fix up cleanup handling in internal_vproblem
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "c-lang.h"
36 #include "inferior.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "breakpoint.h"
40 #include "gdbcore.h"
41 #include "hashtab.h"
42 #include "gdb_obstack.h"
43 #include "ada-lang.h"
44 #include "completer.h"
45 #include "gdb_stat.h"
46 #ifdef UI_OUT
47 #include "ui-out.h"
48 #endif
49 #include "block.h"
50 #include "infcall.h"
51 #include "dictionary.h"
52 #include "exceptions.h"
53 #include "annotate.h"
54 #include "valprint.h"
55 #include "source.h"
56 #include "observer.h"
57 #include "vec.h"
58 #include "stack.h"
59 #include "gdb_vecs.h"
60 #include "typeprint.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 set_value_optimized_out (result, value_optimized_out (val));
585 return result;
586 }
587 }
588
589 static const gdb_byte *
590 cond_offset_host (const gdb_byte *valaddr, long offset)
591 {
592 if (valaddr == NULL)
593 return NULL;
594 else
595 return valaddr + offset;
596 }
597
598 static CORE_ADDR
599 cond_offset_target (CORE_ADDR address, long offset)
600 {
601 if (address == 0)
602 return 0;
603 else
604 return address + offset;
605 }
606
607 /* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
610 expression. */
611
612 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
614 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
615
616 static void
617 lim_warning (const char *format, ...)
618 {
619 va_list args;
620
621 va_start (args, format);
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
624 vwarning (format, args);
625
626 va_end (args);
627 }
628
629 /* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
631 GDB. */
632
633 static void
634 check_size (const struct type *type)
635 {
636 if (TYPE_LENGTH (type) > varsize_limit)
637 error (_("object size is larger than varsize-limit"));
638 }
639
640 /* Maximum value of a SIZE-byte signed integer type. */
641 static LONGEST
642 max_of_size (int size)
643 {
644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
645
646 return top_bit | (top_bit - 1);
647 }
648
649 /* Minimum value of a SIZE-byte signed integer type. */
650 static LONGEST
651 min_of_size (int size)
652 {
653 return -max_of_size (size) - 1;
654 }
655
656 /* Maximum value of a SIZE-byte unsigned integer type. */
657 static ULONGEST
658 umax_of_size (int size)
659 {
660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
661
662 return top_bit | (top_bit - 1);
663 }
664
665 /* Maximum value of integral type T, as a signed quantity. */
666 static LONGEST
667 max_of_type (struct type *t)
668 {
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671 else
672 return max_of_size (TYPE_LENGTH (t));
673 }
674
675 /* Minimum value of integral type T, as a signed quantity. */
676 static LONGEST
677 min_of_type (struct type *t)
678 {
679 if (TYPE_UNSIGNED (t))
680 return 0;
681 else
682 return min_of_size (TYPE_LENGTH (t));
683 }
684
685 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
686 LONGEST
687 ada_discrete_type_high_bound (struct type *type)
688 {
689 switch (TYPE_CODE (type))
690 {
691 case TYPE_CODE_RANGE:
692 return TYPE_HIGH_BOUND (type);
693 case TYPE_CODE_ENUM:
694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
695 case TYPE_CODE_BOOL:
696 return 1;
697 case TYPE_CODE_CHAR:
698 case TYPE_CODE_INT:
699 return max_of_type (type);
700 default:
701 error (_("Unexpected type in ada_discrete_type_high_bound."));
702 }
703 }
704
705 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
706 LONGEST
707 ada_discrete_type_low_bound (struct type *type)
708 {
709 switch (TYPE_CODE (type))
710 {
711 case TYPE_CODE_RANGE:
712 return TYPE_LOW_BOUND (type);
713 case TYPE_CODE_ENUM:
714 return TYPE_FIELD_ENUMVAL (type, 0);
715 case TYPE_CODE_BOOL:
716 return 0;
717 case TYPE_CODE_CHAR:
718 case TYPE_CODE_INT:
719 return min_of_type (type);
720 default:
721 error (_("Unexpected type in ada_discrete_type_low_bound."));
722 }
723 }
724
725 /* The identity on non-range types. For range types, the underlying
726 non-range scalar type. */
727
728 static struct type *
729 get_base_type (struct type *type)
730 {
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732 {
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734 return type;
735 type = TYPE_TARGET_TYPE (type);
736 }
737 return type;
738 }
739
740 /* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
744
745 struct value *
746 ada_get_decoded_value (struct value *value)
747 {
748 struct type *type = ada_check_typedef (value_type (value));
749
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
753 {
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
756 else
757 value = ada_coerce_to_simple_array (value);
758 }
759 else
760 value = ada_to_fixed_value (value);
761
762 return value;
763 }
764
765 /* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
769
770 struct type *
771 ada_get_decoded_type (struct type *type)
772 {
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
776 return type;
777 }
778
779 \f
780
781 /* Language Selection */
782
783 /* If the main program is in Ada, return language_ada, otherwise return LANG
784 (the main program is in Ada iif the adainit symbol is found). */
785
786 enum language
787 ada_update_initial_language (enum language lang)
788 {
789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
790 (struct objfile *) NULL) != NULL)
791 return language_ada;
792
793 return lang;
794 }
795
796 /* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
799
800 char *
801 ada_main_name (void)
802 {
803 struct minimal_symbol *msym;
804 static char *main_program_name = NULL;
805
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
810 in Ada. */
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812
813 if (msym != NULL)
814 {
815 CORE_ADDR main_program_name_addr;
816 int err_code;
817
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
820 error (_("Invalid address for Ada main program name."));
821
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
824 1024, &err_code);
825
826 if (err_code != 0)
827 return NULL;
828 return main_program_name;
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833 }
834 \f
835 /* Symbols */
836
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
839
840 const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
863 };
864
865 /* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
867
868 char *
869 ada_encode (const char *decoded)
870 {
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
873 const char *p;
874 int k;
875
876 if (decoded == NULL)
877 return NULL;
878
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
881
882 k = 0;
883 for (p = decoded; *p != '\0'; p += 1)
884 {
885 if (*p == '.')
886 {
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888 k += 2;
889 }
890 else if (*p == '"')
891 {
892 const struct ada_opname_map *mapping;
893
894 for (mapping = ada_opname_table;
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
898 ;
899 if (mapping->encoded == NULL)
900 error (_("invalid Ada operator name: %s"), p);
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
903 break;
904 }
905 else
906 {
907 encoding_buffer[k] = *p;
908 k += 1;
909 }
910 }
911
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
914 }
915
916 /* Return NAME folded to lower case, or, if surrounded by single
917 quotes, unfolded, but with the quotes stripped away. Result good
918 to next call. */
919
920 char *
921 ada_fold_name (const char *name)
922 {
923 static char *fold_buffer = NULL;
924 static size_t fold_buffer_size = 0;
925
926 int len = strlen (name);
927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
928
929 if (name[0] == '\'')
930 {
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
933 }
934 else
935 {
936 int i;
937
938 for (i = 0; i <= len; i += 1)
939 fold_buffer[i] = tolower (name[i]);
940 }
941
942 return fold_buffer;
943 }
944
945 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
946
947 static int
948 is_lower_alphanum (const char c)
949 {
950 return (isdigit (c) || (isalpha (c) && islower (c)));
951 }
952
953 /* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
956 . .{DIGIT}+
957 . ${DIGIT}+
958 . ___{DIGIT}+
959 . __{DIGIT}+.
960
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
964
965 static void
966 ada_remove_trailing_digits (const char *encoded, int *len)
967 {
968 if (*len > 1 && isdigit (encoded[*len - 1]))
969 {
970 int i = *len - 2;
971
972 while (i > 0 && isdigit (encoded[i]))
973 i--;
974 if (i >= 0 && encoded[i] == '.')
975 *len = i;
976 else if (i >= 0 && encoded[i] == '$')
977 *len = i;
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979 *len = i - 2;
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981 *len = i - 1;
982 }
983 }
984
985 /* Remove the suffix introduced by the compiler for protected object
986 subprograms. */
987
988 static void
989 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990 {
991 /* Remove trailing N. */
992
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
996 the 'P' suffix. The second calls the first one after handling
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1000
1001 if (*len > 1
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004 *len = *len - 1;
1005 }
1006
1007 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1008
1009 static void
1010 ada_remove_Xbn_suffix (const char *encoded, int *len)
1011 {
1012 int i = *len - 1;
1013
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015 i--;
1016
1017 if (encoded[i] != 'X')
1018 return;
1019
1020 if (i == 0)
1021 return;
1022
1023 if (isalnum (encoded[i-1]))
1024 *len = i;
1025 }
1026
1027 /* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
1030
1031 The resulting string is valid until the next call of ada_decode.
1032 If the string is unchanged by decoding, the original string pointer
1033 is returned. */
1034
1035 const char *
1036 ada_decode (const char *encoded)
1037 {
1038 int i, j;
1039 int len0;
1040 const char *p;
1041 char *decoded;
1042 int at_start_name;
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
1045
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1050 encoded += 5;
1051
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
1055 if (encoded[0] == '_' || encoded[0] == '<')
1056 goto Suppress;
1057
1058 len0 = strlen (encoded);
1059
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
1062
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
1069 {
1070 if (p[3] == 'X')
1071 len0 = p - encoded;
1072 else
1073 goto Suppress;
1074 }
1075
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1079
1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1081 len0 -= 3;
1082
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1085 bodies. */
1086
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088 len0 -= 2;
1089
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1092
1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1094 len0 -= 1;
1095
1096 /* Make decoded big enough for possible expansion by operator name. */
1097
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
1100
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1102
1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1104 {
1105 i = len0 - 2;
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108 i -= 1;
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110 len0 = i - 1;
1111 else if (encoded[i] == '$')
1112 len0 = i;
1113 }
1114
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1117
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
1120
1121 at_start_name = 1;
1122 while (i < len0)
1123 {
1124 /* Is this a symbol function? */
1125 if (at_start_name && encoded[i] == 'O')
1126 {
1127 int k;
1128
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130 {
1131 int op_len = strlen (ada_opname_table[k].encoded);
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133 op_len - 1) == 0)
1134 && !isalnum (encoded[i + op_len]))
1135 {
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1137 at_start_name = 0;
1138 i += op_len;
1139 j += strlen (ada_opname_table[k].decoded);
1140 break;
1141 }
1142 }
1143 if (ada_opname_table[k].encoded != NULL)
1144 continue;
1145 }
1146 at_start_name = 0;
1147
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1150
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152 i += 2;
1153
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1157
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1161 {
1162 int k = i + 5;
1163
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1166
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170 i = k;
1171 }
1172
1173 /* Remove _E{DIGITS}+[sb] */
1174
1175 /* Just as for protected object subprograms, there are 2 categories
1176 of subprograms created by the compiler for each entry. The first
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1180 by a 'B'.
1181
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1185
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1188 {
1189 int k = i + 3;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++;
1193
1194 if (k < len0
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1196 {
1197 k++;
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1201 if (k == len0
1202 || (k < len0 && encoded[k] == '_'))
1203 i = k;
1204 }
1205 }
1206
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1209
1210 if (i < len0 + 3
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212 {
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1217
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219 ptr--;
1220 if (ptr < encoded
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222 i++;
1223 }
1224
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226 {
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1233 package names. */
1234 do
1235 i += 1;
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237 if (i < len0)
1238 goto Suppress;
1239 }
1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1241 {
1242 /* Replace '__' by '.'. */
1243 decoded[j] = '.';
1244 at_start_name = 1;
1245 i += 2;
1246 j += 1;
1247 }
1248 else
1249 {
1250 /* It's a character part of the decoded name, so just copy it
1251 over. */
1252 decoded[j] = encoded[i];
1253 i += 1;
1254 j += 1;
1255 }
1256 }
1257 decoded[j] = '\000';
1258
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1261
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
1264 goto Suppress;
1265
1266 if (strcmp (decoded, encoded) == 0)
1267 return encoded;
1268 else
1269 return decoded;
1270
1271 Suppress:
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
1276 else
1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1278 return decoded;
1279
1280 }
1281
1282 /* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287 static struct htab *decoded_names_store;
1288
1289 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
1294 GSYMBOL).
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
1297 when a decoded name is cached in it. */
1298
1299 const char *
1300 ada_decode_symbol (const struct general_symbol_info *arg)
1301 {
1302 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1303 const char **resultp =
1304 &gsymbol->language_specific.mangled_lang.demangled_name;
1305
1306 if (!gsymbol->ada_mangled)
1307 {
1308 const char *decoded = ada_decode (gsymbol->name);
1309 struct obstack *obstack = gsymbol->language_specific.obstack;
1310
1311 gsymbol->ada_mangled = 1;
1312
1313 if (obstack != NULL)
1314 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1315 else
1316 {
1317 /* Sometimes, we can't find a corresponding objfile, in
1318 which case, we put the result on the heap. Since we only
1319 decode when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
1321
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1323 decoded, INSERT);
1324
1325 if (*slot == NULL)
1326 *slot = xstrdup (decoded);
1327 *resultp = *slot;
1328 }
1329 }
1330
1331 return *resultp;
1332 }
1333
1334 static char *
1335 ada_la_decode (const char *encoded, int options)
1336 {
1337 return xstrdup (ada_decode (encoded));
1338 }
1339
1340 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
1346
1347 static int
1348 match_name (const char *sym_name, const char *name, int wild)
1349 {
1350 if (sym_name == NULL || name == NULL)
1351 return 0;
1352 else if (wild)
1353 return wild_match (sym_name, name) == 0;
1354 else
1355 {
1356 int len_name = strlen (name);
1357
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
1363 }
1364 }
1365 \f
1366
1367 /* Arrays */
1368
1369 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1375
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1385
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1390 index subtype). */
1391
1392 void
1393 ada_fixup_array_indexes_type (struct type *index_desc_type)
1394 {
1395 int i;
1396
1397 if (index_desc_type == NULL)
1398 return;
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1400
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1403 now.
1404
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1411 return;
1412
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1415 {
1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1418
1419 if (raw_type)
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1421 }
1422 }
1423
1424 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1425
1426 static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1429 };
1430
1431 /* Maximum number of array dimensions we are prepared to handle. */
1432
1433 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1434
1435
1436 /* The desc_* routines return primitive portions of array descriptors
1437 (fat pointers). */
1438
1439 /* The descriptor or array type, if any, indicated by TYPE; removes
1440 level of indirection, if needed. */
1441
1442 static struct type *
1443 desc_base_type (struct type *type)
1444 {
1445 if (type == NULL)
1446 return NULL;
1447 type = ada_check_typedef (type);
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1450
1451 if (type != NULL
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1455 else
1456 return type;
1457 }
1458
1459 /* True iff TYPE indicates a "thin" array pointer type. */
1460
1461 static int
1462 is_thin_pntr (struct type *type)
1463 {
1464 return
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1467 }
1468
1469 /* The descriptor type for thin pointer type TYPE. */
1470
1471 static struct type *
1472 thin_descriptor_type (struct type *type)
1473 {
1474 struct type *base_type = desc_base_type (type);
1475
1476 if (base_type == NULL)
1477 return NULL;
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1479 return base_type;
1480 else
1481 {
1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1483
1484 if (alt_type == NULL)
1485 return base_type;
1486 else
1487 return alt_type;
1488 }
1489 }
1490
1491 /* A pointer to the array data for thin-pointer value VAL. */
1492
1493 static struct value *
1494 thin_data_pntr (struct value *val)
1495 {
1496 struct type *type = ada_check_typedef (value_type (val));
1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1498
1499 data_type = lookup_pointer_type (data_type);
1500
1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1502 return value_cast (data_type, value_copy (val));
1503 else
1504 return value_from_longest (data_type, value_address (val));
1505 }
1506
1507 /* True iff TYPE indicates a "thick" array pointer type. */
1508
1509 static int
1510 is_thick_pntr (struct type *type)
1511 {
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1515 }
1516
1517 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
1519
1520 static struct type *
1521 desc_bounds_type (struct type *type)
1522 {
1523 struct type *r;
1524
1525 type = desc_base_type (type);
1526
1527 if (type == NULL)
1528 return NULL;
1529 else if (is_thin_pntr (type))
1530 {
1531 type = thin_descriptor_type (type);
1532 if (type == NULL)
1533 return NULL;
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1535 if (r != NULL)
1536 return ada_check_typedef (r);
1537 }
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1539 {
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1541 if (r != NULL)
1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1543 }
1544 return NULL;
1545 }
1546
1547 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1548 one, a pointer to its bounds data. Otherwise NULL. */
1549
1550 static struct value *
1551 desc_bounds (struct value *arr)
1552 {
1553 struct type *type = ada_check_typedef (value_type (arr));
1554
1555 if (is_thin_pntr (type))
1556 {
1557 struct type *bounds_type =
1558 desc_bounds_type (thin_descriptor_type (type));
1559 LONGEST addr;
1560
1561 if (bounds_type == NULL)
1562 error (_("Bad GNAT array descriptor"));
1563
1564 /* NOTE: The following calculation is not really kosher, but
1565 since desc_type is an XVE-encoded type (and shouldn't be),
1566 the correct calculation is a real pain. FIXME (and fix GCC). */
1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1568 addr = value_as_long (arr);
1569 else
1570 addr = value_address (arr);
1571
1572 return
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
1575 }
1576
1577 else if (is_thick_pntr (type))
1578 {
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1582
1583 if (p_bounds_type
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1585 {
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1587
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1591 p_bounds);
1592 }
1593 else
1594 error (_("Bad GNAT array descriptor"));
1595
1596 return p_bounds;
1597 }
1598 else
1599 return NULL;
1600 }
1601
1602 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1604
1605 static int
1606 fat_pntr_bounds_bitpos (struct type *type)
1607 {
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1609 }
1610
1611 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1612 size of the field containing the address of the bounds data. */
1613
1614 static int
1615 fat_pntr_bounds_bitsize (struct type *type)
1616 {
1617 type = desc_base_type (type);
1618
1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1620 return TYPE_FIELD_BITSIZE (type, 1);
1621 else
1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1623 }
1624
1625 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1628 data. */
1629
1630 static struct type *
1631 desc_data_target_type (struct type *type)
1632 {
1633 type = desc_base_type (type);
1634
1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
1636 if (is_thin_pntr (type))
1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1638 else if (is_thick_pntr (type))
1639 {
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1641
1642 if (data_type
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1645 }
1646
1647 return NULL;
1648 }
1649
1650 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1651 its array data. */
1652
1653 static struct value *
1654 desc_data (struct value *arr)
1655 {
1656 struct type *type = value_type (arr);
1657
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1662 _("Bad GNAT array descriptor"));
1663 else
1664 return NULL;
1665 }
1666
1667
1668 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1669 position of the field containing the address of the data. */
1670
1671 static int
1672 fat_pntr_data_bitpos (struct type *type)
1673 {
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1675 }
1676
1677 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1678 size of the field containing the address of the data. */
1679
1680 static int
1681 fat_pntr_data_bitsize (struct type *type)
1682 {
1683 type = desc_base_type (type);
1684
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
1687 else
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1689 }
1690
1691 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1693 bound, if WHICH is 1. The first bound is I=1. */
1694
1695 static struct value *
1696 desc_one_bound (struct value *bounds, int i, int which)
1697 {
1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1699 _("Bad GNAT array descriptor bounds"));
1700 }
1701
1702 /* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
1706 static int
1707 desc_bound_bitpos (struct type *type, int i, int which)
1708 {
1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1710 }
1711
1712 /* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1714 bound, if WHICH is 1. The first bound is I=1. */
1715
1716 static int
1717 desc_bound_bitsize (struct type *type, int i, int which)
1718 {
1719 type = desc_base_type (type);
1720
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1723 else
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1725 }
1726
1727 /* If TYPE is the type of an array-bounds structure, the type of its
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1729
1730 static struct type *
1731 desc_index_type (struct type *type, int i)
1732 {
1733 type = desc_base_type (type);
1734
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1737 else
1738 return NULL;
1739 }
1740
1741 /* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1743
1744 static int
1745 desc_arity (struct type *type)
1746 {
1747 type = desc_base_type (type);
1748
1749 if (type != NULL)
1750 return TYPE_NFIELDS (type) / 2;
1751 return 0;
1752 }
1753
1754 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1756 type). */
1757
1758 static int
1759 ada_is_direct_array_type (struct type *type)
1760 {
1761 if (type == NULL)
1762 return 0;
1763 type = ada_check_typedef (type);
1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1765 || ada_is_array_descriptor_type (type));
1766 }
1767
1768 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1769 * to one. */
1770
1771 static int
1772 ada_is_array_type (struct type *type)
1773 {
1774 while (type != NULL
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1779 }
1780
1781 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1782
1783 int
1784 ada_is_simple_array_type (struct type *type)
1785 {
1786 if (type == NULL)
1787 return 0;
1788 type = ada_check_typedef (type);
1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
1793 }
1794
1795 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1796
1797 int
1798 ada_is_array_descriptor_type (struct type *type)
1799 {
1800 struct type *data_type = desc_data_target_type (type);
1801
1802 if (type == NULL)
1803 return 0;
1804 type = ada_check_typedef (type);
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
1808 }
1809
1810 /* Non-zero iff type is a partially mal-formed GNAT array
1811 descriptor. FIXME: This is to compensate for some problems with
1812 debugging output from GNAT. Re-examine periodically to see if it
1813 is still needed. */
1814
1815 int
1816 ada_is_bogus_array_descriptor (struct type *type)
1817 {
1818 return
1819 type != NULL
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
1824 }
1825
1826
1827 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1828 (fat pointer) returns the type of the array data described---specifically,
1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1830 in from the descriptor; otherwise, they are left unspecified. If
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
1833 a descriptor. */
1834 struct type *
1835 ada_type_of_array (struct value *arr, int bounds)
1836 {
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
1839
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
1842
1843 if (!bounds)
1844 {
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1847
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1851
1852 return array_type;
1853 }
1854 else
1855 {
1856 struct type *elt_type;
1857 int arity;
1858 struct value *descriptor;
1859
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
1862
1863 if (elt_type == NULL || arity == 0)
1864 return ada_check_typedef (value_type (arr));
1865
1866 descriptor = desc_bounds (arr);
1867 if (value_as_long (descriptor) == 0)
1868 return NULL;
1869 while (arity > 0)
1870 {
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
1875
1876 arity -= 1;
1877 create_range_type (range_type, value_type (low),
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
1880 elt_type = create_array_type (array_type, elt_type, range_type);
1881
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1883 {
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1889
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1894 if (lo < hi)
1895 {
1896 int array_bitsize =
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1898
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1900 }
1901 }
1902 }
1903
1904 return lookup_pointer_type (elt_type);
1905 }
1906 }
1907
1908 /* If ARR does not represent an array, returns ARR unchanged.
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1912
1913 struct value *
1914 ada_coerce_to_simple_array_ptr (struct value *arr)
1915 {
1916 if (ada_is_array_descriptor_type (value_type (arr)))
1917 {
1918 struct type *arrType = ada_type_of_array (arr, 1);
1919
1920 if (arrType == NULL)
1921 return NULL;
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1923 }
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
1926 else
1927 return arr;
1928 }
1929
1930 /* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
1932 be ARR itself if it already is in the proper form). */
1933
1934 struct value *
1935 ada_coerce_to_simple_array (struct value *arr)
1936 {
1937 if (ada_is_array_descriptor_type (value_type (arr)))
1938 {
1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1940
1941 if (arrVal == NULL)
1942 error (_("Bounds unavailable for null array pointer."));
1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1944 return value_ind (arrVal);
1945 }
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
1948 else
1949 return arr;
1950 }
1951
1952 /* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
1954 packing). For other types, is the identity. */
1955
1956 struct type *
1957 ada_coerce_to_simple_array_type (struct type *type)
1958 {
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
1961
1962 if (ada_is_array_descriptor_type (type))
1963 return ada_check_typedef (desc_data_target_type (type));
1964
1965 return type;
1966 }
1967
1968 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1969
1970 static int
1971 ada_is_packed_array_type (struct type *type)
1972 {
1973 if (type == NULL)
1974 return 0;
1975 type = desc_base_type (type);
1976 type = ada_check_typedef (type);
1977 return
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1980 }
1981
1982 /* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1984
1985 int
1986 ada_is_constrained_packed_array_type (struct type *type)
1987 {
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1990 }
1991
1992 /* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1994
1995 static int
1996 ada_is_unconstrained_packed_array_type (struct type *type)
1997 {
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2000 }
2001
2002 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2004
2005 static long
2006 decode_packed_array_bitsize (struct type *type)
2007 {
2008 const char *raw_name;
2009 const char *tail;
2010 long bits;
2011
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2017
2018 raw_name = ada_type_name (ada_check_typedef (type));
2019 if (!raw_name)
2020 raw_name = ada_type_name (desc_base_type (type));
2021
2022 if (!raw_name)
2023 return 0;
2024
2025 tail = strstr (raw_name, "___XP");
2026 gdb_assert (tail != NULL);
2027
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2029 {
2030 lim_warning
2031 (_("could not understand bit size information on packed array"));
2032 return 0;
2033 }
2034
2035 return bits;
2036 }
2037
2038 /* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2045 in bits. */
2046
2047 static struct type *
2048 constrained_packed_array_type (struct type *type, long *elt_bits)
2049 {
2050 struct type *new_elt_type;
2051 struct type *new_type;
2052 struct type *index_type_desc;
2053 struct type *index_type;
2054 LONGEST low_bound, high_bound;
2055
2056 type = ada_check_typedef (type);
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2058 return type;
2059
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2063 NULL);
2064 else
2065 index_type = TYPE_INDEX_TYPE (type);
2066
2067 new_type = alloc_type_copy (type);
2068 new_elt_type =
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2070 elt_bits);
2071 create_array_type (new_type, new_elt_type, index_type);
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2074
2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
2079 else
2080 {
2081 *elt_bits *= (high_bound - low_bound + 1);
2082 TYPE_LENGTH (new_type) =
2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2084 }
2085
2086 TYPE_FIXED_INSTANCE (new_type) = 1;
2087 return new_type;
2088 }
2089
2090 /* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
2092
2093 static struct type *
2094 decode_constrained_packed_array_type (struct type *type)
2095 {
2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
2097 char *name;
2098 const char *tail;
2099 struct type *shadow_type;
2100 long bits;
2101
2102 if (!raw_name)
2103 raw_name = ada_type_name (desc_base_type (type));
2104
2105 if (!raw_name)
2106 return NULL;
2107
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
2110 type = desc_base_type (type);
2111
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2114
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2116
2117 if (shadow_type == NULL)
2118 {
2119 lim_warning (_("could not find bounds information on packed array"));
2120 return NULL;
2121 }
2122 CHECK_TYPEDEF (shadow_type);
2123
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2125 {
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
2128 return NULL;
2129 }
2130
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
2133 }
2134
2135 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
2139 type length is set appropriately. */
2140
2141 static struct value *
2142 decode_constrained_packed_array (struct value *arr)
2143 {
2144 struct type *type;
2145
2146 arr = ada_coerce_ref (arr);
2147
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2155 arr = value_ind (arr);
2156
2157 type = decode_constrained_packed_array_type (value_type (arr));
2158 if (type == NULL)
2159 {
2160 error (_("can't unpack array"));
2161 return NULL;
2162 }
2163
2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2165 && ada_is_modular_type (value_type (arr)))
2166 {
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2172 ULONGEST mod;
2173
2174 mod = ada_modulus (value_type (arr)) - 1;
2175 bit_size = 0;
2176 while (mod > 0)
2177 {
2178 bit_size += 1;
2179 mod >>= 1;
2180 }
2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2185 bit_size,
2186 type);
2187 }
2188
2189 return coerce_unspec_val_to_type (arr, type);
2190 }
2191
2192
2193 /* The value of the element of packed array ARR at the ARITY indices
2194 given in IND. ARR must be a simple array. */
2195
2196 static struct value *
2197 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2198 {
2199 int i;
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
2202 struct type *elt_type;
2203 struct value *v;
2204
2205 bits = 0;
2206 elt_total_bit_offset = 0;
2207 elt_type = ada_check_typedef (value_type (arr));
2208 for (i = 0; i < arity; i += 1)
2209 {
2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2212 error
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
2215 else
2216 {
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2219 LONGEST idx;
2220
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2222 {
2223 lim_warning (_("don't know bounds of array"));
2224 lowerbound = upperbound = 0;
2225 }
2226
2227 idx = pos_atr (ind[i]);
2228 if (idx < lowerbound || idx > upperbound)
2229 lim_warning (_("packed array index %ld out of bounds"),
2230 (long) idx);
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2234 }
2235 }
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2238
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2240 bits, elt_type);
2241 return v;
2242 }
2243
2244 /* Non-zero iff TYPE includes negative integer values. */
2245
2246 static int
2247 has_negatives (struct type *type)
2248 {
2249 switch (TYPE_CODE (type))
2250 {
2251 default:
2252 return 0;
2253 case TYPE_CODE_INT:
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2257 }
2258 }
2259
2260
2261 /* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2264 assigning through the result will set the field fetched from.
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2269
2270 struct value *
2271 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2272 long offset, int bit_offset, int bit_size,
2273 struct type *type)
2274 {
2275 struct value *v;
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
2284 unsigned char *unpacked;
2285 unsigned long accum; /* Staging area for bits being transferred */
2286 unsigned char sign;
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2291
2292 type = ada_check_typedef (type);
2293
2294 if (obj == NULL)
2295 {
2296 v = allocate_value (type);
2297 bytes = (unsigned char *) (valaddr + offset);
2298 }
2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2300 {
2301 v = value_at (type, value_address (obj));
2302 bytes = (unsigned char *) alloca (len);
2303 read_memory (value_address (v) + offset, bytes, len);
2304 }
2305 else
2306 {
2307 v = allocate_value (type);
2308 bytes = (unsigned char *) value_contents (obj) + offset;
2309 }
2310
2311 if (obj != NULL)
2312 {
2313 long new_offset = offset;
2314
2315 set_value_component_location (v, obj);
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
2319 {
2320 ++new_offset;
2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2322 }
2323 set_value_offset (v, new_offset);
2324
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
2328 }
2329 else
2330 set_value_bitsize (v, bit_size);
2331 unpacked = (unsigned char *) value_contents (v);
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2343 {
2344 src = len - 1;
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2347 sign = ~0;
2348
2349 unusedLS =
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
2352
2353 switch (TYPE_CODE (type))
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2364 ntarg = targ + 1;
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
2371 }
2372 else
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2381 sign = ~0;
2382 }
2383
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
2388 part of the value. */
2389 unsigned int unusedMSMask =
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
2393 unsigned int signMask = sign & ~unusedMSMask;
2394
2395 accum |=
2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2397 accumSize += HOST_CHAR_BIT - unusedLS;
2398 if (accumSize >= HOST_CHAR_BIT)
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422 }
2423
2424 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2426 not overlap. */
2427 static void
2428 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2429 int src_offset, int n, int bits_big_endian_p)
2430 {
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
2438 if (bits_big_endian_p)
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
2444 while (n > 0)
2445 {
2446 int unused_right;
2447
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
2471 while (n > 0)
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
2487 }
2488 }
2489
2490 /* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
2493 floating-point or non-scalar types. */
2494
2495 static struct value *
2496 ada_value_assign (struct value *toval, struct value *fromval)
2497 {
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
2500
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
2509 if (!deprecated_value_modifiable (toval))
2510 error (_("Left operand of assignment is not a modifiable lvalue."));
2511
2512 if (VALUE_LVAL (toval) == lval_memory
2513 && bits > 0
2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2516 {
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2519 int from_size;
2520 gdb_byte *buffer = alloca (len);
2521 struct value *val;
2522 CORE_ADDR to_addr = value_address (toval);
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2525 fromval = value_cast (type, fromval);
2526
2527 read_memory (to_addr, buffer, len);
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), from_size - bits, bits, 1);
2534 else
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
2537 write_memory_with_notification (to_addr, buffer, len);
2538
2539 val = value_copy (toval);
2540 memcpy (value_contents_raw (val), value_contents (fromval),
2541 TYPE_LENGTH (type));
2542 deprecated_set_value_type (val, type);
2543
2544 return val;
2545 }
2546
2547 return value_assign (toval, fromval);
2548 }
2549
2550
2551 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2552 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2553 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2554 * COMPONENT, and not the inferior's memory. The current contents
2555 * of COMPONENT are ignored. */
2556 static void
2557 value_assign_to_component (struct value *container, struct value *component,
2558 struct value *val)
2559 {
2560 LONGEST offset_in_container =
2561 (LONGEST) (value_address (component) - value_address (container));
2562 int bit_offset_in_container =
2563 value_bitpos (component) - value_bitpos (container);
2564 int bits;
2565
2566 val = value_cast (value_type (component), val);
2567
2568 if (value_bitsize (component) == 0)
2569 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2570 else
2571 bits = value_bitsize (component);
2572
2573 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2574 move_bits (value_contents_writeable (container) + offset_in_container,
2575 value_bitpos (container) + bit_offset_in_container,
2576 value_contents (val),
2577 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2578 bits, 1);
2579 else
2580 move_bits (value_contents_writeable (container) + offset_in_container,
2581 value_bitpos (container) + bit_offset_in_container,
2582 value_contents (val), 0, bits, 0);
2583 }
2584
2585 /* The value of the element of array ARR at the ARITY indices given in IND.
2586 ARR may be either a simple array, GNAT array descriptor, or pointer
2587 thereto. */
2588
2589 struct value *
2590 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2591 {
2592 int k;
2593 struct value *elt;
2594 struct type *elt_type;
2595
2596 elt = ada_coerce_to_simple_array (arr);
2597
2598 elt_type = ada_check_typedef (value_type (elt));
2599 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2600 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2601 return value_subscript_packed (elt, arity, ind);
2602
2603 for (k = 0; k < arity; k += 1)
2604 {
2605 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2606 error (_("too many subscripts (%d expected)"), k);
2607 elt = value_subscript (elt, pos_atr (ind[k]));
2608 }
2609 return elt;
2610 }
2611
2612 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2613 value of the element of *ARR at the ARITY indices given in
2614 IND. Does not read the entire array into memory. */
2615
2616 static struct value *
2617 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2618 struct value **ind)
2619 {
2620 int k;
2621
2622 for (k = 0; k < arity; k += 1)
2623 {
2624 LONGEST lwb, upb;
2625
2626 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2627 error (_("too many subscripts (%d expected)"), k);
2628 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2629 value_copy (arr));
2630 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2631 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2632 type = TYPE_TARGET_TYPE (type);
2633 }
2634
2635 return value_ind (arr);
2636 }
2637
2638 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2639 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2640 elements starting at index LOW. The lower bound of this array is LOW, as
2641 per Ada rules. */
2642 static struct value *
2643 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2644 int low, int high)
2645 {
2646 struct type *type0 = ada_check_typedef (type);
2647 CORE_ADDR base = value_as_address (array_ptr)
2648 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2649 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2650 struct type *index_type =
2651 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2652 low, high);
2653 struct type *slice_type =
2654 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2655
2656 return value_at_lazy (slice_type, base);
2657 }
2658
2659
2660 static struct value *
2661 ada_value_slice (struct value *array, int low, int high)
2662 {
2663 struct type *type = ada_check_typedef (value_type (array));
2664 struct type *index_type =
2665 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2666 struct type *slice_type =
2667 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2668
2669 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2670 }
2671
2672 /* If type is a record type in the form of a standard GNAT array
2673 descriptor, returns the number of dimensions for type. If arr is a
2674 simple array, returns the number of "array of"s that prefix its
2675 type designation. Otherwise, returns 0. */
2676
2677 int
2678 ada_array_arity (struct type *type)
2679 {
2680 int arity;
2681
2682 if (type == NULL)
2683 return 0;
2684
2685 type = desc_base_type (type);
2686
2687 arity = 0;
2688 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2689 return desc_arity (desc_bounds_type (type));
2690 else
2691 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2692 {
2693 arity += 1;
2694 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2695 }
2696
2697 return arity;
2698 }
2699
2700 /* If TYPE is a record type in the form of a standard GNAT array
2701 descriptor or a simple array type, returns the element type for
2702 TYPE after indexing by NINDICES indices, or by all indices if
2703 NINDICES is -1. Otherwise, returns NULL. */
2704
2705 struct type *
2706 ada_array_element_type (struct type *type, int nindices)
2707 {
2708 type = desc_base_type (type);
2709
2710 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2711 {
2712 int k;
2713 struct type *p_array_type;
2714
2715 p_array_type = desc_data_target_type (type);
2716
2717 k = ada_array_arity (type);
2718 if (k == 0)
2719 return NULL;
2720
2721 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2722 if (nindices >= 0 && k > nindices)
2723 k = nindices;
2724 while (k > 0 && p_array_type != NULL)
2725 {
2726 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2727 k -= 1;
2728 }
2729 return p_array_type;
2730 }
2731 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2732 {
2733 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2734 {
2735 type = TYPE_TARGET_TYPE (type);
2736 nindices -= 1;
2737 }
2738 return type;
2739 }
2740
2741 return NULL;
2742 }
2743
2744 /* The type of nth index in arrays of given type (n numbering from 1).
2745 Does not examine memory. Throws an error if N is invalid or TYPE
2746 is not an array type. NAME is the name of the Ada attribute being
2747 evaluated ('range, 'first, 'last, or 'length); it is used in building
2748 the error message. */
2749
2750 static struct type *
2751 ada_index_type (struct type *type, int n, const char *name)
2752 {
2753 struct type *result_type;
2754
2755 type = desc_base_type (type);
2756
2757 if (n < 0 || n > ada_array_arity (type))
2758 error (_("invalid dimension number to '%s"), name);
2759
2760 if (ada_is_simple_array_type (type))
2761 {
2762 int i;
2763
2764 for (i = 1; i < n; i += 1)
2765 type = TYPE_TARGET_TYPE (type);
2766 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2767 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2768 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2769 perhaps stabsread.c would make more sense. */
2770 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2771 result_type = NULL;
2772 }
2773 else
2774 {
2775 result_type = desc_index_type (desc_bounds_type (type), n);
2776 if (result_type == NULL)
2777 error (_("attempt to take bound of something that is not an array"));
2778 }
2779
2780 return result_type;
2781 }
2782
2783 /* Given that arr is an array type, returns the lower bound of the
2784 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2785 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2786 array-descriptor type. It works for other arrays with bounds supplied
2787 by run-time quantities other than discriminants. */
2788
2789 static LONGEST
2790 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2791 {
2792 struct type *type, *elt_type, *index_type_desc, *index_type;
2793 int i;
2794
2795 gdb_assert (which == 0 || which == 1);
2796
2797 if (ada_is_constrained_packed_array_type (arr_type))
2798 arr_type = decode_constrained_packed_array_type (arr_type);
2799
2800 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2801 return (LONGEST) - which;
2802
2803 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2804 type = TYPE_TARGET_TYPE (arr_type);
2805 else
2806 type = arr_type;
2807
2808 elt_type = type;
2809 for (i = n; i > 1; i--)
2810 elt_type = TYPE_TARGET_TYPE (type);
2811
2812 index_type_desc = ada_find_parallel_type (type, "___XA");
2813 ada_fixup_array_indexes_type (index_type_desc);
2814 if (index_type_desc != NULL)
2815 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2816 NULL);
2817 else
2818 index_type = TYPE_INDEX_TYPE (elt_type);
2819
2820 return
2821 (LONGEST) (which == 0
2822 ? ada_discrete_type_low_bound (index_type)
2823 : ada_discrete_type_high_bound (index_type));
2824 }
2825
2826 /* Given that arr is an array value, returns the lower bound of the
2827 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2828 WHICH is 1. This routine will also work for arrays with bounds
2829 supplied by run-time quantities other than discriminants. */
2830
2831 static LONGEST
2832 ada_array_bound (struct value *arr, int n, int which)
2833 {
2834 struct type *arr_type = value_type (arr);
2835
2836 if (ada_is_constrained_packed_array_type (arr_type))
2837 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2838 else if (ada_is_simple_array_type (arr_type))
2839 return ada_array_bound_from_type (arr_type, n, which);
2840 else
2841 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2842 }
2843
2844 /* Given that arr is an array value, returns the length of the
2845 nth index. This routine will also work for arrays with bounds
2846 supplied by run-time quantities other than discriminants.
