Add signal number conversions for OpenBSD.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include <string.h>
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "varobj.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include <sys/stat.h>
47 #include "ui-out.h"
48 #include "block.h"
49 #include "infcall.h"
50 #include "dictionary.h"
51 #include "exceptions.h"
52 #include "annotate.h"
53 #include "valprint.h"
54 #include "source.h"
55 #include "observer.h"
56 #include "vec.h"
57 #include "stack.h"
58 #include "gdb_vecs.h"
59 #include "typeprint.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63 #include "mi/mi-common.h"
64 #include "arch-utils.h"
65 #include "cli/cli-utils.h"
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static int full_match (const char *, const char *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 const struct block *, const char *,
113 domain_enum, struct objfile *, int);
114
115 static int is_nonfunction (struct ada_symbol_info *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static void check_size (const struct type *);
240
241 static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244 static struct value *assign_aggregate (struct value *, struct value *,
245 struct expression *,
246 int *, enum noside);
247
248 static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253 static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259 static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270 static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
272
273 static struct type *ada_find_any_type (const char *name);
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum namespace;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 /* FIXME: brobecker/2003-09-17: No longer a const because it is
320 returned by a function that does not return a const char *. */
321 static char *ada_completer_word_break_characters =
322 #ifdef VMS
323 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
324 #else
325 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
326 #endif
327
328 /* The name of the symbol to use to get the name of the main subprogram. */
329 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
330 = "__gnat_ada_main_program_name";
331
332 /* Limit on the number of warnings to raise per expression evaluation. */
333 static int warning_limit = 2;
334
335 /* Number of warning messages issued; reset to 0 by cleanups after
336 expression evaluation. */
337 static int warnings_issued = 0;
338
339 static const char *known_runtime_file_name_patterns[] = {
340 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
341 };
342
343 static const char *known_auxiliary_function_name_patterns[] = {
344 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
345 };
346
347 /* Space for allocating results of ada_lookup_symbol_list. */
348 static struct obstack symbol_list_obstack;
349
350 /* Maintenance-related settings for this module. */
351
352 static struct cmd_list_element *maint_set_ada_cmdlist;
353 static struct cmd_list_element *maint_show_ada_cmdlist;
354
355 /* Implement the "maintenance set ada" (prefix) command. */
356
357 static void
358 maint_set_ada_cmd (char *args, int from_tty)
359 {
360 help_list (maint_set_ada_cmdlist, "maintenance set ada ", -1, gdb_stdout);
361 }
362
363 /* Implement the "maintenance show ada" (prefix) command. */
364
365 static void
366 maint_show_ada_cmd (char *args, int from_tty)
367 {
368 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
369 }
370
371 /* The "maintenance ada set/show ignore-descriptive-type" value. */
372
373 static int ada_ignore_descriptive_types_p = 0;
374
375 /* Inferior-specific data. */
376
377 /* Per-inferior data for this module. */
378
379 struct ada_inferior_data
380 {
381 /* The ada__tags__type_specific_data type, which is used when decoding
382 tagged types. With older versions of GNAT, this type was directly
383 accessible through a component ("tsd") in the object tag. But this
384 is no longer the case, so we cache it for each inferior. */
385 struct type *tsd_type;
386
387 /* The exception_support_info data. This data is used to determine
388 how to implement support for Ada exception catchpoints in a given
389 inferior. */
390 const struct exception_support_info *exception_info;
391 };
392
393 /* Our key to this module's inferior data. */
394 static const struct inferior_data *ada_inferior_data;
395
396 /* A cleanup routine for our inferior data. */
397 static void
398 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
399 {
400 struct ada_inferior_data *data;
401
402 data = inferior_data (inf, ada_inferior_data);
403 if (data != NULL)
404 xfree (data);
405 }
406
407 /* Return our inferior data for the given inferior (INF).
408
409 This function always returns a valid pointer to an allocated
410 ada_inferior_data structure. If INF's inferior data has not
411 been previously set, this functions creates a new one with all
412 fields set to zero, sets INF's inferior to it, and then returns
413 a pointer to that newly allocated ada_inferior_data. */
414
415 static struct ada_inferior_data *
416 get_ada_inferior_data (struct inferior *inf)
417 {
418 struct ada_inferior_data *data;
419
420 data = inferior_data (inf, ada_inferior_data);
421 if (data == NULL)
422 {
423 data = XCNEW (struct ada_inferior_data);
424 set_inferior_data (inf, ada_inferior_data, data);
425 }
426
427 return data;
428 }
429
430 /* Perform all necessary cleanups regarding our module's inferior data
431 that is required after the inferior INF just exited. */
432
433 static void
434 ada_inferior_exit (struct inferior *inf)
435 {
436 ada_inferior_data_cleanup (inf, NULL);
437 set_inferior_data (inf, ada_inferior_data, NULL);
438 }
439
440
441 /* program-space-specific data. */
442
443 /* This module's per-program-space data. */
444 struct ada_pspace_data
445 {
446 /* The Ada symbol cache. */
447 struct ada_symbol_cache *sym_cache;
448 };
449
450 /* Key to our per-program-space data. */
451 static const struct program_space_data *ada_pspace_data_handle;
452
453 /* Return this module's data for the given program space (PSPACE).
454 If not is found, add a zero'ed one now.
455
456 This function always returns a valid object. */
457
458 static struct ada_pspace_data *
459 get_ada_pspace_data (struct program_space *pspace)
460 {
461 struct ada_pspace_data *data;
462
463 data = program_space_data (pspace, ada_pspace_data_handle);
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result = strrchr (decoded_name, '.');
530
531 if (result != NULL)
532 result++; /* Skip the dot... */
533 else
534 result = decoded_name;
535
536 return result;
537 }
538
539 /* Return a string starting with '<', followed by STR, and '>'.
540 The result is good until the next call. */
541
542 static char *
543 add_angle_brackets (const char *str)
544 {
545 static char *result = NULL;
546
547 xfree (result);
548 result = xstrprintf ("<%s>", str);
549 return result;
550 }
551
552 static char *
553 ada_get_gdb_completer_word_break_characters (void)
554 {
555 return ada_completer_word_break_characters;
556 }
557
558 /* Print an array element index using the Ada syntax. */
559
560 static void
561 ada_print_array_index (struct value *index_value, struct ui_file *stream,
562 const struct value_print_options *options)
563 {
564 LA_VALUE_PRINT (index_value, stream, options);
565 fprintf_filtered (stream, " => ");
566 }
567
568 /* Assuming VECT points to an array of *SIZE objects of size
569 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
570 updating *SIZE as necessary and returning the (new) array. */
571
572 void *
573 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
574 {
575 if (*size < min_size)
576 {
577 *size *= 2;
578 if (*size < min_size)
579 *size = min_size;
580 vect = xrealloc (vect, *size * element_size);
581 }
582 return vect;
583 }
584
585 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
586 suffix of FIELD_NAME beginning "___". */
587
588 static int
589 field_name_match (const char *field_name, const char *target)
590 {
591 int len = strlen (target);
592
593 return
594 (strncmp (field_name, target, len) == 0
595 && (field_name[len] == '\0'
596 || (strncmp (field_name + len, "___", 3) == 0
597 && strcmp (field_name + strlen (field_name) - 6,
598 "___XVN") != 0)));
599 }
600
601
602 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
603 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
604 and return its index. This function also handles fields whose name
605 have ___ suffixes because the compiler sometimes alters their name
606 by adding such a suffix to represent fields with certain constraints.
607 If the field could not be found, return a negative number if
608 MAYBE_MISSING is set. Otherwise raise an error. */
609
610 int
611 ada_get_field_index (const struct type *type, const char *field_name,
612 int maybe_missing)
613 {
614 int fieldno;
615 struct type *struct_type = check_typedef ((struct type *) type);
616
617 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
618 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
619 return fieldno;
620
621 if (!maybe_missing)
622 error (_("Unable to find field %s in struct %s. Aborting"),
623 field_name, TYPE_NAME (struct_type));
624
625 return -1;
626 }
627
628 /* The length of the prefix of NAME prior to any "___" suffix. */
629
630 int
631 ada_name_prefix_len (const char *name)
632 {
633 if (name == NULL)
634 return 0;
635 else
636 {
637 const char *p = strstr (name, "___");
638
639 if (p == NULL)
640 return strlen (name);
641 else
642 return p - name;
643 }
644 }
645
646 /* Return non-zero if SUFFIX is a suffix of STR.
647 Return zero if STR is null. */
648
649 static int
650 is_suffix (const char *str, const char *suffix)
651 {
652 int len1, len2;
653
654 if (str == NULL)
655 return 0;
656 len1 = strlen (str);
657 len2 = strlen (suffix);
658 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
659 }
660
661 /* The contents of value VAL, treated as a value of type TYPE. The
662 result is an lval in memory if VAL is. */
663
664 static struct value *
665 coerce_unspec_val_to_type (struct value *val, struct type *type)
666 {
667 type = ada_check_typedef (type);
668 if (value_type (val) == type)
669 return val;
670 else
671 {
672 struct value *result;
673
674 /* Make sure that the object size is not unreasonable before
675 trying to allocate some memory for it. */
676 check_size (type);
677
678 if (value_lazy (val)
679 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
680 result = allocate_value_lazy (type);
681 else
682 {
683 result = allocate_value (type);
684 memcpy (value_contents_raw (result), value_contents (val),
685 TYPE_LENGTH (type));
686 }
687 set_value_component_location (result, val);
688 set_value_bitsize (result, value_bitsize (val));
689 set_value_bitpos (result, value_bitpos (val));
690 set_value_address (result, value_address (val));
691 set_value_optimized_out (result, value_optimized_out_const (val));
692 return result;
693 }
694 }
695
696 static const gdb_byte *
697 cond_offset_host (const gdb_byte *valaddr, long offset)
698 {
699 if (valaddr == NULL)
700 return NULL;
701 else
702 return valaddr + offset;
703 }
704
705 static CORE_ADDR
706 cond_offset_target (CORE_ADDR address, long offset)
707 {
708 if (address == 0)
709 return 0;
710 else
711 return address + offset;
712 }
713
714 /* Issue a warning (as for the definition of warning in utils.c, but
715 with exactly one argument rather than ...), unless the limit on the
716 number of warnings has passed during the evaluation of the current
717 expression. */
718
719 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
720 provided by "complaint". */
721 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
722
723 static void
724 lim_warning (const char *format, ...)
725 {
726 va_list args;
727
728 va_start (args, format);
729 warnings_issued += 1;
730 if (warnings_issued <= warning_limit)
731 vwarning (format, args);
732
733 va_end (args);
734 }
735
736 /* Issue an error if the size of an object of type T is unreasonable,
737 i.e. if it would be a bad idea to allocate a value of this type in
738 GDB. */
739
740 static void
741 check_size (const struct type *type)
742 {
743 if (TYPE_LENGTH (type) > varsize_limit)
744 error (_("object size is larger than varsize-limit"));
745 }
746
747 /* Maximum value of a SIZE-byte signed integer type. */
748 static LONGEST
749 max_of_size (int size)
750 {
751 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
752
753 return top_bit | (top_bit - 1);
754 }
755
756 /* Minimum value of a SIZE-byte signed integer type. */
757 static LONGEST
758 min_of_size (int size)
759 {
760 return -max_of_size (size) - 1;
761 }
762
763 /* Maximum value of a SIZE-byte unsigned integer type. */
764 static ULONGEST
765 umax_of_size (int size)
766 {
767 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
768
769 return top_bit | (top_bit - 1);
770 }
771
772 /* Maximum value of integral type T, as a signed quantity. */
773 static LONGEST
774 max_of_type (struct type *t)
775 {
776 if (TYPE_UNSIGNED (t))
777 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
778 else
779 return max_of_size (TYPE_LENGTH (t));
780 }
781
782 /* Minimum value of integral type T, as a signed quantity. */
783 static LONGEST
784 min_of_type (struct type *t)
785 {
786 if (TYPE_UNSIGNED (t))
787 return 0;
788 else
789 return min_of_size (TYPE_LENGTH (t));
790 }
791
792 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
793 LONGEST
794 ada_discrete_type_high_bound (struct type *type)
795 {
796 switch (TYPE_CODE (type))
797 {
798 case TYPE_CODE_RANGE:
799 return TYPE_HIGH_BOUND (type);
800 case TYPE_CODE_ENUM:
801 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
802 case TYPE_CODE_BOOL:
803 return 1;
804 case TYPE_CODE_CHAR:
805 case TYPE_CODE_INT:
806 return max_of_type (type);
807 default:
808 error (_("Unexpected type in ada_discrete_type_high_bound."));
809 }
810 }
811
812 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
813 LONGEST
814 ada_discrete_type_low_bound (struct type *type)
815 {
816 switch (TYPE_CODE (type))
817 {
818 case TYPE_CODE_RANGE:
819 return TYPE_LOW_BOUND (type);
820 case TYPE_CODE_ENUM:
821 return TYPE_FIELD_ENUMVAL (type, 0);
822 case TYPE_CODE_BOOL:
823 return 0;
824 case TYPE_CODE_CHAR:
825 case TYPE_CODE_INT:
826 return min_of_type (type);
827 default:
828 error (_("Unexpected type in ada_discrete_type_low_bound."));
829 }
830 }
831
832 /* The identity on non-range types. For range types, the underlying
833 non-range scalar type. */
834
835 static struct type *
836 get_base_type (struct type *type)
837 {
838 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
839 {
840 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
841 return type;
842 type = TYPE_TARGET_TYPE (type);
843 }
844 return type;
845 }
846
847 /* Return a decoded version of the given VALUE. This means returning
848 a value whose type is obtained by applying all the GNAT-specific
849 encondings, making the resulting type a static but standard description
850 of the initial type. */
851
852 struct value *
853 ada_get_decoded_value (struct value *value)
854 {
855 struct type *type = ada_check_typedef (value_type (value));
856
857 if (ada_is_array_descriptor_type (type)
858 || (ada_is_constrained_packed_array_type (type)
859 && TYPE_CODE (type) != TYPE_CODE_PTR))
860 {
861 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
862 value = ada_coerce_to_simple_array_ptr (value);
863 else
864 value = ada_coerce_to_simple_array (value);
865 }
866 else
867 value = ada_to_fixed_value (value);
868
869 return value;
870 }
871
872 /* Same as ada_get_decoded_value, but with the given TYPE.
