9ebd25e16ae4d910e9c62aefd0f59e541e4d666d
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
231 static int ada_resolve_function (struct block_symbol *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *,
245 int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271
272 static struct type *ada_find_any_type (const char *name);
273
274 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
277 \f
278
279 /* The result of a symbol lookup to be stored in our symbol cache. */
280
281 struct cache_entry
282 {
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
286 domain_enum domain;
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295 };
296
297 /* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306 #define HASH_SIZE 1009
307
308 struct ada_symbol_cache
309 {
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315 };
316
317 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
318
319 /* Maximum-sized dynamic type. */
320 static unsigned int varsize_limit;
321
322 static const char ada_completer_word_break_characters[] =
323 #ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325 #else
326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
327 #endif
328
329 /* The name of the symbol to use to get the name of the main subprogram. */
330 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
331 = "__gnat_ada_main_program_name";
332
333 /* Limit on the number of warnings to raise per expression evaluation. */
334 static int warning_limit = 2;
335
336 /* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338 static int warnings_issued = 0;
339
340 static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342 };
343
344 static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346 };
347
348 /* Space for allocating results of ada_lookup_symbol_list. */
349 static struct obstack symbol_list_obstack;
350
351 /* Maintenance-related settings for this module. */
352
353 static struct cmd_list_element *maint_set_ada_cmdlist;
354 static struct cmd_list_element *maint_show_ada_cmdlist;
355
356 /* Implement the "maintenance set ada" (prefix) command. */
357
358 static void
359 maint_set_ada_cmd (const char *args, int from_tty)
360 {
361 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
362 gdb_stdout);
363 }
364
365 /* Implement the "maintenance show ada" (prefix) command. */
366
367 static void
368 maint_show_ada_cmd (const char *args, int from_tty)
369 {
370 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
371 }
372
373 /* The "maintenance ada set/show ignore-descriptive-type" value. */
374
375 static int ada_ignore_descriptive_types_p = 0;
376
377 /* Inferior-specific data. */
378
379 /* Per-inferior data for this module. */
380
381 struct ada_inferior_data
382 {
383 /* The ada__tags__type_specific_data type, which is used when decoding
384 tagged types. With older versions of GNAT, this type was directly
385 accessible through a component ("tsd") in the object tag. But this
386 is no longer the case, so we cache it for each inferior. */
387 struct type *tsd_type;
388
389 /* The exception_support_info data. This data is used to determine
390 how to implement support for Ada exception catchpoints in a given
391 inferior. */
392 const struct exception_support_info *exception_info;
393 };
394
395 /* Our key to this module's inferior data. */
396 static const struct inferior_data *ada_inferior_data;
397
398 /* A cleanup routine for our inferior data. */
399 static void
400 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
401 {
402 struct ada_inferior_data *data;
403
404 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
405 if (data != NULL)
406 xfree (data);
407 }
408
409 /* Return our inferior data for the given inferior (INF).
410
411 This function always returns a valid pointer to an allocated
412 ada_inferior_data structure. If INF's inferior data has not
413 been previously set, this functions creates a new one with all
414 fields set to zero, sets INF's inferior to it, and then returns
415 a pointer to that newly allocated ada_inferior_data. */
416
417 static struct ada_inferior_data *
418 get_ada_inferior_data (struct inferior *inf)
419 {
420 struct ada_inferior_data *data;
421
422 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
423 if (data == NULL)
424 {
425 data = XCNEW (struct ada_inferior_data);
426 set_inferior_data (inf, ada_inferior_data, data);
427 }
428
429 return data;
430 }
431
432 /* Perform all necessary cleanups regarding our module's inferior data
433 that is required after the inferior INF just exited. */
434
435 static void
436 ada_inferior_exit (struct inferior *inf)
437 {
438 ada_inferior_data_cleanup (inf, NULL);
439 set_inferior_data (inf, ada_inferior_data, NULL);
440 }
441
442
443 /* program-space-specific data. */
444
445 /* This module's per-program-space data. */
446 struct ada_pspace_data
447 {
448 /* The Ada symbol cache. */
449 struct ada_symbol_cache *sym_cache;
450 };
451
452 /* Key to our per-program-space data. */
453 static const struct program_space_data *ada_pspace_data_handle;
454
455 /* Return this module's data for the given program space (PSPACE).
456 If not is found, add a zero'ed one now.
457
458 This function always returns a valid object. */
459
460 static struct ada_pspace_data *
461 get_ada_pspace_data (struct program_space *pspace)
462 {
463 struct ada_pspace_data *data;
464
465 data = ((struct ada_pspace_data *)
466 program_space_data (pspace, ada_pspace_data_handle));
467 if (data == NULL)
468 {
469 data = XCNEW (struct ada_pspace_data);
470 set_program_space_data (pspace, ada_pspace_data_handle, data);
471 }
472
473 return data;
474 }
475
476 /* The cleanup callback for this module's per-program-space data. */
477
478 static void
479 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
480 {
481 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
482
483 if (pspace_data->sym_cache != NULL)
484 ada_free_symbol_cache (pspace_data->sym_cache);
485 xfree (pspace_data);
486 }
487
488 /* Utilities */
489
490 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
491 all typedef layers have been peeled. Otherwise, return TYPE.
492
493 Normally, we really expect a typedef type to only have 1 typedef layer.
494 In other words, we really expect the target type of a typedef type to be
495 a non-typedef type. This is particularly true for Ada units, because
496 the language does not have a typedef vs not-typedef distinction.
497 In that respect, the Ada compiler has been trying to eliminate as many
498 typedef definitions in the debugging information, since they generally
499 do not bring any extra information (we still use typedef under certain
500 circumstances related mostly to the GNAT encoding).
501
502 Unfortunately, we have seen situations where the debugging information
503 generated by the compiler leads to such multiple typedef layers. For
504 instance, consider the following example with stabs:
505
506 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
507 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
508
509 This is an error in the debugging information which causes type
510 pck__float_array___XUP to be defined twice, and the second time,
511 it is defined as a typedef of a typedef.
512
513 This is on the fringe of legality as far as debugging information is
514 concerned, and certainly unexpected. But it is easy to handle these
515 situations correctly, so we can afford to be lenient in this case. */
516
517 static struct type *
518 ada_typedef_target_type (struct type *type)
519 {
520 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
521 type = TYPE_TARGET_TYPE (type);
522 return type;
523 }
524
525 /* Given DECODED_NAME a string holding a symbol name in its
526 decoded form (ie using the Ada dotted notation), returns
527 its unqualified name. */
528
529 static const char *
530 ada_unqualified_name (const char *decoded_name)
531 {
532 const char *result;
533
534 /* If the decoded name starts with '<', it means that the encoded
535 name does not follow standard naming conventions, and thus that
536 it is not your typical Ada symbol name. Trying to unqualify it
537 is therefore pointless and possibly erroneous. */
538 if (decoded_name[0] == '<')
539 return decoded_name;
540
541 result = strrchr (decoded_name, '.');
542 if (result != NULL)
543 result++; /* Skip the dot... */
544 else
545 result = decoded_name;
546
547 return result;
548 }
549
550 /* Return a string starting with '<', followed by STR, and '>'.
551 The result is good until the next call. */
552
553 static char *
554 add_angle_brackets (const char *str)
555 {
556 static char *result = NULL;
557
558 xfree (result);
559 result = xstrprintf ("<%s>", str);
560 return result;
561 }
562
563 static const char *
564 ada_get_gdb_completer_word_break_characters (void)
565 {
566 return ada_completer_word_break_characters;
567 }
568
569 /* Print an array element index using the Ada syntax. */
570
571 static void
572 ada_print_array_index (struct value *index_value, struct ui_file *stream,
573 const struct value_print_options *options)
574 {
575 LA_VALUE_PRINT (index_value, stream, options);
576 fprintf_filtered (stream, " => ");
577 }
578
579 /* Assuming VECT points to an array of *SIZE objects of size
580 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
581 updating *SIZE as necessary and returning the (new) array. */
582
583 void *
584 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
585 {
586 if (*size < min_size)
587 {
588 *size *= 2;
589 if (*size < min_size)
590 *size = min_size;
591 vect = xrealloc (vect, *size * element_size);
592 }
593 return vect;
594 }
595
596 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
597 suffix of FIELD_NAME beginning "___". */
598
599 static int
600 field_name_match (const char *field_name, const char *target)
601 {
602 int len = strlen (target);
603
604 return
605 (strncmp (field_name, target, len) == 0
606 && (field_name[len] == '\0'
607 || (startswith (field_name + len, "___")
608 && strcmp (field_name + strlen (field_name) - 6,
609 "___XVN") != 0)));
610 }
611
612
613 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
614 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
615 and return its index. This function also handles fields whose name
616 have ___ suffixes because the compiler sometimes alters their name
617 by adding such a suffix to represent fields with certain constraints.
618 If the field could not be found, return a negative number if
619 MAYBE_MISSING is set. Otherwise raise an error. */
620
621 int
622 ada_get_field_index (const struct type *type, const char *field_name,
623 int maybe_missing)
624 {
625 int fieldno;
626 struct type *struct_type = check_typedef ((struct type *) type);
627
628 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
629 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
630 return fieldno;
631
632 if (!maybe_missing)
633 error (_("Unable to find field %s in struct %s. Aborting"),
634 field_name, TYPE_NAME (struct_type));
635
636 return -1;
637 }
638
639 /* The length of the prefix of NAME prior to any "___" suffix. */
640
641 int
642 ada_name_prefix_len (const char *name)
643 {
644 if (name == NULL)
645 return 0;
646 else
647 {
648 const char *p = strstr (name, "___");
649
650 if (p == NULL)
651 return strlen (name);
652 else
653 return p - name;
654 }
655 }
656
657 /* Return non-zero if SUFFIX is a suffix of STR.
658 Return zero if STR is null. */
659
660 static int
661 is_suffix (const char *str, const char *suffix)
662 {
663 int len1, len2;
664
665 if (str == NULL)
666 return 0;
667 len1 = strlen (str);
668 len2 = strlen (suffix);
669 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
670 }
671
672 /* The contents of value VAL, treated as a value of type TYPE. The
673 result is an lval in memory if VAL is. */
674
675 static struct value *
676 coerce_unspec_val_to_type (struct value *val, struct type *type)
677 {
678 type = ada_check_typedef (type);
679 if (value_type (val) == type)
680 return val;
681 else
682 {
683 struct value *result;
684
685 /* Make sure that the object size is not unreasonable before
686 trying to allocate some memory for it. */
687 ada_ensure_varsize_limit (type);
688
689 if (value_lazy (val)
690 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
691 result = allocate_value_lazy (type);
692 else
693 {
694 result = allocate_value (type);
695 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
696 }
697 set_value_component_location (result, val);
698 set_value_bitsize (result, value_bitsize (val));
699 set_value_bitpos (result, value_bitpos (val));
700 set_value_address (result, value_address (val));
701 return result;
702 }
703 }
704
705 static const gdb_byte *
706 cond_offset_host (const gdb_byte *valaddr, long offset)
707 {
708 if (valaddr == NULL)
709 return NULL;
710 else
711 return valaddr + offset;
712 }
713
714 static CORE_ADDR
715 cond_offset_target (CORE_ADDR address, long offset)
716 {
717 if (address == 0)
718 return 0;
719 else
720 return address + offset;
721 }
722
723 /* Issue a warning (as for the definition of warning in utils.c, but
724 with exactly one argument rather than ...), unless the limit on the
725 number of warnings has passed during the evaluation of the current
726 expression. */
727
728 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
729 provided by "complaint". */
730 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
731
732 static void
733 lim_warning (const char *format, ...)
734 {
735 va_list args;
736
737 va_start (args, format);
738 warnings_issued += 1;
739 if (warnings_issued <= warning_limit)
740 vwarning (format, args);
741
742 va_end (args);
743 }
744
745 /* Issue an error if the size of an object of type T is unreasonable,
746 i.e. if it would be a bad idea to allocate a value of this type in
747 GDB. */
748
749 void
750 ada_ensure_varsize_limit (const struct type *type)
751 {
752 if (TYPE_LENGTH (type) > varsize_limit)
753 error (_("object size is larger than varsize-limit"));
754 }
755
756 /* Maximum value of a SIZE-byte signed integer type. */
757 static LONGEST
758 max_of_size (int size)
759 {
760 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
761
762 return top_bit | (top_bit - 1);
763 }
764
765 /* Minimum value of a SIZE-byte signed integer type. */
766 static LONGEST
767 min_of_size (int size)
768 {
769 return -max_of_size (size) - 1;
770 }
771
772 /* Maximum value of a SIZE-byte unsigned integer type. */
773 static ULONGEST
774 umax_of_size (int size)
775 {
776 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
777
778 return top_bit | (top_bit - 1);
779 }
780
781 /* Maximum value of integral type T, as a signed quantity. */
782 static LONGEST
783 max_of_type (struct type *t)
784 {
785 if (TYPE_UNSIGNED (t))
786 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
787 else
788 return max_of_size (TYPE_LENGTH (t));
789 }
790
791 /* Minimum value of integral type T, as a signed quantity. */
792 static LONGEST
793 min_of_type (struct type *t)
794 {
795 if (TYPE_UNSIGNED (t))
796 return 0;
797 else
798 return min_of_size (TYPE_LENGTH (t));
799 }
800
801 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
802 LONGEST
803 ada_discrete_type_high_bound (struct type *type)
804 {
805 type = resolve_dynamic_type (type, NULL, 0);
806 switch (TYPE_CODE (type))
807 {
808 case TYPE_CODE_RANGE:
809 return TYPE_HIGH_BOUND (type);
810 case TYPE_CODE_ENUM:
811 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
812 case TYPE_CODE_BOOL:
813 return 1;
814 case TYPE_CODE_CHAR:
815 case TYPE_CODE_INT:
816 return max_of_type (type);
817 default:
818 error (_("Unexpected type in ada_discrete_type_high_bound."));
819 }
820 }
821
822 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
823 LONGEST
824 ada_discrete_type_low_bound (struct type *type)
825 {
826 type = resolve_dynamic_type (type, NULL, 0);
827 switch (TYPE_CODE (type))
828 {
829 case TYPE_CODE_RANGE:
830 return TYPE_LOW_BOUND (type);
831 case TYPE_CODE_ENUM:
832 return TYPE_FIELD_ENUMVAL (type, 0);
833 case TYPE_CODE_BOOL:
834 return 0;
835 case TYPE_CODE_CHAR:
836 case TYPE_CODE_INT:
837 return min_of_type (type);
838 default:
839 error (_("Unexpected type in ada_discrete_type_low_bound."));
840 }
841 }
842
843 /* The identity on non-range types. For range types, the underlying
844 non-range scalar type. */
845
846 static struct type *
847 get_base_type (struct type *type)
848 {
849 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
850 {
851 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
852 return type;
853 type = TYPE_TARGET_TYPE (type);
854 }
855 return type;
856 }
857
858 /* Return a decoded version of the given VALUE. This means returning
859 a value whose type is obtained by applying all the GNAT-specific
860 encondings, making the resulting type a static but standard description
861 of the initial type. */
862
863 struct value *
864 ada_get_decoded_value (struct value *value)
865 {
866 struct type *type = ada_check_typedef (value_type (value));
867
868 if (ada_is_array_descriptor_type (type)
869 || (ada_is_constrained_packed_array_type (type)
870 && TYPE_CODE (type) != TYPE_CODE_PTR))
871 {
872 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
873 value = ada_coerce_to_simple_array_ptr (value);
874 else
875 value = ada_coerce_to_simple_array (value);
876 }
877 else
878 value = ada_to_fixed_value (value);
879
880 return value;
881 }
882
883 /* Same as ada_get_decoded_value, but with the given TYPE.
884 Because there is no associated actual value for this type,
885 the resulting type might be a best-effort approximation in
886 the case of dynamic types. */
887
888 struct type *
889 ada_get_decoded_type (struct type *type)
890 {
891 type = to_static_fixed_type (type);
892 if (ada_is_constrained_packed_array_type (type))
893 type = ada_coerce_to_simple_array_type (type);
894 return type;
895 }
896
897 \f
898
899 /* Language Selection */
900
901 /* If the main program is in Ada, return language_ada, otherwise return LANG
902 (the main program is in Ada iif the adainit symbol is found). */
903
904 enum language
905 ada_update_initial_language (enum language lang)
906 {
907 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
908 (struct objfile *) NULL).minsym != NULL)
909 return language_ada;
910
911 return lang;
912 }
913
914 /* If the main procedure is written in Ada, then return its name.
915 The result is good until the next call. Return NULL if the main
916 procedure doesn't appear to be in Ada. */
917
918 char *
919 ada_main_name (void)
920 {
921 struct bound_minimal_symbol msym;
922 static char *main_program_name = NULL;
923
924 /* For Ada, the name of the main procedure is stored in a specific
925 string constant, generated by the binder. Look for that symbol,
926 extract its address, and then read that string. If we didn't find
927 that string, then most probably the main procedure is not written
928 in Ada. */
929 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
930
931 if (msym.minsym != NULL)
932 {
933 CORE_ADDR main_program_name_addr;
934 int err_code;
935
936 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
937 if (main_program_name_addr == 0)
938 error (_("Invalid address for Ada main program name."));
939
940 xfree (main_program_name);
941 target_read_string (main_program_name_addr, &main_program_name,
942 1024, &err_code);
943
944 if (err_code != 0)
945 return NULL;
946 return main_program_name;
947 }
948
949 /* The main procedure doesn't seem to be in Ada. */
950 return NULL;
951 }
952 \f
953 /* Symbols */
954
955 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
956 of NULLs. */
957
958 const struct ada_opname_map ada_opname_table[] = {
959 {"Oadd", "\"+\"", BINOP_ADD},
960 {"Osubtract", "\"-\"", BINOP_SUB},
961 {"Omultiply", "\"*\"", BINOP_MUL},
962 {"Odivide", "\"/\"", BINOP_DIV},
963 {"Omod", "\"mod\"", BINOP_MOD},
964 {"Orem", "\"rem\"", BINOP_REM},
965 {"Oexpon", "\"**\"", BINOP_EXP},
966 {"Olt", "\"<\"", BINOP_LESS},
967 {"Ole", "\"<=\"", BINOP_LEQ},
968 {"Ogt", "\">\"", BINOP_GTR},
969 {"Oge", "\">=\"", BINOP_GEQ},
970 {"Oeq", "\"=\"", BINOP_EQUAL},
971 {"One", "\"/=\"", BINOP_NOTEQUAL},
972 {"Oand", "\"and\"", BINOP_BITWISE_AND},
973 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
974 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
975 {"Oconcat", "\"&\"", BINOP_CONCAT},
976 {"Oabs", "\"abs\"", UNOP_ABS},
977 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
978 {"Oadd", "\"+\"", UNOP_PLUS},
979 {"Osubtract", "\"-\"", UNOP_NEG},
980 {NULL, NULL}
981 };
982
983 /* The "encoded" form of DECODED, according to GNAT conventions. The
984 result is valid until the next call to ada_encode. If
985 THROW_ERRORS, throw an error if invalid operator name is found.
986 Otherwise, return NULL in that case. */
987
988 static char *
989 ada_encode_1 (const char *decoded, bool throw_errors)
990 {
991 static char *encoding_buffer = NULL;
992 static size_t encoding_buffer_size = 0;
993 const char *p;
994 int k;
995
996 if (decoded == NULL)
997 return NULL;
998
999 GROW_VECT (encoding_buffer, encoding_buffer_size,
1000 2 * strlen (decoded) + 10);
1001
1002 k = 0;
1003 for (p = decoded; *p != '\0'; p += 1)
1004 {
1005 if (*p == '.')
1006 {
1007 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1008 k += 2;
1009 }
1010 else if (*p == '"')
1011 {
1012 const struct ada_opname_map *mapping;
1013
1014 for (mapping = ada_opname_table;
1015 mapping->encoded != NULL
1016 && !startswith (p, mapping->decoded); mapping += 1)
1017 ;
1018 if (mapping->encoded == NULL)
1019 {
1020 if (throw_errors)
1021 error (_("invalid Ada operator name: %s"), p);
1022 else
1023 return NULL;
1024 }
1025 strcpy (encoding_buffer + k, mapping->encoded);
1026 k += strlen (mapping->encoded);
1027 break;
1028 }
1029 else
1030 {
1031 encoding_buffer[k] = *p;
1032 k += 1;
1033 }
1034 }
1035
1036 encoding_buffer[k] = '\0';
1037 return encoding_buffer;
1038 }
1039
1040 /* The "encoded" form of DECODED, according to GNAT conventions.
1041 The result is valid until the next call to ada_encode. */
1042
1043 char *
1044 ada_encode (const char *decoded)
1045 {
1046 return ada_encode_1 (decoded, true);
1047 }
1048
1049 /* Return NAME folded to lower case, or, if surrounded by single
1050 quotes, unfolded, but with the quotes stripped away. Result good
1051 to next call. */
1052
1053 char *
1054 ada_fold_name (const char *name)
1055 {
1056 static char *fold_buffer = NULL;
1057 static size_t fold_buffer_size = 0;
1058
1059 int len = strlen (name);
1060 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1061
1062 if (name[0] == '\'')
1063 {
1064 strncpy (fold_buffer, name + 1, len - 2);
1065 fold_buffer[len - 2] = '\000';
1066 }
1067 else
1068 {
1069 int i;
1070
1071 for (i = 0; i <= len; i += 1)
1072 fold_buffer[i] = tolower (name[i]);
1073 }
1074
1075 return fold_buffer;
1076 }
1077
1078 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1079
1080 static int
1081 is_lower_alphanum (const char c)
1082 {
1083 return (isdigit (c) || (isalpha (c) && islower (c)));
1084 }
1085
1086 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1087 This function saves in LEN the length of that same symbol name but
1088 without either of these suffixes:
1089 . .{DIGIT}+
1090 . ${DIGIT}+
1091 . ___{DIGIT}+
1092 . __{DIGIT}+.
1093
1094 These are suffixes introduced by the compiler for entities such as
1095 nested subprogram for instance, in order to avoid name clashes.
1096 They do not serve any purpose for the debugger. */
1097
1098 static void
1099 ada_remove_trailing_digits (const char *encoded, int *len)
1100 {
1101 if (*len > 1 && isdigit (encoded[*len - 1]))
1102 {
1103 int i = *len - 2;
1104
1105 while (i > 0 && isdigit (encoded[i]))
1106 i--;
1107 if (i >= 0 && encoded[i] == '.')
1108 *len = i;
1109 else if (i >= 0 && encoded[i] == '$')
1110 *len = i;
1111 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1112 *len = i - 2;
1113 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1114 *len = i - 1;
1115 }
1116 }
1117
1118 /* Remove the suffix introduced by the compiler for protected object
1119 subprograms. */
1120
1121 static void
1122 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1123 {
1124 /* Remove trailing N. */
1125
1126 /* Protected entry subprograms are broken into two
1127 separate subprograms: The first one is unprotected, and has
1128 a 'N' suffix; the second is the protected version, and has
1129 the 'P' suffix. The second calls the first one after handling
1130 the protection. Since the P subprograms are internally generated,
1131 we leave these names undecoded, giving the user a clue that this
1132 entity is internal. */
1133
1134 if (*len > 1
1135 && encoded[*len - 1] == 'N'
1136 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1137 *len = *len - 1;
1138 }
1139
1140 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1141
1142 static void
1143 ada_remove_Xbn_suffix (const char *encoded, int *len)
1144 {
1145 int i = *len - 1;
1146
1147 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1148 i--;
1149
1150 if (encoded[i] != 'X')
1151 return;
1152
1153 if (i == 0)
1154 return;
1155
1156 if (isalnum (encoded[i-1]))
1157 *len = i;
1158 }
1159
1160 /* If ENCODED follows the GNAT entity encoding conventions, then return
1161 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1162 replaced by ENCODED.
1163
1164 The resulting string is valid until the next call of ada_decode.
1165 If the string is unchanged by decoding, the original string pointer
1166 is returned. */
1167
1168 const char *
1169 ada_decode (const char *encoded)
1170 {
1171 int i, j;
1172 int len0;
1173 const char *p;
1174 char *decoded;
1175 int at_start_name;
1176 static char *decoding_buffer = NULL;
1177 static size_t decoding_buffer_size = 0;
1178
1179 /* The name of the Ada main procedure starts with "_ada_".
1180 This prefix is not part of the decoded name, so skip this part
1181 if we see this prefix. */
1182 if (startswith (encoded, "_ada_"))
1183 encoded += 5;
1184
1185 /* If the name starts with '_', then it is not a properly encoded
1186 name, so do not attempt to decode it. Similarly, if the name
1187 starts with '<', the name should not be decoded. */
1188 if (encoded[0] == '_' || encoded[0] == '<')
1189 goto Suppress;
1190
1191 len0 = strlen (encoded);
1192
1193 ada_remove_trailing_digits (encoded, &len0);
1194 ada_remove_po_subprogram_suffix (encoded, &len0);
1195
1196 /* Remove the ___X.* suffix if present. Do not forget to verify that
1197 the suffix is located before the current "end" of ENCODED. We want
1198 to avoid re-matching parts of ENCODED that have previously been
1199 marked as discarded (by decrementing LEN0). */
1200 p = strstr (encoded, "___");
1201 if (p != NULL && p - encoded < len0 - 3)
1202 {
1203 if (p[3] == 'X')
1204 len0 = p - encoded;
1205 else
1206 goto Suppress;
1207 }
1208
1209 /* Remove any trailing TKB suffix. It tells us that this symbol
1210 is for the body of a task, but that information does not actually
1211 appear in the decoded name. */
1212
1213 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1214 len0 -= 3;
1215
1216 /* Remove any trailing TB suffix. The TB suffix is slightly different
1217 from the TKB suffix because it is used for non-anonymous task
1218 bodies. */
1219
1220 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1221 len0 -= 2;
1222
1223 /* Remove trailing "B" suffixes. */
1224 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1225
1226 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1227 len0 -= 1;
1228
1229 /* Make decoded big enough for possible expansion by operator name. */
1230
1231 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1232 decoded = decoding_buffer;
1233
1234 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1235
1236 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1237 {
1238 i = len0 - 2;
1239 while ((i >= 0 && isdigit (encoded[i]))
1240 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1241 i -= 1;
1242 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1243 len0 = i - 1;
1244 else if (encoded[i] == '$')
1245 len0 = i;
1246 }
1247
1248 /* The first few characters that are not alphabetic are not part
1249 of any encoding we use, so we can copy them over verbatim. */
1250
1251 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1252 decoded[j] = encoded[i];
1253
1254 at_start_name = 1;
1255 while (i < len0)
1256 {
1257 /* Is this a symbol function? */
1258 if (at_start_name && encoded[i] == 'O')
1259 {
1260 int k;
1261
1262 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1263 {
1264 int op_len = strlen (ada_opname_table[k].encoded);
1265 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1266 op_len - 1) == 0)
1267 && !isalnum (encoded[i + op_len]))
1268 {
1269 strcpy (decoded + j, ada_opname_table[k].decoded);
1270 at_start_name = 0;
1271 i += op_len;
1272 j += strlen (ada_opname_table[k].decoded);
1273 break;
1274 }
1275 }
1276 if (ada_opname_table[k].encoded != NULL)
1277 continue;
1278 }
1279 at_start_name = 0;
1280
1281 /* Replace "TK__" with "__", which will eventually be translated
1282 into "." (just below). */
1283
1284 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1285 i += 2;
1286
1287 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1288 be translated into "." (just below). These are internal names
1289 generated for anonymous blocks inside which our symbol is nested. */
1290
1291 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1292 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1293 && isdigit (encoded [i+4]))
1294 {
1295 int k = i + 5;
1296
1297 while (k < len0 && isdigit (encoded[k]))
1298 k++; /* Skip any extra digit. */
1299
1300 /* Double-check that the "__B_{DIGITS}+" sequence we found
1301 is indeed followed by "__". */
1302 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1303 i = k;
1304 }
1305
1306 /* Remove _E{DIGITS}+[sb] */
1307
1308 /* Just as for protected object subprograms, there are 2 categories
1309 of subprograms created by the compiler for each entry. The first
1310 one implements the actual entry code, and has a suffix following
1311 the convention above; the second one implements the barrier and
1312 uses the same convention as above, except that the 'E' is replaced
1313 by a 'B'.
1314
1315 Just as above, we do not decode the name of barrier functions
1316 to give the user a clue that the code he is debugging has been
1317 internally generated. */
1318
1319 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1320 && isdigit (encoded[i+2]))
1321 {
1322 int k = i + 3;
1323
1324 while (k < len0 && isdigit (encoded[k]))
1325 k++;
1326
1327 if (k < len0
1328 && (encoded[k] == 'b' || encoded[k] == 's'))
1329 {
1330 k++;
1331 /* Just as an extra precaution, make sure that if this
1332 suffix is followed by anything else, it is a '_'.
1333 Otherwise, we matched this sequence by accident. */
1334 if (k == len0
1335 || (k < len0 && encoded[k] == '_'))
1336 i = k;
1337 }
1338 }
1339
1340 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1341 the GNAT front-end in protected object subprograms. */
1342
1343 if (i < len0 + 3
1344 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1345 {
1346 /* Backtrack a bit up until we reach either the begining of
1347 the encoded name, or "__". Make sure that we only find
1348 digits or lowercase characters. */
1349 const char *ptr = encoded + i - 1;
1350
1351 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1352 ptr--;
1353 if (ptr < encoded
1354 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1355 i++;
1356 }
1357
1358 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1359 {
1360 /* This is a X[bn]* sequence not separated from the previous
1361 part of the name with a non-alpha-numeric character (in other
1362 words, immediately following an alpha-numeric character), then
1363 verify that it is placed at the end of the encoded name. If
1364 not, then the encoding is not valid and we should abort the
1365 decoding. Otherwise, just skip it, it is used in body-nested
1366 package names. */
1367 do
1368 i += 1;
1369 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1370 if (i < len0)
1371 goto Suppress;
1372 }
1373 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1374 {
1375 /* Replace '__' by '.'. */
1376 decoded[j] = '.';
1377 at_start_name = 1;
1378 i += 2;
1379 j += 1;
1380 }
1381 else
1382 {
1383 /* It's a character part of the decoded name, so just copy it
1384 over. */
1385 decoded[j] = encoded[i];
1386 i += 1;
1387 j += 1;
1388 }
1389 }
1390 decoded[j] = '\000';
1391
1392 /* Decoded names should never contain any uppercase character.
1393 Double-check this, and abort the decoding if we find one. */
1394
1395 for (i = 0; decoded[i] != '\0'; i += 1)
1396 if (isupper (decoded[i]) || decoded[i] == ' ')
1397 goto Suppress;
1398
1399 if (strcmp (decoded, encoded) == 0)
1400 return encoded;
1401 else
1402 return decoded;
1403
1404 Suppress:
1405 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1406 decoded = decoding_buffer;
1407 if (encoded[0] == '<')
1408 strcpy (decoded, encoded);
1409 else
1410 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1411 return decoded;
1412
1413 }
1414
1415 /* Table for keeping permanent unique copies of decoded names. Once
1416 allocated, names in this table are never released. While this is a
1417 storage leak, it should not be significant unless there are massive
1418 changes in the set of decoded names in successive versions of a
1419 symbol table loaded during a single session. */
1420 static struct htab *decoded_names_store;
1421
1422 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1423 in the language-specific part of GSYMBOL, if it has not been
1424 previously computed. Tries to save the decoded name in the same
1425 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1426 in any case, the decoded symbol has a lifetime at least that of
1427 GSYMBOL).
1428 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1429 const, but nevertheless modified to a semantically equivalent form
1430 when a decoded name is cached in it. */
1431
1432 const char *
1433 ada_decode_symbol (const struct general_symbol_info *arg)
1434 {
1435 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1436 const char **resultp =
1437 &gsymbol->language_specific.demangled_name;
1438
1439 if (!gsymbol->ada_mangled)
1440 {
1441 const char *decoded = ada_decode (gsymbol->name);
1442 struct obstack *obstack = gsymbol->language_specific.obstack;
1443
1444 gsymbol->ada_mangled = 1;
1445
1446 if (obstack != NULL)
1447 *resultp
1448 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1449 else
1450 {
1451 /* Sometimes, we can't find a corresponding objfile, in
1452 which case, we put the result on the heap. Since we only
1453 decode when needed, we hope this usually does not cause a
1454 significant memory leak (FIXME). */
1455
1456 char **slot = (char **) htab_find_slot (decoded_names_store,
1457 decoded, INSERT);
1458
1459 if (*slot == NULL)
1460 *slot = xstrdup (decoded);
1461 *resultp = *slot;
1462 }
1463 }
1464
1465 return *resultp;
1466 }
1467
1468 static char *
1469 ada_la_decode (const char *encoded, int options)
1470 {
1471 return xstrdup (ada_decode (encoded));
1472 }
1473
1474 /* Implement la_sniff_from_mangled_name for Ada. */
1475
1476 static int
1477 ada_sniff_from_mangled_name (const char *mangled, char **out)
1478 {
1479 const char *demangled = ada_decode (mangled);
1480
1481 *out = NULL;
1482
1483 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1484 {
1485 /* Set the gsymbol language to Ada, but still return 0.
1486 Two reasons for that:
1487
1488 1. For Ada, we prefer computing the symbol's decoded name
1489 on the fly rather than pre-compute it, in order to save
1490 memory (Ada projects are typically very large).
1491
1492 2. There are some areas in the definition of the GNAT
1493 encoding where, with a bit of bad luck, we might be able
1494 to decode a non-Ada symbol, generating an incorrect
1495 demangled name (Eg: names ending with "TB" for instance
1496 are identified as task bodies and so stripped from
1497 the decoded name returned).
1498
1499 Returning 1, here, but not setting *DEMANGLED, helps us get a
1500 little bit of the best of both worlds. Because we're last,
1501 we should not affect any of the other languages that were
1502 able to demangle the symbol before us; we get to correctly
1503 tag Ada symbols as such; and even if we incorrectly tagged a
1504 non-Ada symbol, which should be rare, any routing through the
1505 Ada language should be transparent (Ada tries to behave much
1506 like C/C++ with non-Ada symbols). */
1507 return 1;
1508 }
1509
1510 return 0;
1511 }
1512
1513 \f
1514
1515 /* Arrays */
1516
1517 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1518 generated by the GNAT compiler to describe the index type used
1519 for each dimension of an array, check whether it follows the latest
1520 known encoding. If not, fix it up to conform to the latest encoding.
1521 Otherwise, do nothing. This function also does nothing if
1522 INDEX_DESC_TYPE is NULL.
1523
1524 The GNAT encoding used to describle the array index type evolved a bit.
1525 Initially, the information would be provided through the name of each
1526 field of the structure type only, while the type of these fields was
1527 described as unspecified and irrelevant. The debugger was then expected
1528 to perform a global type lookup using the name of that field in order
1529 to get access to the full index type description. Because these global
1530 lookups can be very expensive, the encoding was later enhanced to make
1531 the global lookup unnecessary by defining the field type as being
1532 the full index type description.
1533
1534 The purpose of this routine is to allow us to support older versions
1535 of the compiler by detecting the use of the older encoding, and by
1536 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1537 we essentially replace each field's meaningless type by the associated
1538 index subtype). */
1539
1540 void
1541 ada_fixup_array_indexes_type (struct type *index_desc_type)
1542 {
1543 int i;
1544
1545 if (index_desc_type == NULL)
1546 return;
1547 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1548
1549 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1550 to check one field only, no need to check them all). If not, return
1551 now.
1552
1553 If our INDEX_DESC_TYPE was generated using the older encoding,
1554 the field type should be a meaningless integer type whose name
1555 is not equal to the field name. */
1556 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1557 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1558 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1559 return;
1560
1561 /* Fixup each field of INDEX_DESC_TYPE. */
1562 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1563 {
1564 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1565 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1566
1567 if (raw_type)
1568 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1569 }
1570 }
1571
1572 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1573
1574 static const char *bound_name[] = {
1575 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1576 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1577 };
1578
1579 /* Maximum number of array dimensions we are prepared to handle. */
1580
1581 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1582
1583
1584 /* The desc_* routines return primitive portions of array descriptors
1585 (fat pointers). */
1586
1587 /* The descriptor or array type, if any, indicated by TYPE; removes
1588 level of indirection, if needed. */
1589
1590 static struct type *
1591 desc_base_type (struct type *type)
1592 {
1593 if (type == NULL)
1594 return NULL;
1595 type = ada_check_typedef (type);
1596 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1597 type = ada_typedef_target_type (type);
1598
1599 if (type != NULL
1600 && (TYPE_CODE (type) == TYPE_CODE_PTR
1601 || TYPE_CODE (type) == TYPE_CODE_REF))
1602 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1603 else
1604 return type;
1605 }
1606
1607 /* True iff TYPE indicates a "thin" array pointer type. */
1608
1609 static int
1610 is_thin_pntr (struct type *type)
1611 {
1612 return
1613 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1614 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1615 }
1616
1617 /* The descriptor type for thin pointer type TYPE. */
1618
1619 static struct type *
1620 thin_descriptor_type (struct type *type)
1621 {
1622 struct type *base_type = desc_base_type (type);
1623
1624 if (base_type == NULL)
1625 return NULL;
1626 if (is_suffix (ada_type_name (base_type), "___XVE"))
1627 return base_type;
1628 else
1629 {
1630 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1631
1632 if (alt_type == NULL)
1633 return base_type;
1634 else
1635 return alt_type;
1636 }
1637 }
1638
1639 /* A pointer to the array data for thin-pointer value VAL. */
1640
1641 static struct value *
1642 thin_data_pntr (struct value *val)
1643 {
1644 struct type *type = ada_check_typedef (value_type (val));
1645 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1646
1647 data_type = lookup_pointer_type (data_type);
1648
1649 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1650 return value_cast (data_type, value_copy (val));
1651 else
1652 return value_from_longest (data_type, value_address (val));
1653 }
1654
1655 /* True iff TYPE indicates a "thick" array pointer type. */
1656
1657 static int
1658 is_thick_pntr (struct type *type)
1659 {
1660 type = desc_base_type (type);
1661 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1662 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1663 }
1664
1665 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1666 pointer to one, the type of its bounds data; otherwise, NULL. */
1667
1668 static struct type *
1669 desc_bounds_type (struct type *type)
1670 {
1671 struct type *r;
1672
1673 type = desc_base_type (type);
1674
1675 if (type == NULL)
1676 return NULL;
1677 else if (is_thin_pntr (type))
1678 {
1679 type = thin_descriptor_type (type);
1680 if (type == NULL)
1681 return NULL;
1682 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1683 if (r != NULL)
1684 return ada_check_typedef (r);
1685 }
1686 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1687 {
1688 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1689 if (r != NULL)
1690 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1691 }
1692 return NULL;
1693 }
1694
1695 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1696 one, a pointer to its bounds data. Otherwise NULL. */
1697
1698 static struct value *
1699 desc_bounds (struct value *arr)
1700 {
1701 struct type *type = ada_check_typedef (value_type (arr));
1702
1703 if (is_thin_pntr (type))
1704 {
1705 struct type *bounds_type =
1706 desc_bounds_type (thin_descriptor_type (type));
1707 LONGEST addr;
1708
1709 if (bounds_type == NULL)
1710 error (_("Bad GNAT array descriptor"));
1711
1712 /* NOTE: The following calculation is not really kosher, but
1713 since desc_type is an XVE-encoded type (and shouldn't be),
1714 the correct calculation is a real pain. FIXME (and fix GCC). */
1715 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1716 addr = value_as_long (arr);
1717 else
1718 addr = value_address (arr);
1719
1720 return
1721 value_from_longest (lookup_pointer_type (bounds_type),
1722 addr - TYPE_LENGTH (bounds_type));
1723 }
1724
1725 else if (is_thick_pntr (type))
1726 {
1727 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1728 _("Bad GNAT array descriptor"));
1729 struct type *p_bounds_type = value_type (p_bounds);
1730
1731 if (p_bounds_type
1732 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1733 {
1734 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1735
1736 if (TYPE_STUB (target_type))
1737 p_bounds = value_cast (lookup_pointer_type
1738 (ada_check_typedef (target_type)),
1739 p_bounds);
1740 }
1741 else
1742 error (_("Bad GNAT array descriptor"));
1743
1744 return p_bounds;
1745 }
1746 else
1747 return NULL;
1748 }
1749
1750 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1751 position of the field containing the address of the bounds data. */
1752
1753 static int
1754 fat_pntr_bounds_bitpos (struct type *type)
1755 {
1756 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1757 }
1758
1759 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1760 size of the field containing the address of the bounds data. */
1761
1762 static int
1763 fat_pntr_bounds_bitsize (struct type *type)
1764 {
1765 type = desc_base_type (type);
1766
1767 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1768 return TYPE_FIELD_BITSIZE (type, 1);
1769 else
1770 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1771 }
1772
1773 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1774 pointer to one, the type of its array data (a array-with-no-bounds type);
1775 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1776 data. */
1777
1778 static struct type *
1779 desc_data_target_type (struct type *type)
1780 {
1781 type = desc_base_type (type);
1782
1783 /* NOTE: The following is bogus; see comment in desc_bounds. */
1784 if (is_thin_pntr (type))
1785 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1786 else if (is_thick_pntr (type))
1787 {
1788 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1789
1790 if (data_type
1791 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1792 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1793 }
1794
1795 return NULL;
1796 }
1797
1798 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1799 its array data. */
1800
1801 static struct value *
1802 desc_data (struct value *arr)
1803 {
1804 struct type *type = value_type (arr);
1805
1806 if (is_thin_pntr (type))
1807 return thin_data_pntr (arr);
1808 else if (is_thick_pntr (type))
1809 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1810 _("Bad GNAT array descriptor"));
1811 else
1812 return NULL;
1813 }
1814
1815
1816 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1817 position of the field containing the address of the data. */
1818
1819 static int
1820 fat_pntr_data_bitpos (struct type *type)
1821 {
1822 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1823 }
1824
1825 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1826 size of the field containing the address of the data. */
1827
1828 static int
1829 fat_pntr_data_bitsize (struct type *type)
1830 {
1831 type = desc_base_type (type);
1832
1833 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1834 return TYPE_FIELD_BITSIZE (type, 0);
1835 else
1836 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1837 }
1838
1839 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1840 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1841 bound, if WHICH is 1. The first bound is I=1. */
1842
1843 static struct value *
1844 desc_one_bound (struct value *bounds, int i, int which)
1845 {
1846 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1847 _("Bad GNAT array descriptor bounds"));
1848 }
1849
1850 /* If BOUNDS is an array-bounds structure type, return the bit position
1851 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1852 bound, if WHICH is 1. The first bound is I=1. */
1853
1854 static int
1855 desc_bound_bitpos (struct type *type, int i, int which)
1856 {
1857 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1858 }
1859
1860 /* If BOUNDS is an array-bounds structure type, return the bit field size
1861 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1862 bound, if WHICH is 1. The first bound is I=1. */
1863
1864 static int
1865 desc_bound_bitsize (struct type *type, int i, int which)
1866 {
1867 type = desc_base_type (type);
1868
1869 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1870 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1871 else
1872 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1873 }
1874
1875 /* If TYPE is the type of an array-bounds structure, the type of its
1876 Ith bound (numbering from 1). Otherwise, NULL. */
1877
1878 static struct type *
1879 desc_index_type (struct type *type, int i)
1880 {
1881 type = desc_base_type (type);
1882
1883 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1884 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1885 else
1886 return NULL;
1887 }
1888
1889 /* The number of index positions in the array-bounds type TYPE.
1890 Return 0 if TYPE is NULL. */
1891
1892 static int
1893 desc_arity (struct type *type)
1894 {
1895 type = desc_base_type (type);
1896
1897 if (type != NULL)
1898 return TYPE_NFIELDS (type) / 2;
1899 return 0;
1900 }
1901
1902 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1903 an array descriptor type (representing an unconstrained array
1904 type). */
1905
1906 static int
1907 ada_is_direct_array_type (struct type *type)
1908 {
1909 if (type == NULL)
1910 return 0;
1911 type = ada_check_typedef (type);
1912 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1913 || ada_is_array_descriptor_type (type));
1914 }
1915
1916 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1917 * to one. */
1918
1919 static int
1920 ada_is_array_type (struct type *type)
1921 {
1922 while (type != NULL
1923 && (TYPE_CODE (type) == TYPE_CODE_PTR
1924 || TYPE_CODE (type) == TYPE_CODE_REF))
1925 type = TYPE_TARGET_TYPE (type);
1926 return ada_is_direct_array_type (type);
1927 }
1928
1929 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1930
1931 int
1932 ada_is_simple_array_type (struct type *type)
1933 {
1934 if (type == NULL)
1935 return 0;
1936 type = ada_check_typedef (type);
1937 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1938 || (TYPE_CODE (type) == TYPE_CODE_PTR
1939 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1940 == TYPE_CODE_ARRAY));
1941 }
1942
1943 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1944
1945 int
1946 ada_is_array_descriptor_type (struct type *type)
1947 {
1948 struct type *data_type = desc_data_target_type (type);
1949
1950 if (type == NULL)
1951 return 0;
1952 type = ada_check_typedef (type);
1953 return (data_type != NULL
1954 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1955 && desc_arity (desc_bounds_type (type)) > 0);
1956 }
1957
1958 /* Non-zero iff type is a partially mal-formed GNAT array
1959 descriptor. FIXME: This is to compensate for some problems with
1960 debugging output from GNAT. Re-examine periodically to see if it
1961 is still needed. */
1962
1963 int
1964 ada_is_bogus_array_descriptor (struct type *type)
1965 {
1966 return
1967 type != NULL
1968 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1969 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1970 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1971 && !ada_is_array_descriptor_type (type);
1972 }
1973
1974
1975 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1976 (fat pointer) returns the type of the array data described---specifically,
1977 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1978 in from the descriptor; otherwise, they are left unspecified. If
1979 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1980 returns NULL. The result is simply the type of ARR if ARR is not
1981 a descriptor. */
1982 struct type *
1983 ada_type_of_array (struct value *arr, int bounds)
1984 {
1985 if (ada_is_constrained_packed_array_type (value_type (arr)))
1986 return decode_constrained_packed_array_type (value_type (arr));
1987
1988 if (!ada_is_array_descriptor_type (value_type (arr)))
1989 return value_type (arr);
1990
1991 if (!bounds)
1992 {
1993 struct type *array_type =
1994 ada_check_typedef (desc_data_target_type (value_type (arr)));
1995
1996 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1997 TYPE_FIELD_BITSIZE (array_type, 0) =
1998 decode_packed_array_bitsize (value_type (arr));
1999
2000 return array_type;
2001 }
2002 else
2003 {
2004 struct type *elt_type;
2005 int arity;
2006 struct value *descriptor;
2007
2008 elt_type = ada_array_element_type (value_type (arr), -1);
2009 arity = ada_array_arity (value_type (arr));
2010
2011 if (elt_type == NULL || arity == 0)
2012 return ada_check_typedef (value_type (arr));
2013
2014 descriptor = desc_bounds (arr);
2015 if (value_as_long (descriptor) == 0)
2016 return NULL;
2017 while (arity > 0)
2018 {
2019 struct type *range_type = alloc_type_copy (value_type (arr));
2020 struct type *array_type = alloc_type_copy (value_type (arr));
2021 struct value *low = desc_one_bound (descriptor, arity, 0);
2022 struct value *high = desc_one_bound (descriptor, arity, 1);
2023
2024 arity -= 1;
2025 create_static_range_type (range_type, value_type (low),
2026 longest_to_int (value_as_long (low)),
2027 longest_to_int (value_as_long (high)));
2028 elt_type = create_array_type (array_type, elt_type, range_type);
2029
2030 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2031 {
2032 /* We need to store the element packed bitsize, as well as
2033 recompute the array size, because it was previously
2034 computed based on the unpacked element size. */
2035 LONGEST lo = value_as_long (low);
2036 LONGEST hi = value_as_long (high);
2037
2038 TYPE_FIELD_BITSIZE (elt_type, 0) =
2039 decode_packed_array_bitsize (value_type (arr));
2040 /* If the array has no element, then the size is already
2041 zero, and does not need to be recomputed. */
2042 if (lo < hi)
2043 {
2044 int array_bitsize =
2045 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2046
2047 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2048 }
2049 }
2050 }
2051
2052 return lookup_pointer_type (elt_type);
2053 }
2054 }
2055
2056 /* If ARR does not represent an array, returns ARR unchanged.
2057 Otherwise, returns either a standard GDB array with bounds set
2058 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2059 GDB array. Returns NULL if ARR is a null fat pointer. */
2060
2061 struct value *
2062 ada_coerce_to_simple_array_ptr (struct value *arr)
2063 {
2064 if (ada_is_array_descriptor_type (value_type (arr)))
2065 {
2066 struct type *arrType = ada_type_of_array (arr, 1);
2067
2068 if (arrType == NULL)
2069 return NULL;
2070 return value_cast (arrType, value_copy (desc_data (arr)));
2071 }
2072 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2073 return decode_constrained_packed_array (arr);
2074 else
2075 return arr;
2076 }
2077
2078 /* If ARR does not represent an array, returns ARR unchanged.