2847 Does not work for arrays indexed by enumeration types with representation
2848 clauses at the moment. */
2849
2850 static LONGEST
2851 ada_array_length (struct value *arr, int n)
2852 {
2853 struct type *arr_type = ada_check_typedef (value_type (arr));
2854
2855 if (ada_is_constrained_packed_array_type (arr_type))
2856 return ada_array_length (decode_constrained_packed_array (arr), n);
2857
2858 if (ada_is_simple_array_type (arr_type))
2859 return (ada_array_bound_from_type (arr_type, n, 1)
2860 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2861 else
2862 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2863 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2864 }
2865
2866 /* An empty array whose type is that of ARR_TYPE (an array type),
2867 with bounds LOW to LOW-1. */
2868
2869 static struct value *
2870 empty_array (struct type *arr_type, int low)
2871 {
2872 struct type *arr_type0 = ada_check_typedef (arr_type);
2873 struct type *index_type =
2874 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2875 low, low - 1);
2876 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2877
2878 return allocate_value (create_array_type (NULL, elt_type, index_type));
2879 }
2880 \f
2881
2882 /* Name resolution */
2883
2884 /* The "decoded" name for the user-definable Ada operator corresponding
2885 to OP. */
2886
2887 static const char *
2888 ada_decoded_op_name (enum exp_opcode op)
2889 {
2890 int i;
2891
2892 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2893 {
2894 if (ada_opname_table[i].op == op)
2895 return ada_opname_table[i].decoded;
2896 }
2897 error (_("Could not find operator name for opcode"));
2898 }
2899
2900
2901 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2902 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2903 undefined namespace) and converts operators that are
2904 user-defined into appropriate function calls. If CONTEXT_TYPE is
2905 non-null, it provides a preferred result type [at the moment, only
2906 type void has any effect---causing procedures to be preferred over
2907 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2908 return type is preferred. May change (expand) *EXP. */
2909
2910 static void
2911 resolve (struct expression **expp, int void_context_p)
2912 {
2913 struct type *context_type = NULL;
2914 int pc = 0;
2915
2916 if (void_context_p)
2917 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2918
2919 resolve_subexp (expp, &pc, 1, context_type);
2920 }
2921
2922 /* Resolve the operator of the subexpression beginning at
2923 position *POS of *EXPP. "Resolving" consists of replacing
2924 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2925 with their resolutions, replacing built-in operators with
2926 function calls to user-defined operators, where appropriate, and,
2927 when DEPROCEDURE_P is non-zero, converting function-valued variables
2928 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2929 are as in ada_resolve, above. */
2930
2931 static struct value *
2932 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2933 struct type *context_type)
2934 {
2935 int pc = *pos;
2936 int i;
2937 struct expression *exp; /* Convenience: == *expp. */
2938 enum exp_opcode op = (*expp)->elts[pc].opcode;
2939 struct value **argvec; /* Vector of operand types (alloca'ed). */
2940 int nargs; /* Number of operands. */
2941 int oplen;
2942
2943 argvec = NULL;
2944 nargs = 0;
2945 exp = *expp;
2946
2947 /* Pass one: resolve operands, saving their types and updating *pos,
2948 if needed. */
2949 switch (op)
2950 {
2951 case OP_FUNCALL:
2952 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2953 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2954 *pos += 7;
2955 else
2956 {
2957 *pos += 3;
2958 resolve_subexp (expp, pos, 0, NULL);
2959 }
2960 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2961 break;
2962
2963 case UNOP_ADDR:
2964 *pos += 1;
2965 resolve_subexp (expp, pos, 0, NULL);
2966 break;
2967
2968 case UNOP_QUAL:
2969 *pos += 3;
2970 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2971 break;
2972
2973 case OP_ATR_MODULUS:
2974 case OP_ATR_SIZE:
2975 case OP_ATR_TAG:
2976 case OP_ATR_FIRST:
2977 case OP_ATR_LAST:
2978 case OP_ATR_LENGTH:
2979 case OP_ATR_POS:
2980 case OP_ATR_VAL:
2981 case OP_ATR_MIN:
2982 case OP_ATR_MAX:
2983 case TERNOP_IN_RANGE:
2984 case BINOP_IN_BOUNDS:
2985 case UNOP_IN_RANGE:
2986 case OP_AGGREGATE:
2987 case OP_OTHERS:
2988 case OP_CHOICES:
2989 case OP_POSITIONAL:
2990 case OP_DISCRETE_RANGE:
2991 case OP_NAME:
2992 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2993 *pos += oplen;
2994 break;
2995
2996 case BINOP_ASSIGN:
2997 {
2998 struct value *arg1;
2999
3000 *pos += 1;
3001 arg1 = resolve_subexp (expp, pos, 0, NULL);
3002 if (arg1 == NULL)
3003 resolve_subexp (expp, pos, 1, NULL);
3004 else
3005 resolve_subexp (expp, pos, 1, value_type (arg1));
3006 break;
3007 }
3008
3009 case UNOP_CAST:
3010 *pos += 3;
3011 nargs = 1;
3012 break;
3013
3014 case BINOP_ADD:
3015 case BINOP_SUB:
3016 case BINOP_MUL:
3017 case BINOP_DIV:
3018 case BINOP_REM:
3019 case BINOP_MOD:
3020 case BINOP_EXP:
3021 case BINOP_CONCAT:
3022 case BINOP_LOGICAL_AND:
3023 case BINOP_LOGICAL_OR:
3024 case BINOP_BITWISE_AND:
3025 case BINOP_BITWISE_IOR:
3026 case BINOP_BITWISE_XOR:
3027
3028 case BINOP_EQUAL:
3029 case BINOP_NOTEQUAL:
3030 case BINOP_LESS:
3031 case BINOP_GTR:
3032 case BINOP_LEQ:
3033 case BINOP_GEQ:
3034
3035 case BINOP_REPEAT:
3036 case BINOP_SUBSCRIPT:
3037 case BINOP_COMMA:
3038 *pos += 1;
3039 nargs = 2;
3040 break;
3041
3042 case UNOP_NEG:
3043 case UNOP_PLUS:
3044 case UNOP_LOGICAL_NOT:
3045 case UNOP_ABS:
3046 case UNOP_IND:
3047 *pos += 1;
3048 nargs = 1;
3049 break;
3050
3051 case OP_LONG:
3052 case OP_DOUBLE:
3053 case OP_VAR_VALUE:
3054 *pos += 4;
3055 break;
3056
3057 case OP_TYPE:
3058 case OP_BOOL:
3059 case OP_LAST:
3060 case OP_INTERNALVAR:
3061 *pos += 3;
3062 break;
3063
3064 case UNOP_MEMVAL:
3065 *pos += 3;
3066 nargs = 1;
3067 break;
3068
3069 case OP_REGISTER:
3070 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3071 break;
3072
3073 case STRUCTOP_STRUCT:
3074 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3075 nargs = 1;
3076 break;
3077
3078 case TERNOP_SLICE:
3079 *pos += 1;
3080 nargs = 3;
3081 break;
3082
3083 case OP_STRING:
3084 break;
3085
3086 default:
3087 error (_("Unexpected operator during name resolution"));
3088 }
3089
3090 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3091 for (i = 0; i < nargs; i += 1)
3092 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3093 argvec[i] = NULL;
3094 exp = *expp;
3095
3096 /* Pass two: perform any resolution on principal operator. */
3097 switch (op)
3098 {
3099 default:
3100 break;
3101
3102 case OP_VAR_VALUE:
3103 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3104 {
3105 struct ada_symbol_info *candidates;
3106 int n_candidates;
3107
3108 n_candidates =
3109 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3110 (exp->elts[pc + 2].symbol),
3111 exp->elts[pc + 1].block, VAR_DOMAIN,
3112 &candidates);
3113
3114 if (n_candidates > 1)
3115 {
3116 /* Types tend to get re-introduced locally, so if there
3117 are any local symbols that are not types, first filter
3118 out all types. */
3119 int j;
3120 for (j = 0; j < n_candidates; j += 1)
3121 switch (SYMBOL_CLASS (candidates[j].sym))
3122 {
3123 case LOC_REGISTER:
3124 case LOC_ARG:
3125 case LOC_REF_ARG:
3126 case LOC_REGPARM_ADDR:
3127 case LOC_LOCAL:
3128 case LOC_COMPUTED:
3129 goto FoundNonType;
3130 default:
3131 break;
3132 }
3133 FoundNonType:
3134 if (j < n_candidates)
3135 {
3136 j = 0;
3137 while (j < n_candidates)
3138 {
3139 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3140 {
3141 candidates[j] = candidates[n_candidates - 1];
3142 n_candidates -= 1;
3143 }
3144 else
3145 j += 1;
3146 }
3147 }
3148 }
3149
3150 if (n_candidates == 0)
3151 error (_("No definition found for %s"),
3152 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3153 else if (n_candidates == 1)
3154 i = 0;
3155 else if (deprocedure_p
3156 && !is_nonfunction (candidates, n_candidates))
3157 {
3158 i = ada_resolve_function
3159 (candidates, n_candidates, NULL, 0,
3160 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3161 context_type);
3162 if (i < 0)
3163 error (_("Could not find a match for %s"),
3164 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3165 }
3166 else
3167 {
3168 printf_filtered (_("Multiple matches for %s\n"),
3169 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3170 user_select_syms (candidates, n_candidates, 1);
3171 i = 0;
3172 }
3173
3174 exp->elts[pc + 1].block = candidates[i].block;
3175 exp->elts[pc + 2].symbol = candidates[i].sym;
3176 if (innermost_block == NULL
3177 || contained_in (candidates[i].block, innermost_block))
3178 innermost_block = candidates[i].block;
3179 }
3180
3181 if (deprocedure_p
3182 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3183 == TYPE_CODE_FUNC))
3184 {
3185 replace_operator_with_call (expp, pc, 0, 0,
3186 exp->elts[pc + 2].symbol,
3187 exp->elts[pc + 1].block);
3188 exp = *expp;
3189 }
3190 break;
3191
3192 case OP_FUNCALL:
3193 {
3194 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3195 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3196 {
3197 struct ada_symbol_info *candidates;
3198 int n_candidates;
3199
3200 n_candidates =
3201 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3202 (exp->elts[pc + 5].symbol),
3203 exp->elts[pc + 4].block, VAR_DOMAIN,
3204 &candidates);
3205 if (n_candidates == 1)
3206 i = 0;
3207 else
3208 {
3209 i = ada_resolve_function
3210 (candidates, n_candidates,
3211 argvec, nargs,
3212 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3213 context_type);
3214 if (i < 0)
3215 error (_("Could not find a match for %s"),
3216 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3217 }
3218
3219 exp->elts[pc + 4].block = candidates[i].block;
3220 exp->elts[pc + 5].symbol = candidates[i].sym;
3221 if (innermost_block == NULL
3222 || contained_in (candidates[i].block, innermost_block))
3223 innermost_block = candidates[i].block;
3224 }
3225 }
3226 break;
3227 case BINOP_ADD:
3228 case BINOP_SUB:
3229 case BINOP_MUL:
3230 case BINOP_DIV:
3231 case BINOP_REM:
3232 case BINOP_MOD:
3233 case BINOP_CONCAT:
3234 case BINOP_BITWISE_AND:
3235 case BINOP_BITWISE_IOR:
3236 case BINOP_BITWISE_XOR:
3237 case BINOP_EQUAL:
3238 case BINOP_NOTEQUAL:
3239 case BINOP_LESS:
3240 case BINOP_GTR:
3241 case BINOP_LEQ:
3242 case BINOP_GEQ:
3243 case BINOP_EXP:
3244 case UNOP_NEG:
3245 case UNOP_PLUS:
3246 case UNOP_LOGICAL_NOT:
3247 case UNOP_ABS:
3248 if (possible_user_operator_p (op, argvec))
3249 {
3250 struct ada_symbol_info *candidates;
3251 int n_candidates;
3252
3253 n_candidates =
3254 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3255 (struct block *) NULL, VAR_DOMAIN,
3256 &candidates);
3257 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3258 ada_decoded_op_name (op), NULL);
3259 if (i < 0)
3260 break;
3261
3262 replace_operator_with_call (expp, pc, nargs, 1,
3263 candidates[i].sym, candidates[i].block);
3264 exp = *expp;
3265 }
3266 break;
3267
3268 case OP_TYPE:
3269 case OP_REGISTER:
3270 return NULL;
3271 }
3272
3273 *pos = pc;
3274 return evaluate_subexp_type (exp, pos);
3275 }
3276
3277 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3278 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3279 a non-pointer. */
3280 /* The term "match" here is rather loose. The match is heuristic and
3281 liberal. */
3282
3283 static int
3284 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3285 {
3286 ftype = ada_check_typedef (ftype);
3287 atype = ada_check_typedef (atype);
3288
3289 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3290 ftype = TYPE_TARGET_TYPE (ftype);
3291 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3292 atype = TYPE_TARGET_TYPE (atype);
3293
3294 switch (TYPE_CODE (ftype))
3295 {
3296 default:
3297 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3298 case TYPE_CODE_PTR:
3299 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3300 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3301 TYPE_TARGET_TYPE (atype), 0);
3302 else
3303 return (may_deref
3304 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3305 case TYPE_CODE_INT:
3306 case TYPE_CODE_ENUM:
3307 case TYPE_CODE_RANGE:
3308 switch (TYPE_CODE (atype))
3309 {
3310 case TYPE_CODE_INT:
3311 case TYPE_CODE_ENUM:
3312 case TYPE_CODE_RANGE:
3313 return 1;
3314 default:
3315 return 0;
3316 }
3317
3318 case TYPE_CODE_ARRAY:
3319 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3320 || ada_is_array_descriptor_type (atype));
3321
3322 case TYPE_CODE_STRUCT:
3323 if (ada_is_array_descriptor_type (ftype))
3324 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3325 || ada_is_array_descriptor_type (atype));
3326 else
3327 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3328 && !ada_is_array_descriptor_type (atype));
3329
3330 case TYPE_CODE_UNION:
3331 case TYPE_CODE_FLT:
3332 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3333 }
3334 }
3335
3336 /* Return non-zero if the formals of FUNC "sufficiently match" the
3337 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3338 may also be an enumeral, in which case it is treated as a 0-
3339 argument function. */
3340
3341 static int
3342 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3343 {
3344 int i;
3345 struct type *func_type = SYMBOL_TYPE (func);
3346
3347 if (SYMBOL_CLASS (func) == LOC_CONST
3348 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3349 return (n_actuals == 0);
3350 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3351 return 0;
3352
3353 if (TYPE_NFIELDS (func_type) != n_actuals)
3354 return 0;
3355
3356 for (i = 0; i < n_actuals; i += 1)
3357 {
3358 if (actuals[i] == NULL)
3359 return 0;
3360 else
3361 {
3362 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3363 i));
3364 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3365
3366 if (!ada_type_match (ftype, atype, 1))
3367 return 0;
3368 }
3369 }
3370 return 1;
3371 }
3372
3373 /* False iff function type FUNC_TYPE definitely does not produce a value
3374 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3375 FUNC_TYPE is not a valid function type with a non-null return type
3376 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3377
3378 static int
3379 return_match (struct type *func_type, struct type *context_type)
3380 {
3381 struct type *return_type;
3382
3383 if (func_type == NULL)
3384 return 1;
3385
3386 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3387 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3388 else
3389 return_type = get_base_type (func_type);
3390 if (return_type == NULL)
3391 return 1;
3392
3393 context_type = get_base_type (context_type);
3394
3395 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3396 return context_type == NULL || return_type == context_type;
3397 else if (context_type == NULL)
3398 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3399 else
3400 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3401 }
3402
3403
3404 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3405 function (if any) that matches the types of the NARGS arguments in
3406 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3407 that returns that type, then eliminate matches that don't. If
3408 CONTEXT_TYPE is void and there is at least one match that does not
3409 return void, eliminate all matches that do.
3410
3411 Asks the user if there is more than one match remaining. Returns -1
3412 if there is no such symbol or none is selected. NAME is used
3413 solely for messages. May re-arrange and modify SYMS in
3414 the process; the index returned is for the modified vector. */
3415
3416 static int
3417 ada_resolve_function (struct ada_symbol_info syms[],
3418 int nsyms, struct value **args, int nargs,
3419 const char *name, struct type *context_type)
3420 {
3421 int fallback;
3422 int k;
3423 int m; /* Number of hits */
3424
3425 m = 0;
3426 /* In the first pass of the loop, we only accept functions matching
3427 context_type. If none are found, we add a second pass of the loop
3428 where every function is accepted. */
3429 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3430 {
3431 for (k = 0; k < nsyms; k += 1)
3432 {
3433 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3434
3435 if (ada_args_match (syms[k].sym, args, nargs)
3436 && (fallback || return_match (type, context_type)))
3437 {
3438 syms[m] = syms[k];
3439 m += 1;
3440 }
3441 }
3442 }
3443
3444 if (m == 0)
3445 return -1;
3446 else if (m > 1)
3447 {
3448 printf_filtered (_("Multiple matches for %s\n"), name);
3449 user_select_syms (syms, m, 1);
3450 return 0;
3451 }
3452 return 0;
3453 }
3454
3455 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3456 in a listing of choices during disambiguation (see sort_choices, below).
3457 The idea is that overloadings of a subprogram name from the
3458 same package should sort in their source order. We settle for ordering
3459 such symbols by their trailing number (__N or $N). */
3460
3461 static int
3462 encoded_ordered_before (const char *N0, const char *N1)
3463 {
3464 if (N1 == NULL)
3465 return 0;
3466 else if (N0 == NULL)
3467 return 1;
3468 else
3469 {
3470 int k0, k1;
3471
3472 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3473 ;
3474 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3475 ;
3476 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3477 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3478 {
3479 int n0, n1;
3480
3481 n0 = k0;
3482 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3483 n0 -= 1;
3484 n1 = k1;
3485 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3486 n1 -= 1;
3487 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3488 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3489 }
3490 return (strcmp (N0, N1) < 0);
3491 }
3492 }
3493
3494 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3495 encoded names. */
3496
3497 static void
3498 sort_choices (struct ada_symbol_info syms[], int nsyms)
3499 {
3500 int i;
3501
3502 for (i = 1; i < nsyms; i += 1)
3503 {
3504 struct ada_symbol_info sym = syms[i];
3505 int j;
3506
3507 for (j = i - 1; j >= 0; j -= 1)
3508 {
3509 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3510 SYMBOL_LINKAGE_NAME (sym.sym)))
3511 break;
3512 syms[j + 1] = syms[j];
3513 }
3514 syms[j + 1] = sym;
3515 }
3516 }
3517
3518 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3519 by asking the user (if necessary), returning the number selected,
3520 and setting the first elements of SYMS items. Error if no symbols
3521 selected. */
3522
3523 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3524 to be re-integrated one of these days. */
3525
3526 int
3527 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3528 {
3529 int i;
3530 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3531 int n_chosen;
3532 int first_choice = (max_results == 1) ? 1 : 2;
3533 const char *select_mode = multiple_symbols_select_mode ();
3534
3535 if (max_results < 1)
3536 error (_("Request to select 0 symbols!"));
3537 if (nsyms <= 1)
3538 return nsyms;
3539
3540 if (select_mode == multiple_symbols_cancel)
3541 error (_("\
3542 canceled because the command is ambiguous\n\
3543 See set/show multiple-symbol."));
3544
3545 /* If select_mode is "all", then return all possible symbols.
3546 Only do that if more than one symbol can be selected, of course.
3547 Otherwise, display the menu as usual. */
3548 if (select_mode == multiple_symbols_all && max_results > 1)
3549 return nsyms;
3550
3551 printf_unfiltered (_("[0] cancel\n"));
3552 if (max_results > 1)
3553 printf_unfiltered (_("[1] all\n"));
3554
3555 sort_choices (syms, nsyms);
3556
3557 for (i = 0; i < nsyms; i += 1)
3558 {
3559 if (syms[i].sym == NULL)
3560 continue;
3561
3562 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3563 {
3564 struct symtab_and_line sal =
3565 find_function_start_sal (syms[i].sym, 1);
3566
3567 if (sal.symtab == NULL)
3568 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3569 i + first_choice,
3570 SYMBOL_PRINT_NAME (syms[i].sym),
3571 sal.line);
3572 else
3573 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3574 SYMBOL_PRINT_NAME (syms[i].sym),
3575 symtab_to_filename_for_display (sal.symtab),
3576 sal.line);
3577 continue;
3578 }
3579 else
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3585 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
3591 symtab_to_filename_for_display (symtab),
3592 SYMBOL_LINE (syms[i].sym));
3593 else if (is_enumeral
3594 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3595 {
3596 printf_unfiltered (("[%d] "), i + first_choice);
3597 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3598 gdb_stdout, -1, 0, &type_print_raw_options);
3599 printf_unfiltered (_("'(%s) (enumeral)\n"),
3600 SYMBOL_PRINT_NAME (syms[i].sym));
3601 }
3602 else if (symtab != NULL)
3603 printf_unfiltered (is_enumeral
3604 ? _("[%d] %s in %s (enumeral)\n")
3605 : _("[%d] %s at %s:?\n"),
3606 i + first_choice,
3607 SYMBOL_PRINT_NAME (syms[i].sym),
3608 symtab_to_filename_for_display (symtab));
3609 else
3610 printf_unfiltered (is_enumeral
3611 ? _("[%d] %s (enumeral)\n")
3612 : _("[%d] %s at ?\n"),
3613 i + first_choice,
3614 SYMBOL_PRINT_NAME (syms[i].sym));
3615 }
3616 }
3617
3618 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3619 "overload-choice");
3620
3621 for (i = 0; i < n_chosen; i += 1)
3622 syms[i] = syms[chosen[i]];
3623
3624 return n_chosen;
3625 }
3626
3627 /* Read and validate a set of numeric choices from the user in the
3628 range 0 .. N_CHOICES-1. Place the results in increasing
3629 order in CHOICES[0 .. N-1], and return N.
3630
3631 The user types choices as a sequence of numbers on one line
3632 separated by blanks, encoding them as follows:
3633
3634 + A choice of 0 means to cancel the selection, throwing an error.
3635 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3636 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3637
3638 The user is not allowed to choose more than MAX_RESULTS values.
3639
3640 ANNOTATION_SUFFIX, if present, is used to annotate the input
3641 prompts (for use with the -f switch). */
3642
3643 int
3644 get_selections (int *choices, int n_choices, int max_results,
3645 int is_all_choice, char *annotation_suffix)
3646 {
3647 char *args;
3648 char *prompt;
3649 int n_chosen;
3650 int first_choice = is_all_choice ? 2 : 1;
3651
3652 prompt = getenv ("PS2");
3653 if (prompt == NULL)
3654 prompt = "> ";
3655
3656 args = command_line_input (prompt, 0, annotation_suffix);
3657
3658 if (args == NULL)
3659 error_no_arg (_("one or more choice numbers"));
3660
3661 n_chosen = 0;
3662
3663 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3664 order, as given in args. Choices are validated. */
3665 while (1)
3666 {
3667 char *args2;
3668 int choice, j;
3669
3670 args = skip_spaces (args);
3671 if (*args == '\0' && n_chosen == 0)
3672 error_no_arg (_("one or more choice numbers"));
3673 else if (*args == '\0')
3674 break;
3675
3676 choice = strtol (args, &args2, 10);
3677 if (args == args2 || choice < 0
3678 || choice > n_choices + first_choice - 1)
3679 error (_("Argument must be choice number"));
3680 args = args2;
3681
3682 if (choice == 0)
3683 error (_("cancelled"));
3684
3685 if (choice < first_choice)
3686 {
3687 n_chosen = n_choices;
3688 for (j = 0; j < n_choices; j += 1)
3689 choices[j] = j;
3690 break;
3691 }
3692 choice -= first_choice;
3693
3694 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3695 {
3696 }
3697
3698 if (j < 0 || choice != choices[j])
3699 {
3700 int k;
3701
3702 for (k = n_chosen - 1; k > j; k -= 1)
3703 choices[k + 1] = choices[k];
3704 choices[j + 1] = choice;
3705 n_chosen += 1;
3706 }
3707 }
3708
3709 if (n_chosen > max_results)
3710 error (_("Select no more than %d of the above"), max_results);
3711
3712 return n_chosen;
3713 }
3714
3715 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3716 on the function identified by SYM and BLOCK, and taking NARGS
3717 arguments. Update *EXPP as needed to hold more space. */
3718
3719 static void
3720 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3721 int oplen, struct symbol *sym,
3722 const struct block *block)
3723 {
3724 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3725 symbol, -oplen for operator being replaced). */
3726 struct expression *newexp = (struct expression *)
3727 xzalloc (sizeof (struct expression)
3728 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3729 struct expression *exp = *expp;
3730
3731 newexp->nelts = exp->nelts + 7 - oplen;
3732 newexp->language_defn = exp->language_defn;
3733 newexp->gdbarch = exp->gdbarch;
3734 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3735 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3736 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3737
3738 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3739 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3740
3741 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3742 newexp->elts[pc + 4].block = block;
3743 newexp->elts[pc + 5].symbol = sym;
3744
3745 *expp = newexp;
3746 xfree (exp);
3747 }
3748
3749 /* Type-class predicates */
3750
3751 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3752 or FLOAT). */
3753
3754 static int
3755 numeric_type_p (struct type *type)
3756 {
3757 if (type == NULL)
3758 return 0;
3759 else
3760 {
3761 switch (TYPE_CODE (type))
3762 {
3763 case TYPE_CODE_INT:
3764 case TYPE_CODE_FLT:
3765 return 1;
3766 case TYPE_CODE_RANGE:
3767 return (type == TYPE_TARGET_TYPE (type)
3768 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3769 default:
3770 return 0;
3771 }
3772 }
3773 }
3774
3775 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3776
3777 static int
3778 integer_type_p (struct type *type)
3779 {
3780 if (type == NULL)
3781 return 0;
3782 else
3783 {
3784 switch (TYPE_CODE (type))
3785 {
3786 case TYPE_CODE_INT:
3787 return 1;
3788 case TYPE_CODE_RANGE:
3789 return (type == TYPE_TARGET_TYPE (type)
3790 || integer_type_p (TYPE_TARGET_TYPE (type)));
3791 default:
3792 return 0;
3793 }
3794 }
3795 }
3796
3797 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3798
3799 static int
3800 scalar_type_p (struct type *type)
3801 {
3802 if (type == NULL)
3803 return 0;
3804 else
3805 {
3806 switch (TYPE_CODE (type))
3807 {
3808 case TYPE_CODE_INT:
3809 case TYPE_CODE_RANGE:
3810 case TYPE_CODE_ENUM:
3811 case TYPE_CODE_FLT:
3812 return 1;
3813 default:
3814 return 0;
3815 }
3816 }
3817 }
3818
3819 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3820
3821 static int
3822 discrete_type_p (struct type *type)
3823 {
3824 if (type == NULL)
3825 return 0;
3826 else
3827 {
3828 switch (TYPE_CODE (type))
3829 {
3830 case TYPE_CODE_INT:
3831 case TYPE_CODE_RANGE:
3832 case TYPE_CODE_ENUM:
3833 case TYPE_CODE_BOOL:
3834 return 1;
3835 default:
3836 return 0;
3837 }
3838 }
3839 }
3840
3841 /* Returns non-zero if OP with operands in the vector ARGS could be
3842 a user-defined function. Errs on the side of pre-defined operators
3843 (i.e., result 0). */
3844
3845 static int
3846 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3847 {
3848 struct type *type0 =
3849 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3850 struct type *type1 =
3851 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3852
3853 if (type0 == NULL)
3854 return 0;
3855
3856 switch (op)
3857 {
3858 default:
3859 return 0;
3860
3861 case BINOP_ADD:
3862 case BINOP_SUB:
3863 case BINOP_MUL:
3864 case BINOP_DIV:
3865 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3866
3867 case BINOP_REM:
3868 case BINOP_MOD:
3869 case BINOP_BITWISE_AND:
3870 case BINOP_BITWISE_IOR:
3871 case BINOP_BITWISE_XOR:
3872 return (!(integer_type_p (type0) && integer_type_p (type1)));
3873
3874 case BINOP_EQUAL:
3875 case BINOP_NOTEQUAL:
3876 case BINOP_LESS:
3877 case BINOP_GTR:
3878 case BINOP_LEQ:
3879 case BINOP_GEQ:
3880 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3881
3882 case BINOP_CONCAT:
3883 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3884
3885 case BINOP_EXP:
3886 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3887
3888 case UNOP_NEG:
3889 case UNOP_PLUS:
3890 case UNOP_LOGICAL_NOT:
3891 case UNOP_ABS:
3892 return (!numeric_type_p (type0));
3893
3894 }
3895 }
3896 \f
3897 /* Renaming */
3898
3899 /* NOTES:
3900
3901 1. In the following, we assume that a renaming type's name may
3902 have an ___XD suffix. It would be nice if this went away at some
3903 point.
3904 2. We handle both the (old) purely type-based representation of
3905 renamings and the (new) variable-based encoding. At some point,
3906 it is devoutly to be hoped that the former goes away
3907 (FIXME: hilfinger-2007-07-09).
3908 3. Subprogram renamings are not implemented, although the XRS
3909 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3910
3911 /* If SYM encodes a renaming,
3912
3913 <renaming> renames <renamed entity>,
3914
3915 sets *LEN to the length of the renamed entity's name,
3916 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3917 the string describing the subcomponent selected from the renamed
3918 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3919 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3920 are undefined). Otherwise, returns a value indicating the category
3921 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3922 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3923 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3924 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3925 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3926 may be NULL, in which case they are not assigned.
3927
3928 [Currently, however, GCC does not generate subprogram renamings.] */
3929
3930 enum ada_renaming_category
3931 ada_parse_renaming (struct symbol *sym,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934 {
3935 enum ada_renaming_category kind;
3936 const char *info;
3937 const char *suffix;
3938
3939 if (sym == NULL)
3940 return ADA_NOT_RENAMING;
3941 switch (SYMBOL_CLASS (sym))
3942 {
3943 default:
3944 return ADA_NOT_RENAMING;
3945 case LOC_TYPEDEF:
3946 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3947 renamed_entity, len, renaming_expr);
3948 case LOC_LOCAL:
3949 case LOC_STATIC:
3950 case LOC_COMPUTED:
3951 case LOC_OPTIMIZED_OUT:
3952 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3953 if (info == NULL)
3954 return ADA_NOT_RENAMING;
3955 switch (info[5])
3956 {
3957 case '_':
3958 kind = ADA_OBJECT_RENAMING;
3959 info += 6;
3960 break;
3961 case 'E':
3962 kind = ADA_EXCEPTION_RENAMING;
3963 info += 7;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 info += 7;
3968 break;
3969 case 'S':
3970 kind = ADA_SUBPROGRAM_RENAMING;
3971 info += 7;
3972 break;
3973 default:
3974 return ADA_NOT_RENAMING;
3975 }
3976 }
3977
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (suffix == NULL || suffix == info)
3982 return ADA_NOT_RENAMING;
3983 if (len != NULL)
3984 *len = strlen (info) - strlen (suffix);
3985 suffix += 5;
3986 if (renaming_expr != NULL)
3987 *renaming_expr = suffix;
3988 return kind;
3989 }
3990
3991 /* Assuming TYPE encodes a renaming according to the old encoding in
3992 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3993 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3994 ADA_NOT_RENAMING otherwise. */
3995 static enum ada_renaming_category
3996 parse_old_style_renaming (struct type *type,
3997 const char **renamed_entity, int *len,
3998 const char **renaming_expr)
3999 {
4000 enum ada_renaming_category kind;
4001 const char *name;
4002 const char *info;
4003 const char *suffix;
4004
4005 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4006 || TYPE_NFIELDS (type) != 1)
4007 return ADA_NOT_RENAMING;
4008
4009 name = type_name_no_tag (type);
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012
4013 name = strstr (name, "___XR");
4014 if (name == NULL)
4015 return ADA_NOT_RENAMING;
4016 switch (name[5])
4017 {
4018 case '\0':
4019 case '_':
4020 kind = ADA_OBJECT_RENAMING;
4021 break;
4022 case 'E':
4023 kind = ADA_EXCEPTION_RENAMING;
4024 break;
4025 case 'P':
4026 kind = ADA_PACKAGE_RENAMING;
4027 break;
4028 case 'S':
4029 kind = ADA_SUBPROGRAM_RENAMING;
4030 break;
4031 default:
4032 return ADA_NOT_RENAMING;
4033 }
4034
4035 info = TYPE_FIELD_NAME (type, 0);
4036 if (info == NULL)
4037 return ADA_NOT_RENAMING;
4038 if (renamed_entity != NULL)
4039 *renamed_entity = info;
4040 suffix = strstr (info, "___XE");
4041 if (renaming_expr != NULL)
4042 *renaming_expr = suffix + 5;
4043 if (suffix == NULL || suffix == info)
4044 return ADA_NOT_RENAMING;
4045 if (len != NULL)
4046 *len = suffix - info;
4047 return kind;
4048 }
4049
4050 /* Compute the value of the given RENAMING_SYM, which is expected to
4051 be a symbol encoding a renaming expression. BLOCK is the block
4052 used to evaluate the renaming. */
4053
4054 static struct value *
4055 ada_read_renaming_var_value (struct symbol *renaming_sym,
4056 struct block *block)
4057 {
4058 const char *sym_name;
4059 struct expression *expr;
4060 struct value *value;
4061 struct cleanup *old_chain = NULL;
4062
4063 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4064 expr = parse_exp_1 (&sym_name, 0, block, 0);
4065 old_chain = make_cleanup (free_current_contents, &expr);
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070 }
4071 \f
4072
4073 /* Evaluation: Function Calls */
4074
4075 /* Return an lvalue containing the value VAL. This is the identity on
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
4078
4079 static struct value *
4080 ensure_lval (struct value *val)
4081 {
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
4084 {
4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
4088
4089 set_value_address (val, addr);
4090 VALUE_LVAL (val) = lval_memory;
4091 write_memory (addr, value_contents (val), len);
4092 }
4093
4094 return val;
4095 }
4096
4097 /* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4100 values not residing in memory, updating it as needed. */
4101
4102 struct value *
4103 ada_convert_actual (struct value *actual, struct type *formal_type0)
4104 {
4105 struct type *actual_type = ada_check_typedef (value_type (actual));
4106 struct type *formal_type = ada_check_typedef (formal_type0);
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4113
4114 if (ada_is_array_descriptor_type (formal_target)
4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4116 return make_array_descriptor (formal_type, actual);
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4119 {
4120 struct value *result;
4121
4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4123 && ada_is_array_descriptor_type (actual_target))
4124 result = desc_data (actual);
4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
4130
4131 actual_type = ada_check_typedef (value_type (actual));
4132 val = allocate_value (actual_type);
4133 memcpy ((char *) value_contents_raw (val),
4134 (char *) value_contents (actual),
4135 TYPE_LENGTH (actual_type));
4136 actual = ensure_lval (val);
4137 }
4138 result = value_addr (actual);
4139 }
4140 else
4141 return actual;
4142 return value_cast_pointers (formal_type, result, 0);
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148 }
4149
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155 static CORE_ADDR
4156 value_pointer (struct value *value, struct type *type)
4157 {
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167 }
4168
4169
4170 /* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
4175
4176 static struct value *
4177 make_array_descriptor (struct type *type, struct value *arr)
4178 {
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
4183 int i;
4184
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
4187 {
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
4196 }
4197
4198 bounds = ensure_lval (bounds);
4199
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
4213
4214 descriptor = ensure_lval (descriptor);
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220 }
4221 \f
4222 /* Dummy definitions for an experimental caching module that is not
4223 * used in the public sources. */
4224
4225 static int
4226 lookup_cached_symbol (const char *name, domain_enum namespace,
4227 struct symbol **sym, struct block **block)
4228 {
4229 return 0;
4230 }
4231
4232 static void
4233 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4234 const struct block *block)
4235 {
4236 }
4237 \f
4238 /* Symbol Lookup */
4239
4240 /* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246 static int
4247 should_use_wild_match (const char *lookup_name)
4248 {
4249 return (strstr (lookup_name, "__") == NULL);
4250 }
4251
4252 /* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255 static struct symbol *
4256 standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258 {
4259 /* Initialize it just to avoid a GCC false warning. */
4260 struct symbol *sym = NULL;
4261
4262 if (lookup_cached_symbol (name, domain, &sym, NULL))
4263 return sym;
4264 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4265 cache_symbol (name, domain, sym, block_found);
4266 return sym;
4267 }
4268
4269
4270 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4271 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4272 since they contend in overloading in the same way. */
4273 static int
4274 is_nonfunction (struct ada_symbol_info syms[], int n)
4275 {
4276 int i;
4277
4278 for (i = 0; i < n; i += 1)
4279 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4280 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4281 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4282 return 1;
4283
4284 return 0;
4285 }
4286
4287 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4288 struct types. Otherwise, they may not. */
4289
4290 static int
4291 equiv_types (struct type *type0, struct type *type1)
4292 {
4293 if (type0 == type1)
4294 return 1;
4295 if (type0 == NULL || type1 == NULL
4296 || TYPE_CODE (type0) != TYPE_CODE (type1))
4297 return 0;
4298 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4299 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4300 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4301 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4302 return 1;
4303
4304 return 0;
4305 }
4306
4307 /* True iff SYM0 represents the same entity as SYM1, or one that is
4308 no more defined than that of SYM1. */
4309
4310 static int
4311 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4312 {
4313 if (sym0 == sym1)
4314 return 1;
4315 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4316 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4317 return 0;
4318
4319 switch (SYMBOL_CLASS (sym0))
4320 {
4321 case LOC_UNDEF:
4322 return 1;
4323 case LOC_TYPEDEF:
4324 {
4325 struct type *type0 = SYMBOL_TYPE (sym0);
4326 struct type *type1 = SYMBOL_TYPE (sym1);
4327 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4328 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4329 int len0 = strlen (name0);
4330
4331 return
4332 TYPE_CODE (type0) == TYPE_CODE (type1)
4333 && (equiv_types (type0, type1)
4334 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4335 && strncmp (name1 + len0, "___XV", 5) == 0));
4336 }
4337 case LOC_CONST:
4338 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4339 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4340 default:
4341 return 0;
4342 }
4343 }
4344
4345 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4346 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4347
4348 static void
4349 add_defn_to_vec (struct obstack *obstackp,
4350 struct symbol *sym,
4351 struct block *block)
4352 {
4353 int i;
4354 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4355
4356 /* Do not try to complete stub types, as the debugger is probably
4357 already scanning all symbols matching a certain name at the
4358 time when this function is called. Trying to replace the stub
4359 type by its associated full type will cause us to restart a scan
4360 which may lead to an infinite recursion. Instead, the client
4361 collecting the matching symbols will end up collecting several
4362 matches, with at least one of them complete. It can then filter
4363 out the stub ones if needed. */
4364
4365 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4366 {
4367 if (lesseq_defined_than (sym, prevDefns[i].sym))
4368 return;
4369 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4370 {
4371 prevDefns[i].sym = sym;
4372 prevDefns[i].block = block;
4373 return;
4374 }
4375 }
4376
4377 {
4378 struct ada_symbol_info info;
4379
4380 info.sym = sym;
4381 info.block = block;
4382 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4383 }
4384 }
4385
4386 /* Number of ada_symbol_info structures currently collected in
4387 current vector in *OBSTACKP. */
4388
4389 static int
4390 num_defns_collected (struct obstack *obstackp)
4391 {
4392 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4393 }
4394
4395 /* Vector of ada_symbol_info structures currently collected in current
4396 vector in *OBSTACKP. If FINISH, close off the vector and return
4397 its final address. */
4398
4399 static struct ada_symbol_info *
4400 defns_collected (struct obstack *obstackp, int finish)
4401 {
4402 if (finish)
4403 return obstack_finish (obstackp);
4404 else
4405 return (struct ada_symbol_info *) obstack_base (obstackp);
4406 }
4407
4408 /* Return a minimal symbol matching NAME according to Ada decoding
4409 rules. Returns NULL if there is no such minimal symbol. Names
4410 prefixed with "standard__" are handled specially: "standard__" is
4411 first stripped off, and only static and global symbols are searched. */
4412
4413 struct minimal_symbol *
4414 ada_lookup_simple_minsym (const char *name)
4415 {
4416 struct objfile *objfile;
4417 struct minimal_symbol *msymbol;
4418 const int wild_match_p = should_use_wild_match (name);
4419
4420 /* Special case: If the user specifies a symbol name inside package
4421 Standard, do a non-wild matching of the symbol name without
4422 the "standard__" prefix. This was primarily introduced in order
4423 to allow the user to specifically access the standard exceptions
4424 using, for instance, Standard.Constraint_Error when Constraint_Error
4425 is ambiguous (due to the user defining its own Constraint_Error
4426 entity inside its program). */
4427 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4428 name += sizeof ("standard__") - 1;
4429
4430 ALL_MSYMBOLS (objfile, msymbol)
4431 {
4432 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4433 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4434 return msymbol;
4435 }
4436
4437 return NULL;
4438 }
4439
4440 /* For all subprograms that statically enclose the subprogram of the
4441 selected frame, add symbols matching identifier NAME in DOMAIN
4442 and their blocks to the list of data in OBSTACKP, as for
4443 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4444 with a wildcard prefix. */
4445
4446 static void
4447 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4448 const char *name, domain_enum namespace,
4449 int wild_match_p)
4450 {
4451 }
4452
4453 /* True if TYPE is definitely an artificial type supplied to a symbol
4454 for which no debugging information was given in the symbol file. */
4455
4456 static int
4457 is_nondebugging_type (struct type *type)
4458 {
4459 const char *name = ada_type_name (type);
4460
4461 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4462 }
4463
4464 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4465 that are deemed "identical" for practical purposes.
4466
4467 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4468 types and that their number of enumerals is identical (in other
4469 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4470
4471 static int
4472 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4473 {
4474 int i;
4475
4476 /* The heuristic we use here is fairly conservative. We consider
4477 that 2 enumerate types are identical if they have the same
4478 number of enumerals and that all enumerals have the same
4479 underlying value and name. */
4480
4481 /* All enums in the type should have an identical underlying value. */
4482 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4483 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4484 return 0;
4485
4486 /* All enumerals should also have the same name (modulo any numerical
4487 suffix). */
4488 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4489 {
4490 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4491 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4492 int len_1 = strlen (name_1);
4493 int len_2 = strlen (name_2);
4494
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4497 if (len_1 != len_2
4498 || strncmp (TYPE_FIELD_NAME (type1, i),
4499 TYPE_FIELD_NAME (type2, i),
4500 len_1) != 0)
4501 return 0;
4502 }
4503
4504 return 1;
4505 }
4506
4507 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4508 that are deemed "identical" for practical purposes. Sometimes,
4509 enumerals are not strictly identical, but their types are so similar
4510 that they can be considered identical.
4511
4512 For instance, consider the following code:
4513
4514 type Color is (Black, Red, Green, Blue, White);
4515 type RGB_Color is new Color range Red .. Blue;
4516
4517 Type RGB_Color is a subrange of an implicit type which is a copy
4518 of type Color. If we call that implicit type RGB_ColorB ("B" is
4519 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4520 As a result, when an expression references any of the enumeral
4521 by name (Eg. "print green"), the expression is technically
4522 ambiguous and the user should be asked to disambiguate. But
4523 doing so would only hinder the user, since it wouldn't matter
4524 what choice he makes, the outcome would always be the same.
