* ada-lang.c (resolve): Use per-architecture void type instead
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *, CORE_ADDR *);
105
106 static struct value *convert_actual (struct value *, struct type *,
107 CORE_ADDR *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *,
110 CORE_ADDR *);
111
112 static void ada_add_block_symbols (struct obstack *,
113 struct block *, const char *,
114 domain_enum, struct objfile *, int);
115
116 static int is_nonfunction (struct ada_symbol_info *, int);
117
118 static void add_defn_to_vec (struct obstack *, struct symbol *,
119 struct block *);
120
121 static int num_defns_collected (struct obstack *);
122
123 static struct ada_symbol_info *defns_collected (struct obstack *, int);
124
125 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
126 *, const char *, int,
127 domain_enum, int);
128
129 static struct value *resolve_subexp (struct expression **, int *, int,
130 struct type *);
131
132 static void replace_operator_with_call (struct expression **, int, int, int,
133 struct symbol *, struct block *);
134
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
136
137 static char *ada_op_name (enum exp_opcode);
138
139 static const char *ada_decoded_op_name (enum exp_opcode);
140
141 static int numeric_type_p (struct type *);
142
143 static int integer_type_p (struct type *);
144
145 static int scalar_type_p (struct type *);
146
147 static int discrete_type_p (struct type *);
148
149 static enum ada_renaming_category parse_old_style_renaming (struct type *,
150 const char **,
151 int *,
152 const char **);
153
154 static struct symbol *find_old_style_renaming_symbol (const char *,
155 struct block *);
156
157 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
158 int, int, int *);
159
160 static struct value *evaluate_subexp_type (struct expression *, int *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (char *, struct value *,
171 struct type *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *packed_array_type (struct type *, long *);
179
180 static struct type *decode_packed_array_type (struct type *);
181
182 static struct value *decode_packed_array (struct value *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
188
189 static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
191
192 static struct value *get_var_value (char *, char *);
193
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
195
196 static int equiv_types (struct type *, struct type *);
197
198 static int is_name_suffix (const char *);
199
200 static int wild_match (const char *, int, const char *);
201
202 static struct value *ada_coerce_ref (struct value *);
203
204 static LONGEST pos_atr (struct value *);
205
206 static struct value *value_pos_atr (struct type *, struct value *);
207
208 static struct value *value_val_atr (struct type *, struct value *);
209
210 static struct symbol *standard_lookup (const char *, const struct block *,
211 domain_enum);
212
213 static struct value *ada_search_struct_field (char *, struct value *, int,
214 struct type *);
215
216 static struct value *ada_value_primitive_field (struct value *, int, int,
217 struct type *);
218
219 static int find_struct_field (char *, struct type *, int,
220 struct type **, int *, int *, int *, int *);
221
222 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
223 struct value *);
224
225 static struct value *ada_to_fixed_value (struct value *);
226
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231 static struct value *ada_coerce_to_simple_array (struct value *);
232
233 static int ada_is_direct_array_type (struct type *);
234
235 static void ada_language_arch_info (struct gdbarch *,
236 struct language_arch_info *);
237
238 static void check_size (const struct type *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *, int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270 \f
271
272
273 /* Maximum-sized dynamic type. */
274 static unsigned int varsize_limit;
275
276 /* FIXME: brobecker/2003-09-17: No longer a const because it is
277 returned by a function that does not return a const char *. */
278 static char *ada_completer_word_break_characters =
279 #ifdef VMS
280 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281 #else
282 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
283 #endif
284
285 /* The name of the symbol to use to get the name of the main subprogram. */
286 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
287 = "__gnat_ada_main_program_name";
288
289 /* Limit on the number of warnings to raise per expression evaluation. */
290 static int warning_limit = 2;
291
292 /* Number of warning messages issued; reset to 0 by cleanups after
293 expression evaluation. */
294 static int warnings_issued = 0;
295
296 static const char *known_runtime_file_name_patterns[] = {
297 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298 };
299
300 static const char *known_auxiliary_function_name_patterns[] = {
301 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302 };
303
304 /* Space for allocating results of ada_lookup_symbol_list. */
305 static struct obstack symbol_list_obstack;
306
307 /* Utilities */
308
309 /* Given DECODED_NAME a string holding a symbol name in its
310 decoded form (ie using the Ada dotted notation), returns
311 its unqualified name. */
312
313 static const char *
314 ada_unqualified_name (const char *decoded_name)
315 {
316 const char *result = strrchr (decoded_name, '.');
317
318 if (result != NULL)
319 result++; /* Skip the dot... */
320 else
321 result = decoded_name;
322
323 return result;
324 }
325
326 /* Return a string starting with '<', followed by STR, and '>'.
327 The result is good until the next call. */
328
329 static char *
330 add_angle_brackets (const char *str)
331 {
332 static char *result = NULL;
333
334 xfree (result);
335 result = xstrprintf ("<%s>", str);
336 return result;
337 }
338
339 static char *
340 ada_get_gdb_completer_word_break_characters (void)
341 {
342 return ada_completer_word_break_characters;
343 }
344
345 /* Print an array element index using the Ada syntax. */
346
347 static void
348 ada_print_array_index (struct value *index_value, struct ui_file *stream,
349 const struct value_print_options *options)
350 {
351 LA_VALUE_PRINT (index_value, stream, options);
352 fprintf_filtered (stream, " => ");
353 }
354
355 /* Read the string located at ADDR from the inferior and store the
356 result into BUF. */
357
358 static void
359 extract_string (CORE_ADDR addr, char *buf)
360 {
361 int char_index = 0;
362
363 /* Loop, reading one byte at a time, until we reach the '\000'
364 end-of-string marker. */
365 do
366 {
367 target_read_memory (addr + char_index * sizeof (char),
368 buf + char_index * sizeof (char), sizeof (char));
369 char_index++;
370 }
371 while (buf[char_index - 1] != '\000');
372 }
373
374 /* Assuming VECT points to an array of *SIZE objects of size
375 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
376 updating *SIZE as necessary and returning the (new) array. */
377
378 void *
379 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
380 {
381 if (*size < min_size)
382 {
383 *size *= 2;
384 if (*size < min_size)
385 *size = min_size;
386 vect = xrealloc (vect, *size * element_size);
387 }
388 return vect;
389 }
390
391 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
392 suffix of FIELD_NAME beginning "___". */
393
394 static int
395 field_name_match (const char *field_name, const char *target)
396 {
397 int len = strlen (target);
398 return
399 (strncmp (field_name, target, len) == 0
400 && (field_name[len] == '\0'
401 || (strncmp (field_name + len, "___", 3) == 0
402 && strcmp (field_name + strlen (field_name) - 6,
403 "___XVN") != 0)));
404 }
405
406
407 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
408 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
409 and return its index. This function also handles fields whose name
410 have ___ suffixes because the compiler sometimes alters their name
411 by adding such a suffix to represent fields with certain constraints.
412 If the field could not be found, return a negative number if
413 MAYBE_MISSING is set. Otherwise raise an error. */
414
415 int
416 ada_get_field_index (const struct type *type, const char *field_name,
417 int maybe_missing)
418 {
419 int fieldno;
420 struct type *struct_type = check_typedef ((struct type *) type);
421
422 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
423 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
424 return fieldno;
425
426 if (!maybe_missing)
427 error (_("Unable to find field %s in struct %s. Aborting"),
428 field_name, TYPE_NAME (struct_type));
429
430 return -1;
431 }
432
433 /* The length of the prefix of NAME prior to any "___" suffix. */
434
435 int
436 ada_name_prefix_len (const char *name)
437 {
438 if (name == NULL)
439 return 0;
440 else
441 {
442 const char *p = strstr (name, "___");
443 if (p == NULL)
444 return strlen (name);
445 else
446 return p - name;
447 }
448 }
449
450 /* Return non-zero if SUFFIX is a suffix of STR.
451 Return zero if STR is null. */
452
453 static int
454 is_suffix (const char *str, const char *suffix)
455 {
456 int len1, len2;
457 if (str == NULL)
458 return 0;
459 len1 = strlen (str);
460 len2 = strlen (suffix);
461 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
462 }
463
464 /* The contents of value VAL, treated as a value of type TYPE. The
465 result is an lval in memory if VAL is. */
466
467 static struct value *
468 coerce_unspec_val_to_type (struct value *val, struct type *type)
469 {
470 type = ada_check_typedef (type);
471 if (value_type (val) == type)
472 return val;
473 else
474 {
475 struct value *result;
476
477 /* Make sure that the object size is not unreasonable before
478 trying to allocate some memory for it. */
479 check_size (type);
480
481 result = allocate_value (type);
482 set_value_component_location (result, val);
483 set_value_bitsize (result, value_bitsize (val));
484 set_value_bitpos (result, value_bitpos (val));
485 set_value_address (result, value_address (val));
486 if (value_lazy (val)
487 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
488 set_value_lazy (result, 1);
489 else
490 memcpy (value_contents_raw (result), value_contents (val),
491 TYPE_LENGTH (type));
492 return result;
493 }
494 }
495
496 static const gdb_byte *
497 cond_offset_host (const gdb_byte *valaddr, long offset)
498 {
499 if (valaddr == NULL)
500 return NULL;
501 else
502 return valaddr + offset;
503 }
504
505 static CORE_ADDR
506 cond_offset_target (CORE_ADDR address, long offset)
507 {
508 if (address == 0)
509 return 0;
510 else
511 return address + offset;
512 }
513
514 /* Issue a warning (as for the definition of warning in utils.c, but
515 with exactly one argument rather than ...), unless the limit on the
516 number of warnings has passed during the evaluation of the current
517 expression. */
518
519 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
520 provided by "complaint". */
521 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
522
523 static void
524 lim_warning (const char *format, ...)
525 {
526 va_list args;
527 va_start (args, format);
528
529 warnings_issued += 1;
530 if (warnings_issued <= warning_limit)
531 vwarning (format, args);
532
533 va_end (args);
534 }
535
536 /* Issue an error if the size of an object of type T is unreasonable,
537 i.e. if it would be a bad idea to allocate a value of this type in
538 GDB. */
539
540 static void
541 check_size (const struct type *type)
542 {
543 if (TYPE_LENGTH (type) > varsize_limit)
544 error (_("object size is larger than varsize-limit"));
545 }
546
547
548 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
549 gdbtypes.h, but some of the necessary definitions in that file
550 seem to have gone missing. */
551
552 /* Maximum value of a SIZE-byte signed integer type. */
553 static LONGEST
554 max_of_size (int size)
555 {
556 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
557 return top_bit | (top_bit - 1);
558 }
559
560 /* Minimum value of a SIZE-byte signed integer type. */
561 static LONGEST
562 min_of_size (int size)
563 {
564 return -max_of_size (size) - 1;
565 }
566
567 /* Maximum value of a SIZE-byte unsigned integer type. */
568 static ULONGEST
569 umax_of_size (int size)
570 {
571 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
572 return top_bit | (top_bit - 1);
573 }
574
575 /* Maximum value of integral type T, as a signed quantity. */
576 static LONGEST
577 max_of_type (struct type *t)
578 {
579 if (TYPE_UNSIGNED (t))
580 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
581 else
582 return max_of_size (TYPE_LENGTH (t));
583 }
584
585 /* Minimum value of integral type T, as a signed quantity. */
586 static LONGEST
587 min_of_type (struct type *t)
588 {
589 if (TYPE_UNSIGNED (t))
590 return 0;
591 else
592 return min_of_size (TYPE_LENGTH (t));
593 }
594
595 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
596 static LONGEST
597 discrete_type_high_bound (struct type *type)
598 {
599 switch (TYPE_CODE (type))
600 {
601 case TYPE_CODE_RANGE:
602 return TYPE_HIGH_BOUND (type);
603 case TYPE_CODE_ENUM:
604 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
605 case TYPE_CODE_BOOL:
606 return 1;
607 case TYPE_CODE_CHAR:
608 case TYPE_CODE_INT:
609 return max_of_type (type);
610 default:
611 error (_("Unexpected type in discrete_type_high_bound."));
612 }
613 }
614
615 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
616 static LONGEST
617 discrete_type_low_bound (struct type *type)
618 {
619 switch (TYPE_CODE (type))
620 {
621 case TYPE_CODE_RANGE:
622 return TYPE_LOW_BOUND (type);
623 case TYPE_CODE_ENUM:
624 return TYPE_FIELD_BITPOS (type, 0);
625 case TYPE_CODE_BOOL:
626 return 0;
627 case TYPE_CODE_CHAR:
628 case TYPE_CODE_INT:
629 return min_of_type (type);
630 default:
631 error (_("Unexpected type in discrete_type_low_bound."));
632 }
633 }
634
635 /* The identity on non-range types. For range types, the underlying
636 non-range scalar type. */
637
638 static struct type *
639 base_type (struct type *type)
640 {
641 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
642 {
643 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
644 return type;
645 type = TYPE_TARGET_TYPE (type);
646 }
647 return type;
648 }
649 \f
650
651 /* Language Selection */
652
653 /* If the main program is in Ada, return language_ada, otherwise return LANG
654 (the main program is in Ada iif the adainit symbol is found).
655
656 MAIN_PST is not used. */
657
658 enum language
659 ada_update_initial_language (enum language lang,
660 struct partial_symtab *main_pst)
661 {
662 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
663 (struct objfile *) NULL) != NULL)
664 return language_ada;
665
666 return lang;
667 }
668
669 /* If the main procedure is written in Ada, then return its name.
670 The result is good until the next call. Return NULL if the main
671 procedure doesn't appear to be in Ada. */
672
673 char *
674 ada_main_name (void)
675 {
676 struct minimal_symbol *msym;
677 static char *main_program_name = NULL;
678
679 /* For Ada, the name of the main procedure is stored in a specific
680 string constant, generated by the binder. Look for that symbol,
681 extract its address, and then read that string. If we didn't find
682 that string, then most probably the main procedure is not written
683 in Ada. */
684 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
685
686 if (msym != NULL)
687 {
688 CORE_ADDR main_program_name_addr;
689 int err_code;
690
691 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
692 if (main_program_name_addr == 0)
693 error (_("Invalid address for Ada main program name."));
694
695 xfree (main_program_name);
696 target_read_string (main_program_name_addr, &main_program_name,
697 1024, &err_code);
698
699 if (err_code != 0)
700 return NULL;
701 return main_program_name;
702 }
703
704 /* The main procedure doesn't seem to be in Ada. */
705 return NULL;
706 }
707 \f
708 /* Symbols */
709
710 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
711 of NULLs. */
712
713 const struct ada_opname_map ada_opname_table[] = {
714 {"Oadd", "\"+\"", BINOP_ADD},
715 {"Osubtract", "\"-\"", BINOP_SUB},
716 {"Omultiply", "\"*\"", BINOP_MUL},
717 {"Odivide", "\"/\"", BINOP_DIV},
718 {"Omod", "\"mod\"", BINOP_MOD},
719 {"Orem", "\"rem\"", BINOP_REM},
720 {"Oexpon", "\"**\"", BINOP_EXP},
721 {"Olt", "\"<\"", BINOP_LESS},
722 {"Ole", "\"<=\"", BINOP_LEQ},
723 {"Ogt", "\">\"", BINOP_GTR},
724 {"Oge", "\">=\"", BINOP_GEQ},
725 {"Oeq", "\"=\"", BINOP_EQUAL},
726 {"One", "\"/=\"", BINOP_NOTEQUAL},
727 {"Oand", "\"and\"", BINOP_BITWISE_AND},
728 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
729 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
730 {"Oconcat", "\"&\"", BINOP_CONCAT},
731 {"Oabs", "\"abs\"", UNOP_ABS},
732 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
733 {"Oadd", "\"+\"", UNOP_PLUS},
734 {"Osubtract", "\"-\"", UNOP_NEG},
735 {NULL, NULL}
736 };
737
738 /* The "encoded" form of DECODED, according to GNAT conventions.
739 The result is valid until the next call to ada_encode. */
740
741 char *
742 ada_encode (const char *decoded)
743 {
744 static char *encoding_buffer = NULL;
745 static size_t encoding_buffer_size = 0;
746 const char *p;
747 int k;
748
749 if (decoded == NULL)
750 return NULL;
751
752 GROW_VECT (encoding_buffer, encoding_buffer_size,
753 2 * strlen (decoded) + 10);
754
755 k = 0;
756 for (p = decoded; *p != '\0'; p += 1)
757 {
758 if (*p == '.')
759 {
760 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
761 k += 2;
762 }
763 else if (*p == '"')
764 {
765 const struct ada_opname_map *mapping;
766
767 for (mapping = ada_opname_table;
768 mapping->encoded != NULL
769 && strncmp (mapping->decoded, p,
770 strlen (mapping->decoded)) != 0; mapping += 1)
771 ;
772 if (mapping->encoded == NULL)
773 error (_("invalid Ada operator name: %s"), p);
774 strcpy (encoding_buffer + k, mapping->encoded);
775 k += strlen (mapping->encoded);
776 break;
777 }
778 else
779 {
780 encoding_buffer[k] = *p;
781 k += 1;
782 }
783 }
784
785 encoding_buffer[k] = '\0';
786 return encoding_buffer;
787 }
788
789 /* Return NAME folded to lower case, or, if surrounded by single
790 quotes, unfolded, but with the quotes stripped away. Result good
791 to next call. */
792
793 char *
794 ada_fold_name (const char *name)
795 {
796 static char *fold_buffer = NULL;
797 static size_t fold_buffer_size = 0;
798
799 int len = strlen (name);
800 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
801
802 if (name[0] == '\'')
803 {
804 strncpy (fold_buffer, name + 1, len - 2);
805 fold_buffer[len - 2] = '\000';
806 }
807 else
808 {
809 int i;
810 for (i = 0; i <= len; i += 1)
811 fold_buffer[i] = tolower (name[i]);
812 }
813
814 return fold_buffer;
815 }
816
817 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
818
819 static int
820 is_lower_alphanum (const char c)
821 {
822 return (isdigit (c) || (isalpha (c) && islower (c)));
823 }
824
825 /* Remove either of these suffixes:
826 . .{DIGIT}+
827 . ${DIGIT}+
828 . ___{DIGIT}+
829 . __{DIGIT}+.
830 These are suffixes introduced by the compiler for entities such as
831 nested subprogram for instance, in order to avoid name clashes.
832 They do not serve any purpose for the debugger. */
833
834 static void
835 ada_remove_trailing_digits (const char *encoded, int *len)
836 {
837 if (*len > 1 && isdigit (encoded[*len - 1]))
838 {
839 int i = *len - 2;
840 while (i > 0 && isdigit (encoded[i]))
841 i--;
842 if (i >= 0 && encoded[i] == '.')
843 *len = i;
844 else if (i >= 0 && encoded[i] == '$')
845 *len = i;
846 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
847 *len = i - 2;
848 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
849 *len = i - 1;
850 }
851 }
852
853 /* Remove the suffix introduced by the compiler for protected object
854 subprograms. */
855
856 static void
857 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
858 {
859 /* Remove trailing N. */
860
861 /* Protected entry subprograms are broken into two
862 separate subprograms: The first one is unprotected, and has
863 a 'N' suffix; the second is the protected version, and has
864 the 'P' suffix. The second calls the first one after handling
865 the protection. Since the P subprograms are internally generated,
866 we leave these names undecoded, giving the user a clue that this
867 entity is internal. */
868
869 if (*len > 1
870 && encoded[*len - 1] == 'N'
871 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
872 *len = *len - 1;
873 }
874
875 /* If ENCODED follows the GNAT entity encoding conventions, then return
876 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
877 replaced by ENCODED.
878
879 The resulting string is valid until the next call of ada_decode.
880 If the string is unchanged by decoding, the original string pointer
881 is returned. */
882
883 const char *
884 ada_decode (const char *encoded)
885 {
886 int i, j;
887 int len0;
888 const char *p;
889 char *decoded;
890 int at_start_name;
891 static char *decoding_buffer = NULL;
892 static size_t decoding_buffer_size = 0;
893
894 /* The name of the Ada main procedure starts with "_ada_".
895 This prefix is not part of the decoded name, so skip this part
896 if we see this prefix. */
897 if (strncmp (encoded, "_ada_", 5) == 0)
898 encoded += 5;
899
900 /* If the name starts with '_', then it is not a properly encoded
901 name, so do not attempt to decode it. Similarly, if the name
902 starts with '<', the name should not be decoded. */
903 if (encoded[0] == '_' || encoded[0] == '<')
904 goto Suppress;
905
906 len0 = strlen (encoded);
907
908 ada_remove_trailing_digits (encoded, &len0);
909 ada_remove_po_subprogram_suffix (encoded, &len0);
910
911 /* Remove the ___X.* suffix if present. Do not forget to verify that
912 the suffix is located before the current "end" of ENCODED. We want
913 to avoid re-matching parts of ENCODED that have previously been
914 marked as discarded (by decrementing LEN0). */
915 p = strstr (encoded, "___");
916 if (p != NULL && p - encoded < len0 - 3)
917 {
918 if (p[3] == 'X')
919 len0 = p - encoded;
920 else
921 goto Suppress;
922 }
923
924 /* Remove any trailing TKB suffix. It tells us that this symbol
925 is for the body of a task, but that information does not actually
926 appear in the decoded name. */
927
928 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
929 len0 -= 3;
930
931 /* Remove trailing "B" suffixes. */
932 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
933
934 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
935 len0 -= 1;
936
937 /* Make decoded big enough for possible expansion by operator name. */
938
939 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
940 decoded = decoding_buffer;
941
942 /* Remove trailing __{digit}+ or trailing ${digit}+. */
943
944 if (len0 > 1 && isdigit (encoded[len0 - 1]))
945 {
946 i = len0 - 2;
947 while ((i >= 0 && isdigit (encoded[i]))
948 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
949 i -= 1;
950 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
951 len0 = i - 1;
952 else if (encoded[i] == '$')
953 len0 = i;
954 }
955
956 /* The first few characters that are not alphabetic are not part
957 of any encoding we use, so we can copy them over verbatim. */
958
959 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
960 decoded[j] = encoded[i];
961
962 at_start_name = 1;
963 while (i < len0)
964 {
965 /* Is this a symbol function? */
966 if (at_start_name && encoded[i] == 'O')
967 {
968 int k;
969 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
970 {
971 int op_len = strlen (ada_opname_table[k].encoded);
972 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
973 op_len - 1) == 0)
974 && !isalnum (encoded[i + op_len]))
975 {
976 strcpy (decoded + j, ada_opname_table[k].decoded);
977 at_start_name = 0;
978 i += op_len;
979 j += strlen (ada_opname_table[k].decoded);
980 break;
981 }
982 }
983 if (ada_opname_table[k].encoded != NULL)
984 continue;
985 }
986 at_start_name = 0;
987
988 /* Replace "TK__" with "__", which will eventually be translated
989 into "." (just below). */
990
991 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
992 i += 2;
993
994 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
995 be translated into "." (just below). These are internal names
996 generated for anonymous blocks inside which our symbol is nested. */
997
998 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
999 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1000 && isdigit (encoded [i+4]))
1001 {
1002 int k = i + 5;
1003
1004 while (k < len0 && isdigit (encoded[k]))
1005 k++; /* Skip any extra digit. */
1006
1007 /* Double-check that the "__B_{DIGITS}+" sequence we found
1008 is indeed followed by "__". */
1009 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1010 i = k;
1011 }
1012
1013 /* Remove _E{DIGITS}+[sb] */
1014
1015 /* Just as for protected object subprograms, there are 2 categories
1016 of subprograms created by the compiler for each entry. The first
1017 one implements the actual entry code, and has a suffix following
1018 the convention above; the second one implements the barrier and
1019 uses the same convention as above, except that the 'E' is replaced
1020 by a 'B'.
1021
1022 Just as above, we do not decode the name of barrier functions
1023 to give the user a clue that the code he is debugging has been
1024 internally generated. */
1025
1026 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1027 && isdigit (encoded[i+2]))
1028 {
1029 int k = i + 3;
1030
1031 while (k < len0 && isdigit (encoded[k]))
1032 k++;
1033
1034 if (k < len0
1035 && (encoded[k] == 'b' || encoded[k] == 's'))
1036 {
1037 k++;
1038 /* Just as an extra precaution, make sure that if this
1039 suffix is followed by anything else, it is a '_'.
1040 Otherwise, we matched this sequence by accident. */
1041 if (k == len0
1042 || (k < len0 && encoded[k] == '_'))
1043 i = k;
1044 }
1045 }
1046
1047 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1048 the GNAT front-end in protected object subprograms. */
1049
1050 if (i < len0 + 3
1051 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1052 {
1053 /* Backtrack a bit up until we reach either the begining of
1054 the encoded name, or "__". Make sure that we only find
1055 digits or lowercase characters. */
1056 const char *ptr = encoded + i - 1;
1057
1058 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1059 ptr--;
1060 if (ptr < encoded
1061 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1062 i++;
1063 }
1064
1065 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1066 {
1067 /* This is a X[bn]* sequence not separated from the previous
1068 part of the name with a non-alpha-numeric character (in other
1069 words, immediately following an alpha-numeric character), then
1070 verify that it is placed at the end of the encoded name. If
1071 not, then the encoding is not valid and we should abort the
1072 decoding. Otherwise, just skip it, it is used in body-nested
1073 package names. */
1074 do
1075 i += 1;
1076 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1077 if (i < len0)
1078 goto Suppress;
1079 }
1080 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1081 {
1082 /* Replace '__' by '.'. */
1083 decoded[j] = '.';
1084 at_start_name = 1;
1085 i += 2;
1086 j += 1;
1087 }
1088 else
1089 {
1090 /* It's a character part of the decoded name, so just copy it
1091 over. */
1092 decoded[j] = encoded[i];
1093 i += 1;
1094 j += 1;
1095 }
1096 }
1097 decoded[j] = '\000';
1098
1099 /* Decoded names should never contain any uppercase character.
1100 Double-check this, and abort the decoding if we find one. */
1101
1102 for (i = 0; decoded[i] != '\0'; i += 1)
1103 if (isupper (decoded[i]) || decoded[i] == ' ')
1104 goto Suppress;
1105
1106 if (strcmp (decoded, encoded) == 0)
1107 return encoded;
1108 else
1109 return decoded;
1110
1111 Suppress:
1112 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1113 decoded = decoding_buffer;
1114 if (encoded[0] == '<')
1115 strcpy (decoded, encoded);
1116 else
1117 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1118 return decoded;
1119
1120 }
1121
1122 /* Table for keeping permanent unique copies of decoded names. Once
1123 allocated, names in this table are never released. While this is a
1124 storage leak, it should not be significant unless there are massive
1125 changes in the set of decoded names in successive versions of a
1126 symbol table loaded during a single session. */
1127 static struct htab *decoded_names_store;
1128
1129 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1130 in the language-specific part of GSYMBOL, if it has not been
1131 previously computed. Tries to save the decoded name in the same
1132 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1133 in any case, the decoded symbol has a lifetime at least that of
1134 GSYMBOL).
1135 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1136 const, but nevertheless modified to a semantically equivalent form
1137 when a decoded name is cached in it.
1138 */
1139
1140 char *
1141 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1142 {
1143 char **resultp =
1144 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1145 if (*resultp == NULL)
1146 {
1147 const char *decoded = ada_decode (gsymbol->name);
1148 if (gsymbol->obj_section != NULL)
1149 {
1150 struct objfile *objf = gsymbol->obj_section->objfile;
1151 *resultp = obsavestring (decoded, strlen (decoded),
1152 &objf->objfile_obstack);
1153 }
1154 /* Sometimes, we can't find a corresponding objfile, in which
1155 case, we put the result on the heap. Since we only decode
1156 when needed, we hope this usually does not cause a
1157 significant memory leak (FIXME). */
1158 if (*resultp == NULL)
1159 {
1160 char **slot = (char **) htab_find_slot (decoded_names_store,
1161 decoded, INSERT);
1162 if (*slot == NULL)
1163 *slot = xstrdup (decoded);
1164 *resultp = *slot;
1165 }
1166 }
1167
1168 return *resultp;
1169 }
1170
1171 static char *
1172 ada_la_decode (const char *encoded, int options)
1173 {
1174 return xstrdup (ada_decode (encoded));
1175 }
1176
1177 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1178 suffixes that encode debugging information or leading _ada_ on
1179 SYM_NAME (see is_name_suffix commentary for the debugging
1180 information that is ignored). If WILD, then NAME need only match a
1181 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1182 either argument is NULL. */
1183
1184 static int
1185 ada_match_name (const char *sym_name, const char *name, int wild)
1186 {
1187 if (sym_name == NULL || name == NULL)
1188 return 0;
1189 else if (wild)
1190 return wild_match (name, strlen (name), sym_name);
1191 else
1192 {
1193 int len_name = strlen (name);
1194 return (strncmp (sym_name, name, len_name) == 0
1195 && is_name_suffix (sym_name + len_name))
1196 || (strncmp (sym_name, "_ada_", 5) == 0
1197 && strncmp (sym_name + 5, name, len_name) == 0
1198 && is_name_suffix (sym_name + len_name + 5));
1199 }
1200 }
1201 \f
1202
1203 /* Arrays */
1204
1205 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1206
1207 static char *bound_name[] = {
1208 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1209 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1210 };
1211
1212 /* Maximum number of array dimensions we are prepared to handle. */
1213
1214 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1215
1216 /* Like modify_field, but allows bitpos > wordlength. */
1217
1218 static void
1219 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1220 {
1221 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1222 }
1223
1224
1225 /* The desc_* routines return primitive portions of array descriptors
1226 (fat pointers). */
1227
1228 /* The descriptor or array type, if any, indicated by TYPE; removes
1229 level of indirection, if needed. */
1230
1231 static struct type *
1232 desc_base_type (struct type *type)
1233 {
1234 if (type == NULL)
1235 return NULL;
1236 type = ada_check_typedef (type);
1237 if (type != NULL
1238 && (TYPE_CODE (type) == TYPE_CODE_PTR
1239 || TYPE_CODE (type) == TYPE_CODE_REF))
1240 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1241 else
1242 return type;
1243 }
1244
1245 /* True iff TYPE indicates a "thin" array pointer type. */
1246
1247 static int
1248 is_thin_pntr (struct type *type)
1249 {
1250 return
1251 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1252 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1253 }
1254
1255 /* The descriptor type for thin pointer type TYPE. */
1256
1257 static struct type *
1258 thin_descriptor_type (struct type *type)
1259 {
1260 struct type *base_type = desc_base_type (type);
1261 if (base_type == NULL)
1262 return NULL;
1263 if (is_suffix (ada_type_name (base_type), "___XVE"))
1264 return base_type;
1265 else
1266 {
1267 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1268 if (alt_type == NULL)
1269 return base_type;
1270 else
1271 return alt_type;
1272 }
1273 }
1274
1275 /* A pointer to the array data for thin-pointer value VAL. */
1276
1277 static struct value *
1278 thin_data_pntr (struct value *val)
1279 {
1280 struct type *type = value_type (val);
1281 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1282 data_type = lookup_pointer_type (data_type);
1283
1284 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1285 return value_cast (data_type, value_copy (val));
1286 else
1287 return value_from_longest (data_type, value_address (val));
1288 }
1289
1290 /* True iff TYPE indicates a "thick" array pointer type. */
1291
1292 static int
1293 is_thick_pntr (struct type *type)
1294 {
1295 type = desc_base_type (type);
1296 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1297 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1298 }
1299
1300 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1301 pointer to one, the type of its bounds data; otherwise, NULL. */
1302
1303 static struct type *
1304 desc_bounds_type (struct type *type)
1305 {
1306 struct type *r;
1307
1308 type = desc_base_type (type);
1309
1310 if (type == NULL)
1311 return NULL;
1312 else if (is_thin_pntr (type))
1313 {
1314 type = thin_descriptor_type (type);
1315 if (type == NULL)
1316 return NULL;
1317 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1318 if (r != NULL)
1319 return ada_check_typedef (r);
1320 }
1321 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1322 {
1323 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1324 if (r != NULL)
1325 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1326 }
1327 return NULL;
1328 }
1329
1330 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1331 one, a pointer to its bounds data. Otherwise NULL. */
1332
1333 static struct value *
1334 desc_bounds (struct value *arr)
1335 {
1336 struct type *type = ada_check_typedef (value_type (arr));
1337 if (is_thin_pntr (type))
1338 {
1339 struct type *bounds_type =
1340 desc_bounds_type (thin_descriptor_type (type));
1341 LONGEST addr;
1342
1343 if (bounds_type == NULL)
1344 error (_("Bad GNAT array descriptor"));
1345
1346 /* NOTE: The following calculation is not really kosher, but
1347 since desc_type is an XVE-encoded type (and shouldn't be),
1348 the correct calculation is a real pain. FIXME (and fix GCC). */
1349 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1350 addr = value_as_long (arr);
1351 else
1352 addr = value_address (arr);
1353
1354 return
1355 value_from_longest (lookup_pointer_type (bounds_type),
1356 addr - TYPE_LENGTH (bounds_type));
1357 }
1358
1359 else if (is_thick_pntr (type))
1360 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1361 _("Bad GNAT array descriptor"));
1362 else
1363 return NULL;
1364 }
1365
1366 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1367 position of the field containing the address of the bounds data. */
1368
1369 static int
1370 fat_pntr_bounds_bitpos (struct type *type)
1371 {
1372 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1373 }
1374
1375 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1376 size of the field containing the address of the bounds data. */
1377
1378 static int
1379 fat_pntr_bounds_bitsize (struct type *type)
1380 {
1381 type = desc_base_type (type);
1382
1383 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1384 return TYPE_FIELD_BITSIZE (type, 1);
1385 else
1386 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1387 }
1388
1389 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1390 pointer to one, the type of its array data (a array-with-no-bounds type);
1391 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1392 data. */
1393
1394 static struct type *
1395 desc_data_target_type (struct type *type)
1396 {
1397 type = desc_base_type (type);
1398
1399 /* NOTE: The following is bogus; see comment in desc_bounds. */
1400 if (is_thin_pntr (type))
1401 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1402 else if (is_thick_pntr (type))
1403 {
1404 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1405
1406 if (data_type
1407 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1408 return TYPE_TARGET_TYPE (data_type);
1409 }
1410
1411 return NULL;
1412 }
1413
1414 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1415 its array data. */
1416
1417 static struct value *
1418 desc_data (struct value *arr)
1419 {
1420 struct type *type = value_type (arr);
1421 if (is_thin_pntr (type))
1422 return thin_data_pntr (arr);
1423 else if (is_thick_pntr (type))
1424 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1425 _("Bad GNAT array descriptor"));
1426 else
1427 return NULL;
1428 }
1429
1430
1431 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1432 position of the field containing the address of the data. */
1433
1434 static int
1435 fat_pntr_data_bitpos (struct type *type)
1436 {
1437 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1438 }
1439
1440 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1441 size of the field containing the address of the data. */
1442
1443 static int
1444 fat_pntr_data_bitsize (struct type *type)
1445 {
1446 type = desc_base_type (type);
1447
1448 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1449 return TYPE_FIELD_BITSIZE (type, 0);
1450 else
1451 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1452 }
1453
1454 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1455 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1456 bound, if WHICH is 1. The first bound is I=1. */
1457
1458 static struct value *
1459 desc_one_bound (struct value *bounds, int i, int which)
1460 {
1461 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1462 _("Bad GNAT array descriptor bounds"));
1463 }
1464
1465 /* If BOUNDS is an array-bounds structure type, return the bit position
1466 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1467 bound, if WHICH is 1. The first bound is I=1. */
1468
1469 static int
1470 desc_bound_bitpos (struct type *type, int i, int which)
1471 {
1472 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1473 }
1474
1475 /* If BOUNDS is an array-bounds structure type, return the bit field size
1476 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1477 bound, if WHICH is 1. The first bound is I=1. */
1478
1479 static int
1480 desc_bound_bitsize (struct type *type, int i, int which)
1481 {
1482 type = desc_base_type (type);
1483
1484 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1485 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1486 else
1487 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1488 }
1489
1490 /* If TYPE is the type of an array-bounds structure, the type of its
1491 Ith bound (numbering from 1). Otherwise, NULL. */
1492
1493 static struct type *
1494 desc_index_type (struct type *type, int i)
1495 {
1496 type = desc_base_type (type);
1497
1498 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1499 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1500 else
1501 return NULL;
1502 }
1503
1504 /* The number of index positions in the array-bounds type TYPE.
1505 Return 0 if TYPE is NULL. */
1506
1507 static int
1508 desc_arity (struct type *type)
1509 {
1510 type = desc_base_type (type);
1511
1512 if (type != NULL)
1513 return TYPE_NFIELDS (type) / 2;
1514 return 0;
1515 }
1516
1517 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1518 an array descriptor type (representing an unconstrained array
1519 type). */
1520
1521 static int
1522 ada_is_direct_array_type (struct type *type)
1523 {
1524 if (type == NULL)
1525 return 0;
1526 type = ada_check_typedef (type);
1527 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1528 || ada_is_array_descriptor_type (type));
1529 }
1530
1531 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1532 * to one. */
1533
1534 static int
1535 ada_is_array_type (struct type *type)
1536 {
1537 while (type != NULL
1538 && (TYPE_CODE (type) == TYPE_CODE_PTR
1539 || TYPE_CODE (type) == TYPE_CODE_REF))
1540 type = TYPE_TARGET_TYPE (type);
1541 return ada_is_direct_array_type (type);
1542 }
1543
1544 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1545
1546 int
1547 ada_is_simple_array_type (struct type *type)
1548 {
1549 if (type == NULL)
1550 return 0;
1551 type = ada_check_typedef (type);
1552 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1553 || (TYPE_CODE (type) == TYPE_CODE_PTR
1554 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1555 }
1556
1557 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1558
1559 int
1560 ada_is_array_descriptor_type (struct type *type)
1561 {
1562 struct type *data_type = desc_data_target_type (type);
1563
1564 if (type == NULL)
1565 return 0;
1566 type = ada_check_typedef (type);
1567 return (data_type != NULL
1568 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1569 && desc_arity (desc_bounds_type (type)) > 0);
1570 }
1571
1572 /* Non-zero iff type is a partially mal-formed GNAT array
1573 descriptor. FIXME: This is to compensate for some problems with
1574 debugging output from GNAT. Re-examine periodically to see if it
1575 is still needed. */
1576
1577 int
1578 ada_is_bogus_array_descriptor (struct type *type)
1579 {
1580 return
1581 type != NULL
1582 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1583 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1584 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1585 && !ada_is_array_descriptor_type (type);
1586 }
1587
1588
1589 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1590 (fat pointer) returns the type of the array data described---specifically,
1591 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1592 in from the descriptor; otherwise, they are left unspecified. If
1593 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1594 returns NULL. The result is simply the type of ARR if ARR is not
1595 a descriptor. */
1596 struct type *
1597 ada_type_of_array (struct value *arr, int bounds)
1598 {
1599 if (ada_is_packed_array_type (value_type (arr)))
1600 return decode_packed_array_type (value_type (arr));
1601
1602 if (!ada_is_array_descriptor_type (value_type (arr)))
1603 return value_type (arr);
1604
1605 if (!bounds)
1606 return
1607 ada_check_typedef (desc_data_target_type (value_type (arr)));
1608 else
1609 {
1610 struct type *elt_type;
1611 int arity;
1612 struct value *descriptor;
1613 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1614
1615 elt_type = ada_array_element_type (value_type (arr), -1);
1616 arity = ada_array_arity (value_type (arr));
1617
1618 if (elt_type == NULL || arity == 0)
1619 return ada_check_typedef (value_type (arr));
1620
1621 descriptor = desc_bounds (arr);
1622 if (value_as_long (descriptor) == 0)
1623 return NULL;
1624 while (arity > 0)
1625 {
1626 struct type *range_type = alloc_type (objf);
1627 struct type *array_type = alloc_type (objf);
1628 struct value *low = desc_one_bound (descriptor, arity, 0);
1629 struct value *high = desc_one_bound (descriptor, arity, 1);
1630 arity -= 1;
1631
1632 create_range_type (range_type, value_type (low),
1633 longest_to_int (value_as_long (low)),
1634 longest_to_int (value_as_long (high)));
1635 elt_type = create_array_type (array_type, elt_type, range_type);
1636 }
1637
1638 return lookup_pointer_type (elt_type);
1639 }
1640 }
1641
1642 /* If ARR does not represent an array, returns ARR unchanged.
