (args);
11666
11667 if (args[0] == '\0')
11668 error (_("Condition missing after `if' keyword"));
11669 cond = xstrdup (args);
11670 make_cleanup (xfree, cond);
11671
11672 args += strlen (args);
11673 }
11674
11675 /* Check that we do not have any more arguments. Anything else
11676 is unexpected. */
11677
11678 if (args[0] != '\0')
11679 error (_("Junk at end of expression"));
11680
11681 discard_cleanups (old_chain);
11682
11683 if (exception_name == NULL)
11684 {
11685 /* Catch all exceptions. */
11686 *ex = ex_catch_exception;
11687 *excep_string = NULL;
11688 }
11689 else if (strcmp (exception_name, "unhandled") == 0)
11690 {
11691 /* Catch unhandled exceptions. */
11692 *ex = ex_catch_exception_unhandled;
11693 *excep_string = NULL;
11694 }
11695 else
11696 {
11697 /* Catch a specific exception. */
11698 *ex = ex_catch_exception;
11699 *excep_string = exception_name;
11700 }
11701 *cond_string = cond;
11702 }
11703
11704 /* Return the name of the symbol on which we should break in order to
11705 implement a catchpoint of the EX kind. */
11706
11707 static const char *
11708 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11709 {
11710 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11711
11712 gdb_assert (data->exception_info != NULL);
11713
11714 switch (ex)
11715 {
11716 case ex_catch_exception:
11717 return (data->exception_info->catch_exception_sym);
11718 break;
11719 case ex_catch_exception_unhandled:
11720 return (data->exception_info->catch_exception_unhandled_sym);
11721 break;
11722 case ex_catch_assert:
11723 return (data->exception_info->catch_assert_sym);
11724 break;
11725 default:
11726 internal_error (__FILE__, __LINE__,
11727 _("unexpected catchpoint kind (%d)"), ex);
11728 }
11729 }
11730
11731 /* Return the breakpoint ops "virtual table" used for catchpoints
11732 of the EX kind. */
11733
11734 static const struct breakpoint_ops *
11735 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11736 {
11737 switch (ex)
11738 {
11739 case ex_catch_exception:
11740 return (&catch_exception_breakpoint_ops);
11741 break;
11742 case ex_catch_exception_unhandled:
11743 return (&catch_exception_unhandled_breakpoint_ops);
11744 break;
11745 case ex_catch_assert:
11746 return (&catch_assert_breakpoint_ops);
11747 break;
11748 default:
11749 internal_error (__FILE__, __LINE__,
11750 _("unexpected catchpoint kind (%d)"), ex);
11751 }
11752 }
11753
11754 /* Return the condition that will be used to match the current exception
11755 being raised with the exception that the user wants to catch. This
11756 assumes that this condition is used when the inferior just triggered
11757 an exception catchpoint.
11758
11759 The string returned is a newly allocated string that needs to be
11760 deallocated later. */
11761
11762 static char *
11763 ada_exception_catchpoint_cond_string (const char *excep_string)
11764 {
11765 int i;
11766
11767 /* The standard exceptions are a special case. They are defined in
11768 runtime units that have been compiled without debugging info; if
11769 EXCEP_STRING is the not-fully-qualified name of a standard
11770 exception (e.g. "constraint_error") then, during the evaluation
11771 of the condition expression, the symbol lookup on this name would
11772 *not* return this standard exception. The catchpoint condition
11773 may then be set only on user-defined exceptions which have the
11774 same not-fully-qualified name (e.g. my_package.constraint_error).
11775
11776 To avoid this unexcepted behavior, these standard exceptions are
11777 systematically prefixed by "standard". This means that "catch
11778 exception constraint_error" is rewritten into "catch exception
11779 standard.constraint_error".
11780
11781 If an exception named contraint_error is defined in another package of
11782 the inferior program, then the only way to specify this exception as a
11783 breakpoint condition is to use its fully-qualified named:
11784 e.g. my_package.constraint_error. */
11785
11786 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11787 {
11788 if (strcmp (standard_exc [i], excep_string) == 0)
11789 {
11790 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11791 excep_string);
11792 }
11793 }
11794 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11795 }
11796
11797 /* Return the symtab_and_line that should be used to insert an exception
11798 catchpoint of the TYPE kind.
