7c13910e5053aafc12ee8978706b1325c95b8519
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274 \f
275
276
277 /* Maximum-sized dynamic type. */
278 static unsigned int varsize_limit;
279
280 /* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282 static char *ada_completer_word_break_characters =
283 #ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285 #else
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
287 #endif
288
289 /* The name of the symbol to use to get the name of the main subprogram. */
290 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
292
293 /* Limit on the number of warnings to raise per expression evaluation. */
294 static int warning_limit = 2;
295
296 /* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298 static int warnings_issued = 0;
299
300 static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302 };
303
304 static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306 };
307
308 /* Space for allocating results of ada_lookup_symbol_list. */
309 static struct obstack symbol_list_obstack;
310
311 /* Inferior-specific data. */
312
313 /* Per-inferior data for this module. */
314
315 struct ada_inferior_data
316 {
317 /* The ada__tags__type_specific_data type, which is used when decoding
318 tagged types. With older versions of GNAT, this type was directly
319 accessible through a component ("tsd") in the object tag. But this
320 is no longer the case, so we cache it for each inferior. */
321 struct type *tsd_type;
322
323 /* The exception_support_info data. This data is used to determine
324 how to implement support for Ada exception catchpoints in a given
325 inferior. */
326 const struct exception_support_info *exception_info;
327 };
328
329 /* Our key to this module's inferior data. */
330 static const struct inferior_data *ada_inferior_data;
331
332 /* A cleanup routine for our inferior data. */
333 static void
334 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
335 {
336 struct ada_inferior_data *data;
337
338 data = inferior_data (inf, ada_inferior_data);
339 if (data != NULL)
340 xfree (data);
341 }
342
343 /* Return our inferior data for the given inferior (INF).
344
345 This function always returns a valid pointer to an allocated
346 ada_inferior_data structure. If INF's inferior data has not
347 been previously set, this functions creates a new one with all
348 fields set to zero, sets INF's inferior to it, and then returns
349 a pointer to that newly allocated ada_inferior_data. */
350
351 static struct ada_inferior_data *
352 get_ada_inferior_data (struct inferior *inf)
353 {
354 struct ada_inferior_data *data;
355
356 data = inferior_data (inf, ada_inferior_data);
357 if (data == NULL)
358 {
359 data = XZALLOC (struct ada_inferior_data);
360 set_inferior_data (inf, ada_inferior_data, data);
361 }
362
363 return data;
364 }
365
366 /* Perform all necessary cleanups regarding our module's inferior data
367 that is required after the inferior INF just exited. */
368
369 static void
370 ada_inferior_exit (struct inferior *inf)
371 {
372 ada_inferior_data_cleanup (inf, NULL);
373 set_inferior_data (inf, ada_inferior_data, NULL);
374 }
375
376 /* Utilities */
377
378 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
379 all typedef layers have been peeled. Otherwise, return TYPE.
380
381 Normally, we really expect a typedef type to only have 1 typedef layer.
382 In other words, we really expect the target type of a typedef type to be
383 a non-typedef type. This is particularly true for Ada units, because
384 the language does not have a typedef vs not-typedef distinction.
385 In that respect, the Ada compiler has been trying to eliminate as many
386 typedef definitions in the debugging information, since they generally
387 do not bring any extra information (we still use typedef under certain
388 circumstances related mostly to the GNAT encoding).
389
390 Unfortunately, we have seen situations where the debugging information
391 generated by the compiler leads to such multiple typedef layers. For
392 instance, consider the following example with stabs:
393
394 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
395 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
396
397 This is an error in the debugging information which causes type
398 pck__float_array___XUP to be defined twice, and the second time,
399 it is defined as a typedef of a typedef.
400
401 This is on the fringe of legality as far as debugging information is
402 concerned, and certainly unexpected. But it is easy to handle these
403 situations correctly, so we can afford to be lenient in this case. */
404
405 static struct type *
406 ada_typedef_target_type (struct type *type)
407 {
408 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
409 type = TYPE_TARGET_TYPE (type);
410 return type;
411 }
412
413 /* Given DECODED_NAME a string holding a symbol name in its
414 decoded form (ie using the Ada dotted notation), returns
415 its unqualified name. */
416
417 static const char *
418 ada_unqualified_name (const char *decoded_name)
419 {
420 const char *result = strrchr (decoded_name, '.');
421
422 if (result != NULL)
423 result++; /* Skip the dot... */
424 else
425 result = decoded_name;
426
427 return result;
428 }
429
430 /* Return a string starting with '<', followed by STR, and '>'.
431 The result is good until the next call. */
432
433 static char *
434 add_angle_brackets (const char *str)
435 {
436 static char *result = NULL;
437
438 xfree (result);
439 result = xstrprintf ("<%s>", str);
440 return result;
441 }
442
443 static char *
444 ada_get_gdb_completer_word_break_characters (void)
445 {
446 return ada_completer_word_break_characters;
447 }
448
449 /* Print an array element index using the Ada syntax. */
450
451 static void
452 ada_print_array_index (struct value *index_value, struct ui_file *stream,
453 const struct value_print_options *options)
454 {
455 LA_VALUE_PRINT (index_value, stream, options);
456 fprintf_filtered (stream, " => ");
457 }
458
459 /* Assuming VECT points to an array of *SIZE objects of size
460 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
461 updating *SIZE as necessary and returning the (new) array. */
462
463 void *
464 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
465 {
466 if (*size < min_size)
467 {
468 *size *= 2;
469 if (*size < min_size)
470 *size = min_size;
471 vect = xrealloc (vect, *size * element_size);
472 }
473 return vect;
474 }
475
476 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
477 suffix of FIELD_NAME beginning "___". */
478
479 static int
480 field_name_match (const char *field_name, const char *target)
481 {
482 int len = strlen (target);
483
484 return
485 (strncmp (field_name, target, len) == 0
486 && (field_name[len] == '\0'
487 || (strncmp (field_name + len, "___", 3) == 0
488 && strcmp (field_name + strlen (field_name) - 6,
489 "___XVN") != 0)));
490 }
491
492
493 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
494 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
495 and return its index. This function also handles fields whose name
496 have ___ suffixes because the compiler sometimes alters their name
497 by adding such a suffix to represent fields with certain constraints.
498 If the field could not be found, return a negative number if
499 MAYBE_MISSING is set. Otherwise raise an error. */
500
501 int
502 ada_get_field_index (const struct type *type, const char *field_name,
503 int maybe_missing)
504 {
505 int fieldno;
506 struct type *struct_type = check_typedef ((struct type *) type);
507
508 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
509 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
510 return fieldno;
511
512 if (!maybe_missing)
513 error (_("Unable to find field %s in struct %s. Aborting"),
514 field_name, TYPE_NAME (struct_type));
515
516 return -1;
517 }
518
519 /* The length of the prefix of NAME prior to any "___" suffix. */
520
521 int
522 ada_name_prefix_len (const char *name)
523 {
524 if (name == NULL)
525 return 0;
526 else
527 {
528 const char *p = strstr (name, "___");
529
530 if (p == NULL)
531 return strlen (name);
532 else
533 return p - name;
534 }
535 }
536
537 /* Return non-zero if SUFFIX is a suffix of STR.
538 Return zero if STR is null. */
539
540 static int
541 is_suffix (const char *str, const char *suffix)
542 {
543 int len1, len2;
544
545 if (str == NULL)
546 return 0;
547 len1 = strlen (str);
548 len2 = strlen (suffix);
549 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
550 }
551
552 /* The contents of value VAL, treated as a value of type TYPE. The
553 result is an lval in memory if VAL is. */
554
555 static struct value *
556 coerce_unspec_val_to_type (struct value *val, struct type *type)
557 {
558 type = ada_check_typedef (type);
559 if (value_type (val) == type)
560 return val;
561 else
562 {
563 struct value *result;
564
565 /* Make sure that the object size is not unreasonable before
566 trying to allocate some memory for it. */
567 check_size (type);
568
569 if (value_lazy (val)
570 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
571 result = allocate_value_lazy (type);
572 else
573 {
574 result = allocate_value (type);
575 memcpy (value_contents_raw (result), value_contents (val),
576 TYPE_LENGTH (type));
577 }
578 set_value_component_location (result, val);
579 set_value_bitsize (result, value_bitsize (val));
580 set_value_bitpos (result, value_bitpos (val));
581 set_value_address (result, value_address (val));
582 return result;
583 }
584 }
585
586 static const gdb_byte *
587 cond_offset_host (const gdb_byte *valaddr, long offset)
588 {
589 if (valaddr == NULL)
590 return NULL;
591 else
592 return valaddr + offset;
593 }
594
595 static CORE_ADDR
596 cond_offset_target (CORE_ADDR address, long offset)
597 {
598 if (address == 0)
599 return 0;
600 else
601 return address + offset;
602 }
603
604 /* Issue a warning (as for the definition of warning in utils.c, but
605 with exactly one argument rather than ...), unless the limit on the
606 number of warnings has passed during the evaluation of the current
607 expression. */
608
609 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
610 provided by "complaint". */
611 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
612
613 static void
614 lim_warning (const char *format, ...)
615 {
616 va_list args;
617
618 va_start (args, format);
619 warnings_issued += 1;
620 if (warnings_issued <= warning_limit)
621 vwarning (format, args);
622
623 va_end (args);
624 }
625
626 /* Issue an error if the size of an object of type T is unreasonable,
627 i.e. if it would be a bad idea to allocate a value of this type in
628 GDB. */
629
630 static void
631 check_size (const struct type *type)
632 {
633 if (TYPE_LENGTH (type) > varsize_limit)
634 error (_("object size is larger than varsize-limit"));
635 }
636
637 /* Maximum value of a SIZE-byte signed integer type. */
638 static LONGEST
639 max_of_size (int size)
640 {
641 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
642
643 return top_bit | (top_bit - 1);
644 }
645
646 /* Minimum value of a SIZE-byte signed integer type. */
647 static LONGEST
648 min_of_size (int size)
649 {
650 return -max_of_size (size) - 1;
651 }
652
653 /* Maximum value of a SIZE-byte unsigned integer type. */
654 static ULONGEST
655 umax_of_size (int size)
656 {
657 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
658
659 return top_bit | (top_bit - 1);
660 }
661
662 /* Maximum value of integral type T, as a signed quantity. */
663 static LONGEST
664 max_of_type (struct type *t)
665 {
666 if (TYPE_UNSIGNED (t))
667 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
668 else
669 return max_of_size (TYPE_LENGTH (t));
670 }
671
672 /* Minimum value of integral type T, as a signed quantity. */
673 static LONGEST
674 min_of_type (struct type *t)
675 {
676 if (TYPE_UNSIGNED (t))
677 return 0;
678 else
679 return min_of_size (TYPE_LENGTH (t));
680 }
681
682 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
683 LONGEST
684 ada_discrete_type_high_bound (struct type *type)
685 {
686 switch (TYPE_CODE (type))
687 {
688 case TYPE_CODE_RANGE:
689 return TYPE_HIGH_BOUND (type);
690 case TYPE_CODE_ENUM:
691 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
692 case TYPE_CODE_BOOL:
693 return 1;
694 case TYPE_CODE_CHAR:
695 case TYPE_CODE_INT:
696 return max_of_type (type);
697 default:
698 error (_("Unexpected type in ada_discrete_type_high_bound."));
699 }
700 }
701
702 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
703 LONGEST
704 ada_discrete_type_low_bound (struct type *type)
705 {
706 switch (TYPE_CODE (type))
707 {
708 case TYPE_CODE_RANGE:
709 return TYPE_LOW_BOUND (type);
710 case TYPE_CODE_ENUM:
711 return TYPE_FIELD_BITPOS (type, 0);
712 case TYPE_CODE_BOOL:
713 return 0;
714 case TYPE_CODE_CHAR:
715 case TYPE_CODE_INT:
716 return min_of_type (type);
717 default:
718 error (_("Unexpected type in ada_discrete_type_low_bound."));
719 }
720 }
721
722 /* The identity on non-range types. For range types, the underlying
723 non-range scalar type. */
724
725 static struct type *
726 get_base_type (struct type *type)
727 {
728 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
729 {
730 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
731 return type;
732 type = TYPE_TARGET_TYPE (type);
733 }
734 return type;
735 }
736 \f
737
738 /* Language Selection */
739
740 /* If the main program is in Ada, return language_ada, otherwise return LANG
741 (the main program is in Ada iif the adainit symbol is found). */
742
743 enum language
744 ada_update_initial_language (enum language lang)
745 {
746 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
747 (struct objfile *) NULL) != NULL)
748 return language_ada;
749
750 return lang;
751 }
752
753 /* If the main procedure is written in Ada, then return its name.
754 The result is good until the next call. Return NULL if the main
755 procedure doesn't appear to be in Ada. */
756
757 char *
758 ada_main_name (void)
759 {
760 struct minimal_symbol *msym;
761 static char *main_program_name = NULL;
762
763 /* For Ada, the name of the main procedure is stored in a specific
764 string constant, generated by the binder. Look for that symbol,
765 extract its address, and then read that string. If we didn't find
766 that string, then most probably the main procedure is not written
767 in Ada. */
768 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
769
770 if (msym != NULL)
771 {
772 CORE_ADDR main_program_name_addr;
773 int err_code;
774
775 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
776 if (main_program_name_addr == 0)
777 error (_("Invalid address for Ada main program name."));
778
779 xfree (main_program_name);
780 target_read_string (main_program_name_addr, &main_program_name,
781 1024, &err_code);
782
783 if (err_code != 0)
784 return NULL;
785 return main_program_name;
786 }
787
788 /* The main procedure doesn't seem to be in Ada. */
789 return NULL;
790 }
791 \f
792 /* Symbols */
793
794 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
795 of NULLs. */
796
797 const struct ada_opname_map ada_opname_table[] = {
798 {"Oadd", "\"+\"", BINOP_ADD},
799 {"Osubtract", "\"-\"", BINOP_SUB},
800 {"Omultiply", "\"*\"", BINOP_MUL},
801 {"Odivide", "\"/\"", BINOP_DIV},
802 {"Omod", "\"mod\"", BINOP_MOD},
803 {"Orem", "\"rem\"", BINOP_REM},
804 {"Oexpon", "\"**\"", BINOP_EXP},
805 {"Olt", "\"<\"", BINOP_LESS},
806 {"Ole", "\"<=\"", BINOP_LEQ},
807 {"Ogt", "\">\"", BINOP_GTR},
808 {"Oge", "\">=\"", BINOP_GEQ},
809 {"Oeq", "\"=\"", BINOP_EQUAL},
810 {"One", "\"/=\"", BINOP_NOTEQUAL},
811 {"Oand", "\"and\"", BINOP_BITWISE_AND},
812 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
813 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
814 {"Oconcat", "\"&\"", BINOP_CONCAT},
815 {"Oabs", "\"abs\"", UNOP_ABS},
816 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
817 {"Oadd", "\"+\"", UNOP_PLUS},
818 {"Osubtract", "\"-\"", UNOP_NEG},
819 {NULL, NULL}
820 };
821
822 /* The "encoded" form of DECODED, according to GNAT conventions.
823 The result is valid until the next call to ada_encode. */
824
825 char *
826 ada_encode (const char *decoded)
827 {
828 static char *encoding_buffer = NULL;
829 static size_t encoding_buffer_size = 0;
830 const char *p;
831 int k;
832
833 if (decoded == NULL)
834 return NULL;
835
836 GROW_VECT (encoding_buffer, encoding_buffer_size,
837 2 * strlen (decoded) + 10);
838
839 k = 0;
840 for (p = decoded; *p != '\0'; p += 1)
841 {
842 if (*p == '.')
843 {
844 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
845 k += 2;
846 }
847 else if (*p == '"')
848 {
849 const struct ada_opname_map *mapping;
850
851 for (mapping = ada_opname_table;
852 mapping->encoded != NULL
853 && strncmp (mapping->decoded, p,
854 strlen (mapping->decoded)) != 0; mapping += 1)
855 ;
856 if (mapping->encoded == NULL)
857 error (_("invalid Ada operator name: %s"), p);
858 strcpy (encoding_buffer + k, mapping->encoded);
859 k += strlen (mapping->encoded);
860 break;
861 }
862 else
863 {
864 encoding_buffer[k] = *p;
865 k += 1;
866 }
867 }
868
869 encoding_buffer[k] = '\0';
870 return encoding_buffer;
871 }
872
873 /* Return NAME folded to lower case, or, if surrounded by single
874 quotes, unfolded, but with the quotes stripped away. Result good
875 to next call. */
876
877 char *
878 ada_fold_name (const char *name)
879 {
880 static char *fold_buffer = NULL;
881 static size_t fold_buffer_size = 0;
882
883 int len = strlen (name);
884 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
885
886 if (name[0] == '\'')
887 {
888 strncpy (fold_buffer, name + 1, len - 2);
889 fold_buffer[len - 2] = '\000';
890 }
891 else
892 {
893 int i;
894
895 for (i = 0; i <= len; i += 1)
896 fold_buffer[i] = tolower (name[i]);
897 }
898
899 return fold_buffer;
900 }
901
902 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
903
904 static int
905 is_lower_alphanum (const char c)
906 {
907 return (isdigit (c) || (isalpha (c) && islower (c)));
908 }
909
910 /* ENCODED is the linkage name of a symbol and LEN contains its length.
911 This function saves in LEN the length of that same symbol name but
912 without either of these suffixes:
913 . .{DIGIT}+
914 . ${DIGIT}+
915 . ___{DIGIT}+
916 . __{DIGIT}+.
917
918 These are suffixes introduced by the compiler for entities such as
919 nested subprogram for instance, in order to avoid name clashes.
920 They do not serve any purpose for the debugger. */
921
922 static void
923 ada_remove_trailing_digits (const char *encoded, int *len)
924 {
925 if (*len > 1 && isdigit (encoded[*len - 1]))
926 {
927 int i = *len - 2;
928
929 while (i > 0 && isdigit (encoded[i]))
930 i--;
931 if (i >= 0 && encoded[i] == '.')
932 *len = i;
933 else if (i >= 0 && encoded[i] == '$')
934 *len = i;
935 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
936 *len = i - 2;
937 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
938 *len = i - 1;
939 }
940 }
941
942 /* Remove the suffix introduced by the compiler for protected object
943 subprograms. */
944
945 static void
946 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
947 {
948 /* Remove trailing N. */
949
950 /* Protected entry subprograms are broken into two
951 separate subprograms: The first one is unprotected, and has
952 a 'N' suffix; the second is the protected version, and has
953 the 'P' suffix. The second calls the first one after handling
954 the protection. Since the P subprograms are internally generated,
955 we leave these names undecoded, giving the user a clue that this
956 entity is internal. */
957
958 if (*len > 1
959 && encoded[*len - 1] == 'N'
960 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
961 *len = *len - 1;
962 }
963
964 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
965
966 static void
967 ada_remove_Xbn_suffix (const char *encoded, int *len)
968 {
969 int i = *len - 1;
970
971 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
972 i--;
973
974 if (encoded[i] != 'X')
975 return;
976
977 if (i == 0)
978 return;
979
980 if (isalnum (encoded[i-1]))
981 *len = i;
982 }
983
984 /* If ENCODED follows the GNAT entity encoding conventions, then return
985 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
986 replaced by ENCODED.
987
988 The resulting string is valid until the next call of ada_decode.
989 If the string is unchanged by decoding, the original string pointer
990 is returned. */
991
992 const char *
993 ada_decode (const char *encoded)
994 {
995 int i, j;
996 int len0;
997 const char *p;
998 char *decoded;
999 int at_start_name;
1000 static char *decoding_buffer = NULL;
1001 static size_t decoding_buffer_size = 0;
1002
1003 /* The name of the Ada main procedure starts with "_ada_".
1004 This prefix is not part of the decoded name, so skip this part
1005 if we see this prefix. */
1006 if (strncmp (encoded, "_ada_", 5) == 0)
1007 encoded += 5;
1008
1009 /* If the name starts with '_', then it is not a properly encoded
1010 name, so do not attempt to decode it. Similarly, if the name
1011 starts with '<', the name should not be decoded. */
1012 if (encoded[0] == '_' || encoded[0] == '<')
1013 goto Suppress;
1014
1015 len0 = strlen (encoded);
1016
1017 ada_remove_trailing_digits (encoded, &len0);
1018 ada_remove_po_subprogram_suffix (encoded, &len0);
1019
1020 /* Remove the ___X.* suffix if present. Do not forget to verify that
1021 the suffix is located before the current "end" of ENCODED. We want
1022 to avoid re-matching parts of ENCODED that have previously been
1023 marked as discarded (by decrementing LEN0). */
1024 p = strstr (encoded, "___");
1025 if (p != NULL && p - encoded < len0 - 3)
1026 {
1027 if (p[3] == 'X')
1028 len0 = p - encoded;
1029 else
1030 goto Suppress;
1031 }
1032
1033 /* Remove any trailing TKB suffix. It tells us that this symbol
1034 is for the body of a task, but that information does not actually
1035 appear in the decoded name. */
1036
1037 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1038 len0 -= 3;
1039
1040 /* Remove any trailing TB suffix. The TB suffix is slightly different
1041 from the TKB suffix because it is used for non-anonymous task
1042 bodies. */
1043
1044 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1045 len0 -= 2;
1046
1047 /* Remove trailing "B" suffixes. */
1048 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1049
1050 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1051 len0 -= 1;
1052
1053 /* Make decoded big enough for possible expansion by operator name. */
1054
1055 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1056 decoded = decoding_buffer;
1057
1058 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1059
1060 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1061 {
1062 i = len0 - 2;
1063 while ((i >= 0 && isdigit (encoded[i]))
1064 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1065 i -= 1;
1066 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1067 len0 = i - 1;
1068 else if (encoded[i] == '$')
1069 len0 = i;
1070 }
1071
1072 /* The first few characters that are not alphabetic are not part
1073 of any encoding we use, so we can copy them over verbatim. */
1074
1075 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1076 decoded[j] = encoded[i];
1077
1078 at_start_name = 1;
1079 while (i < len0)
1080 {
1081 /* Is this a symbol function? */
1082 if (at_start_name && encoded[i] == 'O')
1083 {
1084 int k;
1085
1086 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1087 {
1088 int op_len = strlen (ada_opname_table[k].encoded);
1089 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1090 op_len - 1) == 0)
1091 && !isalnum (encoded[i + op_len]))
1092 {
1093 strcpy (decoded + j, ada_opname_table[k].decoded);
1094 at_start_name = 0;
1095 i += op_len;
1096 j += strlen (ada_opname_table[k].decoded);
1097 break;
1098 }
1099 }
1100 if (ada_opname_table[k].encoded != NULL)
1101 continue;
1102 }
1103 at_start_name = 0;
1104
1105 /* Replace "TK__" with "__", which will eventually be translated
1106 into "." (just below). */
1107
1108 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1109 i += 2;
1110
1111 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1112 be translated into "." (just below). These are internal names
1113 generated for anonymous blocks inside which our symbol is nested. */
1114
1115 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1116 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1117 && isdigit (encoded [i+4]))
1118 {
1119 int k = i + 5;
1120
1121 while (k < len0 && isdigit (encoded[k]))
1122 k++; /* Skip any extra digit. */
1123
1124 /* Double-check that the "__B_{DIGITS}+" sequence we found
1125 is indeed followed by "__". */
1126 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1127 i = k;
1128 }
1129
1130 /* Remove _E{DIGITS}+[sb] */
1131
1132 /* Just as for protected object subprograms, there are 2 categories
1133 of subprograms created by the compiler for each entry. The first
1134 one implements the actual entry code, and has a suffix following
1135 the convention above; the second one implements the barrier and
1136 uses the same convention as above, except that the 'E' is replaced
1137 by a 'B'.
1138
1139 Just as above, we do not decode the name of barrier functions
1140 to give the user a clue that the code he is debugging has been
1141 internally generated. */
1142
1143 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1144 && isdigit (encoded[i+2]))
1145 {
1146 int k = i + 3;
1147
1148 while (k < len0 && isdigit (encoded[k]))
1149 k++;
1150
1151 if (k < len0
1152 && (encoded[k] == 'b' || encoded[k] == 's'))
1153 {
1154 k++;
1155 /* Just as an extra precaution, make sure that if this
1156 suffix is followed by anything else, it is a '_'.
1157 Otherwise, we matched this sequence by accident. */
1158 if (k == len0
1159 || (k < len0 && encoded[k] == '_'))
1160 i = k;
1161 }
1162 }
1163
1164 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1165 the GNAT front-end in protected object subprograms. */
1166
1167 if (i < len0 + 3
1168 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1169 {
1170 /* Backtrack a bit up until we reach either the begining of
1171 the encoded name, or "__". Make sure that we only find
1172 digits or lowercase characters. */
1173 const char *ptr = encoded + i - 1;
1174
1175 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1176 ptr--;
1177 if (ptr < encoded
1178 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1179 i++;
1180 }
1181
1182 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1183 {
1184 /* This is a X[bn]* sequence not separated from the previous
1185 part of the name with a non-alpha-numeric character (in other
1186 words, immediately following an alpha-numeric character), then
1187 verify that it is placed at the end of the encoded name. If
1188 not, then the encoding is not valid and we should abort the
1189 decoding. Otherwise, just skip it, it is used in body-nested
1190 package names. */
1191 do
1192 i += 1;
1193 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1194 if (i < len0)
1195 goto Suppress;
1196 }
1197 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1198 {
1199 /* Replace '__' by '.'. */
1200 decoded[j] = '.';
1201 at_start_name = 1;
1202 i += 2;
1203 j += 1;
1204 }
1205 else
1206 {
1207 /* It's a character part of the decoded name, so just copy it
1208 over. */
1209 decoded[j] = encoded[i];
1210 i += 1;
1211 j += 1;
1212 }
1213 }
1214 decoded[j] = '\000';
1215
1216 /* Decoded names should never contain any uppercase character.
1217 Double-check this, and abort the decoding if we find one. */
1218
1219 for (i = 0; decoded[i] != '\0'; i += 1)
1220 if (isupper (decoded[i]) || decoded[i] == ' ')
1221 goto Suppress;
1222
1223 if (strcmp (decoded, encoded) == 0)
1224 return encoded;
1225 else
1226 return decoded;
1227
1228 Suppress:
1229 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1230 decoded = decoding_buffer;
1231 if (encoded[0] == '<')
1232 strcpy (decoded, encoded);
1233 else
1234 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1235 return decoded;
1236
1237 }
1238
1239 /* Table for keeping permanent unique copies of decoded names. Once
1240 allocated, names in this table are never released. While this is a
1241 storage leak, it should not be significant unless there are massive
1242 changes in the set of decoded names in successive versions of a
1243 symbol table loaded during a single session. */
1244 static struct htab *decoded_names_store;
1245
1246 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1247 in the language-specific part of GSYMBOL, if it has not been
1248 previously computed. Tries to save the decoded name in the same
1249 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1250 in any case, the decoded symbol has a lifetime at least that of
1251 GSYMBOL).
1252 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1253 const, but nevertheless modified to a semantically equivalent form
1254 when a decoded name is cached in it. */
1255
1256 char *
1257 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1258 {
1259 char **resultp =
1260 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1261
1262 if (*resultp == NULL)
1263 {
1264 const char *decoded = ada_decode (gsymbol->name);
1265
1266 if (gsymbol->obj_section != NULL)
1267 {
1268 struct objfile *objf = gsymbol->obj_section->objfile;
1269
1270 *resultp = obsavestring (decoded, strlen (decoded),
1271 &objf->objfile_obstack);
1272 }
1273 /* Sometimes, we can't find a corresponding objfile, in which
1274 case, we put the result on the heap. Since we only decode
1275 when needed, we hope this usually does not cause a
1276 significant memory leak (FIXME). */
1277 if (*resultp == NULL)
1278 {
1279 char **slot = (char **) htab_find_slot (decoded_names_store,
1280 decoded, INSERT);
1281
1282 if (*slot == NULL)
1283 *slot = xstrdup (decoded);
1284 *resultp = *slot;
1285 }
1286 }
1287
1288 return *resultp;
1289 }
1290
1291 static char *
1292 ada_la_decode (const char *encoded, int options)
1293 {
1294 return xstrdup (ada_decode (encoded));
1295 }
1296
1297 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1298 suffixes that encode debugging information or leading _ada_ on
1299 SYM_NAME (see is_name_suffix commentary for the debugging
1300 information that is ignored). If WILD, then NAME need only match a
1301 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1302 either argument is NULL. */
1303
1304 static int
1305 match_name (const char *sym_name, const char *name, int wild)
1306 {
1307 if (sym_name == NULL || name == NULL)
1308 return 0;
1309 else if (wild)
1310 return wild_match (sym_name, name) == 0;
1311 else
1312 {
1313 int len_name = strlen (name);
1314
1315 return (strncmp (sym_name, name, len_name) == 0
1316 && is_name_suffix (sym_name + len_name))
1317 || (strncmp (sym_name, "_ada_", 5) == 0
1318 && strncmp (sym_name + 5, name, len_name) == 0
1319 && is_name_suffix (sym_name + len_name + 5));
1320 }
1321 }
1322 \f
1323
1324 /* Arrays */
1325
1326 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1327 generated by the GNAT compiler to describe the index type used
1328 for each dimension of an array, check whether it follows the latest
1329 known encoding. If not, fix it up to conform to the latest encoding.
1330 Otherwise, do nothing. This function also does nothing if
1331 INDEX_DESC_TYPE is NULL.
1332
1333 The GNAT encoding used to describle the array index type evolved a bit.
1334 Initially, the information would be provided through the name of each
1335 field of the structure type only, while the type of these fields was
1336 described as unspecified and irrelevant. The debugger was then expected
1337 to perform a global type lookup using the name of that field in order
1338 to get access to the full index type description. Because these global
1339 lookups can be very expensive, the encoding was later enhanced to make
1340 the global lookup unnecessary by defining the field type as being
1341 the full index type description.
1342
1343 The purpose of this routine is to allow us to support older versions
1344 of the compiler by detecting the use of the older encoding, and by
1345 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1346 we essentially replace each field's meaningless type by the associated
1347 index subtype). */
1348
1349 void
1350 ada_fixup_array_indexes_type (struct type *index_desc_type)
1351 {
1352 int i;
1353
1354 if (index_desc_type == NULL)
1355 return;
1356 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1357
1358 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1359 to check one field only, no need to check them all). If not, return
1360 now.
1361
1362 If our INDEX_DESC_TYPE was generated using the older encoding,
1363 the field type should be a meaningless integer type whose name
1364 is not equal to the field name. */
1365 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1366 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1367 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1368 return;
1369
1370 /* Fixup each field of INDEX_DESC_TYPE. */
1371 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1372 {
1373 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1374 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1375
1376 if (raw_type)
1377 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1378 }
1379 }
1380
1381 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1382
1383 static char *bound_name[] = {
1384 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1385 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1386 };
1387
1388 /* Maximum number of array dimensions we are prepared to handle. */
1389
1390 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1391
1392
1393 /* The desc_* routines return primitive portions of array descriptors
1394 (fat pointers). */
1395
1396 /* The descriptor or array type, if any, indicated by TYPE; removes
1397 level of indirection, if needed. */
1398
1399 static struct type *
1400 desc_base_type (struct type *type)
1401 {
1402 if (type == NULL)
1403 return NULL;
1404 type = ada_check_typedef (type);
1405 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1406 type = ada_typedef_target_type (type);
1407
1408 if (type != NULL
1409 && (TYPE_CODE (type) == TYPE_CODE_PTR
1410 || TYPE_CODE (type) == TYPE_CODE_REF))
1411 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1412 else
1413 return type;
1414 }
1415
1416 /* True iff TYPE indicates a "thin" array pointer type. */
1417
1418 static int
1419 is_thin_pntr (struct type *type)
1420 {
1421 return
1422 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1423 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1424 }
1425
1426 /* The descriptor type for thin pointer type TYPE. */
1427
1428 static struct type *
1429 thin_descriptor_type (struct type *type)
1430 {
1431 struct type *base_type = desc_base_type (type);
1432
1433 if (base_type == NULL)
1434 return NULL;
1435 if (is_suffix (ada_type_name (base_type), "___XVE"))
1436 return base_type;
1437 else
1438 {
1439 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1440
1441 if (alt_type == NULL)
1442 return base_type;
1443 else
1444 return alt_type;
1445 }
1446 }
1447
1448 /* A pointer to the array data for thin-pointer value VAL. */
1449
1450 static struct value *
1451 thin_data_pntr (struct value *val)
1452 {
1453 struct type *type = ada_check_typedef (value_type (val));
1454 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1455
1456 data_type = lookup_pointer_type (data_type);
1457
1458 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1459 return value_cast (data_type, value_copy (val));
1460 else
1461 return value_from_longest (data_type, value_address (val));
1462 }
1463
1464 /* True iff TYPE indicates a "thick" array pointer type. */
1465
1466 static int
1467 is_thick_pntr (struct type *type)
1468 {
1469 type = desc_base_type (type);
1470 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1471 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1472 }
1473
1474 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1475 pointer to one, the type of its bounds data; otherwise, NULL. */
1476
1477 static struct type *
1478 desc_bounds_type (struct type *type)
1479 {
1480 struct type *r;
1481
1482 type = desc_base_type (type);
1483
1484 if (type == NULL)
1485 return NULL;
1486 else if (is_thin_pntr (type))
1487 {
1488 type = thin_descriptor_type (type);
1489 if (type == NULL)
1490 return NULL;
1491 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1492 if (r != NULL)
1493 return ada_check_typedef (r);
1494 }
1495 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1496 {
1497 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1498 if (r != NULL)
1499 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1500 }
1501 return NULL;
1502 }
1503
1504 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1505 one, a pointer to its bounds data. Otherwise NULL. */
1506
1507 static struct value *
1508 desc_bounds (struct value *arr)
1509 {
1510 struct type *type = ada_check_typedef (value_type (arr));
1511
1512 if (is_thin_pntr (type))
1513 {
1514 struct type *bounds_type =
1515 desc_bounds_type (thin_descriptor_type (type));
1516 LONGEST addr;
1517
1518 if (bounds_type == NULL)
1519 error (_("Bad GNAT array descriptor"));
1520
1521 /* NOTE: The following calculation is not really kosher, but
1522 since desc_type is an XVE-encoded type (and shouldn't be),
1523 the correct calculation is a real pain. FIXME (and fix GCC). */
1524 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1525 addr = value_as_long (arr);
1526 else
1527 addr = value_address (arr);
1528
1529 return
1530 value_from_longest (lookup_pointer_type (bounds_type),
1531 addr - TYPE_LENGTH (bounds_type));
1532 }
1533
1534 else if (is_thick_pntr (type))
1535 {
1536 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1537 _("Bad GNAT array descriptor"));
1538 struct type *p_bounds_type = value_type (p_bounds);
1539
1540 if (p_bounds_type
1541 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1542 {
1543 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1544
1545 if (TYPE_STUB (target_type))
1546 p_bounds = value_cast (lookup_pointer_type
1547 (ada_check_typedef (target_type)),
1548 p_bounds);
1549 }
1550 else
1551 error (_("Bad GNAT array descriptor"));
1552
1553 return p_bounds;
1554 }
1555 else
1556 return NULL;
1557 }
1558
1559 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1560 position of the field containing the address of the bounds data. */
1561
1562 static int
1563 fat_pntr_bounds_bitpos (struct type *type)
1564 {
1565 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1566 }
1567
1568 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1569 size of the field containing the address of the bounds data. */
1570
1571 static int
1572 fat_pntr_bounds_bitsize (struct type *type)
1573 {
1574 type = desc_base_type (type);
1575
1576 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1577 return TYPE_FIELD_BITSIZE (type, 1);
1578 else
1579 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1580 }
1581
1582 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1583 pointer to one, the type of its array data (a array-with-no-bounds type);
1584 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1585 data. */
1586
1587 static struct type *
1588 desc_data_target_type (struct type *type)
1589 {
1590 type = desc_base_type (type);
1591
1592 /* NOTE: The following is bogus; see comment in desc_bounds. */
1593 if (is_thin_pntr (type))
1594 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1595 else if (is_thick_pntr (type))
1596 {
1597 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1598
1599 if (data_type
1600 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1601 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1602 }
1603
1604 return NULL;
1605 }
1606
1607 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1608 its array data. */
1609
1610 static struct value *
1611 desc_data (struct value *arr)
1612 {
1613 struct type *type = value_type (arr);
1614
1615 if (is_thin_pntr (type))
1616 return thin_data_pntr (arr);
1617 else if (is_thick_pntr (type))
1618 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1619 _("Bad GNAT array descriptor"));
1620 else
1621 return NULL;
1622 }
1623
1624
1625 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1626 position of the field containing the address of the data. */
1627
1628 static int
1629 fat_pntr_data_bitpos (struct type *type)
1630 {
1631 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1632 }
1633
1634 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1635 size of the field containing the address of the data. */
1636
1637 static int
1638 fat_pntr_data_bitsize (struct type *type)
1639 {
1640 type = desc_base_type (type);
1641
1642 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1643 return TYPE_FIELD_BITSIZE (type, 0);
1644 else
1645 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1646 }
1647
1648 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1649 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1650 bound, if WHICH is 1. The first bound is I=1. */
1651
1652 static struct value *
1653 desc_one_bound (struct value *bounds, int i, int which)
1654 {
1655 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1656 _("Bad GNAT array descriptor bounds"));
1657 }
1658
1659 /* If BOUNDS is an array-bounds structure type, return the bit position
1660 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1661 bound, if WHICH is 1. The first bound is I=1. */
1662
1663 static int
1664 desc_bound_bitpos (struct type *type, int i, int which)
1665 {
1666 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1667 }
1668
1669 /* If BOUNDS is an array-bounds structure type, return the bit field size
1670 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1671 bound, if WHICH is 1. The first bound is I=1. */
1672
1673 static int
1674 desc_bound_bitsize (struct type *type, int i, int which)
1675 {
1676 type = desc_base_type (type);
1677
1678 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1679 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1680 else
1681 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1682 }
1683
1684 /* If TYPE is the type of an array-bounds structure, the type of its
1685 Ith bound (numbering from 1). Otherwise, NULL. */
1686
1687 static struct type *
1688 desc_index_type (struct type *type, int i)
1689 {
1690 type = desc_base_type (type);
1691
1692 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1694 else
1695 return NULL;
1696 }
1697
1698 /* The number of index positions in the array-bounds type TYPE.
1699 Return 0 if TYPE is NULL. */
1700
1701 static int
1702 desc_arity (struct type *type)
1703 {
1704 type = desc_base_type (type);
1705
1706 if (type != NULL)
1707 return TYPE_NFIELDS (type) / 2;
1708 return 0;
1709 }
1710
1711 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1712 an array descriptor type (representing an unconstrained array
1713 type). */
1714
1715 static int
1716 ada_is_direct_array_type (struct type *type)
1717 {
1718 if (type == NULL)
1719 return 0;
1720 type = ada_check_typedef (type);
1721 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1722 || ada_is_array_descriptor_type (type));
1723 }
1724
1725 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1726 * to one. */
1727
1728 static int
1729 ada_is_array_type (struct type *type)
1730 {
1731 while (type != NULL
1732 && (TYPE_CODE (type) == TYPE_CODE_PTR
1733 || TYPE_CODE (type) == TYPE_CODE_REF))
1734 type = TYPE_TARGET_TYPE (type);
1735 return ada_is_direct_array_type (type);
1736 }
1737
1738 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1739
1740 int
1741 ada_is_simple_array_type (struct type *type)
1742 {
1743 if (type == NULL)
1744 return 0;
1745 type = ada_check_typedef (type);
1746 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1747 || (TYPE_CODE (type) == TYPE_CODE_PTR
1748 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1749 == TYPE_CODE_ARRAY));
1750 }
1751
1752 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1753
1754 int
1755 ada_is_array_descriptor_type (struct type *type)
1756 {
1757 struct type *data_type = desc_data_target_type (type);
1758
1759 if (type == NULL)
1760 return 0;
1761 type = ada_check_typedef (type);
1762 return (data_type != NULL
1763 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1764 && desc_arity (desc_bounds_type (type)) > 0);
1765 }
1766
1767 /* Non-zero iff type is a partially mal-formed GNAT array
1768 descriptor. FIXME: This is to compensate for some problems with
1769 debugging output from GNAT. Re-examine periodically to see if it
1770 is still needed. */
1771
1772 int
1773 ada_is_bogus_array_descriptor (struct type *type)
1774 {
1775 return
1776 type != NULL
1777 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1778 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1779 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1780 && !ada_is_array_descriptor_type (type);
1781 }
1782
1783
1784 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1785 (fat pointer) returns the type of the array data described---specifically,
1786 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1787 in from the descriptor; otherwise, they are left unspecified. If
1788 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1789 returns NULL. The result is simply the type of ARR if ARR is not
1790 a descriptor. */
1791 struct type *
1792 ada_type_of_array (struct value *arr, int bounds)
1793 {
1794 if (ada_is_constrained_packed_array_type (value_type (arr)))
1795 return decode_constrained_packed_array_type (value_type (arr));
1796
1797 if (!ada_is_array_descriptor_type (value_type (arr)))
1798 return value_type (arr);
1799
1800 if (!bounds)
1801 {
1802 struct type *array_type =
1803 ada_check_typedef (desc_data_target_type (value_type (arr)));
1804
1805 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1806 TYPE_FIELD_BITSIZE (array_type, 0) =
1807 decode_packed_array_bitsize (value_type (arr));
1808
1809 return array_type;
1810 }
1811 else
1812 {
1813 struct type *elt_type;
1814 int arity;
1815 struct value *descriptor;
1816
1817 elt_type = ada_array_element_type (value_type (arr), -1);
1818 arity = ada_array_arity (value_type (arr));
1819
1820 if (elt_type == NULL || arity == 0)
1821 return ada_check_typedef (value_type (arr));
1822
1823 descriptor = desc_bounds (arr);
1824 if (value_as_long (descriptor) == 0)
1825 return NULL;
1826 while (arity > 0)
1827 {
1828 struct type *range_type = alloc_type_copy (value_type (arr));
1829 struct type *array_type = alloc_type_copy (value_type (arr));
1830 struct value *low = desc_one_bound (descriptor, arity, 0);
1831 struct value *high = desc_one_bound (descriptor, arity, 1);
1832
1833 arity -= 1;
1834 create_range_type (range_type, value_type (low),
1835 longest_to_int (value_as_long (low)),
1836 longest_to_int (value_as_long (high)));
1837 elt_type = create_array_type (array_type, elt_type, range_type);
1838
1839 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1840 {
1841 /* We need to store the element packed bitsize, as well as
1842 recompute the array size, because it was previously
1843 computed based on the unpacked element size. */
1844 LONGEST lo = value_as_long (low);
1845 LONGEST hi = value_as_long (high);
1846
1847 TYPE_FIELD_BITSIZE (elt_type, 0) =
1848 decode_packed_array_bitsize (value_type (arr));
1849 /* If the array has no element, then the size is already
1850 zero, and does not need to be recomputed. */
1851 if (lo < hi)
1852 {
1853 int array_bitsize =
1854 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1855
1856 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1857 }
1858 }
1859 }
1860
1861 return lookup_pointer_type (elt_type);
1862 }
1863 }
1864
1865 /* If ARR does not represent an array, returns ARR unchanged.
1866 Otherwise, returns either a standard GDB array with bounds set
1867 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1868 GDB array. Returns NULL if ARR is a null fat pointer. */
1869
1870 struct value *
1871 ada_coerce_to_simple_array_ptr (struct value *arr)
1872 {
1873 if (ada_is_array_descriptor_type (value_type (arr)))
1874 {
1875 struct type *arrType = ada_type_of_array (arr, 1);
1876
1877 if (arrType == NULL)
1878 return NULL;
1879 return value_cast (arrType, value_copy (desc_data (arr)));
1880 }
1881 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1882 return decode_constrained_packed_array (arr);
1883 else
1884 return arr;
1885 }
1886
1887 /* If ARR does not represent an array, returns ARR unchanged.