1643 Otherwise, returns either a standard GDB array with bounds set
1644 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1645 GDB array. Returns NULL if ARR is a null fat pointer. */
1646
1647 struct value *
1648 ada_coerce_to_simple_array_ptr (struct value *arr)
1649 {
1650 if (ada_is_array_descriptor_type (value_type (arr)))
1651 {
1652 struct type *arrType = ada_type_of_array (arr, 1);
1653 if (arrType == NULL)
1654 return NULL;
1655 return value_cast (arrType, value_copy (desc_data (arr)));
1656 }
1657 else if (ada_is_packed_array_type (value_type (arr)))
1658 return decode_packed_array (arr);
1659 else
1660 return arr;
1661 }
1662
1663 /* If ARR does not represent an array, returns ARR unchanged.
1664 Otherwise, returns a standard GDB array describing ARR (which may
1665 be ARR itself if it already is in the proper form). */
1666
1667 static struct value *
1668 ada_coerce_to_simple_array (struct value *arr)
1669 {
1670 if (ada_is_array_descriptor_type (value_type (arr)))
1671 {
1672 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1673 if (arrVal == NULL)
1674 error (_("Bounds unavailable for null array pointer."));
1675 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1676 return value_ind (arrVal);
1677 }
1678 else if (ada_is_packed_array_type (value_type (arr)))
1679 return decode_packed_array (arr);
1680 else
1681 return arr;
1682 }
1683
1684 /* If TYPE represents a GNAT array type, return it translated to an
1685 ordinary GDB array type (possibly with BITSIZE fields indicating
1686 packing). For other types, is the identity. */
1687
1688 struct type *
1689 ada_coerce_to_simple_array_type (struct type *type)
1690 {
1691 if (ada_is_packed_array_type (type))
1692 return decode_packed_array_type (type);
1693
1694 if (ada_is_array_descriptor_type (type))
1695 return ada_check_typedef (desc_data_target_type (type));
1696
1697 return type;
1698 }
1699
1700 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1701
1702 int
1703 ada_is_packed_array_type (struct type *type)
1704 {
1705 if (type == NULL)
1706 return 0;
1707 type = desc_base_type (type);
1708 type = ada_check_typedef (type);
1709 return
1710 ada_type_name (type) != NULL
1711 && strstr (ada_type_name (type), "___XP") != NULL;
1712 }
1713
1714 /* Given that TYPE is a standard GDB array type with all bounds filled
1715 in, and that the element size of its ultimate scalar constituents
1716 (that is, either its elements, or, if it is an array of arrays, its
1717 elements' elements, etc.) is *ELT_BITS, return an identical type,
1718 but with the bit sizes of its elements (and those of any
1719 constituent arrays) recorded in the BITSIZE components of its
1720 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1721 in bits. */
1722
1723 static struct type *
1724 packed_array_type (struct type *type, long *elt_bits)
1725 {
1726 struct type *new_elt_type;
1727 struct type *new_type;
1728 LONGEST low_bound, high_bound;
1729
1730 type = ada_check_typedef (type);
1731 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1732 return type;
1733
1734 new_type = alloc_type (TYPE_OBJFILE (type));
1735 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1736 elt_bits);
1737 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1738 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1739 TYPE_NAME (new_type) = ada_type_name (type);
1740
1741 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1742 &low_bound, &high_bound) < 0)
1743 low_bound = high_bound = 0;
1744 if (high_bound < low_bound)
1745 *elt_bits = TYPE_LENGTH (new_type) = 0;
1746 else
1747 {
1748 *elt_bits *= (high_bound - low_bound + 1);
1749 TYPE_LENGTH (new_type) =
1750 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1751 }
1752
1753 TYPE_FIXED_INSTANCE (new_type) = 1;
1754 return new_type;
1755 }
1756
1757 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1758
1759 static struct type *
1760 decode_packed_array_type (struct type *type)
1761 {
1762 struct symbol *sym;
1763 struct block **blocks;
1764 char *raw_name = ada_type_name (ada_check_typedef (type));
1765 char *name;
1766 char *tail;
1767 struct type *shadow_type;
1768 long bits;
1769 int i, n;
1770
1771 if (!raw_name)
1772 raw_name = ada_type_name (desc_base_type (type));
1773
1774 if (!raw_name)
1775 return NULL;
1776
1777 name = (char *) alloca (strlen (raw_name) + 1);
1778 tail = strstr (raw_name, "___XP");
1779 type = desc_base_type (type);
1780
1781 memcpy (name, raw_name, tail - raw_name);
1782 name[tail - raw_name] = '\000';
1783
1784 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1785 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1786 {
1787 lim_warning (_("could not find bounds information on packed array"));
1788 return NULL;
1789 }
1790 shadow_type = SYMBOL_TYPE (sym);
1791 CHECK_TYPEDEF (shadow_type);
1792
1793 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1794 {
1795 lim_warning (_("could not understand bounds information on packed array"));
1796 return NULL;
1797 }
1798
1799 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1800 {
1801 lim_warning
1802 (_("could not understand bit size information on packed array"));
1803 return NULL;
1804 }
1805
1806 return packed_array_type (shadow_type, &bits);
1807 }
1808
1809 /* Given that ARR is a struct value *indicating a GNAT packed array,
1810 returns a simple array that denotes that array. Its type is a
1811 standard GDB array type except that the BITSIZEs of the array
1812 target types are set to the number of bits in each element, and the
1813 type length is set appropriately. */
1814
1815 static struct value *
1816 decode_packed_array (struct value *arr)
1817 {
1818 struct type *type;
1819
1820 arr = ada_coerce_ref (arr);
1821
1822 /* If our value is a pointer, then dererence it. Make sure that
1823 this operation does not cause the target type to be fixed, as
1824 this would indirectly cause this array to be decoded. The rest
1825 of the routine assumes that the array hasn't been decoded yet,
1826 so we use the basic "value_ind" routine to perform the dereferencing,
1827 as opposed to using "ada_value_ind". */
1828 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1829 arr = value_ind (arr);
1830
1831 type = decode_packed_array_type (value_type (arr));
1832 if (type == NULL)
1833 {
1834 error (_("can't unpack array"));
1835 return NULL;
1836 }
1837
1838 if (gdbarch_bits_big_endian (current_gdbarch)
1839 && ada_is_modular_type (value_type (arr)))
1840 {
1841 /* This is a (right-justified) modular type representing a packed
1842 array with no wrapper. In order to interpret the value through
1843 the (left-justified) packed array type we just built, we must
1844 first left-justify it. */
1845 int bit_size, bit_pos;
1846 ULONGEST mod;
1847
1848 mod = ada_modulus (value_type (arr)) - 1;
1849 bit_size = 0;
1850 while (mod > 0)
1851 {
1852 bit_size += 1;
1853 mod >>= 1;
1854 }
1855 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1856 arr = ada_value_primitive_packed_val (arr, NULL,
1857 bit_pos / HOST_CHAR_BIT,
1858 bit_pos % HOST_CHAR_BIT,
1859 bit_size,
1860 type);
1861 }
1862
1863 return coerce_unspec_val_to_type (arr, type);
1864 }
1865
1866
1867 /* The value of the element of packed array ARR at the ARITY indices
1868 given in IND. ARR must be a simple array. */
1869
1870 static struct value *
1871 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1872 {
1873 int i;
1874 int bits, elt_off, bit_off;
1875 long elt_total_bit_offset;
1876 struct type *elt_type;
1877 struct value *v;
1878
1879 bits = 0;
1880 elt_total_bit_offset = 0;
1881 elt_type = ada_check_typedef (value_type (arr));
1882 for (i = 0; i < arity; i += 1)
1883 {
1884 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1885 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1886 error
1887 (_("attempt to do packed indexing of something other than a packed array"));
1888 else
1889 {
1890 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1891 LONGEST lowerbound, upperbound;
1892 LONGEST idx;
1893
1894 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1895 {
1896 lim_warning (_("don't know bounds of array"));
1897 lowerbound = upperbound = 0;
1898 }
1899
1900 idx = pos_atr (ind[i]);
1901 if (idx < lowerbound || idx > upperbound)
1902 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1903 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1904 elt_total_bit_offset += (idx - lowerbound) * bits;
1905 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1906 }
1907 }
1908 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1909 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1910
1911 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1912 bits, elt_type);
1913 return v;
1914 }
1915
1916 /* Non-zero iff TYPE includes negative integer values. */
1917
1918 static int
1919 has_negatives (struct type *type)
1920 {
1921 switch (TYPE_CODE (type))
1922 {
1923 default:
1924 return 0;
1925 case TYPE_CODE_INT:
1926 return !TYPE_UNSIGNED (type);
1927 case TYPE_CODE_RANGE:
1928 return TYPE_LOW_BOUND (type) < 0;
1929 }
1930 }
1931
1932
1933 /* Create a new value of type TYPE from the contents of OBJ starting
1934 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1935 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1936 assigning through the result will set the field fetched from.
1937 VALADDR is ignored unless OBJ is NULL, in which case,
1938 VALADDR+OFFSET must address the start of storage containing the
1939 packed value. The value returned in this case is never an lval.
1940 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1941
1942 struct value *
1943 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1944 long offset, int bit_offset, int bit_size,
1945 struct type *type)
1946 {
1947 struct value *v;
1948 int src, /* Index into the source area */
1949 targ, /* Index into the target area */
1950 srcBitsLeft, /* Number of source bits left to move */
1951 nsrc, ntarg, /* Number of source and target bytes */
1952 unusedLS, /* Number of bits in next significant
1953 byte of source that are unused */
1954 accumSize; /* Number of meaningful bits in accum */
1955 unsigned char *bytes; /* First byte containing data to unpack */
1956 unsigned char *unpacked;
1957 unsigned long accum; /* Staging area for bits being transferred */
1958 unsigned char sign;
1959 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1960 /* Transmit bytes from least to most significant; delta is the direction
1961 the indices move. */
1962 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
1963
1964 type = ada_check_typedef (type);
1965
1966 if (obj == NULL)
1967 {
1968 v = allocate_value (type);
1969 bytes = (unsigned char *) (valaddr + offset);
1970 }
1971 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
1972 {
1973 v = value_at (type,
1974 value_address (obj) + offset);
1975 bytes = (unsigned char *) alloca (len);
1976 read_memory (value_address (v), bytes, len);
1977 }
1978 else
1979 {
1980 v = allocate_value (type);
1981 bytes = (unsigned char *) value_contents (obj) + offset;
1982 }
1983
1984 if (obj != NULL)
1985 {
1986 CORE_ADDR new_addr;
1987 set_value_component_location (v, obj);
1988 new_addr = value_address (obj) + offset;
1989 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1990 set_value_bitsize (v, bit_size);
1991 if (value_bitpos (v) >= HOST_CHAR_BIT)
1992 {
1993 ++new_addr;
1994 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1995 }
1996 set_value_address (v, new_addr);
1997 }
1998 else
1999 set_value_bitsize (v, bit_size);
2000 unpacked = (unsigned char *) value_contents (v);
2001
2002 srcBitsLeft = bit_size;
2003 nsrc = len;
2004 ntarg = TYPE_LENGTH (type);
2005 sign = 0;
2006 if (bit_size == 0)
2007 {
2008 memset (unpacked, 0, TYPE_LENGTH (type));
2009 return v;
2010 }
2011 else if (gdbarch_bits_big_endian (current_gdbarch))
2012 {
2013 src = len - 1;
2014 if (has_negatives (type)
2015 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2016 sign = ~0;
2017
2018 unusedLS =
2019 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2020 % HOST_CHAR_BIT;
2021
2022 switch (TYPE_CODE (type))
2023 {
2024 case TYPE_CODE_ARRAY:
2025 case TYPE_CODE_UNION:
2026 case TYPE_CODE_STRUCT:
2027 /* Non-scalar values must be aligned at a byte boundary... */
2028 accumSize =
2029 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2030 /* ... And are placed at the beginning (most-significant) bytes
2031 of the target. */
2032 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2033 ntarg = targ + 1;
2034 break;
2035 default:
2036 accumSize = 0;
2037 targ = TYPE_LENGTH (type) - 1;
2038 break;
2039 }
2040 }
2041 else
2042 {
2043 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2044
2045 src = targ = 0;
2046 unusedLS = bit_offset;
2047 accumSize = 0;
2048
2049 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2050 sign = ~0;
2051 }
2052
2053 accum = 0;
2054 while (nsrc > 0)
2055 {
2056 /* Mask for removing bits of the next source byte that are not
2057 part of the value. */
2058 unsigned int unusedMSMask =
2059 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2060 1;
2061 /* Sign-extend bits for this byte. */
2062 unsigned int signMask = sign & ~unusedMSMask;
2063 accum |=
2064 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2065 accumSize += HOST_CHAR_BIT - unusedLS;
2066 if (accumSize >= HOST_CHAR_BIT)
2067 {
2068 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2069 accumSize -= HOST_CHAR_BIT;
2070 accum >>= HOST_CHAR_BIT;
2071 ntarg -= 1;
2072 targ += delta;
2073 }
2074 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2075 unusedLS = 0;
2076 nsrc -= 1;
2077 src += delta;
2078 }
2079 while (ntarg > 0)
2080 {
2081 accum |= sign << accumSize;
2082 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2083 accumSize -= HOST_CHAR_BIT;
2084 accum >>= HOST_CHAR_BIT;
2085 ntarg -= 1;
2086 targ += delta;
2087 }
2088
2089 return v;
2090 }
2091
2092 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2093 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2094 not overlap. */
2095 static void
2096 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2097 int src_offset, int n)
2098 {
2099 unsigned int accum, mask;
2100 int accum_bits, chunk_size;
2101
2102 target += targ_offset / HOST_CHAR_BIT;
2103 targ_offset %= HOST_CHAR_BIT;
2104 source += src_offset / HOST_CHAR_BIT;
2105 src_offset %= HOST_CHAR_BIT;
2106 if (gdbarch_bits_big_endian (current_gdbarch))
2107 {
2108 accum = (unsigned char) *source;
2109 source += 1;
2110 accum_bits = HOST_CHAR_BIT - src_offset;
2111
2112 while (n > 0)
2113 {
2114 int unused_right;
2115 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2116 accum_bits += HOST_CHAR_BIT;
2117 source += 1;
2118 chunk_size = HOST_CHAR_BIT - targ_offset;
2119 if (chunk_size > n)
2120 chunk_size = n;
2121 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2122 mask = ((1 << chunk_size) - 1) << unused_right;
2123 *target =
2124 (*target & ~mask)
2125 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2126 n -= chunk_size;
2127 accum_bits -= chunk_size;
2128 target += 1;
2129 targ_offset = 0;
2130 }
2131 }
2132 else
2133 {
2134 accum = (unsigned char) *source >> src_offset;
2135 source += 1;
2136 accum_bits = HOST_CHAR_BIT - src_offset;
2137
2138 while (n > 0)
2139 {
2140 accum = accum + ((unsigned char) *source << accum_bits);
2141 accum_bits += HOST_CHAR_BIT;
2142 source += 1;
2143 chunk_size = HOST_CHAR_BIT - targ_offset;
2144 if (chunk_size > n)
2145 chunk_size = n;
2146 mask = ((1 << chunk_size) - 1) << targ_offset;
2147 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2148 n -= chunk_size;
2149 accum_bits -= chunk_size;
2150 accum >>= chunk_size;
2151 target += 1;
2152 targ_offset = 0;
2153 }
2154 }
2155 }
2156
2157 /* Store the contents of FROMVAL into the location of TOVAL.
2158 Return a new value with the location of TOVAL and contents of
2159 FROMVAL. Handles assignment into packed fields that have
2160 floating-point or non-scalar types. */
2161
2162 static struct value *
2163 ada_value_assign (struct value *toval, struct value *fromval)
2164 {
2165 struct type *type = value_type (toval);
2166 int bits = value_bitsize (toval);
2167
2168 toval = ada_coerce_ref (toval);
2169 fromval = ada_coerce_ref (fromval);
2170
2171 if (ada_is_direct_array_type (value_type (toval)))
2172 toval = ada_coerce_to_simple_array (toval);
2173 if (ada_is_direct_array_type (value_type (fromval)))
2174 fromval = ada_coerce_to_simple_array (fromval);
2175
2176 if (!deprecated_value_modifiable (toval))
2177 error (_("Left operand of assignment is not a modifiable lvalue."));
2178
2179 if (VALUE_LVAL (toval) == lval_memory
2180 && bits > 0
2181 && (TYPE_CODE (type) == TYPE_CODE_FLT
2182 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2183 {
2184 int len = (value_bitpos (toval)
2185 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2186 int from_size;
2187 char *buffer = (char *) alloca (len);
2188 struct value *val;
2189 CORE_ADDR to_addr = value_address (toval);
2190
2191 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2192 fromval = value_cast (type, fromval);
2193
2194 read_memory (to_addr, buffer, len);
2195 from_size = value_bitsize (fromval);
2196 if (from_size == 0)
2197 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2198 if (gdbarch_bits_big_endian (current_gdbarch))
2199 move_bits (buffer, value_bitpos (toval),
2200 value_contents (fromval), from_size - bits, bits);
2201 else
2202 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2203 0, bits);
2204 write_memory (to_addr, buffer, len);
2205 if (deprecated_memory_changed_hook)
2206 deprecated_memory_changed_hook (to_addr, len);
2207
2208 val = value_copy (toval);
2209 memcpy (value_contents_raw (val), value_contents (fromval),
2210 TYPE_LENGTH (type));
2211 deprecated_set_value_type (val, type);
2212
2213 return val;
2214 }
2215
2216 return value_assign (toval, fromval);
2217 }
2218
2219
2220 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2221 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2222 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2223 * COMPONENT, and not the inferior's memory. The current contents
2224 * of COMPONENT are ignored. */
2225 static void
2226 value_assign_to_component (struct value *container, struct value *component,
2227 struct value *val)
2228 {
2229 LONGEST offset_in_container =
2230 (LONGEST) (value_address (component) - value_address (container));
2231 int bit_offset_in_container =
2232 value_bitpos (component) - value_bitpos (container);
2233 int bits;
2234
2235 val = value_cast (value_type (component), val);
2236
2237 if (value_bitsize (component) == 0)
2238 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2239 else
2240 bits = value_bitsize (component);
2241
2242 if (gdbarch_bits_big_endian (current_gdbarch))
2243 move_bits (value_contents_writeable (container) + offset_in_container,
2244 value_bitpos (container) + bit_offset_in_container,
2245 value_contents (val),
2246 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2247 bits);
2248 else
2249 move_bits (value_contents_writeable (container) + offset_in_container,
2250 value_bitpos (container) + bit_offset_in_container,
2251 value_contents (val), 0, bits);
2252 }
2253
2254 /* The value of the element of array ARR at the ARITY indices given in IND.
2255 ARR may be either a simple array, GNAT array descriptor, or pointer
2256 thereto. */
2257
2258 struct value *
2259 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2260 {
2261 int k;
2262 struct value *elt;
2263 struct type *elt_type;
2264
2265 elt = ada_coerce_to_simple_array (arr);
2266
2267 elt_type = ada_check_typedef (value_type (elt));
2268 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2269 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2270 return value_subscript_packed (elt, arity, ind);
2271
2272 for (k = 0; k < arity; k += 1)
2273 {
2274 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2275 error (_("too many subscripts (%d expected)"), k);
2276 elt = value_subscript (elt, pos_atr (ind[k]));
2277 }
2278 return elt;
2279 }
2280
2281 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2282 value of the element of *ARR at the ARITY indices given in
2283 IND. Does not read the entire array into memory. */
2284
2285 static struct value *
2286 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2287 struct value **ind)
2288 {
2289 int k;
2290
2291 for (k = 0; k < arity; k += 1)
2292 {
2293 LONGEST lwb, upb;
2294
2295 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2296 error (_("too many subscripts (%d expected)"), k);
2297 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2298 value_copy (arr));
2299 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2300 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2301 type = TYPE_TARGET_TYPE (type);
2302 }
2303
2304 return value_ind (arr);
2305 }
2306
2307 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2308 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2309 elements starting at index LOW. The lower bound of this array is LOW, as
2310 per Ada rules. */
2311 static struct value *
2312 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2313 int low, int high)
2314 {
2315 CORE_ADDR base = value_as_address (array_ptr)
2316 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2317 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2318 struct type *index_type =
2319 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2320 low, high);
2321 struct type *slice_type =
2322 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2323 return value_at_lazy (slice_type, base);
2324 }
2325
2326
2327 static struct value *
2328 ada_value_slice (struct value *array, int low, int high)
2329 {
2330 struct type *type = value_type (array);
2331 struct type *index_type =
2332 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2333 struct type *slice_type =
2334 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2335 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2336 }
2337
2338 /* If type is a record type in the form of a standard GNAT array
2339 descriptor, returns the number of dimensions for type. If arr is a
2340 simple array, returns the number of "array of"s that prefix its
2341 type designation. Otherwise, returns 0. */
2342
2343 int
2344 ada_array_arity (struct type *type)
2345 {
2346 int arity;
2347
2348 if (type == NULL)
2349 return 0;
2350
2351 type = desc_base_type (type);
2352
2353 arity = 0;
2354 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2355 return desc_arity (desc_bounds_type (type));
2356 else
2357 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2358 {
2359 arity += 1;
2360 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2361 }
2362
2363 return arity;
2364 }
2365
2366 /* If TYPE is a record type in the form of a standard GNAT array
2367 descriptor or a simple array type, returns the element type for
2368 TYPE after indexing by NINDICES indices, or by all indices if
2369 NINDICES is -1. Otherwise, returns NULL. */
2370
2371 struct type *
2372 ada_array_element_type (struct type *type, int nindices)
2373 {
2374 type = desc_base_type (type);
2375
2376 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2377 {
2378 int k;
2379 struct type *p_array_type;
2380
2381 p_array_type = desc_data_target_type (type);
2382
2383 k = ada_array_arity (type);
2384 if (k == 0)
2385 return NULL;
2386
2387 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2388 if (nindices >= 0 && k > nindices)
2389 k = nindices;
2390 while (k > 0 && p_array_type != NULL)
2391 {
2392 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2393 k -= 1;
2394 }
2395 return p_array_type;
2396 }
2397 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2398 {
2399 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2400 {
2401 type = TYPE_TARGET_TYPE (type);
2402 nindices -= 1;
2403 }
2404 return type;
2405 }
2406
2407 return NULL;
2408 }
2409
2410 /* The type of nth index in arrays of given type (n numbering from 1).
2411 Does not examine memory. Throws an error if N is invalid or TYPE
2412 is not an array type. NAME is the name of the Ada attribute being
2413 evaluated ('range, 'first, 'last, or 'length); it is used in building
2414 the error message. */
2415
2416 static struct type *
2417 ada_index_type (struct type *type, int n, const char *name)
2418 {
2419 struct type *result_type;
2420
2421 type = desc_base_type (type);
2422
2423 if (n < 0 || n > ada_array_arity (type))
2424 error (_("invalid dimension number to '%s"), name);
2425
2426 if (ada_is_simple_array_type (type))
2427 {
2428 int i;
2429
2430 for (i = 1; i < n; i += 1)
2431 type = TYPE_TARGET_TYPE (type);
2432 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2433 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2434 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2435 perhaps stabsread.c would make more sense. */
2436 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2437 result_type = NULL;
2438 }
2439 else
2440 {
2441 result_type = desc_index_type (desc_bounds_type (type), n);
2442 if (result_type == NULL)
2443 error (_("attempt to take bound of something that is not an array"));
2444 }
2445
2446 return result_type;
2447 }
2448
2449 /* Given that arr is an array type, returns the lower bound of the
2450 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2451 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2452 array-descriptor type. It works for other arrays with bounds supplied
2453 by run-time quantities other than discriminants. */
2454
2455 static LONGEST
2456 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2457 {
2458 struct type *type, *elt_type, *index_type_desc, *index_type;
2459 LONGEST retval;
2460 int i;
2461
2462 gdb_assert (which == 0 || which == 1);
2463
2464 if (ada_is_packed_array_type (arr_type))
2465 arr_type = decode_packed_array_type (arr_type);
2466
2467 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2468 return (LONGEST) - which;
2469
2470 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2471 type = TYPE_TARGET_TYPE (arr_type);
2472 else
2473 type = arr_type;
2474
2475 elt_type = type;
2476 for (i = n; i > 1; i--)
2477 elt_type = TYPE_TARGET_TYPE (type);
2478
2479 index_type_desc = ada_find_parallel_type (type, "___XA");
2480 if (index_type_desc != NULL)
2481 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2482 NULL, TYPE_INDEX_TYPE (elt_type));
2483 else
2484 index_type = TYPE_INDEX_TYPE (elt_type);
2485
2486 switch (TYPE_CODE (index_type))
2487 {
2488 case TYPE_CODE_RANGE:
2489 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2490 : TYPE_HIGH_BOUND (index_type);
2491 break;
2492 case TYPE_CODE_ENUM:
2493 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2494 : TYPE_FIELD_BITPOS (index_type,
2495 TYPE_NFIELDS (index_type) - 1);
2496 break;
2497 default:
2498 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2499 }
2500
2501 return retval;
2502 }
2503
2504 /* Given that arr is an array value, returns the lower bound of the
2505 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2506 WHICH is 1. This routine will also work for arrays with bounds
2507 supplied by run-time quantities other than discriminants. */
2508
2509 static LONGEST
2510 ada_array_bound (struct value *arr, int n, int which)
2511 {
2512 struct type *arr_type = value_type (arr);
2513
2514 if (ada_is_packed_array_type (arr_type))
2515 return ada_array_bound (decode_packed_array (arr), n, which);
2516 else if (ada_is_simple_array_type (arr_type))
2517 return ada_array_bound_from_type (arr_type, n, which);
2518 else
2519 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2520 }
2521
2522 /* Given that arr is an array value, returns the length of the
2523 nth index. This routine will also work for arrays with bounds
2524 supplied by run-time quantities other than discriminants.
2525 Does not work for arrays indexed by enumeration types with representation
2526 clauses at the moment. */
2527
2528 static LONGEST
2529 ada_array_length (struct value *arr, int n)
2530 {
2531 struct type *arr_type = ada_check_typedef (value_type (arr));
2532
2533 if (ada_is_packed_array_type (arr_type))
2534 return ada_array_length (decode_packed_array (arr), n);
2535
2536 if (ada_is_simple_array_type (arr_type))
2537 return (ada_array_bound_from_type (arr_type, n, 1)
2538 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2539 else
2540 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2541 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2542 }
2543
2544 /* An empty array whose type is that of ARR_TYPE (an array type),
2545 with bounds LOW to LOW-1. */
2546
2547 static struct value *
2548 empty_array (struct type *arr_type, int low)
2549 {
2550 struct type *index_type =
2551 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2552 low, low - 1);
2553 struct type *elt_type = ada_array_element_type (arr_type, 1);
2554 return allocate_value (create_array_type (NULL, elt_type, index_type));
2555 }
2556 \f
2557
2558 /* Name resolution */
2559
2560 /* The "decoded" name for the user-definable Ada operator corresponding
2561 to OP. */
2562
2563 static const char *
2564 ada_decoded_op_name (enum exp_opcode op)
2565 {
2566 int i;
2567
2568 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2569 {
2570 if (ada_opname_table[i].op == op)
2571 return ada_opname_table[i].decoded;
2572 }
2573 error (_("Could not find operator name for opcode"));
2574 }
2575
2576
2577 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2578 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2579 undefined namespace) and converts operators that are
2580 user-defined into appropriate function calls. If CONTEXT_TYPE is
2581 non-null, it provides a preferred result type [at the moment, only
2582 type void has any effect---causing procedures to be preferred over
2583 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2584 return type is preferred. May change (expand) *EXP. */
2585
2586 static void
2587 resolve (struct expression **expp, int void_context_p)
2588 {
2589 struct type *context_type = NULL;
2590 int pc = 0;
2591
2592 if (void_context_p)
2593 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2594
2595 resolve_subexp (expp, &pc, 1, context_type);
2596 }
2597
2598 /* Resolve the operator of the subexpression beginning at
2599 position *POS of *EXPP. "Resolving" consists of replacing
2600 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2601 with their resolutions, replacing built-in operators with
2602 function calls to user-defined operators, where appropriate, and,
2603 when DEPROCEDURE_P is non-zero, converting function-valued variables
2604 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2605 are as in ada_resolve, above. */
2606
2607 static struct value *
2608 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2609 struct type *context_type)
2610 {
2611 int pc = *pos;
2612 int i;
2613 struct expression *exp; /* Convenience: == *expp. */
2614 enum exp_opcode op = (*expp)->elts[pc].opcode;
2615 struct value **argvec; /* Vector of operand types (alloca'ed). */
2616 int nargs; /* Number of operands. */
2617 int oplen;
2618
2619 argvec = NULL;
2620 nargs = 0;
2621 exp = *expp;
2622
2623 /* Pass one: resolve operands, saving their types and updating *pos,
2624 if needed. */
2625 switch (op)
2626 {
2627 case OP_FUNCALL:
2628 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2629 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2630 *pos += 7;
2631 else
2632 {
2633 *pos += 3;
2634 resolve_subexp (expp, pos, 0, NULL);
2635 }
2636 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2637 break;
2638
2639 case UNOP_ADDR:
2640 *pos += 1;
2641 resolve_subexp (expp, pos, 0, NULL);
2642 break;
2643
2644 case UNOP_QUAL:
2645 *pos += 3;
2646 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2647 break;
2648
2649 case OP_ATR_MODULUS:
2650 case OP_ATR_SIZE:
2651 case OP_ATR_TAG:
2652 case OP_ATR_FIRST:
2653 case OP_ATR_LAST:
2654 case OP_ATR_LENGTH:
2655 case OP_ATR_POS:
2656 case OP_ATR_VAL:
2657 case OP_ATR_MIN:
2658 case OP_ATR_MAX:
2659 case TERNOP_IN_RANGE:
2660 case BINOP_IN_BOUNDS:
2661 case UNOP_IN_RANGE:
2662 case OP_AGGREGATE:
2663 case OP_OTHERS:
2664 case OP_CHOICES:
2665 case OP_POSITIONAL:
2666 case OP_DISCRETE_RANGE:
2667 case OP_NAME:
2668 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2669 *pos += oplen;
2670 break;
2671
2672 case BINOP_ASSIGN:
2673 {
2674 struct value *arg1;
2675
2676 *pos += 1;
2677 arg1 = resolve_subexp (expp, pos, 0, NULL);
2678 if (arg1 == NULL)
2679 resolve_subexp (expp, pos, 1, NULL);
2680 else
2681 resolve_subexp (expp, pos, 1, value_type (arg1));
2682 break;
2683 }
2684
2685 case UNOP_CAST:
2686 *pos += 3;
2687 nargs = 1;
2688 break;
2689
2690 case BINOP_ADD:
2691 case BINOP_SUB:
2692 case BINOP_MUL:
2693 case BINOP_DIV:
2694 case BINOP_REM:
2695 case BINOP_MOD:
2696 case BINOP_EXP:
2697 case BINOP_CONCAT:
2698 case BINOP_LOGICAL_AND:
2699 case BINOP_LOGICAL_OR:
2700 case BINOP_BITWISE_AND:
2701 case BINOP_BITWISE_IOR:
2702 case BINOP_BITWISE_XOR:
2703
2704 case BINOP_EQUAL:
2705 case BINOP_NOTEQUAL:
2706 case BINOP_LESS:
2707 case BINOP_GTR:
2708 case BINOP_LEQ:
2709 case BINOP_GEQ:
2710
2711 case BINOP_REPEAT:
2712 case BINOP_SUBSCRIPT:
2713 case BINOP_COMMA:
2714 *pos += 1;
2715 nargs = 2;
2716 break;
2717
2718 case UNOP_NEG:
2719 case UNOP_PLUS:
2720 case UNOP_LOGICAL_NOT:
2721 case UNOP_ABS:
2722 case UNOP_IND:
2723 *pos += 1;
2724 nargs = 1;
2725 break;
2726
2727 case OP_LONG:
2728 case OP_DOUBLE:
2729 case OP_VAR_VALUE:
2730 *pos += 4;
2731 break;
2732
2733 case OP_TYPE:
2734 case OP_BOOL:
2735 case OP_LAST:
2736 case OP_INTERNALVAR:
2737 *pos += 3;
2738 break;
2739
2740 case UNOP_MEMVAL:
2741 *pos += 3;
2742 nargs = 1;
2743 break;
2744
2745 case OP_REGISTER:
2746 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2747 break;
2748
2749 case STRUCTOP_STRUCT:
2750 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2751 nargs = 1;
2752 break;
2753
2754 case TERNOP_SLICE:
2755 *pos += 1;
2756 nargs = 3;
2757 break;
2758
2759 case OP_STRING:
2760 break;
2761
2762 default:
2763 error (_("Unexpected operator during name resolution"));
2764 }
2765
2766 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2767 for (i = 0; i < nargs; i += 1)
2768 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2769 argvec[i] = NULL;
2770 exp = *expp;
2771
2772 /* Pass two: perform any resolution on principal operator. */
2773 switch (op)
2774 {
2775 default:
2776 break;
2777
2778 case OP_VAR_VALUE:
2779 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2780 {
2781 struct ada_symbol_info *candidates;
2782 int n_candidates;
2783
2784 n_candidates =
2785 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2786 (exp->elts[pc + 2].symbol),
2787 exp->elts[pc + 1].block, VAR_DOMAIN,
2788 &candidates);
2789
2790 if (n_candidates > 1)
2791 {
2792 /* Types tend to get re-introduced locally, so if there
2793 are any local symbols that are not types, first filter
2794 out all types. */
2795 int j;
2796 for (j = 0; j < n_candidates; j += 1)
2797 switch (SYMBOL_CLASS (candidates[j].sym))
2798 {
2799 case LOC_REGISTER:
2800 case LOC_ARG:
2801 case LOC_REF_ARG:
2802 case LOC_REGPARM_ADDR:
2803 case LOC_LOCAL:
2804 case LOC_COMPUTED:
2805 goto FoundNonType;
2806 default:
2807 break;
2808 }
2809 FoundNonType:
2810 if (j < n_candidates)
2811 {
2812 j = 0;
2813 while (j < n_candidates)
2814 {
2815 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2816 {
2817 candidates[j] = candidates[n_candidates - 1];
2818 n_candidates -= 1;
2819 }
2820 else
2821 j += 1;
2822 }
2823 }
2824 }
2825
2826 if (n_candidates == 0)
2827 error (_("No definition found for %s"),
2828 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2829 else if (n_candidates == 1)
2830 i = 0;
2831 else if (deprocedure_p
2832 && !is_nonfunction (candidates, n_candidates))
2833 {
2834 i = ada_resolve_function
2835 (candidates, n_candidates, NULL, 0,
2836 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2837 context_type);
2838 if (i < 0)
2839 error (_("Could not find a match for %s"),
2840 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2841 }
2842 else
2843 {
2844 printf_filtered (_("Multiple matches for %s\n"),
2845 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2846 user_select_syms (candidates, n_candidates, 1);
2847 i = 0;
2848 }
2849
2850 exp->elts[pc + 1].block = candidates[i].block;
2851 exp->elts[pc + 2].symbol = candidates[i].sym;
2852 if (innermost_block == NULL
2853 || contained_in (candidates[i].block, innermost_block))
2854 innermost_block = candidates[i].block;
2855 }
2856
2857 if (deprocedure_p
2858 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2859 == TYPE_CODE_FUNC))
2860 {
2861 replace_operator_with_call (expp, pc, 0, 0,
2862 exp->elts[pc + 2].symbol,
2863 exp->elts[pc + 1].block);
2864 exp = *expp;
2865 }
2866 break;
2867
2868 case OP_FUNCALL:
2869 {
2870 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2871 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2872 {
2873 struct ada_symbol_info *candidates;
2874 int n_candidates;
2875
2876 n_candidates =
2877 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2878 (exp->elts[pc + 5].symbol),
2879 exp->elts[pc + 4].block, VAR_DOMAIN,
2880 &candidates);
2881 if (n_candidates == 1)
2882 i = 0;
2883 else
2884 {
2885 i = ada_resolve_function
2886 (candidates, n_candidates,
2887 argvec, nargs,
2888 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2889 context_type);
2890 if (i < 0)
2891 error (_("Could not find a match for %s"),
2892 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2893 }
2894
2895 exp->elts[pc + 4].block = candidates[i].block;
2896 exp->elts[pc + 5].symbol = candidates[i].sym;
2897 if (innermost_block == NULL
2898 || contained_in (candidates[i].block, innermost_block))
2899 innermost_block = candidates[i].block;
2900 }
2901 }
2902 break;
2903 case BINOP_ADD:
2904 case BINOP_SUB:
2905 case BINOP_MUL:
2906 case BINOP_DIV:
2907 case BINOP_REM:
2908 case BINOP_MOD:
2909 case BINOP_CONCAT:
2910 case BINOP_BITWISE_AND:
2911 case BINOP_BITWISE_IOR:
2912 case BINOP_BITWISE_XOR:
2913 case BINOP_EQUAL:
2914 case BINOP_NOTEQUAL:
2915 case BINOP_LESS:
2916 case BINOP_GTR:
2917 case BINOP_LEQ:
2918 case BINOP_GEQ:
2919 case BINOP_EXP:
2920 case UNOP_NEG:
2921 case UNOP_PLUS:
2922 case UNOP_LOGICAL_NOT:
2923 case UNOP_ABS:
2924 if (possible_user_operator_p (op, argvec))
2925 {
2926 struct ada_symbol_info *candidates;
2927 int n_candidates;
2928
2929 n_candidates =
2930 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2931 (struct block *) NULL, VAR_DOMAIN,
2932 &candidates);
2933 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2934 ada_decoded_op_name (op), NULL);
2935 if (i < 0)
2936 break;
2937
2938 replace_operator_with_call (expp, pc, nargs, 1,
2939 candidates[i].sym, candidates[i].block);
2940 exp = *expp;
2941 }
2942 break;
2943
2944 case OP_TYPE:
2945 case OP_REGISTER:
2946 return NULL;
2947 }
2948
2949 *pos = pc;
2950 return evaluate_subexp_type (exp, pos);
2951 }
2952
2953 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2954 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2955 a non-pointer. A type of 'void' (which is never a valid expression type)
2956 by convention matches anything. */
2957 /* The term "match" here is rather loose. The match is heuristic and
2958 liberal. FIXME: TOO liberal, in fact. */
2959
2960 static int
2961 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2962 {
2963 ftype = ada_check_typedef (ftype);
2964 atype = ada_check_typedef (atype);
2965
2966 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2967 ftype = TYPE_TARGET_TYPE (ftype);
2968 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2969 atype = TYPE_TARGET_TYPE (atype);
2970
2971 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2972 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2973 return 1;
2974
2975 switch (TYPE_CODE (ftype))
2976 {
2977 default:
2978 return 1;
2979 case TYPE_CODE_PTR:
2980 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2981 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2982 TYPE_TARGET_TYPE (atype), 0);
2983 else
2984 return (may_deref
2985 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2986 case TYPE_CODE_INT:
2987 case TYPE_CODE_ENUM:
2988 case TYPE_CODE_RANGE:
2989 switch (TYPE_CODE (atype))
2990 {
2991 case TYPE_CODE_INT:
2992 case TYPE_CODE_ENUM:
2993 case TYPE_CODE_RANGE:
2994 return 1;
2995 default:
2996 return 0;
2997 }
2998
2999 case TYPE_CODE_ARRAY:
3000 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3001 || ada_is_array_descriptor_type (atype));
3002
3003 case TYPE_CODE_STRUCT:
3004 if (ada_is_array_descriptor_type (ftype))
3005 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3006 || ada_is_array_descriptor_type (atype));
3007 else
3008 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3009 && !ada_is_array_descriptor_type (atype));
3010
3011 case TYPE_CODE_UNION:
3012 case TYPE_CODE_FLT:
3013 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3014 }
3015 }
3016
3017 /* Return non-zero if the formals of FUNC "sufficiently match" the
3018 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3019 may also be an enumeral, in which case it is treated as a 0-
3020 argument function. */
3021
3022 static int
3023 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3024 {
3025 int i;
3026 struct type *func_type = SYMBOL_TYPE (func);
3027
3028 if (SYMBOL_CLASS (func) == LOC_CONST
3029 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3030 return (n_actuals == 0);
3031 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3032 return 0;
3033
3034 if (TYPE_NFIELDS (func_type) != n_actuals)
3035 return 0;
3036
3037 for (i = 0; i < n_actuals; i += 1)
3038 {
3039 if (actuals[i] == NULL)
3040 return 0;
3041 else
3042 {
3043 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3044 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3045
3046 if (!ada_type_match (ftype, atype, 1))
3047 return 0;
3048 }
3049 }
3050 return 1;
3051 }
3052
3053 /* False iff function type FUNC_TYPE definitely does not produce a value
3054 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3055 FUNC_TYPE is not a valid function type with a non-null return type
3056 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3057
3058 static int
3059 return_match (struct type *func_type, struct type *context_type)
3060 {
3061 struct type *return_type;
3062
3063 if (func_type == NULL)
3064 return 1;
3065
3066 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3067 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3068 else
3069 return_type = base_type (func_type);
3070 if (return_type == NULL)
3071 return 1;
3072
3073 context_type = base_type (context_type);
3074
3075 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3076 return context_type == NULL || return_type == context_type;
3077 else if (context_type == NULL)
3078 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3079 else
3080 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3081 }
3082
3083
3084 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3085 function (if any) that matches the types of the NARGS arguments in
3086 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3087 that returns that type, then eliminate matches that don't. If
3088 CONTEXT_TYPE is void and there is at least one match that does not
3089 return void, eliminate all matches that do.