11799
11800 EXCEP_STRING should contain the name of a specific exception that
11801 the catchpoint should catch, or NULL otherwise.
11802
11803 ADDR_STRING returns the name of the function where the real
11804 breakpoint that implements the catchpoints is set, depending on the
11805 type of catchpoint we need to create. */
11806
11807 static struct symtab_and_line
11808 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11809 char **addr_string, const struct breakpoint_ops **ops)
11810 {
11811 const char *sym_name;
11812 struct symbol *sym;
11813
11814 /* First, find out which exception support info to use. */
11815 ada_exception_support_info_sniffer ();
11816
11817 /* Then lookup the function on which we will break in order to catch
11818 the Ada exceptions requested by the user. */
11819 sym_name = ada_exception_sym_name (ex);
11820 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11821
11822 /* We can assume that SYM is not NULL at this stage. If the symbol
11823 did not exist, ada_exception_support_info_sniffer would have
11824 raised an exception.
11825
11826 Also, ada_exception_support_info_sniffer should have already
11827 verified that SYM is a function symbol. */
11828 gdb_assert (sym != NULL);
11829 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11830
11831 /* Set ADDR_STRING. */
11832 *addr_string = xstrdup (sym_name);
11833
11834 /* Set OPS. */
11835 *ops = ada_exception_breakpoint_ops (ex);
11836
11837 return find_function_start_sal (sym, 1);
11838 }
11839
11840 /* Parse the arguments (ARGS) of the "catch exception" command.
11841
11842 If the user asked the catchpoint to catch only a specific
11843 exception, then save the exception name in ADDR_STRING.
11844
11845 If the user provided a condition, then set COND_STRING to
11846 that condition expression (the memory must be deallocated
11847 after use). Otherwise, set COND_STRING to NULL.
11848
11849 See ada_exception_sal for a description of all the remaining
11850 function arguments of this function. */
11851
11852 static struct symtab_and_line
11853 ada_decode_exception_location (char *args, char **addr_string,
11854 char **excep_string,
11855 char **cond_string,
11856 const struct breakpoint_ops **ops)
11857 {
11858 enum exception_catchpoint_kind ex;
11859
11860 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
11861 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11862 }
11863
11864 /* Create an Ada exception catchpoint. */
11865
11866 static void
11867 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11868 struct symtab_and_line sal,
11869 char *addr_string,
11870 char *excep_string,
11871 char *cond_string,
11872 const struct breakpoint_ops *ops,
11873 int tempflag,
11874 int from_tty)
11875 {
11876 struct ada_catchpoint *c;
11877
11878 c = XNEW (struct ada_catchpoint);
11879 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11880 ops, tempflag, from_tty);
11881 c->excep_string = excep_string;
11882 create_excep_cond_exprs (c);
11883 if (cond_string != NULL)
11884 set_breakpoint_condition (&c->base, cond_string, from_tty);
11885 install_breakpoint (0, &c->base, 1);
11886 }
11887
11888 /* Implement the "catch exception" command. */
11889
11890 static void
11891 catch_ada_exception_command (char *arg, int from_tty,
11892 struct cmd_list_element *command)
11893 {
11894 struct gdbarch *gdbarch = get_current_arch ();
11895 int tempflag;
11896 struct symtab_and_line sal;
11897 char *addr_string = NULL;
11898 char *excep_string = NULL;
11899 char *cond_string = NULL;
11900 const struct breakpoint_ops *ops = NULL;
11901
11902 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11903
11904 if (!arg)
11905 arg = "";
11906 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11907 &cond_string, &ops);
11908 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11909 excep_string, cond_string, ops,
11910 tempflag, from_tty);
11911 }
11912
11913 /* Assuming that ARGS contains the arguments of a "catch assert"
11914 command, parse those arguments and return a symtab_and_line object
11915 for a failed assertion catchpoint.