4525 So, for practical purposes, we consider them as the same. */
4526
4527 static int
4528 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4529 {
4530 int i;
4531
4532 /* Before performing a thorough comparison check of each type,
4533 we perform a series of inexpensive checks. We expect that these
4534 checks will quickly fail in the vast majority of cases, and thus
4535 help prevent the unnecessary use of a more expensive comparison.
4536 Said comparison also expects us to make some of these checks
4537 (see ada_identical_enum_types_p). */
4538
4539 /* Quick check: All symbols should have an enum type. */
4540 for (i = 0; i < nsyms; i++)
4541 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4542 return 0;
4543
4544 /* Quick check: They should all have the same value. */
4545 for (i = 1; i < nsyms; i++)
4546 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4547 return 0;
4548
4549 /* Quick check: They should all have the same number of enumerals. */
4550 for (i = 1; i < nsyms; i++)
4551 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4552 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4553 return 0;
4554
4555 /* All the sanity checks passed, so we might have a set of
4556 identical enumeration types. Perform a more complete
4557 comparison of the type of each symbol. */
4558 for (i = 1; i < nsyms; i++)
4559 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4560 SYMBOL_TYPE (syms[0].sym)))
4561 return 0;
4562
4563 return 1;
4564 }
4565
4566 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4567 duplicate other symbols in the list (The only case I know of where
4568 this happens is when object files containing stabs-in-ecoff are
4569 linked with files containing ordinary ecoff debugging symbols (or no
4570 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4571 Returns the number of items in the modified list. */
4572
4573 static int
4574 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4575 {
4576 int i, j;
4577
4578 /* We should never be called with less than 2 symbols, as there
4579 cannot be any extra symbol in that case. But it's easy to
4580 handle, since we have nothing to do in that case. */
4581 if (nsyms < 2)
4582 return nsyms;
4583
4584 i = 0;
4585 while (i < nsyms)
4586 {
4587 int remove_p = 0;
4588
4589 /* If two symbols have the same name and one of them is a stub type,
4590 the get rid of the stub. */
4591
4592 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4593 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4594 {
4595 for (j = 0; j < nsyms; j++)
4596 {
4597 if (j != i
4598 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4599 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4600 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4601 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4602 remove_p = 1;
4603 }
4604 }
4605
4606 /* Two symbols with the same name, same class and same address
4607 should be identical. */
4608
4609 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4610 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4611 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4612 {
4613 for (j = 0; j < nsyms; j += 1)
4614 {
4615 if (i != j
4616 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4617 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4618 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4619 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4620 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4621 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4622 remove_p = 1;
4623 }
4624 }
4625
4626 if (remove_p)
4627 {
4628 for (j = i + 1; j < nsyms; j += 1)
4629 syms[j - 1] = syms[j];
4630 nsyms -= 1;
4631 }
4632
4633 i += 1;
4634 }
4635
4636 /* If all the remaining symbols are identical enumerals, then
4637 just keep the first one and discard the rest.
4638
4639 Unlike what we did previously, we do not discard any entry
4640 unless they are ALL identical. This is because the symbol
4641 comparison is not a strict comparison, but rather a practical
4642 comparison. If all symbols are considered identical, then
4643 we can just go ahead and use the first one and discard the rest.
4644 But if we cannot reduce the list to a single element, we have
4645 to ask the user to disambiguate anyways. And if we have to
4646 present a multiple-choice menu, it's less confusing if the list
4647 isn't missing some choices that were identical and yet distinct. */
4648 if (symbols_are_identical_enums (syms, nsyms))
4649 nsyms = 1;
4650
4651 return nsyms;
4652 }
4653
4654 /* Given a type that corresponds to a renaming entity, use the type name
4655 to extract the scope (package name or function name, fully qualified,
4656 and following the GNAT encoding convention) where this renaming has been
4657 defined. The string returned needs to be deallocated after use. */
4658
4659 static char *
4660 xget_renaming_scope (struct type *renaming_type)
4661 {
4662 /* The renaming types adhere to the following convention:
4663 <scope>__<rename>___<XR extension>.
4664 So, to extract the scope, we search for the "___XR" extension,
4665 and then backtrack until we find the first "__". */
4666
4667 const char *name = type_name_no_tag (renaming_type);
4668 char *suffix = strstr (name, "___XR");
4669 char *last;
4670 int scope_len;
4671 char *scope;
4672
4673 /* Now, backtrack a bit until we find the first "__". Start looking
4674 at suffix - 3, as the <rename> part is at least one character long. */
4675
4676 for (last = suffix - 3; last > name; last--)
4677 if (last[0] == '_' && last[1] == '_')
4678 break;
4679
4680 /* Make a copy of scope and return it. */
4681
4682 scope_len = last - name;
4683 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4684
4685 strncpy (scope, name, scope_len);
4686 scope[scope_len] = '\0';
4687
4688 return scope;
4689 }
4690
4691 /* Return nonzero if NAME corresponds to a package name. */
4692
4693 static int
4694 is_package_name (const char *name)
4695 {
4696 /* Here, We take advantage of the fact that no symbols are generated
4697 for packages, while symbols are generated for each function.
4698 So the condition for NAME represent a package becomes equivalent
4699 to NAME not existing in our list of symbols. There is only one
4700 small complication with library-level functions (see below). */
4701
4702 char *fun_name;
4703
4704 /* If it is a function that has not been defined at library level,
4705 then we should be able to look it up in the symbols. */
4706 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4707 return 0;
4708
4709 /* Library-level function names start with "_ada_". See if function
4710 "_ada_" followed by NAME can be found. */
4711
4712 /* Do a quick check that NAME does not contain "__", since library-level
4713 functions names cannot contain "__" in them. */
4714 if (strstr (name, "__") != NULL)
4715 return 0;
4716
4717 fun_name = xstrprintf ("_ada_%s", name);
4718
4719 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4720 }
4721
4722 /* Return nonzero if SYM corresponds to a renaming entity that is
4723 not visible from FUNCTION_NAME. */
4724
4725 static int
4726 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4727 {
4728 char *scope;
4729 struct cleanup *old_chain;
4730
4731 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4732 return 0;
4733
4734 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4735 old_chain = make_cleanup (xfree, scope);
4736
4737 /* If the rename has been defined in a package, then it is visible. */
4738 if (is_package_name (scope))
4739 {
4740 do_cleanups (old_chain);
4741 return 0;
4742 }
4743
4744 /* Check that the rename is in the current function scope by checking
4745 that its name starts with SCOPE. */
4746
4747 /* If the function name starts with "_ada_", it means that it is
4748 a library-level function. Strip this prefix before doing the
4749 comparison, as the encoding for the renaming does not contain
4750 this prefix. */
4751 if (strncmp (function_name, "_ada_", 5) == 0)
4752 function_name += 5;
4753
4754 {
4755 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4756
4757 do_cleanups (old_chain);
4758 return is_invisible;
4759 }
4760 }
4761
4762 /* Remove entries from SYMS that corresponds to a renaming entity that
4763 is not visible from the function associated with CURRENT_BLOCK or
4764 that is superfluous due to the presence of more specific renaming
4765 information. Places surviving symbols in the initial entries of
4766 SYMS and returns the number of surviving symbols.
4767
4768 Rationale:
4769 First, in cases where an object renaming is implemented as a
4770 reference variable, GNAT may produce both the actual reference
4771 variable and the renaming encoding. In this case, we discard the
4772 latter.
4773
4774 Second, GNAT emits a type following a specified encoding for each renaming
4775 entity. Unfortunately, STABS currently does not support the definition
4776 of types that are local to a given lexical block, so all renamings types
4777 are emitted at library level. As a consequence, if an application
4778 contains two renaming entities using the same name, and a user tries to
4779 print the value of one of these entities, the result of the ada symbol
4780 lookup will also contain the wrong renaming type.
4781
4782 This function partially covers for this limitation by attempting to
4783 remove from the SYMS list renaming symbols that should be visible
4784 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4785 method with the current information available. The implementation
4786 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4787
4788 - When the user tries to print a rename in a function while there
4789 is another rename entity defined in a package: Normally, the
4790 rename in the function has precedence over the rename in the
4791 package, so the latter should be removed from the list. This is
4792 currently not the case.
4793
4794 - This function will incorrectly remove valid renames if
4795 the CURRENT_BLOCK corresponds to a function which symbol name
4796 has been changed by an "Export" pragma. As a consequence,
4797 the user will be unable to print such rename entities. */
4798
4799 static int
4800 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4801 int nsyms, const struct block *current_block)
4802 {
4803 struct symbol *current_function;
4804 const char *current_function_name;
4805 int i;
4806 int is_new_style_renaming;
4807
4808 /* If there is both a renaming foo___XR... encoded as a variable and
4809 a simple variable foo in the same block, discard the latter.
4810 First, zero out such symbols, then compress. */
4811 is_new_style_renaming = 0;
4812 for (i = 0; i < nsyms; i += 1)
4813 {
4814 struct symbol *sym = syms[i].sym;
4815 const struct block *block = syms[i].block;
4816 const char *name;
4817 const char *suffix;
4818
4819 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4820 continue;
4821 name = SYMBOL_LINKAGE_NAME (sym);
4822 suffix = strstr (name, "___XR");
4823
4824 if (suffix != NULL)
4825 {
4826 int name_len = suffix - name;
4827 int j;
4828
4829 is_new_style_renaming = 1;
4830 for (j = 0; j < nsyms; j += 1)
4831 if (i != j && syms[j].sym != NULL
4832 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4833 name_len) == 0
4834 && block == syms[j].block)
4835 syms[j].sym = NULL;
4836 }
4837 }
4838 if (is_new_style_renaming)
4839 {
4840 int j, k;
4841
4842 for (j = k = 0; j < nsyms; j += 1)
4843 if (syms[j].sym != NULL)
4844 {
4845 syms[k] = syms[j];
4846 k += 1;
4847 }
4848 return k;
4849 }
4850
4851 /* Extract the function name associated to CURRENT_BLOCK.
4852 Abort if unable to do so. */
4853
4854 if (current_block == NULL)
4855 return nsyms;
4856
4857 current_function = block_linkage_function (current_block);
4858 if (current_function == NULL)
4859 return nsyms;
4860
4861 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4862 if (current_function_name == NULL)
4863 return nsyms;
4864
4865 /* Check each of the symbols, and remove it from the list if it is
4866 a type corresponding to a renaming that is out of the scope of
4867 the current block. */
4868
4869 i = 0;
4870 while (i < nsyms)
4871 {
4872 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4873 == ADA_OBJECT_RENAMING
4874 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4875 {
4876 int j;
4877
4878 for (j = i + 1; j < nsyms; j += 1)
4879 syms[j - 1] = syms[j];
4880 nsyms -= 1;
4881 }
4882 else
4883 i += 1;
4884 }
4885
4886 return nsyms;
4887 }
4888
4889 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4890 whose name and domain match NAME and DOMAIN respectively.
4891 If no match was found, then extend the search to "enclosing"
4892 routines (in other words, if we're inside a nested function,
4893 search the symbols defined inside the enclosing functions).
4894 If WILD_MATCH_P is nonzero, perform the naming matching in
4895 "wild" mode (see function "wild_match" for more info).
4896
4897 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4898
4899 static void
4900 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4901 struct block *block, domain_enum domain,
4902 int wild_match_p)
4903 {
4904 int block_depth = 0;
4905
4906 while (block != NULL)
4907 {
4908 block_depth += 1;
4909 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4910 wild_match_p);
4911
4912 /* If we found a non-function match, assume that's the one. */
4913 if (is_nonfunction (defns_collected (obstackp, 0),
4914 num_defns_collected (obstackp)))
4915 return;
4916
4917 block = BLOCK_SUPERBLOCK (block);
4918 }
4919
4920 /* If no luck so far, try to find NAME as a local symbol in some lexically
4921 enclosing subprogram. */
4922 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4923 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4924 }
4925
4926 /* An object of this type is used as the user_data argument when
4927 calling the map_matching_symbols method. */
4928
4929 struct match_data
4930 {
4931 struct objfile *objfile;
4932 struct obstack *obstackp;
4933 struct symbol *arg_sym;
4934 int found_sym;
4935 };
4936
4937 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4938 to a list of symbols. DATA0 is a pointer to a struct match_data *
4939 containing the obstack that collects the symbol list, the file that SYM
4940 must come from, a flag indicating whether a non-argument symbol has
4941 been found in the current block, and the last argument symbol
4942 passed in SYM within the current block (if any). When SYM is null,
4943 marking the end of a block, the argument symbol is added if no
4944 other has been found. */
4945
4946 static int
4947 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4948 {
4949 struct match_data *data = (struct match_data *) data0;
4950
4951 if (sym == NULL)
4952 {
4953 if (!data->found_sym && data->arg_sym != NULL)
4954 add_defn_to_vec (data->obstackp,
4955 fixup_symbol_section (data->arg_sym, data->objfile),
4956 block);
4957 data->found_sym = 0;
4958 data->arg_sym = NULL;
4959 }
4960 else
4961 {
4962 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4963 return 0;
4964 else if (SYMBOL_IS_ARGUMENT (sym))
4965 data->arg_sym = sym;
4966 else
4967 {
4968 data->found_sym = 1;
4969 add_defn_to_vec (data->obstackp,
4970 fixup_symbol_section (sym, data->objfile),
4971 block);
4972 }
4973 }
4974 return 0;
4975 }
4976
4977 /* Compare STRING1 to STRING2, with results as for strcmp.
4978 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4979 implies compare_names (STRING1, STRING2) (they may differ as to
4980 what symbols compare equal). */
4981
4982 static int
4983 compare_names (const char *string1, const char *string2)
4984 {
4985 while (*string1 != '\0' && *string2 != '\0')
4986 {
4987 if (isspace (*string1) || isspace (*string2))
4988 return strcmp_iw_ordered (string1, string2);
4989 if (*string1 != *string2)
4990 break;
4991 string1 += 1;
4992 string2 += 1;
4993 }
4994 switch (*string1)
4995 {
4996 case '(':
4997 return strcmp_iw_ordered (string1, string2);
4998 case '_':
4999 if (*string2 == '\0')
5000 {
5001 if (is_name_suffix (string1))
5002 return 0;
5003 else
5004 return 1;
5005 }
5006 /* FALLTHROUGH */
5007 default:
5008 if (*string2 == '(')
5009 return strcmp_iw_ordered (string1, string2);
5010 else
5011 return *string1 - *string2;
5012 }
5013 }
5014
5015 /* Add to OBSTACKP all non-local symbols whose name and domain match
5016 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5017 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5018
5019 static void
5020 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5021 domain_enum domain, int global,
5022 int is_wild_match)
5023 {
5024 struct objfile *objfile;
5025 struct match_data data;
5026
5027 memset (&data, 0, sizeof data);
5028 data.obstackp = obstackp;
5029
5030 ALL_OBJFILES (objfile)
5031 {
5032 data.objfile = objfile;
5033
5034 if (is_wild_match)
5035 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5036 aux_add_nonlocal_symbols, &data,
5037 wild_match, NULL);
5038 else
5039 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5040 aux_add_nonlocal_symbols, &data,
5041 full_match, compare_names);
5042 }
5043
5044 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5045 {
5046 ALL_OBJFILES (objfile)
5047 {
5048 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5049 strcpy (name1, "_ada_");
5050 strcpy (name1 + sizeof ("_ada_") - 1, name);
5051 data.objfile = objfile;
5052 objfile->sf->qf->map_matching_symbols (name1, domain,
5053 objfile, global,
5054 aux_add_nonlocal_symbols,
5055 &data,
5056 full_match, compare_names);
5057 }
5058 }
5059 }
5060
5061 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5062 non-zero, enclosing scope and in global scopes, returning the number of
5063 matches.
5064 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5065 indicating the symbols found and the blocks and symbol tables (if
5066 any) in which they were found. This vector is transient---good only to
5067 the next call of ada_lookup_symbol_list.
5068
5069 When full_search is non-zero, any non-function/non-enumeral
5070 symbol match within the nest of blocks whose innermost member is BLOCK0,
5071 is the one match returned (no other matches in that or
5072 enclosing blocks is returned). If there are any matches in or
5073 surrounding BLOCK0, then these alone are returned.
5074
5075 Names prefixed with "standard__" are handled specially: "standard__"
5076 is first stripped off, and only static and global symbols are searched. */
5077
5078 static int
5079 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5080 domain_enum namespace,
5081 struct ada_symbol_info **results,
5082 int full_search)
5083 {
5084 struct symbol *sym;
5085 struct block *block;
5086 const char *name;
5087 const int wild_match_p = should_use_wild_match (name0);
5088 int cacheIfUnique;
5089 int ndefns;
5090
5091 obstack_free (&symbol_list_obstack, NULL);
5092 obstack_init (&symbol_list_obstack);
5093
5094 cacheIfUnique = 0;
5095
5096 /* Search specified block and its superiors. */
5097
5098 name = name0;
5099 block = (struct block *) block0; /* FIXME: No cast ought to be
5100 needed, but adding const will
5101 have a cascade effect. */
5102
5103 /* Special case: If the user specifies a symbol name inside package
5104 Standard, do a non-wild matching of the symbol name without
5105 the "standard__" prefix. This was primarily introduced in order
5106 to allow the user to specifically access the standard exceptions
5107 using, for instance, Standard.Constraint_Error when Constraint_Error
5108 is ambiguous (due to the user defining its own Constraint_Error
5109 entity inside its program). */
5110 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5111 {
5112 block = NULL;
5113 name = name0 + sizeof ("standard__") - 1;
5114 }
5115
5116 /* Check the non-global symbols. If we have ANY match, then we're done. */
5117
5118 if (block != NULL)
5119 {
5120 if (full_search)
5121 {
5122 ada_add_local_symbols (&symbol_list_obstack, name, block,
5123 namespace, wild_match_p);
5124 }
5125 else
5126 {
5127 /* In the !full_search case we're are being called by
5128 ada_iterate_over_symbols, and we don't want to search
5129 superblocks. */
5130 ada_add_block_symbols (&symbol_list_obstack, block, name,
5131 namespace, NULL, wild_match_p);
5132 }
5133 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5134 goto done;
5135 }
5136
5137 /* No non-global symbols found. Check our cache to see if we have
5138 already performed this search before. If we have, then return
5139 the same result. */
5140
5141 cacheIfUnique = 1;
5142 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5143 {
5144 if (sym != NULL)
5145 add_defn_to_vec (&symbol_list_obstack, sym, block);
5146 goto done;
5147 }
5148
5149 /* Search symbols from all global blocks. */
5150
5151 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5152 wild_match_p);
5153
5154 /* Now add symbols from all per-file blocks if we've gotten no hits
5155 (not strictly correct, but perhaps better than an error). */
5156
5157 if (num_defns_collected (&symbol_list_obstack) == 0)
5158 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5159 wild_match_p);
5160
5161 done:
5162 ndefns = num_defns_collected (&symbol_list_obstack);
5163 *results = defns_collected (&symbol_list_obstack, 1);
5164
5165 ndefns = remove_extra_symbols (*results, ndefns);
5166
5167 if (ndefns == 0 && full_search)
5168 cache_symbol (name0, namespace, NULL, NULL);
5169
5170 if (ndefns == 1 && full_search && cacheIfUnique)
5171 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5172
5173 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5174
5175 return ndefns;
5176 }
5177
5178 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5179 in global scopes, returning the number of matches, and setting *RESULTS
5180 to a vector of (SYM,BLOCK) tuples.
5181 See ada_lookup_symbol_list_worker for further details. */
5182
5183 int
5184 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5185 domain_enum domain, struct ada_symbol_info **results)
5186 {
5187 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5188 }
5189
5190 /* Implementation of the la_iterate_over_symbols method. */
5191
5192 static void
5193 ada_iterate_over_symbols (const struct block *block,
5194 const char *name, domain_enum domain,
5195 symbol_found_callback_ftype *callback,
5196 void *data)
5197 {
5198 int ndefs, i;
5199 struct ada_symbol_info *results;
5200
5201 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5202 for (i = 0; i < ndefs; ++i)
5203 {
5204 if (! (*callback) (results[i].sym, data))
5205 break;
5206 }
5207 }
5208
5209 /* If NAME is the name of an entity, return a string that should
5210 be used to look that entity up in Ada units. This string should
5211 be deallocated after use using xfree.
5212
5213 NAME can have any form that the "break" or "print" commands might
5214 recognize. In other words, it does not have to be the "natural"
5215 name, or the "encoded" name. */
5216
5217 char *
5218 ada_name_for_lookup (const char *name)
5219 {
5220 char *canon;
5221 int nlen = strlen (name);
5222
5223 if (name[0] == '<' && name[nlen - 1] == '>')
5224 {
5225 canon = xmalloc (nlen - 1);
5226 memcpy (canon, name + 1, nlen - 2);
5227 canon[nlen - 2] = '\0';
5228 }
5229 else
5230 canon = xstrdup (ada_encode (ada_fold_name (name)));
5231 return canon;
5232 }
5233
5234 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5235 to 1, but choosing the first symbol found if there are multiple
5236 choices.
5237
5238 The result is stored in *INFO, which must be non-NULL.
5239 If no match is found, INFO->SYM is set to NULL. */
5240
5241 void
5242 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5243 domain_enum namespace,
5244 struct ada_symbol_info *info)
5245 {
5246 struct ada_symbol_info *candidates;
5247 int n_candidates;
5248
5249 gdb_assert (info != NULL);
5250 memset (info, 0, sizeof (struct ada_symbol_info));
5251
5252 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5253 if (n_candidates == 0)
5254 return;
5255
5256 *info = candidates[0];
5257 info->sym = fixup_symbol_section (info->sym, NULL);
5258 }
5259
5260 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5261 scope and in global scopes, or NULL if none. NAME is folded and
5262 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5263 choosing the first symbol if there are multiple choices.
5264 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5265
5266 struct symbol *
5267 ada_lookup_symbol (const char *name, const struct block *block0,
5268 domain_enum namespace, int *is_a_field_of_this)
5269 {
5270 struct ada_symbol_info info;
5271
5272 if (is_a_field_of_this != NULL)
5273 *is_a_field_of_this = 0;
5274
5275 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5276 block0, namespace, &info);
5277 return info.sym;
5278 }
5279
5280 static struct symbol *
5281 ada_lookup_symbol_nonlocal (const char *name,
5282 const struct block *block,
5283 const domain_enum domain)
5284 {
5285 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5286 }
5287
5288
5289 /* True iff STR is a possible encoded suffix of a normal Ada name
5290 that is to be ignored for matching purposes. Suffixes of parallel
5291 names (e.g., XVE) are not included here. Currently, the possible suffixes
5292 are given by any of the regular expressions:
5293
5294 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5295 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5296 TKB [subprogram suffix for task bodies]
5297 _E[0-9]+[bs]$ [protected object entry suffixes]
5298 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5299
5300 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5301 match is performed. This sequence is used to differentiate homonyms,
5302 is an optional part of a valid name suffix. */
5303
5304 static int
5305 is_name_suffix (const char *str)
5306 {
5307 int k;
5308 const char *matching;
5309 const int len = strlen (str);
5310
5311 /* Skip optional leading __[0-9]+. */
5312
5313 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5314 {
5315 str += 3;
5316 while (isdigit (str[0]))
5317 str += 1;
5318 }
5319
5320 /* [.$][0-9]+ */
5321
5322 if (str[0] == '.' || str[0] == '$')
5323 {
5324 matching = str + 1;
5325 while (isdigit (matching[0]))
5326 matching += 1;
5327 if (matching[0] == '\0')
5328 return 1;
5329 }
5330
5331 /* ___[0-9]+ */
5332
5333 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5334 {
5335 matching = str + 3;
5336 while (isdigit (matching[0]))
5337 matching += 1;
5338 if (matching[0] == '\0')
5339 return 1;
5340 }
5341
5342 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5343
5344 if (strcmp (str, "TKB") == 0)
5345 return 1;
5346
5347 #if 0
5348 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5349 with a N at the end. Unfortunately, the compiler uses the same
5350 convention for other internal types it creates. So treating
5351 all entity names that end with an "N" as a name suffix causes
5352 some regressions. For instance, consider the case of an enumerated
5353 type. To support the 'Image attribute, it creates an array whose
5354 name ends with N.
5355 Having a single character like this as a suffix carrying some
5356 information is a bit risky. Perhaps we should change the encoding
5357 to be something like "_N" instead. In the meantime, do not do
5358 the following check. */
5359 /* Protected Object Subprograms */
5360 if (len == 1 && str [0] == 'N')
5361 return 1;
5362 #endif
5363
5364 /* _E[0-9]+[bs]$ */
5365 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5366 {
5367 matching = str + 3;
5368 while (isdigit (matching[0]))
5369 matching += 1;
5370 if ((matching[0] == 'b' || matching[0] == 's')
5371 && matching [1] == '\0')
5372 return 1;
5373 }
5374
5375 /* ??? We should not modify STR directly, as we are doing below. This
5376 is fine in this case, but may become problematic later if we find
5377 that this alternative did not work, and want to try matching
5378 another one from the begining of STR. Since we modified it, we
5379 won't be able to find the begining of the string anymore! */
5380 if (str[0] == 'X')
5381 {
5382 str += 1;
5383 while (str[0] != '_' && str[0] != '\0')
5384 {
5385 if (str[0] != 'n' && str[0] != 'b')
5386 return 0;
5387 str += 1;
5388 }
5389 }
5390
5391 if (str[0] == '\000')
5392 return 1;
5393
5394 if (str[0] == '_')
5395 {
5396 if (str[1] != '_' || str[2] == '\000')
5397 return 0;
5398 if (str[2] == '_')
5399 {
5400 if (strcmp (str + 3, "JM") == 0)
5401 return 1;
5402 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5403 the LJM suffix in favor of the JM one. But we will
5404 still accept LJM as a valid suffix for a reasonable
5405 amount of time, just to allow ourselves to debug programs
5406 compiled using an older version of GNAT. */
5407 if (strcmp (str + 3, "LJM") == 0)
5408 return 1;
5409 if (str[3] != 'X')
5410 return 0;
5411 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5412 || str[4] == 'U' || str[4] == 'P')
5413 return 1;
5414 if (str[4] == 'R' && str[5] != 'T')
5415 return 1;
5416 return 0;
5417 }
5418 if (!isdigit (str[2]))
5419 return 0;
5420 for (k = 3; str[k] != '\0'; k += 1)
5421 if (!isdigit (str[k]) && str[k] != '_')
5422 return 0;
5423 return 1;
5424 }
5425 if (str[0] == '$' && isdigit (str[1]))
5426 {
5427 for (k = 2; str[k] != '\0'; k += 1)
5428 if (!isdigit (str[k]) && str[k] != '_')
5429 return 0;
5430 return 1;
5431 }
5432 return 0;
5433 }
5434
5435 /* Return non-zero if the string starting at NAME and ending before
5436 NAME_END contains no capital letters. */
5437
5438 static int
5439 is_valid_name_for_wild_match (const char *name0)
5440 {
5441 const char *decoded_name = ada_decode (name0);
5442 int i;
5443
5444 /* If the decoded name starts with an angle bracket, it means that
5445 NAME0 does not follow the GNAT encoding format. It should then
5446 not be allowed as a possible wild match. */
5447 if (decoded_name[0] == '<')
5448 return 0;
5449
5450 for (i=0; decoded_name[i] != '\0'; i++)
5451 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5452 return 0;
5453
5454 return 1;
5455 }
5456
5457 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5458 that could start a simple name. Assumes that *NAMEP points into
5459 the string beginning at NAME0. */
5460
5461 static int
5462 advance_wild_match (const char **namep, const char *name0, int target0)
5463 {
5464 const char *name = *namep;
5465
5466 while (1)
5467 {
5468 int t0, t1;
5469
5470 t0 = *name;
5471 if (t0 == '_')
5472 {
5473 t1 = name[1];
5474 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5475 {
5476 name += 1;
5477 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5478 break;
5479 else
5480 name += 1;
5481 }
5482 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5483 || name[2] == target0))
5484 {
5485 name += 2;
5486 break;
5487 }
5488 else
5489 return 0;
5490 }
5491 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5492 name += 1;
5493 else
5494 return 0;
5495 }
5496
5497 *namep = name;
5498 return 1;
5499 }
5500
5501 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5502 informational suffixes of NAME (i.e., for which is_name_suffix is
5503 true). Assumes that PATN is a lower-cased Ada simple name. */
5504
5505 static int
5506 wild_match (const char *name, const char *patn)
5507 {
5508 const char *p;
5509 const char *name0 = name;
5510
5511 while (1)
5512 {
5513 const char *match = name;
5514
5515 if (*name == *patn)
5516 {
5517 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5518 if (*p != *name)
5519 break;
5520 if (*p == '\0' && is_name_suffix (name))
5521 return match != name0 && !is_valid_name_for_wild_match (name0);
5522
5523 if (name[-1] == '_')
5524 name -= 1;
5525 }
5526 if (!advance_wild_match (&name, name0, *patn))
5527 return 1;
5528 }
5529 }
5530
5531 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5532 informational suffix. */
5533
5534 static int
5535 full_match (const char *sym_name, const char *search_name)
5536 {
5537 return !match_name (sym_name, search_name, 0);
5538 }
5539
5540
5541 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5542 vector *defn_symbols, updating the list of symbols in OBSTACKP
5543 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5544 OBJFILE is the section containing BLOCK. */
5545
5546 static void
5547 ada_add_block_symbols (struct obstack *obstackp,
5548 struct block *block, const char *name,
5549 domain_enum domain, struct objfile *objfile,
5550 int wild)
5551 {
5552 struct block_iterator iter;
5553 int name_len = strlen (name);
5554 /* A matching argument symbol, if any. */
5555 struct symbol *arg_sym;
5556 /* Set true when we find a matching non-argument symbol. */
5557 int found_sym;
5558 struct symbol *sym;
5559
5560 arg_sym = NULL;
5561 found_sym = 0;
5562 if (wild)
5563 {
5564 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5565 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5566 {
5567 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5568 SYMBOL_DOMAIN (sym), domain)
5569 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5570 {
5571 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5572 continue;
5573 else if (SYMBOL_IS_ARGUMENT (sym))
5574 arg_sym = sym;
5575 else
5576 {
5577 found_sym = 1;
5578 add_defn_to_vec (obstackp,
5579 fixup_symbol_section (sym, objfile),
5580 block);
5581 }
5582 }
5583 }
5584 }
5585 else
5586 {
5587 for (sym = block_iter_match_first (block, name, full_match, &iter);
5588 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5589 {
5590 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5591 SYMBOL_DOMAIN (sym), domain))
5592 {
5593 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5594 {
5595 if (SYMBOL_IS_ARGUMENT (sym))
5596 arg_sym = sym;
5597 else
5598 {
5599 found_sym = 1;
5600 add_defn_to_vec (obstackp,
5601 fixup_symbol_section (sym, objfile),
5602 block);
5603 }
5604 }
5605 }
5606 }
5607 }
5608
5609 if (!found_sym && arg_sym != NULL)
5610 {
5611 add_defn_to_vec (obstackp,
5612 fixup_symbol_section (arg_sym, objfile),
5613 block);
5614 }
5615
5616 if (!wild)
5617 {
5618 arg_sym = NULL;
5619 found_sym = 0;
5620
5621 ALL_BLOCK_SYMBOLS (block, iter, sym)
5622 {
5623 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5624 SYMBOL_DOMAIN (sym), domain))
5625 {
5626 int cmp;
5627
5628 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5629 if (cmp == 0)
5630 {
5631 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5632 if (cmp == 0)
5633 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5634 name_len);
5635 }
5636
5637 if (cmp == 0
5638 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5639 {
5640 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5641 {
5642 if (SYMBOL_IS_ARGUMENT (sym))
5643 arg_sym = sym;
5644 else
5645 {
5646 found_sym = 1;
5647 add_defn_to_vec (obstackp,
5648 fixup_symbol_section (sym, objfile),
5649 block);
5650 }
5651 }
5652 }
5653 }
5654 }
5655
5656 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5657 They aren't parameters, right? */
5658 if (!found_sym && arg_sym != NULL)
5659 {
5660 add_defn_to_vec (obstackp,
5661 fixup_symbol_section (arg_sym, objfile),
5662 block);
5663 }
5664 }
5665 }
5666 \f
5667
5668 /* Symbol Completion */
5669
5670 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5671 name in a form that's appropriate for the completion. The result
5672 does not need to be deallocated, but is only good until the next call.
5673
5674 TEXT_LEN is equal to the length of TEXT.
5675 Perform a wild match if WILD_MATCH_P is set.
5676 ENCODED_P should be set if TEXT represents the start of a symbol name
5677 in its encoded form. */
5678
5679 static const char *
5680 symbol_completion_match (const char *sym_name,
5681 const char *text, int text_len,
5682 int wild_match_p, int encoded_p)
5683 {
5684 const int verbatim_match = (text[0] == '<');
5685 int match = 0;
5686
5687 if (verbatim_match)
5688 {
5689 /* Strip the leading angle bracket. */
5690 text = text + 1;
5691 text_len--;
5692 }
5693
5694 /* First, test against the fully qualified name of the symbol. */
5695
5696 if (strncmp (sym_name, text, text_len) == 0)
5697 match = 1;
5698
5699 if (match && !encoded_p)
5700 {
5701 /* One needed check before declaring a positive match is to verify
5702 that iff we are doing a verbatim match, the decoded version
5703 of the symbol name starts with '<'. Otherwise, this symbol name
5704 is not a suitable completion. */
5705 const char *sym_name_copy = sym_name;
5706 int has_angle_bracket;
5707
5708 sym_name = ada_decode (sym_name);
5709 has_angle_bracket = (sym_name[0] == '<');
5710 match = (has_angle_bracket == verbatim_match);
5711 sym_name = sym_name_copy;
5712 }
5713
5714 if (match && !verbatim_match)
5715 {
5716 /* When doing non-verbatim match, another check that needs to
5717 be done is to verify that the potentially matching symbol name
5718 does not include capital letters, because the ada-mode would
5719 not be able to understand these symbol names without the
5720 angle bracket notation. */
5721 const char *tmp;
5722
5723 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5724 if (*tmp != '\0')
5725 match = 0;
5726 }
5727
5728 /* Second: Try wild matching... */
5729
5730 if (!match && wild_match_p)
5731 {
5732 /* Since we are doing wild matching, this means that TEXT
5733 may represent an unqualified symbol name. We therefore must
5734 also compare TEXT against the unqualified name of the symbol. */
5735 sym_name = ada_unqualified_name (ada_decode (sym_name));
5736
5737 if (strncmp (sym_name, text, text_len) == 0)
5738 match = 1;
5739 }
5740
5741 /* Finally: If we found a mach, prepare the result to return. */
5742
5743 if (!match)
5744 return NULL;
5745
5746 if (verbatim_match)
5747 sym_name = add_angle_brackets (sym_name);
5748
5749 if (!encoded_p)
5750 sym_name = ada_decode (sym_name);
5751
5752 return sym_name;
5753 }
5754
5755 /* A companion function to ada_make_symbol_completion_list().
5756 Check if SYM_NAME represents a symbol which name would be suitable
5757 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5758 it is appended at the end of the given string vector SV.
5759
5760 ORIG_TEXT is the string original string from the user command
5761 that needs to be completed. WORD is the entire command on which
5762 completion should be performed. These two parameters are used to
5763 determine which part of the symbol name should be added to the
5764 completion vector.
5765 if WILD_MATCH_P is set, then wild matching is performed.
5766 ENCODED_P should be set if TEXT represents a symbol name in its
5767 encoded formed (in which case the completion should also be
5768 encoded). */
5769
5770 static void
5771 symbol_completion_add (VEC(char_ptr) **sv,
5772 const char *sym_name,
5773 const char *text, int text_len,
5774 const char *orig_text, const char *word,
5775 int wild_match_p, int encoded_p)
5776 {
5777 const char *match = symbol_completion_match (sym_name, text, text_len,
5778 wild_match_p, encoded_p);
5779 char *completion;
5780
5781 if (match == NULL)
5782 return;
5783
5784 /* We found a match, so add the appropriate completion to the given
5785 string vector. */
5786
5787 if (word == orig_text)
5788 {
5789 completion = xmalloc (strlen (match) + 5);
5790 strcpy (completion, match);
5791 }
5792 else if (word > orig_text)
5793 {
5794 /* Return some portion of sym_name. */
5795 completion = xmalloc (strlen (match) + 5);
5796 strcpy (completion, match + (word - orig_text));
5797 }
5798 else
5799 {
5800 /* Return some of ORIG_TEXT plus sym_name. */
5801 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5802 strncpy (completion, word, orig_text - word);
5803 completion[orig_text - word] = '\0';
5804 strcat (completion, match);
5805 }
5806
5807 VEC_safe_push (char_ptr, *sv, completion);
5808 }
5809
5810 /* An object of this type is passed as the user_data argument to the
5811 expand_partial_symbol_names method. */
5812 struct add_partial_datum
5813 {
5814 VEC(char_ptr) **completions;
5815 const char *text;
5816 int text_len;
5817 const char *text0;
5818 const char *word;
5819 int wild_match;
5820 int encoded;
5821 };
5822
5823 /* A callback for expand_partial_symbol_names. */
5824 static int
5825 ada_expand_partial_symbol_name (const char *name, void *user_data)
5826 {
5827 struct add_partial_datum *data = user_data;
5828
5829 return symbol_completion_match (name, data->text, data->text_len,
5830 data->wild_match, data->encoded) != NULL;
5831 }
5832
5833 /* Return a list of possible symbol names completing TEXT0. WORD is
5834 the entire command on which completion is made. */
5835
5836 static VEC (char_ptr) *
5837 ada_make_symbol_completion_list (const char *text0, const char *word,
5838 enum type_code code)
5839 {
5840 char *text;
5841 int text_len;
5842 int wild_match_p;
5843 int encoded_p;
5844 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5845 struct symbol *sym;
5846 struct symtab *s;
5847 struct minimal_symbol *msymbol;
5848 struct objfile *objfile;
5849 struct block *b, *surrounding_static_block = 0;
5850 int i;
5851 struct block_iterator iter;
5852 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5853
5854 gdb_assert (code == TYPE_CODE_UNDEF);
5855
5856 if (text0[0] == '<')
5857 {
5858 text = xstrdup (text0);
5859 make_cleanup (xfree, text);
5860 text_len = strlen (text);
5861 wild_match_p = 0;
5862 encoded_p = 1;
5863 }
5864 else
5865 {
5866 text = xstrdup (ada_encode (text0));
5867 make_cleanup (xfree, text);
5868 text_len = strlen (text);
5869 for (i = 0; i < text_len; i++)
5870 text[i] = tolower (text[i]);
5871
5872 encoded_p = (strstr (text0, "__") != NULL);
5873 /* If the name contains a ".", then the user is entering a fully
5874 qualified entity name, and the match must not be done in wild
5875 mode. Similarly, if the user wants to complete what looks like
5876 an encoded name, the match must not be done in wild mode. */
5877 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5878 }
5879
5880 /* First, look at the partial symtab symbols. */
5881 {
5882 struct add_partial_datum data;
5883
5884 data.completions = &completions;
5885 data.text = text;
5886 data.text_len = text_len;
5887 data.text0 = text0;
5888 data.word = word;
5889 data.wild_match = wild_match_p;
5890 data.encoded = encoded_p;
5891 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5892 }
5893
5894 /* At this point scan through the misc symbol vectors and add each
5895 symbol you find to the list. Eventually we want to ignore
5896 anything that isn't a text symbol (everything else will be
5897 handled by the psymtab code above). */
5898
5899 ALL_MSYMBOLS (objfile, msymbol)
5900 {
5901 QUIT;
5902 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5903 text, text_len, text0, word, wild_match_p,
5904 encoded_p);
5905 }
5906
5907 /* Search upwards from currently selected frame (so that we can
5908 complete on local vars. */
5909
5910 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5911 {
5912 if (!BLOCK_SUPERBLOCK (b))
5913 surrounding_static_block = b; /* For elmin of dups */
5914
5915 ALL_BLOCK_SYMBOLS (b, iter, sym)
5916 {
5917 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5918 text, text_len, text0, word,
5919 wild_match_p, encoded_p);
5920 }
5921 }
5922
5923 /* Go through the symtabs and check the externs and statics for
5924 symbols which match. */
5925
5926 ALL_SYMTABS (objfile, s)
5927 {
5928 QUIT;
5929 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5930 ALL_BLOCK_SYMBOLS (b, iter, sym)
5931 {
5932 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5933 text, text_len, text0, word,
5934 wild_match_p, encoded_p);
5935 }
5936 }
5937
5938 ALL_SYMTABS (objfile, s)
5939 {
5940 QUIT;
5941 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5942 /* Don't do this block twice. */
5943 if (b == surrounding_static_block)
5944 continue;
5945 ALL_BLOCK_SYMBOLS (b, iter, sym)
5946 {
5947 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5948 text, text_len, text0, word,
5949 wild_match_p, encoded_p);
5950 }
5951 }
5952
5953 do_cleanups (old_chain);
5954 return completions;
5955 }
5956
5957 /* Field Access */
5958
5959 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5960 for tagged types. */
5961
5962 static int
5963 ada_is_dispatch_table_ptr_type (struct type *type)
5964 {
5965 const char *name;
5966
5967 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5968 return 0;
5969
5970 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5971 if (name == NULL)
5972 return 0;
5973
5974 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5975 }
5976
5977 /* Return non-zero if TYPE is an interface tag. */
5978
5979 static int
5980 ada_is_interface_tag (struct type *type)
5981 {
5982 const char *name = TYPE_NAME (type);
5983
5984 if (name == NULL)
5985 return 0;
5986
5987 return (strcmp (name, "ada__tags__interface_tag") == 0);
5988 }
5989
5990 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5991 to be invisible to users. */
5992
5993 int
5994 ada_is_ignored_field (struct type *type, int field_num)
5995 {
5996 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5997 return 1;
5998
5999 /* Check the name of that field. */
6000 {
6001 const char *name = TYPE_FIELD_NAME (type, field_num);
6002
6003 /* Anonymous field names should not be printed.