2079 Otherwise, returns a standard GDB array describing ARR (which may
2080 be ARR itself if it already is in the proper form). */
2081
2082 struct value *
2083 ada_coerce_to_simple_array (struct value *arr)
2084 {
2085 if (ada_is_array_descriptor_type (value_type (arr)))
2086 {
2087 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2088
2089 if (arrVal == NULL)
2090 error (_("Bounds unavailable for null array pointer."));
2091 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2092 return value_ind (arrVal);
2093 }
2094 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2095 return decode_constrained_packed_array (arr);
2096 else
2097 return arr;
2098 }
2099
2100 /* If TYPE represents a GNAT array type, return it translated to an
2101 ordinary GDB array type (possibly with BITSIZE fields indicating
2102 packing). For other types, is the identity. */
2103
2104 struct type *
2105 ada_coerce_to_simple_array_type (struct type *type)
2106 {
2107 if (ada_is_constrained_packed_array_type (type))
2108 return decode_constrained_packed_array_type (type);
2109
2110 if (ada_is_array_descriptor_type (type))
2111 return ada_check_typedef (desc_data_target_type (type));
2112
2113 return type;
2114 }
2115
2116 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2117
2118 static int
2119 ada_is_packed_array_type (struct type *type)
2120 {
2121 if (type == NULL)
2122 return 0;
2123 type = desc_base_type (type);
2124 type = ada_check_typedef (type);
2125 return
2126 ada_type_name (type) != NULL
2127 && strstr (ada_type_name (type), "___XP") != NULL;
2128 }
2129
2130 /* Non-zero iff TYPE represents a standard GNAT constrained
2131 packed-array type. */
2132
2133 int
2134 ada_is_constrained_packed_array_type (struct type *type)
2135 {
2136 return ada_is_packed_array_type (type)
2137 && !ada_is_array_descriptor_type (type);
2138 }
2139
2140 /* Non-zero iff TYPE represents an array descriptor for a
2141 unconstrained packed-array type. */
2142
2143 static int
2144 ada_is_unconstrained_packed_array_type (struct type *type)
2145 {
2146 return ada_is_packed_array_type (type)
2147 && ada_is_array_descriptor_type (type);
2148 }
2149
2150 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2151 return the size of its elements in bits. */
2152
2153 static long
2154 decode_packed_array_bitsize (struct type *type)
2155 {
2156 const char *raw_name;
2157 const char *tail;
2158 long bits;
2159
2160 /* Access to arrays implemented as fat pointers are encoded as a typedef
2161 of the fat pointer type. We need the name of the fat pointer type
2162 to do the decoding, so strip the typedef layer. */
2163 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2164 type = ada_typedef_target_type (type);
2165
2166 raw_name = ada_type_name (ada_check_typedef (type));
2167 if (!raw_name)
2168 raw_name = ada_type_name (desc_base_type (type));
2169
2170 if (!raw_name)
2171 return 0;
2172
2173 tail = strstr (raw_name, "___XP");
2174 gdb_assert (tail != NULL);
2175
2176 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2177 {
2178 lim_warning
2179 (_("could not understand bit size information on packed array"));
2180 return 0;
2181 }
2182
2183 return bits;
2184 }
2185
2186 /* Given that TYPE is a standard GDB array type with all bounds filled
2187 in, and that the element size of its ultimate scalar constituents
2188 (that is, either its elements, or, if it is an array of arrays, its
2189 elements' elements, etc.) is *ELT_BITS, return an identical type,
2190 but with the bit sizes of its elements (and those of any
2191 constituent arrays) recorded in the BITSIZE components of its
2192 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2193 in bits.
2194
2195 Note that, for arrays whose index type has an XA encoding where
2196 a bound references a record discriminant, getting that discriminant,
2197 and therefore the actual value of that bound, is not possible
2198 because none of the given parameters gives us access to the record.
2199 This function assumes that it is OK in the context where it is being
2200 used to return an array whose bounds are still dynamic and where
2201 the length is arbitrary. */
2202
2203 static struct type *
2204 constrained_packed_array_type (struct type *type, long *elt_bits)
2205 {
2206 struct type *new_elt_type;
2207 struct type *new_type;
2208 struct type *index_type_desc;
2209 struct type *index_type;
2210 LONGEST low_bound, high_bound;
2211
2212 type = ada_check_typedef (type);
2213 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2214 return type;
2215
2216 index_type_desc = ada_find_parallel_type (type, "___XA");
2217 if (index_type_desc)
2218 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2219 NULL);
2220 else
2221 index_type = TYPE_INDEX_TYPE (type);
2222
2223 new_type = alloc_type_copy (type);
2224 new_elt_type =
2225 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2226 elt_bits);
2227 create_array_type (new_type, new_elt_type, index_type);
2228 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2229 TYPE_NAME (new_type) = ada_type_name (type);
2230
2231 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2232 && is_dynamic_type (check_typedef (index_type)))
2233 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2234 low_bound = high_bound = 0;
2235 if (high_bound < low_bound)
2236 *elt_bits = TYPE_LENGTH (new_type) = 0;
2237 else
2238 {
2239 *elt_bits *= (high_bound - low_bound + 1);
2240 TYPE_LENGTH (new_type) =
2241 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2242 }
2243
2244 TYPE_FIXED_INSTANCE (new_type) = 1;
2245 return new_type;
2246 }
2247
2248 /* The array type encoded by TYPE, where
2249 ada_is_constrained_packed_array_type (TYPE). */
2250
2251 static struct type *
2252 decode_constrained_packed_array_type (struct type *type)
2253 {
2254 const char *raw_name = ada_type_name (ada_check_typedef (type));
2255 char *name;
2256 const char *tail;
2257 struct type *shadow_type;
2258 long bits;
2259
2260 if (!raw_name)
2261 raw_name = ada_type_name (desc_base_type (type));
2262
2263 if (!raw_name)
2264 return NULL;
2265
2266 name = (char *) alloca (strlen (raw_name) + 1);
2267 tail = strstr (raw_name, "___XP");
2268 type = desc_base_type (type);
2269
2270 memcpy (name, raw_name, tail - raw_name);
2271 name[tail - raw_name] = '\000';
2272
2273 shadow_type = ada_find_parallel_type_with_name (type, name);
2274
2275 if (shadow_type == NULL)
2276 {
2277 lim_warning (_("could not find bounds information on packed array"));
2278 return NULL;
2279 }
2280 shadow_type = check_typedef (shadow_type);
2281
2282 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2283 {
2284 lim_warning (_("could not understand bounds "
2285 "information on packed array"));
2286 return NULL;
2287 }
2288
2289 bits = decode_packed_array_bitsize (type);
2290 return constrained_packed_array_type (shadow_type, &bits);
2291 }
2292
2293 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2294 array, returns a simple array that denotes that array. Its type is a
2295 standard GDB array type except that the BITSIZEs of the array
2296 target types are set to the number of bits in each element, and the
2297 type length is set appropriately. */
2298
2299 static struct value *
2300 decode_constrained_packed_array (struct value *arr)
2301 {
2302 struct type *type;
2303
2304 /* If our value is a pointer, then dereference it. Likewise if
2305 the value is a reference. Make sure that this operation does not
2306 cause the target type to be fixed, as this would indirectly cause
2307 this array to be decoded. The rest of the routine assumes that
2308 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2309 and "value_ind" routines to perform the dereferencing, as opposed
2310 to using "ada_coerce_ref" or "ada_value_ind". */
2311 arr = coerce_ref (arr);
2312 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2313 arr = value_ind (arr);
2314
2315 type = decode_constrained_packed_array_type (value_type (arr));
2316 if (type == NULL)
2317 {
2318 error (_("can't unpack array"));
2319 return NULL;
2320 }
2321
2322 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2323 && ada_is_modular_type (value_type (arr)))
2324 {
2325 /* This is a (right-justified) modular type representing a packed
2326 array with no wrapper. In order to interpret the value through
2327 the (left-justified) packed array type we just built, we must
2328 first left-justify it. */
2329 int bit_size, bit_pos;
2330 ULONGEST mod;
2331
2332 mod = ada_modulus (value_type (arr)) - 1;
2333 bit_size = 0;
2334 while (mod > 0)
2335 {
2336 bit_size += 1;
2337 mod >>= 1;
2338 }
2339 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2340 arr = ada_value_primitive_packed_val (arr, NULL,
2341 bit_pos / HOST_CHAR_BIT,
2342 bit_pos % HOST_CHAR_BIT,
2343 bit_size,
2344 type);
2345 }
2346
2347 return coerce_unspec_val_to_type (arr, type);
2348 }
2349
2350
2351 /* The value of the element of packed array ARR at the ARITY indices
2352 given in IND. ARR must be a simple array. */
2353
2354 static struct value *
2355 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2356 {
2357 int i;
2358 int bits, elt_off, bit_off;
2359 long elt_total_bit_offset;
2360 struct type *elt_type;
2361 struct value *v;
2362
2363 bits = 0;
2364 elt_total_bit_offset = 0;
2365 elt_type = ada_check_typedef (value_type (arr));
2366 for (i = 0; i < arity; i += 1)
2367 {
2368 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2369 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2370 error
2371 (_("attempt to do packed indexing of "
2372 "something other than a packed array"));
2373 else
2374 {
2375 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2376 LONGEST lowerbound, upperbound;
2377 LONGEST idx;
2378
2379 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2380 {
2381 lim_warning (_("don't know bounds of array"));
2382 lowerbound = upperbound = 0;
2383 }
2384
2385 idx = pos_atr (ind[i]);
2386 if (idx < lowerbound || idx > upperbound)
2387 lim_warning (_("packed array index %ld out of bounds"),
2388 (long) idx);
2389 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2390 elt_total_bit_offset += (idx - lowerbound) * bits;
2391 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2392 }
2393 }
2394 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2395 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2396
2397 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2398 bits, elt_type);
2399 return v;
2400 }
2401
2402 /* Non-zero iff TYPE includes negative integer values. */
2403
2404 static int
2405 has_negatives (struct type *type)
2406 {
2407 switch (TYPE_CODE (type))
2408 {
2409 default:
2410 return 0;
2411 case TYPE_CODE_INT:
2412 return !TYPE_UNSIGNED (type);
2413 case TYPE_CODE_RANGE:
2414 return TYPE_LOW_BOUND (type) < 0;
2415 }
2416 }
2417
2418 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2419 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2420 the unpacked buffer.
2421
2422 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2423 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2424
2425 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2426 zero otherwise.
2427
2428 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2429
2430 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2431
2432 static void
2433 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2434 gdb_byte *unpacked, int unpacked_len,
2435 int is_big_endian, int is_signed_type,
2436 int is_scalar)
2437 {
2438 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2439 int src_idx; /* Index into the source area */
2440 int src_bytes_left; /* Number of source bytes left to process. */
2441 int srcBitsLeft; /* Number of source bits left to move */
2442 int unusedLS; /* Number of bits in next significant
2443 byte of source that are unused */
2444
2445 int unpacked_idx; /* Index into the unpacked buffer */
2446 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2447
2448 unsigned long accum; /* Staging area for bits being transferred */
2449 int accumSize; /* Number of meaningful bits in accum */
2450 unsigned char sign;
2451
2452 /* Transmit bytes from least to most significant; delta is the direction
2453 the indices move. */
2454 int delta = is_big_endian ? -1 : 1;
2455
2456 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2457 bits from SRC. .*/
2458 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2459 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2460 bit_size, unpacked_len);
2461
2462 srcBitsLeft = bit_size;
2463 src_bytes_left = src_len;
2464 unpacked_bytes_left = unpacked_len;
2465 sign = 0;
2466
2467 if (is_big_endian)
2468 {
2469 src_idx = src_len - 1;
2470 if (is_signed_type
2471 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2472 sign = ~0;
2473
2474 unusedLS =
2475 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2476 % HOST_CHAR_BIT;
2477
2478 if (is_scalar)
2479 {
2480 accumSize = 0;
2481 unpacked_idx = unpacked_len - 1;
2482 }
2483 else
2484 {
2485 /* Non-scalar values must be aligned at a byte boundary... */
2486 accumSize =
2487 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2488 /* ... And are placed at the beginning (most-significant) bytes
2489 of the target. */
2490 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2491 unpacked_bytes_left = unpacked_idx + 1;
2492 }
2493 }
2494 else
2495 {
2496 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2497
2498 src_idx = unpacked_idx = 0;
2499 unusedLS = bit_offset;
2500 accumSize = 0;
2501
2502 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2503 sign = ~0;
2504 }
2505
2506 accum = 0;
2507 while (src_bytes_left > 0)
2508 {
2509 /* Mask for removing bits of the next source byte that are not
2510 part of the value. */
2511 unsigned int unusedMSMask =
2512 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2513 1;
2514 /* Sign-extend bits for this byte. */
2515 unsigned int signMask = sign & ~unusedMSMask;
2516
2517 accum |=
2518 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2519 accumSize += HOST_CHAR_BIT - unusedLS;
2520 if (accumSize >= HOST_CHAR_BIT)
2521 {
2522 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2523 accumSize -= HOST_CHAR_BIT;
2524 accum >>= HOST_CHAR_BIT;
2525 unpacked_bytes_left -= 1;
2526 unpacked_idx += delta;
2527 }
2528 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2529 unusedLS = 0;
2530 src_bytes_left -= 1;
2531 src_idx += delta;
2532 }
2533 while (unpacked_bytes_left > 0)
2534 {
2535 accum |= sign << accumSize;
2536 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2537 accumSize -= HOST_CHAR_BIT;
2538 if (accumSize < 0)
2539 accumSize = 0;
2540 accum >>= HOST_CHAR_BIT;
2541 unpacked_bytes_left -= 1;
2542 unpacked_idx += delta;
2543 }
2544 }
2545
2546 /* Create a new value of type TYPE from the contents of OBJ starting
2547 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2548 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2549 assigning through the result will set the field fetched from.
2550 VALADDR is ignored unless OBJ is NULL, in which case,
2551 VALADDR+OFFSET must address the start of storage containing the
2552 packed value. The value returned in this case is never an lval.
2553 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2554
2555 struct value *
2556 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2557 long offset, int bit_offset, int bit_size,
2558 struct type *type)
2559 {
2560 struct value *v;
2561 const gdb_byte *src; /* First byte containing data to unpack */
2562 gdb_byte *unpacked;
2563 const int is_scalar = is_scalar_type (type);
2564 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2565 gdb::byte_vector staging;
2566
2567 type = ada_check_typedef (type);
2568
2569 if (obj == NULL)
2570 src = valaddr + offset;
2571 else
2572 src = value_contents (obj) + offset;
2573
2574 if (is_dynamic_type (type))
2575 {
2576 /* The length of TYPE might by dynamic, so we need to resolve
2577 TYPE in order to know its actual size, which we then use
2578 to create the contents buffer of the value we return.
2579 The difficulty is that the data containing our object is
2580 packed, and therefore maybe not at a byte boundary. So, what
2581 we do, is unpack the data into a byte-aligned buffer, and then
2582 use that buffer as our object's value for resolving the type. */
2583 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2584 staging.resize (staging_len);
2585
2586 ada_unpack_from_contents (src, bit_offset, bit_size,
2587 staging.data (), staging.size (),
2588 is_big_endian, has_negatives (type),
2589 is_scalar);
2590 type = resolve_dynamic_type (type, staging.data (), 0);
2591 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2592 {
2593 /* This happens when the length of the object is dynamic,
2594 and is actually smaller than the space reserved for it.
2595 For instance, in an array of variant records, the bit_size
2596 we're given is the array stride, which is constant and
2597 normally equal to the maximum size of its element.
2598 But, in reality, each element only actually spans a portion
2599 of that stride. */
2600 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2601 }
2602 }
2603
2604 if (obj == NULL)
2605 {
2606 v = allocate_value (type);
2607 src = valaddr + offset;
2608 }
2609 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2610 {
2611 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2612 gdb_byte *buf;
2613
2614 v = value_at (type, value_address (obj) + offset);
2615 buf = (gdb_byte *) alloca (src_len);
2616 read_memory (value_address (v), buf, src_len);
2617 src = buf;
2618 }
2619 else
2620 {
2621 v = allocate_value (type);
2622 src = value_contents (obj) + offset;
2623 }
2624
2625 if (obj != NULL)
2626 {
2627 long new_offset = offset;
2628
2629 set_value_component_location (v, obj);
2630 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2631 set_value_bitsize (v, bit_size);
2632 if (value_bitpos (v) >= HOST_CHAR_BIT)
2633 {
2634 ++new_offset;
2635 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2636 }
2637 set_value_offset (v, new_offset);
2638
2639 /* Also set the parent value. This is needed when trying to
2640 assign a new value (in inferior memory). */
2641 set_value_parent (v, obj);
2642 }
2643 else
2644 set_value_bitsize (v, bit_size);
2645 unpacked = value_contents_writeable (v);
2646
2647 if (bit_size == 0)
2648 {
2649 memset (unpacked, 0, TYPE_LENGTH (type));
2650 return v;
2651 }
2652
2653 if (staging.size () == TYPE_LENGTH (type))
2654 {
2655 /* Small short-cut: If we've unpacked the data into a buffer
2656 of the same size as TYPE's length, then we can reuse that,
2657 instead of doing the unpacking again. */
2658 memcpy (unpacked, staging.data (), staging.size ());
2659 }
2660 else
2661 ada_unpack_from_contents (src, bit_offset, bit_size,
2662 unpacked, TYPE_LENGTH (type),
2663 is_big_endian, has_negatives (type), is_scalar);
2664
2665 return v;
2666 }
2667
2668 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2669 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2670 not overlap. */
2671 static void
2672 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2673 int src_offset, int n, int bits_big_endian_p)
2674 {
2675 unsigned int accum, mask;
2676 int accum_bits, chunk_size;
2677
2678 target += targ_offset / HOST_CHAR_BIT;
2679 targ_offset %= HOST_CHAR_BIT;
2680 source += src_offset / HOST_CHAR_BIT;
2681 src_offset %= HOST_CHAR_BIT;
2682 if (bits_big_endian_p)
2683 {
2684 accum = (unsigned char) *source;
2685 source += 1;
2686 accum_bits = HOST_CHAR_BIT - src_offset;
2687
2688 while (n > 0)
2689 {
2690 int unused_right;
2691
2692 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2693 accum_bits += HOST_CHAR_BIT;
2694 source += 1;
2695 chunk_size = HOST_CHAR_BIT - targ_offset;
2696 if (chunk_size > n)
2697 chunk_size = n;
2698 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2699 mask = ((1 << chunk_size) - 1) << unused_right;
2700 *target =
2701 (*target & ~mask)
2702 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2703 n -= chunk_size;
2704 accum_bits -= chunk_size;
2705 target += 1;
2706 targ_offset = 0;
2707 }
2708 }
2709 else
2710 {
2711 accum = (unsigned char) *source >> src_offset;
2712 source += 1;
2713 accum_bits = HOST_CHAR_BIT - src_offset;
2714
2715 while (n > 0)
2716 {
2717 accum = accum + ((unsigned char) *source << accum_bits);
2718 accum_bits += HOST_CHAR_BIT;
2719 source += 1;
2720 chunk_size = HOST_CHAR_BIT - targ_offset;
2721 if (chunk_size > n)
2722 chunk_size = n;
2723 mask = ((1 << chunk_size) - 1) << targ_offset;
2724 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2725 n -= chunk_size;
2726 accum_bits -= chunk_size;
2727 accum >>= chunk_size;
2728 target += 1;
2729 targ_offset = 0;
2730 }
2731 }
2732 }
2733
2734 /* Store the contents of FROMVAL into the location of TOVAL.
2735 Return a new value with the location of TOVAL and contents of
2736 FROMVAL. Handles assignment into packed fields that have
2737 floating-point or non-scalar types. */
2738
2739 static struct value *
2740 ada_value_assign (struct value *toval, struct value *fromval)
2741 {
2742 struct type *type = value_type (toval);
2743 int bits = value_bitsize (toval);
2744
2745 toval = ada_coerce_ref (toval);
2746 fromval = ada_coerce_ref (fromval);
2747
2748 if (ada_is_direct_array_type (value_type (toval)))
2749 toval = ada_coerce_to_simple_array (toval);
2750 if (ada_is_direct_array_type (value_type (fromval)))
2751 fromval = ada_coerce_to_simple_array (fromval);
2752
2753 if (!deprecated_value_modifiable (toval))
2754 error (_("Left operand of assignment is not a modifiable lvalue."));
2755
2756 if (VALUE_LVAL (toval) == lval_memory
2757 && bits > 0
2758 && (TYPE_CODE (type) == TYPE_CODE_FLT
2759 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2760 {
2761 int len = (value_bitpos (toval)
2762 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2763 int from_size;
2764 gdb_byte *buffer = (gdb_byte *) alloca (len);
2765 struct value *val;
2766 CORE_ADDR to_addr = value_address (toval);
2767
2768 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2769 fromval = value_cast (type, fromval);
2770
2771 read_memory (to_addr, buffer, len);
2772 from_size = value_bitsize (fromval);
2773 if (from_size == 0)
2774 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2775 if (gdbarch_bits_big_endian (get_type_arch (type)))
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), from_size - bits, bits, 1);
2778 else
2779 move_bits (buffer, value_bitpos (toval),
2780 value_contents (fromval), 0, bits, 0);
2781 write_memory_with_notification (to_addr, buffer, len);
2782
2783 val = value_copy (toval);
2784 memcpy (value_contents_raw (val), value_contents (fromval),
2785 TYPE_LENGTH (type));
2786 deprecated_set_value_type (val, type);
2787
2788 return val;
2789 }
2790
2791 return value_assign (toval, fromval);
2792 }
2793
2794
2795 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2796 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2797 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2798 COMPONENT, and not the inferior's memory. The current contents
2799 of COMPONENT are ignored.
2800
2801 Although not part of the initial design, this function also works
2802 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2803 had a null address, and COMPONENT had an address which is equal to
2804 its offset inside CONTAINER. */
2805
2806 static void
2807 value_assign_to_component (struct value *container, struct value *component,
2808 struct value *val)
2809 {
2810 LONGEST offset_in_container =
2811 (LONGEST) (value_address (component) - value_address (container));
2812 int bit_offset_in_container =
2813 value_bitpos (component) - value_bitpos (container);
2814 int bits;
2815
2816 val = value_cast (value_type (component), val);
2817
2818 if (value_bitsize (component) == 0)
2819 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2820 else
2821 bits = value_bitsize (component);
2822
2823 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2824 move_bits (value_contents_writeable (container) + offset_in_container,
2825 value_bitpos (container) + bit_offset_in_container,
2826 value_contents (val),
2827 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2828 bits, 1);
2829 else
2830 move_bits (value_contents_writeable (container) + offset_in_container,
2831 value_bitpos (container) + bit_offset_in_container,
2832 value_contents (val), 0, bits, 0);
2833 }
2834
2835 /* The value of the element of array ARR at the ARITY indices given in IND.
2836 ARR may be either a simple array, GNAT array descriptor, or pointer
2837 thereto. */
2838
2839 struct value *
2840 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2841 {
2842 int k;
2843 struct value *elt;
2844 struct type *elt_type;
2845
2846 elt = ada_coerce_to_simple_array (arr);
2847
2848 elt_type = ada_check_typedef (value_type (elt));
2849 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2850 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2851 return value_subscript_packed (elt, arity, ind);
2852
2853 for (k = 0; k < arity; k += 1)
2854 {
2855 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2856 error (_("too many subscripts (%d expected)"), k);
2857 elt = value_subscript (elt, pos_atr (ind[k]));
2858 }
2859 return elt;
2860 }
2861
2862 /* Assuming ARR is a pointer to a GDB array, the value of the element
2863 of *ARR at the ARITY indices given in IND.
2864 Does not read the entire array into memory.
2865
2866 Note: Unlike what one would expect, this function is used instead of
2867 ada_value_subscript for basically all non-packed array types. The reason
2868 for this is that a side effect of doing our own pointer arithmetics instead
2869 of relying on value_subscript is that there is no implicit typedef peeling.
2870 This is important for arrays of array accesses, where it allows us to
2871 preserve the fact that the array's element is an array access, where the
2872 access part os encoded in a typedef layer. */
2873
2874 static struct value *
2875 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2876 {
2877 int k;
2878 struct value *array_ind = ada_value_ind (arr);
2879 struct type *type
2880 = check_typedef (value_enclosing_type (array_ind));
2881
2882 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2883 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2884 return value_subscript_packed (array_ind, arity, ind);
2885
2886 for (k = 0; k < arity; k += 1)
2887 {
2888 LONGEST lwb, upb;
2889 struct value *lwb_value;
2890
2891 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2892 error (_("too many subscripts (%d expected)"), k);
2893 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2894 value_copy (arr));
2895 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2896 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2897 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2898 type = TYPE_TARGET_TYPE (type);
2899 }
2900
2901 return value_ind (arr);
2902 }
2903
2904 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2905 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2906 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2907 this array is LOW, as per Ada rules. */
2908 static struct value *
2909 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2910 int low, int high)
2911 {
2912 struct type *type0 = ada_check_typedef (type);
2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2914 struct type *index_type
2915 = create_static_range_type (NULL, base_index_type, low, high);
2916 struct type *slice_type =
2917 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2918 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2919 LONGEST base_low_pos, low_pos;
2920 CORE_ADDR base;
2921
2922 if (!discrete_position (base_index_type, low, &low_pos)
2923 || !discrete_position (base_index_type, base_low, &base_low_pos))
2924 {
2925 warning (_("unable to get positions in slice, use bounds instead"));
2926 low_pos = low;
2927 base_low_pos = base_low;
2928 }
2929
2930 base = value_as_address (array_ptr)
2931 + ((low_pos - base_low_pos)
2932 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2933 return value_at_lazy (slice_type, base);
2934 }
2935
2936
2937 static struct value *
2938 ada_value_slice (struct value *array, int low, int high)
2939 {
2940 struct type *type = ada_check_typedef (value_type (array));
2941 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2942 struct type *index_type
2943 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2944 struct type *slice_type =
2945 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2946 LONGEST low_pos, high_pos;
2947
2948 if (!discrete_position (base_index_type, low, &low_pos)
2949 || !discrete_position (base_index_type, high, &high_pos))
2950 {
2951 warning (_("unable to get positions in slice, use bounds instead"));
2952 low_pos = low;
2953 high_pos = high;
2954 }
2955
2956 return value_cast (slice_type,
2957 value_slice (array, low, high_pos - low_pos + 1));
2958 }
2959
2960 /* If type is a record type in the form of a standard GNAT array
2961 descriptor, returns the number of dimensions for type. If arr is a
2962 simple array, returns the number of "array of"s that prefix its
2963 type designation. Otherwise, returns 0. */
2964
2965 int
2966 ada_array_arity (struct type *type)
2967 {
2968 int arity;
2969
2970 if (type == NULL)
2971 return 0;
2972
2973 type = desc_base_type (type);
2974
2975 arity = 0;
2976 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2977 return desc_arity (desc_bounds_type (type));
2978 else
2979 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2980 {
2981 arity += 1;
2982 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2983 }
2984
2985 return arity;
2986 }
2987
2988 /* If TYPE is a record type in the form of a standard GNAT array
2989 descriptor or a simple array type, returns the element type for
2990 TYPE after indexing by NINDICES indices, or by all indices if
2991 NINDICES is -1. Otherwise, returns NULL. */
2992
2993 struct type *
2994 ada_array_element_type (struct type *type, int nindices)
2995 {
2996 type = desc_base_type (type);
2997
2998 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2999 {
3000 int k;
3001 struct type *p_array_type;
3002
3003 p_array_type = desc_data_target_type (type);
3004
3005 k = ada_array_arity (type);
3006 if (k == 0)
3007 return NULL;
3008
3009 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3010 if (nindices >= 0 && k > nindices)
3011 k = nindices;
3012 while (k > 0 && p_array_type != NULL)
3013 {
3014 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3015 k -= 1;
3016 }
3017 return p_array_type;
3018 }
3019 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3020 {
3021 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3022 {
3023 type = TYPE_TARGET_TYPE (type);
3024 nindices -= 1;
3025 }
3026 return type;
3027 }
3028
3029 return NULL;
3030 }
3031
3032 /* The type of nth index in arrays of given type (n numbering from 1).
3033 Does not examine memory. Throws an error if N is invalid or TYPE
3034 is not an array type. NAME is the name of the Ada attribute being
3035 evaluated ('range, 'first, 'last, or 'length); it is used in building
3036 the error message. */
3037
3038 static struct type *
3039 ada_index_type (struct type *type, int n, const char *name)
3040 {
3041 struct type *result_type;
3042
3043 type = desc_base_type (type);
3044
3045 if (n < 0 || n > ada_array_arity (type))
3046 error (_("invalid dimension number to '%s"), name);
3047
3048 if (ada_is_simple_array_type (type))
3049 {
3050 int i;
3051
3052 for (i = 1; i < n; i += 1)
3053 type = TYPE_TARGET_TYPE (type);
3054 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3055 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3056 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3057 perhaps stabsread.c would make more sense. */
3058 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3059 result_type = NULL;
3060 }
3061 else
3062 {
3063 result_type = desc_index_type (desc_bounds_type (type), n);
3064 if (result_type == NULL)
3065 error (_("attempt to take bound of something that is not an array"));
3066 }
3067
3068 return result_type;
3069 }
3070
3071 /* Given that arr is an array type, returns the lower bound of the
3072 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3073 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3074 array-descriptor type. It works for other arrays with bounds supplied
3075 by run-time quantities other than discriminants. */
3076
3077 static LONGEST
3078 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3079 {
3080 struct type *type, *index_type_desc, *index_type;
3081 int i;
3082
3083 gdb_assert (which == 0 || which == 1);
3084
3085 if (ada_is_constrained_packed_array_type (arr_type))
3086 arr_type = decode_constrained_packed_array_type (arr_type);
3087
3088 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3089 return (LONGEST) - which;
3090
3091 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3092 type = TYPE_TARGET_TYPE (arr_type);
3093 else
3094 type = arr_type;
3095
3096 if (TYPE_FIXED_INSTANCE (type))
3097 {
3098 /* The array has already been fixed, so we do not need to
3099 check the parallel ___XA type again. That encoding has
3100 already been applied, so ignore it now. */
3101 index_type_desc = NULL;
3102 }
3103 else
3104 {
3105 index_type_desc = ada_find_parallel_type (type, "___XA");
3106 ada_fixup_array_indexes_type (index_type_desc);
3107 }
3108
3109 if (index_type_desc != NULL)
3110 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3111 NULL);
3112 else
3113 {
3114 struct type *elt_type = check_typedef (type);
3115
3116 for (i = 1; i < n; i++)
3117 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3118
3119 index_type = TYPE_INDEX_TYPE (elt_type);
3120 }
3121
3122 return
3123 (LONGEST) (which == 0
3124 ? ada_discrete_type_low_bound (index_type)
3125 : ada_discrete_type_high_bound (index_type));
3126 }
3127
3128 /* Given that arr is an array value, returns the lower bound of the
3129 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3130 WHICH is 1. This routine will also work for arrays with bounds
3131 supplied by run-time quantities other than discriminants. */
3132
3133 static LONGEST
3134 ada_array_bound (struct value *arr, int n, int which)
3135 {
3136 struct type *arr_type;
3137
3138 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3139 arr = value_ind (arr);
3140 arr_type = value_enclosing_type (arr);
3141
3142 if (ada_is_constrained_packed_array_type (arr_type))
3143 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3144 else if (ada_is_simple_array_type (arr_type))
3145 return ada_array_bound_from_type (arr_type, n, which);
3146 else
3147 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3148 }
3149
3150 /* Given that arr is an array value, returns the length of the
3151 nth index. This routine will also work for arrays with bounds
3152 supplied by run-time quantities other than discriminants.
3153 Does not work for arrays indexed by enumeration types with representation
3154 clauses at the moment. */
3155
3156 static LONGEST
3157 ada_array_length (struct value *arr, int n)
3158 {
3159 struct type *arr_type, *index_type;
3160 int low, high;
3161
3162 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3163 arr = value_ind (arr);
3164 arr_type = value_enclosing_type (arr);
3165
3166 if (ada_is_constrained_packed_array_type (arr_type))
3167 return ada_array_length (decode_constrained_packed_array (arr), n);
3168
3169 if (ada_is_simple_array_type (arr_type))
3170 {
3171 low = ada_array_bound_from_type (arr_type, n, 0);
3172 high = ada_array_bound_from_type (arr_type, n, 1);
3173 }
3174 else
3175 {
3176 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3177 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3178 }
3179
3180 arr_type = check_typedef (arr_type);
3181 index_type = TYPE_INDEX_TYPE (arr_type);
3182 if (index_type != NULL)
3183 {
3184 struct type *base_type;
3185 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3186 base_type = TYPE_TARGET_TYPE (index_type);
3187 else
3188 base_type = index_type;
3189
3190 low = pos_atr (value_from_longest (base_type, low));
3191 high = pos_atr (value_from_longest (base_type, high));
3192 }
3193 return high - low + 1;
3194 }
3195
3196 /* An empty array whose type is that of ARR_TYPE (an array type),
3197 with bounds LOW to LOW-1. */
3198
3199 static struct value *
3200 empty_array (struct type *arr_type, int low)
3201 {
3202 struct type *arr_type0 = ada_check_typedef (arr_type);
3203 struct type *index_type
3204 = create_static_range_type
3205 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3206 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3207
3208 return allocate_value (create_array_type (NULL, elt_type, index_type));
3209 }
3210 \f
3211
3212 /* Name resolution */
3213
3214 /* The "decoded" name for the user-definable Ada operator corresponding
3215 to OP. */
3216
3217 static const char *
3218 ada_decoded_op_name (enum exp_opcode op)
3219 {
3220 int i;
3221
3222 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3223 {
3224 if (ada_opname_table[i].op == op)
3225 return ada_opname_table[i].decoded;
3226 }
3227 error (_("Could not find operator name for opcode"));
3228 }
3229
3230
3231 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3232 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3233 undefined namespace) and converts operators that are
3234 user-defined into appropriate function calls. If CONTEXT_TYPE is
3235 non-null, it provides a preferred result type [at the moment, only
3236 type void has any effect---causing procedures to be preferred over
3237 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3238 return type is preferred. May change (expand) *EXP. */
3239
3240 static void
3241 resolve (struct expression **expp, int void_context_p)
3242 {
3243 struct type *context_type = NULL;
3244 int pc = 0;
3245
3246 if (void_context_p)
3247 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3248
3249 resolve_subexp (expp, &pc, 1, context_type);
3250 }
3251
3252 /* Resolve the operator of the subexpression beginning at
3253 position *POS of *EXPP. "Resolving" consists of replacing
3254 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3255 with their resolutions, replacing built-in operators with
3256 function calls to user-defined operators, where appropriate, and,
3257 when DEPROCEDURE_P is non-zero, converting function-valued variables
3258 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3259 are as in ada_resolve, above. */
3260
3261 static struct value *
3262 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3263 struct type *context_type)
3264 {
3265 int pc = *pos;
3266 int i;
3267 struct expression *exp; /* Convenience: == *expp. */
3268 enum exp_opcode op = (*expp)->elts[pc].opcode;
3269 struct value **argvec; /* Vector of operand types (alloca'ed). */
3270 int nargs; /* Number of operands. */
3271 int oplen;
3272
3273 argvec = NULL;
3274 nargs = 0;
3275 exp = *expp;
3276
3277 /* Pass one: resolve operands, saving their types and updating *pos,
3278 if needed. */
3279 switch (op)
3280 {
3281 case OP_FUNCALL:
3282 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3283 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3284 *pos += 7;
3285 else
3286 {
3287 *pos += 3;
3288 resolve_subexp (expp, pos, 0, NULL);
3289 }
3290 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3291 break;
3292
3293 case UNOP_ADDR:
3294 *pos += 1;
3295 resolve_subexp (expp, pos, 0, NULL);
3296 break;
3297
3298 case UNOP_QUAL:
3299 *pos += 3;
3300 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3301 break;
3302
3303 case OP_ATR_MODULUS:
3304 case OP_ATR_SIZE:
3305 case OP_ATR_TAG:
3306 case OP_ATR_FIRST:
3307 case OP_ATR_LAST:
3308 case OP_ATR_LENGTH:
3309 case OP_ATR_POS:
3310 case OP_ATR_VAL:
3311 case OP_ATR_MIN:
3312 case OP_ATR_MAX:
3313 case TERNOP_IN_RANGE:
3314 case BINOP_IN_BOUNDS:
3315 case UNOP_IN_RANGE:
3316 case OP_AGGREGATE:
3317 case OP_OTHERS:
3318 case OP_CHOICES:
3319 case OP_POSITIONAL:
3320 case OP_DISCRETE_RANGE:
3321 case OP_NAME:
3322 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3323 *pos += oplen;
3324 break;
3325
3326 case BINOP_ASSIGN:
3327 {
3328 struct value *arg1;
3329
3330 *pos += 1;
3331 arg1 = resolve_subexp (expp, pos, 0, NULL);
3332 if (arg1 == NULL)
3333 resolve_subexp (expp, pos, 1, NULL);
3334 else
3335 resolve_subexp (expp, pos, 1, value_type (arg1));
3336 break;
3337 }
3338
3339 case UNOP_CAST:
3340 *pos += 3;
3341 nargs = 1;
3342 break;
3343
3344 case BINOP_ADD:
3345 case BINOP_SUB:
3346 case BINOP_MUL:
3347 case BINOP_DIV:
3348 case BINOP_REM:
3349 case BINOP_MOD:
3350 case BINOP_EXP:
3351 case BINOP_CONCAT:
3352 case BINOP_LOGICAL_AND:
3353 case BINOP_LOGICAL_OR:
3354 case BINOP_BITWISE_AND:
3355 case BINOP_BITWISE_IOR:
3356 case BINOP_BITWISE_XOR:
3357
3358 case BINOP_EQUAL:
3359 case BINOP_NOTEQUAL:
3360 case BINOP_LESS:
3361 case BINOP_GTR:
3362 case BINOP_LEQ:
3363 case BINOP_GEQ:
3364
3365 case BINOP_REPEAT:
3366 case BINOP_SUBSCRIPT:
3367 case BINOP_COMMA:
3368 *pos += 1;
3369 nargs = 2;
3370 break;
3371
3372 case UNOP_NEG:
3373 case UNOP_PLUS:
3374 case UNOP_LOGICAL_NOT:
3375 case UNOP_ABS:
3376 case UNOP_IND:
3377 *pos += 1;
3378 nargs = 1;
3379 break;
3380
3381 case OP_LONG:
3382 case OP_FLOAT:
3383 case OP_VAR_VALUE:
3384 case OP_VAR_MSYM_VALUE:
3385 *pos += 4;
3386 break;
3387
3388 case OP_TYPE:
3389 case OP_BOOL:
3390 case OP_LAST:
3391 case OP_INTERNALVAR:
3392 *pos += 3;
3393 break;
3394
3395 case UNOP_MEMVAL:
3396 *pos += 3;
3397 nargs = 1;
3398 break;
3399
3400 case OP_REGISTER:
3401 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3402 break;
3403
3404 case STRUCTOP_STRUCT:
3405 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3406 nargs = 1;
3407 break;
3408
3409 case TERNOP_SLICE:
3410 *pos += 1;
3411 nargs = 3;
3412 break;
3413
3414 case OP_STRING:
3415 break;
3416
3417 default:
3418 error (_("Unexpected operator during name resolution"));
3419 }
3420
3421 argvec = XALLOCAVEC (struct value *, nargs + 1);
3422 for (i = 0; i < nargs; i += 1)
3423 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3424 argvec[i] = NULL;
3425 exp = *expp;
3426
3427 /* Pass two: perform any resolution on principal operator. */
3428 switch (op)
3429 {
3430 default:
3431 break;
3432
3433 case OP_VAR_VALUE:
3434 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3435 {
3436 struct block_symbol *candidates;
3437 int n_candidates;
3438
3439 n_candidates =
3440 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3441 (exp->elts[pc + 2].symbol),
3442 exp->elts[pc + 1].block, VAR_DOMAIN,
3443 &candidates);
3444
3445 if (n_candidates > 1)
3446 {
3447 /* Types tend to get re-introduced locally, so if there
3448 are any local symbols that are not types, first filter
3449 out all types. */
3450 int j;
3451 for (j = 0; j < n_candidates; j += 1)
3452 switch (SYMBOL_CLASS (candidates[j].symbol))
3453 {
3454 case LOC_REGISTER:
3455 case LOC_ARG:
3456 case LOC_REF_ARG:
3457 case LOC_REGPARM_ADDR:
3458 case LOC_LOCAL:
3459 case LOC_COMPUTED:
3460 goto FoundNonType;
3461 default:
3462 break;
3463 }
3464 FoundNonType:
3465 if (j < n_candidates)
3466 {
3467 j = 0;
3468 while (j < n_candidates)
3469 {
3470 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3471 {
3472 candidates[j] = candidates[n_candidates - 1];
3473 n_candidates -= 1;
3474 }
3475 else
3476 j += 1;
3477 }
3478 }
3479 }
3480
3481 if (n_candidates == 0)
3482 error (_("No definition found for %s"),
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3484 else if (n_candidates == 1)
3485 i = 0;
3486 else if (deprocedure_p
3487 && !is_nonfunction (candidates, n_candidates))
3488 {
3489 i = ada_resolve_function
3490 (candidates, n_candidates, NULL, 0,
3491 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3492 context_type);
3493 if (i < 0)
3494 error (_("Could not find a match for %s"),
3495 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3496 }
3497 else
3498 {
3499 printf_filtered (_("Multiple matches for %s\n"),
3500 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3501 user_select_syms (candidates, n_candidates, 1);
3502 i = 0;
3503 }
3504
3505 exp->elts[pc + 1].block = candidates[i].block;
3506 exp->elts[pc + 2].symbol = candidates[i].symbol;
3507 if (innermost_block == NULL
3508 || contained_in (candidates[i].block, innermost_block))
3509 innermost_block = candidates[i].block;
3510 }
3511
3512 if (deprocedure_p
3513 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3514 == TYPE_CODE_FUNC))
3515 {
3516 replace_operator_with_call (expp, pc, 0, 0,
3517 exp->elts[pc + 2].symbol,
3518 exp->elts[pc + 1].block);
3519 exp = *expp;
3520 }
3521 break;
3522
3523 case OP_FUNCALL:
3524 {
3525 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3526 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3527 {
3528 struct block_symbol *candidates;
3529 int n_candidates;
3530
3531 n_candidates =
3532 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3533 (exp->elts[pc + 5].symbol),
3534 exp->elts[pc + 4].block, VAR_DOMAIN,
3535 &candidates);
3536 if (n_candidates == 1)
3537 i = 0;
3538 else
3539 {
3540 i = ada_resolve_function
3541 (candidates, n_candidates,
3542 argvec, nargs,
3543 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3544 context_type);
3545 if (i < 0)
3546 error (_("Could not find a match for %s"),
3547 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3548 }
3549
3550 exp->elts[pc + 4].block = candidates[i].block;
3551 exp->elts[pc + 5].symbol = candidates[i].symbol;
3552 if (innermost_block == NULL
3553 || contained_in (candidates[i].block, innermost_block))
3554 innermost_block = candidates[i].block;
3555 }
3556 }
3557 break;
3558 case BINOP_ADD:
3559 case BINOP_SUB:
3560 case BINOP_MUL:
3561 case BINOP_DIV:
3562 case BINOP_REM:
3563 case BINOP_MOD:
3564 case BINOP_CONCAT:
3565 case BINOP_BITWISE_AND:
3566 case BINOP_BITWISE_IOR:
3567 case BINOP_BITWISE_XOR:
3568 case BINOP_EQUAL:
3569 case BINOP_NOTEQUAL:
3570 case BINOP_LESS:
3571 case BINOP_GTR:
3572 case BINOP_LEQ:
3573 case BINOP_GEQ:
3574 case BINOP_EXP:
3575 case UNOP_NEG:
3576 case UNOP_PLUS:
3577 case UNOP_LOGICAL_NOT:
3578 case UNOP_ABS:
3579 if (possible_user_operator_p (op, argvec))
3580 {
3581 struct block_symbol *candidates;
3582 int n_candidates;
3583
3584 n_candidates =
3585 ada_lookup_symbol_list (ada_decoded_op_name (op),
3586 (struct block *) NULL, VAR_DOMAIN,
3587 &candidates);
3588 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3589 ada_decoded_op_name (op), NULL);
3590 if (i < 0)
3591 break;
3592
3593 replace_operator_with_call (expp, pc, nargs, 1,
3594 candidates[i].symbol,
3595 candidates[i].block);
3596 exp = *expp;
3597 }
3598 break;
3599
3600 case OP_TYPE:
3601 case OP_REGISTER:
3602 return NULL;
3603 }
3604
3605 *pos = pc;
3606 return evaluate_subexp_type (exp, pos);
3607 }
3608
3609 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3610 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3611 a non-pointer. */
3612 /* The term "match" here is rather loose. The match is heuristic and
3613 liberal. */
3614
3615 static int
3616 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3617 {
3618 ftype = ada_check_typedef (ftype);
3619 atype = ada_check_typedef (atype);
3620
3621 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3622 ftype = TYPE_TARGET_TYPE (ftype);
3623 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3624 atype = TYPE_TARGET_TYPE (atype);
3625
3626 switch (TYPE_CODE (ftype))
3627 {
3628 default:
3629 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3630 case TYPE_CODE_PTR:
3631 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3632 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3633 TYPE_TARGET_TYPE (atype), 0);
3634 else
3635 return (may_deref
3636 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3637 case TYPE_CODE_INT:
3638 case TYPE_CODE_ENUM:
3639 case TYPE_CODE_RANGE:
3640 switch (TYPE_CODE (atype))
3641 {
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 return 1;
3646 default:
3647 return 0;
3648 }
3649
3650 case TYPE_CODE_ARRAY:
3651 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3652 || ada_is_array_descriptor_type (atype));
3653
3654 case TYPE_CODE_STRUCT:
3655 if (ada_is_array_descriptor_type (ftype))
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
3658 else
3659 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3660 && !ada_is_array_descriptor_type (atype));
3661
3662 case TYPE_CODE_UNION:
3663 case TYPE_CODE_FLT:
3664 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3665 }
3666 }
3667
3668 /* Return non-zero if the formals of FUNC "sufficiently match" the
3669 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3670 may also be an enumeral, in which case it is treated as a 0-
3671 argument function. */
3672
3673 static int
3674 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3675 {
3676 int i;
3677 struct type *func_type = SYMBOL_TYPE (func);
3678
3679 if (SYMBOL_CLASS (func) == LOC_CONST
3680 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3681 return (n_actuals == 0);
3682 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3683 return 0;
3684
3685 if (TYPE_NFIELDS (func_type) != n_actuals)
3686 return 0;
3687
3688 for (i = 0; i < n_actuals; i += 1)
3689 {
3690 if (actuals[i] == NULL)
3691 return 0;
3692 else
3693 {
3694 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3695 i));
3696 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3697
3698 if (!ada_type_match (ftype, atype, 1))
3699 return 0;
3700 }
3701 }
3702 return 1;
3703 }
3704
3705 /* False iff function type FUNC_TYPE definitely does not produce a value
3706 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3707 FUNC_TYPE is not a valid function type with a non-null return type
3708 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3709
3710 static int
3711 return_match (struct type *func_type, struct type *context_type)
3712 {
3713 struct type *return_type;
3714
3715 if (func_type == NULL)
3716 return 1;
3717
3718 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3719 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3720 else
3721 return_type = get_base_type (func_type);
3722 if (return_type == NULL)
3723 return 1;
3724
3725 context_type = get_base_type (context_type);
3726
3727 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3728 return context_type == NULL || return_type == context_type;
3729 else if (context_type == NULL)
3730 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3731 else
3732 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3733 }
3734
3735
3736 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3737 function (if any) that matches the types of the NARGS arguments in
3738 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3739 that returns that type, then eliminate matches that don't. If
3740 CONTEXT_TYPE is void and there is at least one match that does not
3741 return void, eliminate all matches that do.
3742
3743 Asks the user if there is more than one match remaining. Returns -1
3744 if there is no such symbol or none is selected. NAME is used
3745 solely for messages. May re-arrange and modify SYMS in
3746 the process; the index returned is for the modified vector. */
3747
3748 static int
3749 ada_resolve_function (struct block_symbol syms[],
3750 int nsyms, struct value **args, int nargs,
3751 const char *name, struct type *context_type)
3752 {
3753 int fallback;
3754 int k;
3755 int m; /* Number of hits */
3756
3757 m = 0;
3758 /* In the first pass of the loop, we only accept functions matching
3759 context_type. If none are found, we add a second pass of the loop
3760 where every function is accepted. */
3761 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3762 {
3763 for (k = 0; k < nsyms; k += 1)
3764 {
3765 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3766
3767 if (ada_args_match (syms[k].symbol, args, nargs)
3768 && (fallback || return_match (type, context_type)))
3769 {
3770 syms[m] = syms[k];
3771 m += 1;
3772 }
3773 }
3774 }
3775
3776 /* If we got multiple matches, ask the user which one to use. Don't do this
3777 interactive thing during completion, though, as the purpose of the
3778 completion is providing a list of all possible matches. Prompting the
3779 user to filter it down would be completely unexpected in this case. */
3780 if (m == 0)
3781 return -1;
3782 else if (m > 1 && !parse_completion)
3783 {
3784 printf_filtered (_("Multiple matches for %s\n"), name);
3785 user_select_syms (syms, m, 1);
3786 return 0;
3787 }
3788 return 0;
3789 }
3790
3791 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3792 in a listing of choices during disambiguation (see sort_choices, below).
3793 The idea is that overloadings of a subprogram name from the
3794 same package should sort in their source order. We settle for ordering
3795 such symbols by their trailing number (__N or $N). */
3796
3797 static int
3798 encoded_ordered_before (const char *N0, const char *N1)
3799 {
3800 if (N1 == NULL)
3801 return 0;
3802 else if (N0 == NULL)
3803 return 1;
3804 else
3805 {
3806 int k0, k1;
3807
3808 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3809 ;
3810 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3811 ;
3812 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3813 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3814 {
3815 int n0, n1;
3816
3817 n0 = k0;
3818 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3819 n0 -= 1;
3820 n1 = k1;
3821 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3822 n1 -= 1;
3823 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3824 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3825 }
3826 return (strcmp (N0, N1) < 0);
3827 }
3828 }
3829
3830 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3831 encoded names. */
3832
3833 static void
3834 sort_choices (struct block_symbol syms[], int nsyms)
3835 {
3836 int i;
3837
3838 for (i = 1; i < nsyms; i += 1)
3839 {
3840 struct block_symbol sym = syms[i];
3841 int j;
3842
3843 for (j = i - 1; j >= 0; j -= 1)
3844 {
3845 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3846 SYMBOL_LINKAGE_NAME (sym.symbol)))
3847 break;
3848 syms[j + 1] = syms[j];
3849 }
3850 syms[j + 1] = sym;
3851 }
3852 }
3853
3854 /* Whether GDB should display formals and return types for functions in the
3855 overloads selection menu. */
3856 static int print_signatures = 1;
3857
3858 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3859 all but functions, the signature is just the name of the symbol. For
3860 functions, this is the name of the function, the list of types for formals
3861 and the return type (if any). */
3862
3863 static void
3864 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3865 const struct type_print_options *flags)
3866 {
3867 struct type *type = SYMBOL_TYPE (sym);
3868
3869 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3870 if (!print_signatures
3871 || type == NULL
3872 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3873 return;
3874
3875 if (TYPE_NFIELDS (type) > 0)
3876 {
3877 int i;
3878
3879 fprintf_filtered (stream, " (");
3880 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3881 {
3882 if (i > 0)
3883 fprintf_filtered (stream, "; ");
3884 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3885 flags);
3886 }
3887 fprintf_filtered (stream, ")");
3888 }
3889 if (TYPE_TARGET_TYPE (type) != NULL
3890 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3891 {
3892 fprintf_filtered (stream, " return ");
3893 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3894 }
3895 }
3896
3897 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3898 by asking the user (if necessary), returning the number selected,
3899 and setting the first elements of SYMS items. Error if no symbols
3900 selected. */
3901
3902 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3903 to be re-integrated one of these days. */
3904
3905 int
3906 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3907 {
3908 int i;
3909 int *chosen = XALLOCAVEC (int , nsyms);
3910 int n_chosen;
3911 int first_choice = (max_results == 1) ? 1 : 2;
3912 const char *select_mode = multiple_symbols_select_mode ();
3913
3914 if (max_results < 1)
3915 error (_("Request to select 0 symbols!"));
3916 if (nsyms <= 1)
3917 return nsyms;
3918
3919 if (select_mode == multiple_symbols_cancel)
3920 error (_("\
3921 canceled because the command is ambiguous\n\
3922 See set/show multiple-symbol."));
3923
3924 /* If select_mode is "all", then return all possible symbols.