11916
11917 Set ADDR_STRING to the name of the function where the real
11918 breakpoint that implements the catchpoint is set.
11919
11920 If ARGS contains a condition, set COND_STRING to that condition
11921 (the memory needs to be deallocated after use). Otherwise, set
11922 COND_STRING to NULL. */
11923
11924 static struct symtab_and_line
11925 ada_decode_assert_location (char *args, char **addr_string,
11926 char **cond_string,
11927 const struct breakpoint_ops **ops)
11928 {
11929 args = skip_spaces (args);
11930
11931 /* Check whether a condition was provided. */
11932 if (strncmp (args, "if", 2) == 0
11933 && (isspace (args[2]) || args[2] == '\0'))
11934 {
11935 args += 2;
11936 args = skip_spaces (args);
11937 if (args[0] == '\0')
11938 error (_("condition missing after `if' keyword"));
11939 *cond_string = xstrdup (args);
11940 }
11941
11942 /* Otherwise, there should be no other argument at the end of
11943 the command. */
11944 else if (args[0] != '\0')
11945 error (_("Junk at end of arguments."));
11946
11947 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11948 }
11949
11950 /* Implement the "catch assert" command. */
11951
11952 static void
11953 catch_assert_command (char *arg, int from_tty,
11954 struct cmd_list_element *command)
11955 {
11956 struct gdbarch *gdbarch = get_current_arch ();
11957 int tempflag;
11958 struct symtab_and_line sal;
11959 char *addr_string = NULL;
11960 char *cond_string = NULL;
11961 const struct breakpoint_ops *ops = NULL;
11962
11963 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11964
11965 if (!arg)
11966 arg = "";
11967 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
11968 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11969 NULL, cond_string, ops, tempflag,
11970 from_tty);
11971 }
11972 /* Operators */
11973 /* Information about operators given special treatment in functions
11974 below. */
11975 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11976
11977 #define ADA_OPERATORS \
11978 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11979 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11980 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11981 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11982 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11983 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11984 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11985 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11986 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11987 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11988 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11989 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11990 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11991 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11992 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11993 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11994 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11995 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11996 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11997
11998 static void
11999 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12000 int *argsp)
12001 {
12002 switch (exp->elts[pc - 1].opcode)
12003 {
12004 default:
12005 operator_length_standard (exp, pc, oplenp, argsp);
12006 break;
12007
12008 #define OP_DEFN(op, len, args, binop) \
12009 case op: *oplenp = len; *argsp = args; break;
12010 ADA_OPERATORS;
12011 #undef OP_DEFN
12012
12013 case OP_AGGREGATE:
12014 *oplenp = 3;
12015 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12016 break;
12017
12018 case OP_CHOICES:
12019 *oplenp = 3;
12020 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12021 break;
12022 }
12023 }
12024
12025 /* Implementation of the exp_descriptor method operator_check. */
12026
12027 static int
12028 ada_operator_check (struct expression *exp, int pos,
12029 int (*objfile_func) (struct objfile *objfile, void *data),
12030 void *data)
12031 {
12032 const union exp_element *const elts = exp->elts;