1888 Otherwise, returns a standard GDB array describing ARR (which may
1889 be ARR itself if it already is in the proper form). */
1890
1891 struct value *
1892 ada_coerce_to_simple_array (struct value *arr)
1893 {
1894 if (ada_is_array_descriptor_type (value_type (arr)))
1895 {
1896 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1897
1898 if (arrVal == NULL)
1899 error (_("Bounds unavailable for null array pointer."));
1900 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1901 return value_ind (arrVal);
1902 }
1903 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1904 return decode_constrained_packed_array (arr);
1905 else
1906 return arr;
1907 }
1908
1909 /* If TYPE represents a GNAT array type, return it translated to an
1910 ordinary GDB array type (possibly with BITSIZE fields indicating
1911 packing). For other types, is the identity. */
1912
1913 struct type *
1914 ada_coerce_to_simple_array_type (struct type *type)
1915 {
1916 if (ada_is_constrained_packed_array_type (type))
1917 return decode_constrained_packed_array_type (type);
1918
1919 if (ada_is_array_descriptor_type (type))
1920 return ada_check_typedef (desc_data_target_type (type));
1921
1922 return type;
1923 }
1924
1925 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1926
1927 static int
1928 ada_is_packed_array_type (struct type *type)
1929 {
1930 if (type == NULL)
1931 return 0;
1932 type = desc_base_type (type);
1933 type = ada_check_typedef (type);
1934 return
1935 ada_type_name (type) != NULL
1936 && strstr (ada_type_name (type), "___XP") != NULL;
1937 }
1938
1939 /* Non-zero iff TYPE represents a standard GNAT constrained
1940 packed-array type. */
1941
1942 int
1943 ada_is_constrained_packed_array_type (struct type *type)
1944 {
1945 return ada_is_packed_array_type (type)
1946 && !ada_is_array_descriptor_type (type);
1947 }
1948
1949 /* Non-zero iff TYPE represents an array descriptor for a
1950 unconstrained packed-array type. */
1951
1952 static int
1953 ada_is_unconstrained_packed_array_type (struct type *type)
1954 {
1955 return ada_is_packed_array_type (type)
1956 && ada_is_array_descriptor_type (type);
1957 }
1958
1959 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1960 return the size of its elements in bits. */
1961
1962 static long
1963 decode_packed_array_bitsize (struct type *type)
1964 {
1965 const char *raw_name;
1966 const char *tail;
1967 long bits;
1968
1969 /* Access to arrays implemented as fat pointers are encoded as a typedef
1970 of the fat pointer type. We need the name of the fat pointer type
1971 to do the decoding, so strip the typedef layer. */
1972 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1973 type = ada_typedef_target_type (type);
1974
1975 raw_name = ada_type_name (ada_check_typedef (type));
1976 if (!raw_name)
1977 raw_name = ada_type_name (desc_base_type (type));
1978
1979 if (!raw_name)
1980 return 0;
1981
1982 tail = strstr (raw_name, "___XP");
1983 gdb_assert (tail != NULL);
1984
1985 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1986 {
1987 lim_warning
1988 (_("could not understand bit size information on packed array"));
1989 return 0;
1990 }
1991
1992 return bits;
1993 }
1994
1995 /* Given that TYPE is a standard GDB array type with all bounds filled
1996 in, and that the element size of its ultimate scalar constituents
1997 (that is, either its elements, or, if it is an array of arrays, its
1998 elements' elements, etc.) is *ELT_BITS, return an identical type,
1999 but with the bit sizes of its elements (and those of any
2000 constituent arrays) recorded in the BITSIZE components of its
2001 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2002 in bits. */
2003
2004 static struct type *
2005 constrained_packed_array_type (struct type *type, long *elt_bits)
2006 {
2007 struct type *new_elt_type;
2008 struct type *new_type;
2009 LONGEST low_bound, high_bound;
2010
2011 type = ada_check_typedef (type);
2012 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2013 return type;
2014
2015 new_type = alloc_type_copy (type);
2016 new_elt_type =
2017 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2018 elt_bits);
2019 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
2020 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2021 TYPE_NAME (new_type) = ada_type_name (type);
2022
2023 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
2024 &low_bound, &high_bound) < 0)
2025 low_bound = high_bound = 0;
2026 if (high_bound < low_bound)
2027 *elt_bits = TYPE_LENGTH (new_type) = 0;
2028 else
2029 {
2030 *elt_bits *= (high_bound - low_bound + 1);
2031 TYPE_LENGTH (new_type) =
2032 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2033 }
2034
2035 TYPE_FIXED_INSTANCE (new_type) = 1;
2036 return new_type;
2037 }
2038
2039 /* The array type encoded by TYPE, where
2040 ada_is_constrained_packed_array_type (TYPE). */
2041
2042 static struct type *
2043 decode_constrained_packed_array_type (struct type *type)
2044 {
2045 const char *raw_name = ada_type_name (ada_check_typedef (type));
2046 char *name;
2047 const char *tail;
2048 struct type *shadow_type;
2049 long bits;
2050
2051 if (!raw_name)
2052 raw_name = ada_type_name (desc_base_type (type));
2053
2054 if (!raw_name)
2055 return NULL;
2056
2057 name = (char *) alloca (strlen (raw_name) + 1);
2058 tail = strstr (raw_name, "___XP");
2059 type = desc_base_type (type);
2060
2061 memcpy (name, raw_name, tail - raw_name);
2062 name[tail - raw_name] = '\000';
2063
2064 shadow_type = ada_find_parallel_type_with_name (type, name);
2065
2066 if (shadow_type == NULL)
2067 {
2068 lim_warning (_("could not find bounds information on packed array"));
2069 return NULL;
2070 }
2071 CHECK_TYPEDEF (shadow_type);
2072
2073 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2074 {
2075 lim_warning (_("could not understand bounds "
2076 "information on packed array"));
2077 return NULL;
2078 }
2079
2080 bits = decode_packed_array_bitsize (type);
2081 return constrained_packed_array_type (shadow_type, &bits);
2082 }
2083
2084 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2085 array, returns a simple array that denotes that array. Its type is a
2086 standard GDB array type except that the BITSIZEs of the array
2087 target types are set to the number of bits in each element, and the
2088 type length is set appropriately. */
2089
2090 static struct value *
2091 decode_constrained_packed_array (struct value *arr)
2092 {
2093 struct type *type;
2094
2095 arr = ada_coerce_ref (arr);
2096
2097 /* If our value is a pointer, then dererence it. Make sure that
2098 this operation does not cause the target type to be fixed, as
2099 this would indirectly cause this array to be decoded. The rest
2100 of the routine assumes that the array hasn't been decoded yet,
2101 so we use the basic "value_ind" routine to perform the dereferencing,
2102 as opposed to using "ada_value_ind". */
2103 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2104 arr = value_ind (arr);
2105
2106 type = decode_constrained_packed_array_type (value_type (arr));
2107 if (type == NULL)
2108 {
2109 error (_("can't unpack array"));
2110 return NULL;
2111 }
2112
2113 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2114 && ada_is_modular_type (value_type (arr)))
2115 {
2116 /* This is a (right-justified) modular type representing a packed
2117 array with no wrapper. In order to interpret the value through
2118 the (left-justified) packed array type we just built, we must
2119 first left-justify it. */
2120 int bit_size, bit_pos;
2121 ULONGEST mod;
2122
2123 mod = ada_modulus (value_type (arr)) - 1;
2124 bit_size = 0;
2125 while (mod > 0)
2126 {
2127 bit_size += 1;
2128 mod >>= 1;
2129 }
2130 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2131 arr = ada_value_primitive_packed_val (arr, NULL,
2132 bit_pos / HOST_CHAR_BIT,
2133 bit_pos % HOST_CHAR_BIT,
2134 bit_size,
2135 type);
2136 }
2137
2138 return coerce_unspec_val_to_type (arr, type);
2139 }
2140
2141
2142 /* The value of the element of packed array ARR at the ARITY indices
2143 given in IND. ARR must be a simple array. */
2144
2145 static struct value *
2146 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2147 {
2148 int i;
2149 int bits, elt_off, bit_off;
2150 long elt_total_bit_offset;
2151 struct type *elt_type;
2152 struct value *v;
2153
2154 bits = 0;
2155 elt_total_bit_offset = 0;
2156 elt_type = ada_check_typedef (value_type (arr));
2157 for (i = 0; i < arity; i += 1)
2158 {
2159 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2160 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2161 error
2162 (_("attempt to do packed indexing of "
2163 "something other than a packed array"));
2164 else
2165 {
2166 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2167 LONGEST lowerbound, upperbound;
2168 LONGEST idx;
2169
2170 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2171 {
2172 lim_warning (_("don't know bounds of array"));
2173 lowerbound = upperbound = 0;
2174 }
2175
2176 idx = pos_atr (ind[i]);
2177 if (idx < lowerbound || idx > upperbound)
2178 lim_warning (_("packed array index %ld out of bounds"),
2179 (long) idx);
2180 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2181 elt_total_bit_offset += (idx - lowerbound) * bits;
2182 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2183 }
2184 }
2185 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2186 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2187
2188 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2189 bits, elt_type);
2190 return v;
2191 }
2192
2193 /* Non-zero iff TYPE includes negative integer values. */
2194
2195 static int
2196 has_negatives (struct type *type)
2197 {
2198 switch (TYPE_CODE (type))
2199 {
2200 default:
2201 return 0;
2202 case TYPE_CODE_INT:
2203 return !TYPE_UNSIGNED (type);
2204 case TYPE_CODE_RANGE:
2205 return TYPE_LOW_BOUND (type) < 0;
2206 }
2207 }
2208
2209
2210 /* Create a new value of type TYPE from the contents of OBJ starting
2211 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2212 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2213 assigning through the result will set the field fetched from.
2214 VALADDR is ignored unless OBJ is NULL, in which case,
2215 VALADDR+OFFSET must address the start of storage containing the
2216 packed value. The value returned in this case is never an lval.
2217 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2218
2219 struct value *
2220 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2221 long offset, int bit_offset, int bit_size,
2222 struct type *type)
2223 {
2224 struct value *v;
2225 int src, /* Index into the source area */
2226 targ, /* Index into the target area */
2227 srcBitsLeft, /* Number of source bits left to move */
2228 nsrc, ntarg, /* Number of source and target bytes */
2229 unusedLS, /* Number of bits in next significant
2230 byte of source that are unused */
2231 accumSize; /* Number of meaningful bits in accum */
2232 unsigned char *bytes; /* First byte containing data to unpack */
2233 unsigned char *unpacked;
2234 unsigned long accum; /* Staging area for bits being transferred */
2235 unsigned char sign;
2236 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2237 /* Transmit bytes from least to most significant; delta is the direction
2238 the indices move. */
2239 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2240
2241 type = ada_check_typedef (type);
2242
2243 if (obj == NULL)
2244 {
2245 v = allocate_value (type);
2246 bytes = (unsigned char *) (valaddr + offset);
2247 }
2248 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2249 {
2250 v = value_at (type,
2251 value_address (obj) + offset);
2252 bytes = (unsigned char *) alloca (len);
2253 read_memory (value_address (v), bytes, len);
2254 }
2255 else
2256 {
2257 v = allocate_value (type);
2258 bytes = (unsigned char *) value_contents (obj) + offset;
2259 }
2260
2261 if (obj != NULL)
2262 {
2263 CORE_ADDR new_addr;
2264
2265 set_value_component_location (v, obj);
2266 new_addr = value_address (obj) + offset;
2267 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2268 set_value_bitsize (v, bit_size);
2269 if (value_bitpos (v) >= HOST_CHAR_BIT)
2270 {
2271 ++new_addr;
2272 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2273 }
2274 set_value_address (v, new_addr);
2275 }
2276 else
2277 set_value_bitsize (v, bit_size);
2278 unpacked = (unsigned char *) value_contents (v);
2279
2280 srcBitsLeft = bit_size;
2281 nsrc = len;
2282 ntarg = TYPE_LENGTH (type);
2283 sign = 0;
2284 if (bit_size == 0)
2285 {
2286 memset (unpacked, 0, TYPE_LENGTH (type));
2287 return v;
2288 }
2289 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2290 {
2291 src = len - 1;
2292 if (has_negatives (type)
2293 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2294 sign = ~0;
2295
2296 unusedLS =
2297 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2298 % HOST_CHAR_BIT;
2299
2300 switch (TYPE_CODE (type))
2301 {
2302 case TYPE_CODE_ARRAY:
2303 case TYPE_CODE_UNION:
2304 case TYPE_CODE_STRUCT:
2305 /* Non-scalar values must be aligned at a byte boundary... */
2306 accumSize =
2307 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2308 /* ... And are placed at the beginning (most-significant) bytes
2309 of the target. */
2310 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2311 ntarg = targ + 1;
2312 break;
2313 default:
2314 accumSize = 0;
2315 targ = TYPE_LENGTH (type) - 1;
2316 break;
2317 }
2318 }
2319 else
2320 {
2321 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2322
2323 src = targ = 0;
2324 unusedLS = bit_offset;
2325 accumSize = 0;
2326
2327 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2328 sign = ~0;
2329 }
2330
2331 accum = 0;
2332 while (nsrc > 0)
2333 {
2334 /* Mask for removing bits of the next source byte that are not
2335 part of the value. */
2336 unsigned int unusedMSMask =
2337 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2338 1;
2339 /* Sign-extend bits for this byte. */
2340 unsigned int signMask = sign & ~unusedMSMask;
2341
2342 accum |=
2343 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2344 accumSize += HOST_CHAR_BIT - unusedLS;
2345 if (accumSize >= HOST_CHAR_BIT)
2346 {
2347 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2348 accumSize -= HOST_CHAR_BIT;
2349 accum >>= HOST_CHAR_BIT;
2350 ntarg -= 1;
2351 targ += delta;
2352 }
2353 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2354 unusedLS = 0;
2355 nsrc -= 1;
2356 src += delta;
2357 }
2358 while (ntarg > 0)
2359 {
2360 accum |= sign << accumSize;
2361 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2362 accumSize -= HOST_CHAR_BIT;
2363 accum >>= HOST_CHAR_BIT;
2364 ntarg -= 1;
2365 targ += delta;
2366 }
2367
2368 return v;
2369 }
2370
2371 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2372 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2373 not overlap. */
2374 static void
2375 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2376 int src_offset, int n, int bits_big_endian_p)
2377 {
2378 unsigned int accum, mask;
2379 int accum_bits, chunk_size;
2380
2381 target += targ_offset / HOST_CHAR_BIT;
2382 targ_offset %= HOST_CHAR_BIT;
2383 source += src_offset / HOST_CHAR_BIT;
2384 src_offset %= HOST_CHAR_BIT;
2385 if (bits_big_endian_p)
2386 {
2387 accum = (unsigned char) *source;
2388 source += 1;
2389 accum_bits = HOST_CHAR_BIT - src_offset;
2390
2391 while (n > 0)
2392 {
2393 int unused_right;
2394
2395 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2396 accum_bits += HOST_CHAR_BIT;
2397 source += 1;
2398 chunk_size = HOST_CHAR_BIT - targ_offset;
2399 if (chunk_size > n)
2400 chunk_size = n;
2401 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2402 mask = ((1 << chunk_size) - 1) << unused_right;
2403 *target =
2404 (*target & ~mask)
2405 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2406 n -= chunk_size;
2407 accum_bits -= chunk_size;
2408 target += 1;
2409 targ_offset = 0;
2410 }
2411 }
2412 else
2413 {
2414 accum = (unsigned char) *source >> src_offset;
2415 source += 1;
2416 accum_bits = HOST_CHAR_BIT - src_offset;
2417
2418 while (n > 0)
2419 {
2420 accum = accum + ((unsigned char) *source << accum_bits);
2421 accum_bits += HOST_CHAR_BIT;
2422 source += 1;
2423 chunk_size = HOST_CHAR_BIT - targ_offset;
2424 if (chunk_size > n)
2425 chunk_size = n;
2426 mask = ((1 << chunk_size) - 1) << targ_offset;
2427 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2428 n -= chunk_size;
2429 accum_bits -= chunk_size;
2430 accum >>= chunk_size;
2431 target += 1;
2432 targ_offset = 0;
2433 }
2434 }
2435 }
2436
2437 /* Store the contents of FROMVAL into the location of TOVAL.
2438 Return a new value with the location of TOVAL and contents of
2439 FROMVAL. Handles assignment into packed fields that have
2440 floating-point or non-scalar types. */
2441
2442 static struct value *
2443 ada_value_assign (struct value *toval, struct value *fromval)
2444 {
2445 struct type *type = value_type (toval);
2446 int bits = value_bitsize (toval);
2447
2448 toval = ada_coerce_ref (toval);
2449 fromval = ada_coerce_ref (fromval);
2450
2451 if (ada_is_direct_array_type (value_type (toval)))
2452 toval = ada_coerce_to_simple_array (toval);
2453 if (ada_is_direct_array_type (value_type (fromval)))
2454 fromval = ada_coerce_to_simple_array (fromval);
2455
2456 if (!deprecated_value_modifiable (toval))
2457 error (_("Left operand of assignment is not a modifiable lvalue."));
2458
2459 if (VALUE_LVAL (toval) == lval_memory
2460 && bits > 0
2461 && (TYPE_CODE (type) == TYPE_CODE_FLT
2462 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2463 {
2464 int len = (value_bitpos (toval)
2465 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2466 int from_size;
2467 char *buffer = (char *) alloca (len);
2468 struct value *val;
2469 CORE_ADDR to_addr = value_address (toval);
2470
2471 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2472 fromval = value_cast (type, fromval);
2473
2474 read_memory (to_addr, buffer, len);
2475 from_size = value_bitsize (fromval);
2476 if (from_size == 0)
2477 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2478 if (gdbarch_bits_big_endian (get_type_arch (type)))
2479 move_bits (buffer, value_bitpos (toval),
2480 value_contents (fromval), from_size - bits, bits, 1);
2481 else
2482 move_bits (buffer, value_bitpos (toval),
2483 value_contents (fromval), 0, bits, 0);
2484 write_memory (to_addr, buffer, len);
2485 observer_notify_memory_changed (to_addr, len, buffer);
2486
2487 val = value_copy (toval);
2488 memcpy (value_contents_raw (val), value_contents (fromval),
2489 TYPE_LENGTH (type));
2490 deprecated_set_value_type (val, type);
2491
2492 return val;
2493 }
2494
2495 return value_assign (toval, fromval);
2496 }
2497
2498
2499 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2500 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2501 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2502 * COMPONENT, and not the inferior's memory. The current contents
2503 * of COMPONENT are ignored. */
2504 static void
2505 value_assign_to_component (struct value *container, struct value *component,
2506 struct value *val)
2507 {
2508 LONGEST offset_in_container =
2509 (LONGEST) (value_address (component) - value_address (container));
2510 int bit_offset_in_container =
2511 value_bitpos (component) - value_bitpos (container);
2512 int bits;
2513
2514 val = value_cast (value_type (component), val);
2515
2516 if (value_bitsize (component) == 0)
2517 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2518 else
2519 bits = value_bitsize (component);
2520
2521 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2522 move_bits (value_contents_writeable (container) + offset_in_container,
2523 value_bitpos (container) + bit_offset_in_container,
2524 value_contents (val),
2525 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2526 bits, 1);
2527 else
2528 move_bits (value_contents_writeable (container) + offset_in_container,
2529 value_bitpos (container) + bit_offset_in_container,
2530 value_contents (val), 0, bits, 0);
2531 }
2532
2533 /* The value of the element of array ARR at the ARITY indices given in IND.
2534 ARR may be either a simple array, GNAT array descriptor, or pointer
2535 thereto. */
2536
2537 struct value *
2538 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2539 {
2540 int k;
2541 struct value *elt;
2542 struct type *elt_type;
2543
2544 elt = ada_coerce_to_simple_array (arr);
2545
2546 elt_type = ada_check_typedef (value_type (elt));
2547 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2548 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2549 return value_subscript_packed (elt, arity, ind);
2550
2551 for (k = 0; k < arity; k += 1)
2552 {
2553 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2554 error (_("too many subscripts (%d expected)"), k);
2555 elt = value_subscript (elt, pos_atr (ind[k]));
2556 }
2557 return elt;
2558 }
2559
2560 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2561 value of the element of *ARR at the ARITY indices given in
2562 IND. Does not read the entire array into memory. */
2563
2564 static struct value *
2565 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2566 struct value **ind)
2567 {
2568 int k;
2569
2570 for (k = 0; k < arity; k += 1)
2571 {
2572 LONGEST lwb, upb;
2573
2574 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2575 error (_("too many subscripts (%d expected)"), k);
2576 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2577 value_copy (arr));
2578 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2579 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2580 type = TYPE_TARGET_TYPE (type);
2581 }
2582
2583 return value_ind (arr);
2584 }
2585
2586 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2587 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2588 elements starting at index LOW. The lower bound of this array is LOW, as
2589 per Ada rules. */
2590 static struct value *
2591 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2592 int low, int high)
2593 {
2594 struct type *type0 = ada_check_typedef (type);
2595 CORE_ADDR base = value_as_address (array_ptr)
2596 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2597 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2598 struct type *index_type =
2599 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2600 low, high);
2601 struct type *slice_type =
2602 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2603
2604 return value_at_lazy (slice_type, base);
2605 }
2606
2607
2608 static struct value *
2609 ada_value_slice (struct value *array, int low, int high)
2610 {
2611 struct type *type = ada_check_typedef (value_type (array));
2612 struct type *index_type =
2613 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2614 struct type *slice_type =
2615 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2616
2617 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2618 }
2619
2620 /* If type is a record type in the form of a standard GNAT array
2621 descriptor, returns the number of dimensions for type. If arr is a
2622 simple array, returns the number of "array of"s that prefix its
2623 type designation. Otherwise, returns 0. */
2624
2625 int
2626 ada_array_arity (struct type *type)
2627 {
2628 int arity;
2629
2630 if (type == NULL)
2631 return 0;
2632
2633 type = desc_base_type (type);
2634
2635 arity = 0;
2636 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2637 return desc_arity (desc_bounds_type (type));
2638 else
2639 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2640 {
2641 arity += 1;
2642 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2643 }
2644
2645 return arity;
2646 }
2647
2648 /* If TYPE is a record type in the form of a standard GNAT array
2649 descriptor or a simple array type, returns the element type for
2650 TYPE after indexing by NINDICES indices, or by all indices if
2651 NINDICES is -1. Otherwise, returns NULL. */
2652
2653 struct type *
2654 ada_array_element_type (struct type *type, int nindices)
2655 {
2656 type = desc_base_type (type);
2657
2658 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2659 {
2660 int k;
2661 struct type *p_array_type;
2662
2663 p_array_type = desc_data_target_type (type);
2664
2665 k = ada_array_arity (type);
2666 if (k == 0)
2667 return NULL;
2668
2669 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2670 if (nindices >= 0 && k > nindices)
2671 k = nindices;
2672 while (k > 0 && p_array_type != NULL)
2673 {
2674 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2675 k -= 1;
2676 }
2677 return p_array_type;
2678 }
2679 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2680 {
2681 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2682 {
2683 type = TYPE_TARGET_TYPE (type);
2684 nindices -= 1;
2685 }
2686 return type;
2687 }
2688
2689 return NULL;
2690 }
2691
2692 /* The type of nth index in arrays of given type (n numbering from 1).
2693 Does not examine memory. Throws an error if N is invalid or TYPE
2694 is not an array type. NAME is the name of the Ada attribute being
2695 evaluated ('range, 'first, 'last, or 'length); it is used in building
2696 the error message. */
2697
2698 static struct type *
2699 ada_index_type (struct type *type, int n, const char *name)
2700 {
2701 struct type *result_type;
2702
2703 type = desc_base_type (type);
2704
2705 if (n < 0 || n > ada_array_arity (type))
2706 error (_("invalid dimension number to '%s"), name);
2707
2708 if (ada_is_simple_array_type (type))
2709 {
2710 int i;
2711
2712 for (i = 1; i < n; i += 1)
2713 type = TYPE_TARGET_TYPE (type);
2714 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2715 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2716 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2717 perhaps stabsread.c would make more sense. */
2718 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2719 result_type = NULL;
2720 }
2721 else
2722 {
2723 result_type = desc_index_type (desc_bounds_type (type), n);
2724 if (result_type == NULL)
2725 error (_("attempt to take bound of something that is not an array"));
2726 }
2727
2728 return result_type;
2729 }
2730
2731 /* Given that arr is an array type, returns the lower bound of the
2732 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2733 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2734 array-descriptor type. It works for other arrays with bounds supplied
2735 by run-time quantities other than discriminants. */
2736
2737 static LONGEST
2738 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2739 {
2740 struct type *type, *elt_type, *index_type_desc, *index_type;
2741 int i;
2742
2743 gdb_assert (which == 0 || which == 1);
2744
2745 if (ada_is_constrained_packed_array_type (arr_type))
2746 arr_type = decode_constrained_packed_array_type (arr_type);
2747
2748 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2749 return (LONGEST) - which;
2750
2751 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2752 type = TYPE_TARGET_TYPE (arr_type);
2753 else
2754 type = arr_type;
2755
2756 elt_type = type;
2757 for (i = n; i > 1; i--)
2758 elt_type = TYPE_TARGET_TYPE (type);
2759
2760 index_type_desc = ada_find_parallel_type (type, "___XA");
2761 ada_fixup_array_indexes_type (index_type_desc);
2762 if (index_type_desc != NULL)
2763 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2764 NULL);
2765 else
2766 index_type = TYPE_INDEX_TYPE (elt_type);
2767
2768 return
2769 (LONGEST) (which == 0
2770 ? ada_discrete_type_low_bound (index_type)
2771 : ada_discrete_type_high_bound (index_type));
2772 }
2773
2774 /* Given that arr is an array value, returns the lower bound of the
2775 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2776 WHICH is 1. This routine will also work for arrays with bounds
2777 supplied by run-time quantities other than discriminants. */
2778
2779 static LONGEST
2780 ada_array_bound (struct value *arr, int n, int which)
2781 {
2782 struct type *arr_type = value_type (arr);
2783
2784 if (ada_is_constrained_packed_array_type (arr_type))
2785 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2786 else if (ada_is_simple_array_type (arr_type))
2787 return ada_array_bound_from_type (arr_type, n, which);
2788 else
2789 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2790 }
2791
2792 /* Given that arr is an array value, returns the length of the
2793 nth index. This routine will also work for arrays with bounds
2794 supplied by run-time quantities other than discriminants.
2795 Does not work for arrays indexed by enumeration types with representation
2796 clauses at the moment. */
2797
2798 static LONGEST
2799 ada_array_length (struct value *arr, int n)
2800 {
2801 struct type *arr_type = ada_check_typedef (value_type (arr));
2802
2803 if (ada_is_constrained_packed_array_type (arr_type))
2804 return ada_array_length (decode_constrained_packed_array (arr), n);
2805
2806 if (ada_is_simple_array_type (arr_type))
2807 return (ada_array_bound_from_type (arr_type, n, 1)
2808 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2809 else
2810 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2811 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2812 }
2813
2814 /* An empty array whose type is that of ARR_TYPE (an array type),
2815 with bounds LOW to LOW-1. */
2816
2817 static struct value *
2818 empty_array (struct type *arr_type, int low)
2819 {
2820 struct type *arr_type0 = ada_check_typedef (arr_type);
2821 struct type *index_type =
2822 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2823 low, low - 1);
2824 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2825
2826 return allocate_value (create_array_type (NULL, elt_type, index_type));
2827 }
2828 \f
2829
2830 /* Name resolution */
2831
2832 /* The "decoded" name for the user-definable Ada operator corresponding
2833 to OP. */
2834
2835 static const char *
2836 ada_decoded_op_name (enum exp_opcode op)
2837 {
2838 int i;
2839
2840 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2841 {
2842 if (ada_opname_table[i].op == op)
2843 return ada_opname_table[i].decoded;
2844 }
2845 error (_("Could not find operator name for opcode"));
2846 }
2847
2848
2849 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2850 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2851 undefined namespace) and converts operators that are
2852 user-defined into appropriate function calls. If CONTEXT_TYPE is
2853 non-null, it provides a preferred result type [at the moment, only
2854 type void has any effect---causing procedures to be preferred over
2855 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2856 return type is preferred. May change (expand) *EXP. */
2857
2858 static void
2859 resolve (struct expression **expp, int void_context_p)
2860 {
2861 struct type *context_type = NULL;
2862 int pc = 0;
2863
2864 if (void_context_p)
2865 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2866
2867 resolve_subexp (expp, &pc, 1, context_type);
2868 }
2869
2870 /* Resolve the operator of the subexpression beginning at
2871 position *POS of *EXPP. "Resolving" consists of replacing
2872 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2873 with their resolutions, replacing built-in operators with
2874 function calls to user-defined operators, where appropriate, and,
2875 when DEPROCEDURE_P is non-zero, converting function-valued variables
2876 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2877 are as in ada_resolve, above. */
2878
2879 static struct value *
2880 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2881 struct type *context_type)
2882 {
2883 int pc = *pos;
2884 int i;
2885 struct expression *exp; /* Convenience: == *expp. */
2886 enum exp_opcode op = (*expp)->elts[pc].opcode;
2887 struct value **argvec; /* Vector of operand types (alloca'ed). */
2888 int nargs; /* Number of operands. */
2889 int oplen;
2890
2891 argvec = NULL;
2892 nargs = 0;
2893 exp = *expp;
2894
2895 /* Pass one: resolve operands, saving their types and updating *pos,
2896 if needed. */
2897 switch (op)
2898 {
2899 case OP_FUNCALL:
2900 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2901 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2902 *pos += 7;
2903 else
2904 {
2905 *pos += 3;
2906 resolve_subexp (expp, pos, 0, NULL);
2907 }
2908 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2909 break;
2910
2911 case UNOP_ADDR:
2912 *pos += 1;
2913 resolve_subexp (expp, pos, 0, NULL);
2914 break;
2915
2916 case UNOP_QUAL:
2917 *pos += 3;
2918 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2919 break;
2920
2921 case OP_ATR_MODULUS:
2922 case OP_ATR_SIZE:
2923 case OP_ATR_TAG:
2924 case OP_ATR_FIRST:
2925 case OP_ATR_LAST:
2926 case OP_ATR_LENGTH:
2927 case OP_ATR_POS:
2928 case OP_ATR_VAL:
2929 case OP_ATR_MIN:
2930 case OP_ATR_MAX:
2931 case TERNOP_IN_RANGE:
2932 case BINOP_IN_BOUNDS:
2933 case UNOP_IN_RANGE:
2934 case OP_AGGREGATE:
2935 case OP_OTHERS:
2936 case OP_CHOICES:
2937 case OP_POSITIONAL:
2938 case OP_DISCRETE_RANGE:
2939 case OP_NAME:
2940 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2941 *pos += oplen;
2942 break;
2943
2944 case BINOP_ASSIGN:
2945 {
2946 struct value *arg1;
2947
2948 *pos += 1;
2949 arg1 = resolve_subexp (expp, pos, 0, NULL);
2950 if (arg1 == NULL)
2951 resolve_subexp (expp, pos, 1, NULL);
2952 else
2953 resolve_subexp (expp, pos, 1, value_type (arg1));
2954 break;
2955 }
2956
2957 case UNOP_CAST:
2958 *pos += 3;
2959 nargs = 1;
2960 break;
2961
2962 case BINOP_ADD:
2963 case BINOP_SUB:
2964 case BINOP_MUL:
2965 case BINOP_DIV:
2966 case BINOP_REM:
2967 case BINOP_MOD:
2968 case BINOP_EXP:
2969 case BINOP_CONCAT:
2970 case BINOP_LOGICAL_AND:
2971 case BINOP_LOGICAL_OR:
2972 case BINOP_BITWISE_AND:
2973 case BINOP_BITWISE_IOR:
2974 case BINOP_BITWISE_XOR:
2975
2976 case BINOP_EQUAL:
2977 case BINOP_NOTEQUAL:
2978 case BINOP_LESS:
2979 case BINOP_GTR:
2980 case BINOP_LEQ:
2981 case BINOP_GEQ:
2982
2983 case BINOP_REPEAT:
2984 case BINOP_SUBSCRIPT:
2985 case BINOP_COMMA:
2986 *pos += 1;
2987 nargs = 2;
2988 break;
2989
2990 case UNOP_NEG:
2991 case UNOP_PLUS:
2992 case UNOP_LOGICAL_NOT:
2993 case UNOP_ABS:
2994 case UNOP_IND:
2995 *pos += 1;
2996 nargs = 1;
2997 break;
2998
2999 case OP_LONG:
3000 case OP_DOUBLE:
3001 case OP_VAR_VALUE:
3002 *pos += 4;
3003 break;
3004
3005 case OP_TYPE:
3006 case OP_BOOL:
3007 case OP_LAST:
3008 case OP_INTERNALVAR:
3009 *pos += 3;
3010 break;
3011
3012 case UNOP_MEMVAL:
3013 *pos += 3;
3014 nargs = 1;
3015 break;
3016
3017 case OP_REGISTER:
3018 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3019 break;
3020
3021 case STRUCTOP_STRUCT:
3022 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3023 nargs = 1;
3024 break;
3025
3026 case TERNOP_SLICE:
3027 *pos += 1;
3028 nargs = 3;
3029 break;
3030
3031 case OP_STRING:
3032 break;
3033
3034 default:
3035 error (_("Unexpected operator during name resolution"));
3036 }
3037
3038 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3039 for (i = 0; i < nargs; i += 1)
3040 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3041 argvec[i] = NULL;
3042 exp = *expp;
3043
3044 /* Pass two: perform any resolution on principal operator. */
3045 switch (op)
3046 {
3047 default:
3048 break;
3049
3050 case OP_VAR_VALUE:
3051 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3052 {
3053 struct ada_symbol_info *candidates;
3054 int n_candidates;
3055
3056 n_candidates =
3057 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3058 (exp->elts[pc + 2].symbol),
3059 exp->elts[pc + 1].block, VAR_DOMAIN,
3060 &candidates, 1);
3061
3062 if (n_candidates > 1)
3063 {
3064 /* Types tend to get re-introduced locally, so if there
3065 are any local symbols that are not types, first filter
3066 out all types. */
3067 int j;
3068 for (j = 0; j < n_candidates; j += 1)
3069 switch (SYMBOL_CLASS (candidates[j].sym))
3070 {
3071 case LOC_REGISTER:
3072 case LOC_ARG:
3073 case LOC_REF_ARG:
3074 case LOC_REGPARM_ADDR:
3075 case LOC_LOCAL:
3076 case LOC_COMPUTED:
3077 goto FoundNonType;
3078 default:
3079 break;
3080 }
3081 FoundNonType:
3082 if (j < n_candidates)
3083 {
3084 j = 0;
3085 while (j < n_candidates)
3086 {
3087 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3088 {
3089 candidates[j] = candidates[n_candidates - 1];
3090 n_candidates -= 1;
3091 }
3092 else
3093 j += 1;
3094 }
3095 }
3096 }
3097
3098 if (n_candidates == 0)
3099 error (_("No definition found for %s"),
3100 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3101 else if (n_candidates == 1)
3102 i = 0;
3103 else if (deprocedure_p
3104 && !is_nonfunction (candidates, n_candidates))
3105 {
3106 i = ada_resolve_function
3107 (candidates, n_candidates, NULL, 0,
3108 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3109 context_type);
3110 if (i < 0)
3111 error (_("Could not find a match for %s"),
3112 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3113 }
3114 else
3115 {
3116 printf_filtered (_("Multiple matches for %s\n"),
3117 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3118 user_select_syms (candidates, n_candidates, 1);
3119 i = 0;
3120 }
3121
3122 exp->elts[pc + 1].block = candidates[i].block;
3123 exp->elts[pc + 2].symbol = candidates[i].sym;
3124 if (innermost_block == NULL
3125 || contained_in (candidates[i].block, innermost_block))
3126 innermost_block = candidates[i].block;
3127 }
3128
3129 if (deprocedure_p
3130 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3131 == TYPE_CODE_FUNC))
3132 {
3133 replace_operator_with_call (expp, pc, 0, 0,
3134 exp->elts[pc + 2].symbol,
3135 exp->elts[pc + 1].block);
3136 exp = *expp;
3137 }
3138 break;
3139
3140 case OP_FUNCALL:
3141 {
3142 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3143 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3144 {
3145 struct ada_symbol_info *candidates;
3146 int n_candidates;
3147
3148 n_candidates =
3149 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3150 (exp->elts[pc + 5].symbol),
3151 exp->elts[pc + 4].block, VAR_DOMAIN,
3152 &candidates, 1);
3153 if (n_candidates == 1)
3154 i = 0;
3155 else
3156 {
3157 i = ada_resolve_function
3158 (candidates, n_candidates,
3159 argvec, nargs,
3160 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3161 context_type);
3162 if (i < 0)
3163 error (_("Could not find a match for %s"),
3164 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3165 }
3166
3167 exp->elts[pc + 4].block = candidates[i].block;
3168 exp->elts[pc + 5].symbol = candidates[i].sym;
3169 if (innermost_block == NULL
3170 || contained_in (candidates[i].block, innermost_block))
3171 innermost_block = candidates[i].block;
3172 }
3173 }
3174 break;
3175 case BINOP_ADD:
3176 case BINOP_SUB:
3177 case BINOP_MUL:
3178 case BINOP_DIV:
3179 case BINOP_REM:
3180 case BINOP_MOD:
3181 case BINOP_CONCAT:
3182 case BINOP_BITWISE_AND:
3183 case BINOP_BITWISE_IOR:
3184 case BINOP_BITWISE_XOR:
3185 case BINOP_EQUAL:
3186 case BINOP_NOTEQUAL:
3187 case BINOP_LESS:
3188 case BINOP_GTR:
3189 case BINOP_LEQ:
3190 case BINOP_GEQ:
3191 case BINOP_EXP:
3192 case UNOP_NEG:
3193 case UNOP_PLUS:
3194 case UNOP_LOGICAL_NOT:
3195 case UNOP_ABS:
3196 if (possible_user_operator_p (op, argvec))
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
3202 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3203 (struct block *) NULL, VAR_DOMAIN,
3204 &candidates, 1);
3205 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3206 ada_decoded_op_name (op), NULL);
3207 if (i < 0)
3208 break;
3209
3210 replace_operator_with_call (expp, pc, nargs, 1,
3211 candidates[i].sym, candidates[i].block);
3212 exp = *expp;
3213 }
3214 break;
3215
3216 case OP_TYPE:
3217 case OP_REGISTER:
3218 return NULL;
3219 }
3220
3221 *pos = pc;
3222 return evaluate_subexp_type (exp, pos);
3223 }
3224
3225 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3226 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3227 a non-pointer. */
3228 /* The term "match" here is rather loose. The match is heuristic and
3229 liberal. */
3230
3231 static int
3232 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3233 {
3234 ftype = ada_check_typedef (ftype);
3235 atype = ada_check_typedef (atype);
3236
3237 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3238 ftype = TYPE_TARGET_TYPE (ftype);
3239 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3240 atype = TYPE_TARGET_TYPE (atype);
3241
3242 switch (TYPE_CODE (ftype))
3243 {
3244 default:
3245 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3246 case TYPE_CODE_PTR:
3247 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3248 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3249 TYPE_TARGET_TYPE (atype), 0);
3250 else
3251 return (may_deref
3252 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3253 case TYPE_CODE_INT:
3254 case TYPE_CODE_ENUM:
3255 case TYPE_CODE_RANGE:
3256 switch (TYPE_CODE (atype))
3257 {
3258 case TYPE_CODE_INT:
3259 case TYPE_CODE_ENUM:
3260 case TYPE_CODE_RANGE:
3261 return 1;
3262 default:
3263 return 0;
3264 }
3265
3266 case TYPE_CODE_ARRAY:
3267 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3268 || ada_is_array_descriptor_type (atype));
3269
3270 case TYPE_CODE_STRUCT:
3271 if (ada_is_array_descriptor_type (ftype))
3272 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3273 || ada_is_array_descriptor_type (atype));
3274 else
3275 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3276 && !ada_is_array_descriptor_type (atype));
3277
3278 case TYPE_CODE_UNION:
3279 case TYPE_CODE_FLT:
3280 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3281 }
3282 }
3283
3284 /* Return non-zero if the formals of FUNC "sufficiently match" the
3285 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3286 may also be an enumeral, in which case it is treated as a 0-
3287 argument function. */
3288
3289 static int
3290 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3291 {
3292 int i;
3293 struct type *func_type = SYMBOL_TYPE (func);
3294
3295 if (SYMBOL_CLASS (func) == LOC_CONST
3296 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3297 return (n_actuals == 0);
3298 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3299 return 0;
3300
3301 if (TYPE_NFIELDS (func_type) != n_actuals)
3302 return 0;
3303
3304 for (i = 0; i < n_actuals; i += 1)
3305 {
3306 if (actuals[i] == NULL)
3307 return 0;
3308 else
3309 {
3310 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3311 i));
3312 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3313
3314 if (!ada_type_match (ftype, atype, 1))
3315 return 0;
3316 }
3317 }
3318 return 1;
3319 }
3320
3321 /* False iff function type FUNC_TYPE definitely does not produce a value
3322 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3323 FUNC_TYPE is not a valid function type with a non-null return type
3324 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3325
3326 static int
3327 return_match (struct type *func_type, struct type *context_type)
3328 {
3329 struct type *return_type;
3330
3331 if (func_type == NULL)
3332 return 1;
3333
3334 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3335 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3336 else
3337 return_type = get_base_type (func_type);
3338 if (return_type == NULL)
3339 return 1;
3340
3341 context_type = get_base_type (context_type);
3342
3343 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3344 return context_type == NULL || return_type == context_type;
3345 else if (context_type == NULL)
3346 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3347 else
3348 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3349 }
3350
3351
3352 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3353 function (if any) that matches the types of the NARGS arguments in
3354 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3355 that returns that type, then eliminate matches that don't. If
3356 CONTEXT_TYPE is void and there is at least one match that does not
3357 return void, eliminate all matches that do.
3358
3359 Asks the user if there is more than one match remaining. Returns -1
3360 if there is no such symbol or none is selected. NAME is used
3361 solely for messages. May re-arrange and modify SYMS in
3362 the process; the index returned is for the modified vector. */
3363
3364 static int
3365 ada_resolve_function (struct ada_symbol_info syms[],
3366 int nsyms, struct value **args, int nargs,
3367 const char *name, struct type *context_type)
3368 {
3369 int fallback;
3370 int k;
3371 int m; /* Number of hits */
3372
3373 m = 0;
3374 /* In the first pass of the loop, we only accept functions matching
3375 context_type. If none are found, we add a second pass of the loop
3376 where every function is accepted. */
3377 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3378 {
3379 for (k = 0; k < nsyms; k += 1)
3380 {
3381 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3382
3383 if (ada_args_match (syms[k].sym, args, nargs)
3384 && (fallback || return_match (type, context_type)))
3385 {
3386 syms[m] = syms[k];
3387 m += 1;
3388 }
3389 }
3390 }
3391
3392 if (m == 0)
3393 return -1;
3394 else if (m > 1)
3395 {
3396 printf_filtered (_("Multiple matches for %s\n"), name);
3397 user_select_syms (syms, m, 1);
3398 return 0;
3399 }
3400 return 0;
3401 }
3402
3403 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3404 in a listing of choices during disambiguation (see sort_choices, below).
3405 The idea is that overloadings of a subprogram name from the
3406 same package should sort in their source order. We settle for ordering
3407 such symbols by their trailing number (__N or $N). */
3408
3409 static int
3410 encoded_ordered_before (const char *N0, const char *N1)
3411 {
3412 if (N1 == NULL)
3413 return 0;
3414 else if (N0 == NULL)
3415 return 1;
3416 else
3417 {
3418 int k0, k1;
3419
3420 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3421 ;
3422 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3423 ;
3424 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3425 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3426 {
3427 int n0, n1;
3428
3429 n0 = k0;
3430 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3431 n0 -= 1;
3432 n1 = k1;
3433 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3434 n1 -= 1;
3435 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3436 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3437 }
3438 return (strcmp (N0, N1) < 0);
3439 }
3440 }
3441
3442 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3443 encoded names. */
3444
3445 static void
3446 sort_choices (struct ada_symbol_info syms[], int nsyms)
3447 {
3448 int i;
3449
3450 for (i = 1; i < nsyms; i += 1)
3451 {
3452 struct ada_symbol_info sym = syms[i];
3453 int j;
3454
3455 for (j = i - 1; j >= 0; j -= 1)
3456 {
3457 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3458 SYMBOL_LINKAGE_NAME (sym.sym)))
3459 break;
3460 syms[j + 1] = syms[j];
3461 }
3462 syms[j + 1] = sym;
3463 }
3464 }
3465
3466 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3467 by asking the user (if necessary), returning the number selected,
3468 and setting the first elements of SYMS items. Error if no symbols
3469 selected. */
3470
3471 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3472 to be re-integrated one of these days. */
3473
3474 int
3475 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3476 {
3477 int i;
3478 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3479 int n_chosen;
3480 int first_choice = (max_results == 1) ? 1 : 2;
3481 const char *select_mode = multiple_symbols_select_mode ();
3482
3483 if (max_results < 1)
3484 error (_("Request to select 0 symbols!"));
3485 if (nsyms <= 1)
3486 return nsyms;
3487
3488 if (select_mode == multiple_symbols_cancel)
3489 error (_("\
3490 canceled because the command is ambiguous\n\
3491 See set/show multiple-symbol."));
3492
3493 /* If select_mode is "all", then return all possible symbols.