3925 Only do that if more than one symbol can be selected, of course.
3926 Otherwise, display the menu as usual. */
3927 if (select_mode == multiple_symbols_all && max_results > 1)
3928 return nsyms;
3929
3930 printf_unfiltered (_("[0] cancel\n"));
3931 if (max_results > 1)
3932 printf_unfiltered (_("[1] all\n"));
3933
3934 sort_choices (syms, nsyms);
3935
3936 for (i = 0; i < nsyms; i += 1)
3937 {
3938 if (syms[i].symbol == NULL)
3939 continue;
3940
3941 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3942 {
3943 struct symtab_and_line sal =
3944 find_function_start_sal (syms[i].symbol, 1);
3945
3946 printf_unfiltered ("[%d] ", i + first_choice);
3947 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3948 &type_print_raw_options);
3949 if (sal.symtab == NULL)
3950 printf_unfiltered (_(" at <no source file available>:%d\n"),
3951 sal.line);
3952 else
3953 printf_unfiltered (_(" at %s:%d\n"),
3954 symtab_to_filename_for_display (sal.symtab),
3955 sal.line);
3956 continue;
3957 }
3958 else
3959 {
3960 int is_enumeral =
3961 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3962 && SYMBOL_TYPE (syms[i].symbol) != NULL
3963 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3964 struct symtab *symtab = NULL;
3965
3966 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3967 symtab = symbol_symtab (syms[i].symbol);
3968
3969 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3970 {
3971 printf_unfiltered ("[%d] ", i + first_choice);
3972 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3973 &type_print_raw_options);
3974 printf_unfiltered (_(" at %s:%d\n"),
3975 symtab_to_filename_for_display (symtab),
3976 SYMBOL_LINE (syms[i].symbol));
3977 }
3978 else if (is_enumeral
3979 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3980 {
3981 printf_unfiltered (("[%d] "), i + first_choice);
3982 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3983 gdb_stdout, -1, 0, &type_print_raw_options);
3984 printf_unfiltered (_("'(%s) (enumeral)\n"),
3985 SYMBOL_PRINT_NAME (syms[i].symbol));
3986 }
3987 else
3988 {
3989 printf_unfiltered ("[%d] ", i + first_choice);
3990 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3991 &type_print_raw_options);
3992
3993 if (symtab != NULL)
3994 printf_unfiltered (is_enumeral
3995 ? _(" in %s (enumeral)\n")
3996 : _(" at %s:?\n"),
3997 symtab_to_filename_for_display (symtab));
3998 else
3999 printf_unfiltered (is_enumeral
4000 ? _(" (enumeral)\n")
4001 : _(" at ?\n"));
4002 }
4003 }
4004 }
4005
4006 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4007 "overload-choice");
4008
4009 for (i = 0; i < n_chosen; i += 1)
4010 syms[i] = syms[chosen[i]];
4011
4012 return n_chosen;
4013 }
4014
4015 /* Read and validate a set of numeric choices from the user in the
4016 range 0 .. N_CHOICES-1. Place the results in increasing
4017 order in CHOICES[0 .. N-1], and return N.
4018
4019 The user types choices as a sequence of numbers on one line
4020 separated by blanks, encoding them as follows:
4021
4022 + A choice of 0 means to cancel the selection, throwing an error.
4023 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4024 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4025
4026 The user is not allowed to choose more than MAX_RESULTS values.
4027
4028 ANNOTATION_SUFFIX, if present, is used to annotate the input
4029 prompts (for use with the -f switch). */
4030
4031 int
4032 get_selections (int *choices, int n_choices, int max_results,
4033 int is_all_choice, const char *annotation_suffix)
4034 {
4035 char *args;
4036 const char *prompt;
4037 int n_chosen;
4038 int first_choice = is_all_choice ? 2 : 1;
4039
4040 prompt = getenv ("PS2");
4041 if (prompt == NULL)
4042 prompt = "> ";
4043
4044 args = command_line_input (prompt, 0, annotation_suffix);
4045
4046 if (args == NULL)
4047 error_no_arg (_("one or more choice numbers"));
4048
4049 n_chosen = 0;
4050
4051 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4052 order, as given in args. Choices are validated. */
4053 while (1)
4054 {
4055 char *args2;
4056 int choice, j;
4057
4058 args = skip_spaces (args);
4059 if (*args == '\0' && n_chosen == 0)
4060 error_no_arg (_("one or more choice numbers"));
4061 else if (*args == '\0')
4062 break;
4063
4064 choice = strtol (args, &args2, 10);
4065 if (args == args2 || choice < 0
4066 || choice > n_choices + first_choice - 1)
4067 error (_("Argument must be choice number"));
4068 args = args2;
4069
4070 if (choice == 0)
4071 error (_("cancelled"));
4072
4073 if (choice < first_choice)
4074 {
4075 n_chosen = n_choices;
4076 for (j = 0; j < n_choices; j += 1)
4077 choices[j] = j;
4078 break;
4079 }
4080 choice -= first_choice;
4081
4082 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4083 {
4084 }
4085
4086 if (j < 0 || choice != choices[j])
4087 {
4088 int k;
4089
4090 for (k = n_chosen - 1; k > j; k -= 1)
4091 choices[k + 1] = choices[k];
4092 choices[j + 1] = choice;
4093 n_chosen += 1;
4094 }
4095 }
4096
4097 if (n_chosen > max_results)
4098 error (_("Select no more than %d of the above"), max_results);
4099
4100 return n_chosen;
4101 }
4102
4103 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4104 on the function identified by SYM and BLOCK, and taking NARGS
4105 arguments. Update *EXPP as needed to hold more space. */
4106
4107 static void
4108 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4109 int oplen, struct symbol *sym,
4110 const struct block *block)
4111 {
4112 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4113 symbol, -oplen for operator being replaced). */
4114 struct expression *newexp = (struct expression *)
4115 xzalloc (sizeof (struct expression)
4116 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4117 struct expression *exp = *expp;
4118
4119 newexp->nelts = exp->nelts + 7 - oplen;
4120 newexp->language_defn = exp->language_defn;
4121 newexp->gdbarch = exp->gdbarch;
4122 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4123 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4124 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4125
4126 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4127 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4128
4129 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4130 newexp->elts[pc + 4].block = block;
4131 newexp->elts[pc + 5].symbol = sym;
4132
4133 *expp = newexp;
4134 xfree (exp);
4135 }
4136
4137 /* Type-class predicates */
4138
4139 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4140 or FLOAT). */
4141
4142 static int
4143 numeric_type_p (struct type *type)
4144 {
4145 if (type == NULL)
4146 return 0;
4147 else
4148 {
4149 switch (TYPE_CODE (type))
4150 {
4151 case TYPE_CODE_INT:
4152 case TYPE_CODE_FLT:
4153 return 1;
4154 case TYPE_CODE_RANGE:
4155 return (type == TYPE_TARGET_TYPE (type)
4156 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4157 default:
4158 return 0;
4159 }
4160 }
4161 }
4162
4163 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4164
4165 static int
4166 integer_type_p (struct type *type)
4167 {
4168 if (type == NULL)
4169 return 0;
4170 else
4171 {
4172 switch (TYPE_CODE (type))
4173 {
4174 case TYPE_CODE_INT:
4175 return 1;
4176 case TYPE_CODE_RANGE:
4177 return (type == TYPE_TARGET_TYPE (type)
4178 || integer_type_p (TYPE_TARGET_TYPE (type)));
4179 default:
4180 return 0;
4181 }
4182 }
4183 }
4184
4185 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4186
4187 static int
4188 scalar_type_p (struct type *type)
4189 {
4190 if (type == NULL)
4191 return 0;
4192 else
4193 {
4194 switch (TYPE_CODE (type))
4195 {
4196 case TYPE_CODE_INT:
4197 case TYPE_CODE_RANGE:
4198 case TYPE_CODE_ENUM:
4199 case TYPE_CODE_FLT:
4200 return 1;
4201 default:
4202 return 0;
4203 }
4204 }
4205 }
4206
4207 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4208
4209 static int
4210 discrete_type_p (struct type *type)
4211 {
4212 if (type == NULL)
4213 return 0;
4214 else
4215 {
4216 switch (TYPE_CODE (type))
4217 {
4218 case TYPE_CODE_INT:
4219 case TYPE_CODE_RANGE:
4220 case TYPE_CODE_ENUM:
4221 case TYPE_CODE_BOOL:
4222 return 1;
4223 default:
4224 return 0;
4225 }
4226 }
4227 }
4228
4229 /* Returns non-zero if OP with operands in the vector ARGS could be
4230 a user-defined function. Errs on the side of pre-defined operators
4231 (i.e., result 0). */
4232
4233 static int
4234 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4235 {
4236 struct type *type0 =
4237 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4238 struct type *type1 =
4239 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4240
4241 if (type0 == NULL)
4242 return 0;
4243
4244 switch (op)
4245 {
4246 default:
4247 return 0;
4248
4249 case BINOP_ADD:
4250 case BINOP_SUB:
4251 case BINOP_MUL:
4252 case BINOP_DIV:
4253 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4254
4255 case BINOP_REM:
4256 case BINOP_MOD:
4257 case BINOP_BITWISE_AND:
4258 case BINOP_BITWISE_IOR:
4259 case BINOP_BITWISE_XOR:
4260 return (!(integer_type_p (type0) && integer_type_p (type1)));
4261
4262 case BINOP_EQUAL:
4263 case BINOP_NOTEQUAL:
4264 case BINOP_LESS:
4265 case BINOP_GTR:
4266 case BINOP_LEQ:
4267 case BINOP_GEQ:
4268 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4269
4270 case BINOP_CONCAT:
4271 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4272
4273 case BINOP_EXP:
4274 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4275
4276 case UNOP_NEG:
4277 case UNOP_PLUS:
4278 case UNOP_LOGICAL_NOT:
4279 case UNOP_ABS:
4280 return (!numeric_type_p (type0));
4281
4282 }
4283 }
4284 \f
4285 /* Renaming */
4286
4287 /* NOTES:
4288
4289 1. In the following, we assume that a renaming type's name may
4290 have an ___XD suffix. It would be nice if this went away at some
4291 point.
4292 2. We handle both the (old) purely type-based representation of
4293 renamings and the (new) variable-based encoding. At some point,
4294 it is devoutly to be hoped that the former goes away
4295 (FIXME: hilfinger-2007-07-09).
4296 3. Subprogram renamings are not implemented, although the XRS
4297 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4298
4299 /* If SYM encodes a renaming,
4300
4301 <renaming> renames <renamed entity>,
4302
4303 sets *LEN to the length of the renamed entity's name,
4304 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4305 the string describing the subcomponent selected from the renamed
4306 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4307 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4308 are undefined). Otherwise, returns a value indicating the category
4309 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4310 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4311 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4312 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4313 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4314 may be NULL, in which case they are not assigned.
4315
4316 [Currently, however, GCC does not generate subprogram renamings.] */
4317
4318 enum ada_renaming_category
4319 ada_parse_renaming (struct symbol *sym,
4320 const char **renamed_entity, int *len,
4321 const char **renaming_expr)
4322 {
4323 enum ada_renaming_category kind;
4324 const char *info;
4325 const char *suffix;
4326
4327 if (sym == NULL)
4328 return ADA_NOT_RENAMING;
4329 switch (SYMBOL_CLASS (sym))
4330 {
4331 default:
4332 return ADA_NOT_RENAMING;
4333 case LOC_TYPEDEF:
4334 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4335 renamed_entity, len, renaming_expr);
4336 case LOC_LOCAL:
4337 case LOC_STATIC:
4338 case LOC_COMPUTED:
4339 case LOC_OPTIMIZED_OUT:
4340 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4341 if (info == NULL)
4342 return ADA_NOT_RENAMING;
4343 switch (info[5])
4344 {
4345 case '_':
4346 kind = ADA_OBJECT_RENAMING;
4347 info += 6;
4348 break;
4349 case 'E':
4350 kind = ADA_EXCEPTION_RENAMING;
4351 info += 7;
4352 break;
4353 case 'P':
4354 kind = ADA_PACKAGE_RENAMING;
4355 info += 7;
4356 break;
4357 case 'S':
4358 kind = ADA_SUBPROGRAM_RENAMING;
4359 info += 7;
4360 break;
4361 default:
4362 return ADA_NOT_RENAMING;
4363 }
4364 }
4365
4366 if (renamed_entity != NULL)
4367 *renamed_entity = info;
4368 suffix = strstr (info, "___XE");
4369 if (suffix == NULL || suffix == info)
4370 return ADA_NOT_RENAMING;
4371 if (len != NULL)
4372 *len = strlen (info) - strlen (suffix);
4373 suffix += 5;
4374 if (renaming_expr != NULL)
4375 *renaming_expr = suffix;
4376 return kind;
4377 }
4378
4379 /* Assuming TYPE encodes a renaming according to the old encoding in
4380 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4381 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4382 ADA_NOT_RENAMING otherwise. */
4383 static enum ada_renaming_category
4384 parse_old_style_renaming (struct type *type,
4385 const char **renamed_entity, int *len,
4386 const char **renaming_expr)
4387 {
4388 enum ada_renaming_category kind;
4389 const char *name;
4390 const char *info;
4391 const char *suffix;
4392
4393 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4394 || TYPE_NFIELDS (type) != 1)
4395 return ADA_NOT_RENAMING;
4396
4397 name = type_name_no_tag (type);
4398 if (name == NULL)
4399 return ADA_NOT_RENAMING;
4400
4401 name = strstr (name, "___XR");
4402 if (name == NULL)
4403 return ADA_NOT_RENAMING;
4404 switch (name[5])
4405 {
4406 case '\0':
4407 case '_':
4408 kind = ADA_OBJECT_RENAMING;
4409 break;
4410 case 'E':
4411 kind = ADA_EXCEPTION_RENAMING;
4412 break;
4413 case 'P':
4414 kind = ADA_PACKAGE_RENAMING;
4415 break;
4416 case 'S':
4417 kind = ADA_SUBPROGRAM_RENAMING;
4418 break;
4419 default:
4420 return ADA_NOT_RENAMING;
4421 }
4422
4423 info = TYPE_FIELD_NAME (type, 0);
4424 if (info == NULL)
4425 return ADA_NOT_RENAMING;
4426 if (renamed_entity != NULL)
4427 *renamed_entity = info;
4428 suffix = strstr (info, "___XE");
4429 if (renaming_expr != NULL)
4430 *renaming_expr = suffix + 5;
4431 if (suffix == NULL || suffix == info)
4432 return ADA_NOT_RENAMING;
4433 if (len != NULL)
4434 *len = suffix - info;
4435 return kind;
4436 }
4437
4438 /* Compute the value of the given RENAMING_SYM, which is expected to
4439 be a symbol encoding a renaming expression. BLOCK is the block
4440 used to evaluate the renaming. */
4441
4442 static struct value *
4443 ada_read_renaming_var_value (struct symbol *renaming_sym,
4444 const struct block *block)
4445 {
4446 const char *sym_name;
4447
4448 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4449 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4450 return evaluate_expression (expr.get ());
4451 }
4452 \f
4453
4454 /* Evaluation: Function Calls */
4455
4456 /* Return an lvalue containing the value VAL. This is the identity on
4457 lvalues, and otherwise has the side-effect of allocating memory
4458 in the inferior where a copy of the value contents is copied. */
4459
4460 static struct value *
4461 ensure_lval (struct value *val)
4462 {
4463 if (VALUE_LVAL (val) == not_lval
4464 || VALUE_LVAL (val) == lval_internalvar)
4465 {
4466 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4467 const CORE_ADDR addr =
4468 value_as_long (value_allocate_space_in_inferior (len));
4469
4470 VALUE_LVAL (val) = lval_memory;
4471 set_value_address (val, addr);
4472 write_memory (addr, value_contents (val), len);
4473 }
4474
4475 return val;
4476 }
4477
4478 /* Return the value ACTUAL, converted to be an appropriate value for a
4479 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4480 allocating any necessary descriptors (fat pointers), or copies of
4481 values not residing in memory, updating it as needed. */
4482
4483 struct value *
4484 ada_convert_actual (struct value *actual, struct type *formal_type0)
4485 {
4486 struct type *actual_type = ada_check_typedef (value_type (actual));
4487 struct type *formal_type = ada_check_typedef (formal_type0);
4488 struct type *formal_target =
4489 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4490 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4491 struct type *actual_target =
4492 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4493 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4494
4495 if (ada_is_array_descriptor_type (formal_target)
4496 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4497 return make_array_descriptor (formal_type, actual);
4498 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4499 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4500 {
4501 struct value *result;
4502
4503 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4504 && ada_is_array_descriptor_type (actual_target))
4505 result = desc_data (actual);
4506 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4507 {
4508 if (VALUE_LVAL (actual) != lval_memory)
4509 {
4510 struct value *val;
4511
4512 actual_type = ada_check_typedef (value_type (actual));
4513 val = allocate_value (actual_type);
4514 memcpy ((char *) value_contents_raw (val),
4515 (char *) value_contents (actual),
4516 TYPE_LENGTH (actual_type));
4517 actual = ensure_lval (val);
4518 }
4519 result = value_addr (actual);
4520 }
4521 else
4522 return actual;
4523 return value_cast_pointers (formal_type, result, 0);
4524 }
4525 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4526 return ada_value_ind (actual);
4527 else if (ada_is_aligner_type (formal_type))
4528 {
4529 /* We need to turn this parameter into an aligner type
4530 as well. */
4531 struct value *aligner = allocate_value (formal_type);
4532 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4533
4534 value_assign_to_component (aligner, component, actual);
4535 return aligner;
4536 }
4537
4538 return actual;
4539 }
4540
4541 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4542 type TYPE. This is usually an inefficient no-op except on some targets
4543 (such as AVR) where the representation of a pointer and an address
4544 differs. */
4545
4546 static CORE_ADDR
4547 value_pointer (struct value *value, struct type *type)
4548 {
4549 struct gdbarch *gdbarch = get_type_arch (type);
4550 unsigned len = TYPE_LENGTH (type);
4551 gdb_byte *buf = (gdb_byte *) alloca (len);
4552 CORE_ADDR addr;
4553
4554 addr = value_address (value);
4555 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4556 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4557 return addr;
4558 }
4559
4560
4561 /* Push a descriptor of type TYPE for array value ARR on the stack at
4562 *SP, updating *SP to reflect the new descriptor. Return either
4563 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4564 to-descriptor type rather than a descriptor type), a struct value *
4565 representing a pointer to this descriptor. */
4566
4567 static struct value *
4568 make_array_descriptor (struct type *type, struct value *arr)
4569 {
4570 struct type *bounds_type = desc_bounds_type (type);
4571 struct type *desc_type = desc_base_type (type);
4572 struct value *descriptor = allocate_value (desc_type);
4573 struct value *bounds = allocate_value (bounds_type);
4574 int i;
4575
4576 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4577 i > 0; i -= 1)
4578 {
4579 modify_field (value_type (bounds), value_contents_writeable (bounds),
4580 ada_array_bound (arr, i, 0),
4581 desc_bound_bitpos (bounds_type, i, 0),
4582 desc_bound_bitsize (bounds_type, i, 0));
4583 modify_field (value_type (bounds), value_contents_writeable (bounds),
4584 ada_array_bound (arr, i, 1),
4585 desc_bound_bitpos (bounds_type, i, 1),
4586 desc_bound_bitsize (bounds_type, i, 1));
4587 }
4588
4589 bounds = ensure_lval (bounds);
4590
4591 modify_field (value_type (descriptor),
4592 value_contents_writeable (descriptor),
4593 value_pointer (ensure_lval (arr),
4594 TYPE_FIELD_TYPE (desc_type, 0)),
4595 fat_pntr_data_bitpos (desc_type),
4596 fat_pntr_data_bitsize (desc_type));
4597
4598 modify_field (value_type (descriptor),
4599 value_contents_writeable (descriptor),
4600 value_pointer (bounds,
4601 TYPE_FIELD_TYPE (desc_type, 1)),
4602 fat_pntr_bounds_bitpos (desc_type),
4603 fat_pntr_bounds_bitsize (desc_type));
4604
4605 descriptor = ensure_lval (descriptor);
4606
4607 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4608 return value_addr (descriptor);
4609 else
4610 return descriptor;
4611 }
4612 \f
4613 /* Symbol Cache Module */
4614
4615 /* Performance measurements made as of 2010-01-15 indicate that
4616 this cache does bring some noticeable improvements. Depending
4617 on the type of entity being printed, the cache can make it as much
4618 as an order of magnitude faster than without it.
4619
4620 The descriptive type DWARF extension has significantly reduced
4621 the need for this cache, at least when DWARF is being used. However,
4622 even in this case, some expensive name-based symbol searches are still
4623 sometimes necessary - to find an XVZ variable, mostly. */
4624
4625 /* Initialize the contents of SYM_CACHE. */
4626
4627 static void
4628 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4629 {
4630 obstack_init (&sym_cache->cache_space);
4631 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4632 }
4633
4634 /* Free the memory used by SYM_CACHE. */
4635
4636 static void
4637 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4638 {
4639 obstack_free (&sym_cache->cache_space, NULL);
4640 xfree (sym_cache);
4641 }
4642
4643 /* Return the symbol cache associated to the given program space PSPACE.
4644 If not allocated for this PSPACE yet, allocate and initialize one. */
4645
4646 static struct ada_symbol_cache *
4647 ada_get_symbol_cache (struct program_space *pspace)
4648 {
4649 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4650
4651 if (pspace_data->sym_cache == NULL)
4652 {
4653 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4654 ada_init_symbol_cache (pspace_data->sym_cache);
4655 }
4656
4657 return pspace_data->sym_cache;
4658 }
4659
4660 /* Clear all entries from the symbol cache. */
4661
4662 static void
4663 ada_clear_symbol_cache (void)
4664 {
4665 struct ada_symbol_cache *sym_cache
4666 = ada_get_symbol_cache (current_program_space);
4667
4668 obstack_free (&sym_cache->cache_space, NULL);
4669 ada_init_symbol_cache (sym_cache);
4670 }
4671
4672 /* Search our cache for an entry matching NAME and DOMAIN.
4673 Return it if found, or NULL otherwise. */
4674
4675 static struct cache_entry **
4676 find_entry (const char *name, domain_enum domain)
4677 {
4678 struct ada_symbol_cache *sym_cache
4679 = ada_get_symbol_cache (current_program_space);
4680 int h = msymbol_hash (name) % HASH_SIZE;
4681 struct cache_entry **e;
4682
4683 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4684 {
4685 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4686 return e;
4687 }
4688 return NULL;
4689 }
4690
4691 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4692 Return 1 if found, 0 otherwise.
4693
4694 If an entry was found and SYM is not NULL, set *SYM to the entry's
4695 SYM. Same principle for BLOCK if not NULL. */
4696
4697 static int
4698 lookup_cached_symbol (const char *name, domain_enum domain,
4699 struct symbol **sym, const struct block **block)
4700 {
4701 struct cache_entry **e = find_entry (name, domain);
4702
4703 if (e == NULL)
4704 return 0;
4705 if (sym != NULL)
4706 *sym = (*e)->sym;
4707 if (block != NULL)
4708 *block = (*e)->block;
4709 return 1;
4710 }
4711
4712 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4713 in domain DOMAIN, save this result in our symbol cache. */
4714
4715 static void
4716 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4717 const struct block *block)
4718 {
4719 struct ada_symbol_cache *sym_cache
4720 = ada_get_symbol_cache (current_program_space);
4721 int h;
4722 char *copy;
4723 struct cache_entry *e;
4724
4725 /* Symbols for builtin types don't have a block.
4726 For now don't cache such symbols. */
4727 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4728 return;
4729
4730 /* If the symbol is a local symbol, then do not cache it, as a search
4731 for that symbol depends on the context. To determine whether
4732 the symbol is local or not, we check the block where we found it
4733 against the global and static blocks of its associated symtab. */
4734 if (sym
4735 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4736 GLOBAL_BLOCK) != block
4737 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4738 STATIC_BLOCK) != block)
4739 return;
4740
4741 h = msymbol_hash (name) % HASH_SIZE;
4742 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4743 sizeof (*e));
4744 e->next = sym_cache->root[h];
4745 sym_cache->root[h] = e;
4746 e->name = copy
4747 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4748 strcpy (copy, name);
4749 e->sym = sym;
4750 e->domain = domain;
4751 e->block = block;
4752 }
4753 \f
4754 /* Symbol Lookup */
4755
4756 /* Return the symbol name match type that should be used used when
4757 searching for all symbols matching LOOKUP_NAME.
4758
4759 LOOKUP_NAME is expected to be a symbol name after transformation
4760 for Ada lookups (see ada_name_for_lookup). */
4761
4762 static symbol_name_match_type
4763 name_match_type_from_name (const char *lookup_name)
4764 {
4765 return (strstr (lookup_name, "__") == NULL
4766 ? symbol_name_match_type::WILD
4767 : symbol_name_match_type::FULL);
4768 }
4769
4770 /* Return the result of a standard (literal, C-like) lookup of NAME in
4771 given DOMAIN, visible from lexical block BLOCK. */
4772
4773 static struct symbol *
4774 standard_lookup (const char *name, const struct block *block,
4775 domain_enum domain)
4776 {
4777 /* Initialize it just to avoid a GCC false warning. */
4778 struct block_symbol sym = {NULL, NULL};
4779
4780 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4781 return sym.symbol;
4782 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4783 cache_symbol (name, domain, sym.symbol, sym.block);
4784 return sym.symbol;
4785 }
4786
4787
4788 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4789 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4790 since they contend in overloading in the same way. */
4791 static int
4792 is_nonfunction (struct block_symbol syms[], int n)
4793 {
4794 int i;
4795
4796 for (i = 0; i < n; i += 1)
4797 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4798 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4799 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4800 return 1;
4801
4802 return 0;
4803 }
4804
4805 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4806 struct types. Otherwise, they may not. */
4807
4808 static int
4809 equiv_types (struct type *type0, struct type *type1)
4810 {
4811 if (type0 == type1)
4812 return 1;
4813 if (type0 == NULL || type1 == NULL
4814 || TYPE_CODE (type0) != TYPE_CODE (type1))
4815 return 0;
4816 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4817 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4818 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4819 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4820 return 1;
4821
4822 return 0;
4823 }
4824
4825 /* True iff SYM0 represents the same entity as SYM1, or one that is
4826 no more defined than that of SYM1. */
4827
4828 static int
4829 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4830 {
4831 if (sym0 == sym1)
4832 return 1;
4833 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4834 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4835 return 0;
4836
4837 switch (SYMBOL_CLASS (sym0))
4838 {
4839 case LOC_UNDEF:
4840 return 1;
4841 case LOC_TYPEDEF:
4842 {
4843 struct type *type0 = SYMBOL_TYPE (sym0);
4844 struct type *type1 = SYMBOL_TYPE (sym1);
4845 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4846 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4847 int len0 = strlen (name0);
4848
4849 return
4850 TYPE_CODE (type0) == TYPE_CODE (type1)
4851 && (equiv_types (type0, type1)
4852 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4853 && startswith (name1 + len0, "___XV")));
4854 }
4855 case LOC_CONST:
4856 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4857 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4858 default:
4859 return 0;
4860 }
4861 }
4862
4863 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4864 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4865
4866 static void
4867 add_defn_to_vec (struct obstack *obstackp,
4868 struct symbol *sym,
4869 const struct block *block)
4870 {
4871 int i;
4872 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4873
4874 /* Do not try to complete stub types, as the debugger is probably
4875 already scanning all symbols matching a certain name at the
4876 time when this function is called. Trying to replace the stub
4877 type by its associated full type will cause us to restart a scan
4878 which may lead to an infinite recursion. Instead, the client
4879 collecting the matching symbols will end up collecting several
4880 matches, with at least one of them complete. It can then filter
4881 out the stub ones if needed. */
4882
4883 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4884 {
4885 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4886 return;
4887 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4888 {
4889 prevDefns[i].symbol = sym;
4890 prevDefns[i].block = block;
4891 return;
4892 }
4893 }
4894
4895 {
4896 struct block_symbol info;
4897
4898 info.symbol = sym;
4899 info.block = block;
4900 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4901 }
4902 }
4903
4904 /* Number of block_symbol structures currently collected in current vector in
4905 OBSTACKP. */
4906
4907 static int
4908 num_defns_collected (struct obstack *obstackp)
4909 {
4910 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4911 }
4912
4913 /* Vector of block_symbol structures currently collected in current vector in
4914 OBSTACKP. If FINISH, close off the vector and return its final address. */
4915
4916 static struct block_symbol *
4917 defns_collected (struct obstack *obstackp, int finish)
4918 {
4919 if (finish)
4920 return (struct block_symbol *) obstack_finish (obstackp);
4921 else
4922 return (struct block_symbol *) obstack_base (obstackp);
4923 }
4924
4925 /* Return a bound minimal symbol matching NAME according to Ada
4926 decoding rules. Returns an invalid symbol if there is no such
4927 minimal symbol. Names prefixed with "standard__" are handled
4928 specially: "standard__" is first stripped off, and only static and
4929 global symbols are searched. */
4930
4931 struct bound_minimal_symbol
4932 ada_lookup_simple_minsym (const char *name)
4933 {
4934 struct bound_minimal_symbol result;
4935 struct objfile *objfile;
4936 struct minimal_symbol *msymbol;
4937
4938 memset (&result, 0, sizeof (result));
4939
4940 symbol_name_match_type match_type = name_match_type_from_name (name);
4941 lookup_name_info lookup_name (name, match_type);
4942
4943 symbol_name_matcher_ftype *match_name
4944 = ada_get_symbol_name_matcher (lookup_name);
4945
4946 ALL_MSYMBOLS (objfile, msymbol)
4947 {
4948 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4949 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4950 {
4951 result.minsym = msymbol;
4952 result.objfile = objfile;
4953 break;
4954 }
4955 }
4956
4957 return result;
4958 }
4959
4960 /* For all subprograms that statically enclose the subprogram of the
4961 selected frame, add symbols matching identifier NAME in DOMAIN
4962 and their blocks to the list of data in OBSTACKP, as for
4963 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4964 with a wildcard prefix. */
4965
4966 static void
4967 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4968 const lookup_name_info &lookup_name,
4969 domain_enum domain)
4970 {
4971 }
4972
4973 /* True if TYPE is definitely an artificial type supplied to a symbol
4974 for which no debugging information was given in the symbol file. */
4975
4976 static int
4977 is_nondebugging_type (struct type *type)
4978 {
4979 const char *name = ada_type_name (type);
4980
4981 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4982 }
4983
4984 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4985 that are deemed "identical" for practical purposes.
4986
4987 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4988 types and that their number of enumerals is identical (in other
4989 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4990
4991 static int
4992 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4993 {
4994 int i;
4995
4996 /* The heuristic we use here is fairly conservative. We consider
4997 that 2 enumerate types are identical if they have the same
4998 number of enumerals and that all enumerals have the same
4999 underlying value and name. */
5000
5001 /* All enums in the type should have an identical underlying value. */
5002 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5003 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5004 return 0;
5005
5006 /* All enumerals should also have the same name (modulo any numerical
5007 suffix). */
5008 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5009 {
5010 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5011 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5012 int len_1 = strlen (name_1);
5013 int len_2 = strlen (name_2);
5014
5015 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5016 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5017 if (len_1 != len_2
5018 || strncmp (TYPE_FIELD_NAME (type1, i),
5019 TYPE_FIELD_NAME (type2, i),
5020 len_1) != 0)
5021 return 0;
5022 }
5023
5024 return 1;
5025 }
5026
5027 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5028 that are deemed "identical" for practical purposes. Sometimes,
5029 enumerals are not strictly identical, but their types are so similar
5030 that they can be considered identical.
5031
5032 For instance, consider the following code:
5033
5034 type Color is (Black, Red, Green, Blue, White);
5035 type RGB_Color is new Color range Red .. Blue;
5036
5037 Type RGB_Color is a subrange of an implicit type which is a copy
5038 of type Color. If we call that implicit type RGB_ColorB ("B" is
5039 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5040 As a result, when an expression references any of the enumeral
5041 by name (Eg. "print green"), the expression is technically
5042 ambiguous and the user should be asked to disambiguate. But
5043 doing so would only hinder the user, since it wouldn't matter
5044 what choice he makes, the outcome would always be the same.
5045 So, for practical purposes, we consider them as the same. */
5046
5047 static int
5048 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5049 {
5050 int i;
5051
5052 /* Before performing a thorough comparison check of each type,
5053 we perform a series of inexpensive checks. We expect that these
5054 checks will quickly fail in the vast majority of cases, and thus
5055 help prevent the unnecessary use of a more expensive comparison.
5056 Said comparison also expects us to make some of these checks
5057 (see ada_identical_enum_types_p). */
5058
5059 /* Quick check: All symbols should have an enum type. */
5060 for (i = 0; i < nsyms; i++)
5061 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5062 return 0;
5063
5064 /* Quick check: They should all have the same value. */
5065 for (i = 1; i < nsyms; i++)
5066 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5067 return 0;
5068
5069 /* Quick check: They should all have the same number of enumerals. */
5070 for (i = 1; i < nsyms; i++)
5071 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5072 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5073 return 0;
5074
5075 /* All the sanity checks passed, so we might have a set of
5076 identical enumeration types. Perform a more complete
5077 comparison of the type of each symbol. */
5078 for (i = 1; i < nsyms; i++)
5079 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5080 SYMBOL_TYPE (syms[0].symbol)))
5081 return 0;
5082
5083 return 1;
5084 }
5085
5086 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5087 duplicate other symbols in the list (The only case I know of where
5088 this happens is when object files containing stabs-in-ecoff are
5089 linked with files containing ordinary ecoff debugging symbols (or no
5090 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5091 Returns the number of items in the modified list. */
5092
5093 static int
5094 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5095 {
5096 int i, j;
5097
5098 /* We should never be called with less than 2 symbols, as there
5099 cannot be any extra symbol in that case. But it's easy to
5100 handle, since we have nothing to do in that case. */
5101 if (nsyms < 2)
5102 return nsyms;
5103
5104 i = 0;
5105 while (i < nsyms)
5106 {
5107 int remove_p = 0;
5108
5109 /* If two symbols have the same name and one of them is a stub type,
5110 the get rid of the stub. */
5111
5112 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5113 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5114 {
5115 for (j = 0; j < nsyms; j++)
5116 {
5117 if (j != i
5118 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5119 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5120 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5121 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5122 remove_p = 1;
5123 }
5124 }
5125
5126 /* Two symbols with the same name, same class and same address
5127 should be identical. */
5128
5129 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5130 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5131 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5132 {
5133 for (j = 0; j < nsyms; j += 1)
5134 {
5135 if (i != j
5136 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5137 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5138 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5139 && SYMBOL_CLASS (syms[i].symbol)
5140 == SYMBOL_CLASS (syms[j].symbol)
5141 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5142 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5143 remove_p = 1;
5144 }
5145 }
5146
5147 if (remove_p)
5148 {
5149 for (j = i + 1; j < nsyms; j += 1)
5150 syms[j - 1] = syms[j];
5151 nsyms -= 1;
5152 }
5153
5154 i += 1;
5155 }
5156
5157 /* If all the remaining symbols are identical enumerals, then
5158 just keep the first one and discard the rest.
5159
5160 Unlike what we did previously, we do not discard any entry
5161 unless they are ALL identical. This is because the symbol
5162 comparison is not a strict comparison, but rather a practical
5163 comparison. If all symbols are considered identical, then
5164 we can just go ahead and use the first one and discard the rest.
5165 But if we cannot reduce the list to a single element, we have
5166 to ask the user to disambiguate anyways. And if we have to
5167 present a multiple-choice menu, it's less confusing if the list
5168 isn't missing some choices that were identical and yet distinct. */
5169 if (symbols_are_identical_enums (syms, nsyms))
5170 nsyms = 1;
5171
5172 return nsyms;
5173 }
5174
5175 /* Given a type that corresponds to a renaming entity, use the type name
5176 to extract the scope (package name or function name, fully qualified,
5177 and following the GNAT encoding convention) where this renaming has been
5178 defined. The string returned needs to be deallocated after use. */
5179
5180 static char *
5181 xget_renaming_scope (struct type *renaming_type)
5182 {
5183 /* The renaming types adhere to the following convention:
5184 <scope>__<rename>___<XR extension>.
5185 So, to extract the scope, we search for the "___XR" extension,
5186 and then backtrack until we find the first "__". */
5187
5188 const char *name = type_name_no_tag (renaming_type);
5189 const char *suffix = strstr (name, "___XR");
5190 const char *last;
5191 int scope_len;
5192 char *scope;
5193
5194 /* Now, backtrack a bit until we find the first "__". Start looking
5195 at suffix - 3, as the <rename> part is at least one character long. */
5196
5197 for (last = suffix - 3; last > name; last--)
5198 if (last[0] == '_' && last[1] == '_')
5199 break;
5200
5201 /* Make a copy of scope and return it. */
5202
5203 scope_len = last - name;
5204 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5205
5206 strncpy (scope, name, scope_len);
5207 scope[scope_len] = '\0';
5208
5209 return scope;
5210 }
5211
5212 /* Return nonzero if NAME corresponds to a package name. */
5213
5214 static int
5215 is_package_name (const char *name)
5216 {
5217 /* Here, We take advantage of the fact that no symbols are generated
5218 for packages, while symbols are generated for each function.
5219 So the condition for NAME represent a package becomes equivalent
5220 to NAME not existing in our list of symbols. There is only one
5221 small complication with library-level functions (see below). */
5222
5223 char *fun_name;
5224
5225 /* If it is a function that has not been defined at library level,
5226 then we should be able to look it up in the symbols. */
5227 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5228 return 0;
5229
5230 /* Library-level function names start with "_ada_". See if function
5231 "_ada_" followed by NAME can be found. */
5232
5233 /* Do a quick check that NAME does not contain "__", since library-level
5234 functions names cannot contain "__" in them. */
5235 if (strstr (name, "__") != NULL)
5236 return 0;
5237
5238 fun_name = xstrprintf ("_ada_%s", name);
5239
5240 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5241 }
5242
5243 /* Return nonzero if SYM corresponds to a renaming entity that is
5244 not visible from FUNCTION_NAME. */
5245
5246 static int
5247 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5248 {
5249 char *scope;
5250 struct cleanup *old_chain;
5251
5252 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5253 return 0;
5254
5255 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5256 old_chain = make_cleanup (xfree, scope);
5257
5258 /* If the rename has been defined in a package, then it is visible. */
5259 if (is_package_name (scope))
5260 {
5261 do_cleanups (old_chain);
5262 return 0;
5263 }
5264
5265 /* Check that the rename is in the current function scope by checking
5266 that its name starts with SCOPE. */
5267
5268 /* If the function name starts with "_ada_", it means that it is
5269 a library-level function. Strip this prefix before doing the
5270 comparison, as the encoding for the renaming does not contain
5271 this prefix. */
5272 if (startswith (function_name, "_ada_"))
5273 function_name += 5;
5274
5275 {
5276 int is_invisible = !startswith (function_name, scope);
5277
5278 do_cleanups (old_chain);
5279 return is_invisible;
5280 }
5281 }
5282
5283 /* Remove entries from SYMS that corresponds to a renaming entity that
5284 is not visible from the function associated with CURRENT_BLOCK or
5285 that is superfluous due to the presence of more specific renaming
5286 information. Places surviving symbols in the initial entries of
5287 SYMS and returns the number of surviving symbols.
5288
5289 Rationale:
5290 First, in cases where an object renaming is implemented as a
5291 reference variable, GNAT may produce both the actual reference
5292 variable and the renaming encoding. In this case, we discard the
5293 latter.
5294
5295 Second, GNAT emits a type following a specified encoding for each renaming
5296 entity. Unfortunately, STABS currently does not support the definition
5297 of types that are local to a given lexical block, so all renamings types
5298 are emitted at library level. As a consequence, if an application
5299 contains two renaming entities using the same name, and a user tries to
5300 print the value of one of these entities, the result of the ada symbol
5301 lookup will also contain the wrong renaming type.
5302
5303 This function partially covers for this limitation by attempting to
5304 remove from the SYMS list renaming symbols that should be visible
5305 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5306 method with the current information available. The implementation
5307 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5308
5309 - When the user tries to print a rename in a function while there
5310 is another rename entity defined in a package: Normally, the
5311 rename in the function has precedence over the rename in the
5312 package, so the latter should be removed from the list. This is
5313 currently not the case.
5314
5315 - This function will incorrectly remove valid renames if
5316 the CURRENT_BLOCK corresponds to a function which symbol name
5317 has been changed by an "Export" pragma. As a consequence,
5318 the user will be unable to print such rename entities. */
5319
5320 static int
5321 remove_irrelevant_renamings (struct block_symbol *syms,
5322 int nsyms, const struct block *current_block)
5323 {
5324 struct symbol *current_function;
5325 const char *current_function_name;
5326 int i;
5327 int is_new_style_renaming;
5328
5329 /* If there is both a renaming foo___XR... encoded as a variable and
5330 a simple variable foo in the same block, discard the latter.
5331 First, zero out such symbols, then compress. */
5332 is_new_style_renaming = 0;
5333 for (i = 0; i < nsyms; i += 1)
5334 {
5335 struct symbol *sym = syms[i].symbol;
5336 const struct block *block = syms[i].block;
5337 const char *name;
5338 const char *suffix;
5339
5340 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5341 continue;
5342 name = SYMBOL_LINKAGE_NAME (sym);
5343 suffix = strstr (name, "___XR");
5344
5345 if (suffix != NULL)
5346 {
5347 int name_len = suffix - name;
5348 int j;
5349
5350 is_new_style_renaming = 1;
5351 for (j = 0; j < nsyms; j += 1)
5352 if (i != j && syms[j].symbol != NULL
5353 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5354 name_len) == 0
5355 && block == syms[j].block)
5356 syms[j].symbol = NULL;
5357 }
5358 }
5359 if (is_new_style_renaming)
5360 {
5361 int j, k;
5362
5363 for (j = k = 0; j < nsyms; j += 1)
5364 if (syms[j].symbol != NULL)
5365 {
5366 syms[k] = syms[j];
5367 k += 1;
5368 }
5369 return k;
5370 }
5371
5372 /* Extract the function name associated to CURRENT_BLOCK.
5373 Abort if unable to do so. */
5374
5375 if (current_block == NULL)
5376 return nsyms;
5377
5378 current_function = block_linkage_function (current_block);
5379 if (current_function == NULL)
5380 return nsyms;
5381
5382 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5383 if (current_function_name == NULL)
5384 return nsyms;
5385
5386 /* Check each of the symbols, and remove it from the list if it is
5387 a type corresponding to a renaming that is out of the scope of
5388 the current block. */
5389
5390 i = 0;
5391 while (i < nsyms)
5392 {
5393 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5394 == ADA_OBJECT_RENAMING
5395 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5396 {
5397 int j;
5398
5399 for (j = i + 1; j < nsyms; j += 1)
5400 syms[j - 1] = syms[j];
5401 nsyms -= 1;
5402 }
5403 else
5404 i += 1;
5405 }
5406
5407 return nsyms;
5408 }
5409
5410 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5411 whose name and domain match NAME and DOMAIN respectively.
5412 If no match was found, then extend the search to "enclosing"
5413 routines (in other words, if we're inside a nested function,
5414 search the symbols defined inside the enclosing functions).
5415 If WILD_MATCH_P is nonzero, perform the naming matching in
5416 "wild" mode (see function "wild_match" for more info).
5417
5418 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5419
5420 static void
5421 ada_add_local_symbols (struct obstack *obstackp,
5422 const lookup_name_info &lookup_name,
5423 const struct block *block, domain_enum domain)
5424 {
5425 int block_depth = 0;
5426
5427 while (block != NULL)
5428 {
5429 block_depth += 1;
5430 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5431
5432 /* If we found a non-function match, assume that's the one. */
5433 if (is_nonfunction (defns_collected (obstackp, 0),
5434 num_defns_collected (obstackp)))
5435 return;
5436
5437 block = BLOCK_SUPERBLOCK (block);
5438 }
5439
5440 /* If no luck so far, try to find NAME as a local symbol in some lexically
5441 enclosing subprogram. */
5442 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5443 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5444 }
5445
5446 /* An object of this type is used as the user_data argument when
5447 calling the map_matching_symbols method. */
5448
5449 struct match_data
5450 {
5451 struct objfile *objfile;
5452 struct obstack *obstackp;
5453 struct symbol *arg_sym;
5454 int found_sym;
5455 };
5456
5457 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5458 to a list of symbols. DATA0 is a pointer to a struct match_data *
5459 containing the obstack that collects the symbol list, the file that SYM
5460 must come from, a flag indicating whether a non-argument symbol has
5461 been found in the current block, and the last argument symbol
5462 passed in SYM within the current block (if any). When SYM is null,
5463 marking the end of a block, the argument symbol is added if no
5464 other has been found. */
5465
5466 static int
5467 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5468 {
5469 struct match_data *data = (struct match_data *) data0;
5470
5471 if (sym == NULL)
5472 {
5473 if (!data->found_sym && data->arg_sym != NULL)
5474 add_defn_to_vec (data->obstackp,
5475 fixup_symbol_section (data->arg_sym, data->objfile),
5476 block);
5477 data->found_sym = 0;
5478 data->arg_sym = NULL;
5479 }
5480 else
5481 {
5482 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5483 return 0;
5484 else if (SYMBOL_IS_ARGUMENT (sym))
5485 data->arg_sym = sym;
5486 else
5487 {
5488 data->found_sym = 1;
5489 add_defn_to_vec (data->obstackp,
5490 fixup_symbol_section (sym, data->objfile),
5491 block);
5492 }
5493 }
5494 return 0;
5495 }
5496
5497 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5498 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5499 symbols to OBSTACKP. Return whether we found such symbols. */
5500
5501 static int
5502 ada_add_block_renamings (struct obstack *obstackp,
5503 const struct block *block,
5504 const lookup_name_info &lookup_name,
5505 domain_enum domain)
5506 {
5507 struct using_direct *renaming;
5508 int defns_mark = num_defns_collected (obstackp);
5509
5510 symbol_name_matcher_ftype *name_match
5511 = ada_get_symbol_name_matcher (lookup_name);
5512
5513 for (renaming = block_using (block);
5514 renaming != NULL;
5515 renaming = renaming->next)
5516 {
5517 const char *r_name;
5518
5519 /* Avoid infinite recursions: skip this renaming if we are actually
5520 already traversing it.
5521
5522 Currently, symbol lookup in Ada don't use the namespace machinery from
5523 C++/Fortran support: skip namespace imports that use them. */
5524 if (renaming->searched
5525 || (renaming->import_src != NULL
5526 && renaming->import_src[0] != '\0')
5527 || (renaming->import_dest != NULL
5528 && renaming->import_dest[0] != '\0'))
5529 continue;
5530 renaming->searched = 1;
5531
5532 /* TODO: here, we perform another name-based symbol lookup, which can
5533 pull its own multiple overloads. In theory, we should be able to do
5534 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5535 not a simple name. But in order to do this, we would need to enhance
5536 the DWARF reader to associate a symbol to this renaming, instead of a
5537 name. So, for now, we do something simpler: re-use the C++/Fortran
5538 namespace machinery. */
5539 r_name = (renaming->alias != NULL
5540 ? renaming->alias
5541 : renaming->declaration);
5542 if (name_match (r_name, lookup_name, NULL))
5543 {
5544 lookup_name_info decl_lookup_name (renaming->declaration,
5545 lookup_name.match_type ());
5546 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5547 1, NULL);
5548 }
5549 renaming->searched = 0;
5550 }
5551 return num_defns_collected (obstackp) != defns_mark;
5552 }
5553
5554 /* Implements compare_names, but only applying the comparision using
5555 the given CASING. */
5556
5557 static int
5558 compare_names_with_case (const char *string1, const char *string2,
5559 enum case_sensitivity casing)
5560 {
5561 while (*string1 != '\0' && *string2 != '\0')
5562 {
5563 char c1, c2;
5564
5565 if (isspace (*string1) || isspace (*string2))
5566 return strcmp_iw_ordered (string1, string2);
5567
5568 if (casing == case_sensitive_off)
5569 {
5570 c1 = tolower (*string1);
5571 c2 = tolower (*string2);
5572 }
5573 else
5574 {
5575 c1 = *string1;
5576 c2 = *string2;
5577 }
5578 if (c1 != c2)
5579 break;
5580
5581 string1 += 1;
5582 string2 += 1;
5583 }
5584
5585 switch (*string1)
5586 {
5587 case '(':
5588 return strcmp_iw_ordered (string1, string2);
5589 case '_':
5590 if (*string2 == '\0')
5591 {
5592 if (is_name_suffix (string1))
5593 return 0;
5594 else
5595 return 1;
5596 }
5597 /* FALLTHROUGH */
5598 default:
5599 if (*string2 == '(')
5600 return strcmp_iw_ordered (string1, string2);
5601 else
5602 {
5603 if (casing == case_sensitive_off)
5604 return tolower (*string1) - tolower (*string2);
5605 else
5606 return *string1 - *string2;
5607 }
5608 }
5609 }
5610
5611 /* Compare STRING1 to STRING2, with results as for strcmp.
5612 Compatible with strcmp_iw_ordered in that...
5613
5614 strcmp_iw_ordered (STRING1, STRING2) <= 0
5615
5616 ... implies...