12033 struct type *type = NULL;
12034
12035 switch (elts[pos].opcode)
12036 {
12037 case UNOP_IN_RANGE:
12038 case UNOP_QUAL:
12039 type = elts[pos + 1].type;
12040 break;
12041
12042 default:
12043 return operator_check_standard (exp, pos, objfile_func, data);
12044 }
12045
12046 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12047
12048 if (type && TYPE_OBJFILE (type)
12049 && (*objfile_func) (TYPE_OBJFILE (type), data))
12050 return 1;
12051
12052 return 0;
12053 }
12054
12055 static char *
12056 ada_op_name (enum exp_opcode opcode)
12057 {
12058 switch (opcode)
12059 {
12060 default:
12061 return op_name_standard (opcode);
12062
12063 #define OP_DEFN(op, len, args, binop) case op: return #op;
12064 ADA_OPERATORS;
12065 #undef OP_DEFN
12066
12067 case OP_AGGREGATE:
12068 return "OP_AGGREGATE";
12069 case OP_CHOICES:
12070 return "OP_CHOICES";
12071 case OP_NAME:
12072 return "OP_NAME";
12073 }
12074 }
12075
12076 /* As for operator_length, but assumes PC is pointing at the first
12077 element of the operator, and gives meaningful results only for the
12078 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12079
12080 static void
12081 ada_forward_operator_length (struct expression *exp, int pc,
12082 int *oplenp, int *argsp)
12083 {
12084 switch (exp->elts[pc].opcode)
12085 {
12086 default:
12087 *oplenp = *argsp = 0;
12088 break;
12089
12090 #define OP_DEFN(op, len, args, binop) \
12091 case op: *oplenp = len; *argsp = args; break;
12092 ADA_OPERATORS;
12093 #undef OP_DEFN
12094
12095 case OP_AGGREGATE:
12096 *oplenp = 3;
12097 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12098 break;
12099
12100 case OP_CHOICES:
12101 *oplenp = 3;
12102 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12103 break;
12104
12105 case OP_STRING:
12106 case OP_NAME:
12107 {
12108 int len = longest_to_int (exp->elts[pc + 1].longconst);
12109
12110 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12111 *argsp = 0;
12112 break;
12113 }
12114 }
12115 }
12116
12117 static int
12118 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12119 {
12120 enum exp_opcode op = exp->elts[elt].opcode;
12121 int oplen, nargs;
12122 int pc = elt;
12123 int i;
12124
12125 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12126
12127 switch (op)
12128 {
12129 /* Ada attributes ('Foo). */
12130 case OP_ATR_FIRST:
12131 case OP_ATR_LAST:
12132 case OP_ATR_LENGTH:
12133 case OP_ATR_IMAGE:
12134 case OP_ATR_MAX:
12135 case OP_ATR_MIN:
12136 case OP_ATR_MODULUS:
12137 case OP_ATR_POS:
12138 case OP_ATR_SIZE:
12139 case OP_ATR_TAG:
12140 case OP_ATR_VAL:
12141 break;
12142
12143 case UNOP_IN_RANGE:
12144 case UNOP_QUAL:
12145 /* XXX: gdb_sprint_host_address, type_sprint */
12146 fprintf_filtered (stream, _("Type @"));
12147 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12148 fprintf_filtered (stream, " (");
12149 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12150 fprintf_filtered (stream, ")");
12151 break;
12152 case BINOP_IN_BOUNDS:
12153 fprintf_filtered (stream, " (%d)",
12154 longest_to_int (exp->elts[pc + 2].longconst));
12155 break;
12156 case TERNOP_IN_RANGE:
12157 break;
12158
12159 case OP_AGGREGATE:
12160 case OP_OTHERS:
12161 case OP_DISCRETE_RANGE:
12162 case OP_POSITIONAL:
12163 case OP_CHOICES:
12164 break;
12165
12166 case OP_NAME:
12167 case OP_STRING:
12168 {
12169 char *name = &exp->elts[elt + 2].string;
12170 int len = longest_to_int (exp->elts[elt + 1].longconst);
12171
12172 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12173 break;
12174 }
12175
12176 default:
12177 return dump_subexp_body_standard (exp, stream, elt);
12178 }
12179
12180 elt += oplen;
12181 for (i = 0; i < nargs; i += 1)
12182 elt = dump_subexp (exp, stream, elt);
12183
12184 return elt;
12185 }
12186
12187 /* The Ada extension of print_subexp (q.v.). */
12188
12189 static void
12190 ada_print_subexp (struct expression *exp, int *pos,
12191 struct ui_file *stream, enum precedence prec)
12192 {
12193 int oplen, nargs, i;
12194 int pc = *pos;