873 Because there is no associated actual value for this type,
874 the resulting type might be a best-effort approximation in
875 the case of dynamic types. */
876
877 struct type *
878 ada_get_decoded_type (struct type *type)
879 {
880 type = to_static_fixed_type (type);
881 if (ada_is_constrained_packed_array_type (type))
882 type = ada_coerce_to_simple_array_type (type);
883 return type;
884 }
885
886 \f
887
888 /* Language Selection */
889
890 /* If the main program is in Ada, return language_ada, otherwise return LANG
891 (the main program is in Ada iif the adainit symbol is found). */
892
893 enum language
894 ada_update_initial_language (enum language lang)
895 {
896 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
897 (struct objfile *) NULL) != NULL)
898 return language_ada;
899
900 return lang;
901 }
902
903 /* If the main procedure is written in Ada, then return its name.
904 The result is good until the next call. Return NULL if the main
905 procedure doesn't appear to be in Ada. */
906
907 char *
908 ada_main_name (void)
909 {
910 struct minimal_symbol *msym;
911 static char *main_program_name = NULL;
912
913 /* For Ada, the name of the main procedure is stored in a specific
914 string constant, generated by the binder. Look for that symbol,
915 extract its address, and then read that string. If we didn't find
916 that string, then most probably the main procedure is not written
917 in Ada. */
918 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
919
920 if (msym != NULL)
921 {
922 CORE_ADDR main_program_name_addr;
923 int err_code;
924
925 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
926 if (main_program_name_addr == 0)
927 error (_("Invalid address for Ada main program name."));
928
929 xfree (main_program_name);
930 target_read_string (main_program_name_addr, &main_program_name,
931 1024, &err_code);
932
933 if (err_code != 0)
934 return NULL;
935 return main_program_name;
936 }
937
938 /* The main procedure doesn't seem to be in Ada. */
939 return NULL;
940 }
941 \f
942 /* Symbols */
943
944 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
945 of NULLs. */
946
947 const struct ada_opname_map ada_opname_table[] = {
948 {"Oadd", "\"+\"", BINOP_ADD},
949 {"Osubtract", "\"-\"", BINOP_SUB},
950 {"Omultiply", "\"*\"", BINOP_MUL},
951 {"Odivide", "\"/\"", BINOP_DIV},
952 {"Omod", "\"mod\"", BINOP_MOD},
953 {"Orem", "\"rem\"", BINOP_REM},
954 {"Oexpon", "\"**\"", BINOP_EXP},
955 {"Olt", "\"<\"", BINOP_LESS},
956 {"Ole", "\"<=\"", BINOP_LEQ},
957 {"Ogt", "\">\"", BINOP_GTR},
958 {"Oge", "\">=\"", BINOP_GEQ},
959 {"Oeq", "\"=\"", BINOP_EQUAL},
960 {"One", "\"/=\"", BINOP_NOTEQUAL},
961 {"Oand", "\"and\"", BINOP_BITWISE_AND},
962 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
963 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
964 {"Oconcat", "\"&\"", BINOP_CONCAT},
965 {"Oabs", "\"abs\"", UNOP_ABS},
966 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
967 {"Oadd", "\"+\"", UNOP_PLUS},
968 {"Osubtract", "\"-\"", UNOP_NEG},
969 {NULL, NULL}
970 };
971
972 /* The "encoded" form of DECODED, according to GNAT conventions.
973 The result is valid until the next call to ada_encode. */
974
975 char *
976 ada_encode (const char *decoded)
977 {
978 static char *encoding_buffer = NULL;
979 static size_t encoding_buffer_size = 0;
980 const char *p;
981 int k;
982
983 if (decoded == NULL)
984 return NULL;
985
986 GROW_VECT (encoding_buffer, encoding_buffer_size,
987 2 * strlen (decoded) + 10);
988
989 k = 0;
990 for (p = decoded; *p != '\0'; p += 1)
991 {
992 if (*p == '.')
993 {
994 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
995 k += 2;
996 }
997 else if (*p == '"')
998 {
999 const struct ada_opname_map *mapping;
1000
1001 for (mapping = ada_opname_table;
1002 mapping->encoded != NULL
1003 && strncmp (mapping->decoded, p,
1004 strlen (mapping->decoded)) != 0; mapping += 1)
1005 ;
1006 if (mapping->encoded == NULL)
1007 error (_("invalid Ada operator name: %s"), p);
1008 strcpy (encoding_buffer + k, mapping->encoded);
1009 k += strlen (mapping->encoded);
1010 break;
1011 }
1012 else
1013 {
1014 encoding_buffer[k] = *p;
1015 k += 1;
1016 }
1017 }
1018
1019 encoding_buffer[k] = '\0';
1020 return encoding_buffer;
1021 }
1022
1023 /* Return NAME folded to lower case, or, if surrounded by single
1024 quotes, unfolded, but with the quotes stripped away. Result good
1025 to next call. */
1026
1027 char *
1028 ada_fold_name (const char *name)
1029 {
1030 static char *fold_buffer = NULL;
1031 static size_t fold_buffer_size = 0;
1032
1033 int len = strlen (name);
1034 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1035
1036 if (name[0] == '\'')
1037 {
1038 strncpy (fold_buffer, name + 1, len - 2);
1039 fold_buffer[len - 2] = '\000';
1040 }
1041 else
1042 {
1043 int i;
1044
1045 for (i = 0; i <= len; i += 1)
1046 fold_buffer[i] = tolower (name[i]);
1047 }
1048
1049 return fold_buffer;
1050 }
1051
1052 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1053
1054 static int
1055 is_lower_alphanum (const char c)
1056 {
1057 return (isdigit (c) || (isalpha (c) && islower (c)));
1058 }
1059
1060 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1061 This function saves in LEN the length of that same symbol name but
1062 without either of these suffixes:
1063 . .{DIGIT}+
1064 . ${DIGIT}+
1065 . ___{DIGIT}+
1066 . __{DIGIT}+.
1067
1068 These are suffixes introduced by the compiler for entities such as
1069 nested subprogram for instance, in order to avoid name clashes.
1070 They do not serve any purpose for the debugger. */
1071
1072 static void
1073 ada_remove_trailing_digits (const char *encoded, int *len)
1074 {
1075 if (*len > 1 && isdigit (encoded[*len - 1]))
1076 {
1077 int i = *len - 2;
1078
1079 while (i > 0 && isdigit (encoded[i]))
1080 i--;
1081 if (i >= 0 && encoded[i] == '.')
1082 *len = i;
1083 else if (i >= 0 && encoded[i] == '$')
1084 *len = i;
1085 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1086 *len = i - 2;
1087 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1088 *len = i - 1;
1089 }
1090 }
1091
1092 /* Remove the suffix introduced by the compiler for protected object
1093 subprograms. */
1094
1095 static void
1096 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1097 {
1098 /* Remove trailing N. */
1099
1100 /* Protected entry subprograms are broken into two
1101 separate subprograms: The first one is unprotected, and has
1102 a 'N' suffix; the second is the protected version, and has
1103 the 'P' suffix. The second calls the first one after handling
1104 the protection. Since the P subprograms are internally generated,
1105 we leave these names undecoded, giving the user a clue that this
1106 entity is internal. */
1107
1108 if (*len > 1
1109 && encoded[*len - 1] == 'N'
1110 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1111 *len = *len - 1;
1112 }
1113
1114 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1115
1116 static void
1117 ada_remove_Xbn_suffix (const char *encoded, int *len)
1118 {
1119 int i = *len - 1;
1120
1121 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1122 i--;
1123
1124 if (encoded[i] != 'X')
1125 return;
1126
1127 if (i == 0)
1128 return;
1129
1130 if (isalnum (encoded[i-1]))
1131 *len = i;
1132 }
1133
1134 /* If ENCODED follows the GNAT entity encoding conventions, then return
1135 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1136 replaced by ENCODED.
1137
1138 The resulting string is valid until the next call of ada_decode.
1139 If the string is unchanged by decoding, the original string pointer
1140 is returned. */
1141
1142 const char *
1143 ada_decode (const char *encoded)
1144 {
1145 int i, j;
1146 int len0;
1147 const char *p;
1148 char *decoded;
1149 int at_start_name;
1150 static char *decoding_buffer = NULL;
1151 static size_t decoding_buffer_size = 0;
1152
1153 /* The name of the Ada main procedure starts with "_ada_".
1154 This prefix is not part of the decoded name, so skip this part
1155 if we see this prefix. */
1156 if (strncmp (encoded, "_ada_", 5) == 0)
1157 encoded += 5;
1158
1159 /* If the name starts with '_', then it is not a properly encoded
1160 name, so do not attempt to decode it. Similarly, if the name
1161 starts with '<', the name should not be decoded. */
1162 if (encoded[0] == '_' || encoded[0] == '<')
1163 goto Suppress;
1164
1165 len0 = strlen (encoded);
1166
1167 ada_remove_trailing_digits (encoded, &len0);
1168 ada_remove_po_subprogram_suffix (encoded, &len0);
1169
1170 /* Remove the ___X.* suffix if present. Do not forget to verify that
1171 the suffix is located before the current "end" of ENCODED. We want
1172 to avoid re-matching parts of ENCODED that have previously been
1173 marked as discarded (by decrementing LEN0). */
1174 p = strstr (encoded, "___");
1175 if (p != NULL && p - encoded < len0 - 3)
1176 {
1177 if (p[3] == 'X')
1178 len0 = p - encoded;
1179 else
1180 goto Suppress;
1181 }
1182
1183 /* Remove any trailing TKB suffix. It tells us that this symbol
1184 is for the body of a task, but that information does not actually
1185 appear in the decoded name. */
1186
1187 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1188 len0 -= 3;
1189
1190 /* Remove any trailing TB suffix. The TB suffix is slightly different
1191 from the TKB suffix because it is used for non-anonymous task
1192 bodies. */
1193
1194 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1195 len0 -= 2;
1196
1197 /* Remove trailing "B" suffixes. */
1198 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1199
1200 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1201 len0 -= 1;
1202
1203 /* Make decoded big enough for possible expansion by operator name. */
1204
1205 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1206 decoded = decoding_buffer;
1207
1208 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1209
1210 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1211 {
1212 i = len0 - 2;
1213 while ((i >= 0 && isdigit (encoded[i]))
1214 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1215 i -= 1;
1216 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1217 len0 = i - 1;
1218 else if (encoded[i] == '$')
1219 len0 = i;
1220 }
1221
1222 /* The first few characters that are not alphabetic are not part
1223 of any encoding we use, so we can copy them over verbatim. */
1224
1225 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1226 decoded[j] = encoded[i];
1227
1228 at_start_name = 1;
1229 while (i < len0)
1230 {
1231 /* Is this a symbol function? */
1232 if (at_start_name && encoded[i] == 'O')
1233 {
1234 int k;
1235
1236 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1237 {
1238 int op_len = strlen (ada_opname_table[k].encoded);
1239 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1240 op_len - 1) == 0)
1241 && !isalnum (encoded[i + op_len]))
1242 {
1243 strcpy (decoded + j, ada_opname_table[k].decoded);
1244 at_start_name = 0;
1245 i += op_len;
1246 j += strlen (ada_opname_table[k].decoded);
1247 break;
1248 }
1249 }
1250 if (ada_opname_table[k].encoded != NULL)
1251 continue;
1252 }
1253 at_start_name = 0;
1254
1255 /* Replace "TK__" with "__", which will eventually be translated
1256 into "." (just below). */
1257
1258 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1259 i += 2;
1260
1261 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1262 be translated into "." (just below). These are internal names
1263 generated for anonymous blocks inside which our symbol is nested. */
1264
1265 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1266 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1267 && isdigit (encoded [i+4]))
1268 {
1269 int k = i + 5;
1270
1271 while (k < len0 && isdigit (encoded[k]))
1272 k++; /* Skip any extra digit. */
1273
1274 /* Double-check that the "__B_{DIGITS}+" sequence we found
1275 is indeed followed by "__". */
1276 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1277 i = k;
1278 }
1279
1280 /* Remove _E{DIGITS}+[sb] */
1281
1282 /* Just as for protected object subprograms, there are 2 categories
1283 of subprograms created by the compiler for each entry. The first
1284 one implements the actual entry code, and has a suffix following
1285 the convention above; the second one implements the barrier and
1286 uses the same convention as above, except that the 'E' is replaced
1287 by a 'B'.
1288
1289 Just as above, we do not decode the name of barrier functions
1290 to give the user a clue that the code he is debugging has been
1291 internally generated. */
1292
1293 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1294 && isdigit (encoded[i+2]))
1295 {
1296 int k = i + 3;
1297
1298 while (k < len0 && isdigit (encoded[k]))
1299 k++;
1300
1301 if (k < len0
1302 && (encoded[k] == 'b' || encoded[k] == 's'))
1303 {
1304 k++;
1305 /* Just as an extra precaution, make sure that if this
1306 suffix is followed by anything else, it is a '_'.
1307 Otherwise, we matched this sequence by accident. */
1308 if (k == len0
1309 || (k < len0 && encoded[k] == '_'))
1310 i = k;
1311 }
1312 }
1313
1314 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1315 the GNAT front-end in protected object subprograms. */
1316
1317 if (i < len0 + 3
1318 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1319 {
1320 /* Backtrack a bit up until we reach either the begining of
1321 the encoded name, or "__". Make sure that we only find
1322 digits or lowercase characters. */
1323 const char *ptr = encoded + i - 1;
1324
1325 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1326 ptr--;
1327 if (ptr < encoded
1328 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1329 i++;
1330 }
1331
1332 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1333 {
1334 /* This is a X[bn]* sequence not separated from the previous
1335 part of the name with a non-alpha-numeric character (in other
1336 words, immediately following an alpha-numeric character), then
1337 verify that it is placed at the end of the encoded name. If
1338 not, then the encoding is not valid and we should abort the
1339 decoding. Otherwise, just skip it, it is used in body-nested
1340 package names. */
1341 do
1342 i += 1;
1343 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1344 if (i < len0)
1345 goto Suppress;
1346 }
1347 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1348 {
1349 /* Replace '__' by '.'. */
1350 decoded[j] = '.';
1351 at_start_name = 1;
1352 i += 2;
1353 j += 1;
1354 }
1355 else
1356 {
1357 /* It's a character part of the decoded name, so just copy it
1358 over. */
1359 decoded[j] = encoded[i];
1360 i += 1;
1361 j += 1;
1362 }
1363 }
1364 decoded[j] = '\000';
1365
1366 /* Decoded names should never contain any uppercase character.