5617
5618 compare_names (STRING1, STRING2) <= 0
5619
5620 (they may differ as to what symbols compare equal). */
5621
5622 static int
5623 compare_names (const char *string1, const char *string2)
5624 {
5625 int result;
5626
5627 /* Similar to what strcmp_iw_ordered does, we need to perform
5628 a case-insensitive comparison first, and only resort to
5629 a second, case-sensitive, comparison if the first one was
5630 not sufficient to differentiate the two strings. */
5631
5632 result = compare_names_with_case (string1, string2, case_sensitive_off);
5633 if (result == 0)
5634 result = compare_names_with_case (string1, string2, case_sensitive_on);
5635
5636 return result;
5637 }
5638
5639 /* Convenience function to get at the Ada encoded lookup name for
5640 LOOKUP_NAME, as a C string. */
5641
5642 static const char *
5643 ada_lookup_name (const lookup_name_info &lookup_name)
5644 {
5645 return lookup_name.ada ().lookup_name ().c_str ();
5646 }
5647
5648 /* Add to OBSTACKP all non-local symbols whose name and domain match
5649 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5650 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5651 symbols otherwise. */
5652
5653 static void
5654 add_nonlocal_symbols (struct obstack *obstackp,
5655 const lookup_name_info &lookup_name,
5656 domain_enum domain, int global)
5657 {
5658 struct objfile *objfile;
5659 struct compunit_symtab *cu;
5660 struct match_data data;
5661
5662 memset (&data, 0, sizeof data);
5663 data.obstackp = obstackp;
5664
5665 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5666
5667 ALL_OBJFILES (objfile)
5668 {
5669 data.objfile = objfile;
5670
5671 if (is_wild_match)
5672 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5673 domain, global,
5674 aux_add_nonlocal_symbols, &data,
5675 symbol_name_match_type::WILD,
5676 NULL);
5677 else
5678 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5679 domain, global,
5680 aux_add_nonlocal_symbols, &data,
5681 symbol_name_match_type::FULL,
5682 compare_names);
5683
5684 ALL_OBJFILE_COMPUNITS (objfile, cu)
5685 {
5686 const struct block *global_block
5687 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5688
5689 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5690 domain))
5691 data.found_sym = 1;
5692 }
5693 }
5694
5695 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5696 {
5697 const char *name = ada_lookup_name (lookup_name);
5698 std::string name1 = std::string ("<_ada_") + name + '>';
5699
5700 ALL_OBJFILES (objfile)
5701 {
5702 data.objfile = objfile;
5703 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5704 domain, global,
5705 aux_add_nonlocal_symbols,
5706 &data,
5707 symbol_name_match_type::FULL,
5708 compare_names);
5709 }
5710 }
5711 }
5712
5713 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5714 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5715 returning the number of matches. Add these to OBSTACKP.
5716
5717 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5718 symbol match within the nest of blocks whose innermost member is BLOCK,
5719 is the one match returned (no other matches in that or
5720 enclosing blocks is returned). If there are any matches in or
5721 surrounding BLOCK, then these alone are returned.
5722
5723 Names prefixed with "standard__" are handled specially:
5724 "standard__" is first stripped off (by the lookup_name
5725 constructor), and only static and global symbols are searched.
5726
5727 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5728 to lookup global symbols. */
5729
5730 static void
5731 ada_add_all_symbols (struct obstack *obstackp,
5732 const struct block *block,
5733 const lookup_name_info &lookup_name,
5734 domain_enum domain,
5735 int full_search,
5736 int *made_global_lookup_p)
5737 {
5738 struct symbol *sym;
5739
5740 if (made_global_lookup_p)
5741 *made_global_lookup_p = 0;
5742
5743 /* Special case: If the user specifies a symbol name inside package
5744 Standard, do a non-wild matching of the symbol name without
5745 the "standard__" prefix. This was primarily introduced in order
5746 to allow the user to specifically access the standard exceptions
5747 using, for instance, Standard.Constraint_Error when Constraint_Error
5748 is ambiguous (due to the user defining its own Constraint_Error
5749 entity inside its program). */
5750 if (lookup_name.ada ().standard_p ())
5751 block = NULL;
5752
5753 /* Check the non-global symbols. If we have ANY match, then we're done. */
5754
5755 if (block != NULL)
5756 {
5757 if (full_search)
5758 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5759 else
5760 {
5761 /* In the !full_search case we're are being called by
5762 ada_iterate_over_symbols, and we don't want to search
5763 superblocks. */
5764 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5765 }
5766 if (num_defns_collected (obstackp) > 0 || !full_search)
5767 return;
5768 }
5769
5770 /* No non-global symbols found. Check our cache to see if we have
5771 already performed this search before. If we have, then return
5772 the same result. */
5773
5774 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5775 domain, &sym, &block))
5776 {
5777 if (sym != NULL)
5778 add_defn_to_vec (obstackp, sym, block);
5779 return;
5780 }
5781
5782 if (made_global_lookup_p)
5783 *made_global_lookup_p = 1;
5784
5785 /* Search symbols from all global blocks. */
5786
5787 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5788
5789 /* Now add symbols from all per-file blocks if we've gotten no hits
5790 (not strictly correct, but perhaps better than an error). */
5791
5792 if (num_defns_collected (obstackp) == 0)
5793 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5794 }
5795
5796 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5797 is non-zero, enclosing scope and in global scopes, returning the number of
5798 matches.
5799 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5800 indicating the symbols found and the blocks and symbol tables (if
5801 any) in which they were found. This vector is transient---good only to
5802 the next call of ada_lookup_symbol_list.
5803
5804 When full_search is non-zero, any non-function/non-enumeral
5805 symbol match within the nest of blocks whose innermost member is BLOCK,
5806 is the one match returned (no other matches in that or
5807 enclosing blocks is returned). If there are any matches in or
5808 surrounding BLOCK, then these alone are returned.
5809
5810 Names prefixed with "standard__" are handled specially: "standard__"
5811 is first stripped off, and only static and global symbols are searched. */
5812
5813 static int
5814 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5815 const struct block *block,
5816 domain_enum domain,
5817 struct block_symbol **results,
5818 int full_search)
5819 {
5820 int syms_from_global_search;
5821 int ndefns;
5822
5823 obstack_free (&symbol_list_obstack, NULL);
5824 obstack_init (&symbol_list_obstack);
5825 ada_add_all_symbols (&symbol_list_obstack, block, lookup_name,
5826 domain, full_search, &syms_from_global_search);
5827
5828 ndefns = num_defns_collected (&symbol_list_obstack);
5829 *results = defns_collected (&symbol_list_obstack, 1);
5830
5831 ndefns = remove_extra_symbols (*results, ndefns);
5832
5833 if (ndefns == 0 && full_search && syms_from_global_search)
5834 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5835
5836 if (ndefns == 1 && full_search && syms_from_global_search)
5837 cache_symbol (ada_lookup_name (lookup_name), domain,
5838 (*results)[0].symbol, (*results)[0].block);
5839
5840 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5841 return ndefns;
5842 }
5843
5844 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5845 in global scopes, returning the number of matches, and setting *RESULTS
5846 to a vector of (SYM,BLOCK) tuples.
5847 See ada_lookup_symbol_list_worker for further details. */
5848
5849 int
5850 ada_lookup_symbol_list (const char *name, const struct block *block,
5851 domain_enum domain, struct block_symbol **results)
5852 {
5853 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5854 lookup_name_info lookup_name (name, name_match_type);
5855
5856 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5857 }
5858
5859 /* Implementation of the la_iterate_over_symbols method. */
5860
5861 static void
5862 ada_iterate_over_symbols
5863 (const struct block *block, const lookup_name_info &name,
5864 domain_enum domain,
5865 gdb::function_view<symbol_found_callback_ftype> callback)
5866 {
5867 int ndefs, i;
5868 struct block_symbol *results;
5869
5870 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5871 for (i = 0; i < ndefs; ++i)
5872 {
5873 if (!callback (results[i].symbol))
5874 break;
5875 }
5876 }
5877
5878 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5879 to 1, but choosing the first symbol found if there are multiple
5880 choices.
5881
5882 The result is stored in *INFO, which must be non-NULL.
5883 If no match is found, INFO->SYM is set to NULL. */
5884
5885 void
5886 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5887 domain_enum domain,
5888 struct block_symbol *info)
5889 {
5890 struct block_symbol *candidates;
5891 int n_candidates;
5892
5893 /* Since we already have an encoded name, wrap it in '<>' to force a
5894 verbatim match. Otherwise, if the name happens to not look like
5895 an encoded name (because it doesn't include a "__"),
5896 ada_lookup_name_info would re-encode/fold it again, and that
5897 would e.g., incorrectly lowercase object renaming names like
5898 "R28b" -> "r28b". */
5899 std::string verbatim = std::string ("<") + name + '>';
5900
5901 gdb_assert (info != NULL);
5902 memset (info, 0, sizeof (struct block_symbol));
5903
5904 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5905 domain, &candidates);
5906 if (n_candidates == 0)
5907 return;
5908
5909 *info = candidates[0];
5910 info->symbol = fixup_symbol_section (info->symbol, NULL);
5911 }
5912
5913 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5914 scope and in global scopes, or NULL if none. NAME is folded and
5915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5916 choosing the first symbol if there are multiple choices.
5917 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5918
5919 struct block_symbol
5920 ada_lookup_symbol (const char *name, const struct block *block0,
5921 domain_enum domain, int *is_a_field_of_this)
5922 {
5923 struct block_symbol info;
5924
5925 if (is_a_field_of_this != NULL)
5926 *is_a_field_of_this = 0;
5927
5928 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5929 block0, domain, &info);
5930 return info;
5931 }
5932
5933 static struct block_symbol
5934 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5935 const char *name,
5936 const struct block *block,
5937 const domain_enum domain)
5938 {
5939 struct block_symbol sym;
5940
5941 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5942 if (sym.symbol != NULL)
5943 return sym;
5944
5945 /* If we haven't found a match at this point, try the primitive
5946 types. In other languages, this search is performed before
5947 searching for global symbols in order to short-circuit that
5948 global-symbol search if it happens that the name corresponds
5949 to a primitive type. But we cannot do the same in Ada, because
5950 it is perfectly legitimate for a program to declare a type which
5951 has the same name as a standard type. If looking up a type in
5952 that situation, we have traditionally ignored the primitive type
5953 in favor of user-defined types. This is why, unlike most other
5954 languages, we search the primitive types this late and only after
5955 having searched the global symbols without success. */
5956
5957 if (domain == VAR_DOMAIN)
5958 {
5959 struct gdbarch *gdbarch;
5960
5961 if (block == NULL)
5962 gdbarch = target_gdbarch ();
5963 else
5964 gdbarch = block_gdbarch (block);
5965 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5966 if (sym.symbol != NULL)
5967 return sym;
5968 }
5969
5970 return (struct block_symbol) {NULL, NULL};
5971 }
5972
5973
5974 /* True iff STR is a possible encoded suffix of a normal Ada name
5975 that is to be ignored for matching purposes. Suffixes of parallel
5976 names (e.g., XVE) are not included here. Currently, the possible suffixes
5977 are given by any of the regular expressions:
5978
5979 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5980 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5981 TKB [subprogram suffix for task bodies]
5982 _E[0-9]+[bs]$ [protected object entry suffixes]
5983 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5984
5985 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5986 match is performed. This sequence is used to differentiate homonyms,
5987 is an optional part of a valid name suffix. */
5988
5989 static int
5990 is_name_suffix (const char *str)
5991 {
5992 int k;
5993 const char *matching;
5994 const int len = strlen (str);
5995
5996 /* Skip optional leading __[0-9]+. */
5997
5998 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5999 {
6000 str += 3;
6001 while (isdigit (str[0]))
6002 str += 1;
6003 }
6004
6005 /* [.$][0-9]+ */
6006
6007 if (str[0] == '.' || str[0] == '$')
6008 {
6009 matching = str + 1;
6010 while (isdigit (matching[0]))
6011 matching += 1;
6012 if (matching[0] == '\0')
6013 return 1;
6014 }
6015
6016 /* ___[0-9]+ */
6017
6018 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6019 {
6020 matching = str + 3;
6021 while (isdigit (matching[0]))
6022 matching += 1;
6023 if (matching[0] == '\0')
6024 return 1;
6025 }
6026
6027 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6028
6029 if (strcmp (str, "TKB") == 0)
6030 return 1;
6031
6032 #if 0
6033 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6034 with a N at the end. Unfortunately, the compiler uses the same
6035 convention for other internal types it creates. So treating
6036 all entity names that end with an "N" as a name suffix causes
6037 some regressions. For instance, consider the case of an enumerated
6038 type. To support the 'Image attribute, it creates an array whose
6039 name ends with N.
6040 Having a single character like this as a suffix carrying some
6041 information is a bit risky. Perhaps we should change the encoding
6042 to be something like "_N" instead. In the meantime, do not do
6043 the following check. */
6044 /* Protected Object Subprograms */
6045 if (len == 1 && str [0] == 'N')
6046 return 1;
6047 #endif
6048
6049 /* _E[0-9]+[bs]$ */
6050 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6051 {
6052 matching = str + 3;
6053 while (isdigit (matching[0]))
6054 matching += 1;
6055 if ((matching[0] == 'b' || matching[0] == 's')
6056 && matching [1] == '\0')
6057 return 1;
6058 }
6059
6060 /* ??? We should not modify STR directly, as we are doing below. This
6061 is fine in this case, but may become problematic later if we find
6062 that this alternative did not work, and want to try matching
6063 another one from the begining of STR. Since we modified it, we
6064 won't be able to find the begining of the string anymore! */
6065 if (str[0] == 'X')
6066 {
6067 str += 1;
6068 while (str[0] != '_' && str[0] != '\0')
6069 {
6070 if (str[0] != 'n' && str[0] != 'b')
6071 return 0;
6072 str += 1;
6073 }
6074 }
6075
6076 if (str[0] == '\000')
6077 return 1;
6078
6079 if (str[0] == '_')
6080 {
6081 if (str[1] != '_' || str[2] == '\000')
6082 return 0;
6083 if (str[2] == '_')
6084 {
6085 if (strcmp (str + 3, "JM") == 0)
6086 return 1;
6087 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6088 the LJM suffix in favor of the JM one. But we will
6089 still accept LJM as a valid suffix for a reasonable
6090 amount of time, just to allow ourselves to debug programs
6091 compiled using an older version of GNAT. */
6092 if (strcmp (str + 3, "LJM") == 0)
6093 return 1;
6094 if (str[3] != 'X')
6095 return 0;
6096 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6097 || str[4] == 'U' || str[4] == 'P')
6098 return 1;
6099 if (str[4] == 'R' && str[5] != 'T')
6100 return 1;
6101 return 0;
6102 }
6103 if (!isdigit (str[2]))
6104 return 0;
6105 for (k = 3; str[k] != '\0'; k += 1)
6106 if (!isdigit (str[k]) && str[k] != '_')
6107 return 0;
6108 return 1;
6109 }
6110 if (str[0] == '$' && isdigit (str[1]))
6111 {
6112 for (k = 2; str[k] != '\0'; k += 1)
6113 if (!isdigit (str[k]) && str[k] != '_')
6114 return 0;
6115 return 1;
6116 }
6117 return 0;
6118 }
6119
6120 /* Return non-zero if the string starting at NAME and ending before
6121 NAME_END contains no capital letters. */
6122
6123 static int
6124 is_valid_name_for_wild_match (const char *name0)
6125 {
6126 const char *decoded_name = ada_decode (name0);
6127 int i;
6128
6129 /* If the decoded name starts with an angle bracket, it means that
6130 NAME0 does not follow the GNAT encoding format. It should then
6131 not be allowed as a possible wild match. */
6132 if (decoded_name[0] == '<')
6133 return 0;
6134
6135 for (i=0; decoded_name[i] != '\0'; i++)
6136 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6137 return 0;
6138
6139 return 1;
6140 }
6141
6142 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6143 that could start a simple name. Assumes that *NAMEP points into
6144 the string beginning at NAME0. */
6145
6146 static int
6147 advance_wild_match (const char **namep, const char *name0, int target0)
6148 {
6149 const char *name = *namep;
6150
6151 while (1)
6152 {
6153 int t0, t1;
6154
6155 t0 = *name;
6156 if (t0 == '_')
6157 {
6158 t1 = name[1];
6159 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6160 {
6161 name += 1;
6162 if (name == name0 + 5 && startswith (name0, "_ada"))
6163 break;
6164 else
6165 name += 1;
6166 }
6167 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6168 || name[2] == target0))
6169 {
6170 name += 2;
6171 break;
6172 }
6173 else
6174 return 0;
6175 }
6176 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6177 name += 1;
6178 else
6179 return 0;
6180 }
6181
6182 *namep = name;
6183 return 1;
6184 }
6185
6186 /* Return true iff NAME encodes a name of the form prefix.PATN.
6187 Ignores any informational suffixes of NAME (i.e., for which
6188 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6189 simple name. */
6190
6191 static bool
6192 wild_match (const char *name, const char *patn)
6193 {
6194 const char *p;
6195 const char *name0 = name;
6196
6197 while (1)
6198 {
6199 const char *match = name;
6200
6201 if (*name == *patn)
6202 {
6203 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6204 if (*p != *name)
6205 break;
6206 if (*p == '\0' && is_name_suffix (name))
6207 return match == name0 || is_valid_name_for_wild_match (name0);
6208
6209 if (name[-1] == '_')
6210 name -= 1;
6211 }
6212 if (!advance_wild_match (&name, name0, *patn))
6213 return false;
6214 }
6215 }
6216
6217 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6218 any trailing suffixes that encode debugging information or leading
6219 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6220 information that is ignored). */
6221
6222 static bool
6223 full_match (const char *sym_name, const char *search_name)
6224 {
6225 size_t search_name_len = strlen (search_name);
6226
6227 if (strncmp (sym_name, search_name, search_name_len) == 0
6228 && is_name_suffix (sym_name + search_name_len))
6229 return true;
6230
6231 if (startswith (sym_name, "_ada_")
6232 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6233 && is_name_suffix (sym_name + search_name_len + 5))
6234 return true;
6235
6236 return false;
6237 }
6238
6239 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6240 *defn_symbols, updating the list of symbols in OBSTACKP (if
6241 necessary). OBJFILE is the section containing BLOCK. */
6242
6243 static void
6244 ada_add_block_symbols (struct obstack *obstackp,
6245 const struct block *block,
6246 const lookup_name_info &lookup_name,
6247 domain_enum domain, struct objfile *objfile)
6248 {
6249 struct block_iterator iter;
6250 /* A matching argument symbol, if any. */
6251 struct symbol *arg_sym;
6252 /* Set true when we find a matching non-argument symbol. */
6253 int found_sym;
6254 struct symbol *sym;
6255
6256 arg_sym = NULL;
6257 found_sym = 0;
6258 for (sym = block_iter_match_first (block, lookup_name, &iter);
6259 sym != NULL;
6260 sym = block_iter_match_next (lookup_name, &iter))
6261 {
6262 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6263 SYMBOL_DOMAIN (sym), domain))
6264 {
6265 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6266 {
6267 if (SYMBOL_IS_ARGUMENT (sym))
6268 arg_sym = sym;
6269 else
6270 {
6271 found_sym = 1;
6272 add_defn_to_vec (obstackp,
6273 fixup_symbol_section (sym, objfile),
6274 block);
6275 }
6276 }
6277 }
6278 }
6279
6280 /* Handle renamings. */
6281
6282 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6283 found_sym = 1;
6284
6285 if (!found_sym && arg_sym != NULL)
6286 {
6287 add_defn_to_vec (obstackp,
6288 fixup_symbol_section (arg_sym, objfile),
6289 block);
6290 }
6291
6292 if (!lookup_name.ada ().wild_match_p ())
6293 {
6294 arg_sym = NULL;
6295 found_sym = 0;
6296 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6297 const char *name = ada_lookup_name.c_str ();
6298 size_t name_len = ada_lookup_name.size ();
6299
6300 ALL_BLOCK_SYMBOLS (block, iter, sym)
6301 {
6302 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6303 SYMBOL_DOMAIN (sym), domain))
6304 {
6305 int cmp;
6306
6307 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6308 if (cmp == 0)
6309 {
6310 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6311 if (cmp == 0)
6312 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6313 name_len);
6314 }
6315
6316 if (cmp == 0
6317 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6318 {
6319 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6320 {
6321 if (SYMBOL_IS_ARGUMENT (sym))
6322 arg_sym = sym;
6323 else
6324 {
6325 found_sym = 1;
6326 add_defn_to_vec (obstackp,
6327 fixup_symbol_section (sym, objfile),
6328 block);
6329 }
6330 }
6331 }
6332 }
6333 }
6334
6335 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6336 They aren't parameters, right? */
6337 if (!found_sym && arg_sym != NULL)
6338 {
6339 add_defn_to_vec (obstackp,
6340 fixup_symbol_section (arg_sym, objfile),
6341 block);
6342 }
6343 }
6344 }
6345 \f
6346
6347 /* Symbol Completion */
6348
6349 /* See symtab.h. */
6350
6351 bool
6352 ada_lookup_name_info::matches
6353 (const char *sym_name,
6354 symbol_name_match_type match_type,
6355 completion_match *comp_match) const
6356 {
6357 bool match = false;
6358 const char *text = m_encoded_name.c_str ();
6359 size_t text_len = m_encoded_name.size ();
6360
6361 /* First, test against the fully qualified name of the symbol. */
6362
6363 if (strncmp (sym_name, text, text_len) == 0)
6364 match = true;
6365
6366 if (match && !m_encoded_p)
6367 {
6368 /* One needed check before declaring a positive match is to verify
6369 that iff we are doing a verbatim match, the decoded version
6370 of the symbol name starts with '<'. Otherwise, this symbol name
6371 is not a suitable completion. */
6372 const char *sym_name_copy = sym_name;
6373 bool has_angle_bracket;
6374
6375 sym_name = ada_decode (sym_name);
6376 has_angle_bracket = (sym_name[0] == '<');
6377 match = (has_angle_bracket == m_verbatim_p);
6378 sym_name = sym_name_copy;
6379 }
6380
6381 if (match && !m_verbatim_p)
6382 {
6383 /* When doing non-verbatim match, another check that needs to
6384 be done is to verify that the potentially matching symbol name
6385 does not include capital letters, because the ada-mode would
6386 not be able to understand these symbol names without the
6387 angle bracket notation. */
6388 const char *tmp;
6389
6390 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6391 if (*tmp != '\0')
6392 match = false;
6393 }
6394
6395 /* Second: Try wild matching... */
6396
6397 if (!match && m_wild_match_p)
6398 {
6399 /* Since we are doing wild matching, this means that TEXT
6400 may represent an unqualified symbol name. We therefore must
6401 also compare TEXT against the unqualified name of the symbol. */
6402 sym_name = ada_unqualified_name (ada_decode (sym_name));
6403
6404 if (strncmp (sym_name, text, text_len) == 0)
6405 match = true;
6406 }
6407
6408 /* Finally: If we found a match, prepare the result to return. */
6409
6410 if (!match)
6411 return false;
6412
6413 if (comp_match != NULL)
6414 {
6415 std::string &match_str = comp_match->storage ();
6416
6417 if (!m_encoded_p)
6418 {
6419 match_str = ada_decode (sym_name);
6420 comp_match->set_match (match_str.c_str ());
6421 }
6422 else
6423 {
6424 if (m_verbatim_p)
6425 match_str = add_angle_brackets (sym_name);
6426 else
6427 match_str = sym_name;
6428
6429 comp_match->set_match (match_str.c_str ());
6430 }
6431 }
6432
6433 return true;
6434 }
6435
6436 /* Add the list of possible symbol names completing TEXT to TRACKER.
6437 WORD is the entire command on which completion is made. */
6438
6439 static void
6440 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6441 complete_symbol_mode mode,
6442 symbol_name_match_type name_match_type,
6443 const char *text, const char *word,
6444 enum type_code code)
6445 {
6446 struct symbol *sym;
6447 struct compunit_symtab *s;
6448 struct minimal_symbol *msymbol;
6449 struct objfile *objfile;
6450 const struct block *b, *surrounding_static_block = 0;
6451 int i;
6452 struct block_iterator iter;
6453 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6454
6455 gdb_assert (code == TYPE_CODE_UNDEF);
6456
6457 lookup_name_info lookup_name (text, name_match_type, true);
6458
6459 /* First, look at the partial symtab symbols. */
6460 expand_symtabs_matching (NULL,
6461 lookup_name,
6462 NULL,
6463 NULL,
6464 ALL_DOMAIN);
6465
6466 /* At this point scan through the misc symbol vectors and add each
6467 symbol you find to the list. Eventually we want to ignore
6468 anything that isn't a text symbol (everything else will be
6469 handled by the psymtab code above). */
6470
6471 ALL_MSYMBOLS (objfile, msymbol)
6472 {
6473 QUIT;
6474
6475 completion_list_add_name (tracker,
6476 MSYMBOL_LANGUAGE (msymbol),
6477 MSYMBOL_LINKAGE_NAME (msymbol),
6478 lookup_name, text, word);
6479 }
6480
6481 /* Search upwards from currently selected frame (so that we can
6482 complete on local vars. */
6483
6484 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6485 {
6486 if (!BLOCK_SUPERBLOCK (b))
6487 surrounding_static_block = b; /* For elmin of dups */
6488
6489 ALL_BLOCK_SYMBOLS (b, iter, sym)
6490 {
6491 completion_list_add_name (tracker,
6492 SYMBOL_LANGUAGE (sym),
6493 SYMBOL_LINKAGE_NAME (sym),
6494 lookup_name, text, word);
6495 }
6496 }
6497
6498 /* Go through the symtabs and check the externs and statics for
6499 symbols which match. */
6500
6501 ALL_COMPUNITS (objfile, s)
6502 {
6503 QUIT;
6504 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6505 ALL_BLOCK_SYMBOLS (b, iter, sym)
6506 {
6507 completion_list_add_name (tracker,
6508 SYMBOL_LANGUAGE (sym),
6509 SYMBOL_LINKAGE_NAME (sym),
6510 lookup_name, text, word);
6511 }
6512 }
6513
6514 ALL_COMPUNITS (objfile, s)
6515 {
6516 QUIT;
6517 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6518 /* Don't do this block twice. */
6519 if (b == surrounding_static_block)
6520 continue;
6521 ALL_BLOCK_SYMBOLS (b, iter, sym)
6522 {
6523 completion_list_add_name (tracker,
6524 SYMBOL_LANGUAGE (sym),
6525 SYMBOL_LINKAGE_NAME (sym),
6526 lookup_name, text, word);
6527 }
6528 }
6529
6530 do_cleanups (old_chain);
6531 }
6532
6533 /* Field Access */
6534
6535 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6536 for tagged types. */
6537
6538 static int
6539 ada_is_dispatch_table_ptr_type (struct type *type)
6540 {
6541 const char *name;
6542
6543 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6544 return 0;
6545
6546 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6547 if (name == NULL)
6548 return 0;
6549
6550 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6551 }
6552
6553 /* Return non-zero if TYPE is an interface tag. */
6554
6555 static int
6556 ada_is_interface_tag (struct type *type)
6557 {
6558 const char *name = TYPE_NAME (type);
6559
6560 if (name == NULL)
6561 return 0;
6562
6563 return (strcmp (name, "ada__tags__interface_tag") == 0);
6564 }
6565
6566 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6567 to be invisible to users. */
6568
6569 int
6570 ada_is_ignored_field (struct type *type, int field_num)
6571 {
6572 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6573 return 1;
6574
6575 /* Check the name of that field. */
6576 {
6577 const char *name = TYPE_FIELD_NAME (type, field_num);
6578
6579 /* Anonymous field names should not be printed.
6580 brobecker/2007-02-20: I don't think this can actually happen
6581 but we don't want to print the value of annonymous fields anyway. */
6582 if (name == NULL)
6583 return 1;
6584
6585 /* Normally, fields whose name start with an underscore ("_")
6586 are fields that have been internally generated by the compiler,
6587 and thus should not be printed. The "_parent" field is special,
6588 however: This is a field internally generated by the compiler
6589 for tagged types, and it contains the components inherited from
6590 the parent type. This field should not be printed as is, but
6591 should not be ignored either. */
6592 if (name[0] == '_' && !startswith (name, "_parent"))
6593 return 1;
6594 }
6595
6596 /* If this is the dispatch table of a tagged type or an interface tag,
6597 then ignore. */
6598 if (ada_is_tagged_type (type, 1)
6599 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6600 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6601 return 1;
6602
6603 /* Not a special field, so it should not be ignored. */
6604 return 0;
6605 }
6606
6607 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6608 pointer or reference type whose ultimate target has a tag field. */
6609
6610 int
6611 ada_is_tagged_type (struct type *type, int refok)
6612 {
6613 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6614 }
6615
6616 /* True iff TYPE represents the type of X'Tag */
6617
6618 int
6619 ada_is_tag_type (struct type *type)
6620 {
6621 type = ada_check_typedef (type);
6622
6623 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6624 return 0;
6625 else
6626 {
6627 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6628
6629 return (name != NULL
6630 && strcmp (name, "ada__tags__dispatch_table") == 0);
6631 }
6632 }
6633
6634 /* The type of the tag on VAL. */
6635
6636 struct type *
6637 ada_tag_type (struct value *val)
6638 {
6639 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6640 }
6641
6642 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6643 retired at Ada 05). */
6644
6645 static int
6646 is_ada95_tag (struct value *tag)
6647 {
6648 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6649 }
6650
6651 /* The value of the tag on VAL. */
6652
6653 struct value *
6654 ada_value_tag (struct value *val)
6655 {
6656 return ada_value_struct_elt (val, "_tag", 0);
6657 }
6658
6659 /* The value of the tag on the object of type TYPE whose contents are
6660 saved at VALADDR, if it is non-null, or is at memory address
6661 ADDRESS. */
6662
6663 static struct value *
6664 value_tag_from_contents_and_address (struct type *type,
6665 const gdb_byte *valaddr,
6666 CORE_ADDR address)
6667 {
6668 int tag_byte_offset;
6669 struct type *tag_type;
6670
6671 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6672 NULL, NULL, NULL))
6673 {
6674 const gdb_byte *valaddr1 = ((valaddr == NULL)
6675 ? NULL
6676 : valaddr + tag_byte_offset);
6677 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6678
6679 return value_from_contents_and_address (tag_type, valaddr1, address1);
6680 }
6681 return NULL;
6682 }
6683
6684 static struct type *
6685 type_from_tag (struct value *tag)
6686 {
6687 const char *type_name = ada_tag_name (tag);
6688
6689 if (type_name != NULL)
6690 return ada_find_any_type (ada_encode (type_name));
6691 return NULL;
6692 }
6693
6694 /* Given a value OBJ of a tagged type, return a value of this
6695 type at the base address of the object. The base address, as
6696 defined in Ada.Tags, it is the address of the primary tag of
6697 the object, and therefore where the field values of its full
6698 view can be fetched. */
6699
6700 struct value *
6701 ada_tag_value_at_base_address (struct value *obj)
6702 {
6703 struct value *val;
6704 LONGEST offset_to_top = 0;
6705 struct type *ptr_type, *obj_type;
6706 struct value *tag;
6707 CORE_ADDR base_address;
6708
6709 obj_type = value_type (obj);
6710
6711 /* It is the responsability of the caller to deref pointers. */
6712
6713 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6714 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6715 return obj;
6716
6717 tag = ada_value_tag (obj);
6718 if (!tag)
6719 return obj;
6720
6721 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6722
6723 if (is_ada95_tag (tag))
6724 return obj;
6725
6726 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6727 ptr_type = lookup_pointer_type (ptr_type);
6728 val = value_cast (ptr_type, tag);
6729 if (!val)
6730 return obj;
6731
6732 /* It is perfectly possible that an exception be raised while
6733 trying to determine the base address, just like for the tag;
6734 see ada_tag_name for more details. We do not print the error
6735 message for the same reason. */
6736
6737 TRY
6738 {
6739 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6740 }
6741
6742 CATCH (e, RETURN_MASK_ERROR)
6743 {
6744 return obj;
6745 }
6746 END_CATCH
6747
6748 /* If offset is null, nothing to do. */
6749
6750 if (offset_to_top == 0)
6751 return obj;
6752
6753 /* -1 is a special case in Ada.Tags; however, what should be done
6754 is not quite clear from the documentation. So do nothing for
6755 now. */
6756
6757 if (offset_to_top == -1)
6758 return obj;
6759
6760 base_address = value_address (obj) - offset_to_top;
6761 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6762
6763 /* Make sure that we have a proper tag at the new address.
6764 Otherwise, offset_to_top is bogus (which can happen when
6765 the object is not initialized yet). */
6766
6767 if (!tag)
6768 return obj;
6769
6770 obj_type = type_from_tag (tag);
6771
6772 if (!obj_type)
6773 return obj;
6774
6775 return value_from_contents_and_address (obj_type, NULL, base_address);
6776 }
6777
6778 /* Return the "ada__tags__type_specific_data" type. */
6779
6780 static struct type *
6781 ada_get_tsd_type (struct inferior *inf)
6782 {
6783 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6784
6785 if (data->tsd_type == 0)
6786 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6787 return data->tsd_type;
6788 }
6789
6790 /* Return the TSD (type-specific data) associated to the given TAG.
6791 TAG is assumed to be the tag of a tagged-type entity.
6792
6793 May return NULL if we are unable to get the TSD. */
6794
6795 static struct value *
6796 ada_get_tsd_from_tag (struct value *tag)
6797 {
6798 struct value *val;
6799 struct type *type;
6800
6801 /* First option: The TSD is simply stored as a field of our TAG.
6802 Only older versions of GNAT would use this format, but we have
6803 to test it first, because there are no visible markers for
6804 the current approach except the absence of that field. */
6805
6806 val = ada_value_struct_elt (tag, "tsd", 1);
6807 if (val)
6808 return val;
6809
6810 /* Try the second representation for the dispatch table (in which
6811 there is no explicit 'tsd' field in the referent of the tag pointer,
6812 and instead the tsd pointer is stored just before the dispatch
6813 table. */
6814
6815 type = ada_get_tsd_type (current_inferior());
6816 if (type == NULL)
6817 return NULL;
6818 type = lookup_pointer_type (lookup_pointer_type (type));
6819 val = value_cast (type, tag);
6820 if (val == NULL)
6821 return NULL;
6822 return value_ind (value_ptradd (val, -1));
6823 }
6824
6825 /* Given the TSD of a tag (type-specific data), return a string
6826 containing the name of the associated type.
6827
6828 The returned value is good until the next call. May return NULL
6829 if we are unable to determine the tag name. */
6830
6831 static char *
6832 ada_tag_name_from_tsd (struct value *tsd)
6833 {
6834 static char name[1024];
6835 char *p;
6836 struct value *val;
6837
6838 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6839 if (val == NULL)
6840 return NULL;
6841 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6842 for (p = name; *p != '\0'; p += 1)
6843 if (isalpha (*p))
6844 *p = tolower (*p);
6845 return name;
6846 }
6847
6848 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6849 a C string.
6850
6851 Return NULL if the TAG is not an Ada tag, or if we were unable to
6852 determine the name of that tag. The result is good until the next
6853 call. */
6854
6855 const char *
6856 ada_tag_name (struct value *tag)
6857 {
6858 char *name = NULL;
6859
6860 if (!ada_is_tag_type (value_type (tag)))
6861 return NULL;
6862
6863 /* It is perfectly possible that an exception be raised while trying
6864 to determine the TAG's name, even under normal circumstances:
6865 The associated variable may be uninitialized or corrupted, for
6866 instance. We do not let any exception propagate past this point.
6867 instead we return NULL.
6868
6869 We also do not print the error message either (which often is very
6870 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6871 the caller print a more meaningful message if necessary. */
6872 TRY
6873 {
6874 struct value *tsd = ada_get_tsd_from_tag (tag);
6875
6876 if (tsd != NULL)
6877 name = ada_tag_name_from_tsd (tsd);
6878 }
6879 CATCH (e, RETURN_MASK_ERROR)
6880 {
6881 }
6882 END_CATCH
6883
6884 return name;
6885 }
6886
6887 /* The parent type of TYPE, or NULL if none. */
6888
6889 struct type *
6890 ada_parent_type (struct type *type)
6891 {
6892 int i;
6893
6894 type = ada_check_typedef (type);
6895
6896 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6897 return NULL;
6898
6899 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6900 if (ada_is_parent_field (type, i))
6901 {
6902 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6903
6904 /* If the _parent field is a pointer, then dereference it. */
6905 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6906 parent_type = TYPE_TARGET_TYPE (parent_type);
6907 /* If there is a parallel XVS type, get the actual base type. */
6908 parent_type = ada_get_base_type (parent_type);
6909
6910 return ada_check_typedef (parent_type);
6911 }
6912
6913 return NULL;
6914 }
6915
6916 /* True iff field number FIELD_NUM of structure type TYPE contains the
6917 parent-type (inherited) fields of a derived type. Assumes TYPE is
6918 a structure type with at least FIELD_NUM+1 fields. */
6919
6920 int
6921 ada_is_parent_field (struct type *type, int field_num)
6922 {
6923 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6924
6925 return (name != NULL
6926 && (startswith (name, "PARENT")
6927 || startswith (name, "_parent")));
6928 }
6929
6930 /* True iff field number FIELD_NUM of structure type TYPE is a
6931 transparent wrapper field (which should be silently traversed when doing
6932 field selection and flattened when printing). Assumes TYPE is a
6933 structure type with at least FIELD_NUM+1 fields. Such fields are always
6934 structures. */
6935
6936 int
6937 ada_is_wrapper_field (struct type *type, int field_num)
6938 {
6939 const char *name = TYPE_FIELD_NAME (type, field_num);
6940
6941 if (name != NULL && strcmp (name, "RETVAL") == 0)
6942 {
6943 /* This happens in functions with "out" or "in out" parameters
6944 which are passed by copy. For such functions, GNAT describes
6945 the function's return type as being a struct where the return
6946 value is in a field called RETVAL, and where the other "out"
6947 or "in out" parameters are fields of that struct. This is not
6948 a wrapper. */
6949 return 0;
6950 }
6951
6952 return (name != NULL
6953 && (startswith (name, "PARENT")
6954 || strcmp (name, "REP") == 0
6955 || startswith (name, "_parent")
6956 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6957 }
6958
6959 /* True iff field number FIELD_NUM of structure or union type TYPE
6960 is a variant wrapper. Assumes TYPE is a structure type with at least
6961 FIELD_NUM+1 fields. */
6962
6963 int
6964 ada_is_variant_part (struct type *type, int field_num)
6965 {
6966 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6967
6968 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6969 || (is_dynamic_field (type, field_num)
6970 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6971 == TYPE_CODE_UNION)));
6972 }
6973
6974 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6975 whose discriminants are contained in the record type OUTER_TYPE,
6976 returns the type of the controlling discriminant for the variant.
6977 May return NULL if the type could not be found. */
6978
6979 struct type *
6980 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6981 {
6982 const char *name = ada_variant_discrim_name (var_type);
6983
6984 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6985 }
6986
6987 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6988 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6989 represents a 'when others' clause; otherwise 0. */
6990
6991 int
6992 ada_is_others_clause (struct type *type, int field_num)
6993 {
6994 const char *name = TYPE_FIELD_NAME (type, field_num);
6995
6996 return (name != NULL && name[0] == 'O');
6997 }
6998
6999 /* Assuming that TYPE0 is the type of the variant part of a record,
7000 returns the name of the discriminant controlling the variant.
7001 The value is valid until the next call to ada_variant_discrim_name. */
7002
7003 const char *
7004 ada_variant_discrim_name (struct type *type0)
7005 {
7006 static char *result = NULL;
7007 static size_t result_len = 0;
7008 struct type *type;
7009 const char *name;
7010 const char *discrim_end;
7011 const char *discrim_start;
7012
7013 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7014 type = TYPE_TARGET_TYPE (type0);
7015 else
7016 type = type0;
7017
7018 name = ada_type_name (type);
7019
7020 if (name == NULL || name[0] == '\000')
7021 return "";
7022
7023 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7024 discrim_end -= 1)
7025 {
7026 if (startswith (discrim_end, "___XVN"))
7027 break;
7028 }
7029 if (discrim_end == name)
7030 return "";
7031
7032 for (discrim_start = discrim_end; discrim_start != name + 3;
7033 discrim_start -= 1)
7034 {
7035 if (discrim_start == name + 1)
7036 return "";
7037 if ((discrim_start > name + 3
7038 && startswith (discrim_start - 3, "___"))
7039 || discrim_start[-1] == '.')
7040 break;
7041 }
7042
7043 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7044 strncpy (result, discrim_start, discrim_end - discrim_start);
7045 result[discrim_end - discrim_start] = '\0';
7046 return result;
7047 }
7048
7049 /* Scan STR for a subtype-encoded number, beginning at position K.
7050 Put the position of the character just past the number scanned in
7051 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7052 Return 1 if there was a valid number at the given position, and 0
7053 otherwise. A "subtype-encoded" number consists of the absolute value
7054 in decimal, followed by the letter 'm' to indicate a negative number.
7055 Assumes 0m does not occur. */
7056
7057 int
7058 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7059 {
7060 ULONGEST RU;
7061
7062 if (!isdigit (str[k]))
7063 return 0;
7064
7065 /* Do it the hard way so as not to make any assumption about
7066 the relationship of unsigned long (%lu scan format code) and
7067 LONGEST. */
7068 RU = 0;
7069 while (isdigit (str[k]))
7070 {
7071 RU = RU * 10 + (str[k] - '0');
7072 k += 1;
7073 }
7074
7075 if (str[k] == 'm')
7076 {
7077 if (R != NULL)
7078 *R = (-(LONGEST) (RU - 1)) - 1;
7079 k += 1;
7080 }
7081 else if (R != NULL)
7082 *R = (LONGEST) RU;
7083
7084 /* NOTE on the above: Technically, C does not say what the results of
7085 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7086 number representable as a LONGEST (although either would probably work
7087 in most implementations). When RU>0, the locution in the then branch
7088 above is always equivalent to the negative of RU. */
7089
7090 if (new_k != NULL)
7091 *new_k = k;
7092 return 1;
7093 }
7094
7095 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7096 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7097 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7098
7099 int
7100 ada_in_variant (LONGEST val, struct type *type, int field_num)
7101 {
7102 const char *name = TYPE_FIELD_NAME (type, field_num);
7103 int p;
7104
7105 p = 0;
7106 while (1)
7107 {
7108 switch (name[p])
7109 {
7110 case '\0':
7111 return 0;
7112 case 'S':
7113 {
7114 LONGEST W;
7115
7116 if (!ada_scan_number (name, p + 1, &W, &p))
7117 return 0;
7118 if (val == W)
7119 return 1;
7120 break;
7121 }
7122 case 'R':
7123 {
7124 LONGEST L, U;
7125
7126 if (!ada_scan_number (name, p + 1, &L, &p)
7127 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7128 return 0;
7129 if (val >= L && val <= U)
7130 return 1;
7131 break;
7132 }
7133 case 'O':
7134 return 1;
7135 default:
7136 return 0;
7137 }
7138 }
7139 }
7140
7141 /* FIXME: Lots of redundancy below. Try to consolidate. */
7142
7143 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7144 ARG_TYPE, extract and return the value of one of its (non-static)
7145 fields. FIELDNO says which field. Differs from value_primitive_field
7146 only in that it can handle packed values of arbitrary type. */
7147
7148 static struct value *
7149 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7150 struct type *arg_type)
7151 {
7152 struct type *type;
7153
7154 arg_type = ada_check_typedef (arg_type);
7155 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7156
7157 /* Handle packed fields. */
7158
7159 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7160 {
7161 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7162 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7163
7164 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7165 offset + bit_pos / 8,
7166 bit_pos % 8, bit_size, type);
7167 }
7168 else
7169 return value_primitive_field (arg1, offset, fieldno, arg_type);
7170 }
7171
7172 /* Find field with name NAME in object of type TYPE. If found,
7173 set the following for each argument that is non-null:
7174 - *FIELD_TYPE_P to the field's type;
7175 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7176 an object of that type;
7177 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7178 - *BIT_SIZE_P to its size in bits if the field is packed, and
7179 0 otherwise;
7180 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7181 fields up to but not including the desired field, or by the total
7182 number of fields if not found. A NULL value of NAME never
7183 matches; the function just counts visible fields in this case.
7184
7185 Returns 1 if found, 0 otherwise. */
7186
7187 static int
7188 find_struct_field (const char *name, struct type *type, int offset,
7189 struct type **field_type_p,
7190 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7191 int *index_p)
7192 {
7193 int i;
7194
7195 type = ada_check_typedef (type);
7196
7197 if (field_type_p != NULL)
7198 *field_type_p = NULL;
7199 if (byte_offset_p != NULL)
7200 *byte_offset_p = 0;
7201 if (bit_offset_p != NULL)
7202 *bit_offset_p = 0;
7203 if (bit_size_p != NULL)
7204 *bit_size_p = 0;
7205
7206 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7207 {
7208 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7209 int fld_offset = offset + bit_pos / 8;
7210 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7211
7212 if (t_field_name == NULL)
7213 continue;
7214
7215 else if (name != NULL && field_name_match (t_field_name, name))
7216 {
7217 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7218
7219 if (field_type_p != NULL)
7220 *field_type_p = TYPE_FIELD_TYPE (type, i);
7221 if (byte_offset_p != NULL)
7222 *byte_offset_p = fld_offset;
7223 if (bit_offset_p != NULL)
7224 *bit_offset_p = bit_pos % 8;
7225 if (bit_size_p != NULL)
7226 *bit_size_p = bit_size;
7227 return 1;
7228 }
7229 else if (ada_is_wrapper_field (type, i))
7230 {
7231 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7232 field_type_p, byte_offset_p, bit_offset_p,
7233 bit_size_p, index_p))
7234 return 1;
7235 }
7236 else if (ada_is_variant_part (type, i))
7237 {
7238 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7239 fixed type?? */
7240 int j;
7241 struct type *field_type
7242 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7243
7244 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7245 {
7246 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7247 fld_offset
7248 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7249 field_type_p, byte_offset_p,
7250 bit_offset_p, bit_size_p, index_p))
7251 return 1;
7252 }
7253 }
7254 else if (index_p != NULL)
7255 *index_p += 1;
7256 }
7257 return 0;
7258 }
7259
7260 /* Number of user-visible fields in record type TYPE. */
7261
7262 static int
7263 num_visible_fields (struct type *type)
7264 {
7265 int n;
7266
7267 n = 0;
7268 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7269 return n;
7270 }
7271
7272 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7273 and search in it assuming it has (class) type TYPE.
7274 If found, return value, else return NULL.
7275
7276 Searches recursively through wrapper fields (e.g., '_parent'). */
7277
7278 static struct value *
7279 ada_search_struct_field (const char *name, struct value *arg, int offset,
7280 struct type *type)
7281 {
7282 int i;
7283
7284 type = ada_check_typedef (type);
7285 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7286 {
7287 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7288
7289 if (t_field_name == NULL)
7290 continue;
7291
7292 else if (field_name_match (t_field_name, name))
7293 return ada_value_primitive_field (arg, offset, i, type);
7294
7295 else if (ada_is_wrapper_field (type, i))
7296 {
7297 struct value *v = /* Do not let indent join lines here. */
7298 ada_search_struct_field (name, arg,
7299 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7300 TYPE_FIELD_TYPE (type, i));
7301
7302 if (v != NULL)
7303 return v;
7304 }
7305
7306 else if (ada_is_variant_part (type, i))
7307 {
7308 /* PNH: Do we ever get here? See find_struct_field. */
7309 int j;
7310 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7311 i));
7312 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7313
7314 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7315 {
7316 struct value *v = ada_search_struct_field /* Force line
7317 break. */
7318 (name, arg,
7319 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7320 TYPE_FIELD_TYPE (field_type, j));
7321
7322 if (v != NULL)
7323 return v;
7324 }
7325 }
7326 }
7327 return NULL;
7328 }
7329
7330 static struct value *ada_index_struct_field_1 (int *, struct value *,
7331 int, struct type *);
7332
7333
7334 /* Return field #INDEX in ARG, where the index is that returned by
7335 * find_struct_field through its INDEX_P argument. Adjust the address
7336 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7337 * If found, return value, else return NULL. */
7338
7339 static struct value *
7340 ada_index_struct_field (int index, struct value *arg, int offset,
7341 struct type *type)
7342 {
7343 return ada_index_struct_field_1 (&index, arg, offset, type);
7344 }
7345
7346
7347 /* Auxiliary function for ada_index_struct_field. Like
7348 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7349 * *INDEX_P. */
7350
7351 static struct value *
7352 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7353 struct type *type)
7354 {
7355 int i;
7356 type = ada_check_typedef (type);
7357
7358 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7359 {
7360 if (TYPE_FIELD_NAME (type, i) == NULL)
7361 continue;
7362 else if (ada_is_wrapper_field (type, i))
7363 {
7364 struct value *v = /* Do not let indent join lines here. */
7365 ada_index_struct_field_1 (index_p, arg,
7366 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7367 TYPE_FIELD_TYPE (type, i));
7368
7369 if (v != NULL)
7370 return v;
7371 }
7372
7373 else if (ada_is_variant_part (type, i))
7374 {
7375 /* PNH: Do we ever get here? See ada_search_struct_field,
7376 find_struct_field. */
7377 error (_("Cannot assign this kind of variant record"));
7378 }
7379 else if (*index_p == 0)
7380 return ada_value_primitive_field (arg, offset, i, type);
7381 else
7382 *index_p -= 1;
7383 }
7384 return NULL;
7385 }
7386
7387 /* Given ARG, a value of type (pointer or reference to a)*
7388 structure/union, extract the component named NAME from the ultimate
7389 target structure/union and return it as a value with its
7390 appropriate type.
7391
7392 The routine searches for NAME among all members of the structure itself
7393 and (recursively) among all members of any wrapper members
7394 (e.g., '_parent').
7395
7396 If NO_ERR, then simply return NULL in case of error, rather than
7397 calling error. */
7398
7399 struct value *
7400 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7401 {
7402 struct type *t, *t1;
7403 struct value *v;
7404
7405 v = NULL;
7406 t1 = t = ada_check_typedef (value_type (arg));
7407 if (TYPE_CODE (t) == TYPE_CODE_REF)
7408 {
7409 t1 = TYPE_TARGET_TYPE (t);
7410 if (t1 == NULL)
7411 goto BadValue;
7412 t1 = ada_check_typedef (t1);
7413 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7414 {
7415 arg = coerce_ref (arg);
7416 t = t1;
7417 }
7418 }
7419
7420 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7421 {
7422 t1 = TYPE_TARGET_TYPE (t);
7423 if (t1 == NULL)
7424 goto BadValue;
7425 t1 = ada_check_typedef (t1);
7426 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7427 {
7428 arg = value_ind (arg);
7429 t = t1;
7430 }
7431 else
7432 break;
7433 }
7434
7435 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7436 goto BadValue;
7437
7438 if (t1 == t)
7439 v = ada_search_struct_field (name, arg, 0, t);
7440 else
7441 {
7442 int bit_offset, bit_size, byte_offset;
7443 struct type *field_type;
7444 CORE_ADDR address;
7445
7446 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7447 address = value_address (ada_value_ind (arg));
7448 else
7449 address = value_address (ada_coerce_ref (arg));
7450
7451 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7452 if (find_struct_field (name, t1, 0,
7453 &field_type, &byte_offset, &bit_offset,
7454 &bit_size, NULL))
7455 {
7456 if (bit_size != 0)
7457 {
7458 if (TYPE_CODE (t) == TYPE_CODE_REF)
7459 arg = ada_coerce_ref (arg);
7460 else
7461 arg = ada_value_ind (arg);
7462 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7463 bit_offset, bit_size,
7464 field_type);
7465 }
7466 else
7467 v = value_at_lazy (field_type, address + byte_offset);
7468 }
7469 }
7470
7471 if (v != NULL || no_err)
7472 return v;
7473 else
7474 error (_("There is no member named %s."), name);
7475
7476 BadValue:
7477 if (no_err)
7478 return NULL;
7479 else
7480 error (_("Attempt to extract a component of "
7481 "a value that is not a record."));
7482 }
7483
7484 /* Return a string representation of type TYPE. */
7485
7486 static std::string
7487 type_as_string (struct type *type)
7488 {
7489 string_file tmp_stream;
7490
7491 type_print (type, "", &tmp_stream, -1);
7492
7493 return std::move (tmp_stream.string ());
7494 }
7495
7496 /* Given a type TYPE, look up the type of the component of type named NAME.