3494 Only do that if more than one symbol can be selected, of course.
3495 Otherwise, display the menu as usual. */
3496 if (select_mode == multiple_symbols_all && max_results > 1)
3497 return nsyms;
3498
3499 printf_unfiltered (_("[0] cancel\n"));
3500 if (max_results > 1)
3501 printf_unfiltered (_("[1] all\n"));
3502
3503 sort_choices (syms, nsyms);
3504
3505 for (i = 0; i < nsyms; i += 1)
3506 {
3507 if (syms[i].sym == NULL)
3508 continue;
3509
3510 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3511 {
3512 struct symtab_and_line sal =
3513 find_function_start_sal (syms[i].sym, 1);
3514
3515 if (sal.symtab == NULL)
3516 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3517 i + first_choice,
3518 SYMBOL_PRINT_NAME (syms[i].sym),
3519 sal.line);
3520 else
3521 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3522 SYMBOL_PRINT_NAME (syms[i].sym),
3523 sal.symtab->filename, sal.line);
3524 continue;
3525 }
3526 else
3527 {
3528 int is_enumeral =
3529 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3530 && SYMBOL_TYPE (syms[i].sym) != NULL
3531 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3532 struct symtab *symtab = syms[i].sym->symtab;
3533
3534 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3535 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3536 i + first_choice,
3537 SYMBOL_PRINT_NAME (syms[i].sym),
3538 symtab->filename, SYMBOL_LINE (syms[i].sym));
3539 else if (is_enumeral
3540 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3541 {
3542 printf_unfiltered (("[%d] "), i + first_choice);
3543 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3544 gdb_stdout, -1, 0);
3545 printf_unfiltered (_("'(%s) (enumeral)\n"),
3546 SYMBOL_PRINT_NAME (syms[i].sym));
3547 }
3548 else if (symtab != NULL)
3549 printf_unfiltered (is_enumeral
3550 ? _("[%d] %s in %s (enumeral)\n")
3551 : _("[%d] %s at %s:?\n"),
3552 i + first_choice,
3553 SYMBOL_PRINT_NAME (syms[i].sym),
3554 symtab->filename);
3555 else
3556 printf_unfiltered (is_enumeral
3557 ? _("[%d] %s (enumeral)\n")
3558 : _("[%d] %s at ?\n"),
3559 i + first_choice,
3560 SYMBOL_PRINT_NAME (syms[i].sym));
3561 }
3562 }
3563
3564 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3565 "overload-choice");
3566
3567 for (i = 0; i < n_chosen; i += 1)
3568 syms[i] = syms[chosen[i]];
3569
3570 return n_chosen;
3571 }
3572
3573 /* Read and validate a set of numeric choices from the user in the
3574 range 0 .. N_CHOICES-1. Place the results in increasing
3575 order in CHOICES[0 .. N-1], and return N.
3576
3577 The user types choices as a sequence of numbers on one line
3578 separated by blanks, encoding them as follows:
3579
3580 + A choice of 0 means to cancel the selection, throwing an error.
3581 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3582 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3583
3584 The user is not allowed to choose more than MAX_RESULTS values.
3585
3586 ANNOTATION_SUFFIX, if present, is used to annotate the input
3587 prompts (for use with the -f switch). */
3588
3589 int
3590 get_selections (int *choices, int n_choices, int max_results,
3591 int is_all_choice, char *annotation_suffix)
3592 {
3593 char *args;
3594 char *prompt;
3595 int n_chosen;
3596 int first_choice = is_all_choice ? 2 : 1;
3597
3598 prompt = getenv ("PS2");
3599 if (prompt == NULL)
3600 prompt = "> ";
3601
3602 args = command_line_input (prompt, 0, annotation_suffix);
3603
3604 if (args == NULL)
3605 error_no_arg (_("one or more choice numbers"));
3606
3607 n_chosen = 0;
3608
3609 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3610 order, as given in args. Choices are validated. */
3611 while (1)
3612 {
3613 char *args2;
3614 int choice, j;
3615
3616 args = skip_spaces (args);
3617 if (*args == '\0' && n_chosen == 0)
3618 error_no_arg (_("one or more choice numbers"));
3619 else if (*args == '\0')
3620 break;
3621
3622 choice = strtol (args, &args2, 10);
3623 if (args == args2 || choice < 0
3624 || choice > n_choices + first_choice - 1)
3625 error (_("Argument must be choice number"));
3626 args = args2;
3627
3628 if (choice == 0)
3629 error (_("cancelled"));
3630
3631 if (choice < first_choice)
3632 {
3633 n_chosen = n_choices;
3634 for (j = 0; j < n_choices; j += 1)
3635 choices[j] = j;
3636 break;
3637 }
3638 choice -= first_choice;
3639
3640 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3641 {
3642 }
3643
3644 if (j < 0 || choice != choices[j])
3645 {
3646 int k;
3647
3648 for (k = n_chosen - 1; k > j; k -= 1)
3649 choices[k + 1] = choices[k];
3650 choices[j + 1] = choice;
3651 n_chosen += 1;
3652 }
3653 }
3654
3655 if (n_chosen > max_results)
3656 error (_("Select no more than %d of the above"), max_results);
3657
3658 return n_chosen;
3659 }
3660
3661 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3662 on the function identified by SYM and BLOCK, and taking NARGS
3663 arguments. Update *EXPP as needed to hold more space. */
3664
3665 static void
3666 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3667 int oplen, struct symbol *sym,
3668 struct block *block)
3669 {
3670 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3671 symbol, -oplen for operator being replaced). */
3672 struct expression *newexp = (struct expression *)
3673 xzalloc (sizeof (struct expression)
3674 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3675 struct expression *exp = *expp;
3676
3677 newexp->nelts = exp->nelts + 7 - oplen;
3678 newexp->language_defn = exp->language_defn;
3679 newexp->gdbarch = exp->gdbarch;
3680 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3681 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3682 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3683
3684 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3685 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3686
3687 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3688 newexp->elts[pc + 4].block = block;
3689 newexp->elts[pc + 5].symbol = sym;
3690
3691 *expp = newexp;
3692 xfree (exp);
3693 }
3694
3695 /* Type-class predicates */
3696
3697 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3698 or FLOAT). */
3699
3700 static int
3701 numeric_type_p (struct type *type)
3702 {
3703 if (type == NULL)
3704 return 0;
3705 else
3706 {
3707 switch (TYPE_CODE (type))
3708 {
3709 case TYPE_CODE_INT:
3710 case TYPE_CODE_FLT:
3711 return 1;
3712 case TYPE_CODE_RANGE:
3713 return (type == TYPE_TARGET_TYPE (type)
3714 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3715 default:
3716 return 0;
3717 }
3718 }
3719 }
3720
3721 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3722
3723 static int
3724 integer_type_p (struct type *type)
3725 {
3726 if (type == NULL)
3727 return 0;
3728 else
3729 {
3730 switch (TYPE_CODE (type))
3731 {
3732 case TYPE_CODE_INT:
3733 return 1;
3734 case TYPE_CODE_RANGE:
3735 return (type == TYPE_TARGET_TYPE (type)
3736 || integer_type_p (TYPE_TARGET_TYPE (type)));
3737 default:
3738 return 0;
3739 }
3740 }
3741 }
3742
3743 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3744
3745 static int
3746 scalar_type_p (struct type *type)
3747 {
3748 if (type == NULL)
3749 return 0;
3750 else
3751 {
3752 switch (TYPE_CODE (type))
3753 {
3754 case TYPE_CODE_INT:
3755 case TYPE_CODE_RANGE:
3756 case TYPE_CODE_ENUM:
3757 case TYPE_CODE_FLT:
3758 return 1;
3759 default:
3760 return 0;
3761 }
3762 }
3763 }
3764
3765 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3766
3767 static int
3768 discrete_type_p (struct type *type)
3769 {
3770 if (type == NULL)
3771 return 0;
3772 else
3773 {
3774 switch (TYPE_CODE (type))
3775 {
3776 case TYPE_CODE_INT:
3777 case TYPE_CODE_RANGE:
3778 case TYPE_CODE_ENUM:
3779 case TYPE_CODE_BOOL:
3780 return 1;
3781 default:
3782 return 0;
3783 }
3784 }
3785 }
3786
3787 /* Returns non-zero if OP with operands in the vector ARGS could be
3788 a user-defined function. Errs on the side of pre-defined operators
3789 (i.e., result 0). */
3790
3791 static int
3792 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3793 {
3794 struct type *type0 =
3795 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3796 struct type *type1 =
3797 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3798
3799 if (type0 == NULL)
3800 return 0;
3801
3802 switch (op)
3803 {
3804 default:
3805 return 0;
3806
3807 case BINOP_ADD:
3808 case BINOP_SUB:
3809 case BINOP_MUL:
3810 case BINOP_DIV:
3811 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3812
3813 case BINOP_REM:
3814 case BINOP_MOD:
3815 case BINOP_BITWISE_AND:
3816 case BINOP_BITWISE_IOR:
3817 case BINOP_BITWISE_XOR:
3818 return (!(integer_type_p (type0) && integer_type_p (type1)));
3819
3820 case BINOP_EQUAL:
3821 case BINOP_NOTEQUAL:
3822 case BINOP_LESS:
3823 case BINOP_GTR:
3824 case BINOP_LEQ:
3825 case BINOP_GEQ:
3826 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3827
3828 case BINOP_CONCAT:
3829 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3830
3831 case BINOP_EXP:
3832 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3833
3834 case UNOP_NEG:
3835 case UNOP_PLUS:
3836 case UNOP_LOGICAL_NOT:
3837 case UNOP_ABS:
3838 return (!numeric_type_p (type0));
3839
3840 }
3841 }
3842 \f
3843 /* Renaming */
3844
3845 /* NOTES:
3846
3847 1. In the following, we assume that a renaming type's name may
3848 have an ___XD suffix. It would be nice if this went away at some
3849 point.
3850 2. We handle both the (old) purely type-based representation of
3851 renamings and the (new) variable-based encoding. At some point,
3852 it is devoutly to be hoped that the former goes away
3853 (FIXME: hilfinger-2007-07-09).
3854 3. Subprogram renamings are not implemented, although the XRS
3855 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3856
3857 /* If SYM encodes a renaming,
3858
3859 <renaming> renames <renamed entity>,
3860
3861 sets *LEN to the length of the renamed entity's name,
3862 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3863 the string describing the subcomponent selected from the renamed
3864 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3865 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3866 are undefined). Otherwise, returns a value indicating the category
3867 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3868 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3869 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3870 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3871 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3872 may be NULL, in which case they are not assigned.
3873
3874 [Currently, however, GCC does not generate subprogram renamings.] */
3875
3876 enum ada_renaming_category
3877 ada_parse_renaming (struct symbol *sym,
3878 const char **renamed_entity, int *len,
3879 const char **renaming_expr)
3880 {
3881 enum ada_renaming_category kind;
3882 const char *info;
3883 const char *suffix;
3884
3885 if (sym == NULL)
3886 return ADA_NOT_RENAMING;
3887 switch (SYMBOL_CLASS (sym))
3888 {
3889 default:
3890 return ADA_NOT_RENAMING;
3891 case LOC_TYPEDEF:
3892 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3893 renamed_entity, len, renaming_expr);
3894 case LOC_LOCAL:
3895 case LOC_STATIC:
3896 case LOC_COMPUTED:
3897 case LOC_OPTIMIZED_OUT:
3898 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3899 if (info == NULL)
3900 return ADA_NOT_RENAMING;
3901 switch (info[5])
3902 {
3903 case '_':
3904 kind = ADA_OBJECT_RENAMING;
3905 info += 6;
3906 break;
3907 case 'E':
3908 kind = ADA_EXCEPTION_RENAMING;
3909 info += 7;
3910 break;
3911 case 'P':
3912 kind = ADA_PACKAGE_RENAMING;
3913 info += 7;
3914 break;
3915 case 'S':
3916 kind = ADA_SUBPROGRAM_RENAMING;
3917 info += 7;
3918 break;
3919 default:
3920 return ADA_NOT_RENAMING;
3921 }
3922 }
3923
3924 if (renamed_entity != NULL)
3925 *renamed_entity = info;
3926 suffix = strstr (info, "___XE");
3927 if (suffix == NULL || suffix == info)
3928 return ADA_NOT_RENAMING;
3929 if (len != NULL)
3930 *len = strlen (info) - strlen (suffix);
3931 suffix += 5;
3932 if (renaming_expr != NULL)
3933 *renaming_expr = suffix;
3934 return kind;
3935 }
3936
3937 /* Assuming TYPE encodes a renaming according to the old encoding in
3938 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3939 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3940 ADA_NOT_RENAMING otherwise. */
3941 static enum ada_renaming_category
3942 parse_old_style_renaming (struct type *type,
3943 const char **renamed_entity, int *len,
3944 const char **renaming_expr)
3945 {
3946 enum ada_renaming_category kind;
3947 const char *name;
3948 const char *info;
3949 const char *suffix;
3950
3951 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3952 || TYPE_NFIELDS (type) != 1)
3953 return ADA_NOT_RENAMING;
3954
3955 name = type_name_no_tag (type);
3956 if (name == NULL)
3957 return ADA_NOT_RENAMING;
3958
3959 name = strstr (name, "___XR");
3960 if (name == NULL)
3961 return ADA_NOT_RENAMING;
3962 switch (name[5])
3963 {
3964 case '\0':
3965 case '_':
3966 kind = ADA_OBJECT_RENAMING;
3967 break;
3968 case 'E':
3969 kind = ADA_EXCEPTION_RENAMING;
3970 break;
3971 case 'P':
3972 kind = ADA_PACKAGE_RENAMING;
3973 break;
3974 case 'S':
3975 kind = ADA_SUBPROGRAM_RENAMING;
3976 break;
3977 default:
3978 return ADA_NOT_RENAMING;
3979 }
3980
3981 info = TYPE_FIELD_NAME (type, 0);
3982 if (info == NULL)
3983 return ADA_NOT_RENAMING;
3984 if (renamed_entity != NULL)
3985 *renamed_entity = info;
3986 suffix = strstr (info, "___XE");
3987 if (renaming_expr != NULL)
3988 *renaming_expr = suffix + 5;
3989 if (suffix == NULL || suffix == info)
3990 return ADA_NOT_RENAMING;
3991 if (len != NULL)
3992 *len = suffix - info;
3993 return kind;
3994 }
3995
3996 \f
3997
3998 /* Evaluation: Function Calls */
3999
4000 /* Return an lvalue containing the value VAL. This is the identity on
4001 lvalues, and otherwise has the side-effect of allocating memory
4002 in the inferior where a copy of the value contents is copied. */
4003
4004 static struct value *
4005 ensure_lval (struct value *val)
4006 {
4007 if (VALUE_LVAL (val) == not_lval
4008 || VALUE_LVAL (val) == lval_internalvar)
4009 {
4010 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4011 const CORE_ADDR addr =
4012 value_as_long (value_allocate_space_in_inferior (len));
4013
4014 set_value_address (val, addr);
4015 VALUE_LVAL (val) = lval_memory;
4016 write_memory (addr, value_contents (val), len);
4017 }
4018
4019 return val;
4020 }
4021
4022 /* Return the value ACTUAL, converted to be an appropriate value for a
4023 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4024 allocating any necessary descriptors (fat pointers), or copies of
4025 values not residing in memory, updating it as needed. */
4026
4027 struct value *
4028 ada_convert_actual (struct value *actual, struct type *formal_type0)
4029 {
4030 struct type *actual_type = ada_check_typedef (value_type (actual));
4031 struct type *formal_type = ada_check_typedef (formal_type0);
4032 struct type *formal_target =
4033 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4034 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4035 struct type *actual_target =
4036 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4037 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4038
4039 if (ada_is_array_descriptor_type (formal_target)
4040 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4041 return make_array_descriptor (formal_type, actual);
4042 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4043 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4044 {
4045 struct value *result;
4046
4047 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4048 && ada_is_array_descriptor_type (actual_target))
4049 result = desc_data (actual);
4050 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4051 {
4052 if (VALUE_LVAL (actual) != lval_memory)
4053 {
4054 struct value *val;
4055
4056 actual_type = ada_check_typedef (value_type (actual));
4057 val = allocate_value (actual_type);
4058 memcpy ((char *) value_contents_raw (val),
4059 (char *) value_contents (actual),
4060 TYPE_LENGTH (actual_type));
4061 actual = ensure_lval (val);
4062 }
4063 result = value_addr (actual);
4064 }
4065 else
4066 return actual;
4067 return value_cast_pointers (formal_type, result);
4068 }
4069 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4070 return ada_value_ind (actual);
4071
4072 return actual;
4073 }
4074
4075 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4076 type TYPE. This is usually an inefficient no-op except on some targets
4077 (such as AVR) where the representation of a pointer and an address
4078 differs. */
4079
4080 static CORE_ADDR
4081 value_pointer (struct value *value, struct type *type)
4082 {
4083 struct gdbarch *gdbarch = get_type_arch (type);
4084 unsigned len = TYPE_LENGTH (type);
4085 gdb_byte *buf = alloca (len);
4086 CORE_ADDR addr;
4087
4088 addr = value_address (value);
4089 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4090 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4091 return addr;
4092 }
4093
4094
4095 /* Push a descriptor of type TYPE for array value ARR on the stack at
4096 *SP, updating *SP to reflect the new descriptor. Return either
4097 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4098 to-descriptor type rather than a descriptor type), a struct value *
4099 representing a pointer to this descriptor. */
4100
4101 static struct value *
4102 make_array_descriptor (struct type *type, struct value *arr)
4103 {
4104 struct type *bounds_type = desc_bounds_type (type);
4105 struct type *desc_type = desc_base_type (type);
4106 struct value *descriptor = allocate_value (desc_type);
4107 struct value *bounds = allocate_value (bounds_type);
4108 int i;
4109
4110 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4111 i > 0; i -= 1)
4112 {
4113 modify_field (value_type (bounds), value_contents_writeable (bounds),
4114 ada_array_bound (arr, i, 0),
4115 desc_bound_bitpos (bounds_type, i, 0),
4116 desc_bound_bitsize (bounds_type, i, 0));
4117 modify_field (value_type (bounds), value_contents_writeable (bounds),
4118 ada_array_bound (arr, i, 1),
4119 desc_bound_bitpos (bounds_type, i, 1),
4120 desc_bound_bitsize (bounds_type, i, 1));
4121 }
4122
4123 bounds = ensure_lval (bounds);
4124
4125 modify_field (value_type (descriptor),
4126 value_contents_writeable (descriptor),
4127 value_pointer (ensure_lval (arr),
4128 TYPE_FIELD_TYPE (desc_type, 0)),
4129 fat_pntr_data_bitpos (desc_type),
4130 fat_pntr_data_bitsize (desc_type));
4131
4132 modify_field (value_type (descriptor),
4133 value_contents_writeable (descriptor),
4134 value_pointer (bounds,
4135 TYPE_FIELD_TYPE (desc_type, 1)),
4136 fat_pntr_bounds_bitpos (desc_type),
4137 fat_pntr_bounds_bitsize (desc_type));
4138
4139 descriptor = ensure_lval (descriptor);
4140
4141 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4142 return value_addr (descriptor);
4143 else
4144 return descriptor;
4145 }
4146 \f
4147 /* Dummy definitions for an experimental caching module that is not
4148 * used in the public sources. */
4149
4150 static int
4151 lookup_cached_symbol (const char *name, domain_enum namespace,
4152 struct symbol **sym, struct block **block)
4153 {
4154 return 0;
4155 }
4156
4157 static void
4158 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4159 struct block *block)
4160 {
4161 }
4162 \f
4163 /* Symbol Lookup */
4164
4165 /* Return nonzero if wild matching should be used when searching for
4166 all symbols matching LOOKUP_NAME.
4167
4168 LOOKUP_NAME is expected to be a symbol name after transformation
4169 for Ada lookups (see ada_name_for_lookup). */
4170
4171 static int
4172 should_use_wild_match (const char *lookup_name)
4173 {
4174 return (strstr (lookup_name, "__") == NULL);
4175 }
4176
4177 /* Return the result of a standard (literal, C-like) lookup of NAME in
4178 given DOMAIN, visible from lexical block BLOCK. */
4179
4180 static struct symbol *
4181 standard_lookup (const char *name, const struct block *block,
4182 domain_enum domain)
4183 {
4184 struct symbol *sym;
4185
4186 if (lookup_cached_symbol (name, domain, &sym, NULL))
4187 return sym;
4188 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4189 cache_symbol (name, domain, sym, block_found);
4190 return sym;
4191 }
4192
4193
4194 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4195 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4196 since they contend in overloading in the same way. */
4197 static int
4198 is_nonfunction (struct ada_symbol_info syms[], int n)
4199 {
4200 int i;
4201
4202 for (i = 0; i < n; i += 1)
4203 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4204 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4205 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4206 return 1;
4207
4208 return 0;
4209 }
4210
4211 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4212 struct types. Otherwise, they may not. */
4213
4214 static int
4215 equiv_types (struct type *type0, struct type *type1)
4216 {
4217 if (type0 == type1)
4218 return 1;
4219 if (type0 == NULL || type1 == NULL
4220 || TYPE_CODE (type0) != TYPE_CODE (type1))
4221 return 0;
4222 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4223 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4224 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4225 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4226 return 1;
4227
4228 return 0;
4229 }
4230
4231 /* True iff SYM0 represents the same entity as SYM1, or one that is
4232 no more defined than that of SYM1. */
4233
4234 static int
4235 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4236 {
4237 if (sym0 == sym1)
4238 return 1;
4239 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4240 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4241 return 0;
4242
4243 switch (SYMBOL_CLASS (sym0))
4244 {
4245 case LOC_UNDEF:
4246 return 1;
4247 case LOC_TYPEDEF:
4248 {
4249 struct type *type0 = SYMBOL_TYPE (sym0);
4250 struct type *type1 = SYMBOL_TYPE (sym1);
4251 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4252 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4253 int len0 = strlen (name0);
4254
4255 return
4256 TYPE_CODE (type0) == TYPE_CODE (type1)
4257 && (equiv_types (type0, type1)
4258 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4259 && strncmp (name1 + len0, "___XV", 5) == 0));
4260 }
4261 case LOC_CONST:
4262 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4263 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4264 default:
4265 return 0;
4266 }
4267 }
4268
4269 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4270 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4271
4272 static void
4273 add_defn_to_vec (struct obstack *obstackp,
4274 struct symbol *sym,
4275 struct block *block)
4276 {
4277 int i;
4278 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4279
4280 /* Do not try to complete stub types, as the debugger is probably
4281 already scanning all symbols matching a certain name at the
4282 time when this function is called. Trying to replace the stub
4283 type by its associated full type will cause us to restart a scan
4284 which may lead to an infinite recursion. Instead, the client
4285 collecting the matching symbols will end up collecting several
4286 matches, with at least one of them complete. It can then filter
4287 out the stub ones if needed. */
4288
4289 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4290 {
4291 if (lesseq_defined_than (sym, prevDefns[i].sym))
4292 return;
4293 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4294 {
4295 prevDefns[i].sym = sym;
4296 prevDefns[i].block = block;
4297 return;
4298 }
4299 }
4300
4301 {
4302 struct ada_symbol_info info;
4303
4304 info.sym = sym;
4305 info.block = block;
4306 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4307 }
4308 }
4309
4310 /* Number of ada_symbol_info structures currently collected in
4311 current vector in *OBSTACKP. */
4312
4313 static int
4314 num_defns_collected (struct obstack *obstackp)
4315 {
4316 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4317 }
4318
4319 /* Vector of ada_symbol_info structures currently collected in current
4320 vector in *OBSTACKP. If FINISH, close off the vector and return
4321 its final address. */
4322
4323 static struct ada_symbol_info *
4324 defns_collected (struct obstack *obstackp, int finish)
4325 {
4326 if (finish)
4327 return obstack_finish (obstackp);
4328 else
4329 return (struct ada_symbol_info *) obstack_base (obstackp);
4330 }
4331
4332 /* Return a minimal symbol matching NAME according to Ada decoding
4333 rules. Returns NULL if there is no such minimal symbol. Names
4334 prefixed with "standard__" are handled specially: "standard__" is
4335 first stripped off, and only static and global symbols are searched. */
4336
4337 struct minimal_symbol *
4338 ada_lookup_simple_minsym (const char *name)
4339 {
4340 struct objfile *objfile;
4341 struct minimal_symbol *msymbol;
4342 const int wild_match = should_use_wild_match (name);
4343
4344 /* Special case: If the user specifies a symbol name inside package
4345 Standard, do a non-wild matching of the symbol name without
4346 the "standard__" prefix. This was primarily introduced in order
4347 to allow the user to specifically access the standard exceptions
4348 using, for instance, Standard.Constraint_Error when Constraint_Error
4349 is ambiguous (due to the user defining its own Constraint_Error
4350 entity inside its program). */
4351 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4352 name += sizeof ("standard__") - 1;
4353
4354 ALL_MSYMBOLS (objfile, msymbol)
4355 {
4356 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4357 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4358 return msymbol;
4359 }
4360
4361 return NULL;
4362 }
4363
4364 /* For all subprograms that statically enclose the subprogram of the
4365 selected frame, add symbols matching identifier NAME in DOMAIN
4366 and their blocks to the list of data in OBSTACKP, as for
4367 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4368 wildcard prefix. */
4369
4370 static void
4371 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4372 const char *name, domain_enum namespace,
4373 int wild_match)
4374 {
4375 }
4376
4377 /* True if TYPE is definitely an artificial type supplied to a symbol
4378 for which no debugging information was given in the symbol file. */
4379
4380 static int
4381 is_nondebugging_type (struct type *type)
4382 {
4383 const char *name = ada_type_name (type);
4384
4385 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4386 }
4387
4388 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4389 that are deemed "identical" for practical purposes.
4390
4391 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4392 types and that their number of enumerals is identical (in other
4393 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4394
4395 static int
4396 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4397 {
4398 int i;
4399
4400 /* The heuristic we use here is fairly conservative. We consider
4401 that 2 enumerate types are identical if they have the same
4402 number of enumerals and that all enumerals have the same
4403 underlying value and name. */
4404
4405 /* All enums in the type should have an identical underlying value. */
4406 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4407 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4408 return 0;
4409
4410 /* All enumerals should also have the same name (modulo any numerical
4411 suffix). */
4412 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4413 {
4414 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4415 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4416 int len_1 = strlen (name_1);
4417 int len_2 = strlen (name_2);
4418
4419 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4420 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4421 if (len_1 != len_2
4422 || strncmp (TYPE_FIELD_NAME (type1, i),
4423 TYPE_FIELD_NAME (type2, i),
4424 len_1) != 0)
4425 return 0;
4426 }
4427
4428 return 1;
4429 }
4430
4431 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4432 that are deemed "identical" for practical purposes. Sometimes,
4433 enumerals are not strictly identical, but their types are so similar
4434 that they can be considered identical.
4435
4436 For instance, consider the following code:
4437
4438 type Color is (Black, Red, Green, Blue, White);
4439 type RGB_Color is new Color range Red .. Blue;
4440
4441 Type RGB_Color is a subrange of an implicit type which is a copy
4442 of type Color. If we call that implicit type RGB_ColorB ("B" is
4443 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4444 As a result, when an expression references any of the enumeral
4445 by name (Eg. "print green"), the expression is technically
4446 ambiguous and the user should be asked to disambiguate. But
4447 doing so would only hinder the user, since it wouldn't matter
4448 what choice he makes, the outcome would always be the same.
4449 So, for practical purposes, we consider them as the same. */
4450
4451 static int
4452 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4453 {
4454 int i;
4455
4456 /* Before performing a thorough comparison check of each type,
4457 we perform a series of inexpensive checks. We expect that these
4458 checks will quickly fail in the vast majority of cases, and thus
4459 help prevent the unnecessary use of a more expensive comparison.
4460 Said comparison also expects us to make some of these checks
4461 (see ada_identical_enum_types_p). */
4462
4463 /* Quick check: All symbols should have an enum type. */
4464 for (i = 0; i < nsyms; i++)
4465 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4466 return 0;
4467
4468 /* Quick check: They should all have the same value. */
4469 for (i = 1; i < nsyms; i++)
4470 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4471 return 0;
4472
4473 /* Quick check: They should all have the same number of enumerals. */
4474 for (i = 1; i < nsyms; i++)
4475 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4476 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4477 return 0;
4478
4479 /* All the sanity checks passed, so we might have a set of
4480 identical enumeration types. Perform a more complete
4481 comparison of the type of each symbol. */
4482 for (i = 1; i < nsyms; i++)
4483 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4484 SYMBOL_TYPE (syms[0].sym)))
4485 return 0;
4486
4487 return 1;
4488 }
4489
4490 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4491 duplicate other symbols in the list (The only case I know of where
4492 this happens is when object files containing stabs-in-ecoff are
4493 linked with files containing ordinary ecoff debugging symbols (or no
4494 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4495 Returns the number of items in the modified list. */
4496
4497 static int
4498 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4499 {
4500 int i, j;
4501
4502 /* We should never be called with less than 2 symbols, as there
4503 cannot be any extra symbol in that case. But it's easy to
4504 handle, since we have nothing to do in that case. */
4505 if (nsyms < 2)
4506 return nsyms;
4507
4508 i = 0;
4509 while (i < nsyms)
4510 {
4511 int remove_p = 0;
4512
4513 /* If two symbols have the same name and one of them is a stub type,
4514 the get rid of the stub. */
4515
4516 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4517 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4518 {
4519 for (j = 0; j < nsyms; j++)
4520 {
4521 if (j != i
4522 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4523 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4524 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4525 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4526 remove_p = 1;
4527 }
4528 }
4529
4530 /* Two symbols with the same name, same class and same address
4531 should be identical. */
4532
4533 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4534 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4535 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4536 {
4537 for (j = 0; j < nsyms; j += 1)
4538 {
4539 if (i != j
4540 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4541 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4542 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4543 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4544 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4545 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4546 remove_p = 1;
4547 }
4548 }
4549
4550 if (remove_p)
4551 {
4552 for (j = i + 1; j < nsyms; j += 1)
4553 syms[j - 1] = syms[j];
4554 nsyms -= 1;
4555 }
4556
4557 i += 1;
4558 }
4559
4560 /* If all the remaining symbols are identical enumerals, then
4561 just keep the first one and discard the rest.
4562
4563 Unlike what we did previously, we do not discard any entry
4564 unless they are ALL identical. This is because the symbol
4565 comparison is not a strict comparison, but rather a practical
4566 comparison. If all symbols are considered identical, then
4567 we can just go ahead and use the first one and discard the rest.
4568 But if we cannot reduce the list to a single element, we have
4569 to ask the user to disambiguate anyways. And if we have to
4570 present a multiple-choice menu, it's less confusing if the list
4571 isn't missing some choices that were identical and yet distinct. */
4572 if (symbols_are_identical_enums (syms, nsyms))
4573 nsyms = 1;
4574
4575 return nsyms;
4576 }
4577
4578 /* Given a type that corresponds to a renaming entity, use the type name
4579 to extract the scope (package name or function name, fully qualified,
4580 and following the GNAT encoding convention) where this renaming has been
4581 defined. The string returned needs to be deallocated after use. */
4582
4583 static char *
4584 xget_renaming_scope (struct type *renaming_type)
4585 {
4586 /* The renaming types adhere to the following convention:
4587 <scope>__<rename>___<XR extension>.
4588 So, to extract the scope, we search for the "___XR" extension,
4589 and then backtrack until we find the first "__". */
4590
4591 const char *name = type_name_no_tag (renaming_type);
4592 char *suffix = strstr (name, "___XR");
4593 char *last;
4594 int scope_len;
4595 char *scope;
4596
4597 /* Now, backtrack a bit until we find the first "__". Start looking
4598 at suffix - 3, as the <rename> part is at least one character long. */
4599
4600 for (last = suffix - 3; last > name; last--)
4601 if (last[0] == '_' && last[1] == '_')
4602 break;
4603
4604 /* Make a copy of scope and return it. */
4605
4606 scope_len = last - name;
4607 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4608
4609 strncpy (scope, name, scope_len);
4610 scope[scope_len] = '\0';
4611
4612 return scope;
4613 }
4614
4615 /* Return nonzero if NAME corresponds to a package name. */
4616
4617 static int
4618 is_package_name (const char *name)
4619 {
4620 /* Here, We take advantage of the fact that no symbols are generated
4621 for packages, while symbols are generated for each function.
4622 So the condition for NAME represent a package becomes equivalent
4623 to NAME not existing in our list of symbols. There is only one
4624 small complication with library-level functions (see below). */
4625
4626 char *fun_name;
4627
4628 /* If it is a function that has not been defined at library level,
4629 then we should be able to look it up in the symbols. */
4630 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4631 return 0;
4632
4633 /* Library-level function names start with "_ada_". See if function
4634 "_ada_" followed by NAME can be found. */
4635
4636 /* Do a quick check that NAME does not contain "__", since library-level
4637 functions names cannot contain "__" in them. */
4638 if (strstr (name, "__") != NULL)
4639 return 0;
4640
4641 fun_name = xstrprintf ("_ada_%s", name);
4642
4643 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4644 }
4645
4646 /* Return nonzero if SYM corresponds to a renaming entity that is
4647 not visible from FUNCTION_NAME. */
4648
4649 static int
4650 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4651 {
4652 char *scope;
4653
4654 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4655 return 0;
4656
4657 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4658
4659 make_cleanup (xfree, scope);
4660
4661 /* If the rename has been defined in a package, then it is visible. */
4662 if (is_package_name (scope))
4663 return 0;
4664
4665 /* Check that the rename is in the current function scope by checking
4666 that its name starts with SCOPE. */
4667
4668 /* If the function name starts with "_ada_", it means that it is
4669 a library-level function. Strip this prefix before doing the
4670 comparison, as the encoding for the renaming does not contain
4671 this prefix. */
4672 if (strncmp (function_name, "_ada_", 5) == 0)
4673 function_name += 5;
4674
4675 return (strncmp (function_name, scope, strlen (scope)) != 0);
4676 }
4677
4678 /* Remove entries from SYMS that corresponds to a renaming entity that
4679 is not visible from the function associated with CURRENT_BLOCK or
4680 that is superfluous due to the presence of more specific renaming
4681 information. Places surviving symbols in the initial entries of
4682 SYMS and returns the number of surviving symbols.
4683
4684 Rationale:
4685 First, in cases where an object renaming is implemented as a
4686 reference variable, GNAT may produce both the actual reference
4687 variable and the renaming encoding. In this case, we discard the
4688 latter.
4689
4690 Second, GNAT emits a type following a specified encoding for each renaming
4691 entity. Unfortunately, STABS currently does not support the definition
4692 of types that are local to a given lexical block, so all renamings types
4693 are emitted at library level. As a consequence, if an application
4694 contains two renaming entities using the same name, and a user tries to
4695 print the value of one of these entities, the result of the ada symbol
4696 lookup will also contain the wrong renaming type.
4697
4698 This function partially covers for this limitation by attempting to
4699 remove from the SYMS list renaming symbols that should be visible
4700 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4701 method with the current information available. The implementation
4702 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4703
4704 - When the user tries to print a rename in a function while there
4705 is another rename entity defined in a package: Normally, the
4706 rename in the function has precedence over the rename in the
4707 package, so the latter should be removed from the list. This is
4708 currently not the case.
4709
4710 - This function will incorrectly remove valid renames if
4711 the CURRENT_BLOCK corresponds to a function which symbol name
4712 has been changed by an "Export" pragma. As a consequence,
4713 the user will be unable to print such rename entities. */
4714
4715 static int
4716 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4717 int nsyms, const struct block *current_block)
4718 {
4719 struct symbol *current_function;
4720 const char *current_function_name;
4721 int i;
4722 int is_new_style_renaming;
4723
4724 /* If there is both a renaming foo___XR... encoded as a variable and
4725 a simple variable foo in the same block, discard the latter.
4726 First, zero out such symbols, then compress. */
4727 is_new_style_renaming = 0;
4728 for (i = 0; i < nsyms; i += 1)
4729 {
4730 struct symbol *sym = syms[i].sym;
4731 struct block *block = syms[i].block;
4732 const char *name;
4733 const char *suffix;
4734
4735 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4736 continue;
4737 name = SYMBOL_LINKAGE_NAME (sym);
4738 suffix = strstr (name, "___XR");
4739
4740 if (suffix != NULL)
4741 {
4742 int name_len = suffix - name;
4743 int j;
4744
4745 is_new_style_renaming = 1;
4746 for (j = 0; j < nsyms; j += 1)
4747 if (i != j && syms[j].sym != NULL
4748 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4749 name_len) == 0
4750 && block == syms[j].block)
4751 syms[j].sym = NULL;
4752 }
4753 }
4754 if (is_new_style_renaming)
4755 {
4756 int j, k;
4757
4758 for (j = k = 0; j < nsyms; j += 1)
4759 if (syms[j].sym != NULL)
4760 {
4761 syms[k] = syms[j];
4762 k += 1;
4763 }
4764 return k;
4765 }
4766
4767 /* Extract the function name associated to CURRENT_BLOCK.
4768 Abort if unable to do so. */
4769
4770 if (current_block == NULL)
4771 return nsyms;
4772
4773 current_function = block_linkage_function (current_block);
4774 if (current_function == NULL)
4775 return nsyms;
4776
4777 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4778 if (current_function_name == NULL)
4779 return nsyms;
4780
4781 /* Check each of the symbols, and remove it from the list if it is
4782 a type corresponding to a renaming that is out of the scope of
4783 the current block. */
4784
4785 i = 0;
4786 while (i < nsyms)
4787 {
4788 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4789 == ADA_OBJECT_RENAMING
4790 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4791 {
4792 int j;
4793
4794 for (j = i + 1; j < nsyms; j += 1)
4795 syms[j - 1] = syms[j];
4796 nsyms -= 1;
4797 }
4798 else
4799 i += 1;
4800 }
4801
4802 return nsyms;
4803 }
4804
4805 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4806 whose name and domain match NAME and DOMAIN respectively.
4807 If no match was found, then extend the search to "enclosing"
4808 routines (in other words, if we're inside a nested function,
4809 search the symbols defined inside the enclosing functions).
4810
4811 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4812
4813 static void
4814 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4815 struct block *block, domain_enum domain,
4816 int wild_match)
4817 {
4818 int block_depth = 0;
4819
4820 while (block != NULL)
4821 {
4822 block_depth += 1;
4823 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4824
4825 /* If we found a non-function match, assume that's the one. */
4826 if (is_nonfunction (defns_collected (obstackp, 0),
4827 num_defns_collected (obstackp)))
4828 return;
4829
4830 block = BLOCK_SUPERBLOCK (block);
4831 }
4832
4833 /* If no luck so far, try to find NAME as a local symbol in some lexically
4834 enclosing subprogram. */
4835 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4836 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4837 }
4838
4839 /* An object of this type is used as the user_data argument when
4840 calling the map_matching_symbols method. */
4841
4842 struct match_data
4843 {
4844 struct objfile *objfile;
4845 struct obstack *obstackp;
4846 struct symbol *arg_sym;
4847 int found_sym;
4848 };
4849
4850 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4851 to a list of symbols. DATA0 is a pointer to a struct match_data *
4852 containing the obstack that collects the symbol list, the file that SYM
4853 must come from, a flag indicating whether a non-argument symbol has
4854 been found in the current block, and the last argument symbol
4855 passed in SYM within the current block (if any). When SYM is null,
4856 marking the end of a block, the argument symbol is added if no
4857 other has been found. */
4858
4859 static int
4860 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4861 {
4862 struct match_data *data = (struct match_data *) data0;
4863
4864 if (sym == NULL)
4865 {
4866 if (!data->found_sym && data->arg_sym != NULL)
4867 add_defn_to_vec (data->obstackp,
4868 fixup_symbol_section (data->arg_sym, data->objfile),
4869 block);
4870 data->found_sym = 0;
4871 data->arg_sym = NULL;
4872 }
4873 else
4874 {
4875 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4876 return 0;
4877 else if (SYMBOL_IS_ARGUMENT (sym))
4878 data->arg_sym = sym;
4879 else
4880 {
4881 data->found_sym = 1;
4882 add_defn_to_vec (data->obstackp,
4883 fixup_symbol_section (sym, data->objfile),
4884 block);
4885 }
4886 }
4887 return 0;
4888 }
4889
4890 /* Compare STRING1 to STRING2, with results as for strcmp.
4891 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4892 implies compare_names (STRING1, STRING2) (they may differ as to
4893 what symbols compare equal). */
4894
4895 static int
4896 compare_names (const char *string1, const char *string2)
4897 {
4898 while (*string1 != '\0' && *string2 != '\0')
4899 {
4900 if (isspace (*string1) || isspace (*string2))
4901 return strcmp_iw_ordered (string1, string2);
4902 if (*string1 != *string2)
4903 break;
4904 string1 += 1;
4905 string2 += 1;
4906 }
4907 switch (*string1)
4908 {
4909 case '(':
4910 return strcmp_iw_ordered (string1, string2);
4911 case '_':
4912 if (*string2 == '\0')
4913 {
4914 if (is_name_suffix (string1))
4915 return 0;
4916 else
4917 return 1;
4918 }
4919 /* FALLTHROUGH */
4920 default:
4921 if (*string2 == '(')
4922 return strcmp_iw_ordered (string1, string2);
4923 else
4924 return *string1 - *string2;
4925 }
4926 }
4927
4928 /* Add to OBSTACKP all non-local symbols whose name and domain match
4929 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4930 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4931
4932 static void
4933 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4934 domain_enum domain, int global,
4935 int is_wild_match)
4936 {
4937 struct objfile *objfile;
4938 struct match_data data;
4939
4940 memset (&data, 0, sizeof data);
4941 data.obstackp = obstackp;
4942
4943 ALL_OBJFILES (objfile)
4944 {
4945 data.objfile = objfile;
4946
4947 if (is_wild_match)
4948 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4949 aux_add_nonlocal_symbols, &data,
4950 wild_match, NULL);
4951 else
4952 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4953 aux_add_nonlocal_symbols, &data,
4954 full_match, compare_names);
4955 }
4956
4957 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4958 {
4959 ALL_OBJFILES (objfile)
4960 {
4961 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4962 strcpy (name1, "_ada_");
4963 strcpy (name1 + sizeof ("_ada_") - 1, name);
4964 data.objfile = objfile;
4965 objfile->sf->qf->map_matching_symbols (name1, domain,
4966 objfile, global,
4967 aux_add_nonlocal_symbols,
4968 &data,
4969 full_match, compare_names);
4970 }
4971 }
4972 }
4973
4974 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4975 scope and in global scopes, returning the number of matches. Sets
4976 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4977 indicating the symbols found and the blocks and symbol tables (if
4978 any) in which they were found. This vector are transient---good only to
4979 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4980 symbol match within the nest of blocks whose innermost member is BLOCK0,
4981 is the one match returned (no other matches in that or
4982 enclosing blocks is returned). If there are any matches in or
4983 surrounding BLOCK0, then these alone are returned. Otherwise, if
4984 FULL_SEARCH is non-zero, then the search extends to global and
4985 file-scope (static) symbol tables.
4986 Names prefixed with "standard__" are handled specially: "standard__"
4987 is first stripped off, and only static and global symbols are searched. */
4988
4989 int
4990 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4991 domain_enum namespace,
4992 struct ada_symbol_info **results,
4993 int full_search)
4994 {
4995 struct symbol *sym;
4996 struct block *block;
4997 const char *name;
4998 const int wild_match = should_use_wild_match (name0);
4999 int cacheIfUnique;
5000 int ndefns;
5001
5002 obstack_free (&symbol_list_obstack, NULL);
5003 obstack_init (&symbol_list_obstack);
5004
5005 cacheIfUnique = 0;
5006
5007 /* Search specified block and its superiors. */
5008
5009 name = name0;
5010 block = (struct block *) block0; /* FIXME: No cast ought to be
5011 needed, but adding const will
5012 have a cascade effect. */
5013
5014 /* Special case: If the user specifies a symbol name inside package
5015 Standard, do a non-wild matching of the symbol name without
5016 the "standard__" prefix. This was primarily introduced in order
5017 to allow the user to specifically access the standard exceptions
5018 using, for instance, Standard.Constraint_Error when Constraint_Error
5019 is ambiguous (due to the user defining its own Constraint_Error
5020 entity inside its program). */
5021 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5022 {
5023 block = NULL;
5024 name = name0 + sizeof ("standard__") - 1;
5025 }
5026
5027 /* Check the non-global symbols. If we have ANY match, then we're done. */
5028
5029 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5030 wild_match);
5031 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5032 goto done;
5033
5034 /* No non-global symbols found. Check our cache to see if we have
5035 already performed this search before. If we have, then return
5036 the same result. */
5037
5038 cacheIfUnique = 1;
5039 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5040 {
5041 if (sym != NULL)
5042 add_defn_to_vec (&symbol_list_obstack, sym, block);
5043 goto done;
5044 }
5045
5046 /* Search symbols from all global blocks. */
5047
5048 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5049 wild_match);
5050
5051 /* Now add symbols from all per-file blocks if we've gotten no hits
5052 (not strictly correct, but perhaps better than an error). */
5053
5054 if (num_defns_collected (&symbol_list_obstack) == 0)
5055 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5056 wild_match);
5057
5058 done:
5059 ndefns = num_defns_collected (&symbol_list_obstack);
5060 *results = defns_collected (&symbol_list_obstack, 1);
5061
5062 ndefns = remove_extra_symbols (*results, ndefns);
5063
5064 if (ndefns == 0)
5065 cache_symbol (name0, namespace, NULL, NULL);
5066
5067 if (ndefns == 1 && cacheIfUnique)
5068 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5069
5070 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5071
5072 return ndefns;
5073 }
5074
5075 /* If NAME is the name of an entity, return a string that should
5076 be used to look that entity up in Ada units. This string should
5077 be deallocated after use using xfree.