6004 brobecker/2007-02-20: I don't think this can actually happen
6005 but we don't want to print the value of annonymous fields anyway. */
6006 if (name == NULL)
6007 return 1;
6008
6009 /* Normally, fields whose name start with an underscore ("_")
6010 are fields that have been internally generated by the compiler,
6011 and thus should not be printed. The "_parent" field is special,
6012 however: This is a field internally generated by the compiler
6013 for tagged types, and it contains the components inherited from
6014 the parent type. This field should not be printed as is, but
6015 should not be ignored either. */
6016 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6017 return 1;
6018 }
6019
6020 /* If this is the dispatch table of a tagged type or an interface tag,
6021 then ignore. */
6022 if (ada_is_tagged_type (type, 1)
6023 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6024 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6025 return 1;
6026
6027 /* Not a special field, so it should not be ignored. */
6028 return 0;
6029 }
6030
6031 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6032 pointer or reference type whose ultimate target has a tag field. */
6033
6034 int
6035 ada_is_tagged_type (struct type *type, int refok)
6036 {
6037 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6038 }
6039
6040 /* True iff TYPE represents the type of X'Tag */
6041
6042 int
6043 ada_is_tag_type (struct type *type)
6044 {
6045 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6046 return 0;
6047 else
6048 {
6049 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6050
6051 return (name != NULL
6052 && strcmp (name, "ada__tags__dispatch_table") == 0);
6053 }
6054 }
6055
6056 /* The type of the tag on VAL. */
6057
6058 struct type *
6059 ada_tag_type (struct value *val)
6060 {
6061 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6062 }
6063
6064 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6065 retired at Ada 05). */
6066
6067 static int
6068 is_ada95_tag (struct value *tag)
6069 {
6070 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6071 }
6072
6073 /* The value of the tag on VAL. */
6074
6075 struct value *
6076 ada_value_tag (struct value *val)
6077 {
6078 return ada_value_struct_elt (val, "_tag", 0);
6079 }
6080
6081 /* The value of the tag on the object of type TYPE whose contents are
6082 saved at VALADDR, if it is non-null, or is at memory address
6083 ADDRESS. */
6084
6085 static struct value *
6086 value_tag_from_contents_and_address (struct type *type,
6087 const gdb_byte *valaddr,
6088 CORE_ADDR address)
6089 {
6090 int tag_byte_offset;
6091 struct type *tag_type;
6092
6093 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6094 NULL, NULL, NULL))
6095 {
6096 const gdb_byte *valaddr1 = ((valaddr == NULL)
6097 ? NULL
6098 : valaddr + tag_byte_offset);
6099 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6100
6101 return value_from_contents_and_address (tag_type, valaddr1, address1);
6102 }
6103 return NULL;
6104 }
6105
6106 static struct type *
6107 type_from_tag (struct value *tag)
6108 {
6109 const char *type_name = ada_tag_name (tag);
6110
6111 if (type_name != NULL)
6112 return ada_find_any_type (ada_encode (type_name));
6113 return NULL;
6114 }
6115
6116 /* Given a value OBJ of a tagged type, return a value of this
6117 type at the base address of the object. The base address, as
6118 defined in Ada.Tags, it is the address of the primary tag of
6119 the object, and therefore where the field values of its full
6120 view can be fetched. */
6121
6122 struct value *
6123 ada_tag_value_at_base_address (struct value *obj)
6124 {
6125 volatile struct gdb_exception e;
6126 struct value *val;
6127 LONGEST offset_to_top = 0;
6128 struct type *ptr_type, *obj_type;
6129 struct value *tag;
6130 CORE_ADDR base_address;
6131
6132 obj_type = value_type (obj);
6133
6134 /* It is the responsability of the caller to deref pointers. */
6135
6136 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6137 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6138 return obj;
6139
6140 tag = ada_value_tag (obj);
6141 if (!tag)
6142 return obj;
6143
6144 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6145
6146 if (is_ada95_tag (tag))
6147 return obj;
6148
6149 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6150 ptr_type = lookup_pointer_type (ptr_type);
6151 val = value_cast (ptr_type, tag);
6152 if (!val)
6153 return obj;
6154
6155 /* It is perfectly possible that an exception be raised while
6156 trying to determine the base address, just like for the tag;
6157 see ada_tag_name for more details. We do not print the error
6158 message for the same reason. */
6159
6160 TRY_CATCH (e, RETURN_MASK_ERROR)
6161 {
6162 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6163 }
6164
6165 if (e.reason < 0)
6166 return obj;
6167
6168 /* If offset is null, nothing to do. */
6169
6170 if (offset_to_top == 0)
6171 return obj;
6172
6173 /* -1 is a special case in Ada.Tags; however, what should be done
6174 is not quite clear from the documentation. So do nothing for
6175 now. */
6176
6177 if (offset_to_top == -1)
6178 return obj;
6179
6180 base_address = value_address (obj) - offset_to_top;
6181 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6182
6183 /* Make sure that we have a proper tag at the new address.
6184 Otherwise, offset_to_top is bogus (which can happen when
6185 the object is not initialized yet). */
6186
6187 if (!tag)
6188 return obj;
6189
6190 obj_type = type_from_tag (tag);
6191
6192 if (!obj_type)
6193 return obj;
6194
6195 return value_from_contents_and_address (obj_type, NULL, base_address);
6196 }
6197
6198 /* Return the "ada__tags__type_specific_data" type. */
6199
6200 static struct type *
6201 ada_get_tsd_type (struct inferior *inf)
6202 {
6203 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6204
6205 if (data->tsd_type == 0)
6206 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6207 return data->tsd_type;
6208 }
6209
6210 /* Return the TSD (type-specific data) associated to the given TAG.
6211 TAG is assumed to be the tag of a tagged-type entity.
6212
6213 May return NULL if we are unable to get the TSD. */
6214
6215 static struct value *
6216 ada_get_tsd_from_tag (struct value *tag)
6217 {
6218 struct value *val;
6219 struct type *type;
6220
6221 /* First option: The TSD is simply stored as a field of our TAG.
6222 Only older versions of GNAT would use this format, but we have
6223 to test it first, because there are no visible markers for
6224 the current approach except the absence of that field. */
6225
6226 val = ada_value_struct_elt (tag, "tsd", 1);
6227 if (val)
6228 return val;
6229
6230 /* Try the second representation for the dispatch table (in which
6231 there is no explicit 'tsd' field in the referent of the tag pointer,
6232 and instead the tsd pointer is stored just before the dispatch
6233 table. */
6234
6235 type = ada_get_tsd_type (current_inferior());
6236 if (type == NULL)
6237 return NULL;
6238 type = lookup_pointer_type (lookup_pointer_type (type));
6239 val = value_cast (type, tag);
6240 if (val == NULL)
6241 return NULL;
6242 return value_ind (value_ptradd (val, -1));
6243 }
6244
6245 /* Given the TSD of a tag (type-specific data), return a string
6246 containing the name of the associated type.
6247
6248 The returned value is good until the next call. May return NULL
6249 if we are unable to determine the tag name. */
6250
6251 static char *
6252 ada_tag_name_from_tsd (struct value *tsd)
6253 {
6254 static char name[1024];
6255 char *p;
6256 struct value *val;
6257
6258 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6259 if (val == NULL)
6260 return NULL;
6261 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6262 for (p = name; *p != '\0'; p += 1)
6263 if (isalpha (*p))
6264 *p = tolower (*p);
6265 return name;
6266 }
6267
6268 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6269 a C string.
6270
6271 Return NULL if the TAG is not an Ada tag, or if we were unable to
6272 determine the name of that tag. The result is good until the next
6273 call. */
6274
6275 const char *
6276 ada_tag_name (struct value *tag)
6277 {
6278 volatile struct gdb_exception e;
6279 char *name = NULL;
6280
6281 if (!ada_is_tag_type (value_type (tag)))
6282 return NULL;
6283
6284 /* It is perfectly possible that an exception be raised while trying
6285 to determine the TAG's name, even under normal circumstances:
6286 The associated variable may be uninitialized or corrupted, for
6287 instance. We do not let any exception propagate past this point.
6288 instead we return NULL.
6289
6290 We also do not print the error message either (which often is very
6291 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6292 the caller print a more meaningful message if necessary. */
6293 TRY_CATCH (e, RETURN_MASK_ERROR)
6294 {
6295 struct value *tsd = ada_get_tsd_from_tag (tag);
6296
6297 if (tsd != NULL)
6298 name = ada_tag_name_from_tsd (tsd);
6299 }
6300
6301 return name;
6302 }
6303
6304 /* The parent type of TYPE, or NULL if none. */
6305
6306 struct type *
6307 ada_parent_type (struct type *type)
6308 {
6309 int i;
6310
6311 type = ada_check_typedef (type);
6312
6313 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6314 return NULL;
6315
6316 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6317 if (ada_is_parent_field (type, i))
6318 {
6319 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6320
6321 /* If the _parent field is a pointer, then dereference it. */
6322 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6323 parent_type = TYPE_TARGET_TYPE (parent_type);
6324 /* If there is a parallel XVS type, get the actual base type. */
6325 parent_type = ada_get_base_type (parent_type);
6326
6327 return ada_check_typedef (parent_type);
6328 }
6329
6330 return NULL;
6331 }
6332
6333 /* True iff field number FIELD_NUM of structure type TYPE contains the
6334 parent-type (inherited) fields of a derived type. Assumes TYPE is
6335 a structure type with at least FIELD_NUM+1 fields. */
6336
6337 int
6338 ada_is_parent_field (struct type *type, int field_num)
6339 {
6340 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6341
6342 return (name != NULL
6343 && (strncmp (name, "PARENT", 6) == 0
6344 || strncmp (name, "_parent", 7) == 0));
6345 }
6346
6347 /* True iff field number FIELD_NUM of structure type TYPE is a
6348 transparent wrapper field (which should be silently traversed when doing
6349 field selection and flattened when printing). Assumes TYPE is a
6350 structure type with at least FIELD_NUM+1 fields. Such fields are always
6351 structures. */
6352
6353 int
6354 ada_is_wrapper_field (struct type *type, int field_num)
6355 {
6356 const char *name = TYPE_FIELD_NAME (type, field_num);
6357
6358 return (name != NULL
6359 && (strncmp (name, "PARENT", 6) == 0
6360 || strcmp (name, "REP") == 0
6361 || strncmp (name, "_parent", 7) == 0
6362 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6363 }
6364
6365 /* True iff field number FIELD_NUM of structure or union type TYPE
6366 is a variant wrapper. Assumes TYPE is a structure type with at least
6367 FIELD_NUM+1 fields. */
6368
6369 int
6370 ada_is_variant_part (struct type *type, int field_num)
6371 {
6372 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6373
6374 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6375 || (is_dynamic_field (type, field_num)
6376 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6377 == TYPE_CODE_UNION)));
6378 }
6379
6380 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6381 whose discriminants are contained in the record type OUTER_TYPE,
6382 returns the type of the controlling discriminant for the variant.
6383 May return NULL if the type could not be found. */
6384
6385 struct type *
6386 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6387 {
6388 char *name = ada_variant_discrim_name (var_type);
6389
6390 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6391 }
6392
6393 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6394 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6395 represents a 'when others' clause; otherwise 0. */
6396
6397 int
6398 ada_is_others_clause (struct type *type, int field_num)
6399 {
6400 const char *name = TYPE_FIELD_NAME (type, field_num);
6401
6402 return (name != NULL && name[0] == 'O');
6403 }
6404
6405 /* Assuming that TYPE0 is the type of the variant part of a record,
6406 returns the name of the discriminant controlling the variant.
6407 The value is valid until the next call to ada_variant_discrim_name. */
6408
6409 char *
6410 ada_variant_discrim_name (struct type *type0)
6411 {
6412 static char *result = NULL;
6413 static size_t result_len = 0;
6414 struct type *type;
6415 const char *name;
6416 const char *discrim_end;
6417 const char *discrim_start;
6418
6419 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6420 type = TYPE_TARGET_TYPE (type0);
6421 else
6422 type = type0;
6423
6424 name = ada_type_name (type);
6425
6426 if (name == NULL || name[0] == '\000')
6427 return "";
6428
6429 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6430 discrim_end -= 1)
6431 {
6432 if (strncmp (discrim_end, "___XVN", 6) == 0)
6433 break;
6434 }
6435 if (discrim_end == name)
6436 return "";
6437
6438 for (discrim_start = discrim_end; discrim_start != name + 3;
6439 discrim_start -= 1)
6440 {
6441 if (discrim_start == name + 1)
6442 return "";
6443 if ((discrim_start > name + 3
6444 && strncmp (discrim_start - 3, "___", 3) == 0)
6445 || discrim_start[-1] == '.')
6446 break;
6447 }
6448
6449 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6450 strncpy (result, discrim_start, discrim_end - discrim_start);
6451 result[discrim_end - discrim_start] = '\0';
6452 return result;
6453 }
6454
6455 /* Scan STR for a subtype-encoded number, beginning at position K.
6456 Put the position of the character just past the number scanned in
6457 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6458 Return 1 if there was a valid number at the given position, and 0
6459 otherwise. A "subtype-encoded" number consists of the absolute value
6460 in decimal, followed by the letter 'm' to indicate a negative number.
6461 Assumes 0m does not occur. */
6462
6463 int
6464 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6465 {
6466 ULONGEST RU;
6467
6468 if (!isdigit (str[k]))
6469 return 0;
6470
6471 /* Do it the hard way so as not to make any assumption about
6472 the relationship of unsigned long (%lu scan format code) and
6473 LONGEST. */
6474 RU = 0;
6475 while (isdigit (str[k]))
6476 {
6477 RU = RU * 10 + (str[k] - '0');
6478 k += 1;
6479 }
6480
6481 if (str[k] == 'm')
6482 {
6483 if (R != NULL)
6484 *R = (-(LONGEST) (RU - 1)) - 1;
6485 k += 1;
6486 }
6487 else if (R != NULL)
6488 *R = (LONGEST) RU;
6489
6490 /* NOTE on the above: Technically, C does not say what the results of
6491 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6492 number representable as a LONGEST (although either would probably work
6493 in most implementations). When RU>0, the locution in the then branch
6494 above is always equivalent to the negative of RU. */
6495
6496 if (new_k != NULL)
6497 *new_k = k;
6498 return 1;
6499 }
6500
6501 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6502 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6503 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6504
6505 int
6506 ada_in_variant (LONGEST val, struct type *type, int field_num)
6507 {
6508 const char *name = TYPE_FIELD_NAME (type, field_num);
6509 int p;
6510
6511 p = 0;
6512 while (1)
6513 {
6514 switch (name[p])
6515 {
6516 case '\0':
6517 return 0;
6518 case 'S':
6519 {
6520 LONGEST W;
6521
6522 if (!ada_scan_number (name, p + 1, &W, &p))
6523 return 0;
6524 if (val == W)
6525 return 1;
6526 break;
6527 }
6528 case 'R':
6529 {
6530 LONGEST L, U;
6531
6532 if (!ada_scan_number (name, p + 1, &L, &p)
6533 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6534 return 0;
6535 if (val >= L && val <= U)
6536 return 1;
6537 break;
6538 }
6539 case 'O':
6540 return 1;
6541 default:
6542 return 0;
6543 }
6544 }
6545 }
6546
6547 /* FIXME: Lots of redundancy below. Try to consolidate. */
6548
6549 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6550 ARG_TYPE, extract and return the value of one of its (non-static)
6551 fields. FIELDNO says which field. Differs from value_primitive_field
6552 only in that it can handle packed values of arbitrary type. */
6553
6554 static struct value *
6555 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6556 struct type *arg_type)
6557 {
6558 struct type *type;
6559
6560 arg_type = ada_check_typedef (arg_type);
6561 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6562
6563 /* Handle packed fields. */
6564
6565 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6566 {
6567 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6568 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6569
6570 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6571 offset + bit_pos / 8,
6572 bit_pos % 8, bit_size, type);
6573 }
6574 else
6575 return value_primitive_field (arg1, offset, fieldno, arg_type);
6576 }
6577
6578 /* Find field with name NAME in object of type TYPE. If found,
6579 set the following for each argument that is non-null:
6580 - *FIELD_TYPE_P to the field's type;
6581 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6582 an object of that type;
6583 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6584 - *BIT_SIZE_P to its size in bits if the field is packed, and
6585 0 otherwise;
6586 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6587 fields up to but not including the desired field, or by the total
6588 number of fields if not found. A NULL value of NAME never
6589 matches; the function just counts visible fields in this case.
6590
6591 Returns 1 if found, 0 otherwise. */
6592
6593 static int
6594 find_struct_field (const char *name, struct type *type, int offset,
6595 struct type **field_type_p,
6596 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6597 int *index_p)
6598 {
6599 int i;
6600
6601 type = ada_check_typedef (type);
6602
6603 if (field_type_p != NULL)
6604 *field_type_p = NULL;
6605 if (byte_offset_p != NULL)
6606 *byte_offset_p = 0;
6607 if (bit_offset_p != NULL)
6608 *bit_offset_p = 0;
6609 if (bit_size_p != NULL)
6610 *bit_size_p = 0;
6611
6612 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6613 {
6614 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6615 int fld_offset = offset + bit_pos / 8;
6616 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6617
6618 if (t_field_name == NULL)
6619 continue;
6620
6621 else if (name != NULL && field_name_match (t_field_name, name))
6622 {
6623 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6624
6625 if (field_type_p != NULL)
6626 *field_type_p = TYPE_FIELD_TYPE (type, i);
6627 if (byte_offset_p != NULL)
6628 *byte_offset_p = fld_offset;
6629 if (bit_offset_p != NULL)
6630 *bit_offset_p = bit_pos % 8;
6631 if (bit_size_p != NULL)
6632 *bit_size_p = bit_size;
6633 return 1;
6634 }
6635 else if (ada_is_wrapper_field (type, i))
6636 {
6637 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6638 field_type_p, byte_offset_p, bit_offset_p,
6639 bit_size_p, index_p))
6640 return 1;
6641 }
6642 else if (ada_is_variant_part (type, i))
6643 {
6644 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6645 fixed type?? */
6646 int j;
6647 struct type *field_type
6648 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6649
6650 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6651 {
6652 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6653 fld_offset
6654 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6655 field_type_p, byte_offset_p,
6656 bit_offset_p, bit_size_p, index_p))
6657 return 1;
6658 }
6659 }
6660 else if (index_p != NULL)
6661 *index_p += 1;
6662 }
6663 return 0;
6664 }
6665
6666 /* Number of user-visible fields in record type TYPE. */
6667
6668 static int
6669 num_visible_fields (struct type *type)
6670 {
6671 int n;
6672
6673 n = 0;
6674 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6675 return n;
6676 }
6677
6678 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6679 and search in it assuming it has (class) type TYPE.
6680 If found, return value, else return NULL.
6681
6682 Searches recursively through wrapper fields (e.g., '_parent'). */
6683
6684 static struct value *
6685 ada_search_struct_field (char *name, struct value *arg, int offset,
6686 struct type *type)
6687 {
6688 int i;
6689
6690 type = ada_check_typedef (type);
6691 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6692 {
6693 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6694
6695 if (t_field_name == NULL)
6696 continue;
6697
6698 else if (field_name_match (t_field_name, name))
6699 return ada_value_primitive_field (arg, offset, i, type);
6700
6701 else if (ada_is_wrapper_field (type, i))
6702 {
6703 struct value *v = /* Do not let indent join lines here. */
6704 ada_search_struct_field (name, arg,
6705 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6706 TYPE_FIELD_TYPE (type, i));
6707
6708 if (v != NULL)
6709 return v;
6710 }
6711
6712 else if (ada_is_variant_part (type, i))
6713 {
6714 /* PNH: Do we ever get here? See find_struct_field. */
6715 int j;
6716 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6717 i));
6718 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6719
6720 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6721 {
6722 struct value *v = ada_search_struct_field /* Force line
6723 break. */
6724 (name, arg,
6725 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6726 TYPE_FIELD_TYPE (field_type, j));
6727
6728 if (v != NULL)
6729 return v;
6730 }
6731 }
6732 }
6733 return NULL;
6734 }
6735
6736 static struct value *ada_index_struct_field_1 (int *, struct value *,
6737 int, struct type *);
6738
6739
6740 /* Return field #INDEX in ARG, where the index is that returned by
6741 * find_struct_field through its INDEX_P argument. Adjust the address
6742 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6743 * If found, return value, else return NULL. */
6744
6745 static struct value *
6746 ada_index_struct_field (int index, struct value *arg, int offset,
6747 struct type *type)
6748 {
6749 return ada_index_struct_field_1 (&index, arg, offset, type);
6750 }
6751
6752
6753 /* Auxiliary function for ada_index_struct_field. Like
6754 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6755 * *INDEX_P. */
6756
6757 static struct value *
6758 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6759 struct type *type)
6760 {
6761 int i;
6762 type = ada_check_typedef (type);
6763
6764 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6765 {
6766 if (TYPE_FIELD_NAME (type, i) == NULL)
6767 continue;
6768 else if (ada_is_wrapper_field (type, i))
6769 {
6770 struct value *v = /* Do not let indent join lines here. */
6771 ada_index_struct_field_1 (index_p, arg,
6772 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6773 TYPE_FIELD_TYPE (type, i));
6774
6775 if (v != NULL)
6776 return v;
6777 }
6778
6779 else if (ada_is_variant_part (type, i))
6780 {
6781 /* PNH: Do we ever get here? See ada_search_struct_field,
6782 find_struct_field. */
6783 error (_("Cannot assign this kind of variant record"));
6784 }
6785 else if (*index_p == 0)
6786 return ada_value_primitive_field (arg, offset, i, type);
6787 else
6788 *index_p -= 1;
6789 }
6790 return NULL;
6791 }
6792
6793 /* Given ARG, a value of type (pointer or reference to a)*
6794 structure/union, extract the component named NAME from the ultimate
6795 target structure/union and return it as a value with its
6796 appropriate type.
6797
6798 The routine searches for NAME among all members of the structure itself
6799 and (recursively) among all members of any wrapper members
6800 (e.g., '_parent').
6801
6802 If NO_ERR, then simply return NULL in case of error, rather than
6803 calling error. */
6804
6805 struct value *
6806 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6807 {
6808 struct type *t, *t1;
6809 struct value *v;
6810
6811 v = NULL;
6812 t1 = t = ada_check_typedef (value_type (arg));
6813 if (TYPE_CODE (t) == TYPE_CODE_REF)
6814 {
6815 t1 = TYPE_TARGET_TYPE (t);
6816 if (t1 == NULL)
6817 goto BadValue;
6818 t1 = ada_check_typedef (t1);
6819 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6820 {
6821 arg = coerce_ref (arg);
6822 t = t1;
6823 }
6824 }
6825
6826 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6827 {
6828 t1 = TYPE_TARGET_TYPE (t);
6829 if (t1 == NULL)
6830 goto BadValue;
6831 t1 = ada_check_typedef (t1);
6832 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6833 {
6834 arg = value_ind (arg);
6835 t = t1;
6836 }
6837 else
6838 break;
6839 }
6840
6841 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6842 goto BadValue;
6843
6844 if (t1 == t)
6845 v = ada_search_struct_field (name, arg, 0, t);
6846 else
6847 {
6848 int bit_offset, bit_size, byte_offset;
6849 struct type *field_type;
6850 CORE_ADDR address;
6851
6852 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6853 address = value_address (ada_value_ind (arg));
6854 else
6855 address = value_address (ada_coerce_ref (arg));
6856
6857 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6858 if (find_struct_field (name, t1, 0,
6859 &field_type, &byte_offset, &bit_offset,
6860 &bit_size, NULL))
6861 {
6862 if (bit_size != 0)
6863 {
6864 if (TYPE_CODE (t) == TYPE_CODE_REF)
6865 arg = ada_coerce_ref (arg);
6866 else
6867 arg = ada_value_ind (arg);
6868 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6869 bit_offset, bit_size,
6870 field_type);
6871 }
6872 else
6873 v = value_at_lazy (field_type, address + byte_offset);
6874 }
6875 }
6876
6877 if (v != NULL || no_err)
6878 return v;
6879 else
6880 error (_("There is no member named %s."), name);
6881
6882 BadValue:
6883 if (no_err)
6884 return NULL;
6885 else
6886 error (_("Attempt to extract a component of "
6887 "a value that is not a record."));
6888 }
6889
6890 /* Given a type TYPE, look up the type of the component of type named NAME.
6891 If DISPP is non-null, add its byte displacement from the beginning of a
6892 structure (pointed to by a value) of type TYPE to *DISPP (does not
6893 work for packed fields).
6894
6895 Matches any field whose name has NAME as a prefix, possibly
6896 followed by "___".
6897
6898 TYPE can be either a struct or union. If REFOK, TYPE may also
6899 be a (pointer or reference)+ to a struct or union, and the
6900 ultimate target type will be searched.
6901
6902 Looks recursively into variant clauses and parent types.
6903
6904 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6905 TYPE is not a type of the right kind. */
6906
6907 static struct type *
6908 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6909 int noerr, int *dispp)
6910 {
6911 int i;
6912
6913 if (name == NULL)
6914 goto BadName;
6915
6916 if (refok && type != NULL)
6917 while (1)
6918 {
6919 type = ada_check_typedef (type);
6920 if (TYPE_CODE (type) != TYPE_CODE_PTR
6921 && TYPE_CODE (type) != TYPE_CODE_REF)
6922 break;
6923 type = TYPE_TARGET_TYPE (type);
6924 }
6925
6926 if (type == NULL
6927 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6928 && TYPE_CODE (type) != TYPE_CODE_UNION))
6929 {
6930 if (noerr)
6931 return NULL;
6932 else
6933 {
6934 target_terminal_ours ();
6935 gdb_flush (gdb_stdout);
6936 if (type == NULL)
6937 error (_("Type (null) is not a structure or union type"));
6938 else
6939 {
6940 /* XXX: type_sprint */
6941 fprintf_unfiltered (gdb_stderr, _("Type "));
6942 type_print (type, "", gdb_stderr, -1);
6943 error (_(" is not a structure or union type"));
6944 }
6945 }
6946 }
6947
6948 type = to_static_fixed_type (type);
6949
6950 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6951 {
6952 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6953 struct type *t;
6954 int disp;
6955
6956 if (t_field_name == NULL)
6957 continue;
6958
6959 else if (field_name_match (t_field_name, name))
6960 {
6961 if (dispp != NULL)
6962 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6963 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6964 }
6965
6966 else if (ada_is_wrapper_field (type, i))
6967 {
6968 disp = 0;
6969 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6970 0, 1, &disp);
6971 if (t != NULL)
6972 {
6973 if (dispp != NULL)
6974 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6975 return t;
6976 }
6977 }
6978
6979 else if (ada_is_variant_part (type, i))
6980 {
6981 int j;
6982 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6983 i));
6984
6985 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6986 {
6987 /* FIXME pnh 2008/01/26: We check for a field that is
6988 NOT wrapped in a struct, since the compiler sometimes
6989 generates these for unchecked variant types. Revisit
6990 if the compiler changes this practice. */
6991 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6992 disp = 0;
6993 if (v_field_name != NULL
6994 && field_name_match (v_field_name, name))
6995 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6996 else
6997 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6998 j),
6999 name, 0, 1, &disp);
7000
7001 if (t != NULL)
7002 {
7003 if (dispp != NULL)
7004 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7005 return t;
7006 }
7007 }
7008 }
7009
7010 }
7011
7012 BadName:
7013 if (!noerr)
7014 {
7015 target_terminal_ours ();
7016 gdb_flush (gdb_stdout);
7017 if (name == NULL)
7018 {
7019 /* XXX: type_sprint */
7020 fprintf_unfiltered (gdb_stderr, _("Type "));
7021 type_print (type, "", gdb_stderr, -1);
7022 error (_(" has no component named <null>"));
7023 }
7024 else
7025 {
7026 /* XXX: type_sprint */
7027 fprintf_unfiltered (gdb_stderr, _("Type "));
7028 type_print (type, "", gdb_stderr, -1);
7029 error (_(" has no component named %s"), name);
7030 }
7031 }
7032
7033 return NULL;
7034 }
7035
7036 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7037 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7038 represents an unchecked union (that is, the variant part of a
7039 record that is named in an Unchecked_Union pragma). */
7040
7041 static int
7042 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7043 {
7044 char *discrim_name = ada_variant_discrim_name (var_type);
7045
7046 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7047 == NULL);
7048 }
7049
7050
7051 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7052 within a value of type OUTER_TYPE that is stored in GDB at
7053 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7054 numbering from 0) is applicable. Returns -1 if none are. */
7055
7056 int
7057 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7058 const gdb_byte *outer_valaddr)
7059 {
7060 int others_clause;
7061 int i;
7062 char *discrim_name = ada_variant_discrim_name (var_type);
7063 struct value *outer;
7064 struct value *discrim;
7065 LONGEST discrim_val;
7066
7067 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7068 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7069 if (discrim == NULL)
7070 return -1;
7071 discrim_val = value_as_long (discrim);
7072
7073 others_clause = -1;
7074 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7075 {
7076 if (ada_is_others_clause (var_type, i))
7077 others_clause = i;
7078 else if (ada_in_variant (discrim_val, var_type, i))
7079 return i;
7080 }
7081
7082 return others_clause;
7083 }
7084 \f
7085
7086
7087 /* Dynamic-Sized Records */
7088
7089 /* Strategy: The type ostensibly attached to a value with dynamic size
7090 (i.e., a size that is not statically recorded in the debugging
7091 data) does not accurately reflect the size or layout of the value.
7092 Our strategy is to convert these values to values with accurate,
7093 conventional types that are constructed on the fly. */
7094
7095 /* There is a subtle and tricky problem here. In general, we cannot
7096 determine the size of dynamic records without its data. However,
7097 the 'struct value' data structure, which GDB uses to represent
7098 quantities in the inferior process (the target), requires the size
7099 of the type at the time of its allocation in order to reserve space
7100 for GDB's internal copy of the data. That's why the
7101 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7102 rather than struct value*s.
7103
7104 However, GDB's internal history variables ($1, $2, etc.) are
7105 struct value*s containing internal copies of the data that are not, in
7106 general, the same as the data at their corresponding addresses in
7107 the target. Fortunately, the types we give to these values are all
7108 conventional, fixed-size types (as per the strategy described
7109 above), so that we don't usually have to perform the
7110 'to_fixed_xxx_type' conversions to look at their values.
7111 Unfortunately, there is one exception: if one of the internal
7112 history variables is an array whose elements are unconstrained
7113 records, then we will need to create distinct fixed types for each
7114 element selected. */
7115
7116 /* The upshot of all of this is that many routines take a (type, host
7117 address, target address) triple as arguments to represent a value.
7118 The host address, if non-null, is supposed to contain an internal
7119 copy of the relevant data; otherwise, the program is to consult the
7120 target at the target address. */
7121
7122 /* Assuming that VAL0 represents a pointer value, the result of
7123 dereferencing it. Differs from value_ind in its treatment of
7124 dynamic-sized types. */
7125
7126 struct value *
7127 ada_value_ind (struct value *val0)
7128 {
7129 struct value *val = value_ind (val0);
7130
7131 if (ada_is_tagged_type (value_type (val), 0))
7132 val = ada_tag_value_at_base_address (val);
7133
7134 return ada_to_fixed_value (val);
7135 }
7136
7137 /* The value resulting from dereferencing any "reference to"
7138 qualifiers on VAL0. */
7139
7140 static struct value *
7141 ada_coerce_ref (struct value *val0)
7142 {
7143 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7144 {
7145 struct value *val = val0;
7146
7147 val = coerce_ref (val);
7148
7149 if (ada_is_tagged_type (value_type (val), 0))
7150 val = ada_tag_value_at_base_address (val);
7151
7152 return ada_to_fixed_value (val);
7153 }
7154 else
7155 return val0;
7156 }
7157
7158 /* Return OFF rounded upward if necessary to a multiple of
7159 ALIGNMENT (a power of 2). */
7160
7161 static unsigned int
7162 align_value (unsigned int off, unsigned int alignment)
7163 {
7164 return (off + alignment - 1) & ~(alignment - 1);
7165 }
7166
7167 /* Return the bit alignment required for field #F of template type TYPE. */
7168
7169 static unsigned int
7170 field_alignment (struct type *type, int f)
7171 {
7172 const char *name = TYPE_FIELD_NAME (type, f);
7173 int len;
7174 int align_offset;
7175
7176 /* The field name should never be null, unless the debugging information
7177 is somehow malformed. In this case, we assume the field does not
7178 require any alignment. */
7179 if (name == NULL)
7180 return 1;
7181
7182 len = strlen (name);
7183
7184 if (!isdigit (name[len - 1]))
7185 return 1;
7186
7187 if (isdigit (name[len - 2]))
7188 align_offset = len - 2;
7189 else
7190 align_offset = len - 1;
7191
7192 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7193 return TARGET_CHAR_BIT;
7194
7195 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7196 }
7197
7198 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7199
7200 static struct symbol *
7201 ada_find_any_type_symbol (const char *name)
7202 {
7203 struct symbol *sym;
7204
7205 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7206 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7207 return sym;
7208
7209 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7210 return sym;
7211 }
7212
7213 /* Find a type named NAME. Ignores ambiguity. This routine will look
7214 solely for types defined by debug info, it will not search the GDB
7215 primitive types. */
7216
7217 static struct type *
7218 ada_find_any_type (const char *name)
7219 {
7220 struct symbol *sym = ada_find_any_type_symbol (name);
7221
7222 if (sym != NULL)
7223 return SYMBOL_TYPE (sym);
7224
7225 return NULL;
7226 }
7227
7228 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7229 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7230 symbol, in which case it is returned. Otherwise, this looks for
7231 symbols whose name is that of NAME_SYM suffixed with "___XR".
7232 Return symbol if found, and NULL otherwise. */
7233
7234 struct symbol *
7235 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7236 {
7237 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7238 struct symbol *sym;
7239
7240 if (strstr (name, "___XR") != NULL)
7241 return name_sym;
7242
7243 sym = find_old_style_renaming_symbol (name, block);
7244
7245 if (sym != NULL)
7246 return sym;
7247
7248 /* Not right yet. FIXME pnh 7/20/2007. */
7249 sym = ada_find_any_type_symbol (name);
7250 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7251 return sym;
7252 else
7253 return NULL;
7254 }
7255
7256 static struct symbol *
7257 find_old_style_renaming_symbol (const char *name, const struct block *block)
7258 {
7259 const struct symbol *function_sym = block_linkage_function (block);
7260 char *rename;
7261
7262 if (function_sym != NULL)
7263 {
7264 /* If the symbol is defined inside a function, NAME is not fully
7265 qualified. This means we need to prepend the function name
7266 as well as adding the ``___XR'' suffix to build the name of
7267 the associated renaming symbol. */
7268 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7269 /* Function names sometimes contain suffixes used
7270 for instance to qualify nested subprograms. When building
7271 the XR type name, we need to make sure that this suffix is
7272 not included. So do not include any suffix in the function
7273 name length below. */
7274 int function_name_len = ada_name_prefix_len (function_name);
7275 const int rename_len = function_name_len + 2 /* "__" */
7276 + strlen (name) + 6 /* "___XR\0" */ ;
7277
7278 /* Strip the suffix if necessary. */
7279 ada_remove_trailing_digits (function_name, &function_name_len);
7280 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7281 ada_remove_Xbn_suffix (function_name, &function_name_len);
7282
7283 /* Library-level functions are a special case, as GNAT adds
7284 a ``_ada_'' prefix to the function name to avoid namespace
7285 pollution. However, the renaming symbols themselves do not
7286 have this prefix, so we need to skip this prefix if present. */
7287 if (function_name_len > 5 /* "_ada_" */
7288 && strstr (function_name, "_ada_") == function_name)
7289 {
7290 function_name += 5;
7291 function_name_len -= 5;
7292 }
7293
7294 rename = (char *) alloca (rename_len * sizeof (char));
7295 strncpy (rename, function_name, function_name_len);
7296 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7297 "__%s___XR", name);
7298 }
7299 else
7300 {
7301 const int rename_len = strlen (name) + 6;
7302
7303 rename = (char *) alloca (rename_len * sizeof (char));
7304 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7305 }
7306
7307 return ada_find_any_type_symbol (rename);
7308 }
7309
7310 /* Because of GNAT encoding conventions, several GDB symbols may match a
7311 given type name. If the type denoted by TYPE0 is to be preferred to
7312 that of TYPE1 for purposes of type printing, return non-zero;
7313 otherwise return 0. */
7314
7315 int
7316 ada_prefer_type (struct type *type0, struct type *type1)
7317 {
7318 if (type1 == NULL)
7319 return 1;
7320 else if (type0 == NULL)
7321 return 0;
7322 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7323 return 1;
7324 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7325 return 0;
7326 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7327 return 1;
7328 else if (ada_is_constrained_packed_array_type (type0))
7329 return 1;
7330 else if (ada_is_array_descriptor_type (type0)
7331 && !ada_is_array_descriptor_type (type1))
7332 return 1;
7333 else
7334 {
7335 const char *type0_name = type_name_no_tag (type0);
7336 const char *type1_name = type_name_no_tag (type1);
7337
7338 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7339 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7340 return 1;
7341 }
7342 return 0;
7343 }
7344
7345 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7346 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7347
7348 const char *
7349 ada_type_name (struct type *type)
7350 {
7351 if (type == NULL)
7352 return NULL;
7353 else if (TYPE_NAME (type) != NULL)
7354 return TYPE_NAME (type);
7355 else
7356 return TYPE_TAG_NAME (type);
7357 }
7358
7359 /* Search the list of "descriptive" types associated to TYPE for a type
7360 whose name is NAME. */
7361
7362 static struct type *
7363 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7364 {
7365 struct type *result;
7366
7367 /* If there no descriptive-type info, then there is no parallel type
7368 to be found. */
7369 if (!HAVE_GNAT_AUX_INFO (type))
7370 return NULL;
7371
7372 result = TYPE_DESCRIPTIVE_TYPE (type);
7373 while (result != NULL)
7374 {
7375 const char *result_name = ada_type_name (result);
7376
7377 if (result_name == NULL)
7378 {
7379 warning (_("unexpected null name on descriptive type"));
7380 return NULL;
7381 }
7382
7383 /* If the names match, stop. */
7384 if (strcmp (result_name, name) == 0)
7385 break;
7386
7387 /* Otherwise, look at the next item on the list, if any. */
7388 if (HAVE_GNAT_AUX_INFO (result))
7389 result = TYPE_DESCRIPTIVE_TYPE (result);
7390 else
7391 result = NULL;
7392 }
7393
7394 /* If we didn't find a match, see whether this is a packed array. With
7395 older compilers, the descriptive type information is either absent or
7396 irrelevant when it comes to packed arrays so the above lookup fails.
7397 Fall back to using a parallel lookup by name in this case. */
7398 if (result == NULL && ada_is_constrained_packed_array_type (type))
7399 return ada_find_any_type (name);
7400
7401 return result;
7402 }
7403
7404 /* Find a parallel type to TYPE with the specified NAME, using the
7405 descriptive type taken from the debugging information, if available,
7406 and otherwise using the (slower) name-based method. */
7407
7408 static struct type *
7409 ada_find_parallel_type_with_name (struct type *type, const char *name)
7410 {
7411 struct type *result = NULL;
7412
7413 if (HAVE_GNAT_AUX_INFO (type))
7414 result = find_parallel_type_by_descriptive_type (type, name);
7415 else
7416 result = ada_find_any_type (name);
7417
7418 return result;
7419 }
7420
7421 /* Same as above, but specify the name of the parallel type by appending
7422 SUFFIX to the name of TYPE. */
7423
7424 struct type *
7425 ada_find_parallel_type (struct type *type, const char *suffix)
7426 {
7427 char *name;
7428 const char *typename = ada_type_name (type);
7429 int len;
7430
7431 if (typename == NULL)
7432 return NULL;
7433
7434 len = strlen (typename);
7435
7436 name = (char *) alloca (len + strlen (suffix) + 1);
7437
7438 strcpy (name, typename);
7439 strcpy (name + len, suffix);
7440
7441 return ada_find_parallel_type_with_name (type, name);
7442 }
7443
7444 /* If TYPE is a variable-size record type, return the corresponding template
7445 type describing its fields. Otherwise, return NULL. */
7446
7447 static struct type *
7448 dynamic_template_type (struct type *type)
7449 {
7450 type = ada_check_typedef (type);
7451
7452 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7453 || ada_type_name (type) == NULL)
7454 return NULL;
7455 else
7456 {
7457 int len = strlen (ada_type_name (type));
7458
7459 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7460 return type;
7461 else
7462 return ada_find_parallel_type (type, "___XVE");
7463 }
7464 }
7465
7466 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7467 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7468
7469 static int
7470 is_dynamic_field (struct type *templ_type, int field_num)
7471 {
7472 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7473
7474 return name != NULL
7475 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7476 && strstr (name, "___XVL") != NULL;
7477 }
7478
7479 /* The index of the variant field of TYPE, or -1 if TYPE does not
7480 represent a variant record type. */
7481
7482 static int
7483 variant_field_index (struct type *type)
7484 {
7485 int f;
7486
7487 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7488 return -1;
7489
7490 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7491 {
7492 if (ada_is_variant_part (type, f))
7493 return f;
7494 }
7495 return -1;
7496 }
7497
7498 /* A record type with no fields. */
7499
7500 static struct type *
7501 empty_record (struct type *template)
7502 {
7503 struct type *type = alloc_type_copy (template);
7504
7505 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7506 TYPE_NFIELDS (type) = 0;
7507 TYPE_FIELDS (type) = NULL;
7508 INIT_CPLUS_SPECIFIC (type);
7509 TYPE_NAME (type) = "<empty>";
7510 TYPE_TAG_NAME (type) = NULL;
7511 TYPE_LENGTH (type) = 0;
7512 return type;
7513 }
7514
7515 /* An ordinary record type (with fixed-length fields) that describes
7516 the value of type TYPE at VALADDR or ADDRESS (see comments at
7517 the beginning of this section) VAL according to GNAT conventions.