7497 If DISPP is non-null, add its byte displacement from the beginning of a
7498 structure (pointed to by a value) of type TYPE to *DISPP (does not
7499 work for packed fields).
7500
7501 Matches any field whose name has NAME as a prefix, possibly
7502 followed by "___".
7503
7504 TYPE can be either a struct or union. If REFOK, TYPE may also
7505 be a (pointer or reference)+ to a struct or union, and the
7506 ultimate target type will be searched.
7507
7508 Looks recursively into variant clauses and parent types.
7509
7510 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7511 TYPE is not a type of the right kind. */
7512
7513 static struct type *
7514 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7515 int noerr)
7516 {
7517 int i;
7518
7519 if (name == NULL)
7520 goto BadName;
7521
7522 if (refok && type != NULL)
7523 while (1)
7524 {
7525 type = ada_check_typedef (type);
7526 if (TYPE_CODE (type) != TYPE_CODE_PTR
7527 && TYPE_CODE (type) != TYPE_CODE_REF)
7528 break;
7529 type = TYPE_TARGET_TYPE (type);
7530 }
7531
7532 if (type == NULL
7533 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7534 && TYPE_CODE (type) != TYPE_CODE_UNION))
7535 {
7536 if (noerr)
7537 return NULL;
7538
7539 error (_("Type %s is not a structure or union type"),
7540 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7541 }
7542
7543 type = to_static_fixed_type (type);
7544
7545 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7546 {
7547 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7548 struct type *t;
7549
7550 if (t_field_name == NULL)
7551 continue;
7552
7553 else if (field_name_match (t_field_name, name))
7554 return TYPE_FIELD_TYPE (type, i);
7555
7556 else if (ada_is_wrapper_field (type, i))
7557 {
7558 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7559 0, 1);
7560 if (t != NULL)
7561 return t;
7562 }
7563
7564 else if (ada_is_variant_part (type, i))
7565 {
7566 int j;
7567 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7568 i));
7569
7570 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7571 {
7572 /* FIXME pnh 2008/01/26: We check for a field that is
7573 NOT wrapped in a struct, since the compiler sometimes
7574 generates these for unchecked variant types. Revisit
7575 if the compiler changes this practice. */
7576 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7577
7578 if (v_field_name != NULL
7579 && field_name_match (v_field_name, name))
7580 t = TYPE_FIELD_TYPE (field_type, j);
7581 else
7582 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7583 j),
7584 name, 0, 1);
7585
7586 if (t != NULL)
7587 return t;
7588 }
7589 }
7590
7591 }
7592
7593 BadName:
7594 if (!noerr)
7595 {
7596 const char *name_str = name != NULL ? name : _("<null>");
7597
7598 error (_("Type %s has no component named %s"),
7599 type_as_string (type).c_str (), name_str);
7600 }
7601
7602 return NULL;
7603 }
7604
7605 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7606 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7607 represents an unchecked union (that is, the variant part of a
7608 record that is named in an Unchecked_Union pragma). */
7609
7610 static int
7611 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7612 {
7613 const char *discrim_name = ada_variant_discrim_name (var_type);
7614
7615 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7616 }
7617
7618
7619 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7620 within a value of type OUTER_TYPE that is stored in GDB at
7621 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7622 numbering from 0) is applicable. Returns -1 if none are. */
7623
7624 int
7625 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7626 const gdb_byte *outer_valaddr)
7627 {
7628 int others_clause;
7629 int i;
7630 const char *discrim_name = ada_variant_discrim_name (var_type);
7631 struct value *outer;
7632 struct value *discrim;
7633 LONGEST discrim_val;
7634
7635 /* Using plain value_from_contents_and_address here causes problems
7636 because we will end up trying to resolve a type that is currently
7637 being constructed. */
7638 outer = value_from_contents_and_address_unresolved (outer_type,
7639 outer_valaddr, 0);
7640 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7641 if (discrim == NULL)
7642 return -1;
7643 discrim_val = value_as_long (discrim);
7644
7645 others_clause = -1;
7646 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7647 {
7648 if (ada_is_others_clause (var_type, i))
7649 others_clause = i;
7650 else if (ada_in_variant (discrim_val, var_type, i))
7651 return i;
7652 }
7653
7654 return others_clause;
7655 }
7656 \f
7657
7658
7659 /* Dynamic-Sized Records */
7660
7661 /* Strategy: The type ostensibly attached to a value with dynamic size
7662 (i.e., a size that is not statically recorded in the debugging
7663 data) does not accurately reflect the size or layout of the value.
7664 Our strategy is to convert these values to values with accurate,
7665 conventional types that are constructed on the fly. */
7666
7667 /* There is a subtle and tricky problem here. In general, we cannot
7668 determine the size of dynamic records without its data. However,
7669 the 'struct value' data structure, which GDB uses to represent
7670 quantities in the inferior process (the target), requires the size
7671 of the type at the time of its allocation in order to reserve space
7672 for GDB's internal copy of the data. That's why the
7673 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7674 rather than struct value*s.
7675
7676 However, GDB's internal history variables ($1, $2, etc.) are
7677 struct value*s containing internal copies of the data that are not, in
7678 general, the same as the data at their corresponding addresses in
7679 the target. Fortunately, the types we give to these values are all
7680 conventional, fixed-size types (as per the strategy described
7681 above), so that we don't usually have to perform the
7682 'to_fixed_xxx_type' conversions to look at their values.
7683 Unfortunately, there is one exception: if one of the internal
7684 history variables is an array whose elements are unconstrained
7685 records, then we will need to create distinct fixed types for each
7686 element selected. */
7687
7688 /* The upshot of all of this is that many routines take a (type, host
7689 address, target address) triple as arguments to represent a value.
7690 The host address, if non-null, is supposed to contain an internal
7691 copy of the relevant data; otherwise, the program is to consult the
7692 target at the target address. */
7693
7694 /* Assuming that VAL0 represents a pointer value, the result of
7695 dereferencing it. Differs from value_ind in its treatment of
7696 dynamic-sized types. */
7697
7698 struct value *
7699 ada_value_ind (struct value *val0)
7700 {
7701 struct value *val = value_ind (val0);
7702
7703 if (ada_is_tagged_type (value_type (val), 0))
7704 val = ada_tag_value_at_base_address (val);
7705
7706 return ada_to_fixed_value (val);
7707 }
7708
7709 /* The value resulting from dereferencing any "reference to"
7710 qualifiers on VAL0. */
7711
7712 static struct value *
7713 ada_coerce_ref (struct value *val0)
7714 {
7715 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7716 {
7717 struct value *val = val0;
7718
7719 val = coerce_ref (val);
7720
7721 if (ada_is_tagged_type (value_type (val), 0))
7722 val = ada_tag_value_at_base_address (val);
7723
7724 return ada_to_fixed_value (val);
7725 }
7726 else
7727 return val0;
7728 }
7729
7730 /* Return OFF rounded upward if necessary to a multiple of
7731 ALIGNMENT (a power of 2). */
7732
7733 static unsigned int
7734 align_value (unsigned int off, unsigned int alignment)
7735 {
7736 return (off + alignment - 1) & ~(alignment - 1);
7737 }
7738
7739 /* Return the bit alignment required for field #F of template type TYPE. */
7740
7741 static unsigned int
7742 field_alignment (struct type *type, int f)
7743 {
7744 const char *name = TYPE_FIELD_NAME (type, f);
7745 int len;
7746 int align_offset;
7747
7748 /* The field name should never be null, unless the debugging information
7749 is somehow malformed. In this case, we assume the field does not
7750 require any alignment. */
7751 if (name == NULL)
7752 return 1;
7753
7754 len = strlen (name);
7755
7756 if (!isdigit (name[len - 1]))
7757 return 1;
7758
7759 if (isdigit (name[len - 2]))
7760 align_offset = len - 2;
7761 else
7762 align_offset = len - 1;
7763
7764 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7765 return TARGET_CHAR_BIT;
7766
7767 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7768 }
7769
7770 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7771
7772 static struct symbol *
7773 ada_find_any_type_symbol (const char *name)
7774 {
7775 struct symbol *sym;
7776
7777 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7778 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7779 return sym;
7780
7781 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7782 return sym;
7783 }
7784
7785 /* Find a type named NAME. Ignores ambiguity. This routine will look
7786 solely for types defined by debug info, it will not search the GDB
7787 primitive types. */
7788
7789 static struct type *
7790 ada_find_any_type (const char *name)
7791 {
7792 struct symbol *sym = ada_find_any_type_symbol (name);
7793
7794 if (sym != NULL)
7795 return SYMBOL_TYPE (sym);
7796
7797 return NULL;
7798 }
7799
7800 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7801 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7802 symbol, in which case it is returned. Otherwise, this looks for
7803 symbols whose name is that of NAME_SYM suffixed with "___XR".
7804 Return symbol if found, and NULL otherwise. */
7805
7806 struct symbol *
7807 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7808 {
7809 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7810 struct symbol *sym;
7811
7812 if (strstr (name, "___XR") != NULL)
7813 return name_sym;
7814
7815 sym = find_old_style_renaming_symbol (name, block);
7816
7817 if (sym != NULL)
7818 return sym;
7819
7820 /* Not right yet. FIXME pnh 7/20/2007. */
7821 sym = ada_find_any_type_symbol (name);
7822 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7823 return sym;
7824 else
7825 return NULL;
7826 }
7827
7828 static struct symbol *
7829 find_old_style_renaming_symbol (const char *name, const struct block *block)
7830 {
7831 const struct symbol *function_sym = block_linkage_function (block);
7832 char *rename;
7833
7834 if (function_sym != NULL)
7835 {
7836 /* If the symbol is defined inside a function, NAME is not fully
7837 qualified. This means we need to prepend the function name
7838 as well as adding the ``___XR'' suffix to build the name of
7839 the associated renaming symbol. */
7840 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7841 /* Function names sometimes contain suffixes used
7842 for instance to qualify nested subprograms. When building
7843 the XR type name, we need to make sure that this suffix is
7844 not included. So do not include any suffix in the function
7845 name length below. */
7846 int function_name_len = ada_name_prefix_len (function_name);
7847 const int rename_len = function_name_len + 2 /* "__" */
7848 + strlen (name) + 6 /* "___XR\0" */ ;
7849
7850 /* Strip the suffix if necessary. */
7851 ada_remove_trailing_digits (function_name, &function_name_len);
7852 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7853 ada_remove_Xbn_suffix (function_name, &function_name_len);
7854
7855 /* Library-level functions are a special case, as GNAT adds
7856 a ``_ada_'' prefix to the function name to avoid namespace
7857 pollution. However, the renaming symbols themselves do not
7858 have this prefix, so we need to skip this prefix if present. */
7859 if (function_name_len > 5 /* "_ada_" */
7860 && strstr (function_name, "_ada_") == function_name)
7861 {
7862 function_name += 5;
7863 function_name_len -= 5;
7864 }
7865
7866 rename = (char *) alloca (rename_len * sizeof (char));
7867 strncpy (rename, function_name, function_name_len);
7868 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7869 "__%s___XR", name);
7870 }
7871 else
7872 {
7873 const int rename_len = strlen (name) + 6;
7874
7875 rename = (char *) alloca (rename_len * sizeof (char));
7876 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7877 }
7878
7879 return ada_find_any_type_symbol (rename);
7880 }
7881
7882 /* Because of GNAT encoding conventions, several GDB symbols may match a
7883 given type name. If the type denoted by TYPE0 is to be preferred to
7884 that of TYPE1 for purposes of type printing, return non-zero;
7885 otherwise return 0. */
7886
7887 int
7888 ada_prefer_type (struct type *type0, struct type *type1)
7889 {
7890 if (type1 == NULL)
7891 return 1;
7892 else if (type0 == NULL)
7893 return 0;
7894 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7895 return 1;
7896 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7897 return 0;
7898 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7899 return 1;
7900 else if (ada_is_constrained_packed_array_type (type0))
7901 return 1;
7902 else if (ada_is_array_descriptor_type (type0)
7903 && !ada_is_array_descriptor_type (type1))
7904 return 1;
7905 else
7906 {
7907 const char *type0_name = type_name_no_tag (type0);
7908 const char *type1_name = type_name_no_tag (type1);
7909
7910 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7911 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7912 return 1;
7913 }
7914 return 0;
7915 }
7916
7917 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7918 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7919
7920 const char *
7921 ada_type_name (struct type *type)
7922 {
7923 if (type == NULL)
7924 return NULL;
7925 else if (TYPE_NAME (type) != NULL)
7926 return TYPE_NAME (type);
7927 else
7928 return TYPE_TAG_NAME (type);
7929 }
7930
7931 /* Search the list of "descriptive" types associated to TYPE for a type
7932 whose name is NAME. */
7933
7934 static struct type *
7935 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7936 {
7937 struct type *result, *tmp;
7938
7939 if (ada_ignore_descriptive_types_p)
7940 return NULL;
7941
7942 /* If there no descriptive-type info, then there is no parallel type
7943 to be found. */
7944 if (!HAVE_GNAT_AUX_INFO (type))
7945 return NULL;
7946
7947 result = TYPE_DESCRIPTIVE_TYPE (type);
7948 while (result != NULL)
7949 {
7950 const char *result_name = ada_type_name (result);
7951
7952 if (result_name == NULL)
7953 {
7954 warning (_("unexpected null name on descriptive type"));
7955 return NULL;
7956 }
7957
7958 /* If the names match, stop. */
7959 if (strcmp (result_name, name) == 0)
7960 break;
7961
7962 /* Otherwise, look at the next item on the list, if any. */
7963 if (HAVE_GNAT_AUX_INFO (result))
7964 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7965 else
7966 tmp = NULL;
7967
7968 /* If not found either, try after having resolved the typedef. */
7969 if (tmp != NULL)
7970 result = tmp;
7971 else
7972 {
7973 result = check_typedef (result);
7974 if (HAVE_GNAT_AUX_INFO (result))
7975 result = TYPE_DESCRIPTIVE_TYPE (result);
7976 else
7977 result = NULL;
7978 }
7979 }
7980
7981 /* If we didn't find a match, see whether this is a packed array. With
7982 older compilers, the descriptive type information is either absent or
7983 irrelevant when it comes to packed arrays so the above lookup fails.
7984 Fall back to using a parallel lookup by name in this case. */
7985 if (result == NULL && ada_is_constrained_packed_array_type (type))
7986 return ada_find_any_type (name);
7987
7988 return result;
7989 }
7990
7991 /* Find a parallel type to TYPE with the specified NAME, using the
7992 descriptive type taken from the debugging information, if available,
7993 and otherwise using the (slower) name-based method. */
7994
7995 static struct type *
7996 ada_find_parallel_type_with_name (struct type *type, const char *name)
7997 {
7998 struct type *result = NULL;
7999
8000 if (HAVE_GNAT_AUX_INFO (type))
8001 result = find_parallel_type_by_descriptive_type (type, name);
8002 else
8003 result = ada_find_any_type (name);
8004
8005 return result;
8006 }
8007
8008 /* Same as above, but specify the name of the parallel type by appending
8009 SUFFIX to the name of TYPE. */
8010
8011 struct type *
8012 ada_find_parallel_type (struct type *type, const char *suffix)
8013 {
8014 char *name;
8015 const char *type_name = ada_type_name (type);
8016 int len;
8017
8018 if (type_name == NULL)
8019 return NULL;
8020
8021 len = strlen (type_name);
8022
8023 name = (char *) alloca (len + strlen (suffix) + 1);
8024
8025 strcpy (name, type_name);
8026 strcpy (name + len, suffix);
8027
8028 return ada_find_parallel_type_with_name (type, name);
8029 }
8030
8031 /* If TYPE is a variable-size record type, return the corresponding template
8032 type describing its fields. Otherwise, return NULL. */
8033
8034 static struct type *
8035 dynamic_template_type (struct type *type)
8036 {
8037 type = ada_check_typedef (type);
8038
8039 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8040 || ada_type_name (type) == NULL)
8041 return NULL;
8042 else
8043 {
8044 int len = strlen (ada_type_name (type));
8045
8046 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8047 return type;
8048 else
8049 return ada_find_parallel_type (type, "___XVE");
8050 }
8051 }
8052
8053 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8054 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8055
8056 static int
8057 is_dynamic_field (struct type *templ_type, int field_num)
8058 {
8059 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8060
8061 return name != NULL
8062 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8063 && strstr (name, "___XVL") != NULL;
8064 }
8065
8066 /* The index of the variant field of TYPE, or -1 if TYPE does not
8067 represent a variant record type. */
8068
8069 static int
8070 variant_field_index (struct type *type)
8071 {
8072 int f;
8073
8074 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8075 return -1;
8076
8077 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8078 {
8079 if (ada_is_variant_part (type, f))
8080 return f;
8081 }
8082 return -1;
8083 }
8084
8085 /* A record type with no fields. */
8086
8087 static struct type *
8088 empty_record (struct type *templ)
8089 {
8090 struct type *type = alloc_type_copy (templ);
8091
8092 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8093 TYPE_NFIELDS (type) = 0;
8094 TYPE_FIELDS (type) = NULL;
8095 INIT_CPLUS_SPECIFIC (type);
8096 TYPE_NAME (type) = "<empty>";
8097 TYPE_TAG_NAME (type) = NULL;
8098 TYPE_LENGTH (type) = 0;
8099 return type;
8100 }
8101
8102 /* An ordinary record type (with fixed-length fields) that describes
8103 the value of type TYPE at VALADDR or ADDRESS (see comments at
8104 the beginning of this section) VAL according to GNAT conventions.
8105 DVAL0 should describe the (portion of a) record that contains any
8106 necessary discriminants. It should be NULL if value_type (VAL) is
8107 an outer-level type (i.e., as opposed to a branch of a variant.) A
8108 variant field (unless unchecked) is replaced by a particular branch
8109 of the variant.
8110
8111 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8112 length are not statically known are discarded. As a consequence,
8113 VALADDR, ADDRESS and DVAL0 are ignored.
8114
8115 NOTE: Limitations: For now, we assume that dynamic fields and
8116 variants occupy whole numbers of bytes. However, they need not be
8117 byte-aligned. */
8118
8119 struct type *
8120 ada_template_to_fixed_record_type_1 (struct type *type,
8121 const gdb_byte *valaddr,
8122 CORE_ADDR address, struct value *dval0,
8123 int keep_dynamic_fields)
8124 {
8125 struct value *mark = value_mark ();
8126 struct value *dval;
8127 struct type *rtype;
8128 int nfields, bit_len;
8129 int variant_field;
8130 long off;
8131 int fld_bit_len;
8132 int f;
8133
8134 /* Compute the number of fields in this record type that are going
8135 to be processed: unless keep_dynamic_fields, this includes only
8136 fields whose position and length are static will be processed. */
8137 if (keep_dynamic_fields)
8138 nfields = TYPE_NFIELDS (type);
8139 else
8140 {
8141 nfields = 0;
8142 while (nfields < TYPE_NFIELDS (type)
8143 && !ada_is_variant_part (type, nfields)
8144 && !is_dynamic_field (type, nfields))
8145 nfields++;
8146 }
8147
8148 rtype = alloc_type_copy (type);
8149 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8150 INIT_CPLUS_SPECIFIC (rtype);
8151 TYPE_NFIELDS (rtype) = nfields;
8152 TYPE_FIELDS (rtype) = (struct field *)
8153 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8154 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8155 TYPE_NAME (rtype) = ada_type_name (type);
8156 TYPE_TAG_NAME (rtype) = NULL;
8157 TYPE_FIXED_INSTANCE (rtype) = 1;
8158
8159 off = 0;
8160 bit_len = 0;
8161 variant_field = -1;
8162
8163 for (f = 0; f < nfields; f += 1)
8164 {
8165 off = align_value (off, field_alignment (type, f))
8166 + TYPE_FIELD_BITPOS (type, f);
8167 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8168 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8169
8170 if (ada_is_variant_part (type, f))
8171 {
8172 variant_field = f;
8173 fld_bit_len = 0;
8174 }
8175 else if (is_dynamic_field (type, f))
8176 {
8177 const gdb_byte *field_valaddr = valaddr;
8178 CORE_ADDR field_address = address;
8179 struct type *field_type =
8180 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8181
8182 if (dval0 == NULL)
8183 {
8184 /* rtype's length is computed based on the run-time
8185 value of discriminants. If the discriminants are not
8186 initialized, the type size may be completely bogus and
8187 GDB may fail to allocate a value for it. So check the
8188 size first before creating the value. */
8189 ada_ensure_varsize_limit (rtype);
8190 /* Using plain value_from_contents_and_address here
8191 causes problems because we will end up trying to
8192 resolve a type that is currently being
8193 constructed. */
8194 dval = value_from_contents_and_address_unresolved (rtype,
8195 valaddr,
8196 address);
8197 rtype = value_type (dval);
8198 }
8199 else
8200 dval = dval0;
8201
8202 /* If the type referenced by this field is an aligner type, we need
8203 to unwrap that aligner type, because its size might not be set.
8204 Keeping the aligner type would cause us to compute the wrong
8205 size for this field, impacting the offset of the all the fields
8206 that follow this one. */
8207 if (ada_is_aligner_type (field_type))
8208 {
8209 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8210
8211 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8212 field_address = cond_offset_target (field_address, field_offset);
8213 field_type = ada_aligned_type (field_type);
8214 }
8215
8216 field_valaddr = cond_offset_host (field_valaddr,
8217 off / TARGET_CHAR_BIT);
8218 field_address = cond_offset_target (field_address,
8219 off / TARGET_CHAR_BIT);
8220
8221 /* Get the fixed type of the field. Note that, in this case,
8222 we do not want to get the real type out of the tag: if
8223 the current field is the parent part of a tagged record,
8224 we will get the tag of the object. Clearly wrong: the real
8225 type of the parent is not the real type of the child. We
8226 would end up in an infinite loop. */
8227 field_type = ada_get_base_type (field_type);
8228 field_type = ada_to_fixed_type (field_type, field_valaddr,
8229 field_address, dval, 0);
8230 /* If the field size is already larger than the maximum
8231 object size, then the record itself will necessarily
8232 be larger than the maximum object size. We need to make
8233 this check now, because the size might be so ridiculously
8234 large (due to an uninitialized variable in the inferior)
8235 that it would cause an overflow when adding it to the
8236 record size. */
8237 ada_ensure_varsize_limit (field_type);
8238
8239 TYPE_FIELD_TYPE (rtype, f) = field_type;
8240 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8241 /* The multiplication can potentially overflow. But because
8242 the field length has been size-checked just above, and
8243 assuming that the maximum size is a reasonable value,
8244 an overflow should not happen in practice. So rather than
8245 adding overflow recovery code to this already complex code,
8246 we just assume that it's not going to happen. */
8247 fld_bit_len =
8248 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8249 }
8250 else
8251 {
8252 /* Note: If this field's type is a typedef, it is important
8253 to preserve the typedef layer.
8254
8255 Otherwise, we might be transforming a typedef to a fat
8256 pointer (encoding a pointer to an unconstrained array),
8257 into a basic fat pointer (encoding an unconstrained
8258 array). As both types are implemented using the same
8259 structure, the typedef is the only clue which allows us
8260 to distinguish between the two options. Stripping it
8261 would prevent us from printing this field appropriately. */
8262 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8263 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8264 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8265 fld_bit_len =
8266 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8267 else
8268 {
8269 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8270
8271 /* We need to be careful of typedefs when computing
8272 the length of our field. If this is a typedef,
8273 get the length of the target type, not the length
8274 of the typedef. */
8275 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8276 field_type = ada_typedef_target_type (field_type);
8277
8278 fld_bit_len =
8279 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8280 }
8281 }
8282 if (off + fld_bit_len > bit_len)
8283 bit_len = off + fld_bit_len;
8284 off += fld_bit_len;
8285 TYPE_LENGTH (rtype) =
8286 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8287 }
8288
8289 /* We handle the variant part, if any, at the end because of certain
8290 odd cases in which it is re-ordered so as NOT to be the last field of
8291 the record. This can happen in the presence of representation
8292 clauses. */
8293 if (variant_field >= 0)
8294 {
8295 struct type *branch_type;
8296
8297 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8298
8299 if (dval0 == NULL)
8300 {
8301 /* Using plain value_from_contents_and_address here causes
8302 problems because we will end up trying to resolve a type
8303 that is currently being constructed. */
8304 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8305 address);
8306 rtype = value_type (dval);
8307 }
8308 else
8309 dval = dval0;
8310
8311 branch_type =
8312 to_fixed_variant_branch_type
8313 (TYPE_FIELD_TYPE (type, variant_field),
8314 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8315 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8316 if (branch_type == NULL)
8317 {
8318 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8319 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8320 TYPE_NFIELDS (rtype) -= 1;
8321 }
8322 else
8323 {
8324 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8325 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8326 fld_bit_len =
8327 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8328 TARGET_CHAR_BIT;
8329 if (off + fld_bit_len > bit_len)
8330 bit_len = off + fld_bit_len;
8331 TYPE_LENGTH (rtype) =
8332 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8333 }
8334 }
8335
8336 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8337 should contain the alignment of that record, which should be a strictly
8338 positive value. If null or negative, then something is wrong, most
8339 probably in the debug info. In that case, we don't round up the size
8340 of the resulting type. If this record is not part of another structure,
8341 the current RTYPE length might be good enough for our purposes. */
8342 if (TYPE_LENGTH (type) <= 0)
8343 {
8344 if (TYPE_NAME (rtype))
8345 warning (_("Invalid type size for `%s' detected: %d."),
8346 TYPE_NAME (rtype), TYPE_LENGTH (type));
8347 else
8348 warning (_("Invalid type size for <unnamed> detected: %d."),
8349 TYPE_LENGTH (type));
8350 }
8351 else
8352 {
8353 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8354 TYPE_LENGTH (type));
8355 }
8356
8357 value_free_to_mark (mark);
8358 if (TYPE_LENGTH (rtype) > varsize_limit)
8359 error (_("record type with dynamic size is larger than varsize-limit"));
8360 return rtype;
8361 }
8362
8363 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8364 of 1. */
8365
8366 static struct type *
8367 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8368 CORE_ADDR address, struct value *dval0)
8369 {
8370 return ada_template_to_fixed_record_type_1 (type, valaddr,
8371 address, dval0, 1);
8372 }
8373
8374 /* An ordinary record type in which ___XVL-convention fields and
8375 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8376 static approximations, containing all possible fields. Uses
8377 no runtime values. Useless for use in values, but that's OK,
8378 since the results are used only for type determinations. Works on both
8379 structs and unions. Representation note: to save space, we memorize
8380 the result of this function in the TYPE_TARGET_TYPE of the
8381 template type. */
8382
8383 static struct type *
8384 template_to_static_fixed_type (struct type *type0)
8385 {
8386 struct type *type;
8387 int nfields;
8388 int f;
8389
8390 /* No need no do anything if the input type is already fixed. */
8391 if (TYPE_FIXED_INSTANCE (type0))
8392 return type0;
8393
8394 /* Likewise if we already have computed the static approximation. */
8395 if (TYPE_TARGET_TYPE (type0) != NULL)
8396 return TYPE_TARGET_TYPE (type0);
8397
8398 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8399 type = type0;
8400 nfields = TYPE_NFIELDS (type0);
8401
8402 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8403 recompute all over next time. */
8404 TYPE_TARGET_TYPE (type0) = type;
8405
8406 for (f = 0; f < nfields; f += 1)
8407 {
8408 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8409 struct type *new_type;
8410
8411 if (is_dynamic_field (type0, f))
8412 {
8413 field_type = ada_check_typedef (field_type);
8414 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8415 }
8416 else
8417 new_type = static_unwrap_type (field_type);
8418
8419 if (new_type != field_type)
8420 {
8421 /* Clone TYPE0 only the first time we get a new field type. */
8422 if (type == type0)
8423 {
8424 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8425 TYPE_CODE (type) = TYPE_CODE (type0);
8426 INIT_CPLUS_SPECIFIC (type);
8427 TYPE_NFIELDS (type) = nfields;
8428 TYPE_FIELDS (type) = (struct field *)
8429 TYPE_ALLOC (type, nfields * sizeof (struct field));
8430 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8431 sizeof (struct field) * nfields);
8432 TYPE_NAME (type) = ada_type_name (type0);
8433 TYPE_TAG_NAME (type) = NULL;
8434 TYPE_FIXED_INSTANCE (type) = 1;
8435 TYPE_LENGTH (type) = 0;
8436 }
8437 TYPE_FIELD_TYPE (type, f) = new_type;
8438 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8439 }
8440 }
8441
8442 return type;
8443 }
8444
8445 /* Given an object of type TYPE whose contents are at VALADDR and
8446 whose address in memory is ADDRESS, returns a revision of TYPE,
8447 which should be a non-dynamic-sized record, in which the variant
8448 part, if any, is replaced with the appropriate branch. Looks
8449 for discriminant values in DVAL0, which can be NULL if the record
8450 contains the necessary discriminant values. */
8451
8452 static struct type *
8453 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8454 CORE_ADDR address, struct value *dval0)
8455 {
8456 struct value *mark = value_mark ();
8457 struct value *dval;
8458 struct type *rtype;
8459 struct type *branch_type;
8460 int nfields = TYPE_NFIELDS (type);
8461 int variant_field = variant_field_index (type);
8462
8463 if (variant_field == -1)
8464 return type;
8465
8466 if (dval0 == NULL)
8467 {
8468 dval = value_from_contents_and_address (type, valaddr, address);
8469 type = value_type (dval);
8470 }
8471 else
8472 dval = dval0;
8473
8474 rtype = alloc_type_copy (type);
8475 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8476 INIT_CPLUS_SPECIFIC (rtype);
8477 TYPE_NFIELDS (rtype) = nfields;
8478 TYPE_FIELDS (rtype) =
8479 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8480 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8481 sizeof (struct field) * nfields);
8482 TYPE_NAME (rtype) = ada_type_name (type);
8483 TYPE_TAG_NAME (rtype) = NULL;
8484 TYPE_FIXED_INSTANCE (rtype) = 1;
8485 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8486
8487 branch_type = to_fixed_variant_branch_type
8488 (TYPE_FIELD_TYPE (type, variant_field),
8489 cond_offset_host (valaddr,
8490 TYPE_FIELD_BITPOS (type, variant_field)
8491 / TARGET_CHAR_BIT),
8492 cond_offset_target (address,
8493 TYPE_FIELD_BITPOS (type, variant_field)
8494 / TARGET_CHAR_BIT), dval);
8495 if (branch_type == NULL)
8496 {
8497 int f;
8498
8499 for (f = variant_field + 1; f < nfields; f += 1)
8500 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8501 TYPE_NFIELDS (rtype) -= 1;
8502 }
8503 else
8504 {
8505 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8506 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8507 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8508 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8509 }
8510 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8511
8512 value_free_to_mark (mark);
8513 return rtype;
8514 }
8515
8516 /* An ordinary record type (with fixed-length fields) that describes
8517 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8518 beginning of this section]. Any necessary discriminants' values
8519 should be in DVAL, a record value; it may be NULL if the object
8520 at ADDR itself contains any necessary discriminant values.
8521 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8522 values from the record are needed. Except in the case that DVAL,
8523 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8524 unchecked) is replaced by a particular branch of the variant.
8525
8526 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8527 is questionable and may be removed. It can arise during the
8528 processing of an unconstrained-array-of-record type where all the
8529 variant branches have exactly the same size. This is because in
8530 such cases, the compiler does not bother to use the XVS convention
8531 when encoding the record. I am currently dubious of this
8532 shortcut and suspect the compiler should be altered. FIXME. */
8533
8534 static struct type *
8535 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8536 CORE_ADDR address, struct value *dval)
8537 {
8538 struct type *templ_type;
8539
8540 if (TYPE_FIXED_INSTANCE (type0))
8541 return type0;
8542
8543 templ_type = dynamic_template_type (type0);
8544
8545 if (templ_type != NULL)
8546 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8547 else if (variant_field_index (type0) >= 0)
8548 {
8549 if (dval == NULL && valaddr == NULL && address == 0)
8550 return type0;
8551 return to_record_with_fixed_variant_part (type0, valaddr, address,
8552 dval);
8553 }
8554 else
8555 {
8556 TYPE_FIXED_INSTANCE (type0) = 1;
8557 return type0;
8558 }
8559
8560 }
8561
8562 /* An ordinary record type (with fixed-length fields) that describes
8563 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8564 union type. Any necessary discriminants' values should be in DVAL,
8565 a record value. That is, this routine selects the appropriate
8566 branch of the union at ADDR according to the discriminant value
8567 indicated in the union's type name. Returns VAR_TYPE0 itself if
8568 it represents a variant subject to a pragma Unchecked_Union. */
8569
8570 static struct type *
8571 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8572 CORE_ADDR address, struct value *dval)
8573 {
8574 int which;
8575 struct type *templ_type;
8576 struct type *var_type;
8577
8578 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8579 var_type = TYPE_TARGET_TYPE (var_type0);
8580 else
8581 var_type = var_type0;
8582
8583 templ_type = ada_find_parallel_type (var_type, "___XVU");
8584
8585 if (templ_type != NULL)
8586 var_type = templ_type;
8587
8588 if (is_unchecked_variant (var_type, value_type (dval)))
8589 return var_type0;
8590 which =
8591 ada_which_variant_applies (var_type,
8592 value_type (dval), value_contents (dval));
8593
8594 if (which < 0)
8595 return empty_record (var_type);
8596 else if (is_dynamic_field (var_type, which))
8597 return to_fixed_record_type
8598 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8599 valaddr, address, dval);
8600 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8601 return
8602 to_fixed_record_type
8603 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8604 else
8605 return TYPE_FIELD_TYPE (var_type, which);
8606 }
8607
8608 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8609 ENCODING_TYPE, a type following the GNAT conventions for discrete
8610 type encodings, only carries redundant information. */
8611
8612 static int
8613 ada_is_redundant_range_encoding (struct type *range_type,
8614 struct type *encoding_type)
8615 {
8616 struct type *fixed_range_type;
8617 const char *bounds_str;
8618 int n;
8619 LONGEST lo, hi;
8620
8621 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8622
8623 if (TYPE_CODE (get_base_type (range_type))
8624 != TYPE_CODE (get_base_type (encoding_type)))
8625 {
8626 /* The compiler probably used a simple base type to describe
8627 the range type instead of the range's actual base type,
8628 expecting us to get the real base type from the encoding
8629 anyway. In this situation, the encoding cannot be ignored
8630 as redundant. */
8631 return 0;
8632 }
8633
8634 if (is_dynamic_type (range_type))
8635 return 0;
8636
8637 if (TYPE_NAME (encoding_type) == NULL)
8638 return 0;
8639
8640 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8641 if (bounds_str == NULL)
8642 return 0;
8643
8644 n = 8; /* Skip "___XDLU_". */
8645 if (!ada_scan_number (bounds_str, n, &lo, &n))
8646 return 0;
8647 if (TYPE_LOW_BOUND (range_type) != lo)
8648 return 0;
8649
8650 n += 2; /* Skip the "__" separator between the two bounds. */
8651 if (!ada_scan_number (bounds_str, n, &hi, &n))
8652 return 0;
8653 if (TYPE_HIGH_BOUND (range_type) != hi)
8654 return 0;
8655
8656 return 1;
8657 }
8658
8659 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8660 a type following the GNAT encoding for describing array type
8661 indices, only carries redundant information. */
8662
8663 static int
8664 ada_is_redundant_index_type_desc (struct type *array_type,
8665 struct type *desc_type)
8666 {
8667 struct type *this_layer = check_typedef (array_type);
8668 int i;
8669
8670 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8671 {
8672 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8673 TYPE_FIELD_TYPE (desc_type, i)))
8674 return 0;
8675 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8676 }
8677
8678 return 1;
8679 }
8680
8681 /* Assuming that TYPE0 is an array type describing the type of a value
8682 at ADDR, and that DVAL describes a record containing any
8683 discriminants used in TYPE0, returns a type for the value that
8684 contains no dynamic components (that is, no components whose sizes
8685 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8686 true, gives an error message if the resulting type's size is over
8687 varsize_limit. */
8688
8689 static struct type *
8690 to_fixed_array_type (struct type *type0, struct value *dval,
8691 int ignore_too_big)
8692 {
8693 struct type *index_type_desc;
8694 struct type *result;
8695 int constrained_packed_array_p;
8696 static const char *xa_suffix = "___XA";
8697
8698 type0 = ada_check_typedef (type0);
8699 if (TYPE_FIXED_INSTANCE (type0))
8700 return type0;
8701
8702 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8703 if (constrained_packed_array_p)
8704 type0 = decode_constrained_packed_array_type (type0);
8705
8706 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8707
8708 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8709 encoding suffixed with 'P' may still be generated. If so,
8710 it should be used to find the XA type. */
8711
8712 if (index_type_desc == NULL)
8713 {
8714 const char *type_name = ada_type_name (type0);
8715
8716 if (type_name != NULL)
8717 {
8718 const int len = strlen (type_name);
8719 char *name = (char *) alloca (len + strlen (xa_suffix));
8720
8721 if (type_name[len - 1] == 'P')
8722 {
8723 strcpy (name, type_name);
8724 strcpy (name + len - 1, xa_suffix);
8725 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8726 }
8727 }
8728 }
8729
8730 ada_fixup_array_indexes_type (index_type_desc);
8731 if (index_type_desc != NULL
8732 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8733 {
8734 /* Ignore this ___XA parallel type, as it does not bring any
8735 useful information. This allows us to avoid creating fixed
8736 versions of the array's index types, which would be identical
8737 to the original ones. This, in turn, can also help avoid
8738 the creation of fixed versions of the array itself. */
8739 index_type_desc = NULL;
8740 }
8741
8742 if (index_type_desc == NULL)
8743 {
8744 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8745
8746 /* NOTE: elt_type---the fixed version of elt_type0---should never
8747 depend on the contents of the array in properly constructed
8748 debugging data. */
8749 /* Create a fixed version of the array element type.
8750 We're not providing the address of an element here,
8751 and thus the actual object value cannot be inspected to do
8752 the conversion. This should not be a problem, since arrays of
8753 unconstrained objects are not allowed. In particular, all
8754 the elements of an array of a tagged type should all be of
8755 the same type specified in the debugging info. No need to
8756 consult the object tag. */
8757 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8758
8759 /* Make sure we always create a new array type when dealing with
8760 packed array types, since we're going to fix-up the array
8761 type length and element bitsize a little further down. */
8762 if (elt_type0 == elt_type && !constrained_packed_array_p)
8763 result = type0;
8764 else
8765 result = create_array_type (alloc_type_copy (type0),
8766 elt_type, TYPE_INDEX_TYPE (type0));
8767 }
8768 else
8769 {
8770 int i;
8771 struct type *elt_type0;
8772
8773 elt_type0 = type0;
8774 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8775 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8776
8777 /* NOTE: result---the fixed version of elt_type0---should never
8778 depend on the contents of the array in properly constructed
8779 debugging data. */
8780 /* Create a fixed version of the array element type.
8781 We're not providing the address of an element here,
8782 and thus the actual object value cannot be inspected to do
8783 the conversion. This should not be a problem, since arrays of
8784 unconstrained objects are not allowed. In particular, all
8785 the elements of an array of a tagged type should all be of
8786 the same type specified in the debugging info. No need to
8787 consult the object tag. */
8788 result =
8789 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8790
8791 elt_type0 = type0;
8792 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8793 {
8794 struct type *range_type =
8795 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8796
8797 result = create_array_type (alloc_type_copy (elt_type0),
8798 result, range_type);
8799 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8800 }
8801 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8802 error (_("array type with dynamic size is larger than varsize-limit"));
8803 }
8804
8805 /* We want to preserve the type name. This can be useful when
8806 trying to get the type name of a value that has already been
8807 printed (for instance, if the user did "print VAR; whatis $". */
8808 TYPE_NAME (result) = TYPE_NAME (type0);
8809
8810 if (constrained_packed_array_p)
8811 {
8812 /* So far, the resulting type has been created as if the original
8813 type was a regular (non-packed) array type. As a result, the
8814 bitsize of the array elements needs to be set again, and the array
8815 length needs to be recomputed based on that bitsize. */
8816 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8817 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8818
8819 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8820 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8821 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8822 TYPE_LENGTH (result)++;
8823 }
8824
8825 TYPE_FIXED_INSTANCE (result) = 1;
8826 return result;
8827 }
8828
8829
8830 /* A standard type (containing no dynamically sized components)
8831 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8832 DVAL describes a record containing any discriminants used in TYPE0,
8833 and may be NULL if there are none, or if the object of type TYPE at
8834 ADDRESS or in VALADDR contains these discriminants.
8835
8836 If CHECK_TAG is not null, in the case of tagged types, this function
8837 attempts to locate the object's tag and use it to compute the actual
8838 type. However, when ADDRESS is null, we cannot use it to determine the
8839 location of the tag, and therefore compute the tagged type's actual type.
8840 So we return the tagged type without consulting the tag. */
8841
8842 static struct type *
8843 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8844 CORE_ADDR address, struct value *dval, int check_tag)
8845 {
8846 type = ada_check_typedef (type);
8847 switch (TYPE_CODE (type))
8848 {
8849 default:
8850 return type;
8851 case TYPE_CODE_STRUCT:
8852 {
8853 struct type *static_type = to_static_fixed_type (type);
8854 struct type *fixed_record_type =
8855 to_fixed_record_type (type, valaddr, address, NULL);
8856
8857 /* If STATIC_TYPE is a tagged type and we know the object's address,
8858 then we can determine its tag, and compute the object's actual
8859 type from there. Note that we have to use the fixed record
8860 type (the parent part of the record may have dynamic fields
8861 and the way the location of _tag is expressed may depend on
8862 them). */
8863
8864 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8865 {
8866 struct value *tag =
8867 value_tag_from_contents_and_address
8868 (fixed_record_type,
8869 valaddr,
8870 address);
8871 struct type *real_type = type_from_tag (tag);
8872 struct value *obj =
8873 value_from_contents_and_address (fixed_record_type,
8874 valaddr,
8875 address);
8876 fixed_record_type = value_type (obj);
8877 if (real_type != NULL)
8878 return to_fixed_record_type
8879 (real_type, NULL,
8880 value_address (ada_tag_value_at_base_address (obj)), NULL);
8881 }
8882
8883 /* Check to see if there is a parallel ___XVZ variable.
8884 If there is, then it provides the actual size of our type. */
8885 else if (ada_type_name (fixed_record_type) != NULL)
8886 {
8887 const char *name = ada_type_name (fixed_record_type);
8888 char *xvz_name
8889 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8890 LONGEST size;
8891
8892 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8893 if (get_int_var_value (xvz_name, size)
8894 && TYPE_LENGTH (fixed_record_type) != size)
8895 {
8896 fixed_record_type = copy_type (fixed_record_type);
8897 TYPE_LENGTH (fixed_record_type) = size;
8898
8899 /* The FIXED_RECORD_TYPE may have be a stub. We have
8900 observed this when the debugging info is STABS, and
8901 apparently it is something that is hard to fix.
8902
8903 In practice, we don't need the actual type definition
8904 at all, because the presence of the XVZ variable allows us
8905 to assume that there must be a XVS type as well, which we
8906 should be able to use later, when we need the actual type
8907 definition.
8908
8909 In the meantime, pretend that the "fixed" type we are
8910 returning is NOT a stub, because this can cause trouble
8911 when using this type to create new types targeting it.
8912 Indeed, the associated creation routines often check
8913 whether the target type is a stub and will try to replace
8914 it, thus using a type with the wrong size. This, in turn,
8915 might cause the new type to have the wrong size too.
8916 Consider the case of an array, for instance, where the size
8917 of the array is computed from the number of elements in
8918 our array multiplied by the size of its element. */
8919 TYPE_STUB (fixed_record_type) = 0;
8920 }
8921 }
8922 return fixed_record_type;
8923 }
8924 case TYPE_CODE_ARRAY:
8925 return to_fixed_array_type (type, dval, 1);
8926 case TYPE_CODE_UNION:
8927 if (dval == NULL)
8928 return type;
8929 else
8930 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8931 }
8932 }
8933
8934 /* The same as ada_to_fixed_type_1, except that it preserves the type
8935 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8936
8937 The typedef layer needs be preserved in order to differentiate between
8938 arrays and array pointers when both types are implemented using the same
8939 fat pointer. In the array pointer case, the pointer is encoded as
8940 a typedef of the pointer type. For instance, considering:
8941
8942 type String_Access is access String;
8943 S1 : String_Access := null;
8944
8945 To the debugger, S1 is defined as a typedef of type String. But
8946 to the user, it is a pointer. So if the user tries to print S1,
8947 we should not dereference the array, but print the array address
8948 instead.
8949
8950 If we didn't preserve the typedef layer, we would lose the fact that
8951 the type is to be presented as a pointer (needs de-reference before
8952 being printed). And we would also use the source-level type name. */
8953
8954 struct type *
8955 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8956 CORE_ADDR address, struct value *dval, int check_tag)
8957
8958 {
8959 struct type *fixed_type =
8960 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8961
8962 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8963 then preserve the typedef layer.
8964
8965 Implementation note: We can only check the main-type portion of
8966 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8967 from TYPE now returns a type that has the same instance flags
8968 as TYPE. For instance, if TYPE is a "typedef const", and its
8969 target type is a "struct", then the typedef elimination will return
8970 a "const" version of the target type. See check_typedef for more
8971 details about how the typedef layer elimination is done.
8972
8973 brobecker/2010-11-19: It seems to me that the only case where it is
8974 useful to preserve the typedef layer is when dealing with fat pointers.
8975 Perhaps, we could add a check for that and preserve the typedef layer
8976 only in that situation. But this seems unecessary so far, probably
8977 because we call check_typedef/ada_check_typedef pretty much everywhere.
8978 */
8979 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8980 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8981 == TYPE_MAIN_TYPE (fixed_type)))
8982 return type;
8983
8984 return fixed_type;
8985 }
8986
8987 /* A standard (static-sized) type corresponding as well as possible to
8988 TYPE0, but based on no runtime data. */
8989
8990 static struct type *
8991 to_static_fixed_type (struct type *type0)
8992 {
8993 struct type *type;
8994
8995 if (type0 == NULL)
8996 return NULL;
8997
8998 if (TYPE_FIXED_INSTANCE (type0))
8999 return type0;
9000
9001 type0 = ada_check_typedef (type0);
9002
9003 switch (TYPE_CODE (type0))
9004 {
9005 default:
9006 return type0;
9007 case TYPE_CODE_STRUCT:
9008 type = dynamic_template_type (type0);
9009 if (type != NULL)
9010 return template_to_static_fixed_type (type);
9011 else
9012 return template_to_static_fixed_type (type0);
9013 case TYPE_CODE_UNION:
9014 type = ada_find_parallel_type (type0, "___XVU");
9015 if (type != NULL)
9016 return template_to_static_fixed_type (type);
9017 else
9018 return template_to_static_fixed_type (type0);
9019 }
9020 }
9021
9022 /* A static approximation of TYPE with all type wrappers removed. */
9023
9024 static struct type *
9025 static_unwrap_type (struct type *type)
9026 {
9027 if (ada_is_aligner_type (type))
9028 {
9029 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9030 if (ada_type_name (type1) == NULL)
9031 TYPE_NAME (type1) = ada_type_name (type);
9032
9033 return static_unwrap_type (type1);
9034 }
9035 else
9036 {
9037 struct type *raw_real_type = ada_get_base_type (type);
9038
9039 if (raw_real_type == type)
9040 return type;
9041 else
9042 return to_static_fixed_type (raw_real_type);
9043 }
9044 }
9045
9046 /* In some cases, incomplete and private types require
9047 cross-references that are not resolved as records (for example,
9048 type Foo;
9049 type FooP is access Foo;
9050 V: FooP;
9051 type Foo is array ...;
9052 ). In these cases, since there is no mechanism for producing
9053 cross-references to such types, we instead substitute for FooP a
9054 stub enumeration type that is nowhere resolved, and whose tag is
9055 the name of the actual type. Call these types "non-record stubs". */
9056
9057 /* A type equivalent to TYPE that is not a non-record stub, if one
9058 exists, otherwise TYPE. */
9059
9060 struct type *
9061 ada_check_typedef (struct type *type)
9062 {
9063 if (type == NULL)
9064 return NULL;
9065
9066 /* If our type is a typedef type of a fat pointer, then we're done.
9067 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9068 what allows us to distinguish between fat pointers that represent
9069 array types, and fat pointers that represent array access types
9070 (in both cases, the compiler implements them as fat pointers). */
9071 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9072 && is_thick_pntr (ada_typedef_target_type (type)))
9073 return type;
9074
9075 type = check_typedef (type);
9076 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9077 || !TYPE_STUB (type)
9078 || TYPE_TAG_NAME (type) == NULL)
9079 return type;
9080 else
9081 {
9082 const char *name = TYPE_TAG_NAME (type);
9083 struct type *type1 = ada_find_any_type (name);
9084
9085 if (type1 == NULL)
9086 return type;
9087
9088 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9089 stubs pointing to arrays, as we don't create symbols for array
9090 types, only for the typedef-to-array types). If that's the case,
9091 strip the typedef layer. */
9092 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9093 type1 = ada_check_typedef (type1);
9094
9095 return type1;
9096 }
9097 }
9098
9099 /* A value representing the data at VALADDR/ADDRESS as described by
9100 type TYPE0, but with a standard (static-sized) type that correctly
9101 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9102 type, then return VAL0 [this feature is simply to avoid redundant
9103 creation of struct values]. */
9104
9105 static struct value *
9106 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9107 struct value *val0)
9108 {
9109 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9110
9111 if (type == type0 && val0 != NULL)
9112 return val0;
9113 else
9114 return value_from_contents_and_address (type, 0, address);
9115 }
9116
9117 /* A value representing VAL, but with a standard (static-sized) type
9118 that correctly describes it. Does not necessarily create a new
9119 value. */
9120
9121 struct value *
9122 ada_to_fixed_value (struct value *val)
9123 {
9124 val = unwrap_value (val);
9125 val = ada_to_fixed_value_create (value_type (val),
9126 value_address (val),
9127 val);
9128 return val;
9129 }
9130 \f
9131
9132 /* Attributes */
9133
9134 /* Table mapping attribute numbers to names.