5078
5079 NAME can have any form that the "break" or "print" commands might
5080 recognize. In other words, it does not have to be the "natural"
5081 name, or the "encoded" name. */
5082
5083 char *
5084 ada_name_for_lookup (const char *name)
5085 {
5086 char *canon;
5087 int nlen = strlen (name);
5088
5089 if (name[0] == '<' && name[nlen - 1] == '>')
5090 {
5091 canon = xmalloc (nlen - 1);
5092 memcpy (canon, name + 1, nlen - 2);
5093 canon[nlen - 2] = '\0';
5094 }
5095 else
5096 canon = xstrdup (ada_encode (ada_fold_name (name)));
5097 return canon;
5098 }
5099
5100 /* Implementation of the la_iterate_over_symbols method. */
5101
5102 static void
5103 ada_iterate_over_symbols (const struct block *block,
5104 const char *name, domain_enum domain,
5105 symbol_found_callback_ftype *callback,
5106 void *data)
5107 {
5108 int ndefs, i;
5109 struct ada_symbol_info *results;
5110
5111 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5112 for (i = 0; i < ndefs; ++i)
5113 {
5114 if (! (*callback) (results[i].sym, data))
5115 break;
5116 }
5117 }
5118
5119 struct symbol *
5120 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
5121 domain_enum namespace, struct block **block_found)
5122 {
5123 struct ada_symbol_info *candidates;
5124 int n_candidates;
5125
5126 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates,
5127 1);
5128
5129 if (n_candidates == 0)
5130 return NULL;
5131
5132 if (block_found != NULL)
5133 *block_found = candidates[0].block;
5134
5135 return fixup_symbol_section (candidates[0].sym, NULL);
5136 }
5137
5138 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5139 scope and in global scopes, or NULL if none. NAME is folded and
5140 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5141 choosing the first symbol if there are multiple choices.
5142 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5143 table in which the symbol was found (in both cases, these
5144 assignments occur only if the pointers are non-null). */
5145 struct symbol *
5146 ada_lookup_symbol (const char *name, const struct block *block0,
5147 domain_enum namespace, int *is_a_field_of_this)
5148 {
5149 if (is_a_field_of_this != NULL)
5150 *is_a_field_of_this = 0;
5151
5152 return
5153 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5154 block0, namespace, NULL);
5155 }
5156
5157 static struct symbol *
5158 ada_lookup_symbol_nonlocal (const char *name,
5159 const struct block *block,
5160 const domain_enum domain)
5161 {
5162 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5163 }
5164
5165
5166 /* True iff STR is a possible encoded suffix of a normal Ada name
5167 that is to be ignored for matching purposes. Suffixes of parallel
5168 names (e.g., XVE) are not included here. Currently, the possible suffixes
5169 are given by any of the regular expressions:
5170
5171 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5172 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5173 TKB [subprogram suffix for task bodies]
5174 _E[0-9]+[bs]$ [protected object entry suffixes]
5175 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5176
5177 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5178 match is performed. This sequence is used to differentiate homonyms,
5179 is an optional part of a valid name suffix. */
5180
5181 static int
5182 is_name_suffix (const char *str)
5183 {
5184 int k;
5185 const char *matching;
5186 const int len = strlen (str);
5187
5188 /* Skip optional leading __[0-9]+. */
5189
5190 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5191 {
5192 str += 3;
5193 while (isdigit (str[0]))
5194 str += 1;
5195 }
5196
5197 /* [.$][0-9]+ */
5198
5199 if (str[0] == '.' || str[0] == '$')
5200 {
5201 matching = str + 1;
5202 while (isdigit (matching[0]))
5203 matching += 1;
5204 if (matching[0] == '\0')
5205 return 1;
5206 }
5207
5208 /* ___[0-9]+ */
5209
5210 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5211 {
5212 matching = str + 3;
5213 while (isdigit (matching[0]))
5214 matching += 1;
5215 if (matching[0] == '\0')
5216 return 1;
5217 }
5218
5219 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5220
5221 if (strcmp (str, "TKB") == 0)
5222 return 1;
5223
5224 #if 0
5225 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5226 with a N at the end. Unfortunately, the compiler uses the same
5227 convention for other internal types it creates. So treating
5228 all entity names that end with an "N" as a name suffix causes
5229 some regressions. For instance, consider the case of an enumerated
5230 type. To support the 'Image attribute, it creates an array whose
5231 name ends with N.
5232 Having a single character like this as a suffix carrying some
5233 information is a bit risky. Perhaps we should change the encoding
5234 to be something like "_N" instead. In the meantime, do not do
5235 the following check. */
5236 /* Protected Object Subprograms */
5237 if (len == 1 && str [0] == 'N')
5238 return 1;
5239 #endif
5240
5241 /* _E[0-9]+[bs]$ */
5242 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5243 {
5244 matching = str + 3;
5245 while (isdigit (matching[0]))
5246 matching += 1;
5247 if ((matching[0] == 'b' || matching[0] == 's')
5248 && matching [1] == '\0')
5249 return 1;
5250 }
5251
5252 /* ??? We should not modify STR directly, as we are doing below. This
5253 is fine in this case, but may become problematic later if we find
5254 that this alternative did not work, and want to try matching
5255 another one from the begining of STR. Since we modified it, we
5256 won't be able to find the begining of the string anymore! */
5257 if (str[0] == 'X')
5258 {
5259 str += 1;
5260 while (str[0] != '_' && str[0] != '\0')
5261 {
5262 if (str[0] != 'n' && str[0] != 'b')
5263 return 0;
5264 str += 1;
5265 }
5266 }
5267
5268 if (str[0] == '\000')
5269 return 1;
5270
5271 if (str[0] == '_')
5272 {
5273 if (str[1] != '_' || str[2] == '\000')
5274 return 0;
5275 if (str[2] == '_')
5276 {
5277 if (strcmp (str + 3, "JM") == 0)
5278 return 1;
5279 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5280 the LJM suffix in favor of the JM one. But we will
5281 still accept LJM as a valid suffix for a reasonable
5282 amount of time, just to allow ourselves to debug programs
5283 compiled using an older version of GNAT. */
5284 if (strcmp (str + 3, "LJM") == 0)
5285 return 1;
5286 if (str[3] != 'X')
5287 return 0;
5288 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5289 || str[4] == 'U' || str[4] == 'P')
5290 return 1;
5291 if (str[4] == 'R' && str[5] != 'T')
5292 return 1;
5293 return 0;
5294 }
5295 if (!isdigit (str[2]))
5296 return 0;
5297 for (k = 3; str[k] != '\0'; k += 1)
5298 if (!isdigit (str[k]) && str[k] != '_')
5299 return 0;
5300 return 1;
5301 }
5302 if (str[0] == '$' && isdigit (str[1]))
5303 {
5304 for (k = 2; str[k] != '\0'; k += 1)
5305 if (!isdigit (str[k]) && str[k] != '_')
5306 return 0;
5307 return 1;
5308 }
5309 return 0;
5310 }
5311
5312 /* Return non-zero if the string starting at NAME and ending before
5313 NAME_END contains no capital letters. */
5314
5315 static int
5316 is_valid_name_for_wild_match (const char *name0)
5317 {
5318 const char *decoded_name = ada_decode (name0);
5319 int i;
5320
5321 /* If the decoded name starts with an angle bracket, it means that
5322 NAME0 does not follow the GNAT encoding format. It should then
5323 not be allowed as a possible wild match. */
5324 if (decoded_name[0] == '<')
5325 return 0;
5326
5327 for (i=0; decoded_name[i] != '\0'; i++)
5328 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5329 return 0;
5330
5331 return 1;
5332 }
5333
5334 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5335 that could start a simple name. Assumes that *NAMEP points into
5336 the string beginning at NAME0. */
5337
5338 static int
5339 advance_wild_match (const char **namep, const char *name0, int target0)
5340 {
5341 const char *name = *namep;
5342
5343 while (1)
5344 {
5345 int t0, t1;
5346
5347 t0 = *name;
5348 if (t0 == '_')
5349 {
5350 t1 = name[1];
5351 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5352 {
5353 name += 1;
5354 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5355 break;
5356 else
5357 name += 1;
5358 }
5359 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5360 || name[2] == target0))
5361 {
5362 name += 2;
5363 break;
5364 }
5365 else
5366 return 0;
5367 }
5368 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5369 name += 1;
5370 else
5371 return 0;
5372 }
5373
5374 *namep = name;
5375 return 1;
5376 }
5377
5378 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5379 informational suffixes of NAME (i.e., for which is_name_suffix is
5380 true). Assumes that PATN is a lower-cased Ada simple name. */
5381
5382 static int
5383 wild_match (const char *name, const char *patn)
5384 {
5385 const char *p, *n;
5386 const char *name0 = name;
5387
5388 while (1)
5389 {
5390 const char *match = name;
5391
5392 if (*name == *patn)
5393 {
5394 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5395 if (*p != *name)
5396 break;
5397 if (*p == '\0' && is_name_suffix (name))
5398 return match != name0 && !is_valid_name_for_wild_match (name0);
5399
5400 if (name[-1] == '_')
5401 name -= 1;
5402 }
5403 if (!advance_wild_match (&name, name0, *patn))
5404 return 1;
5405 }
5406 }
5407
5408 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5409 informational suffix. */
5410
5411 static int
5412 full_match (const char *sym_name, const char *search_name)
5413 {
5414 return !match_name (sym_name, search_name, 0);
5415 }
5416
5417
5418 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5419 vector *defn_symbols, updating the list of symbols in OBSTACKP
5420 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5421 OBJFILE is the section containing BLOCK.
5422 SYMTAB is recorded with each symbol added. */
5423
5424 static void
5425 ada_add_block_symbols (struct obstack *obstackp,
5426 struct block *block, const char *name,
5427 domain_enum domain, struct objfile *objfile,
5428 int wild)
5429 {
5430 struct dict_iterator iter;
5431 int name_len = strlen (name);
5432 /* A matching argument symbol, if any. */
5433 struct symbol *arg_sym;
5434 /* Set true when we find a matching non-argument symbol. */
5435 int found_sym;
5436 struct symbol *sym;
5437
5438 arg_sym = NULL;
5439 found_sym = 0;
5440 if (wild)
5441 {
5442 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5443 wild_match, &iter);
5444 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5445 {
5446 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5447 SYMBOL_DOMAIN (sym), domain)
5448 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5449 {
5450 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5451 continue;
5452 else if (SYMBOL_IS_ARGUMENT (sym))
5453 arg_sym = sym;
5454 else
5455 {
5456 found_sym = 1;
5457 add_defn_to_vec (obstackp,
5458 fixup_symbol_section (sym, objfile),
5459 block);
5460 }
5461 }
5462 }
5463 }
5464 else
5465 {
5466 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5467 full_match, &iter);
5468 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5469 {
5470 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5471 SYMBOL_DOMAIN (sym), domain))
5472 {
5473 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5474 {
5475 if (SYMBOL_IS_ARGUMENT (sym))
5476 arg_sym = sym;
5477 else
5478 {
5479 found_sym = 1;
5480 add_defn_to_vec (obstackp,
5481 fixup_symbol_section (sym, objfile),
5482 block);
5483 }
5484 }
5485 }
5486 }
5487 }
5488
5489 if (!found_sym && arg_sym != NULL)
5490 {
5491 add_defn_to_vec (obstackp,
5492 fixup_symbol_section (arg_sym, objfile),
5493 block);
5494 }
5495
5496 if (!wild)
5497 {
5498 arg_sym = NULL;
5499 found_sym = 0;
5500
5501 ALL_BLOCK_SYMBOLS (block, iter, sym)
5502 {
5503 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5504 SYMBOL_DOMAIN (sym), domain))
5505 {
5506 int cmp;
5507
5508 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5509 if (cmp == 0)
5510 {
5511 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5512 if (cmp == 0)
5513 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5514 name_len);
5515 }
5516
5517 if (cmp == 0
5518 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5519 {
5520 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5521 {
5522 if (SYMBOL_IS_ARGUMENT (sym))
5523 arg_sym = sym;
5524 else
5525 {
5526 found_sym = 1;
5527 add_defn_to_vec (obstackp,
5528 fixup_symbol_section (sym, objfile),
5529 block);
5530 }
5531 }
5532 }
5533 }
5534 }
5535
5536 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5537 They aren't parameters, right? */
5538 if (!found_sym && arg_sym != NULL)
5539 {
5540 add_defn_to_vec (obstackp,
5541 fixup_symbol_section (arg_sym, objfile),
5542 block);
5543 }
5544 }
5545 }
5546 \f
5547
5548 /* Symbol Completion */
5549
5550 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5551 name in a form that's appropriate for the completion. The result
5552 does not need to be deallocated, but is only good until the next call.
5553
5554 TEXT_LEN is equal to the length of TEXT.
5555 Perform a wild match if WILD_MATCH is set.
5556 ENCODED should be set if TEXT represents the start of a symbol name
5557 in its encoded form. */
5558
5559 static const char *
5560 symbol_completion_match (const char *sym_name,
5561 const char *text, int text_len,
5562 int wild_match, int encoded)
5563 {
5564 const int verbatim_match = (text[0] == '<');
5565 int match = 0;
5566
5567 if (verbatim_match)
5568 {
5569 /* Strip the leading angle bracket. */
5570 text = text + 1;
5571 text_len--;
5572 }
5573
5574 /* First, test against the fully qualified name of the symbol. */
5575
5576 if (strncmp (sym_name, text, text_len) == 0)
5577 match = 1;
5578
5579 if (match && !encoded)
5580 {
5581 /* One needed check before declaring a positive match is to verify
5582 that iff we are doing a verbatim match, the decoded version
5583 of the symbol name starts with '<'. Otherwise, this symbol name
5584 is not a suitable completion. */
5585 const char *sym_name_copy = sym_name;
5586 int has_angle_bracket;
5587
5588 sym_name = ada_decode (sym_name);
5589 has_angle_bracket = (sym_name[0] == '<');
5590 match = (has_angle_bracket == verbatim_match);
5591 sym_name = sym_name_copy;
5592 }
5593
5594 if (match && !verbatim_match)
5595 {
5596 /* When doing non-verbatim match, another check that needs to
5597 be done is to verify that the potentially matching symbol name
5598 does not include capital letters, because the ada-mode would
5599 not be able to understand these symbol names without the
5600 angle bracket notation. */
5601 const char *tmp;
5602
5603 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5604 if (*tmp != '\0')
5605 match = 0;
5606 }
5607
5608 /* Second: Try wild matching... */
5609
5610 if (!match && wild_match)
5611 {
5612 /* Since we are doing wild matching, this means that TEXT
5613 may represent an unqualified symbol name. We therefore must
5614 also compare TEXT against the unqualified name of the symbol. */
5615 sym_name = ada_unqualified_name (ada_decode (sym_name));
5616
5617 if (strncmp (sym_name, text, text_len) == 0)
5618 match = 1;
5619 }
5620
5621 /* Finally: If we found a mach, prepare the result to return. */
5622
5623 if (!match)
5624 return NULL;
5625
5626 if (verbatim_match)
5627 sym_name = add_angle_brackets (sym_name);
5628
5629 if (!encoded)
5630 sym_name = ada_decode (sym_name);
5631
5632 return sym_name;
5633 }
5634
5635 /* A companion function to ada_make_symbol_completion_list().
5636 Check if SYM_NAME represents a symbol which name would be suitable
5637 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5638 it is appended at the end of the given string vector SV.
5639
5640 ORIG_TEXT is the string original string from the user command
5641 that needs to be completed. WORD is the entire command on which
5642 completion should be performed. These two parameters are used to
5643 determine which part of the symbol name should be added to the
5644 completion vector.
5645 if WILD_MATCH is set, then wild matching is performed.
5646 ENCODED should be set if TEXT represents a symbol name in its
5647 encoded formed (in which case the completion should also be
5648 encoded). */
5649
5650 static void
5651 symbol_completion_add (VEC(char_ptr) **sv,
5652 const char *sym_name,
5653 const char *text, int text_len,
5654 const char *orig_text, const char *word,
5655 int wild_match, int encoded)
5656 {
5657 const char *match = symbol_completion_match (sym_name, text, text_len,
5658 wild_match, encoded);
5659 char *completion;
5660
5661 if (match == NULL)
5662 return;
5663
5664 /* We found a match, so add the appropriate completion to the given
5665 string vector. */
5666
5667 if (word == orig_text)
5668 {
5669 completion = xmalloc (strlen (match) + 5);
5670 strcpy (completion, match);
5671 }
5672 else if (word > orig_text)
5673 {
5674 /* Return some portion of sym_name. */
5675 completion = xmalloc (strlen (match) + 5);
5676 strcpy (completion, match + (word - orig_text));
5677 }
5678 else
5679 {
5680 /* Return some of ORIG_TEXT plus sym_name. */
5681 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5682 strncpy (completion, word, orig_text - word);
5683 completion[orig_text - word] = '\0';
5684 strcat (completion, match);
5685 }
5686
5687 VEC_safe_push (char_ptr, *sv, completion);
5688 }
5689
5690 /* An object of this type is passed as the user_data argument to the
5691 expand_partial_symbol_names method. */
5692 struct add_partial_datum
5693 {
5694 VEC(char_ptr) **completions;
5695 char *text;
5696 int text_len;
5697 char *text0;
5698 char *word;
5699 int wild_match;
5700 int encoded;
5701 };
5702
5703 /* A callback for expand_partial_symbol_names. */
5704 static int
5705 ada_expand_partial_symbol_name (const char *name, void *user_data)
5706 {
5707 struct add_partial_datum *data = user_data;
5708
5709 return symbol_completion_match (name, data->text, data->text_len,
5710 data->wild_match, data->encoded) != NULL;
5711 }
5712
5713 /* Return a list of possible symbol names completing TEXT0. The list
5714 is NULL terminated. WORD is the entire command on which completion
5715 is made. */
5716
5717 static char **
5718 ada_make_symbol_completion_list (char *text0, char *word)
5719 {
5720 char *text;
5721 int text_len;
5722 int wild_match;
5723 int encoded;
5724 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5725 struct symbol *sym;
5726 struct symtab *s;
5727 struct minimal_symbol *msymbol;
5728 struct objfile *objfile;
5729 struct block *b, *surrounding_static_block = 0;
5730 int i;
5731 struct dict_iterator iter;
5732
5733 if (text0[0] == '<')
5734 {
5735 text = xstrdup (text0);
5736 make_cleanup (xfree, text);
5737 text_len = strlen (text);
5738 wild_match = 0;
5739 encoded = 1;
5740 }
5741 else
5742 {
5743 text = xstrdup (ada_encode (text0));
5744 make_cleanup (xfree, text);
5745 text_len = strlen (text);
5746 for (i = 0; i < text_len; i++)
5747 text[i] = tolower (text[i]);
5748
5749 encoded = (strstr (text0, "__") != NULL);
5750 /* If the name contains a ".", then the user is entering a fully
5751 qualified entity name, and the match must not be done in wild
5752 mode. Similarly, if the user wants to complete what looks like
5753 an encoded name, the match must not be done in wild mode. */
5754 wild_match = (strchr (text0, '.') == NULL && !encoded);
5755 }
5756
5757 /* First, look at the partial symtab symbols. */
5758 {
5759 struct add_partial_datum data;
5760
5761 data.completions = &completions;
5762 data.text = text;
5763 data.text_len = text_len;
5764 data.text0 = text0;
5765 data.word = word;
5766 data.wild_match = wild_match;
5767 data.encoded = encoded;
5768 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5769 }
5770
5771 /* At this point scan through the misc symbol vectors and add each
5772 symbol you find to the list. Eventually we want to ignore
5773 anything that isn't a text symbol (everything else will be
5774 handled by the psymtab code above). */
5775
5776 ALL_MSYMBOLS (objfile, msymbol)
5777 {
5778 QUIT;
5779 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5780 text, text_len, text0, word, wild_match, encoded);
5781 }
5782
5783 /* Search upwards from currently selected frame (so that we can
5784 complete on local vars. */
5785
5786 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5787 {
5788 if (!BLOCK_SUPERBLOCK (b))
5789 surrounding_static_block = b; /* For elmin of dups */
5790
5791 ALL_BLOCK_SYMBOLS (b, iter, sym)
5792 {
5793 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5794 text, text_len, text0, word,
5795 wild_match, encoded);
5796 }
5797 }
5798
5799 /* Go through the symtabs and check the externs and statics for
5800 symbols which match. */
5801
5802 ALL_SYMTABS (objfile, s)
5803 {
5804 QUIT;
5805 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5806 ALL_BLOCK_SYMBOLS (b, iter, sym)
5807 {
5808 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5809 text, text_len, text0, word,
5810 wild_match, encoded);
5811 }
5812 }
5813
5814 ALL_SYMTABS (objfile, s)
5815 {
5816 QUIT;
5817 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5818 /* Don't do this block twice. */
5819 if (b == surrounding_static_block)
5820 continue;
5821 ALL_BLOCK_SYMBOLS (b, iter, sym)
5822 {
5823 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5824 text, text_len, text0, word,
5825 wild_match, encoded);
5826 }
5827 }
5828
5829 /* Append the closing NULL entry. */
5830 VEC_safe_push (char_ptr, completions, NULL);
5831
5832 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5833 return the copy. It's unfortunate that we have to make a copy
5834 of an array that we're about to destroy, but there is nothing much
5835 we can do about it. Fortunately, it's typically not a very large
5836 array. */
5837 {
5838 const size_t completions_size =
5839 VEC_length (char_ptr, completions) * sizeof (char *);
5840 char **result = xmalloc (completions_size);
5841
5842 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5843
5844 VEC_free (char_ptr, completions);
5845 return result;
5846 }
5847 }
5848
5849 /* Field Access */
5850
5851 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5852 for tagged types. */
5853
5854 static int
5855 ada_is_dispatch_table_ptr_type (struct type *type)
5856 {
5857 const char *name;
5858
5859 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5860 return 0;
5861
5862 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5863 if (name == NULL)
5864 return 0;
5865
5866 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5867 }
5868
5869 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5870 to be invisible to users. */
5871
5872 int
5873 ada_is_ignored_field (struct type *type, int field_num)
5874 {
5875 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5876 return 1;
5877
5878 /* Check the name of that field. */
5879 {
5880 const char *name = TYPE_FIELD_NAME (type, field_num);
5881
5882 /* Anonymous field names should not be printed.
5883 brobecker/2007-02-20: I don't think this can actually happen
5884 but we don't want to print the value of annonymous fields anyway. */
5885 if (name == NULL)
5886 return 1;
5887
5888 /* A field named "_parent" is internally generated by GNAT for
5889 tagged types, and should not be printed either. */
5890 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5891 return 1;
5892 }
5893
5894 /* If this is the dispatch table of a tagged type, then ignore. */
5895 if (ada_is_tagged_type (type, 1)
5896 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5897 return 1;
5898
5899 /* Not a special field, so it should not be ignored. */
5900 return 0;
5901 }
5902
5903 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5904 pointer or reference type whose ultimate target has a tag field. */
5905
5906 int
5907 ada_is_tagged_type (struct type *type, int refok)
5908 {
5909 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5910 }
5911
5912 /* True iff TYPE represents the type of X'Tag */
5913
5914 int
5915 ada_is_tag_type (struct type *type)
5916 {
5917 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5918 return 0;
5919 else
5920 {
5921 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5922
5923 return (name != NULL
5924 && strcmp (name, "ada__tags__dispatch_table") == 0);
5925 }
5926 }
5927
5928 /* The type of the tag on VAL. */
5929
5930 struct type *
5931 ada_tag_type (struct value *val)
5932 {
5933 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5934 }
5935
5936 /* The value of the tag on VAL. */
5937
5938 struct value *
5939 ada_value_tag (struct value *val)
5940 {
5941 return ada_value_struct_elt (val, "_tag", 0);
5942 }
5943
5944 /* The value of the tag on the object of type TYPE whose contents are
5945 saved at VALADDR, if it is non-null, or is at memory address
5946 ADDRESS. */
5947
5948 static struct value *
5949 value_tag_from_contents_and_address (struct type *type,
5950 const gdb_byte *valaddr,
5951 CORE_ADDR address)
5952 {
5953 int tag_byte_offset;
5954 struct type *tag_type;
5955
5956 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5957 NULL, NULL, NULL))
5958 {
5959 const gdb_byte *valaddr1 = ((valaddr == NULL)
5960 ? NULL
5961 : valaddr + tag_byte_offset);
5962 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5963
5964 return value_from_contents_and_address (tag_type, valaddr1, address1);
5965 }
5966 return NULL;
5967 }
5968
5969 static struct type *
5970 type_from_tag (struct value *tag)
5971 {
5972 const char *type_name = ada_tag_name (tag);
5973
5974 if (type_name != NULL)
5975 return ada_find_any_type (ada_encode (type_name));
5976 return NULL;
5977 }
5978
5979 struct tag_args
5980 {
5981 struct value *tag;
5982 char *name;
5983 };
5984
5985
5986 static int ada_tag_name_1 (void *);
5987 static int ada_tag_name_2 (struct tag_args *);
5988
5989 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5990 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5991 The value stored in ARGS->name is valid until the next call to
5992 ada_tag_name_1. */
5993
5994 static int
5995 ada_tag_name_1 (void *args0)
5996 {
5997 struct tag_args *args = (struct tag_args *) args0;
5998 static char name[1024];
5999 char *p;
6000 struct value *val;
6001
6002 args->name = NULL;
6003 val = ada_value_struct_elt (args->tag, "tsd", 1);
6004 if (val == NULL)
6005 return ada_tag_name_2 (args);
6006 val = ada_value_struct_elt (val, "expanded_name", 1);
6007 if (val == NULL)
6008 return 0;
6009 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6010 for (p = name; *p != '\0'; p += 1)
6011 if (isalpha (*p))
6012 *p = tolower (*p);
6013 args->name = name;
6014 return 0;
6015 }
6016
6017 /* Return the "ada__tags__type_specific_data" type. */
6018
6019 static struct type *
6020 ada_get_tsd_type (struct inferior *inf)
6021 {
6022 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6023
6024 if (data->tsd_type == 0)
6025 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6026 return data->tsd_type;
6027 }
6028
6029 /* Utility function for ada_tag_name_1 that tries the second
6030 representation for the dispatch table (in which there is no
6031 explicit 'tsd' field in the referent of the tag pointer, and instead
6032 the tsd pointer is stored just before the dispatch table. */
6033
6034 static int
6035 ada_tag_name_2 (struct tag_args *args)
6036 {
6037 struct type *info_type;
6038 static char name[1024];
6039 char *p;
6040 struct value *val, *valp;
6041
6042 args->name = NULL;
6043 info_type = ada_get_tsd_type (current_inferior());
6044 if (info_type == NULL)
6045 return 0;
6046 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
6047 valp = value_cast (info_type, args->tag);
6048 if (valp == NULL)
6049 return 0;
6050 val = value_ind (value_ptradd (valp, -1));
6051 if (val == NULL)
6052 return 0;
6053 val = ada_value_struct_elt (val, "expanded_name", 1);
6054 if (val == NULL)
6055 return 0;
6056 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6057 for (p = name; *p != '\0'; p += 1)
6058 if (isalpha (*p))
6059 *p = tolower (*p);
6060 args->name = name;
6061 return 0;
6062 }
6063
6064 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6065 a C string. */
6066
6067 const char *
6068 ada_tag_name (struct value *tag)
6069 {
6070 struct tag_args args;
6071
6072 if (!ada_is_tag_type (value_type (tag)))
6073 return NULL;
6074 args.tag = tag;
6075 args.name = NULL;
6076 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
6077 return args.name;
6078 }
6079
6080 /* The parent type of TYPE, or NULL if none. */
6081
6082 struct type *
6083 ada_parent_type (struct type *type)
6084 {
6085 int i;
6086
6087 type = ada_check_typedef (type);
6088
6089 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6090 return NULL;
6091
6092 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6093 if (ada_is_parent_field (type, i))
6094 {
6095 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6096
6097 /* If the _parent field is a pointer, then dereference it. */
6098 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6099 parent_type = TYPE_TARGET_TYPE (parent_type);
6100 /* If there is a parallel XVS type, get the actual base type. */
6101 parent_type = ada_get_base_type (parent_type);
6102
6103 return ada_check_typedef (parent_type);
6104 }
6105
6106 return NULL;
6107 }
6108
6109 /* True iff field number FIELD_NUM of structure type TYPE contains the
6110 parent-type (inherited) fields of a derived type. Assumes TYPE is
6111 a structure type with at least FIELD_NUM+1 fields. */
6112
6113 int
6114 ada_is_parent_field (struct type *type, int field_num)
6115 {
6116 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6117
6118 return (name != NULL
6119 && (strncmp (name, "PARENT", 6) == 0
6120 || strncmp (name, "_parent", 7) == 0));
6121 }
6122
6123 /* True iff field number FIELD_NUM of structure type TYPE is a
6124 transparent wrapper field (which should be silently traversed when doing
6125 field selection and flattened when printing). Assumes TYPE is a
6126 structure type with at least FIELD_NUM+1 fields. Such fields are always
6127 structures. */
6128
6129 int
6130 ada_is_wrapper_field (struct type *type, int field_num)
6131 {
6132 const char *name = TYPE_FIELD_NAME (type, field_num);
6133
6134 return (name != NULL
6135 && (strncmp (name, "PARENT", 6) == 0
6136 || strcmp (name, "REP") == 0
6137 || strncmp (name, "_parent", 7) == 0
6138 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6139 }
6140
6141 /* True iff field number FIELD_NUM of structure or union type TYPE
6142 is a variant wrapper. Assumes TYPE is a structure type with at least
6143 FIELD_NUM+1 fields. */
6144
6145 int
6146 ada_is_variant_part (struct type *type, int field_num)
6147 {
6148 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6149
6150 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6151 || (is_dynamic_field (type, field_num)
6152 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6153 == TYPE_CODE_UNION)));
6154 }
6155
6156 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6157 whose discriminants are contained in the record type OUTER_TYPE,
6158 returns the type of the controlling discriminant for the variant.
6159 May return NULL if the type could not be found. */
6160
6161 struct type *
6162 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6163 {
6164 char *name = ada_variant_discrim_name (var_type);
6165
6166 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6167 }
6168
6169 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6170 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6171 represents a 'when others' clause; otherwise 0. */
6172
6173 int
6174 ada_is_others_clause (struct type *type, int field_num)
6175 {
6176 const char *name = TYPE_FIELD_NAME (type, field_num);
6177
6178 return (name != NULL && name[0] == 'O');
6179 }
6180
6181 /* Assuming that TYPE0 is the type of the variant part of a record,
6182 returns the name of the discriminant controlling the variant.
6183 The value is valid until the next call to ada_variant_discrim_name. */
6184
6185 char *
6186 ada_variant_discrim_name (struct type *type0)
6187 {
6188 static char *result = NULL;
6189 static size_t result_len = 0;
6190 struct type *type;
6191 const char *name;
6192 const char *discrim_end;
6193 const char *discrim_start;
6194
6195 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6196 type = TYPE_TARGET_TYPE (type0);
6197 else
6198 type = type0;
6199
6200 name = ada_type_name (type);
6201
6202 if (name == NULL || name[0] == '\000')
6203 return "";
6204
6205 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6206 discrim_end -= 1)
6207 {
6208 if (strncmp (discrim_end, "___XVN", 6) == 0)
6209 break;
6210 }
6211 if (discrim_end == name)
6212 return "";
6213
6214 for (discrim_start = discrim_end; discrim_start != name + 3;
6215 discrim_start -= 1)
6216 {
6217 if (discrim_start == name + 1)
6218 return "";
6219 if ((discrim_start > name + 3
6220 && strncmp (discrim_start - 3, "___", 3) == 0)
6221 || discrim_start[-1] == '.')
6222 break;
6223 }
6224
6225 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6226 strncpy (result, discrim_start, discrim_end - discrim_start);
6227 result[discrim_end - discrim_start] = '\0';
6228 return result;
6229 }
6230
6231 /* Scan STR for a subtype-encoded number, beginning at position K.
6232 Put the position of the character just past the number scanned in
6233 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6234 Return 1 if there was a valid number at the given position, and 0
6235 otherwise. A "subtype-encoded" number consists of the absolute value
6236 in decimal, followed by the letter 'm' to indicate a negative number.
6237 Assumes 0m does not occur. */
6238
6239 int
6240 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6241 {
6242 ULONGEST RU;
6243
6244 if (!isdigit (str[k]))
6245 return 0;
6246
6247 /* Do it the hard way so as not to make any assumption about
6248 the relationship of unsigned long (%lu scan format code) and
6249 LONGEST. */
6250 RU = 0;
6251 while (isdigit (str[k]))
6252 {
6253 RU = RU * 10 + (str[k] - '0');
6254 k += 1;
6255 }
6256
6257 if (str[k] == 'm')
6258 {
6259 if (R != NULL)
6260 *R = (-(LONGEST) (RU - 1)) - 1;
6261 k += 1;
6262 }
6263 else if (R != NULL)
6264 *R = (LONGEST) RU;
6265
6266 /* NOTE on the above: Technically, C does not say what the results of
6267 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6268 number representable as a LONGEST (although either would probably work
6269 in most implementations). When RU>0, the locution in the then branch
6270 above is always equivalent to the negative of RU. */
6271
6272 if (new_k != NULL)
6273 *new_k = k;
6274 return 1;
6275 }
6276
6277 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6278 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6279 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6280
6281 int
6282 ada_in_variant (LONGEST val, struct type *type, int field_num)
6283 {
6284 const char *name = TYPE_FIELD_NAME (type, field_num);
6285 int p;
6286
6287 p = 0;
6288 while (1)
6289 {
6290 switch (name[p])
6291 {
6292 case '\0':
6293 return 0;
6294 case 'S':
6295 {
6296 LONGEST W;
6297
6298 if (!ada_scan_number (name, p + 1, &W, &p))
6299 return 0;
6300 if (val == W)
6301 return 1;
6302 break;
6303 }
6304 case 'R':
6305 {
6306 LONGEST L, U;
6307
6308 if (!ada_scan_number (name, p + 1, &L, &p)
6309 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6310 return 0;
6311 if (val >= L && val <= U)
6312 return 1;
6313 break;
6314 }
6315 case 'O':
6316 return 1;
6317 default:
6318 return 0;
6319 }
6320 }
6321 }
6322
6323 /* FIXME: Lots of redundancy below. Try to consolidate. */
6324
6325 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6326 ARG_TYPE, extract and return the value of one of its (non-static)
6327 fields. FIELDNO says which field. Differs from value_primitive_field
6328 only in that it can handle packed values of arbitrary type. */
6329
6330 static struct value *
6331 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6332 struct type *arg_type)
6333 {
6334 struct type *type;
6335
6336 arg_type = ada_check_typedef (arg_type);
6337 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6338
6339 /* Handle packed fields. */
6340
6341 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6342 {
6343 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6344 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6345
6346 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6347 offset + bit_pos / 8,
6348 bit_pos % 8, bit_size, type);
6349 }
6350 else
6351 return value_primitive_field (arg1, offset, fieldno, arg_type);
6352 }
6353
6354 /* Find field with name NAME in object of type TYPE. If found,
6355 set the following for each argument that is non-null:
6356 - *FIELD_TYPE_P to the field's type;
6357 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6358 an object of that type;
6359 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6360 - *BIT_SIZE_P to its size in bits if the field is packed, and
6361 0 otherwise;
6362 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6363 fields up to but not including the desired field, or by the total
6364 number of fields if not found. A NULL value of NAME never
6365 matches; the function just counts visible fields in this case.
6366
6367 Returns 1 if found, 0 otherwise. */
6368
6369 static int
6370 find_struct_field (const char *name, struct type *type, int offset,
6371 struct type **field_type_p,
6372 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6373 int *index_p)
6374 {
6375 int i;
6376
6377 type = ada_check_typedef (type);
6378
6379 if (field_type_p != NULL)
6380 *field_type_p = NULL;
6381 if (byte_offset_p != NULL)
6382 *byte_offset_p = 0;
6383 if (bit_offset_p != NULL)
6384 *bit_offset_p = 0;
6385 if (bit_size_p != NULL)
6386 *bit_size_p = 0;
6387
6388 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6389 {
6390 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6391 int fld_offset = offset + bit_pos / 8;
6392 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6393
6394 if (t_field_name == NULL)
6395 continue;
6396
6397 else if (name != NULL && field_name_match (t_field_name, name))
6398 {
6399 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6400
6401 if (field_type_p != NULL)
6402 *field_type_p = TYPE_FIELD_TYPE (type, i);
6403 if (byte_offset_p != NULL)
6404 *byte_offset_p = fld_offset;
6405 if (bit_offset_p != NULL)
6406 *bit_offset_p = bit_pos % 8;
6407 if (bit_size_p != NULL)
6408 *bit_size_p = bit_size;
6409 return 1;
6410 }
6411 else if (ada_is_wrapper_field (type, i))
6412 {
6413 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6414 field_type_p, byte_offset_p, bit_offset_p,
6415 bit_size_p, index_p))
6416 return 1;
6417 }
6418 else if (ada_is_variant_part (type, i))
6419 {
6420 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6421 fixed type?? */
6422 int j;
6423 struct type *field_type
6424 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6425
6426 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6427 {
6428 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6429 fld_offset
6430 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6431 field_type_p, byte_offset_p,
6432 bit_offset_p, bit_size_p, index_p))
6433 return 1;
6434 }
6435 }
6436 else if (index_p != NULL)
6437 *index_p += 1;
6438 }
6439 return 0;
6440 }
6441
6442 /* Number of user-visible fields in record type TYPE. */
6443
6444 static int
6445 num_visible_fields (struct type *type)
6446 {
6447 int n;
6448
6449 n = 0;
6450 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6451 return n;
6452 }
6453
6454 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6455 and search in it assuming it has (class) type TYPE.
6456 If found, return value, else return NULL.
6457
6458 Searches recursively through wrapper fields (e.g., '_parent'). */
6459
6460 static struct value *
6461 ada_search_struct_field (char *name, struct value *arg, int offset,
6462 struct type *type)
6463 {
6464 int i;
6465
6466 type = ada_check_typedef (type);
6467 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6468 {
6469 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6470
6471 if (t_field_name == NULL)
6472 continue;
6473
6474 else if (field_name_match (t_field_name, name))
6475 return ada_value_primitive_field (arg, offset, i, type);
6476
6477 else if (ada_is_wrapper_field (type, i))
6478 {
6479 struct value *v = /* Do not let indent join lines here. */
6480 ada_search_struct_field (name, arg,
6481 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6482 TYPE_FIELD_TYPE (type, i));
6483
6484 if (v != NULL)
6485 return v;
6486 }
6487
6488 else if (ada_is_variant_part (type, i))
6489 {
6490 /* PNH: Do we ever get here? See find_struct_field. */
6491 int j;
6492 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6493 i));
6494 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6495
6496 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6497 {
6498 struct value *v = ada_search_struct_field /* Force line
6499 break. */
6500 (name, arg,
6501 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6502 TYPE_FIELD_TYPE (field_type, j));
6503
6504 if (v != NULL)
6505 return v;
6506 }
6507 }
6508 }
6509 return NULL;
6510 }
6511
6512 static struct value *ada_index_struct_field_1 (int *, struct value *,
6513 int, struct type *);
6514
6515
6516 /* Return field #INDEX in ARG, where the index is that returned by
6517 * find_struct_field through its INDEX_P argument. Adjust the address
6518 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6519 * If found, return value, else return NULL. */
6520
6521 static struct value *
6522 ada_index_struct_field (int index, struct value *arg, int offset,
6523 struct type *type)
6524 {
6525 return ada_index_struct_field_1 (&index, arg, offset, type);
6526 }
6527
6528
6529 /* Auxiliary function for ada_index_struct_field. Like
6530 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6531 * *INDEX_P. */
6532
6533 static struct value *
6534 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6535 struct type *type)
6536 {
6537 int i;
6538 type = ada_check_typedef (type);
6539
6540 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6541 {
6542 if (TYPE_FIELD_NAME (type, i) == NULL)
6543 continue;
6544 else if (ada_is_wrapper_field (type, i))
6545 {
6546 struct value *v = /* Do not let indent join lines here. */
6547 ada_index_struct_field_1 (index_p, arg,
6548 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6549 TYPE_FIELD_TYPE (type, i));
6550
6551 if (v != NULL)
6552 return v;
6553 }
6554
6555 else if (ada_is_variant_part (type, i))
6556 {
6557 /* PNH: Do we ever get here? See ada_search_struct_field,
6558 find_struct_field. */
6559 error (_("Cannot assign this kind of variant record"));
6560 }
6561 else if (*index_p == 0)
6562 return ada_value_primitive_field (arg, offset, i, type);
6563 else
6564 *index_p -= 1;
6565 }
6566 return NULL;
6567 }
6568
6569 /* Given ARG, a value of type (pointer or reference to a)*
6570 structure/union, extract the component named NAME from the ultimate
6571 target structure/union and return it as a value with its
6572 appropriate type.
6573
6574 The routine searches for NAME among all members of the structure itself
6575 and (recursively) among all members of any wrapper members
6576 (e.g., '_parent').
6577
6578 If NO_ERR, then simply return NULL in case of error, rather than
6579 calling error. */
6580
6581 struct value *
6582 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6583 {
6584 struct type *t, *t1;
6585 struct value *v;
6586
6587 v = NULL;
6588 t1 = t = ada_check_typedef (value_type (arg));
6589 if (TYPE_CODE (t) == TYPE_CODE_REF)
6590 {
6591 t1 = TYPE_TARGET_TYPE (t);
6592 if (t1 == NULL)
6593 goto BadValue;
6594 t1 = ada_check_typedef (t1);
6595 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6596 {
6597 arg = coerce_ref (arg);
6598 t = t1;
6599 }
6600 }
6601
6602 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6603 {
6604 t1 = TYPE_TARGET_TYPE (t);
6605 if (t1 == NULL)
6606 goto BadValue;
6607 t1 = ada_check_typedef (t1);
6608 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6609 {
6610 arg = value_ind (arg);
6611 t = t1;
6612 }
6613 else
6614 break;
6615 }
6616
6617 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6618 goto BadValue;
6619
6620 if (t1 == t)
6621 v = ada_search_struct_field (name, arg, 0, t);
6622 else
6623 {
6624 int bit_offset, bit_size, byte_offset;
6625 struct type *field_type;
6626 CORE_ADDR address;
6627
6628 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6629 address = value_as_address (arg);
6630 else
6631 address = unpack_pointer (t, value_contents (arg));
6632
6633 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6634 if (find_struct_field (name, t1, 0,
6635 &field_type, &byte_offset, &bit_offset,
6636 &bit_size, NULL))
6637 {
6638 if (bit_size != 0)
6639 {
6640 if (TYPE_CODE (t) == TYPE_CODE_REF)
6641 arg = ada_coerce_ref (arg);
6642 else
6643 arg = ada_value_ind (arg);
6644 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6645 bit_offset, bit_size,
6646 field_type);
6647 }
6648 else
6649 v = value_at_lazy (field_type, address + byte_offset);
6650 }
6651 }
6652
6653 if (v != NULL || no_err)
6654 return v;
6655 else
6656 error (_("There is no member named %s."), name);
6657
6658 BadValue:
6659 if (no_err)
6660 return NULL;
6661 else
6662 error (_("Attempt to extract a component of "
6663 "a value that is not a record."));
6664 }
6665
6666 /* Given a type TYPE, look up the type of the component of type named NAME.
6667 If DISPP is non-null, add its byte displacement from the beginning of a
6668 structure (pointed to by a value) of type TYPE to *DISPP (does not
6669 work for packed fields).