1367 Double-check this, and abort the decoding if we find one. */
1368
1369 for (i = 0; decoded[i] != '\0'; i += 1)
1370 if (isupper (decoded[i]) || decoded[i] == ' ')
1371 goto Suppress;
1372
1373 if (strcmp (decoded, encoded) == 0)
1374 return encoded;
1375 else
1376 return decoded;
1377
1378 Suppress:
1379 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1380 decoded = decoding_buffer;
1381 if (encoded[0] == '<')
1382 strcpy (decoded, encoded);
1383 else
1384 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1385 return decoded;
1386
1387 }
1388
1389 /* Table for keeping permanent unique copies of decoded names. Once
1390 allocated, names in this table are never released. While this is a
1391 storage leak, it should not be significant unless there are massive
1392 changes in the set of decoded names in successive versions of a
1393 symbol table loaded during a single session. */
1394 static struct htab *decoded_names_store;
1395
1396 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1397 in the language-specific part of GSYMBOL, if it has not been
1398 previously computed. Tries to save the decoded name in the same
1399 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1400 in any case, the decoded symbol has a lifetime at least that of
1401 GSYMBOL).
1402 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1403 const, but nevertheless modified to a semantically equivalent form
1404 when a decoded name is cached in it. */
1405
1406 const char *
1407 ada_decode_symbol (const struct general_symbol_info *arg)
1408 {
1409 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1410 const char **resultp =
1411 &gsymbol->language_specific.mangled_lang.demangled_name;
1412
1413 if (!gsymbol->ada_mangled)
1414 {
1415 const char *decoded = ada_decode (gsymbol->name);
1416 struct obstack *obstack = gsymbol->language_specific.obstack;
1417
1418 gsymbol->ada_mangled = 1;
1419
1420 if (obstack != NULL)
1421 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1422 else
1423 {
1424 /* Sometimes, we can't find a corresponding objfile, in
1425 which case, we put the result on the heap. Since we only
1426 decode when needed, we hope this usually does not cause a
1427 significant memory leak (FIXME). */
1428
1429 char **slot = (char **) htab_find_slot (decoded_names_store,
1430 decoded, INSERT);
1431
1432 if (*slot == NULL)
1433 *slot = xstrdup (decoded);
1434 *resultp = *slot;
1435 }
1436 }
1437
1438 return *resultp;
1439 }
1440
1441 static char *
1442 ada_la_decode (const char *encoded, int options)
1443 {
1444 return xstrdup (ada_decode (encoded));
1445 }
1446
1447 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1448 suffixes that encode debugging information or leading _ada_ on
1449 SYM_NAME (see is_name_suffix commentary for the debugging
1450 information that is ignored). If WILD, then NAME need only match a
1451 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1452 either argument is NULL. */
1453
1454 static int
1455 match_name (const char *sym_name, const char *name, int wild)
1456 {
1457 if (sym_name == NULL || name == NULL)
1458 return 0;
1459 else if (wild)
1460 return wild_match (sym_name, name) == 0;
1461 else
1462 {
1463 int len_name = strlen (name);
1464
1465 return (strncmp (sym_name, name, len_name) == 0
1466 && is_name_suffix (sym_name + len_name))
1467 || (strncmp (sym_name, "_ada_", 5) == 0
1468 && strncmp (sym_name + 5, name, len_name) == 0
1469 && is_name_suffix (sym_name + len_name + 5));
1470 }
1471 }
1472 \f
1473
1474 /* Arrays */
1475
1476 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1477 generated by the GNAT compiler to describe the index type used
1478 for each dimension of an array, check whether it follows the latest
1479 known encoding. If not, fix it up to conform to the latest encoding.
1480 Otherwise, do nothing. This function also does nothing if
1481 INDEX_DESC_TYPE is NULL.
1482
1483 The GNAT encoding used to describle the array index type evolved a bit.
1484 Initially, the information would be provided through the name of each
1485 field of the structure type only, while the type of these fields was
1486 described as unspecified and irrelevant. The debugger was then expected
1487 to perform a global type lookup using the name of that field in order
1488 to get access to the full index type description. Because these global
1489 lookups can be very expensive, the encoding was later enhanced to make
1490 the global lookup unnecessary by defining the field type as being
1491 the full index type description.
1492
1493 The purpose of this routine is to allow us to support older versions
1494 of the compiler by detecting the use of the older encoding, and by
1495 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1496 we essentially replace each field's meaningless type by the associated
1497 index subtype). */
1498
1499 void
1500 ada_fixup_array_indexes_type (struct type *index_desc_type)
1501 {
1502 int i;
1503
1504 if (index_desc_type == NULL)
1505 return;
1506 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1507
1508 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1509 to check one field only, no need to check them all). If not, return
1510 now.
1511
1512 If our INDEX_DESC_TYPE was generated using the older encoding,
1513 the field type should be a meaningless integer type whose name
1514 is not equal to the field name. */
1515 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1516 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1517 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1518 return;
1519
1520 /* Fixup each field of INDEX_DESC_TYPE. */
1521 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1522 {
1523 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1524 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1525
1526 if (raw_type)
1527 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1528 }
1529 }
1530
1531 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1532
1533 static char *bound_name[] = {
1534 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1535 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1536 };
1537
1538 /* Maximum number of array dimensions we are prepared to handle. */
1539
1540 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1541
1542
1543 /* The desc_* routines return primitive portions of array descriptors
1544 (fat pointers). */
1545
1546 /* The descriptor or array type, if any, indicated by TYPE; removes
1547 level of indirection, if needed. */
1548
1549 static struct type *
1550 desc_base_type (struct type *type)
1551 {
1552 if (type == NULL)
1553 return NULL;
1554 type = ada_check_typedef (type);
1555 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1556 type = ada_typedef_target_type (type);
1557
1558 if (type != NULL
1559 && (TYPE_CODE (type) == TYPE_CODE_PTR
1560 || TYPE_CODE (type) == TYPE_CODE_REF))
1561 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1562 else
1563 return type;
1564 }
1565
1566 /* True iff TYPE indicates a "thin" array pointer type. */
1567
1568 static int
1569 is_thin_pntr (struct type *type)
1570 {
1571 return
1572 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1573 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1574 }
1575
1576 /* The descriptor type for thin pointer type TYPE. */
1577
1578 static struct type *
1579 thin_descriptor_type (struct type *type)
1580 {
1581 struct type *base_type = desc_base_type (type);
1582
1583 if (base_type == NULL)
1584 return NULL;
1585 if (is_suffix (ada_type_name (base_type), "___XVE"))
1586 return base_type;
1587 else
1588 {
1589 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1590
1591 if (alt_type == NULL)
1592 return base_type;
1593 else
1594 return alt_type;
1595 }
1596 }
1597
1598 /* A pointer to the array data for thin-pointer value VAL. */
1599
1600 static struct value *
1601 thin_data_pntr (struct value *val)
1602 {
1603 struct type *type = ada_check_typedef (value_type (val));
1604 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1605
1606 data_type = lookup_pointer_type (data_type);
1607
1608 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1609 return value_cast (data_type, value_copy (val));
1610 else
1611 return value_from_longest (data_type, value_address (val));
1612 }
1613
1614 /* True iff TYPE indicates a "thick" array pointer type. */
1615
1616 static int
1617 is_thick_pntr (struct type *type)
1618 {
1619 type = desc_base_type (type);
1620 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1621 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1622 }
1623
1624 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1625 pointer to one, the type of its bounds data; otherwise, NULL. */
1626
1627 static struct type *
1628 desc_bounds_type (struct type *type)
1629 {
1630 struct type *r;
1631
1632 type = desc_base_type (type);
1633
1634 if (type == NULL)
1635 return NULL;
1636 else if (is_thin_pntr (type))
1637 {
1638 type = thin_descriptor_type (type);
1639 if (type == NULL)
1640 return NULL;
1641 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1642 if (r != NULL)
1643 return ada_check_typedef (r);
1644 }
1645 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1646 {
1647 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1648 if (r != NULL)
1649 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1650 }
1651 return NULL;
1652 }
1653
1654 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1655 one, a pointer to its bounds data. Otherwise NULL. */
1656
1657 static struct value *
1658 desc_bounds (struct value *arr)
1659 {
1660 struct type *type = ada_check_typedef (value_type (arr));
1661
1662 if (is_thin_pntr (type))
1663 {
1664 struct type *bounds_type =
1665 desc_bounds_type (thin_descriptor_type (type));
1666 LONGEST addr;
1667
1668 if (bounds_type == NULL)
1669 error (_("Bad GNAT array descriptor"));
1670
1671 /* NOTE: The following calculation is not really kosher, but
1672 since desc_type is an XVE-encoded type (and shouldn't be),
1673 the correct calculation is a real pain. FIXME (and fix GCC). */
1674 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1675 addr = value_as_long (arr);
1676 else
1677 addr = value_address (arr);
1678
1679 return
1680 value_from_longest (lookup_pointer_type (bounds_type),
1681 addr - TYPE_LENGTH (bounds_type));
1682 }
1683
1684 else if (is_thick_pntr (type))
1685 {
1686 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1687 _("Bad GNAT array descriptor"));
1688 struct type *p_bounds_type = value_type (p_bounds);
1689
1690 if (p_bounds_type
1691 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1692 {
1693 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1694
1695 if (TYPE_STUB (target_type))
1696 p_bounds = value_cast (lookup_pointer_type
1697 (ada_check_typedef (target_type)),
1698 p_bounds);
1699 }
1700 else
1701 error (_("Bad GNAT array descriptor"));
1702
1703 return p_bounds;
1704 }
1705 else
1706 return NULL;
1707 }
1708
1709 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1710 position of the field containing the address of the bounds data. */
1711
1712 static int
1713 fat_pntr_bounds_bitpos (struct type *type)
1714 {
1715 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1716 }
1717
1718 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1719 size of the field containing the address of the bounds data. */
1720
1721 static int
1722 fat_pntr_bounds_bitsize (struct type *type)
1723 {
1724 type = desc_base_type (type);
1725
1726 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1727 return TYPE_FIELD_BITSIZE (type, 1);
1728 else
1729 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1730 }
1731
1732 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1733 pointer to one, the type of its array data (a array-with-no-bounds type);
1734 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1735 data. */
1736
1737 static struct type *
1738 desc_data_target_type (struct type *type)
1739 {
1740 type = desc_base_type (type);
1741
1742 /* NOTE: The following is bogus; see comment in desc_bounds. */
1743 if (is_thin_pntr (type))
1744 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1745 else if (is_thick_pntr (type))
1746 {
1747 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1748
1749 if (data_type
1750 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1751 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1752 }
1753
1754 return NULL;
1755 }
1756
1757 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1758 its array data. */
1759
1760 static struct value *
1761 desc_data (struct value *arr)
1762 {
1763 struct type *type = value_type (arr);
1764
1765 if (is_thin_pntr (type))
1766 return thin_data_pntr (arr);
1767 else if (is_thick_pntr (type))
1768 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1769 _("Bad GNAT array descriptor"));
1770 else
1771 return NULL;
1772 }
1773
1774
1775 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1776 position of the field containing the address of the data. */
1777
1778 static int
1779 fat_pntr_data_bitpos (struct type *type)
1780 {
1781 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1782 }
1783
1784 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1785 size of the field containing the address of the data. */
1786
1787 static int
1788 fat_pntr_data_bitsize (struct type *type)
1789 {
1790 type = desc_base_type (type);
1791
1792 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1793 return TYPE_FIELD_BITSIZE (type, 0);
1794 else
1795 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1796 }
1797
1798 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1799 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1800 bound, if WHICH is 1. The first bound is I=1. */
1801
1802 static struct value *
1803 desc_one_bound (struct value *bounds, int i, int which)
1804 {
1805 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1806 _("Bad GNAT array descriptor bounds"));
1807 }
1808
1809 /* If BOUNDS is an array-bounds structure type, return the bit position
1810 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1811 bound, if WHICH is 1. The first bound is I=1. */
1812
1813 static int
1814 desc_bound_bitpos (struct type *type, int i, int which)
1815 {
1816 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1817 }
1818
1819 /* If BOUNDS is an array-bounds structure type, return the bit field size
1820 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1821 bound, if WHICH is 1. The first bound is I=1. */
1822
1823 static int
1824 desc_bound_bitsize (struct type *type, int i, int which)
1825 {
1826 type = desc_base_type (type);
1827
1828 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1829 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1830 else
1831 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1832 }
1833
1834 /* If TYPE is the type of an array-bounds structure, the type of its
1835 Ith bound (numbering from 1). Otherwise, NULL. */
1836
1837 static struct type *
1838 desc_index_type (struct type *type, int i)
1839 {
1840 type = desc_base_type (type);
1841
1842 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1843 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1844 else
1845 return NULL;
1846 }
1847
1848 /* The number of index positions in the array-bounds type TYPE.