3090
3091 Asks the user if there is more than one match remaining. Returns -1
3092 if there is no such symbol or none is selected. NAME is used
3093 solely for messages. May re-arrange and modify SYMS in
3094 the process; the index returned is for the modified vector. */
3095
3096 static int
3097 ada_resolve_function (struct ada_symbol_info syms[],
3098 int nsyms, struct value **args, int nargs,
3099 const char *name, struct type *context_type)
3100 {
3101 int fallback;
3102 int k;
3103 int m; /* Number of hits */
3104
3105 m = 0;
3106 /* In the first pass of the loop, we only accept functions matching
3107 context_type. If none are found, we add a second pass of the loop
3108 where every function is accepted. */
3109 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3110 {
3111 for (k = 0; k < nsyms; k += 1)
3112 {
3113 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3114
3115 if (ada_args_match (syms[k].sym, args, nargs)
3116 && (fallback || return_match (type, context_type)))
3117 {
3118 syms[m] = syms[k];
3119 m += 1;
3120 }
3121 }
3122 }
3123
3124 if (m == 0)
3125 return -1;
3126 else if (m > 1)
3127 {
3128 printf_filtered (_("Multiple matches for %s\n"), name);
3129 user_select_syms (syms, m, 1);
3130 return 0;
3131 }
3132 return 0;
3133 }
3134
3135 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3136 in a listing of choices during disambiguation (see sort_choices, below).
3137 The idea is that overloadings of a subprogram name from the
3138 same package should sort in their source order. We settle for ordering
3139 such symbols by their trailing number (__N or $N). */
3140
3141 static int
3142 encoded_ordered_before (char *N0, char *N1)
3143 {
3144 if (N1 == NULL)
3145 return 0;
3146 else if (N0 == NULL)
3147 return 1;
3148 else
3149 {
3150 int k0, k1;
3151 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3152 ;
3153 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3154 ;
3155 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3156 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3157 {
3158 int n0, n1;
3159 n0 = k0;
3160 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3161 n0 -= 1;
3162 n1 = k1;
3163 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3164 n1 -= 1;
3165 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3166 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3167 }
3168 return (strcmp (N0, N1) < 0);
3169 }
3170 }
3171
3172 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3173 encoded names. */
3174
3175 static void
3176 sort_choices (struct ada_symbol_info syms[], int nsyms)
3177 {
3178 int i;
3179 for (i = 1; i < nsyms; i += 1)
3180 {
3181 struct ada_symbol_info sym = syms[i];
3182 int j;
3183
3184 for (j = i - 1; j >= 0; j -= 1)
3185 {
3186 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3187 SYMBOL_LINKAGE_NAME (sym.sym)))
3188 break;
3189 syms[j + 1] = syms[j];
3190 }
3191 syms[j + 1] = sym;
3192 }
3193 }
3194
3195 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3196 by asking the user (if necessary), returning the number selected,
3197 and setting the first elements of SYMS items. Error if no symbols
3198 selected. */
3199
3200 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3201 to be re-integrated one of these days. */
3202
3203 int
3204 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3205 {
3206 int i;
3207 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3208 int n_chosen;
3209 int first_choice = (max_results == 1) ? 1 : 2;
3210 const char *select_mode = multiple_symbols_select_mode ();
3211
3212 if (max_results < 1)
3213 error (_("Request to select 0 symbols!"));
3214 if (nsyms <= 1)
3215 return nsyms;
3216
3217 if (select_mode == multiple_symbols_cancel)
3218 error (_("\
3219 canceled because the command is ambiguous\n\
3220 See set/show multiple-symbol."));
3221
3222 /* If select_mode is "all", then return all possible symbols.
3223 Only do that if more than one symbol can be selected, of course.
3224 Otherwise, display the menu as usual. */
3225 if (select_mode == multiple_symbols_all && max_results > 1)
3226 return nsyms;
3227
3228 printf_unfiltered (_("[0] cancel\n"));
3229 if (max_results > 1)
3230 printf_unfiltered (_("[1] all\n"));
3231
3232 sort_choices (syms, nsyms);
3233
3234 for (i = 0; i < nsyms; i += 1)
3235 {
3236 if (syms[i].sym == NULL)
3237 continue;
3238
3239 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3240 {
3241 struct symtab_and_line sal =
3242 find_function_start_sal (syms[i].sym, 1);
3243 if (sal.symtab == NULL)
3244 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3245 i + first_choice,
3246 SYMBOL_PRINT_NAME (syms[i].sym),
3247 sal.line);
3248 else
3249 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3250 SYMBOL_PRINT_NAME (syms[i].sym),
3251 sal.symtab->filename, sal.line);
3252 continue;
3253 }
3254 else
3255 {
3256 int is_enumeral =
3257 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3258 && SYMBOL_TYPE (syms[i].sym) != NULL
3259 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3260 struct symtab *symtab = syms[i].sym->symtab;
3261
3262 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3263 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3264 i + first_choice,
3265 SYMBOL_PRINT_NAME (syms[i].sym),
3266 symtab->filename, SYMBOL_LINE (syms[i].sym));
3267 else if (is_enumeral
3268 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3269 {
3270 printf_unfiltered (("[%d] "), i + first_choice);
3271 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3272 gdb_stdout, -1, 0);
3273 printf_unfiltered (_("'(%s) (enumeral)\n"),
3274 SYMBOL_PRINT_NAME (syms[i].sym));
3275 }
3276 else if (symtab != NULL)
3277 printf_unfiltered (is_enumeral
3278 ? _("[%d] %s in %s (enumeral)\n")
3279 : _("[%d] %s at %s:?\n"),
3280 i + first_choice,
3281 SYMBOL_PRINT_NAME (syms[i].sym),
3282 symtab->filename);
3283 else
3284 printf_unfiltered (is_enumeral
3285 ? _("[%d] %s (enumeral)\n")
3286 : _("[%d] %s at ?\n"),
3287 i + first_choice,
3288 SYMBOL_PRINT_NAME (syms[i].sym));
3289 }
3290 }
3291
3292 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3293 "overload-choice");
3294
3295 for (i = 0; i < n_chosen; i += 1)
3296 syms[i] = syms[chosen[i]];
3297
3298 return n_chosen;
3299 }
3300
3301 /* Read and validate a set of numeric choices from the user in the
3302 range 0 .. N_CHOICES-1. Place the results in increasing
3303 order in CHOICES[0 .. N-1], and return N.
3304
3305 The user types choices as a sequence of numbers on one line
3306 separated by blanks, encoding them as follows:
3307
3308 + A choice of 0 means to cancel the selection, throwing an error.
3309 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3310 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3311
3312 The user is not allowed to choose more than MAX_RESULTS values.
3313
3314 ANNOTATION_SUFFIX, if present, is used to annotate the input
3315 prompts (for use with the -f switch). */
3316
3317 int
3318 get_selections (int *choices, int n_choices, int max_results,
3319 int is_all_choice, char *annotation_suffix)
3320 {
3321 char *args;
3322 char *prompt;
3323 int n_chosen;
3324 int first_choice = is_all_choice ? 2 : 1;
3325
3326 prompt = getenv ("PS2");
3327 if (prompt == NULL)
3328 prompt = "> ";
3329
3330 args = command_line_input (prompt, 0, annotation_suffix);
3331
3332 if (args == NULL)
3333 error_no_arg (_("one or more choice numbers"));
3334
3335 n_chosen = 0;
3336
3337 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3338 order, as given in args. Choices are validated. */
3339 while (1)
3340 {
3341 char *args2;
3342 int choice, j;
3343
3344 while (isspace (*args))
3345 args += 1;
3346 if (*args == '\0' && n_chosen == 0)
3347 error_no_arg (_("one or more choice numbers"));
3348 else if (*args == '\0')
3349 break;
3350
3351 choice = strtol (args, &args2, 10);
3352 if (args == args2 || choice < 0
3353 || choice > n_choices + first_choice - 1)
3354 error (_("Argument must be choice number"));
3355 args = args2;
3356
3357 if (choice == 0)
3358 error (_("cancelled"));
3359
3360 if (choice < first_choice)
3361 {
3362 n_chosen = n_choices;
3363 for (j = 0; j < n_choices; j += 1)
3364 choices[j] = j;
3365 break;
3366 }
3367 choice -= first_choice;
3368
3369 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3370 {
3371 }
3372
3373 if (j < 0 || choice != choices[j])
3374 {
3375 int k;
3376 for (k = n_chosen - 1; k > j; k -= 1)
3377 choices[k + 1] = choices[k];
3378 choices[j + 1] = choice;
3379 n_chosen += 1;
3380 }
3381 }
3382
3383 if (n_chosen > max_results)
3384 error (_("Select no more than %d of the above"), max_results);
3385
3386 return n_chosen;
3387 }
3388
3389 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3390 on the function identified by SYM and BLOCK, and taking NARGS
3391 arguments. Update *EXPP as needed to hold more space. */
3392
3393 static void
3394 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3395 int oplen, struct symbol *sym,
3396 struct block *block)
3397 {
3398 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3399 symbol, -oplen for operator being replaced). */
3400 struct expression *newexp = (struct expression *)
3401 xmalloc (sizeof (struct expression)
3402 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3403 struct expression *exp = *expp;
3404
3405 newexp->nelts = exp->nelts + 7 - oplen;
3406 newexp->language_defn = exp->language_defn;
3407 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3408 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3409 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3410
3411 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3412 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3413
3414 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3415 newexp->elts[pc + 4].block = block;
3416 newexp->elts[pc + 5].symbol = sym;
3417
3418 *expp = newexp;
3419 xfree (exp);
3420 }
3421
3422 /* Type-class predicates */
3423
3424 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3425 or FLOAT). */
3426
3427 static int
3428 numeric_type_p (struct type *type)
3429 {
3430 if (type == NULL)
3431 return 0;
3432 else
3433 {
3434 switch (TYPE_CODE (type))
3435 {
3436 case TYPE_CODE_INT:
3437 case TYPE_CODE_FLT:
3438 return 1;
3439 case TYPE_CODE_RANGE:
3440 return (type == TYPE_TARGET_TYPE (type)
3441 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3442 default:
3443 return 0;
3444 }
3445 }
3446 }
3447
3448 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3449
3450 static int
3451 integer_type_p (struct type *type)
3452 {
3453 if (type == NULL)
3454 return 0;
3455 else
3456 {
3457 switch (TYPE_CODE (type))
3458 {
3459 case TYPE_CODE_INT:
3460 return 1;
3461 case TYPE_CODE_RANGE:
3462 return (type == TYPE_TARGET_TYPE (type)
3463 || integer_type_p (TYPE_TARGET_TYPE (type)));
3464 default:
3465 return 0;
3466 }
3467 }
3468 }
3469
3470 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3471
3472 static int
3473 scalar_type_p (struct type *type)
3474 {
3475 if (type == NULL)
3476 return 0;
3477 else
3478 {
3479 switch (TYPE_CODE (type))
3480 {
3481 case TYPE_CODE_INT:
3482 case TYPE_CODE_RANGE:
3483 case TYPE_CODE_ENUM:
3484 case TYPE_CODE_FLT:
3485 return 1;
3486 default:
3487 return 0;
3488 }
3489 }
3490 }
3491
3492 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3493
3494 static int
3495 discrete_type_p (struct type *type)
3496 {
3497 if (type == NULL)
3498 return 0;
3499 else
3500 {
3501 switch (TYPE_CODE (type))
3502 {
3503 case TYPE_CODE_INT:
3504 case TYPE_CODE_RANGE:
3505 case TYPE_CODE_ENUM:
3506 return 1;
3507 default:
3508 return 0;
3509 }
3510 }
3511 }
3512
3513 /* Returns non-zero if OP with operands in the vector ARGS could be
3514 a user-defined function. Errs on the side of pre-defined operators
3515 (i.e., result 0). */
3516
3517 static int
3518 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3519 {
3520 struct type *type0 =
3521 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3522 struct type *type1 =
3523 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3524
3525 if (type0 == NULL)
3526 return 0;
3527
3528 switch (op)
3529 {
3530 default:
3531 return 0;
3532
3533 case BINOP_ADD:
3534 case BINOP_SUB:
3535 case BINOP_MUL:
3536 case BINOP_DIV:
3537 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3538
3539 case BINOP_REM:
3540 case BINOP_MOD:
3541 case BINOP_BITWISE_AND:
3542 case BINOP_BITWISE_IOR:
3543 case BINOP_BITWISE_XOR:
3544 return (!(integer_type_p (type0) && integer_type_p (type1)));
3545
3546 case BINOP_EQUAL:
3547 case BINOP_NOTEQUAL:
3548 case BINOP_LESS:
3549 case BINOP_GTR:
3550 case BINOP_LEQ:
3551 case BINOP_GEQ:
3552 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3553
3554 case BINOP_CONCAT:
3555 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3556
3557 case BINOP_EXP:
3558 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3559
3560 case UNOP_NEG:
3561 case UNOP_PLUS:
3562 case UNOP_LOGICAL_NOT:
3563 case UNOP_ABS:
3564 return (!numeric_type_p (type0));
3565
3566 }
3567 }
3568 \f
3569 /* Renaming */
3570
3571 /* NOTES:
3572
3573 1. In the following, we assume that a renaming type's name may
3574 have an ___XD suffix. It would be nice if this went away at some
3575 point.
3576 2. We handle both the (old) purely type-based representation of
3577 renamings and the (new) variable-based encoding. At some point,
3578 it is devoutly to be hoped that the former goes away
3579 (FIXME: hilfinger-2007-07-09).
3580 3. Subprogram renamings are not implemented, although the XRS
3581 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3582
3583 /* If SYM encodes a renaming,
3584
3585 <renaming> renames <renamed entity>,
3586
3587 sets *LEN to the length of the renamed entity's name,
3588 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3589 the string describing the subcomponent selected from the renamed
3590 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3591 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3592 are undefined). Otherwise, returns a value indicating the category
3593 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3594 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3595 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3596 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3597 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3598 may be NULL, in which case they are not assigned.
3599
3600 [Currently, however, GCC does not generate subprogram renamings.] */
3601
3602 enum ada_renaming_category
3603 ada_parse_renaming (struct symbol *sym,
3604 const char **renamed_entity, int *len,
3605 const char **renaming_expr)
3606 {
3607 enum ada_renaming_category kind;
3608 const char *info;
3609 const char *suffix;
3610
3611 if (sym == NULL)
3612 return ADA_NOT_RENAMING;
3613 switch (SYMBOL_CLASS (sym))
3614 {
3615 default:
3616 return ADA_NOT_RENAMING;
3617 case LOC_TYPEDEF:
3618 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3619 renamed_entity, len, renaming_expr);
3620 case LOC_LOCAL:
3621 case LOC_STATIC:
3622 case LOC_COMPUTED:
3623 case LOC_OPTIMIZED_OUT:
3624 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3625 if (info == NULL)
3626 return ADA_NOT_RENAMING;
3627 switch (info[5])
3628 {
3629 case '_':
3630 kind = ADA_OBJECT_RENAMING;
3631 info += 6;
3632 break;
3633 case 'E':
3634 kind = ADA_EXCEPTION_RENAMING;
3635 info += 7;
3636 break;
3637 case 'P':
3638 kind = ADA_PACKAGE_RENAMING;
3639 info += 7;
3640 break;
3641 case 'S':
3642 kind = ADA_SUBPROGRAM_RENAMING;
3643 info += 7;
3644 break;
3645 default:
3646 return ADA_NOT_RENAMING;
3647 }
3648 }
3649
3650 if (renamed_entity != NULL)
3651 *renamed_entity = info;
3652 suffix = strstr (info, "___XE");
3653 if (suffix == NULL || suffix == info)
3654 return ADA_NOT_RENAMING;
3655 if (len != NULL)
3656 *len = strlen (info) - strlen (suffix);
3657 suffix += 5;
3658 if (renaming_expr != NULL)
3659 *renaming_expr = suffix;
3660 return kind;
3661 }
3662
3663 /* Assuming TYPE encodes a renaming according to the old encoding in
3664 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3665 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3666 ADA_NOT_RENAMING otherwise. */
3667 static enum ada_renaming_category
3668 parse_old_style_renaming (struct type *type,
3669 const char **renamed_entity, int *len,
3670 const char **renaming_expr)
3671 {
3672 enum ada_renaming_category kind;
3673 const char *name;
3674 const char *info;
3675 const char *suffix;
3676
3677 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3678 || TYPE_NFIELDS (type) != 1)
3679 return ADA_NOT_RENAMING;
3680
3681 name = type_name_no_tag (type);
3682 if (name == NULL)
3683 return ADA_NOT_RENAMING;
3684
3685 name = strstr (name, "___XR");
3686 if (name == NULL)
3687 return ADA_NOT_RENAMING;
3688 switch (name[5])
3689 {
3690 case '\0':
3691 case '_':
3692 kind = ADA_OBJECT_RENAMING;
3693 break;
3694 case 'E':
3695 kind = ADA_EXCEPTION_RENAMING;
3696 break;
3697 case 'P':
3698 kind = ADA_PACKAGE_RENAMING;
3699 break;
3700 case 'S':
3701 kind = ADA_SUBPROGRAM_RENAMING;
3702 break;
3703 default:
3704 return ADA_NOT_RENAMING;
3705 }
3706
3707 info = TYPE_FIELD_NAME (type, 0);
3708 if (info == NULL)
3709 return ADA_NOT_RENAMING;
3710 if (renamed_entity != NULL)
3711 *renamed_entity = info;
3712 suffix = strstr (info, "___XE");
3713 if (renaming_expr != NULL)
3714 *renaming_expr = suffix + 5;
3715 if (suffix == NULL || suffix == info)
3716 return ADA_NOT_RENAMING;
3717 if (len != NULL)
3718 *len = suffix - info;
3719 return kind;
3720 }
3721
3722 \f
3723
3724 /* Evaluation: Function Calls */
3725
3726 /* Return an lvalue containing the value VAL. This is the identity on
3727 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3728 on the stack, using and updating *SP as the stack pointer, and
3729 returning an lvalue whose value_address points to the copy. */
3730
3731 static struct value *
3732 ensure_lval (struct value *val, CORE_ADDR *sp)
3733 {
3734 if (! VALUE_LVAL (val))
3735 {
3736 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3737
3738 /* The following is taken from the structure-return code in
3739 call_function_by_hand. FIXME: Therefore, some refactoring seems
3740 indicated. */
3741 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3742 {
3743 /* Stack grows downward. Align SP and value_address (val) after
3744 reserving sufficient space. */
3745 *sp -= len;
3746 if (gdbarch_frame_align_p (current_gdbarch))
3747 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3748 set_value_address (val, *sp);
3749 }
3750 else
3751 {
3752 /* Stack grows upward. Align the frame, allocate space, and
3753 then again, re-align the frame. */
3754 if (gdbarch_frame_align_p (current_gdbarch))
3755 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3756 set_value_address (val, *sp);
3757 *sp += len;
3758 if (gdbarch_frame_align_p (current_gdbarch))
3759 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3760 }
3761 VALUE_LVAL (val) = lval_memory;
3762
3763 write_memory (value_address (val), value_contents_raw (val), len);
3764 }
3765
3766 return val;
3767 }
3768
3769 /* Return the value ACTUAL, converted to be an appropriate value for a
3770 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3771 allocating any necessary descriptors (fat pointers), or copies of
3772 values not residing in memory, updating it as needed. */
3773
3774 struct value *
3775 ada_convert_actual (struct value *actual, struct type *formal_type0,
3776 CORE_ADDR *sp)
3777 {
3778 struct type *actual_type = ada_check_typedef (value_type (actual));
3779 struct type *formal_type = ada_check_typedef (formal_type0);
3780 struct type *formal_target =
3781 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3782 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3783 struct type *actual_target =
3784 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3785 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3786
3787 if (ada_is_array_descriptor_type (formal_target)
3788 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3789 return make_array_descriptor (formal_type, actual, sp);
3790 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3791 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3792 {
3793 struct value *result;
3794 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3795 && ada_is_array_descriptor_type (actual_target))
3796 result = desc_data (actual);
3797 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3798 {
3799 if (VALUE_LVAL (actual) != lval_memory)
3800 {
3801 struct value *val;
3802 actual_type = ada_check_typedef (value_type (actual));
3803 val = allocate_value (actual_type);
3804 memcpy ((char *) value_contents_raw (val),
3805 (char *) value_contents (actual),
3806 TYPE_LENGTH (actual_type));
3807 actual = ensure_lval (val, sp);
3808 }
3809 result = value_addr (actual);
3810 }
3811 else
3812 return actual;
3813 return value_cast_pointers (formal_type, result);
3814 }
3815 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3816 return ada_value_ind (actual);
3817
3818 return actual;
3819 }
3820
3821
3822 /* Push a descriptor of type TYPE for array value ARR on the stack at
3823 *SP, updating *SP to reflect the new descriptor. Return either
3824 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3825 to-descriptor type rather than a descriptor type), a struct value *
3826 representing a pointer to this descriptor. */
3827
3828 static struct value *
3829 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3830 {
3831 struct type *bounds_type = desc_bounds_type (type);
3832 struct type *desc_type = desc_base_type (type);
3833 struct value *descriptor = allocate_value (desc_type);
3834 struct value *bounds = allocate_value (bounds_type);
3835 int i;
3836
3837 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3838 {
3839 modify_general_field (value_contents_writeable (bounds),
3840 ada_array_bound (arr, i, 0),
3841 desc_bound_bitpos (bounds_type, i, 0),
3842 desc_bound_bitsize (bounds_type, i, 0));
3843 modify_general_field (value_contents_writeable (bounds),
3844 ada_array_bound (arr, i, 1),
3845 desc_bound_bitpos (bounds_type, i, 1),
3846 desc_bound_bitsize (bounds_type, i, 1));
3847 }
3848
3849 bounds = ensure_lval (bounds, sp);
3850
3851 modify_general_field (value_contents_writeable (descriptor),
3852 value_address (ensure_lval (arr, sp)),
3853 fat_pntr_data_bitpos (desc_type),
3854 fat_pntr_data_bitsize (desc_type));
3855
3856 modify_general_field (value_contents_writeable (descriptor),
3857 value_address (bounds),
3858 fat_pntr_bounds_bitpos (desc_type),
3859 fat_pntr_bounds_bitsize (desc_type));
3860
3861 descriptor = ensure_lval (descriptor, sp);
3862
3863 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3864 return value_addr (descriptor);
3865 else
3866 return descriptor;
3867 }
3868 \f
3869 /* Dummy definitions for an experimental caching module that is not
3870 * used in the public sources. */
3871
3872 static int
3873 lookup_cached_symbol (const char *name, domain_enum namespace,
3874 struct symbol **sym, struct block **block)
3875 {
3876 return 0;
3877 }
3878
3879 static void
3880 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3881 struct block *block)
3882 {
3883 }
3884 \f
3885 /* Symbol Lookup */
3886
3887 /* Return the result of a standard (literal, C-like) lookup of NAME in
3888 given DOMAIN, visible from lexical block BLOCK. */
3889
3890 static struct symbol *
3891 standard_lookup (const char *name, const struct block *block,
3892 domain_enum domain)
3893 {
3894 struct symbol *sym;
3895
3896 if (lookup_cached_symbol (name, domain, &sym, NULL))
3897 return sym;
3898 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3899 cache_symbol (name, domain, sym, block_found);
3900 return sym;
3901 }
3902
3903
3904 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3905 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3906 since they contend in overloading in the same way. */
3907 static int
3908 is_nonfunction (struct ada_symbol_info syms[], int n)
3909 {
3910 int i;
3911
3912 for (i = 0; i < n; i += 1)
3913 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3914 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3915 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3916 return 1;
3917
3918 return 0;
3919 }
3920
3921 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3922 struct types. Otherwise, they may not. */
3923
3924 static int
3925 equiv_types (struct type *type0, struct type *type1)
3926 {
3927 if (type0 == type1)
3928 return 1;
3929 if (type0 == NULL || type1 == NULL
3930 || TYPE_CODE (type0) != TYPE_CODE (type1))
3931 return 0;
3932 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3933 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3934 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3935 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3936 return 1;
3937
3938 return 0;
3939 }
3940
3941 /* True iff SYM0 represents the same entity as SYM1, or one that is
3942 no more defined than that of SYM1. */
3943
3944 static int
3945 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3946 {
3947 if (sym0 == sym1)
3948 return 1;
3949 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3950 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3951 return 0;
3952
3953 switch (SYMBOL_CLASS (sym0))
3954 {
3955 case LOC_UNDEF:
3956 return 1;
3957 case LOC_TYPEDEF:
3958 {
3959 struct type *type0 = SYMBOL_TYPE (sym0);
3960 struct type *type1 = SYMBOL_TYPE (sym1);
3961 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3962 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3963 int len0 = strlen (name0);
3964 return
3965 TYPE_CODE (type0) == TYPE_CODE (type1)
3966 && (equiv_types (type0, type1)
3967 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3968 && strncmp (name1 + len0, "___XV", 5) == 0));
3969 }
3970 case LOC_CONST:
3971 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3972 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3973 default:
3974 return 0;
3975 }
3976 }
3977
3978 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3979 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3980
3981 static void
3982 add_defn_to_vec (struct obstack *obstackp,
3983 struct symbol *sym,
3984 struct block *block)
3985 {
3986 int i;
3987 size_t tmp;
3988 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3989
3990 /* Do not try to complete stub types, as the debugger is probably
3991 already scanning all symbols matching a certain name at the
3992 time when this function is called. Trying to replace the stub
3993 type by its associated full type will cause us to restart a scan
3994 which may lead to an infinite recursion. Instead, the client
3995 collecting the matching symbols will end up collecting several
3996 matches, with at least one of them complete. It can then filter
3997 out the stub ones if needed. */
3998
3999 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4000 {
4001 if (lesseq_defined_than (sym, prevDefns[i].sym))
4002 return;
4003 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4004 {
4005 prevDefns[i].sym = sym;
4006 prevDefns[i].block = block;
4007 return;
4008 }
4009 }
4010
4011 {
4012 struct ada_symbol_info info;
4013
4014 info.sym = sym;
4015 info.block = block;
4016 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4017 }
4018 }
4019
4020 /* Number of ada_symbol_info structures currently collected in
4021 current vector in *OBSTACKP. */
4022
4023 static int
4024 num_defns_collected (struct obstack *obstackp)
4025 {
4026 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4027 }
4028
4029 /* Vector of ada_symbol_info structures currently collected in current
4030 vector in *OBSTACKP. If FINISH, close off the vector and return
4031 its final address. */
4032
4033 static struct ada_symbol_info *
4034 defns_collected (struct obstack *obstackp, int finish)
4035 {
4036 if (finish)
4037 return obstack_finish (obstackp);
4038 else
4039 return (struct ada_symbol_info *) obstack_base (obstackp);
4040 }
4041
4042 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4043 Check the global symbols if GLOBAL, the static symbols if not.
4044 Do wild-card match if WILD. */
4045
4046 static struct partial_symbol *
4047 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4048 int global, domain_enum namespace, int wild)
4049 {
4050 struct partial_symbol **start;
4051 int name_len = strlen (name);
4052 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4053 int i;
4054
4055 if (length == 0)
4056 {
4057 return (NULL);
4058 }
4059
4060 start = (global ?
4061 pst->objfile->global_psymbols.list + pst->globals_offset :
4062 pst->objfile->static_psymbols.list + pst->statics_offset);
4063
4064 if (wild)
4065 {
4066 for (i = 0; i < length; i += 1)
4067 {
4068 struct partial_symbol *psym = start[i];
4069
4070 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4071 SYMBOL_DOMAIN (psym), namespace)
4072 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4073 return psym;
4074 }
4075 return NULL;
4076 }
4077 else
4078 {
4079 if (global)
4080 {
4081 int U;
4082 i = 0;
4083 U = length - 1;
4084 while (U - i > 4)
4085 {
4086 int M = (U + i) >> 1;
4087 struct partial_symbol *psym = start[M];
4088 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4089 i = M + 1;
4090 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4091 U = M - 1;
4092 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4093 i = M + 1;
4094 else
4095 U = M;
4096 }
4097 }
4098 else
4099 i = 0;
4100
4101 while (i < length)
4102 {
4103 struct partial_symbol *psym = start[i];
4104
4105 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4106 SYMBOL_DOMAIN (psym), namespace))
4107 {
4108 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4109
4110 if (cmp < 0)
4111 {
4112 if (global)
4113 break;
4114 }
4115 else if (cmp == 0
4116 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4117 + name_len))
4118 return psym;
4119 }
4120 i += 1;
4121 }
4122
4123 if (global)
4124 {
4125 int U;
4126 i = 0;
4127 U = length - 1;
4128 while (U - i > 4)
4129 {
4130 int M = (U + i) >> 1;
4131 struct partial_symbol *psym = start[M];
4132 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4133 i = M + 1;
4134 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4135 U = M - 1;
4136 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4137 i = M + 1;
4138 else
4139 U = M;
4140 }
4141 }
4142 else
4143 i = 0;
4144
4145 while (i < length)
4146 {
4147 struct partial_symbol *psym = start[i];
4148
4149 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4150 SYMBOL_DOMAIN (psym), namespace))
4151 {
4152 int cmp;
4153
4154 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4155 if (cmp == 0)
4156 {
4157 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4158 if (cmp == 0)
4159 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4160 name_len);
4161 }
4162
4163 if (cmp < 0)
4164 {
4165 if (global)
4166 break;
4167 }
4168 else if (cmp == 0
4169 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4170 + name_len + 5))
4171 return psym;
4172 }
4173 i += 1;
4174 }
4175 }
4176 return NULL;
4177 }
4178
4179 /* Return a minimal symbol matching NAME according to Ada decoding
4180 rules. Returns NULL if there is no such minimal symbol. Names
4181 prefixed with "standard__" are handled specially: "standard__" is
4182 first stripped off, and only static and global symbols are searched. */
4183
4184 struct minimal_symbol *
4185 ada_lookup_simple_minsym (const char *name)
4186 {
4187 struct objfile *objfile;
4188 struct minimal_symbol *msymbol;
4189 int wild_match;
4190
4191 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4192 {
4193 name += sizeof ("standard__") - 1;
4194 wild_match = 0;
4195 }
4196 else
4197 wild_match = (strstr (name, "__") == NULL);
4198
4199 ALL_MSYMBOLS (objfile, msymbol)
4200 {
4201 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4202 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4203 return msymbol;
4204 }
4205
4206 return NULL;
4207 }
4208
4209 /* For all subprograms that statically enclose the subprogram of the
4210 selected frame, add symbols matching identifier NAME in DOMAIN
4211 and their blocks to the list of data in OBSTACKP, as for
4212 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4213 wildcard prefix. */
4214
4215 static void
4216 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4217 const char *name, domain_enum namespace,
4218 int wild_match)
4219 {
4220 }
4221
4222 /* True if TYPE is definitely an artificial type supplied to a symbol
4223 for which no debugging information was given in the symbol file. */
4224
4225 static int
4226 is_nondebugging_type (struct type *type)
4227 {
4228 char *name = ada_type_name (type);
4229 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4230 }
4231
4232 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4233 duplicate other symbols in the list (The only case I know of where
4234 this happens is when object files containing stabs-in-ecoff are
4235 linked with files containing ordinary ecoff debugging symbols (or no
4236 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4237 Returns the number of items in the modified list. */
4238
4239 static int
4240 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4241 {
4242 int i, j;
4243
4244 i = 0;
4245 while (i < nsyms)
4246 {
4247 int remove = 0;
4248
4249 /* If two symbols have the same name and one of them is a stub type,
4250 the get rid of the stub. */
4251
4252 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4253 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4254 {
4255 for (j = 0; j < nsyms; j++)
4256 {
4257 if (j != i
4258 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4259 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4260 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4261 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4262 remove = 1;
4263 }
4264 }
4265
4266 /* Two symbols with the same name, same class and same address
4267 should be identical. */
4268
4269 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4270 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4271 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4272 {
4273 for (j = 0; j < nsyms; j += 1)
4274 {
4275 if (i != j
4276 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4277 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4278 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4279 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4280 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4281 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4282 remove = 1;
4283 }
4284 }
4285
4286 if (remove)
4287 {
4288 for (j = i + 1; j < nsyms; j += 1)
4289 syms[j - 1] = syms[j];
4290 nsyms -= 1;
4291 }
4292
4293 i += 1;
4294 }
4295 return nsyms;
4296 }
4297
4298 /* Given a type that corresponds to a renaming entity, use the type name
4299 to extract the scope (package name or function name, fully qualified,
4300 and following the GNAT encoding convention) where this renaming has been
4301 defined. The string returned needs to be deallocated after use. */
4302
4303 static char *
4304 xget_renaming_scope (struct type *renaming_type)
4305 {
4306 /* The renaming types adhere to the following convention:
4307 <scope>__<rename>___<XR extension>.
4308 So, to extract the scope, we search for the "___XR" extension,
4309 and then backtrack until we find the first "__". */
4310
4311 const char *name = type_name_no_tag (renaming_type);
4312 char *suffix = strstr (name, "___XR");
4313 char *last;
4314 int scope_len;
4315 char *scope;
4316
4317 /* Now, backtrack a bit until we find the first "__". Start looking
4318 at suffix - 3, as the <rename> part is at least one character long. */
4319
4320 for (last = suffix - 3; last > name; last--)
4321 if (last[0] == '_' && last[1] == '_')
4322 break;
4323
4324 /* Make a copy of scope and return it. */
4325
4326 scope_len = last - name;
4327 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4328
4329 strncpy (scope, name, scope_len);
4330 scope[scope_len] = '\0';
4331
4332 return scope;
4333 }
4334
4335 /* Return nonzero if NAME corresponds to a package name. */
4336
4337 static int
4338 is_package_name (const char *name)
4339 {
4340 /* Here, We take advantage of the fact that no symbols are generated
4341 for packages, while symbols are generated for each function.
4342 So the condition for NAME represent a package becomes equivalent
4343 to NAME not existing in our list of symbols. There is only one
4344 small complication with library-level functions (see below). */
4345
4346 char *fun_name;
4347
4348 /* If it is a function that has not been defined at library level,
4349 then we should be able to look it up in the symbols. */
4350 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4351 return 0;
4352
4353 /* Library-level function names start with "_ada_". See if function
4354 "_ada_" followed by NAME can be found. */
4355
4356 /* Do a quick check that NAME does not contain "__", since library-level
4357 functions names cannot contain "__" in them. */
4358 if (strstr (name, "__") != NULL)
4359 return 0;
4360
4361 fun_name = xstrprintf ("_ada_%s", name);
4362
4363 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4364 }
4365
4366 /* Return nonzero if SYM corresponds to a renaming entity that is
4367 not visible from FUNCTION_NAME. */
4368
4369 static int
4370 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4371 {
4372 char *scope;
4373
4374 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4375 return 0;
4376
4377 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4378
4379 make_cleanup (xfree, scope);
4380
4381 /* If the rename has been defined in a package, then it is visible. */
4382 if (is_package_name (scope))
4383 return 0;
4384
4385 /* Check that the rename is in the current function scope by checking
4386 that its name starts with SCOPE. */
4387
4388 /* If the function name starts with "_ada_", it means that it is
4389 a library-level function. Strip this prefix before doing the
4390 comparison, as the encoding for the renaming does not contain
4391 this prefix. */
4392 if (strncmp (function_name, "_ada_", 5) == 0)
4393 function_name += 5;
4394
4395 return (strncmp (function_name, scope, strlen (scope)) != 0);
4396 }
4397
4398 /* Remove entries from SYMS that corresponds to a renaming entity that
4399 is not visible from the function associated with CURRENT_BLOCK or
4400 that is superfluous due to the presence of more specific renaming
4401 information. Places surviving symbols in the initial entries of
4402 SYMS and returns the number of surviving symbols.
4403
4404 Rationale:
4405 First, in cases where an object renaming is implemented as a
4406 reference variable, GNAT may produce both the actual reference
4407 variable and the renaming encoding. In this case, we discard the
4408 latter.
4409
4410 Second, GNAT emits a type following a specified encoding for each renaming
4411 entity. Unfortunately, STABS currently does not support the definition
4412 of types that are local to a given lexical block, so all renamings types
4413 are emitted at library level. As a consequence, if an application
4414 contains two renaming entities using the same name, and a user tries to
4415 print the value of one of these entities, the result of the ada symbol
4416 lookup will also contain the wrong renaming type.
4417
4418 This function partially covers for this limitation by attempting to
4419 remove from the SYMS list renaming symbols that should be visible
4420 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4421 method with the current information available. The implementation
4422 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4423
4424 - When the user tries to print a rename in a function while there
4425 is another rename entity defined in a package: Normally, the
4426 rename in the function has precedence over the rename in the
4427 package, so the latter should be removed from the list. This is
4428 currently not the case.
4429
4430 - This function will incorrectly remove valid renames if
4431 the CURRENT_BLOCK corresponds to a function which symbol name
4432 has been changed by an "Export" pragma. As a consequence,
4433 the user will be unable to print such rename entities. */
4434
4435 static int
4436 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4437 int nsyms, const struct block *current_block)
4438 {
4439 struct symbol *current_function;
4440 char *current_function_name;
4441 int i;
4442 int is_new_style_renaming;
4443
4444 /* If there is both a renaming foo___XR... encoded as a variable and
4445 a simple variable foo in the same block, discard the latter.
4446 First, zero out such symbols, then compress. */
4447 is_new_style_renaming = 0;
4448 for (i = 0; i < nsyms; i += 1)
4449 {
4450 struct symbol *sym = syms[i].sym;
4451 struct block *block = syms[i].block;
4452 const char *name;
4453 const char *suffix;
4454
4455 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4456 continue;
4457 name = SYMBOL_LINKAGE_NAME (sym);
4458 suffix = strstr (name, "___XR");
4459
4460 if (suffix != NULL)
4461 {
4462 int name_len = suffix - name;
4463 int j;
4464 is_new_style_renaming = 1;
4465 for (j = 0; j < nsyms; j += 1)
4466 if (i != j && syms[j].sym != NULL
4467 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4468 name_len) == 0
4469 && block == syms[j].block)
4470 syms[j].sym = NULL;
4471 }
4472 }
4473 if (is_new_style_renaming)
4474 {
4475 int j, k;
4476
4477 for (j = k = 0; j < nsyms; j += 1)
4478 if (syms[j].sym != NULL)
4479 {
4480 syms[k] = syms[j];
4481 k += 1;
4482 }
4483 return k;
4484 }
4485
4486 /* Extract the function name associated to CURRENT_BLOCK.
4487 Abort if unable to do so. */
4488
4489 if (current_block == NULL)
4490 return nsyms;
4491
4492 current_function = block_linkage_function (current_block);
4493 if (current_function == NULL)
4494 return nsyms;
4495
4496 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4497 if (current_function_name == NULL)
4498 return nsyms;
4499
4500 /* Check each of the symbols, and remove it from the list if it is
4501 a type corresponding to a renaming that is out of the scope of
4502 the current block. */
4503
4504 i = 0;
4505 while (i < nsyms)
4506 {
4507 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4508 == ADA_OBJECT_RENAMING
4509 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4510 {
4511 int j;
4512 for (j = i + 1; j < nsyms; j += 1)
4513 syms[j - 1] = syms[j];
4514 nsyms -= 1;
4515 }
4516 else
4517 i += 1;
4518 }
4519
4520 return nsyms;
4521 }
4522
4523 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4524 whose name and domain match NAME and DOMAIN respectively.