9135 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9136
9137 static const char *attribute_names[] = {
9138 "<?>",
9139
9140 "first",
9141 "last",
9142 "length",
9143 "image",
9144 "max",
9145 "min",
9146 "modulus",
9147 "pos",
9148 "size",
9149 "tag",
9150 "val",
9151 0
9152 };
9153
9154 const char *
9155 ada_attribute_name (enum exp_opcode n)
9156 {
9157 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9158 return attribute_names[n - OP_ATR_FIRST + 1];
9159 else
9160 return attribute_names[0];
9161 }
9162
9163 /* Evaluate the 'POS attribute applied to ARG. */
9164
9165 static LONGEST
9166 pos_atr (struct value *arg)
9167 {
9168 struct value *val = coerce_ref (arg);
9169 struct type *type = value_type (val);
9170 LONGEST result;
9171
9172 if (!discrete_type_p (type))
9173 error (_("'POS only defined on discrete types"));
9174
9175 if (!discrete_position (type, value_as_long (val), &result))
9176 error (_("enumeration value is invalid: can't find 'POS"));
9177
9178 return result;
9179 }
9180
9181 static struct value *
9182 value_pos_atr (struct type *type, struct value *arg)
9183 {
9184 return value_from_longest (type, pos_atr (arg));
9185 }
9186
9187 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9188
9189 static struct value *
9190 value_val_atr (struct type *type, struct value *arg)
9191 {
9192 if (!discrete_type_p (type))
9193 error (_("'VAL only defined on discrete types"));
9194 if (!integer_type_p (value_type (arg)))
9195 error (_("'VAL requires integral argument"));
9196
9197 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9198 {
9199 long pos = value_as_long (arg);
9200
9201 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9202 error (_("argument to 'VAL out of range"));
9203 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9204 }
9205 else
9206 return value_from_longest (type, value_as_long (arg));
9207 }
9208 \f
9209
9210 /* Evaluation */
9211
9212 /* True if TYPE appears to be an Ada character type.
9213 [At the moment, this is true only for Character and Wide_Character;
9214 It is a heuristic test that could stand improvement]. */
9215
9216 int
9217 ada_is_character_type (struct type *type)
9218 {
9219 const char *name;
9220
9221 /* If the type code says it's a character, then assume it really is,
9222 and don't check any further. */
9223 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9224 return 1;
9225
9226 /* Otherwise, assume it's a character type iff it is a discrete type
9227 with a known character type name. */
9228 name = ada_type_name (type);
9229 return (name != NULL
9230 && (TYPE_CODE (type) == TYPE_CODE_INT
9231 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9232 && (strcmp (name, "character") == 0
9233 || strcmp (name, "wide_character") == 0
9234 || strcmp (name, "wide_wide_character") == 0
9235 || strcmp (name, "unsigned char") == 0));
9236 }
9237
9238 /* True if TYPE appears to be an Ada string type. */
9239
9240 int
9241 ada_is_string_type (struct type *type)
9242 {
9243 type = ada_check_typedef (type);
9244 if (type != NULL
9245 && TYPE_CODE (type) != TYPE_CODE_PTR
9246 && (ada_is_simple_array_type (type)
9247 || ada_is_array_descriptor_type (type))
9248 && ada_array_arity (type) == 1)
9249 {
9250 struct type *elttype = ada_array_element_type (type, 1);
9251
9252 return ada_is_character_type (elttype);
9253 }
9254 else
9255 return 0;
9256 }
9257
9258 /* The compiler sometimes provides a parallel XVS type for a given
9259 PAD type. Normally, it is safe to follow the PAD type directly,
9260 but older versions of the compiler have a bug that causes the offset
9261 of its "F" field to be wrong. Following that field in that case
9262 would lead to incorrect results, but this can be worked around
9263 by ignoring the PAD type and using the associated XVS type instead.
9264
9265 Set to True if the debugger should trust the contents of PAD types.
9266 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9267 static int trust_pad_over_xvs = 1;
9268
9269 /* True if TYPE is a struct type introduced by the compiler to force the
9270 alignment of a value. Such types have a single field with a
9271 distinctive name. */
9272
9273 int
9274 ada_is_aligner_type (struct type *type)
9275 {
9276 type = ada_check_typedef (type);
9277
9278 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9279 return 0;
9280
9281 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9282 && TYPE_NFIELDS (type) == 1
9283 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9284 }
9285
9286 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9287 the parallel type. */
9288
9289 struct type *
9290 ada_get_base_type (struct type *raw_type)
9291 {
9292 struct type *real_type_namer;
9293 struct type *raw_real_type;
9294
9295 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9296 return raw_type;
9297
9298 if (ada_is_aligner_type (raw_type))
9299 /* The encoding specifies that we should always use the aligner type.
9300 So, even if this aligner type has an associated XVS type, we should
9301 simply ignore it.
9302
9303 According to the compiler gurus, an XVS type parallel to an aligner
9304 type may exist because of a stabs limitation. In stabs, aligner
9305 types are empty because the field has a variable-sized type, and
9306 thus cannot actually be used as an aligner type. As a result,
9307 we need the associated parallel XVS type to decode the type.
9308 Since the policy in the compiler is to not change the internal
9309 representation based on the debugging info format, we sometimes
9310 end up having a redundant XVS type parallel to the aligner type. */
9311 return raw_type;
9312
9313 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9314 if (real_type_namer == NULL
9315 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9316 || TYPE_NFIELDS (real_type_namer) != 1)
9317 return raw_type;
9318
9319 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9320 {
9321 /* This is an older encoding form where the base type needs to be
9322 looked up by name. We prefer the newer enconding because it is
9323 more efficient. */
9324 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9325 if (raw_real_type == NULL)
9326 return raw_type;
9327 else
9328 return raw_real_type;
9329 }
9330
9331 /* The field in our XVS type is a reference to the base type. */
9332 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9333 }
9334
9335 /* The type of value designated by TYPE, with all aligners removed. */
9336
9337 struct type *
9338 ada_aligned_type (struct type *type)
9339 {
9340 if (ada_is_aligner_type (type))
9341 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9342 else
9343 return ada_get_base_type (type);
9344 }
9345
9346
9347 /* The address of the aligned value in an object at address VALADDR
9348 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9349
9350 const gdb_byte *
9351 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9352 {
9353 if (ada_is_aligner_type (type))
9354 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9355 valaddr +
9356 TYPE_FIELD_BITPOS (type,
9357 0) / TARGET_CHAR_BIT);
9358 else
9359 return valaddr;
9360 }
9361
9362
9363
9364 /* The printed representation of an enumeration literal with encoded
9365 name NAME. The value is good to the next call of ada_enum_name. */
9366 const char *
9367 ada_enum_name (const char *name)
9368 {
9369 static char *result;
9370 static size_t result_len = 0;
9371 const char *tmp;
9372
9373 /* First, unqualify the enumeration name:
9374 1. Search for the last '.' character. If we find one, then skip
9375 all the preceding characters, the unqualified name starts
9376 right after that dot.
9377 2. Otherwise, we may be debugging on a target where the compiler
9378 translates dots into "__". Search forward for double underscores,
9379 but stop searching when we hit an overloading suffix, which is
9380 of the form "__" followed by digits. */
9381
9382 tmp = strrchr (name, '.');
9383 if (tmp != NULL)
9384 name = tmp + 1;
9385 else
9386 {
9387 while ((tmp = strstr (name, "__")) != NULL)
9388 {
9389 if (isdigit (tmp[2]))
9390 break;
9391 else
9392 name = tmp + 2;
9393 }
9394 }
9395
9396 if (name[0] == 'Q')
9397 {
9398 int v;
9399
9400 if (name[1] == 'U' || name[1] == 'W')
9401 {
9402 if (sscanf (name + 2, "%x", &v) != 1)
9403 return name;
9404 }
9405 else
9406 return name;
9407
9408 GROW_VECT (result, result_len, 16);
9409 if (isascii (v) && isprint (v))
9410 xsnprintf (result, result_len, "'%c'", v);
9411 else if (name[1] == 'U')
9412 xsnprintf (result, result_len, "[\"%02x\"]", v);
9413 else
9414 xsnprintf (result, result_len, "[\"%04x\"]", v);
9415
9416 return result;
9417 }
9418 else
9419 {
9420 tmp = strstr (name, "__");
9421 if (tmp == NULL)
9422 tmp = strstr (name, "$");
9423 if (tmp != NULL)
9424 {
9425 GROW_VECT (result, result_len, tmp - name + 1);
9426 strncpy (result, name, tmp - name);
9427 result[tmp - name] = '\0';
9428 return result;
9429 }
9430
9431 return name;
9432 }
9433 }
9434
9435 /* Evaluate the subexpression of EXP starting at *POS as for
9436 evaluate_type, updating *POS to point just past the evaluated
9437 expression. */
9438
9439 static struct value *
9440 evaluate_subexp_type (struct expression *exp, int *pos)
9441 {
9442 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9443 }
9444
9445 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9446 value it wraps. */
9447
9448 static struct value *
9449 unwrap_value (struct value *val)
9450 {
9451 struct type *type = ada_check_typedef (value_type (val));
9452
9453 if (ada_is_aligner_type (type))
9454 {
9455 struct value *v = ada_value_struct_elt (val, "F", 0);
9456 struct type *val_type = ada_check_typedef (value_type (v));
9457
9458 if (ada_type_name (val_type) == NULL)
9459 TYPE_NAME (val_type) = ada_type_name (type);
9460
9461 return unwrap_value (v);
9462 }
9463 else
9464 {
9465 struct type *raw_real_type =
9466 ada_check_typedef (ada_get_base_type (type));
9467
9468 /* If there is no parallel XVS or XVE type, then the value is
9469 already unwrapped. Return it without further modification. */
9470 if ((type == raw_real_type)
9471 && ada_find_parallel_type (type, "___XVE") == NULL)
9472 return val;
9473
9474 return
9475 coerce_unspec_val_to_type
9476 (val, ada_to_fixed_type (raw_real_type, 0,
9477 value_address (val),
9478 NULL, 1));
9479 }
9480 }
9481
9482 static struct value *
9483 cast_from_fixed (struct type *type, struct value *arg)
9484 {
9485 struct value *scale = ada_scaling_factor (value_type (arg));
9486 arg = value_cast (value_type (scale), arg);
9487
9488 arg = value_binop (arg, scale, BINOP_MUL);
9489 return value_cast (type, arg);
9490 }
9491
9492 static struct value *
9493 cast_to_fixed (struct type *type, struct value *arg)
9494 {
9495 if (type == value_type (arg))
9496 return arg;
9497
9498 struct value *scale = ada_scaling_factor (type);
9499 if (ada_is_fixed_point_type (value_type (arg)))
9500 arg = cast_from_fixed (value_type (scale), arg);
9501 else
9502 arg = value_cast (value_type (scale), arg);
9503
9504 arg = value_binop (arg, scale, BINOP_DIV);
9505 return value_cast (type, arg);
9506 }
9507
9508 /* Given two array types T1 and T2, return nonzero iff both arrays
9509 contain the same number of elements. */
9510
9511 static int
9512 ada_same_array_size_p (struct type *t1, struct type *t2)
9513 {
9514 LONGEST lo1, hi1, lo2, hi2;
9515
9516 /* Get the array bounds in order to verify that the size of
9517 the two arrays match. */
9518 if (!get_array_bounds (t1, &lo1, &hi1)
9519 || !get_array_bounds (t2, &lo2, &hi2))
9520 error (_("unable to determine array bounds"));
9521
9522 /* To make things easier for size comparison, normalize a bit
9523 the case of empty arrays by making sure that the difference
9524 between upper bound and lower bound is always -1. */
9525 if (lo1 > hi1)
9526 hi1 = lo1 - 1;
9527 if (lo2 > hi2)
9528 hi2 = lo2 - 1;
9529
9530 return (hi1 - lo1 == hi2 - lo2);
9531 }
9532
9533 /* Assuming that VAL is an array of integrals, and TYPE represents
9534 an array with the same number of elements, but with wider integral
9535 elements, return an array "casted" to TYPE. In practice, this
9536 means that the returned array is built by casting each element
9537 of the original array into TYPE's (wider) element type. */
9538
9539 static struct value *
9540 ada_promote_array_of_integrals (struct type *type, struct value *val)
9541 {
9542 struct type *elt_type = TYPE_TARGET_TYPE (type);
9543 LONGEST lo, hi;
9544 struct value *res;
9545 LONGEST i;
9546
9547 /* Verify that both val and type are arrays of scalars, and
9548 that the size of val's elements is smaller than the size
9549 of type's element. */
9550 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9551 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9552 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9553 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9554 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9555 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9556
9557 if (!get_array_bounds (type, &lo, &hi))
9558 error (_("unable to determine array bounds"));
9559
9560 res = allocate_value (type);
9561
9562 /* Promote each array element. */
9563 for (i = 0; i < hi - lo + 1; i++)
9564 {
9565 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9566
9567 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9568 value_contents_all (elt), TYPE_LENGTH (elt_type));
9569 }
9570
9571 return res;
9572 }
9573
9574 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9575 return the converted value. */
9576
9577 static struct value *
9578 coerce_for_assign (struct type *type, struct value *val)
9579 {
9580 struct type *type2 = value_type (val);
9581
9582 if (type == type2)
9583 return val;
9584
9585 type2 = ada_check_typedef (type2);
9586 type = ada_check_typedef (type);
9587
9588 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9589 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9590 {
9591 val = ada_value_ind (val);
9592 type2 = value_type (val);
9593 }
9594
9595 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9596 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9597 {
9598 if (!ada_same_array_size_p (type, type2))
9599 error (_("cannot assign arrays of different length"));
9600
9601 if (is_integral_type (TYPE_TARGET_TYPE (type))
9602 && is_integral_type (TYPE_TARGET_TYPE (type2))
9603 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9604 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9605 {
9606 /* Allow implicit promotion of the array elements to
9607 a wider type. */
9608 return ada_promote_array_of_integrals (type, val);
9609 }
9610
9611 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9612 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9613 error (_("Incompatible types in assignment"));
9614 deprecated_set_value_type (val, type);
9615 }
9616 return val;
9617 }
9618
9619 static struct value *
9620 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9621 {
9622 struct value *val;
9623 struct type *type1, *type2;
9624 LONGEST v, v1, v2;
9625
9626 arg1 = coerce_ref (arg1);
9627 arg2 = coerce_ref (arg2);
9628 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9629 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9630
9631 if (TYPE_CODE (type1) != TYPE_CODE_INT
9632 || TYPE_CODE (type2) != TYPE_CODE_INT)
9633 return value_binop (arg1, arg2, op);
9634
9635 switch (op)
9636 {
9637 case BINOP_MOD:
9638 case BINOP_DIV:
9639 case BINOP_REM:
9640 break;
9641 default:
9642 return value_binop (arg1, arg2, op);
9643 }
9644
9645 v2 = value_as_long (arg2);
9646 if (v2 == 0)
9647 error (_("second operand of %s must not be zero."), op_string (op));
9648
9649 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9650 return value_binop (arg1, arg2, op);
9651
9652 v1 = value_as_long (arg1);
9653 switch (op)
9654 {
9655 case BINOP_DIV:
9656 v = v1 / v2;
9657 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9658 v += v > 0 ? -1 : 1;
9659 break;
9660 case BINOP_REM:
9661 v = v1 % v2;
9662 if (v * v1 < 0)
9663 v -= v2;
9664 break;
9665 default:
9666 /* Should not reach this point. */
9667 v = 0;
9668 }
9669
9670 val = allocate_value (type1);
9671 store_unsigned_integer (value_contents_raw (val),
9672 TYPE_LENGTH (value_type (val)),
9673 gdbarch_byte_order (get_type_arch (type1)), v);
9674 return val;
9675 }
9676
9677 static int
9678 ada_value_equal (struct value *arg1, struct value *arg2)
9679 {
9680 if (ada_is_direct_array_type (value_type (arg1))
9681 || ada_is_direct_array_type (value_type (arg2)))
9682 {
9683 /* Automatically dereference any array reference before
9684 we attempt to perform the comparison. */
9685 arg1 = ada_coerce_ref (arg1);
9686 arg2 = ada_coerce_ref (arg2);
9687
9688 arg1 = ada_coerce_to_simple_array (arg1);
9689 arg2 = ada_coerce_to_simple_array (arg2);
9690 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9691 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9692 error (_("Attempt to compare array with non-array"));
9693 /* FIXME: The following works only for types whose
9694 representations use all bits (no padding or undefined bits)
9695 and do not have user-defined equality. */
9696 return
9697 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9698 && memcmp (value_contents (arg1), value_contents (arg2),
9699 TYPE_LENGTH (value_type (arg1))) == 0;
9700 }
9701 return value_equal (arg1, arg2);
9702 }
9703
9704 /* Total number of component associations in the aggregate starting at
9705 index PC in EXP. Assumes that index PC is the start of an
9706 OP_AGGREGATE. */
9707
9708 static int
9709 num_component_specs (struct expression *exp, int pc)
9710 {
9711 int n, m, i;
9712
9713 m = exp->elts[pc + 1].longconst;
9714 pc += 3;
9715 n = 0;
9716 for (i = 0; i < m; i += 1)
9717 {
9718 switch (exp->elts[pc].opcode)
9719 {
9720 default:
9721 n += 1;
9722 break;
9723 case OP_CHOICES:
9724 n += exp->elts[pc + 1].longconst;
9725 break;
9726 }
9727 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9728 }
9729 return n;
9730 }
9731
9732 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9733 component of LHS (a simple array or a record), updating *POS past
9734 the expression, assuming that LHS is contained in CONTAINER. Does
9735 not modify the inferior's memory, nor does it modify LHS (unless
9736 LHS == CONTAINER). */
9737
9738 static void
9739 assign_component (struct value *container, struct value *lhs, LONGEST index,
9740 struct expression *exp, int *pos)
9741 {
9742 struct value *mark = value_mark ();
9743 struct value *elt;
9744
9745 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9746 {
9747 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9748 struct value *index_val = value_from_longest (index_type, index);
9749
9750 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9751 }
9752 else
9753 {
9754 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9755 elt = ada_to_fixed_value (elt);
9756 }
9757
9758 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9759 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9760 else
9761 value_assign_to_component (container, elt,
9762 ada_evaluate_subexp (NULL, exp, pos,
9763 EVAL_NORMAL));
9764
9765 value_free_to_mark (mark);
9766 }
9767
9768 /* Assuming that LHS represents an lvalue having a record or array
9769 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9770 of that aggregate's value to LHS, advancing *POS past the
9771 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9772 lvalue containing LHS (possibly LHS itself). Does not modify
9773 the inferior's memory, nor does it modify the contents of
9774 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9775
9776 static struct value *
9777 assign_aggregate (struct value *container,
9778 struct value *lhs, struct expression *exp,
9779 int *pos, enum noside noside)
9780 {
9781 struct type *lhs_type;
9782 int n = exp->elts[*pos+1].longconst;
9783 LONGEST low_index, high_index;
9784 int num_specs;
9785 LONGEST *indices;
9786 int max_indices, num_indices;
9787 int i;
9788
9789 *pos += 3;
9790 if (noside != EVAL_NORMAL)
9791 {
9792 for (i = 0; i < n; i += 1)
9793 ada_evaluate_subexp (NULL, exp, pos, noside);
9794 return container;
9795 }
9796
9797 container = ada_coerce_ref (container);
9798 if (ada_is_direct_array_type (value_type (container)))
9799 container = ada_coerce_to_simple_array (container);
9800 lhs = ada_coerce_ref (lhs);
9801 if (!deprecated_value_modifiable (lhs))
9802 error (_("Left operand of assignment is not a modifiable lvalue."));
9803
9804 lhs_type = value_type (lhs);
9805 if (ada_is_direct_array_type (lhs_type))
9806 {
9807 lhs = ada_coerce_to_simple_array (lhs);
9808 lhs_type = value_type (lhs);
9809 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9810 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9811 }
9812 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9813 {
9814 low_index = 0;
9815 high_index = num_visible_fields (lhs_type) - 1;
9816 }
9817 else
9818 error (_("Left-hand side must be array or record."));
9819
9820 num_specs = num_component_specs (exp, *pos - 3);
9821 max_indices = 4 * num_specs + 4;
9822 indices = XALLOCAVEC (LONGEST, max_indices);
9823 indices[0] = indices[1] = low_index - 1;
9824 indices[2] = indices[3] = high_index + 1;
9825 num_indices = 4;
9826
9827 for (i = 0; i < n; i += 1)
9828 {
9829 switch (exp->elts[*pos].opcode)
9830 {
9831 case OP_CHOICES:
9832 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9833 &num_indices, max_indices,
9834 low_index, high_index);
9835 break;
9836 case OP_POSITIONAL:
9837 aggregate_assign_positional (container, lhs, exp, pos, indices,
9838 &num_indices, max_indices,
9839 low_index, high_index);
9840 break;
9841 case OP_OTHERS:
9842 if (i != n-1)
9843 error (_("Misplaced 'others' clause"));
9844 aggregate_assign_others (container, lhs, exp, pos, indices,
9845 num_indices, low_index, high_index);
9846 break;
9847 default:
9848 error (_("Internal error: bad aggregate clause"));
9849 }
9850 }
9851
9852 return container;
9853 }
9854
9855 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9856 construct at *POS, updating *POS past the construct, given that
9857 the positions are relative to lower bound LOW, where HIGH is the
9858 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9859 updating *NUM_INDICES as needed. CONTAINER is as for
9860 assign_aggregate. */
9861 static void
9862 aggregate_assign_positional (struct value *container,
9863 struct value *lhs, struct expression *exp,
9864 int *pos, LONGEST *indices, int *num_indices,
9865 int max_indices, LONGEST low, LONGEST high)
9866 {
9867 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9868
9869 if (ind - 1 == high)
9870 warning (_("Extra components in aggregate ignored."));
9871 if (ind <= high)
9872 {
9873 add_component_interval (ind, ind, indices, num_indices, max_indices);
9874 *pos += 3;
9875 assign_component (container, lhs, ind, exp, pos);
9876 }
9877 else
9878 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9879 }
9880
9881 /* Assign into the components of LHS indexed by the OP_CHOICES
9882 construct at *POS, updating *POS past the construct, given that
9883 the allowable indices are LOW..HIGH. Record the indices assigned
9884 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9885 needed. CONTAINER is as for assign_aggregate. */
9886 static void
9887 aggregate_assign_from_choices (struct value *container,
9888 struct value *lhs, struct expression *exp,
9889 int *pos, LONGEST *indices, int *num_indices,
9890 int max_indices, LONGEST low, LONGEST high)
9891 {
9892 int j;
9893 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9894 int choice_pos, expr_pc;
9895 int is_array = ada_is_direct_array_type (value_type (lhs));
9896
9897 choice_pos = *pos += 3;
9898
9899 for (j = 0; j < n_choices; j += 1)
9900 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9901 expr_pc = *pos;
9902 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9903
9904 for (j = 0; j < n_choices; j += 1)
9905 {
9906 LONGEST lower, upper;
9907 enum exp_opcode op = exp->elts[choice_pos].opcode;
9908
9909 if (op == OP_DISCRETE_RANGE)
9910 {
9911 choice_pos += 1;
9912 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9913 EVAL_NORMAL));
9914 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9915 EVAL_NORMAL));
9916 }
9917 else if (is_array)
9918 {
9919 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9920 EVAL_NORMAL));
9921 upper = lower;
9922 }
9923 else
9924 {
9925 int ind;
9926 const char *name;
9927
9928 switch (op)
9929 {
9930 case OP_NAME:
9931 name = &exp->elts[choice_pos + 2].string;
9932 break;
9933 case OP_VAR_VALUE:
9934 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9935 break;
9936 default:
9937 error (_("Invalid record component association."));
9938 }
9939 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9940 ind = 0;
9941 if (! find_struct_field (name, value_type (lhs), 0,
9942 NULL, NULL, NULL, NULL, &ind))
9943 error (_("Unknown component name: %s."), name);
9944 lower = upper = ind;
9945 }
9946
9947 if (lower <= upper && (lower < low || upper > high))
9948 error (_("Index in component association out of bounds."));
9949
9950 add_component_interval (lower, upper, indices, num_indices,
9951 max_indices);
9952 while (lower <= upper)
9953 {
9954 int pos1;
9955
9956 pos1 = expr_pc;
9957 assign_component (container, lhs, lower, exp, &pos1);
9958 lower += 1;
9959 }
9960 }
9961 }
9962
9963 /* Assign the value of the expression in the OP_OTHERS construct in
9964 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9965 have not been previously assigned. The index intervals already assigned
9966 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9967 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9968 static void
9969 aggregate_assign_others (struct value *container,
9970 struct value *lhs, struct expression *exp,
9971 int *pos, LONGEST *indices, int num_indices,
9972 LONGEST low, LONGEST high)
9973 {
9974 int i;
9975 int expr_pc = *pos + 1;
9976
9977 for (i = 0; i < num_indices - 2; i += 2)
9978 {
9979 LONGEST ind;
9980
9981 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9982 {
9983 int localpos;
9984
9985 localpos = expr_pc;
9986 assign_component (container, lhs, ind, exp, &localpos);
9987 }
9988 }
9989 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9990 }
9991
9992 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9993 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9994 modifying *SIZE as needed. It is an error if *SIZE exceeds
9995 MAX_SIZE. The resulting intervals do not overlap. */
9996 static void
9997 add_component_interval (LONGEST low, LONGEST high,
9998 LONGEST* indices, int *size, int max_size)
9999 {
10000 int i, j;
10001
10002 for (i = 0; i < *size; i += 2) {
10003 if (high >= indices[i] && low <= indices[i + 1])
10004 {
10005 int kh;
10006
10007 for (kh = i + 2; kh < *size; kh += 2)
10008 if (high < indices[kh])
10009 break;
10010 if (low < indices[i])
10011 indices[i] = low;
10012 indices[i + 1] = indices[kh - 1];
10013 if (high > indices[i + 1])
10014 indices[i + 1] = high;
10015 memcpy (indices + i + 2, indices + kh, *size - kh);
10016 *size -= kh - i - 2;
10017 return;
10018 }
10019 else if (high < indices[i])
10020 break;
10021 }
10022
10023 if (*size == max_size)
10024 error (_("Internal error: miscounted aggregate components."));
10025 *size += 2;
10026 for (j = *size-1; j >= i+2; j -= 1)
10027 indices[j] = indices[j - 2];
10028 indices[i] = low;
10029 indices[i + 1] = high;
10030 }
10031
10032 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10033 is different. */
10034
10035 static struct value *
10036 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10037 {
10038 if (type == ada_check_typedef (value_type (arg2)))
10039 return arg2;
10040
10041 if (ada_is_fixed_point_type (type))
10042 return (cast_to_fixed (type, arg2));
10043
10044 if (ada_is_fixed_point_type (value_type (arg2)))
10045 return cast_from_fixed (type, arg2);
10046
10047 return value_cast (type, arg2);
10048 }
10049
10050 /* Evaluating Ada expressions, and printing their result.
10051 ------------------------------------------------------
10052
10053 1. Introduction:
10054 ----------------
10055
10056 We usually evaluate an Ada expression in order to print its value.
10057 We also evaluate an expression in order to print its type, which
10058 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10059 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10060 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10061 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10062 similar.
10063
10064 Evaluating expressions is a little more complicated for Ada entities
10065 than it is for entities in languages such as C. The main reason for
10066 this is that Ada provides types whose definition might be dynamic.
10067 One example of such types is variant records. Or another example
10068 would be an array whose bounds can only be known at run time.
10069
10070 The following description is a general guide as to what should be
10071 done (and what should NOT be done) in order to evaluate an expression
10072 involving such types, and when. This does not cover how the semantic
10073 information is encoded by GNAT as this is covered separatly. For the
10074 document used as the reference for the GNAT encoding, see exp_dbug.ads
10075 in the GNAT sources.
10076
10077 Ideally, we should embed each part of this description next to its
10078 associated code. Unfortunately, the amount of code is so vast right
10079 now that it's hard to see whether the code handling a particular
10080 situation might be duplicated or not. One day, when the code is
10081 cleaned up, this guide might become redundant with the comments
10082 inserted in the code, and we might want to remove it.
10083
10084 2. ``Fixing'' an Entity, the Simple Case:
10085 -----------------------------------------
10086
10087 When evaluating Ada expressions, the tricky issue is that they may
10088 reference entities whose type contents and size are not statically
10089 known. Consider for instance a variant record:
10090
10091 type Rec (Empty : Boolean := True) is record
10092 case Empty is
10093 when True => null;
10094 when False => Value : Integer;
10095 end case;
10096 end record;
10097 Yes : Rec := (Empty => False, Value => 1);
10098 No : Rec := (empty => True);
10099
10100 The size and contents of that record depends on the value of the
10101 descriminant (Rec.Empty). At this point, neither the debugging
10102 information nor the associated type structure in GDB are able to
10103 express such dynamic types. So what the debugger does is to create
10104 "fixed" versions of the type that applies to the specific object.
10105 We also informally refer to this opperation as "fixing" an object,
10106 which means creating its associated fixed type.
10107
10108 Example: when printing the value of variable "Yes" above, its fixed
10109 type would look like this:
10110
10111 type Rec is record
10112 Empty : Boolean;
10113 Value : Integer;
10114 end record;
10115
10116 On the other hand, if we printed the value of "No", its fixed type
10117 would become:
10118
10119 type Rec is record
10120 Empty : Boolean;
10121 end record;
10122
10123 Things become a little more complicated when trying to fix an entity
10124 with a dynamic type that directly contains another dynamic type,
10125 such as an array of variant records, for instance. There are
10126 two possible cases: Arrays, and records.
10127
10128 3. ``Fixing'' Arrays:
10129 ---------------------
10130
10131 The type structure in GDB describes an array in terms of its bounds,
10132 and the type of its elements. By design, all elements in the array
10133 have the same type and we cannot represent an array of variant elements
10134 using the current type structure in GDB. When fixing an array,
10135 we cannot fix the array element, as we would potentially need one
10136 fixed type per element of the array. As a result, the best we can do
10137 when fixing an array is to produce an array whose bounds and size
10138 are correct (allowing us to read it from memory), but without having
10139 touched its element type. Fixing each element will be done later,
10140 when (if) necessary.
10141
10142 Arrays are a little simpler to handle than records, because the same
10143 amount of memory is allocated for each element of the array, even if
10144 the amount of space actually used by each element differs from element
10145 to element. Consider for instance the following array of type Rec:
10146
10147 type Rec_Array is array (1 .. 2) of Rec;
10148
10149 The actual amount of memory occupied by each element might be different
10150 from element to element, depending on the value of their discriminant.
10151 But the amount of space reserved for each element in the array remains
10152 fixed regardless. So we simply need to compute that size using
10153 the debugging information available, from which we can then determine
10154 the array size (we multiply the number of elements of the array by
10155 the size of each element).
10156
10157 The simplest case is when we have an array of a constrained element
10158 type. For instance, consider the following type declarations:
10159
10160 type Bounded_String (Max_Size : Integer) is
10161 Length : Integer;
10162 Buffer : String (1 .. Max_Size);
10163 end record;
10164 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10165
10166 In this case, the compiler describes the array as an array of
10167 variable-size elements (identified by its XVS suffix) for which
10168 the size can be read in the parallel XVZ variable.
10169
10170 In the case of an array of an unconstrained element type, the compiler
10171 wraps the array element inside a private PAD type. This type should not
10172 be shown to the user, and must be "unwrap"'ed before printing. Note
10173 that we also use the adjective "aligner" in our code to designate
10174 these wrapper types.
10175
10176 In some cases, the size allocated for each element is statically
10177 known. In that case, the PAD type already has the correct size,
10178 and the array element should remain unfixed.
10179
10180 But there are cases when this size is not statically known.
10181 For instance, assuming that "Five" is an integer variable:
10182
10183 type Dynamic is array (1 .. Five) of Integer;
10184 type Wrapper (Has_Length : Boolean := False) is record
10185 Data : Dynamic;
10186 case Has_Length is
10187 when True => Length : Integer;
10188 when False => null;
10189 end case;
10190 end record;
10191 type Wrapper_Array is array (1 .. 2) of Wrapper;
10192
10193 Hello : Wrapper_Array := (others => (Has_Length => True,
10194 Data => (others => 17),
10195 Length => 1));
10196
10197
10198 The debugging info would describe variable Hello as being an
10199 array of a PAD type. The size of that PAD type is not statically
10200 known, but can be determined using a parallel XVZ variable.
10201 In that case, a copy of the PAD type with the correct size should
10202 be used for the fixed array.
10203
10204 3. ``Fixing'' record type objects:
10205 ----------------------------------
10206
10207 Things are slightly different from arrays in the case of dynamic
10208 record types. In this case, in order to compute the associated
10209 fixed type, we need to determine the size and offset of each of
10210 its components. This, in turn, requires us to compute the fixed
10211 type of each of these components.
10212
10213 Consider for instance the example:
10214
10215 type Bounded_String (Max_Size : Natural) is record
10216 Str : String (1 .. Max_Size);
10217 Length : Natural;
10218 end record;
10219 My_String : Bounded_String (Max_Size => 10);
10220
10221 In that case, the position of field "Length" depends on the size
10222 of field Str, which itself depends on the value of the Max_Size
10223 discriminant. In order to fix the type of variable My_String,
10224 we need to fix the type of field Str. Therefore, fixing a variant
10225 record requires us to fix each of its components.
10226
10227 However, if a component does not have a dynamic size, the component
10228 should not be fixed. In particular, fields that use a PAD type
10229 should not fixed. Here is an example where this might happen
10230 (assuming type Rec above):
10231
10232 type Container (Big : Boolean) is record
10233 First : Rec;
10234 After : Integer;
10235 case Big is
10236 when True => Another : Integer;
10237 when False => null;
10238 end case;
10239 end record;
10240 My_Container : Container := (Big => False,
10241 First => (Empty => True),
10242 After => 42);
10243
10244 In that example, the compiler creates a PAD type for component First,
10245 whose size is constant, and then positions the component After just
10246 right after it. The offset of component After is therefore constant
10247 in this case.
10248
10249 The debugger computes the position of each field based on an algorithm
10250 that uses, among other things, the actual position and size of the field
10251 preceding it. Let's now imagine that the user is trying to print
10252 the value of My_Container. If the type fixing was recursive, we would
10253 end up computing the offset of field After based on the size of the
10254 fixed version of field First. And since in our example First has
10255 only one actual field, the size of the fixed type is actually smaller
10256 than the amount of space allocated to that field, and thus we would
10257 compute the wrong offset of field After.
10258
10259 To make things more complicated, we need to watch out for dynamic
10260 components of variant records (identified by the ___XVL suffix in
10261 the component name). Even if the target type is a PAD type, the size
10262 of that type might not be statically known. So the PAD type needs
10263 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10264 we might end up with the wrong size for our component. This can be
10265 observed with the following type declarations:
10266
10267 type Octal is new Integer range 0 .. 7;
10268 type Octal_Array is array (Positive range <>) of Octal;
10269 pragma Pack (Octal_Array);
10270
10271 type Octal_Buffer (Size : Positive) is record
10272 Buffer : Octal_Array (1 .. Size);
10273 Length : Integer;
10274 end record;
10275
10276 In that case, Buffer is a PAD type whose size is unset and needs
10277 to be computed by fixing the unwrapped type.
10278
10279 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10280 ----------------------------------------------------------
10281
10282 Lastly, when should the sub-elements of an entity that remained unfixed
10283 thus far, be actually fixed?
10284
10285 The answer is: Only when referencing that element. For instance
10286 when selecting one component of a record, this specific component
10287 should be fixed at that point in time. Or when printing the value
10288 of a record, each component should be fixed before its value gets
10289 printed. Similarly for arrays, the element of the array should be
10290 fixed when printing each element of the array, or when extracting
10291 one element out of that array. On the other hand, fixing should
10292 not be performed on the elements when taking a slice of an array!
10293
10294 Note that one of the side-effects of miscomputing the offset and
10295 size of each field is that we end up also miscomputing the size
10296 of the containing type. This can have adverse results when computing
10297 the value of an entity. GDB fetches the value of an entity based
10298 on the size of its type, and thus a wrong size causes GDB to fetch
10299 the wrong amount of memory. In the case where the computed size is
10300 too small, GDB fetches too little data to print the value of our
10301 entiry. Results in this case as unpredicatble, as we usually read
10302 past the buffer containing the data =:-o. */
10303
10304 /* Implement the evaluate_exp routine in the exp_descriptor structure
10305 for the Ada language. */
10306
10307 static struct value *
10308 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10309 int *pos, enum noside noside)
10310 {
10311 enum exp_opcode op;
10312 int tem;
10313 int pc;
10314 int preeval_pos;
10315 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10316 struct type *type;
10317 int nargs, oplen;
10318 struct value **argvec;
10319
10320 pc = *pos;
10321 *pos += 1;
10322 op = exp->elts[pc].opcode;
10323
10324 switch (op)
10325 {
10326 default:
10327 *pos -= 1;
10328 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10329
10330 if (noside == EVAL_NORMAL)
10331 arg1 = unwrap_value (arg1);
10332
10333 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10334 then we need to perform the conversion manually, because
10335 evaluate_subexp_standard doesn't do it. This conversion is
10336 necessary in Ada because the different kinds of float/fixed
10337 types in Ada have different representations.
10338
10339 Similarly, we need to perform the conversion from OP_LONG
10340 ourselves. */
10341 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10342 arg1 = ada_value_cast (expect_type, arg1, noside);
10343
10344 return arg1;
10345
10346 case OP_STRING:
10347 {
10348 struct value *result;
10349
10350 *pos -= 1;
10351 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10352 /* The result type will have code OP_STRING, bashed there from
10353 OP_ARRAY. Bash it back. */
10354 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10355 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10356 return result;
10357 }
10358
10359 case UNOP_CAST:
10360 (*pos) += 2;
10361 type = exp->elts[pc + 1].type;
10362 arg1 = evaluate_subexp (type, exp, pos, noside);
10363 if (noside == EVAL_SKIP)
10364 goto nosideret;
10365 arg1 = ada_value_cast (type, arg1, noside);
10366 return arg1;
10367
10368 case UNOP_QUAL:
10369 (*pos) += 2;
10370 type = exp->elts[pc + 1].type;
10371 return ada_evaluate_subexp (type, exp, pos, noside);
10372
10373 case BINOP_ASSIGN:
10374 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10375 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10376 {
10377 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10378 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10379 return arg1;
10380 return ada_value_assign (arg1, arg1);
10381 }
10382 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10383 except if the lhs of our assignment is a convenience variable.
10384 In the case of assigning to a convenience variable, the lhs
10385 should be exactly the result of the evaluation of the rhs. */
10386 type = value_type (arg1);
10387 if (VALUE_LVAL (arg1) == lval_internalvar)
10388 type = NULL;
10389 arg2 = evaluate_subexp (type, exp, pos, noside);
10390 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10391 return arg1;
10392 if (ada_is_fixed_point_type (value_type (arg1)))
10393 arg2 = cast_to_fixed (value_type (arg1), arg2);
10394 else if (ada_is_fixed_point_type (value_type (arg2)))
10395 error
10396 (_("Fixed-point values must be assigned to fixed-point variables"));
10397 else
10398 arg2 = coerce_for_assign (value_type (arg1), arg2);
10399 return ada_value_assign (arg1, arg2);
10400
10401 case BINOP_ADD:
10402 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10403 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10404 if (noside == EVAL_SKIP)
10405 goto nosideret;
10406 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10407 return (value_from_longest
10408 (value_type (arg1),
10409 value_as_long (arg1) + value_as_long (arg2)));
10410 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10411 return (value_from_longest
10412 (value_type (arg2),
10413 value_as_long (arg1) + value_as_long (arg2)));
10414 if ((ada_is_fixed_point_type (value_type (arg1))
10415 || ada_is_fixed_point_type (value_type (arg2)))
10416 && value_type (arg1) != value_type (arg2))
10417 error (_("Operands of fixed-point addition must have the same type"));
10418 /* Do the addition, and cast the result to the type of the first
10419 argument. We cannot cast the result to a reference type, so if
10420 ARG1 is a reference type, find its underlying type. */
10421 type = value_type (arg1);
10422 while (TYPE_CODE (type) == TYPE_CODE_REF)
10423 type = TYPE_TARGET_TYPE (type);
10424 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10425 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10426
10427 case BINOP_SUB:
10428 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10429 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10430 if (noside == EVAL_SKIP)
10431 goto nosideret;
10432 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10433 return (value_from_longest
10434 (value_type (arg1),
10435 value_as_long (arg1) - value_as_long (arg2)));
10436 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10437 return (value_from_longest
10438 (value_type (arg2),
10439 value_as_long (arg1) - value_as_long (arg2)));
10440 if ((ada_is_fixed_point_type (value_type (arg1))
10441 || ada_is_fixed_point_type (value_type (arg2)))
10442 && value_type (arg1) != value_type (arg2))
10443 error (_("Operands of fixed-point subtraction "
10444 "must have the same type"));
10445 /* Do the substraction, and cast the result to the type of the first
10446 argument. We cannot cast the result to a reference type, so if
10447 ARG1 is a reference type, find its underlying type. */
10448 type = value_type (arg1);
10449 while (TYPE_CODE (type) == TYPE_CODE_REF)
10450 type = TYPE_TARGET_TYPE (type);
10451 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10452 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10453
10454 case BINOP_MUL:
10455 case BINOP_DIV:
10456 case BINOP_REM:
10457 case BINOP_MOD:
10458 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10459 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10460 if (noside == EVAL_SKIP)
10461 goto nosideret;
10462 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10463 {
10464 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10465 return value_zero (value_type (arg1), not_lval);
10466 }
10467 else
10468 {
10469 type = builtin_type (exp->gdbarch)->builtin_double;
10470 if (ada_is_fixed_point_type (value_type (arg1)))
10471 arg1 = cast_from_fixed (type, arg1);
10472 if (ada_is_fixed_point_type (value_type (arg2)))
10473 arg2 = cast_from_fixed (type, arg2);
10474 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10475 return ada_value_binop (arg1, arg2, op);
10476 }
10477
10478 case BINOP_EQUAL:
10479 case BINOP_NOTEQUAL:
10480 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10481 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10482 if (noside == EVAL_SKIP)
10483 goto nosideret;
10484 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10485 tem = 0;
10486 else
10487 {
10488 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10489 tem = ada_value_equal (arg1, arg2);
10490 }
10491 if (op == BINOP_NOTEQUAL)
10492 tem = !tem;
10493 type = language_bool_type (exp->language_defn, exp->gdbarch);
10494 return value_from_longest (type, (LONGEST) tem);
10495
10496 case UNOP_NEG:
10497 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10498 if (noside == EVAL_SKIP)
10499 goto nosideret;
10500 else if (ada_is_fixed_point_type (value_type (arg1)))
10501 return value_cast (value_type (arg1), value_neg (arg1));
10502 else
10503 {
10504 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10505 return value_neg (arg1);
10506 }
10507
10508 case BINOP_LOGICAL_AND:
10509 case BINOP_LOGICAL_OR:
10510 case UNOP_LOGICAL_NOT:
10511 {
10512 struct value *val;
10513
10514 *pos -= 1;
10515 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10516 type = language_bool_type (exp->language_defn, exp->gdbarch);
10517 return value_cast (type, val);
10518 }
10519
10520 case BINOP_BITWISE_AND:
10521 case BINOP_BITWISE_IOR:
10522 case BINOP_BITWISE_XOR:
10523 {
10524 struct value *val;
10525
10526 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10527 *pos = pc;
10528 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10529
10530 return value_cast (value_type (arg1), val);
10531 }
10532
10533 case OP_VAR_VALUE:
10534 *pos -= 1;
10535
10536 if (noside == EVAL_SKIP)
10537 {
10538 *pos += 4;
10539 goto nosideret;
10540 }
10541
10542 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10543 /* Only encountered when an unresolved symbol occurs in a
10544 context other than a function call, in which case, it is
10545 invalid. */
10546 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10547 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10548
10549 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10550 {
10551 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10552 /* Check to see if this is a tagged type. We also need to handle
10553 the case where the type is a reference to a tagged type, but
10554 we have to be careful to exclude pointers to tagged types.
10555 The latter should be shown as usual (as a pointer), whereas
10556 a reference should mostly be transparent to the user. */
10557 if (ada_is_tagged_type (type, 0)
10558 || (TYPE_CODE (type) == TYPE_CODE_REF
10559 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10560 {
10561 /* Tagged types are a little special in the fact that the real
10562 type is dynamic and can only be determined by inspecting the
10563 object's tag. This means that we need to get the object's
10564 value first (EVAL_NORMAL) and then extract the actual object
10565 type from its tag.
10566
10567 Note that we cannot skip the final step where we extract
10568 the object type from its tag, because the EVAL_NORMAL phase
10569 results in dynamic components being resolved into fixed ones.
10570 This can cause problems when trying to print the type
10571 description of tagged types whose parent has a dynamic size:
10572 We use the type name of the "_parent" component in order
10573 to print the name of the ancestor type in the type description.
10574 If that component had a dynamic size, the resolution into
10575 a fixed type would result in the loss of that type name,
10576 thus preventing us from printing the name of the ancestor
10577 type in the type description. */
10578 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10579
10580 if (TYPE_CODE (type) != TYPE_CODE_REF)
10581 {
10582 struct type *actual_type;
10583
10584 actual_type = type_from_tag (ada_value_tag (arg1));
10585 if (actual_type == NULL)
10586 /* If, for some reason, we were unable to determine
10587 the actual type from the tag, then use the static
10588 approximation that we just computed as a fallback.
10589 This can happen if the debugging information is
10590 incomplete, for instance. */
10591 actual_type = type;
10592 return value_zero (actual_type, not_lval);
10593 }
10594 else
10595 {
10596 /* In the case of a ref, ada_coerce_ref takes care
10597 of determining the actual type. But the evaluation
10598 should return a ref as it should be valid to ask
10599 for its address; so rebuild a ref after coerce. */
10600 arg1 = ada_coerce_ref (arg1);
10601 return value_ref (arg1, TYPE_CODE_REF);
10602 }
10603 }
10604
10605 /* Records and unions for which GNAT encodings have been
10606 generated need to be statically fixed as well.
10607 Otherwise, non-static fixing produces a type where
10608 all dynamic properties are removed, which prevents "ptype"
10609 from being able to completely describe the type.