1849 Return 0 if TYPE is NULL. */
1850
1851 static int
1852 desc_arity (struct type *type)
1853 {
1854 type = desc_base_type (type);
1855
1856 if (type != NULL)
1857 return TYPE_NFIELDS (type) / 2;
1858 return 0;
1859 }
1860
1861 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1862 an array descriptor type (representing an unconstrained array
1863 type). */
1864
1865 static int
1866 ada_is_direct_array_type (struct type *type)
1867 {
1868 if (type == NULL)
1869 return 0;
1870 type = ada_check_typedef (type);
1871 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1872 || ada_is_array_descriptor_type (type));
1873 }
1874
1875 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1876 * to one. */
1877
1878 static int
1879 ada_is_array_type (struct type *type)
1880 {
1881 while (type != NULL
1882 && (TYPE_CODE (type) == TYPE_CODE_PTR
1883 || TYPE_CODE (type) == TYPE_CODE_REF))
1884 type = TYPE_TARGET_TYPE (type);
1885 return ada_is_direct_array_type (type);
1886 }
1887
1888 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1889
1890 int
1891 ada_is_simple_array_type (struct type *type)
1892 {
1893 if (type == NULL)
1894 return 0;
1895 type = ada_check_typedef (type);
1896 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1897 || (TYPE_CODE (type) == TYPE_CODE_PTR
1898 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1899 == TYPE_CODE_ARRAY));
1900 }
1901
1902 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1903
1904 int
1905 ada_is_array_descriptor_type (struct type *type)
1906 {
1907 struct type *data_type = desc_data_target_type (type);
1908
1909 if (type == NULL)
1910 return 0;
1911 type = ada_check_typedef (type);
1912 return (data_type != NULL
1913 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1914 && desc_arity (desc_bounds_type (type)) > 0);
1915 }
1916
1917 /* Non-zero iff type is a partially mal-formed GNAT array
1918 descriptor. FIXME: This is to compensate for some problems with
1919 debugging output from GNAT. Re-examine periodically to see if it
1920 is still needed. */
1921
1922 int
1923 ada_is_bogus_array_descriptor (struct type *type)
1924 {
1925 return
1926 type != NULL
1927 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1928 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1929 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1930 && !ada_is_array_descriptor_type (type);
1931 }
1932
1933
1934 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1935 (fat pointer) returns the type of the array data described---specifically,
1936 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1937 in from the descriptor; otherwise, they are left unspecified. If
1938 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1939 returns NULL. The result is simply the type of ARR if ARR is not
1940 a descriptor. */
1941 struct type *
1942 ada_type_of_array (struct value *arr, int bounds)
1943 {
1944 if (ada_is_constrained_packed_array_type (value_type (arr)))
1945 return decode_constrained_packed_array_type (value_type (arr));
1946
1947 if (!ada_is_array_descriptor_type (value_type (arr)))
1948 return value_type (arr);
1949
1950 if (!bounds)
1951 {
1952 struct type *array_type =
1953 ada_check_typedef (desc_data_target_type (value_type (arr)));
1954
1955 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1956 TYPE_FIELD_BITSIZE (array_type, 0) =
1957 decode_packed_array_bitsize (value_type (arr));
1958
1959 return array_type;
1960 }
1961 else
1962 {
1963 struct type *elt_type;
1964 int arity;
1965 struct value *descriptor;
1966
1967 elt_type = ada_array_element_type (value_type (arr), -1);
1968 arity = ada_array_arity (value_type (arr));
1969
1970 if (elt_type == NULL || arity == 0)
1971 return ada_check_typedef (value_type (arr));
1972
1973 descriptor = desc_bounds (arr);
1974 if (value_as_long (descriptor) == 0)
1975 return NULL;
1976 while (arity > 0)
1977 {
1978 struct type *range_type = alloc_type_copy (value_type (arr));
1979 struct type *array_type = alloc_type_copy (value_type (arr));
1980 struct value *low = desc_one_bound (descriptor, arity, 0);
1981 struct value *high = desc_one_bound (descriptor, arity, 1);
1982
1983 arity -= 1;
1984 create_range_type (range_type, value_type (low),
1985 longest_to_int (value_as_long (low)),
1986 longest_to_int (value_as_long (high)));
1987 elt_type = create_array_type (array_type, elt_type, range_type);
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 {
1991 /* We need to store the element packed bitsize, as well as
1992 recompute the array size, because it was previously
1993 computed based on the unpacked element size. */
1994 LONGEST lo = value_as_long (low);
1995 LONGEST hi = value_as_long (high);
1996
1997 TYPE_FIELD_BITSIZE (elt_type, 0) =
1998 decode_packed_array_bitsize (value_type (arr));
1999 /* If the array has no element, then the size is already
2000 zero, and does not need to be recomputed. */
2001 if (lo < hi)
2002 {
2003 int array_bitsize =
2004 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2005
2006 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2007 }
2008 }
2009 }
2010
2011 return lookup_pointer_type (elt_type);
2012 }
2013 }
2014
2015 /* If ARR does not represent an array, returns ARR unchanged.
2016 Otherwise, returns either a standard GDB array with bounds set
2017 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2018 GDB array. Returns NULL if ARR is a null fat pointer. */
2019
2020 struct value *
2021 ada_coerce_to_simple_array_ptr (struct value *arr)
2022 {
2023 if (ada_is_array_descriptor_type (value_type (arr)))
2024 {
2025 struct type *arrType = ada_type_of_array (arr, 1);
2026
2027 if (arrType == NULL)
2028 return NULL;
2029 return value_cast (arrType, value_copy (desc_data (arr)));
2030 }
2031 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2032 return decode_constrained_packed_array (arr);
2033 else
2034 return arr;
2035 }
2036
2037 /* If ARR does not represent an array, returns ARR unchanged.
2038 Otherwise, returns a standard GDB array describing ARR (which may
2039 be ARR itself if it already is in the proper form). */
2040
2041 struct value *
2042 ada_coerce_to_simple_array (struct value *arr)
2043 {
2044 if (ada_is_array_descriptor_type (value_type (arr)))
2045 {
2046 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2047
2048 if (arrVal == NULL)
2049 error (_("Bounds unavailable for null array pointer."));
2050 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
2051 return value_ind (arrVal);
2052 }
2053 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2054 return decode_constrained_packed_array (arr);
2055 else
2056 return arr;
2057 }
2058
2059 /* If TYPE represents a GNAT array type, return it translated to an
2060 ordinary GDB array type (possibly with BITSIZE fields indicating
2061 packing). For other types, is the identity. */
2062
2063 struct type *
2064 ada_coerce_to_simple_array_type (struct type *type)
2065 {
2066 if (ada_is_constrained_packed_array_type (type))
2067 return decode_constrained_packed_array_type (type);
2068
2069 if (ada_is_array_descriptor_type (type))
2070 return ada_check_typedef (desc_data_target_type (type));
2071
2072 return type;
2073 }
2074
2075 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2076
2077 static int
2078 ada_is_packed_array_type (struct type *type)
2079 {
2080 if (type == NULL)
2081 return 0;
2082 type = desc_base_type (type);
2083 type = ada_check_typedef (type);
2084 return
2085 ada_type_name (type) != NULL
2086 && strstr (ada_type_name (type), "___XP") != NULL;
2087 }
2088
2089 /* Non-zero iff TYPE represents a standard GNAT constrained
2090 packed-array type. */
2091
2092 int
2093 ada_is_constrained_packed_array_type (struct type *type)
2094 {
2095 return ada_is_packed_array_type (type)
2096 && !ada_is_array_descriptor_type (type);
2097 }
2098
2099 /* Non-zero iff TYPE represents an array descriptor for a
2100 unconstrained packed-array type. */
2101
2102 static int
2103 ada_is_unconstrained_packed_array_type (struct type *type)
2104 {
2105 return ada_is_packed_array_type (type)
2106 && ada_is_array_descriptor_type (type);
2107 }
2108
2109 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2110 return the size of its elements in bits. */
2111
2112 static long
2113 decode_packed_array_bitsize (struct type *type)
2114 {
2115 const char *raw_name;
2116 const char *tail;
2117 long bits;
2118
2119 /* Access to arrays implemented as fat pointers are encoded as a typedef
2120 of the fat pointer type. We need the name of the fat pointer type
2121 to do the decoding, so strip the typedef layer. */
2122 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2123 type = ada_typedef_target_type (type);
2124
2125 raw_name = ada_type_name (ada_check_typedef (type));
2126 if (!raw_name)
2127 raw_name = ada_type_name (desc_base_type (type));
2128
2129 if (!raw_name)
2130 return 0;
2131
2132 tail = strstr (raw_name, "___XP");
2133 gdb_assert (tail != NULL);
2134
2135 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2136 {
2137 lim_warning
2138 (_("could not understand bit size information on packed array"));
2139 return 0;
2140 }
2141
2142 return bits;
2143 }
2144
2145 /* Given that TYPE is a standard GDB array type with all bounds filled
2146 in, and that the element size of its ultimate scalar constituents
2147 (that is, either its elements, or, if it is an array of arrays, its
2148 elements' elements, etc.) is *ELT_BITS, return an identical type,
2149 but with the bit sizes of its elements (and those of any
2150 constituent arrays) recorded in the BITSIZE components of its
2151 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2152 in bits. */
2153
2154 static struct type *
2155 constrained_packed_array_type (struct type *type, long *elt_bits)
2156 {
2157 struct type *new_elt_type;
2158 struct type *new_type;
2159 struct type *index_type_desc;
2160 struct type *index_type;
2161 LONGEST low_bound, high_bound;
2162
2163 type = ada_check_typedef (type);
2164 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2165 return type;
2166
2167 index_type_desc = ada_find_parallel_type (type, "___XA");
2168 if (index_type_desc)
2169 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2170 NULL);
2171 else
2172 index_type = TYPE_INDEX_TYPE (type);
2173
2174 new_type = alloc_type_copy (type);
2175 new_elt_type =
2176 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2177 elt_bits);
2178 create_array_type (new_type, new_elt_type, index_type);
2179 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2180 TYPE_NAME (new_type) = ada_type_name (type);
2181
2182 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2183 low_bound = high_bound = 0;
2184 if (high_bound < low_bound)
2185 *elt_bits = TYPE_LENGTH (new_type) = 0;
2186 else
2187 {
2188 *elt_bits *= (high_bound - low_bound + 1);
2189 TYPE_LENGTH (new_type) =
2190 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2191 }
2192
2193 TYPE_FIXED_INSTANCE (new_type) = 1;
2194 return new_type;
2195 }
2196
2197 /* The array type encoded by TYPE, where
2198 ada_is_constrained_packed_array_type (TYPE). */
2199
2200 static struct type *
2201 decode_constrained_packed_array_type (struct type *type)
2202 {
2203 const char *raw_name = ada_type_name (ada_check_typedef (type));
2204 char *name;
2205 const char *tail;
2206 struct type *shadow_type;
2207 long bits;
2208
2209 if (!raw_name)
2210 raw_name = ada_type_name (desc_base_type (type));
2211
2212 if (!raw_name)
2213 return NULL;
2214
2215 name = (char *) alloca (strlen (raw_name) + 1);
2216 tail = strstr (raw_name, "___XP");
2217 type = desc_base_type (type);
2218
2219 memcpy (name, raw_name, tail - raw_name);
2220 name[tail - raw_name] = '\000';
2221
2222 shadow_type = ada_find_parallel_type_with_name (type, name);
2223
2224 if (shadow_type == NULL)
2225 {
2226 lim_warning (_("could not find bounds information on packed array"));
2227 return NULL;
2228 }
2229 CHECK_TYPEDEF (shadow_type);
2230
2231 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2232 {
2233 lim_warning (_("could not understand bounds "
2234 "information on packed array"));
2235 return NULL;
2236 }
2237
2238 bits = decode_packed_array_bitsize (type);
2239 return constrained_packed_array_type (shadow_type, &bits);
2240 }
2241
2242 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2243 array, returns a simple array that denotes that array. Its type is a
2244 standard GDB array type except that the BITSIZEs of the array
2245 target types are set to the number of bits in each element, and the
2246 type length is set appropriately. */
2247
2248 static struct value *
2249 decode_constrained_packed_array (struct value *arr)
2250 {
2251 struct type *type;
2252
2253 arr = ada_coerce_ref (arr);
2254
2255 /* If our value is a pointer, then dererence it. Make sure that
2256 this operation does not cause the target type to be fixed, as
2257 this would indirectly cause this array to be decoded. The rest
2258 of the routine assumes that the array hasn't been decoded yet,
2259 so we use the basic "value_ind" routine to perform the dereferencing,
2260 as opposed to using "ada_value_ind". */
2261 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2262 arr = value_ind (arr);
2263
2264 type = decode_constrained_packed_array_type (value_type (arr));
2265 if (type == NULL)
2266 {
2267 error (_("can't unpack array"));
2268 return NULL;
2269 }
2270
2271 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2272 && ada_is_modular_type (value_type (arr)))
2273 {
2274 /* This is a (right-justified) modular type representing a packed
2275 array with no wrapper. In order to interpret the value through
2276 the (left-justified) packed array type we just built, we must
2277 first left-justify it. */
2278 int bit_size, bit_pos;
2279 ULONGEST mod;
2280
2281 mod = ada_modulus (value_type (arr)) - 1;
2282 bit_size = 0;
2283 while (mod > 0)
2284 {
2285 bit_size += 1;
2286 mod >>= 1;
2287 }
2288 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2289 arr = ada_value_primitive_packed_val (arr, NULL,
2290 bit_pos / HOST_CHAR_BIT,
2291 bit_pos % HOST_CHAR_BIT,
2292 bit_size,
2293 type);
2294 }
2295
2296 return coerce_unspec_val_to_type (arr, type);
2297 }
2298
2299
2300 /* The value of the element of packed array ARR at the ARITY indices
2301 given in IND. ARR must be a simple array. */
2302
2303 static struct value *
2304 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2305 {
2306 int i;
2307 int bits, elt_off, bit_off;
2308 long elt_total_bit_offset;
2309 struct type *elt_type;
2310 struct value *v;
2311
2312 bits = 0;
2313 elt_total_bit_offset = 0;
2314 elt_type = ada_check_typedef (value_type (arr));
2315 for (i = 0; i < arity; i += 1)
2316 {
2317 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2318 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2319 error
2320 (_("attempt to do packed indexing of "
2321 "something other than a packed array"));
2322 else
2323 {
2324 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2325 LONGEST lowerbound, upperbound;
2326 LONGEST idx;
2327
2328 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2329 {
2330 lim_warning (_("don't know bounds of array"));
2331 lowerbound = upperbound = 0;
2332 }
2333
2334 idx = pos_atr (ind[i]);
2335 if (idx < lowerbound || idx > upperbound)
2336 lim_warning (_("packed array index %ld out of bounds"),
2337 (long) idx);
2338 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2339 elt_total_bit_offset += (idx - lowerbound) * bits;
2340 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2341 }
2342 }
2343 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2344 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2345
2346 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2347 bits, elt_type);
2348 return v;
2349 }
2350
2351 /* Non-zero iff TYPE includes negative integer values. */
2352
2353 static int
2354 has_negatives (struct type *type)
2355 {
2356 switch (TYPE_CODE (type))
2357 {
2358 default:
2359 return 0;
2360 case TYPE_CODE_INT:
2361 return !TYPE_UNSIGNED (type);
2362 case TYPE_CODE_RANGE:
2363 return TYPE_LOW_BOUND (type) < 0;
2364 }
2365 }
2366
2367
2368 /* Create a new value of type TYPE from the contents of OBJ starting
2369 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2370 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2371 assigning through the result will set the field fetched from.
2372 VALADDR is ignored unless OBJ is NULL, in which case,
2373 VALADDR+OFFSET must address the start of storage containing the
2374 packed value. The value returned in this case is never an lval.