12195 enum exp_opcode op = exp->elts[pc].opcode;
12196
12197 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12198
12199 *pos += oplen;
12200 switch (op)
12201 {
12202 default:
12203 *pos -= oplen;
12204 print_subexp_standard (exp, pos, stream, prec);
12205 return;
12206
12207 case OP_VAR_VALUE:
12208 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12209 return;
12210
12211 case BINOP_IN_BOUNDS:
12212 /* XXX: sprint_subexp */
12213 print_subexp (exp, pos, stream, PREC_SUFFIX);
12214 fputs_filtered (" in ", stream);
12215 print_subexp (exp, pos, stream, PREC_SUFFIX);
12216 fputs_filtered ("'range", stream);
12217 if (exp->elts[pc + 1].longconst > 1)
12218 fprintf_filtered (stream, "(%ld)",
12219 (long) exp->elts[pc + 1].longconst);
12220 return;
12221
12222 case TERNOP_IN_RANGE:
12223 if (prec >= PREC_EQUAL)
12224 fputs_filtered ("(", stream);
12225 /* XXX: sprint_subexp */
12226 print_subexp (exp, pos, stream, PREC_SUFFIX);
12227 fputs_filtered (" in ", stream);
12228 print_subexp (exp, pos, stream, PREC_EQUAL);
12229 fputs_filtered (" .. ", stream);
12230 print_subexp (exp, pos, stream, PREC_EQUAL);
12231 if (prec >= PREC_EQUAL)
12232 fputs_filtered (")", stream);
12233 return;
12234
12235 case OP_ATR_FIRST:
12236 case OP_ATR_LAST:
12237 case OP_ATR_LENGTH:
12238 case OP_ATR_IMAGE:
12239 case OP_ATR_MAX:
12240 case OP_ATR_MIN:
12241 case OP_ATR_MODULUS:
12242 case OP_ATR_POS:
12243 case OP_ATR_SIZE:
12244 case OP_ATR_TAG:
12245 case OP_ATR_VAL:
12246 if (exp->elts[*pos].opcode == OP_TYPE)
12247 {
12248 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12249 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12250 *pos += 3;
12251 }
12252 else
12253 print_subexp (exp, pos, stream, PREC_SUFFIX);
12254 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12255 if (nargs > 1)
12256 {
12257 int tem;
12258
12259 for (tem = 1; tem < nargs; tem += 1)
12260 {
12261 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12262 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12263 }
12264 fputs_filtered (")", stream);
12265 }
12266 return;
12267
12268 case UNOP_QUAL:
12269 type_print (exp->elts[pc + 1].type, "", stream, 0);
12270 fputs_filtered ("'(", stream);
12271 print_subexp (exp, pos, stream, PREC_PREFIX);
12272 fputs_filtered (")", stream);
12273 return;
12274
12275 case UNOP_IN_RANGE:
12276 /* XXX: sprint_subexp */
12277 print_subexp (exp, pos, stream, PREC_SUFFIX);
12278 fputs_filtered (" in ", stream);
12279 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12280 return;
12281
12282 case OP_DISCRETE_RANGE:
12283 print_subexp (exp, pos, stream, PREC_SUFFIX);
12284 fputs_filtered ("..", stream);
12285 print_subexp (exp, pos, stream, PREC_SUFFIX);
12286 return;
12287
12288 case OP_OTHERS:
12289 fputs_filtered ("others => ", stream);
12290 print_subexp (exp, pos, stream, PREC_SUFFIX);
12291 return;
12292
12293 case OP_CHOICES:
12294 for (i = 0; i < nargs-1; i += 1)
12295 {
12296 if (i > 0)
12297 fputs_filtered ("|", stream);
12298 print_subexp (exp, pos, stream, PREC_SUFFIX);
12299 }
12300 fputs_filtered (" => ", stream);
12301 print_subexp (exp, pos, stream, PREC_SUFFIX);
12302 return;
12303
12304 case OP_POSITIONAL:
12305 print_subexp (exp, pos, stream, PREC_SUFFIX);
12306 return;
12307
12308 case OP_AGGREGATE:
12309 fputs_filtered ("(", stream);
12310 for (i = 0; i < nargs; i += 1)
12311 {
12312 if (i > 0)
12313 fputs_filtered (", ", stream);
12314 print_subexp (exp, pos, stream, PREC_SUFFIX);
12315 }
12316 fputs_filtered (")", stream);
12317 return;
12318 }
12319 }
12320
12321 /* Table mapping opcodes into strings for printing operators
12322 and precedences of the operators. */
12323
12324 static const struct op_print ada_op_print_tab[] = {
12325 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12326 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12327 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12328 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12329 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12330 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12331 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12332 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12333 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12334 {">=", BINOP_GEQ, PREC_ORDER, 0},