4525 If no match was found, then extend the search to "enclosing"
4526 routines (in other words, if we're inside a nested function,
4527 search the symbols defined inside the enclosing functions).
4528
4529 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4530
4531 static void
4532 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4533 struct block *block, domain_enum domain,
4534 int wild_match)
4535 {
4536 int block_depth = 0;
4537
4538 while (block != NULL)
4539 {
4540 block_depth += 1;
4541 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4542
4543 /* If we found a non-function match, assume that's the one. */
4544 if (is_nonfunction (defns_collected (obstackp, 0),
4545 num_defns_collected (obstackp)))
4546 return;
4547
4548 block = BLOCK_SUPERBLOCK (block);
4549 }
4550
4551 /* If no luck so far, try to find NAME as a local symbol in some lexically
4552 enclosing subprogram. */
4553 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4554 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4555 }
4556
4557 /* Add to OBSTACKP all non-local symbols whose name and domain match
4558 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4559 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4560
4561 static void
4562 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4563 domain_enum domain, int global,
4564 int wild_match)
4565 {
4566 struct objfile *objfile;
4567 struct partial_symtab *ps;
4568
4569 ALL_PSYMTABS (objfile, ps)
4570 {
4571 QUIT;
4572 if (ps->readin
4573 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4574 {
4575 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4576 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4577
4578 if (s == NULL || !s->primary)
4579 continue;
4580 ada_add_block_symbols (obstackp,
4581 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4582 name, domain, objfile, wild_match);
4583 }
4584 }
4585 }
4586
4587 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4588 scope and in global scopes, returning the number of matches. Sets
4589 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4590 indicating the symbols found and the blocks and symbol tables (if
4591 any) in which they were found. This vector are transient---good only to
4592 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4593 symbol match within the nest of blocks whose innermost member is BLOCK0,
4594 is the one match returned (no other matches in that or
4595 enclosing blocks is returned). If there are any matches in or
4596 surrounding BLOCK0, then these alone are returned. Otherwise, the
4597 search extends to global and file-scope (static) symbol tables.
4598 Names prefixed with "standard__" are handled specially: "standard__"
4599 is first stripped off, and only static and global symbols are searched. */
4600
4601 int
4602 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4603 domain_enum namespace,
4604 struct ada_symbol_info **results)
4605 {
4606 struct symbol *sym;
4607 struct block *block;
4608 const char *name;
4609 int wild_match;
4610 int cacheIfUnique;
4611 int ndefns;
4612
4613 obstack_free (&symbol_list_obstack, NULL);
4614 obstack_init (&symbol_list_obstack);
4615
4616 cacheIfUnique = 0;
4617
4618 /* Search specified block and its superiors. */
4619
4620 wild_match = (strstr (name0, "__") == NULL);
4621 name = name0;
4622 block = (struct block *) block0; /* FIXME: No cast ought to be
4623 needed, but adding const will
4624 have a cascade effect. */
4625
4626 /* Special case: If the user specifies a symbol name inside package
4627 Standard, do a non-wild matching of the symbol name without
4628 the "standard__" prefix. This was primarily introduced in order
4629 to allow the user to specifically access the standard exceptions
4630 using, for instance, Standard.Constraint_Error when Constraint_Error
4631 is ambiguous (due to the user defining its own Constraint_Error
4632 entity inside its program). */
4633 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4634 {
4635 wild_match = 0;
4636 block = NULL;
4637 name = name0 + sizeof ("standard__") - 1;
4638 }
4639
4640 /* Check the non-global symbols. If we have ANY match, then we're done. */
4641
4642 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4643 wild_match);
4644 if (num_defns_collected (&symbol_list_obstack) > 0)
4645 goto done;
4646
4647 /* No non-global symbols found. Check our cache to see if we have
4648 already performed this search before. If we have, then return
4649 the same result. */
4650
4651 cacheIfUnique = 1;
4652 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4653 {
4654 if (sym != NULL)
4655 add_defn_to_vec (&symbol_list_obstack, sym, block);
4656 goto done;
4657 }
4658
4659 /* Search symbols from all global blocks. */
4660
4661 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4662 wild_match);
4663
4664 /* Now add symbols from all per-file blocks if we've gotten no hits
4665 (not strictly correct, but perhaps better than an error). */
4666
4667 if (num_defns_collected (&symbol_list_obstack) == 0)
4668 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4669 wild_match);
4670
4671 done:
4672 ndefns = num_defns_collected (&symbol_list_obstack);
4673 *results = defns_collected (&symbol_list_obstack, 1);
4674
4675 ndefns = remove_extra_symbols (*results, ndefns);
4676
4677 if (ndefns == 0)
4678 cache_symbol (name0, namespace, NULL, NULL);
4679
4680 if (ndefns == 1 && cacheIfUnique)
4681 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4682
4683 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4684
4685 return ndefns;
4686 }
4687
4688 struct symbol *
4689 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4690 domain_enum namespace, struct block **block_found)
4691 {
4692 struct ada_symbol_info *candidates;
4693 int n_candidates;
4694
4695 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4696
4697 if (n_candidates == 0)
4698 return NULL;
4699
4700 if (block_found != NULL)
4701 *block_found = candidates[0].block;
4702
4703 return fixup_symbol_section (candidates[0].sym, NULL);
4704 }
4705
4706 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4707 scope and in global scopes, or NULL if none. NAME is folded and
4708 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4709 choosing the first symbol if there are multiple choices.
4710 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4711 table in which the symbol was found (in both cases, these
4712 assignments occur only if the pointers are non-null). */
4713 struct symbol *
4714 ada_lookup_symbol (const char *name, const struct block *block0,
4715 domain_enum namespace, int *is_a_field_of_this)
4716 {
4717 if (is_a_field_of_this != NULL)
4718 *is_a_field_of_this = 0;
4719
4720 return
4721 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4722 block0, namespace, NULL);
4723 }
4724
4725 static struct symbol *
4726 ada_lookup_symbol_nonlocal (const char *name,
4727 const char *linkage_name,
4728 const struct block *block,
4729 const domain_enum domain)
4730 {
4731 if (linkage_name == NULL)
4732 linkage_name = name;
4733 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4734 NULL);
4735 }
4736
4737
4738 /* True iff STR is a possible encoded suffix of a normal Ada name
4739 that is to be ignored for matching purposes. Suffixes of parallel
4740 names (e.g., XVE) are not included here. Currently, the possible suffixes
4741 are given by any of the regular expressions:
4742
4743 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4744 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4745 _E[0-9]+[bs]$ [protected object entry suffixes]
4746 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4747
4748 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4749 match is performed. This sequence is used to differentiate homonyms,
4750 is an optional part of a valid name suffix. */
4751
4752 static int
4753 is_name_suffix (const char *str)
4754 {
4755 int k;
4756 const char *matching;
4757 const int len = strlen (str);
4758
4759 /* Skip optional leading __[0-9]+. */
4760
4761 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4762 {
4763 str += 3;
4764 while (isdigit (str[0]))
4765 str += 1;
4766 }
4767
4768 /* [.$][0-9]+ */
4769
4770 if (str[0] == '.' || str[0] == '$')
4771 {
4772 matching = str + 1;
4773 while (isdigit (matching[0]))
4774 matching += 1;
4775 if (matching[0] == '\0')
4776 return 1;
4777 }
4778
4779 /* ___[0-9]+ */
4780
4781 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4782 {
4783 matching = str + 3;
4784 while (isdigit (matching[0]))
4785 matching += 1;
4786 if (matching[0] == '\0')
4787 return 1;
4788 }
4789
4790 #if 0
4791 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4792 with a N at the end. Unfortunately, the compiler uses the same
4793 convention for other internal types it creates. So treating
4794 all entity names that end with an "N" as a name suffix causes
4795 some regressions. For instance, consider the case of an enumerated
4796 type. To support the 'Image attribute, it creates an array whose
4797 name ends with N.
4798 Having a single character like this as a suffix carrying some
4799 information is a bit risky. Perhaps we should change the encoding
4800 to be something like "_N" instead. In the meantime, do not do
4801 the following check. */
4802 /* Protected Object Subprograms */
4803 if (len == 1 && str [0] == 'N')
4804 return 1;
4805 #endif
4806
4807 /* _E[0-9]+[bs]$ */
4808 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4809 {
4810 matching = str + 3;
4811 while (isdigit (matching[0]))
4812 matching += 1;
4813 if ((matching[0] == 'b' || matching[0] == 's')
4814 && matching [1] == '\0')
4815 return 1;
4816 }
4817
4818 /* ??? We should not modify STR directly, as we are doing below. This
4819 is fine in this case, but may become problematic later if we find
4820 that this alternative did not work, and want to try matching
4821 another one from the begining of STR. Since we modified it, we
4822 won't be able to find the begining of the string anymore! */
4823 if (str[0] == 'X')
4824 {
4825 str += 1;
4826 while (str[0] != '_' && str[0] != '\0')
4827 {
4828 if (str[0] != 'n' && str[0] != 'b')
4829 return 0;
4830 str += 1;
4831 }
4832 }
4833
4834 if (str[0] == '\000')
4835 return 1;
4836
4837 if (str[0] == '_')
4838 {
4839 if (str[1] != '_' || str[2] == '\000')
4840 return 0;
4841 if (str[2] == '_')
4842 {
4843 if (strcmp (str + 3, "JM") == 0)
4844 return 1;
4845 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4846 the LJM suffix in favor of the JM one. But we will
4847 still accept LJM as a valid suffix for a reasonable
4848 amount of time, just to allow ourselves to debug programs
4849 compiled using an older version of GNAT. */
4850 if (strcmp (str + 3, "LJM") == 0)
4851 return 1;
4852 if (str[3] != 'X')
4853 return 0;
4854 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4855 || str[4] == 'U' || str[4] == 'P')
4856 return 1;
4857 if (str[4] == 'R' && str[5] != 'T')
4858 return 1;
4859 return 0;
4860 }
4861 if (!isdigit (str[2]))
4862 return 0;
4863 for (k = 3; str[k] != '\0'; k += 1)
4864 if (!isdigit (str[k]) && str[k] != '_')
4865 return 0;
4866 return 1;
4867 }
4868 if (str[0] == '$' && isdigit (str[1]))
4869 {
4870 for (k = 2; str[k] != '\0'; k += 1)
4871 if (!isdigit (str[k]) && str[k] != '_')
4872 return 0;
4873 return 1;
4874 }
4875 return 0;
4876 }
4877
4878 /* Return non-zero if the string starting at NAME and ending before
4879 NAME_END contains no capital letters. */
4880
4881 static int
4882 is_valid_name_for_wild_match (const char *name0)
4883 {
4884 const char *decoded_name = ada_decode (name0);
4885 int i;
4886
4887 /* If the decoded name starts with an angle bracket, it means that
4888 NAME0 does not follow the GNAT encoding format. It should then
4889 not be allowed as a possible wild match. */
4890 if (decoded_name[0] == '<')
4891 return 0;
4892
4893 for (i=0; decoded_name[i] != '\0'; i++)
4894 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4895 return 0;
4896
4897 return 1;
4898 }
4899
4900 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4901 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4902 informational suffixes of NAME (i.e., for which is_name_suffix is
4903 true). */
4904
4905 static int
4906 wild_match (const char *patn0, int patn_len, const char *name0)
4907 {
4908 char* match;
4909 const char* start;
4910 start = name0;
4911 while (1)
4912 {
4913 match = strstr (start, patn0);
4914 if (match == NULL)
4915 return 0;
4916 if ((match == name0
4917 || match[-1] == '.'
4918 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4919 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4920 && is_name_suffix (match + patn_len))
4921 return (match == name0 || is_valid_name_for_wild_match (name0));
4922 start = match + 1;
4923 }
4924 }
4925
4926 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4927 vector *defn_symbols, updating the list of symbols in OBSTACKP
4928 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4929 OBJFILE is the section containing BLOCK.
4930 SYMTAB is recorded with each symbol added. */
4931
4932 static void
4933 ada_add_block_symbols (struct obstack *obstackp,
4934 struct block *block, const char *name,
4935 domain_enum domain, struct objfile *objfile,
4936 int wild)
4937 {
4938 struct dict_iterator iter;
4939 int name_len = strlen (name);
4940 /* A matching argument symbol, if any. */
4941 struct symbol *arg_sym;
4942 /* Set true when we find a matching non-argument symbol. */
4943 int found_sym;
4944 struct symbol *sym;
4945
4946 arg_sym = NULL;
4947 found_sym = 0;
4948 if (wild)
4949 {
4950 struct symbol *sym;
4951 ALL_BLOCK_SYMBOLS (block, iter, sym)
4952 {
4953 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4954 SYMBOL_DOMAIN (sym), domain)
4955 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4956 {
4957 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4958 continue;
4959 else if (SYMBOL_IS_ARGUMENT (sym))
4960 arg_sym = sym;
4961 else
4962 {
4963 found_sym = 1;
4964 add_defn_to_vec (obstackp,
4965 fixup_symbol_section (sym, objfile),
4966 block);
4967 }
4968 }
4969 }
4970 }
4971 else
4972 {
4973 ALL_BLOCK_SYMBOLS (block, iter, sym)
4974 {
4975 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4976 SYMBOL_DOMAIN (sym), domain))
4977 {
4978 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4979 if (cmp == 0
4980 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4981 {
4982 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4983 {
4984 if (SYMBOL_IS_ARGUMENT (sym))
4985 arg_sym = sym;
4986 else
4987 {
4988 found_sym = 1;
4989 add_defn_to_vec (obstackp,
4990 fixup_symbol_section (sym, objfile),
4991 block);
4992 }
4993 }
4994 }
4995 }
4996 }
4997 }
4998
4999 if (!found_sym && arg_sym != NULL)
5000 {
5001 add_defn_to_vec (obstackp,
5002 fixup_symbol_section (arg_sym, objfile),
5003 block);
5004 }
5005
5006 if (!wild)
5007 {
5008 arg_sym = NULL;
5009 found_sym = 0;
5010
5011 ALL_BLOCK_SYMBOLS (block, iter, sym)
5012 {
5013 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5014 SYMBOL_DOMAIN (sym), domain))
5015 {
5016 int cmp;
5017
5018 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5019 if (cmp == 0)
5020 {
5021 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5022 if (cmp == 0)
5023 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5024 name_len);
5025 }
5026
5027 if (cmp == 0
5028 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5029 {
5030 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5031 {
5032 if (SYMBOL_IS_ARGUMENT (sym))
5033 arg_sym = sym;
5034 else
5035 {
5036 found_sym = 1;
5037 add_defn_to_vec (obstackp,
5038 fixup_symbol_section (sym, objfile),
5039 block);
5040 }
5041 }
5042 }
5043 }
5044 }
5045
5046 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5047 They aren't parameters, right? */
5048 if (!found_sym && arg_sym != NULL)
5049 {
5050 add_defn_to_vec (obstackp,
5051 fixup_symbol_section (arg_sym, objfile),
5052 block);
5053 }
5054 }
5055 }
5056 \f
5057
5058 /* Symbol Completion */
5059
5060 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5061 name in a form that's appropriate for the completion. The result
5062 does not need to be deallocated, but is only good until the next call.
5063
5064 TEXT_LEN is equal to the length of TEXT.
5065 Perform a wild match if WILD_MATCH is set.
5066 ENCODED should be set if TEXT represents the start of a symbol name
5067 in its encoded form. */
5068
5069 static const char *
5070 symbol_completion_match (const char *sym_name,
5071 const char *text, int text_len,
5072 int wild_match, int encoded)
5073 {
5074 char *result;
5075 const int verbatim_match = (text[0] == '<');
5076 int match = 0;
5077
5078 if (verbatim_match)
5079 {
5080 /* Strip the leading angle bracket. */
5081 text = text + 1;
5082 text_len--;
5083 }
5084
5085 /* First, test against the fully qualified name of the symbol. */
5086
5087 if (strncmp (sym_name, text, text_len) == 0)
5088 match = 1;
5089
5090 if (match && !encoded)
5091 {
5092 /* One needed check before declaring a positive match is to verify
5093 that iff we are doing a verbatim match, the decoded version
5094 of the symbol name starts with '<'. Otherwise, this symbol name
5095 is not a suitable completion. */
5096 const char *sym_name_copy = sym_name;
5097 int has_angle_bracket;
5098
5099 sym_name = ada_decode (sym_name);
5100 has_angle_bracket = (sym_name[0] == '<');
5101 match = (has_angle_bracket == verbatim_match);
5102 sym_name = sym_name_copy;
5103 }
5104
5105 if (match && !verbatim_match)
5106 {
5107 /* When doing non-verbatim match, another check that needs to
5108 be done is to verify that the potentially matching symbol name
5109 does not include capital letters, because the ada-mode would
5110 not be able to understand these symbol names without the
5111 angle bracket notation. */
5112 const char *tmp;
5113
5114 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5115 if (*tmp != '\0')
5116 match = 0;
5117 }
5118
5119 /* Second: Try wild matching... */
5120
5121 if (!match && wild_match)
5122 {
5123 /* Since we are doing wild matching, this means that TEXT
5124 may represent an unqualified symbol name. We therefore must
5125 also compare TEXT against the unqualified name of the symbol. */
5126 sym_name = ada_unqualified_name (ada_decode (sym_name));
5127
5128 if (strncmp (sym_name, text, text_len) == 0)
5129 match = 1;
5130 }
5131
5132 /* Finally: If we found a mach, prepare the result to return. */
5133
5134 if (!match)
5135 return NULL;
5136
5137 if (verbatim_match)
5138 sym_name = add_angle_brackets (sym_name);
5139
5140 if (!encoded)
5141 sym_name = ada_decode (sym_name);
5142
5143 return sym_name;
5144 }
5145
5146 typedef char *char_ptr;
5147 DEF_VEC_P (char_ptr);
5148
5149 /* A companion function to ada_make_symbol_completion_list().
5150 Check if SYM_NAME represents a symbol which name would be suitable
5151 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5152 it is appended at the end of the given string vector SV.
5153
5154 ORIG_TEXT is the string original string from the user command
5155 that needs to be completed. WORD is the entire command on which
5156 completion should be performed. These two parameters are used to
5157 determine which part of the symbol name should be added to the
5158 completion vector.
5159 if WILD_MATCH is set, then wild matching is performed.
5160 ENCODED should be set if TEXT represents a symbol name in its
5161 encoded formed (in which case the completion should also be
5162 encoded). */
5163
5164 static void
5165 symbol_completion_add (VEC(char_ptr) **sv,
5166 const char *sym_name,
5167 const char *text, int text_len,
5168 const char *orig_text, const char *word,
5169 int wild_match, int encoded)
5170 {
5171 const char *match = symbol_completion_match (sym_name, text, text_len,
5172 wild_match, encoded);
5173 char *completion;
5174
5175 if (match == NULL)
5176 return;
5177
5178 /* We found a match, so add the appropriate completion to the given
5179 string vector. */
5180
5181 if (word == orig_text)
5182 {
5183 completion = xmalloc (strlen (match) + 5);
5184 strcpy (completion, match);
5185 }
5186 else if (word > orig_text)
5187 {
5188 /* Return some portion of sym_name. */
5189 completion = xmalloc (strlen (match) + 5);
5190 strcpy (completion, match + (word - orig_text));
5191 }
5192 else
5193 {
5194 /* Return some of ORIG_TEXT plus sym_name. */
5195 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5196 strncpy (completion, word, orig_text - word);
5197 completion[orig_text - word] = '\0';
5198 strcat (completion, match);
5199 }
5200
5201 VEC_safe_push (char_ptr, *sv, completion);
5202 }
5203
5204 /* Return a list of possible symbol names completing TEXT0. The list
5205 is NULL terminated. WORD is the entire command on which completion
5206 is made. */
5207
5208 static char **
5209 ada_make_symbol_completion_list (char *text0, char *word)
5210 {
5211 char *text;
5212 int text_len;
5213 int wild_match;
5214 int encoded;
5215 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5216 struct symbol *sym;
5217 struct symtab *s;
5218 struct partial_symtab *ps;
5219 struct minimal_symbol *msymbol;
5220 struct objfile *objfile;
5221 struct block *b, *surrounding_static_block = 0;
5222 int i;
5223 struct dict_iterator iter;
5224
5225 if (text0[0] == '<')
5226 {
5227 text = xstrdup (text0);
5228 make_cleanup (xfree, text);
5229 text_len = strlen (text);
5230 wild_match = 0;
5231 encoded = 1;
5232 }
5233 else
5234 {
5235 text = xstrdup (ada_encode (text0));
5236 make_cleanup (xfree, text);
5237 text_len = strlen (text);
5238 for (i = 0; i < text_len; i++)
5239 text[i] = tolower (text[i]);
5240
5241 encoded = (strstr (text0, "__") != NULL);
5242 /* If the name contains a ".", then the user is entering a fully
5243 qualified entity name, and the match must not be done in wild
5244 mode. Similarly, if the user wants to complete what looks like
5245 an encoded name, the match must not be done in wild mode. */
5246 wild_match = (strchr (text0, '.') == NULL && !encoded);
5247 }
5248
5249 /* First, look at the partial symtab symbols. */
5250 ALL_PSYMTABS (objfile, ps)
5251 {
5252 struct partial_symbol **psym;
5253
5254 /* If the psymtab's been read in we'll get it when we search
5255 through the blockvector. */
5256 if (ps->readin)
5257 continue;
5258
5259 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5260 psym < (objfile->global_psymbols.list + ps->globals_offset
5261 + ps->n_global_syms); psym++)
5262 {
5263 QUIT;
5264 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5265 text, text_len, text0, word,
5266 wild_match, encoded);
5267 }
5268
5269 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5270 psym < (objfile->static_psymbols.list + ps->statics_offset
5271 + ps->n_static_syms); psym++)
5272 {
5273 QUIT;
5274 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5275 text, text_len, text0, word,
5276 wild_match, encoded);
5277 }
5278 }
5279
5280 /* At this point scan through the misc symbol vectors and add each
5281 symbol you find to the list. Eventually we want to ignore
5282 anything that isn't a text symbol (everything else will be
5283 handled by the psymtab code above). */
5284
5285 ALL_MSYMBOLS (objfile, msymbol)
5286 {
5287 QUIT;
5288 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5289 text, text_len, text0, word, wild_match, encoded);
5290 }
5291
5292 /* Search upwards from currently selected frame (so that we can
5293 complete on local vars. */
5294
5295 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5296 {
5297 if (!BLOCK_SUPERBLOCK (b))
5298 surrounding_static_block = b; /* For elmin of dups */
5299
5300 ALL_BLOCK_SYMBOLS (b, iter, sym)
5301 {
5302 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5303 text, text_len, text0, word,
5304 wild_match, encoded);
5305 }
5306 }
5307
5308 /* Go through the symtabs and check the externs and statics for
5309 symbols which match. */
5310
5311 ALL_SYMTABS (objfile, s)
5312 {
5313 QUIT;
5314 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5315 ALL_BLOCK_SYMBOLS (b, iter, sym)
5316 {
5317 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5318 text, text_len, text0, word,
5319 wild_match, encoded);
5320 }
5321 }
5322
5323 ALL_SYMTABS (objfile, s)
5324 {
5325 QUIT;
5326 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5327 /* Don't do this block twice. */
5328 if (b == surrounding_static_block)
5329 continue;
5330 ALL_BLOCK_SYMBOLS (b, iter, sym)
5331 {
5332 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5333 text, text_len, text0, word,
5334 wild_match, encoded);
5335 }
5336 }
5337
5338 /* Append the closing NULL entry. */
5339 VEC_safe_push (char_ptr, completions, NULL);
5340
5341 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5342 return the copy. It's unfortunate that we have to make a copy
5343 of an array that we're about to destroy, but there is nothing much
5344 we can do about it. Fortunately, it's typically not a very large
5345 array. */
5346 {
5347 const size_t completions_size =
5348 VEC_length (char_ptr, completions) * sizeof (char *);
5349 char **result = malloc (completions_size);
5350
5351 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5352
5353 VEC_free (char_ptr, completions);
5354 return result;
5355 }
5356 }
5357
5358 /* Field Access */
5359
5360 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5361 for tagged types. */
5362
5363 static int
5364 ada_is_dispatch_table_ptr_type (struct type *type)
5365 {
5366 char *name;
5367
5368 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5369 return 0;
5370
5371 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5372 if (name == NULL)
5373 return 0;
5374
5375 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5376 }
5377
5378 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5379 to be invisible to users. */
5380
5381 int
5382 ada_is_ignored_field (struct type *type, int field_num)
5383 {
5384 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5385 return 1;
5386
5387 /* Check the name of that field. */
5388 {
5389 const char *name = TYPE_FIELD_NAME (type, field_num);
5390
5391 /* Anonymous field names should not be printed.
5392 brobecker/2007-02-20: I don't think this can actually happen
5393 but we don't want to print the value of annonymous fields anyway. */
5394 if (name == NULL)
5395 return 1;
5396
5397 /* A field named "_parent" is internally generated by GNAT for
5398 tagged types, and should not be printed either. */
5399 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5400 return 1;
5401 }
5402
5403 /* If this is the dispatch table of a tagged type, then ignore. */
5404 if (ada_is_tagged_type (type, 1)
5405 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5406 return 1;
5407
5408 /* Not a special field, so it should not be ignored. */
5409 return 0;
5410 }
5411
5412 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5413 pointer or reference type whose ultimate target has a tag field. */
5414
5415 int
5416 ada_is_tagged_type (struct type *type, int refok)
5417 {
5418 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5419 }
5420
5421 /* True iff TYPE represents the type of X'Tag */
5422
5423 int
5424 ada_is_tag_type (struct type *type)
5425 {
5426 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5427 return 0;
5428 else
5429 {
5430 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5431 return (name != NULL
5432 && strcmp (name, "ada__tags__dispatch_table") == 0);
5433 }
5434 }
5435
5436 /* The type of the tag on VAL. */
5437
5438 struct type *
5439 ada_tag_type (struct value *val)
5440 {
5441 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5442 }
5443
5444 /* The value of the tag on VAL. */
5445
5446 struct value *
5447 ada_value_tag (struct value *val)
5448 {
5449 return ada_value_struct_elt (val, "_tag", 0);
5450 }
5451
5452 /* The value of the tag on the object of type TYPE whose contents are
5453 saved at VALADDR, if it is non-null, or is at memory address
5454 ADDRESS. */
5455
5456 static struct value *
5457 value_tag_from_contents_and_address (struct type *type,
5458 const gdb_byte *valaddr,
5459 CORE_ADDR address)
5460 {
5461 int tag_byte_offset, dummy1, dummy2;
5462 struct type *tag_type;
5463 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5464 NULL, NULL, NULL))
5465 {
5466 const gdb_byte *valaddr1 = ((valaddr == NULL)
5467 ? NULL
5468 : valaddr + tag_byte_offset);
5469 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5470
5471 return value_from_contents_and_address (tag_type, valaddr1, address1);
5472 }
5473 return NULL;
5474 }
5475
5476 static struct type *
5477 type_from_tag (struct value *tag)
5478 {
5479 const char *type_name = ada_tag_name (tag);
5480 if (type_name != NULL)
5481 return ada_find_any_type (ada_encode (type_name));
5482 return NULL;
5483 }
5484
5485 struct tag_args
5486 {
5487 struct value *tag;
5488 char *name;
5489 };
5490
5491
5492 static int ada_tag_name_1 (void *);
5493 static int ada_tag_name_2 (struct tag_args *);
5494
5495 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5496 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5497 The value stored in ARGS->name is valid until the next call to
5498 ada_tag_name_1. */
5499
5500 static int
5501 ada_tag_name_1 (void *args0)
5502 {
5503 struct tag_args *args = (struct tag_args *) args0;
5504 static char name[1024];
5505 char *p;
5506 struct value *val;
5507 args->name = NULL;
5508 val = ada_value_struct_elt (args->tag, "tsd", 1);
5509 if (val == NULL)
5510 return ada_tag_name_2 (args);
5511 val = ada_value_struct_elt (val, "expanded_name", 1);
5512 if (val == NULL)
5513 return 0;
5514 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5515 for (p = name; *p != '\0'; p += 1)
5516 if (isalpha (*p))
5517 *p = tolower (*p);
5518 args->name = name;
5519 return 0;
5520 }
5521
5522 /* Utility function for ada_tag_name_1 that tries the second
5523 representation for the dispatch table (in which there is no
5524 explicit 'tsd' field in the referent of the tag pointer, and instead
5525 the tsd pointer is stored just before the dispatch table. */
5526
5527 static int
5528 ada_tag_name_2 (struct tag_args *args)
5529 {
5530 struct type *info_type;
5531 static char name[1024];
5532 char *p;
5533 struct value *val, *valp;
5534
5535 args->name = NULL;
5536 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5537 if (info_type == NULL)
5538 return 0;
5539 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5540 valp = value_cast (info_type, args->tag);
5541 if (valp == NULL)
5542 return 0;
5543 val = value_ind (value_ptradd (valp, -1));
5544 if (val == NULL)
5545 return 0;
5546 val = ada_value_struct_elt (val, "expanded_name", 1);
5547 if (val == NULL)
5548 return 0;
5549 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5550 for (p = name; *p != '\0'; p += 1)
5551 if (isalpha (*p))
5552 *p = tolower (*p);
5553 args->name = name;
5554 return 0;
5555 }
5556
5557 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5558 * a C string. */
5559
5560 const char *
5561 ada_tag_name (struct value *tag)
5562 {
5563 struct tag_args args;
5564 if (!ada_is_tag_type (value_type (tag)))
5565 return NULL;
5566 args.tag = tag;
5567 args.name = NULL;
5568 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5569 return args.name;
5570 }
5571
5572 /* The parent type of TYPE, or NULL if none. */
5573
5574 struct type *
5575 ada_parent_type (struct type *type)
5576 {
5577 int i;
5578
5579 type = ada_check_typedef (type);
5580
5581 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5582 return NULL;
5583
5584 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5585 if (ada_is_parent_field (type, i))
5586 {
5587 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5588
5589 /* If the _parent field is a pointer, then dereference it. */
5590 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5591 parent_type = TYPE_TARGET_TYPE (parent_type);
5592 /* If there is a parallel XVS type, get the actual base type. */
5593 parent_type = ada_get_base_type (parent_type);
5594
5595 return ada_check_typedef (parent_type);
5596 }
5597
5598 return NULL;
5599 }
5600
5601 /* True iff field number FIELD_NUM of structure type TYPE contains the
5602 parent-type (inherited) fields of a derived type. Assumes TYPE is
5603 a structure type with at least FIELD_NUM+1 fields. */
5604
5605 int
5606 ada_is_parent_field (struct type *type, int field_num)
5607 {
5608 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5609 return (name != NULL
5610 && (strncmp (name, "PARENT", 6) == 0
5611 || strncmp (name, "_parent", 7) == 0));
5612 }
5613
5614 /* True iff field number FIELD_NUM of structure type TYPE is a
5615 transparent wrapper field (which should be silently traversed when doing
5616 field selection and flattened when printing). Assumes TYPE is a
5617 structure type with at least FIELD_NUM+1 fields. Such fields are always
5618 structures. */
5619
5620 int
5621 ada_is_wrapper_field (struct type *type, int field_num)
5622 {
5623 const char *name = TYPE_FIELD_NAME (type, field_num);
5624 return (name != NULL
5625 && (strncmp (name, "PARENT", 6) == 0
5626 || strcmp (name, "REP") == 0
5627 || strncmp (name, "_parent", 7) == 0
5628 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5629 }
5630
5631 /* True iff field number FIELD_NUM of structure or union type TYPE
5632 is a variant wrapper. Assumes TYPE is a structure type with at least
5633 FIELD_NUM+1 fields. */
5634
5635 int
5636 ada_is_variant_part (struct type *type, int field_num)
5637 {
5638 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5639 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5640 || (is_dynamic_field (type, field_num)
5641 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5642 == TYPE_CODE_UNION)));
5643 }
5644
5645 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5646 whose discriminants are contained in the record type OUTER_TYPE,
5647 returns the type of the controlling discriminant for the variant.
5648 May return NULL if the type could not be found. */
5649
5650 struct type *
5651 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5652 {
5653 char *name = ada_variant_discrim_name (var_type);
5654 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5655 }
5656
5657 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5658 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5659 represents a 'when others' clause; otherwise 0. */
5660
5661 int
5662 ada_is_others_clause (struct type *type, int field_num)
5663 {
5664 const char *name = TYPE_FIELD_NAME (type, field_num);
5665 return (name != NULL && name[0] == 'O');
5666 }
5667
5668 /* Assuming that TYPE0 is the type of the variant part of a record,
5669 returns the name of the discriminant controlling the variant.
5670 The value is valid until the next call to ada_variant_discrim_name. */
5671
5672 char *
5673 ada_variant_discrim_name (struct type *type0)
5674 {
5675 static char *result = NULL;
5676 static size_t result_len = 0;
5677 struct type *type;
5678 const char *name;
5679 const char *discrim_end;
5680 const char *discrim_start;
5681
5682 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5683 type = TYPE_TARGET_TYPE (type0);
5684 else
5685 type = type0;
5686
5687 name = ada_type_name (type);
5688
5689 if (name == NULL || name[0] == '\000')
5690 return "";
5691
5692 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5693 discrim_end -= 1)
5694 {
5695 if (strncmp (discrim_end, "___XVN", 6) == 0)
5696 break;
5697 }
5698 if (discrim_end == name)
5699 return "";
5700
5701 for (discrim_start = discrim_end; discrim_start != name + 3;
5702 discrim_start -= 1)
5703 {
5704 if (discrim_start == name + 1)
5705 return "";
5706 if ((discrim_start > name + 3
5707 && strncmp (discrim_start - 3, "___", 3) == 0)
5708 || discrim_start[-1] == '.')
5709 break;
5710 }
5711
5712 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5713 strncpy (result, discrim_start, discrim_end - discrim_start);
5714 result[discrim_end - discrim_start] = '\0';
5715 return result;
5716 }
5717
5718 /* Scan STR for a subtype-encoded number, beginning at position K.
5719 Put the position of the character just past the number scanned in
5720 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5721 Return 1 if there was a valid number at the given position, and 0
5722 otherwise. A "subtype-encoded" number consists of the absolute value
5723 in decimal, followed by the letter 'm' to indicate a negative number.
5724 Assumes 0m does not occur. */
5725
5726 int
5727 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5728 {
5729 ULONGEST RU;
5730
5731 if (!isdigit (str[k]))
5732 return 0;
5733
5734 /* Do it the hard way so as not to make any assumption about
5735 the relationship of unsigned long (%lu scan format code) and
5736 LONGEST. */
5737 RU = 0;
5738 while (isdigit (str[k]))
5739 {
5740 RU = RU * 10 + (str[k] - '0');
5741 k += 1;
5742 }
5743
5744 if (str[k] == 'm')
5745 {
5746 if (R != NULL)
5747 *R = (-(LONGEST) (RU - 1)) - 1;
5748 k += 1;
5749 }
5750 else if (R != NULL)
5751 *R = (LONGEST) RU;
5752
5753 /* NOTE on the above: Technically, C does not say what the results of
5754 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5755 number representable as a LONGEST (although either would probably work
5756 in most implementations). When RU>0, the locution in the then branch
5757 above is always equivalent to the negative of RU. */
5758
5759 if (new_k != NULL)
5760 *new_k = k;
5761 return 1;
5762 }
5763
5764 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5765 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5766 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5767
5768 int
5769 ada_in_variant (LONGEST val, struct type *type, int field_num)
5770 {
5771 const char *name = TYPE_FIELD_NAME (type, field_num);
5772 int p;
5773
5774 p = 0;
5775 while (1)
5776 {
5777 switch (name[p])
5778 {
5779 case '\0':
5780 return 0;
5781 case 'S':
5782 {
5783 LONGEST W;
5784 if (!ada_scan_number (name, p + 1, &W, &p))
5785 return 0;
5786 if (val == W)
5787 return 1;
5788 break;
5789 }
5790 case 'R':
5791 {
5792 LONGEST L, U;
5793 if (!ada_scan_number (name, p + 1, &L, &p)
5794 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5795 return 0;
5796 if (val >= L && val <= U)
5797 return 1;
5798 break;
5799 }
5800 case 'O':
5801 return 1;
5802 default:
5803 return 0;
5804 }
5805 }
5806 }
5807
5808 /* FIXME: Lots of redundancy below. Try to consolidate. */
5809
5810 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5811 ARG_TYPE, extract and return the value of one of its (non-static)
5812 fields. FIELDNO says which field. Differs from value_primitive_field
5813 only in that it can handle packed values of arbitrary type. */
5814
5815 static struct value *
5816 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5817 struct type *arg_type)
5818 {
5819 struct type *type;
5820
5821 arg_type = ada_check_typedef (arg_type);
5822 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5823
5824 /* Handle packed fields. */
5825
5826 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5827 {
5828 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5829 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5830
5831 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5832 offset + bit_pos / 8,
5833 bit_pos % 8, bit_size, type);
5834 }
5835 else
5836 return value_primitive_field (arg1, offset, fieldno, arg_type);
5837 }
5838
5839 /* Find field with name NAME in object of type TYPE. If found,
5840 set the following for each argument that is non-null:
5841 - *FIELD_TYPE_P to the field's type;
5842 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5843 an object of that type;
5844 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5845 - *BIT_SIZE_P to its size in bits if the field is packed, and
5846 0 otherwise;
5847 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5848 fields up to but not including the desired field, or by the total
5849 number of fields if not found. A NULL value of NAME never
5850 matches; the function just counts visible fields in this case.
5851
5852 Returns 1 if found, 0 otherwise. */
5853
5854 static int
5855 find_struct_field (char *name, struct type *type, int offset,
5856 struct type **field_type_p,
5857 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5858 int *index_p)
5859 {
5860 int i;
5861
5862 type = ada_check_typedef (type);
5863
5864 if (field_type_p != NULL)
5865 *field_type_p = NULL;
5866 if (byte_offset_p != NULL)
5867 *byte_offset_p = 0;
5868 if (bit_offset_p != NULL)
5869 *bit_offset_p = 0;
5870 if (bit_size_p != NULL)
5871 *bit_size_p = 0;
5872
5873 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5874 {
5875 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5876 int fld_offset = offset + bit_pos / 8;
5877 char *t_field_name = TYPE_FIELD_NAME (type, i);
5878
5879 if (t_field_name == NULL)
5880 continue;
5881
5882 else if (name != NULL && field_name_match (t_field_name, name))
5883 {
5884 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5885 if (field_type_p != NULL)
5886 *field_type_p = TYPE_FIELD_TYPE (type, i);
5887 if (byte_offset_p != NULL)
5888 *byte_offset_p = fld_offset;
5889 if (bit_offset_p != NULL)
5890 *bit_offset_p = bit_pos % 8;
5891 if (bit_size_p != NULL)
5892 *bit_size_p = bit_size;
5893 return 1;
5894 }
5895 else if (ada_is_wrapper_field (type, i))
5896 {
5897 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5898 field_type_p, byte_offset_p, bit_offset_p,
5899 bit_size_p, index_p))
5900 return 1;
5901 }
5902 else if (ada_is_variant_part (type, i))
5903 {
5904 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5905 fixed type?? */
5906 int j;
5907 struct type *field_type
5908 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5909
5910 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5911 {
5912 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5913 fld_offset
5914 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5915 field_type_p, byte_offset_p,
5916 bit_offset_p, bit_size_p, index_p))
5917 return 1;
5918 }
5919 }
5920 else if (index_p != NULL)
5921 *index_p += 1;
5922 }
5923 return 0;
5924 }
5925
5926 /* Number of user-visible fields in record type TYPE. */
5927
5928 static int
5929 num_visible_fields (struct type *type)
5930 {
5931 int n;
5932 n = 0;
5933 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5934 return n;
5935 }
5936
5937 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5938 and search in it assuming it has (class) type TYPE.