2375 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2376
2377 struct value *
2378 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2379 long offset, int bit_offset, int bit_size,
2380 struct type *type)
2381 {
2382 struct value *v;
2383 int src, /* Index into the source area */
2384 targ, /* Index into the target area */
2385 srcBitsLeft, /* Number of source bits left to move */
2386 nsrc, ntarg, /* Number of source and target bytes */
2387 unusedLS, /* Number of bits in next significant
2388 byte of source that are unused */
2389 accumSize; /* Number of meaningful bits in accum */
2390 unsigned char *bytes; /* First byte containing data to unpack */
2391 unsigned char *unpacked;
2392 unsigned long accum; /* Staging area for bits being transferred */
2393 unsigned char sign;
2394 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2395 /* Transmit bytes from least to most significant; delta is the direction
2396 the indices move. */
2397 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2398
2399 type = ada_check_typedef (type);
2400
2401 if (obj == NULL)
2402 {
2403 v = allocate_value (type);
2404 bytes = (unsigned char *) (valaddr + offset);
2405 }
2406 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2407 {
2408 v = value_at (type, value_address (obj));
2409 bytes = (unsigned char *) alloca (len);
2410 read_memory (value_address (v) + offset, bytes, len);
2411 }
2412 else
2413 {
2414 v = allocate_value (type);
2415 bytes = (unsigned char *) value_contents (obj) + offset;
2416 }
2417
2418 if (obj != NULL)
2419 {
2420 long new_offset = offset;
2421
2422 set_value_component_location (v, obj);
2423 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2424 set_value_bitsize (v, bit_size);
2425 if (value_bitpos (v) >= HOST_CHAR_BIT)
2426 {
2427 ++new_offset;
2428 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2429 }
2430 set_value_offset (v, new_offset);
2431
2432 /* Also set the parent value. This is needed when trying to
2433 assign a new value (in inferior memory). */
2434 set_value_parent (v, obj);
2435 }
2436 else
2437 set_value_bitsize (v, bit_size);
2438 unpacked = (unsigned char *) value_contents (v);
2439
2440 srcBitsLeft = bit_size;
2441 nsrc = len;
2442 ntarg = TYPE_LENGTH (type);
2443 sign = 0;
2444 if (bit_size == 0)
2445 {
2446 memset (unpacked, 0, TYPE_LENGTH (type));
2447 return v;
2448 }
2449 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2450 {
2451 src = len - 1;
2452 if (has_negatives (type)
2453 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2454 sign = ~0;
2455
2456 unusedLS =
2457 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2458 % HOST_CHAR_BIT;
2459
2460 switch (TYPE_CODE (type))
2461 {
2462 case TYPE_CODE_ARRAY:
2463 case TYPE_CODE_UNION:
2464 case TYPE_CODE_STRUCT:
2465 /* Non-scalar values must be aligned at a byte boundary... */
2466 accumSize =
2467 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2468 /* ... And are placed at the beginning (most-significant) bytes
2469 of the target. */
2470 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2471 ntarg = targ + 1;
2472 break;
2473 default:
2474 accumSize = 0;
2475 targ = TYPE_LENGTH (type) - 1;
2476 break;
2477 }
2478 }
2479 else
2480 {
2481 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2482
2483 src = targ = 0;
2484 unusedLS = bit_offset;
2485 accumSize = 0;
2486
2487 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2488 sign = ~0;
2489 }
2490
2491 accum = 0;
2492 while (nsrc > 0)
2493 {
2494 /* Mask for removing bits of the next source byte that are not
2495 part of the value. */
2496 unsigned int unusedMSMask =
2497 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2498 1;
2499 /* Sign-extend bits for this byte. */
2500 unsigned int signMask = sign & ~unusedMSMask;
2501
2502 accum |=
2503 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2504 accumSize += HOST_CHAR_BIT - unusedLS;
2505 if (accumSize >= HOST_CHAR_BIT)
2506 {
2507 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2508 accumSize -= HOST_CHAR_BIT;
2509 accum >>= HOST_CHAR_BIT;
2510 ntarg -= 1;
2511 targ += delta;
2512 }
2513 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2514 unusedLS = 0;
2515 nsrc -= 1;
2516 src += delta;
2517 }
2518 while (ntarg > 0)
2519 {
2520 accum |= sign << accumSize;
2521 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2522 accumSize -= HOST_CHAR_BIT;
2523 accum >>= HOST_CHAR_BIT;
2524 ntarg -= 1;
2525 targ += delta;
2526 }
2527
2528 return v;
2529 }
2530
2531 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2532 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2533 not overlap. */
2534 static void
2535 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2536 int src_offset, int n, int bits_big_endian_p)
2537 {
2538 unsigned int accum, mask;
2539 int accum_bits, chunk_size;
2540
2541 target += targ_offset / HOST_CHAR_BIT;
2542 targ_offset %= HOST_CHAR_BIT;
2543 source += src_offset / HOST_CHAR_BIT;
2544 src_offset %= HOST_CHAR_BIT;
2545 if (bits_big_endian_p)
2546 {
2547 accum = (unsigned char) *source;
2548 source += 1;
2549 accum_bits = HOST_CHAR_BIT - src_offset;
2550
2551 while (n > 0)
2552 {
2553 int unused_right;
2554
2555 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2556 accum_bits += HOST_CHAR_BIT;
2557 source += 1;
2558 chunk_size = HOST_CHAR_BIT - targ_offset;
2559 if (chunk_size > n)
2560 chunk_size = n;
2561 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2562 mask = ((1 << chunk_size) - 1) << unused_right;
2563 *target =
2564 (*target & ~mask)
2565 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2566 n -= chunk_size;
2567 accum_bits -= chunk_size;
2568 target += 1;
2569 targ_offset = 0;
2570 }
2571 }
2572 else
2573 {
2574 accum = (unsigned char) *source >> src_offset;
2575 source += 1;
2576 accum_bits = HOST_CHAR_BIT - src_offset;
2577
2578 while (n > 0)
2579 {
2580 accum = accum + ((unsigned char) *source << accum_bits);
2581 accum_bits += HOST_CHAR_BIT;
2582 source += 1;
2583 chunk_size = HOST_CHAR_BIT - targ_offset;
2584 if (chunk_size > n)
2585 chunk_size = n;
2586 mask = ((1 << chunk_size) - 1) << targ_offset;
2587 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2588 n -= chunk_size;
2589 accum_bits -= chunk_size;
2590 accum >>= chunk_size;
2591 target += 1;
2592 targ_offset = 0;
2593 }
2594 }
2595 }
2596
2597 /* Store the contents of FROMVAL into the location of TOVAL.
2598 Return a new value with the location of TOVAL and contents of
2599 FROMVAL. Handles assignment into packed fields that have
2600 floating-point or non-scalar types. */
2601
2602 static struct value *
2603 ada_value_assign (struct value *toval, struct value *fromval)
2604 {
2605 struct type *type = value_type (toval);
2606 int bits = value_bitsize (toval);
2607
2608 toval = ada_coerce_ref (toval);
2609 fromval = ada_coerce_ref (fromval);
2610
2611 if (ada_is_direct_array_type (value_type (toval)))
2612 toval = ada_coerce_to_simple_array (toval);
2613 if (ada_is_direct_array_type (value_type (fromval)))
2614 fromval = ada_coerce_to_simple_array (fromval);
2615
2616 if (!deprecated_value_modifiable (toval))
2617 error (_("Left operand of assignment is not a modifiable lvalue."));
2618
2619 if (VALUE_LVAL (toval) == lval_memory
2620 && bits > 0
2621 && (TYPE_CODE (type) == TYPE_CODE_FLT
2622 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2623 {
2624 int len = (value_bitpos (toval)
2625 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2626 int from_size;
2627 gdb_byte *buffer = alloca (len);
2628 struct value *val;
2629 CORE_ADDR to_addr = value_address (toval);
2630
2631 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2632 fromval = value_cast (type, fromval);
2633
2634 read_memory (to_addr, buffer, len);
2635 from_size = value_bitsize (fromval);
2636 if (from_size == 0)
2637 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2638 if (gdbarch_bits_big_endian (get_type_arch (type)))
2639 move_bits (buffer, value_bitpos (toval),
2640 value_contents (fromval), from_size - bits, bits, 1);
2641 else
2642 move_bits (buffer, value_bitpos (toval),
2643 value_contents (fromval), 0, bits, 0);
2644 write_memory_with_notification (to_addr, buffer, len);
2645
2646 val = value_copy (toval);
2647 memcpy (value_contents_raw (val), value_contents (fromval),
2648 TYPE_LENGTH (type));
2649 deprecated_set_value_type (val, type);
2650
2651 return val;
2652 }
2653
2654 return value_assign (toval, fromval);
2655 }
2656
2657
2658 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2659 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2660 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2661 * COMPONENT, and not the inferior's memory. The current contents
2662 * of COMPONENT are ignored. */
2663 static void
2664 value_assign_to_component (struct value *container, struct value *component,
2665 struct value *val)
2666 {
2667 LONGEST offset_in_container =
2668 (LONGEST) (value_address (component) - value_address (container));
2669 int bit_offset_in_container =
2670 value_bitpos (component) - value_bitpos (container);
2671 int bits;
2672
2673 val = value_cast (value_type (component), val);
2674
2675 if (value_bitsize (component) == 0)
2676 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2677 else
2678 bits = value_bitsize (component);
2679
2680 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2681 move_bits (value_contents_writeable (container) + offset_in_container,
2682 value_bitpos (container) + bit_offset_in_container,
2683 value_contents (val),
2684 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2685 bits, 1);
2686 else
2687 move_bits (value_contents_writeable (container) + offset_in_container,
2688 value_bitpos (container) + bit_offset_in_container,
2689 value_contents (val), 0, bits, 0);
2690 }
2691
2692 /* The value of the element of array ARR at the ARITY indices given in IND.
2693 ARR may be either a simple array, GNAT array descriptor, or pointer
2694 thereto. */
2695
2696 struct value *
2697 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2698 {
2699 int k;
2700 struct value *elt;
2701 struct type *elt_type;
2702
2703 elt = ada_coerce_to_simple_array (arr);
2704
2705 elt_type = ada_check_typedef (value_type (elt));
2706 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2707 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2708 return value_subscript_packed (elt, arity, ind);
2709
2710 for (k = 0; k < arity; k += 1)
2711 {
2712 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2713 error (_("too many subscripts (%d expected)"), k);
2714 elt = value_subscript (elt, pos_atr (ind[k]));
2715 }
2716 return elt;
2717 }
2718
2719 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2720 value of the element of *ARR at the ARITY indices given in
2721 IND. Does not read the entire array into memory. */
2722
2723 static struct value *
2724 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2725 struct value **ind)
2726 {
2727 int k;
2728
2729 for (k = 0; k < arity; k += 1)
2730 {
2731 LONGEST lwb, upb;
2732
2733 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2734 error (_("too many subscripts (%d expected)"), k);
2735 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2736 value_copy (arr));
2737 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2738 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2739 type = TYPE_TARGET_TYPE (type);
2740 }
2741
2742 return value_ind (arr);
2743 }
2744
2745 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2746 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2747 elements starting at index LOW. The lower bound of this array is LOW, as
2748 per Ada rules. */
2749 static struct value *
2750 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2751 int low, int high)
2752 {
2753 struct type *type0 = ada_check_typedef (type);
2754 CORE_ADDR base = value_as_address (array_ptr)
2755 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2756 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2757 struct type *index_type =
2758 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2759 low, high);
2760 struct type *slice_type =
2761 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2762
2763 return value_at_lazy (slice_type, base);
2764 }
2765
2766
2767 static struct value *
2768 ada_value_slice (struct value *array, int low, int high)
2769 {
2770 struct type *type = ada_check_typedef (value_type (array));
2771 struct type *index_type =
2772 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2773 struct type *slice_type =
2774 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2775
2776 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2777 }
2778
2779 /* If type is a record type in the form of a standard GNAT array
2780 descriptor, returns the number of dimensions for type. If arr is a
2781 simple array, returns the number of "array of"s that prefix its
2782 type designation. Otherwise, returns 0. */
2783
2784 int
2785 ada_array_arity (struct type *type)
2786 {
2787 int arity;
2788
2789 if (type == NULL)
2790 return 0;
2791
2792 type = desc_base_type (type);
2793
2794 arity = 0;
2795 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2796 return desc_arity (desc_bounds_type (type));
2797 else
2798 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2799 {
2800 arity += 1;
2801 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2802 }
2803
2804 return arity;
2805 }
2806
2807 /* If TYPE is a record type in the form of a standard GNAT array
2808 descriptor or a simple array type, returns the element type for
2809 TYPE after indexing by NINDICES indices, or by all indices if
2810 NINDICES is -1. Otherwise, returns NULL. */
2811
2812 struct type *
2813 ada_array_element_type (struct type *type, int nindices)
2814 {
2815 type = desc_base_type (type);
2816
2817 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2818 {
2819 int k;
2820 struct type *p_array_type;
2821
2822 p_array_type = desc_data_target_type (type);
2823
2824 k = ada_array_arity (type);
2825 if (k == 0)
2826 return NULL;
2827
2828 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2829 if (nindices >= 0 && k > nindices)
2830 k = nindices;
2831 while (k > 0 && p_array_type != NULL)
2832 {
2833 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2834 k -= 1;
2835 }
2836 return p_array_type;
2837 }
2838 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2839 {
2840 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2841 {
2842 type = TYPE_TARGET_TYPE (type);
2843 nindices -= 1;
2844 }
2845 return type;
2846 }
2847
2848 return NULL;
2849 }
2850
2851 /* The type of nth index in arrays of given type (n numbering from 1).
2852 Does not examine memory. Throws an error if N is invalid or TYPE
2853 is not an array type. NAME is the name of the Ada attribute being
2854 evaluated ('range, 'first, 'last, or 'length); it is used in building
2855 the error message. */
2856
2857 static struct type *
2858 ada_index_type (struct type *type, int n, const char *name)
2859 {
2860 struct type *result_type;
2861
2862 type = desc_base_type (type);
2863
2864 if (n < 0 || n > ada_array_arity (type))
2865 error (_("invalid dimension number to '%s"), name);
2866
2867 if (ada_is_simple_array_type (type))
2868 {
2869 int i;
2870
2871 for (i = 1; i < n; i += 1)
2872 type = TYPE_TARGET_TYPE (type);
2873 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2874 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2875 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2876 perhaps stabsread.c would make more sense. */
2877 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2878 result_type = NULL;
2879 }
2880 else
2881 {
2882 result_type = desc_index_type (desc_bounds_type (type), n);
2883 if (result_type == NULL)
2884 error (_("attempt to take bound of something that is not an array"));
2885 }
2886
2887 return result_type;
2888 }
2889
2890 /* Given that arr is an array type, returns the lower bound of the
2891 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2892 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2893 array-descriptor type. It works for other arrays with bounds supplied
2894 by run-time quantities other than discriminants. */
2895
2896 static LONGEST
2897 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2898 {
2899 struct type *type, *index_type_desc, *index_type;
2900 int i;
2901
2902 gdb_assert (which == 0 || which == 1);
2903
2904 if (ada_is_constrained_packed_array_type (arr_type))
2905 arr_type = decode_constrained_packed_array_type (arr_type);
2906
2907 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2908 return (LONGEST) - which;
2909
2910 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2911 type = TYPE_TARGET_TYPE (arr_type);
2912 else
2913 type = arr_type;
2914
2915 index_type_desc = ada_find_parallel_type (type, "___XA");
2916 ada_fixup_array_indexes_type (index_type_desc);
2917 if (index_type_desc != NULL)
2918 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2919 NULL);
2920 else
2921 {
2922 struct type *elt_type = check_typedef (type);
2923
2924 for (i = 1; i < n; i++)
2925 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2926
2927 index_type = TYPE_INDEX_TYPE (elt_type);
2928 }
2929
2930 return
2931 (LONGEST) (which == 0
2932 ? ada_discrete_type_low_bound (index_type)
2933 : ada_discrete_type_high_bound (index_type));
2934 }
2935
2936 /* Given that arr is an array value, returns the lower bound of the
2937 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2938 WHICH is 1. This routine will also work for arrays with bounds
2939 supplied by run-time quantities other than discriminants. */
2940
2941 static LONGEST
2942 ada_array_bound (struct value *arr, int n, int which)
2943 {
2944 struct type *arr_type = value_type (arr);
2945
2946 if (ada_is_constrained_packed_array_type (arr_type))
2947 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2948 else if (ada_is_simple_array_type (arr_type))
2949 return ada_array_bound_from_type (arr_type, n, which);
2950 else
2951 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2952 }
2953
2954 /* Given that arr is an array value, returns the length of the
2955 nth index. This routine will also work for arrays with bounds
2956 supplied by run-time quantities other than discriminants.