12335 {">", BINOP_GTR, PREC_ORDER, 0},
12336 {"<", BINOP_LESS, PREC_ORDER, 0},
12337 {">>", BINOP_RSH, PREC_SHIFT, 0},
12338 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12339 {"+", BINOP_ADD, PREC_ADD, 0},
12340 {"-", BINOP_SUB, PREC_ADD, 0},
12341 {"&", BINOP_CONCAT, PREC_ADD, 0},
12342 {"*", BINOP_MUL, PREC_MUL, 0},
12343 {"/", BINOP_DIV, PREC_MUL, 0},
12344 {"rem", BINOP_REM, PREC_MUL, 0},
12345 {"mod", BINOP_MOD, PREC_MUL, 0},
12346 {"**", BINOP_EXP, PREC_REPEAT, 0},
12347 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12348 {"-", UNOP_NEG, PREC_PREFIX, 0},
12349 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12350 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12351 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12352 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12353 {".all", UNOP_IND, PREC_SUFFIX, 1},
12354 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12355 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12356 {NULL, 0, 0, 0}
12357 };
12358 \f
12359 enum ada_primitive_types {
12360 ada_primitive_type_int,
12361 ada_primitive_type_long,
12362 ada_primitive_type_short,
12363 ada_primitive_type_char,
12364 ada_primitive_type_float,
12365 ada_primitive_type_double,
12366 ada_primitive_type_void,
12367 ada_primitive_type_long_long,
12368 ada_primitive_type_long_double,
12369 ada_primitive_type_natural,
12370 ada_primitive_type_positive,
12371 ada_primitive_type_system_address,
12372 nr_ada_primitive_types
12373 };
12374
12375 static void
12376 ada_language_arch_info (struct gdbarch *gdbarch,
12377 struct language_arch_info *lai)
12378 {
12379 const struct builtin_type *builtin = builtin_type (gdbarch);
12380
12381 lai->primitive_type_vector
12382 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12383 struct type *);
12384
12385 lai->primitive_type_vector [ada_primitive_type_int]
12386 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12387 0, "integer");
12388 lai->primitive_type_vector [ada_primitive_type_long]
12389 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12390 0, "long_integer");
12391 lai->primitive_type_vector [ada_primitive_type_short]
12392 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12393 0, "short_integer");
12394 lai->string_char_type
12395 = lai->primitive_type_vector [ada_primitive_type_char]
12396 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12397 lai->primitive_type_vector [ada_primitive_type_float]
12398 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12399 "float", NULL);
12400 lai->primitive_type_vector [ada_primitive_type_double]
12401 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12402 "long_float", NULL);
12403 lai->primitive_type_vector [ada_primitive_type_long_long]
12404 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12405 0, "long_long_integer");
12406 lai->primitive_type_vector [ada_primitive_type_long_double]
12407 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12408 "long_long_float", NULL);
12409 lai->primitive_type_vector [ada_primitive_type_natural]
12410 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12411 0, "natural");
12412 lai->primitive_type_vector [ada_primitive_type_positive]
12413 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12414 0, "positive");
12415 lai->primitive_type_vector [ada_primitive_type_void]
12416 = builtin->builtin_void;
12417
12418 lai->primitive_type_vector [ada_primitive_type_system_address]
12419 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12420 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12421 = "system__address";
12422
12423 lai->bool_type_symbol = NULL;
12424 lai->bool_type_default = builtin->builtin_bool;
12425 }
12426 \f
12427 /* Language vector */
12428
12429 /* Not really used, but needed in the ada_language_defn. */