5939 If found, return value, else return NULL.
5940
5941 Searches recursively through wrapper fields (e.g., '_parent'). */
5942
5943 static struct value *
5944 ada_search_struct_field (char *name, struct value *arg, int offset,
5945 struct type *type)
5946 {
5947 int i;
5948 type = ada_check_typedef (type);
5949
5950 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5951 {
5952 char *t_field_name = TYPE_FIELD_NAME (type, i);
5953
5954 if (t_field_name == NULL)
5955 continue;
5956
5957 else if (field_name_match (t_field_name, name))
5958 return ada_value_primitive_field (arg, offset, i, type);
5959
5960 else if (ada_is_wrapper_field (type, i))
5961 {
5962 struct value *v = /* Do not let indent join lines here. */
5963 ada_search_struct_field (name, arg,
5964 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5965 TYPE_FIELD_TYPE (type, i));
5966 if (v != NULL)
5967 return v;
5968 }
5969
5970 else if (ada_is_variant_part (type, i))
5971 {
5972 /* PNH: Do we ever get here? See find_struct_field. */
5973 int j;
5974 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5975 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5976
5977 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5978 {
5979 struct value *v = ada_search_struct_field /* Force line break. */
5980 (name, arg,
5981 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5982 TYPE_FIELD_TYPE (field_type, j));
5983 if (v != NULL)
5984 return v;
5985 }
5986 }
5987 }
5988 return NULL;
5989 }
5990
5991 static struct value *ada_index_struct_field_1 (int *, struct value *,
5992 int, struct type *);
5993
5994
5995 /* Return field #INDEX in ARG, where the index is that returned by
5996 * find_struct_field through its INDEX_P argument. Adjust the address
5997 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5998 * If found, return value, else return NULL. */
5999
6000 static struct value *
6001 ada_index_struct_field (int index, struct value *arg, int offset,
6002 struct type *type)
6003 {
6004 return ada_index_struct_field_1 (&index, arg, offset, type);
6005 }
6006
6007
6008 /* Auxiliary function for ada_index_struct_field. Like
6009 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6010 * *INDEX_P. */
6011
6012 static struct value *
6013 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6014 struct type *type)
6015 {
6016 int i;
6017 type = ada_check_typedef (type);
6018
6019 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6020 {
6021 if (TYPE_FIELD_NAME (type, i) == NULL)
6022 continue;
6023 else if (ada_is_wrapper_field (type, i))
6024 {
6025 struct value *v = /* Do not let indent join lines here. */
6026 ada_index_struct_field_1 (index_p, arg,
6027 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6028 TYPE_FIELD_TYPE (type, i));
6029 if (v != NULL)
6030 return v;
6031 }
6032
6033 else if (ada_is_variant_part (type, i))
6034 {
6035 /* PNH: Do we ever get here? See ada_search_struct_field,
6036 find_struct_field. */
6037 error (_("Cannot assign this kind of variant record"));
6038 }
6039 else if (*index_p == 0)
6040 return ada_value_primitive_field (arg, offset, i, type);
6041 else
6042 *index_p -= 1;
6043 }
6044 return NULL;
6045 }
6046
6047 /* Given ARG, a value of type (pointer or reference to a)*
6048 structure/union, extract the component named NAME from the ultimate
6049 target structure/union and return it as a value with its
6050 appropriate type.
6051
6052 The routine searches for NAME among all members of the structure itself
6053 and (recursively) among all members of any wrapper members
6054 (e.g., '_parent').
6055
6056 If NO_ERR, then simply return NULL in case of error, rather than
6057 calling error. */
6058
6059 struct value *
6060 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6061 {
6062 struct type *t, *t1;
6063 struct value *v;
6064
6065 v = NULL;
6066 t1 = t = ada_check_typedef (value_type (arg));
6067 if (TYPE_CODE (t) == TYPE_CODE_REF)
6068 {
6069 t1 = TYPE_TARGET_TYPE (t);
6070 if (t1 == NULL)
6071 goto BadValue;
6072 t1 = ada_check_typedef (t1);
6073 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6074 {
6075 arg = coerce_ref (arg);
6076 t = t1;
6077 }
6078 }
6079
6080 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6081 {
6082 t1 = TYPE_TARGET_TYPE (t);
6083 if (t1 == NULL)
6084 goto BadValue;
6085 t1 = ada_check_typedef (t1);
6086 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6087 {
6088 arg = value_ind (arg);
6089 t = t1;
6090 }
6091 else
6092 break;
6093 }
6094
6095 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6096 goto BadValue;
6097
6098 if (t1 == t)
6099 v = ada_search_struct_field (name, arg, 0, t);
6100 else
6101 {
6102 int bit_offset, bit_size, byte_offset;
6103 struct type *field_type;
6104 CORE_ADDR address;
6105
6106 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6107 address = value_as_address (arg);
6108 else
6109 address = unpack_pointer (t, value_contents (arg));
6110
6111 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6112 if (find_struct_field (name, t1, 0,
6113 &field_type, &byte_offset, &bit_offset,
6114 &bit_size, NULL))
6115 {
6116 if (bit_size != 0)
6117 {
6118 if (TYPE_CODE (t) == TYPE_CODE_REF)
6119 arg = ada_coerce_ref (arg);
6120 else
6121 arg = ada_value_ind (arg);
6122 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6123 bit_offset, bit_size,
6124 field_type);
6125 }
6126 else
6127 v = value_at_lazy (field_type, address + byte_offset);
6128 }
6129 }
6130
6131 if (v != NULL || no_err)
6132 return v;
6133 else
6134 error (_("There is no member named %s."), name);
6135
6136 BadValue:
6137 if (no_err)
6138 return NULL;
6139 else
6140 error (_("Attempt to extract a component of a value that is not a record."));
6141 }
6142
6143 /* Given a type TYPE, look up the type of the component of type named NAME.
6144 If DISPP is non-null, add its byte displacement from the beginning of a
6145 structure (pointed to by a value) of type TYPE to *DISPP (does not
6146 work for packed fields).
6147
6148 Matches any field whose name has NAME as a prefix, possibly
6149 followed by "___".
6150
6151 TYPE can be either a struct or union. If REFOK, TYPE may also
6152 be a (pointer or reference)+ to a struct or union, and the
6153 ultimate target type will be searched.
6154
6155 Looks recursively into variant clauses and parent types.
6156
6157 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6158 TYPE is not a type of the right kind. */
6159
6160 static struct type *
6161 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6162 int noerr, int *dispp)
6163 {
6164 int i;
6165
6166 if (name == NULL)
6167 goto BadName;
6168
6169 if (refok && type != NULL)
6170 while (1)
6171 {
6172 type = ada_check_typedef (type);
6173 if (TYPE_CODE (type) != TYPE_CODE_PTR
6174 && TYPE_CODE (type) != TYPE_CODE_REF)
6175 break;
6176 type = TYPE_TARGET_TYPE (type);
6177 }
6178
6179 if (type == NULL
6180 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6181 && TYPE_CODE (type) != TYPE_CODE_UNION))
6182 {
6183 if (noerr)
6184 return NULL;
6185 else
6186 {
6187 target_terminal_ours ();
6188 gdb_flush (gdb_stdout);
6189 if (type == NULL)
6190 error (_("Type (null) is not a structure or union type"));
6191 else
6192 {
6193 /* XXX: type_sprint */
6194 fprintf_unfiltered (gdb_stderr, _("Type "));
6195 type_print (type, "", gdb_stderr, -1);
6196 error (_(" is not a structure or union type"));
6197 }
6198 }
6199 }
6200
6201 type = to_static_fixed_type (type);
6202
6203 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6204 {
6205 char *t_field_name = TYPE_FIELD_NAME (type, i);
6206 struct type *t;
6207 int disp;
6208
6209 if (t_field_name == NULL)
6210 continue;
6211
6212 else if (field_name_match (t_field_name, name))
6213 {
6214 if (dispp != NULL)
6215 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6216 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6217 }
6218
6219 else if (ada_is_wrapper_field (type, i))
6220 {
6221 disp = 0;
6222 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6223 0, 1, &disp);
6224 if (t != NULL)
6225 {
6226 if (dispp != NULL)
6227 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6228 return t;
6229 }
6230 }
6231
6232 else if (ada_is_variant_part (type, i))
6233 {
6234 int j;
6235 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6236
6237 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6238 {
6239 /* FIXME pnh 2008/01/26: We check for a field that is
6240 NOT wrapped in a struct, since the compiler sometimes
6241 generates these for unchecked variant types. Revisit
6242 if the compiler changes this practice. */
6243 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6244 disp = 0;
6245 if (v_field_name != NULL
6246 && field_name_match (v_field_name, name))
6247 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6248 else
6249 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6250 name, 0, 1, &disp);
6251
6252 if (t != NULL)
6253 {
6254 if (dispp != NULL)
6255 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6256 return t;
6257 }
6258 }
6259 }
6260
6261 }
6262
6263 BadName:
6264 if (!noerr)
6265 {
6266 target_terminal_ours ();
6267 gdb_flush (gdb_stdout);
6268 if (name == NULL)
6269 {
6270 /* XXX: type_sprint */
6271 fprintf_unfiltered (gdb_stderr, _("Type "));
6272 type_print (type, "", gdb_stderr, -1);
6273 error (_(" has no component named <null>"));
6274 }
6275 else
6276 {
6277 /* XXX: type_sprint */
6278 fprintf_unfiltered (gdb_stderr, _("Type "));
6279 type_print (type, "", gdb_stderr, -1);
6280 error (_(" has no component named %s"), name);
6281 }
6282 }
6283
6284 return NULL;
6285 }
6286
6287 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6288 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6289 represents an unchecked union (that is, the variant part of a
6290 record that is named in an Unchecked_Union pragma). */
6291
6292 static int
6293 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6294 {
6295 char *discrim_name = ada_variant_discrim_name (var_type);
6296 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6297 == NULL);
6298 }
6299
6300
6301 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6302 within a value of type OUTER_TYPE that is stored in GDB at
6303 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6304 numbering from 0) is applicable. Returns -1 if none are. */
6305
6306 int
6307 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6308 const gdb_byte *outer_valaddr)
6309 {
6310 int others_clause;
6311 int i;
6312 char *discrim_name = ada_variant_discrim_name (var_type);
6313 struct value *outer;
6314 struct value *discrim;
6315 LONGEST discrim_val;
6316
6317 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6318 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6319 if (discrim == NULL)
6320 return -1;
6321 discrim_val = value_as_long (discrim);
6322
6323 others_clause = -1;
6324 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6325 {
6326 if (ada_is_others_clause (var_type, i))
6327 others_clause = i;
6328 else if (ada_in_variant (discrim_val, var_type, i))
6329 return i;
6330 }
6331
6332 return others_clause;
6333 }
6334 \f
6335
6336
6337 /* Dynamic-Sized Records */
6338
6339 /* Strategy: The type ostensibly attached to a value with dynamic size
6340 (i.e., a size that is not statically recorded in the debugging
6341 data) does not accurately reflect the size or layout of the value.
6342 Our strategy is to convert these values to values with accurate,
6343 conventional types that are constructed on the fly. */
6344
6345 /* There is a subtle and tricky problem here. In general, we cannot
6346 determine the size of dynamic records without its data. However,
6347 the 'struct value' data structure, which GDB uses to represent
6348 quantities in the inferior process (the target), requires the size
6349 of the type at the time of its allocation in order to reserve space
6350 for GDB's internal copy of the data. That's why the
6351 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6352 rather than struct value*s.
6353
6354 However, GDB's internal history variables ($1, $2, etc.) are
6355 struct value*s containing internal copies of the data that are not, in
6356 general, the same as the data at their corresponding addresses in
6357 the target. Fortunately, the types we give to these values are all
6358 conventional, fixed-size types (as per the strategy described
6359 above), so that we don't usually have to perform the
6360 'to_fixed_xxx_type' conversions to look at their values.
6361 Unfortunately, there is one exception: if one of the internal
6362 history variables is an array whose elements are unconstrained
6363 records, then we will need to create distinct fixed types for each
6364 element selected. */
6365
6366 /* The upshot of all of this is that many routines take a (type, host
6367 address, target address) triple as arguments to represent a value.
6368 The host address, if non-null, is supposed to contain an internal
6369 copy of the relevant data; otherwise, the program is to consult the
6370 target at the target address. */
6371
6372 /* Assuming that VAL0 represents a pointer value, the result of
6373 dereferencing it. Differs from value_ind in its treatment of
6374 dynamic-sized types. */
6375
6376 struct value *
6377 ada_value_ind (struct value *val0)
6378 {
6379 struct value *val = unwrap_value (value_ind (val0));
6380 return ada_to_fixed_value (val);
6381 }
6382
6383 /* The value resulting from dereferencing any "reference to"
6384 qualifiers on VAL0. */
6385
6386 static struct value *
6387 ada_coerce_ref (struct value *val0)
6388 {
6389 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6390 {
6391 struct value *val = val0;
6392 val = coerce_ref (val);
6393 val = unwrap_value (val);
6394 return ada_to_fixed_value (val);
6395 }
6396 else
6397 return val0;
6398 }
6399
6400 /* Return OFF rounded upward if necessary to a multiple of
6401 ALIGNMENT (a power of 2). */
6402
6403 static unsigned int
6404 align_value (unsigned int off, unsigned int alignment)
6405 {
6406 return (off + alignment - 1) & ~(alignment - 1);
6407 }
6408
6409 /* Return the bit alignment required for field #F of template type TYPE. */
6410
6411 static unsigned int
6412 field_alignment (struct type *type, int f)
6413 {
6414 const char *name = TYPE_FIELD_NAME (type, f);
6415 int len;
6416 int align_offset;
6417
6418 /* The field name should never be null, unless the debugging information
6419 is somehow malformed. In this case, we assume the field does not
6420 require any alignment. */
6421 if (name == NULL)
6422 return 1;
6423
6424 len = strlen (name);
6425
6426 if (!isdigit (name[len - 1]))
6427 return 1;
6428
6429 if (isdigit (name[len - 2]))
6430 align_offset = len - 2;
6431 else
6432 align_offset = len - 1;
6433
6434 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6435 return TARGET_CHAR_BIT;
6436
6437 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6438 }
6439
6440 /* Find a symbol named NAME. Ignores ambiguity. */
6441
6442 struct symbol *
6443 ada_find_any_symbol (const char *name)
6444 {
6445 struct symbol *sym;
6446
6447 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6448 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6449 return sym;
6450
6451 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6452 return sym;
6453 }
6454
6455 /* Find a type named NAME. Ignores ambiguity. This routine will look
6456 solely for types defined by debug info, it will not search the GDB
6457 primitive types. */
6458
6459 struct type *
6460 ada_find_any_type (const char *name)
6461 {
6462 struct symbol *sym = ada_find_any_symbol (name);
6463
6464 if (sym != NULL)
6465 return SYMBOL_TYPE (sym);
6466
6467 return NULL;
6468 }
6469
6470 /* Given NAME and an associated BLOCK, search all symbols for
6471 NAME suffixed with "___XR", which is the ``renaming'' symbol
6472 associated to NAME. Return this symbol if found, return
6473 NULL otherwise. */
6474
6475 struct symbol *
6476 ada_find_renaming_symbol (const char *name, struct block *block)
6477 {
6478 struct symbol *sym;
6479
6480 sym = find_old_style_renaming_symbol (name, block);
6481
6482 if (sym != NULL)
6483 return sym;
6484
6485 /* Not right yet. FIXME pnh 7/20/2007. */
6486 sym = ada_find_any_symbol (name);
6487 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6488 return sym;
6489 else
6490 return NULL;
6491 }
6492
6493 static struct symbol *
6494 find_old_style_renaming_symbol (const char *name, struct block *block)
6495 {
6496 const struct symbol *function_sym = block_linkage_function (block);
6497 char *rename;
6498
6499 if (function_sym != NULL)
6500 {
6501 /* If the symbol is defined inside a function, NAME is not fully
6502 qualified. This means we need to prepend the function name
6503 as well as adding the ``___XR'' suffix to build the name of
6504 the associated renaming symbol. */
6505 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6506 /* Function names sometimes contain suffixes used
6507 for instance to qualify nested subprograms. When building
6508 the XR type name, we need to make sure that this suffix is
6509 not included. So do not include any suffix in the function
6510 name length below. */
6511 const int function_name_len = ada_name_prefix_len (function_name);
6512 const int rename_len = function_name_len + 2 /* "__" */
6513 + strlen (name) + 6 /* "___XR\0" */ ;
6514
6515 /* Strip the suffix if necessary. */
6516 function_name[function_name_len] = '\0';
6517
6518 /* Library-level functions are a special case, as GNAT adds
6519 a ``_ada_'' prefix to the function name to avoid namespace
6520 pollution. However, the renaming symbols themselves do not
6521 have this prefix, so we need to skip this prefix if present. */
6522 if (function_name_len > 5 /* "_ada_" */
6523 && strstr (function_name, "_ada_") == function_name)
6524 function_name = function_name + 5;
6525
6526 rename = (char *) alloca (rename_len * sizeof (char));
6527 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6528 function_name, name);
6529 }
6530 else
6531 {
6532 const int rename_len = strlen (name) + 6;
6533 rename = (char *) alloca (rename_len * sizeof (char));
6534 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6535 }
6536
6537 return ada_find_any_symbol (rename);
6538 }
6539
6540 /* Because of GNAT encoding conventions, several GDB symbols may match a
6541 given type name. If the type denoted by TYPE0 is to be preferred to
6542 that of TYPE1 for purposes of type printing, return non-zero;
6543 otherwise return 0. */
6544
6545 int
6546 ada_prefer_type (struct type *type0, struct type *type1)
6547 {
6548 if (type1 == NULL)
6549 return 1;
6550 else if (type0 == NULL)
6551 return 0;
6552 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6553 return 1;
6554 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6555 return 0;
6556 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6557 return 1;
6558 else if (ada_is_packed_array_type (type0))
6559 return 1;
6560 else if (ada_is_array_descriptor_type (type0)
6561 && !ada_is_array_descriptor_type (type1))
6562 return 1;
6563 else
6564 {
6565 const char *type0_name = type_name_no_tag (type0);
6566 const char *type1_name = type_name_no_tag (type1);
6567
6568 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6569 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6570 return 1;
6571 }
6572 return 0;
6573 }
6574
6575 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6576 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6577
6578 char *
6579 ada_type_name (struct type *type)
6580 {
6581 if (type == NULL)
6582 return NULL;
6583 else if (TYPE_NAME (type) != NULL)
6584 return TYPE_NAME (type);
6585 else
6586 return TYPE_TAG_NAME (type);
6587 }
6588
6589 /* Find a parallel type to TYPE whose name is formed by appending
6590 SUFFIX to the name of TYPE. */
6591
6592 struct type *
6593 ada_find_parallel_type (struct type *type, const char *suffix)
6594 {
6595 static char *name;
6596 static size_t name_len = 0;
6597 int len;
6598 char *typename = ada_type_name (type);
6599
6600 if (typename == NULL)
6601 return NULL;
6602
6603 len = strlen (typename);
6604
6605 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6606
6607 strcpy (name, typename);
6608 strcpy (name + len, suffix);
6609
6610 return ada_find_any_type (name);
6611 }
6612
6613
6614 /* If TYPE is a variable-size record type, return the corresponding template
6615 type describing its fields. Otherwise, return NULL. */
6616
6617 static struct type *
6618 dynamic_template_type (struct type *type)
6619 {
6620 type = ada_check_typedef (type);
6621
6622 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6623 || ada_type_name (type) == NULL)
6624 return NULL;
6625 else
6626 {
6627 int len = strlen (ada_type_name (type));
6628 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6629 return type;
6630 else
6631 return ada_find_parallel_type (type, "___XVE");
6632 }
6633 }
6634
6635 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6636 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6637
6638 static int
6639 is_dynamic_field (struct type *templ_type, int field_num)
6640 {
6641 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6642 return name != NULL
6643 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6644 && strstr (name, "___XVL") != NULL;
6645 }
6646
6647 /* The index of the variant field of TYPE, or -1 if TYPE does not
6648 represent a variant record type. */
6649
6650 static int
6651 variant_field_index (struct type *type)
6652 {
6653 int f;
6654
6655 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6656 return -1;
6657
6658 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6659 {
6660 if (ada_is_variant_part (type, f))
6661 return f;
6662 }
6663 return -1;
6664 }
6665
6666 /* A record type with no fields. */
6667
6668 static struct type *
6669 empty_record (struct objfile *objfile)
6670 {
6671 struct type *type = alloc_type (objfile);
6672 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6673 TYPE_NFIELDS (type) = 0;
6674 TYPE_FIELDS (type) = NULL;
6675 INIT_CPLUS_SPECIFIC (type);
6676 TYPE_NAME (type) = "<empty>";
6677 TYPE_TAG_NAME (type) = NULL;
6678 TYPE_LENGTH (type) = 0;
6679 return type;
6680 }
6681
6682 /* An ordinary record type (with fixed-length fields) that describes
6683 the value of type TYPE at VALADDR or ADDRESS (see comments at
6684 the beginning of this section) VAL according to GNAT conventions.
6685 DVAL0 should describe the (portion of a) record that contains any
6686 necessary discriminants. It should be NULL if value_type (VAL) is
6687 an outer-level type (i.e., as opposed to a branch of a variant.) A
6688 variant field (unless unchecked) is replaced by a particular branch
6689 of the variant.
6690
6691 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6692 length are not statically known are discarded. As a consequence,
6693 VALADDR, ADDRESS and DVAL0 are ignored.
6694
6695 NOTE: Limitations: For now, we assume that dynamic fields and
6696 variants occupy whole numbers of bytes. However, they need not be
6697 byte-aligned. */
6698
6699 struct type *
6700 ada_template_to_fixed_record_type_1 (struct type *type,
6701 const gdb_byte *valaddr,
6702 CORE_ADDR address, struct value *dval0,
6703 int keep_dynamic_fields)
6704 {
6705 struct value *mark = value_mark ();
6706 struct value *dval;
6707 struct type *rtype;
6708 int nfields, bit_len;
6709 int variant_field;
6710 long off;
6711 int fld_bit_len, bit_incr;
6712 int f;
6713
6714 /* Compute the number of fields in this record type that are going
6715 to be processed: unless keep_dynamic_fields, this includes only
6716 fields whose position and length are static will be processed. */
6717 if (keep_dynamic_fields)
6718 nfields = TYPE_NFIELDS (type);
6719 else
6720 {
6721 nfields = 0;
6722 while (nfields < TYPE_NFIELDS (type)
6723 && !ada_is_variant_part (type, nfields)
6724 && !is_dynamic_field (type, nfields))
6725 nfields++;
6726 }
6727
6728 rtype = alloc_type (TYPE_OBJFILE (type));
6729 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6730 INIT_CPLUS_SPECIFIC (rtype);
6731 TYPE_NFIELDS (rtype) = nfields;
6732 TYPE_FIELDS (rtype) = (struct field *)
6733 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6734 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6735 TYPE_NAME (rtype) = ada_type_name (type);
6736 TYPE_TAG_NAME (rtype) = NULL;
6737 TYPE_FIXED_INSTANCE (rtype) = 1;
6738
6739 off = 0;
6740 bit_len = 0;
6741 variant_field = -1;
6742
6743 for (f = 0; f < nfields; f += 1)
6744 {
6745 off = align_value (off, field_alignment (type, f))
6746 + TYPE_FIELD_BITPOS (type, f);
6747 TYPE_FIELD_BITPOS (rtype, f) = off;
6748 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6749
6750 if (ada_is_variant_part (type, f))
6751 {
6752 variant_field = f;
6753 fld_bit_len = bit_incr = 0;
6754 }
6755 else if (is_dynamic_field (type, f))
6756 {
6757 const gdb_byte *field_valaddr = valaddr;
6758 CORE_ADDR field_address = address;
6759 struct type *field_type =
6760 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6761
6762 if (dval0 == NULL)
6763 {
6764 /* rtype's length is computed based on the run-time
6765 value of discriminants. If the discriminants are not
6766 initialized, the type size may be completely bogus and
6767 GDB may fail to allocate a value for it. So check the
6768 size first before creating the value. */
6769 check_size (rtype);
6770 dval = value_from_contents_and_address (rtype, valaddr, address);
6771 }
6772 else
6773 dval = dval0;
6774
6775 /* If the type referenced by this field is an aligner type, we need
6776 to unwrap that aligner type, because its size might not be set.
6777 Keeping the aligner type would cause us to compute the wrong
6778 size for this field, impacting the offset of the all the fields
6779 that follow this one. */
6780 if (ada_is_aligner_type (field_type))
6781 {
6782 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6783
6784 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6785 field_address = cond_offset_target (field_address, field_offset);
6786 field_type = ada_aligned_type (field_type);
6787 }
6788
6789 field_valaddr = cond_offset_host (field_valaddr,
6790 off / TARGET_CHAR_BIT);
6791 field_address = cond_offset_target (field_address,
6792 off / TARGET_CHAR_BIT);
6793
6794 /* Get the fixed type of the field. Note that, in this case,
6795 we do not want to get the real type out of the tag: if
6796 the current field is the parent part of a tagged record,
6797 we will get the tag of the object. Clearly wrong: the real
6798 type of the parent is not the real type of the child. We
6799 would end up in an infinite loop. */
6800 field_type = ada_get_base_type (field_type);
6801 field_type = ada_to_fixed_type (field_type, field_valaddr,
6802 field_address, dval, 0);
6803
6804 TYPE_FIELD_TYPE (rtype, f) = field_type;
6805 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6806 bit_incr = fld_bit_len =
6807 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6808 }
6809 else
6810 {
6811 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6812 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6813 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6814 bit_incr = fld_bit_len =
6815 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6816 else
6817 bit_incr = fld_bit_len =
6818 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6819 }
6820 if (off + fld_bit_len > bit_len)
6821 bit_len = off + fld_bit_len;
6822 off += bit_incr;
6823 TYPE_LENGTH (rtype) =
6824 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6825 }
6826
6827 /* We handle the variant part, if any, at the end because of certain
6828 odd cases in which it is re-ordered so as NOT to be the last field of
6829 the record. This can happen in the presence of representation
6830 clauses. */
6831 if (variant_field >= 0)
6832 {
6833 struct type *branch_type;
6834
6835 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6836
6837 if (dval0 == NULL)
6838 dval = value_from_contents_and_address (rtype, valaddr, address);
6839 else
6840 dval = dval0;
6841
6842 branch_type =
6843 to_fixed_variant_branch_type
6844 (TYPE_FIELD_TYPE (type, variant_field),
6845 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6846 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6847 if (branch_type == NULL)
6848 {
6849 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6850 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6851 TYPE_NFIELDS (rtype) -= 1;
6852 }
6853 else
6854 {
6855 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6856 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6857 fld_bit_len =
6858 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6859 TARGET_CHAR_BIT;
6860 if (off + fld_bit_len > bit_len)
6861 bit_len = off + fld_bit_len;
6862 TYPE_LENGTH (rtype) =
6863 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6864 }
6865 }
6866
6867 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6868 should contain the alignment of that record, which should be a strictly
6869 positive value. If null or negative, then something is wrong, most
6870 probably in the debug info. In that case, we don't round up the size
6871 of the resulting type. If this record is not part of another structure,
6872 the current RTYPE length might be good enough for our purposes. */
6873 if (TYPE_LENGTH (type) <= 0)
6874 {
6875 if (TYPE_NAME (rtype))
6876 warning (_("Invalid type size for `%s' detected: %d."),
6877 TYPE_NAME (rtype), TYPE_LENGTH (type));
6878 else
6879 warning (_("Invalid type size for <unnamed> detected: %d."),
6880 TYPE_LENGTH (type));
6881 }
6882 else
6883 {
6884 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6885 TYPE_LENGTH (type));
6886 }
6887
6888 value_free_to_mark (mark);
6889 if (TYPE_LENGTH (rtype) > varsize_limit)
6890 error (_("record type with dynamic size is larger than varsize-limit"));
6891 return rtype;
6892 }
6893
6894 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6895 of 1. */
6896
6897 static struct type *
6898 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6899 CORE_ADDR address, struct value *dval0)
6900 {
6901 return ada_template_to_fixed_record_type_1 (type, valaddr,
6902 address, dval0, 1);
6903 }
6904
6905 /* An ordinary record type in which ___XVL-convention fields and
6906 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6907 static approximations, containing all possible fields. Uses
6908 no runtime values. Useless for use in values, but that's OK,
6909 since the results are used only for type determinations. Works on both
6910 structs and unions. Representation note: to save space, we memorize
6911 the result of this function in the TYPE_TARGET_TYPE of the
6912 template type. */
6913
6914 static struct type *
6915 template_to_static_fixed_type (struct type *type0)
6916 {
6917 struct type *type;
6918 int nfields;
6919 int f;
6920
6921 if (TYPE_TARGET_TYPE (type0) != NULL)
6922 return TYPE_TARGET_TYPE (type0);
6923
6924 nfields = TYPE_NFIELDS (type0);
6925 type = type0;
6926
6927 for (f = 0; f < nfields; f += 1)
6928 {
6929 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6930 struct type *new_type;
6931
6932 if (is_dynamic_field (type0, f))
6933 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6934 else
6935 new_type = static_unwrap_type (field_type);
6936 if (type == type0 && new_type != field_type)
6937 {
6938 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6939 TYPE_CODE (type) = TYPE_CODE (type0);
6940 INIT_CPLUS_SPECIFIC (type);
6941 TYPE_NFIELDS (type) = nfields;
6942 TYPE_FIELDS (type) = (struct field *)
6943 TYPE_ALLOC (type, nfields * sizeof (struct field));
6944 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6945 sizeof (struct field) * nfields);
6946 TYPE_NAME (type) = ada_type_name (type0);
6947 TYPE_TAG_NAME (type) = NULL;
6948 TYPE_FIXED_INSTANCE (type) = 1;
6949 TYPE_LENGTH (type) = 0;
6950 }
6951 TYPE_FIELD_TYPE (type, f) = new_type;
6952 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6953 }
6954 return type;
6955 }
6956
6957 /* Given an object of type TYPE whose contents are at VALADDR and
6958 whose address in memory is ADDRESS, returns a revision of TYPE,
6959 which should be a non-dynamic-sized record, in which the variant
6960 part, if any, is replaced with the appropriate branch. Looks
6961 for discriminant values in DVAL0, which can be NULL if the record
6962 contains the necessary discriminant values. */
6963
6964 static struct type *
6965 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6966 CORE_ADDR address, struct value *dval0)
6967 {
6968 struct value *mark = value_mark ();
6969 struct value *dval;
6970 struct type *rtype;
6971 struct type *branch_type;
6972 int nfields = TYPE_NFIELDS (type);
6973 int variant_field = variant_field_index (type);
6974
6975 if (variant_field == -1)
6976 return type;
6977
6978 if (dval0 == NULL)
6979 dval = value_from_contents_and_address (type, valaddr, address);
6980 else
6981 dval = dval0;
6982
6983 rtype = alloc_type (TYPE_OBJFILE (type));
6984 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6985 INIT_CPLUS_SPECIFIC (rtype);
6986 TYPE_NFIELDS (rtype) = nfields;
6987 TYPE_FIELDS (rtype) =
6988 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6989 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6990 sizeof (struct field) * nfields);
6991 TYPE_NAME (rtype) = ada_type_name (type);
6992 TYPE_TAG_NAME (rtype) = NULL;
6993 TYPE_FIXED_INSTANCE (rtype) = 1;
6994 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6995
6996 branch_type = to_fixed_variant_branch_type
6997 (TYPE_FIELD_TYPE (type, variant_field),
6998 cond_offset_host (valaddr,
6999 TYPE_FIELD_BITPOS (type, variant_field)
7000 / TARGET_CHAR_BIT),
7001 cond_offset_target (address,
7002 TYPE_FIELD_BITPOS (type, variant_field)
7003 / TARGET_CHAR_BIT), dval);
7004 if (branch_type == NULL)
7005 {
7006 int f;
7007 for (f = variant_field + 1; f < nfields; f += 1)
7008 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7009 TYPE_NFIELDS (rtype) -= 1;
7010 }
7011 else
7012 {
7013 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7014 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7015 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7016 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7017 }
7018 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7019
7020 value_free_to_mark (mark);
7021 return rtype;
7022 }
7023
7024 /* An ordinary record type (with fixed-length fields) that describes
7025 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7026 beginning of this section]. Any necessary discriminants' values
7027 should be in DVAL, a record value; it may be NULL if the object
7028 at ADDR itself contains any necessary discriminant values.
7029 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7030 values from the record are needed. Except in the case that DVAL,
7031 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7032 unchecked) is replaced by a particular branch of the variant.
7033
7034 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7035 is questionable and may be removed. It can arise during the
7036 processing of an unconstrained-array-of-record type where all the
7037 variant branches have exactly the same size. This is because in
7038 such cases, the compiler does not bother to use the XVS convention
7039 when encoding the record. I am currently dubious of this
7040 shortcut and suspect the compiler should be altered. FIXME. */
7041
7042 static struct type *
7043 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7044 CORE_ADDR address, struct value *dval)
7045 {
7046 struct type *templ_type;
7047
7048 if (TYPE_FIXED_INSTANCE (type0))
7049 return type0;
7050
7051 templ_type = dynamic_template_type (type0);
7052
7053 if (templ_type != NULL)
7054 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7055 else if (variant_field_index (type0) >= 0)
7056 {
7057 if (dval == NULL && valaddr == NULL && address == 0)
7058 return type0;
7059 return to_record_with_fixed_variant_part (type0, valaddr, address,
7060 dval);
7061 }
7062 else
7063 {
7064 TYPE_FIXED_INSTANCE (type0) = 1;
7065 return type0;
7066 }
7067
7068 }
7069
7070 /* An ordinary record type (with fixed-length fields) that describes
7071 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7072 union type. Any necessary discriminants' values should be in DVAL,
7073 a record value. That is, this routine selects the appropriate
7074 branch of the union at ADDR according to the discriminant value
7075 indicated in the union's type name. Returns VAR_TYPE0 itself if
7076 it represents a variant subject to a pragma Unchecked_Union. */
7077
7078 static struct type *
7079 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7080 CORE_ADDR address, struct value *dval)
7081 {
7082 int which;
7083 struct type *templ_type;
7084 struct type *var_type;
7085
7086 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7087 var_type = TYPE_TARGET_TYPE (var_type0);
7088 else
7089 var_type = var_type0;
7090
7091 templ_type = ada_find_parallel_type (var_type, "___XVU");
7092
7093 if (templ_type != NULL)
7094 var_type = templ_type;
7095
7096 if (is_unchecked_variant (var_type, value_type (dval)))
7097 return var_type0;
7098 which =
7099 ada_which_variant_applies (var_type,
7100 value_type (dval), value_contents (dval));
7101
7102 if (which < 0)
7103 return empty_record (TYPE_OBJFILE (var_type));
7104 else if (is_dynamic_field (var_type, which))
7105 return to_fixed_record_type
7106 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7107 valaddr, address, dval);
7108 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7109 return
7110 to_fixed_record_type
7111 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7112 else
7113 return TYPE_FIELD_TYPE (var_type, which);
7114 }
7115
7116 /* Assuming that TYPE0 is an array type describing the type of a value
7117 at ADDR, and that DVAL describes a record containing any
7118 discriminants used in TYPE0, returns a type for the value that
7119 contains no dynamic components (that is, no components whose sizes
7120 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7121 true, gives an error message if the resulting type's size is over
7122 varsize_limit. */
7123
7124 static struct type *
7125 to_fixed_array_type (struct type *type0, struct value *dval,
7126 int ignore_too_big)
7127 {
7128 struct type *index_type_desc;
7129 struct type *result;
7130 int packed_array_p;
7131
7132 if (TYPE_FIXED_INSTANCE (type0))
7133 return type0;
7134
7135 packed_array_p = ada_is_packed_array_type (type0);
7136 if (packed_array_p)
7137 type0 = decode_packed_array_type (type0);
7138
7139 index_type_desc = ada_find_parallel_type (type0, "___XA");
7140 if (index_type_desc == NULL)
7141 {
7142 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7143 /* NOTE: elt_type---the fixed version of elt_type0---should never
7144 depend on the contents of the array in properly constructed
7145 debugging data. */
7146 /* Create a fixed version of the array element type.
7147 We're not providing the address of an element here,
7148 and thus the actual object value cannot be inspected to do
7149 the conversion. This should not be a problem, since arrays of
7150 unconstrained objects are not allowed. In particular, all
7151 the elements of an array of a tagged type should all be of
7152 the same type specified in the debugging info. No need to
7153 consult the object tag. */
7154 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7155
7156 /* Make sure we always create a new array type when dealing with
7157 packed array types, since we're going to fix-up the array
7158 type length and element bitsize a little further down. */
7159 if (elt_type0 == elt_type && !packed_array_p)
7160 result = type0;
7161 else
7162 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7163 elt_type, TYPE_INDEX_TYPE (type0));
7164 }
7165 else
7166 {
7167 int i;
7168 struct type *elt_type0;
7169
7170 elt_type0 = type0;
7171 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7172 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7173
7174 /* NOTE: result---the fixed version of elt_type0---should never
7175 depend on the contents of the array in properly constructed
7176 debugging data. */
7177 /* Create a fixed version of the array element type.
7178 We're not providing the address of an element here,
7179 and thus the actual object value cannot be inspected to do
7180 the conversion. This should not be a problem, since arrays of
7181 unconstrained objects are not allowed. In particular, all
7182 the elements of an array of a tagged type should all be of
7183 the same type specified in the debugging info. No need to
7184 consult the object tag. */
7185 result =
7186 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7187
7188 elt_type0 = type0;
7189 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7190 {
7191 struct type *range_type =
7192 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7193 dval, TYPE_INDEX_TYPE (elt_type0));
7194 result = create_array_type (alloc_type (TYPE_OBJFILE (elt_type0)),
7195 result, range_type);
7196 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7197 }
7198 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7199 error (_("array type with dynamic size is larger than varsize-limit"));
7200 }
7201
7202 if (packed_array_p)
7203 {
7204 /* So far, the resulting type has been created as if the original
7205 type was a regular (non-packed) array type. As a result, the
7206 bitsize of the array elements needs to be set again, and the array
7207 length needs to be recomputed based on that bitsize. */
7208 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7209 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7210
7211 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7212 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7213 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7214 TYPE_LENGTH (result)++;
7215 }
7216
7217 TYPE_FIXED_INSTANCE (result) = 1;
7218 return result;
7219 }
7220
7221
7222 /* A standard type (containing no dynamically sized components)
7223 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7224 DVAL describes a record containing any discriminants used in TYPE0,
7225 and may be NULL if there are none, or if the object of type TYPE at
7226 ADDRESS or in VALADDR contains these discriminants.
7227
7228 If CHECK_TAG is not null, in the case of tagged types, this function
7229 attempts to locate the object's tag and use it to compute the actual
7230 type. However, when ADDRESS is null, we cannot use it to determine the
7231 location of the tag, and therefore compute the tagged type's actual type.
7232 So we return the tagged type without consulting the tag. */
7233
7234 static struct type *
7235 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7236 CORE_ADDR address, struct value *dval, int check_tag)
7237 {
7238 type = ada_check_typedef (type);
7239 switch (TYPE_CODE (type))
7240 {
7241 default:
7242 return type;
7243 case TYPE_CODE_STRUCT:
7244 {
7245 struct type *static_type = to_static_fixed_type (type);
7246 struct type *fixed_record_type =
7247 to_fixed_record_type (type, valaddr, address, NULL);
7248 /* If STATIC_TYPE is a tagged type and we know the object's address,
7249 then we can determine its tag, and compute the object's actual
7250 type from there. Note that we have to use the fixed record
7251 type (the parent part of the record may have dynamic fields
7252 and the way the location of _tag is expressed may depend on
7253 them). */
7254
7255 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7256 {
7257 struct type *real_type =
7258 type_from_tag (value_tag_from_contents_and_address
7259 (fixed_record_type,
7260 valaddr,
7261 address));
7262 if (real_type != NULL)
7263 return to_fixed_record_type (real_type, valaddr, address, NULL);
7264 }
7265
7266 /* Check to see if there is a parallel ___XVZ variable.
7267 If there is, then it provides the actual size of our type. */
7268 else if (ada_type_name (fixed_record_type) != NULL)
7269 {
7270 char *name = ada_type_name (fixed_record_type);
7271 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7272 int xvz_found = 0;
7273 LONGEST size;
7274
7275 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7276 size = get_int_var_value (xvz_name, &xvz_found);
7277 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7278 {
7279 fixed_record_type = copy_type (fixed_record_type);
7280 TYPE_LENGTH (fixed_record_type) = size;
7281
7282 /* The FIXED_RECORD_TYPE may have be a stub. We have
7283 observed this when the debugging info is STABS, and
7284 apparently it is something that is hard to fix.