7518 DVAL0 should describe the (portion of a) record that contains any
7519 necessary discriminants. It should be NULL if value_type (VAL) is
7520 an outer-level type (i.e., as opposed to a branch of a variant.) A
7521 variant field (unless unchecked) is replaced by a particular branch
7522 of the variant.
7523
7524 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7525 length are not statically known are discarded. As a consequence,
7526 VALADDR, ADDRESS and DVAL0 are ignored.
7527
7528 NOTE: Limitations: For now, we assume that dynamic fields and
7529 variants occupy whole numbers of bytes. However, they need not be
7530 byte-aligned. */
7531
7532 struct type *
7533 ada_template_to_fixed_record_type_1 (struct type *type,
7534 const gdb_byte *valaddr,
7535 CORE_ADDR address, struct value *dval0,
7536 int keep_dynamic_fields)
7537 {
7538 struct value *mark = value_mark ();
7539 struct value *dval;
7540 struct type *rtype;
7541 int nfields, bit_len;
7542 int variant_field;
7543 long off;
7544 int fld_bit_len;
7545 int f;
7546
7547 /* Compute the number of fields in this record type that are going
7548 to be processed: unless keep_dynamic_fields, this includes only
7549 fields whose position and length are static will be processed. */
7550 if (keep_dynamic_fields)
7551 nfields = TYPE_NFIELDS (type);
7552 else
7553 {
7554 nfields = 0;
7555 while (nfields < TYPE_NFIELDS (type)
7556 && !ada_is_variant_part (type, nfields)
7557 && !is_dynamic_field (type, nfields))
7558 nfields++;
7559 }
7560
7561 rtype = alloc_type_copy (type);
7562 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7563 INIT_CPLUS_SPECIFIC (rtype);
7564 TYPE_NFIELDS (rtype) = nfields;
7565 TYPE_FIELDS (rtype) = (struct field *)
7566 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7567 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7568 TYPE_NAME (rtype) = ada_type_name (type);
7569 TYPE_TAG_NAME (rtype) = NULL;
7570 TYPE_FIXED_INSTANCE (rtype) = 1;
7571
7572 off = 0;
7573 bit_len = 0;
7574 variant_field = -1;
7575
7576 for (f = 0; f < nfields; f += 1)
7577 {
7578 off = align_value (off, field_alignment (type, f))
7579 + TYPE_FIELD_BITPOS (type, f);
7580 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7581 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7582
7583 if (ada_is_variant_part (type, f))
7584 {
7585 variant_field = f;
7586 fld_bit_len = 0;
7587 }
7588 else if (is_dynamic_field (type, f))
7589 {
7590 const gdb_byte *field_valaddr = valaddr;
7591 CORE_ADDR field_address = address;
7592 struct type *field_type =
7593 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7594
7595 if (dval0 == NULL)
7596 {
7597 /* rtype's length is computed based on the run-time
7598 value of discriminants. If the discriminants are not
7599 initialized, the type size may be completely bogus and
7600 GDB may fail to allocate a value for it. So check the
7601 size first before creating the value. */
7602 check_size (rtype);
7603 dval = value_from_contents_and_address (rtype, valaddr, address);
7604 }
7605 else
7606 dval = dval0;
7607
7608 /* If the type referenced by this field is an aligner type, we need
7609 to unwrap that aligner type, because its size might not be set.
7610 Keeping the aligner type would cause us to compute the wrong
7611 size for this field, impacting the offset of the all the fields
7612 that follow this one. */
7613 if (ada_is_aligner_type (field_type))
7614 {
7615 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7616
7617 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7618 field_address = cond_offset_target (field_address, field_offset);
7619 field_type = ada_aligned_type (field_type);
7620 }
7621
7622 field_valaddr = cond_offset_host (field_valaddr,
7623 off / TARGET_CHAR_BIT);
7624 field_address = cond_offset_target (field_address,
7625 off / TARGET_CHAR_BIT);
7626
7627 /* Get the fixed type of the field. Note that, in this case,
7628 we do not want to get the real type out of the tag: if
7629 the current field is the parent part of a tagged record,
7630 we will get the tag of the object. Clearly wrong: the real
7631 type of the parent is not the real type of the child. We
7632 would end up in an infinite loop. */
7633 field_type = ada_get_base_type (field_type);
7634 field_type = ada_to_fixed_type (field_type, field_valaddr,
7635 field_address, dval, 0);
7636 /* If the field size is already larger than the maximum
7637 object size, then the record itself will necessarily
7638 be larger than the maximum object size. We need to make
7639 this check now, because the size might be so ridiculously
7640 large (due to an uninitialized variable in the inferior)
7641 that it would cause an overflow when adding it to the
7642 record size. */
7643 check_size (field_type);
7644
7645 TYPE_FIELD_TYPE (rtype, f) = field_type;
7646 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7647 /* The multiplication can potentially overflow. But because
7648 the field length has been size-checked just above, and
7649 assuming that the maximum size is a reasonable value,
7650 an overflow should not happen in practice. So rather than
7651 adding overflow recovery code to this already complex code,
7652 we just assume that it's not going to happen. */
7653 fld_bit_len =
7654 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7655 }
7656 else
7657 {
7658 /* Note: If this field's type is a typedef, it is important
7659 to preserve the typedef layer.
7660
7661 Otherwise, we might be transforming a typedef to a fat
7662 pointer (encoding a pointer to an unconstrained array),
7663 into a basic fat pointer (encoding an unconstrained
7664 array). As both types are implemented using the same
7665 structure, the typedef is the only clue which allows us
7666 to distinguish between the two options. Stripping it
7667 would prevent us from printing this field appropriately. */
7668 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7669 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7670 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7671 fld_bit_len =
7672 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7673 else
7674 {
7675 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7676
7677 /* We need to be careful of typedefs when computing
7678 the length of our field. If this is a typedef,
7679 get the length of the target type, not the length
7680 of the typedef. */
7681 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7682 field_type = ada_typedef_target_type (field_type);
7683
7684 fld_bit_len =
7685 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7686 }
7687 }
7688 if (off + fld_bit_len > bit_len)
7689 bit_len = off + fld_bit_len;
7690 off += fld_bit_len;
7691 TYPE_LENGTH (rtype) =
7692 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7693 }
7694
7695 /* We handle the variant part, if any, at the end because of certain
7696 odd cases in which it is re-ordered so as NOT to be the last field of
7697 the record. This can happen in the presence of representation
7698 clauses. */
7699 if (variant_field >= 0)
7700 {
7701 struct type *branch_type;
7702
7703 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7704
7705 if (dval0 == NULL)
7706 dval = value_from_contents_and_address (rtype, valaddr, address);
7707 else
7708 dval = dval0;
7709
7710 branch_type =
7711 to_fixed_variant_branch_type
7712 (TYPE_FIELD_TYPE (type, variant_field),
7713 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7714 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7715 if (branch_type == NULL)
7716 {
7717 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7718 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7719 TYPE_NFIELDS (rtype) -= 1;
7720 }
7721 else
7722 {
7723 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7724 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7725 fld_bit_len =
7726 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7727 TARGET_CHAR_BIT;
7728 if (off + fld_bit_len > bit_len)
7729 bit_len = off + fld_bit_len;
7730 TYPE_LENGTH (rtype) =
7731 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7732 }
7733 }
7734
7735 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7736 should contain the alignment of that record, which should be a strictly
7737 positive value. If null or negative, then something is wrong, most
7738 probably in the debug info. In that case, we don't round up the size
7739 of the resulting type. If this record is not part of another structure,
7740 the current RTYPE length might be good enough for our purposes. */
7741 if (TYPE_LENGTH (type) <= 0)
7742 {
7743 if (TYPE_NAME (rtype))
7744 warning (_("Invalid type size for `%s' detected: %d."),
7745 TYPE_NAME (rtype), TYPE_LENGTH (type));
7746 else
7747 warning (_("Invalid type size for <unnamed> detected: %d."),
7748 TYPE_LENGTH (type));
7749 }
7750 else
7751 {
7752 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7753 TYPE_LENGTH (type));
7754 }
7755
7756 value_free_to_mark (mark);
7757 if (TYPE_LENGTH (rtype) > varsize_limit)
7758 error (_("record type with dynamic size is larger than varsize-limit"));
7759 return rtype;
7760 }
7761
7762 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7763 of 1. */
7764
7765 static struct type *
7766 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7767 CORE_ADDR address, struct value *dval0)
7768 {
7769 return ada_template_to_fixed_record_type_1 (type, valaddr,
7770 address, dval0, 1);
7771 }
7772
7773 /* An ordinary record type in which ___XVL-convention fields and
7774 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7775 static approximations, containing all possible fields. Uses
7776 no runtime values. Useless for use in values, but that's OK,
7777 since the results are used only for type determinations. Works on both
7778 structs and unions. Representation note: to save space, we memorize
7779 the result of this function in the TYPE_TARGET_TYPE of the
7780 template type. */
7781
7782 static struct type *
7783 template_to_static_fixed_type (struct type *type0)
7784 {
7785 struct type *type;
7786 int nfields;
7787 int f;
7788
7789 if (TYPE_TARGET_TYPE (type0) != NULL)
7790 return TYPE_TARGET_TYPE (type0);
7791
7792 nfields = TYPE_NFIELDS (type0);
7793 type = type0;
7794
7795 for (f = 0; f < nfields; f += 1)
7796 {
7797 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7798 struct type *new_type;
7799
7800 if (is_dynamic_field (type0, f))
7801 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7802 else
7803 new_type = static_unwrap_type (field_type);
7804 if (type == type0 && new_type != field_type)
7805 {
7806 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7807 TYPE_CODE (type) = TYPE_CODE (type0);
7808 INIT_CPLUS_SPECIFIC (type);
7809 TYPE_NFIELDS (type) = nfields;
7810 TYPE_FIELDS (type) = (struct field *)
7811 TYPE_ALLOC (type, nfields * sizeof (struct field));
7812 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7813 sizeof (struct field) * nfields);
7814 TYPE_NAME (type) = ada_type_name (type0);
7815 TYPE_TAG_NAME (type) = NULL;
7816 TYPE_FIXED_INSTANCE (type) = 1;
7817 TYPE_LENGTH (type) = 0;
7818 }
7819 TYPE_FIELD_TYPE (type, f) = new_type;
7820 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7821 }
7822 return type;
7823 }
7824
7825 /* Given an object of type TYPE whose contents are at VALADDR and
7826 whose address in memory is ADDRESS, returns a revision of TYPE,
7827 which should be a non-dynamic-sized record, in which the variant
7828 part, if any, is replaced with the appropriate branch. Looks
7829 for discriminant values in DVAL0, which can be NULL if the record
7830 contains the necessary discriminant values. */
7831
7832 static struct type *
7833 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7834 CORE_ADDR address, struct value *dval0)
7835 {
7836 struct value *mark = value_mark ();
7837 struct value *dval;
7838 struct type *rtype;
7839 struct type *branch_type;
7840 int nfields = TYPE_NFIELDS (type);
7841 int variant_field = variant_field_index (type);
7842
7843 if (variant_field == -1)
7844 return type;
7845
7846 if (dval0 == NULL)
7847 dval = value_from_contents_and_address (type, valaddr, address);
7848 else
7849 dval = dval0;
7850
7851 rtype = alloc_type_copy (type);
7852 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7853 INIT_CPLUS_SPECIFIC (rtype);
7854 TYPE_NFIELDS (rtype) = nfields;
7855 TYPE_FIELDS (rtype) =
7856 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7857 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7858 sizeof (struct field) * nfields);
7859 TYPE_NAME (rtype) = ada_type_name (type);
7860 TYPE_TAG_NAME (rtype) = NULL;
7861 TYPE_FIXED_INSTANCE (rtype) = 1;
7862 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7863
7864 branch_type = to_fixed_variant_branch_type
7865 (TYPE_FIELD_TYPE (type, variant_field),
7866 cond_offset_host (valaddr,
7867 TYPE_FIELD_BITPOS (type, variant_field)
7868 / TARGET_CHAR_BIT),
7869 cond_offset_target (address,
7870 TYPE_FIELD_BITPOS (type, variant_field)
7871 / TARGET_CHAR_BIT), dval);
7872 if (branch_type == NULL)
7873 {
7874 int f;
7875
7876 for (f = variant_field + 1; f < nfields; f += 1)
7877 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7878 TYPE_NFIELDS (rtype) -= 1;
7879 }
7880 else
7881 {
7882 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7883 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7884 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7885 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7886 }
7887 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7888
7889 value_free_to_mark (mark);
7890 return rtype;
7891 }
7892
7893 /* An ordinary record type (with fixed-length fields) that describes
7894 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7895 beginning of this section]. Any necessary discriminants' values
7896 should be in DVAL, a record value; it may be NULL if the object
7897 at ADDR itself contains any necessary discriminant values.
7898 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7899 values from the record are needed. Except in the case that DVAL,
7900 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7901 unchecked) is replaced by a particular branch of the variant.
7902
7903 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7904 is questionable and may be removed. It can arise during the
7905 processing of an unconstrained-array-of-record type where all the
7906 variant branches have exactly the same size. This is because in
7907 such cases, the compiler does not bother to use the XVS convention
7908 when encoding the record. I am currently dubious of this
7909 shortcut and suspect the compiler should be altered. FIXME. */
7910
7911 static struct type *
7912 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7913 CORE_ADDR address, struct value *dval)
7914 {
7915 struct type *templ_type;
7916
7917 if (TYPE_FIXED_INSTANCE (type0))
7918 return type0;
7919
7920 templ_type = dynamic_template_type (type0);
7921
7922 if (templ_type != NULL)
7923 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7924 else if (variant_field_index (type0) >= 0)
7925 {
7926 if (dval == NULL && valaddr == NULL && address == 0)
7927 return type0;
7928 return to_record_with_fixed_variant_part (type0, valaddr, address,
7929 dval);
7930 }
7931 else
7932 {
7933 TYPE_FIXED_INSTANCE (type0) = 1;
7934 return type0;
7935 }
7936
7937 }
7938
7939 /* An ordinary record type (with fixed-length fields) that describes
7940 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7941 union type. Any necessary discriminants' values should be in DVAL,
7942 a record value. That is, this routine selects the appropriate
7943 branch of the union at ADDR according to the discriminant value
7944 indicated in the union's type name. Returns VAR_TYPE0 itself if
7945 it represents a variant subject to a pragma Unchecked_Union. */
7946
7947 static struct type *
7948 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7949 CORE_ADDR address, struct value *dval)
7950 {
7951 int which;
7952 struct type *templ_type;
7953 struct type *var_type;
7954
7955 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7956 var_type = TYPE_TARGET_TYPE (var_type0);
7957 else
7958 var_type = var_type0;
7959
7960 templ_type = ada_find_parallel_type (var_type, "___XVU");
7961
7962 if (templ_type != NULL)
7963 var_type = templ_type;
7964
7965 if (is_unchecked_variant (var_type, value_type (dval)))
7966 return var_type0;
7967 which =
7968 ada_which_variant_applies (var_type,
7969 value_type (dval), value_contents (dval));
7970
7971 if (which < 0)
7972 return empty_record (var_type);
7973 else if (is_dynamic_field (var_type, which))
7974 return to_fixed_record_type
7975 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7976 valaddr, address, dval);
7977 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7978 return
7979 to_fixed_record_type
7980 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7981 else
7982 return TYPE_FIELD_TYPE (var_type, which);
7983 }
7984
7985 /* Assuming that TYPE0 is an array type describing the type of a value
7986 at ADDR, and that DVAL describes a record containing any
7987 discriminants used in TYPE0, returns a type for the value that
7988 contains no dynamic components (that is, no components whose sizes
7989 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7990 true, gives an error message if the resulting type's size is over
7991 varsize_limit. */
7992
7993 static struct type *
7994 to_fixed_array_type (struct type *type0, struct value *dval,
7995 int ignore_too_big)
7996 {
7997 struct type *index_type_desc;
7998 struct type *result;
7999 int constrained_packed_array_p;
8000
8001 type0 = ada_check_typedef (type0);
8002 if (TYPE_FIXED_INSTANCE (type0))
8003 return type0;
8004
8005 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8006 if (constrained_packed_array_p)
8007 type0 = decode_constrained_packed_array_type (type0);
8008
8009 index_type_desc = ada_find_parallel_type (type0, "___XA");
8010 ada_fixup_array_indexes_type (index_type_desc);
8011 if (index_type_desc == NULL)
8012 {
8013 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8014
8015 /* NOTE: elt_type---the fixed version of elt_type0---should never
8016 depend on the contents of the array in properly constructed
8017 debugging data. */
8018 /* Create a fixed version of the array element type.
8019 We're not providing the address of an element here,
8020 and thus the actual object value cannot be inspected to do
8021 the conversion. This should not be a problem, since arrays of
8022 unconstrained objects are not allowed. In particular, all
8023 the elements of an array of a tagged type should all be of
8024 the same type specified in the debugging info. No need to
8025 consult the object tag. */
8026 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8027
8028 /* Make sure we always create a new array type when dealing with
8029 packed array types, since we're going to fix-up the array
8030 type length and element bitsize a little further down. */
8031 if (elt_type0 == elt_type && !constrained_packed_array_p)
8032 result = type0;
8033 else
8034 result = create_array_type (alloc_type_copy (type0),
8035 elt_type, TYPE_INDEX_TYPE (type0));
8036 }
8037 else
8038 {
8039 int i;
8040 struct type *elt_type0;
8041
8042 elt_type0 = type0;
8043 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8044 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8045
8046 /* NOTE: result---the fixed version of elt_type0---should never
8047 depend on the contents of the array in properly constructed
8048 debugging data. */
8049 /* Create a fixed version of the array element type.
8050 We're not providing the address of an element here,
8051 and thus the actual object value cannot be inspected to do
8052 the conversion. This should not be a problem, since arrays of
8053 unconstrained objects are not allowed. In particular, all
8054 the elements of an array of a tagged type should all be of
8055 the same type specified in the debugging info. No need to
8056 consult the object tag. */
8057 result =
8058 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8059
8060 elt_type0 = type0;
8061 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8062 {
8063 struct type *range_type =
8064 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8065
8066 result = create_array_type (alloc_type_copy (elt_type0),
8067 result, range_type);
8068 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8069 }
8070 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8071 error (_("array type with dynamic size is larger than varsize-limit"));
8072 }
8073
8074 /* We want to preserve the type name. This can be useful when
8075 trying to get the type name of a value that has already been
8076 printed (for instance, if the user did "print VAR; whatis $". */
8077 TYPE_NAME (result) = TYPE_NAME (type0);
8078
8079 if (constrained_packed_array_p)
8080 {
8081 /* So far, the resulting type has been created as if the original
8082 type was a regular (non-packed) array type. As a result, the
8083 bitsize of the array elements needs to be set again, and the array
8084 length needs to be recomputed based on that bitsize. */
8085 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8086 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8087
8088 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8089 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8090 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8091 TYPE_LENGTH (result)++;
8092 }
8093
8094 TYPE_FIXED_INSTANCE (result) = 1;
8095 return result;
8096 }
8097
8098
8099 /* A standard type (containing no dynamically sized components)
8100 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8101 DVAL describes a record containing any discriminants used in TYPE0,
8102 and may be NULL if there are none, or if the object of type TYPE at
8103 ADDRESS or in VALADDR contains these discriminants.
8104
8105 If CHECK_TAG is not null, in the case of tagged types, this function
8106 attempts to locate the object's tag and use it to compute the actual
8107 type. However, when ADDRESS is null, we cannot use it to determine the
8108 location of the tag, and therefore compute the tagged type's actual type.
8109 So we return the tagged type without consulting the tag. */
8110
8111 static struct type *
8112 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8113 CORE_ADDR address, struct value *dval, int check_tag)
8114 {
8115 type = ada_check_typedef (type);
8116 switch (TYPE_CODE (type))
8117 {
8118 default:
8119 return type;
8120 case TYPE_CODE_STRUCT:
8121 {
8122 struct type *static_type = to_static_fixed_type (type);
8123 struct type *fixed_record_type =
8124 to_fixed_record_type (type, valaddr, address, NULL);
8125
8126 /* If STATIC_TYPE is a tagged type and we know the object's address,
8127 then we can determine its tag, and compute the object's actual
8128 type from there. Note that we have to use the fixed record
8129 type (the parent part of the record may have dynamic fields
8130 and the way the location of _tag is expressed may depend on
8131 them). */
8132
8133 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8134 {
8135 struct value *tag =
8136 value_tag_from_contents_and_address
8137 (fixed_record_type,
8138 valaddr,
8139 address);
8140 struct type *real_type = type_from_tag (tag);
8141 struct value *obj =
8142 value_from_contents_and_address (fixed_record_type,
8143 valaddr,
8144 address);
8145 if (real_type != NULL)
8146 return to_fixed_record_type
8147 (real_type, NULL,
8148 value_address (ada_tag_value_at_base_address (obj)), NULL);
8149 }
8150
8151 /* Check to see if there is a parallel ___XVZ variable.
8152 If there is, then it provides the actual size of our type. */
8153 else if (ada_type_name (fixed_record_type) != NULL)
8154 {
8155 const char *name = ada_type_name (fixed_record_type);
8156 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8157 int xvz_found = 0;
8158 LONGEST size;
8159
8160 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8161 size = get_int_var_value (xvz_name, &xvz_found);
8162 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8163 {
8164 fixed_record_type = copy_type (fixed_record_type);
8165 TYPE_LENGTH (fixed_record_type) = size;
8166
8167 /* The FIXED_RECORD_TYPE may have be a stub. We have
8168 observed this when the debugging info is STABS, and
8169 apparently it is something that is hard to fix.
8170
8171 In practice, we don't need the actual type definition
8172 at all, because the presence of the XVZ variable allows us
8173 to assume that there must be a XVS type as well, which we
8174 should be able to use later, when we need the actual type
8175 definition.
8176
8177 In the meantime, pretend that the "fixed" type we are
8178 returning is NOT a stub, because this can cause trouble
8179 when using this type to create new types targeting it.
8180 Indeed, the associated creation routines often check
8181 whether the target type is a stub and will try to replace
8182 it, thus using a type with the wrong size. This, in turn,
8183 might cause the new type to have the wrong size too.
8184 Consider the case of an array, for instance, where the size
8185 of the array is computed from the number of elements in
8186 our array multiplied by the size of its element. */
8187 TYPE_STUB (fixed_record_type) = 0;
8188 }
8189 }
8190 return fixed_record_type;
8191 }
8192 case TYPE_CODE_ARRAY:
8193 return to_fixed_array_type (type, dval, 1);
8194 case TYPE_CODE_UNION:
8195 if (dval == NULL)
8196 return type;
8197 else
8198 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8199 }
8200 }
8201
8202 /* The same as ada_to_fixed_type_1, except that it preserves the type
8203 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8204
8205 The typedef layer needs be preserved in order to differentiate between
8206 arrays and array pointers when both types are implemented using the same
8207 fat pointer. In the array pointer case, the pointer is encoded as
8208 a typedef of the pointer type. For instance, considering:
8209
8210 type String_Access is access String;
8211 S1 : String_Access := null;
8212
8213 To the debugger, S1 is defined as a typedef of type String. But
8214 to the user, it is a pointer. So if the user tries to print S1,
8215 we should not dereference the array, but print the array address
8216 instead.
8217
8218 If we didn't preserve the typedef layer, we would lose the fact that
8219 the type is to be presented as a pointer (needs de-reference before
8220 being printed). And we would also use the source-level type name. */
8221
8222 struct type *
8223 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8224 CORE_ADDR address, struct value *dval, int check_tag)
8225
8226 {
8227 struct type *fixed_type =
8228 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8229
8230 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8231 then preserve the typedef layer.
8232
8233 Implementation note: We can only check the main-type portion of
8234 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8235 from TYPE now returns a type that has the same instance flags
8236 as TYPE. For instance, if TYPE is a "typedef const", and its
8237 target type is a "struct", then the typedef elimination will return
8238 a "const" version of the target type. See check_typedef for more
8239 details about how the typedef layer elimination is done.
8240
8241 brobecker/2010-11-19: It seems to me that the only case where it is
8242 useful to preserve the typedef layer is when dealing with fat pointers.
8243 Perhaps, we could add a check for that and preserve the typedef layer
8244 only in that situation. But this seems unecessary so far, probably
8245 because we call check_typedef/ada_check_typedef pretty much everywhere.
8246 */
8247 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8248 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8249 == TYPE_MAIN_TYPE (fixed_type)))
8250 return type;
8251
8252 return fixed_type;
8253 }
8254
8255 /* A standard (static-sized) type corresponding as well as possible to
8256 TYPE0, but based on no runtime data. */
8257
8258 static struct type *
8259 to_static_fixed_type (struct type *type0)
8260 {
8261 struct type *type;
8262
8263 if (type0 == NULL)
8264 return NULL;
8265
8266 if (TYPE_FIXED_INSTANCE (type0))
8267 return type0;
8268
8269 type0 = ada_check_typedef (type0);
8270
8271 switch (TYPE_CODE (type0))
8272 {
8273 default:
8274 return type0;
8275 case TYPE_CODE_STRUCT:
8276 type = dynamic_template_type (type0);
8277 if (type != NULL)
8278 return template_to_static_fixed_type (type);
8279 else
8280 return template_to_static_fixed_type (type0);
8281 case TYPE_CODE_UNION:
8282 type = ada_find_parallel_type (type0, "___XVU");
8283 if (type != NULL)
8284 return template_to_static_fixed_type (type);
8285 else
8286 return template_to_static_fixed_type (type0);
8287 }
8288 }
8289
8290 /* A static approximation of TYPE with all type wrappers removed. */
8291
8292 static struct type *
8293 static_unwrap_type (struct type *type)
8294 {
8295 if (ada_is_aligner_type (type))
8296 {
8297 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8298 if (ada_type_name (type1) == NULL)
8299 TYPE_NAME (type1) = ada_type_name (type);
8300
8301 return static_unwrap_type (type1);
8302 }
8303 else
8304 {
8305 struct type *raw_real_type = ada_get_base_type (type);
8306
8307 if (raw_real_type == type)
8308 return type;
8309 else
8310 return to_static_fixed_type (raw_real_type);
8311 }
8312 }
8313
8314 /* In some cases, incomplete and private types require
8315 cross-references that are not resolved as records (for example,
8316 type Foo;
8317 type FooP is access Foo;
8318 V: FooP;
8319 type Foo is array ...;
8320 ). In these cases, since there is no mechanism for producing
8321 cross-references to such types, we instead substitute for FooP a
8322 stub enumeration type that is nowhere resolved, and whose tag is
8323 the name of the actual type. Call these types "non-record stubs". */
8324
8325 /* A type equivalent to TYPE that is not a non-record stub, if one
8326 exists, otherwise TYPE. */
8327
8328 struct type *
8329 ada_check_typedef (struct type *type)
8330 {
8331 if (type == NULL)
8332 return NULL;
8333
8334 /* If our type is a typedef type of a fat pointer, then we're done.
8335 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8336 what allows us to distinguish between fat pointers that represent
8337 array types, and fat pointers that represent array access types
8338 (in both cases, the compiler implements them as fat pointers). */
8339 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8340 && is_thick_pntr (ada_typedef_target_type (type)))
8341 return type;
8342
8343 CHECK_TYPEDEF (type);
8344 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8345 || !TYPE_STUB (type)
8346 || TYPE_TAG_NAME (type) == NULL)
8347 return type;
8348 else
8349 {
8350 const char *name = TYPE_TAG_NAME (type);
8351 struct type *type1 = ada_find_any_type (name);
8352
8353 if (type1 == NULL)
8354 return type;
8355
8356 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8357 stubs pointing to arrays, as we don't create symbols for array
8358 types, only for the typedef-to-array types). If that's the case,
8359 strip the typedef layer. */
8360 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8361 type1 = ada_check_typedef (type1);
8362
8363 return type1;
8364 }
8365 }
8366
8367 /* A value representing the data at VALADDR/ADDRESS as described by
8368 type TYPE0, but with a standard (static-sized) type that correctly
8369 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8370 type, then return VAL0 [this feature is simply to avoid redundant
8371 creation of struct values]. */
8372
8373 static struct value *
8374 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8375 struct value *val0)
8376 {
8377 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8378
8379 if (type == type0 && val0 != NULL)
8380 return val0;
8381 else
8382 return value_from_contents_and_address (type, 0, address);
8383 }
8384
8385 /* A value representing VAL, but with a standard (static-sized) type
8386 that correctly describes it. Does not necessarily create a new
8387 value. */
8388
8389 struct value *
8390 ada_to_fixed_value (struct value *val)
8391 {
8392 val = unwrap_value (val);
8393 val = ada_to_fixed_value_create (value_type (val),
8394 value_address (val),
8395 val);
8396 return val;
8397 }
8398 \f
8399
8400 /* Attributes */
8401
8402 /* Table mapping attribute numbers to names.
8403 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8404
8405 static const char *attribute_names[] = {
8406 "<?>",
8407
8408 "first",
8409 "last",
8410 "length",
8411 "image",
8412 "max",
8413 "min",
8414 "modulus",
8415 "pos",
8416 "size",
8417 "tag",
8418 "val",
8419 0
8420 };
8421
8422 const char *
8423 ada_attribute_name (enum exp_opcode n)
8424 {
8425 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8426 return attribute_names[n - OP_ATR_FIRST + 1];
8427 else
8428 return attribute_names[0];
8429 }
8430
8431 /* Evaluate the 'POS attribute applied to ARG. */
8432
8433 static LONGEST
8434 pos_atr (struct value *arg)
8435 {
8436 struct value *val = coerce_ref (arg);
8437 struct type *type = value_type (val);
8438
8439 if (!discrete_type_p (type))
8440 error (_("'POS only defined on discrete types"));
8441
8442 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8443 {
8444 int i;
8445 LONGEST v = value_as_long (val);
8446
8447 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8448 {
8449 if (v == TYPE_FIELD_ENUMVAL (type, i))
8450 return i;
8451 }
8452 error (_("enumeration value is invalid: can't find 'POS"));
8453 }
8454 else
8455 return value_as_long (val);
8456 }
8457
8458 static struct value *
8459 value_pos_atr (struct type *type, struct value *arg)
8460 {
8461 return value_from_longest (type, pos_atr (arg));
8462 }
8463
8464 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8465
8466 static struct value *
8467 value_val_atr (struct type *type, struct value *arg)
8468 {
8469 if (!discrete_type_p (type))
8470 error (_("'VAL only defined on discrete types"));
8471 if (!integer_type_p (value_type (arg)))
8472 error (_("'VAL requires integral argument"));
8473
8474 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8475 {
8476 long pos = value_as_long (arg);
8477
8478 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8479 error (_("argument to 'VAL out of range"));
8480 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8481 }
8482 else
8483 return value_from_longest (type, value_as_long (arg));
8484 }
8485 \f
8486
8487 /* Evaluation */
8488
8489 /* True if TYPE appears to be an Ada character type.
8490 [At the moment, this is true only for Character and Wide_Character;
8491 It is a heuristic test that could stand improvement]. */
8492
8493 int
8494 ada_is_character_type (struct type *type)
8495 {
8496 const char *name;
8497
8498 /* If the type code says it's a character, then assume it really is,
8499 and don't check any further. */
8500 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8501 return 1;
8502
8503 /* Otherwise, assume it's a character type iff it is a discrete type
8504 with a known character type name. */
8505 name = ada_type_name (type);
8506 return (name != NULL
8507 && (TYPE_CODE (type) == TYPE_CODE_INT
8508 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8509 && (strcmp (name, "character") == 0
8510 || strcmp (name, "wide_character") == 0
8511 || strcmp (name, "wide_wide_character") == 0
8512 || strcmp (name, "unsigned char") == 0));
8513 }
8514
8515 /* True if TYPE appears to be an Ada string type. */
8516
8517 int
8518 ada_is_string_type (struct type *type)
8519 {
8520 type = ada_check_typedef (type);
8521 if (type != NULL
8522 && TYPE_CODE (type) != TYPE_CODE_PTR
8523 && (ada_is_simple_array_type (type)
8524 || ada_is_array_descriptor_type (type))
8525 && ada_array_arity (type) == 1)
8526 {
8527 struct type *elttype = ada_array_element_type (type, 1);
8528
8529 return ada_is_character_type (elttype);
8530 }
8531 else
8532 return 0;
8533 }
8534
8535 /* The compiler sometimes provides a parallel XVS type for a given
8536 PAD type. Normally, it is safe to follow the PAD type directly,
8537 but older versions of the compiler have a bug that causes the offset
8538 of its "F" field to be wrong. Following that field in that case
8539 would lead to incorrect results, but this can be worked around
8540 by ignoring the PAD type and using the associated XVS type instead.
8541
8542 Set to True if the debugger should trust the contents of PAD types.
8543 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8544 static int trust_pad_over_xvs = 1;
8545
8546 /* True if TYPE is a struct type introduced by the compiler to force the
8547 alignment of a value. Such types have a single field with a
8548 distinctive name. */
8549
8550 int
8551 ada_is_aligner_type (struct type *type)
8552 {
8553 type = ada_check_typedef (type);
8554
8555 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8556 return 0;
8557
8558 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8559 && TYPE_NFIELDS (type) == 1
8560 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8561 }
8562
8563 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8564 the parallel type. */
8565
8566 struct type *
8567 ada_get_base_type (struct type *raw_type)
8568 {
8569 struct type *real_type_namer;
8570 struct type *raw_real_type;
8571
8572 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8573 return raw_type;
8574
8575 if (ada_is_aligner_type (raw_type))
8576 /* The encoding specifies that we should always use the aligner type.
8577 So, even if this aligner type has an associated XVS type, we should
8578 simply ignore it.
8579
8580 According to the compiler gurus, an XVS type parallel to an aligner
8581 type may exist because of a stabs limitation. In stabs, aligner
8582 types are empty because the field has a variable-sized type, and
8583 thus cannot actually be used as an aligner type. As a result,
8584 we need the associated parallel XVS type to decode the type.
8585 Since the policy in the compiler is to not change the internal
8586 representation based on the debugging info format, we sometimes
8587 end up having a redundant XVS type parallel to the aligner type. */
8588 return raw_type;
8589
8590 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8591 if (real_type_namer == NULL
8592 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8593 || TYPE_NFIELDS (real_type_namer) != 1)
8594 return raw_type;
8595
8596 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8597 {
8598 /* This is an older encoding form where the base type needs to be
8599 looked up by name. We prefer the newer enconding because it is
8600 more efficient. */
8601 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8602 if (raw_real_type == NULL)
8603 return raw_type;
8604 else
8605 return raw_real_type;
8606 }
8607
8608 /* The field in our XVS type is a reference to the base type. */
8609 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8610 }
8611
8612 /* The type of value designated by TYPE, with all aligners removed. */
8613
8614 struct type *
8615 ada_aligned_type (struct type *type)
8616 {
8617 if (ada_is_aligner_type (type))
8618 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8619 else
8620 return ada_get_base_type (type);
8621 }
8622
8623
8624 /* The address of the aligned value in an object at address VALADDR
8625 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8626
8627 const gdb_byte *
8628 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8629 {
8630 if (ada_is_aligner_type (type))
8631 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8632 valaddr +
8633 TYPE_FIELD_BITPOS (type,
8634 0) / TARGET_CHAR_BIT);
8635 else
8636 return valaddr;
8637 }
8638
8639
8640
8641 /* The printed representation of an enumeration literal with encoded
8642 name NAME. The value is good to the next call of ada_enum_name. */
8643 const char *
8644 ada_enum_name (const char *name)
8645 {
8646 static char *result;
8647 static size_t result_len = 0;
8648 char *tmp;
8649
8650 /* First, unqualify the enumeration name:
8651 1. Search for the last '.' character. If we find one, then skip
8652 all the preceding characters, the unqualified name starts
8653 right after that dot.