10610 For instance, a case statement in a variant record would be
10611 replaced by the relevant components based on the actual
10612 value of the discriminants. */
10613 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10614 && dynamic_template_type (type) != NULL)
10615 || (TYPE_CODE (type) == TYPE_CODE_UNION
10616 && ada_find_parallel_type (type, "___XVU") != NULL))
10617 {
10618 *pos += 4;
10619 return value_zero (to_static_fixed_type (type), not_lval);
10620 }
10621 }
10622
10623 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10624 return ada_to_fixed_value (arg1);
10625
10626 case OP_FUNCALL:
10627 (*pos) += 2;
10628
10629 /* Allocate arg vector, including space for the function to be
10630 called in argvec[0] and a terminating NULL. */
10631 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10632 argvec = XALLOCAVEC (struct value *, nargs + 2);
10633
10634 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10635 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10636 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10637 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10638 else
10639 {
10640 for (tem = 0; tem <= nargs; tem += 1)
10641 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10642 argvec[tem] = 0;
10643
10644 if (noside == EVAL_SKIP)
10645 goto nosideret;
10646 }
10647
10648 if (ada_is_constrained_packed_array_type
10649 (desc_base_type (value_type (argvec[0]))))
10650 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10651 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10652 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10653 /* This is a packed array that has already been fixed, and
10654 therefore already coerced to a simple array. Nothing further
10655 to do. */
10656 ;
10657 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10658 {
10659 /* Make sure we dereference references so that all the code below
10660 feels like it's really handling the referenced value. Wrapping
10661 types (for alignment) may be there, so make sure we strip them as
10662 well. */
10663 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10664 }
10665 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10666 && VALUE_LVAL (argvec[0]) == lval_memory)
10667 argvec[0] = value_addr (argvec[0]);
10668
10669 type = ada_check_typedef (value_type (argvec[0]));
10670
10671 /* Ada allows us to implicitly dereference arrays when subscripting
10672 them. So, if this is an array typedef (encoding use for array
10673 access types encoded as fat pointers), strip it now. */
10674 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10675 type = ada_typedef_target_type (type);
10676
10677 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10678 {
10679 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10680 {
10681 case TYPE_CODE_FUNC:
10682 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10683 break;
10684 case TYPE_CODE_ARRAY:
10685 break;
10686 case TYPE_CODE_STRUCT:
10687 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10688 argvec[0] = ada_value_ind (argvec[0]);
10689 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10690 break;
10691 default:
10692 error (_("cannot subscript or call something of type `%s'"),
10693 ada_type_name (value_type (argvec[0])));
10694 break;
10695 }
10696 }
10697
10698 switch (TYPE_CODE (type))
10699 {
10700 case TYPE_CODE_FUNC:
10701 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10702 {
10703 if (TYPE_TARGET_TYPE (type) == NULL)
10704 error_call_unknown_return_type (NULL);
10705 return allocate_value (TYPE_TARGET_TYPE (type));
10706 }
10707 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10708 case TYPE_CODE_INTERNAL_FUNCTION:
10709 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10710 /* We don't know anything about what the internal
10711 function might return, but we have to return
10712 something. */
10713 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10714 not_lval);
10715 else
10716 return call_internal_function (exp->gdbarch, exp->language_defn,
10717 argvec[0], nargs, argvec + 1);
10718
10719 case TYPE_CODE_STRUCT:
10720 {
10721 int arity;
10722
10723 arity = ada_array_arity (type);
10724 type = ada_array_element_type (type, nargs);
10725 if (type == NULL)
10726 error (_("cannot subscript or call a record"));
10727 if (arity != nargs)
10728 error (_("wrong number of subscripts; expecting %d"), arity);
10729 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10730 return value_zero (ada_aligned_type (type), lval_memory);
10731 return
10732 unwrap_value (ada_value_subscript
10733 (argvec[0], nargs, argvec + 1));
10734 }
10735 case TYPE_CODE_ARRAY:
10736 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10737 {
10738 type = ada_array_element_type (type, nargs);
10739 if (type == NULL)
10740 error (_("element type of array unknown"));
10741 else
10742 return value_zero (ada_aligned_type (type), lval_memory);
10743 }
10744 return
10745 unwrap_value (ada_value_subscript
10746 (ada_coerce_to_simple_array (argvec[0]),
10747 nargs, argvec + 1));
10748 case TYPE_CODE_PTR: /* Pointer to array */
10749 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10750 {
10751 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10752 type = ada_array_element_type (type, nargs);
10753 if (type == NULL)
10754 error (_("element type of array unknown"));
10755 else
10756 return value_zero (ada_aligned_type (type), lval_memory);
10757 }
10758 return
10759 unwrap_value (ada_value_ptr_subscript (argvec[0],
10760 nargs, argvec + 1));
10761
10762 default:
10763 error (_("Attempt to index or call something other than an "
10764 "array or function"));
10765 }
10766
10767 case TERNOP_SLICE:
10768 {
10769 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10770 struct value *low_bound_val =
10771 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10772 struct value *high_bound_val =
10773 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10774 LONGEST low_bound;
10775 LONGEST high_bound;
10776
10777 low_bound_val = coerce_ref (low_bound_val);
10778 high_bound_val = coerce_ref (high_bound_val);
10779 low_bound = value_as_long (low_bound_val);
10780 high_bound = value_as_long (high_bound_val);
10781
10782 if (noside == EVAL_SKIP)
10783 goto nosideret;
10784
10785 /* If this is a reference to an aligner type, then remove all
10786 the aligners. */
10787 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10788 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10789 TYPE_TARGET_TYPE (value_type (array)) =
10790 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10791
10792 if (ada_is_constrained_packed_array_type (value_type (array)))
10793 error (_("cannot slice a packed array"));
10794
10795 /* If this is a reference to an array or an array lvalue,
10796 convert to a pointer. */
10797 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10798 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10799 && VALUE_LVAL (array) == lval_memory))
10800 array = value_addr (array);
10801
10802 if (noside == EVAL_AVOID_SIDE_EFFECTS
10803 && ada_is_array_descriptor_type (ada_check_typedef
10804 (value_type (array))))
10805 return empty_array (ada_type_of_array (array, 0), low_bound);
10806
10807 array = ada_coerce_to_simple_array_ptr (array);
10808
10809 /* If we have more than one level of pointer indirection,
10810 dereference the value until we get only one level. */
10811 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10812 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10813 == TYPE_CODE_PTR))
10814 array = value_ind (array);
10815
10816 /* Make sure we really do have an array type before going further,
10817 to avoid a SEGV when trying to get the index type or the target
10818 type later down the road if the debug info generated by
10819 the compiler is incorrect or incomplete. */
10820 if (!ada_is_simple_array_type (value_type (array)))
10821 error (_("cannot take slice of non-array"));
10822
10823 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10824 == TYPE_CODE_PTR)
10825 {
10826 struct type *type0 = ada_check_typedef (value_type (array));
10827
10828 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10829 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10830 else
10831 {
10832 struct type *arr_type0 =
10833 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10834
10835 return ada_value_slice_from_ptr (array, arr_type0,
10836 longest_to_int (low_bound),
10837 longest_to_int (high_bound));
10838 }
10839 }
10840 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10841 return array;
10842 else if (high_bound < low_bound)
10843 return empty_array (value_type (array), low_bound);
10844 else
10845 return ada_value_slice (array, longest_to_int (low_bound),
10846 longest_to_int (high_bound));
10847 }
10848
10849 case UNOP_IN_RANGE:
10850 (*pos) += 2;
10851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10852 type = check_typedef (exp->elts[pc + 1].type);
10853
10854 if (noside == EVAL_SKIP)
10855 goto nosideret;
10856
10857 switch (TYPE_CODE (type))
10858 {
10859 default:
10860 lim_warning (_("Membership test incompletely implemented; "
10861 "always returns true"));
10862 type = language_bool_type (exp->language_defn, exp->gdbarch);
10863 return value_from_longest (type, (LONGEST) 1);
10864
10865 case TYPE_CODE_RANGE:
10866 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10867 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10868 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10869 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10870 type = language_bool_type (exp->language_defn, exp->gdbarch);
10871 return
10872 value_from_longest (type,
10873 (value_less (arg1, arg3)
10874 || value_equal (arg1, arg3))
10875 && (value_less (arg2, arg1)
10876 || value_equal (arg2, arg1)));
10877 }
10878
10879 case BINOP_IN_BOUNDS:
10880 (*pos) += 2;
10881 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10882 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10883
10884 if (noside == EVAL_SKIP)
10885 goto nosideret;
10886
10887 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10888 {
10889 type = language_bool_type (exp->language_defn, exp->gdbarch);
10890 return value_zero (type, not_lval);
10891 }
10892
10893 tem = longest_to_int (exp->elts[pc + 1].longconst);
10894
10895 type = ada_index_type (value_type (arg2), tem, "range");
10896 if (!type)
10897 type = value_type (arg1);
10898
10899 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10900 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10901
10902 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10903 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10904 type = language_bool_type (exp->language_defn, exp->gdbarch);
10905 return
10906 value_from_longest (type,
10907 (value_less (arg1, arg3)
10908 || value_equal (arg1, arg3))
10909 && (value_less (arg2, arg1)
10910 || value_equal (arg2, arg1)));
10911
10912 case TERNOP_IN_RANGE:
10913 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10914 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10915 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10916
10917 if (noside == EVAL_SKIP)
10918 goto nosideret;
10919
10920 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10921 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10922 type = language_bool_type (exp->language_defn, exp->gdbarch);
10923 return
10924 value_from_longest (type,
10925 (value_less (arg1, arg3)
10926 || value_equal (arg1, arg3))
10927 && (value_less (arg2, arg1)
10928 || value_equal (arg2, arg1)));
10929
10930 case OP_ATR_FIRST:
10931 case OP_ATR_LAST:
10932 case OP_ATR_LENGTH:
10933 {
10934 struct type *type_arg;
10935
10936 if (exp->elts[*pos].opcode == OP_TYPE)
10937 {
10938 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10939 arg1 = NULL;
10940 type_arg = check_typedef (exp->elts[pc + 2].type);
10941 }
10942 else
10943 {
10944 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10945 type_arg = NULL;
10946 }
10947
10948 if (exp->elts[*pos].opcode != OP_LONG)
10949 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10950 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10951 *pos += 4;
10952
10953 if (noside == EVAL_SKIP)
10954 goto nosideret;
10955
10956 if (type_arg == NULL)
10957 {
10958 arg1 = ada_coerce_ref (arg1);
10959
10960 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10961 arg1 = ada_coerce_to_simple_array (arg1);
10962
10963 if (op == OP_ATR_LENGTH)
10964 type = builtin_type (exp->gdbarch)->builtin_int;
10965 else
10966 {
10967 type = ada_index_type (value_type (arg1), tem,
10968 ada_attribute_name (op));
10969 if (type == NULL)
10970 type = builtin_type (exp->gdbarch)->builtin_int;
10971 }
10972
10973 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10974 return allocate_value (type);
10975
10976 switch (op)
10977 {
10978 default: /* Should never happen. */
10979 error (_("unexpected attribute encountered"));
10980 case OP_ATR_FIRST:
10981 return value_from_longest
10982 (type, ada_array_bound (arg1, tem, 0));
10983 case OP_ATR_LAST:
10984 return value_from_longest
10985 (type, ada_array_bound (arg1, tem, 1));
10986 case OP_ATR_LENGTH:
10987 return value_from_longest
10988 (type, ada_array_length (arg1, tem));
10989 }
10990 }
10991 else if (discrete_type_p (type_arg))
10992 {
10993 struct type *range_type;
10994 const char *name = ada_type_name (type_arg);
10995
10996 range_type = NULL;
10997 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10998 range_type = to_fixed_range_type (type_arg, NULL);
10999 if (range_type == NULL)
11000 range_type = type_arg;
11001 switch (op)
11002 {
11003 default:
11004 error (_("unexpected attribute encountered"));
11005 case OP_ATR_FIRST:
11006 return value_from_longest
11007 (range_type, ada_discrete_type_low_bound (range_type));
11008 case OP_ATR_LAST:
11009 return value_from_longest
11010 (range_type, ada_discrete_type_high_bound (range_type));
11011 case OP_ATR_LENGTH:
11012 error (_("the 'length attribute applies only to array types"));
11013 }
11014 }
11015 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11016 error (_("unimplemented type attribute"));
11017 else
11018 {
11019 LONGEST low, high;
11020
11021 if (ada_is_constrained_packed_array_type (type_arg))
11022 type_arg = decode_constrained_packed_array_type (type_arg);
11023
11024 if (op == OP_ATR_LENGTH)
11025 type = builtin_type (exp->gdbarch)->builtin_int;
11026 else
11027 {
11028 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11029 if (type == NULL)
11030 type = builtin_type (exp->gdbarch)->builtin_int;
11031 }
11032
11033 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11034 return allocate_value (type);
11035
11036 switch (op)
11037 {
11038 default:
11039 error (_("unexpected attribute encountered"));
11040 case OP_ATR_FIRST:
11041 low = ada_array_bound_from_type (type_arg, tem, 0);
11042 return value_from_longest (type, low);
11043 case OP_ATR_LAST:
11044 high = ada_array_bound_from_type (type_arg, tem, 1);
11045 return value_from_longest (type, high);
11046 case OP_ATR_LENGTH:
11047 low = ada_array_bound_from_type (type_arg, tem, 0);
11048 high = ada_array_bound_from_type (type_arg, tem, 1);
11049 return value_from_longest (type, high - low + 1);
11050 }
11051 }
11052 }
11053
11054 case OP_ATR_TAG:
11055 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11056 if (noside == EVAL_SKIP)
11057 goto nosideret;
11058
11059 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11060 return value_zero (ada_tag_type (arg1), not_lval);
11061
11062 return ada_value_tag (arg1);
11063
11064 case OP_ATR_MIN:
11065 case OP_ATR_MAX:
11066 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11067 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11068 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11069 if (noside == EVAL_SKIP)
11070 goto nosideret;
11071 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11072 return value_zero (value_type (arg1), not_lval);
11073 else
11074 {
11075 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11076 return value_binop (arg1, arg2,
11077 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11078 }
11079
11080 case OP_ATR_MODULUS:
11081 {
11082 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11083
11084 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11085 if (noside == EVAL_SKIP)
11086 goto nosideret;
11087
11088 if (!ada_is_modular_type (type_arg))
11089 error (_("'modulus must be applied to modular type"));
11090
11091 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11092 ada_modulus (type_arg));
11093 }
11094
11095
11096 case OP_ATR_POS:
11097 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11098 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11099 if (noside == EVAL_SKIP)
11100 goto nosideret;
11101 type = builtin_type (exp->gdbarch)->builtin_int;
11102 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11103 return value_zero (type, not_lval);
11104 else
11105 return value_pos_atr (type, arg1);
11106
11107 case OP_ATR_SIZE:
11108 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11109 type = value_type (arg1);
11110
11111 /* If the argument is a reference, then dereference its type, since
11112 the user is really asking for the size of the actual object,
11113 not the size of the pointer. */
11114 if (TYPE_CODE (type) == TYPE_CODE_REF)
11115 type = TYPE_TARGET_TYPE (type);
11116
11117 if (noside == EVAL_SKIP)
11118 goto nosideret;
11119 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11120 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11121 else
11122 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11123 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11124
11125 case OP_ATR_VAL:
11126 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11127 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11128 type = exp->elts[pc + 2].type;
11129 if (noside == EVAL_SKIP)
11130 goto nosideret;
11131 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11132 return value_zero (type, not_lval);
11133 else
11134 return value_val_atr (type, arg1);
11135
11136 case BINOP_EXP:
11137 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11138 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11139 if (noside == EVAL_SKIP)
11140 goto nosideret;
11141 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11142 return value_zero (value_type (arg1), not_lval);
11143 else
11144 {
11145 /* For integer exponentiation operations,
11146 only promote the first argument. */
11147 if (is_integral_type (value_type (arg2)))
11148 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11149 else
11150 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11151
11152 return value_binop (arg1, arg2, op);
11153 }
11154
11155 case UNOP_PLUS:
11156 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11157 if (noside == EVAL_SKIP)
11158 goto nosideret;
11159 else
11160 return arg1;
11161
11162 case UNOP_ABS:
11163 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11164 if (noside == EVAL_SKIP)
11165 goto nosideret;
11166 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11167 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11168 return value_neg (arg1);
11169 else
11170 return arg1;
11171
11172 case UNOP_IND:
11173 preeval_pos = *pos;
11174 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11175 if (noside == EVAL_SKIP)
11176 goto nosideret;
11177 type = ada_check_typedef (value_type (arg1));
11178 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11179 {
11180 if (ada_is_array_descriptor_type (type))
11181 /* GDB allows dereferencing GNAT array descriptors. */
11182 {
11183 struct type *arrType = ada_type_of_array (arg1, 0);
11184
11185 if (arrType == NULL)
11186 error (_("Attempt to dereference null array pointer."));
11187 return value_at_lazy (arrType, 0);
11188 }
11189 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11190 || TYPE_CODE (type) == TYPE_CODE_REF
11191 /* In C you can dereference an array to get the 1st elt. */
11192 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11193 {
11194 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11195 only be determined by inspecting the object's tag.
11196 This means that we need to evaluate completely the
11197 expression in order to get its type. */
11198
11199 if ((TYPE_CODE (type) == TYPE_CODE_REF
11200 || TYPE_CODE (type) == TYPE_CODE_PTR)
11201 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11202 {
11203 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11204 EVAL_NORMAL);
11205 type = value_type (ada_value_ind (arg1));
11206 }
11207 else
11208 {
11209 type = to_static_fixed_type
11210 (ada_aligned_type
11211 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11212 }
11213 ada_ensure_varsize_limit (type);
11214 return value_zero (type, lval_memory);
11215 }
11216 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11217 {
11218 /* GDB allows dereferencing an int. */
11219 if (expect_type == NULL)
11220 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11221 lval_memory);
11222 else
11223 {
11224 expect_type =
11225 to_static_fixed_type (ada_aligned_type (expect_type));
11226 return value_zero (expect_type, lval_memory);
11227 }
11228 }
11229 else
11230 error (_("Attempt to take contents of a non-pointer value."));
11231 }
11232 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11233 type = ada_check_typedef (value_type (arg1));
11234
11235 if (TYPE_CODE (type) == TYPE_CODE_INT)
11236 /* GDB allows dereferencing an int. If we were given
11237 the expect_type, then use that as the target type.
11238 Otherwise, assume that the target type is an int. */
11239 {
11240 if (expect_type != NULL)
11241 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11242 arg1));
11243 else
11244 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11245 (CORE_ADDR) value_as_address (arg1));
11246 }
11247
11248 if (ada_is_array_descriptor_type (type))
11249 /* GDB allows dereferencing GNAT array descriptors. */
11250 return ada_coerce_to_simple_array (arg1);
11251 else
11252 return ada_value_ind (arg1);
11253
11254 case STRUCTOP_STRUCT:
11255 tem = longest_to_int (exp->elts[pc + 1].longconst);
11256 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11257 preeval_pos = *pos;
11258 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11259 if (noside == EVAL_SKIP)
11260 goto nosideret;
11261 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11262 {
11263 struct type *type1 = value_type (arg1);
11264
11265 if (ada_is_tagged_type (type1, 1))
11266 {
11267 type = ada_lookup_struct_elt_type (type1,
11268 &exp->elts[pc + 2].string,
11269 1, 1);
11270
11271 /* If the field is not found, check if it exists in the
11272 extension of this object's type. This means that we
11273 need to evaluate completely the expression. */
11274
11275 if (type == NULL)
11276 {
11277 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11278 EVAL_NORMAL);
11279 arg1 = ada_value_struct_elt (arg1,
11280 &exp->elts[pc + 2].string,
11281 0);
11282 arg1 = unwrap_value (arg1);
11283 type = value_type (ada_to_fixed_value (arg1));
11284 }
11285 }
11286 else
11287 type =
11288 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11289 0);
11290
11291 return value_zero (ada_aligned_type (type), lval_memory);
11292 }
11293 else
11294 {
11295 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11296 arg1 = unwrap_value (arg1);
11297 return ada_to_fixed_value (arg1);
11298 }
11299
11300 case OP_TYPE:
11301 /* The value is not supposed to be used. This is here to make it
11302 easier to accommodate expressions that contain types. */
11303 (*pos) += 2;
11304 if (noside == EVAL_SKIP)
11305 goto nosideret;
11306 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11307 return allocate_value (exp->elts[pc + 1].type);
11308 else
11309 error (_("Attempt to use a type name as an expression"));
11310
11311 case OP_AGGREGATE:
11312 case OP_CHOICES:
11313 case OP_OTHERS:
11314 case OP_DISCRETE_RANGE:
11315 case OP_POSITIONAL:
11316 case OP_NAME:
11317 if (noside == EVAL_NORMAL)
11318 switch (op)
11319 {
11320 case OP_NAME:
11321 error (_("Undefined name, ambiguous name, or renaming used in "
11322 "component association: %s."), &exp->elts[pc+2].string);
11323 case OP_AGGREGATE:
11324 error (_("Aggregates only allowed on the right of an assignment"));
11325 default:
11326 internal_error (__FILE__, __LINE__,
11327 _("aggregate apparently mangled"));
11328 }
11329
11330 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11331 *pos += oplen - 1;
11332 for (tem = 0; tem < nargs; tem += 1)
11333 ada_evaluate_subexp (NULL, exp, pos, noside);
11334 goto nosideret;
11335 }
11336
11337 nosideret:
11338 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11339 }
11340 \f
11341
11342 /* Fixed point */
11343
11344 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11345 type name that encodes the 'small and 'delta information.
11346 Otherwise, return NULL. */
11347
11348 static const char *
11349 fixed_type_info (struct type *type)
11350 {
11351 const char *name = ada_type_name (type);
11352 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11353
11354 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11355 {
11356 const char *tail = strstr (name, "___XF_");
11357
11358 if (tail == NULL)
11359 return NULL;
11360 else
11361 return tail + 5;
11362 }
11363 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11364 return fixed_type_info (TYPE_TARGET_TYPE (type));
11365 else
11366 return NULL;
11367 }
11368
11369 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11370
11371 int
11372 ada_is_fixed_point_type (struct type *type)
11373 {
11374 return fixed_type_info (type) != NULL;
11375 }
11376
11377 /* Return non-zero iff TYPE represents a System.Address type. */
11378
11379 int
11380 ada_is_system_address_type (struct type *type)
11381 {
11382 return (TYPE_NAME (type)
11383 && strcmp (TYPE_NAME (type), "system__address") == 0);
11384 }
11385
11386 /* Assuming that TYPE is the representation of an Ada fixed-point
11387 type, return the target floating-point type to be used to represent
11388 of this type during internal computation. */
11389
11390 static struct type *
11391 ada_scaling_type (struct type *type)
11392 {
11393 return builtin_type (get_type_arch (type))->builtin_long_double;
11394 }
11395
11396 /* Assuming that TYPE is the representation of an Ada fixed-point
11397 type, return its delta, or NULL if the type is malformed and the
11398 delta cannot be determined. */
11399
11400 struct value *
11401 ada_delta (struct type *type)
11402 {
11403 const char *encoding = fixed_type_info (type);
11404 struct type *scale_type = ada_scaling_type (type);
11405
11406 long long num, den;
11407
11408 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11409 return nullptr;
11410 else
11411 return value_binop (value_from_longest (scale_type, num),
11412 value_from_longest (scale_type, den), BINOP_DIV);
11413 }
11414
11415 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11416 factor ('SMALL value) associated with the type. */
11417
11418 struct value *
11419 ada_scaling_factor (struct type *type)
11420 {
11421 const char *encoding = fixed_type_info (type);
11422 struct type *scale_type = ada_scaling_type (type);
11423
11424 long long num0, den0, num1, den1;
11425 int n;
11426
11427 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11428 &num0, &den0, &num1, &den1);
11429
11430 if (n < 2)
11431 return value_from_longest (scale_type, 1);
11432 else if (n == 4)
11433 return value_binop (value_from_longest (scale_type, num1),
11434 value_from_longest (scale_type, den1), BINOP_DIV);
11435 else
11436 return value_binop (value_from_longest (scale_type, num0),
11437 value_from_longest (scale_type, den0), BINOP_DIV);
11438 }
11439
11440 \f
11441
11442 /* Range types */
11443
11444 /* Scan STR beginning at position K for a discriminant name, and
11445 return the value of that discriminant field of DVAL in *PX. If
11446 PNEW_K is not null, put the position of the character beyond the
11447 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11448 not alter *PX and *PNEW_K if unsuccessful. */
11449
11450 static int
11451 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11452 int *pnew_k)
11453 {
11454 static char *bound_buffer = NULL;
11455 static size_t bound_buffer_len = 0;
11456 const char *pstart, *pend, *bound;
11457 struct value *bound_val;
11458
11459 if (dval == NULL || str == NULL || str[k] == '\0')
11460 return 0;
11461
11462 pstart = str + k;
11463 pend = strstr (pstart, "__");
11464 if (pend == NULL)
11465 {
11466 bound = pstart;
11467 k += strlen (bound);
11468 }
11469 else
11470 {
11471 int len = pend - pstart;
11472
11473 /* Strip __ and beyond. */
11474 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11475 strncpy (bound_buffer, pstart, len);
11476 bound_buffer[len] = '\0';
11477
11478 bound = bound_buffer;
11479 k = pend - str;
11480 }
11481
11482 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11483 if (bound_val == NULL)
11484 return 0;
11485
11486 *px = value_as_long (bound_val);
11487 if (pnew_k != NULL)
11488 *pnew_k = k;
11489 return 1;
11490 }
11491
11492 /* Value of variable named NAME in the current environment. If
11493 no such variable found, then if ERR_MSG is null, returns 0, and
11494 otherwise causes an error with message ERR_MSG. */
11495
11496 static struct value *
11497 get_var_value (const char *name, const char *err_msg)
11498 {
11499 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11500
11501 struct block_symbol *syms;
11502 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11503 get_selected_block (0),
11504 VAR_DOMAIN, &syms, 1);
11505
11506 if (nsyms != 1)
11507 {
11508 if (err_msg == NULL)
11509 return 0;
11510 else
11511 error (("%s"), err_msg);
11512 }
11513
11514 return value_of_variable (syms[0].symbol, syms[0].block);
11515 }
11516
11517 /* Value of integer variable named NAME in the current environment.
11518 If no such variable is found, returns false. Otherwise, sets VALUE
11519 to the variable's value and returns true. */
11520
11521 bool
11522 get_int_var_value (const char *name, LONGEST &value)
11523 {
11524 struct value *var_val = get_var_value (name, 0);
11525
11526 if (var_val == 0)
11527 return false;
11528
11529 value = value_as_long (var_val);
11530 return true;
11531 }
11532
11533
11534 /* Return a range type whose base type is that of the range type named
11535 NAME in the current environment, and whose bounds are calculated
11536 from NAME according to the GNAT range encoding conventions.
11537 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11538 corresponding range type from debug information; fall back to using it
11539 if symbol lookup fails. If a new type must be created, allocate it
11540 like ORIG_TYPE was. The bounds information, in general, is encoded
11541 in NAME, the base type given in the named range type. */
11542
11543 static struct type *
11544 to_fixed_range_type (struct type *raw_type, struct value *dval)
11545 {
11546 const char *name;
11547 struct type *base_type;
11548 const char *subtype_info;
11549
11550 gdb_assert (raw_type != NULL);
11551 gdb_assert (TYPE_NAME (raw_type) != NULL);
11552
11553 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11554 base_type = TYPE_TARGET_TYPE (raw_type);
11555 else
11556 base_type = raw_type;
11557
11558 name = TYPE_NAME (raw_type);
11559 subtype_info = strstr (name, "___XD");
11560 if (subtype_info == NULL)
11561 {
11562 LONGEST L = ada_discrete_type_low_bound (raw_type);
11563 LONGEST U = ada_discrete_type_high_bound (raw_type);
11564
11565 if (L < INT_MIN || U > INT_MAX)
11566 return raw_type;
11567 else
11568 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11569 L, U);
11570 }
11571 else
11572 {
11573 static char *name_buf = NULL;
11574 static size_t name_len = 0;
11575 int prefix_len = subtype_info - name;
11576 LONGEST L, U;
11577 struct type *type;
11578 const char *bounds_str;
11579 int n;
11580
11581 GROW_VECT (name_buf, name_len, prefix_len + 5);
11582 strncpy (name_buf, name, prefix_len);
11583 name_buf[prefix_len] = '\0';
11584
11585 subtype_info += 5;
11586 bounds_str = strchr (subtype_info, '_');
11587 n = 1;
11588
11589 if (*subtype_info == 'L')
11590 {
11591 if (!ada_scan_number (bounds_str, n, &L, &n)
11592 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11593 return raw_type;
11594 if (bounds_str[n] == '_')
11595 n += 2;
11596 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11597 n += 1;
11598 subtype_info += 1;
11599 }
11600 else
11601 {
11602 strcpy (name_buf + prefix_len, "___L");
11603 if (!get_int_var_value (name_buf, L))
11604 {
11605 lim_warning (_("Unknown lower bound, using 1."));
11606 L = 1;
11607 }
11608 }
11609
11610 if (*subtype_info == 'U')
11611 {
11612 if (!ada_scan_number (bounds_str, n, &U, &n)
11613 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11614 return raw_type;
11615 }
11616 else
11617 {
11618 strcpy (name_buf + prefix_len, "___U");
11619 if (!get_int_var_value (name_buf, U))
11620 {
11621 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11622 U = L;
11623 }
11624 }
11625
11626 type = create_static_range_type (alloc_type_copy (raw_type),
11627 base_type, L, U);
11628 TYPE_NAME (type) = name;
11629 return type;
11630 }
11631 }
11632
11633 /* True iff NAME is the name of a range type. */
11634
11635 int
11636 ada_is_range_type_name (const char *name)
11637 {
11638 return (name != NULL && strstr (name, "___XD"));
11639 }
11640 \f
11641
11642 /* Modular types */
11643
11644 /* True iff TYPE is an Ada modular type. */
11645
11646 int
11647 ada_is_modular_type (struct type *type)
11648 {
11649 struct type *subranged_type = get_base_type (type);
11650
11651 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11652 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11653 && TYPE_UNSIGNED (subranged_type));
11654 }
11655
11656 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11657
11658 ULONGEST
11659 ada_modulus (struct type *type)
11660 {
11661 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11662 }
11663 \f
11664
11665 /* Ada exception catchpoint support:
11666 ---------------------------------
11667
11668 We support 3 kinds of exception catchpoints:
11669 . catchpoints on Ada exceptions
11670 . catchpoints on unhandled Ada exceptions
11671 . catchpoints on failed assertions
11672
11673 Exceptions raised during failed assertions, or unhandled exceptions
11674 could perfectly be caught with the general catchpoint on Ada exceptions.
11675 However, we can easily differentiate these two special cases, and having
11676 the option to distinguish these two cases from the rest can be useful
11677 to zero-in on certain situations.
11678
11679 Exception catchpoints are a specialized form of breakpoint,
11680 since they rely on inserting breakpoints inside known routines
11681 of the GNAT runtime. The implementation therefore uses a standard
11682 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11683 of breakpoint_ops.
11684
11685 Support in the runtime for exception catchpoints have been changed
11686 a few times already, and these changes affect the implementation
11687 of these catchpoints. In order to be able to support several
11688 variants of the runtime, we use a sniffer that will determine
11689 the runtime variant used by the program being debugged. */
11690
11691 /* Ada's standard exceptions.
11692
11693 The Ada 83 standard also defined Numeric_Error. But there so many
11694 situations where it was unclear from the Ada 83 Reference Manual
11695 (RM) whether Constraint_Error or Numeric_Error should be raised,
11696 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11697 Interpretation saying that anytime the RM says that Numeric_Error
11698 should be raised, the implementation may raise Constraint_Error.
11699 Ada 95 went one step further and pretty much removed Numeric_Error
11700 from the list of standard exceptions (it made it a renaming of
11701 Constraint_Error, to help preserve compatibility when compiling
11702 an Ada83 compiler). As such, we do not include Numeric_Error from
11703 this list of standard exceptions. */
11704
11705 static const char *standard_exc[] = {
11706 "constraint_error",
11707 "program_error",
11708 "storage_error",
11709 "tasking_error"
11710 };
11711
11712 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11713
11714 /* A structure that describes how to support exception catchpoints
11715 for a given executable. */
11716
11717 struct exception_support_info
11718 {
11719 /* The name of the symbol to break on in order to insert
11720 a catchpoint on exceptions. */
11721 const char *catch_exception_sym;
11722
11723 /* The name of the symbol to break on in order to insert
11724 a catchpoint on unhandled exceptions. */
11725 const char *catch_exception_unhandled_sym;
11726
11727 /* The name of the symbol to break on in order to insert
11728 a catchpoint on failed assertions. */
11729 const char *catch_assert_sym;
11730
11731 /* Assuming that the inferior just triggered an unhandled exception
11732 catchpoint, this function is responsible for returning the address
11733 in inferior memory where the name of that exception is stored.
11734 Return zero if the address could not be computed. */
11735 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11736 };
11737
11738 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11739 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11740
11741 /* The following exception support info structure describes how to
11742 implement exception catchpoints with the latest version of the
11743 Ada runtime (as of 2007-03-06). */
11744
11745 static const struct exception_support_info default_exception_support_info =
11746 {
11747 "__gnat_debug_raise_exception", /* catch_exception_sym */
11748 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11749 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11750 ada_unhandled_exception_name_addr
11751 };
11752
11753 /* The following exception support info structure describes how to
11754 implement exception catchpoints with a slightly older version
11755 of the Ada runtime. */
11756
11757 static const struct exception_support_info exception_support_info_fallback =
11758 {
11759 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11760 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11761 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11762 ada_unhandled_exception_name_addr_from_raise
11763 };
11764
11765 /* Return nonzero if we can detect the exception support routines
11766 described in EINFO.
11767
11768 This function errors out if an abnormal situation is detected
11769 (for instance, if we find the exception support routines, but
11770 that support is found to be incomplete). */
11771
11772 static int
11773 ada_has_this_exception_support (const struct exception_support_info *einfo)
11774 {
11775 struct symbol *sym;
11776
11777 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11778 that should be compiled with debugging information. As a result, we
11779 expect to find that symbol in the symtabs. */
11780
11781 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11782 if (sym == NULL)
11783 {
11784 /* Perhaps we did not find our symbol because the Ada runtime was
11785 compiled without debugging info, or simply stripped of it.
11786 It happens on some GNU/Linux distributions for instance, where
11787 users have to install a separate debug package in order to get
11788 the runtime's debugging info. In that situation, let the user
11789 know why we cannot insert an Ada exception catchpoint.
11790
11791 Note: Just for the purpose of inserting our Ada exception
11792 catchpoint, we could rely purely on the associated minimal symbol.
11793 But we would be operating in degraded mode anyway, since we are
11794 still lacking the debugging info needed later on to extract
11795 the name of the exception being raised (this name is printed in
11796 the catchpoint message, and is also used when trying to catch
11797 a specific exception). We do not handle this case for now. */
11798 struct bound_minimal_symbol msym
11799 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11800
11801 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11802 error (_("Your Ada runtime appears to be missing some debugging "
11803 "information.\nCannot insert Ada exception catchpoint "
11804 "in this configuration."));
11805
11806 return 0;
11807 }
11808
11809 /* Make sure that the symbol we found corresponds to a function. */
11810
11811 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11812 error (_("Symbol \"%s\" is not a function (class = %d)"),
11813 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11814
11815 return 1;
11816 }
11817
11818 /* Inspect the Ada runtime and determine which exception info structure
11819 should be used to provide support for exception catchpoints.
11820
11821 This function will always set the per-inferior exception_info,
11822 or raise an error. */
11823
11824 static void
11825 ada_exception_support_info_sniffer (void)
11826 {
11827 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11828
11829 /* If the exception info is already known, then no need to recompute it. */
11830 if (data->exception_info != NULL)
11831 return;
11832
11833 /* Check the latest (default) exception support info. */
11834 if (ada_has_this_exception_support (&default_exception_support_info))
11835 {
11836 data->exception_info = &default_exception_support_info;
11837 return;
11838 }
11839
11840 /* Try our fallback exception suport info. */
11841 if (ada_has_this_exception_support (&exception_support_info_fallback))
11842 {
11843 data->exception_info = &exception_support_info_fallback;
11844 return;
11845 }
11846
11847 /* Sometimes, it is normal for us to not be able to find the routine
11848 we are looking for. This happens when the program is linked with
11849 the shared version of the GNAT runtime, and the program has not been
11850 started yet. Inform the user of these two possible causes if
11851 applicable. */
11852
11853 if (ada_update_initial_language (language_unknown) != language_ada)
11854 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11855
11856 /* If the symbol does not exist, then check that the program is
11857 already started, to make sure that shared libraries have been
11858 loaded. If it is not started, this may mean that the symbol is
11859 in a shared library. */
11860
11861 if (ptid_get_pid (inferior_ptid) == 0)
11862 error (_("Unable to insert catchpoint. Try to start the program first."));
11863
11864 /* At this point, we know that we are debugging an Ada program and
11865 that the inferior has been started, but we still are not able to
11866 find the run-time symbols. That can mean that we are in
11867 configurable run time mode, or that a-except as been optimized
11868 out by the linker... In any case, at this point it is not worth
11869 supporting this feature. */
11870
11871 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11872 }
11873
11874 /* True iff FRAME is very likely to be that of a function that is
11875 part of the runtime system. This is all very heuristic, but is
11876 intended to be used as advice as to what frames are uninteresting
11877 to most users. */
11878
11879 static int
11880 is_known_support_routine (struct frame_info *frame)
11881 {
11882 enum language func_lang;
11883 int i;
11884 const char *fullname;
11885
11886 /* If this code does not have any debugging information (no symtab),
11887 This cannot be any user code. */
11888
11889 symtab_and_line sal = find_frame_sal (frame);
11890 if (sal.symtab == NULL)
11891 return 1;
11892
11893 /* If there is a symtab, but the associated source file cannot be
11894 located, then assume this is not user code: Selecting a frame
11895 for which we cannot display the code would not be very helpful
11896 for the user. This should also take care of case such as VxWorks
11897 where the kernel has some debugging info provided for a few units. */
11898
11899 fullname = symtab_to_fullname (sal.symtab);
11900 if (access (fullname, R_OK) != 0)
11901 return 1;
11902
11903 /* Check the unit filename againt the Ada runtime file naming.
11904 We also check the name of the objfile against the name of some
11905 known system libraries that sometimes come with debugging info
11906 too. */
11907
11908 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11909 {
11910 re_comp (known_runtime_file_name_patterns[i]);
11911 if (re_exec (lbasename (sal.symtab->filename)))
11912 return 1;
11913 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11914 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11915 return 1;
11916 }
11917
11918 /* Check whether the function is a GNAT-generated entity. */
11919
11920 gdb::unique_xmalloc_ptr<char> func_name
11921 = find_frame_funname (frame, &func_lang, NULL);
11922 if (func_name == NULL)
11923 return 1;
11924
11925 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11926 {
11927 re_comp (known_auxiliary_function_name_patterns[i]);
11928 if (re_exec (func_name.get ()))
11929 return 1;
11930 }
11931
11932 return 0;
11933 }
11934
11935 /* Find the first frame that contains debugging information and that is not
11936 part of the Ada run-time, starting from FI and moving upward. */
11937
11938 void
11939 ada_find_printable_frame (struct frame_info *fi)
11940 {
11941 for (; fi != NULL; fi = get_prev_frame (fi))
11942 {
11943 if (!is_known_support_routine (fi))
11944 {
11945 select_frame (fi);
11946 break;
11947 }
11948 }
11949
11950 }
11951
11952 /* Assuming that the inferior just triggered an unhandled exception
11953 catchpoint, return the address in inferior memory where the name
11954 of the exception is stored.
11955
11956 Return zero if the address could not be computed. */
11957
11958 static CORE_ADDR
11959 ada_unhandled_exception_name_addr (void)
11960 {
11961 return parse_and_eval_address ("e.full_name");
11962 }
11963
11964 /* Same as ada_unhandled_exception_name_addr, except that this function
11965 should be used when the inferior uses an older version of the runtime,
11966 where the exception name needs to be extracted from a specific frame
11967 several frames up in the callstack. */
11968
11969 static CORE_ADDR
11970 ada_unhandled_exception_name_addr_from_raise (void)
11971 {
11972 int frame_level;
11973 struct frame_info *fi;
11974 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11975
11976 /* To determine the name of this exception, we need to select
11977 the frame corresponding to RAISE_SYM_NAME. This frame is
11978 at least 3 levels up, so we simply skip the first 3 frames
11979 without checking the name of their associated function. */
11980 fi = get_current_frame ();
11981 for (frame_level = 0; frame_level < 3; frame_level += 1)
11982 if (fi != NULL)
11983 fi = get_prev_frame (fi);
11984
11985 while (fi != NULL)
11986 {
11987 enum language func_lang;
11988
11989 gdb::unique_xmalloc_ptr<char> func_name
11990 = find_frame_funname (fi, &func_lang, NULL);
11991 if (func_name != NULL)
11992 {
11993 if (strcmp (func_name.get (),
11994 data->exception_info->catch_exception_sym) == 0)
11995 break; /* We found the frame we were looking for... */
11996 fi = get_prev_frame (fi);
11997 }
11998 }
11999
12000 if (fi == NULL)
12001 return 0;
12002
12003 select_frame (fi);
12004 return parse_and_eval_address ("id.full_name");
12005 }
12006
12007 /* Assuming the inferior just triggered an Ada exception catchpoint
12008 (of any type), return the address in inferior memory where the name
12009 of the exception is stored, if applicable.
12010
12011 Assumes the selected frame is the current frame.
12012
12013 Return zero if the address could not be computed, or if not relevant. */
12014
12015 static CORE_ADDR
12016 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12017 struct breakpoint *b)
12018 {
12019 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12020
12021 switch (ex)
12022 {
12023 case ada_catch_exception:
12024 return (parse_and_eval_address ("e.full_name"));
12025 break;
12026
12027 case ada_catch_exception_unhandled:
12028 return data->exception_info->unhandled_exception_name_addr ();
12029 break;
12030
12031 case ada_catch_assert:
12032 return 0; /* Exception name is not relevant in this case. */
12033 break;
12034
12035 default:
12036 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12037 break;
12038 }
12039
12040 return 0; /* Should never be reached. */
12041 }
12042
12043 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12044 any error that ada_exception_name_addr_1 might cause to be thrown.
12045 When an error is intercepted, a warning with the error message is printed,
12046 and zero is returned. */
12047
12048 static CORE_ADDR
12049 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12050 struct breakpoint *b)
12051 {
12052 CORE_ADDR result = 0;
12053
12054 TRY
12055 {
12056 result = ada_exception_name_addr_1 (ex, b);
12057 }
12058
12059 CATCH (e, RETURN_MASK_ERROR)
12060 {
12061 warning (_("failed to get exception name: %s"), e.message);
12062 return 0;
12063 }
12064 END_CATCH
12065
12066 return result;
12067 }
12068
12069 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12070
12071 /* Ada catchpoints.
12072
12073 In the case of catchpoints on Ada exceptions, the catchpoint will
12074 stop the target on every exception the program throws. When a user
12075 specifies the name of a specific exception, we translate this
12076 request into a condition expression (in text form), and then parse
12077 it into an expression stored in each of the catchpoint's locations.
12078 We then use this condition to check whether the exception that was
12079 raised is the one the user is interested in. If not, then the
12080 target is resumed again. We store the name of the requested
12081 exception, in order to be able to re-set the condition expression
12082 when symbols change. */
12083
12084 /* An instance of this type is used to represent an Ada catchpoint
12085 breakpoint location. */
12086
12087 class ada_catchpoint_location : public bp_location
12088 {
12089 public:
12090 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12091 : bp_location (ops, owner)
12092 {}
12093
12094 /* The condition that checks whether the exception that was raised
12095 is the specific exception the user specified on catchpoint
12096 creation. */
12097 expression_up excep_cond_expr;
12098 };
12099
12100 /* Implement the DTOR method in the bp_location_ops structure for all
12101 Ada exception catchpoint kinds. */
12102
12103 static void
12104 ada_catchpoint_location_dtor (struct bp_location *bl)
12105 {
12106 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12107
12108 al->excep_cond_expr.reset ();
12109 }
12110
12111 /* The vtable to be used in Ada catchpoint locations. */
12112
12113 static const struct bp_location_ops ada_catchpoint_location_ops =
12114 {
12115 ada_catchpoint_location_dtor
12116 };
12117
12118 /* An instance of this type is used to represent an Ada catchpoint. */
12119
12120 struct ada_catchpoint : public breakpoint
12121 {
12122 ~ada_catchpoint () override;
12123
12124 /* The name of the specific exception the user specified. */
12125 char *excep_string;
12126 };
12127
12128 /* Parse the exception condition string in the context of each of the
12129 catchpoint's locations, and store them for later evaluation. */
12130
12131 static void
12132 create_excep_cond_exprs (struct ada_catchpoint *c)
12133 {
12134 struct cleanup *old_chain;
12135 struct bp_location *bl;
12136 char *cond_string;
12137
12138 /* Nothing to do if there's no specific exception to catch. */
12139 if (c->excep_string == NULL)
12140 return;
12141
12142 /* Same if there are no locations... */
12143 if (c->loc == NULL)
12144 return;
12145
12146 /* Compute the condition expression in text form, from the specific
12147 expection we want to catch. */
12148 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12149 old_chain = make_cleanup (xfree, cond_string);
12150
12151 /* Iterate over all the catchpoint's locations, and parse an
12152 expression for each. */
12153 for (bl = c->loc; bl != NULL; bl = bl->next)
12154 {
12155 struct ada_catchpoint_location *ada_loc
12156 = (struct ada_catchpoint_location *) bl;
12157 expression_up exp;
12158
12159 if (!bl->shlib_disabled)
12160 {
12161 const char *s;
12162
12163 s = cond_string;
12164 TRY
12165 {
12166 exp = parse_exp_1 (&s, bl->address,
12167 block_for_pc (bl->address),
12168 0);
12169 }
12170 CATCH (e, RETURN_MASK_ERROR)
12171 {
12172 warning (_("failed to reevaluate internal exception condition "
12173 "for catchpoint %d: %s"),
12174 c->number, e.message);
12175 }
12176 END_CATCH
12177 }
12178
12179 ada_loc->excep_cond_expr = std::move (exp);
12180 }
12181
12182 do_cleanups (old_chain);
12183 }
12184
12185 /* ada_catchpoint destructor. */
12186
12187 ada_catchpoint::~ada_catchpoint ()
12188 {
12189 xfree (this->excep_string);
12190 }
12191
12192 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12193 structure for all exception catchpoint kinds. */
12194
12195 static struct bp_location *
12196 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12197 struct breakpoint *self)
12198 {
12199 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12200 }
12201
12202 /* Implement the RE_SET method in the breakpoint_ops structure for all
12203 exception catchpoint kinds. */
12204
12205 static void
12206 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12207 {
12208 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12209
12210 /* Call the base class's method. This updates the catchpoint's
12211 locations. */
12212 bkpt_breakpoint_ops.re_set (b);
12213
12214 /* Reparse the exception conditional expressions. One for each
12215 location. */
12216 create_excep_cond_exprs (c);
12217 }
12218
12219 /* Returns true if we should stop for this breakpoint hit. If the
12220 user specified a specific exception, we only want to cause a stop
12221 if the program thrown that exception. */
12222
12223 static int
12224 should_stop_exception (const struct bp_location *bl)
12225 {
12226 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12227 const struct ada_catchpoint_location *ada_loc
12228 = (const struct ada_catchpoint_location *) bl;
12229 int stop;
12230
12231 /* With no specific exception, should always stop. */
12232 if (c->excep_string == NULL)
12233 return 1;
12234
12235 if (ada_loc->excep_cond_expr == NULL)
12236 {
12237 /* We will have a NULL expression if back when we were creating
12238 the expressions, this location's had failed to parse. */
12239 return 1;
12240 }
12241
12242 stop = 1;
12243 TRY
12244 {
12245 struct value *mark;
12246
12247 mark = value_mark ();
12248 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12249 value_free_to_mark (mark);
12250 }
12251 CATCH (ex, RETURN_MASK_ALL)
12252 {
12253 exception_fprintf (gdb_stderr, ex,
12254 _("Error in testing exception condition:\n"));
12255 }
12256 END_CATCH
12257
12258 return stop;
12259 }
12260
12261 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12262 for all exception catchpoint kinds. */
12263
12264 static void
12265 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12266 {
12267 bs->stop = should_stop_exception (bs->bp_location_at);
12268 }
12269
12270 /* Implement the PRINT_IT method in the breakpoint_ops structure
12271 for all exception catchpoint kinds. */
12272
12273 static enum print_stop_action
12274 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12275 {
12276 struct ui_out *uiout = current_uiout;
12277 struct breakpoint *b = bs->breakpoint_at;
12278
12279 annotate_catchpoint (b->number);
12280
12281 if (uiout->is_mi_like_p ())
12282 {
12283 uiout->field_string ("reason",
12284 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12285 uiout->field_string ("disp", bpdisp_text (b->disposition));
12286 }
12287
12288 uiout->text (b->disposition == disp_del
12289 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12290 uiout->field_int ("bkptno", b->number);
12291 uiout->text (", ");
12292
12293 /* ada_exception_name_addr relies on the selected frame being the
12294 current frame. Need to do this here because this function may be
12295 called more than once when printing a stop, and below, we'll
12296 select the first frame past the Ada run-time (see
12297 ada_find_printable_frame). */
12298 select_frame (get_current_frame ());
12299
12300 switch (ex)
12301 {
12302 case ada_catch_exception:
12303 case ada_catch_exception_unhandled:
12304 {
12305 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12306 char exception_name[256];
12307
12308 if (addr != 0)
12309 {
12310 read_memory (addr, (gdb_byte *) exception_name,
12311 sizeof (exception_name) - 1);
12312 exception_name [sizeof (exception_name) - 1] = '\0';
12313 }
12314 else
12315 {
12316 /* For some reason, we were unable to read the exception
12317 name. This could happen if the Runtime was compiled
12318 without debugging info, for instance. In that case,
12319 just replace the exception name by the generic string
12320 "exception" - it will read as "an exception" in the
12321 notification we are about to print. */
12322 memcpy (exception_name, "exception", sizeof ("exception"));
12323 }
12324 /* In the case of unhandled exception breakpoints, we print
12325 the exception name as "unhandled EXCEPTION_NAME", to make
12326 it clearer to the user which kind of catchpoint just got
12327 hit. We used ui_out_text to make sure that this extra
12328 info does not pollute the exception name in the MI case. */
12329 if (ex == ada_catch_exception_unhandled)
12330 uiout->text ("unhandled ");
12331 uiout->field_string ("exception-name", exception_name);
12332 }
12333 break;
12334 case ada_catch_assert:
12335 /* In this case, the name of the exception is not really
12336 important. Just print "failed assertion" to make it clearer
12337 that his program just hit an assertion-failure catchpoint.