12430
12431 static void
12432 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12433 {
12434 ada_emit_char (c, type, stream, quoter, 1);
12435 }
12436
12437 static int
12438 parse (void)
12439 {
12440 warnings_issued = 0;
12441 return ada_parse ();
12442 }
12443
12444 static const struct exp_descriptor ada_exp_descriptor = {
12445 ada_print_subexp,
12446 ada_operator_length,
12447 ada_operator_check,
12448 ada_op_name,
12449 ada_dump_subexp_body,
12450 ada_evaluate_subexp
12451 };
12452
12453 /* Implement the "la_get_symbol_name_cmp" language_defn method
12454 for Ada. */
12455
12456 static symbol_name_cmp_ftype
12457 ada_get_symbol_name_cmp (const char *lookup_name)
12458 {
12459 if (should_use_wild_match (lookup_name))
12460 return wild_match;
12461 else
12462 return compare_names;
12463 }
12464
12465 /* Implement the "la_read_var_value" language_defn method for Ada. */
12466
12467 static struct value *
12468 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12469 {
12470 struct block *frame_block = NULL;
12471 struct symbol *renaming_sym = NULL;
12472
12473 /* The only case where default_read_var_value is not sufficient
12474 is when VAR is a renaming... */
12475 if (frame)
12476 frame_block = get_frame_block (frame, NULL);
12477 if (frame_block)
12478 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12479 if (renaming_sym != NULL)
12480 return ada_read_renaming_var_value (renaming_sym, frame_block);
12481
12482 /* This is a typical case where we expect the default_read_var_value
12483 function to work. */
12484 return default_read_var_value (var, frame);
12485 }
12486
12487 const struct language_defn ada_language_defn = {
12488 "ada", /* Language name */
12489 language_ada,
12490 range_check_off,
12491 type_check_off,
12492 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12493 that's not quite what this means. */
12494 array_row_major,
12495 macro_expansion_no,
12496 &ada_exp_descriptor,
12497 parse,
12498 ada_error,
12499 resolve,
12500 ada_printchar, /* Print a character constant */
12501 ada_printstr, /* Function to print string constant */
12502 emit_char, /* Function to print single char (not used) */
12503 ada_print_type, /* Print a type using appropriate syntax */
12504 ada_print_typedef, /* Print a typedef using appropriate syntax */
12505 ada_val_print, /* Print a value using appropriate syntax */
12506 ada_value_print, /* Print a top-level value */
12507 ada_read_var_value, /* la_read_var_value */
12508 NULL, /* Language specific skip_trampoline */
12509 NULL, /* name_of_this */
12510 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12511 basic_lookup_transparent_type, /* lookup_transparent_type */
12512 ada_la_decode, /* Language specific symbol demangler */
12513 NULL, /* Language specific
12514 class_name_from_physname */
12515 ada_op_print_tab, /* expression operators for printing */
12516 0, /* c-style arrays */
12517 1, /* String lower bound */
12518 ada_get_gdb_completer_word_break_characters,
12519 ada_make_symbol_completion_list,
12520 ada_language_arch_info,
12521 ada_print_array_index,
12522 default_pass_by_reference,
12523 c_get_string,
12524 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12525 ada_iterate_over_symbols,
12526 LANG_MAGIC
12527 };
12528
12529 /* Provide a prototype to silence -Wmissing-prototypes. */
12530 extern initialize_file_ftype _initialize_ada_language;
12531
12532 /* Command-list for the "set/show ada" prefix command. */
12533 static struct cmd_list_element *set_ada_list;
12534 static struct cmd_list_element *show_ada_list;
12535
12536 /* Implement the "set ada" prefix command. */
12537
12538 static void
12539 set_ada_command (char *arg, int from_tty)
12540 {
12541 printf_unfiltered (_(\
12542 "\"set ada\" must be followed by the name of a setting.\n"));
12543 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12544 }
12545
12546 /* Implement the "show ada" prefix command. */
12547
12548 static void
12549 show_ada_command (char *args, int from_tty)
12550 {