8654 2. Otherwise, we may be debugging on a target where the compiler
8655 translates dots into "__". Search forward for double underscores,
8656 but stop searching when we hit an overloading suffix, which is
8657 of the form "__" followed by digits. */
8658
8659 tmp = strrchr (name, '.');
8660 if (tmp != NULL)
8661 name = tmp + 1;
8662 else
8663 {
8664 while ((tmp = strstr (name, "__")) != NULL)
8665 {
8666 if (isdigit (tmp[2]))
8667 break;
8668 else
8669 name = tmp + 2;
8670 }
8671 }
8672
8673 if (name[0] == 'Q')
8674 {
8675 int v;
8676
8677 if (name[1] == 'U' || name[1] == 'W')
8678 {
8679 if (sscanf (name + 2, "%x", &v) != 1)
8680 return name;
8681 }
8682 else
8683 return name;
8684
8685 GROW_VECT (result, result_len, 16);
8686 if (isascii (v) && isprint (v))
8687 xsnprintf (result, result_len, "'%c'", v);
8688 else if (name[1] == 'U')
8689 xsnprintf (result, result_len, "[\"%02x\"]", v);
8690 else
8691 xsnprintf (result, result_len, "[\"%04x\"]", v);
8692
8693 return result;
8694 }
8695 else
8696 {
8697 tmp = strstr (name, "__");
8698 if (tmp == NULL)
8699 tmp = strstr (name, "$");
8700 if (tmp != NULL)
8701 {
8702 GROW_VECT (result, result_len, tmp - name + 1);
8703 strncpy (result, name, tmp - name);
8704 result[tmp - name] = '\0';
8705 return result;
8706 }
8707
8708 return name;
8709 }
8710 }
8711
8712 /* Evaluate the subexpression of EXP starting at *POS as for
8713 evaluate_type, updating *POS to point just past the evaluated
8714 expression. */
8715
8716 static struct value *
8717 evaluate_subexp_type (struct expression *exp, int *pos)
8718 {
8719 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8720 }
8721
8722 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8723 value it wraps. */
8724
8725 static struct value *
8726 unwrap_value (struct value *val)
8727 {
8728 struct type *type = ada_check_typedef (value_type (val));
8729
8730 if (ada_is_aligner_type (type))
8731 {
8732 struct value *v = ada_value_struct_elt (val, "F", 0);
8733 struct type *val_type = ada_check_typedef (value_type (v));
8734
8735 if (ada_type_name (val_type) == NULL)
8736 TYPE_NAME (val_type) = ada_type_name (type);
8737
8738 return unwrap_value (v);
8739 }
8740 else
8741 {
8742 struct type *raw_real_type =
8743 ada_check_typedef (ada_get_base_type (type));
8744
8745 /* If there is no parallel XVS or XVE type, then the value is
8746 already unwrapped. Return it without further modification. */
8747 if ((type == raw_real_type)
8748 && ada_find_parallel_type (type, "___XVE") == NULL)
8749 return val;
8750
8751 return
8752 coerce_unspec_val_to_type
8753 (val, ada_to_fixed_type (raw_real_type, 0,
8754 value_address (val),
8755 NULL, 1));
8756 }
8757 }
8758
8759 static struct value *
8760 cast_to_fixed (struct type *type, struct value *arg)
8761 {
8762 LONGEST val;
8763
8764 if (type == value_type (arg))
8765 return arg;
8766 else if (ada_is_fixed_point_type (value_type (arg)))
8767 val = ada_float_to_fixed (type,
8768 ada_fixed_to_float (value_type (arg),
8769 value_as_long (arg)));
8770 else
8771 {
8772 DOUBLEST argd = value_as_double (arg);
8773
8774 val = ada_float_to_fixed (type, argd);
8775 }
8776
8777 return value_from_longest (type, val);
8778 }
8779
8780 static struct value *
8781 cast_from_fixed (struct type *type, struct value *arg)
8782 {
8783 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8784 value_as_long (arg));
8785
8786 return value_from_double (type, val);
8787 }
8788
8789 /* Given two array types T1 and T2, return nonzero iff both arrays
8790 contain the same number of elements. */
8791
8792 static int
8793 ada_same_array_size_p (struct type *t1, struct type *t2)
8794 {
8795 LONGEST lo1, hi1, lo2, hi2;
8796
8797 /* Get the array bounds in order to verify that the size of
8798 the two arrays match. */
8799 if (!get_array_bounds (t1, &lo1, &hi1)
8800 || !get_array_bounds (t2, &lo2, &hi2))
8801 error (_("unable to determine array bounds"));
8802
8803 /* To make things easier for size comparison, normalize a bit
8804 the case of empty arrays by making sure that the difference
8805 between upper bound and lower bound is always -1. */
8806 if (lo1 > hi1)
8807 hi1 = lo1 - 1;
8808 if (lo2 > hi2)
8809 hi2 = lo2 - 1;
8810
8811 return (hi1 - lo1 == hi2 - lo2);
8812 }
8813
8814 /* Assuming that VAL is an array of integrals, and TYPE represents
8815 an array with the same number of elements, but with wider integral
8816 elements, return an array "casted" to TYPE. In practice, this
8817 means that the returned array is built by casting each element
8818 of the original array into TYPE's (wider) element type. */
8819
8820 static struct value *
8821 ada_promote_array_of_integrals (struct type *type, struct value *val)
8822 {
8823 struct type *elt_type = TYPE_TARGET_TYPE (type);
8824 LONGEST lo, hi;
8825 struct value *res;
8826 LONGEST i;
8827
8828 /* Verify that both val and type are arrays of scalars, and
8829 that the size of val's elements is smaller than the size
8830 of type's element. */
8831 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8832 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8833 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8834 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8835 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8836 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8837
8838 if (!get_array_bounds (type, &lo, &hi))
8839 error (_("unable to determine array bounds"));
8840
8841 res = allocate_value (type);
8842
8843 /* Promote each array element. */
8844 for (i = 0; i < hi - lo + 1; i++)
8845 {
8846 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8847
8848 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8849 value_contents_all (elt), TYPE_LENGTH (elt_type));
8850 }
8851
8852 return res;
8853 }
8854
8855 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8856 return the converted value. */
8857
8858 static struct value *
8859 coerce_for_assign (struct type *type, struct value *val)
8860 {
8861 struct type *type2 = value_type (val);
8862
8863 if (type == type2)
8864 return val;
8865
8866 type2 = ada_check_typedef (type2);
8867 type = ada_check_typedef (type);
8868
8869 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8870 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8871 {
8872 val = ada_value_ind (val);
8873 type2 = value_type (val);
8874 }
8875
8876 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8877 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8878 {
8879 if (!ada_same_array_size_p (type, type2))
8880 error (_("cannot assign arrays of different length"));
8881
8882 if (is_integral_type (TYPE_TARGET_TYPE (type))
8883 && is_integral_type (TYPE_TARGET_TYPE (type2))
8884 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8885 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8886 {
8887 /* Allow implicit promotion of the array elements to
8888 a wider type. */
8889 return ada_promote_array_of_integrals (type, val);
8890 }
8891
8892 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8893 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8894 error (_("Incompatible types in assignment"));
8895 deprecated_set_value_type (val, type);
8896 }
8897 return val;
8898 }
8899
8900 static struct value *
8901 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8902 {
8903 struct value *val;
8904 struct type *type1, *type2;
8905 LONGEST v, v1, v2;
8906
8907 arg1 = coerce_ref (arg1);
8908 arg2 = coerce_ref (arg2);
8909 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8910 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8911
8912 if (TYPE_CODE (type1) != TYPE_CODE_INT
8913 || TYPE_CODE (type2) != TYPE_CODE_INT)
8914 return value_binop (arg1, arg2, op);
8915
8916 switch (op)
8917 {
8918 case BINOP_MOD:
8919 case BINOP_DIV:
8920 case BINOP_REM:
8921 break;
8922 default:
8923 return value_binop (arg1, arg2, op);
8924 }
8925
8926 v2 = value_as_long (arg2);
8927 if (v2 == 0)
8928 error (_("second operand of %s must not be zero."), op_string (op));
8929
8930 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8931 return value_binop (arg1, arg2, op);
8932
8933 v1 = value_as_long (arg1);
8934 switch (op)
8935 {
8936 case BINOP_DIV:
8937 v = v1 / v2;
8938 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8939 v += v > 0 ? -1 : 1;
8940 break;
8941 case BINOP_REM:
8942 v = v1 % v2;
8943 if (v * v1 < 0)
8944 v -= v2;
8945 break;
8946 default:
8947 /* Should not reach this point. */
8948 v = 0;
8949 }
8950
8951 val = allocate_value (type1);
8952 store_unsigned_integer (value_contents_raw (val),
8953 TYPE_LENGTH (value_type (val)),
8954 gdbarch_byte_order (get_type_arch (type1)), v);
8955 return val;
8956 }
8957
8958 static int
8959 ada_value_equal (struct value *arg1, struct value *arg2)
8960 {
8961 if (ada_is_direct_array_type (value_type (arg1))
8962 || ada_is_direct_array_type (value_type (arg2)))
8963 {
8964 /* Automatically dereference any array reference before
8965 we attempt to perform the comparison. */
8966 arg1 = ada_coerce_ref (arg1);
8967 arg2 = ada_coerce_ref (arg2);
8968
8969 arg1 = ada_coerce_to_simple_array (arg1);
8970 arg2 = ada_coerce_to_simple_array (arg2);
8971 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8972 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8973 error (_("Attempt to compare array with non-array"));
8974 /* FIXME: The following works only for types whose
8975 representations use all bits (no padding or undefined bits)
8976 and do not have user-defined equality. */
8977 return
8978 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8979 && memcmp (value_contents (arg1), value_contents (arg2),
8980 TYPE_LENGTH (value_type (arg1))) == 0;
8981 }
8982 return value_equal (arg1, arg2);
8983 }
8984
8985 /* Total number of component associations in the aggregate starting at
8986 index PC in EXP. Assumes that index PC is the start of an
8987 OP_AGGREGATE. */
8988
8989 static int
8990 num_component_specs (struct expression *exp, int pc)
8991 {
8992 int n, m, i;
8993
8994 m = exp->elts[pc + 1].longconst;
8995 pc += 3;
8996 n = 0;
8997 for (i = 0; i < m; i += 1)
8998 {
8999 switch (exp->elts[pc].opcode)
9000 {
9001 default:
9002 n += 1;
9003 break;
9004 case OP_CHOICES:
9005 n += exp->elts[pc + 1].longconst;
9006 break;
9007 }
9008 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9009 }
9010 return n;
9011 }
9012
9013 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9014 component of LHS (a simple array or a record), updating *POS past
9015 the expression, assuming that LHS is contained in CONTAINER. Does
9016 not modify the inferior's memory, nor does it modify LHS (unless
9017 LHS == CONTAINER). */
9018
9019 static void
9020 assign_component (struct value *container, struct value *lhs, LONGEST index,
9021 struct expression *exp, int *pos)
9022 {
9023 struct value *mark = value_mark ();
9024 struct value *elt;
9025
9026 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9027 {
9028 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9029 struct value *index_val = value_from_longest (index_type, index);
9030
9031 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9032 }
9033 else
9034 {
9035 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9036 elt = ada_to_fixed_value (elt);
9037 }
9038
9039 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9040 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9041 else
9042 value_assign_to_component (container, elt,
9043 ada_evaluate_subexp (NULL, exp, pos,
9044 EVAL_NORMAL));
9045
9046 value_free_to_mark (mark);
9047 }
9048
9049 /* Assuming that LHS represents an lvalue having a record or array
9050 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9051 of that aggregate's value to LHS, advancing *POS past the
9052 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9053 lvalue containing LHS (possibly LHS itself). Does not modify
9054 the inferior's memory, nor does it modify the contents of
9055 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9056
9057 static struct value *
9058 assign_aggregate (struct value *container,
9059 struct value *lhs, struct expression *exp,
9060 int *pos, enum noside noside)
9061 {
9062 struct type *lhs_type;
9063 int n = exp->elts[*pos+1].longconst;
9064 LONGEST low_index, high_index;
9065 int num_specs;
9066 LONGEST *indices;
9067 int max_indices, num_indices;
9068 int i;
9069
9070 *pos += 3;
9071 if (noside != EVAL_NORMAL)
9072 {
9073 for (i = 0; i < n; i += 1)
9074 ada_evaluate_subexp (NULL, exp, pos, noside);
9075 return container;
9076 }
9077
9078 container = ada_coerce_ref (container);
9079 if (ada_is_direct_array_type (value_type (container)))
9080 container = ada_coerce_to_simple_array (container);
9081 lhs = ada_coerce_ref (lhs);
9082 if (!deprecated_value_modifiable (lhs))
9083 error (_("Left operand of assignment is not a modifiable lvalue."));
9084
9085 lhs_type = value_type (lhs);
9086 if (ada_is_direct_array_type (lhs_type))
9087 {
9088 lhs = ada_coerce_to_simple_array (lhs);
9089 lhs_type = value_type (lhs);
9090 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9091 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9092 }
9093 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9094 {
9095 low_index = 0;
9096 high_index = num_visible_fields (lhs_type) - 1;
9097 }
9098 else
9099 error (_("Left-hand side must be array or record."));
9100
9101 num_specs = num_component_specs (exp, *pos - 3);
9102 max_indices = 4 * num_specs + 4;
9103 indices = alloca (max_indices * sizeof (indices[0]));
9104 indices[0] = indices[1] = low_index - 1;
9105 indices[2] = indices[3] = high_index + 1;
9106 num_indices = 4;
9107
9108 for (i = 0; i < n; i += 1)
9109 {
9110 switch (exp->elts[*pos].opcode)
9111 {
9112 case OP_CHOICES:
9113 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9114 &num_indices, max_indices,
9115 low_index, high_index);
9116 break;
9117 case OP_POSITIONAL:
9118 aggregate_assign_positional (container, lhs, exp, pos, indices,
9119 &num_indices, max_indices,
9120 low_index, high_index);
9121 break;
9122 case OP_OTHERS:
9123 if (i != n-1)
9124 error (_("Misplaced 'others' clause"));
9125 aggregate_assign_others (container, lhs, exp, pos, indices,
9126 num_indices, low_index, high_index);
9127 break;
9128 default:
9129 error (_("Internal error: bad aggregate clause"));
9130 }
9131 }
9132
9133 return container;
9134 }
9135
9136 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9137 construct at *POS, updating *POS past the construct, given that
9138 the positions are relative to lower bound LOW, where HIGH is the
9139 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9140 updating *NUM_INDICES as needed. CONTAINER is as for
9141 assign_aggregate. */
9142 static void
9143 aggregate_assign_positional (struct value *container,
9144 struct value *lhs, struct expression *exp,
9145 int *pos, LONGEST *indices, int *num_indices,
9146 int max_indices, LONGEST low, LONGEST high)
9147 {
9148 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9149
9150 if (ind - 1 == high)
9151 warning (_("Extra components in aggregate ignored."));
9152 if (ind <= high)
9153 {
9154 add_component_interval (ind, ind, indices, num_indices, max_indices);
9155 *pos += 3;
9156 assign_component (container, lhs, ind, exp, pos);
9157 }
9158 else
9159 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9160 }
9161
9162 /* Assign into the components of LHS indexed by the OP_CHOICES
9163 construct at *POS, updating *POS past the construct, given that
9164 the allowable indices are LOW..HIGH. Record the indices assigned
9165 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9166 needed. CONTAINER is as for assign_aggregate. */
9167 static void
9168 aggregate_assign_from_choices (struct value *container,
9169 struct value *lhs, struct expression *exp,
9170 int *pos, LONGEST *indices, int *num_indices,
9171 int max_indices, LONGEST low, LONGEST high)
9172 {
9173 int j;
9174 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9175 int choice_pos, expr_pc;
9176 int is_array = ada_is_direct_array_type (value_type (lhs));
9177
9178 choice_pos = *pos += 3;
9179
9180 for (j = 0; j < n_choices; j += 1)
9181 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9182 expr_pc = *pos;
9183 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9184
9185 for (j = 0; j < n_choices; j += 1)
9186 {
9187 LONGEST lower, upper;
9188 enum exp_opcode op = exp->elts[choice_pos].opcode;
9189
9190 if (op == OP_DISCRETE_RANGE)
9191 {
9192 choice_pos += 1;
9193 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9194 EVAL_NORMAL));
9195 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9196 EVAL_NORMAL));
9197 }
9198 else if (is_array)
9199 {
9200 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9201 EVAL_NORMAL));
9202 upper = lower;
9203 }
9204 else
9205 {
9206 int ind;
9207 const char *name;
9208
9209 switch (op)
9210 {
9211 case OP_NAME:
9212 name = &exp->elts[choice_pos + 2].string;
9213 break;
9214 case OP_VAR_VALUE:
9215 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9216 break;
9217 default:
9218 error (_("Invalid record component association."));
9219 }
9220 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9221 ind = 0;
9222 if (! find_struct_field (name, value_type (lhs), 0,
9223 NULL, NULL, NULL, NULL, &ind))
9224 error (_("Unknown component name: %s."), name);
9225 lower = upper = ind;
9226 }
9227
9228 if (lower <= upper && (lower < low || upper > high))
9229 error (_("Index in component association out of bounds."));
9230
9231 add_component_interval (lower, upper, indices, num_indices,
9232 max_indices);
9233 while (lower <= upper)
9234 {
9235 int pos1;
9236
9237 pos1 = expr_pc;
9238 assign_component (container, lhs, lower, exp, &pos1);
9239 lower += 1;
9240 }
9241 }
9242 }
9243
9244 /* Assign the value of the expression in the OP_OTHERS construct in
9245 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9246 have not been previously assigned. The index intervals already assigned
9247 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9248 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9249 static void
9250 aggregate_assign_others (struct value *container,
9251 struct value *lhs, struct expression *exp,
9252 int *pos, LONGEST *indices, int num_indices,
9253 LONGEST low, LONGEST high)
9254 {
9255 int i;
9256 int expr_pc = *pos + 1;
9257
9258 for (i = 0; i < num_indices - 2; i += 2)
9259 {
9260 LONGEST ind;
9261
9262 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9263 {
9264 int localpos;
9265
9266 localpos = expr_pc;
9267 assign_component (container, lhs, ind, exp, &localpos);
9268 }
9269 }
9270 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9271 }
9272
9273 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9274 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9275 modifying *SIZE as needed. It is an error if *SIZE exceeds
9276 MAX_SIZE. The resulting intervals do not overlap. */
9277 static void
9278 add_component_interval (LONGEST low, LONGEST high,
9279 LONGEST* indices, int *size, int max_size)
9280 {
9281 int i, j;
9282
9283 for (i = 0; i < *size; i += 2) {
9284 if (high >= indices[i] && low <= indices[i + 1])
9285 {
9286 int kh;
9287
9288 for (kh = i + 2; kh < *size; kh += 2)
9289 if (high < indices[kh])
9290 break;
9291 if (low < indices[i])
9292 indices[i] = low;
9293 indices[i + 1] = indices[kh - 1];
9294 if (high > indices[i + 1])
9295 indices[i + 1] = high;
9296 memcpy (indices + i + 2, indices + kh, *size - kh);
9297 *size -= kh - i - 2;
9298 return;
9299 }
9300 else if (high < indices[i])
9301 break;
9302 }
9303
9304 if (*size == max_size)
9305 error (_("Internal error: miscounted aggregate components."));
9306 *size += 2;
9307 for (j = *size-1; j >= i+2; j -= 1)
9308 indices[j] = indices[j - 2];
9309 indices[i] = low;
9310 indices[i + 1] = high;
9311 }
9312
9313 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9314 is different. */
9315
9316 static struct value *
9317 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9318 {
9319 if (type == ada_check_typedef (value_type (arg2)))
9320 return arg2;
9321
9322 if (ada_is_fixed_point_type (type))
9323 return (cast_to_fixed (type, arg2));
9324
9325 if (ada_is_fixed_point_type (value_type (arg2)))
9326 return cast_from_fixed (type, arg2);
9327
9328 return value_cast (type, arg2);
9329 }
9330
9331 /* Evaluating Ada expressions, and printing their result.
9332 ------------------------------------------------------
9333
9334 1. Introduction:
9335 ----------------
9336
9337 We usually evaluate an Ada expression in order to print its value.
9338 We also evaluate an expression in order to print its type, which
9339 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9340 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9341 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9342 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9343 similar.
9344
9345 Evaluating expressions is a little more complicated for Ada entities
9346 than it is for entities in languages such as C. The main reason for
9347 this is that Ada provides types whose definition might be dynamic.
9348 One example of such types is variant records. Or another example
9349 would be an array whose bounds can only be known at run time.
9350
9351 The following description is a general guide as to what should be
9352 done (and what should NOT be done) in order to evaluate an expression
9353 involving such types, and when. This does not cover how the semantic
9354 information is encoded by GNAT as this is covered separatly. For the
9355 document used as the reference for the GNAT encoding, see exp_dbug.ads
9356 in the GNAT sources.
9357
9358 Ideally, we should embed each part of this description next to its
9359 associated code. Unfortunately, the amount of code is so vast right
9360 now that it's hard to see whether the code handling a particular
9361 situation might be duplicated or not. One day, when the code is
9362 cleaned up, this guide might become redundant with the comments
9363 inserted in the code, and we might want to remove it.
9364
9365 2. ``Fixing'' an Entity, the Simple Case:
9366 -----------------------------------------
9367
9368 When evaluating Ada expressions, the tricky issue is that they may
9369 reference entities whose type contents and size are not statically
9370 known. Consider for instance a variant record:
9371
9372 type Rec (Empty : Boolean := True) is record
9373 case Empty is
9374 when True => null;
9375 when False => Value : Integer;
9376 end case;
9377 end record;
9378 Yes : Rec := (Empty => False, Value => 1);
9379 No : Rec := (empty => True);
9380
9381 The size and contents of that record depends on the value of the
9382 descriminant (Rec.Empty). At this point, neither the debugging
9383 information nor the associated type structure in GDB are able to
9384 express such dynamic types. So what the debugger does is to create
9385 "fixed" versions of the type that applies to the specific object.
9386 We also informally refer to this opperation as "fixing" an object,
9387 which means creating its associated fixed type.
9388
9389 Example: when printing the value of variable "Yes" above, its fixed
9390 type would look like this:
9391
9392 type Rec is record
9393 Empty : Boolean;
9394 Value : Integer;
9395 end record;
9396
9397 On the other hand, if we printed the value of "No", its fixed type
9398 would become:
9399
9400 type Rec is record
9401 Empty : Boolean;
9402 end record;
9403
9404 Things become a little more complicated when trying to fix an entity
9405 with a dynamic type that directly contains another dynamic type,
9406 such as an array of variant records, for instance. There are
9407 two possible cases: Arrays, and records.
9408
9409 3. ``Fixing'' Arrays:
9410 ---------------------
9411
9412 The type structure in GDB describes an array in terms of its bounds,
9413 and the type of its elements. By design, all elements in the array
9414 have the same type and we cannot represent an array of variant elements
9415 using the current type structure in GDB. When fixing an array,
9416 we cannot fix the array element, as we would potentially need one
9417 fixed type per element of the array. As a result, the best we can do
9418 when fixing an array is to produce an array whose bounds and size
9419 are correct (allowing us to read it from memory), but without having
9420 touched its element type. Fixing each element will be done later,
9421 when (if) necessary.
9422
9423 Arrays are a little simpler to handle than records, because the same
9424 amount of memory is allocated for each element of the array, even if
9425 the amount of space actually used by each element differs from element
9426 to element. Consider for instance the following array of type Rec:
9427
9428 type Rec_Array is array (1 .. 2) of Rec;
9429
9430 The actual amount of memory occupied by each element might be different
9431 from element to element, depending on the value of their discriminant.
9432 But the amount of space reserved for each element in the array remains
9433 fixed regardless. So we simply need to compute that size using
9434 the debugging information available, from which we can then determine
9435 the array size (we multiply the number of elements of the array by
9436 the size of each element).
9437
9438 The simplest case is when we have an array of a constrained element
9439 type. For instance, consider the following type declarations:
9440
9441 type Bounded_String (Max_Size : Integer) is
9442 Length : Integer;
9443 Buffer : String (1 .. Max_Size);
9444 end record;
9445 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9446
9447 In this case, the compiler describes the array as an array of
9448 variable-size elements (identified by its XVS suffix) for which
9449 the size can be read in the parallel XVZ variable.
9450
9451 In the case of an array of an unconstrained element type, the compiler
9452 wraps the array element inside a private PAD type. This type should not
9453 be shown to the user, and must be "unwrap"'ed before printing. Note
9454 that we also use the adjective "aligner" in our code to designate
9455 these wrapper types.
9456
9457 In some cases, the size allocated for each element is statically
9458 known. In that case, the PAD type already has the correct size,
9459 and the array element should remain unfixed.
9460
9461 But there are cases when this size is not statically known.
9462 For instance, assuming that "Five" is an integer variable:
9463
9464 type Dynamic is array (1 .. Five) of Integer;
9465 type Wrapper (Has_Length : Boolean := False) is record
9466 Data : Dynamic;
9467 case Has_Length is
9468 when True => Length : Integer;
9469 when False => null;
9470 end case;
9471 end record;
9472 type Wrapper_Array is array (1 .. 2) of Wrapper;
9473
9474 Hello : Wrapper_Array := (others => (Has_Length => True,
9475 Data => (others => 17),
9476 Length => 1));
9477
9478
9479 The debugging info would describe variable Hello as being an
9480 array of a PAD type. The size of that PAD type is not statically
9481 known, but can be determined using a parallel XVZ variable.
9482 In that case, a copy of the PAD type with the correct size should
9483 be used for the fixed array.
9484
9485 3. ``Fixing'' record type objects:
9486 ----------------------------------
9487
9488 Things are slightly different from arrays in the case of dynamic
9489 record types. In this case, in order to compute the associated
9490 fixed type, we need to determine the size and offset of each of
9491 its components. This, in turn, requires us to compute the fixed
9492 type of each of these components.
9493
9494 Consider for instance the example:
9495
9496 type Bounded_String (Max_Size : Natural) is record
9497 Str : String (1 .. Max_Size);
9498 Length : Natural;
9499 end record;
9500 My_String : Bounded_String (Max_Size => 10);
9501
9502 In that case, the position of field "Length" depends on the size
9503 of field Str, which itself depends on the value of the Max_Size
9504 discriminant. In order to fix the type of variable My_String,
9505 we need to fix the type of field Str. Therefore, fixing a variant
9506 record requires us to fix each of its components.
9507
9508 However, if a component does not have a dynamic size, the component
9509 should not be fixed. In particular, fields that use a PAD type
9510 should not fixed. Here is an example where this might happen
9511 (assuming type Rec above):
9512
9513 type Container (Big : Boolean) is record
9514 First : Rec;
9515 After : Integer;
9516 case Big is
9517 when True => Another : Integer;
9518 when False => null;
9519 end case;
9520 end record;
9521 My_Container : Container := (Big => False,
9522 First => (Empty => True),
9523 After => 42);
9524
9525 In that example, the compiler creates a PAD type for component First,
9526 whose size is constant, and then positions the component After just
9527 right after it. The offset of component After is therefore constant
9528 in this case.
9529
9530 The debugger computes the position of each field based on an algorithm
9531 that uses, among other things, the actual position and size of the field
9532 preceding it. Let's now imagine that the user is trying to print
9533 the value of My_Container. If the type fixing was recursive, we would
9534 end up computing the offset of field After based on the size of the
9535 fixed version of field First. And since in our example First has
9536 only one actual field, the size of the fixed type is actually smaller
9537 than the amount of space allocated to that field, and thus we would
9538 compute the wrong offset of field After.
9539
9540 To make things more complicated, we need to watch out for dynamic
9541 components of variant records (identified by the ___XVL suffix in
9542 the component name). Even if the target type is a PAD type, the size
9543 of that type might not be statically known. So the PAD type needs
9544 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9545 we might end up with the wrong size for our component. This can be
9546 observed with the following type declarations:
9547
9548 type Octal is new Integer range 0 .. 7;
9549 type Octal_Array is array (Positive range <>) of Octal;
9550 pragma Pack (Octal_Array);
9551
9552 type Octal_Buffer (Size : Positive) is record
9553 Buffer : Octal_Array (1 .. Size);
9554 Length : Integer;
9555 end record;
9556
9557 In that case, Buffer is a PAD type whose size is unset and needs
9558 to be computed by fixing the unwrapped type.
9559
9560 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9561 ----------------------------------------------------------
9562
9563 Lastly, when should the sub-elements of an entity that remained unfixed
9564 thus far, be actually fixed?
9565
9566 The answer is: Only when referencing that element. For instance
9567 when selecting one component of a record, this specific component
9568 should be fixed at that point in time. Or when printing the value
9569 of a record, each component should be fixed before its value gets
9570 printed. Similarly for arrays, the element of the array should be
9571 fixed when printing each element of the array, or when extracting
9572 one element out of that array. On the other hand, fixing should
9573 not be performed on the elements when taking a slice of an array!
9574
9575 Note that one of the side-effects of miscomputing the offset and
9576 size of each field is that we end up also miscomputing the size
9577 of the containing type. This can have adverse results when computing
9578 the value of an entity. GDB fetches the value of an entity based
9579 on the size of its type, and thus a wrong size causes GDB to fetch
9580 the wrong amount of memory. In the case where the computed size is
9581 too small, GDB fetches too little data to print the value of our
9582 entiry. Results in this case as unpredicatble, as we usually read
9583 past the buffer containing the data =:-o. */
9584
9585 /* Implement the evaluate_exp routine in the exp_descriptor structure
9586 for the Ada language. */
9587
9588 static struct value *
9589 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9590 int *pos, enum noside noside)
9591 {
9592 enum exp_opcode op;
9593 int tem;
9594 int pc;
9595 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9596 struct type *type;
9597 int nargs, oplen;
9598 struct value **argvec;
9599
9600 pc = *pos;
9601 *pos += 1;
9602 op = exp->elts[pc].opcode;
9603
9604 switch (op)
9605 {
9606 default:
9607 *pos -= 1;
9608 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9609
9610 if (noside == EVAL_NORMAL)
9611 arg1 = unwrap_value (arg1);
9612
9613 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9614 then we need to perform the conversion manually, because
9615 evaluate_subexp_standard doesn't do it. This conversion is
9616 necessary in Ada because the different kinds of float/fixed
9617 types in Ada have different representations.
9618
9619 Similarly, we need to perform the conversion from OP_LONG
9620 ourselves. */
9621 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9622 arg1 = ada_value_cast (expect_type, arg1, noside);
9623
9624 return arg1;
9625
9626 case OP_STRING:
9627 {
9628 struct value *result;
9629
9630 *pos -= 1;
9631 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9632 /* The result type will have code OP_STRING, bashed there from
9633 OP_ARRAY. Bash it back. */
9634 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9635 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9636 return result;
9637 }
9638
9639 case UNOP_CAST:
9640 (*pos) += 2;
9641 type = exp->elts[pc + 1].type;
9642 arg1 = evaluate_subexp (type, exp, pos, noside);
9643 if (noside == EVAL_SKIP)
9644 goto nosideret;
9645 arg1 = ada_value_cast (type, arg1, noside);
9646 return arg1;
9647
9648 case UNOP_QUAL:
9649 (*pos) += 2;
9650 type = exp->elts[pc + 1].type;
9651 return ada_evaluate_subexp (type, exp, pos, noside);
9652
9653 case BINOP_ASSIGN:
9654 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9655 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9656 {
9657 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9658 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9659 return arg1;
9660 return ada_value_assign (arg1, arg1);
9661 }
9662 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9663 except if the lhs of our assignment is a convenience variable.
9664 In the case of assigning to a convenience variable, the lhs
9665 should be exactly the result of the evaluation of the rhs. */
9666 type = value_type (arg1);
9667 if (VALUE_LVAL (arg1) == lval_internalvar)
9668 type = NULL;
9669 arg2 = evaluate_subexp (type, exp, pos, noside);
9670 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9671 return arg1;
9672 if (ada_is_fixed_point_type (value_type (arg1)))
9673 arg2 = cast_to_fixed (value_type (arg1), arg2);
9674 else if (ada_is_fixed_point_type (value_type (arg2)))
9675 error
9676 (_("Fixed-point values must be assigned to fixed-point variables"));
9677 else
9678 arg2 = coerce_for_assign (value_type (arg1), arg2);
9679 return ada_value_assign (arg1, arg2);
9680
9681 case BINOP_ADD:
9682 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9683 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9684 if (noside == EVAL_SKIP)
9685 goto nosideret;
9686 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9687 return (value_from_longest
9688 (value_type (arg1),
9689 value_as_long (arg1) + value_as_long (arg2)));
9690 if ((ada_is_fixed_point_type (value_type (arg1))
9691 || ada_is_fixed_point_type (value_type (arg2)))
9692 && value_type (arg1) != value_type (arg2))
9693 error (_("Operands of fixed-point addition must have the same type"));
9694 /* Do the addition, and cast the result to the type of the first
9695 argument. We cannot cast the result to a reference type, so if
9696 ARG1 is a reference type, find its underlying type. */
9697 type = value_type (arg1);
9698 while (TYPE_CODE (type) == TYPE_CODE_REF)
9699 type = TYPE_TARGET_TYPE (type);
9700 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9701 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9702
9703 case BINOP_SUB:
9704 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9705 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9706 if (noside == EVAL_SKIP)
9707 goto nosideret;
9708 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9709 return (value_from_longest
9710 (value_type (arg1),
9711 value_as_long (arg1) - value_as_long (arg2)));
9712 if ((ada_is_fixed_point_type (value_type (arg1))
9713 || ada_is_fixed_point_type (value_type (arg2)))
9714 && value_type (arg1) != value_type (arg2))
9715 error (_("Operands of fixed-point subtraction "
9716 "must have the same type"));
9717 /* Do the substraction, and cast the result to the type of the first
9718 argument. We cannot cast the result to a reference type, so if
9719 ARG1 is a reference type, find its underlying type. */
9720 type = value_type (arg1);
9721 while (TYPE_CODE (type) == TYPE_CODE_REF)
9722 type = TYPE_TARGET_TYPE (type);
9723 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9724 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9725
9726 case BINOP_MUL:
9727 case BINOP_DIV:
9728 case BINOP_REM:
9729 case BINOP_MOD:
9730 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9731 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9732 if (noside == EVAL_SKIP)
9733 goto nosideret;
9734 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9735 {
9736 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9737 return value_zero (value_type (arg1), not_lval);
9738 }
9739 else
9740 {
9741 type = builtin_type (exp->gdbarch)->builtin_double;
9742 if (ada_is_fixed_point_type (value_type (arg1)))
9743 arg1 = cast_from_fixed (type, arg1);
9744 if (ada_is_fixed_point_type (value_type (arg2)))
9745 arg2 = cast_from_fixed (type, arg2);
9746 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9747 return ada_value_binop (arg1, arg2, op);
9748 }
9749
9750 case BINOP_EQUAL:
9751 case BINOP_NOTEQUAL:
9752 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9753 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9754 if (noside == EVAL_SKIP)
9755 goto nosideret;
9756 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9757 tem = 0;
9758 else
9759 {
9760 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9761 tem = ada_value_equal (arg1, arg2);
9762 }
9763 if (op == BINOP_NOTEQUAL)
9764 tem = !tem;
9765 type = language_bool_type (exp->language_defn, exp->gdbarch);
9766 return value_from_longest (type, (LONGEST) tem);
9767
9768 case UNOP_NEG:
9769 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9770 if (noside == EVAL_SKIP)
9771 goto nosideret;
9772 else if (ada_is_fixed_point_type (value_type (arg1)))
9773 return value_cast (value_type (arg1), value_neg (arg1));
9774 else
9775 {
9776 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9777 return value_neg (arg1);
9778 }
9779
9780 case BINOP_LOGICAL_AND:
9781 case BINOP_LOGICAL_OR:
9782 case UNOP_LOGICAL_NOT:
9783 {
9784 struct value *val;
9785
9786 *pos -= 1;
9787 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9788 type = language_bool_type (exp->language_defn, exp->gdbarch);
9789 return value_cast (type, val);
9790 }
9791
9792 case BINOP_BITWISE_AND:
9793 case BINOP_BITWISE_IOR:
9794 case BINOP_BITWISE_XOR:
9795 {
9796 struct value *val;
9797
9798 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9799 *pos = pc;
9800 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9801
9802 return value_cast (value_type (arg1), val);
9803 }
9804
9805 case OP_VAR_VALUE:
9806 *pos -= 1;
9807
9808 if (noside == EVAL_SKIP)
9809 {
9810 *pos += 4;
9811 goto nosideret;
9812 }
9813 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9814 /* Only encountered when an unresolved symbol occurs in a
9815 context other than a function call, in which case, it is
9816 invalid. */
9817 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9818 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9819 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9820 {
9821 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9822 /* Check to see if this is a tagged type. We also need to handle
9823 the case where the type is a reference to a tagged type, but
9824 we have to be careful to exclude pointers to tagged types.
9825 The latter should be shown as usual (as a pointer), whereas
9826 a reference should mostly be transparent to the user. */
9827 if (ada_is_tagged_type (type, 0)
9828 || (TYPE_CODE(type) == TYPE_CODE_REF
9829 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9830 {
9831 /* Tagged types are a little special in the fact that the real
9832 type is dynamic and can only be determined by inspecting the
9833 object's tag. This means that we need to get the object's
9834 value first (EVAL_NORMAL) and then extract the actual object
9835 type from its tag.
9836
9837 Note that we cannot skip the final step where we extract
9838 the object type from its tag, because the EVAL_NORMAL phase
9839 results in dynamic components being resolved into fixed ones.
9840 This can cause problems when trying to print the type
9841 description of tagged types whose parent has a dynamic size:
9842 We use the type name of the "_parent" component in order
9843 to print the name of the ancestor type in the type description.
9844 If that component had a dynamic size, the resolution into
9845 a fixed type would result in the loss of that type name,
9846 thus preventing us from printing the name of the ancestor
9847 type in the type description. */
9848 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9849
9850 if (TYPE_CODE (type) != TYPE_CODE_REF)
9851 {
9852 struct type *actual_type;
9853
9854 actual_type = type_from_tag (ada_value_tag (arg1));
9855 if (actual_type == NULL)
9856 /* If, for some reason, we were unable to determine
9857 the actual type from the tag, then use the static
9858 approximation that we just computed as a fallback.