2957 Does not work for arrays indexed by enumeration types with representation
2958 clauses at the moment. */
2959
2960 static LONGEST
2961 ada_array_length (struct value *arr, int n)
2962 {
2963 struct type *arr_type = ada_check_typedef (value_type (arr));
2964
2965 if (ada_is_constrained_packed_array_type (arr_type))
2966 return ada_array_length (decode_constrained_packed_array (arr), n);
2967
2968 if (ada_is_simple_array_type (arr_type))
2969 return (ada_array_bound_from_type (arr_type, n, 1)
2970 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2971 else
2972 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2973 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2974 }
2975
2976 /* An empty array whose type is that of ARR_TYPE (an array type),
2977 with bounds LOW to LOW-1. */
2978
2979 static struct value *
2980 empty_array (struct type *arr_type, int low)
2981 {
2982 struct type *arr_type0 = ada_check_typedef (arr_type);
2983 struct type *index_type =
2984 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2985 low, low - 1);
2986 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2987
2988 return allocate_value (create_array_type (NULL, elt_type, index_type));
2989 }
2990 \f
2991
2992 /* Name resolution */
2993
2994 /* The "decoded" name for the user-definable Ada operator corresponding
2995 to OP. */
2996
2997 static const char *
2998 ada_decoded_op_name (enum exp_opcode op)
2999 {
3000 int i;
3001
3002 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3003 {
3004 if (ada_opname_table[i].op == op)
3005 return ada_opname_table[i].decoded;
3006 }
3007 error (_("Could not find operator name for opcode"));
3008 }
3009
3010
3011 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3012 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3013 undefined namespace) and converts operators that are
3014 user-defined into appropriate function calls. If CONTEXT_TYPE is
3015 non-null, it provides a preferred result type [at the moment, only
3016 type void has any effect---causing procedures to be preferred over
3017 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3018 return type is preferred. May change (expand) *EXP. */
3019
3020 static void
3021 resolve (struct expression **expp, int void_context_p)
3022 {
3023 struct type *context_type = NULL;
3024 int pc = 0;
3025
3026 if (void_context_p)
3027 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3028
3029 resolve_subexp (expp, &pc, 1, context_type);
3030 }
3031
3032 /* Resolve the operator of the subexpression beginning at
3033 position *POS of *EXPP. "Resolving" consists of replacing
3034 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3035 with their resolutions, replacing built-in operators with
3036 function calls to user-defined operators, where appropriate, and,
3037 when DEPROCEDURE_P is non-zero, converting function-valued variables
3038 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3039 are as in ada_resolve, above. */
3040
3041 static struct value *
3042 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3043 struct type *context_type)
3044 {
3045 int pc = *pos;
3046 int i;
3047 struct expression *exp; /* Convenience: == *expp. */
3048 enum exp_opcode op = (*expp)->elts[pc].opcode;
3049 struct value **argvec; /* Vector of operand types (alloca'ed). */
3050 int nargs; /* Number of operands. */
3051 int oplen;
3052
3053 argvec = NULL;
3054 nargs = 0;
3055 exp = *expp;
3056
3057 /* Pass one: resolve operands, saving their types and updating *pos,
3058 if needed. */
3059 switch (op)
3060 {
3061 case OP_FUNCALL:
3062 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3063 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3064 *pos += 7;
3065 else
3066 {
3067 *pos += 3;
3068 resolve_subexp (expp, pos, 0, NULL);
3069 }
3070 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3071 break;
3072
3073 case UNOP_ADDR:
3074 *pos += 1;
3075 resolve_subexp (expp, pos, 0, NULL);
3076 break;
3077
3078 case UNOP_QUAL:
3079 *pos += 3;
3080 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3081 break;
3082
3083 case OP_ATR_MODULUS:
3084 case OP_ATR_SIZE:
3085 case OP_ATR_TAG:
3086 case OP_ATR_FIRST:
3087 case OP_ATR_LAST:
3088 case OP_ATR_LENGTH:
3089 case OP_ATR_POS:
3090 case OP_ATR_VAL:
3091 case OP_ATR_MIN:
3092 case OP_ATR_MAX:
3093 case TERNOP_IN_RANGE:
3094 case BINOP_IN_BOUNDS:
3095 case UNOP_IN_RANGE:
3096 case OP_AGGREGATE:
3097 case OP_OTHERS:
3098 case OP_CHOICES:
3099 case OP_POSITIONAL:
3100 case OP_DISCRETE_RANGE:
3101 case OP_NAME:
3102 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3103 *pos += oplen;
3104 break;
3105
3106 case BINOP_ASSIGN:
3107 {
3108 struct value *arg1;
3109
3110 *pos += 1;
3111 arg1 = resolve_subexp (expp, pos, 0, NULL);
3112 if (arg1 == NULL)
3113 resolve_subexp (expp, pos, 1, NULL);
3114 else
3115 resolve_subexp (expp, pos, 1, value_type (arg1));
3116 break;
3117 }
3118
3119 case UNOP_CAST:
3120 *pos += 3;
3121 nargs = 1;
3122 break;
3123
3124 case BINOP_ADD:
3125 case BINOP_SUB:
3126 case BINOP_MUL:
3127 case BINOP_DIV:
3128 case BINOP_REM:
3129 case BINOP_MOD:
3130 case BINOP_EXP:
3131 case BINOP_CONCAT:
3132 case BINOP_LOGICAL_AND:
3133 case BINOP_LOGICAL_OR:
3134 case BINOP_BITWISE_AND:
3135 case BINOP_BITWISE_IOR:
3136 case BINOP_BITWISE_XOR:
3137
3138 case BINOP_EQUAL:
3139 case BINOP_NOTEQUAL:
3140 case BINOP_LESS:
3141 case BINOP_GTR:
3142 case BINOP_LEQ:
3143 case BINOP_GEQ:
3144
3145 case BINOP_REPEAT:
3146 case BINOP_SUBSCRIPT:
3147 case BINOP_COMMA:
3148 *pos += 1;
3149 nargs = 2;
3150 break;
3151
3152 case UNOP_NEG:
3153 case UNOP_PLUS:
3154 case UNOP_LOGICAL_NOT:
3155 case UNOP_ABS:
3156 case UNOP_IND:
3157 *pos += 1;
3158 nargs = 1;
3159 break;
3160
3161 case OP_LONG:
3162 case OP_DOUBLE:
3163 case OP_VAR_VALUE:
3164 *pos += 4;
3165 break;
3166
3167 case OP_TYPE:
3168 case OP_BOOL:
3169 case OP_LAST:
3170 case OP_INTERNALVAR:
3171 *pos += 3;
3172 break;
3173
3174 case UNOP_MEMVAL:
3175 *pos += 3;
3176 nargs = 1;
3177 break;
3178
3179 case OP_REGISTER:
3180 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3181 break;
3182
3183 case STRUCTOP_STRUCT:
3184 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3185 nargs = 1;
3186 break;
3187
3188 case TERNOP_SLICE:
3189 *pos += 1;
3190 nargs = 3;
3191 break;
3192
3193 case OP_STRING:
3194 break;
3195
3196 default:
3197 error (_("Unexpected operator during name resolution"));
3198 }
3199
3200 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3201 for (i = 0; i < nargs; i += 1)
3202 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3203 argvec[i] = NULL;
3204 exp = *expp;
3205
3206 /* Pass two: perform any resolution on principal operator. */
3207 switch (op)
3208 {
3209 default:
3210 break;
3211
3212 case OP_VAR_VALUE:
3213 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3214 {
3215 struct ada_symbol_info *candidates;
3216 int n_candidates;
3217
3218 n_candidates =
3219 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3220 (exp->elts[pc + 2].symbol),
3221 exp->elts[pc + 1].block, VAR_DOMAIN,
3222 &candidates);
3223
3224 if (n_candidates > 1)
3225 {
3226 /* Types tend to get re-introduced locally, so if there
3227 are any local symbols that are not types, first filter
3228 out all types. */
3229 int j;
3230 for (j = 0; j < n_candidates; j += 1)
3231 switch (SYMBOL_CLASS (candidates[j].sym))
3232 {
3233 case LOC_REGISTER:
3234 case LOC_ARG:
3235 case LOC_REF_ARG:
3236 case LOC_REGPARM_ADDR:
3237 case LOC_LOCAL:
3238 case LOC_COMPUTED:
3239 goto FoundNonType;
3240 default:
3241 break;
3242 }
3243 FoundNonType:
3244 if (j < n_candidates)
3245 {
3246 j = 0;
3247 while (j < n_candidates)
3248 {
3249 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3250 {
3251 candidates[j] = candidates[n_candidates - 1];
3252 n_candidates -= 1;
3253 }
3254 else
3255 j += 1;
3256 }
3257 }
3258 }
3259
3260 if (n_candidates == 0)
3261 error (_("No definition found for %s"),
3262 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3263 else if (n_candidates == 1)
3264 i = 0;
3265 else if (deprocedure_p
3266 && !is_nonfunction (candidates, n_candidates))
3267 {
3268 i = ada_resolve_function
3269 (candidates, n_candidates, NULL, 0,
3270 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3271 context_type);
3272 if (i < 0)
3273 error (_("Could not find a match for %s"),
3274 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3275 }
3276 else
3277 {
3278 printf_filtered (_("Multiple matches for %s\n"),
3279 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3280 user_select_syms (candidates, n_candidates, 1);
3281 i = 0;
3282 }
3283
3284 exp->elts[pc + 1].block = candidates[i].block;
3285 exp->elts[pc + 2].symbol = candidates[i].sym;
3286 if (innermost_block == NULL
3287 || contained_in (candidates[i].block, innermost_block))
3288 innermost_block = candidates[i].block;
3289 }
3290
3291 if (deprocedure_p
3292 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3293 == TYPE_CODE_FUNC))
3294 {
3295 replace_operator_with_call (expp, pc, 0, 0,
3296 exp->elts[pc + 2].symbol,
3297 exp->elts[pc + 1].block);
3298 exp = *expp;
3299 }
3300 break;
3301
3302 case OP_FUNCALL:
3303 {
3304 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3305 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3306 {
3307 struct ada_symbol_info *candidates;
3308 int n_candidates;
3309
3310 n_candidates =
3311 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3312 (exp->elts[pc + 5].symbol),
3313 exp->elts[pc + 4].block, VAR_DOMAIN,
3314 &candidates);
3315 if (n_candidates == 1)
3316 i = 0;
3317 else
3318 {
3319 i = ada_resolve_function
3320 (candidates, n_candidates,
3321 argvec, nargs,
3322 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3323 context_type);
3324 if (i < 0)
3325 error (_("Could not find a match for %s"),
3326 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3327 }
3328
3329 exp->elts[pc + 4].block = candidates[i].block;
3330 exp->elts[pc + 5].symbol = candidates[i].sym;
3331 if (innermost_block == NULL
3332 || contained_in (candidates[i].block, innermost_block))
3333 innermost_block = candidates[i].block;
3334 }
3335 }
3336 break;
3337 case BINOP_ADD:
3338 case BINOP_SUB:
3339 case BINOP_MUL:
3340 case BINOP_DIV:
3341 case BINOP_REM:
3342 case BINOP_MOD:
3343 case BINOP_CONCAT:
3344 case BINOP_BITWISE_AND:
3345 case BINOP_BITWISE_IOR:
3346 case BINOP_BITWISE_XOR:
3347 case BINOP_EQUAL:
3348 case BINOP_NOTEQUAL:
3349 case BINOP_LESS:
3350 case BINOP_GTR:
3351 case BINOP_LEQ:
3352 case BINOP_GEQ:
3353 case BINOP_EXP:
3354 case UNOP_NEG:
3355 case UNOP_PLUS:
3356 case UNOP_LOGICAL_NOT:
3357 case UNOP_ABS:
3358 if (possible_user_operator_p (op, argvec))
3359 {
3360 struct ada_symbol_info *candidates;
3361 int n_candidates;
3362
3363 n_candidates =
3364 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3365 (struct block *) NULL, VAR_DOMAIN,
3366 &candidates);
3367 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3368 ada_decoded_op_name (op), NULL);
3369 if (i < 0)
3370 break;
3371
3372 replace_operator_with_call (expp, pc, nargs, 1,
3373 candidates[i].sym, candidates[i].block);
3374 exp = *expp;
3375 }
3376 break;
3377
3378 case OP_TYPE:
3379 case OP_REGISTER:
3380 return NULL;
3381 }
3382
3383 *pos = pc;
3384 return evaluate_subexp_type (exp, pos);
3385 }
3386
3387 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3388 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3389 a non-pointer. */
3390 /* The term "match" here is rather loose. The match is heuristic and
3391 liberal. */
3392
3393 static int
3394 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3395 {
3396 ftype = ada_check_typedef (ftype);
3397 atype = ada_check_typedef (atype);
3398
3399 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3400 ftype = TYPE_TARGET_TYPE (ftype);
3401 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3402 atype = TYPE_TARGET_TYPE (atype);
3403
3404 switch (TYPE_CODE (ftype))
3405 {
3406 default:
3407 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3408 case TYPE_CODE_PTR:
3409 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3410 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3411 TYPE_TARGET_TYPE (atype), 0);
3412 else
3413 return (may_deref
3414 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3415 case TYPE_CODE_INT:
3416 case TYPE_CODE_ENUM:
3417 case TYPE_CODE_RANGE:
3418 switch (TYPE_CODE (atype))
3419 {
3420 case TYPE_CODE_INT:
3421 case TYPE_CODE_ENUM:
3422 case TYPE_CODE_RANGE:
3423 return 1;
3424 default:
3425 return 0;
3426 }
3427
3428 case TYPE_CODE_ARRAY:
3429 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3430 || ada_is_array_descriptor_type (atype));
3431
3432 case TYPE_CODE_STRUCT:
3433 if (ada_is_array_descriptor_type (ftype))
3434 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3435 || ada_is_array_descriptor_type (atype));
3436 else
3437 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3438 && !ada_is_array_descriptor_type (atype));
3439
3440 case TYPE_CODE_UNION:
3441 case TYPE_CODE_FLT:
3442 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3443 }
3444 }
3445
3446 /* Return non-zero if the formals of FUNC "sufficiently match" the
3447 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3448 may also be an enumeral, in which case it is treated as a 0-
3449 argument function. */
3450
3451 static int
3452 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3453 {
3454 int i;
3455 struct type *func_type = SYMBOL_TYPE (func);
3456
3457 if (SYMBOL_CLASS (func) == LOC_CONST
3458 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3459 return (n_actuals == 0);
3460 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3461 return 0;
3462
3463 if (TYPE_NFIELDS (func_type) != n_actuals)
3464 return 0;
3465
3466 for (i = 0; i < n_actuals; i += 1)
3467 {
3468 if (actuals[i] == NULL)
3469 return 0;
3470 else
3471 {
3472 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3473 i));
3474 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3475
3476 if (!ada_type_match (ftype, atype, 1))
3477 return 0;
3478 }
3479 }
3480 return 1;
3481 }
3482
3483 /* False iff function type FUNC_TYPE definitely does not produce a value
3484 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3485 FUNC_TYPE is not a valid function type with a non-null return type
3486 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3487
3488 static int
3489 return_match (struct type *func_type, struct type *context_type)
3490 {
3491 struct type *return_type;
3492
3493 if (func_type == NULL)
3494 return 1;
3495
3496 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3497 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3498 else
3499 return_type = get_base_type (func_type);
3500 if (return_type == NULL)
3501 return 1;
3502
3503 context_type = get_base_type (context_type);
3504
3505 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3506 return context_type == NULL || return_type == context_type;
3507 else if (context_type == NULL)
3508 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3509 else
3510 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3511 }
3512
3513
3514 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3515 function (if any) that matches the types of the NARGS arguments in
3516 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3517 that returns that type, then eliminate matches that don't. If
3518 CONTEXT_TYPE is void and there is at least one match that does not
3519 return void, eliminate all matches that do.