12551 cmd_show_list (show_ada_list, from_tty, "");
12552 }
12553
12554 static void
12555 initialize_ada_catchpoint_ops (void)
12556 {
12557 struct breakpoint_ops *ops;
12558
12559 initialize_breakpoint_ops ();
12560
12561 ops = &catch_exception_breakpoint_ops;
12562 *ops = bkpt_breakpoint_ops;
12563 ops->dtor = dtor_catch_exception;
12564 ops->allocate_location = allocate_location_catch_exception;
12565 ops->re_set = re_set_catch_exception;
12566 ops->check_status = check_status_catch_exception;
12567 ops->print_it = print_it_catch_exception;
12568 ops->print_one = print_one_catch_exception;
12569 ops->print_mention = print_mention_catch_exception;
12570 ops->print_recreate = print_recreate_catch_exception;
12571
12572 ops = &catch_exception_unhandled_breakpoint_ops;
12573 *ops = bkpt_breakpoint_ops;
12574 ops->dtor = dtor_catch_exception_unhandled;
12575 ops->allocate_location = allocate_location_catch_exception_unhandled;
12576 ops->re_set = re_set_catch_exception_unhandled;
12577 ops->check_status = check_status_catch_exception_unhandled;
12578 ops->print_it = print_it_catch_exception_unhandled;
12579 ops->print_one = print_one_catch_exception_unhandled;
12580 ops->print_mention = print_mention_catch_exception_unhandled;
12581 ops->print_recreate = print_recreate_catch_exception_unhandled;
12582
12583 ops = &catch_assert_breakpoint_ops;
12584 *ops = bkpt_breakpoint_ops;
12585 ops->dtor = dtor_catch_assert;
12586 ops->allocate_location = allocate_location_catch_assert;
12587 ops->re_set = re_set_catch_assert;
12588 ops->check_status = check_status_catch_assert;
12589 ops->print_it = print_it_catch_assert;
12590 ops->print_one = print_one_catch_assert;
12591 ops->print_mention = print_mention_catch_assert;
12592 ops->print_recreate = print_recreate_catch_assert;
12593 }
12594
12595 void
12596 _initialize_ada_language (void)
12597 {
12598 add_language (&ada_language_defn);
12599
12600 initialize_ada_catchpoint_ops ();
12601
12602 add_prefix_cmd ("ada", no_class, set_ada_command,
12603 _("Prefix command for changing Ada-specfic settings"),
12604 &set_ada_list, "set ada ", 0, &setlist);
12605
12606 add_prefix_cmd ("ada", no_class, show_ada_command,
12607 _("Generic command for showing Ada-specific settings."),
12608 &show_ada_list, "show ada ", 0, &showlist);
12609
12610 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12611 &trust_pad_over_xvs, _("\
12612 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12613 Show whether an optimization trusting PAD types over XVS types is activated"),
12614 _("\
12615 This is related to the encoding used by the GNAT compiler. The debugger\n\
12616 should normally trust the contents of PAD types, but certain older versions\n\
12617 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12618 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12619 work around this bug. It is always safe to turn this option \"off\", but\n\
12620 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12621 this option to \"off\" unless necessary."),
12622 NULL, NULL, &set_ada_list, &show_ada_list);
12623
12624 add_catch_command ("exception", _("\
12625 Catch Ada exceptions, when raised.\n\
12626 With an argument, catch only exceptions with the given name."),
12627 catch_ada_exception_command,
12628 NULL,
12629 CATCH_PERMANENT,
12630 CATCH_TEMPORARY);
12631 add_catch_command ("assert", _("\
12632 Catch failed Ada assertions, when raised.\n\
12633 With an argument, catch only exceptions with the given name."),
12634 catch_assert_command,
12635 NULL,
12636 CATCH_PERMANENT,
12637 CATCH_TEMPORARY);
12638
12639 varsize_limit = 65536;
12640
12641 obstack_init (&symbol_list_obstack);
12642
12643 decoded_names_store = htab_create_alloc
12644 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12645 NULL, xcalloc, xfree);
12646
12647 /* Setup per-inferior data. */
12648 observer_attach_inferior_exit (ada_inferior_exit);
12649 ada_inferior_data
12650 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12651 }
This page took 0.292705 seconds and 4 git commands to generate.