9859 This can happen if the debugging information is
9860 incomplete, for instance. */
9861 actual_type = type;
9862 return value_zero (actual_type, not_lval);
9863 }
9864 else
9865 {
9866 /* In the case of a ref, ada_coerce_ref takes care
9867 of determining the actual type. But the evaluation
9868 should return a ref as it should be valid to ask
9869 for its address; so rebuild a ref after coerce. */
9870 arg1 = ada_coerce_ref (arg1);
9871 return value_ref (arg1);
9872 }
9873 }
9874
9875 *pos += 4;
9876 return value_zero
9877 (to_static_fixed_type
9878 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9879 not_lval);
9880 }
9881 else
9882 {
9883 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9884 return ada_to_fixed_value (arg1);
9885 }
9886
9887 case OP_FUNCALL:
9888 (*pos) += 2;
9889
9890 /* Allocate arg vector, including space for the function to be
9891 called in argvec[0] and a terminating NULL. */
9892 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9893 argvec =
9894 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9895
9896 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9897 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9898 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9899 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9900 else
9901 {
9902 for (tem = 0; tem <= nargs; tem += 1)
9903 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9904 argvec[tem] = 0;
9905
9906 if (noside == EVAL_SKIP)
9907 goto nosideret;
9908 }
9909
9910 if (ada_is_constrained_packed_array_type
9911 (desc_base_type (value_type (argvec[0]))))
9912 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9913 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9914 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9915 /* This is a packed array that has already been fixed, and
9916 therefore already coerced to a simple array. Nothing further
9917 to do. */
9918 ;
9919 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9920 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9921 && VALUE_LVAL (argvec[0]) == lval_memory))
9922 argvec[0] = value_addr (argvec[0]);
9923
9924 type = ada_check_typedef (value_type (argvec[0]));
9925
9926 /* Ada allows us to implicitly dereference arrays when subscripting
9927 them. So, if this is an array typedef (encoding use for array
9928 access types encoded as fat pointers), strip it now. */
9929 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9930 type = ada_typedef_target_type (type);
9931
9932 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9933 {
9934 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9935 {
9936 case TYPE_CODE_FUNC:
9937 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9938 break;
9939 case TYPE_CODE_ARRAY:
9940 break;
9941 case TYPE_CODE_STRUCT:
9942 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9943 argvec[0] = ada_value_ind (argvec[0]);
9944 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9945 break;
9946 default:
9947 error (_("cannot subscript or call something of type `%s'"),
9948 ada_type_name (value_type (argvec[0])));
9949 break;
9950 }
9951 }
9952
9953 switch (TYPE_CODE (type))
9954 {
9955 case TYPE_CODE_FUNC:
9956 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9957 {
9958 struct type *rtype = TYPE_TARGET_TYPE (type);
9959
9960 if (TYPE_GNU_IFUNC (type))
9961 return allocate_value (TYPE_TARGET_TYPE (rtype));
9962 return allocate_value (rtype);
9963 }
9964 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9965 case TYPE_CODE_INTERNAL_FUNCTION:
9966 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9967 /* We don't know anything about what the internal
9968 function might return, but we have to return
9969 something. */
9970 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9971 not_lval);
9972 else
9973 return call_internal_function (exp->gdbarch, exp->language_defn,
9974 argvec[0], nargs, argvec + 1);
9975
9976 case TYPE_CODE_STRUCT:
9977 {
9978 int arity;
9979
9980 arity = ada_array_arity (type);
9981 type = ada_array_element_type (type, nargs);
9982 if (type == NULL)
9983 error (_("cannot subscript or call a record"));
9984 if (arity != nargs)
9985 error (_("wrong number of subscripts; expecting %d"), arity);
9986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9987 return value_zero (ada_aligned_type (type), lval_memory);
9988 return
9989 unwrap_value (ada_value_subscript
9990 (argvec[0], nargs, argvec + 1));
9991 }
9992 case TYPE_CODE_ARRAY:
9993 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9994 {
9995 type = ada_array_element_type (type, nargs);
9996 if (type == NULL)
9997 error (_("element type of array unknown"));
9998 else
9999 return value_zero (ada_aligned_type (type), lval_memory);
10000 }
10001 return
10002 unwrap_value (ada_value_subscript
10003 (ada_coerce_to_simple_array (argvec[0]),
10004 nargs, argvec + 1));
10005 case TYPE_CODE_PTR: /* Pointer to array */
10006 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10007 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10008 {
10009 type = ada_array_element_type (type, nargs);
10010 if (type == NULL)
10011 error (_("element type of array unknown"));
10012 else
10013 return value_zero (ada_aligned_type (type), lval_memory);
10014 }
10015 return
10016 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10017 nargs, argvec + 1));
10018
10019 default:
10020 error (_("Attempt to index or call something other than an "
10021 "array or function"));
10022 }
10023
10024 case TERNOP_SLICE:
10025 {
10026 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10027 struct value *low_bound_val =
10028 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10029 struct value *high_bound_val =
10030 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10031 LONGEST low_bound;
10032 LONGEST high_bound;
10033
10034 low_bound_val = coerce_ref (low_bound_val);
10035 high_bound_val = coerce_ref (high_bound_val);
10036 low_bound = pos_atr (low_bound_val);
10037 high_bound = pos_atr (high_bound_val);
10038
10039 if (noside == EVAL_SKIP)
10040 goto nosideret;
10041
10042 /* If this is a reference to an aligner type, then remove all
10043 the aligners. */
10044 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10045 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10046 TYPE_TARGET_TYPE (value_type (array)) =
10047 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10048
10049 if (ada_is_constrained_packed_array_type (value_type (array)))
10050 error (_("cannot slice a packed array"));
10051
10052 /* If this is a reference to an array or an array lvalue,
10053 convert to a pointer. */
10054 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10055 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10056 && VALUE_LVAL (array) == lval_memory))
10057 array = value_addr (array);
10058
10059 if (noside == EVAL_AVOID_SIDE_EFFECTS
10060 && ada_is_array_descriptor_type (ada_check_typedef
10061 (value_type (array))))
10062 return empty_array (ada_type_of_array (array, 0), low_bound);
10063
10064 array = ada_coerce_to_simple_array_ptr (array);
10065
10066 /* If we have more than one level of pointer indirection,
10067 dereference the value until we get only one level. */
10068 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10069 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10070 == TYPE_CODE_PTR))
10071 array = value_ind (array);
10072
10073 /* Make sure we really do have an array type before going further,
10074 to avoid a SEGV when trying to get the index type or the target
10075 type later down the road if the debug info generated by
10076 the compiler is incorrect or incomplete. */
10077 if (!ada_is_simple_array_type (value_type (array)))
10078 error (_("cannot take slice of non-array"));
10079
10080 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10081 == TYPE_CODE_PTR)
10082 {
10083 struct type *type0 = ada_check_typedef (value_type (array));
10084
10085 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10086 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10087 else
10088 {
10089 struct type *arr_type0 =
10090 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10091
10092 return ada_value_slice_from_ptr (array, arr_type0,
10093 longest_to_int (low_bound),
10094 longest_to_int (high_bound));
10095 }
10096 }
10097 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10098 return array;
10099 else if (high_bound < low_bound)
10100 return empty_array (value_type (array), low_bound);
10101 else
10102 return ada_value_slice (array, longest_to_int (low_bound),
10103 longest_to_int (high_bound));
10104 }
10105
10106 case UNOP_IN_RANGE:
10107 (*pos) += 2;
10108 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10109 type = check_typedef (exp->elts[pc + 1].type);
10110
10111 if (noside == EVAL_SKIP)
10112 goto nosideret;
10113
10114 switch (TYPE_CODE (type))
10115 {
10116 default:
10117 lim_warning (_("Membership test incompletely implemented; "
10118 "always returns true"));
10119 type = language_bool_type (exp->language_defn, exp->gdbarch);
10120 return value_from_longest (type, (LONGEST) 1);
10121
10122 case TYPE_CODE_RANGE:
10123 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10124 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10125 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10126 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10127 type = language_bool_type (exp->language_defn, exp->gdbarch);
10128 return
10129 value_from_longest (type,
10130 (value_less (arg1, arg3)
10131 || value_equal (arg1, arg3))
10132 && (value_less (arg2, arg1)
10133 || value_equal (arg2, arg1)));
10134 }
10135
10136 case BINOP_IN_BOUNDS:
10137 (*pos) += 2;
10138 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10139 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10140
10141 if (noside == EVAL_SKIP)
10142 goto nosideret;
10143
10144 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10145 {
10146 type = language_bool_type (exp->language_defn, exp->gdbarch);
10147 return value_zero (type, not_lval);
10148 }
10149
10150 tem = longest_to_int (exp->elts[pc + 1].longconst);
10151
10152 type = ada_index_type (value_type (arg2), tem, "range");
10153 if (!type)
10154 type = value_type (arg1);
10155
10156 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10157 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10158
10159 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10160 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10161 type = language_bool_type (exp->language_defn, exp->gdbarch);
10162 return
10163 value_from_longest (type,
10164 (value_less (arg1, arg3)
10165 || value_equal (arg1, arg3))
10166 && (value_less (arg2, arg1)
10167 || value_equal (arg2, arg1)));
10168
10169 case TERNOP_IN_RANGE:
10170 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10171 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10172 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10173
10174 if (noside == EVAL_SKIP)
10175 goto nosideret;
10176
10177 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10178 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10179 type = language_bool_type (exp->language_defn, exp->gdbarch);
10180 return
10181 value_from_longest (type,
10182 (value_less (arg1, arg3)
10183 || value_equal (arg1, arg3))
10184 && (value_less (arg2, arg1)
10185 || value_equal (arg2, arg1)));
10186
10187 case OP_ATR_FIRST:
10188 case OP_ATR_LAST:
10189 case OP_ATR_LENGTH:
10190 {
10191 struct type *type_arg;
10192
10193 if (exp->elts[*pos].opcode == OP_TYPE)
10194 {
10195 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10196 arg1 = NULL;
10197 type_arg = check_typedef (exp->elts[pc + 2].type);
10198 }
10199 else
10200 {
10201 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10202 type_arg = NULL;
10203 }
10204
10205 if (exp->elts[*pos].opcode != OP_LONG)
10206 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10207 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10208 *pos += 4;
10209
10210 if (noside == EVAL_SKIP)
10211 goto nosideret;
10212
10213 if (type_arg == NULL)
10214 {
10215 arg1 = ada_coerce_ref (arg1);
10216
10217 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10218 arg1 = ada_coerce_to_simple_array (arg1);
10219
10220 type = ada_index_type (value_type (arg1), tem,
10221 ada_attribute_name (op));
10222 if (type == NULL)
10223 type = builtin_type (exp->gdbarch)->builtin_int;
10224
10225 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10226 return allocate_value (type);
10227
10228 switch (op)
10229 {
10230 default: /* Should never happen. */
10231 error (_("unexpected attribute encountered"));
10232 case OP_ATR_FIRST:
10233 return value_from_longest
10234 (type, ada_array_bound (arg1, tem, 0));
10235 case OP_ATR_LAST:
10236 return value_from_longest
10237 (type, ada_array_bound (arg1, tem, 1));
10238 case OP_ATR_LENGTH:
10239 return value_from_longest
10240 (type, ada_array_length (arg1, tem));
10241 }
10242 }
10243 else if (discrete_type_p (type_arg))
10244 {
10245 struct type *range_type;
10246 const char *name = ada_type_name (type_arg);
10247
10248 range_type = NULL;
10249 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10250 range_type = to_fixed_range_type (type_arg, NULL);
10251 if (range_type == NULL)
10252 range_type = type_arg;
10253 switch (op)
10254 {
10255 default:
10256 error (_("unexpected attribute encountered"));
10257 case OP_ATR_FIRST:
10258 return value_from_longest
10259 (range_type, ada_discrete_type_low_bound (range_type));
10260 case OP_ATR_LAST:
10261 return value_from_longest
10262 (range_type, ada_discrete_type_high_bound (range_type));
10263 case OP_ATR_LENGTH:
10264 error (_("the 'length attribute applies only to array types"));
10265 }
10266 }
10267 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10268 error (_("unimplemented type attribute"));
10269 else
10270 {
10271 LONGEST low, high;
10272
10273 if (ada_is_constrained_packed_array_type (type_arg))
10274 type_arg = decode_constrained_packed_array_type (type_arg);
10275
10276 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10277 if (type == NULL)
10278 type = builtin_type (exp->gdbarch)->builtin_int;
10279
10280 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10281 return allocate_value (type);
10282
10283 switch (op)
10284 {
10285 default:
10286 error (_("unexpected attribute encountered"));
10287 case OP_ATR_FIRST:
10288 low = ada_array_bound_from_type (type_arg, tem, 0);
10289 return value_from_longest (type, low);
10290 case OP_ATR_LAST:
10291 high = ada_array_bound_from_type (type_arg, tem, 1);
10292 return value_from_longest (type, high);
10293 case OP_ATR_LENGTH:
10294 low = ada_array_bound_from_type (type_arg, tem, 0);
10295 high = ada_array_bound_from_type (type_arg, tem, 1);
10296 return value_from_longest (type, high - low + 1);
10297 }
10298 }
10299 }
10300
10301 case OP_ATR_TAG:
10302 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10303 if (noside == EVAL_SKIP)
10304 goto nosideret;
10305
10306 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10307 return value_zero (ada_tag_type (arg1), not_lval);
10308
10309 return ada_value_tag (arg1);
10310
10311 case OP_ATR_MIN:
10312 case OP_ATR_MAX:
10313 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10314 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10315 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10316 if (noside == EVAL_SKIP)
10317 goto nosideret;
10318 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10319 return value_zero (value_type (arg1), not_lval);
10320 else
10321 {
10322 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10323 return value_binop (arg1, arg2,
10324 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10325 }
10326
10327 case OP_ATR_MODULUS:
10328 {
10329 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10330
10331 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10332 if (noside == EVAL_SKIP)
10333 goto nosideret;
10334
10335 if (!ada_is_modular_type (type_arg))
10336 error (_("'modulus must be applied to modular type"));
10337
10338 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10339 ada_modulus (type_arg));
10340 }
10341
10342
10343 case OP_ATR_POS:
10344 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10346 if (noside == EVAL_SKIP)
10347 goto nosideret;
10348 type = builtin_type (exp->gdbarch)->builtin_int;
10349 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10350 return value_zero (type, not_lval);
10351 else
10352 return value_pos_atr (type, arg1);
10353
10354 case OP_ATR_SIZE:
10355 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10356 type = value_type (arg1);
10357
10358 /* If the argument is a reference, then dereference its type, since
10359 the user is really asking for the size of the actual object,
10360 not the size of the pointer. */
10361 if (TYPE_CODE (type) == TYPE_CODE_REF)
10362 type = TYPE_TARGET_TYPE (type);
10363
10364 if (noside == EVAL_SKIP)
10365 goto nosideret;
10366 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10367 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10368 else
10369 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10370 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10371
10372 case OP_ATR_VAL:
10373 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10374 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10375 type = exp->elts[pc + 2].type;
10376 if (noside == EVAL_SKIP)
10377 goto nosideret;
10378 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10379 return value_zero (type, not_lval);
10380 else
10381 return value_val_atr (type, arg1);
10382
10383 case BINOP_EXP:
10384 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10385 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10386 if (noside == EVAL_SKIP)
10387 goto nosideret;
10388 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10389 return value_zero (value_type (arg1), not_lval);
10390 else
10391 {
10392 /* For integer exponentiation operations,
10393 only promote the first argument. */
10394 if (is_integral_type (value_type (arg2)))
10395 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10396 else
10397 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10398
10399 return value_binop (arg1, arg2, op);
10400 }
10401
10402 case UNOP_PLUS:
10403 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10404 if (noside == EVAL_SKIP)
10405 goto nosideret;
10406 else
10407 return arg1;
10408
10409 case UNOP_ABS:
10410 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10411 if (noside == EVAL_SKIP)
10412 goto nosideret;
10413 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10414 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10415 return value_neg (arg1);
10416 else
10417 return arg1;
10418
10419 case UNOP_IND:
10420 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10421 if (noside == EVAL_SKIP)
10422 goto nosideret;
10423 type = ada_check_typedef (value_type (arg1));
10424 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10425 {
10426 if (ada_is_array_descriptor_type (type))
10427 /* GDB allows dereferencing GNAT array descriptors. */
10428 {
10429 struct type *arrType = ada_type_of_array (arg1, 0);
10430
10431 if (arrType == NULL)
10432 error (_("Attempt to dereference null array pointer."));
10433 return value_at_lazy (arrType, 0);
10434 }
10435 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10436 || TYPE_CODE (type) == TYPE_CODE_REF
10437 /* In C you can dereference an array to get the 1st elt. */
10438 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10439 {
10440 type = to_static_fixed_type
10441 (ada_aligned_type
10442 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10443 check_size (type);
10444 return value_zero (type, lval_memory);
10445 }
10446 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10447 {
10448 /* GDB allows dereferencing an int. */
10449 if (expect_type == NULL)
10450 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10451 lval_memory);
10452 else
10453 {
10454 expect_type =
10455 to_static_fixed_type (ada_aligned_type (expect_type));
10456 return value_zero (expect_type, lval_memory);
10457 }
10458 }
10459 else
10460 error (_("Attempt to take contents of a non-pointer value."));
10461 }
10462 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10463 type = ada_check_typedef (value_type (arg1));
10464
10465 if (TYPE_CODE (type) == TYPE_CODE_INT)
10466 /* GDB allows dereferencing an int. If we were given
10467 the expect_type, then use that as the target type.
10468 Otherwise, assume that the target type is an int. */
10469 {
10470 if (expect_type != NULL)
10471 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10472 arg1));
10473 else
10474 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10475 (CORE_ADDR) value_as_address (arg1));
10476 }
10477
10478 if (ada_is_array_descriptor_type (type))
10479 /* GDB allows dereferencing GNAT array descriptors. */
10480 return ada_coerce_to_simple_array (arg1);
10481 else
10482 return ada_value_ind (arg1);
10483
10484 case STRUCTOP_STRUCT:
10485 tem = longest_to_int (exp->elts[pc + 1].longconst);
10486 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10487 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10488 if (noside == EVAL_SKIP)
10489 goto nosideret;
10490 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10491 {
10492 struct type *type1 = value_type (arg1);
10493
10494 if (ada_is_tagged_type (type1, 1))
10495 {
10496 type = ada_lookup_struct_elt_type (type1,
10497 &exp->elts[pc + 2].string,
10498 1, 1, NULL);
10499 if (type == NULL)
10500 /* In this case, we assume that the field COULD exist
10501 in some extension of the type. Return an object of
10502 "type" void, which will match any formal
10503 (see ada_type_match). */
10504 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10505 lval_memory);
10506 }
10507 else
10508 type =
10509 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10510 0, NULL);
10511
10512 return value_zero (ada_aligned_type (type), lval_memory);
10513 }
10514 else
10515 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10516 arg1 = unwrap_value (arg1);
10517 return ada_to_fixed_value (arg1);
10518
10519 case OP_TYPE:
10520 /* The value is not supposed to be used. This is here to make it
10521 easier to accommodate expressions that contain types. */
10522 (*pos) += 2;
10523 if (noside == EVAL_SKIP)
10524 goto nosideret;
10525 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10526 return allocate_value (exp->elts[pc + 1].type);
10527 else
10528 error (_("Attempt to use a type name as an expression"));
10529
10530 case OP_AGGREGATE:
10531 case OP_CHOICES:
10532 case OP_OTHERS:
10533 case OP_DISCRETE_RANGE:
10534 case OP_POSITIONAL:
10535 case OP_NAME:
10536 if (noside == EVAL_NORMAL)
10537 switch (op)
10538 {
10539 case OP_NAME:
10540 error (_("Undefined name, ambiguous name, or renaming used in "
10541 "component association: %s."), &exp->elts[pc+2].string);
10542 case OP_AGGREGATE:
10543 error (_("Aggregates only allowed on the right of an assignment"));
10544 default:
10545 internal_error (__FILE__, __LINE__,
10546 _("aggregate apparently mangled"));
10547 }
10548
10549 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10550 *pos += oplen - 1;
10551 for (tem = 0; tem < nargs; tem += 1)
10552 ada_evaluate_subexp (NULL, exp, pos, noside);
10553 goto nosideret;
10554 }
10555
10556 nosideret:
10557 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10558 }
10559 \f
10560
10561 /* Fixed point */
10562
10563 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10564 type name that encodes the 'small and 'delta information.
10565 Otherwise, return NULL. */
10566
10567 static const char *
10568 fixed_type_info (struct type *type)
10569 {
10570 const char *name = ada_type_name (type);
10571 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10572
10573 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10574 {
10575 const char *tail = strstr (name, "___XF_");
10576
10577 if (tail == NULL)
10578 return NULL;
10579 else
10580 return tail + 5;
10581 }
10582 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10583 return fixed_type_info (TYPE_TARGET_TYPE (type));
10584 else
10585 return NULL;
10586 }
10587
10588 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10589
10590 int
10591 ada_is_fixed_point_type (struct type *type)
10592 {
10593 return fixed_type_info (type) != NULL;
10594 }
10595
10596 /* Return non-zero iff TYPE represents a System.Address type. */
10597
10598 int
10599 ada_is_system_address_type (struct type *type)
10600 {
10601 return (TYPE_NAME (type)
10602 && strcmp (TYPE_NAME (type), "system__address") == 0);
10603 }
10604
10605 /* Assuming that TYPE is the representation of an Ada fixed-point
10606 type, return its delta, or -1 if the type is malformed and the
10607 delta cannot be determined. */
10608
10609 DOUBLEST
10610 ada_delta (struct type *type)
10611 {
10612 const char *encoding = fixed_type_info (type);
10613 DOUBLEST num, den;
10614
10615 /* Strictly speaking, num and den are encoded as integer. However,
10616 they may not fit into a long, and they will have to be converted
10617 to DOUBLEST anyway. So scan them as DOUBLEST. */
10618 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10619 &num, &den) < 2)
10620 return -1.0;
10621 else
10622 return num / den;
10623 }
10624
10625 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10626 factor ('SMALL value) associated with the type. */
10627
10628 static DOUBLEST
10629 scaling_factor (struct type *type)
10630 {
10631 const char *encoding = fixed_type_info (type);
10632 DOUBLEST num0, den0, num1, den1;
10633 int n;
10634
10635 /* Strictly speaking, num's and den's are encoded as integer. However,
10636 they may not fit into a long, and they will have to be converted
10637 to DOUBLEST anyway. So scan them as DOUBLEST. */
10638 n = sscanf (encoding,
10639 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10640 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10641 &num0, &den0, &num1, &den1);
10642
10643 if (n < 2)
10644 return 1.0;
10645 else if (n == 4)
10646 return num1 / den1;
10647 else
10648 return num0 / den0;
10649 }
10650
10651
10652 /* Assuming that X is the representation of a value of fixed-point
10653 type TYPE, return its floating-point equivalent. */
10654
10655 DOUBLEST
10656 ada_fixed_to_float (struct type *type, LONGEST x)
10657 {
10658 return (DOUBLEST) x *scaling_factor (type);
10659 }
10660
10661 /* The representation of a fixed-point value of type TYPE
10662 corresponding to the value X. */
10663
10664 LONGEST
10665 ada_float_to_fixed (struct type *type, DOUBLEST x)
10666 {
10667 return (LONGEST) (x / scaling_factor (type) + 0.5);
10668 }
10669
10670 \f
10671
10672 /* Range types */
10673
10674 /* Scan STR beginning at position K for a discriminant name, and
10675 return the value of that discriminant field of DVAL in *PX. If
10676 PNEW_K is not null, put the position of the character beyond the
10677 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10678 not alter *PX and *PNEW_K if unsuccessful. */
10679
10680 static int
10681 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10682 int *pnew_k)
10683 {
10684 static char *bound_buffer = NULL;
10685 static size_t bound_buffer_len = 0;
10686 char *bound;
10687 char *pend;
10688 struct value *bound_val;
10689
10690 if (dval == NULL || str == NULL || str[k] == '\0')
10691 return 0;
10692
10693 pend = strstr (str + k, "__");
10694 if (pend == NULL)
10695 {
10696 bound = str + k;
10697 k += strlen (bound);
10698 }
10699 else
10700 {
10701 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10702 bound = bound_buffer;
10703 strncpy (bound_buffer, str + k, pend - (str + k));
10704 bound[pend - (str + k)] = '\0';
10705 k = pend - str;
10706 }
10707
10708 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10709 if (bound_val == NULL)
10710 return 0;
10711
10712 *px = value_as_long (bound_val);
10713 if (pnew_k != NULL)
10714 *pnew_k = k;
10715 return 1;
10716 }
10717
10718 /* Value of variable named NAME in the current environment. If
10719 no such variable found, then if ERR_MSG is null, returns 0, and
10720 otherwise causes an error with message ERR_MSG. */
10721
10722 static struct value *
10723 get_var_value (char *name, char *err_msg)
10724 {
10725 struct ada_symbol_info *syms;
10726 int nsyms;
10727
10728 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10729 &syms);
10730
10731 if (nsyms != 1)
10732 {
10733 if (err_msg == NULL)
10734 return 0;
10735 else
10736 error (("%s"), err_msg);
10737 }
10738
10739 return value_of_variable (syms[0].sym, syms[0].block);
10740 }
10741
10742 /* Value of integer variable named NAME in the current environment. If
10743 no such variable found, returns 0, and sets *FLAG to 0. If
10744 successful, sets *FLAG to 1. */
10745
10746 LONGEST
10747 get_int_var_value (char *name, int *flag)
10748 {
10749 struct value *var_val = get_var_value (name, 0);
10750
10751 if (var_val == 0)
10752 {
10753 if (flag != NULL)
10754 *flag = 0;
10755 return 0;
10756 }
10757 else
10758 {
10759 if (flag != NULL)
10760 *flag = 1;
10761 return value_as_long (var_val);
10762 }
10763 }
10764
10765
10766 /* Return a range type whose base type is that of the range type named
10767 NAME in the current environment, and whose bounds are calculated
10768 from NAME according to the GNAT range encoding conventions.
10769 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10770 corresponding range type from debug information; fall back to using it
10771 if symbol lookup fails. If a new type must be created, allocate it
10772 like ORIG_TYPE was. The bounds information, in general, is encoded
10773 in NAME, the base type given in the named range type. */
10774
10775 static struct type *
10776 to_fixed_range_type (struct type *raw_type, struct value *dval)
10777 {
10778 const char *name;
10779 struct type *base_type;
10780 char *subtype_info;
10781
10782 gdb_assert (raw_type != NULL);
10783 gdb_assert (TYPE_NAME (raw_type) != NULL);
10784
10785 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10786 base_type = TYPE_TARGET_TYPE (raw_type);
10787 else
10788 base_type = raw_type;
10789
10790 name = TYPE_NAME (raw_type);
10791 subtype_info = strstr (name, "___XD");
10792 if (subtype_info == NULL)
10793 {
10794 LONGEST L = ada_discrete_type_low_bound (raw_type);
10795 LONGEST U = ada_discrete_type_high_bound (raw_type);
10796
10797 if (L < INT_MIN || U > INT_MAX)
10798 return raw_type;
10799 else
10800 return create_range_type (alloc_type_copy (raw_type), raw_type,
10801 ada_discrete_type_low_bound (raw_type),
10802 ada_discrete_type_high_bound (raw_type));
10803 }
10804 else
10805 {
10806 static char *name_buf = NULL;
10807 static size_t name_len = 0;
10808 int prefix_len = subtype_info - name;
10809 LONGEST L, U;
10810 struct type *type;
10811 char *bounds_str;
10812 int n;
10813
10814 GROW_VECT (name_buf, name_len, prefix_len + 5);
10815 strncpy (name_buf, name, prefix_len);
10816 name_buf[prefix_len] = '\0';
10817
10818 subtype_info += 5;
10819 bounds_str = strchr (subtype_info, '_');
10820 n = 1;
10821
10822 if (*subtype_info == 'L')
10823 {
10824 if (!ada_scan_number (bounds_str, n, &L, &n)
10825 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10826 return raw_type;
10827 if (bounds_str[n] == '_')
10828 n += 2;
10829 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10830 n += 1;
10831 subtype_info += 1;
10832 }
10833 else
10834 {
10835 int ok;
10836
10837 strcpy (name_buf + prefix_len, "___L");
10838 L = get_int_var_value (name_buf, &ok);
10839 if (!ok)
10840 {
10841 lim_warning (_("Unknown lower bound, using 1."));
10842 L = 1;
10843 }
10844 }
10845
10846 if (*subtype_info == 'U')
10847 {
10848 if (!ada_scan_number (bounds_str, n, &U, &n)
10849 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10850 return raw_type;
10851 }
10852 else
10853 {
10854 int ok;
10855
10856 strcpy (name_buf + prefix_len, "___U");
10857 U = get_int_var_value (name_buf, &ok);
10858 if (!ok)
10859 {
10860 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10861 U = L;
10862 }
10863 }
10864
10865 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10866 TYPE_NAME (type) = name;
10867 return type;
10868 }
10869 }
10870
10871 /* True iff NAME is the name of a range type. */
10872
10873 int
10874 ada_is_range_type_name (const char *name)
10875 {
10876 return (name != NULL && strstr (name, "___XD"));
10877 }
10878 \f
10879
10880 /* Modular types */
10881
10882 /* True iff TYPE is an Ada modular type. */
10883
10884 int
10885 ada_is_modular_type (struct type *type)
10886 {
10887 struct type *subranged_type = get_base_type (type);
10888
10889 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10890 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10891 && TYPE_UNSIGNED (subranged_type));
10892 }
10893
10894 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10895
10896 ULONGEST
10897 ada_modulus (struct type *type)
10898 {
10899 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10900 }
10901 \f
10902
10903 /* Ada exception catchpoint support:
10904 ---------------------------------
10905
10906 We support 3 kinds of exception catchpoints:
10907 . catchpoints on Ada exceptions
10908 . catchpoints on unhandled Ada exceptions
10909 . catchpoints on failed assertions
10910
10911 Exceptions raised during failed assertions, or unhandled exceptions
10912 could perfectly be caught with the general catchpoint on Ada exceptions.
10913 However, we can easily differentiate these two special cases, and having
10914 the option to distinguish these two cases from the rest can be useful
10915 to zero-in on certain situations.
10916
10917 Exception catchpoints are a specialized form of breakpoint,
10918 since they rely on inserting breakpoints inside known routines
10919 of the GNAT runtime. The implementation therefore uses a standard
10920 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10921 of breakpoint_ops.
10922
10923 Support in the runtime for exception catchpoints have been changed
10924 a few times already, and these changes affect the implementation
10925 of these catchpoints. In order to be able to support several
10926 variants of the runtime, we use a sniffer that will determine
10927 the runtime variant used by the program being debugged. */
10928
10929 /* The different types of catchpoints that we introduced for catching
10930 Ada exceptions. */
10931
10932 enum exception_catchpoint_kind
10933 {
10934 ex_catch_exception,
10935 ex_catch_exception_unhandled,
10936 ex_catch_assert
10937 };
10938
10939 /* Ada's standard exceptions. */
10940
10941 static char *standard_exc[] = {
10942 "constraint_error",
10943 "program_error",
10944 "storage_error",
10945 "tasking_error"
10946 };
10947
10948 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10949
10950 /* A structure that describes how to support exception catchpoints
10951 for a given executable. */
10952
10953 struct exception_support_info
10954 {
10955 /* The name of the symbol to break on in order to insert
10956 a catchpoint on exceptions. */
10957 const char *catch_exception_sym;
10958
10959 /* The name of the symbol to break on in order to insert
10960 a catchpoint on unhandled exceptions. */
10961 const char *catch_exception_unhandled_sym;
10962
10963 /* The name of the symbol to break on in order to insert
10964 a catchpoint on failed assertions. */
10965 const char *catch_assert_sym;
10966
10967 /* Assuming that the inferior just triggered an unhandled exception
10968 catchpoint, this function is responsible for returning the address
10969 in inferior memory where the name of that exception is stored.
10970 Return zero if the address could not be computed. */
10971 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10972 };
10973
10974 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10975 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10976
10977 /* The following exception support info structure describes how to
10978 implement exception catchpoints with the latest version of the
10979 Ada runtime (as of 2007-03-06). */
10980
10981 static const struct exception_support_info default_exception_support_info =
10982 {
10983 "__gnat_debug_raise_exception", /* catch_exception_sym */
10984 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10985 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10986 ada_unhandled_exception_name_addr
10987 };
10988
10989 /* The following exception support info structure describes how to
10990 implement exception catchpoints with a slightly older version
10991 of the Ada runtime. */
10992
10993 static const struct exception_support_info exception_support_info_fallback =
10994 {
10995 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10996 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10997 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10998 ada_unhandled_exception_name_addr_from_raise
10999 };
11000
11001 /* Return nonzero if we can detect the exception support routines
11002 described in EINFO.
11003
11004 This function errors out if an abnormal situation is detected
11005 (for instance, if we find the exception support routines, but
11006 that support is found to be incomplete). */
11007
11008 static int
11009 ada_has_this_exception_support (const struct exception_support_info *einfo)
11010 {
11011 struct symbol *sym;
11012
11013 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11014 that should be compiled with debugging information. As a result, we
11015 expect to find that symbol in the symtabs. */
11016
11017 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11018 if (sym == NULL)
11019 {
11020 /* Perhaps we did not find our symbol because the Ada runtime was
11021 compiled without debugging info, or simply stripped of it.
11022 It happens on some GNU/Linux distributions for instance, where
11023 users have to install a separate debug package in order to get
11024 the runtime's debugging info. In that situation, let the user
11025 know why we cannot insert an Ada exception catchpoint.
11026
11027 Note: Just for the purpose of inserting our Ada exception
11028 catchpoint, we could rely purely on the associated minimal symbol.
11029 But we would be operating in degraded mode anyway, since we are
11030 still lacking the debugging info needed later on to extract
11031 the name of the exception being raised (this name is printed in
11032 the catchpoint message, and is also used when trying to catch
11033 a specific exception). We do not handle this case for now. */
11034 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11035 error (_("Your Ada runtime appears to be missing some debugging "
11036 "information.\nCannot insert Ada exception catchpoint "
11037 "in this configuration."));
11038
11039 return 0;
11040 }
11041
11042 /* Make sure that the symbol we found corresponds to a function. */
11043
11044 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11045 error (_("Symbol \"%s\" is not a function (class = %d)"),
11046 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11047
11048 return 1;
11049 }
11050
11051 /* Inspect the Ada runtime and determine which exception info structure
11052 should be used to provide support for exception catchpoints.
11053
11054 This function will always set the per-inferior exception_info,
11055 or raise an error. */
11056
11057 static void
11058 ada_exception_support_info_sniffer (void)
11059 {
11060 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11061
11062 /* If the exception info is already known, then no need to recompute it. */
11063 if (data->exception_info != NULL)
11064 return;
11065
11066 /* Check the latest (default) exception support info. */
11067 if (ada_has_this_exception_support (&default_exception_support_info))
11068 {
11069 data->exception_info = &default_exception_support_info;
11070 return;
11071 }
11072
11073 /* Try our fallback exception suport info. */
11074 if (ada_has_this_exception_support (&exception_support_info_fallback))
11075 {
11076 data->exception_info = &exception_support_info_fallback;
11077 return;
11078 }
11079
11080 /* Sometimes, it is normal for us to not be able to find the routine
11081 we are looking for. This happens when the program is linked with
11082 the shared version of the GNAT runtime, and the program has not been
11083 started yet. Inform the user of these two possible causes if
11084 applicable. */
11085
11086 if (ada_update_initial_language (language_unknown) != language_ada)
11087 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11088
11089 /* If the symbol does not exist, then check that the program is
11090 already started, to make sure that shared libraries have been
11091 loaded. If it is not started, this may mean that the symbol is
11092 in a shared library. */
11093
11094 if (ptid_get_pid (inferior_ptid) == 0)
11095 error (_("Unable to insert catchpoint. Try to start the program first."));
11096
11097 /* At this point, we know that we are debugging an Ada program and
11098 that the inferior has been started, but we still are not able to
11099 find the run-time symbols. That can mean that we are in
11100 configurable run time mode, or that a-except as been optimized
11101 out by the linker... In any case, at this point it is not worth
11102 supporting this feature. */
11103
11104 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11105 }
11106
11107 /* True iff FRAME is very likely to be that of a function that is
11108 part of the runtime system. This is all very heuristic, but is
11109 intended to be used as advice as to what frames are uninteresting
11110 to most users. */
11111
11112 static int
11113 is_known_support_routine (struct frame_info *frame)
11114 {
11115 struct symtab_and_line sal;
11116 char *func_name;
11117 enum language func_lang;
11118 int i;
11119 const char *fullname;
11120
11121 /* If this code does not have any debugging information (no symtab),
11122 This cannot be any user code. */
11123
11124 find_frame_sal (frame, &sal);
11125 if (sal.symtab == NULL)
11126 return 1;
11127
11128 /* If there is a symtab, but the associated source file cannot be
11129 located, then assume this is not user code: Selecting a frame
11130 for which we cannot display the code would not be very helpful
11131 for the user. This should also take care of case such as VxWorks
11132 where the kernel has some debugging info provided for a few units. */
11133
11134 fullname = symtab_to_fullname (sal.symtab);
11135 if (access (fullname, R_OK) != 0)
11136 return 1;
11137
11138 /* Check the unit filename againt the Ada runtime file naming.
11139 We also check the name of the objfile against the name of some
11140 known system libraries that sometimes come with debugging info
11141 too. */
11142
11143 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11144 {
11145 re_comp (known_runtime_file_name_patterns[i]);
11146 if (re_exec (lbasename (sal.symtab->filename)))
11147 return 1;
11148 if (sal.symtab->objfile != NULL
11149 && re_exec (sal.symtab->objfile->name))
11150 return 1;
11151 }
11152
11153 /* Check whether the function is a GNAT-generated entity. */
11154
11155 find_frame_funname (frame, &func_name, &func_lang, NULL);
11156 if (func_name == NULL)
11157 return 1;
11158
11159 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11160 {
11161 re_comp (known_auxiliary_function_name_patterns[i]);
11162 if (re_exec (func_name))
11163 {
11164 xfree (func_name);
11165 return 1;
11166 }
11167 }
11168
11169 xfree (func_name);
11170 return 0;
11171 }
11172
11173 /* Find the first frame that contains debugging information and that is not
11174 part of the Ada run-time, starting from FI and moving upward. */
11175
11176 void
11177 ada_find_printable_frame (struct frame_info *fi)
11178 {
11179 for (; fi != NULL; fi = get_prev_frame (fi))
11180 {
11181 if (!is_known_support_routine (fi))
11182 {
11183 select_frame (fi);
11184 break;
11185 }
11186 }
11187
11188 }
11189
11190 /* Assuming that the inferior just triggered an unhandled exception
11191 catchpoint, return the address in inferior memory where the name
11192 of the exception is stored.
11193
11194 Return zero if the address could not be computed. */
11195
11196 static CORE_ADDR
11197 ada_unhandled_exception_name_addr (void)
11198 {
11199 return parse_and_eval_address ("e.full_name");
11200 }
11201
11202 /* Same as ada_unhandled_exception_name_addr, except that this function
11203 should be used when the inferior uses an older version of the runtime,
11204 where the exception name needs to be extracted from a specific frame
11205 several frames up in the callstack. */
11206
11207 static CORE_ADDR
11208 ada_unhandled_exception_name_addr_from_raise (void)
11209 {
11210 int frame_level;
11211 struct frame_info *fi;
11212 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11213 struct cleanup *old_chain;
11214
11215 /* To determine the name of this exception, we need to select
11216 the frame corresponding to RAISE_SYM_NAME. This frame is
11217 at least 3 levels up, so we simply skip the first 3 frames
11218 without checking the name of their associated function. */
11219 fi = get_current_frame ();
11220 for (frame_level = 0; frame_level < 3; frame_level += 1)
11221 if (fi != NULL)
11222 fi = get_prev_frame (fi);
11223
11224 old_chain = make_cleanup (null_cleanup, NULL);
11225 while (fi != NULL)
11226 {
11227 char *func_name;
11228 enum language func_lang;
11229
11230 find_frame_funname (fi, &func_name, &func_lang, NULL);
11231 if (func_name != NULL)
11232 {
11233 make_cleanup (xfree, func_name);
11234
11235 if (strcmp (func_name,
11236 data->exception_info->catch_exception_sym) == 0)
11237 break; /* We found the frame we were looking for... */
11238 fi = get_prev_frame (fi);
11239 }
11240 }
11241 do_cleanups (old_chain);
11242
11243 if (fi == NULL)
11244 return 0;
11245
11246 select_frame (fi);
11247 return parse_and_eval_address ("id.full_name");
11248 }
11249
11250 /* Assuming the inferior just triggered an Ada exception catchpoint
11251 (of any type), return the address in inferior memory where the name
11252 of the exception is stored, if applicable.
11253
11254 Return zero if the address could not be computed, or if not relevant. */
11255
11256 static CORE_ADDR
11257 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11258 struct breakpoint *b)
11259 {
11260 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11261
11262 switch (ex)
11263 {
11264 case ex_catch_exception:
11265 return (parse_and_eval_address ("e.full_name"));
11266 break;
11267
11268 case ex_catch_exception_unhandled:
11269 return data->exception_info->unhandled_exception_name_addr ();
11270 break;
11271
11272 case ex_catch_assert:
11273 return 0; /* Exception name is not relevant in this case. */
11274 break;
11275
11276 default:
11277 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11278 break;
11279 }
11280
11281 return 0; /* Should never be reached. */
11282 }
11283
11284 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11285 any error that ada_exception_name_addr_1 might cause to be thrown.
11286 When an error is intercepted, a warning with the error message is printed,
11287 and zero is returned. */
11288
11289 static CORE_ADDR
11290 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11291 struct breakpoint *b)
11292 {
11293 volatile struct gdb_exception e;
11294 CORE_ADDR result = 0;
11295
11296 TRY_CATCH (e, RETURN_MASK_ERROR)
11297 {
11298 result = ada_exception_name_addr_1 (ex, b);
11299 }
11300
11301 if (e.reason < 0)
11302 {
11303 warning (_("failed to get exception name: %s"), e.message);
11304 return 0;
11305 }
11306
11307 return result;
11308 }
11309
11310 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11311 char *, char **,
11312 const struct breakpoint_ops **);
11313 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11314
11315 /* Ada catchpoints.
11316
11317 In the case of catchpoints on Ada exceptions, the catchpoint will
11318 stop the target on every exception the program throws. When a user
11319 specifies the name of a specific exception, we translate this
11320 request into a condition expression (in text form), and then parse
11321 it into an expression stored in each of the catchpoint's locations.
11322 We then use this condition to check whether the exception that was
11323 raised is the one the user is interested in. If not, then the
11324 target is resumed again. We store the name of the requested
11325 exception, in order to be able to re-set the condition expression
11326 when symbols change. */
11327
11328 /* An instance of this type is used to represent an Ada catchpoint
11329 breakpoint location. It includes a "struct bp_location" as a kind
11330 of base class; users downcast to "struct bp_location *" when
11331 needed. */
11332
11333 struct ada_catchpoint_location
11334 {
11335 /* The base class. */
11336 struct bp_location base;
11337
11338 /* The condition that checks whether the exception that was raised
11339 is the specific exception the user specified on catchpoint
11340 creation. */
11341 struct expression *excep_cond_expr;
11342 };
11343
11344 /* Implement the DTOR method in the bp_location_ops structure for all
11345 Ada exception catchpoint kinds. */
11346
11347 static void
11348 ada_catchpoint_location_dtor (struct bp_location *bl)
11349 {
11350 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11351
11352 xfree (al->excep_cond_expr);
11353 }
11354
11355 /* The vtable to be used in Ada catchpoint locations. */
11356
11357 static const struct bp_location_ops ada_catchpoint_location_ops =
11358 {
11359 ada_catchpoint_location_dtor
11360 };
11361
11362 /* An instance of this type is used to represent an Ada catchpoint.
11363 It includes a "struct breakpoint" as a kind of base class; users
11364 downcast to "struct breakpoint *" when needed. */
11365
11366 struct ada_catchpoint
11367 {
11368 /* The base class. */
11369 struct breakpoint base;
11370
11371 /* The name of the specific exception the user specified. */
11372 char *excep_string;
11373 };
11374
11375 /* Parse the exception condition string in the context of each of the
11376 catchpoint's locations, and store them for later evaluation. */
11377
11378 static void
11379 create_excep_cond_exprs (struct ada_catchpoint *c)
11380 {
11381 struct cleanup *old_chain;
11382 struct bp_location *bl;
11383 char *cond_string;
11384
11385 /* Nothing to do if there's no specific exception to catch. */
11386 if (c->excep_string == NULL)
11387 return;
11388
11389 /* Same if there are no locations... */
11390 if (c->base.loc == NULL)
11391 return;
11392
11393 /* Compute the condition expression in text form, from the specific
11394 expection we want to catch. */
11395 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11396 old_chain = make_cleanup (xfree, cond_string);
11397
11398 /* Iterate over all the catchpoint's locations, and parse an
11399 expression for each. */
11400 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11401 {
11402 struct ada_catchpoint_location *ada_loc
11403 = (struct ada_catchpoint_location *) bl;
11404 struct expression *exp = NULL;
11405
11406 if (!bl->shlib_disabled)
11407 {
11408 volatile struct gdb_exception e;
11409 const char *s;
11410
11411 s = cond_string;
11412 TRY_CATCH (e, RETURN_MASK_ERROR)
11413 {
11414 exp = parse_exp_1 (&s, bl->address,
11415 block_for_pc (bl->address), 0);
11416 }
11417 if (e.reason < 0)
11418 warning (_("failed to reevaluate internal exception condition "
11419 "for catchpoint %d: %s"),
11420 c->base.number, e.message);
11421 }
11422
11423 ada_loc->excep_cond_expr = exp;
11424 }
11425
11426 do_cleanups (old_chain);
11427 }
11428
11429 /* Implement the DTOR method in the breakpoint_ops structure for all
11430 exception catchpoint kinds. */
11431
11432 static void
11433 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11434 {
11435 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11436
11437 xfree (c->excep_string);
11438
11439 bkpt_breakpoint_ops.dtor (b);
11440 }
11441
11442 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11443 structure for all exception catchpoint kinds. */
11444
11445 static struct bp_location *
11446 allocate_location_exception (enum exception_catchpoint_kind ex,
11447 struct breakpoint *self)
11448 {
11449 struct ada_catchpoint_location *loc;
11450
11451 loc = XNEW (struct ada_catchpoint_location);
11452 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11453 loc->excep_cond_expr = NULL;
11454 return &loc->base;
11455 }
11456
11457 /* Implement the RE_SET method in the breakpoint_ops structure for all
11458 exception catchpoint kinds. */
11459
11460 static void
11461 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11462 {
11463 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11464
11465 /* Call the base class's method. This updates the catchpoint's
11466 locations. */
11467 bkpt_breakpoint_ops.re_set (b);
11468
11469 /* Reparse the exception conditional expressions. One for each
11470 location. */
11471 create_excep_cond_exprs (c);
11472 }
11473
11474 /* Returns true if we should stop for this breakpoint hit. If the
11475 user specified a specific exception, we only want to cause a stop
11476 if the program thrown that exception. */
11477
11478 static int
11479 should_stop_exception (const struct bp_location *bl)
11480 {
11481 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11482 const struct ada_catchpoint_location *ada_loc
11483 = (const struct ada_catchpoint_location *) bl;
11484 volatile struct gdb_exception ex;
11485 int stop;
11486
11487 /* With no specific exception, should always stop. */
11488 if (c->excep_string == NULL)
11489 return 1;
11490
11491 if (ada_loc->excep_cond_expr == NULL)
11492 {
11493 /* We will have a NULL expression if back when we were creating
11494 the expressions, this location's had failed to parse. */
11495 return 1;
11496 }
11497
11498 stop = 1;
11499 TRY_CATCH (ex, RETURN_MASK_ALL)
11500 {
11501 struct value *mark;
11502
11503 mark = value_mark ();
11504 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11505 value_free_to_mark (mark);
11506 }
11507 if (ex.reason < 0)
11508 exception_fprintf (gdb_stderr, ex,
11509 _("Error in testing exception condition:\n"));
11510 return stop;
11511 }
11512
11513 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11514 for all exception catchpoint kinds. */
11515
11516 static void
11517 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11518 {
11519 bs->stop = should_stop_exception (bs->bp_location_at);
11520 }
11521
11522 /* Implement the PRINT_IT method in the breakpoint_ops structure
11523 for all exception catchpoint kinds. */
11524
11525 static enum print_stop_action
11526 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11527 {
11528 struct ui_out *uiout = current_uiout;
11529 struct breakpoint *b = bs->breakpoint_at;
11530
11531 annotate_catchpoint (b->number);
11532
11533 if (ui_out_is_mi_like_p (uiout))
11534 {
11535 ui_out_field_string (uiout, "reason",
11536 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11537 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11538 }
11539
11540 ui_out_text (uiout,
11541 b->disposition == disp_del ? "\nTemporary catchpoint "
11542 : "\nCatchpoint ");
11543 ui_out_field_int (uiout, "bkptno", b->number);
11544 ui_out_text (uiout, ", ");
11545
11546 switch (ex)
11547 {
11548 case ex_catch_exception:
11549 case ex_catch_exception_unhandled:
11550 {
11551 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11552 char exception_name[256];
11553
11554 if (addr != 0)
11555 {
11556 read_memory (addr, (gdb_byte *) exception_name,
11557 sizeof (exception_name) - 1);
11558 exception_name [sizeof (exception_name) - 1] = '\0';
11559 }
11560 else
11561 {
11562 /* For some reason, we were unable to read the exception
11563 name. This could happen if the Runtime was compiled
11564 without debugging info, for instance. In that case,
11565 just replace the exception name by the generic string
11566 "exception" - it will read as "an exception" in the
11567 notification we are about to print. */
11568 memcpy (exception_name, "exception", sizeof ("exception"));
11569 }
11570 /* In the case of unhandled exception breakpoints, we print
11571 the exception name as "unhandled EXCEPTION_NAME", to make
11572 it clearer to the user which kind of catchpoint just got
11573 hit. We used ui_out_text to make sure that this extra
11574 info does not pollute the exception name in the MI case. */
11575 if (ex == ex_catch_exception_unhandled)
11576 ui_out_text (uiout, "unhandled ");
11577 ui_out_field_string (uiout, "exception-name", exception_name);
11578 }
11579 break;
11580 case ex_catch_assert:
11581 /* In this case, the name of the exception is not really
11582 important. Just print "failed assertion" to make it clearer
11583 that his program just hit an assertion-failure catchpoint.