7285
7286 In practice, we don't need the actual type definition
7287 at all, because the presence of the XVZ variable allows us
7288 to assume that there must be a XVS type as well, which we
7289 should be able to use later, when we need the actual type
7290 definition.
7291
7292 In the meantime, pretend that the "fixed" type we are
7293 returning is NOT a stub, because this can cause trouble
7294 when using this type to create new types targeting it.
7295 Indeed, the associated creation routines often check
7296 whether the target type is a stub and will try to replace
7297 it, thus using a type with the wrong size. This, in turn,
7298 might cause the new type to have the wrong size too.
7299 Consider the case of an array, for instance, where the size
7300 of the array is computed from the number of elements in
7301 our array multiplied by the size of its element. */
7302 TYPE_STUB (fixed_record_type) = 0;
7303 }
7304 }
7305 return fixed_record_type;
7306 }
7307 case TYPE_CODE_ARRAY:
7308 return to_fixed_array_type (type, dval, 1);
7309 case TYPE_CODE_UNION:
7310 if (dval == NULL)
7311 return type;
7312 else
7313 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7314 }
7315 }
7316
7317 /* The same as ada_to_fixed_type_1, except that it preserves the type
7318 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7319 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7320
7321 struct type *
7322 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7323 CORE_ADDR address, struct value *dval, int check_tag)
7324
7325 {
7326 struct type *fixed_type =
7327 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7328
7329 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7330 && TYPE_TARGET_TYPE (type) == fixed_type)
7331 return type;
7332
7333 return fixed_type;
7334 }
7335
7336 /* A standard (static-sized) type corresponding as well as possible to
7337 TYPE0, but based on no runtime data. */
7338
7339 static struct type *
7340 to_static_fixed_type (struct type *type0)
7341 {
7342 struct type *type;
7343
7344 if (type0 == NULL)
7345 return NULL;
7346
7347 if (TYPE_FIXED_INSTANCE (type0))
7348 return type0;
7349
7350 type0 = ada_check_typedef (type0);
7351
7352 switch (TYPE_CODE (type0))
7353 {
7354 default:
7355 return type0;
7356 case TYPE_CODE_STRUCT:
7357 type = dynamic_template_type (type0);
7358 if (type != NULL)
7359 return template_to_static_fixed_type (type);
7360 else
7361 return template_to_static_fixed_type (type0);
7362 case TYPE_CODE_UNION:
7363 type = ada_find_parallel_type (type0, "___XVU");
7364 if (type != NULL)
7365 return template_to_static_fixed_type (type);
7366 else
7367 return template_to_static_fixed_type (type0);
7368 }
7369 }
7370
7371 /* A static approximation of TYPE with all type wrappers removed. */
7372
7373 static struct type *
7374 static_unwrap_type (struct type *type)
7375 {
7376 if (ada_is_aligner_type (type))
7377 {
7378 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7379 if (ada_type_name (type1) == NULL)
7380 TYPE_NAME (type1) = ada_type_name (type);
7381
7382 return static_unwrap_type (type1);
7383 }
7384 else
7385 {
7386 struct type *raw_real_type = ada_get_base_type (type);
7387 if (raw_real_type == type)
7388 return type;
7389 else
7390 return to_static_fixed_type (raw_real_type);
7391 }
7392 }
7393
7394 /* In some cases, incomplete and private types require
7395 cross-references that are not resolved as records (for example,
7396 type Foo;
7397 type FooP is access Foo;
7398 V: FooP;
7399 type Foo is array ...;
7400 ). In these cases, since there is no mechanism for producing
7401 cross-references to such types, we instead substitute for FooP a
7402 stub enumeration type that is nowhere resolved, and whose tag is
7403 the name of the actual type. Call these types "non-record stubs". */
7404
7405 /* A type equivalent to TYPE that is not a non-record stub, if one
7406 exists, otherwise TYPE. */
7407
7408 struct type *
7409 ada_check_typedef (struct type *type)
7410 {
7411 if (type == NULL)
7412 return NULL;
7413
7414 CHECK_TYPEDEF (type);
7415 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7416 || !TYPE_STUB (type)
7417 || TYPE_TAG_NAME (type) == NULL)
7418 return type;
7419 else
7420 {
7421 char *name = TYPE_TAG_NAME (type);
7422 struct type *type1 = ada_find_any_type (name);
7423 return (type1 == NULL) ? type : type1;
7424 }
7425 }
7426
7427 /* A value representing the data at VALADDR/ADDRESS as described by
7428 type TYPE0, but with a standard (static-sized) type that correctly
7429 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7430 type, then return VAL0 [this feature is simply to avoid redundant
7431 creation of struct values]. */
7432
7433 static struct value *
7434 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7435 struct value *val0)
7436 {
7437 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7438 if (type == type0 && val0 != NULL)
7439 return val0;
7440 else
7441 return value_from_contents_and_address (type, 0, address);
7442 }
7443
7444 /* A value representing VAL, but with a standard (static-sized) type
7445 that correctly describes it. Does not necessarily create a new
7446 value. */
7447
7448 static struct value *
7449 ada_to_fixed_value (struct value *val)
7450 {
7451 return ada_to_fixed_value_create (value_type (val),
7452 value_address (val),
7453 val);
7454 }
7455
7456 /* A value representing VAL, but with a standard (static-sized) type
7457 chosen to approximate the real type of VAL as well as possible, but
7458 without consulting any runtime values. For Ada dynamic-sized
7459 types, therefore, the type of the result is likely to be inaccurate. */
7460
7461 static struct value *
7462 ada_to_static_fixed_value (struct value *val)
7463 {
7464 struct type *type =
7465 to_static_fixed_type (static_unwrap_type (value_type (val)));
7466 if (type == value_type (val))
7467 return val;
7468 else
7469 return coerce_unspec_val_to_type (val, type);
7470 }
7471 \f
7472
7473 /* Attributes */
7474
7475 /* Table mapping attribute numbers to names.
7476 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7477
7478 static const char *attribute_names[] = {
7479 "<?>",
7480
7481 "first",
7482 "last",
7483 "length",
7484 "image",
7485 "max",
7486 "min",
7487 "modulus",
7488 "pos",
7489 "size",
7490 "tag",
7491 "val",
7492 0
7493 };
7494
7495 const char *
7496 ada_attribute_name (enum exp_opcode n)
7497 {
7498 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7499 return attribute_names[n - OP_ATR_FIRST + 1];
7500 else
7501 return attribute_names[0];
7502 }
7503
7504 /* Evaluate the 'POS attribute applied to ARG. */
7505
7506 static LONGEST
7507 pos_atr (struct value *arg)
7508 {
7509 struct value *val = coerce_ref (arg);
7510 struct type *type = value_type (val);
7511
7512 if (!discrete_type_p (type))
7513 error (_("'POS only defined on discrete types"));
7514
7515 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7516 {
7517 int i;
7518 LONGEST v = value_as_long (val);
7519
7520 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7521 {
7522 if (v == TYPE_FIELD_BITPOS (type, i))
7523 return i;
7524 }
7525 error (_("enumeration value is invalid: can't find 'POS"));
7526 }
7527 else
7528 return value_as_long (val);
7529 }
7530
7531 static struct value *
7532 value_pos_atr (struct type *type, struct value *arg)
7533 {
7534 return value_from_longest (type, pos_atr (arg));
7535 }
7536
7537 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7538
7539 static struct value *
7540 value_val_atr (struct type *type, struct value *arg)
7541 {
7542 if (!discrete_type_p (type))
7543 error (_("'VAL only defined on discrete types"));
7544 if (!integer_type_p (value_type (arg)))
7545 error (_("'VAL requires integral argument"));
7546
7547 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7548 {
7549 long pos = value_as_long (arg);
7550 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7551 error (_("argument to 'VAL out of range"));
7552 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7553 }
7554 else
7555 return value_from_longest (type, value_as_long (arg));
7556 }
7557 \f
7558
7559 /* Evaluation */
7560
7561 /* True if TYPE appears to be an Ada character type.
7562 [At the moment, this is true only for Character and Wide_Character;
7563 It is a heuristic test that could stand improvement]. */
7564
7565 int
7566 ada_is_character_type (struct type *type)
7567 {
7568 const char *name;
7569
7570 /* If the type code says it's a character, then assume it really is,
7571 and don't check any further. */
7572 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7573 return 1;
7574
7575 /* Otherwise, assume it's a character type iff it is a discrete type
7576 with a known character type name. */
7577 name = ada_type_name (type);
7578 return (name != NULL
7579 && (TYPE_CODE (type) == TYPE_CODE_INT
7580 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7581 && (strcmp (name, "character") == 0
7582 || strcmp (name, "wide_character") == 0
7583 || strcmp (name, "wide_wide_character") == 0
7584 || strcmp (name, "unsigned char") == 0));
7585 }
7586
7587 /* True if TYPE appears to be an Ada string type. */
7588
7589 int
7590 ada_is_string_type (struct type *type)
7591 {
7592 type = ada_check_typedef (type);
7593 if (type != NULL
7594 && TYPE_CODE (type) != TYPE_CODE_PTR
7595 && (ada_is_simple_array_type (type)
7596 || ada_is_array_descriptor_type (type))
7597 && ada_array_arity (type) == 1)
7598 {
7599 struct type *elttype = ada_array_element_type (type, 1);
7600
7601 return ada_is_character_type (elttype);
7602 }
7603 else
7604 return 0;
7605 }
7606
7607
7608 /* True if TYPE is a struct type introduced by the compiler to force the
7609 alignment of a value. Such types have a single field with a
7610 distinctive name. */
7611
7612 int
7613 ada_is_aligner_type (struct type *type)
7614 {
7615 type = ada_check_typedef (type);
7616
7617 /* If we can find a parallel XVS type, then the XVS type should
7618 be used instead of this type. And hence, this is not an aligner
7619 type. */
7620 if (ada_find_parallel_type (type, "___XVS") != NULL)
7621 return 0;
7622
7623 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7624 && TYPE_NFIELDS (type) == 1
7625 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7626 }
7627
7628 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7629 the parallel type. */
7630
7631 struct type *
7632 ada_get_base_type (struct type *raw_type)
7633 {
7634 struct type *real_type_namer;
7635 struct type *raw_real_type;
7636
7637 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7638 return raw_type;
7639
7640 if (ada_is_aligner_type (raw_type))
7641 /* The encoding specifies that we should always use the aligner type.
7642 So, even if this aligner type has an associated XVS type, we should
7643 simply ignore it.
7644
7645 According to the compiler gurus, an XVS type parallel to an aligner
7646 type may exist because of a stabs limitation. In stabs, aligner
7647 types are empty because the field has a variable-sized type, and
7648 thus cannot actually be used as an aligner type. As a result,
7649 we need the associated parallel XVS type to decode the type.
7650 Since the policy in the compiler is to not change the internal
7651 representation based on the debugging info format, we sometimes
7652 end up having a redundant XVS type parallel to the aligner type. */
7653 return raw_type;
7654
7655 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7656 if (real_type_namer == NULL
7657 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7658 || TYPE_NFIELDS (real_type_namer) != 1)
7659 return raw_type;
7660
7661 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7662 if (raw_real_type == NULL)
7663 return raw_type;
7664 else
7665 return raw_real_type;
7666 }
7667
7668 /* The type of value designated by TYPE, with all aligners removed. */
7669
7670 struct type *
7671 ada_aligned_type (struct type *type)
7672 {
7673 if (ada_is_aligner_type (type))
7674 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7675 else
7676 return ada_get_base_type (type);
7677 }
7678
7679
7680 /* The address of the aligned value in an object at address VALADDR
7681 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7682
7683 const gdb_byte *
7684 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7685 {
7686 if (ada_is_aligner_type (type))
7687 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7688 valaddr +
7689 TYPE_FIELD_BITPOS (type,
7690 0) / TARGET_CHAR_BIT);
7691 else
7692 return valaddr;
7693 }
7694
7695
7696
7697 /* The printed representation of an enumeration literal with encoded
7698 name NAME. The value is good to the next call of ada_enum_name. */
7699 const char *
7700 ada_enum_name (const char *name)
7701 {
7702 static char *result;
7703 static size_t result_len = 0;
7704 char *tmp;
7705
7706 /* First, unqualify the enumeration name:
7707 1. Search for the last '.' character. If we find one, then skip
7708 all the preceeding characters, the unqualified name starts
7709 right after that dot.
7710 2. Otherwise, we may be debugging on a target where the compiler
7711 translates dots into "__". Search forward for double underscores,
7712 but stop searching when we hit an overloading suffix, which is
7713 of the form "__" followed by digits. */
7714
7715 tmp = strrchr (name, '.');
7716 if (tmp != NULL)
7717 name = tmp + 1;
7718 else
7719 {
7720 while ((tmp = strstr (name, "__")) != NULL)
7721 {
7722 if (isdigit (tmp[2]))
7723 break;
7724 else
7725 name = tmp + 2;
7726 }
7727 }
7728
7729 if (name[0] == 'Q')
7730 {
7731 int v;
7732 if (name[1] == 'U' || name[1] == 'W')
7733 {
7734 if (sscanf (name + 2, "%x", &v) != 1)
7735 return name;
7736 }
7737 else
7738 return name;
7739
7740 GROW_VECT (result, result_len, 16);
7741 if (isascii (v) && isprint (v))
7742 xsnprintf (result, result_len, "'%c'", v);
7743 else if (name[1] == 'U')
7744 xsnprintf (result, result_len, "[\"%02x\"]", v);
7745 else
7746 xsnprintf (result, result_len, "[\"%04x\"]", v);
7747
7748 return result;
7749 }
7750 else
7751 {
7752 tmp = strstr (name, "__");
7753 if (tmp == NULL)
7754 tmp = strstr (name, "$");
7755 if (tmp != NULL)
7756 {
7757 GROW_VECT (result, result_len, tmp - name + 1);
7758 strncpy (result, name, tmp - name);
7759 result[tmp - name] = '\0';
7760 return result;
7761 }
7762
7763 return name;
7764 }
7765 }
7766
7767 /* Evaluate the subexpression of EXP starting at *POS as for
7768 evaluate_type, updating *POS to point just past the evaluated
7769 expression. */
7770
7771 static struct value *
7772 evaluate_subexp_type (struct expression *exp, int *pos)
7773 {
7774 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7775 }
7776
7777 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7778 value it wraps. */
7779
7780 static struct value *
7781 unwrap_value (struct value *val)
7782 {
7783 struct type *type = ada_check_typedef (value_type (val));
7784 if (ada_is_aligner_type (type))
7785 {
7786 struct value *v = ada_value_struct_elt (val, "F", 0);
7787 struct type *val_type = ada_check_typedef (value_type (v));
7788 if (ada_type_name (val_type) == NULL)
7789 TYPE_NAME (val_type) = ada_type_name (type);
7790
7791 return unwrap_value (v);
7792 }
7793 else
7794 {
7795 struct type *raw_real_type =
7796 ada_check_typedef (ada_get_base_type (type));
7797
7798 if (type == raw_real_type)
7799 return val;
7800
7801 return
7802 coerce_unspec_val_to_type
7803 (val, ada_to_fixed_type (raw_real_type, 0,
7804 value_address (val),
7805 NULL, 1));
7806 }
7807 }
7808
7809 static struct value *
7810 cast_to_fixed (struct type *type, struct value *arg)
7811 {
7812 LONGEST val;
7813
7814 if (type == value_type (arg))
7815 return arg;
7816 else if (ada_is_fixed_point_type (value_type (arg)))
7817 val = ada_float_to_fixed (type,
7818 ada_fixed_to_float (value_type (arg),
7819 value_as_long (arg)));
7820 else
7821 {
7822 DOUBLEST argd = value_as_double (arg);
7823 val = ada_float_to_fixed (type, argd);
7824 }
7825
7826 return value_from_longest (type, val);
7827 }
7828
7829 static struct value *
7830 cast_from_fixed (struct type *type, struct value *arg)
7831 {
7832 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7833 value_as_long (arg));
7834 return value_from_double (type, val);
7835 }
7836
7837 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7838 return the converted value. */
7839
7840 static struct value *
7841 coerce_for_assign (struct type *type, struct value *val)
7842 {
7843 struct type *type2 = value_type (val);
7844 if (type == type2)
7845 return val;
7846
7847 type2 = ada_check_typedef (type2);
7848 type = ada_check_typedef (type);
7849
7850 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7851 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7852 {
7853 val = ada_value_ind (val);
7854 type2 = value_type (val);
7855 }
7856
7857 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7858 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7859 {
7860 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7861 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7862 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7863 error (_("Incompatible types in assignment"));
7864 deprecated_set_value_type (val, type);
7865 }
7866 return val;
7867 }
7868
7869 static struct value *
7870 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7871 {
7872 struct value *val;
7873 struct type *type1, *type2;
7874 LONGEST v, v1, v2;
7875
7876 arg1 = coerce_ref (arg1);
7877 arg2 = coerce_ref (arg2);
7878 type1 = base_type (ada_check_typedef (value_type (arg1)));
7879 type2 = base_type (ada_check_typedef (value_type (arg2)));
7880
7881 if (TYPE_CODE (type1) != TYPE_CODE_INT
7882 || TYPE_CODE (type2) != TYPE_CODE_INT)
7883 return value_binop (arg1, arg2, op);
7884
7885 switch (op)
7886 {
7887 case BINOP_MOD:
7888 case BINOP_DIV:
7889 case BINOP_REM:
7890 break;
7891 default:
7892 return value_binop (arg1, arg2, op);
7893 }
7894
7895 v2 = value_as_long (arg2);
7896 if (v2 == 0)
7897 error (_("second operand of %s must not be zero."), op_string (op));
7898
7899 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7900 return value_binop (arg1, arg2, op);
7901
7902 v1 = value_as_long (arg1);
7903 switch (op)
7904 {
7905 case BINOP_DIV:
7906 v = v1 / v2;
7907 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7908 v += v > 0 ? -1 : 1;
7909 break;
7910 case BINOP_REM:
7911 v = v1 % v2;
7912 if (v * v1 < 0)
7913 v -= v2;
7914 break;
7915 default:
7916 /* Should not reach this point. */
7917 v = 0;
7918 }
7919
7920 val = allocate_value (type1);
7921 store_unsigned_integer (value_contents_raw (val),
7922 TYPE_LENGTH (value_type (val)), v);
7923 return val;
7924 }
7925
7926 static int
7927 ada_value_equal (struct value *arg1, struct value *arg2)
7928 {
7929 if (ada_is_direct_array_type (value_type (arg1))
7930 || ada_is_direct_array_type (value_type (arg2)))
7931 {
7932 /* Automatically dereference any array reference before
7933 we attempt to perform the comparison. */
7934 arg1 = ada_coerce_ref (arg1);
7935 arg2 = ada_coerce_ref (arg2);
7936
7937 arg1 = ada_coerce_to_simple_array (arg1);
7938 arg2 = ada_coerce_to_simple_array (arg2);
7939 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7940 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7941 error (_("Attempt to compare array with non-array"));
7942 /* FIXME: The following works only for types whose
7943 representations use all bits (no padding or undefined bits)
7944 and do not have user-defined equality. */
7945 return
7946 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7947 && memcmp (value_contents (arg1), value_contents (arg2),
7948 TYPE_LENGTH (value_type (arg1))) == 0;
7949 }
7950 return value_equal (arg1, arg2);
7951 }
7952
7953 /* Total number of component associations in the aggregate starting at
7954 index PC in EXP. Assumes that index PC is the start of an
7955 OP_AGGREGATE. */
7956
7957 static int
7958 num_component_specs (struct expression *exp, int pc)
7959 {
7960 int n, m, i;
7961 m = exp->elts[pc + 1].longconst;
7962 pc += 3;
7963 n = 0;
7964 for (i = 0; i < m; i += 1)
7965 {
7966 switch (exp->elts[pc].opcode)
7967 {
7968 default:
7969 n += 1;
7970 break;
7971 case OP_CHOICES:
7972 n += exp->elts[pc + 1].longconst;
7973 break;
7974 }
7975 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7976 }
7977 return n;
7978 }
7979
7980 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7981 component of LHS (a simple array or a record), updating *POS past
7982 the expression, assuming that LHS is contained in CONTAINER. Does
7983 not modify the inferior's memory, nor does it modify LHS (unless
7984 LHS == CONTAINER). */
7985
7986 static void
7987 assign_component (struct value *container, struct value *lhs, LONGEST index,
7988 struct expression *exp, int *pos)
7989 {
7990 struct value *mark = value_mark ();
7991 struct value *elt;
7992 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7993 {
7994 struct value *index_val = value_from_longest (builtin_type_int32, index);
7995 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7996 }
7997 else
7998 {
7999 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8000 elt = ada_to_fixed_value (unwrap_value (elt));
8001 }
8002
8003 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8004 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8005 else
8006 value_assign_to_component (container, elt,
8007 ada_evaluate_subexp (NULL, exp, pos,
8008 EVAL_NORMAL));
8009
8010 value_free_to_mark (mark);
8011 }
8012
8013 /* Assuming that LHS represents an lvalue having a record or array
8014 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8015 of that aggregate's value to LHS, advancing *POS past the
8016 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8017 lvalue containing LHS (possibly LHS itself). Does not modify
8018 the inferior's memory, nor does it modify the contents of
8019 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8020
8021 static struct value *
8022 assign_aggregate (struct value *container,
8023 struct value *lhs, struct expression *exp,
8024 int *pos, enum noside noside)
8025 {
8026 struct type *lhs_type;
8027 int n = exp->elts[*pos+1].longconst;
8028 LONGEST low_index, high_index;
8029 int num_specs;
8030 LONGEST *indices;
8031 int max_indices, num_indices;
8032 int is_array_aggregate;
8033 int i;
8034 struct value *mark = value_mark ();
8035
8036 *pos += 3;
8037 if (noside != EVAL_NORMAL)
8038 {
8039 int i;
8040 for (i = 0; i < n; i += 1)
8041 ada_evaluate_subexp (NULL, exp, pos, noside);
8042 return container;
8043 }
8044
8045 container = ada_coerce_ref (container);
8046 if (ada_is_direct_array_type (value_type (container)))
8047 container = ada_coerce_to_simple_array (container);
8048 lhs = ada_coerce_ref (lhs);
8049 if (!deprecated_value_modifiable (lhs))
8050 error (_("Left operand of assignment is not a modifiable lvalue."));
8051
8052 lhs_type = value_type (lhs);
8053 if (ada_is_direct_array_type (lhs_type))
8054 {
8055 lhs = ada_coerce_to_simple_array (lhs);
8056 lhs_type = value_type (lhs);
8057 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8058 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8059 is_array_aggregate = 1;
8060 }
8061 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8062 {
8063 low_index = 0;
8064 high_index = num_visible_fields (lhs_type) - 1;
8065 is_array_aggregate = 0;
8066 }
8067 else
8068 error (_("Left-hand side must be array or record."));
8069
8070 num_specs = num_component_specs (exp, *pos - 3);
8071 max_indices = 4 * num_specs + 4;
8072 indices = alloca (max_indices * sizeof (indices[0]));
8073 indices[0] = indices[1] = low_index - 1;
8074 indices[2] = indices[3] = high_index + 1;
8075 num_indices = 4;
8076
8077 for (i = 0; i < n; i += 1)
8078 {
8079 switch (exp->elts[*pos].opcode)
8080 {
8081 case OP_CHOICES:
8082 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8083 &num_indices, max_indices,
8084 low_index, high_index);
8085 break;
8086 case OP_POSITIONAL:
8087 aggregate_assign_positional (container, lhs, exp, pos, indices,
8088 &num_indices, max_indices,
8089 low_index, high_index);
8090 break;
8091 case OP_OTHERS:
8092 if (i != n-1)
8093 error (_("Misplaced 'others' clause"));
8094 aggregate_assign_others (container, lhs, exp, pos, indices,
8095 num_indices, low_index, high_index);
8096 break;
8097 default:
8098 error (_("Internal error: bad aggregate clause"));
8099 }
8100 }
8101
8102 return container;
8103 }
8104
8105 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8106 construct at *POS, updating *POS past the construct, given that
8107 the positions are relative to lower bound LOW, where HIGH is the
8108 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8109 updating *NUM_INDICES as needed. CONTAINER is as for
8110 assign_aggregate. */
8111 static void
8112 aggregate_assign_positional (struct value *container,
8113 struct value *lhs, struct expression *exp,
8114 int *pos, LONGEST *indices, int *num_indices,
8115 int max_indices, LONGEST low, LONGEST high)
8116 {
8117 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8118
8119 if (ind - 1 == high)
8120 warning (_("Extra components in aggregate ignored."));
8121 if (ind <= high)
8122 {
8123 add_component_interval (ind, ind, indices, num_indices, max_indices);
8124 *pos += 3;
8125 assign_component (container, lhs, ind, exp, pos);
8126 }
8127 else
8128 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8129 }
8130
8131 /* Assign into the components of LHS indexed by the OP_CHOICES
8132 construct at *POS, updating *POS past the construct, given that
8133 the allowable indices are LOW..HIGH. Record the indices assigned
8134 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8135 needed. CONTAINER is as for assign_aggregate. */
8136 static void
8137 aggregate_assign_from_choices (struct value *container,
8138 struct value *lhs, struct expression *exp,
8139 int *pos, LONGEST *indices, int *num_indices,
8140 int max_indices, LONGEST low, LONGEST high)
8141 {
8142 int j;
8143 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8144 int choice_pos, expr_pc;
8145 int is_array = ada_is_direct_array_type (value_type (lhs));
8146
8147 choice_pos = *pos += 3;
8148
8149 for (j = 0; j < n_choices; j += 1)
8150 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8151 expr_pc = *pos;
8152 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8153
8154 for (j = 0; j < n_choices; j += 1)
8155 {
8156 LONGEST lower, upper;
8157 enum exp_opcode op = exp->elts[choice_pos].opcode;
8158 if (op == OP_DISCRETE_RANGE)
8159 {
8160 choice_pos += 1;
8161 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8162 EVAL_NORMAL));
8163 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8164 EVAL_NORMAL));
8165 }
8166 else if (is_array)
8167 {
8168 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8169 EVAL_NORMAL));
8170 upper = lower;
8171 }
8172 else
8173 {
8174 int ind;
8175 char *name;
8176 switch (op)
8177 {
8178 case OP_NAME:
8179 name = &exp->elts[choice_pos + 2].string;
8180 break;
8181 case OP_VAR_VALUE:
8182 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8183 break;
8184 default:
8185 error (_("Invalid record component association."));
8186 }
8187 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8188 ind = 0;
8189 if (! find_struct_field (name, value_type (lhs), 0,
8190 NULL, NULL, NULL, NULL, &ind))
8191 error (_("Unknown component name: %s."), name);
8192 lower = upper = ind;
8193 }
8194
8195 if (lower <= upper && (lower < low || upper > high))
8196 error (_("Index in component association out of bounds."));
8197
8198 add_component_interval (lower, upper, indices, num_indices,
8199 max_indices);
8200 while (lower <= upper)
8201 {
8202 int pos1;
8203 pos1 = expr_pc;
8204 assign_component (container, lhs, lower, exp, &pos1);
8205 lower += 1;
8206 }
8207 }
8208 }
8209
8210 /* Assign the value of the expression in the OP_OTHERS construct in
8211 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8212 have not been previously assigned. The index intervals already assigned
8213 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8214 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8215 static void
8216 aggregate_assign_others (struct value *container,
8217 struct value *lhs, struct expression *exp,
8218 int *pos, LONGEST *indices, int num_indices,
8219 LONGEST low, LONGEST high)
8220 {
8221 int i;
8222 int expr_pc = *pos+1;
8223
8224 for (i = 0; i < num_indices - 2; i += 2)
8225 {
8226 LONGEST ind;
8227 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8228 {
8229 int pos;
8230 pos = expr_pc;
8231 assign_component (container, lhs, ind, exp, &pos);
8232 }
8233 }
8234 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8235 }
8236
8237 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8238 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8239 modifying *SIZE as needed. It is an error if *SIZE exceeds
8240 MAX_SIZE. The resulting intervals do not overlap. */
8241 static void
8242 add_component_interval (LONGEST low, LONGEST high,
8243 LONGEST* indices, int *size, int max_size)
8244 {
8245 int i, j;
8246 for (i = 0; i < *size; i += 2) {
8247 if (high >= indices[i] && low <= indices[i + 1])
8248 {
8249 int kh;
8250 for (kh = i + 2; kh < *size; kh += 2)
8251 if (high < indices[kh])
8252 break;
8253 if (low < indices[i])
8254 indices[i] = low;
8255 indices[i + 1] = indices[kh - 1];
8256 if (high > indices[i + 1])
8257 indices[i + 1] = high;
8258 memcpy (indices + i + 2, indices + kh, *size - kh);
8259 *size -= kh - i - 2;
8260 return;
8261 }
8262 else if (high < indices[i])
8263 break;
8264 }
8265
8266 if (*size == max_size)
8267 error (_("Internal error: miscounted aggregate components."));
8268 *size += 2;
8269 for (j = *size-1; j >= i+2; j -= 1)
8270 indices[j] = indices[j - 2];
8271 indices[i] = low;
8272 indices[i + 1] = high;
8273 }
8274
8275 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8276 is different. */
8277
8278 static struct value *
8279 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8280 {
8281 if (type == ada_check_typedef (value_type (arg2)))
8282 return arg2;
8283
8284 if (ada_is_fixed_point_type (type))
8285 return (cast_to_fixed (type, arg2));
8286
8287 if (ada_is_fixed_point_type (value_type (arg2)))
8288 return cast_from_fixed (type, arg2);
8289
8290 return value_cast (type, arg2);
8291 }
8292
8293 /* Evaluating Ada expressions, and printing their result.
8294 ------------------------------------------------------
8295
8296 We usually evaluate an Ada expression in order to print its value.
8297 We also evaluate an expression in order to print its type, which
8298 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8299 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8300 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8301 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8302 similar.
8303
8304 Evaluating expressions is a little more complicated for Ada entities
8305 than it is for entities in languages such as C. The main reason for
8306 this is that Ada provides types whose definition might be dynamic.
8307 One example of such types is variant records. Or another example
8308 would be an array whose bounds can only be known at run time.
8309
8310 The following description is a general guide as to what should be
8311 done (and what should NOT be done) in order to evaluate an expression
8312 involving such types, and when. This does not cover how the semantic
8313 information is encoded by GNAT as this is covered separatly. For the
8314 document used as the reference for the GNAT encoding, see exp_dbug.ads
8315 in the GNAT sources.
8316
8317 Ideally, we should embed each part of this description next to its
8318 associated code. Unfortunately, the amount of code is so vast right
8319 now that it's hard to see whether the code handling a particular
8320 situation might be duplicated or not. One day, when the code is
8321 cleaned up, this guide might become redundant with the comments
8322 inserted in the code, and we might want to remove it.
8323
8324 When evaluating Ada expressions, the tricky issue is that they may
8325 reference entities whose type contents and size are not statically
8326 known. Consider for instance a variant record:
8327
8328 type Rec (Empty : Boolean := True) is record
8329 case Empty is
8330 when True => null;
8331 when False => Value : Integer;
8332 end case;
8333 end record;
8334 Yes : Rec := (Empty => False, Value => 1);
8335 No : Rec := (empty => True);
8336
8337 The size and contents of that record depends on the value of the
8338 descriminant (Rec.Empty). At this point, neither the debugging
8339 information nor the associated type structure in GDB are able to
8340 express such dynamic types. So what the debugger does is to create
8341 "fixed" versions of the type that applies to the specific object.
8342 We also informally refer to this opperation as "fixing" an object,
8343 which means creating its associated fixed type.
8344
8345 Example: when printing the value of variable "Yes" above, its fixed
8346 type would look like this:
8347
8348 type Rec is record
8349 Empty : Boolean;
8350 Value : Integer;
8351 end record;
8352
8353 On the other hand, if we printed the value of "No", its fixed type
8354 would become:
8355
8356 type Rec is record
8357 Empty : Boolean;
8358 end record;
8359
8360 Things become a little more complicated when trying to fix an entity
8361 with a dynamic type that directly contains another dynamic type,
8362 such as an array of variant records, for instance. There are
8363 two possible cases: Arrays, and records.
8364
8365 Arrays are a little simpler to handle, because the same amount of
8366 memory is allocated for each element of the array, even if the amount
8367 of space used by each element changes from element to element.
8368 Consider for instance the following array of type Rec:
8369
8370 type Rec_Array is array (1 .. 2) of Rec;
8371
8372 The type structure in GDB describes an array in terms of its
8373 bounds, and the type of its elements. By design, all elements
8374 in the array have the same type. So we cannot use a fixed type
8375 for the array elements in this case, since the fixed type depends
8376 on the actual value of each element.
8377
8378 Fortunately, what happens in practice is that each element of
8379 the array has the same size, which is the maximum size that
8380 might be needed in order to hold an object of the element type.
8381 And the compiler shows it in the debugging information by wrapping
8382 the array element inside a private PAD type. This type should not
8383 be shown to the user, and must be "unwrap"'ed before printing. Note
8384 that we also use the adjective "aligner" in our code to designate
8385 these wrapper types.
8386
8387 These wrapper types should have a constant size, which is the size
8388 of each element of the array. In the case when the size is statically
8389 known, the PAD type will already have the right size, and the array
8390 element type should remain unfixed. But there are cases when
8391 this size is not statically known. For instance, assuming that
8392 "Five" is an integer variable:
8393
8394 type Dynamic is array (1 .. Five) of Integer;
8395 type Wrapper (Has_Length : Boolean := False) is record
8396 Data : Dynamic;
8397 case Has_Length is
8398 when True => Length : Integer;
8399 when False => null;
8400 end case;
8401 end record;
8402 type Wrapper_Array is array (1 .. 2) of Wrapper;
8403
8404 Hello : Wrapper_Array := (others => (Has_Length => True,
8405 Data => (others => 17),
8406 Length => 1));
8407
8408
8409 The debugging info would describe variable Hello as being an
8410 array of a PAD type. The size of that PAD type is not statically
8411 known, but can be determined using a parallel XVZ variable.
8412 In that case, a copy of the PAD type with the correct size should
8413 be used for the fixed array.
8414
8415 However, things are slightly different in the case of dynamic
8416 record types. In this case, in order to compute the associated
8417 fixed type, we need to determine the size and offset of each of
8418 its components. This, in turn, requires us to compute the fixed
8419 type of each of these components.
8420
8421 Consider for instance the example:
8422
8423 type Bounded_String (Max_Size : Natural) is record
8424 Str : String (1 .. Max_Size);
8425 Length : Natural;
8426 end record;
8427 My_String : Bounded_String (Max_Size => 10);
8428
8429 In that case, the position of field "Length" depends on the size
8430 of field Str, which itself depends on the value of the Max_Size
8431 discriminant. In order to fix the type of variable My_String,
8432 we need to fix the type of field Str. Therefore, fixing a variant
8433 record requires us to fix each of its components.
8434
8435 However, if a component does not have a dynamic size, the component
8436 should not be fixed. In particular, fields that use a PAD type
8437 should not fixed. Here is an example where this might happen
8438 (assuming type Rec above):
8439
8440 type Container (Big : Boolean) is record
8441 First : Rec;
8442 After : Integer;
8443 case Big is
8444 when True => Another : Integer;
8445 when False => null;
8446 end case;
8447 end record;
8448 My_Container : Container := (Big => False,
8449 First => (Empty => True),
8450 After => 42);
8451
8452 In that example, the compiler creates a PAD type for component First,
8453 whose size is constant, and then positions the component After just
8454 right after it. The offset of component After is therefore constant
8455 in this case.
8456
8457 The debugger computes the position of each field based on an algorithm
8458 that uses, among other things, the actual position and size of the field
8459 preceding it. Let's now imagine that the user is trying to print the
8460 value of My_Container. If the type fixing was recursive, we would
8461 end up computing the offset of field After based on the size of the
8462 fixed version of field First. And since in our example First has
8463 only one actual field, the size of the fixed type is actually smaller
8464 than the amount of space allocated to that field, and thus we would
8465 compute the wrong offset of field After.
8466
8467 Unfortunately, we need to watch out for dynamic components of variant
8468 records (identified by the ___XVL suffix in the component name).
8469 Even if the target type is a PAD type, the size of that type might
8470 not be statically known. So the PAD type needs to be unwrapped and
8471 the resulting type needs to be fixed. Otherwise, we might end up
8472 with the wrong size for our component. This can be observed with
8473 the following type declarations:
8474
8475 type Octal is new Integer range 0 .. 7;
8476 type Octal_Array is array (Positive range <>) of Octal;
8477 pragma Pack (Octal_Array);
8478
8479 type Octal_Buffer (Size : Positive) is record
8480 Buffer : Octal_Array (1 .. Size);
8481 Length : Integer;
8482 end record;
8483
8484 In that case, Buffer is a PAD type whose size is unset and needs
8485 to be computed by fixing the unwrapped type.
8486
8487 Lastly, when should the sub-elements of a type that remained unfixed
8488 thus far, be actually fixed?
8489
8490 The answer is: Only when referencing that element. For instance
8491 when selecting one component of a record, this specific component
8492 should be fixed at that point in time. Or when printing the value
8493 of a record, each component should be fixed before its value gets
8494 printed. Similarly for arrays, the element of the array should be
8495 fixed when printing each element of the array, or when extracting
8496 one element out of that array. On the other hand, fixing should
8497 not be performed on the elements when taking a slice of an array!
8498
8499 Note that one of the side-effects of miscomputing the offset and
8500 size of each field is that we end up also miscomputing the size
8501 of the containing type. This can have adverse results when computing
8502 the value of an entity. GDB fetches the value of an entity based
8503 on the size of its type, and thus a wrong size causes GDB to fetch
8504 the wrong amount of memory. In the case where the computed size is
8505 too small, GDB fetches too little data to print the value of our
8506 entiry. Results in this case as unpredicatble, as we usually read
8507 past the buffer containing the data =:-o. */
8508
8509 /* Implement the evaluate_exp routine in the exp_descriptor structure
8510 for the Ada language. */
8511
8512 static struct value *
8513 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8514 int *pos, enum noside noside)
8515 {
8516 enum exp_opcode op;
8517 int tem, tem2, tem3;
8518 int pc;
8519 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8520 struct type *type;
8521 int nargs, oplen;
8522 struct value **argvec;
8523
8524 pc = *pos;
8525 *pos += 1;
8526 op = exp->elts[pc].opcode;
8527
8528 switch (op)
8529 {
8530 default:
8531 *pos -= 1;
8532 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8533 arg1 = unwrap_value (arg1);
8534
8535 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8536 then we need to perform the conversion manually, because
8537 evaluate_subexp_standard doesn't do it. This conversion is
8538 necessary in Ada because the different kinds of float/fixed
8539 types in Ada have different representations.
8540
8541 Similarly, we need to perform the conversion from OP_LONG
8542 ourselves. */
8543 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8544 arg1 = ada_value_cast (expect_type, arg1, noside);
8545
8546 return arg1;
8547
8548 case OP_STRING:
8549 {
8550 struct value *result;
8551 *pos -= 1;
8552 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8553 /* The result type will have code OP_STRING, bashed there from
8554 OP_ARRAY. Bash it back. */
8555 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8556 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8557 return result;
8558 }
8559
8560 case UNOP_CAST:
8561 (*pos) += 2;
8562 type = exp->elts[pc + 1].type;
8563 arg1 = evaluate_subexp (type, exp, pos, noside);
8564 if (noside == EVAL_SKIP)
8565 goto nosideret;
8566 arg1 = ada_value_cast (type, arg1, noside);
8567 return arg1;
8568
8569 case UNOP_QUAL:
8570 (*pos) += 2;
8571 type = exp->elts[pc + 1].type;
8572 return ada_evaluate_subexp (type, exp, pos, noside);
8573
8574 case BINOP_ASSIGN:
8575 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8576 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8577 {
8578 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8579 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8580 return arg1;
8581 return ada_value_assign (arg1, arg1);
8582 }
8583 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8584 except if the lhs of our assignment is a convenience variable.