12338 We used ui_out_text because this info does not belong in
12339 the MI output. */
12340 uiout->text ("failed assertion");
12341 break;
12342 }
12343 uiout->text (" at ");
12344 ada_find_printable_frame (get_current_frame ());
12345
12346 return PRINT_SRC_AND_LOC;
12347 }
12348
12349 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12350 for all exception catchpoint kinds. */
12351
12352 static void
12353 print_one_exception (enum ada_exception_catchpoint_kind ex,
12354 struct breakpoint *b, struct bp_location **last_loc)
12355 {
12356 struct ui_out *uiout = current_uiout;
12357 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12358 struct value_print_options opts;
12359
12360 get_user_print_options (&opts);
12361 if (opts.addressprint)
12362 {
12363 annotate_field (4);
12364 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12365 }
12366
12367 annotate_field (5);
12368 *last_loc = b->loc;
12369 switch (ex)
12370 {
12371 case ada_catch_exception:
12372 if (c->excep_string != NULL)
12373 {
12374 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12375
12376 uiout->field_string ("what", msg);
12377 xfree (msg);
12378 }
12379 else
12380 uiout->field_string ("what", "all Ada exceptions");
12381
12382 break;
12383
12384 case ada_catch_exception_unhandled:
12385 uiout->field_string ("what", "unhandled Ada exceptions");
12386 break;
12387
12388 case ada_catch_assert:
12389 uiout->field_string ("what", "failed Ada assertions");
12390 break;
12391
12392 default:
12393 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12394 break;
12395 }
12396 }
12397
12398 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12399 for all exception catchpoint kinds. */
12400
12401 static void
12402 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12403 struct breakpoint *b)
12404 {
12405 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12406 struct ui_out *uiout = current_uiout;
12407
12408 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12409 : _("Catchpoint "));
12410 uiout->field_int ("bkptno", b->number);
12411 uiout->text (": ");
12412
12413 switch (ex)
12414 {
12415 case ada_catch_exception:
12416 if (c->excep_string != NULL)
12417 {
12418 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12419 struct cleanup *old_chain = make_cleanup (xfree, info);
12420
12421 uiout->text (info);
12422 do_cleanups (old_chain);
12423 }
12424 else
12425 uiout->text (_("all Ada exceptions"));
12426 break;
12427
12428 case ada_catch_exception_unhandled:
12429 uiout->text (_("unhandled Ada exceptions"));
12430 break;
12431
12432 case ada_catch_assert:
12433 uiout->text (_("failed Ada assertions"));
12434 break;
12435
12436 default:
12437 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12438 break;
12439 }
12440 }
12441
12442 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12443 for all exception catchpoint kinds. */
12444
12445 static void
12446 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12447 struct breakpoint *b, struct ui_file *fp)
12448 {
12449 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12450
12451 switch (ex)
12452 {
12453 case ada_catch_exception:
12454 fprintf_filtered (fp, "catch exception");
12455 if (c->excep_string != NULL)
12456 fprintf_filtered (fp, " %s", c->excep_string);
12457 break;
12458
12459 case ada_catch_exception_unhandled:
12460 fprintf_filtered (fp, "catch exception unhandled");
12461 break;
12462
12463 case ada_catch_assert:
12464 fprintf_filtered (fp, "catch assert");
12465 break;
12466
12467 default:
12468 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12469 }
12470 print_recreate_thread (b, fp);
12471 }
12472
12473 /* Virtual table for "catch exception" breakpoints. */
12474
12475 static struct bp_location *
12476 allocate_location_catch_exception (struct breakpoint *self)
12477 {
12478 return allocate_location_exception (ada_catch_exception, self);
12479 }
12480
12481 static void
12482 re_set_catch_exception (struct breakpoint *b)
12483 {
12484 re_set_exception (ada_catch_exception, b);
12485 }
12486
12487 static void
12488 check_status_catch_exception (bpstat bs)
12489 {
12490 check_status_exception (ada_catch_exception, bs);
12491 }
12492
12493 static enum print_stop_action
12494 print_it_catch_exception (bpstat bs)
12495 {
12496 return print_it_exception (ada_catch_exception, bs);
12497 }
12498
12499 static void
12500 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12501 {
12502 print_one_exception (ada_catch_exception, b, last_loc);
12503 }
12504
12505 static void
12506 print_mention_catch_exception (struct breakpoint *b)
12507 {
12508 print_mention_exception (ada_catch_exception, b);
12509 }
12510
12511 static void
12512 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12513 {
12514 print_recreate_exception (ada_catch_exception, b, fp);
12515 }
12516
12517 static struct breakpoint_ops catch_exception_breakpoint_ops;
12518
12519 /* Virtual table for "catch exception unhandled" breakpoints. */
12520
12521 static struct bp_location *
12522 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12523 {
12524 return allocate_location_exception (ada_catch_exception_unhandled, self);
12525 }
12526
12527 static void
12528 re_set_catch_exception_unhandled (struct breakpoint *b)
12529 {
12530 re_set_exception (ada_catch_exception_unhandled, b);
12531 }
12532
12533 static void
12534 check_status_catch_exception_unhandled (bpstat bs)
12535 {
12536 check_status_exception (ada_catch_exception_unhandled, bs);
12537 }
12538
12539 static enum print_stop_action
12540 print_it_catch_exception_unhandled (bpstat bs)
12541 {
12542 return print_it_exception (ada_catch_exception_unhandled, bs);
12543 }
12544
12545 static void
12546 print_one_catch_exception_unhandled (struct breakpoint *b,
12547 struct bp_location **last_loc)
12548 {
12549 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12550 }
12551
12552 static void
12553 print_mention_catch_exception_unhandled (struct breakpoint *b)
12554 {
12555 print_mention_exception (ada_catch_exception_unhandled, b);
12556 }
12557
12558 static void
12559 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12560 struct ui_file *fp)
12561 {
12562 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12563 }
12564
12565 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12566
12567 /* Virtual table for "catch assert" breakpoints. */
12568
12569 static struct bp_location *
12570 allocate_location_catch_assert (struct breakpoint *self)
12571 {
12572 return allocate_location_exception (ada_catch_assert, self);
12573 }
12574
12575 static void
12576 re_set_catch_assert (struct breakpoint *b)
12577 {
12578 re_set_exception (ada_catch_assert, b);
12579 }
12580
12581 static void
12582 check_status_catch_assert (bpstat bs)
12583 {
12584 check_status_exception (ada_catch_assert, bs);
12585 }
12586
12587 static enum print_stop_action
12588 print_it_catch_assert (bpstat bs)
12589 {
12590 return print_it_exception (ada_catch_assert, bs);
12591 }
12592
12593 static void
12594 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12595 {
12596 print_one_exception (ada_catch_assert, b, last_loc);
12597 }
12598
12599 static void
12600 print_mention_catch_assert (struct breakpoint *b)
12601 {
12602 print_mention_exception (ada_catch_assert, b);
12603 }
12604
12605 static void
12606 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12607 {
12608 print_recreate_exception (ada_catch_assert, b, fp);
12609 }
12610
12611 static struct breakpoint_ops catch_assert_breakpoint_ops;
12612
12613 /* Return a newly allocated copy of the first space-separated token
12614 in ARGSP, and then adjust ARGSP to point immediately after that
12615 token.
12616
12617 Return NULL if ARGPS does not contain any more tokens. */
12618
12619 static char *
12620 ada_get_next_arg (const char **argsp)
12621 {
12622 const char *args = *argsp;
12623 const char *end;
12624 char *result;
12625
12626 args = skip_spaces (args);
12627 if (args[0] == '\0')
12628 return NULL; /* No more arguments. */
12629
12630 /* Find the end of the current argument. */
12631
12632 end = skip_to_space (args);
12633
12634 /* Adjust ARGSP to point to the start of the next argument. */
12635
12636 *argsp = end;
12637
12638 /* Make a copy of the current argument and return it. */
12639
12640 result = (char *) xmalloc (end - args + 1);
12641 strncpy (result, args, end - args);
12642 result[end - args] = '\0';
12643
12644 return result;
12645 }
12646
12647 /* Split the arguments specified in a "catch exception" command.
12648 Set EX to the appropriate catchpoint type.
12649 Set EXCEP_STRING to the name of the specific exception if
12650 specified by the user.
12651 If a condition is found at the end of the arguments, the condition
12652 expression is stored in COND_STRING (memory must be deallocated
12653 after use). Otherwise COND_STRING is set to NULL. */
12654
12655 static void
12656 catch_ada_exception_command_split (const char *args,
12657 enum ada_exception_catchpoint_kind *ex,
12658 char **excep_string,
12659 char **cond_string)
12660 {
12661 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12662 char *exception_name;
12663 char *cond = NULL;
12664
12665 exception_name = ada_get_next_arg (&args);
12666 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12667 {
12668 /* This is not an exception name; this is the start of a condition
12669 expression for a catchpoint on all exceptions. So, "un-get"
12670 this token, and set exception_name to NULL. */
12671 xfree (exception_name);
12672 exception_name = NULL;
12673 args -= 2;
12674 }
12675 make_cleanup (xfree, exception_name);
12676
12677 /* Check to see if we have a condition. */
12678
12679 args = skip_spaces (args);
12680 if (startswith (args, "if")
12681 && (isspace (args[2]) || args[2] == '\0'))
12682 {
12683 args += 2;
12684 args = skip_spaces (args);
12685
12686 if (args[0] == '\0')
12687 error (_("Condition missing after `if' keyword"));
12688 cond = xstrdup (args);
12689 make_cleanup (xfree, cond);
12690
12691 args += strlen (args);
12692 }
12693
12694 /* Check that we do not have any more arguments. Anything else
12695 is unexpected. */
12696
12697 if (args[0] != '\0')
12698 error (_("Junk at end of expression"));
12699
12700 discard_cleanups (old_chain);
12701
12702 if (exception_name == NULL)
12703 {
12704 /* Catch all exceptions. */
12705 *ex = ada_catch_exception;
12706 *excep_string = NULL;
12707 }
12708 else if (strcmp (exception_name, "unhandled") == 0)
12709 {
12710 /* Catch unhandled exceptions. */
12711 *ex = ada_catch_exception_unhandled;
12712 *excep_string = NULL;
12713 }
12714 else
12715 {
12716 /* Catch a specific exception. */
12717 *ex = ada_catch_exception;
12718 *excep_string = exception_name;
12719 }
12720 *cond_string = cond;
12721 }
12722
12723 /* Return the name of the symbol on which we should break in order to
12724 implement a catchpoint of the EX kind. */
12725
12726 static const char *
12727 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12728 {
12729 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12730
12731 gdb_assert (data->exception_info != NULL);
12732
12733 switch (ex)
12734 {
12735 case ada_catch_exception:
12736 return (data->exception_info->catch_exception_sym);
12737 break;
12738 case ada_catch_exception_unhandled:
12739 return (data->exception_info->catch_exception_unhandled_sym);
12740 break;
12741 case ada_catch_assert:
12742 return (data->exception_info->catch_assert_sym);
12743 break;
12744 default:
12745 internal_error (__FILE__, __LINE__,
12746 _("unexpected catchpoint kind (%d)"), ex);
12747 }
12748 }
12749
12750 /* Return the breakpoint ops "virtual table" used for catchpoints
12751 of the EX kind. */
12752
12753 static const struct breakpoint_ops *
12754 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12755 {
12756 switch (ex)
12757 {
12758 case ada_catch_exception:
12759 return (&catch_exception_breakpoint_ops);
12760 break;
12761 case ada_catch_exception_unhandled:
12762 return (&catch_exception_unhandled_breakpoint_ops);
12763 break;
12764 case ada_catch_assert:
12765 return (&catch_assert_breakpoint_ops);
12766 break;
12767 default:
12768 internal_error (__FILE__, __LINE__,
12769 _("unexpected catchpoint kind (%d)"), ex);
12770 }
12771 }
12772
12773 /* Return the condition that will be used to match the current exception
12774 being raised with the exception that the user wants to catch. This
12775 assumes that this condition is used when the inferior just triggered
12776 an exception catchpoint.
12777
12778 The string returned is a newly allocated string that needs to be
12779 deallocated later. */
12780
12781 static char *
12782 ada_exception_catchpoint_cond_string (const char *excep_string)
12783 {
12784 int i;
12785
12786 /* The standard exceptions are a special case. They are defined in
12787 runtime units that have been compiled without debugging info; if
12788 EXCEP_STRING is the not-fully-qualified name of a standard
12789 exception (e.g. "constraint_error") then, during the evaluation
12790 of the condition expression, the symbol lookup on this name would
12791 *not* return this standard exception. The catchpoint condition
12792 may then be set only on user-defined exceptions which have the
12793 same not-fully-qualified name (e.g. my_package.constraint_error).
12794
12795 To avoid this unexcepted behavior, these standard exceptions are
12796 systematically prefixed by "standard". This means that "catch
12797 exception constraint_error" is rewritten into "catch exception
12798 standard.constraint_error".
12799
12800 If an exception named contraint_error is defined in another package of
12801 the inferior program, then the only way to specify this exception as a
12802 breakpoint condition is to use its fully-qualified named:
12803 e.g. my_package.constraint_error. */
12804
12805 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12806 {
12807 if (strcmp (standard_exc [i], excep_string) == 0)
12808 {
12809 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12810 excep_string);
12811 }
12812 }
12813 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12814 }
12815
12816 /* Return the symtab_and_line that should be used to insert an exception
12817 catchpoint of the TYPE kind.
12818
12819 EXCEP_STRING should contain the name of a specific exception that
12820 the catchpoint should catch, or NULL otherwise.
12821
12822 ADDR_STRING returns the name of the function where the real
12823 breakpoint that implements the catchpoints is set, depending on the
12824 type of catchpoint we need to create. */
12825
12826 static struct symtab_and_line
12827 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12828 const char **addr_string, const struct breakpoint_ops **ops)
12829 {
12830 const char *sym_name;
12831 struct symbol *sym;
12832
12833 /* First, find out which exception support info to use. */
12834 ada_exception_support_info_sniffer ();
12835
12836 /* Then lookup the function on which we will break in order to catch
12837 the Ada exceptions requested by the user. */
12838 sym_name = ada_exception_sym_name (ex);
12839 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12840
12841 /* We can assume that SYM is not NULL at this stage. If the symbol
12842 did not exist, ada_exception_support_info_sniffer would have
12843 raised an exception.
12844
12845 Also, ada_exception_support_info_sniffer should have already
12846 verified that SYM is a function symbol. */
12847 gdb_assert (sym != NULL);
12848 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12849
12850 /* Set ADDR_STRING. */
12851 *addr_string = xstrdup (sym_name);
12852
12853 /* Set OPS. */
12854 *ops = ada_exception_breakpoint_ops (ex);
12855
12856 return find_function_start_sal (sym, 1);
12857 }
12858
12859 /* Create an Ada exception catchpoint.
12860
12861 EX_KIND is the kind of exception catchpoint to be created.
12862
12863 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12864 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12865 of the exception to which this catchpoint applies. When not NULL,
12866 the string must be allocated on the heap, and its deallocation
12867 is no longer the responsibility of the caller.
12868
12869 COND_STRING, if not NULL, is the catchpoint condition. This string
12870 must be allocated on the heap, and its deallocation is no longer
12871 the responsibility of the caller.
12872
12873 TEMPFLAG, if nonzero, means that the underlying breakpoint
12874 should be temporary.
12875
12876 FROM_TTY is the usual argument passed to all commands implementations. */
12877
12878 void
12879 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12880 enum ada_exception_catchpoint_kind ex_kind,
12881 char *excep_string,
12882 char *cond_string,
12883 int tempflag,
12884 int disabled,
12885 int from_tty)
12886 {
12887 const char *addr_string = NULL;
12888 const struct breakpoint_ops *ops = NULL;
12889 struct symtab_and_line sal
12890 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12891
12892 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
12893 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
12894 ops, tempflag, disabled, from_tty);
12895 c->excep_string = excep_string;
12896 create_excep_cond_exprs (c.get ());
12897 if (cond_string != NULL)
12898 set_breakpoint_condition (c.get (), cond_string, from_tty);
12899 install_breakpoint (0, std::move (c), 1);
12900 }
12901
12902 /* Implement the "catch exception" command. */
12903
12904 static void
12905 catch_ada_exception_command (const char *arg_entry, int from_tty,
12906 struct cmd_list_element *command)
12907 {
12908 const char *arg = arg_entry;
12909 struct gdbarch *gdbarch = get_current_arch ();
12910 int tempflag;
12911 enum ada_exception_catchpoint_kind ex_kind;
12912 char *excep_string = NULL;
12913 char *cond_string = NULL;
12914
12915 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12916
12917 if (!arg)
12918 arg = "";
12919 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12920 &cond_string);
12921 create_ada_exception_catchpoint (gdbarch, ex_kind,
12922 excep_string, cond_string,
12923 tempflag, 1 /* enabled */,
12924 from_tty);
12925 }
12926
12927 /* Split the arguments specified in a "catch assert" command.
12928
12929 ARGS contains the command's arguments (or the empty string if
12930 no arguments were passed).
12931
12932 If ARGS contains a condition, set COND_STRING to that condition
12933 (the memory needs to be deallocated after use). */
12934
12935 static void
12936 catch_ada_assert_command_split (const char *args, char **cond_string)
12937 {
12938 args = skip_spaces (args);
12939
12940 /* Check whether a condition was provided. */
12941 if (startswith (args, "if")
12942 && (isspace (args[2]) || args[2] == '\0'))
12943 {
12944 args += 2;
12945 args = skip_spaces (args);
12946 if (args[0] == '\0')
12947 error (_("condition missing after `if' keyword"));
12948 *cond_string = xstrdup (args);
12949 }
12950
12951 /* Otherwise, there should be no other argument at the end of
12952 the command. */
12953 else if (args[0] != '\0')
12954 error (_("Junk at end of arguments."));
12955 }
12956
12957 /* Implement the "catch assert" command. */
12958
12959 static void
12960 catch_assert_command (const char *arg_entry, int from_tty,
12961 struct cmd_list_element *command)
12962 {
12963 const char *arg = arg_entry;
12964 struct gdbarch *gdbarch = get_current_arch ();
12965 int tempflag;
12966 char *cond_string = NULL;
12967
12968 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12969
12970 if (!arg)
12971 arg = "";
12972 catch_ada_assert_command_split (arg, &cond_string);
12973 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12974 NULL, cond_string,
12975 tempflag, 1 /* enabled */,
12976 from_tty);
12977 }
12978
12979 /* Return non-zero if the symbol SYM is an Ada exception object. */
12980
12981 static int
12982 ada_is_exception_sym (struct symbol *sym)
12983 {
12984 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12985
12986 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12987 && SYMBOL_CLASS (sym) != LOC_BLOCK
12988 && SYMBOL_CLASS (sym) != LOC_CONST
12989 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12990 && type_name != NULL && strcmp (type_name, "exception") == 0);
12991 }
12992
12993 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12994 Ada exception object. This matches all exceptions except the ones
12995 defined by the Ada language. */
12996
12997 static int
12998 ada_is_non_standard_exception_sym (struct symbol *sym)
12999 {
13000 int i;
13001
13002 if (!ada_is_exception_sym (sym))
13003 return 0;
13004
13005 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13006 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13007 return 0; /* A standard exception. */
13008
13009 /* Numeric_Error is also a standard exception, so exclude it.
13010 See the STANDARD_EXC description for more details as to why
13011 this exception is not listed in that array. */
13012 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13013 return 0;
13014
13015 return 1;
13016 }
13017
13018 /* A helper function for std::sort, comparing two struct ada_exc_info
13019 objects.
13020
13021 The comparison is determined first by exception name, and then
13022 by exception address. */
13023
13024 bool
13025 ada_exc_info::operator< (const ada_exc_info &other) const
13026 {
13027 int result;
13028
13029 result = strcmp (name, other.name);
13030 if (result < 0)
13031 return true;
13032 if (result == 0 && addr < other.addr)
13033 return true;
13034 return false;
13035 }
13036
13037 bool
13038 ada_exc_info::operator== (const ada_exc_info &other) const
13039 {
13040 return addr == other.addr && strcmp (name, other.name) == 0;
13041 }
13042
13043 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13044 routine, but keeping the first SKIP elements untouched.
13045
13046 All duplicates are also removed. */
13047
13048 static void
13049 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13050 int skip)
13051 {
13052 std::sort (exceptions->begin () + skip, exceptions->end ());
13053 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13054 exceptions->end ());
13055 }
13056
13057 /* Add all exceptions defined by the Ada standard whose name match
13058 a regular expression.
13059
13060 If PREG is not NULL, then this regexp_t object is used to
13061 perform the symbol name matching. Otherwise, no name-based
13062 filtering is performed.
13063
13064 EXCEPTIONS is a vector of exceptions to which matching exceptions
13065 gets pushed. */
13066
13067 static void
13068 ada_add_standard_exceptions (compiled_regex *preg,
13069 std::vector<ada_exc_info> *exceptions)
13070 {
13071 int i;
13072
13073 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13074 {
13075 if (preg == NULL
13076 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13077 {
13078 struct bound_minimal_symbol msymbol
13079 = ada_lookup_simple_minsym (standard_exc[i]);
13080
13081 if (msymbol.minsym != NULL)
13082 {
13083 struct ada_exc_info info
13084 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13085
13086 exceptions->push_back (info);
13087 }
13088 }
13089 }
13090 }
13091
13092 /* Add all Ada exceptions defined locally and accessible from the given
13093 FRAME.
13094
13095 If PREG is not NULL, then this regexp_t object is used to
13096 perform the symbol name matching. Otherwise, no name-based
13097 filtering is performed.
13098
13099 EXCEPTIONS is a vector of exceptions to which matching exceptions
13100 gets pushed. */
13101
13102 static void
13103 ada_add_exceptions_from_frame (compiled_regex *preg,
13104 struct frame_info *frame,
13105 std::vector<ada_exc_info> *exceptions)
13106 {
13107 const struct block *block = get_frame_block (frame, 0);
13108
13109 while (block != 0)
13110 {
13111 struct block_iterator iter;
13112 struct symbol *sym;
13113
13114 ALL_BLOCK_SYMBOLS (block, iter, sym)
13115 {
13116 switch (SYMBOL_CLASS (sym))
13117 {
13118 case LOC_TYPEDEF:
13119 case LOC_BLOCK:
13120 case LOC_CONST:
13121 break;
13122 default:
13123 if (ada_is_exception_sym (sym))
13124 {
13125 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13126 SYMBOL_VALUE_ADDRESS (sym)};
13127
13128 exceptions->push_back (info);
13129 }
13130 }
13131 }
13132 if (BLOCK_FUNCTION (block) != NULL)
13133 break;
13134 block = BLOCK_SUPERBLOCK (block);
13135 }
13136 }
13137
13138 /* Return true if NAME matches PREG or if PREG is NULL. */
13139
13140 static bool
13141 name_matches_regex (const char *name, compiled_regex *preg)
13142 {
13143 return (preg == NULL
13144 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13145 }
13146
13147 /* Add all exceptions defined globally whose name name match
13148 a regular expression, excluding standard exceptions.
13149
13150 The reason we exclude standard exceptions is that they need
13151 to be handled separately: Standard exceptions are defined inside
13152 a runtime unit which is normally not compiled with debugging info,
13153 and thus usually do not show up in our symbol search. However,
13154 if the unit was in fact built with debugging info, we need to
13155 exclude them because they would duplicate the entry we found
13156 during the special loop that specifically searches for those
13157 standard exceptions.
13158
13159 If PREG is not NULL, then this regexp_t object is used to
13160 perform the symbol name matching. Otherwise, no name-based
13161 filtering is performed.
13162
13163 EXCEPTIONS is a vector of exceptions to which matching exceptions
13164 gets pushed. */
13165
13166 static void
13167 ada_add_global_exceptions (compiled_regex *preg,
13168 std::vector<ada_exc_info> *exceptions)
13169 {
13170 struct objfile *objfile;
13171 struct compunit_symtab *s;
13172
13173 /* In Ada, the symbol "search name" is a linkage name, whereas the
13174 regular expression used to do the matching refers to the natural
13175 name. So match against the decoded name. */
13176 expand_symtabs_matching (NULL,
13177 lookup_name_info::match_any (),
13178 [&] (const char *search_name)
13179 {
13180 const char *decoded = ada_decode (search_name);
13181 return name_matches_regex (decoded, preg);
13182 },
13183 NULL,
13184 VARIABLES_DOMAIN);
13185
13186 ALL_COMPUNITS (objfile, s)
13187 {
13188 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13189 int i;
13190
13191 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13192 {
13193 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13194 struct block_iterator iter;
13195 struct symbol *sym;
13196
13197 ALL_BLOCK_SYMBOLS (b, iter, sym)
13198 if (ada_is_non_standard_exception_sym (sym)
13199 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13200 {
13201 struct ada_exc_info info
13202 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13203
13204 exceptions->push_back (info);
13205 }
13206 }
13207 }
13208 }
13209
13210 /* Implements ada_exceptions_list with the regular expression passed
13211 as a regex_t, rather than a string.
13212
13213 If not NULL, PREG is used to filter out exceptions whose names
13214 do not match. Otherwise, all exceptions are listed. */
13215
13216 static std::vector<ada_exc_info>
13217 ada_exceptions_list_1 (compiled_regex *preg)
13218 {
13219 std::vector<ada_exc_info> result;
13220 int prev_len;
13221
13222 /* First, list the known standard exceptions. These exceptions
13223 need to be handled separately, as they are usually defined in
13224 runtime units that have been compiled without debugging info. */
13225
13226 ada_add_standard_exceptions (preg, &result);
13227
13228 /* Next, find all exceptions whose scope is local and accessible
13229 from the currently selected frame. */
13230
13231 if (has_stack_frames ())
13232 {
13233 prev_len = result.size ();
13234 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13235 &result);
13236 if (result.size () > prev_len)
13237 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13238 }
13239
13240 /* Add all exceptions whose scope is global. */
13241
13242 prev_len = result.size ();
13243 ada_add_global_exceptions (preg, &result);
13244 if (result.size () > prev_len)
13245 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13246
13247 return result;
13248 }
13249
13250 /* Return a vector of ada_exc_info.
13251
13252 If REGEXP is NULL, all exceptions are included in the result.
13253 Otherwise, it should contain a valid regular expression,
13254 and only the exceptions whose names match that regular expression
13255 are included in the result.
13256
13257 The exceptions are sorted in the following order:
13258 - Standard exceptions (defined by the Ada language), in
13259 alphabetical order;
13260 - Exceptions only visible from the current frame, in
13261 alphabetical order;
13262 - Exceptions whose scope is global, in alphabetical order. */
13263
13264 std::vector<ada_exc_info>
13265 ada_exceptions_list (const char *regexp)
13266 {
13267 if (regexp == NULL)
13268 return ada_exceptions_list_1 (NULL);
13269
13270 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13271 return ada_exceptions_list_1 (&reg);
13272 }
13273
13274 /* Implement the "info exceptions" command. */
13275
13276 static void
13277 info_exceptions_command (const char *regexp, int from_tty)
13278 {
13279 struct gdbarch *gdbarch = get_current_arch ();
13280
13281 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13282
13283 if (regexp != NULL)
13284 printf_filtered
13285 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13286 else
13287 printf_filtered (_("All defined Ada exceptions:\n"));
13288
13289 for (const ada_exc_info &info : exceptions)
13290 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13291 }
13292
13293 /* Operators */
13294 /* Information about operators given special treatment in functions
13295 below. */
13296 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13297
13298 #define ADA_OPERATORS \
13299 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13300 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13301 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13302 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13303 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13304 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13305 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13306 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13307 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13308 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13309 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13310 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13311 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13312 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13313 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13314 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13315 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13316 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13317 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13318
13319 static void
13320 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13321 int *argsp)
13322 {
13323 switch (exp->elts[pc - 1].opcode)
13324 {
13325 default:
13326 operator_length_standard (exp, pc, oplenp, argsp);
13327 break;
13328
13329 #define OP_DEFN(op, len, args, binop) \
13330 case op: *oplenp = len; *argsp = args; break;
13331 ADA_OPERATORS;
13332 #undef OP_DEFN
13333
13334 case OP_AGGREGATE:
13335 *oplenp = 3;
13336 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13337 break;
13338
13339 case OP_CHOICES:
13340 *oplenp = 3;
13341 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13342 break;
13343 }
13344 }
13345
13346 /* Implementation of the exp_descriptor method operator_check. */
13347
13348 static int
13349 ada_operator_check (struct expression *exp, int pos,
13350 int (*objfile_func) (struct objfile *objfile, void *data),
13351 void *data)
13352 {
13353 const union exp_element *const elts = exp->elts;
13354 struct type *type = NULL;
13355
13356 switch (elts[pos].opcode)
13357 {
13358 case UNOP_IN_RANGE:
13359 case UNOP_QUAL:
13360 type = elts[pos + 1].type;
13361 break;
13362
13363 default:
13364 return operator_check_standard (exp, pos, objfile_func, data);
13365 }
13366
13367 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13368
13369 if (type && TYPE_OBJFILE (type)
13370 && (*objfile_func) (TYPE_OBJFILE (type), data))
13371 return 1;
13372
13373 return 0;
13374 }
13375
13376 static const char *
13377 ada_op_name (enum exp_opcode opcode)
13378 {
13379 switch (opcode)
13380 {
13381 default:
13382 return op_name_standard (opcode);
13383
13384 #define OP_DEFN(op, len, args, binop) case op: return #op;
13385 ADA_OPERATORS;
13386 #undef OP_DEFN
13387
13388 case OP_AGGREGATE:
13389 return "OP_AGGREGATE";
13390 case OP_CHOICES:
13391 return "OP_CHOICES";
13392 case OP_NAME:
13393 return "OP_NAME";
13394 }
13395 }
13396
13397 /* As for operator_length, but assumes PC is pointing at the first
13398 element of the operator, and gives meaningful results only for the
13399 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13400
13401 static void
13402 ada_forward_operator_length (struct expression *exp, int pc,
13403 int *oplenp, int *argsp)
13404 {
13405 switch (exp->elts[pc].opcode)
13406 {
13407 default:
13408 *oplenp = *argsp = 0;
13409 break;
13410
13411 #define OP_DEFN(op, len, args, binop) \
13412 case op: *oplenp = len; *argsp = args; break;
13413 ADA_OPERATORS;
13414 #undef OP_DEFN
13415
13416 case OP_AGGREGATE:
13417 *oplenp = 3;
13418 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13419 break;
13420
13421 case OP_CHOICES:
13422 *oplenp = 3;
13423 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13424 break;
13425
13426 case OP_STRING:
13427 case OP_NAME:
13428 {
13429 int len = longest_to_int (exp->elts[pc + 1].longconst);
13430
13431 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13432 *argsp = 0;
13433 break;
13434 }
13435 }
13436 }
13437
13438 static int
13439 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13440 {
13441 enum exp_opcode op = exp->elts[elt].opcode;
13442 int oplen, nargs;
13443 int pc = elt;
13444 int i;
13445
13446 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13447
13448 switch (op)
13449 {
13450 /* Ada attributes ('Foo). */
13451 case OP_ATR_FIRST:
13452 case OP_ATR_LAST:
13453 case OP_ATR_LENGTH:
13454 case OP_ATR_IMAGE:
13455 case OP_ATR_MAX:
13456 case OP_ATR_MIN:
13457 case OP_ATR_MODULUS:
13458 case OP_ATR_POS:
13459 case OP_ATR_SIZE:
13460 case OP_ATR_TAG:
13461 case OP_ATR_VAL:
13462 break;
13463
13464 case UNOP_IN_RANGE:
13465 case UNOP_QUAL:
13466 /* XXX: gdb_sprint_host_address, type_sprint */
13467 fprintf_filtered (stream, _("Type @"));
13468 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13469 fprintf_filtered (stream, " (");
13470 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13471 fprintf_filtered (stream, ")");
13472 break;
13473 case BINOP_IN_BOUNDS:
13474 fprintf_filtered (stream, " (%d)",
13475 longest_to_int (exp->elts[pc + 2].longconst));
13476 break;
13477 case TERNOP_IN_RANGE:
13478 break;
13479
13480 case OP_AGGREGATE:
13481 case OP_OTHERS:
13482 case OP_DISCRETE_RANGE:
13483 case OP_POSITIONAL:
13484 case OP_CHOICES:
13485 break;
13486
13487 case OP_NAME:
13488 case OP_STRING:
13489 {
13490 char *name = &exp->elts[elt + 2].string;
13491 int len = longest_to_int (exp->elts[elt + 1].longconst);
13492
13493 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13494 break;
13495 }
13496
13497 default:
13498 return dump_subexp_body_standard (exp, stream, elt);
13499 }
13500
13501 elt += oplen;
13502 for (i = 0; i < nargs; i += 1)
13503 elt = dump_subexp (exp, stream, elt);
13504
13505 return elt;
13506 }
13507
13508 /* The Ada extension of print_subexp (q.v.). */
13509
13510 static void
13511 ada_print_subexp (struct expression *exp, int *pos,
13512 struct ui_file *stream, enum precedence prec)
13513 {
13514 int oplen, nargs, i;
13515 int pc = *pos;
13516 enum exp_opcode op = exp->elts[pc].opcode;
13517
13518 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13519
13520 *pos += oplen;
13521 switch (op)
13522 {
13523 default:
13524 *pos -= oplen;
13525 print_subexp_standard (exp, pos, stream, prec);
13526 return;
13527
13528 case OP_VAR_VALUE:
13529 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13530 return;
13531
13532 case BINOP_IN_BOUNDS:
13533 /* XXX: sprint_subexp */
13534 print_subexp (exp, pos, stream, PREC_SUFFIX);
13535 fputs_filtered (" in ", stream);
13536 print_subexp (exp, pos, stream, PREC_SUFFIX);
13537 fputs_filtered ("'range", stream);
13538 if (exp->elts[pc + 1].longconst > 1)
13539 fprintf_filtered (stream, "(%ld)",
13540 (long) exp->elts[pc + 1].longconst);
13541 return;
13542
13543 case TERNOP_IN_RANGE:
13544 if (prec >= PREC_EQUAL)
13545 fputs_filtered ("(", stream);
13546 /* XXX: sprint_subexp */
13547 print_subexp (exp, pos, stream, PREC_SUFFIX);
13548 fputs_filtered (" in ", stream);
13549 print_subexp (exp, pos, stream, PREC_EQUAL);
13550 fputs_filtered (" .. ", stream);
13551 print_subexp (exp, pos, stream, PREC_EQUAL);
13552 if (prec >= PREC_EQUAL)
13553 fputs_filtered (")", stream);
13554 return;
13555
13556 case OP_ATR_FIRST:
13557 case OP_ATR_LAST:
13558 case OP_ATR_LENGTH:
13559 case OP_ATR_IMAGE:
13560 case OP_ATR_MAX:
13561 case OP_ATR_MIN:
13562 case OP_ATR_MODULUS:
13563 case OP_ATR_POS:
13564 case OP_ATR_SIZE:
13565 case OP_ATR_TAG:
13566 case OP_ATR_VAL:
13567 if (exp->elts[*pos].opcode == OP_TYPE)
13568 {
13569 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13570 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13571 &type_print_raw_options);
13572 *pos += 3;
13573 }
13574 else
13575 print_subexp (exp, pos, stream, PREC_SUFFIX);
13576 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13577 if (nargs > 1)
13578 {
13579 int tem;
13580
13581 for (tem = 1; tem < nargs; tem += 1)
13582 {
13583 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13584 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13585 }
13586 fputs_filtered (")", stream);
13587 }
13588 return;
13589
13590 case UNOP_QUAL:
13591 type_print (exp->elts[pc + 1].type, "", stream, 0);
13592 fputs_filtered ("'(", stream);
13593 print_subexp (exp, pos, stream, PREC_PREFIX);
13594 fputs_filtered (")", stream);
13595 return;
13596
13597 case UNOP_IN_RANGE:
13598 /* XXX: sprint_subexp */
13599 print_subexp (exp, pos, stream, PREC_SUFFIX);
13600 fputs_filtered (" in ", stream);
13601 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13602 &type_print_raw_options);
13603 return;
13604
13605 case OP_DISCRETE_RANGE:
13606 print_subexp (exp, pos, stream, PREC_SUFFIX);
13607 fputs_filtered ("..", stream);
13608 print_subexp (exp, pos, stream, PREC_SUFFIX);
13609 return;
13610
13611 case OP_OTHERS:
13612 fputs_filtered ("others => ", stream);
13613 print_subexp (exp, pos, stream, PREC_SUFFIX);
13614 return;
13615
13616 case OP_CHOICES:
13617 for (i = 0; i < nargs-1; i += 1)
13618 {
13619 if (i > 0)
13620 fputs_filtered ("|", stream);
13621 print_subexp (exp, pos, stream, PREC_SUFFIX);
13622 }
13623 fputs_filtered (" => ", stream);
13624 print_subexp (exp, pos, stream, PREC_SUFFIX);
13625 return;
13626
13627 case OP_POSITIONAL:
13628 print_subexp (exp, pos, stream, PREC_SUFFIX);
13629 return;
13630
13631 case OP_AGGREGATE:
13632 fputs_filtered ("(", stream);
13633 for (i = 0; i < nargs; i += 1)
13634 {
13635 if (i > 0)
13636 fputs_filtered (", ", stream);
13637 print_subexp (exp, pos, stream, PREC_SUFFIX);
13638 }
13639 fputs_filtered (")", stream);
13640 return;
13641 }
13642 }
13643
13644 /* Table mapping opcodes into strings for printing operators
13645 and precedences of the operators. */
13646
13647 static const struct op_print ada_op_print_tab[] = {
13648 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13649 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13650 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13651 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13652 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13653 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13654 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13655 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13656 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13657 {">=", BINOP_GEQ, PREC_ORDER, 0},
13658 {">", BINOP_GTR, PREC_ORDER, 0},
13659 {"<", BINOP_LESS, PREC_ORDER, 0},
13660 {">>", BINOP_RSH, PREC_SHIFT, 0},
13661 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13662 {"+", BINOP_ADD, PREC_ADD, 0},
13663 {"-", BINOP_SUB, PREC_ADD, 0},
13664 {"&", BINOP_CONCAT, PREC_ADD, 0},
13665 {"*", BINOP_MUL, PREC_MUL, 0},
13666 {"/", BINOP_DIV, PREC_MUL, 0},
13667 {"rem", BINOP_REM, PREC_MUL, 0},
13668 {"mod", BINOP_MOD, PREC_MUL, 0},
13669 {"**", BINOP_EXP, PREC_REPEAT, 0},
13670 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13671 {"-", UNOP_NEG, PREC_PREFIX, 0},
13672 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13673 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13674 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13675 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13676 {".all", UNOP_IND, PREC_SUFFIX, 1},
13677 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13678 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13679 {NULL, OP_NULL, PREC_SUFFIX, 0}
13680 };
13681 \f
13682 enum ada_primitive_types {
13683 ada_primitive_type_int,
13684 ada_primitive_type_long,
13685 ada_primitive_type_short,
13686 ada_primitive_type_char,
13687 ada_primitive_type_float,
13688 ada_primitive_type_double,
13689 ada_primitive_type_void,
13690 ada_primitive_type_long_long,
13691 ada_primitive_type_long_double,
13692 ada_primitive_type_natural,
13693 ada_primitive_type_positive,
13694 ada_primitive_type_system_address,
13695 nr_ada_primitive_types
13696 };
13697
13698 static void
13699 ada_language_arch_info (struct gdbarch *gdbarch,
13700 struct language_arch_info *lai)
13701 {
13702 const struct builtin_type *builtin = builtin_type (gdbarch);
13703
13704 lai->primitive_type_vector
13705 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13706 struct type *);
13707
13708 lai->primitive_type_vector [ada_primitive_type_int]
13709 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13710 0, "integer");
13711 lai->primitive_type_vector [ada_primitive_type_long]
13712 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13713 0, "long_integer");
13714 lai->primitive_type_vector [ada_primitive_type_short]
13715 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13716 0, "short_integer");
13717 lai->string_char_type
13718 = lai->primitive_type_vector [ada_primitive_type_char]
13719 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13720 lai->primitive_type_vector [ada_primitive_type_float]
13721 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13722 "float", gdbarch_float_format (gdbarch));
13723 lai->primitive_type_vector [ada_primitive_type_double]
13724 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13725 "long_float", gdbarch_double_format (gdbarch));
13726 lai->primitive_type_vector [ada_primitive_type_long_long]
13727 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13728 0, "long_long_integer");
13729 lai->primitive_type_vector [ada_primitive_type_long_double]
13730 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13731 "long_long_float", gdbarch_long_double_format (gdbarch));
13732 lai->primitive_type_vector [ada_primitive_type_natural]
13733 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13734 0, "natural");
13735 lai->primitive_type_vector [ada_primitive_type_positive]
13736 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13737 0, "positive");
13738 lai->primitive_type_vector [ada_primitive_type_void]
13739 = builtin->builtin_void;
13740
13741 lai->primitive_type_vector [ada_primitive_type_system_address]
13742 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13743 "void"));
13744 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13745 = "system__address";
13746
13747 lai->bool_type_symbol = NULL;
13748 lai->bool_type_default = builtin->builtin_bool;
13749 }
13750 \f
13751 /* Language vector */
13752
13753 /* Not really used, but needed in the ada_language_defn. */
13754
13755 static void
13756 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13757 {
13758 ada_emit_char (c, type, stream, quoter, 1);
13759 }
13760
13761 static int
13762 parse (struct parser_state *ps)
13763 {
13764 warnings_issued = 0;
13765 return ada_parse (ps);
13766 }
13767
13768 static const struct exp_descriptor ada_exp_descriptor = {
13769 ada_print_subexp,
13770 ada_operator_length,
13771 ada_operator_check,
13772 ada_op_name,
13773 ada_dump_subexp_body,
13774 ada_evaluate_subexp
13775 };
13776
13777 /* symbol_name_matcher_ftype adapter for wild_match. */
13778
13779 static bool
13780 do_wild_match (const char *symbol_search_name,
13781 const lookup_name_info &lookup_name,
13782 completion_match *match)
13783 {
13784 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13785 }
13786
13787 /* symbol_name_matcher_ftype adapter for full_match. */
13788
13789 static bool
13790 do_full_match (const char *symbol_search_name,
13791 const lookup_name_info &lookup_name,
13792 completion_match *match)
13793 {
13794 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13795 }
13796
13797 /* Build the Ada lookup name for LOOKUP_NAME. */
13798
13799 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13800 {
13801 const std::string &user_name = lookup_name.name ();
13802
13803 if (user_name[0] == '<')
13804 {
13805 if (user_name.back () == '>')
13806 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13807 else
13808 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13809 m_encoded_p = true;
13810 m_verbatim_p = true;
13811 m_wild_match_p = false;
13812 m_standard_p = false;
13813 }
13814 else
13815 {
13816 m_verbatim_p = false;
13817
13818 m_encoded_p = user_name.find ("__") != std::string::npos;
13819
13820 if (!m_encoded_p)
13821 {
13822 const char *folded = ada_fold_name (user_name.c_str ());
13823 const char *encoded = ada_encode_1 (folded, false);
13824 if (encoded != NULL)
13825 m_encoded_name = encoded;
13826 else
13827 m_encoded_name = user_name;
13828 }
13829 else
13830 m_encoded_name = user_name;
13831
13832 /* Handle the 'package Standard' special case. See description
13833 of m_standard_p. */
13834 if (startswith (m_encoded_name.c_str (), "standard__"))
13835 {
13836 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13837 m_standard_p = true;
13838 }
13839 else
13840 m_standard_p = false;
13841
13842 /* If the name contains a ".", then the user is entering a fully
13843 qualified entity name, and the match must not be done in wild
13844 mode. Similarly, if the user wants to complete what looks
13845 like an encoded name, the match must not be done in wild
13846 mode. Also, in the standard__ special case always do
13847 non-wild matching. */
13848 m_wild_match_p
13849 = (lookup_name.match_type () != symbol_name_match_type::FULL
13850 && !m_encoded_p
13851 && !m_standard_p
13852 && user_name.find ('.') == std::string::npos);
13853 }
13854 }
13855
13856 /* symbol_name_matcher_ftype method for Ada. This only handles
13857 completion mode. */
13858
13859 static bool
13860 ada_symbol_name_matches (const char *symbol_search_name,
13861 const lookup_name_info &lookup_name,
13862 completion_match *match)
13863 {
13864 return lookup_name.ada ().matches (symbol_search_name,
13865 lookup_name.match_type (),
13866 match);
13867 }
13868
13869 /* Implement the "la_get_symbol_name_matcher" language_defn method for
13870 Ada. */
13871
13872 static symbol_name_matcher_ftype *
13873 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13874 {
13875 if (lookup_name.completion_mode ())
13876 return ada_symbol_name_matches;
13877 else
13878 {
13879 if (lookup_name.ada ().wild_match_p ())
13880 return do_wild_match;
13881 else
13882 return do_full_match;
13883 }
13884 }
13885
13886 /* Implement the "la_read_var_value" language_defn method for Ada. */
13887
13888 static struct value *
13889 ada_read_var_value (struct symbol *var, const struct block *var_block,
13890 struct frame_info *frame)
13891 {
13892 const struct block *frame_block = NULL;
13893 struct symbol *renaming_sym = NULL;
13894
13895 /* The only case where default_read_var_value is not sufficient
13896 is when VAR is a renaming... */
13897 if (frame)
13898 frame_block = get_frame_block (frame, NULL);
13899 if (frame_block)
13900 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13901 if (renaming_sym != NULL)
13902 return ada_read_renaming_var_value (renaming_sym, frame_block);
13903
13904 /* This is a typical case where we expect the default_read_var_value
13905 function to work. */
13906 return default_read_var_value (var, var_block, frame);
13907 }
13908
13909 static const char *ada_extensions[] =
13910 {
13911 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13912 };
13913
13914 extern const struct language_defn ada_language_defn = {
13915 "ada", /* Language name */
13916 "Ada",
13917 language_ada,
13918 range_check_off,
13919 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13920 that's not quite what this means. */
13921 array_row_major,
13922 macro_expansion_no,
13923 ada_extensions,
13924 &ada_exp_descriptor,
13925 parse,
13926 ada_yyerror,
13927 resolve,
13928 ada_printchar, /* Print a character constant */
13929 ada_printstr, /* Function to print string constant */
13930 emit_char, /* Function to print single char (not used) */
13931 ada_print_type, /* Print a type using appropriate syntax */
13932 ada_print_typedef, /* Print a typedef using appropriate syntax */
13933 ada_val_print, /* Print a value using appropriate syntax */
13934 ada_value_print, /* Print a top-level value */
13935 ada_read_var_value, /* la_read_var_value */
13936 NULL, /* Language specific skip_trampoline */
13937 NULL, /* name_of_this */
13938 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13939 basic_lookup_transparent_type, /* lookup_transparent_type */
13940 ada_la_decode, /* Language specific symbol demangler */
13941 ada_sniff_from_mangled_name,
13942 NULL, /* Language specific
13943 class_name_from_physname */
13944 ada_op_print_tab, /* expression operators for printing */
13945 0, /* c-style arrays */
13946 1, /* String lower bound */
13947 ada_get_gdb_completer_word_break_characters,
13948 ada_collect_symbol_completion_matches,
13949 ada_language_arch_info,
13950 ada_print_array_index,
13951 default_pass_by_reference,
13952 c_get_string,
13953 c_watch_location_expression,
13954 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
13955 ada_iterate_over_symbols,
13956 default_search_name_hash,
13957 &ada_varobj_ops,
13958 NULL,
13959 NULL,
13960 LANG_MAGIC
13961 };
13962
13963 /* Command-list for the "set/show ada" prefix command. */
13964 static struct cmd_list_element *set_ada_list;
13965 static struct cmd_list_element *show_ada_list;
13966
13967 /* Implement the "set ada" prefix command. */
13968
13969 static void
13970 set_ada_command (const char *arg, int from_tty)
13971 {
13972 printf_unfiltered (_(\
13973 "\"set ada\" must be followed by the name of a setting.\n"));
13974 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13975 }
13976
13977 /* Implement the "show ada" prefix command. */
13978
13979 static void
13980 show_ada_command (const char *args, int from_tty)
13981 {
13982 cmd_show_list (show_ada_list, from_tty, "");
13983 }
13984
13985 static void
13986 initialize_ada_catchpoint_ops (void)
13987 {
13988 struct breakpoint_ops *ops;
13989
13990 initialize_breakpoint_ops ();
13991
13992 ops = &catch_exception_breakpoint_ops;
13993 *ops = bkpt_breakpoint_ops;
13994 ops->allocate_location = allocate_location_catch_exception;
13995 ops->re_set = re_set_catch_exception;
13996 ops->check_status = check_status_catch_exception;
13997 ops->print_it = print_it_catch_exception;
13998 ops->print_one = print_one_catch_exception;
13999 ops->print_mention = print_mention_catch_exception;
14000 ops->print_recreate = print_recreate_catch_exception;
14001
14002 ops = &catch_exception_unhandled_breakpoint_ops;
14003 *ops = bkpt_breakpoint_ops;
14004 ops->allocate_location = allocate_location_catch_exception_unhandled;
14005 ops->re_set = re_set_catch_exception_unhandled;
14006 ops->check_status = check_status_catch_exception_unhandled;
14007 ops->print_it = print_it_catch_exception_unhandled;
14008 ops->print_one = print_one_catch_exception_unhandled;
14009 ops->print_mention = print_mention_catch_exception_unhandled;
14010 ops->print_recreate = print_recreate_catch_exception_unhandled;
14011
14012 ops = &catch_assert_breakpoint_ops;
14013 *ops = bkpt_breakpoint_ops;
14014 ops->allocate_location = allocate_location_catch_assert;
14015 ops->re_set = re_set_catch_assert;
14016 ops->check_status = check_status_catch_assert;
14017 ops->print_it = print_it_catch_assert;
14018 ops->print_one = print_one_catch_assert;
14019 ops->print_mention = print_mention_catch_assert;
14020 ops->print_recreate = print_recreate_catch_assert;
14021 }
14022
14023 /* This module's 'new_objfile' observer. */
14024
14025 static void
14026 ada_new_objfile_observer (struct objfile *objfile)
14027 {
14028 ada_clear_symbol_cache ();
14029 }
14030
14031 /* This module's 'free_objfile' observer. */
14032
14033 static void
14034 ada_free_objfile_observer (struct objfile *objfile)
14035 {
14036 ada_clear_symbol_cache ();
14037 }
14038
14039 void
14040 _initialize_ada_language (void)
14041 {
14042 initialize_ada_catchpoint_ops ();
14043
14044 add_prefix_cmd ("ada", no_class, set_ada_command,
14045 _("Prefix command for changing Ada-specfic settings"),
14046 &set_ada_list, "set ada ", 0, &setlist);
14047
14048 add_prefix_cmd ("ada", no_class, show_ada_command,
14049 _("Generic command for showing Ada-specific settings."),
14050 &show_ada_list, "show ada ", 0, &showlist);
14051
14052 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14053 &trust_pad_over_xvs, _("\
14054 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14055 Show whether an optimization trusting PAD types over XVS types is activated"),
14056 _("\
14057 This is related to the encoding used by the GNAT compiler. The debugger\n\
14058 should normally trust the contents of PAD types, but certain older versions\n\
14059 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14060 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14061 work around this bug. It is always safe to turn this option \"off\", but\n\
14062 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14063 this option to \"off\" unless necessary."),
14064 NULL, NULL, &set_ada_list, &show_ada_list);
14065
14066 add_setshow_boolean_cmd ("print-signatures", class_vars,
14067 &print_signatures, _("\
14068 Enable or disable the output of formal and return types for functions in the \
14069 overloads selection menu"), _("\
14070 Show whether the output of formal and return types for functions in the \
14071 overloads selection menu is activated"),
14072 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14073
14074 add_catch_command ("exception", _("\
14075 Catch Ada exceptions, when raised.\n\
14076 With an argument, catch only exceptions with the given name."),
14077 catch_ada_exception_command,
14078 NULL,
14079 CATCH_PERMANENT,
14080 CATCH_TEMPORARY);
14081 add_catch_command ("assert", _("\
14082 Catch failed Ada assertions, when raised.\n\
14083 With an argument, catch only exceptions with the given name."),
14084 catch_assert_command,
14085 NULL,
14086 CATCH_PERMANENT,
14087 CATCH_TEMPORARY);
14088
14089 varsize_limit = 65536;
14090
14091 add_info ("exceptions", info_exceptions_command,
14092 _("\
14093 List all Ada exception names.\n\
14094 If a regular expression is passed as an argument, only those matching\n\
14095 the regular expression are listed."));
14096
14097 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14098 _("Set Ada maintenance-related variables."),
14099 &maint_set_ada_cmdlist, "maintenance set ada ",
14100 0/*allow-unknown*/, &maintenance_set_cmdlist);
14101
14102 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14103 _("Show Ada maintenance-related variables"),
14104 &maint_show_ada_cmdlist, "maintenance show ada ",
14105 0/*allow-unknown*/, &maintenance_show_cmdlist);
14106
14107 add_setshow_boolean_cmd
14108 ("ignore-descriptive-types", class_maintenance,
14109 &ada_ignore_descriptive_types_p,
14110 _("Set whether descriptive types generated by GNAT should be ignored."),
14111 _("Show whether descriptive types generated by GNAT should be ignored."),
14112 _("\
14113 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14114 DWARF attribute."),
14115 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14116
14117 obstack_init (&symbol_list_obstack);
14118
14119 decoded_names_store = htab_create_alloc
14120 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14121 NULL, xcalloc, xfree);
14122
14123 /* The ada-lang observers. */
14124 observer_attach_new_objfile (ada_new_objfile_observer);
14125 observer_attach_free_objfile (ada_free_objfile_observer);
14126 observer_attach_inferior_exit (ada_inferior_exit);
14127
14128 /* Setup various context-specific data. */
14129 ada_inferior_data
14130 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14131 ada_pspace_data_handle
14132 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14133 }
This page took 0.340923 seconds and 4 git commands to generate.