6670
6671 Matches any field whose name has NAME as a prefix, possibly
6672 followed by "___".
6673
6674 TYPE can be either a struct or union. If REFOK, TYPE may also
6675 be a (pointer or reference)+ to a struct or union, and the
6676 ultimate target type will be searched.
6677
6678 Looks recursively into variant clauses and parent types.
6679
6680 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6681 TYPE is not a type of the right kind. */
6682
6683 static struct type *
6684 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6685 int noerr, int *dispp)
6686 {
6687 int i;
6688
6689 if (name == NULL)
6690 goto BadName;
6691
6692 if (refok && type != NULL)
6693 while (1)
6694 {
6695 type = ada_check_typedef (type);
6696 if (TYPE_CODE (type) != TYPE_CODE_PTR
6697 && TYPE_CODE (type) != TYPE_CODE_REF)
6698 break;
6699 type = TYPE_TARGET_TYPE (type);
6700 }
6701
6702 if (type == NULL
6703 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6704 && TYPE_CODE (type) != TYPE_CODE_UNION))
6705 {
6706 if (noerr)
6707 return NULL;
6708 else
6709 {
6710 target_terminal_ours ();
6711 gdb_flush (gdb_stdout);
6712 if (type == NULL)
6713 error (_("Type (null) is not a structure or union type"));
6714 else
6715 {
6716 /* XXX: type_sprint */
6717 fprintf_unfiltered (gdb_stderr, _("Type "));
6718 type_print (type, "", gdb_stderr, -1);
6719 error (_(" is not a structure or union type"));
6720 }
6721 }
6722 }
6723
6724 type = to_static_fixed_type (type);
6725
6726 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6727 {
6728 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6729 struct type *t;
6730 int disp;
6731
6732 if (t_field_name == NULL)
6733 continue;
6734
6735 else if (field_name_match (t_field_name, name))
6736 {
6737 if (dispp != NULL)
6738 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6739 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6740 }
6741
6742 else if (ada_is_wrapper_field (type, i))
6743 {
6744 disp = 0;
6745 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6746 0, 1, &disp);
6747 if (t != NULL)
6748 {
6749 if (dispp != NULL)
6750 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6751 return t;
6752 }
6753 }
6754
6755 else if (ada_is_variant_part (type, i))
6756 {
6757 int j;
6758 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6759 i));
6760
6761 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6762 {
6763 /* FIXME pnh 2008/01/26: We check for a field that is
6764 NOT wrapped in a struct, since the compiler sometimes
6765 generates these for unchecked variant types. Revisit
6766 if the compiler changes this practice. */
6767 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6768 disp = 0;
6769 if (v_field_name != NULL
6770 && field_name_match (v_field_name, name))
6771 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6772 else
6773 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6774 j),
6775 name, 0, 1, &disp);
6776
6777 if (t != NULL)
6778 {
6779 if (dispp != NULL)
6780 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6781 return t;
6782 }
6783 }
6784 }
6785
6786 }
6787
6788 BadName:
6789 if (!noerr)
6790 {
6791 target_terminal_ours ();
6792 gdb_flush (gdb_stdout);
6793 if (name == NULL)
6794 {
6795 /* XXX: type_sprint */
6796 fprintf_unfiltered (gdb_stderr, _("Type "));
6797 type_print (type, "", gdb_stderr, -1);
6798 error (_(" has no component named <null>"));
6799 }
6800 else
6801 {
6802 /* XXX: type_sprint */
6803 fprintf_unfiltered (gdb_stderr, _("Type "));
6804 type_print (type, "", gdb_stderr, -1);
6805 error (_(" has no component named %s"), name);
6806 }
6807 }
6808
6809 return NULL;
6810 }
6811
6812 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6813 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6814 represents an unchecked union (that is, the variant part of a
6815 record that is named in an Unchecked_Union pragma). */
6816
6817 static int
6818 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6819 {
6820 char *discrim_name = ada_variant_discrim_name (var_type);
6821
6822 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6823 == NULL);
6824 }
6825
6826
6827 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6828 within a value of type OUTER_TYPE that is stored in GDB at
6829 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6830 numbering from 0) is applicable. Returns -1 if none are. */
6831
6832 int
6833 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6834 const gdb_byte *outer_valaddr)
6835 {
6836 int others_clause;
6837 int i;
6838 char *discrim_name = ada_variant_discrim_name (var_type);
6839 struct value *outer;
6840 struct value *discrim;
6841 LONGEST discrim_val;
6842
6843 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6844 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6845 if (discrim == NULL)
6846 return -1;
6847 discrim_val = value_as_long (discrim);
6848
6849 others_clause = -1;
6850 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6851 {
6852 if (ada_is_others_clause (var_type, i))
6853 others_clause = i;
6854 else if (ada_in_variant (discrim_val, var_type, i))
6855 return i;
6856 }
6857
6858 return others_clause;
6859 }
6860 \f
6861
6862
6863 /* Dynamic-Sized Records */
6864
6865 /* Strategy: The type ostensibly attached to a value with dynamic size
6866 (i.e., a size that is not statically recorded in the debugging
6867 data) does not accurately reflect the size or layout of the value.
6868 Our strategy is to convert these values to values with accurate,
6869 conventional types that are constructed on the fly. */
6870
6871 /* There is a subtle and tricky problem here. In general, we cannot
6872 determine the size of dynamic records without its data. However,
6873 the 'struct value' data structure, which GDB uses to represent
6874 quantities in the inferior process (the target), requires the size
6875 of the type at the time of its allocation in order to reserve space
6876 for GDB's internal copy of the data. That's why the
6877 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6878 rather than struct value*s.
6879
6880 However, GDB's internal history variables ($1, $2, etc.) are
6881 struct value*s containing internal copies of the data that are not, in
6882 general, the same as the data at their corresponding addresses in
6883 the target. Fortunately, the types we give to these values are all
6884 conventional, fixed-size types (as per the strategy described
6885 above), so that we don't usually have to perform the
6886 'to_fixed_xxx_type' conversions to look at their values.
6887 Unfortunately, there is one exception: if one of the internal
6888 history variables is an array whose elements are unconstrained
6889 records, then we will need to create distinct fixed types for each
6890 element selected. */
6891
6892 /* The upshot of all of this is that many routines take a (type, host
6893 address, target address) triple as arguments to represent a value.
6894 The host address, if non-null, is supposed to contain an internal
6895 copy of the relevant data; otherwise, the program is to consult the
6896 target at the target address. */
6897
6898 /* Assuming that VAL0 represents a pointer value, the result of
6899 dereferencing it. Differs from value_ind in its treatment of
6900 dynamic-sized types. */
6901
6902 struct value *
6903 ada_value_ind (struct value *val0)
6904 {
6905 struct value *val = unwrap_value (value_ind (val0));
6906
6907 return ada_to_fixed_value (val);
6908 }
6909
6910 /* The value resulting from dereferencing any "reference to"
6911 qualifiers on VAL0. */
6912
6913 static struct value *
6914 ada_coerce_ref (struct value *val0)
6915 {
6916 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6917 {
6918 struct value *val = val0;
6919
6920 val = coerce_ref (val);
6921 val = unwrap_value (val);
6922 return ada_to_fixed_value (val);
6923 }
6924 else
6925 return val0;
6926 }
6927
6928 /* Return OFF rounded upward if necessary to a multiple of
6929 ALIGNMENT (a power of 2). */
6930
6931 static unsigned int
6932 align_value (unsigned int off, unsigned int alignment)
6933 {
6934 return (off + alignment - 1) & ~(alignment - 1);
6935 }
6936
6937 /* Return the bit alignment required for field #F of template type TYPE. */
6938
6939 static unsigned int
6940 field_alignment (struct type *type, int f)
6941 {
6942 const char *name = TYPE_FIELD_NAME (type, f);
6943 int len;
6944 int align_offset;
6945
6946 /* The field name should never be null, unless the debugging information
6947 is somehow malformed. In this case, we assume the field does not
6948 require any alignment. */
6949 if (name == NULL)
6950 return 1;
6951
6952 len = strlen (name);
6953
6954 if (!isdigit (name[len - 1]))
6955 return 1;
6956
6957 if (isdigit (name[len - 2]))
6958 align_offset = len - 2;
6959 else
6960 align_offset = len - 1;
6961
6962 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6963 return TARGET_CHAR_BIT;
6964
6965 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6966 }
6967
6968 /* Find a symbol named NAME. Ignores ambiguity. */
6969
6970 struct symbol *
6971 ada_find_any_symbol (const char *name)
6972 {
6973 struct symbol *sym;
6974
6975 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6976 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6977 return sym;
6978
6979 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6980 return sym;
6981 }
6982
6983 /* Find a type named NAME. Ignores ambiguity. This routine will look
6984 solely for types defined by debug info, it will not search the GDB
6985 primitive types. */
6986
6987 struct type *
6988 ada_find_any_type (const char *name)
6989 {
6990 struct symbol *sym = ada_find_any_symbol (name);
6991
6992 if (sym != NULL)
6993 return SYMBOL_TYPE (sym);
6994
6995 return NULL;
6996 }
6997
6998 /* Given NAME and an associated BLOCK, search all symbols for
6999 NAME suffixed with "___XR", which is the ``renaming'' symbol
7000 associated to NAME. Return this symbol if found, return
7001 NULL otherwise. */
7002
7003 struct symbol *
7004 ada_find_renaming_symbol (const char *name, struct block *block)
7005 {
7006 struct symbol *sym;
7007
7008 sym = find_old_style_renaming_symbol (name, block);
7009
7010 if (sym != NULL)
7011 return sym;
7012
7013 /* Not right yet. FIXME pnh 7/20/2007. */
7014 sym = ada_find_any_symbol (name);
7015 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7016 return sym;
7017 else
7018 return NULL;
7019 }
7020
7021 static struct symbol *
7022 find_old_style_renaming_symbol (const char *name, struct block *block)
7023 {
7024 const struct symbol *function_sym = block_linkage_function (block);
7025 char *rename;
7026
7027 if (function_sym != NULL)
7028 {
7029 /* If the symbol is defined inside a function, NAME is not fully
7030 qualified. This means we need to prepend the function name
7031 as well as adding the ``___XR'' suffix to build the name of
7032 the associated renaming symbol. */
7033 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7034 /* Function names sometimes contain suffixes used
7035 for instance to qualify nested subprograms. When building
7036 the XR type name, we need to make sure that this suffix is
7037 not included. So do not include any suffix in the function
7038 name length below. */
7039 int function_name_len = ada_name_prefix_len (function_name);
7040 const int rename_len = function_name_len + 2 /* "__" */
7041 + strlen (name) + 6 /* "___XR\0" */ ;
7042
7043 /* Strip the suffix if necessary. */
7044 ada_remove_trailing_digits (function_name, &function_name_len);
7045 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7046 ada_remove_Xbn_suffix (function_name, &function_name_len);
7047
7048 /* Library-level functions are a special case, as GNAT adds
7049 a ``_ada_'' prefix to the function name to avoid namespace
7050 pollution. However, the renaming symbols themselves do not
7051 have this prefix, so we need to skip this prefix if present. */
7052 if (function_name_len > 5 /* "_ada_" */
7053 && strstr (function_name, "_ada_") == function_name)
7054 {
7055 function_name += 5;
7056 function_name_len -= 5;
7057 }
7058
7059 rename = (char *) alloca (rename_len * sizeof (char));
7060 strncpy (rename, function_name, function_name_len);
7061 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7062 "__%s___XR", name);
7063 }
7064 else
7065 {
7066 const int rename_len = strlen (name) + 6;
7067
7068 rename = (char *) alloca (rename_len * sizeof (char));
7069 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7070 }
7071
7072 return ada_find_any_symbol (rename);
7073 }
7074
7075 /* Because of GNAT encoding conventions, several GDB symbols may match a
7076 given type name. If the type denoted by TYPE0 is to be preferred to
7077 that of TYPE1 for purposes of type printing, return non-zero;
7078 otherwise return 0. */
7079
7080 int
7081 ada_prefer_type (struct type *type0, struct type *type1)
7082 {
7083 if (type1 == NULL)
7084 return 1;
7085 else if (type0 == NULL)
7086 return 0;
7087 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7088 return 1;
7089 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7090 return 0;
7091 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7092 return 1;
7093 else if (ada_is_constrained_packed_array_type (type0))
7094 return 1;
7095 else if (ada_is_array_descriptor_type (type0)
7096 && !ada_is_array_descriptor_type (type1))
7097 return 1;
7098 else
7099 {
7100 const char *type0_name = type_name_no_tag (type0);
7101 const char *type1_name = type_name_no_tag (type1);
7102
7103 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7104 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7105 return 1;
7106 }
7107 return 0;
7108 }
7109
7110 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7111 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7112
7113 const char *
7114 ada_type_name (struct type *type)
7115 {
7116 if (type == NULL)
7117 return NULL;
7118 else if (TYPE_NAME (type) != NULL)
7119 return TYPE_NAME (type);
7120 else
7121 return TYPE_TAG_NAME (type);
7122 }
7123
7124 /* Search the list of "descriptive" types associated to TYPE for a type
7125 whose name is NAME. */
7126
7127 static struct type *
7128 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7129 {
7130 struct type *result;
7131
7132 /* If there no descriptive-type info, then there is no parallel type
7133 to be found. */
7134 if (!HAVE_GNAT_AUX_INFO (type))
7135 return NULL;
7136
7137 result = TYPE_DESCRIPTIVE_TYPE (type);
7138 while (result != NULL)
7139 {
7140 const char *result_name = ada_type_name (result);
7141
7142 if (result_name == NULL)
7143 {
7144 warning (_("unexpected null name on descriptive type"));
7145 return NULL;
7146 }
7147
7148 /* If the names match, stop. */
7149 if (strcmp (result_name, name) == 0)
7150 break;
7151
7152 /* Otherwise, look at the next item on the list, if any. */
7153 if (HAVE_GNAT_AUX_INFO (result))
7154 result = TYPE_DESCRIPTIVE_TYPE (result);
7155 else
7156 result = NULL;
7157 }
7158
7159 /* If we didn't find a match, see whether this is a packed array. With
7160 older compilers, the descriptive type information is either absent or
7161 irrelevant when it comes to packed arrays so the above lookup fails.
7162 Fall back to using a parallel lookup by name in this case. */
7163 if (result == NULL && ada_is_constrained_packed_array_type (type))
7164 return ada_find_any_type (name);
7165
7166 return result;
7167 }
7168
7169 /* Find a parallel type to TYPE with the specified NAME, using the
7170 descriptive type taken from the debugging information, if available,
7171 and otherwise using the (slower) name-based method. */
7172
7173 static struct type *
7174 ada_find_parallel_type_with_name (struct type *type, const char *name)
7175 {
7176 struct type *result = NULL;
7177
7178 if (HAVE_GNAT_AUX_INFO (type))
7179 result = find_parallel_type_by_descriptive_type (type, name);
7180 else
7181 result = ada_find_any_type (name);
7182
7183 return result;
7184 }
7185
7186 /* Same as above, but specify the name of the parallel type by appending
7187 SUFFIX to the name of TYPE. */
7188
7189 struct type *
7190 ada_find_parallel_type (struct type *type, const char *suffix)
7191 {
7192 char *name;
7193 const char *typename = ada_type_name (type);
7194 int len;
7195
7196 if (typename == NULL)
7197 return NULL;
7198
7199 len = strlen (typename);
7200
7201 name = (char *) alloca (len + strlen (suffix) + 1);
7202
7203 strcpy (name, typename);
7204 strcpy (name + len, suffix);
7205
7206 return ada_find_parallel_type_with_name (type, name);
7207 }
7208
7209 /* If TYPE is a variable-size record type, return the corresponding template
7210 type describing its fields. Otherwise, return NULL. */
7211
7212 static struct type *
7213 dynamic_template_type (struct type *type)
7214 {
7215 type = ada_check_typedef (type);
7216
7217 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7218 || ada_type_name (type) == NULL)
7219 return NULL;
7220 else
7221 {
7222 int len = strlen (ada_type_name (type));
7223
7224 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7225 return type;
7226 else
7227 return ada_find_parallel_type (type, "___XVE");
7228 }
7229 }
7230
7231 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7232 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7233
7234 static int
7235 is_dynamic_field (struct type *templ_type, int field_num)
7236 {
7237 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7238
7239 return name != NULL
7240 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7241 && strstr (name, "___XVL") != NULL;
7242 }
7243
7244 /* The index of the variant field of TYPE, or -1 if TYPE does not
7245 represent a variant record type. */
7246
7247 static int
7248 variant_field_index (struct type *type)
7249 {
7250 int f;
7251
7252 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7253 return -1;
7254
7255 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7256 {
7257 if (ada_is_variant_part (type, f))
7258 return f;
7259 }
7260 return -1;
7261 }
7262
7263 /* A record type with no fields. */
7264
7265 static struct type *
7266 empty_record (struct type *template)
7267 {
7268 struct type *type = alloc_type_copy (template);
7269
7270 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7271 TYPE_NFIELDS (type) = 0;
7272 TYPE_FIELDS (type) = NULL;
7273 INIT_CPLUS_SPECIFIC (type);
7274 TYPE_NAME (type) = "<empty>";
7275 TYPE_TAG_NAME (type) = NULL;
7276 TYPE_LENGTH (type) = 0;
7277 return type;
7278 }
7279
7280 /* An ordinary record type (with fixed-length fields) that describes
7281 the value of type TYPE at VALADDR or ADDRESS (see comments at
7282 the beginning of this section) VAL according to GNAT conventions.
7283 DVAL0 should describe the (portion of a) record that contains any
7284 necessary discriminants. It should be NULL if value_type (VAL) is
7285 an outer-level type (i.e., as opposed to a branch of a variant.) A
7286 variant field (unless unchecked) is replaced by a particular branch
7287 of the variant.
7288
7289 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7290 length are not statically known are discarded. As a consequence,
7291 VALADDR, ADDRESS and DVAL0 are ignored.
7292
7293 NOTE: Limitations: For now, we assume that dynamic fields and
7294 variants occupy whole numbers of bytes. However, they need not be
7295 byte-aligned. */
7296
7297 struct type *
7298 ada_template_to_fixed_record_type_1 (struct type *type,
7299 const gdb_byte *valaddr,
7300 CORE_ADDR address, struct value *dval0,
7301 int keep_dynamic_fields)
7302 {
7303 struct value *mark = value_mark ();
7304 struct value *dval;
7305 struct type *rtype;
7306 int nfields, bit_len;
7307 int variant_field;
7308 long off;
7309 int fld_bit_len;
7310 int f;
7311
7312 /* Compute the number of fields in this record type that are going
7313 to be processed: unless keep_dynamic_fields, this includes only
7314 fields whose position and length are static will be processed. */
7315 if (keep_dynamic_fields)
7316 nfields = TYPE_NFIELDS (type);
7317 else
7318 {
7319 nfields = 0;
7320 while (nfields < TYPE_NFIELDS (type)
7321 && !ada_is_variant_part (type, nfields)
7322 && !is_dynamic_field (type, nfields))
7323 nfields++;
7324 }
7325
7326 rtype = alloc_type_copy (type);
7327 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7328 INIT_CPLUS_SPECIFIC (rtype);
7329 TYPE_NFIELDS (rtype) = nfields;
7330 TYPE_FIELDS (rtype) = (struct field *)
7331 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7332 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7333 TYPE_NAME (rtype) = ada_type_name (type);
7334 TYPE_TAG_NAME (rtype) = NULL;
7335 TYPE_FIXED_INSTANCE (rtype) = 1;
7336
7337 off = 0;
7338 bit_len = 0;
7339 variant_field = -1;
7340
7341 for (f = 0; f < nfields; f += 1)
7342 {
7343 off = align_value (off, field_alignment (type, f))
7344 + TYPE_FIELD_BITPOS (type, f);
7345 TYPE_FIELD_BITPOS (rtype, f) = off;
7346 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7347
7348 if (ada_is_variant_part (type, f))
7349 {
7350 variant_field = f;
7351 fld_bit_len = 0;
7352 }
7353 else if (is_dynamic_field (type, f))
7354 {
7355 const gdb_byte *field_valaddr = valaddr;
7356 CORE_ADDR field_address = address;
7357 struct type *field_type =
7358 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7359
7360 if (dval0 == NULL)
7361 {
7362 /* rtype's length is computed based on the run-time
7363 value of discriminants. If the discriminants are not
7364 initialized, the type size may be completely bogus and
7365 GDB may fail to allocate a value for it. So check the
7366 size first before creating the value. */
7367 check_size (rtype);
7368 dval = value_from_contents_and_address (rtype, valaddr, address);
7369 }
7370 else
7371 dval = dval0;
7372
7373 /* If the type referenced by this field is an aligner type, we need
7374 to unwrap that aligner type, because its size might not be set.
7375 Keeping the aligner type would cause us to compute the wrong
7376 size for this field, impacting the offset of the all the fields
7377 that follow this one. */
7378 if (ada_is_aligner_type (field_type))
7379 {
7380 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7381
7382 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7383 field_address = cond_offset_target (field_address, field_offset);
7384 field_type = ada_aligned_type (field_type);
7385 }
7386
7387 field_valaddr = cond_offset_host (field_valaddr,
7388 off / TARGET_CHAR_BIT);
7389 field_address = cond_offset_target (field_address,
7390 off / TARGET_CHAR_BIT);
7391
7392 /* Get the fixed type of the field. Note that, in this case,
7393 we do not want to get the real type out of the tag: if
7394 the current field is the parent part of a tagged record,
7395 we will get the tag of the object. Clearly wrong: the real
7396 type of the parent is not the real type of the child. We
7397 would end up in an infinite loop. */
7398 field_type = ada_get_base_type (field_type);
7399 field_type = ada_to_fixed_type (field_type, field_valaddr,
7400 field_address, dval, 0);
7401 /* If the field size is already larger than the maximum
7402 object size, then the record itself will necessarily
7403 be larger than the maximum object size. We need to make
7404 this check now, because the size might be so ridiculously
7405 large (due to an uninitialized variable in the inferior)
7406 that it would cause an overflow when adding it to the
7407 record size. */
7408 check_size (field_type);
7409
7410 TYPE_FIELD_TYPE (rtype, f) = field_type;
7411 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7412 /* The multiplication can potentially overflow. But because
7413 the field length has been size-checked just above, and
7414 assuming that the maximum size is a reasonable value,
7415 an overflow should not happen in practice. So rather than
7416 adding overflow recovery code to this already complex code,
7417 we just assume that it's not going to happen. */
7418 fld_bit_len =
7419 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7420 }
7421 else
7422 {
7423 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7424
7425 /* If our field is a typedef type (most likely a typedef of
7426 a fat pointer, encoding an array access), then we need to
7427 look at its target type to determine its characteristics.
7428 In particular, we would miscompute the field size if we took
7429 the size of the typedef (zero), instead of the size of
7430 the target type. */
7431 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7432 field_type = ada_typedef_target_type (field_type);
7433
7434 TYPE_FIELD_TYPE (rtype, f) = field_type;
7435 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7436 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7437 fld_bit_len =
7438 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7439 else
7440 fld_bit_len =
7441 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7442 }
7443 if (off + fld_bit_len > bit_len)
7444 bit_len = off + fld_bit_len;
7445 off += fld_bit_len;
7446 TYPE_LENGTH (rtype) =
7447 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7448 }
7449
7450 /* We handle the variant part, if any, at the end because of certain
7451 odd cases in which it is re-ordered so as NOT to be the last field of
7452 the record. This can happen in the presence of representation
7453 clauses. */
7454 if (variant_field >= 0)
7455 {
7456 struct type *branch_type;
7457
7458 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7459
7460 if (dval0 == NULL)
7461 dval = value_from_contents_and_address (rtype, valaddr, address);
7462 else
7463 dval = dval0;
7464
7465 branch_type =
7466 to_fixed_variant_branch_type
7467 (TYPE_FIELD_TYPE (type, variant_field),
7468 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7469 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7470 if (branch_type == NULL)
7471 {
7472 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7473 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7474 TYPE_NFIELDS (rtype) -= 1;
7475 }
7476 else
7477 {
7478 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7479 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7480 fld_bit_len =
7481 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7482 TARGET_CHAR_BIT;
7483 if (off + fld_bit_len > bit_len)
7484 bit_len = off + fld_bit_len;
7485 TYPE_LENGTH (rtype) =
7486 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7487 }
7488 }
7489
7490 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7491 should contain the alignment of that record, which should be a strictly
7492 positive value. If null or negative, then something is wrong, most
7493 probably in the debug info. In that case, we don't round up the size
7494 of the resulting type. If this record is not part of another structure,
7495 the current RTYPE length might be good enough for our purposes. */
7496 if (TYPE_LENGTH (type) <= 0)
7497 {
7498 if (TYPE_NAME (rtype))
7499 warning (_("Invalid type size for `%s' detected: %d."),
7500 TYPE_NAME (rtype), TYPE_LENGTH (type));
7501 else
7502 warning (_("Invalid type size for <unnamed> detected: %d."),
7503 TYPE_LENGTH (type));
7504 }
7505 else
7506 {
7507 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7508 TYPE_LENGTH (type));
7509 }
7510
7511 value_free_to_mark (mark);
7512 if (TYPE_LENGTH (rtype) > varsize_limit)
7513 error (_("record type with dynamic size is larger than varsize-limit"));
7514 return rtype;
7515 }
7516
7517 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7518 of 1. */
7519
7520 static struct type *
7521 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7522 CORE_ADDR address, struct value *dval0)
7523 {
7524 return ada_template_to_fixed_record_type_1 (type, valaddr,
7525 address, dval0, 1);
7526 }
7527
7528 /* An ordinary record type in which ___XVL-convention fields and
7529 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7530 static approximations, containing all possible fields. Uses
7531 no runtime values. Useless for use in values, but that's OK,
7532 since the results are used only for type determinations. Works on both
7533 structs and unions. Representation note: to save space, we memorize
7534 the result of this function in the TYPE_TARGET_TYPE of the
7535 template type. */
7536
7537 static struct type *
7538 template_to_static_fixed_type (struct type *type0)
7539 {
7540 struct type *type;
7541 int nfields;
7542 int f;
7543
7544 if (TYPE_TARGET_TYPE (type0) != NULL)
7545 return TYPE_TARGET_TYPE (type0);
7546
7547 nfields = TYPE_NFIELDS (type0);
7548 type = type0;
7549
7550 for (f = 0; f < nfields; f += 1)
7551 {
7552 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7553 struct type *new_type;
7554
7555 if (is_dynamic_field (type0, f))
7556 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7557 else
7558 new_type = static_unwrap_type (field_type);
7559 if (type == type0 && new_type != field_type)
7560 {
7561 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7562 TYPE_CODE (type) = TYPE_CODE (type0);
7563 INIT_CPLUS_SPECIFIC (type);
7564 TYPE_NFIELDS (type) = nfields;
7565 TYPE_FIELDS (type) = (struct field *)
7566 TYPE_ALLOC (type, nfields * sizeof (struct field));
7567 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7568 sizeof (struct field) * nfields);
7569 TYPE_NAME (type) = ada_type_name (type0);
7570 TYPE_TAG_NAME (type) = NULL;
7571 TYPE_FIXED_INSTANCE (type) = 1;
7572 TYPE_LENGTH (type) = 0;
7573 }
7574 TYPE_FIELD_TYPE (type, f) = new_type;
7575 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7576 }
7577 return type;
7578 }
7579
7580 /* Given an object of type TYPE whose contents are at VALADDR and
7581 whose address in memory is ADDRESS, returns a revision of TYPE,
7582 which should be a non-dynamic-sized record, in which the variant
7583 part, if any, is replaced with the appropriate branch. Looks
7584 for discriminant values in DVAL0, which can be NULL if the record
7585 contains the necessary discriminant values. */
7586
7587 static struct type *
7588 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7589 CORE_ADDR address, struct value *dval0)
7590 {
7591 struct value *mark = value_mark ();
7592 struct value *dval;
7593 struct type *rtype;
7594 struct type *branch_type;
7595 int nfields = TYPE_NFIELDS (type);
7596 int variant_field = variant_field_index (type);
7597
7598 if (variant_field == -1)
7599 return type;
7600
7601 if (dval0 == NULL)
7602 dval = value_from_contents_and_address (type, valaddr, address);
7603 else
7604 dval = dval0;
7605
7606 rtype = alloc_type_copy (type);
7607 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7608 INIT_CPLUS_SPECIFIC (rtype);
7609 TYPE_NFIELDS (rtype) = nfields;
7610 TYPE_FIELDS (rtype) =
7611 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7612 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7613 sizeof (struct field) * nfields);
7614 TYPE_NAME (rtype) = ada_type_name (type);
7615 TYPE_TAG_NAME (rtype) = NULL;
7616 TYPE_FIXED_INSTANCE (rtype) = 1;
7617 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7618
7619 branch_type = to_fixed_variant_branch_type
7620 (TYPE_FIELD_TYPE (type, variant_field),
7621 cond_offset_host (valaddr,
7622 TYPE_FIELD_BITPOS (type, variant_field)
7623 / TARGET_CHAR_BIT),
7624 cond_offset_target (address,
7625 TYPE_FIELD_BITPOS (type, variant_field)
7626 / TARGET_CHAR_BIT), dval);
7627 if (branch_type == NULL)
7628 {
7629 int f;
7630
7631 for (f = variant_field + 1; f < nfields; f += 1)
7632 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7633 TYPE_NFIELDS (rtype) -= 1;
7634 }
7635 else
7636 {
7637 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7638 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7639 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7640 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7641 }
7642 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7643
7644 value_free_to_mark (mark);
7645 return rtype;
7646 }
7647
7648 /* An ordinary record type (with fixed-length fields) that describes
7649 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7650 beginning of this section]. Any necessary discriminants' values
7651 should be in DVAL, a record value; it may be NULL if the object
7652 at ADDR itself contains any necessary discriminant values.
7653 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7654 values from the record are needed. Except in the case that DVAL,
7655 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7656 unchecked) is replaced by a particular branch of the variant.
7657
7658 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7659 is questionable and may be removed. It can arise during the
7660 processing of an unconstrained-array-of-record type where all the
7661 variant branches have exactly the same size. This is because in
7662 such cases, the compiler does not bother to use the XVS convention
7663 when encoding the record. I am currently dubious of this
7664 shortcut and suspect the compiler should be altered. FIXME. */
7665
7666 static struct type *
7667 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7668 CORE_ADDR address, struct value *dval)
7669 {
7670 struct type *templ_type;
7671
7672 if (TYPE_FIXED_INSTANCE (type0))
7673 return type0;
7674
7675 templ_type = dynamic_template_type (type0);
7676
7677 if (templ_type != NULL)
7678 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7679 else if (variant_field_index (type0) >= 0)
7680 {
7681 if (dval == NULL && valaddr == NULL && address == 0)
7682 return type0;
7683 return to_record_with_fixed_variant_part (type0, valaddr, address,
7684 dval);
7685 }
7686 else
7687 {
7688 TYPE_FIXED_INSTANCE (type0) = 1;
7689 return type0;
7690 }
7691
7692 }
7693
7694 /* An ordinary record type (with fixed-length fields) that describes
7695 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7696 union type. Any necessary discriminants' values should be in DVAL,
7697 a record value. That is, this routine selects the appropriate
7698 branch of the union at ADDR according to the discriminant value
7699 indicated in the union's type name. Returns VAR_TYPE0 itself if
7700 it represents a variant subject to a pragma Unchecked_Union. */
7701
7702 static struct type *
7703 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7704 CORE_ADDR address, struct value *dval)
7705 {
7706 int which;
7707 struct type *templ_type;
7708 struct type *var_type;
7709
7710 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7711 var_type = TYPE_TARGET_TYPE (var_type0);
7712 else
7713 var_type = var_type0;
7714
7715 templ_type = ada_find_parallel_type (var_type, "___XVU");
7716
7717 if (templ_type != NULL)
7718 var_type = templ_type;
7719
7720 if (is_unchecked_variant (var_type, value_type (dval)))
7721 return var_type0;
7722 which =
7723 ada_which_variant_applies (var_type,
7724 value_type (dval), value_contents (dval));
7725
7726 if (which < 0)
7727 return empty_record (var_type);
7728 else if (is_dynamic_field (var_type, which))
7729 return to_fixed_record_type
7730 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7731 valaddr, address, dval);
7732 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7733 return
7734 to_fixed_record_type
7735 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7736 else
7737 return TYPE_FIELD_TYPE (var_type, which);
7738 }
7739
7740 /* Assuming that TYPE0 is an array type describing the type of a value
7741 at ADDR, and that DVAL describes a record containing any
7742 discriminants used in TYPE0, returns a type for the value that
7743 contains no dynamic components (that is, no components whose sizes
7744 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7745 true, gives an error message if the resulting type's size is over
7746 varsize_limit. */
7747
7748 static struct type *
7749 to_fixed_array_type (struct type *type0, struct value *dval,
7750 int ignore_too_big)
7751 {
7752 struct type *index_type_desc;
7753 struct type *result;
7754 int constrained_packed_array_p;
7755
7756 type0 = ada_check_typedef (type0);
7757 if (TYPE_FIXED_INSTANCE (type0))
7758 return type0;
7759
7760 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7761 if (constrained_packed_array_p)
7762 type0 = decode_constrained_packed_array_type (type0);
7763
7764 index_type_desc = ada_find_parallel_type (type0, "___XA");
7765 ada_fixup_array_indexes_type (index_type_desc);
7766 if (index_type_desc == NULL)
7767 {
7768 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7769
7770 /* NOTE: elt_type---the fixed version of elt_type0---should never
7771 depend on the contents of the array in properly constructed
7772 debugging data. */
7773 /* Create a fixed version of the array element type.
7774 We're not providing the address of an element here,
7775 and thus the actual object value cannot be inspected to do
7776 the conversion. This should not be a problem, since arrays of
7777 unconstrained objects are not allowed. In particular, all
7778 the elements of an array of a tagged type should all be of
7779 the same type specified in the debugging info. No need to
7780 consult the object tag. */
7781 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7782
7783 /* Make sure we always create a new array type when dealing with
7784 packed array types, since we're going to fix-up the array
7785 type length and element bitsize a little further down. */
7786 if (elt_type0 == elt_type && !constrained_packed_array_p)
7787 result = type0;
7788 else
7789 result = create_array_type (alloc_type_copy (type0),
7790 elt_type, TYPE_INDEX_TYPE (type0));
7791 }
7792 else
7793 {
7794 int i;
7795 struct type *elt_type0;
7796
7797 elt_type0 = type0;
7798 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7799 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7800
7801 /* NOTE: result---the fixed version of elt_type0---should never
7802 depend on the contents of the array in properly constructed
7803 debugging data. */
7804 /* Create a fixed version of the array element type.
7805 We're not providing the address of an element here,
7806 and thus the actual object value cannot be inspected to do
7807 the conversion. This should not be a problem, since arrays of
7808 unconstrained objects are not allowed. In particular, all
7809 the elements of an array of a tagged type should all be of
7810 the same type specified in the debugging info. No need to
7811 consult the object tag. */
7812 result =
7813 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7814
7815 elt_type0 = type0;
7816 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7817 {
7818 struct type *range_type =
7819 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7820
7821 result = create_array_type (alloc_type_copy (elt_type0),
7822 result, range_type);
7823 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7824 }
7825 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7826 error (_("array type with dynamic size is larger than varsize-limit"));
7827 }
7828
7829 /* We want to preserve the type name. This can be useful when
7830 trying to get the type name of a value that has already been
7831 printed (for instance, if the user did "print VAR; whatis $". */
7832 TYPE_NAME (result) = TYPE_NAME (type0);
7833
7834 if (constrained_packed_array_p)
7835 {
7836 /* So far, the resulting type has been created as if the original
7837 type was a regular (non-packed) array type. As a result, the
7838 bitsize of the array elements needs to be set again, and the array
7839 length needs to be recomputed based on that bitsize. */
7840 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7841 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7842
7843 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7844 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7845 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7846 TYPE_LENGTH (result)++;
7847 }
7848
7849 TYPE_FIXED_INSTANCE (result) = 1;
7850 return result;
7851 }
7852
7853
7854 /* A standard type (containing no dynamically sized components)
7855 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7856 DVAL describes a record containing any discriminants used in TYPE0,
7857 and may be NULL if there are none, or if the object of type TYPE at
7858 ADDRESS or in VALADDR contains these discriminants.
7859
7860 If CHECK_TAG is not null, in the case of tagged types, this function
7861 attempts to locate the object's tag and use it to compute the actual
7862 type. However, when ADDRESS is null, we cannot use it to determine the
7863 location of the tag, and therefore compute the tagged type's actual type.
7864 So we return the tagged type without consulting the tag. */
7865
7866 static struct type *
7867 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7868 CORE_ADDR address, struct value *dval, int check_tag)
7869 {
7870 type = ada_check_typedef (type);
7871 switch (TYPE_CODE (type))
7872 {
7873 default:
7874 return type;
7875 case TYPE_CODE_STRUCT:
7876 {
7877 struct type *static_type = to_static_fixed_type (type);
7878 struct type *fixed_record_type =
7879 to_fixed_record_type (type, valaddr, address, NULL);
7880
7881 /* If STATIC_TYPE is a tagged type and we know the object's address,
7882 then we can determine its tag, and compute the object's actual
7883 type from there. Note that we have to use the fixed record
7884 type (the parent part of the record may have dynamic fields
7885 and the way the location of _tag is expressed may depend on
7886 them). */
7887
7888 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7889 {
7890 struct type *real_type =
7891 type_from_tag (value_tag_from_contents_and_address
7892 (fixed_record_type,
7893 valaddr,
7894 address));
7895
7896 if (real_type != NULL)
7897 return to_fixed_record_type (real_type, valaddr, address, NULL);
7898 }
7899
7900 /* Check to see if there is a parallel ___XVZ variable.
7901 If there is, then it provides the actual size of our type. */
7902 else if (ada_type_name (fixed_record_type) != NULL)
7903 {
7904 const char *name = ada_type_name (fixed_record_type);
7905 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7906 int xvz_found = 0;
7907 LONGEST size;
7908
7909 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7910 size = get_int_var_value (xvz_name, &xvz_found);
7911 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7912 {
7913 fixed_record_type = copy_type (fixed_record_type);
7914 TYPE_LENGTH (fixed_record_type) = size;
7915
7916 /* The FIXED_RECORD_TYPE may have be a stub. We have
7917 observed this when the debugging info is STABS, and
7918 apparently it is something that is hard to fix.
7919
7920 In practice, we don't need the actual type definition
7921 at all, because the presence of the XVZ variable allows us
7922 to assume that there must be a XVS type as well, which we
7923 should be able to use later, when we need the actual type
7924 definition.
7925
7926 In the meantime, pretend that the "fixed" type we are
7927 returning is NOT a stub, because this can cause trouble
7928 when using this type to create new types targeting it.
7929 Indeed, the associated creation routines often check
7930 whether the target type is a stub and will try to replace
7931 it, thus using a type with the wrong size. This, in turn,
7932 might cause the new type to have the wrong size too.
7933 Consider the case of an array, for instance, where the size
7934 of the array is computed from the number of elements in
7935 our array multiplied by the size of its element. */
7936 TYPE_STUB (fixed_record_type) = 0;
7937 }
7938 }
7939 return fixed_record_type;
7940 }
7941 case TYPE_CODE_ARRAY:
7942 return to_fixed_array_type (type, dval, 1);
7943 case TYPE_CODE_UNION:
7944 if (dval == NULL)
7945 return type;
7946 else
7947 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7948 }
7949 }
7950
7951 /* The same as ada_to_fixed_type_1, except that it preserves the type
7952 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7953
7954 The typedef layer needs be preserved in order to differentiate between
7955 arrays and array pointers when both types are implemented using the same
7956 fat pointer. In the array pointer case, the pointer is encoded as
7957 a typedef of the pointer type. For instance, considering:
7958
7959 type String_Access is access String;
7960 S1 : String_Access := null;
7961
7962 To the debugger, S1 is defined as a typedef of type String. But
7963 to the user, it is a pointer. So if the user tries to print S1,
7964 we should not dereference the array, but print the array address
7965 instead.
7966
7967 If we didn't preserve the typedef layer, we would lose the fact that
7968 the type is to be presented as a pointer (needs de-reference before
7969 being printed). And we would also use the source-level type name. */
7970
7971 struct type *
7972 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7973 CORE_ADDR address, struct value *dval, int check_tag)
7974
7975 {
7976 struct type *fixed_type =
7977 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7978
7979 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7980 then preserve the typedef layer.
7981
7982 Implementation note: We can only check the main-type portion of
7983 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7984 from TYPE now returns a type that has the same instance flags
7985 as TYPE. For instance, if TYPE is a "typedef const", and its
7986 target type is a "struct", then the typedef elimination will return
7987 a "const" version of the target type. See check_typedef for more
7988 details about how the typedef layer elimination is done.
7989
7990 brobecker/2010-11-19: It seems to me that the only case where it is
7991 useful to preserve the typedef layer is when dealing with fat pointers.
7992 Perhaps, we could add a check for that and preserve the typedef layer
7993 only in that situation. But this seems unecessary so far, probably
7994 because we call check_typedef/ada_check_typedef pretty much everywhere.
7995 */
7996 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7997 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7998 == TYPE_MAIN_TYPE (fixed_type)))
7999 return type;
8000
8001 return fixed_type;
8002 }
8003
8004 /* A standard (static-sized) type corresponding as well as possible to
8005 TYPE0, but based on no runtime data. */
8006
8007 static struct type *
8008 to_static_fixed_type (struct type *type0)
8009 {
8010 struct type *type;
8011
8012 if (type0 == NULL)
8013 return NULL;
8014
8015 if (TYPE_FIXED_INSTANCE (type0))
8016 return type0;
8017
8018 type0 = ada_check_typedef (type0);
8019
8020 switch (TYPE_CODE (type0))
8021 {
8022 default:
8023 return type0;
8024 case TYPE_CODE_STRUCT:
8025 type = dynamic_template_type (type0);
8026 if (type != NULL)
8027 return template_to_static_fixed_type (type);
8028 else
8029 return template_to_static_fixed_type (type0);
8030 case TYPE_CODE_UNION:
8031 type = ada_find_parallel_type (type0, "___XVU");
8032 if (type != NULL)
8033 return template_to_static_fixed_type (type);
8034 else
8035 return template_to_static_fixed_type (type0);
8036 }
8037 }
8038
8039 /* A static approximation of TYPE with all type wrappers removed. */
8040
8041 static struct type *
8042 static_unwrap_type (struct type *type)
8043 {
8044 if (ada_is_aligner_type (type))
8045 {
8046 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8047 if (ada_type_name (type1) == NULL)
8048 TYPE_NAME (type1) = ada_type_name (type);
8049
8050 return static_unwrap_type (type1);
8051 }
8052 else
8053 {
8054 struct type *raw_real_type = ada_get_base_type (type);
8055
8056 if (raw_real_type == type)
8057 return type;
8058 else
8059 return to_static_fixed_type (raw_real_type);
8060 }
8061 }
8062
8063 /* In some cases, incomplete and private types require
8064 cross-references that are not resolved as records (for example,
8065 type Foo;
8066 type FooP is access Foo;
8067 V: FooP;
8068 type Foo is array ...;
8069 ). In these cases, since there is no mechanism for producing
8070 cross-references to such types, we instead substitute for FooP a
8071 stub enumeration type that is nowhere resolved, and whose tag is
8072 the name of the actual type. Call these types "non-record stubs". */
8073
8074 /* A type equivalent to TYPE that is not a non-record stub, if one
8075 exists, otherwise TYPE. */
8076
8077 struct type *
8078 ada_check_typedef (struct type *type)
8079 {
8080 if (type == NULL)
8081 return NULL;
8082
8083 /* If our type is a typedef type of a fat pointer, then we're done.
8084 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8085 what allows us to distinguish between fat pointers that represent
8086 array types, and fat pointers that represent array access types
8087 (in both cases, the compiler implements them as fat pointers). */
8088 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8089 && is_thick_pntr (ada_typedef_target_type (type)))
8090 return type;
8091
8092 CHECK_TYPEDEF (type);
8093 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8094 || !TYPE_STUB (type)
8095 || TYPE_TAG_NAME (type) == NULL)
8096 return type;
8097 else
8098 {
8099 const char *name = TYPE_TAG_NAME (type);
8100 struct type *type1 = ada_find_any_type (name);
8101
8102 if (type1 == NULL)
8103 return type;
8104
8105 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8106 stubs pointing to arrays, as we don't create symbols for array
8107 types, only for the typedef-to-array types). If that's the case,
8108 strip the typedef layer. */
8109 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8110 type1 = ada_check_typedef (type1);
8111
8112 return type1;
8113 }
8114 }
8115
8116 /* A value representing the data at VALADDR/ADDRESS as described by
8117 type TYPE0, but with a standard (static-sized) type that correctly
8118 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8119 type, then return VAL0 [this feature is simply to avoid redundant
8120 creation of struct values]. */
8121
8122 static struct value *
8123 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8124 struct value *val0)
8125 {
8126 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8127
8128 if (type == type0 && val0 != NULL)
8129 return val0;
8130 else
8131 return value_from_contents_and_address (type, 0, address);
8132 }
8133
8134 /* A value representing VAL, but with a standard (static-sized) type
8135 that correctly describes it. Does not necessarily create a new
8136 value. */
8137
8138 struct value *
8139 ada_to_fixed_value (struct value *val)
8140 {
8141 return ada_to_fixed_value_create (value_type (val),
8142 value_address (val),
8143 val);
8144 }
8145 \f
8146
8147 /* Attributes */
8148
8149 /* Table mapping attribute numbers to names.