11584 We used ui_out_text because this info does not belong in
11585 the MI output. */
11586 ui_out_text (uiout, "failed assertion");
11587 break;
11588 }
11589 ui_out_text (uiout, " at ");
11590 ada_find_printable_frame (get_current_frame ());
11591
11592 return PRINT_SRC_AND_LOC;
11593 }
11594
11595 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11596 for all exception catchpoint kinds. */
11597
11598 static void
11599 print_one_exception (enum exception_catchpoint_kind ex,
11600 struct breakpoint *b, struct bp_location **last_loc)
11601 {
11602 struct ui_out *uiout = current_uiout;
11603 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11604 struct value_print_options opts;
11605
11606 get_user_print_options (&opts);
11607 if (opts.addressprint)
11608 {
11609 annotate_field (4);
11610 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11611 }
11612
11613 annotate_field (5);
11614 *last_loc = b->loc;
11615 switch (ex)
11616 {
11617 case ex_catch_exception:
11618 if (c->excep_string != NULL)
11619 {
11620 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11621
11622 ui_out_field_string (uiout, "what", msg);
11623 xfree (msg);
11624 }
11625 else
11626 ui_out_field_string (uiout, "what", "all Ada exceptions");
11627
11628 break;
11629
11630 case ex_catch_exception_unhandled:
11631 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11632 break;
11633
11634 case ex_catch_assert:
11635 ui_out_field_string (uiout, "what", "failed Ada assertions");
11636 break;
11637
11638 default:
11639 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11640 break;
11641 }
11642 }
11643
11644 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11645 for all exception catchpoint kinds. */
11646
11647 static void
11648 print_mention_exception (enum exception_catchpoint_kind ex,
11649 struct breakpoint *b)
11650 {
11651 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11652 struct ui_out *uiout = current_uiout;
11653
11654 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11655 : _("Catchpoint "));
11656 ui_out_field_int (uiout, "bkptno", b->number);
11657 ui_out_text (uiout, ": ");
11658
11659 switch (ex)
11660 {
11661 case ex_catch_exception:
11662 if (c->excep_string != NULL)
11663 {
11664 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11665 struct cleanup *old_chain = make_cleanup (xfree, info);
11666
11667 ui_out_text (uiout, info);
11668 do_cleanups (old_chain);
11669 }
11670 else
11671 ui_out_text (uiout, _("all Ada exceptions"));
11672 break;
11673
11674 case ex_catch_exception_unhandled:
11675 ui_out_text (uiout, _("unhandled Ada exceptions"));
11676 break;
11677
11678 case ex_catch_assert:
11679 ui_out_text (uiout, _("failed Ada assertions"));
11680 break;
11681
11682 default:
11683 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11684 break;
11685 }
11686 }
11687
11688 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11689 for all exception catchpoint kinds. */
11690
11691 static void
11692 print_recreate_exception (enum exception_catchpoint_kind ex,
11693 struct breakpoint *b, struct ui_file *fp)
11694 {
11695 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11696
11697 switch (ex)
11698 {
11699 case ex_catch_exception:
11700 fprintf_filtered (fp, "catch exception");
11701 if (c->excep_string != NULL)
11702 fprintf_filtered (fp, " %s", c->excep_string);
11703 break;
11704
11705 case ex_catch_exception_unhandled:
11706 fprintf_filtered (fp, "catch exception unhandled");
11707 break;
11708
11709 case ex_catch_assert:
11710 fprintf_filtered (fp, "catch assert");
11711 break;
11712
11713 default:
11714 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11715 }
11716 print_recreate_thread (b, fp);
11717 }
11718
11719 /* Virtual table for "catch exception" breakpoints. */
11720
11721 static void
11722 dtor_catch_exception (struct breakpoint *b)
11723 {
11724 dtor_exception (ex_catch_exception, b);
11725 }
11726
11727 static struct bp_location *
11728 allocate_location_catch_exception (struct breakpoint *self)
11729 {
11730 return allocate_location_exception (ex_catch_exception, self);
11731 }
11732
11733 static void
11734 re_set_catch_exception (struct breakpoint *b)
11735 {
11736 re_set_exception (ex_catch_exception, b);
11737 }
11738
11739 static void
11740 check_status_catch_exception (bpstat bs)
11741 {
11742 check_status_exception (ex_catch_exception, bs);
11743 }
11744
11745 static enum print_stop_action
11746 print_it_catch_exception (bpstat bs)
11747 {
11748 return print_it_exception (ex_catch_exception, bs);
11749 }
11750
11751 static void
11752 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11753 {
11754 print_one_exception (ex_catch_exception, b, last_loc);
11755 }
11756
11757 static void
11758 print_mention_catch_exception (struct breakpoint *b)
11759 {
11760 print_mention_exception (ex_catch_exception, b);
11761 }
11762
11763 static void
11764 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11765 {
11766 print_recreate_exception (ex_catch_exception, b, fp);
11767 }
11768
11769 static struct breakpoint_ops catch_exception_breakpoint_ops;
11770
11771 /* Virtual table for "catch exception unhandled" breakpoints. */
11772
11773 static void
11774 dtor_catch_exception_unhandled (struct breakpoint *b)
11775 {
11776 dtor_exception (ex_catch_exception_unhandled, b);
11777 }
11778
11779 static struct bp_location *
11780 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11781 {
11782 return allocate_location_exception (ex_catch_exception_unhandled, self);
11783 }
11784
11785 static void
11786 re_set_catch_exception_unhandled (struct breakpoint *b)
11787 {
11788 re_set_exception (ex_catch_exception_unhandled, b);
11789 }
11790
11791 static void
11792 check_status_catch_exception_unhandled (bpstat bs)
11793 {
11794 check_status_exception (ex_catch_exception_unhandled, bs);
11795 }
11796
11797 static enum print_stop_action
11798 print_it_catch_exception_unhandled (bpstat bs)
11799 {
11800 return print_it_exception (ex_catch_exception_unhandled, bs);
11801 }
11802
11803 static void
11804 print_one_catch_exception_unhandled (struct breakpoint *b,
11805 struct bp_location **last_loc)
11806 {
11807 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11808 }
11809
11810 static void
11811 print_mention_catch_exception_unhandled (struct breakpoint *b)
11812 {
11813 print_mention_exception (ex_catch_exception_unhandled, b);
11814 }
11815
11816 static void
11817 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11818 struct ui_file *fp)
11819 {
11820 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11821 }
11822
11823 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11824
11825 /* Virtual table for "catch assert" breakpoints. */
11826
11827 static void
11828 dtor_catch_assert (struct breakpoint *b)
11829 {
11830 dtor_exception (ex_catch_assert, b);
11831 }
11832
11833 static struct bp_location *
11834 allocate_location_catch_assert (struct breakpoint *self)
11835 {
11836 return allocate_location_exception (ex_catch_assert, self);
11837 }
11838
11839 static void
11840 re_set_catch_assert (struct breakpoint *b)
11841 {
11842 re_set_exception (ex_catch_assert, b);
11843 }
11844
11845 static void
11846 check_status_catch_assert (bpstat bs)
11847 {
11848 check_status_exception (ex_catch_assert, bs);
11849 }
11850
11851 static enum print_stop_action
11852 print_it_catch_assert (bpstat bs)
11853 {
11854 return print_it_exception (ex_catch_assert, bs);
11855 }
11856
11857 static void
11858 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11859 {
11860 print_one_exception (ex_catch_assert, b, last_loc);
11861 }
11862
11863 static void
11864 print_mention_catch_assert (struct breakpoint *b)
11865 {
11866 print_mention_exception (ex_catch_assert, b);
11867 }
11868
11869 static void
11870 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11871 {
11872 print_recreate_exception (ex_catch_assert, b, fp);
11873 }
11874
11875 static struct breakpoint_ops catch_assert_breakpoint_ops;
11876
11877 /* Return a newly allocated copy of the first space-separated token
11878 in ARGSP, and then adjust ARGSP to point immediately after that
11879 token.
11880
11881 Return NULL if ARGPS does not contain any more tokens. */
11882
11883 static char *
11884 ada_get_next_arg (char **argsp)
11885 {
11886 char *args = *argsp;
11887 char *end;
11888 char *result;
11889
11890 args = skip_spaces (args);
11891 if (args[0] == '\0')
11892 return NULL; /* No more arguments. */
11893
11894 /* Find the end of the current argument. */
11895
11896 end = skip_to_space (args);
11897
11898 /* Adjust ARGSP to point to the start of the next argument. */
11899
11900 *argsp = end;
11901
11902 /* Make a copy of the current argument and return it. */
11903
11904 result = xmalloc (end - args + 1);
11905 strncpy (result, args, end - args);
11906 result[end - args] = '\0';
11907
11908 return result;
11909 }
11910
11911 /* Split the arguments specified in a "catch exception" command.
11912 Set EX to the appropriate catchpoint type.
11913 Set EXCEP_STRING to the name of the specific exception if
11914 specified by the user.
11915 If a condition is found at the end of the arguments, the condition
11916 expression is stored in COND_STRING (memory must be deallocated
11917 after use). Otherwise COND_STRING is set to NULL. */
11918
11919 static void
11920 catch_ada_exception_command_split (char *args,
11921 enum exception_catchpoint_kind *ex,
11922 char **excep_string,
11923 char **cond_string)
11924 {
11925 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11926 char *exception_name;
11927 char *cond = NULL;
11928
11929 exception_name = ada_get_next_arg (&args);
11930 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11931 {
11932 /* This is not an exception name; this is the start of a condition
11933 expression for a catchpoint on all exceptions. So, "un-get"
11934 this token, and set exception_name to NULL. */
11935 xfree (exception_name);
11936 exception_name = NULL;
11937 args -= 2;
11938 }
11939 make_cleanup (xfree, exception_name);
11940
11941 /* Check to see if we have a condition. */
11942
11943 args = skip_spaces (args);
11944 if (strncmp (args, "if", 2) == 0
11945 && (isspace (args[2]) || args[2] == '\0'))
11946 {
11947 args += 2;
11948 args = skip_spaces (args);
11949
11950 if (args[0] == '\0')
11951 error (_("Condition missing after `if' keyword"));
11952 cond = xstrdup (args);
11953 make_cleanup (xfree, cond);
11954
11955 args += strlen (args);
11956 }
11957
11958 /* Check that we do not have any more arguments. Anything else
11959 is unexpected. */
11960
11961 if (args[0] != '\0')
11962 error (_("Junk at end of expression"));
11963
11964 discard_cleanups (old_chain);
11965
11966 if (exception_name == NULL)
11967 {
11968 /* Catch all exceptions. */
11969 *ex = ex_catch_exception;
11970 *excep_string = NULL;
11971 }
11972 else if (strcmp (exception_name, "unhandled") == 0)
11973 {
11974 /* Catch unhandled exceptions. */
11975 *ex = ex_catch_exception_unhandled;
11976 *excep_string = NULL;
11977 }
11978 else
11979 {
11980 /* Catch a specific exception. */
11981 *ex = ex_catch_exception;
11982 *excep_string = exception_name;
11983 }
11984 *cond_string = cond;
11985 }
11986
11987 /* Return the name of the symbol on which we should break in order to
11988 implement a catchpoint of the EX kind. */
11989
11990 static const char *
11991 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11992 {
11993 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11994
11995 gdb_assert (data->exception_info != NULL);
11996
11997 switch (ex)
11998 {
11999 case ex_catch_exception:
12000 return (data->exception_info->catch_exception_sym);
12001 break;
12002 case ex_catch_exception_unhandled:
12003 return (data->exception_info->catch_exception_unhandled_sym);
12004 break;
12005 case ex_catch_assert:
12006 return (data->exception_info->catch_assert_sym);
12007 break;
12008 default:
12009 internal_error (__FILE__, __LINE__,
12010 _("unexpected catchpoint kind (%d)"), ex);
12011 }
12012 }
12013
12014 /* Return the breakpoint ops "virtual table" used for catchpoints
12015 of the EX kind. */
12016
12017 static const struct breakpoint_ops *
12018 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
12019 {
12020 switch (ex)
12021 {
12022 case ex_catch_exception:
12023 return (&catch_exception_breakpoint_ops);
12024 break;
12025 case ex_catch_exception_unhandled:
12026 return (&catch_exception_unhandled_breakpoint_ops);
12027 break;
12028 case ex_catch_assert:
12029 return (&catch_assert_breakpoint_ops);
12030 break;
12031 default:
12032 internal_error (__FILE__, __LINE__,
12033 _("unexpected catchpoint kind (%d)"), ex);
12034 }
12035 }
12036
12037 /* Return the condition that will be used to match the current exception
12038 being raised with the exception that the user wants to catch. This
12039 assumes that this condition is used when the inferior just triggered
12040 an exception catchpoint.
12041
12042 The string returned is a newly allocated string that needs to be
12043 deallocated later. */
12044
12045 static char *
12046 ada_exception_catchpoint_cond_string (const char *excep_string)
12047 {
12048 int i;
12049
12050 /* The standard exceptions are a special case. They are defined in
12051 runtime units that have been compiled without debugging info; if
12052 EXCEP_STRING is the not-fully-qualified name of a standard
12053 exception (e.g. "constraint_error") then, during the evaluation
12054 of the condition expression, the symbol lookup on this name would
12055 *not* return this standard exception. The catchpoint condition
12056 may then be set only on user-defined exceptions which have the
12057 same not-fully-qualified name (e.g. my_package.constraint_error).
12058
12059 To avoid this unexcepted behavior, these standard exceptions are
12060 systematically prefixed by "standard". This means that "catch
12061 exception constraint_error" is rewritten into "catch exception
12062 standard.constraint_error".
12063
12064 If an exception named contraint_error is defined in another package of
12065 the inferior program, then the only way to specify this exception as a
12066 breakpoint condition is to use its fully-qualified named:
12067 e.g. my_package.constraint_error. */
12068
12069 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12070 {
12071 if (strcmp (standard_exc [i], excep_string) == 0)
12072 {
12073 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12074 excep_string);
12075 }
12076 }
12077 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12078 }
12079
12080 /* Return the symtab_and_line that should be used to insert an exception
12081 catchpoint of the TYPE kind.
12082
12083 EXCEP_STRING should contain the name of a specific exception that
12084 the catchpoint should catch, or NULL otherwise.
12085
12086 ADDR_STRING returns the name of the function where the real
12087 breakpoint that implements the catchpoints is set, depending on the
12088 type of catchpoint we need to create. */
12089
12090 static struct symtab_and_line
12091 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
12092 char **addr_string, const struct breakpoint_ops **ops)
12093 {
12094 const char *sym_name;
12095 struct symbol *sym;
12096
12097 /* First, find out which exception support info to use. */
12098 ada_exception_support_info_sniffer ();
12099
12100 /* Then lookup the function on which we will break in order to catch
12101 the Ada exceptions requested by the user. */
12102 sym_name = ada_exception_sym_name (ex);
12103 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12104
12105 /* We can assume that SYM is not NULL at this stage. If the symbol
12106 did not exist, ada_exception_support_info_sniffer would have
12107 raised an exception.
12108
12109 Also, ada_exception_support_info_sniffer should have already
12110 verified that SYM is a function symbol. */
12111 gdb_assert (sym != NULL);
12112 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12113
12114 /* Set ADDR_STRING. */
12115 *addr_string = xstrdup (sym_name);
12116
12117 /* Set OPS. */
12118 *ops = ada_exception_breakpoint_ops (ex);
12119
12120 return find_function_start_sal (sym, 1);
12121 }
12122
12123 /* Parse the arguments (ARGS) of the "catch exception" command.
12124
12125 If the user asked the catchpoint to catch only a specific
12126 exception, then save the exception name in ADDR_STRING.
12127
12128 If the user provided a condition, then set COND_STRING to
12129 that condition expression (the memory must be deallocated
12130 after use). Otherwise, set COND_STRING to NULL.
12131
12132 See ada_exception_sal for a description of all the remaining
12133 function arguments of this function. */
12134
12135 static struct symtab_and_line
12136 ada_decode_exception_location (char *args, char **addr_string,
12137 char **excep_string,
12138 char **cond_string,
12139 const struct breakpoint_ops **ops)
12140 {
12141 enum exception_catchpoint_kind ex;
12142
12143 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
12144 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12145 }
12146
12147 /* Create an Ada exception catchpoint. */
12148
12149 static void
12150 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12151 struct symtab_and_line sal,
12152 char *addr_string,
12153 char *excep_string,
12154 char *cond_string,
12155 const struct breakpoint_ops *ops,
12156 int tempflag,
12157 int from_tty)
12158 {
12159 struct ada_catchpoint *c;
12160
12161 c = XNEW (struct ada_catchpoint);
12162 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12163 ops, tempflag, from_tty);
12164 c->excep_string = excep_string;
12165 create_excep_cond_exprs (c);
12166 if (cond_string != NULL)
12167 set_breakpoint_condition (&c->base, cond_string, from_tty);
12168 install_breakpoint (0, &c->base, 1);
12169 }
12170
12171 /* Implement the "catch exception" command. */
12172
12173 static void
12174 catch_ada_exception_command (char *arg, int from_tty,
12175 struct cmd_list_element *command)
12176 {
12177 struct gdbarch *gdbarch = get_current_arch ();
12178 int tempflag;
12179 struct symtab_and_line sal;
12180 char *addr_string = NULL;
12181 char *excep_string = NULL;
12182 char *cond_string = NULL;
12183 const struct breakpoint_ops *ops = NULL;
12184
12185 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12186
12187 if (!arg)
12188 arg = "";
12189 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12190 &cond_string, &ops);
12191 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12192 excep_string, cond_string, ops,
12193 tempflag, from_tty);
12194 }
12195
12196 /* Assuming that ARGS contains the arguments of a "catch assert"
12197 command, parse those arguments and return a symtab_and_line object
12198 for a failed assertion catchpoint.
12199
12200 Set ADDR_STRING to the name of the function where the real
12201 breakpoint that implements the catchpoint is set.
12202
12203 If ARGS contains a condition, set COND_STRING to that condition
12204 (the memory needs to be deallocated after use). Otherwise, set
12205 COND_STRING to NULL. */
12206
12207 static struct symtab_and_line
12208 ada_decode_assert_location (char *args, char **addr_string,
12209 char **cond_string,
12210 const struct breakpoint_ops **ops)
12211 {
12212 args = skip_spaces (args);
12213
12214 /* Check whether a condition was provided. */
12215 if (strncmp (args, "if", 2) == 0
12216 && (isspace (args[2]) || args[2] == '\0'))
12217 {
12218 args += 2;
12219 args = skip_spaces (args);
12220 if (args[0] == '\0')
12221 error (_("condition missing after `if' keyword"));
12222 *cond_string = xstrdup (args);
12223 }
12224
12225 /* Otherwise, there should be no other argument at the end of
12226 the command. */
12227 else if (args[0] != '\0')
12228 error (_("Junk at end of arguments."));
12229
12230 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
12231 }
12232
12233 /* Implement the "catch assert" command. */
12234
12235 static void
12236 catch_assert_command (char *arg, int from_tty,
12237 struct cmd_list_element *command)
12238 {
12239 struct gdbarch *gdbarch = get_current_arch ();
12240 int tempflag;
12241 struct symtab_and_line sal;
12242 char *addr_string = NULL;
12243 char *cond_string = NULL;
12244 const struct breakpoint_ops *ops = NULL;
12245
12246 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12247
12248 if (!arg)
12249 arg = "";
12250 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
12251 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12252 NULL, cond_string, ops, tempflag,
12253 from_tty);
12254 }
12255 /* Operators */
12256 /* Information about operators given special treatment in functions
12257 below. */
12258 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12259
12260 #define ADA_OPERATORS \
12261 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12262 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12263 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12264 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12265 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12266 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12267 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12268 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12269 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12270 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12271 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12272 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12273 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12274 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12275 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12276 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12277 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12278 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12279 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12280
12281 static void
12282 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12283 int *argsp)
12284 {
12285 switch (exp->elts[pc - 1].opcode)
12286 {
12287 default:
12288 operator_length_standard (exp, pc, oplenp, argsp);
12289 break;
12290
12291 #define OP_DEFN(op, len, args, binop) \
12292 case op: *oplenp = len; *argsp = args; break;
12293 ADA_OPERATORS;
12294 #undef OP_DEFN
12295
12296 case OP_AGGREGATE:
12297 *oplenp = 3;
12298 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12299 break;
12300
12301 case OP_CHOICES:
12302 *oplenp = 3;
12303 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12304 break;
12305 }
12306 }
12307
12308 /* Implementation of the exp_descriptor method operator_check. */
12309
12310 static int
12311 ada_operator_check (struct expression *exp, int pos,
12312 int (*objfile_func) (struct objfile *objfile, void *data),
12313 void *data)
12314 {
12315 const union exp_element *const elts = exp->elts;
12316 struct type *type = NULL;
12317
12318 switch (elts[pos].opcode)
12319 {
12320 case UNOP_IN_RANGE:
12321 case UNOP_QUAL:
12322 type = elts[pos + 1].type;
12323 break;
12324
12325 default:
12326 return operator_check_standard (exp, pos, objfile_func, data);
12327 }
12328
12329 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12330
12331 if (type && TYPE_OBJFILE (type)
12332 && (*objfile_func) (TYPE_OBJFILE (type), data))
12333 return 1;
12334
12335 return 0;
12336 }
12337
12338 static char *
12339 ada_op_name (enum exp_opcode opcode)
12340 {
12341 switch (opcode)
12342 {
12343 default:
12344 return op_name_standard (opcode);
12345
12346 #define OP_DEFN(op, len, args, binop) case op: return #op;
12347 ADA_OPERATORS;
12348 #undef OP_DEFN
12349
12350 case OP_AGGREGATE:
12351 return "OP_AGGREGATE";
12352 case OP_CHOICES:
12353 return "OP_CHOICES";
12354 case OP_NAME:
12355 return "OP_NAME";
12356 }
12357 }
12358
12359 /* As for operator_length, but assumes PC is pointing at the first
12360 element of the operator, and gives meaningful results only for the
12361 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12362
12363 static void
12364 ada_forward_operator_length (struct expression *exp, int pc,
12365 int *oplenp, int *argsp)
12366 {
12367 switch (exp->elts[pc].opcode)
12368 {
12369 default:
12370 *oplenp = *argsp = 0;
12371 break;
12372
12373 #define OP_DEFN(op, len, args, binop) \
12374 case op: *oplenp = len; *argsp = args; break;
12375 ADA_OPERATORS;
12376 #undef OP_DEFN
12377
12378 case OP_AGGREGATE:
12379 *oplenp = 3;
12380 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12381 break;
12382
12383 case OP_CHOICES:
12384 *oplenp = 3;
12385 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12386 break;
12387
12388 case OP_STRING:
12389 case OP_NAME:
12390 {
12391 int len = longest_to_int (exp->elts[pc + 1].longconst);
12392
12393 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12394 *argsp = 0;
12395 break;
12396 }
12397 }
12398 }
12399
12400 static int
12401 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12402 {
12403 enum exp_opcode op = exp->elts[elt].opcode;
12404 int oplen, nargs;
12405 int pc = elt;
12406 int i;
12407
12408 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12409
12410 switch (op)
12411 {
12412 /* Ada attributes ('Foo). */
12413 case OP_ATR_FIRST:
12414 case OP_ATR_LAST:
12415 case OP_ATR_LENGTH:
12416 case OP_ATR_IMAGE:
12417 case OP_ATR_MAX:
12418 case OP_ATR_MIN:
12419 case OP_ATR_MODULUS:
12420 case OP_ATR_POS:
12421 case OP_ATR_SIZE:
12422 case OP_ATR_TAG:
12423 case OP_ATR_VAL:
12424 break;
12425
12426 case UNOP_IN_RANGE:
12427 case UNOP_QUAL:
12428 /* XXX: gdb_sprint_host_address, type_sprint */
12429 fprintf_filtered (stream, _("Type @"));
12430 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12431 fprintf_filtered (stream, " (");
12432 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12433 fprintf_filtered (stream, ")");
12434 break;
12435 case BINOP_IN_BOUNDS:
12436 fprintf_filtered (stream, " (%d)",
12437 longest_to_int (exp->elts[pc + 2].longconst));
12438 break;
12439 case TERNOP_IN_RANGE:
12440 break;
12441
12442 case OP_AGGREGATE:
12443 case OP_OTHERS:
12444 case OP_DISCRETE_RANGE:
12445 case OP_POSITIONAL:
12446 case OP_CHOICES:
12447 break;
12448
12449 case OP_NAME:
12450 case OP_STRING:
12451 {
12452 char *name = &exp->elts[elt + 2].string;
12453 int len = longest_to_int (exp->elts[elt + 1].longconst);
12454
12455 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12456 break;
12457 }
12458
12459 default:
12460 return dump_subexp_body_standard (exp, stream, elt);
12461 }
12462
12463 elt += oplen;
12464 for (i = 0; i < nargs; i += 1)
12465 elt = dump_subexp (exp, stream, elt);
12466
12467 return elt;
12468 }
12469
12470 /* The Ada extension of print_subexp (q.v.). */
12471
12472 static void
12473 ada_print_subexp (struct expression *exp, int *pos,
12474 struct ui_file *stream, enum precedence prec)
12475 {
12476 int oplen, nargs, i;
12477 int pc = *pos;
12478 enum exp_opcode op = exp->elts[pc].opcode;
12479
12480 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12481
12482 *pos += oplen;
12483 switch (op)
12484 {
12485 default:
12486 *pos -= oplen;
12487 print_subexp_standard (exp, pos, stream, prec);
12488 return;
12489
12490 case OP_VAR_VALUE:
12491 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12492 return;
12493
12494 case BINOP_IN_BOUNDS:
12495 /* XXX: sprint_subexp */
12496 print_subexp (exp, pos, stream, PREC_SUFFIX);
12497 fputs_filtered (" in ", stream);
12498 print_subexp (exp, pos, stream, PREC_SUFFIX);
12499 fputs_filtered ("'range", stream);
12500 if (exp->elts[pc + 1].longconst > 1)
12501 fprintf_filtered (stream, "(%ld)",
12502 (long) exp->elts[pc + 1].longconst);
12503 return;
12504
12505 case TERNOP_IN_RANGE:
12506 if (prec >= PREC_EQUAL)
12507 fputs_filtered ("(", stream);
12508 /* XXX: sprint_subexp */
12509 print_subexp (exp, pos, stream, PREC_SUFFIX);
12510 fputs_filtered (" in ", stream);
12511 print_subexp (exp, pos, stream, PREC_EQUAL);
12512 fputs_filtered (" .. ", stream);
12513 print_subexp (exp, pos, stream, PREC_EQUAL);
12514 if (prec >= PREC_EQUAL)
12515 fputs_filtered (")", stream);
12516 return;
12517
12518 case OP_ATR_FIRST:
12519 case OP_ATR_LAST:
12520 case OP_ATR_LENGTH:
12521 case OP_ATR_IMAGE:
12522 case OP_ATR_MAX:
12523 case OP_ATR_MIN:
12524 case OP_ATR_MODULUS:
12525 case OP_ATR_POS:
12526 case OP_ATR_SIZE:
12527 case OP_ATR_TAG:
12528 case OP_ATR_VAL:
12529 if (exp->elts[*pos].opcode == OP_TYPE)
12530 {
12531 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12532 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12533 &type_print_raw_options);
12534 *pos += 3;
12535 }
12536 else
12537 print_subexp (exp, pos, stream, PREC_SUFFIX);
12538 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12539 if (nargs > 1)
12540 {
12541 int tem;
12542
12543 for (tem = 1; tem < nargs; tem += 1)
12544 {
12545 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12546 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12547 }
12548 fputs_filtered (")", stream);
12549 }
12550 return;
12551
12552 case UNOP_QUAL:
12553 type_print (exp->elts[pc + 1].type, "", stream, 0);
12554 fputs_filtered ("'(", stream);
12555 print_subexp (exp, pos, stream, PREC_PREFIX);
12556 fputs_filtered (")", stream);
12557 return;
12558
12559 case UNOP_IN_RANGE:
12560 /* XXX: sprint_subexp */
12561 print_subexp (exp, pos, stream, PREC_SUFFIX);
12562 fputs_filtered (" in ", stream);
12563 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12564 &type_print_raw_options);
12565 return;
12566
12567 case OP_DISCRETE_RANGE:
12568 print_subexp (exp, pos, stream, PREC_SUFFIX);
12569 fputs_filtered ("..", stream);
12570 print_subexp (exp, pos, stream, PREC_SUFFIX);
12571 return;
12572
12573 case OP_OTHERS:
12574 fputs_filtered ("others => ", stream);
12575 print_subexp (exp, pos, stream, PREC_SUFFIX);
12576 return;
12577
12578 case OP_CHOICES:
12579 for (i = 0; i < nargs-1; i += 1)
12580 {
12581 if (i > 0)
12582 fputs_filtered ("|", stream);
12583 print_subexp (exp, pos, stream, PREC_SUFFIX);
12584 }
12585 fputs_filtered (" => ", stream);
12586 print_subexp (exp, pos, stream, PREC_SUFFIX);
12587 return;
12588
12589 case OP_POSITIONAL:
12590 print_subexp (exp, pos, stream, PREC_SUFFIX);
12591 return;
12592
12593 case OP_AGGREGATE:
12594 fputs_filtered ("(", stream);
12595 for (i = 0; i < nargs; i += 1)
12596 {
12597 if (i > 0)
12598 fputs_filtered (", ", stream);
12599 print_subexp (exp, pos, stream, PREC_SUFFIX);
12600 }
12601 fputs_filtered (")", stream);
12602 return;
12603 }
12604 }
12605
12606 /* Table mapping opcodes into strings for printing operators
12607 and precedences of the operators. */
12608
12609 static const struct op_print ada_op_print_tab[] = {
12610 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12611 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12612 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12613 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12614 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12615 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12616 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12617 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12618 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12619 {">=", BINOP_GEQ, PREC_ORDER, 0},
12620 {">", BINOP_GTR, PREC_ORDER, 0},
12621 {"<", BINOP_LESS, PREC_ORDER, 0},
12622 {">>", BINOP_RSH, PREC_SHIFT, 0},
12623 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12624 {"+", BINOP_ADD, PREC_ADD, 0},
12625 {"-", BINOP_SUB, PREC_ADD, 0},
12626 {"&", BINOP_CONCAT, PREC_ADD, 0},
12627 {"*", BINOP_MUL, PREC_MUL, 0},
12628 {"/", BINOP_DIV, PREC_MUL, 0},
12629 {"rem", BINOP_REM, PREC_MUL, 0},
12630 {"mod", BINOP_MOD, PREC_MUL, 0},
12631 {"**", BINOP_EXP, PREC_REPEAT, 0},
12632 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12633 {"-", UNOP_NEG, PREC_PREFIX, 0},
12634 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12635 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12636 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12637 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12638 {".all", UNOP_IND, PREC_SUFFIX, 1},
12639 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12640 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12641 {NULL, 0, 0, 0}
12642 };
12643 \f
12644 enum ada_primitive_types {
12645 ada_primitive_type_int,
12646 ada_primitive_type_long,
12647 ada_primitive_type_short,
12648 ada_primitive_type_char,
12649 ada_primitive_type_float,
12650 ada_primitive_type_double,
12651 ada_primitive_type_void,
12652 ada_primitive_type_long_long,
12653 ada_primitive_type_long_double,
12654 ada_primitive_type_natural,
12655 ada_primitive_type_positive,
12656 ada_primitive_type_system_address,
12657 nr_ada_primitive_types
12658 };
12659
12660 static void
12661 ada_language_arch_info (struct gdbarch *gdbarch,
12662 struct language_arch_info *lai)
12663 {
12664 const struct builtin_type *builtin = builtin_type (gdbarch);
12665
12666 lai->primitive_type_vector
12667 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12668 struct type *);
12669
12670 lai->primitive_type_vector [ada_primitive_type_int]
12671 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12672 0, "integer");
12673 lai->primitive_type_vector [ada_primitive_type_long]
12674 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12675 0, "long_integer");
12676 lai->primitive_type_vector [ada_primitive_type_short]
12677 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12678 0, "short_integer");
12679 lai->string_char_type
12680 = lai->primitive_type_vector [ada_primitive_type_char]
12681 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12682 lai->primitive_type_vector [ada_primitive_type_float]
12683 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12684 "float", NULL);
12685 lai->primitive_type_vector [ada_primitive_type_double]
12686 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12687 "long_float", NULL);
12688 lai->primitive_type_vector [ada_primitive_type_long_long]
12689 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12690 0, "long_long_integer");
12691 lai->primitive_type_vector [ada_primitive_type_long_double]
12692 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12693 "long_long_float", NULL);
12694 lai->primitive_type_vector [ada_primitive_type_natural]
12695 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12696 0, "natural");
12697 lai->primitive_type_vector [ada_primitive_type_positive]
12698 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12699 0, "positive");
12700 lai->primitive_type_vector [ada_primitive_type_void]
12701 = builtin->builtin_void;
12702
12703 lai->primitive_type_vector [ada_primitive_type_system_address]
12704 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12705 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12706 = "system__address";
12707
12708 lai->bool_type_symbol = NULL;
12709 lai->bool_type_default = builtin->builtin_bool;
12710 }
12711 \f
12712 /* Language vector */
12713
12714 /* Not really used, but needed in the ada_language_defn. */
12715
12716 static void
12717 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12718 {
12719 ada_emit_char (c, type, stream, quoter, 1);
12720 }
12721
12722 static int
12723 parse (void)
12724 {
12725 warnings_issued = 0;
12726 return ada_parse ();
12727 }
12728
12729 static const struct exp_descriptor ada_exp_descriptor = {
12730 ada_print_subexp,
12731 ada_operator_length,
12732 ada_operator_check,
12733 ada_op_name,
12734 ada_dump_subexp_body,
12735 ada_evaluate_subexp
12736 };
12737
12738 /* Implement the "la_get_symbol_name_cmp" language_defn method
12739 for Ada. */
12740
12741 static symbol_name_cmp_ftype
12742 ada_get_symbol_name_cmp (const char *lookup_name)
12743 {
12744 if (should_use_wild_match (lookup_name))
12745 return wild_match;
12746 else
12747 return compare_names;
12748 }
12749
12750 /* Implement the "la_read_var_value" language_defn method for Ada. */
12751
12752 static struct value *
12753 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12754 {
12755 struct block *frame_block = NULL;
12756 struct symbol *renaming_sym = NULL;
12757
12758 /* The only case where default_read_var_value is not sufficient
12759 is when VAR is a renaming... */
12760 if (frame)
12761 frame_block = get_frame_block (frame, NULL);
12762 if (frame_block)
12763 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12764 if (renaming_sym != NULL)
12765 return ada_read_renaming_var_value (renaming_sym, frame_block);
12766
12767 /* This is a typical case where we expect the default_read_var_value
12768 function to work. */
12769 return default_read_var_value (var, frame);
12770 }
12771
12772 const struct language_defn ada_language_defn = {
12773 "ada", /* Language name */
12774 language_ada,
12775 range_check_off,
12776 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12777 that's not quite what this means. */
12778 array_row_major,
12779 macro_expansion_no,
12780 &ada_exp_descriptor,
12781 parse,
12782 ada_error,
12783 resolve,
12784 ada_printchar, /* Print a character constant */
12785 ada_printstr, /* Function to print string constant */
12786 emit_char, /* Function to print single char (not used) */
12787 ada_print_type, /* Print a type using appropriate syntax */
12788 ada_print_typedef, /* Print a typedef using appropriate syntax */
12789 ada_val_print, /* Print a value using appropriate syntax */
12790 ada_value_print, /* Print a top-level value */
12791 ada_read_var_value, /* la_read_var_value */
12792 NULL, /* Language specific skip_trampoline */
12793 NULL, /* name_of_this */
12794 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12795 basic_lookup_transparent_type, /* lookup_transparent_type */
12796 ada_la_decode, /* Language specific symbol demangler */
12797 NULL, /* Language specific
12798 class_name_from_physname */
12799 ada_op_print_tab, /* expression operators for printing */
12800 0, /* c-style arrays */
12801 1, /* String lower bound */
12802 ada_get_gdb_completer_word_break_characters,
12803 ada_make_symbol_completion_list,
12804 ada_language_arch_info,
12805 ada_print_array_index,
12806 default_pass_by_reference,
12807 c_get_string,
12808 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12809 ada_iterate_over_symbols,
12810 LANG_MAGIC
12811 };
12812
12813 /* Provide a prototype to silence -Wmissing-prototypes. */
12814 extern initialize_file_ftype _initialize_ada_language;
12815
12816 /* Command-list for the "set/show ada" prefix command. */
12817 static struct cmd_list_element *set_ada_list;
12818 static struct cmd_list_element *show_ada_list;
12819
12820 /* Implement the "set ada" prefix command. */
12821
12822 static void
12823 set_ada_command (char *arg, int from_tty)
12824 {
12825 printf_unfiltered (_(\
12826 "\"set ada\" must be followed by the name of a setting.\n"));
12827 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12828 }
12829
12830 /* Implement the "show ada" prefix command. */
12831
12832 static void
12833 show_ada_command (char *args, int from_tty)
12834 {
12835 cmd_show_list (show_ada_list, from_tty, "");
12836 }
12837
12838 static void
12839 initialize_ada_catchpoint_ops (void)
12840 {
12841 struct breakpoint_ops *ops;
12842
12843 initialize_breakpoint_ops ();
12844
12845 ops = &catch_exception_breakpoint_ops;
12846 *ops = bkpt_breakpoint_ops;
12847 ops->dtor = dtor_catch_exception;
12848 ops->allocate_location = allocate_location_catch_exception;
12849 ops->re_set = re_set_catch_exception;
12850 ops->check_status = check_status_catch_exception;
12851 ops->print_it = print_it_catch_exception;
12852 ops->print_one = print_one_catch_exception;
12853 ops->print_mention = print_mention_catch_exception;
12854 ops->print_recreate = print_recreate_catch_exception;
12855
12856 ops = &catch_exception_unhandled_breakpoint_ops;
12857 *ops = bkpt_breakpoint_ops;
12858 ops->dtor = dtor_catch_exception_unhandled;
12859 ops->allocate_location = allocate_location_catch_exception_unhandled;
12860 ops->re_set = re_set_catch_exception_unhandled;
12861 ops->check_status = check_status_catch_exception_unhandled;
12862 ops->print_it = print_it_catch_exception_unhandled;
12863 ops->print_one = print_one_catch_exception_unhandled;
12864 ops->print_mention = print_mention_catch_exception_unhandled;
12865 ops->print_recreate = print_recreate_catch_exception_unhandled;
12866
12867 ops = &catch_assert_breakpoint_ops;
12868 *ops = bkpt_breakpoint_ops;
12869 ops->dtor = dtor_catch_assert;
12870 ops->allocate_location = allocate_location_catch_assert;
12871 ops->re_set = re_set_catch_assert;
12872 ops->check_status = check_status_catch_assert;
12873 ops->print_it = print_it_catch_assert;
12874 ops->print_one = print_one_catch_assert;
12875 ops->print_mention = print_mention_catch_assert;
12876 ops->print_recreate = print_recreate_catch_assert;
12877 }
12878
12879 void
12880 _initialize_ada_language (void)
12881 {
12882 add_language (&ada_language_defn);
12883
12884 initialize_ada_catchpoint_ops ();
12885
12886 add_prefix_cmd ("ada", no_class, set_ada_command,
12887 _("Prefix command for changing Ada-specfic settings"),
12888 &set_ada_list, "set ada ", 0, &setlist);
12889
12890 add_prefix_cmd ("ada", no_class, show_ada_command,
12891 _("Generic command for showing Ada-specific settings."),
12892 &show_ada_list, "show ada ", 0, &showlist);
12893
12894 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12895 &trust_pad_over_xvs, _("\
12896 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12897 Show whether an optimization trusting PAD types over XVS types is activated"),
12898 _("\
12899 This is related to the encoding used by the GNAT compiler. The debugger\n\
12900 should normally trust the contents of PAD types, but certain older versions\n\
12901 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12902 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12903 work around this bug. It is always safe to turn this option \"off\", but\n\
12904 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12905 this option to \"off\" unless necessary."),
12906 NULL, NULL, &set_ada_list, &show_ada_list);
12907
12908 add_catch_command ("exception", _("\
12909 Catch Ada exceptions, when raised.\n\
12910 With an argument, catch only exceptions with the given name."),
12911 catch_ada_exception_command,
12912 NULL,
12913 CATCH_PERMANENT,
12914 CATCH_TEMPORARY);
12915 add_catch_command ("assert", _("\
12916 Catch failed Ada assertions, when raised.\n\
12917 With an argument, catch only exceptions with the given name."),
12918 catch_assert_command,
12919 NULL,
12920 CATCH_PERMANENT,
12921 CATCH_TEMPORARY);
12922
12923 varsize_limit = 65536;
12924
12925 obstack_init (&symbol_list_obstack);
12926
12927 decoded_names_store = htab_create_alloc
12928 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12929 NULL, xcalloc, xfree);
12930
12931 /* Setup per-inferior data. */
12932 observer_attach_inferior_exit (ada_inferior_exit);
12933 ada_inferior_data
12934 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
12935 }
This page took 0.40383 seconds and 4 git commands to generate.