3520
3521 Asks the user if there is more than one match remaining. Returns -1
3522 if there is no such symbol or none is selected. NAME is used
3523 solely for messages. May re-arrange and modify SYMS in
3524 the process; the index returned is for the modified vector. */
3525
3526 static int
3527 ada_resolve_function (struct ada_symbol_info syms[],
3528 int nsyms, struct value **args, int nargs,
3529 const char *name, struct type *context_type)
3530 {
3531 int fallback;
3532 int k;
3533 int m; /* Number of hits */
3534
3535 m = 0;
3536 /* In the first pass of the loop, we only accept functions matching
3537 context_type. If none are found, we add a second pass of the loop
3538 where every function is accepted. */
3539 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3540 {
3541 for (k = 0; k < nsyms; k += 1)
3542 {
3543 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3544
3545 if (ada_args_match (syms[k].sym, args, nargs)
3546 && (fallback || return_match (type, context_type)))
3547 {
3548 syms[m] = syms[k];
3549 m += 1;
3550 }
3551 }
3552 }
3553
3554 if (m == 0)
3555 return -1;
3556 else if (m > 1)
3557 {
3558 printf_filtered (_("Multiple matches for %s\n"), name);
3559 user_select_syms (syms, m, 1);
3560 return 0;
3561 }
3562 return 0;
3563 }
3564
3565 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3566 in a listing of choices during disambiguation (see sort_choices, below).
3567 The idea is that overloadings of a subprogram name from the
3568 same package should sort in their source order. We settle for ordering
3569 such symbols by their trailing number (__N or $N). */
3570
3571 static int
3572 encoded_ordered_before (const char *N0, const char *N1)
3573 {
3574 if (N1 == NULL)
3575 return 0;
3576 else if (N0 == NULL)
3577 return 1;
3578 else
3579 {
3580 int k0, k1;
3581
3582 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3583 ;
3584 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3585 ;
3586 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3587 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3588 {
3589 int n0, n1;
3590
3591 n0 = k0;
3592 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3593 n0 -= 1;
3594 n1 = k1;
3595 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3596 n1 -= 1;
3597 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3598 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3599 }
3600 return (strcmp (N0, N1) < 0);
3601 }
3602 }
3603
3604 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3605 encoded names. */
3606
3607 static void
3608 sort_choices (struct ada_symbol_info syms[], int nsyms)
3609 {
3610 int i;
3611
3612 for (i = 1; i < nsyms; i += 1)
3613 {
3614 struct ada_symbol_info sym = syms[i];
3615 int j;
3616
3617 for (j = i - 1; j >= 0; j -= 1)
3618 {
3619 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3620 SYMBOL_LINKAGE_NAME (sym.sym)))
3621 break;
3622 syms[j + 1] = syms[j];
3623 }
3624 syms[j + 1] = sym;
3625 }
3626 }
3627
3628 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3629 by asking the user (if necessary), returning the number selected,
3630 and setting the first elements of SYMS items. Error if no symbols
3631 selected. */
3632
3633 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3634 to be re-integrated one of these days. */
3635
3636 int
3637 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3638 {
3639 int i;
3640 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3641 int n_chosen;
3642 int first_choice = (max_results == 1) ? 1 : 2;
3643 const char *select_mode = multiple_symbols_select_mode ();
3644
3645 if (max_results < 1)
3646 error (_("Request to select 0 symbols!"));
3647 if (nsyms <= 1)
3648 return nsyms;
3649
3650 if (select_mode == multiple_symbols_cancel)
3651 error (_("\
3652 canceled because the command is ambiguous\n\
3653 See set/show multiple-symbol."));
3654
3655 /* If select_mode is "all", then return all possible symbols.
3656 Only do that if more than one symbol can be selected, of course.
3657 Otherwise, display the menu as usual. */
3658 if (select_mode == multiple_symbols_all && max_results > 1)
3659 return nsyms;
3660
3661 printf_unfiltered (_("[0] cancel\n"));
3662 if (max_results > 1)
3663 printf_unfiltered (_("[1] all\n"));
3664
3665 sort_choices (syms, nsyms);
3666
3667 for (i = 0; i < nsyms; i += 1)
3668 {
3669 if (syms[i].sym == NULL)
3670 continue;
3671
3672 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3673 {
3674 struct symtab_and_line sal =
3675 find_function_start_sal (syms[i].sym, 1);
3676
3677 if (sal.symtab == NULL)
3678 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3679 i + first_choice,
3680 SYMBOL_PRINT_NAME (syms[i].sym),
3681 sal.line);
3682 else
3683 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3684 SYMBOL_PRINT_NAME (syms[i].sym),
3685 symtab_to_filename_for_display (sal.symtab),
3686 sal.line);
3687 continue;
3688 }
3689 else
3690 {
3691 int is_enumeral =
3692 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3693 && SYMBOL_TYPE (syms[i].sym) != NULL
3694 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3695 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3696
3697 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3698 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3699 i + first_choice,
3700 SYMBOL_PRINT_NAME (syms[i].sym),
3701 symtab_to_filename_for_display (symtab),
3702 SYMBOL_LINE (syms[i].sym));
3703 else if (is_enumeral
3704 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3705 {
3706 printf_unfiltered (("[%d] "), i + first_choice);
3707 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3708 gdb_stdout, -1, 0, &type_print_raw_options);
3709 printf_unfiltered (_("'(%s) (enumeral)\n"),
3710 SYMBOL_PRINT_NAME (syms[i].sym));
3711 }
3712 else if (symtab != NULL)
3713 printf_unfiltered (is_enumeral
3714 ? _("[%d] %s in %s (enumeral)\n")
3715 : _("[%d] %s at %s:?\n"),
3716 i + first_choice,
3717 SYMBOL_PRINT_NAME (syms[i].sym),
3718 symtab_to_filename_for_display (symtab));
3719 else
3720 printf_unfiltered (is_enumeral
3721 ? _("[%d] %s (enumeral)\n")
3722 : _("[%d] %s at ?\n"),
3723 i + first_choice,
3724 SYMBOL_PRINT_NAME (syms[i].sym));
3725 }
3726 }
3727
3728 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3729 "overload-choice");
3730
3731 for (i = 0; i < n_chosen; i += 1)
3732 syms[i] = syms[chosen[i]];
3733
3734 return n_chosen;
3735 }
3736
3737 /* Read and validate a set of numeric choices from the user in the
3738 range 0 .. N_CHOICES-1. Place the results in increasing
3739 order in CHOICES[0 .. N-1], and return N.
3740
3741 The user types choices as a sequence of numbers on one line
3742 separated by blanks, encoding them as follows:
3743
3744 + A choice of 0 means to cancel the selection, throwing an error.
3745 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3746 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3747
3748 The user is not allowed to choose more than MAX_RESULTS values.
3749
3750 ANNOTATION_SUFFIX, if present, is used to annotate the input
3751 prompts (for use with the -f switch). */
3752
3753 int
3754 get_selections (int *choices, int n_choices, int max_results,
3755 int is_all_choice, char *annotation_suffix)
3756 {
3757 char *args;
3758 char *prompt;
3759 int n_chosen;
3760 int first_choice = is_all_choice ? 2 : 1;
3761
3762 prompt = getenv ("PS2");
3763 if (prompt == NULL)
3764 prompt = "> ";
3765
3766 args = command_line_input (prompt, 0, annotation_suffix);
3767
3768 if (args == NULL)
3769 error_no_arg (_("one or more choice numbers"));
3770
3771 n_chosen = 0;
3772
3773 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3774 order, as given in args. Choices are validated. */
3775 while (1)
3776 {
3777 char *args2;
3778 int choice, j;
3779
3780 args = skip_spaces (args);
3781 if (*args == '\0' && n_chosen == 0)
3782 error_no_arg (_("one or more choice numbers"));
3783 else if (*args == '\0')
3784 break;
3785
3786 choice = strtol (args, &args2, 10);
3787 if (args == args2 || choice < 0
3788 || choice > n_choices + first_choice - 1)
3789 error (_("Argument must be choice number"));
3790 args = args2;
3791
3792 if (choice == 0)
3793 error (_("cancelled"));
3794
3795 if (choice < first_choice)
3796 {
3797 n_chosen = n_choices;
3798 for (j = 0; j < n_choices; j += 1)
3799 choices[j] = j;
3800 break;
3801 }
3802 choice -= first_choice;
3803
3804 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3805 {
3806 }
3807
3808 if (j < 0 || choice != choices[j])
3809 {
3810 int k;
3811
3812 for (k = n_chosen - 1; k > j; k -= 1)
3813 choices[k + 1] = choices[k];
3814 choices[j + 1] = choice;
3815 n_chosen += 1;
3816 }
3817 }
3818
3819 if (n_chosen > max_results)
3820 error (_("Select no more than %d of the above"), max_results);
3821
3822 return n_chosen;
3823 }
3824
3825 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3826 on the function identified by SYM and BLOCK, and taking NARGS
3827 arguments. Update *EXPP as needed to hold more space. */
3828
3829 static void
3830 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3831 int oplen, struct symbol *sym,
3832 const struct block *block)
3833 {
3834 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3835 symbol, -oplen for operator being replaced). */
3836 struct expression *newexp = (struct expression *)
3837 xzalloc (sizeof (struct expression)
3838 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3839 struct expression *exp = *expp;
3840
3841 newexp->nelts = exp->nelts + 7 - oplen;
3842 newexp->language_defn = exp->language_defn;
3843 newexp->gdbarch = exp->gdbarch;
3844 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3845 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3846 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3847
3848 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3849 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3850
3851 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3852 newexp->elts[pc + 4].block = block;
3853 newexp->elts[pc + 5].symbol = sym;
3854
3855 *expp = newexp;
3856 xfree (exp);
3857 }
3858
3859 /* Type-class predicates */
3860
3861 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3862 or FLOAT). */
3863
3864 static int
3865 numeric_type_p (struct type *type)
3866 {
3867 if (type == NULL)
3868 return 0;
3869 else
3870 {
3871 switch (TYPE_CODE (type))
3872 {
3873 case TYPE_CODE_INT:
3874 case TYPE_CODE_FLT:
3875 return 1;
3876 case TYPE_CODE_RANGE:
3877 return (type == TYPE_TARGET_TYPE (type)
3878 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3879 default:
3880 return 0;
3881 }
3882 }
3883 }
3884
3885 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3886
3887 static int
3888 integer_type_p (struct type *type)
3889 {
3890 if (type == NULL)
3891 return 0;
3892 else
3893 {
3894 switch (TYPE_CODE (type))
3895 {
3896 case TYPE_CODE_INT:
3897 return 1;
3898 case TYPE_CODE_RANGE:
3899 return (type == TYPE_TARGET_TYPE (type)
3900 || integer_type_p (TYPE_TARGET_TYPE (type)));
3901 default:
3902 return 0;
3903 }
3904 }
3905 }
3906
3907 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3908
3909 static int
3910 scalar_type_p (struct type *type)
3911 {
3912 if (type == NULL)
3913 return 0;
3914 else
3915 {
3916 switch (TYPE_CODE (type))
3917 {
3918 case TYPE_CODE_INT:
3919 case TYPE_CODE_RANGE:
3920 case TYPE_CODE_ENUM:
3921 case TYPE_CODE_FLT:
3922 return 1;
3923 default:
3924 return 0;
3925 }
3926 }
3927 }
3928
3929 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3930
3931 static int
3932 discrete_type_p (struct type *type)
3933 {
3934 if (type == NULL)
3935 return 0;
3936 else
3937 {
3938 switch (TYPE_CODE (type))
3939 {
3940 case TYPE_CODE_INT:
3941 case TYPE_CODE_RANGE:
3942 case TYPE_CODE_ENUM:
3943 case TYPE_CODE_BOOL:
3944 return 1;
3945 default:
3946 return 0;
3947 }
3948 }
3949 }
3950
3951 /* Returns non-zero if OP with operands in the vector ARGS could be
3952 a user-defined function. Errs on the side of pre-defined operators
3953 (i.e., result 0). */
3954
3955 static int
3956 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3957 {
3958 struct type *type0 =
3959 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3960 struct type *type1 =
3961 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3962
3963 if (type0 == NULL)
3964 return 0;
3965
3966 switch (op)
3967 {
3968 default:
3969 return 0;
3970
3971 case BINOP_ADD:
3972 case BINOP_SUB:
3973 case BINOP_MUL:
3974 case BINOP_DIV:
3975 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3976
3977 case BINOP_REM:
3978 case BINOP_MOD:
3979 case BINOP_BITWISE_AND:
3980 case BINOP_BITWISE_IOR:
3981 case BINOP_BITWISE_XOR:
3982 return (!(integer_type_p (type0) && integer_type_p (type1)));
3983
3984 case BINOP_EQUAL:
3985 case BINOP_NOTEQUAL:
3986 case BINOP_LESS:
3987 case BINOP_GTR:
3988 case BINOP_LEQ:
3989 case BINOP_GEQ:
3990 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3991
3992 case BINOP_CONCAT:
3993 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3994
3995 case BINOP_EXP:
3996 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3997
3998 case UNOP_NEG:
3999 case UNOP_PLUS:
4000 case UNOP_LOGICAL_NOT:
4001 case UNOP_ABS:
4002 return (!numeric_type_p (type0));
4003
4004 }
4005 }
4006 \f
4007 /* Renaming */
4008
4009 /* NOTES:
4010
4011 1. In the following, we assume that a renaming type's name may
4012 have an ___XD suffix. It would be nice if this went away at some
4013 point.