8150 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8151
8152 static const char *attribute_names[] = {
8153 "<?>",
8154
8155 "first",
8156 "last",
8157 "length",
8158 "image",
8159 "max",
8160 "min",
8161 "modulus",
8162 "pos",
8163 "size",
8164 "tag",
8165 "val",
8166 0
8167 };
8168
8169 const char *
8170 ada_attribute_name (enum exp_opcode n)
8171 {
8172 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8173 return attribute_names[n - OP_ATR_FIRST + 1];
8174 else
8175 return attribute_names[0];
8176 }
8177
8178 /* Evaluate the 'POS attribute applied to ARG. */
8179
8180 static LONGEST
8181 pos_atr (struct value *arg)
8182 {
8183 struct value *val = coerce_ref (arg);
8184 struct type *type = value_type (val);
8185
8186 if (!discrete_type_p (type))
8187 error (_("'POS only defined on discrete types"));
8188
8189 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8190 {
8191 int i;
8192 LONGEST v = value_as_long (val);
8193
8194 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8195 {
8196 if (v == TYPE_FIELD_BITPOS (type, i))
8197 return i;
8198 }
8199 error (_("enumeration value is invalid: can't find 'POS"));
8200 }
8201 else
8202 return value_as_long (val);
8203 }
8204
8205 static struct value *
8206 value_pos_atr (struct type *type, struct value *arg)
8207 {
8208 return value_from_longest (type, pos_atr (arg));
8209 }
8210
8211 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8212
8213 static struct value *
8214 value_val_atr (struct type *type, struct value *arg)
8215 {
8216 if (!discrete_type_p (type))
8217 error (_("'VAL only defined on discrete types"));
8218 if (!integer_type_p (value_type (arg)))
8219 error (_("'VAL requires integral argument"));
8220
8221 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8222 {
8223 long pos = value_as_long (arg);
8224
8225 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8226 error (_("argument to 'VAL out of range"));
8227 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8228 }
8229 else
8230 return value_from_longest (type, value_as_long (arg));
8231 }
8232 \f
8233
8234 /* Evaluation */
8235
8236 /* True if TYPE appears to be an Ada character type.
8237 [At the moment, this is true only for Character and Wide_Character;
8238 It is a heuristic test that could stand improvement]. */
8239
8240 int
8241 ada_is_character_type (struct type *type)
8242 {
8243 const char *name;
8244
8245 /* If the type code says it's a character, then assume it really is,
8246 and don't check any further. */
8247 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8248 return 1;
8249
8250 /* Otherwise, assume it's a character type iff it is a discrete type
8251 with a known character type name. */
8252 name = ada_type_name (type);
8253 return (name != NULL
8254 && (TYPE_CODE (type) == TYPE_CODE_INT
8255 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8256 && (strcmp (name, "character") == 0
8257 || strcmp (name, "wide_character") == 0
8258 || strcmp (name, "wide_wide_character") == 0
8259 || strcmp (name, "unsigned char") == 0));
8260 }
8261
8262 /* True if TYPE appears to be an Ada string type. */
8263
8264 int
8265 ada_is_string_type (struct type *type)
8266 {
8267 type = ada_check_typedef (type);
8268 if (type != NULL
8269 && TYPE_CODE (type) != TYPE_CODE_PTR
8270 && (ada_is_simple_array_type (type)
8271 || ada_is_array_descriptor_type (type))
8272 && ada_array_arity (type) == 1)
8273 {
8274 struct type *elttype = ada_array_element_type (type, 1);
8275
8276 return ada_is_character_type (elttype);
8277 }
8278 else
8279 return 0;
8280 }
8281
8282 /* The compiler sometimes provides a parallel XVS type for a given
8283 PAD type. Normally, it is safe to follow the PAD type directly,
8284 but older versions of the compiler have a bug that causes the offset
8285 of its "F" field to be wrong. Following that field in that case
8286 would lead to incorrect results, but this can be worked around
8287 by ignoring the PAD type and using the associated XVS type instead.
8288
8289 Set to True if the debugger should trust the contents of PAD types.
8290 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8291 static int trust_pad_over_xvs = 1;
8292
8293 /* True if TYPE is a struct type introduced by the compiler to force the
8294 alignment of a value. Such types have a single field with a
8295 distinctive name. */
8296
8297 int
8298 ada_is_aligner_type (struct type *type)
8299 {
8300 type = ada_check_typedef (type);
8301
8302 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8303 return 0;
8304
8305 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8306 && TYPE_NFIELDS (type) == 1
8307 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8308 }
8309
8310 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8311 the parallel type. */
8312
8313 struct type *
8314 ada_get_base_type (struct type *raw_type)
8315 {
8316 struct type *real_type_namer;
8317 struct type *raw_real_type;
8318
8319 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8320 return raw_type;
8321
8322 if (ada_is_aligner_type (raw_type))
8323 /* The encoding specifies that we should always use the aligner type.
8324 So, even if this aligner type has an associated XVS type, we should
8325 simply ignore it.
8326
8327 According to the compiler gurus, an XVS type parallel to an aligner
8328 type may exist because of a stabs limitation. In stabs, aligner
8329 types are empty because the field has a variable-sized type, and
8330 thus cannot actually be used as an aligner type. As a result,
8331 we need the associated parallel XVS type to decode the type.
8332 Since the policy in the compiler is to not change the internal
8333 representation based on the debugging info format, we sometimes
8334 end up having a redundant XVS type parallel to the aligner type. */
8335 return raw_type;
8336
8337 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8338 if (real_type_namer == NULL
8339 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8340 || TYPE_NFIELDS (real_type_namer) != 1)
8341 return raw_type;
8342
8343 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8344 {
8345 /* This is an older encoding form where the base type needs to be
8346 looked up by name. We prefer the newer enconding because it is
8347 more efficient. */
8348 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8349 if (raw_real_type == NULL)
8350 return raw_type;
8351 else
8352 return raw_real_type;
8353 }
8354
8355 /* The field in our XVS type is a reference to the base type. */
8356 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8357 }
8358
8359 /* The type of value designated by TYPE, with all aligners removed. */
8360
8361 struct type *
8362 ada_aligned_type (struct type *type)
8363 {
8364 if (ada_is_aligner_type (type))
8365 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8366 else
8367 return ada_get_base_type (type);
8368 }
8369
8370
8371 /* The address of the aligned value in an object at address VALADDR
8372 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8373
8374 const gdb_byte *
8375 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8376 {
8377 if (ada_is_aligner_type (type))
8378 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8379 valaddr +
8380 TYPE_FIELD_BITPOS (type,
8381 0) / TARGET_CHAR_BIT);
8382 else
8383 return valaddr;
8384 }
8385
8386
8387
8388 /* The printed representation of an enumeration literal with encoded
8389 name NAME. The value is good to the next call of ada_enum_name. */
8390 const char *
8391 ada_enum_name (const char *name)
8392 {
8393 static char *result;
8394 static size_t result_len = 0;
8395 char *tmp;
8396
8397 /* First, unqualify the enumeration name:
8398 1. Search for the last '.' character. If we find one, then skip
8399 all the preceding characters, the unqualified name starts
8400 right after that dot.
8401 2. Otherwise, we may be debugging on a target where the compiler
8402 translates dots into "__". Search forward for double underscores,
8403 but stop searching when we hit an overloading suffix, which is
8404 of the form "__" followed by digits. */
8405
8406 tmp = strrchr (name, '.');
8407 if (tmp != NULL)
8408 name = tmp + 1;
8409 else
8410 {
8411 while ((tmp = strstr (name, "__")) != NULL)
8412 {
8413 if (isdigit (tmp[2]))
8414 break;
8415 else
8416 name = tmp + 2;
8417 }
8418 }
8419
8420 if (name[0] == 'Q')
8421 {
8422 int v;
8423
8424 if (name[1] == 'U' || name[1] == 'W')
8425 {
8426 if (sscanf (name + 2, "%x", &v) != 1)
8427 return name;
8428 }
8429 else
8430 return name;
8431
8432 GROW_VECT (result, result_len, 16);
8433 if (isascii (v) && isprint (v))
8434 xsnprintf (result, result_len, "'%c'", v);
8435 else if (name[1] == 'U')
8436 xsnprintf (result, result_len, "[\"%02x\"]", v);
8437 else
8438 xsnprintf (result, result_len, "[\"%04x\"]", v);
8439
8440 return result;
8441 }
8442 else
8443 {
8444 tmp = strstr (name, "__");
8445 if (tmp == NULL)
8446 tmp = strstr (name, "$");
8447 if (tmp != NULL)
8448 {
8449 GROW_VECT (result, result_len, tmp - name + 1);
8450 strncpy (result, name, tmp - name);
8451 result[tmp - name] = '\0';
8452 return result;
8453 }
8454
8455 return name;
8456 }
8457 }
8458
8459 /* Evaluate the subexpression of EXP starting at *POS as for
8460 evaluate_type, updating *POS to point just past the evaluated
8461 expression. */
8462
8463 static struct value *
8464 evaluate_subexp_type (struct expression *exp, int *pos)
8465 {
8466 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8467 }
8468
8469 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8470 value it wraps. */
8471
8472 static struct value *
8473 unwrap_value (struct value *val)
8474 {
8475 struct type *type = ada_check_typedef (value_type (val));
8476
8477 if (ada_is_aligner_type (type))
8478 {
8479 struct value *v = ada_value_struct_elt (val, "F", 0);
8480 struct type *val_type = ada_check_typedef (value_type (v));
8481
8482 if (ada_type_name (val_type) == NULL)
8483 TYPE_NAME (val_type) = ada_type_name (type);
8484
8485 return unwrap_value (v);
8486 }
8487 else
8488 {
8489 struct type *raw_real_type =
8490 ada_check_typedef (ada_get_base_type (type));
8491
8492 /* If there is no parallel XVS or XVE type, then the value is
8493 already unwrapped. Return it without further modification. */
8494 if ((type == raw_real_type)
8495 && ada_find_parallel_type (type, "___XVE") == NULL)
8496 return val;
8497
8498 return
8499 coerce_unspec_val_to_type
8500 (val, ada_to_fixed_type (raw_real_type, 0,
8501 value_address (val),
8502 NULL, 1));
8503 }
8504 }
8505
8506 static struct value *
8507 cast_to_fixed (struct type *type, struct value *arg)
8508 {
8509 LONGEST val;
8510
8511 if (type == value_type (arg))
8512 return arg;
8513 else if (ada_is_fixed_point_type (value_type (arg)))
8514 val = ada_float_to_fixed (type,
8515 ada_fixed_to_float (value_type (arg),
8516 value_as_long (arg)));
8517 else
8518 {
8519 DOUBLEST argd = value_as_double (arg);
8520
8521 val = ada_float_to_fixed (type, argd);
8522 }
8523
8524 return value_from_longest (type, val);
8525 }
8526
8527 static struct value *
8528 cast_from_fixed (struct type *type, struct value *arg)
8529 {
8530 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8531 value_as_long (arg));
8532
8533 return value_from_double (type, val);
8534 }
8535
8536 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8537 return the converted value. */
8538
8539 static struct value *
8540 coerce_for_assign (struct type *type, struct value *val)
8541 {
8542 struct type *type2 = value_type (val);
8543
8544 if (type == type2)
8545 return val;
8546
8547 type2 = ada_check_typedef (type2);
8548 type = ada_check_typedef (type);
8549
8550 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8551 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8552 {
8553 val = ada_value_ind (val);
8554 type2 = value_type (val);
8555 }
8556
8557 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8558 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8559 {
8560 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8561 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8562 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8563 error (_("Incompatible types in assignment"));
8564 deprecated_set_value_type (val, type);
8565 }
8566 return val;
8567 }
8568
8569 static struct value *
8570 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8571 {
8572 struct value *val;
8573 struct type *type1, *type2;
8574 LONGEST v, v1, v2;
8575
8576 arg1 = coerce_ref (arg1);
8577 arg2 = coerce_ref (arg2);
8578 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8579 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8580
8581 if (TYPE_CODE (type1) != TYPE_CODE_INT
8582 || TYPE_CODE (type2) != TYPE_CODE_INT)
8583 return value_binop (arg1, arg2, op);
8584
8585 switch (op)
8586 {
8587 case BINOP_MOD:
8588 case BINOP_DIV:
8589 case BINOP_REM:
8590 break;
8591 default:
8592 return value_binop (arg1, arg2, op);
8593 }
8594
8595 v2 = value_as_long (arg2);
8596 if (v2 == 0)
8597 error (_("second operand of %s must not be zero."), op_string (op));
8598
8599 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8600 return value_binop (arg1, arg2, op);
8601
8602 v1 = value_as_long (arg1);
8603 switch (op)
8604 {
8605 case BINOP_DIV:
8606 v = v1 / v2;
8607 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8608 v += v > 0 ? -1 : 1;
8609 break;
8610 case BINOP_REM:
8611 v = v1 % v2;
8612 if (v * v1 < 0)
8613 v -= v2;
8614 break;
8615 default:
8616 /* Should not reach this point. */
8617 v = 0;
8618 }
8619
8620 val = allocate_value (type1);
8621 store_unsigned_integer (value_contents_raw (val),
8622 TYPE_LENGTH (value_type (val)),
8623 gdbarch_byte_order (get_type_arch (type1)), v);
8624 return val;
8625 }
8626
8627 static int
8628 ada_value_equal (struct value *arg1, struct value *arg2)
8629 {
8630 if (ada_is_direct_array_type (value_type (arg1))
8631 || ada_is_direct_array_type (value_type (arg2)))
8632 {
8633 /* Automatically dereference any array reference before
8634 we attempt to perform the comparison. */
8635 arg1 = ada_coerce_ref (arg1);
8636 arg2 = ada_coerce_ref (arg2);
8637
8638 arg1 = ada_coerce_to_simple_array (arg1);
8639 arg2 = ada_coerce_to_simple_array (arg2);
8640 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8641 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8642 error (_("Attempt to compare array with non-array"));
8643 /* FIXME: The following works only for types whose
8644 representations use all bits (no padding or undefined bits)
8645 and do not have user-defined equality. */
8646 return
8647 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8648 && memcmp (value_contents (arg1), value_contents (arg2),
8649 TYPE_LENGTH (value_type (arg1))) == 0;
8650 }
8651 return value_equal (arg1, arg2);
8652 }
8653
8654 /* Total number of component associations in the aggregate starting at
8655 index PC in EXP. Assumes that index PC is the start of an
8656 OP_AGGREGATE. */
8657
8658 static int
8659 num_component_specs (struct expression *exp, int pc)
8660 {
8661 int n, m, i;
8662
8663 m = exp->elts[pc + 1].longconst;
8664 pc += 3;
8665 n = 0;
8666 for (i = 0; i < m; i += 1)
8667 {
8668 switch (exp->elts[pc].opcode)
8669 {
8670 default:
8671 n += 1;
8672 break;
8673 case OP_CHOICES:
8674 n += exp->elts[pc + 1].longconst;
8675 break;
8676 }
8677 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8678 }
8679 return n;
8680 }
8681
8682 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8683 component of LHS (a simple array or a record), updating *POS past
8684 the expression, assuming that LHS is contained in CONTAINER. Does
8685 not modify the inferior's memory, nor does it modify LHS (unless
8686 LHS == CONTAINER). */
8687
8688 static void
8689 assign_component (struct value *container, struct value *lhs, LONGEST index,
8690 struct expression *exp, int *pos)
8691 {
8692 struct value *mark = value_mark ();
8693 struct value *elt;
8694
8695 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8696 {
8697 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8698 struct value *index_val = value_from_longest (index_type, index);
8699
8700 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8701 }
8702 else
8703 {
8704 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8705 elt = ada_to_fixed_value (unwrap_value (elt));
8706 }
8707
8708 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8709 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8710 else
8711 value_assign_to_component (container, elt,
8712 ada_evaluate_subexp (NULL, exp, pos,
8713 EVAL_NORMAL));
8714
8715 value_free_to_mark (mark);
8716 }
8717
8718 /* Assuming that LHS represents an lvalue having a record or array
8719 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8720 of that aggregate's value to LHS, advancing *POS past the
8721 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8722 lvalue containing LHS (possibly LHS itself). Does not modify
8723 the inferior's memory, nor does it modify the contents of
8724 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8725
8726 static struct value *
8727 assign_aggregate (struct value *container,
8728 struct value *lhs, struct expression *exp,
8729 int *pos, enum noside noside)
8730 {
8731 struct type *lhs_type;
8732 int n = exp->elts[*pos+1].longconst;
8733 LONGEST low_index, high_index;
8734 int num_specs;
8735 LONGEST *indices;
8736 int max_indices, num_indices;
8737 int is_array_aggregate;
8738 int i;
8739
8740 *pos += 3;
8741 if (noside != EVAL_NORMAL)
8742 {
8743 for (i = 0; i < n; i += 1)
8744 ada_evaluate_subexp (NULL, exp, pos, noside);
8745 return container;
8746 }
8747
8748 container = ada_coerce_ref (container);
8749 if (ada_is_direct_array_type (value_type (container)))
8750 container = ada_coerce_to_simple_array (container);
8751 lhs = ada_coerce_ref (lhs);
8752 if (!deprecated_value_modifiable (lhs))
8753 error (_("Left operand of assignment is not a modifiable lvalue."));
8754
8755 lhs_type = value_type (lhs);
8756 if (ada_is_direct_array_type (lhs_type))
8757 {
8758 lhs = ada_coerce_to_simple_array (lhs);
8759 lhs_type = value_type (lhs);
8760 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8761 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8762 is_array_aggregate = 1;
8763 }
8764 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8765 {
8766 low_index = 0;
8767 high_index = num_visible_fields (lhs_type) - 1;
8768 is_array_aggregate = 0;
8769 }
8770 else
8771 error (_("Left-hand side must be array or record."));
8772
8773 num_specs = num_component_specs (exp, *pos - 3);
8774 max_indices = 4 * num_specs + 4;
8775 indices = alloca (max_indices * sizeof (indices[0]));
8776 indices[0] = indices[1] = low_index - 1;
8777 indices[2] = indices[3] = high_index + 1;
8778 num_indices = 4;
8779
8780 for (i = 0; i < n; i += 1)
8781 {
8782 switch (exp->elts[*pos].opcode)
8783 {
8784 case OP_CHOICES:
8785 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8786 &num_indices, max_indices,
8787 low_index, high_index);
8788 break;
8789 case OP_POSITIONAL:
8790 aggregate_assign_positional (container, lhs, exp, pos, indices,
8791 &num_indices, max_indices,
8792 low_index, high_index);
8793 break;
8794 case OP_OTHERS:
8795 if (i != n-1)
8796 error (_("Misplaced 'others' clause"));
8797 aggregate_assign_others (container, lhs, exp, pos, indices,
8798 num_indices, low_index, high_index);
8799 break;
8800 default:
8801 error (_("Internal error: bad aggregate clause"));
8802 }
8803 }
8804
8805 return container;
8806 }
8807
8808 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8809 construct at *POS, updating *POS past the construct, given that
8810 the positions are relative to lower bound LOW, where HIGH is the
8811 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8812 updating *NUM_INDICES as needed. CONTAINER is as for
8813 assign_aggregate. */
8814 static void
8815 aggregate_assign_positional (struct value *container,
8816 struct value *lhs, struct expression *exp,
8817 int *pos, LONGEST *indices, int *num_indices,
8818 int max_indices, LONGEST low, LONGEST high)
8819 {
8820 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8821
8822 if (ind - 1 == high)
8823 warning (_("Extra components in aggregate ignored."));
8824 if (ind <= high)
8825 {
8826 add_component_interval (ind, ind, indices, num_indices, max_indices);
8827 *pos += 3;
8828 assign_component (container, lhs, ind, exp, pos);
8829 }
8830 else
8831 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8832 }
8833
8834 /* Assign into the components of LHS indexed by the OP_CHOICES
8835 construct at *POS, updating *POS past the construct, given that
8836 the allowable indices are LOW..HIGH. Record the indices assigned
8837 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8838 needed. CONTAINER is as for assign_aggregate. */
8839 static void
8840 aggregate_assign_from_choices (struct value *container,
8841 struct value *lhs, struct expression *exp,
8842 int *pos, LONGEST *indices, int *num_indices,
8843 int max_indices, LONGEST low, LONGEST high)
8844 {
8845 int j;
8846 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8847 int choice_pos, expr_pc;
8848 int is_array = ada_is_direct_array_type (value_type (lhs));
8849
8850 choice_pos = *pos += 3;
8851
8852 for (j = 0; j < n_choices; j += 1)
8853 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8854 expr_pc = *pos;
8855 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8856
8857 for (j = 0; j < n_choices; j += 1)
8858 {
8859 LONGEST lower, upper;
8860 enum exp_opcode op = exp->elts[choice_pos].opcode;
8861
8862 if (op == OP_DISCRETE_RANGE)
8863 {
8864 choice_pos += 1;
8865 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8866 EVAL_NORMAL));
8867 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8868 EVAL_NORMAL));
8869 }
8870 else if (is_array)
8871 {
8872 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8873 EVAL_NORMAL));
8874 upper = lower;
8875 }
8876 else
8877 {
8878 int ind;
8879 const char *name;
8880
8881 switch (op)
8882 {
8883 case OP_NAME:
8884 name = &exp->elts[choice_pos + 2].string;
8885 break;
8886 case OP_VAR_VALUE:
8887 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8888 break;
8889 default:
8890 error (_("Invalid record component association."));
8891 }
8892 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8893 ind = 0;
8894 if (! find_struct_field (name, value_type (lhs), 0,
8895 NULL, NULL, NULL, NULL, &ind))
8896 error (_("Unknown component name: %s."), name);
8897 lower = upper = ind;
8898 }
8899
8900 if (lower <= upper && (lower < low || upper > high))
8901 error (_("Index in component association out of bounds."));
8902
8903 add_component_interval (lower, upper, indices, num_indices,
8904 max_indices);
8905 while (lower <= upper)
8906 {
8907 int pos1;
8908
8909 pos1 = expr_pc;
8910 assign_component (container, lhs, lower, exp, &pos1);
8911 lower += 1;
8912 }
8913 }
8914 }
8915
8916 /* Assign the value of the expression in the OP_OTHERS construct in
8917 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8918 have not been previously assigned. The index intervals already assigned
8919 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8920 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8921 static void
8922 aggregate_assign_others (struct value *container,
8923 struct value *lhs, struct expression *exp,
8924 int *pos, LONGEST *indices, int num_indices,
8925 LONGEST low, LONGEST high)
8926 {
8927 int i;
8928 int expr_pc = *pos + 1;
8929
8930 for (i = 0; i < num_indices - 2; i += 2)
8931 {
8932 LONGEST ind;
8933
8934 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8935 {
8936 int localpos;
8937
8938 localpos = expr_pc;
8939 assign_component (container, lhs, ind, exp, &localpos);
8940 }
8941 }
8942 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8943 }
8944
8945 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8946 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8947 modifying *SIZE as needed. It is an error if *SIZE exceeds
8948 MAX_SIZE. The resulting intervals do not overlap. */
8949 static void
8950 add_component_interval (LONGEST low, LONGEST high,
8951 LONGEST* indices, int *size, int max_size)
8952 {
8953 int i, j;
8954
8955 for (i = 0; i < *size; i += 2) {
8956 if (high >= indices[i] && low <= indices[i + 1])
8957 {
8958 int kh;
8959
8960 for (kh = i + 2; kh < *size; kh += 2)
8961 if (high < indices[kh])
8962 break;
8963 if (low < indices[i])
8964 indices[i] = low;
8965 indices[i + 1] = indices[kh - 1];
8966 if (high > indices[i + 1])
8967 indices[i + 1] = high;
8968 memcpy (indices + i + 2, indices + kh, *size - kh);
8969 *size -= kh - i - 2;
8970 return;
8971 }
8972 else if (high < indices[i])
8973 break;
8974 }
8975
8976 if (*size == max_size)
8977 error (_("Internal error: miscounted aggregate components."));
8978 *size += 2;
8979 for (j = *size-1; j >= i+2; j -= 1)
8980 indices[j] = indices[j - 2];
8981 indices[i] = low;
8982 indices[i + 1] = high;
8983 }
8984
8985 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8986 is different. */
8987
8988 static struct value *
8989 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8990 {
8991 if (type == ada_check_typedef (value_type (arg2)))
8992 return arg2;
8993
8994 if (ada_is_fixed_point_type (type))
8995 return (cast_to_fixed (type, arg2));
8996
8997 if (ada_is_fixed_point_type (value_type (arg2)))
8998 return cast_from_fixed (type, arg2);
8999
9000 return value_cast (type, arg2);
9001 }
9002
9003 /* Evaluating Ada expressions, and printing their result.
9004 ------------------------------------------------------
9005
9006 1. Introduction:
9007 ----------------
9008
9009 We usually evaluate an Ada expression in order to print its value.
9010 We also evaluate an expression in order to print its type, which
9011 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9012 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9013 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9014 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9015 similar.
9016
9017 Evaluating expressions is a little more complicated for Ada entities
9018 than it is for entities in languages such as C. The main reason for
9019 this is that Ada provides types whose definition might be dynamic.
9020 One example of such types is variant records. Or another example
9021 would be an array whose bounds can only be known at run time.
9022
9023 The following description is a general guide as to what should be
9024 done (and what should NOT be done) in order to evaluate an expression
9025 involving such types, and when. This does not cover how the semantic
9026 information is encoded by GNAT as this is covered separatly. For the
9027 document used as the reference for the GNAT encoding, see exp_dbug.ads
9028 in the GNAT sources.
9029
9030 Ideally, we should embed each part of this description next to its
9031 associated code. Unfortunately, the amount of code is so vast right
9032 now that it's hard to see whether the code handling a particular
9033 situation might be duplicated or not. One day, when the code is
9034 cleaned up, this guide might become redundant with the comments
9035 inserted in the code, and we might want to remove it.
9036
9037 2. ``Fixing'' an Entity, the Simple Case:
9038 -----------------------------------------
9039
9040 When evaluating Ada expressions, the tricky issue is that they may
9041 reference entities whose type contents and size are not statically
9042 known. Consider for instance a variant record:
9043
9044 type Rec (Empty : Boolean := True) is record
9045 case Empty is
9046 when True => null;
9047 when False => Value : Integer;
9048 end case;
9049 end record;
9050 Yes : Rec := (Empty => False, Value => 1);
9051 No : Rec := (empty => True);
9052
9053 The size and contents of that record depends on the value of the
9054 descriminant (Rec.Empty). At this point, neither the debugging
9055 information nor the associated type structure in GDB are able to
9056 express such dynamic types. So what the debugger does is to create
9057 "fixed" versions of the type that applies to the specific object.
9058 We also informally refer to this opperation as "fixing" an object,
9059 which means creating its associated fixed type.
9060
9061 Example: when printing the value of variable "Yes" above, its fixed
9062 type would look like this:
9063
9064 type Rec is record
9065 Empty : Boolean;
9066 Value : Integer;
9067 end record;
9068
9069 On the other hand, if we printed the value of "No", its fixed type
9070 would become:
9071
9072 type Rec is record
9073 Empty : Boolean;
9074 end record;
9075
9076 Things become a little more complicated when trying to fix an entity
9077 with a dynamic type that directly contains another dynamic type,
9078 such as an array of variant records, for instance. There are
9079 two possible cases: Arrays, and records.
9080
9081 3. ``Fixing'' Arrays:
9082 ---------------------
9083
9084 The type structure in GDB describes an array in terms of its bounds,
9085 and the type of its elements. By design, all elements in the array
9086 have the same type and we cannot represent an array of variant elements
9087 using the current type structure in GDB. When fixing an array,
9088 we cannot fix the array element, as we would potentially need one
9089 fixed type per element of the array. As a result, the best we can do
9090 when fixing an array is to produce an array whose bounds and size
9091 are correct (allowing us to read it from memory), but without having
9092 touched its element type. Fixing each element will be done later,
9093 when (if) necessary.
9094
9095 Arrays are a little simpler to handle than records, because the same
9096 amount of memory is allocated for each element of the array, even if
9097 the amount of space actually used by each element differs from element
9098 to element. Consider for instance the following array of type Rec:
9099
9100 type Rec_Array is array (1 .. 2) of Rec;
9101
9102 The actual amount of memory occupied by each element might be different
9103 from element to element, depending on the value of their discriminant.
9104 But the amount of space reserved for each element in the array remains
9105 fixed regardless. So we simply need to compute that size using
9106 the debugging information available, from which we can then determine
9107 the array size (we multiply the number of elements of the array by
9108 the size of each element).
9109
9110 The simplest case is when we have an array of a constrained element
9111 type. For instance, consider the following type declarations:
9112
9113 type Bounded_String (Max_Size : Integer) is
9114 Length : Integer;
9115 Buffer : String (1 .. Max_Size);
9116 end record;
9117 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9118
9119 In this case, the compiler describes the array as an array of
9120 variable-size elements (identified by its XVS suffix) for which
9121 the size can be read in the parallel XVZ variable.
9122
9123 In the case of an array of an unconstrained element type, the compiler
9124 wraps the array element inside a private PAD type. This type should not
9125 be shown to the user, and must be "unwrap"'ed before printing. Note
9126 that we also use the adjective "aligner" in our code to designate
9127 these wrapper types.
9128
9129 In some cases, the size allocated for each element is statically
9130 known. In that case, the PAD type already has the correct size,
9131 and the array element should remain unfixed.
9132
9133 But there are cases when this size is not statically known.
9134 For instance, assuming that "Five" is an integer variable:
9135
9136 type Dynamic is array (1 .. Five) of Integer;
9137 type Wrapper (Has_Length : Boolean := False) is record
9138 Data : Dynamic;
9139 case Has_Length is
9140 when True => Length : Integer;
9141 when False => null;
9142 end case;
9143 end record;
9144 type Wrapper_Array is array (1 .. 2) of Wrapper;
9145
9146 Hello : Wrapper_Array := (others => (Has_Length => True,
9147 Data => (others => 17),
9148 Length => 1));
9149
9150
9151 The debugging info would describe variable Hello as being an
9152 array of a PAD type. The size of that PAD type is not statically
9153 known, but can be determined using a parallel XVZ variable.
9154 In that case, a copy of the PAD type with the correct size should
9155 be used for the fixed array.
9156
9157 3. ``Fixing'' record type objects:
9158 ----------------------------------
9159
9160 Things are slightly different from arrays in the case of dynamic
9161 record types. In this case, in order to compute the associated
9162 fixed type, we need to determine the size and offset of each of
9163 its components. This, in turn, requires us to compute the fixed
9164 type of each of these components.
9165
9166 Consider for instance the example:
9167
9168 type Bounded_String (Max_Size : Natural) is record
9169 Str : String (1 .. Max_Size);
9170 Length : Natural;
9171 end record;
9172 My_String : Bounded_String (Max_Size => 10);
9173
9174 In that case, the position of field "Length" depends on the size
9175 of field Str, which itself depends on the value of the Max_Size
9176 discriminant. In order to fix the type of variable My_String,
9177 we need to fix the type of field Str. Therefore, fixing a variant
9178 record requires us to fix each of its components.
9179
9180 However, if a component does not have a dynamic size, the component
9181 should not be fixed. In particular, fields that use a PAD type
9182 should not fixed. Here is an example where this might happen
9183 (assuming type Rec above):
9184
9185 type Container (Big : Boolean) is record
9186 First : Rec;
9187 After : Integer;
9188 case Big is
9189 when True => Another : Integer;
9190 when False => null;
9191 end case;
9192 end record;
9193 My_Container : Container := (Big => False,
9194 First => (Empty => True),
9195 After => 42);
9196
9197 In that example, the compiler creates a PAD type for component First,
9198 whose size is constant, and then positions the component After just
9199 right after it. The offset of component After is therefore constant
9200 in this case.
9201
9202 The debugger computes the position of each field based on an algorithm
9203 that uses, among other things, the actual position and size of the field
9204 preceding it. Let's now imagine that the user is trying to print
9205 the value of My_Container. If the type fixing was recursive, we would
9206 end up computing the offset of field After based on the size of the
9207 fixed version of field First. And since in our example First has
9208 only one actual field, the size of the fixed type is actually smaller
9209 than the amount of space allocated to that field, and thus we would
9210 compute the wrong offset of field After.
9211
9212 To make things more complicated, we need to watch out for dynamic
9213 components of variant records (identified by the ___XVL suffix in
9214 the component name). Even if the target type is a PAD type, the size
9215 of that type might not be statically known. So the PAD type needs
9216 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9217 we might end up with the wrong size for our component. This can be
9218 observed with the following type declarations:
9219
9220 type Octal is new Integer range 0 .. 7;
9221 type Octal_Array is array (Positive range <>) of Octal;
9222 pragma Pack (Octal_Array);
9223
9224 type Octal_Buffer (Size : Positive) is record
9225 Buffer : Octal_Array (1 .. Size);
9226 Length : Integer;
9227 end record;
9228
9229 In that case, Buffer is a PAD type whose size is unset and needs
9230 to be computed by fixing the unwrapped type.
9231
9232 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9233 ----------------------------------------------------------
9234
9235 Lastly, when should the sub-elements of an entity that remained unfixed
9236 thus far, be actually fixed?
9237
9238 The answer is: Only when referencing that element. For instance
9239 when selecting one component of a record, this specific component
9240 should be fixed at that point in time. Or when printing the value
9241 of a record, each component should be fixed before its value gets
9242 printed. Similarly for arrays, the element of the array should be
9243 fixed when printing each element of the array, or when extracting
9244 one element out of that array. On the other hand, fixing should
9245 not be performed on the elements when taking a slice of an array!
9246
9247 Note that one of the side-effects of miscomputing the offset and
9248 size of each field is that we end up also miscomputing the size
9249 of the containing type. This can have adverse results when computing
9250 the value of an entity. GDB fetches the value of an entity based
9251 on the size of its type, and thus a wrong size causes GDB to fetch
9252 the wrong amount of memory. In the case where the computed size is
9253 too small, GDB fetches too little data to print the value of our
9254 entiry. Results in this case as unpredicatble, as we usually read
9255 past the buffer containing the data =:-o. */
9256
9257 /* Implement the evaluate_exp routine in the exp_descriptor structure
9258 for the Ada language. */
9259
9260 static struct value *
9261 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9262 int *pos, enum noside noside)
9263 {
9264 enum exp_opcode op;
9265 int tem;
9266 int pc;
9267 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9268 struct type *type;
9269 int nargs, oplen;
9270 struct value **argvec;
9271
9272 pc = *pos;
9273 *pos += 1;
9274 op = exp->elts[pc].opcode;
9275
9276 switch (op)
9277 {
9278 default:
9279 *pos -= 1;
9280 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9281 arg1 = unwrap_value (arg1);
9282
9283 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9284 then we need to perform the conversion manually, because
9285 evaluate_subexp_standard doesn't do it. This conversion is
9286 necessary in Ada because the different kinds of float/fixed
9287 types in Ada have different representations.
9288
9289 Similarly, we need to perform the conversion from OP_LONG
9290 ourselves. */
9291 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9292 arg1 = ada_value_cast (expect_type, arg1, noside);
9293
9294 return arg1;
9295
9296 case OP_STRING:
9297 {
9298 struct value *result;
9299
9300 *pos -= 1;
9301 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9302 /* The result type will have code OP_STRING, bashed there from
9303 OP_ARRAY. Bash it back. */
9304 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9305 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9306 return result;
9307 }
9308
9309 case UNOP_CAST:
9310 (*pos) += 2;
9311 type = exp->elts[pc + 1].type;
9312 arg1 = evaluate_subexp (type, exp, pos, noside);
9313 if (noside == EVAL_SKIP)
9314 goto nosideret;
9315 arg1 = ada_value_cast (type, arg1, noside);
9316 return arg1;
9317
9318 case UNOP_QUAL:
9319 (*pos) += 2;
9320 type = exp->elts[pc + 1].type;
9321 return ada_evaluate_subexp (type, exp, pos, noside);
9322
9323 case BINOP_ASSIGN:
9324 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9325 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9326 {
9327 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9328 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9329 return arg1;
9330 return ada_value_assign (arg1, arg1);
9331 }
9332 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9333 except if the lhs of our assignment is a convenience variable.
9334 In the case of assigning to a convenience variable, the lhs
9335 should be exactly the result of the evaluation of the rhs. */
9336 type = value_type (arg1);
9337 if (VALUE_LVAL (arg1) == lval_internalvar)
9338 type = NULL;
9339 arg2 = evaluate_subexp (type, exp, pos, noside);
9340 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9341 return arg1;
9342 if (ada_is_fixed_point_type (value_type (arg1)))
9343 arg2 = cast_to_fixed (value_type (arg1), arg2);
9344 else if (ada_is_fixed_point_type (value_type (arg2)))
9345 error
9346 (_("Fixed-point values must be assigned to fixed-point variables"));
9347 else
9348 arg2 = coerce_for_assign (value_type (arg1), arg2);
9349 return ada_value_assign (arg1, arg2);
9350
9351 case BINOP_ADD:
9352 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9353 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9354 if (noside == EVAL_SKIP)
9355 goto nosideret;
9356 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9357 return (value_from_longest
9358 (value_type (arg1),
9359 value_as_long (arg1) + value_as_long (arg2)));
9360 if ((ada_is_fixed_point_type (value_type (arg1))
9361 || ada_is_fixed_point_type (value_type (arg2)))
9362 && value_type (arg1) != value_type (arg2))
9363 error (_("Operands of fixed-point addition must have the same type"));
9364 /* Do the addition, and cast the result to the type of the first
9365 argument. We cannot cast the result to a reference type, so if
9366 ARG1 is a reference type, find its underlying type. */
9367 type = value_type (arg1);
9368 while (TYPE_CODE (type) == TYPE_CODE_REF)
9369 type = TYPE_TARGET_TYPE (type);
9370 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9371 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9372
9373 case BINOP_SUB:
9374 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9375 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9376 if (noside == EVAL_SKIP)
9377 goto nosideret;
9378 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9379 return (value_from_longest
9380 (value_type (arg1),
9381 value_as_long (arg1) - value_as_long (arg2)));
9382 if ((ada_is_fixed_point_type (value_type (arg1))
9383 || ada_is_fixed_point_type (value_type (arg2)))
9384 && value_type (arg1) != value_type (arg2))
9385 error (_("Operands of fixed-point subtraction "
9386 "must have the same type"));
9387 /* Do the substraction, and cast the result to the type of the first
9388 argument. We cannot cast the result to a reference type, so if
9389 ARG1 is a reference type, find its underlying type. */
9390 type = value_type (arg1);
9391 while (TYPE_CODE (type) == TYPE_CODE_REF)
9392 type = TYPE_TARGET_TYPE (type);
9393 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9394 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9395
9396 case BINOP_MUL:
9397 case BINOP_DIV:
9398 case BINOP_REM:
9399 case BINOP_MOD:
9400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9401 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9402 if (noside == EVAL_SKIP)
9403 goto nosideret;
9404 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9405 {
9406 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9407 return value_zero (value_type (arg1), not_lval);
9408 }
9409 else
9410 {
9411 type = builtin_type (exp->gdbarch)->builtin_double;
9412 if (ada_is_fixed_point_type (value_type (arg1)))
9413 arg1 = cast_from_fixed (type, arg1);
9414 if (ada_is_fixed_point_type (value_type (arg2)))
9415 arg2 = cast_from_fixed (type, arg2);
9416 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9417 return ada_value_binop (arg1, arg2, op);
9418 }
9419
9420 case BINOP_EQUAL:
9421 case BINOP_NOTEQUAL:
9422 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9423 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9424 if (noside == EVAL_SKIP)
9425 goto nosideret;
9426 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9427 tem = 0;
9428 else
9429 {
9430 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9431 tem = ada_value_equal (arg1, arg2);
9432 }
9433 if (op == BINOP_NOTEQUAL)
9434 tem = !tem;
9435 type = language_bool_type (exp->language_defn, exp->gdbarch);
9436 return value_from_longest (type, (LONGEST) tem);
9437
9438 case UNOP_NEG:
9439 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9440 if (noside == EVAL_SKIP)
9441 goto nosideret;
9442 else if (ada_is_fixed_point_type (value_type (arg1)))
9443 return value_cast (value_type (arg1), value_neg (arg1));
9444 else
9445 {
9446 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9447 return value_neg (arg1);
9448 }
9449
9450 case BINOP_LOGICAL_AND:
9451 case BINOP_LOGICAL_OR:
9452 case UNOP_LOGICAL_NOT:
9453 {
9454 struct value *val;
9455
9456 *pos -= 1;
9457 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9458 type = language_bool_type (exp->language_defn, exp->gdbarch);
9459 return value_cast (type, val);
9460 }
9461
9462 case BINOP_BITWISE_AND:
9463 case BINOP_BITWISE_IOR:
9464 case BINOP_BITWISE_XOR:
9465 {
9466 struct value *val;
9467
9468 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9469 *pos = pc;
9470 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9471
9472 return value_cast (value_type (arg1), val);
9473 }
9474
9475 case OP_VAR_VALUE:
9476 *pos -= 1;
9477
9478 if (noside == EVAL_SKIP)
9479 {
9480 *pos += 4;
9481 goto nosideret;
9482 }
9483 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9484 /* Only encountered when an unresolved symbol occurs in a
9485 context other than a function call, in which case, it is
9486 invalid. */
9487 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9488 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9489 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9490 {
9491 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9492 /* Check to see if this is a tagged type. We also need to handle
9493 the case where the type is a reference to a tagged type, but
9494 we have to be careful to exclude pointers to tagged types.
9495 The latter should be shown as usual (as a pointer), whereas
9496 a reference should mostly be transparent to the user. */
9497 if (ada_is_tagged_type (type, 0)
9498 || (TYPE_CODE(type) == TYPE_CODE_REF
9499 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9500 {
9501 /* Tagged types are a little special in the fact that the real
9502 type is dynamic and can only be determined by inspecting the
9503 object's tag. This means that we need to get the object's
9504 value first (EVAL_NORMAL) and then extract the actual object
9505 type from its tag.
9506
9507 Note that we cannot skip the final step where we extract
9508 the object type from its tag, because the EVAL_NORMAL phase
9509 results in dynamic components being resolved into fixed ones.
9510 This can cause problems when trying to print the type
9511 description of tagged types whose parent has a dynamic size:
9512 We use the type name of the "_parent" component in order
9513 to print the name of the ancestor type in the type description.
9514 If that component had a dynamic size, the resolution into
9515 a fixed type would result in the loss of that type name,
9516 thus preventing us from printing the name of the ancestor
9517 type in the type description. */
9518 struct type *actual_type;
9519
9520 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9521 actual_type = type_from_tag (ada_value_tag (arg1));
9522 if (actual_type == NULL)
9523 /* If, for some reason, we were unable to determine
9524 the actual type from the tag, then use the static
9525 approximation that we just computed as a fallback.