8585 In the case of assigning to a convenience variable, the lhs
8586 should be exactly the result of the evaluation of the rhs. */
8587 type = value_type (arg1);
8588 if (VALUE_LVAL (arg1) == lval_internalvar)
8589 type = NULL;
8590 arg2 = evaluate_subexp (type, exp, pos, noside);
8591 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8592 return arg1;
8593 if (ada_is_fixed_point_type (value_type (arg1)))
8594 arg2 = cast_to_fixed (value_type (arg1), arg2);
8595 else if (ada_is_fixed_point_type (value_type (arg2)))
8596 error
8597 (_("Fixed-point values must be assigned to fixed-point variables"));
8598 else
8599 arg2 = coerce_for_assign (value_type (arg1), arg2);
8600 return ada_value_assign (arg1, arg2);
8601
8602 case BINOP_ADD:
8603 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8604 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8605 if (noside == EVAL_SKIP)
8606 goto nosideret;
8607 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8608 return (value_from_longest
8609 (value_type (arg1),
8610 value_as_long (arg1) + value_as_long (arg2)));
8611 if ((ada_is_fixed_point_type (value_type (arg1))
8612 || ada_is_fixed_point_type (value_type (arg2)))
8613 && value_type (arg1) != value_type (arg2))
8614 error (_("Operands of fixed-point addition must have the same type"));
8615 /* Do the addition, and cast the result to the type of the first
8616 argument. We cannot cast the result to a reference type, so if
8617 ARG1 is a reference type, find its underlying type. */
8618 type = value_type (arg1);
8619 while (TYPE_CODE (type) == TYPE_CODE_REF)
8620 type = TYPE_TARGET_TYPE (type);
8621 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8622 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8623
8624 case BINOP_SUB:
8625 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8626 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8627 if (noside == EVAL_SKIP)
8628 goto nosideret;
8629 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8630 return (value_from_longest
8631 (value_type (arg1),
8632 value_as_long (arg1) - value_as_long (arg2)));
8633 if ((ada_is_fixed_point_type (value_type (arg1))
8634 || ada_is_fixed_point_type (value_type (arg2)))
8635 && value_type (arg1) != value_type (arg2))
8636 error (_("Operands of fixed-point subtraction must have the same type"));
8637 /* Do the substraction, and cast the result to the type of the first
8638 argument. We cannot cast the result to a reference type, so if
8639 ARG1 is a reference type, find its underlying type. */
8640 type = value_type (arg1);
8641 while (TYPE_CODE (type) == TYPE_CODE_REF)
8642 type = TYPE_TARGET_TYPE (type);
8643 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8644 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8645
8646 case BINOP_MUL:
8647 case BINOP_DIV:
8648 case BINOP_REM:
8649 case BINOP_MOD:
8650 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8651 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8652 if (noside == EVAL_SKIP)
8653 goto nosideret;
8654 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8655 {
8656 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8657 return value_zero (value_type (arg1), not_lval);
8658 }
8659 else
8660 {
8661 type = builtin_type (exp->gdbarch)->builtin_double;
8662 if (ada_is_fixed_point_type (value_type (arg1)))
8663 arg1 = cast_from_fixed (type, arg1);
8664 if (ada_is_fixed_point_type (value_type (arg2)))
8665 arg2 = cast_from_fixed (type, arg2);
8666 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8667 return ada_value_binop (arg1, arg2, op);
8668 }
8669
8670 case BINOP_EQUAL:
8671 case BINOP_NOTEQUAL:
8672 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8673 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8674 if (noside == EVAL_SKIP)
8675 goto nosideret;
8676 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8677 tem = 0;
8678 else
8679 {
8680 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8681 tem = ada_value_equal (arg1, arg2);
8682 }
8683 if (op == BINOP_NOTEQUAL)
8684 tem = !tem;
8685 type = language_bool_type (exp->language_defn, exp->gdbarch);
8686 return value_from_longest (type, (LONGEST) tem);
8687
8688 case UNOP_NEG:
8689 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8690 if (noside == EVAL_SKIP)
8691 goto nosideret;
8692 else if (ada_is_fixed_point_type (value_type (arg1)))
8693 return value_cast (value_type (arg1), value_neg (arg1));
8694 else
8695 {
8696 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8697 return value_neg (arg1);
8698 }
8699
8700 case BINOP_LOGICAL_AND:
8701 case BINOP_LOGICAL_OR:
8702 case UNOP_LOGICAL_NOT:
8703 {
8704 struct value *val;
8705
8706 *pos -= 1;
8707 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8708 type = language_bool_type (exp->language_defn, exp->gdbarch);
8709 return value_cast (type, val);
8710 }
8711
8712 case BINOP_BITWISE_AND:
8713 case BINOP_BITWISE_IOR:
8714 case BINOP_BITWISE_XOR:
8715 {
8716 struct value *val;
8717
8718 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8719 *pos = pc;
8720 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8721
8722 return value_cast (value_type (arg1), val);
8723 }
8724
8725 case OP_VAR_VALUE:
8726 *pos -= 1;
8727
8728 if (noside == EVAL_SKIP)
8729 {
8730 *pos += 4;
8731 goto nosideret;
8732 }
8733 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8734 /* Only encountered when an unresolved symbol occurs in a
8735 context other than a function call, in which case, it is
8736 invalid. */
8737 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8738 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8739 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8740 {
8741 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8742 if (ada_is_tagged_type (type, 0))
8743 {
8744 /* Tagged types are a little special in the fact that the real
8745 type is dynamic and can only be determined by inspecting the
8746 object's tag. This means that we need to get the object's
8747 value first (EVAL_NORMAL) and then extract the actual object
8748 type from its tag.
8749
8750 Note that we cannot skip the final step where we extract
8751 the object type from its tag, because the EVAL_NORMAL phase
8752 results in dynamic components being resolved into fixed ones.
8753 This can cause problems when trying to print the type
8754 description of tagged types whose parent has a dynamic size:
8755 We use the type name of the "_parent" component in order
8756 to print the name of the ancestor type in the type description.
8757 If that component had a dynamic size, the resolution into
8758 a fixed type would result in the loss of that type name,
8759 thus preventing us from printing the name of the ancestor
8760 type in the type description. */
8761 struct type *actual_type;
8762
8763 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8764 actual_type = type_from_tag (ada_value_tag (arg1));
8765 if (actual_type == NULL)
8766 /* If, for some reason, we were unable to determine
8767 the actual type from the tag, then use the static
8768 approximation that we just computed as a fallback.
8769 This can happen if the debugging information is
8770 incomplete, for instance. */
8771 actual_type = type;
8772
8773 return value_zero (actual_type, not_lval);
8774 }
8775
8776 *pos += 4;
8777 return value_zero
8778 (to_static_fixed_type
8779 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8780 not_lval);
8781 }
8782 else
8783 {
8784 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8785 arg1 = unwrap_value (arg1);
8786 return ada_to_fixed_value (arg1);
8787 }
8788
8789 case OP_FUNCALL:
8790 (*pos) += 2;
8791
8792 /* Allocate arg vector, including space for the function to be
8793 called in argvec[0] and a terminating NULL. */
8794 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8795 argvec =
8796 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8797
8798 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8799 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8800 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8801 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8802 else
8803 {
8804 for (tem = 0; tem <= nargs; tem += 1)
8805 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8806 argvec[tem] = 0;
8807
8808 if (noside == EVAL_SKIP)
8809 goto nosideret;
8810 }
8811
8812 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8813 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8814 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8815 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8816 /* This is a packed array that has already been fixed, and
8817 therefore already coerced to a simple array. Nothing further
8818 to do. */
8819 ;
8820 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8821 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8822 && VALUE_LVAL (argvec[0]) == lval_memory))
8823 argvec[0] = value_addr (argvec[0]);
8824
8825 type = ada_check_typedef (value_type (argvec[0]));
8826 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8827 {
8828 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8829 {
8830 case TYPE_CODE_FUNC:
8831 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8832 break;
8833 case TYPE_CODE_ARRAY:
8834 break;
8835 case TYPE_CODE_STRUCT:
8836 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8837 argvec[0] = ada_value_ind (argvec[0]);
8838 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8839 break;
8840 default:
8841 error (_("cannot subscript or call something of type `%s'"),
8842 ada_type_name (value_type (argvec[0])));
8843 break;
8844 }
8845 }
8846
8847 switch (TYPE_CODE (type))
8848 {
8849 case TYPE_CODE_FUNC:
8850 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8851 return allocate_value (TYPE_TARGET_TYPE (type));
8852 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8853 case TYPE_CODE_STRUCT:
8854 {
8855 int arity;
8856
8857 arity = ada_array_arity (type);
8858 type = ada_array_element_type (type, nargs);
8859 if (type == NULL)
8860 error (_("cannot subscript or call a record"));
8861 if (arity != nargs)
8862 error (_("wrong number of subscripts; expecting %d"), arity);
8863 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8864 return value_zero (ada_aligned_type (type), lval_memory);
8865 return
8866 unwrap_value (ada_value_subscript
8867 (argvec[0], nargs, argvec + 1));
8868 }
8869 case TYPE_CODE_ARRAY:
8870 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8871 {
8872 type = ada_array_element_type (type, nargs);
8873 if (type == NULL)
8874 error (_("element type of array unknown"));
8875 else
8876 return value_zero (ada_aligned_type (type), lval_memory);
8877 }
8878 return
8879 unwrap_value (ada_value_subscript
8880 (ada_coerce_to_simple_array (argvec[0]),
8881 nargs, argvec + 1));
8882 case TYPE_CODE_PTR: /* Pointer to array */
8883 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8884 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8885 {
8886 type = ada_array_element_type (type, nargs);
8887 if (type == NULL)
8888 error (_("element type of array unknown"));
8889 else
8890 return value_zero (ada_aligned_type (type), lval_memory);
8891 }
8892 return
8893 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8894 nargs, argvec + 1));
8895
8896 default:
8897 error (_("Attempt to index or call something other than an "
8898 "array or function"));
8899 }
8900
8901 case TERNOP_SLICE:
8902 {
8903 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8904 struct value *low_bound_val =
8905 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8906 struct value *high_bound_val =
8907 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8908 LONGEST low_bound;
8909 LONGEST high_bound;
8910 low_bound_val = coerce_ref (low_bound_val);
8911 high_bound_val = coerce_ref (high_bound_val);
8912 low_bound = pos_atr (low_bound_val);
8913 high_bound = pos_atr (high_bound_val);
8914
8915 if (noside == EVAL_SKIP)
8916 goto nosideret;
8917
8918 /* If this is a reference to an aligner type, then remove all
8919 the aligners. */
8920 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8921 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8922 TYPE_TARGET_TYPE (value_type (array)) =
8923 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8924
8925 if (ada_is_packed_array_type (value_type (array)))
8926 error (_("cannot slice a packed array"));
8927
8928 /* If this is a reference to an array or an array lvalue,
8929 convert to a pointer. */
8930 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8931 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8932 && VALUE_LVAL (array) == lval_memory))
8933 array = value_addr (array);
8934
8935 if (noside == EVAL_AVOID_SIDE_EFFECTS
8936 && ada_is_array_descriptor_type (ada_check_typedef
8937 (value_type (array))))
8938 return empty_array (ada_type_of_array (array, 0), low_bound);
8939
8940 array = ada_coerce_to_simple_array_ptr (array);
8941
8942 /* If we have more than one level of pointer indirection,
8943 dereference the value until we get only one level. */
8944 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8945 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8946 == TYPE_CODE_PTR))
8947 array = value_ind (array);
8948
8949 /* Make sure we really do have an array type before going further,
8950 to avoid a SEGV when trying to get the index type or the target
8951 type later down the road if the debug info generated by
8952 the compiler is incorrect or incomplete. */
8953 if (!ada_is_simple_array_type (value_type (array)))
8954 error (_("cannot take slice of non-array"));
8955
8956 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8957 {
8958 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8959 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8960 low_bound);
8961 else
8962 {
8963 struct type *arr_type0 =
8964 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8965 NULL, 1);
8966 return ada_value_slice_from_ptr (array, arr_type0,
8967 longest_to_int (low_bound),
8968 longest_to_int (high_bound));
8969 }
8970 }
8971 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8972 return array;
8973 else if (high_bound < low_bound)
8974 return empty_array (value_type (array), low_bound);
8975 else
8976 return ada_value_slice (array, longest_to_int (low_bound),
8977 longest_to_int (high_bound));
8978 }
8979
8980 case UNOP_IN_RANGE:
8981 (*pos) += 2;
8982 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8983 type = check_typedef (exp->elts[pc + 1].type);
8984
8985 if (noside == EVAL_SKIP)
8986 goto nosideret;
8987
8988 switch (TYPE_CODE (type))
8989 {
8990 default:
8991 lim_warning (_("Membership test incompletely implemented; "
8992 "always returns true"));
8993 type = language_bool_type (exp->language_defn, exp->gdbarch);
8994 return value_from_longest (type, (LONGEST) 1);
8995
8996 case TYPE_CODE_RANGE:
8997 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8998 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
8999 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9000 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9001 type = language_bool_type (exp->language_defn, exp->gdbarch);
9002 return
9003 value_from_longest (type,
9004 (value_less (arg1, arg3)
9005 || value_equal (arg1, arg3))
9006 && (value_less (arg2, arg1)
9007 || value_equal (arg2, arg1)));
9008 }
9009
9010 case BINOP_IN_BOUNDS:
9011 (*pos) += 2;
9012 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9013 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9014
9015 if (noside == EVAL_SKIP)
9016 goto nosideret;
9017
9018 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9019 {
9020 type = language_bool_type (exp->language_defn, exp->gdbarch);
9021 return value_zero (type, not_lval);
9022 }
9023
9024 tem = longest_to_int (exp->elts[pc + 1].longconst);
9025
9026 type = ada_index_type (value_type (arg2), tem, "range");
9027 if (!type)
9028 type = value_type (arg1);
9029
9030 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9031 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9032
9033 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9034 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9035 type = language_bool_type (exp->language_defn, exp->gdbarch);
9036 return
9037 value_from_longest (type,
9038 (value_less (arg1, arg3)
9039 || value_equal (arg1, arg3))
9040 && (value_less (arg2, arg1)
9041 || value_equal (arg2, arg1)));
9042
9043 case TERNOP_IN_RANGE:
9044 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9045 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9046 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9047
9048 if (noside == EVAL_SKIP)
9049 goto nosideret;
9050
9051 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9052 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9053 type = language_bool_type (exp->language_defn, exp->gdbarch);
9054 return
9055 value_from_longest (type,
9056 (value_less (arg1, arg3)
9057 || value_equal (arg1, arg3))
9058 && (value_less (arg2, arg1)
9059 || value_equal (arg2, arg1)));
9060
9061 case OP_ATR_FIRST:
9062 case OP_ATR_LAST:
9063 case OP_ATR_LENGTH:
9064 {
9065 struct type *type_arg;
9066 if (exp->elts[*pos].opcode == OP_TYPE)
9067 {
9068 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9069 arg1 = NULL;
9070 type_arg = check_typedef (exp->elts[pc + 2].type);
9071 }
9072 else
9073 {
9074 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9075 type_arg = NULL;
9076 }
9077
9078 if (exp->elts[*pos].opcode != OP_LONG)
9079 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9080 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9081 *pos += 4;
9082
9083 if (noside == EVAL_SKIP)
9084 goto nosideret;
9085
9086 if (type_arg == NULL)
9087 {
9088 arg1 = ada_coerce_ref (arg1);
9089
9090 if (ada_is_packed_array_type (value_type (arg1)))
9091 arg1 = ada_coerce_to_simple_array (arg1);
9092
9093 type = ada_index_type (value_type (arg1), tem,
9094 ada_attribute_name (op));
9095 if (type == NULL)
9096 type = builtin_type (exp->gdbarch)->builtin_int;
9097
9098 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9099 return allocate_value (type);
9100
9101 switch (op)
9102 {
9103 default: /* Should never happen. */
9104 error (_("unexpected attribute encountered"));
9105 case OP_ATR_FIRST:
9106 return value_from_longest
9107 (type, ada_array_bound (arg1, tem, 0));
9108 case OP_ATR_LAST:
9109 return value_from_longest
9110 (type, ada_array_bound (arg1, tem, 1));
9111 case OP_ATR_LENGTH:
9112 return value_from_longest
9113 (type, ada_array_length (arg1, tem));
9114 }
9115 }
9116 else if (discrete_type_p (type_arg))
9117 {
9118 struct type *range_type;
9119 char *name = ada_type_name (type_arg);
9120 range_type = NULL;
9121 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9122 range_type = to_fixed_range_type (name, NULL, type_arg);
9123 if (range_type == NULL)
9124 range_type = type_arg;
9125 switch (op)
9126 {
9127 default:
9128 error (_("unexpected attribute encountered"));
9129 case OP_ATR_FIRST:
9130 return value_from_longest
9131 (range_type, discrete_type_low_bound (range_type));
9132 case OP_ATR_LAST:
9133 return value_from_longest
9134 (range_type, discrete_type_high_bound (range_type));
9135 case OP_ATR_LENGTH:
9136 error (_("the 'length attribute applies only to array types"));
9137 }
9138 }
9139 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9140 error (_("unimplemented type attribute"));
9141 else
9142 {
9143 LONGEST low, high;
9144
9145 if (ada_is_packed_array_type (type_arg))
9146 type_arg = decode_packed_array_type (type_arg);
9147
9148 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9149 if (type == NULL)
9150 type = builtin_type (exp->gdbarch)->builtin_int;
9151
9152 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9153 return allocate_value (type);
9154
9155 switch (op)
9156 {
9157 default:
9158 error (_("unexpected attribute encountered"));
9159 case OP_ATR_FIRST:
9160 low = ada_array_bound_from_type (type_arg, tem, 0);
9161 return value_from_longest (type, low);
9162 case OP_ATR_LAST:
9163 high = ada_array_bound_from_type (type_arg, tem, 1);
9164 return value_from_longest (type, high);
9165 case OP_ATR_LENGTH:
9166 low = ada_array_bound_from_type (type_arg, tem, 0);
9167 high = ada_array_bound_from_type (type_arg, tem, 1);
9168 return value_from_longest (type, high - low + 1);
9169 }
9170 }
9171 }
9172
9173 case OP_ATR_TAG:
9174 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9175 if (noside == EVAL_SKIP)
9176 goto nosideret;
9177
9178 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9179 return value_zero (ada_tag_type (arg1), not_lval);
9180
9181 return ada_value_tag (arg1);
9182
9183 case OP_ATR_MIN:
9184 case OP_ATR_MAX:
9185 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9186 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9187 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9188 if (noside == EVAL_SKIP)
9189 goto nosideret;
9190 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9191 return value_zero (value_type (arg1), not_lval);
9192 else
9193 {
9194 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9195 return value_binop (arg1, arg2,
9196 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9197 }
9198
9199 case OP_ATR_MODULUS:
9200 {
9201 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9202 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9203
9204 if (noside == EVAL_SKIP)
9205 goto nosideret;
9206
9207 if (!ada_is_modular_type (type_arg))
9208 error (_("'modulus must be applied to modular type"));
9209
9210 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9211 ada_modulus (type_arg));
9212 }
9213
9214
9215 case OP_ATR_POS:
9216 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9217 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9218 if (noside == EVAL_SKIP)
9219 goto nosideret;
9220 type = builtin_type (exp->gdbarch)->builtin_int;
9221 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9222 return value_zero (type, not_lval);
9223 else
9224 return value_pos_atr (type, arg1);
9225
9226 case OP_ATR_SIZE:
9227 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9228 type = value_type (arg1);
9229
9230 /* If the argument is a reference, then dereference its type, since
9231 the user is really asking for the size of the actual object,
9232 not the size of the pointer. */
9233 if (TYPE_CODE (type) == TYPE_CODE_REF)
9234 type = TYPE_TARGET_TYPE (type);
9235
9236 if (noside == EVAL_SKIP)
9237 goto nosideret;
9238 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9239 return value_zero (builtin_type_int32, not_lval);
9240 else
9241 return value_from_longest (builtin_type_int32,
9242 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9243
9244 case OP_ATR_VAL:
9245 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9247 type = exp->elts[pc + 2].type;
9248 if (noside == EVAL_SKIP)
9249 goto nosideret;
9250 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9251 return value_zero (type, not_lval);
9252 else
9253 return value_val_atr (type, arg1);
9254
9255 case BINOP_EXP:
9256 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9257 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9258 if (noside == EVAL_SKIP)
9259 goto nosideret;
9260 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9261 return value_zero (value_type (arg1), not_lval);
9262 else
9263 {
9264 /* For integer exponentiation operations,
9265 only promote the first argument. */
9266 if (is_integral_type (value_type (arg2)))
9267 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9268 else
9269 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9270
9271 return value_binop (arg1, arg2, op);
9272 }
9273
9274 case UNOP_PLUS:
9275 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9276 if (noside == EVAL_SKIP)
9277 goto nosideret;
9278 else
9279 return arg1;
9280
9281 case UNOP_ABS:
9282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9283 if (noside == EVAL_SKIP)
9284 goto nosideret;
9285 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9286 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9287 return value_neg (arg1);
9288 else
9289 return arg1;
9290
9291 case UNOP_IND:
9292 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9293 if (noside == EVAL_SKIP)
9294 goto nosideret;
9295 type = ada_check_typedef (value_type (arg1));
9296 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9297 {
9298 if (ada_is_array_descriptor_type (type))
9299 /* GDB allows dereferencing GNAT array descriptors. */
9300 {
9301 struct type *arrType = ada_type_of_array (arg1, 0);
9302 if (arrType == NULL)
9303 error (_("Attempt to dereference null array pointer."));
9304 return value_at_lazy (arrType, 0);
9305 }
9306 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9307 || TYPE_CODE (type) == TYPE_CODE_REF
9308 /* In C you can dereference an array to get the 1st elt. */
9309 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9310 {
9311 type = to_static_fixed_type
9312 (ada_aligned_type
9313 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9314 check_size (type);
9315 return value_zero (type, lval_memory);
9316 }
9317 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9318 {
9319 /* GDB allows dereferencing an int. */
9320 if (expect_type == NULL)
9321 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9322 lval_memory);
9323 else
9324 {
9325 expect_type =
9326 to_static_fixed_type (ada_aligned_type (expect_type));
9327 return value_zero (expect_type, lval_memory);
9328 }
9329 }
9330 else
9331 error (_("Attempt to take contents of a non-pointer value."));
9332 }
9333 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9334 type = ada_check_typedef (value_type (arg1));
9335
9336 if (TYPE_CODE (type) == TYPE_CODE_INT)
9337 /* GDB allows dereferencing an int. If we were given
9338 the expect_type, then use that as the target type.
9339 Otherwise, assume that the target type is an int. */
9340 {
9341 if (expect_type != NULL)
9342 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9343 arg1));
9344 else
9345 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9346 (CORE_ADDR) value_as_address (arg1));
9347 }
9348
9349 if (ada_is_array_descriptor_type (type))
9350 /* GDB allows dereferencing GNAT array descriptors. */
9351 return ada_coerce_to_simple_array (arg1);
9352 else
9353 return ada_value_ind (arg1);
9354
9355 case STRUCTOP_STRUCT:
9356 tem = longest_to_int (exp->elts[pc + 1].longconst);
9357 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9358 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9359 if (noside == EVAL_SKIP)
9360 goto nosideret;
9361 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9362 {
9363 struct type *type1 = value_type (arg1);
9364 if (ada_is_tagged_type (type1, 1))
9365 {
9366 type = ada_lookup_struct_elt_type (type1,
9367 &exp->elts[pc + 2].string,
9368 1, 1, NULL);
9369 if (type == NULL)
9370 /* In this case, we assume that the field COULD exist
9371 in some extension of the type. Return an object of
9372 "type" void, which will match any formal
9373 (see ada_type_match). */
9374 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9375 lval_memory);
9376 }
9377 else
9378 type =
9379 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9380 0, NULL);
9381
9382 return value_zero (ada_aligned_type (type), lval_memory);
9383 }
9384 else
9385 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9386 arg1 = unwrap_value (arg1);
9387 return ada_to_fixed_value (arg1);
9388
9389 case OP_TYPE:
9390 /* The value is not supposed to be used. This is here to make it
9391 easier to accommodate expressions that contain types. */
9392 (*pos) += 2;
9393 if (noside == EVAL_SKIP)
9394 goto nosideret;
9395 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9396 return allocate_value (exp->elts[pc + 1].type);
9397 else
9398 error (_("Attempt to use a type name as an expression"));
9399
9400 case OP_AGGREGATE:
9401 case OP_CHOICES:
9402 case OP_OTHERS:
9403 case OP_DISCRETE_RANGE:
9404 case OP_POSITIONAL:
9405 case OP_NAME:
9406 if (noside == EVAL_NORMAL)
9407 switch (op)
9408 {
9409 case OP_NAME:
9410 error (_("Undefined name, ambiguous name, or renaming used in "
9411 "component association: %s."), &exp->elts[pc+2].string);
9412 case OP_AGGREGATE:
9413 error (_("Aggregates only allowed on the right of an assignment"));
9414 default:
9415 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9416 }
9417
9418 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9419 *pos += oplen - 1;
9420 for (tem = 0; tem < nargs; tem += 1)
9421 ada_evaluate_subexp (NULL, exp, pos, noside);
9422 goto nosideret;
9423 }
9424
9425 nosideret:
9426 return value_from_longest (builtin_type_int8, (LONGEST) 1);
9427 }
9428 \f
9429
9430 /* Fixed point */
9431
9432 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9433 type name that encodes the 'small and 'delta information.
9434 Otherwise, return NULL. */
9435
9436 static const char *
9437 fixed_type_info (struct type *type)
9438 {
9439 const char *name = ada_type_name (type);
9440 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9441
9442 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9443 {
9444 const char *tail = strstr (name, "___XF_");
9445 if (tail == NULL)
9446 return NULL;
9447 else
9448 return tail + 5;
9449 }
9450 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9451 return fixed_type_info (TYPE_TARGET_TYPE (type));
9452 else
9453 return NULL;
9454 }
9455
9456 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9457
9458 int
9459 ada_is_fixed_point_type (struct type *type)
9460 {
9461 return fixed_type_info (type) != NULL;
9462 }
9463
9464 /* Return non-zero iff TYPE represents a System.Address type. */
9465
9466 int
9467 ada_is_system_address_type (struct type *type)
9468 {
9469 return (TYPE_NAME (type)
9470 && strcmp (TYPE_NAME (type), "system__address") == 0);
9471 }
9472
9473 /* Assuming that TYPE is the representation of an Ada fixed-point
9474 type, return its delta, or -1 if the type is malformed and the
9475 delta cannot be determined. */
9476
9477 DOUBLEST
9478 ada_delta (struct type *type)
9479 {
9480 const char *encoding = fixed_type_info (type);
9481 DOUBLEST num, den;
9482
9483 /* Strictly speaking, num and den are encoded as integer. However,
9484 they may not fit into a long, and they will have to be converted
9485 to DOUBLEST anyway. So scan them as DOUBLEST. */
9486 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9487 &num, &den) < 2)
9488 return -1.0;
9489 else
9490 return num / den;
9491 }
9492
9493 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9494 factor ('SMALL value) associated with the type. */
9495
9496 static DOUBLEST
9497 scaling_factor (struct type *type)
9498 {
9499 const char *encoding = fixed_type_info (type);
9500 DOUBLEST num0, den0, num1, den1;
9501 int n;
9502
9503 /* Strictly speaking, num's and den's are encoded as integer. However,
9504 they may not fit into a long, and they will have to be converted
9505 to DOUBLEST anyway. So scan them as DOUBLEST. */
9506 n = sscanf (encoding,
9507 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9508 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9509 &num0, &den0, &num1, &den1);
9510
9511 if (n < 2)
9512 return 1.0;
9513 else if (n == 4)
9514 return num1 / den1;
9515 else
9516 return num0 / den0;
9517 }
9518
9519
9520 /* Assuming that X is the representation of a value of fixed-point
9521 type TYPE, return its floating-point equivalent. */
9522
9523 DOUBLEST
9524 ada_fixed_to_float (struct type *type, LONGEST x)
9525 {
9526 return (DOUBLEST) x *scaling_factor (type);
9527 }
9528
9529 /* The representation of a fixed-point value of type TYPE
9530 corresponding to the value X. */
9531
9532 LONGEST
9533 ada_float_to_fixed (struct type *type, DOUBLEST x)
9534 {
9535 return (LONGEST) (x / scaling_factor (type) + 0.5);
9536 }
9537
9538
9539 /* VAX floating formats */
9540
9541 /* Non-zero iff TYPE represents one of the special VAX floating-point
9542 types. */
9543
9544 int
9545 ada_is_vax_floating_type (struct type *type)
9546 {
9547 int name_len =
9548 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9549 return
9550 name_len > 6
9551 && (TYPE_CODE (type) == TYPE_CODE_INT
9552 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9553 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9554 }
9555
9556 /* The type of special VAX floating-point type this is, assuming
9557 ada_is_vax_floating_point. */
9558
9559 int
9560 ada_vax_float_type_suffix (struct type *type)
9561 {
9562 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9563 }
9564
9565 /* A value representing the special debugging function that outputs
9566 VAX floating-point values of the type represented by TYPE. Assumes
9567 ada_is_vax_floating_type (TYPE). */
9568
9569 struct value *
9570 ada_vax_float_print_function (struct type *type)
9571 {
9572 switch (ada_vax_float_type_suffix (type))
9573 {
9574 case 'F':
9575 return get_var_value ("DEBUG_STRING_F", 0);
9576 case 'D':
9577 return get_var_value ("DEBUG_STRING_D", 0);
9578 case 'G':
9579 return get_var_value ("DEBUG_STRING_G", 0);
9580 default:
9581 error (_("invalid VAX floating-point type"));
9582 }
9583 }
9584 \f
9585
9586 /* Range types */
9587
9588 /* Scan STR beginning at position K for a discriminant name, and
9589 return the value of that discriminant field of DVAL in *PX. If
9590 PNEW_K is not null, put the position of the character beyond the
9591 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9592 not alter *PX and *PNEW_K if unsuccessful. */
9593
9594 static int
9595 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9596 int *pnew_k)
9597 {
9598 static char *bound_buffer = NULL;
9599 static size_t bound_buffer_len = 0;
9600 char *bound;
9601 char *pend;
9602 struct value *bound_val;
9603
9604 if (dval == NULL || str == NULL || str[k] == '\0')
9605 return 0;
9606
9607 pend = strstr (str + k, "__");
9608 if (pend == NULL)
9609 {
9610 bound = str + k;
9611 k += strlen (bound);
9612 }
9613 else
9614 {
9615 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9616 bound = bound_buffer;
9617 strncpy (bound_buffer, str + k, pend - (str + k));
9618 bound[pend - (str + k)] = '\0';
9619 k = pend - str;
9620 }
9621
9622 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9623 if (bound_val == NULL)
9624 return 0;
9625
9626 *px = value_as_long (bound_val);
9627 if (pnew_k != NULL)
9628 *pnew_k = k;
9629 return 1;
9630 }
9631
9632 /* Value of variable named NAME in the current environment. If
9633 no such variable found, then if ERR_MSG is null, returns 0, and
9634 otherwise causes an error with message ERR_MSG. */
9635
9636 static struct value *
9637 get_var_value (char *name, char *err_msg)
9638 {
9639 struct ada_symbol_info *syms;
9640 int nsyms;
9641
9642 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9643 &syms);
9644
9645 if (nsyms != 1)
9646 {
9647 if (err_msg == NULL)
9648 return 0;
9649 else
9650 error (("%s"), err_msg);
9651 }
9652
9653 return value_of_variable (syms[0].sym, syms[0].block);
9654 }
9655
9656 /* Value of integer variable named NAME in the current environment. If
9657 no such variable found, returns 0, and sets *FLAG to 0. If
9658 successful, sets *FLAG to 1. */
9659
9660 LONGEST
9661 get_int_var_value (char *name, int *flag)
9662 {
9663 struct value *var_val = get_var_value (name, 0);
9664
9665 if (var_val == 0)
9666 {
9667 if (flag != NULL)
9668 *flag = 0;
9669 return 0;
9670 }
9671 else
9672 {
9673 if (flag != NULL)
9674 *flag = 1;
9675 return value_as_long (var_val);
9676 }
9677 }
9678
9679
9680 /* Return a range type whose base type is that of the range type named
9681 NAME in the current environment, and whose bounds are calculated
9682 from NAME according to the GNAT range encoding conventions.
9683 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9684 corresponding range type from debug information; fall back to using it
9685 if symbol lookup fails. If a new type must be created, allocate it
9686 like ORIG_TYPE was. The bounds information, in general, is encoded
9687 in NAME, the base type given in the named range type. */
9688
9689 static struct type *
9690 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9691 {
9692 struct type *raw_type = ada_find_any_type (name);
9693 struct type *base_type;
9694 char *subtype_info;
9695
9696 /* Fall back to the original type if symbol lookup failed. */
9697 if (raw_type == NULL)
9698 raw_type = orig_type;
9699
9700 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9701 base_type = TYPE_TARGET_TYPE (raw_type);
9702 else
9703 base_type = raw_type;
9704
9705 subtype_info = strstr (name, "___XD");
9706 if (subtype_info == NULL)
9707 {
9708 LONGEST L = discrete_type_low_bound (raw_type);
9709 LONGEST U = discrete_type_high_bound (raw_type);
9710 if (L < INT_MIN || U > INT_MAX)
9711 return raw_type;
9712 else
9713 return create_range_type (alloc_type (TYPE_OBJFILE (orig_type)),
9714 raw_type,
9715 discrete_type_low_bound (raw_type),
9716 discrete_type_high_bound (raw_type));
9717 }
9718 else
9719 {
9720 static char *name_buf = NULL;
9721 static size_t name_len = 0;
9722 int prefix_len = subtype_info - name;
9723 LONGEST L, U;
9724 struct type *type;
9725 char *bounds_str;
9726 int n;
9727
9728 GROW_VECT (name_buf, name_len, prefix_len + 5);
9729 strncpy (name_buf, name, prefix_len);
9730 name_buf[prefix_len] = '\0';
9731
9732 subtype_info += 5;
9733 bounds_str = strchr (subtype_info, '_');
9734 n = 1;
9735
9736 if (*subtype_info == 'L')
9737 {
9738 if (!ada_scan_number (bounds_str, n, &L, &n)
9739 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9740 return raw_type;
9741 if (bounds_str[n] == '_')
9742 n += 2;
9743 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9744 n += 1;
9745 subtype_info += 1;
9746 }
9747 else
9748 {
9749 int ok;
9750 strcpy (name_buf + prefix_len, "___L");
9751 L = get_int_var_value (name_buf, &ok);
9752 if (!ok)
9753 {
9754 lim_warning (_("Unknown lower bound, using 1."));
9755 L = 1;
9756 }
9757 }
9758
9759 if (*subtype_info == 'U')
9760 {
9761 if (!ada_scan_number (bounds_str, n, &U, &n)
9762 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9763 return raw_type;
9764 }
9765 else
9766 {
9767 int ok;
9768 strcpy (name_buf + prefix_len, "___U");
9769 U = get_int_var_value (name_buf, &ok);
9770 if (!ok)
9771 {
9772 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9773 U = L;
9774 }
9775 }
9776
9777 type = create_range_type (alloc_type (TYPE_OBJFILE (orig_type)),
9778 base_type, L, U);
9779 TYPE_NAME (type) = name;
9780 return type;
9781 }
9782 }
9783
9784 /* True iff NAME is the name of a range type. */
9785
9786 int
9787 ada_is_range_type_name (const char *name)
9788 {
9789 return (name != NULL && strstr (name, "___XD"));
9790 }
9791 \f
9792
9793 /* Modular types */
9794
9795 /* True iff TYPE is an Ada modular type. */
9796
9797 int
9798 ada_is_modular_type (struct type *type)
9799 {
9800 struct type *subranged_type = base_type (type);
9801
9802 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9803 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9804 && TYPE_UNSIGNED (subranged_type));
9805 }
9806
9807 /* Try to determine the lower and upper bounds of the given modular type
9808 using the type name only. Return non-zero and set L and U as the lower
9809 and upper bounds (respectively) if successful. */
9810
9811 int
9812 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9813 {
9814 char *name = ada_type_name (type);
9815 char *suffix;
9816 int k;
9817 LONGEST U;
9818
9819 if (name == NULL)
9820 return 0;
9821
9822 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9823 we are looking for static bounds, which means an __XDLU suffix.
9824 Moreover, we know that the lower bound of modular types is always
9825 zero, so the actual suffix should start with "__XDLU_0__", and
9826 then be followed by the upper bound value. */
9827 suffix = strstr (name, "__XDLU_0__");
9828 if (suffix == NULL)
9829 return 0;
9830 k = 10;
9831 if (!ada_scan_number (suffix, k, &U, NULL))
9832 return 0;
9833
9834 *modulus = (ULONGEST) U + 1;
9835 return 1;
9836 }
9837
9838 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9839
9840 ULONGEST
9841 ada_modulus (struct type *type)
9842 {
9843 ULONGEST modulus;
9844
9845 /* Normally, the modulus of a modular type is equal to the value of
9846 its upper bound + 1. However, the upper bound is currently stored
9847 as an int, which is not always big enough to hold the actual bound
9848 value. To workaround this, try to take advantage of the encoding
9849 that GNAT uses with with discrete types. To avoid some unnecessary
9850 parsing, we do this only when the size of TYPE is greater than
9851 the size of the field holding the bound. */
9852 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9853 && ada_modulus_from_name (type, &modulus))
9854 return modulus;
9855
9856 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9857 }
9858 \f
9859
9860 /* Ada exception catchpoint support:
9861 ---------------------------------
9862
9863 We support 3 kinds of exception catchpoints:
9864 . catchpoints on Ada exceptions
9865 . catchpoints on unhandled Ada exceptions
9866 . catchpoints on failed assertions
9867
9868 Exceptions raised during failed assertions, or unhandled exceptions
9869 could perfectly be caught with the general catchpoint on Ada exceptions.
9870 However, we can easily differentiate these two special cases, and having
9871 the option to distinguish these two cases from the rest can be useful
9872 to zero-in on certain situations.
9873
9874 Exception catchpoints are a specialized form of breakpoint,
9875 since they rely on inserting breakpoints inside known routines
9876 of the GNAT runtime. The implementation therefore uses a standard
9877 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9878 of breakpoint_ops.
9879
9880 Support in the runtime for exception catchpoints have been changed
9881 a few times already, and these changes affect the implementation
9882 of these catchpoints. In order to be able to support several
9883 variants of the runtime, we use a sniffer that will determine
9884 the runtime variant used by the program being debugged.
9885
9886 At this time, we do not support the use of conditions on Ada exception
9887 catchpoints. The COND and COND_STRING fields are therefore set
9888 to NULL (most of the time, see below).
9889
9890 Conditions where EXP_STRING, COND, and COND_STRING are used:
9891
9892 When a user specifies the name of a specific exception in the case
9893 of catchpoints on Ada exceptions, we store the name of that exception
9894 in the EXP_STRING. We then translate this request into an actual
9895 condition stored in COND_STRING, and then parse it into an expression
9896 stored in COND. */
9897
9898 /* The different types of catchpoints that we introduced for catching
9899 Ada exceptions. */
9900
9901 enum exception_catchpoint_kind
9902 {
9903 ex_catch_exception,
9904 ex_catch_exception_unhandled,
9905 ex_catch_assert
9906 };
9907
9908 /* Ada's standard exceptions. */
9909
9910 static char *standard_exc[] = {
9911 "constraint_error",
9912 "program_error",
9913 "storage_error",
9914 "tasking_error"
9915 };
9916
9917 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9918
9919 /* A structure that describes how to support exception catchpoints
9920 for a given executable. */
9921
9922 struct exception_support_info
9923 {
9924 /* The name of the symbol to break on in order to insert
9925 a catchpoint on exceptions. */
9926 const char *catch_exception_sym;
9927
9928 /* The name of the symbol to break on in order to insert
9929 a catchpoint on unhandled exceptions. */
9930 const char *catch_exception_unhandled_sym;
9931
9932 /* The name of the symbol to break on in order to insert
9933 a catchpoint on failed assertions. */
9934 const char *catch_assert_sym;
9935
9936 /* Assuming that the inferior just triggered an unhandled exception
9937 catchpoint, this function is responsible for returning the address
9938 in inferior memory where the name of that exception is stored.