9526 This can happen if the debugging information is
9527 incomplete, for instance. */
9528 actual_type = type;
9529
9530 return value_zero (actual_type, not_lval);
9531 }
9532
9533 *pos += 4;
9534 return value_zero
9535 (to_static_fixed_type
9536 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9537 not_lval);
9538 }
9539 else
9540 {
9541 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9542 arg1 = unwrap_value (arg1);
9543 return ada_to_fixed_value (arg1);
9544 }
9545
9546 case OP_FUNCALL:
9547 (*pos) += 2;
9548
9549 /* Allocate arg vector, including space for the function to be
9550 called in argvec[0] and a terminating NULL. */
9551 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9552 argvec =
9553 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9554
9555 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9556 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9557 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9558 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9559 else
9560 {
9561 for (tem = 0; tem <= nargs; tem += 1)
9562 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9563 argvec[tem] = 0;
9564
9565 if (noside == EVAL_SKIP)
9566 goto nosideret;
9567 }
9568
9569 if (ada_is_constrained_packed_array_type
9570 (desc_base_type (value_type (argvec[0]))))
9571 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9572 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9573 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9574 /* This is a packed array that has already been fixed, and
9575 therefore already coerced to a simple array. Nothing further
9576 to do. */
9577 ;
9578 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9579 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9580 && VALUE_LVAL (argvec[0]) == lval_memory))
9581 argvec[0] = value_addr (argvec[0]);
9582
9583 type = ada_check_typedef (value_type (argvec[0]));
9584
9585 /* Ada allows us to implicitly dereference arrays when subscripting
9586 them. So, if this is an array typedef (encoding use for array
9587 access types encoded as fat pointers), strip it now. */
9588 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9589 type = ada_typedef_target_type (type);
9590
9591 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9592 {
9593 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9594 {
9595 case TYPE_CODE_FUNC:
9596 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9597 break;
9598 case TYPE_CODE_ARRAY:
9599 break;
9600 case TYPE_CODE_STRUCT:
9601 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9602 argvec[0] = ada_value_ind (argvec[0]);
9603 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9604 break;
9605 default:
9606 error (_("cannot subscript or call something of type `%s'"),
9607 ada_type_name (value_type (argvec[0])));
9608 break;
9609 }
9610 }
9611
9612 switch (TYPE_CODE (type))
9613 {
9614 case TYPE_CODE_FUNC:
9615 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9616 return allocate_value (TYPE_TARGET_TYPE (type));
9617 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9618 case TYPE_CODE_STRUCT:
9619 {
9620 int arity;
9621
9622 arity = ada_array_arity (type);
9623 type = ada_array_element_type (type, nargs);
9624 if (type == NULL)
9625 error (_("cannot subscript or call a record"));
9626 if (arity != nargs)
9627 error (_("wrong number of subscripts; expecting %d"), arity);
9628 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9629 return value_zero (ada_aligned_type (type), lval_memory);
9630 return
9631 unwrap_value (ada_value_subscript
9632 (argvec[0], nargs, argvec + 1));
9633 }
9634 case TYPE_CODE_ARRAY:
9635 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9636 {
9637 type = ada_array_element_type (type, nargs);
9638 if (type == NULL)
9639 error (_("element type of array unknown"));
9640 else
9641 return value_zero (ada_aligned_type (type), lval_memory);
9642 }
9643 return
9644 unwrap_value (ada_value_subscript
9645 (ada_coerce_to_simple_array (argvec[0]),
9646 nargs, argvec + 1));
9647 case TYPE_CODE_PTR: /* Pointer to array */
9648 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9649 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9650 {
9651 type = ada_array_element_type (type, nargs);
9652 if (type == NULL)
9653 error (_("element type of array unknown"));
9654 else
9655 return value_zero (ada_aligned_type (type), lval_memory);
9656 }
9657 return
9658 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9659 nargs, argvec + 1));
9660
9661 default:
9662 error (_("Attempt to index or call something other than an "
9663 "array or function"));
9664 }
9665
9666 case TERNOP_SLICE:
9667 {
9668 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9669 struct value *low_bound_val =
9670 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9671 struct value *high_bound_val =
9672 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9673 LONGEST low_bound;
9674 LONGEST high_bound;
9675
9676 low_bound_val = coerce_ref (low_bound_val);
9677 high_bound_val = coerce_ref (high_bound_val);
9678 low_bound = pos_atr (low_bound_val);
9679 high_bound = pos_atr (high_bound_val);
9680
9681 if (noside == EVAL_SKIP)
9682 goto nosideret;
9683
9684 /* If this is a reference to an aligner type, then remove all
9685 the aligners. */
9686 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9687 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9688 TYPE_TARGET_TYPE (value_type (array)) =
9689 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9690
9691 if (ada_is_constrained_packed_array_type (value_type (array)))
9692 error (_("cannot slice a packed array"));
9693
9694 /* If this is a reference to an array or an array lvalue,
9695 convert to a pointer. */
9696 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9697 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9698 && VALUE_LVAL (array) == lval_memory))
9699 array = value_addr (array);
9700
9701 if (noside == EVAL_AVOID_SIDE_EFFECTS
9702 && ada_is_array_descriptor_type (ada_check_typedef
9703 (value_type (array))))
9704 return empty_array (ada_type_of_array (array, 0), low_bound);
9705
9706 array = ada_coerce_to_simple_array_ptr (array);
9707
9708 /* If we have more than one level of pointer indirection,
9709 dereference the value until we get only one level. */
9710 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9711 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9712 == TYPE_CODE_PTR))
9713 array = value_ind (array);
9714
9715 /* Make sure we really do have an array type before going further,
9716 to avoid a SEGV when trying to get the index type or the target
9717 type later down the road if the debug info generated by
9718 the compiler is incorrect or incomplete. */
9719 if (!ada_is_simple_array_type (value_type (array)))
9720 error (_("cannot take slice of non-array"));
9721
9722 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9723 == TYPE_CODE_PTR)
9724 {
9725 struct type *type0 = ada_check_typedef (value_type (array));
9726
9727 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9728 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9729 else
9730 {
9731 struct type *arr_type0 =
9732 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9733
9734 return ada_value_slice_from_ptr (array, arr_type0,
9735 longest_to_int (low_bound),
9736 longest_to_int (high_bound));
9737 }
9738 }
9739 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9740 return array;
9741 else if (high_bound < low_bound)
9742 return empty_array (value_type (array), low_bound);
9743 else
9744 return ada_value_slice (array, longest_to_int (low_bound),
9745 longest_to_int (high_bound));
9746 }
9747
9748 case UNOP_IN_RANGE:
9749 (*pos) += 2;
9750 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9751 type = check_typedef (exp->elts[pc + 1].type);
9752
9753 if (noside == EVAL_SKIP)
9754 goto nosideret;
9755
9756 switch (TYPE_CODE (type))
9757 {
9758 default:
9759 lim_warning (_("Membership test incompletely implemented; "
9760 "always returns true"));
9761 type = language_bool_type (exp->language_defn, exp->gdbarch);
9762 return value_from_longest (type, (LONGEST) 1);
9763
9764 case TYPE_CODE_RANGE:
9765 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9766 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9767 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9768 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9769 type = language_bool_type (exp->language_defn, exp->gdbarch);
9770 return
9771 value_from_longest (type,
9772 (value_less (arg1, arg3)
9773 || value_equal (arg1, arg3))
9774 && (value_less (arg2, arg1)
9775 || value_equal (arg2, arg1)));
9776 }
9777
9778 case BINOP_IN_BOUNDS:
9779 (*pos) += 2;
9780 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9781 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9782
9783 if (noside == EVAL_SKIP)
9784 goto nosideret;
9785
9786 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9787 {
9788 type = language_bool_type (exp->language_defn, exp->gdbarch);
9789 return value_zero (type, not_lval);
9790 }
9791
9792 tem = longest_to_int (exp->elts[pc + 1].longconst);
9793
9794 type = ada_index_type (value_type (arg2), tem, "range");
9795 if (!type)
9796 type = value_type (arg1);
9797
9798 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9799 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9800
9801 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9802 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9803 type = language_bool_type (exp->language_defn, exp->gdbarch);
9804 return
9805 value_from_longest (type,
9806 (value_less (arg1, arg3)
9807 || value_equal (arg1, arg3))
9808 && (value_less (arg2, arg1)
9809 || value_equal (arg2, arg1)));
9810
9811 case TERNOP_IN_RANGE:
9812 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9813 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9814 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9815
9816 if (noside == EVAL_SKIP)
9817 goto nosideret;
9818
9819 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9820 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9821 type = language_bool_type (exp->language_defn, exp->gdbarch);
9822 return
9823 value_from_longest (type,
9824 (value_less (arg1, arg3)
9825 || value_equal (arg1, arg3))
9826 && (value_less (arg2, arg1)
9827 || value_equal (arg2, arg1)));
9828
9829 case OP_ATR_FIRST:
9830 case OP_ATR_LAST:
9831 case OP_ATR_LENGTH:
9832 {
9833 struct type *type_arg;
9834
9835 if (exp->elts[*pos].opcode == OP_TYPE)
9836 {
9837 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9838 arg1 = NULL;
9839 type_arg = check_typedef (exp->elts[pc + 2].type);
9840 }
9841 else
9842 {
9843 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9844 type_arg = NULL;
9845 }
9846
9847 if (exp->elts[*pos].opcode != OP_LONG)
9848 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9849 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9850 *pos += 4;
9851
9852 if (noside == EVAL_SKIP)
9853 goto nosideret;
9854
9855 if (type_arg == NULL)
9856 {
9857 arg1 = ada_coerce_ref (arg1);
9858
9859 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9860 arg1 = ada_coerce_to_simple_array (arg1);
9861
9862 type = ada_index_type (value_type (arg1), tem,
9863 ada_attribute_name (op));
9864 if (type == NULL)
9865 type = builtin_type (exp->gdbarch)->builtin_int;
9866
9867 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9868 return allocate_value (type);
9869
9870 switch (op)
9871 {
9872 default: /* Should never happen. */
9873 error (_("unexpected attribute encountered"));
9874 case OP_ATR_FIRST:
9875 return value_from_longest
9876 (type, ada_array_bound (arg1, tem, 0));
9877 case OP_ATR_LAST:
9878 return value_from_longest
9879 (type, ada_array_bound (arg1, tem, 1));
9880 case OP_ATR_LENGTH:
9881 return value_from_longest
9882 (type, ada_array_length (arg1, tem));
9883 }
9884 }
9885 else if (discrete_type_p (type_arg))
9886 {
9887 struct type *range_type;
9888 const char *name = ada_type_name (type_arg);
9889
9890 range_type = NULL;
9891 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9892 range_type = to_fixed_range_type (type_arg, NULL);
9893 if (range_type == NULL)
9894 range_type = type_arg;
9895 switch (op)
9896 {
9897 default:
9898 error (_("unexpected attribute encountered"));
9899 case OP_ATR_FIRST:
9900 return value_from_longest
9901 (range_type, ada_discrete_type_low_bound (range_type));
9902 case OP_ATR_LAST:
9903 return value_from_longest
9904 (range_type, ada_discrete_type_high_bound (range_type));
9905 case OP_ATR_LENGTH:
9906 error (_("the 'length attribute applies only to array types"));
9907 }
9908 }
9909 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9910 error (_("unimplemented type attribute"));
9911 else
9912 {
9913 LONGEST low, high;
9914
9915 if (ada_is_constrained_packed_array_type (type_arg))
9916 type_arg = decode_constrained_packed_array_type (type_arg);
9917
9918 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9919 if (type == NULL)
9920 type = builtin_type (exp->gdbarch)->builtin_int;
9921
9922 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9923 return allocate_value (type);
9924
9925 switch (op)
9926 {
9927 default:
9928 error (_("unexpected attribute encountered"));
9929 case OP_ATR_FIRST:
9930 low = ada_array_bound_from_type (type_arg, tem, 0);
9931 return value_from_longest (type, low);
9932 case OP_ATR_LAST:
9933 high = ada_array_bound_from_type (type_arg, tem, 1);
9934 return value_from_longest (type, high);
9935 case OP_ATR_LENGTH:
9936 low = ada_array_bound_from_type (type_arg, tem, 0);
9937 high = ada_array_bound_from_type (type_arg, tem, 1);
9938 return value_from_longest (type, high - low + 1);
9939 }
9940 }
9941 }
9942
9943 case OP_ATR_TAG:
9944 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9945 if (noside == EVAL_SKIP)
9946 goto nosideret;
9947
9948 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9949 return value_zero (ada_tag_type (arg1), not_lval);
9950
9951 return ada_value_tag (arg1);
9952
9953 case OP_ATR_MIN:
9954 case OP_ATR_MAX:
9955 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9956 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9957 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9958 if (noside == EVAL_SKIP)
9959 goto nosideret;
9960 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9961 return value_zero (value_type (arg1), not_lval);
9962 else
9963 {
9964 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9965 return value_binop (arg1, arg2,
9966 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9967 }
9968
9969 case OP_ATR_MODULUS:
9970 {
9971 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9972
9973 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9974 if (noside == EVAL_SKIP)
9975 goto nosideret;
9976
9977 if (!ada_is_modular_type (type_arg))
9978 error (_("'modulus must be applied to modular type"));
9979
9980 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9981 ada_modulus (type_arg));
9982 }
9983
9984
9985 case OP_ATR_POS:
9986 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9987 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9988 if (noside == EVAL_SKIP)
9989 goto nosideret;
9990 type = builtin_type (exp->gdbarch)->builtin_int;
9991 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9992 return value_zero (type, not_lval);
9993 else
9994 return value_pos_atr (type, arg1);
9995
9996 case OP_ATR_SIZE:
9997 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9998 type = value_type (arg1);
9999
10000 /* If the argument is a reference, then dereference its type, since
10001 the user is really asking for the size of the actual object,
10002 not the size of the pointer. */
10003 if (TYPE_CODE (type) == TYPE_CODE_REF)
10004 type = TYPE_TARGET_TYPE (type);
10005
10006 if (noside == EVAL_SKIP)
10007 goto nosideret;
10008 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10009 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10010 else
10011 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10012 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10013
10014 case OP_ATR_VAL:
10015 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10016 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10017 type = exp->elts[pc + 2].type;
10018 if (noside == EVAL_SKIP)
10019 goto nosideret;
10020 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10021 return value_zero (type, not_lval);
10022 else
10023 return value_val_atr (type, arg1);
10024
10025 case BINOP_EXP:
10026 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10027 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10028 if (noside == EVAL_SKIP)
10029 goto nosideret;
10030 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10031 return value_zero (value_type (arg1), not_lval);
10032 else
10033 {
10034 /* For integer exponentiation operations,
10035 only promote the first argument. */
10036 if (is_integral_type (value_type (arg2)))
10037 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10038 else
10039 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10040
10041 return value_binop (arg1, arg2, op);
10042 }
10043
10044 case UNOP_PLUS:
10045 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10046 if (noside == EVAL_SKIP)
10047 goto nosideret;
10048 else
10049 return arg1;
10050
10051 case UNOP_ABS:
10052 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10053 if (noside == EVAL_SKIP)
10054 goto nosideret;
10055 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10056 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10057 return value_neg (arg1);
10058 else
10059 return arg1;
10060
10061 case UNOP_IND:
10062 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10063 if (noside == EVAL_SKIP)
10064 goto nosideret;
10065 type = ada_check_typedef (value_type (arg1));
10066 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10067 {
10068 if (ada_is_array_descriptor_type (type))
10069 /* GDB allows dereferencing GNAT array descriptors. */
10070 {
10071 struct type *arrType = ada_type_of_array (arg1, 0);
10072
10073 if (arrType == NULL)
10074 error (_("Attempt to dereference null array pointer."));
10075 return value_at_lazy (arrType, 0);
10076 }
10077 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10078 || TYPE_CODE (type) == TYPE_CODE_REF
10079 /* In C you can dereference an array to get the 1st elt. */
10080 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10081 {
10082 type = to_static_fixed_type
10083 (ada_aligned_type
10084 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10085 check_size (type);
10086 return value_zero (type, lval_memory);
10087 }
10088 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10089 {
10090 /* GDB allows dereferencing an int. */
10091 if (expect_type == NULL)
10092 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10093 lval_memory);
10094 else
10095 {
10096 expect_type =
10097 to_static_fixed_type (ada_aligned_type (expect_type));
10098 return value_zero (expect_type, lval_memory);
10099 }
10100 }
10101 else
10102 error (_("Attempt to take contents of a non-pointer value."));
10103 }
10104 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10105 type = ada_check_typedef (value_type (arg1));
10106
10107 if (TYPE_CODE (type) == TYPE_CODE_INT)
10108 /* GDB allows dereferencing an int. If we were given
10109 the expect_type, then use that as the target type.
10110 Otherwise, assume that the target type is an int. */
10111 {
10112 if (expect_type != NULL)
10113 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10114 arg1));
10115 else
10116 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10117 (CORE_ADDR) value_as_address (arg1));
10118 }
10119
10120 if (ada_is_array_descriptor_type (type))
10121 /* GDB allows dereferencing GNAT array descriptors. */
10122 return ada_coerce_to_simple_array (arg1);
10123 else
10124 return ada_value_ind (arg1);
10125
10126 case STRUCTOP_STRUCT:
10127 tem = longest_to_int (exp->elts[pc + 1].longconst);
10128 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10129 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10130 if (noside == EVAL_SKIP)
10131 goto nosideret;
10132 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10133 {
10134 struct type *type1 = value_type (arg1);
10135
10136 if (ada_is_tagged_type (type1, 1))
10137 {
10138 type = ada_lookup_struct_elt_type (type1,
10139 &exp->elts[pc + 2].string,
10140 1, 1, NULL);
10141 if (type == NULL)
10142 /* In this case, we assume that the field COULD exist
10143 in some extension of the type. Return an object of
10144 "type" void, which will match any formal
10145 (see ada_type_match). */
10146 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10147 lval_memory);
10148 }
10149 else
10150 type =
10151 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10152 0, NULL);
10153
10154 return value_zero (ada_aligned_type (type), lval_memory);
10155 }
10156 else
10157 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10158 arg1 = unwrap_value (arg1);
10159 return ada_to_fixed_value (arg1);
10160
10161 case OP_TYPE:
10162 /* The value is not supposed to be used. This is here to make it
10163 easier to accommodate expressions that contain types. */
10164 (*pos) += 2;
10165 if (noside == EVAL_SKIP)
10166 goto nosideret;
10167 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10168 return allocate_value (exp->elts[pc + 1].type);
10169 else
10170 error (_("Attempt to use a type name as an expression"));
10171
10172 case OP_AGGREGATE:
10173 case OP_CHOICES:
10174 case OP_OTHERS:
10175 case OP_DISCRETE_RANGE:
10176 case OP_POSITIONAL:
10177 case OP_NAME:
10178 if (noside == EVAL_NORMAL)
10179 switch (op)
10180 {
10181 case OP_NAME:
10182 error (_("Undefined name, ambiguous name, or renaming used in "
10183 "component association: %s."), &exp->elts[pc+2].string);
10184 case OP_AGGREGATE:
10185 error (_("Aggregates only allowed on the right of an assignment"));
10186 default:
10187 internal_error (__FILE__, __LINE__,
10188 _("aggregate apparently mangled"));
10189 }
10190
10191 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10192 *pos += oplen - 1;
10193 for (tem = 0; tem < nargs; tem += 1)
10194 ada_evaluate_subexp (NULL, exp, pos, noside);
10195 goto nosideret;
10196 }
10197
10198 nosideret:
10199 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10200 }
10201 \f
10202
10203 /* Fixed point */
10204
10205 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10206 type name that encodes the 'small and 'delta information.
10207 Otherwise, return NULL. */
10208
10209 static const char *
10210 fixed_type_info (struct type *type)
10211 {
10212 const char *name = ada_type_name (type);
10213 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10214
10215 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10216 {
10217 const char *tail = strstr (name, "___XF_");
10218
10219 if (tail == NULL)
10220 return NULL;
10221 else
10222 return tail + 5;
10223 }
10224 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10225 return fixed_type_info (TYPE_TARGET_TYPE (type));
10226 else
10227 return NULL;
10228 }
10229
10230 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10231
10232 int
10233 ada_is_fixed_point_type (struct type *type)
10234 {
10235 return fixed_type_info (type) != NULL;
10236 }
10237
10238 /* Return non-zero iff TYPE represents a System.Address type. */
10239
10240 int
10241 ada_is_system_address_type (struct type *type)
10242 {
10243 return (TYPE_NAME (type)
10244 && strcmp (TYPE_NAME (type), "system__address") == 0);
10245 }
10246
10247 /* Assuming that TYPE is the representation of an Ada fixed-point
10248 type, return its delta, or -1 if the type is malformed and the
10249 delta cannot be determined. */
10250
10251 DOUBLEST
10252 ada_delta (struct type *type)
10253 {
10254 const char *encoding = fixed_type_info (type);
10255 DOUBLEST num, den;
10256
10257 /* Strictly speaking, num and den are encoded as integer. However,
10258 they may not fit into a long, and they will have to be converted
10259 to DOUBLEST anyway. So scan them as DOUBLEST. */
10260 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10261 &num, &den) < 2)
10262 return -1.0;
10263 else
10264 return num / den;
10265 }
10266
10267 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10268 factor ('SMALL value) associated with the type. */
10269
10270 static DOUBLEST
10271 scaling_factor (struct type *type)
10272 {
10273 const char *encoding = fixed_type_info (type);
10274 DOUBLEST num0, den0, num1, den1;
10275 int n;
10276
10277 /* Strictly speaking, num's and den's are encoded as integer. However,
10278 they may not fit into a long, and they will have to be converted
10279 to DOUBLEST anyway. So scan them as DOUBLEST. */
10280 n = sscanf (encoding,
10281 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10282 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10283 &num0, &den0, &num1, &den1);
10284
10285 if (n < 2)
10286 return 1.0;
10287 else if (n == 4)
10288 return num1 / den1;
10289 else
10290 return num0 / den0;
10291 }
10292
10293
10294 /* Assuming that X is the representation of a value of fixed-point
10295 type TYPE, return its floating-point equivalent. */
10296
10297 DOUBLEST
10298 ada_fixed_to_float (struct type *type, LONGEST x)
10299 {
10300 return (DOUBLEST) x *scaling_factor (type);
10301 }
10302
10303 /* The representation of a fixed-point value of type TYPE
10304 corresponding to the value X. */
10305
10306 LONGEST
10307 ada_float_to_fixed (struct type *type, DOUBLEST x)
10308 {
10309 return (LONGEST) (x / scaling_factor (type) + 0.5);
10310 }
10311
10312 \f
10313
10314 /* Range types */
10315
10316 /* Scan STR beginning at position K for a discriminant name, and
10317 return the value of that discriminant field of DVAL in *PX. If
10318 PNEW_K is not null, put the position of the character beyond the
10319 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10320 not alter *PX and *PNEW_K if unsuccessful. */
10321
10322 static int
10323 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10324 int *pnew_k)
10325 {
10326 static char *bound_buffer = NULL;
10327 static size_t bound_buffer_len = 0;
10328 char *bound;
10329 char *pend;
10330 struct value *bound_val;
10331
10332 if (dval == NULL || str == NULL || str[k] == '\0')
10333 return 0;
10334
10335 pend = strstr (str + k, "__");
10336 if (pend == NULL)
10337 {
10338 bound = str + k;
10339 k += strlen (bound);
10340 }
10341 else
10342 {
10343 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10344 bound = bound_buffer;
10345 strncpy (bound_buffer, str + k, pend - (str + k));
10346 bound[pend - (str + k)] = '\0';
10347 k = pend - str;
10348 }
10349
10350 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10351 if (bound_val == NULL)
10352 return 0;
10353
10354 *px = value_as_long (bound_val);
10355 if (pnew_k != NULL)
10356 *pnew_k = k;
10357 return 1;
10358 }
10359
10360 /* Value of variable named NAME in the current environment. If
10361 no such variable found, then if ERR_MSG is null, returns 0, and
10362 otherwise causes an error with message ERR_MSG. */
10363
10364 static struct value *
10365 get_var_value (char *name, char *err_msg)
10366 {
10367 struct ada_symbol_info *syms;
10368 int nsyms;
10369
10370 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10371 &syms, 1);
10372
10373 if (nsyms != 1)
10374 {
10375 if (err_msg == NULL)
10376 return 0;
10377 else
10378 error (("%s"), err_msg);
10379 }
10380
10381 return value_of_variable (syms[0].sym, syms[0].block);
10382 }
10383
10384 /* Value of integer variable named NAME in the current environment. If
10385 no such variable found, returns 0, and sets *FLAG to 0. If
10386 successful, sets *FLAG to 1. */
10387
10388 LONGEST
10389 get_int_var_value (char *name, int *flag)
10390 {
10391 struct value *var_val = get_var_value (name, 0);
10392
10393 if (var_val == 0)
10394 {
10395 if (flag != NULL)
10396 *flag = 0;
10397 return 0;
10398 }
10399 else
10400 {
10401 if (flag != NULL)
10402 *flag = 1;
10403 return value_as_long (var_val);
10404 }
10405 }
10406
10407
10408 /* Return a range type whose base type is that of the range type named
10409 NAME in the current environment, and whose bounds are calculated
10410 from NAME according to the GNAT range encoding conventions.
10411 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10412 corresponding range type from debug information; fall back to using it
10413 if symbol lookup fails. If a new type must be created, allocate it
10414 like ORIG_TYPE was. The bounds information, in general, is encoded
10415 in NAME, the base type given in the named range type. */
10416
10417 static struct type *
10418 to_fixed_range_type (struct type *raw_type, struct value *dval)
10419 {
10420 const char *name;
10421 struct type *base_type;
10422 char *subtype_info;
10423
10424 gdb_assert (raw_type != NULL);
10425 gdb_assert (TYPE_NAME (raw_type) != NULL);
10426
10427 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10428 base_type = TYPE_TARGET_TYPE (raw_type);
10429 else
10430 base_type = raw_type;
10431
10432 name = TYPE_NAME (raw_type);
10433 subtype_info = strstr (name, "___XD");
10434 if (subtype_info == NULL)
10435 {
10436 LONGEST L = ada_discrete_type_low_bound (raw_type);
10437 LONGEST U = ada_discrete_type_high_bound (raw_type);
10438
10439 if (L < INT_MIN || U > INT_MAX)
10440 return raw_type;
10441 else
10442 return create_range_type (alloc_type_copy (raw_type), raw_type,
10443 ada_discrete_type_low_bound (raw_type),
10444 ada_discrete_type_high_bound (raw_type));
10445 }
10446 else
10447 {
10448 static char *name_buf = NULL;
10449 static size_t name_len = 0;
10450 int prefix_len = subtype_info - name;
10451 LONGEST L, U;
10452 struct type *type;
10453 char *bounds_str;
10454 int n;
10455
10456 GROW_VECT (name_buf, name_len, prefix_len + 5);
10457 strncpy (name_buf, name, prefix_len);
10458 name_buf[prefix_len] = '\0';
10459
10460 subtype_info += 5;
10461 bounds_str = strchr (subtype_info, '_');
10462 n = 1;
10463
10464 if (*subtype_info == 'L')
10465 {
10466 if (!ada_scan_number (bounds_str, n, &L, &n)
10467 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10468 return raw_type;
10469 if (bounds_str[n] == '_')
10470 n += 2;
10471 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10472 n += 1;
10473 subtype_info += 1;
10474 }
10475 else
10476 {
10477 int ok;
10478
10479 strcpy (name_buf + prefix_len, "___L");
10480 L = get_int_var_value (name_buf, &ok);
10481 if (!ok)
10482 {
10483 lim_warning (_("Unknown lower bound, using 1."));
10484 L = 1;
10485 }
10486 }
10487
10488 if (*subtype_info == 'U')
10489 {
10490 if (!ada_scan_number (bounds_str, n, &U, &n)
10491 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10492 return raw_type;
10493 }
10494 else
10495 {
10496 int ok;
10497
10498 strcpy (name_buf + prefix_len, "___U");
10499 U = get_int_var_value (name_buf, &ok);
10500 if (!ok)
10501 {
10502 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10503 U = L;
10504 }
10505 }
10506
10507 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10508 TYPE_NAME (type) = name;
10509 return type;
10510 }
10511 }
10512
10513 /* True iff NAME is the name of a range type. */
10514
10515 int
10516 ada_is_range_type_name (const char *name)
10517 {
10518 return (name != NULL && strstr (name, "___XD"));
10519 }
10520 \f
10521
10522 /* Modular types */
10523
10524 /* True iff TYPE is an Ada modular type. */
10525
10526 int
10527 ada_is_modular_type (struct type *type)
10528 {
10529 struct type *subranged_type = get_base_type (type);
10530
10531 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10532 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10533 && TYPE_UNSIGNED (subranged_type));
10534 }
10535
10536 /* Try to determine the lower and upper bounds of the given modular type
10537 using the type name only. Return non-zero and set L and U as the lower
10538 and upper bounds (respectively) if successful. */
10539
10540 int
10541 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10542 {
10543 const char *name = ada_type_name (type);
10544 const char *suffix;
10545 int k;
10546 LONGEST U;
10547
10548 if (name == NULL)
10549 return 0;
10550
10551 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10552 we are looking for static bounds, which means an __XDLU suffix.
10553 Moreover, we know that the lower bound of modular types is always
10554 zero, so the actual suffix should start with "__XDLU_0__", and
10555 then be followed by the upper bound value. */
10556 suffix = strstr (name, "__XDLU_0__");
10557 if (suffix == NULL)
10558 return 0;
10559 k = 10;
10560 if (!ada_scan_number (suffix, k, &U, NULL))
10561 return 0;
10562
10563 *modulus = (ULONGEST) U + 1;
10564 return 1;
10565 }
10566
10567 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10568
10569 ULONGEST
10570 ada_modulus (struct type *type)
10571 {
10572 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10573 }
10574 \f
10575
10576 /* Ada exception catchpoint support:
10577 ---------------------------------
10578
10579 We support 3 kinds of exception catchpoints:
10580 . catchpoints on Ada exceptions
10581 . catchpoints on unhandled Ada exceptions
10582 . catchpoints on failed assertions
10583
10584 Exceptions raised during failed assertions, or unhandled exceptions
10585 could perfectly be caught with the general catchpoint on Ada exceptions.
10586 However, we can easily differentiate these two special cases, and having
10587 the option to distinguish these two cases from the rest can be useful
10588 to zero-in on certain situations.
10589
10590 Exception catchpoints are a specialized form of breakpoint,
10591 since they rely on inserting breakpoints inside known routines
10592 of the GNAT runtime. The implementation therefore uses a standard
10593 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10594 of breakpoint_ops.
10595
10596 Support in the runtime for exception catchpoints have been changed
10597 a few times already, and these changes affect the implementation
10598 of these catchpoints. In order to be able to support several
10599 variants of the runtime, we use a sniffer that will determine
10600 the runtime variant used by the program being debugged. */
10601
10602 /* The different types of catchpoints that we introduced for catching
10603 Ada exceptions. */
10604
10605 enum exception_catchpoint_kind
10606 {
10607 ex_catch_exception,
10608 ex_catch_exception_unhandled,
10609 ex_catch_assert
10610 };
10611
10612 /* Ada's standard exceptions. */
10613
10614 static char *standard_exc[] = {
10615 "constraint_error",
10616 "program_error",
10617 "storage_error",
10618 "tasking_error"
10619 };
10620
10621 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10622
10623 /* A structure that describes how to support exception catchpoints
10624 for a given executable. */
10625
10626 struct exception_support_info
10627 {
10628 /* The name of the symbol to break on in order to insert
10629 a catchpoint on exceptions. */
10630 const char *catch_exception_sym;
10631
10632 /* The name of the symbol to break on in order to insert
10633 a catchpoint on unhandled exceptions. */
10634 const char *catch_exception_unhandled_sym;
10635
10636 /* The name of the symbol to break on in order to insert
10637 a catchpoint on failed assertions. */
10638 const char *catch_assert_sym;
10639
10640 /* Assuming that the inferior just triggered an unhandled exception
10641 catchpoint, this function is responsible for returning the address
10642 in inferior memory where the name of that exception is stored.
10643 Return zero if the address could not be computed. */
10644 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10645 };
10646
10647 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10648 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10649
10650 /* The following exception support info structure describes how to
10651 implement exception catchpoints with the latest version of the
10652 Ada runtime (as of 2007-03-06). */
10653
10654 static const struct exception_support_info default_exception_support_info =
10655 {
10656 "__gnat_debug_raise_exception", /* catch_exception_sym */
10657 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10658 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10659 ada_unhandled_exception_name_addr
10660 };
10661
10662 /* The following exception support info structure describes how to
10663 implement exception catchpoints with a slightly older version
10664 of the Ada runtime. */
10665
10666 static const struct exception_support_info exception_support_info_fallback =
10667 {
10668 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10669 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10670 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10671 ada_unhandled_exception_name_addr_from_raise
10672 };
10673
10674 /* Return nonzero if we can detect the exception support routines
10675 described in EINFO.
10676
10677 This function errors out if an abnormal situation is detected
10678 (for instance, if we find the exception support routines, but
10679 that support is found to be incomplete). */
10680
10681 static int
10682 ada_has_this_exception_support (const struct exception_support_info *einfo)
10683 {
10684 struct symbol *sym;
10685
10686 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10687 that should be compiled with debugging information. As a result, we
10688 expect to find that symbol in the symtabs. */
10689
10690 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10691 if (sym == NULL)
10692 {
10693 /* Perhaps we did not find our symbol because the Ada runtime was
10694 compiled without debugging info, or simply stripped of it.
10695 It happens on some GNU/Linux distributions for instance, where
10696 users have to install a separate debug package in order to get
10697 the runtime's debugging info. In that situation, let the user
10698 know why we cannot insert an Ada exception catchpoint.
10699
10700 Note: Just for the purpose of inserting our Ada exception
10701 catchpoint, we could rely purely on the associated minimal symbol.
10702 But we would be operating in degraded mode anyway, since we are
10703 still lacking the debugging info needed later on to extract
10704 the name of the exception being raised (this name is printed in
10705 the catchpoint message, and is also used when trying to catch
10706 a specific exception). We do not handle this case for now. */
10707 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10708 error (_("Your Ada runtime appears to be missing some debugging "
10709 "information.\nCannot insert Ada exception catchpoint "
10710 "in this configuration."));
10711
10712 return 0;
10713 }
10714
10715 /* Make sure that the symbol we found corresponds to a function. */
10716
10717 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10718 error (_("Symbol \"%s\" is not a function (class = %d)"),
10719 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10720
10721 return 1;
10722 }
10723
10724 /* Inspect the Ada runtime and determine which exception info structure
10725 should be used to provide support for exception catchpoints.
10726
10727 This function will always set the per-inferior exception_info,
10728 or raise an error. */
10729
10730 static void
10731 ada_exception_support_info_sniffer (void)
10732 {
10733 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10734 struct symbol *sym;
10735
10736 /* If the exception info is already known, then no need to recompute it. */
10737 if (data->exception_info != NULL)
10738 return;
10739
10740 /* Check the latest (default) exception support info. */
10741 if (ada_has_this_exception_support (&default_exception_support_info))
10742 {
10743 data->exception_info = &default_exception_support_info;
10744 return;
10745 }
10746
10747 /* Try our fallback exception suport info. */
10748 if (ada_has_this_exception_support (&exception_support_info_fallback))
10749 {
10750 data->exception_info = &exception_support_info_fallback;
10751 return;
10752 }
10753
10754 /* Sometimes, it is normal for us to not be able to find the routine
10755 we are looking for. This happens when the program is linked with
10756 the shared version of the GNAT runtime, and the program has not been
10757 started yet. Inform the user of these two possible causes if
10758 applicable. */
10759
10760 if (ada_update_initial_language (language_unknown) != language_ada)
10761 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10762
10763 /* If the symbol does not exist, then check that the program is
10764 already started, to make sure that shared libraries have been
10765 loaded. If it is not started, this may mean that the symbol is
10766 in a shared library. */
10767
10768 if (ptid_get_pid (inferior_ptid) == 0)
10769 error (_("Unable to insert catchpoint. Try to start the program first."));
10770
10771 /* At this point, we know that we are debugging an Ada program and
10772 that the inferior has been started, but we still are not able to
10773 find the run-time symbols. That can mean that we are in
10774 configurable run time mode, or that a-except as been optimized
10775 out by the linker... In any case, at this point it is not worth
10776 supporting this feature. */
10777
10778 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10779 }
10780
10781 /* True iff FRAME is very likely to be that of a function that is
10782 part of the runtime system. This is all very heuristic, but is
10783 intended to be used as advice as to what frames are uninteresting
10784 to most users. */
10785
10786 static int
10787 is_known_support_routine (struct frame_info *frame)
10788 {
10789 struct symtab_and_line sal;
10790 const char *func_name;
10791 enum language func_lang;
10792 int i;
10793
10794 /* If this code does not have any debugging information (no symtab),
10795 This cannot be any user code. */
10796
10797 find_frame_sal (frame, &sal);
10798 if (sal.symtab == NULL)
10799 return 1;
10800
10801 /* If there is a symtab, but the associated source file cannot be
10802 located, then assume this is not user code: Selecting a frame
10803 for which we cannot display the code would not be very helpful
10804 for the user. This should also take care of case such as VxWorks
10805 where the kernel has some debugging info provided for a few units. */
10806
10807 if (symtab_to_fullname (sal.symtab) == NULL)
10808 return 1;
10809
10810 /* Check the unit filename againt the Ada runtime file naming.
10811 We also check the name of the objfile against the name of some
10812 known system libraries that sometimes come with debugging info
10813 too. */
10814
10815 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10816 {
10817 re_comp (known_runtime_file_name_patterns[i]);
10818 if (re_exec (sal.symtab->filename))
10819 return 1;
10820 if (sal.symtab->objfile != NULL
10821 && re_exec (sal.symtab->objfile->name))
10822 return 1;
10823 }
10824
10825 /* Check whether the function is a GNAT-generated entity. */
10826
10827 find_frame_funname (frame, &func_name, &func_lang, NULL);
10828 if (func_name == NULL)
10829 return 1;
10830
10831 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10832 {
10833 re_comp (known_auxiliary_function_name_patterns[i]);
10834 if (re_exec (func_name))
10835 return 1;
10836 }
10837
10838 return 0;
10839 }
10840
10841 /* Find the first frame that contains debugging information and that is not
10842 part of the Ada run-time, starting from FI and moving upward. */
10843
10844 void
10845 ada_find_printable_frame (struct frame_info *fi)
10846 {
10847 for (; fi != NULL; fi = get_prev_frame (fi))
10848 {
10849 if (!is_known_support_routine (fi))
10850 {
10851 select_frame (fi);
10852 break;
10853 }
10854 }
10855
10856 }
10857
10858 /* Assuming that the inferior just triggered an unhandled exception
10859 catchpoint, return the address in inferior memory where the name
10860 of the exception is stored.
10861
10862 Return zero if the address could not be computed. */
10863
10864 static CORE_ADDR
10865 ada_unhandled_exception_name_addr (void)
10866 {
10867 return parse_and_eval_address ("e.full_name");
10868 }
10869
10870 /* Same as ada_unhandled_exception_name_addr, except that this function
10871 should be used when the inferior uses an older version of the runtime,
10872 where the exception name needs to be extracted from a specific frame
10873 several frames up in the callstack. */
10874
10875 static CORE_ADDR
10876 ada_unhandled_exception_name_addr_from_raise (void)
10877 {
10878 int frame_level;
10879 struct frame_info *fi;
10880 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10881
10882 /* To determine the name of this exception, we need to select
10883 the frame corresponding to RAISE_SYM_NAME. This frame is
10884 at least 3 levels up, so we simply skip the first 3 frames
10885 without checking the name of their associated function. */
10886 fi = get_current_frame ();
10887 for (frame_level = 0; frame_level < 3; frame_level += 1)
10888 if (fi != NULL)
10889 fi = get_prev_frame (fi);
10890
10891 while (fi != NULL)
10892 {
10893 const char *func_name;
10894 enum language func_lang;
10895
10896 find_frame_funname (fi, &func_name, &func_lang, NULL);
10897 if (func_name != NULL
10898 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10899 break; /* We found the frame we were looking for... */
10900 fi = get_prev_frame (fi);
10901 }
10902
10903 if (fi == NULL)
10904 return 0;
10905
10906 select_frame (fi);
10907 return parse_and_eval_address ("id.full_name");
10908 }
10909
10910 /* Assuming the inferior just triggered an Ada exception catchpoint
10911 (of any type), return the address in inferior memory where the name
10912 of the exception is stored, if applicable.
10913
10914 Return zero if the address could not be computed, or if not relevant. */
10915
10916 static CORE_ADDR
10917 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10918 struct breakpoint *b)
10919 {
10920 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10921
10922 switch (ex)
10923 {
10924 case ex_catch_exception:
10925 return (parse_and_eval_address ("e.full_name"));
10926 break;
10927
10928 case ex_catch_exception_unhandled:
10929 return data->exception_info->unhandled_exception_name_addr ();
10930 break;
10931
10932 case ex_catch_assert:
10933 return 0; /* Exception name is not relevant in this case. */
10934 break;
10935
10936 default:
10937 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10938 break;
10939 }
10940
10941 return 0; /* Should never be reached. */
10942 }
10943
10944 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10945 any error that ada_exception_name_addr_1 might cause to be thrown.
10946 When an error is intercepted, a warning with the error message is printed,
10947 and zero is returned. */
10948
10949 static CORE_ADDR
10950 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10951 struct breakpoint *b)
10952 {
10953 volatile struct gdb_exception e;
10954 CORE_ADDR result = 0;
10955
10956 TRY_CATCH (e, RETURN_MASK_ERROR)
10957 {
10958 result = ada_exception_name_addr_1 (ex, b);
10959 }
10960
10961 if (e.reason < 0)
10962 {
10963 warning (_("failed to get exception name: %s"), e.message);
10964 return 0;
10965 }
10966
10967 return result;
10968 }
10969
10970 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
10971 char *, char **,
10972 const struct breakpoint_ops **);
10973 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
10974
10975 /* Ada catchpoints.
10976
10977 In the case of catchpoints on Ada exceptions, the catchpoint will
10978 stop the target on every exception the program throws. When a user
10979 specifies the name of a specific exception, we translate this
10980 request into a condition expression (in text form), and then parse
10981 it into an expression stored in each of the catchpoint's locations.
10982 We then use this condition to check whether the exception that was
10983 raised is the one the user is interested in. If not, then the
10984 target is resumed again. We store the name of the requested
10985 exception, in order to be able to re-set the condition expression
10986 when symbols change. */
10987
10988 /* An instance of this type is used to represent an Ada catchpoint
10989 breakpoint location. It includes a "struct bp_location" as a kind
10990 of base class; users downcast to "struct bp_location *" when
10991 needed. */
10992
10993 struct ada_catchpoint_location
10994 {
10995 /* The base class. */
10996 struct bp_location base;
10997
10998 /* The condition that checks whether the exception that was raised
10999 is the specific exception the user specified on catchpoint
11000 creation. */
11001 struct expression *excep_cond_expr;
11002 };
11003
11004 /* Implement the DTOR method in the bp_location_ops structure for all
11005 Ada exception catchpoint kinds. */
11006
11007 static void
11008 ada_catchpoint_location_dtor (struct bp_location *bl)
11009 {
11010 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11011
11012 xfree (al->excep_cond_expr);
11013 }
11014
11015 /* The vtable to be used in Ada catchpoint locations. */
11016
11017 static const struct bp_location_ops ada_catchpoint_location_ops =
11018 {
11019 ada_catchpoint_location_dtor
11020 };
11021
11022 /* An instance of this type is used to represent an Ada catchpoint.