9939 Return zero if the address could not be computed. */
9940 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9941 };
9942
9943 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9944 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9945
9946 /* The following exception support info structure describes how to
9947 implement exception catchpoints with the latest version of the
9948 Ada runtime (as of 2007-03-06). */
9949
9950 static const struct exception_support_info default_exception_support_info =
9951 {
9952 "__gnat_debug_raise_exception", /* catch_exception_sym */
9953 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9954 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9955 ada_unhandled_exception_name_addr
9956 };
9957
9958 /* The following exception support info structure describes how to
9959 implement exception catchpoints with a slightly older version
9960 of the Ada runtime. */
9961
9962 static const struct exception_support_info exception_support_info_fallback =
9963 {
9964 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9965 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9966 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9967 ada_unhandled_exception_name_addr_from_raise
9968 };
9969
9970 /* For each executable, we sniff which exception info structure to use
9971 and cache it in the following global variable. */
9972
9973 static const struct exception_support_info *exception_info = NULL;
9974
9975 /* Inspect the Ada runtime and determine which exception info structure
9976 should be used to provide support for exception catchpoints.
9977
9978 This function will always set exception_info, or raise an error. */
9979
9980 static void
9981 ada_exception_support_info_sniffer (void)
9982 {
9983 struct symbol *sym;
9984
9985 /* If the exception info is already known, then no need to recompute it. */
9986 if (exception_info != NULL)
9987 return;
9988
9989 /* Check the latest (default) exception support info. */
9990 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9991 NULL, VAR_DOMAIN);
9992 if (sym != NULL)
9993 {
9994 exception_info = &default_exception_support_info;
9995 return;
9996 }
9997
9998 /* Try our fallback exception suport info. */
9999 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10000 NULL, VAR_DOMAIN);
10001 if (sym != NULL)
10002 {
10003 exception_info = &exception_support_info_fallback;
10004 return;
10005 }
10006
10007 /* Sometimes, it is normal for us to not be able to find the routine
10008 we are looking for. This happens when the program is linked with
10009 the shared version of the GNAT runtime, and the program has not been
10010 started yet. Inform the user of these two possible causes if
10011 applicable. */
10012
10013 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10014 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10015
10016 /* If the symbol does not exist, then check that the program is
10017 already started, to make sure that shared libraries have been
10018 loaded. If it is not started, this may mean that the symbol is
10019 in a shared library. */
10020
10021 if (ptid_get_pid (inferior_ptid) == 0)
10022 error (_("Unable to insert catchpoint. Try to start the program first."));
10023
10024 /* At this point, we know that we are debugging an Ada program and
10025 that the inferior has been started, but we still are not able to
10026 find the run-time symbols. That can mean that we are in
10027 configurable run time mode, or that a-except as been optimized
10028 out by the linker... In any case, at this point it is not worth
10029 supporting this feature. */
10030
10031 error (_("Cannot insert catchpoints in this configuration."));
10032 }
10033
10034 /* An observer of "executable_changed" events.
10035 Its role is to clear certain cached values that need to be recomputed
10036 each time a new executable is loaded by GDB. */
10037
10038 static void
10039 ada_executable_changed_observer (void)
10040 {
10041 /* If the executable changed, then it is possible that the Ada runtime
10042 is different. So we need to invalidate the exception support info
10043 cache. */
10044 exception_info = NULL;
10045 }
10046
10047 /* Return the name of the function at PC, NULL if could not find it.
10048 This function only checks the debugging information, not the symbol
10049 table. */
10050
10051 static char *
10052 function_name_from_pc (CORE_ADDR pc)
10053 {
10054 char *func_name;
10055
10056 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10057 return NULL;
10058
10059 return func_name;
10060 }
10061
10062 /* True iff FRAME is very likely to be that of a function that is
10063 part of the runtime system. This is all very heuristic, but is
10064 intended to be used as advice as to what frames are uninteresting
10065 to most users. */
10066
10067 static int
10068 is_known_support_routine (struct frame_info *frame)
10069 {
10070 struct symtab_and_line sal;
10071 char *func_name;
10072 int i;
10073
10074 /* If this code does not have any debugging information (no symtab),
10075 This cannot be any user code. */
10076
10077 find_frame_sal (frame, &sal);
10078 if (sal.symtab == NULL)
10079 return 1;
10080
10081 /* If there is a symtab, but the associated source file cannot be
10082 located, then assume this is not user code: Selecting a frame
10083 for which we cannot display the code would not be very helpful
10084 for the user. This should also take care of case such as VxWorks
10085 where the kernel has some debugging info provided for a few units. */
10086
10087 if (symtab_to_fullname (sal.symtab) == NULL)
10088 return 1;
10089
10090 /* Check the unit filename againt the Ada runtime file naming.
10091 We also check the name of the objfile against the name of some
10092 known system libraries that sometimes come with debugging info
10093 too. */
10094
10095 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10096 {
10097 re_comp (known_runtime_file_name_patterns[i]);
10098 if (re_exec (sal.symtab->filename))
10099 return 1;
10100 if (sal.symtab->objfile != NULL
10101 && re_exec (sal.symtab->objfile->name))
10102 return 1;
10103 }
10104
10105 /* Check whether the function is a GNAT-generated entity. */
10106
10107 func_name = function_name_from_pc (get_frame_address_in_block (frame));
10108 if (func_name == NULL)
10109 return 1;
10110
10111 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10112 {
10113 re_comp (known_auxiliary_function_name_patterns[i]);
10114 if (re_exec (func_name))
10115 return 1;
10116 }
10117
10118 return 0;
10119 }
10120
10121 /* Find the first frame that contains debugging information and that is not
10122 part of the Ada run-time, starting from FI and moving upward. */
10123
10124 void
10125 ada_find_printable_frame (struct frame_info *fi)
10126 {
10127 for (; fi != NULL; fi = get_prev_frame (fi))
10128 {
10129 if (!is_known_support_routine (fi))
10130 {
10131 select_frame (fi);
10132 break;
10133 }
10134 }
10135
10136 }
10137
10138 /* Assuming that the inferior just triggered an unhandled exception
10139 catchpoint, return the address in inferior memory where the name
10140 of the exception is stored.
10141
10142 Return zero if the address could not be computed. */
10143
10144 static CORE_ADDR
10145 ada_unhandled_exception_name_addr (void)
10146 {
10147 return parse_and_eval_address ("e.full_name");
10148 }
10149
10150 /* Same as ada_unhandled_exception_name_addr, except that this function
10151 should be used when the inferior uses an older version of the runtime,
10152 where the exception name needs to be extracted from a specific frame
10153 several frames up in the callstack. */
10154
10155 static CORE_ADDR
10156 ada_unhandled_exception_name_addr_from_raise (void)
10157 {
10158 int frame_level;
10159 struct frame_info *fi;
10160
10161 /* To determine the name of this exception, we need to select
10162 the frame corresponding to RAISE_SYM_NAME. This frame is
10163 at least 3 levels up, so we simply skip the first 3 frames
10164 without checking the name of their associated function. */
10165 fi = get_current_frame ();
10166 for (frame_level = 0; frame_level < 3; frame_level += 1)
10167 if (fi != NULL)
10168 fi = get_prev_frame (fi);
10169
10170 while (fi != NULL)
10171 {
10172 const char *func_name =
10173 function_name_from_pc (get_frame_address_in_block (fi));
10174 if (func_name != NULL
10175 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10176 break; /* We found the frame we were looking for... */
10177 fi = get_prev_frame (fi);
10178 }
10179
10180 if (fi == NULL)
10181 return 0;
10182
10183 select_frame (fi);
10184 return parse_and_eval_address ("id.full_name");
10185 }
10186
10187 /* Assuming the inferior just triggered an Ada exception catchpoint
10188 (of any type), return the address in inferior memory where the name
10189 of the exception is stored, if applicable.
10190
10191 Return zero if the address could not be computed, or if not relevant. */
10192
10193 static CORE_ADDR
10194 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10195 struct breakpoint *b)
10196 {
10197 switch (ex)
10198 {
10199 case ex_catch_exception:
10200 return (parse_and_eval_address ("e.full_name"));
10201 break;
10202
10203 case ex_catch_exception_unhandled:
10204 return exception_info->unhandled_exception_name_addr ();
10205 break;
10206
10207 case ex_catch_assert:
10208 return 0; /* Exception name is not relevant in this case. */
10209 break;
10210
10211 default:
10212 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10213 break;
10214 }
10215
10216 return 0; /* Should never be reached. */
10217 }
10218
10219 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10220 any error that ada_exception_name_addr_1 might cause to be thrown.
10221 When an error is intercepted, a warning with the error message is printed,
10222 and zero is returned. */
10223
10224 static CORE_ADDR
10225 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10226 struct breakpoint *b)
10227 {
10228 struct gdb_exception e;
10229 CORE_ADDR result = 0;
10230
10231 TRY_CATCH (e, RETURN_MASK_ERROR)
10232 {
10233 result = ada_exception_name_addr_1 (ex, b);
10234 }
10235
10236 if (e.reason < 0)
10237 {
10238 warning (_("failed to get exception name: %s"), e.message);
10239 return 0;
10240 }
10241
10242 return result;
10243 }
10244
10245 /* Implement the PRINT_IT method in the breakpoint_ops structure
10246 for all exception catchpoint kinds. */
10247
10248 static enum print_stop_action
10249 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10250 {
10251 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10252 char exception_name[256];
10253
10254 if (addr != 0)
10255 {
10256 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10257 exception_name [sizeof (exception_name) - 1] = '\0';
10258 }
10259
10260 ada_find_printable_frame (get_current_frame ());
10261
10262 annotate_catchpoint (b->number);
10263 switch (ex)
10264 {
10265 case ex_catch_exception:
10266 if (addr != 0)
10267 printf_filtered (_("\nCatchpoint %d, %s at "),
10268 b->number, exception_name);
10269 else
10270 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10271 break;
10272 case ex_catch_exception_unhandled:
10273 if (addr != 0)
10274 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10275 b->number, exception_name);
10276 else
10277 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10278 b->number);
10279 break;
10280 case ex_catch_assert:
10281 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10282 b->number);
10283 break;
10284 }
10285
10286 return PRINT_SRC_AND_LOC;
10287 }
10288
10289 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10290 for all exception catchpoint kinds. */
10291
10292 static void
10293 print_one_exception (enum exception_catchpoint_kind ex,
10294 struct breakpoint *b, CORE_ADDR *last_addr)
10295 {
10296 struct value_print_options opts;
10297
10298 get_user_print_options (&opts);
10299 if (opts.addressprint)
10300 {
10301 annotate_field (4);
10302 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10303 }
10304
10305 annotate_field (5);
10306 *last_addr = b->loc->address;
10307 switch (ex)
10308 {
10309 case ex_catch_exception:
10310 if (b->exp_string != NULL)
10311 {
10312 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10313
10314 ui_out_field_string (uiout, "what", msg);
10315 xfree (msg);
10316 }
10317 else
10318 ui_out_field_string (uiout, "what", "all Ada exceptions");
10319
10320 break;
10321
10322 case ex_catch_exception_unhandled:
10323 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10324 break;
10325
10326 case ex_catch_assert:
10327 ui_out_field_string (uiout, "what", "failed Ada assertions");
10328 break;
10329
10330 default:
10331 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10332 break;
10333 }
10334 }
10335
10336 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10337 for all exception catchpoint kinds. */
10338
10339 static void
10340 print_mention_exception (enum exception_catchpoint_kind ex,
10341 struct breakpoint *b)
10342 {
10343 switch (ex)
10344 {
10345 case ex_catch_exception:
10346 if (b->exp_string != NULL)
10347 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10348 b->number, b->exp_string);
10349 else
10350 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10351
10352 break;
10353
10354 case ex_catch_exception_unhandled:
10355 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10356 b->number);
10357 break;
10358
10359 case ex_catch_assert:
10360 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10361 break;
10362
10363 default:
10364 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10365 break;
10366 }
10367 }
10368
10369 /* Virtual table for "catch exception" breakpoints. */
10370
10371 static enum print_stop_action
10372 print_it_catch_exception (struct breakpoint *b)
10373 {
10374 return print_it_exception (ex_catch_exception, b);
10375 }
10376
10377 static void
10378 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10379 {
10380 print_one_exception (ex_catch_exception, b, last_addr);
10381 }
10382
10383 static void
10384 print_mention_catch_exception (struct breakpoint *b)
10385 {
10386 print_mention_exception (ex_catch_exception, b);
10387 }
10388
10389 static struct breakpoint_ops catch_exception_breakpoint_ops =
10390 {
10391 NULL, /* insert */
10392 NULL, /* remove */
10393 NULL, /* breakpoint_hit */
10394 print_it_catch_exception,
10395 print_one_catch_exception,
10396 print_mention_catch_exception
10397 };
10398
10399 /* Virtual table for "catch exception unhandled" breakpoints. */
10400
10401 static enum print_stop_action
10402 print_it_catch_exception_unhandled (struct breakpoint *b)
10403 {
10404 return print_it_exception (ex_catch_exception_unhandled, b);
10405 }
10406
10407 static void
10408 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10409 {
10410 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10411 }
10412
10413 static void
10414 print_mention_catch_exception_unhandled (struct breakpoint *b)
10415 {
10416 print_mention_exception (ex_catch_exception_unhandled, b);
10417 }
10418
10419 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10420 NULL, /* insert */
10421 NULL, /* remove */
10422 NULL, /* breakpoint_hit */
10423 print_it_catch_exception_unhandled,
10424 print_one_catch_exception_unhandled,
10425 print_mention_catch_exception_unhandled
10426 };
10427
10428 /* Virtual table for "catch assert" breakpoints. */
10429
10430 static enum print_stop_action
10431 print_it_catch_assert (struct breakpoint *b)
10432 {
10433 return print_it_exception (ex_catch_assert, b);
10434 }
10435
10436 static void
10437 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10438 {
10439 print_one_exception (ex_catch_assert, b, last_addr);
10440 }
10441
10442 static void
10443 print_mention_catch_assert (struct breakpoint *b)
10444 {
10445 print_mention_exception (ex_catch_assert, b);
10446 }
10447
10448 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10449 NULL, /* insert */
10450 NULL, /* remove */
10451 NULL, /* breakpoint_hit */
10452 print_it_catch_assert,
10453 print_one_catch_assert,
10454 print_mention_catch_assert
10455 };
10456
10457 /* Return non-zero if B is an Ada exception catchpoint. */
10458
10459 int
10460 ada_exception_catchpoint_p (struct breakpoint *b)
10461 {
10462 return (b->ops == &catch_exception_breakpoint_ops
10463 || b->ops == &catch_exception_unhandled_breakpoint_ops
10464 || b->ops == &catch_assert_breakpoint_ops);
10465 }
10466
10467 /* Return a newly allocated copy of the first space-separated token
10468 in ARGSP, and then adjust ARGSP to point immediately after that
10469 token.
10470
10471 Return NULL if ARGPS does not contain any more tokens. */
10472
10473 static char *
10474 ada_get_next_arg (char **argsp)
10475 {
10476 char *args = *argsp;
10477 char *end;
10478 char *result;
10479
10480 /* Skip any leading white space. */
10481
10482 while (isspace (*args))
10483 args++;
10484
10485 if (args[0] == '\0')
10486 return NULL; /* No more arguments. */
10487
10488 /* Find the end of the current argument. */
10489
10490 end = args;
10491 while (*end != '\0' && !isspace (*end))
10492 end++;
10493
10494 /* Adjust ARGSP to point to the start of the next argument. */
10495
10496 *argsp = end;
10497
10498 /* Make a copy of the current argument and return it. */
10499
10500 result = xmalloc (end - args + 1);
10501 strncpy (result, args, end - args);
10502 result[end - args] = '\0';
10503
10504 return result;
10505 }
10506
10507 /* Split the arguments specified in a "catch exception" command.
10508 Set EX to the appropriate catchpoint type.
10509 Set EXP_STRING to the name of the specific exception if
10510 specified by the user. */
10511
10512 static void
10513 catch_ada_exception_command_split (char *args,
10514 enum exception_catchpoint_kind *ex,
10515 char **exp_string)
10516 {
10517 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10518 char *exception_name;
10519
10520 exception_name = ada_get_next_arg (&args);
10521 make_cleanup (xfree, exception_name);
10522
10523 /* Check that we do not have any more arguments. Anything else
10524 is unexpected. */
10525
10526 while (isspace (*args))
10527 args++;
10528
10529 if (args[0] != '\0')
10530 error (_("Junk at end of expression"));
10531
10532 discard_cleanups (old_chain);
10533
10534 if (exception_name == NULL)
10535 {
10536 /* Catch all exceptions. */
10537 *ex = ex_catch_exception;
10538 *exp_string = NULL;
10539 }
10540 else if (strcmp (exception_name, "unhandled") == 0)
10541 {
10542 /* Catch unhandled exceptions. */
10543 *ex = ex_catch_exception_unhandled;
10544 *exp_string = NULL;
10545 }
10546 else
10547 {
10548 /* Catch a specific exception. */
10549 *ex = ex_catch_exception;
10550 *exp_string = exception_name;
10551 }
10552 }
10553
10554 /* Return the name of the symbol on which we should break in order to
10555 implement a catchpoint of the EX kind. */
10556
10557 static const char *
10558 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10559 {
10560 gdb_assert (exception_info != NULL);
10561
10562 switch (ex)
10563 {
10564 case ex_catch_exception:
10565 return (exception_info->catch_exception_sym);
10566 break;
10567 case ex_catch_exception_unhandled:
10568 return (exception_info->catch_exception_unhandled_sym);
10569 break;
10570 case ex_catch_assert:
10571 return (exception_info->catch_assert_sym);
10572 break;
10573 default:
10574 internal_error (__FILE__, __LINE__,
10575 _("unexpected catchpoint kind (%d)"), ex);
10576 }
10577 }
10578
10579 /* Return the breakpoint ops "virtual table" used for catchpoints
10580 of the EX kind. */
10581
10582 static struct breakpoint_ops *
10583 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10584 {
10585 switch (ex)
10586 {
10587 case ex_catch_exception:
10588 return (&catch_exception_breakpoint_ops);
10589 break;
10590 case ex_catch_exception_unhandled:
10591 return (&catch_exception_unhandled_breakpoint_ops);
10592 break;
10593 case ex_catch_assert:
10594 return (&catch_assert_breakpoint_ops);
10595 break;
10596 default:
10597 internal_error (__FILE__, __LINE__,
10598 _("unexpected catchpoint kind (%d)"), ex);
10599 }
10600 }
10601
10602 /* Return the condition that will be used to match the current exception
10603 being raised with the exception that the user wants to catch. This
10604 assumes that this condition is used when the inferior just triggered
10605 an exception catchpoint.
10606
10607 The string returned is a newly allocated string that needs to be
10608 deallocated later. */
10609
10610 static char *
10611 ada_exception_catchpoint_cond_string (const char *exp_string)
10612 {
10613 int i;
10614
10615 /* The standard exceptions are a special case. They are defined in
10616 runtime units that have been compiled without debugging info; if
10617 EXP_STRING is the not-fully-qualified name of a standard
10618 exception (e.g. "constraint_error") then, during the evaluation
10619 of the condition expression, the symbol lookup on this name would
10620 *not* return this standard exception. The catchpoint condition
10621 may then be set only on user-defined exceptions which have the
10622 same not-fully-qualified name (e.g. my_package.constraint_error).
10623
10624 To avoid this unexcepted behavior, these standard exceptions are
10625 systematically prefixed by "standard". This means that "catch
10626 exception constraint_error" is rewritten into "catch exception
10627 standard.constraint_error".
10628
10629 If an exception named contraint_error is defined in another package of
10630 the inferior program, then the only way to specify this exception as a
10631 breakpoint condition is to use its fully-qualified named:
10632 e.g. my_package.constraint_error. */
10633
10634 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10635 {
10636 if (strcmp (standard_exc [i], exp_string) == 0)
10637 {
10638 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10639 exp_string);
10640 }
10641 }
10642 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10643 }
10644
10645 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10646
10647 static struct expression *
10648 ada_parse_catchpoint_condition (char *cond_string,
10649 struct symtab_and_line sal)
10650 {
10651 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10652 }
10653
10654 /* Return the symtab_and_line that should be used to insert an exception
10655 catchpoint of the TYPE kind.
10656
10657 EX_STRING should contain the name of a specific exception
10658 that the catchpoint should catch, or NULL otherwise.
10659
10660 The idea behind all the remaining parameters is that their names match
10661 the name of certain fields in the breakpoint structure that are used to
10662 handle exception catchpoints. This function returns the value to which
10663 these fields should be set, depending on the type of catchpoint we need
10664 to create.
10665
10666 If COND and COND_STRING are both non-NULL, any value they might
10667 hold will be free'ed, and then replaced by newly allocated ones.
10668 These parameters are left untouched otherwise. */
10669
10670 static struct symtab_and_line
10671 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10672 char **addr_string, char **cond_string,
10673 struct expression **cond, struct breakpoint_ops **ops)
10674 {
10675 const char *sym_name;
10676 struct symbol *sym;
10677 struct symtab_and_line sal;
10678
10679 /* First, find out which exception support info to use. */
10680 ada_exception_support_info_sniffer ();
10681
10682 /* Then lookup the function on which we will break in order to catch
10683 the Ada exceptions requested by the user. */
10684
10685 sym_name = ada_exception_sym_name (ex);
10686 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10687
10688 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10689 that should be compiled with debugging information. As a result, we
10690 expect to find that symbol in the symtabs. If we don't find it, then
10691 the target most likely does not support Ada exceptions, or we cannot
10692 insert exception breakpoints yet, because the GNAT runtime hasn't been
10693 loaded yet. */
10694
10695 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10696 in such a way that no debugging information is produced for the symbol
10697 we are looking for. In this case, we could search the minimal symbols
10698 as a fall-back mechanism. This would still be operating in degraded
10699 mode, however, as we would still be missing the debugging information
10700 that is needed in order to extract the name of the exception being
10701 raised (this name is printed in the catchpoint message, and is also
10702 used when trying to catch a specific exception). We do not handle
10703 this case for now. */
10704
10705 if (sym == NULL)
10706 error (_("Unable to break on '%s' in this configuration."), sym_name);
10707
10708 /* Make sure that the symbol we found corresponds to a function. */
10709 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10710 error (_("Symbol \"%s\" is not a function (class = %d)"),
10711 sym_name, SYMBOL_CLASS (sym));
10712
10713 sal = find_function_start_sal (sym, 1);
10714
10715 /* Set ADDR_STRING. */
10716
10717 *addr_string = xstrdup (sym_name);
10718
10719 /* Set the COND and COND_STRING (if not NULL). */
10720
10721 if (cond_string != NULL && cond != NULL)
10722 {
10723 if (*cond_string != NULL)
10724 {
10725 xfree (*cond_string);
10726 *cond_string = NULL;
10727 }
10728 if (*cond != NULL)
10729 {
10730 xfree (*cond);
10731 *cond = NULL;
10732 }
10733 if (exp_string != NULL)
10734 {
10735 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10736 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10737 }
10738 }
10739
10740 /* Set OPS. */
10741 *ops = ada_exception_breakpoint_ops (ex);
10742
10743 return sal;
10744 }
10745
10746 /* Parse the arguments (ARGS) of the "catch exception" command.
10747
10748 Set TYPE to the appropriate exception catchpoint type.
10749 If the user asked the catchpoint to catch only a specific
10750 exception, then save the exception name in ADDR_STRING.
10751
10752 See ada_exception_sal for a description of all the remaining
10753 function arguments of this function. */
10754
10755 struct symtab_and_line
10756 ada_decode_exception_location (char *args, char **addr_string,
10757 char **exp_string, char **cond_string,
10758 struct expression **cond,
10759 struct breakpoint_ops **ops)
10760 {
10761 enum exception_catchpoint_kind ex;
10762
10763 catch_ada_exception_command_split (args, &ex, exp_string);
10764 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10765 cond, ops);
10766 }
10767
10768 struct symtab_and_line
10769 ada_decode_assert_location (char *args, char **addr_string,
10770 struct breakpoint_ops **ops)
10771 {
10772 /* Check that no argument where provided at the end of the command. */
10773
10774 if (args != NULL)
10775 {
10776 while (isspace (*args))
10777 args++;
10778 if (*args != '\0')
10779 error (_("Junk at end of arguments."));
10780 }
10781
10782 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10783 ops);
10784 }
10785
10786 /* Operators */
10787 /* Information about operators given special treatment in functions
10788 below. */
10789 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10790
10791 #define ADA_OPERATORS \
10792 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10793 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10794 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10795 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10796 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10797 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10798 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10799 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10800 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10801 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10802 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10803 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10804 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10805 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10806 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10807 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10808 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10809 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10810 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10811
10812 static void
10813 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10814 {
10815 switch (exp->elts[pc - 1].opcode)
10816 {
10817 default:
10818 operator_length_standard (exp, pc, oplenp, argsp);
10819 break;
10820
10821 #define OP_DEFN(op, len, args, binop) \
10822 case op: *oplenp = len; *argsp = args; break;
10823 ADA_OPERATORS;
10824 #undef OP_DEFN
10825
10826 case OP_AGGREGATE:
10827 *oplenp = 3;
10828 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10829 break;
10830
10831 case OP_CHOICES:
10832 *oplenp = 3;
10833 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10834 break;
10835 }
10836 }
10837
10838 static char *
10839 ada_op_name (enum exp_opcode opcode)
10840 {
10841 switch (opcode)
10842 {
10843 default:
10844 return op_name_standard (opcode);
10845
10846 #define OP_DEFN(op, len, args, binop) case op: return #op;
10847 ADA_OPERATORS;
10848 #undef OP_DEFN
10849
10850 case OP_AGGREGATE:
10851 return "OP_AGGREGATE";
10852 case OP_CHOICES:
10853 return "OP_CHOICES";
10854 case OP_NAME:
10855 return "OP_NAME";
10856 }
10857 }
10858
10859 /* As for operator_length, but assumes PC is pointing at the first
10860 element of the operator, and gives meaningful results only for the
10861 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10862
10863 static void
10864 ada_forward_operator_length (struct expression *exp, int pc,
10865 int *oplenp, int *argsp)
10866 {
10867 switch (exp->elts[pc].opcode)
10868 {
10869 default:
10870 *oplenp = *argsp = 0;
10871 break;
10872
10873 #define OP_DEFN(op, len, args, binop) \
10874 case op: *oplenp = len; *argsp = args; break;
10875 ADA_OPERATORS;
10876 #undef OP_DEFN
10877
10878 case OP_AGGREGATE:
10879 *oplenp = 3;
10880 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10881 break;
10882
10883 case OP_CHOICES:
10884 *oplenp = 3;
10885 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10886 break;
10887
10888 case OP_STRING:
10889 case OP_NAME:
10890 {
10891 int len = longest_to_int (exp->elts[pc + 1].longconst);
10892 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10893 *argsp = 0;
10894 break;
10895 }
10896 }
10897 }
10898
10899 static int
10900 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10901 {
10902 enum exp_opcode op = exp->elts[elt].opcode;
10903 int oplen, nargs;
10904 int pc = elt;
10905 int i;
10906
10907 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10908
10909 switch (op)
10910 {
10911 /* Ada attributes ('Foo). */
10912 case OP_ATR_FIRST:
10913 case OP_ATR_LAST:
10914 case OP_ATR_LENGTH:
10915 case OP_ATR_IMAGE:
10916 case OP_ATR_MAX:
10917 case OP_ATR_MIN:
10918 case OP_ATR_MODULUS:
10919 case OP_ATR_POS:
10920 case OP_ATR_SIZE:
10921 case OP_ATR_TAG:
10922 case OP_ATR_VAL:
10923 break;
10924
10925 case UNOP_IN_RANGE:
10926 case UNOP_QUAL:
10927 /* XXX: gdb_sprint_host_address, type_sprint */
10928 fprintf_filtered (stream, _("Type @"));
10929 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10930 fprintf_filtered (stream, " (");
10931 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10932 fprintf_filtered (stream, ")");
10933 break;
10934 case BINOP_IN_BOUNDS:
10935 fprintf_filtered (stream, " (%d)",
10936 longest_to_int (exp->elts[pc + 2].longconst));
10937 break;
10938 case TERNOP_IN_RANGE:
10939 break;
10940
10941 case OP_AGGREGATE:
10942 case OP_OTHERS:
10943 case OP_DISCRETE_RANGE:
10944 case OP_POSITIONAL:
10945 case OP_CHOICES:
10946 break;
10947
10948 case OP_NAME:
10949 case OP_STRING:
10950 {
10951 char *name = &exp->elts[elt + 2].string;
10952 int len = longest_to_int (exp->elts[elt + 1].longconst);
10953 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10954 break;
10955 }
10956
10957 default:
10958 return dump_subexp_body_standard (exp, stream, elt);
10959 }
10960
10961 elt += oplen;
10962 for (i = 0; i < nargs; i += 1)
10963 elt = dump_subexp (exp, stream, elt);
10964
10965 return elt;
10966 }
10967
10968 /* The Ada extension of print_subexp (q.v.). */
10969
10970 static void
10971 ada_print_subexp (struct expression *exp, int *pos,
10972 struct ui_file *stream, enum precedence prec)
10973 {
10974 int oplen, nargs, i;
10975 int pc = *pos;
10976 enum exp_opcode op = exp->elts[pc].opcode;
10977
10978 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10979
10980 *pos += oplen;
10981 switch (op)
10982 {
10983 default:
10984 *pos -= oplen;
10985 print_subexp_standard (exp, pos, stream, prec);
10986 return;
10987
10988 case OP_VAR_VALUE:
10989 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10990 return;
10991
10992 case BINOP_IN_BOUNDS:
10993 /* XXX: sprint_subexp */
10994 print_subexp (exp, pos, stream, PREC_SUFFIX);
10995 fputs_filtered (" in ", stream);
10996 print_subexp (exp, pos, stream, PREC_SUFFIX);
10997 fputs_filtered ("'range", stream);
10998 if (exp->elts[pc + 1].longconst > 1)
10999 fprintf_filtered (stream, "(%ld)",
11000 (long) exp->elts[pc + 1].longconst);
11001 return;
11002
11003 case TERNOP_IN_RANGE:
11004 if (prec >= PREC_EQUAL)
11005 fputs_filtered ("(", stream);
11006 /* XXX: sprint_subexp */
11007 print_subexp (exp, pos, stream, PREC_SUFFIX);
11008 fputs_filtered (" in ", stream);
11009 print_subexp (exp, pos, stream, PREC_EQUAL);
11010 fputs_filtered (" .. ", stream);
11011 print_subexp (exp, pos, stream, PREC_EQUAL);
11012 if (prec >= PREC_EQUAL)
11013 fputs_filtered (")", stream);
11014 return;
11015
11016 case OP_ATR_FIRST:
11017 case OP_ATR_LAST:
11018 case OP_ATR_LENGTH:
11019 case OP_ATR_IMAGE:
11020 case OP_ATR_MAX:
11021 case OP_ATR_MIN:
11022 case OP_ATR_MODULUS:
11023 case OP_ATR_POS:
11024 case OP_ATR_SIZE:
11025 case OP_ATR_TAG:
11026 case OP_ATR_VAL:
11027 if (exp->elts[*pos].opcode == OP_TYPE)
11028 {
11029 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11030 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11031 *pos += 3;
11032 }
11033 else
11034 print_subexp (exp, pos, stream, PREC_SUFFIX);
11035 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11036 if (nargs > 1)
11037 {
11038 int tem;
11039 for (tem = 1; tem < nargs; tem += 1)
11040 {
11041 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11042 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11043 }
11044 fputs_filtered (")", stream);
11045 }
11046 return;
11047
11048 case UNOP_QUAL:
11049 type_print (exp->elts[pc + 1].type, "", stream, 0);
11050 fputs_filtered ("'(", stream);
11051 print_subexp (exp, pos, stream, PREC_PREFIX);
11052 fputs_filtered (")", stream);
11053 return;
11054
11055 case UNOP_IN_RANGE:
11056 /* XXX: sprint_subexp */
11057 print_subexp (exp, pos, stream, PREC_SUFFIX);
11058 fputs_filtered (" in ", stream);
11059 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11060 return;
11061
11062 case OP_DISCRETE_RANGE:
11063 print_subexp (exp, pos, stream, PREC_SUFFIX);
11064 fputs_filtered ("..", stream);
11065 print_subexp (exp, pos, stream, PREC_SUFFIX);
11066 return;
11067
11068 case OP_OTHERS:
11069 fputs_filtered ("others => ", stream);
11070 print_subexp (exp, pos, stream, PREC_SUFFIX);
11071 return;
11072
11073 case OP_CHOICES:
11074 for (i = 0; i < nargs-1; i += 1)
11075 {
11076 if (i > 0)
11077 fputs_filtered ("|", stream);
11078 print_subexp (exp, pos, stream, PREC_SUFFIX);
11079 }
11080 fputs_filtered (" => ", stream);
11081 print_subexp (exp, pos, stream, PREC_SUFFIX);
11082 return;
11083
11084 case OP_POSITIONAL:
11085 print_subexp (exp, pos, stream, PREC_SUFFIX);
11086 return;
11087
11088 case OP_AGGREGATE:
11089 fputs_filtered ("(", stream);
11090 for (i = 0; i < nargs; i += 1)
11091 {
11092 if (i > 0)
11093 fputs_filtered (", ", stream);
11094 print_subexp (exp, pos, stream, PREC_SUFFIX);
11095 }
11096 fputs_filtered (")", stream);
11097 return;
11098 }
11099 }
11100
11101 /* Table mapping opcodes into strings for printing operators
11102 and precedences of the operators. */
11103
11104 static const struct op_print ada_op_print_tab[] = {
11105 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11106 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11107 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11108 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11109 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11110 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11111 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11112 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11113 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11114 {">=", BINOP_GEQ, PREC_ORDER, 0},
11115 {">", BINOP_GTR, PREC_ORDER, 0},
11116 {"<", BINOP_LESS, PREC_ORDER, 0},
11117 {">>", BINOP_RSH, PREC_SHIFT, 0},
11118 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11119 {"+", BINOP_ADD, PREC_ADD, 0},
11120 {"-", BINOP_SUB, PREC_ADD, 0},
11121 {"&", BINOP_CONCAT, PREC_ADD, 0},
11122 {"*", BINOP_MUL, PREC_MUL, 0},
11123 {"/", BINOP_DIV, PREC_MUL, 0},
11124 {"rem", BINOP_REM, PREC_MUL, 0},
11125 {"mod", BINOP_MOD, PREC_MUL, 0},
11126 {"**", BINOP_EXP, PREC_REPEAT, 0},
11127 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11128 {"-", UNOP_NEG, PREC_PREFIX, 0},
11129 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11130 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11131 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11132 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11133 {".all", UNOP_IND, PREC_SUFFIX, 1},
11134 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11135 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11136 {NULL, 0, 0, 0}
11137 };
11138 \f
11139 enum ada_primitive_types {
11140 ada_primitive_type_int,
11141 ada_primitive_type_long,
11142 ada_primitive_type_short,
11143 ada_primitive_type_char,
11144 ada_primitive_type_float,
11145 ada_primitive_type_double,
11146 ada_primitive_type_void,
11147 ada_primitive_type_long_long,
11148 ada_primitive_type_long_double,
11149 ada_primitive_type_natural,
11150 ada_primitive_type_positive,
11151 ada_primitive_type_system_address,
11152 nr_ada_primitive_types
11153 };
11154
11155 static void
11156 ada_language_arch_info (struct gdbarch *gdbarch,
11157 struct language_arch_info *lai)
11158 {
11159 const struct builtin_type *builtin = builtin_type (gdbarch);
11160 lai->primitive_type_vector
11161 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11162 struct type *);
11163 lai->primitive_type_vector [ada_primitive_type_int] =
11164 init_type (TYPE_CODE_INT,
11165 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11166 0, "integer", (struct objfile *) NULL);
11167 lai->primitive_type_vector [ada_primitive_type_long] =
11168 init_type (TYPE_CODE_INT,
11169 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
11170 0, "long_integer", (struct objfile *) NULL);
11171 lai->primitive_type_vector [ada_primitive_type_short] =
11172 init_type (TYPE_CODE_INT,
11173 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
11174 0, "short_integer", (struct objfile *) NULL);
11175 lai->string_char_type =
11176 lai->primitive_type_vector [ada_primitive_type_char] =
11177 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
11178 0, "character", (struct objfile *) NULL);
11179 lai->primitive_type_vector [ada_primitive_type_float] =
11180 init_type (TYPE_CODE_FLT,
11181 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
11182 0, "float", (struct objfile *) NULL);
11183 lai->primitive_type_vector [ada_primitive_type_double] =
11184 init_type (TYPE_CODE_FLT,
11185 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
11186 0, "long_float", (struct objfile *) NULL);
11187 lai->primitive_type_vector [ada_primitive_type_long_long] =
11188 init_type (TYPE_CODE_INT,
11189 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
11190 0, "long_long_integer", (struct objfile *) NULL);
11191 lai->primitive_type_vector [ada_primitive_type_long_double] =
11192 init_type (TYPE_CODE_FLT,
11193 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
11194 0, "long_long_float", (struct objfile *) NULL);
11195 lai->primitive_type_vector [ada_primitive_type_natural] =
11196 init_type (TYPE_CODE_INT,
11197 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11198 0, "natural", (struct objfile *) NULL);
11199 lai->primitive_type_vector [ada_primitive_type_positive] =
11200 init_type (TYPE_CODE_INT,
11201 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11202 0, "positive", (struct objfile *) NULL);
11203 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
11204
11205 lai->primitive_type_vector [ada_primitive_type_system_address] =
11206 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
11207 (struct objfile *) NULL));
11208 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11209 = "system__address";
11210
11211 lai->bool_type_symbol = NULL;
11212 lai->bool_type_default = builtin->builtin_bool;
11213 }
11214 \f
11215 /* Language vector */
11216
11217 /* Not really used, but needed in the ada_language_defn. */
11218
11219 static void
11220 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11221 {
11222 ada_emit_char (c, type, stream, quoter, 1);
11223 }
11224
11225 static int
11226 parse (void)
11227 {
11228 warnings_issued = 0;
11229 return ada_parse ();
11230 }
11231
11232 static const struct exp_descriptor ada_exp_descriptor = {
11233 ada_print_subexp,
11234 ada_operator_length,
11235 ada_op_name,
11236 ada_dump_subexp_body,
11237 ada_evaluate_subexp
11238 };
11239
11240 const struct language_defn ada_language_defn = {
11241 "ada", /* Language name */
11242 language_ada,
11243 range_check_off,
11244 type_check_off,
11245 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11246 that's not quite what this means. */
11247 array_row_major,
11248 macro_expansion_no,
11249 &ada_exp_descriptor,
11250 parse,
11251 ada_error,
11252 resolve,
11253 ada_printchar, /* Print a character constant */
11254 ada_printstr, /* Function to print string constant */
11255 emit_char, /* Function to print single char (not used) */
11256 ada_print_type, /* Print a type using appropriate syntax */
11257 default_print_typedef, /* Print a typedef using appropriate syntax */
11258 ada_val_print, /* Print a value using appropriate syntax */
11259 ada_value_print, /* Print a top-level value */
11260 NULL, /* Language specific skip_trampoline */
11261 NULL, /* name_of_this */
11262 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11263 basic_lookup_transparent_type, /* lookup_transparent_type */
11264 ada_la_decode, /* Language specific symbol demangler */
11265 NULL, /* Language specific class_name_from_physname */
11266 ada_op_print_tab, /* expression operators for printing */
11267 0, /* c-style arrays */
11268 1, /* String lower bound */
11269 ada_get_gdb_completer_word_break_characters,
11270 ada_make_symbol_completion_list,
11271 ada_language_arch_info,
11272 ada_print_array_index,
11273 default_pass_by_reference,
11274 c_get_string,
11275 LANG_MAGIC
11276 };
11277
11278 /* Provide a prototype to silence -Wmissing-prototypes. */
11279 extern initialize_file_ftype _initialize_ada_language;
11280
11281 void
11282 _initialize_ada_language (void)
11283 {
11284 add_language (&ada_language_defn);
11285
11286 varsize_limit = 65536;
11287
11288 obstack_init (&symbol_list_obstack);
11289
11290 decoded_names_store = htab_create_alloc
11291 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11292 NULL, xcalloc, xfree);
11293
11294 observer_attach_executable_changed (ada_executable_changed_observer);
11295 }
This page took 0.269092 seconds and 4 git commands to generate.