11023 It includes a "struct breakpoint" as a kind of base class; users
11024 downcast to "struct breakpoint *" when needed. */
11025
11026 struct ada_catchpoint
11027 {
11028 /* The base class. */
11029 struct breakpoint base;
11030
11031 /* The name of the specific exception the user specified. */
11032 char *excep_string;
11033 };
11034
11035 /* Parse the exception condition string in the context of each of the
11036 catchpoint's locations, and store them for later evaluation. */
11037
11038 static void
11039 create_excep_cond_exprs (struct ada_catchpoint *c)
11040 {
11041 struct cleanup *old_chain;
11042 struct bp_location *bl;
11043 char *cond_string;
11044
11045 /* Nothing to do if there's no specific exception to catch. */
11046 if (c->excep_string == NULL)
11047 return;
11048
11049 /* Same if there are no locations... */
11050 if (c->base.loc == NULL)
11051 return;
11052
11053 /* Compute the condition expression in text form, from the specific
11054 expection we want to catch. */
11055 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11056 old_chain = make_cleanup (xfree, cond_string);
11057
11058 /* Iterate over all the catchpoint's locations, and parse an
11059 expression for each. */
11060 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11061 {
11062 struct ada_catchpoint_location *ada_loc
11063 = (struct ada_catchpoint_location *) bl;
11064 struct expression *exp = NULL;
11065
11066 if (!bl->shlib_disabled)
11067 {
11068 volatile struct gdb_exception e;
11069 char *s;
11070
11071 s = cond_string;
11072 TRY_CATCH (e, RETURN_MASK_ERROR)
11073 {
11074 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11075 }
11076 if (e.reason < 0)
11077 warning (_("failed to reevaluate internal exception condition "
11078 "for catchpoint %d: %s"),
11079 c->base.number, e.message);
11080 }
11081
11082 ada_loc->excep_cond_expr = exp;
11083 }
11084
11085 do_cleanups (old_chain);
11086 }
11087
11088 /* Implement the DTOR method in the breakpoint_ops structure for all
11089 exception catchpoint kinds. */
11090
11091 static void
11092 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11093 {
11094 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11095
11096 xfree (c->excep_string);
11097
11098 bkpt_breakpoint_ops.dtor (b);
11099 }
11100
11101 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11102 structure for all exception catchpoint kinds. */
11103
11104 static struct bp_location *
11105 allocate_location_exception (enum exception_catchpoint_kind ex,
11106 struct breakpoint *self)
11107 {
11108 struct ada_catchpoint_location *loc;
11109
11110 loc = XNEW (struct ada_catchpoint_location);
11111 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11112 loc->excep_cond_expr = NULL;
11113 return &loc->base;
11114 }
11115
11116 /* Implement the RE_SET method in the breakpoint_ops structure for all
11117 exception catchpoint kinds. */
11118
11119 static void
11120 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11121 {
11122 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11123
11124 /* Call the base class's method. This updates the catchpoint's
11125 locations. */
11126 bkpt_breakpoint_ops.re_set (b);
11127
11128 /* Reparse the exception conditional expressions. One for each
11129 location. */
11130 create_excep_cond_exprs (c);
11131 }
11132
11133 /* Returns true if we should stop for this breakpoint hit. If the
11134 user specified a specific exception, we only want to cause a stop
11135 if the program thrown that exception. */
11136
11137 static int
11138 should_stop_exception (const struct bp_location *bl)
11139 {
11140 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11141 const struct ada_catchpoint_location *ada_loc
11142 = (const struct ada_catchpoint_location *) bl;
11143 volatile struct gdb_exception ex;
11144 int stop;
11145
11146 /* With no specific exception, should always stop. */
11147 if (c->excep_string == NULL)
11148 return 1;
11149
11150 if (ada_loc->excep_cond_expr == NULL)
11151 {
11152 /* We will have a NULL expression if back when we were creating
11153 the expressions, this location's had failed to parse. */
11154 return 1;
11155 }
11156
11157 stop = 1;
11158 TRY_CATCH (ex, RETURN_MASK_ALL)
11159 {
11160 struct value *mark;
11161
11162 mark = value_mark ();
11163 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11164 value_free_to_mark (mark);
11165 }
11166 if (ex.reason < 0)
11167 exception_fprintf (gdb_stderr, ex,
11168 _("Error in testing exception condition:\n"));
11169 return stop;
11170 }
11171
11172 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11173 for all exception catchpoint kinds. */
11174
11175 static void
11176 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11177 {
11178 bs->stop = should_stop_exception (bs->bp_location_at);
11179 }
11180
11181 /* Implement the PRINT_IT method in the breakpoint_ops structure
11182 for all exception catchpoint kinds. */
11183
11184 static enum print_stop_action
11185 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11186 {
11187 struct ui_out *uiout = current_uiout;
11188 struct breakpoint *b = bs->breakpoint_at;
11189
11190 annotate_catchpoint (b->number);
11191
11192 if (ui_out_is_mi_like_p (uiout))
11193 {
11194 ui_out_field_string (uiout, "reason",
11195 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11196 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11197 }
11198
11199 ui_out_text (uiout,
11200 b->disposition == disp_del ? "\nTemporary catchpoint "
11201 : "\nCatchpoint ");
11202 ui_out_field_int (uiout, "bkptno", b->number);
11203 ui_out_text (uiout, ", ");
11204
11205 switch (ex)
11206 {
11207 case ex_catch_exception:
11208 case ex_catch_exception_unhandled:
11209 {
11210 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11211 char exception_name[256];
11212
11213 if (addr != 0)
11214 {
11215 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11216 exception_name [sizeof (exception_name) - 1] = '\0';
11217 }
11218 else
11219 {
11220 /* For some reason, we were unable to read the exception
11221 name. This could happen if the Runtime was compiled
11222 without debugging info, for instance. In that case,
11223 just replace the exception name by the generic string
11224 "exception" - it will read as "an exception" in the
11225 notification we are about to print. */
11226 memcpy (exception_name, "exception", sizeof ("exception"));
11227 }
11228 /* In the case of unhandled exception breakpoints, we print
11229 the exception name as "unhandled EXCEPTION_NAME", to make
11230 it clearer to the user which kind of catchpoint just got
11231 hit. We used ui_out_text to make sure that this extra
11232 info does not pollute the exception name in the MI case. */
11233 if (ex == ex_catch_exception_unhandled)
11234 ui_out_text (uiout, "unhandled ");
11235 ui_out_field_string (uiout, "exception-name", exception_name);
11236 }
11237 break;
11238 case ex_catch_assert:
11239 /* In this case, the name of the exception is not really
11240 important. Just print "failed assertion" to make it clearer
11241 that his program just hit an assertion-failure catchpoint.
11242 We used ui_out_text because this info does not belong in
11243 the MI output. */
11244 ui_out_text (uiout, "failed assertion");
11245 break;
11246 }
11247 ui_out_text (uiout, " at ");
11248 ada_find_printable_frame (get_current_frame ());
11249
11250 return PRINT_SRC_AND_LOC;
11251 }
11252
11253 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11254 for all exception catchpoint kinds. */
11255
11256 static void
11257 print_one_exception (enum exception_catchpoint_kind ex,
11258 struct breakpoint *b, struct bp_location **last_loc)
11259 {
11260 struct ui_out *uiout = current_uiout;
11261 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11262 struct value_print_options opts;
11263
11264 get_user_print_options (&opts);
11265 if (opts.addressprint)
11266 {
11267 annotate_field (4);
11268 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11269 }
11270
11271 annotate_field (5);
11272 *last_loc = b->loc;
11273 switch (ex)
11274 {
11275 case ex_catch_exception:
11276 if (c->excep_string != NULL)
11277 {
11278 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11279
11280 ui_out_field_string (uiout, "what", msg);
11281 xfree (msg);
11282 }
11283 else
11284 ui_out_field_string (uiout, "what", "all Ada exceptions");
11285
11286 break;
11287
11288 case ex_catch_exception_unhandled:
11289 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11290 break;
11291
11292 case ex_catch_assert:
11293 ui_out_field_string (uiout, "what", "failed Ada assertions");
11294 break;
11295
11296 default:
11297 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11298 break;
11299 }
11300 }
11301
11302 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11303 for all exception catchpoint kinds. */
11304
11305 static void
11306 print_mention_exception (enum exception_catchpoint_kind ex,
11307 struct breakpoint *b)
11308 {
11309 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11310 struct ui_out *uiout = current_uiout;
11311
11312 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11313 : _("Catchpoint "));
11314 ui_out_field_int (uiout, "bkptno", b->number);
11315 ui_out_text (uiout, ": ");
11316
11317 switch (ex)
11318 {
11319 case ex_catch_exception:
11320 if (c->excep_string != NULL)
11321 {
11322 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11323 struct cleanup *old_chain = make_cleanup (xfree, info);
11324
11325 ui_out_text (uiout, info);
11326 do_cleanups (old_chain);
11327 }
11328 else
11329 ui_out_text (uiout, _("all Ada exceptions"));
11330 break;
11331
11332 case ex_catch_exception_unhandled:
11333 ui_out_text (uiout, _("unhandled Ada exceptions"));
11334 break;
11335
11336 case ex_catch_assert:
11337 ui_out_text (uiout, _("failed Ada assertions"));
11338 break;
11339
11340 default:
11341 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11342 break;
11343 }
11344 }
11345
11346 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11347 for all exception catchpoint kinds. */
11348
11349 static void
11350 print_recreate_exception (enum exception_catchpoint_kind ex,
11351 struct breakpoint *b, struct ui_file *fp)
11352 {
11353 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11354
11355 switch (ex)
11356 {
11357 case ex_catch_exception:
11358 fprintf_filtered (fp, "catch exception");
11359 if (c->excep_string != NULL)
11360 fprintf_filtered (fp, " %s", c->excep_string);
11361 break;
11362
11363 case ex_catch_exception_unhandled:
11364 fprintf_filtered (fp, "catch exception unhandled");
11365 break;
11366
11367 case ex_catch_assert:
11368 fprintf_filtered (fp, "catch assert");
11369 break;
11370
11371 default:
11372 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11373 }
11374 print_recreate_thread (b, fp);
11375 }
11376
11377 /* Virtual table for "catch exception" breakpoints. */
11378
11379 static void
11380 dtor_catch_exception (struct breakpoint *b)
11381 {
11382 dtor_exception (ex_catch_exception, b);
11383 }
11384
11385 static struct bp_location *
11386 allocate_location_catch_exception (struct breakpoint *self)
11387 {
11388 return allocate_location_exception (ex_catch_exception, self);
11389 }
11390
11391 static void
11392 re_set_catch_exception (struct breakpoint *b)
11393 {
11394 re_set_exception (ex_catch_exception, b);
11395 }
11396
11397 static void
11398 check_status_catch_exception (bpstat bs)
11399 {
11400 check_status_exception (ex_catch_exception, bs);
11401 }
11402
11403 static enum print_stop_action
11404 print_it_catch_exception (bpstat bs)
11405 {
11406 return print_it_exception (ex_catch_exception, bs);
11407 }
11408
11409 static void
11410 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11411 {
11412 print_one_exception (ex_catch_exception, b, last_loc);
11413 }
11414
11415 static void
11416 print_mention_catch_exception (struct breakpoint *b)
11417 {
11418 print_mention_exception (ex_catch_exception, b);
11419 }
11420
11421 static void
11422 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11423 {
11424 print_recreate_exception (ex_catch_exception, b, fp);
11425 }
11426
11427 static struct breakpoint_ops catch_exception_breakpoint_ops;
11428
11429 /* Virtual table for "catch exception unhandled" breakpoints. */
11430
11431 static void
11432 dtor_catch_exception_unhandled (struct breakpoint *b)
11433 {
11434 dtor_exception (ex_catch_exception_unhandled, b);
11435 }
11436
11437 static struct bp_location *
11438 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11439 {
11440 return allocate_location_exception (ex_catch_exception_unhandled, self);
11441 }
11442
11443 static void
11444 re_set_catch_exception_unhandled (struct breakpoint *b)
11445 {
11446 re_set_exception (ex_catch_exception_unhandled, b);
11447 }
11448
11449 static void
11450 check_status_catch_exception_unhandled (bpstat bs)
11451 {
11452 check_status_exception (ex_catch_exception_unhandled, bs);
11453 }
11454
11455 static enum print_stop_action
11456 print_it_catch_exception_unhandled (bpstat bs)
11457 {
11458 return print_it_exception (ex_catch_exception_unhandled, bs);
11459 }
11460
11461 static void
11462 print_one_catch_exception_unhandled (struct breakpoint *b,
11463 struct bp_location **last_loc)
11464 {
11465 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11466 }
11467
11468 static void
11469 print_mention_catch_exception_unhandled (struct breakpoint *b)
11470 {
11471 print_mention_exception (ex_catch_exception_unhandled, b);
11472 }
11473
11474 static void
11475 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11476 struct ui_file *fp)
11477 {
11478 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11479 }
11480
11481 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11482
11483 /* Virtual table for "catch assert" breakpoints. */
11484
11485 static void
11486 dtor_catch_assert (struct breakpoint *b)
11487 {
11488 dtor_exception (ex_catch_assert, b);
11489 }
11490
11491 static struct bp_location *
11492 allocate_location_catch_assert (struct breakpoint *self)
11493 {
11494 return allocate_location_exception (ex_catch_assert, self);
11495 }
11496
11497 static void
11498 re_set_catch_assert (struct breakpoint *b)
11499 {
11500 return re_set_exception (ex_catch_assert, b);
11501 }
11502
11503 static void
11504 check_status_catch_assert (bpstat bs)
11505 {
11506 check_status_exception (ex_catch_assert, bs);
11507 }
11508
11509 static enum print_stop_action
11510 print_it_catch_assert (bpstat bs)
11511 {
11512 return print_it_exception (ex_catch_assert, bs);
11513 }
11514
11515 static void
11516 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11517 {
11518 print_one_exception (ex_catch_assert, b, last_loc);
11519 }
11520
11521 static void
11522 print_mention_catch_assert (struct breakpoint *b)
11523 {
11524 print_mention_exception (ex_catch_assert, b);
11525 }
11526
11527 static void
11528 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11529 {
11530 print_recreate_exception (ex_catch_assert, b, fp);
11531 }
11532
11533 static struct breakpoint_ops catch_assert_breakpoint_ops;
11534
11535 /* Return a newly allocated copy of the first space-separated token
11536 in ARGSP, and then adjust ARGSP to point immediately after that
11537 token.
11538
11539 Return NULL if ARGPS does not contain any more tokens. */
11540
11541 static char *
11542 ada_get_next_arg (char **argsp)
11543 {
11544 char *args = *argsp;
11545 char *end;
11546 char *result;
11547
11548 args = skip_spaces (args);
11549 if (args[0] == '\0')
11550 return NULL; /* No more arguments. */
11551
11552 /* Find the end of the current argument. */
11553
11554 end = skip_to_space (args);
11555
11556 /* Adjust ARGSP to point to the start of the next argument. */
11557
11558 *argsp = end;
11559
11560 /* Make a copy of the current argument and return it. */
11561
11562 result = xmalloc (end - args + 1);
11563 strncpy (result, args, end - args);
11564 result[end - args] = '\0';
11565
11566 return result;
11567 }
11568
11569 /* Split the arguments specified in a "catch exception" command.
11570 Set EX to the appropriate catchpoint type.
11571 Set EXCEP_STRING to the name of the specific exception if
11572 specified by the user.
11573 If a condition is found at the end of the arguments, the condition
11574 expression is stored in COND_STRING (memory must be deallocated
11575 after use). Otherwise COND_STRING is set to NULL. */
11576
11577 static void
11578 catch_ada_exception_command_split (char *args,
11579 enum exception_catchpoint_kind *ex,
11580 char **excep_string,
11581 char **cond_string)
11582 {
11583 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11584 char *exception_name;
11585 char *cond = NULL;
11586
11587 exception_name = ada_get_next_arg (&args);
11588 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11589 {
11590 /* This is not an exception name; this is the start of a condition
11591 expression for a catchpoint on all exceptions. So, "un-get"
11592 this token, and set exception_name to NULL. */
11593 xfree (exception_name);
11594 exception_name = NULL;
11595 args -= 2;
11596 }
11597 make_cleanup (xfree, exception_name);
11598
11599 /* Check to see if we have a condition. */
11600
11601 args = skip_spaces (args);
11602 if (strncmp (args, "if", 2) == 0
11603 && (isspace (args[2]) || args[2] == '\0'))
11604 {
11605 args += 2;
11606 args = skip_spaces (args);
11607
11608 if (args[0] == '\0')
11609 error (_("Condition missing after `if' keyword"));
11610 cond = xstrdup (args);
11611 make_cleanup (xfree, cond);
11612
11613 args += strlen (args);
11614 }
11615
11616 /* Check that we do not have any more arguments. Anything else
11617 is unexpected. */
11618
11619 if (args[0] != '\0')
11620 error (_("Junk at end of expression"));
11621
11622 discard_cleanups (old_chain);
11623
11624 if (exception_name == NULL)
11625 {
11626 /* Catch all exceptions. */
11627 *ex = ex_catch_exception;
11628 *excep_string = NULL;
11629 }
11630 else if (strcmp (exception_name, "unhandled") == 0)
11631 {
11632 /* Catch unhandled exceptions. */
11633 *ex = ex_catch_exception_unhandled;
11634 *excep_string = NULL;
11635 }
11636 else
11637 {
11638 /* Catch a specific exception. */
11639 *ex = ex_catch_exception;
11640 *excep_string = exception_name;
11641 }
11642 *cond_string = cond;
11643 }
11644
11645 /* Return the name of the symbol on which we should break in order to
11646 implement a catchpoint of the EX kind. */
11647
11648 static const char *
11649 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11650 {
11651 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11652
11653 gdb_assert (data->exception_info != NULL);
11654
11655 switch (ex)
11656 {
11657 case ex_catch_exception:
11658 return (data->exception_info->catch_exception_sym);
11659 break;
11660 case ex_catch_exception_unhandled:
11661 return (data->exception_info->catch_exception_unhandled_sym);
11662 break;
11663 case ex_catch_assert:
11664 return (data->exception_info->catch_assert_sym);
11665 break;
11666 default:
11667 internal_error (__FILE__, __LINE__,
11668 _("unexpected catchpoint kind (%d)"), ex);
11669 }
11670 }
11671
11672 /* Return the breakpoint ops "virtual table" used for catchpoints
11673 of the EX kind. */
11674
11675 static const struct breakpoint_ops *
11676 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11677 {
11678 switch (ex)
11679 {
11680 case ex_catch_exception:
11681 return (&catch_exception_breakpoint_ops);
11682 break;
11683 case ex_catch_exception_unhandled:
11684 return (&catch_exception_unhandled_breakpoint_ops);
11685 break;
11686 case ex_catch_assert:
11687 return (&catch_assert_breakpoint_ops);
11688 break;
11689 default:
11690 internal_error (__FILE__, __LINE__,
11691 _("unexpected catchpoint kind (%d)"), ex);
11692 }
11693 }
11694
11695 /* Return the condition that will be used to match the current exception
11696 being raised with the exception that the user wants to catch. This
11697 assumes that this condition is used when the inferior just triggered
11698 an exception catchpoint.
11699
11700 The string returned is a newly allocated string that needs to be
11701 deallocated later. */
11702
11703 static char *
11704 ada_exception_catchpoint_cond_string (const char *excep_string)
11705 {
11706 int i;
11707
11708 /* The standard exceptions are a special case. They are defined in
11709 runtime units that have been compiled without debugging info; if
11710 EXCEP_STRING is the not-fully-qualified name of a standard
11711 exception (e.g. "constraint_error") then, during the evaluation
11712 of the condition expression, the symbol lookup on this name would
11713 *not* return this standard exception. The catchpoint condition
11714 may then be set only on user-defined exceptions which have the
11715 same not-fully-qualified name (e.g. my_package.constraint_error).
11716
11717 To avoid this unexcepted behavior, these standard exceptions are
11718 systematically prefixed by "standard". This means that "catch
11719 exception constraint_error" is rewritten into "catch exception
11720 standard.constraint_error".
11721
11722 If an exception named contraint_error is defined in another package of
11723 the inferior program, then the only way to specify this exception as a
11724 breakpoint condition is to use its fully-qualified named:
11725 e.g. my_package.constraint_error. */
11726
11727 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11728 {
11729 if (strcmp (standard_exc [i], excep_string) == 0)
11730 {
11731 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11732 excep_string);
11733 }
11734 }
11735 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11736 }
11737
11738 /* Return the symtab_and_line that should be used to insert an exception
11739 catchpoint of the TYPE kind.
11740
11741 EXCEP_STRING should contain the name of a specific exception that
11742 the catchpoint should catch, or NULL otherwise.
11743
11744 ADDR_STRING returns the name of the function where the real
11745 breakpoint that implements the catchpoints is set, depending on the
11746 type of catchpoint we need to create. */
11747
11748 static struct symtab_and_line
11749 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11750 char **addr_string, const struct breakpoint_ops **ops)
11751 {
11752 const char *sym_name;
11753 struct symbol *sym;
11754
11755 /* First, find out which exception support info to use. */
11756 ada_exception_support_info_sniffer ();
11757
11758 /* Then lookup the function on which we will break in order to catch
11759 the Ada exceptions requested by the user. */
11760 sym_name = ada_exception_sym_name (ex);
11761 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11762
11763 /* We can assume that SYM is not NULL at this stage. If the symbol
11764 did not exist, ada_exception_support_info_sniffer would have
11765 raised an exception.
11766
11767 Also, ada_exception_support_info_sniffer should have already
11768 verified that SYM is a function symbol. */
11769 gdb_assert (sym != NULL);
11770 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11771
11772 /* Set ADDR_STRING. */
11773 *addr_string = xstrdup (sym_name);
11774
11775 /* Set OPS. */
11776 *ops = ada_exception_breakpoint_ops (ex);
11777
11778 return find_function_start_sal (sym, 1);
11779 }
11780
11781 /* Parse the arguments (ARGS) of the "catch exception" command.
11782
11783 If the user asked the catchpoint to catch only a specific
11784 exception, then save the exception name in ADDR_STRING.
11785
11786 If the user provided a condition, then set COND_STRING to
11787 that condition expression (the memory must be deallocated
11788 after use). Otherwise, set COND_STRING to NULL.
11789
11790 See ada_exception_sal for a description of all the remaining
11791 function arguments of this function. */
11792
11793 static struct symtab_and_line
11794 ada_decode_exception_location (char *args, char **addr_string,
11795 char **excep_string,
11796 char **cond_string,
11797 const struct breakpoint_ops **ops)
11798 {
11799 enum exception_catchpoint_kind ex;
11800
11801 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
11802 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11803 }
11804
11805 /* Create an Ada exception catchpoint. */
11806
11807 static void
11808 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11809 struct symtab_and_line sal,
11810 char *addr_string,
11811 char *excep_string,
11812 char *cond_string,
11813 const struct breakpoint_ops *ops,
11814 int tempflag,
11815 int from_tty)
11816 {
11817 struct ada_catchpoint *c;
11818
11819 c = XNEW (struct ada_catchpoint);
11820 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11821 ops, tempflag, from_tty);
11822 c->excep_string = excep_string;
11823 create_excep_cond_exprs (c);
11824 if (cond_string != NULL)
11825 set_breakpoint_condition (&c->base, cond_string, from_tty);
11826 install_breakpoint (0, &c->base, 1);
11827 }
11828
11829 /* Implement the "catch exception" command. */
11830
11831 static void
11832 catch_ada_exception_command (char *arg, int from_tty,
11833 struct cmd_list_element *command)
11834 {
11835 struct gdbarch *gdbarch = get_current_arch ();
11836 int tempflag;
11837 struct symtab_and_line sal;
11838 char *addr_string = NULL;
11839 char *excep_string = NULL;
11840 char *cond_string = NULL;
11841 const struct breakpoint_ops *ops = NULL;
11842
11843 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11844
11845 if (!arg)
11846 arg = "";
11847 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11848 &cond_string, &ops);
11849 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11850 excep_string, cond_string, ops,
11851 tempflag, from_tty);
11852 }
11853
11854 /* Assuming that ARGS contains the arguments of a "catch assert"
11855 command, parse those arguments and return a symtab_and_line object
11856 for a failed assertion catchpoint.
11857
11858 Set ADDR_STRING to the name of the function where the real
11859 breakpoint that implements the catchpoint is set.
11860
11861 If ARGS contains a condition, set COND_STRING to that condition
11862 (the memory needs to be deallocated after use). Otherwise, set
11863 COND_STRING to NULL. */
11864
11865 static struct symtab_and_line
11866 ada_decode_assert_location (char *args, char **addr_string,
11867 char **cond_string,
11868 const struct breakpoint_ops **ops)
11869 {
11870 args = skip_spaces (args);
11871
11872 /* Check whether a condition was provided. */
11873 if (strncmp (args, "if", 2) == 0
11874 && (isspace (args[2]) || args[2] == '\0'))
11875 {
11876 args += 2;
11877 args = skip_spaces (args);
11878 if (args[0] == '\0')
11879 error (_("condition missing after `if' keyword"));
11880 *cond_string = xstrdup (args);
11881 }
11882
11883 /* Otherwise, there should be no other argument at the end of
11884 the command. */
11885 else if (args[0] != '\0')
11886 error (_("Junk at end of arguments."));
11887
11888 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11889 }
11890
11891 /* Implement the "catch assert" command. */
11892
11893 static void
11894 catch_assert_command (char *arg, int from_tty,
11895 struct cmd_list_element *command)
11896 {
11897 struct gdbarch *gdbarch = get_current_arch ();
11898 int tempflag;
11899 struct symtab_and_line sal;
11900 char *addr_string = NULL;
11901 char *cond_string = NULL;
11902 const struct breakpoint_ops *ops = NULL;
11903
11904 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11905
11906 if (!arg)
11907 arg = "";
11908 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
11909 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11910 NULL, cond_string, ops, tempflag,
11911 from_tty);
11912 }
11913 /* Operators */
11914 /* Information about operators given special treatment in functions
11915 below. */
11916 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11917
11918 #define ADA_OPERATORS \
11919 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11920 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11921 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11922 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11923 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11924 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11925 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11926 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11927 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11928 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11929 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11930 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11931 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11932 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11933 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11934 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11935 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11936 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11937 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11938
11939 static void
11940 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11941 int *argsp)
11942 {
11943 switch (exp->elts[pc - 1].opcode)
11944 {
11945 default:
11946 operator_length_standard (exp, pc, oplenp, argsp);
11947 break;
11948
11949 #define OP_DEFN(op, len, args, binop) \
11950 case op: *oplenp = len; *argsp = args; break;
11951 ADA_OPERATORS;
11952 #undef OP_DEFN
11953
11954 case OP_AGGREGATE:
11955 *oplenp = 3;
11956 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11957 break;
11958
11959 case OP_CHOICES:
11960 *oplenp = 3;
11961 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11962 break;
11963 }
11964 }
11965
11966 /* Implementation of the exp_descriptor method operator_check. */
11967
11968 static int
11969 ada_operator_check (struct expression *exp, int pos,
11970 int (*objfile_func) (struct objfile *objfile, void *data),
11971 void *data)
11972 {
11973 const union exp_element *const elts = exp->elts;
11974 struct type *type = NULL;
11975
11976 switch (elts[pos].opcode)
11977 {
11978 case UNOP_IN_RANGE:
11979 case UNOP_QUAL:
11980 type = elts[pos + 1].type;
11981 break;
11982
11983 default:
11984 return operator_check_standard (exp, pos, objfile_func, data);
11985 }
11986
11987 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11988
11989 if (type && TYPE_OBJFILE (type)
11990 && (*objfile_func) (TYPE_OBJFILE (type), data))
11991 return 1;
11992
11993 return 0;
11994 }
11995
11996 static char *
11997 ada_op_name (enum exp_opcode opcode)
11998 {
11999 switch (opcode)
12000 {
12001 default:
12002 return op_name_standard (opcode);
12003
12004 #define OP_DEFN(op, len, args, binop) case op: return #op;
12005 ADA_OPERATORS;
12006 #undef OP_DEFN
12007
12008 case OP_AGGREGATE:
12009 return "OP_AGGREGATE";
12010 case OP_CHOICES:
12011 return "OP_CHOICES";
12012 case OP_NAME:
12013 return "OP_NAME";
12014 }
12015 }
12016
12017 /* As for operator_length, but assumes PC is pointing at the first
12018 element of the operator, and gives meaningful results only for the
12019 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12020
12021 static void
12022 ada_forward_operator_length (struct expression *exp, int pc,
12023 int *oplenp, int *argsp)
12024 {
12025 switch (exp->elts[pc].opcode)
12026 {
12027 default:
12028 *oplenp = *argsp = 0;
12029 break;
12030
12031 #define OP_DEFN(op, len, args, binop) \
12032 case op: *oplenp = len; *argsp = args; break;
12033 ADA_OPERATORS;
12034 #undef OP_DEFN
12035
12036 case OP_AGGREGATE:
12037 *oplenp = 3;
12038 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12039 break;
12040
12041 case OP_CHOICES:
12042 *oplenp = 3;
12043 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12044 break;
12045
12046 case OP_STRING:
12047 case OP_NAME:
12048 {
12049 int len = longest_to_int (exp->elts[pc + 1].longconst);
12050
12051 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12052 *argsp = 0;
12053 break;
12054 }
12055 }
12056 }
12057
12058 static int
12059 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12060 {
12061 enum exp_opcode op = exp->elts[elt].opcode;
12062 int oplen, nargs;
12063 int pc = elt;
12064 int i;
12065
12066 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12067
12068 switch (op)
12069 {
12070 /* Ada attributes ('Foo). */
12071 case OP_ATR_FIRST:
12072 case OP_ATR_LAST:
12073 case OP_ATR_LENGTH:
12074 case OP_ATR_IMAGE:
12075 case OP_ATR_MAX:
12076 case OP_ATR_MIN:
12077 case OP_ATR_MODULUS:
12078 case OP_ATR_POS:
12079 case OP_ATR_SIZE:
12080 case OP_ATR_TAG:
12081 case OP_ATR_VAL:
12082 break;
12083
12084 case UNOP_IN_RANGE:
12085 case UNOP_QUAL:
12086 /* XXX: gdb_sprint_host_address, type_sprint */
12087 fprintf_filtered (stream, _("Type @"));
12088 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12089 fprintf_filtered (stream, " (");
12090 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12091 fprintf_filtered (stream, ")");
12092 break;
12093 case BINOP_IN_BOUNDS:
12094 fprintf_filtered (stream, " (%d)",
12095 longest_to_int (exp->elts[pc + 2].longconst));
12096 break;
12097 case TERNOP_IN_RANGE:
12098 break;
12099
12100 case OP_AGGREGATE:
12101 case OP_OTHERS:
12102 case OP_DISCRETE_RANGE:
12103 case OP_POSITIONAL:
12104 case OP_CHOICES:
12105 break;
12106
12107 case OP_NAME:
12108 case OP_STRING:
12109 {
12110 char *name = &exp->elts[elt + 2].string;
12111 int len = longest_to_int (exp->elts[elt + 1].longconst);
12112
12113 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12114 break;
12115 }
12116
12117 default:
12118 return dump_subexp_body_standard (exp, stream, elt);
12119 }
12120
12121 elt += oplen;
12122 for (i = 0; i < nargs; i += 1)
12123 elt = dump_subexp (exp, stream, elt);
12124
12125 return elt;
12126 }
12127
12128 /* The Ada extension of print_subexp (q.v.). */
12129
12130 static void
12131 ada_print_subexp (struct expression *exp, int *pos,
12132 struct ui_file *stream, enum precedence prec)
12133 {
12134 int oplen, nargs, i;
12135 int pc = *pos;
12136 enum exp_opcode op = exp->elts[pc].opcode;
12137
12138 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12139
12140 *pos += oplen;
12141 switch (op)
12142 {
12143 default:
12144 *pos -= oplen;
12145 print_subexp_standard (exp, pos, stream, prec);
12146 return;
12147
12148 case OP_VAR_VALUE:
12149 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12150 return;
12151
12152 case BINOP_IN_BOUNDS:
12153 /* XXX: sprint_subexp */
12154 print_subexp (exp, pos, stream, PREC_SUFFIX);
12155 fputs_filtered (" in ", stream);
12156 print_subexp (exp, pos, stream, PREC_SUFFIX);
12157 fputs_filtered ("'range", stream);
12158 if (exp->elts[pc + 1].longconst > 1)
12159 fprintf_filtered (stream, "(%ld)",
12160 (long) exp->elts[pc + 1].longconst);
12161 return;
12162
12163 case TERNOP_IN_RANGE:
12164 if (prec >= PREC_EQUAL)
12165 fputs_filtered ("(", stream);
12166 /* XXX: sprint_subexp */
12167 print_subexp (exp, pos, stream, PREC_SUFFIX);
12168 fputs_filtered (" in ", stream);
12169 print_subexp (exp, pos, stream, PREC_EQUAL);
12170 fputs_filtered (" .. ", stream);
12171 print_subexp (exp, pos, stream, PREC_EQUAL);
12172 if (prec >= PREC_EQUAL)
12173 fputs_filtered (")", stream);
12174 return;
12175
12176 case OP_ATR_FIRST:
12177 case OP_ATR_LAST:
12178 case OP_ATR_LENGTH:
12179 case OP_ATR_IMAGE:
12180 case OP_ATR_MAX:
12181 case OP_ATR_MIN:
12182 case OP_ATR_MODULUS:
12183 case OP_ATR_POS:
12184 case OP_ATR_SIZE:
12185 case OP_ATR_TAG:
12186 case OP_ATR_VAL:
12187 if (exp->elts[*pos].opcode == OP_TYPE)
12188 {
12189 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12190 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12191 *pos += 3;
12192 }
12193 else
12194 print_subexp (exp, pos, stream, PREC_SUFFIX);
12195 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12196 if (nargs > 1)
12197 {
12198 int tem;
12199
12200 for (tem = 1; tem < nargs; tem += 1)
12201 {
12202 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12203 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12204 }
12205 fputs_filtered (")", stream);
12206 }
12207 return;
12208
12209 case UNOP_QUAL:
12210 type_print (exp->elts[pc + 1].type, "", stream, 0);
12211 fputs_filtered ("'(", stream);
12212 print_subexp (exp, pos, stream, PREC_PREFIX);
12213 fputs_filtered (")", stream);
12214 return;
12215
12216 case UNOP_IN_RANGE:
12217 /* XXX: sprint_subexp */
12218 print_subexp (exp, pos, stream, PREC_SUFFIX);
12219 fputs_filtered (" in ", stream);
12220 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12221 return;
12222
12223 case OP_DISCRETE_RANGE:
12224 print_subexp (exp, pos, stream, PREC_SUFFIX);
12225 fputs_filtered ("..", stream);
12226 print_subexp (exp, pos, stream, PREC_SUFFIX);
12227 return;
12228
12229 case OP_OTHERS:
12230 fputs_filtered ("others => ", stream);
12231 print_subexp (exp, pos, stream, PREC_SUFFIX);
12232 return;
12233
12234 case OP_CHOICES:
12235 for (i = 0; i < nargs-1; i += 1)
12236 {
12237 if (i > 0)
12238 fputs_filtered ("|", stream);
12239 print_subexp (exp, pos, stream, PREC_SUFFIX);
12240 }
12241 fputs_filtered (" => ", stream);
12242 print_subexp (exp, pos, stream, PREC_SUFFIX);
12243 return;
12244
12245 case OP_POSITIONAL:
12246 print_subexp (exp, pos, stream, PREC_SUFFIX);
12247 return;
12248
12249 case OP_AGGREGATE:
12250 fputs_filtered ("(", stream);
12251 for (i = 0; i < nargs; i += 1)
12252 {
12253 if (i > 0)
12254 fputs_filtered (", ", stream);
12255 print_subexp (exp, pos, stream, PREC_SUFFIX);
12256 }
12257 fputs_filtered (")", stream);
12258 return;
12259 }
12260 }
12261
12262 /* Table mapping opcodes into strings for printing operators
12263 and precedences of the operators. */
12264
12265 static const struct op_print ada_op_print_tab[] = {
12266 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12267 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12268 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12269 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12270 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12271 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12272 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12273 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12274 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12275 {">=", BINOP_GEQ, PREC_ORDER, 0},
12276 {">", BINOP_GTR, PREC_ORDER, 0},
12277 {"<", BINOP_LESS, PREC_ORDER, 0},
12278 {">>", BINOP_RSH, PREC_SHIFT, 0},
12279 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12280 {"+", BINOP_ADD, PREC_ADD, 0},
12281 {"-", BINOP_SUB, PREC_ADD, 0},
12282 {"&", BINOP_CONCAT, PREC_ADD, 0},
12283 {"*", BINOP_MUL, PREC_MUL, 0},
12284 {"/", BINOP_DIV, PREC_MUL, 0},
12285 {"rem", BINOP_REM, PREC_MUL, 0},
12286 {"mod", BINOP_MOD, PREC_MUL, 0},
12287 {"**", BINOP_EXP, PREC_REPEAT, 0},
12288 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12289 {"-", UNOP_NEG, PREC_PREFIX, 0},
12290 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12291 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12292 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12293 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12294 {".all", UNOP_IND, PREC_SUFFIX, 1},
12295 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12296 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12297 {NULL, 0, 0, 0}
12298 };
12299 \f
12300 enum ada_primitive_types {
12301 ada_primitive_type_int,
12302 ada_primitive_type_long,
12303 ada_primitive_type_short,
12304 ada_primitive_type_char,
12305 ada_primitive_type_float,
12306 ada_primitive_type_double,
12307 ada_primitive_type_void,
12308 ada_primitive_type_long_long,
12309 ada_primitive_type_long_double,
12310 ada_primitive_type_natural,
12311 ada_primitive_type_positive,
12312 ada_primitive_type_system_address,
12313 nr_ada_primitive_types
12314 };
12315
12316 static void
12317 ada_language_arch_info (struct gdbarch *gdbarch,
12318 struct language_arch_info *lai)
12319 {
12320 const struct builtin_type *builtin = builtin_type (gdbarch);
12321
12322 lai->primitive_type_vector
12323 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12324 struct type *);
12325
12326 lai->primitive_type_vector [ada_primitive_type_int]
12327 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12328 0, "integer");
12329 lai->primitive_type_vector [ada_primitive_type_long]
12330 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12331 0, "long_integer");
12332 lai->primitive_type_vector [ada_primitive_type_short]
12333 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12334 0, "short_integer");
12335 lai->string_char_type
12336 = lai->primitive_type_vector [ada_primitive_type_char]
12337 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12338 lai->primitive_type_vector [ada_primitive_type_float]
12339 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12340 "float", NULL);
12341 lai->primitive_type_vector [ada_primitive_type_double]
12342 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12343 "long_float", NULL);
12344 lai->primitive_type_vector [ada_primitive_type_long_long]
12345 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12346 0, "long_long_integer");
12347 lai->primitive_type_vector [ada_primitive_type_long_double]
12348 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12349 "long_long_float", NULL);
12350 lai->primitive_type_vector [ada_primitive_type_natural]
12351 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12352 0, "natural");
12353 lai->primitive_type_vector [ada_primitive_type_positive]
12354 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12355 0, "positive");
12356 lai->primitive_type_vector [ada_primitive_type_void]
12357 = builtin->builtin_void;
12358
12359 lai->primitive_type_vector [ada_primitive_type_system_address]
12360 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12361 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12362 = "system__address";
12363
12364 lai->bool_type_symbol = NULL;
12365 lai->bool_type_default = builtin->builtin_bool;
12366 }
12367 \f
12368 /* Language vector */
12369
12370 /* Not really used, but needed in the ada_language_defn. */
12371
12372 static void
12373 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12374 {
12375 ada_emit_char (c, type, stream, quoter, 1);
12376 }
12377
12378 static int
12379 parse (void)
12380 {
12381 warnings_issued = 0;
12382 return ada_parse ();
12383 }
12384
12385 static const struct exp_descriptor ada_exp_descriptor = {
12386 ada_print_subexp,
12387 ada_operator_length,
12388 ada_operator_check,
12389 ada_op_name,
12390 ada_dump_subexp_body,
12391 ada_evaluate_subexp
12392 };
12393
12394 /* Implement the "la_get_symbol_name_cmp" language_defn method
12395 for Ada. */
12396
12397 static symbol_name_cmp_ftype
12398 ada_get_symbol_name_cmp (const char *lookup_name)
12399 {
12400 if (should_use_wild_match (lookup_name))
12401 return wild_match;
12402 else
12403 return compare_names;
12404 }
12405
12406 const struct language_defn ada_language_defn = {
12407 "ada", /* Language name */
12408 language_ada,
12409 range_check_off,
12410 type_check_off,
12411 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12412 that's not quite what this means. */
12413 array_row_major,
12414 macro_expansion_no,
12415 &ada_exp_descriptor,
12416 parse,
12417 ada_error,
12418 resolve,
12419 ada_printchar, /* Print a character constant */
12420 ada_printstr, /* Function to print string constant */
12421 emit_char, /* Function to print single char (not used) */
12422 ada_print_type, /* Print a type using appropriate syntax */
12423 ada_print_typedef, /* Print a typedef using appropriate syntax */
12424 ada_val_print, /* Print a value using appropriate syntax */
12425 ada_value_print, /* Print a top-level value */
12426 NULL, /* Language specific skip_trampoline */
12427 NULL, /* name_of_this */
12428 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12429 basic_lookup_transparent_type, /* lookup_transparent_type */
12430 ada_la_decode, /* Language specific symbol demangler */
12431 NULL, /* Language specific
12432 class_name_from_physname */
12433 ada_op_print_tab, /* expression operators for printing */
12434 0, /* c-style arrays */
12435 1, /* String lower bound */
12436 ada_get_gdb_completer_word_break_characters,
12437 ada_make_symbol_completion_list,
12438 ada_language_arch_info,
12439 ada_print_array_index,
12440 default_pass_by_reference,
12441 c_get_string,
12442 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12443 ada_iterate_over_symbols,
12444 LANG_MAGIC
12445 };
12446
12447 /* Provide a prototype to silence -Wmissing-prototypes. */
12448 extern initialize_file_ftype _initialize_ada_language;
12449
12450 /* Command-list for the "set/show ada" prefix command. */
12451 static struct cmd_list_element *set_ada_list;
12452 static struct cmd_list_element *show_ada_list;
12453
12454 /* Implement the "set ada" prefix command. */
12455
12456 static void
12457 set_ada_command (char *arg, int from_tty)
12458 {
12459 printf_unfiltered (_(\
12460 "\"set ada\" must be followed by the name of a setting.\n"));
12461 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12462 }
12463
12464 /* Implement the "show ada" prefix command. */
12465
12466 static void
12467 show_ada_command (char *args, int from_tty)
12468 {
12469 cmd_show_list (show_ada_list, from_tty, "");
12470 }
12471
12472 static void
12473 initialize_ada_catchpoint_ops (void)
12474 {
12475 struct breakpoint_ops *ops;
12476
12477 initialize_breakpoint_ops ();
12478
12479 ops = &catch_exception_breakpoint_ops;
12480 *ops = bkpt_breakpoint_ops;
12481 ops->dtor = dtor_catch_exception;
12482 ops->allocate_location = allocate_location_catch_exception;
12483 ops->re_set = re_set_catch_exception;
12484 ops->check_status = check_status_catch_exception;
12485 ops->print_it = print_it_catch_exception;
12486 ops->print_one = print_one_catch_exception;
12487 ops->print_mention = print_mention_catch_exception;
12488 ops->print_recreate = print_recreate_catch_exception;
12489
12490 ops = &catch_exception_unhandled_breakpoint_ops;
12491 *ops = bkpt_breakpoint_ops;
12492 ops->dtor = dtor_catch_exception_unhandled;
12493 ops->allocate_location = allocate_location_catch_exception_unhandled;
12494 ops->re_set = re_set_catch_exception_unhandled;
12495 ops->check_status = check_status_catch_exception_unhandled;
12496 ops->print_it = print_it_catch_exception_unhandled;
12497 ops->print_one = print_one_catch_exception_unhandled;
12498 ops->print_mention = print_mention_catch_exception_unhandled;
12499 ops->print_recreate = print_recreate_catch_exception_unhandled;
12500
12501 ops = &catch_assert_breakpoint_ops;
12502 *ops = bkpt_breakpoint_ops;
12503 ops->dtor = dtor_catch_assert;
12504 ops->allocate_location = allocate_location_catch_assert;
12505 ops->re_set = re_set_catch_assert;
12506 ops->check_status = check_status_catch_assert;
12507 ops->print_it = print_it_catch_assert;
12508 ops->print_one = print_one_catch_assert;
12509 ops->print_mention = print_mention_catch_assert;
12510 ops->print_recreate = print_recreate_catch_assert;
12511 }
12512
12513 void
12514 _initialize_ada_language (void)
12515 {
12516 add_language (&ada_language_defn);
12517
12518 initialize_ada_catchpoint_ops ();
12519
12520 add_prefix_cmd ("ada", no_class, set_ada_command,
12521 _("Prefix command for changing Ada-specfic settings"),
12522 &set_ada_list, "set ada ", 0, &setlist);
12523
12524 add_prefix_cmd ("ada", no_class, show_ada_command,
12525 _("Generic command for showing Ada-specific settings."),
12526 &show_ada_list, "show ada ", 0, &showlist);
12527
12528 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12529 &trust_pad_over_xvs, _("\
12530 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12531 Show whether an optimization trusting PAD types over XVS types is activated"),
12532 _("\
12533 This is related to the encoding used by the GNAT compiler. The debugger\n\
12534 should normally trust the contents of PAD types, but certain older versions\n\
12535 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12536 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12537 work around this bug. It is always safe to turn this option \"off\", but\n\
12538 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12539 this option to \"off\" unless necessary."),
12540 NULL, NULL, &set_ada_list, &show_ada_list);
12541
12542 add_catch_command ("exception", _("\
12543 Catch Ada exceptions, when raised.\n\
12544 With an argument, catch only exceptions with the given name."),
12545 catch_ada_exception_command,
12546 NULL,
12547 CATCH_PERMANENT,
12548 CATCH_TEMPORARY);
12549 add_catch_command ("assert", _("\
12550 Catch failed Ada assertions, when raised.\n\
12551 With an argument, catch only exceptions with the given name."),
12552 catch_assert_command,
12553 NULL,
12554 CATCH_PERMANENT,
12555 CATCH_TEMPORARY);
12556
12557 varsize_limit = 65536;
12558
12559 obstack_init (&symbol_list_obstack);
12560
12561 decoded_names_store = htab_create_alloc
12562 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12563 NULL, xcalloc, xfree);
12564
12565 /* Setup per-inferior data. */
12566 observer_attach_inferior_exit (ada_inferior_exit);
12567 ada_inferior_data
12568 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12569 }
This page took 0.332957 seconds and 4 git commands to generate.