4014 2. We handle both the (old) purely type-based representation of
4015 renamings and the (new) variable-based encoding. At some point,
4016 it is devoutly to be hoped that the former goes away
4017 (FIXME: hilfinger-2007-07-09).
4018 3. Subprogram renamings are not implemented, although the XRS
4019 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4020
4021 /* If SYM encodes a renaming,
4022
4023 <renaming> renames <renamed entity>,
4024
4025 sets *LEN to the length of the renamed entity's name,
4026 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4027 the string describing the subcomponent selected from the renamed
4028 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4029 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4030 are undefined). Otherwise, returns a value indicating the category
4031 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4032 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4033 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4034 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4035 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4036 may be NULL, in which case they are not assigned.
4037
4038 [Currently, however, GCC does not generate subprogram renamings.] */
4039
4040 enum ada_renaming_category
4041 ada_parse_renaming (struct symbol *sym,
4042 const char **renamed_entity, int *len,
4043 const char **renaming_expr)
4044 {
4045 enum ada_renaming_category kind;
4046 const char *info;
4047 const char *suffix;
4048
4049 if (sym == NULL)
4050 return ADA_NOT_RENAMING;
4051 switch (SYMBOL_CLASS (sym))
4052 {
4053 default:
4054 return ADA_NOT_RENAMING;
4055 case LOC_TYPEDEF:
4056 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4057 renamed_entity, len, renaming_expr);
4058 case LOC_LOCAL:
4059 case LOC_STATIC:
4060 case LOC_COMPUTED:
4061 case LOC_OPTIMIZED_OUT:
4062 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4063 if (info == NULL)
4064 return ADA_NOT_RENAMING;
4065 switch (info[5])
4066 {
4067 case '_':
4068 kind = ADA_OBJECT_RENAMING;
4069 info += 6;
4070 break;
4071 case 'E':
4072 kind = ADA_EXCEPTION_RENAMING;
4073 info += 7;
4074 break;
4075 case 'P':
4076 kind = ADA_PACKAGE_RENAMING;
4077 info += 7;
4078 break;
4079 case 'S':
4080 kind = ADA_SUBPROGRAM_RENAMING;
4081 info += 7;
4082 break;
4083 default:
4084 return ADA_NOT_RENAMING;
4085 }
4086 }
4087
4088 if (renamed_entity != NULL)
4089 *renamed_entity = info;
4090 suffix = strstr (info, "___XE");
4091 if (suffix == NULL || suffix == info)
4092 return ADA_NOT_RENAMING;
4093 if (len != NULL)
4094 *len = strlen (info) - strlen (suffix);
4095 suffix += 5;
4096 if (renaming_expr != NULL)
4097 *renaming_expr = suffix;
4098 return kind;
4099 }
4100
4101 /* Assuming TYPE encodes a renaming according to the old encoding in
4102 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4103 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4104 ADA_NOT_RENAMING otherwise. */
4105 static enum ada_renaming_category
4106 parse_old_style_renaming (struct type *type,
4107 const char **renamed_entity, int *len,
4108 const char **renaming_expr)
4109 {
4110 enum ada_renaming_category kind;
4111 const char *name;
4112 const char *info;
4113 const char *suffix;
4114
4115 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4116 || TYPE_NFIELDS (type) != 1)
4117 return ADA_NOT_RENAMING;
4118
4119 name = type_name_no_tag (type);
4120 if (name == NULL)
4121 return ADA_NOT_RENAMING;
4122
4123 name = strstr (name, "___XR");
4124 if (name == NULL)
4125 return ADA_NOT_RENAMING;
4126 switch (name[5])
4127 {
4128 case '\0':
4129 case '_':
4130 kind = ADA_OBJECT_RENAMING;
4131 break;
4132 case 'E':
4133 kind = ADA_EXCEPTION_RENAMING;
4134 break;
4135 case 'P':
4136 kind = ADA_PACKAGE_RENAMING;
4137 break;
4138 case 'S':
4139 kind = ADA_SUBPROGRAM_RENAMING;
4140 break;
4141 default:
4142 return ADA_NOT_RENAMING;
4143 }
4144
4145 info = TYPE_FIELD_NAME (type, 0);
4146 if (info == NULL)
4147 return ADA_NOT_RENAMING;
4148 if (renamed_entity != NULL)
4149 *renamed_entity = info;
4150 suffix = strstr (info, "___XE");
4151 if (renaming_expr != NULL)
4152 *renaming_expr = suffix + 5;
4153 if (suffix == NULL || suffix == info)
4154 return ADA_NOT_RENAMING;
4155 if (len != NULL)
4156 *len = suffix - info;
4157 return kind;
4158 }
4159
4160 /* Compute the value of the given RENAMING_SYM, which is expected to
4161 be a symbol encoding a renaming expression. BLOCK is the block
4162 used to evaluate the renaming. */
4163
4164 static struct value *
4165 ada_read_renaming_var_value (struct symbol *renaming_sym,
4166 struct block *block)
4167 {
4168 const char *sym_name;
4169 struct expression *expr;
4170 struct value *value;
4171 struct cleanup *old_chain = NULL;
4172
4173 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4174 expr = parse_exp_1 (&sym_name, 0, block, 0);
4175 old_chain = make_cleanup (free_current_contents, &expr);
4176 value = evaluate_expression (expr);
4177
4178 do_cleanups (old_chain);
4179 return value;
4180 }
4181 \f
4182
4183 /* Evaluation: Function Calls */
4184
4185 /* Return an lvalue containing the value VAL. This is the identity on
4186 lvalues, and otherwise has the side-effect of allocating memory
4187 in the inferior where a copy of the value contents is copied. */
4188
4189 static struct value *
4190 ensure_lval (struct value *val)
4191 {
4192 if (VALUE_LVAL (val) == not_lval
4193 || VALUE_LVAL (val) == lval_internalvar)
4194 {
4195 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4196 const CORE_ADDR addr =
4197 value_as_long (value_allocate_space_in_inferior (len));
4198
4199 set_value_address (val, addr);
4200 VALUE_LVAL (val) = lval_memory;
4201 write_memory (addr, value_contents (val), len);
4202 }
4203
4204 return val;
4205 }
4206
4207 /* Return the value ACTUAL, converted to be an appropriate value for a
4208 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4209 allocating any necessary descriptors (fat pointers), or copies of
4210 values not residing in memory, updating it as needed. */
4211
4212 struct value *
4213 ada_convert_actual (struct value *actual, struct type *formal_type0)
4214 {
4215 struct type *actual_type = ada_check_typedef (value_type (actual));
4216 struct type *formal_type = ada_check_typedef (formal_type0);
4217 struct type *formal_target =
4218 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4219 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4220 struct type *actual_target =
4221 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4222 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4223
4224 if (ada_is_array_descriptor_type (formal_target)
4225 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4226 return make_array_descriptor (formal_type, actual);
4227 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4228 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4229 {
4230 struct value *result;
4231
4232 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4233 && ada_is_array_descriptor_type (actual_target))
4234 result = desc_data (actual);
4235 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4236 {
4237 if (VALUE_LVAL (actual) != lval_memory)
4238 {
4239 struct value *val;
4240
4241 actual_type = ada_check_typedef (value_type (actual));
4242 val = allocate_value (actual_type);
4243 memcpy ((char *) value_contents_raw (val),
4244 (char *) value_contents (actual),
4245 TYPE_LENGTH (actual_type));
4246 actual = ensure_lval (val);
4247 }
4248 result = value_addr (actual);
4249 }
4250 else
4251 return actual;
4252 return value_cast_pointers (formal_type, result, 0);
4253 }
4254 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4255 return ada_value_ind (actual);
4256
4257 return actual;
4258 }
4259
4260 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4261 type TYPE. This is usually an inefficient no-op except on some targets
4262 (such as AVR) where the representation of a pointer and an address
4263 differs. */
4264
4265 static CORE_ADDR
4266 value_pointer (struct value *value, struct type *type)
4267 {
4268 struct gdbarch *gdbarch = get_type_arch (type);
4269 unsigned len = TYPE_LENGTH (type);
4270 gdb_byte *buf = alloca (len);
4271 CORE_ADDR addr;
4272
4273 addr = value_address (value);
4274 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4275 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4276 return addr;
4277 }
4278
4279
4280 /* Push a descriptor of type TYPE for array value ARR on the stack at
4281 *SP, updating *SP to reflect the new descriptor. Return either
4282 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4283 to-descriptor type rather than a descriptor type), a struct value *
4284 representing a pointer to this descriptor. */
4285
4286 static struct value *
4287 make_array_descriptor (struct type *type, struct value *arr)
4288 {
4289 struct type *bounds_type = desc_bounds_type (type);
4290 struct type *desc_type = desc_base_type (type);
4291 struct value *descriptor = allocate_value (desc_type);
4292 struct value *bounds = allocate_value (bounds_type);
4293 int i;
4294
4295 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4296 i > 0; i -= 1)
4297 {
4298 modify_field (value_type (bounds), value_contents_writeable (bounds),
4299 ada_array_bound (arr, i, 0),
4300 desc_bound_bitpos (bounds_type, i, 0),
4301 desc_bound_bitsize (bounds_type, i, 0));
4302 modify_field (value_type (bounds), value_contents_writeable (bounds),
4303 ada_array_bound (arr, i, 1),
4304 desc_bound_bitpos (bounds_type, i, 1),
4305 desc_bound_bitsize (bounds_type, i, 1));
4306 }
4307
4308 bounds = ensure_lval (bounds);
4309
4310 modify_field (value_type (descriptor),
4311 value_contents_writeable (descriptor),
4312 value_pointer (ensure_lval (arr),
4313 TYPE_FIELD_TYPE (desc_type, 0)),
4314 fat_pntr_data_bitpos (desc_type),
4315 fat_pntr_data_bitsize (desc_type));
4316
4317 modify_field (value_type (descriptor),
4318 value_contents_writeable (descriptor),
4319 value_pointer (bounds,
4320 TYPE_FIELD_TYPE (desc_type, 1)),
4321 fat_pntr_bounds_bitpos (desc_type),
4322 fat_pntr_bounds_bitsize (desc_type));
4323
4324 descriptor = ensure_lval (descriptor);
4325
4326 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4327 return value_addr (descriptor);
4328 else
4329 return descriptor;
4330 }
4331 \f
4332 /* Symbol Cache Module */
4333
4334 /* Performance measurements made as of 2010-01-15 indicate that
4335 this cache does bring some noticeable improvements. Depending
4336 on the type of entity being printed, the cache can make it as much
4337 as an order of magnitude faster than without it.
4338
4339 The descriptive type DWARF extension has significantly reduced
4340 the need for this cache, at least when DWARF is being used. However,
4341 even in this case, some expensive name-based symbol searches are still
4342 sometimes necessary - to find an XVZ variable, mostly. */
4343
4344 /* Initialize the contents of SYM_CACHE. */
4345
4346 static void
4347 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4348 {
4349 obstack_init (&sym_cache->cache_space);
4350 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4351 }
4352
4353 /* Free the memory used by SYM_CACHE. */
4354
4355 static void
4356 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4357 {
4358 obstack_free (&sym_cache->cache_space, NULL);
4359 xfree (sym_cache);
4360 }
4361
4362 /* Return the symbol cache associated to the given program space PSPACE.
4363 If not allocated for this PSPACE yet, allocate and initialize one. */
4364
4365 static struct ada_symbol_cache *
4366 ada_get_symbol_cache (struct program_space *pspace)
4367 {
4368 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4369 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4370
4371 if (sym_cache == NULL)
4372 {
4373 sym_cache = XCNEW (struct ada_symbol_cache);
4374 ada_init_symbol_cache (sym_cache);
4375 }
4376
4377 return sym_cache;
4378 }
4379
4380 /* Clear all entries from the symbol cache. */
4381
4382 static void
4383 ada_clear_symbol_cache (void)
4384 {
4385 struct ada_symbol_cache *sym_cache
4386 = ada_get_symbol_cache (current_program_space);
4387
4388 obstack_free (&sym_cache->cache_space, NULL);
4389 ada_init_symbol_cache (sym_cache);
4390 }
4391
4392 /* Search our cache for an entry matching NAME and NAMESPACE.
4393 Return it if found, or NULL otherwise. */
4394
4395 static struct cache_entry **
4396 find_entry (const char *name, domain_enum namespace)
4397 {
4398 struct ada_symbol_cache *sym_cache
4399 = ada_get_symbol_cache (current_program_space);
4400 int h = msymbol_hash (name) % HASH_SIZE;
4401 struct cache_entry **e;
4402
4403 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4404 {
4405 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4406 return e;
4407 }
4408 return NULL;
4409 }
4410
4411 /* Search the symbol cache for an entry matching NAME and NAMESPACE.
4412 Return 1 if found, 0 otherwise.
4413
4414 If an entry was found and SYM is not NULL, set *SYM to the entry's
4415 SYM. Same principle for BLOCK if not NULL. */
4416
4417 static int
4418 lookup_cached_symbol (const char *name, domain_enum namespace,
4419 struct symbol **sym, const struct block **block)
4420 {
4421 struct cache_entry **e = find_entry (name, namespace);
4422
4423 if (e == NULL)
4424 return 0;
4425 if (sym != NULL)
4426 *sym = (*e)->sym;
4427 if (block != NULL)
4428 *block = (*e)->block;
4429 return 1;
4430 }
4431
4432 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4433 in domain NAMESPACE, save this result in our symbol cache. */
4434
4435 static void
4436 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4437 const struct block *block)
4438 {
4439 struct ada_symbol_cache *sym_cache
4440 = ada_get_symbol_cache (current_program_space);
4441 int h;
4442 char *copy;
4443 struct cache_entry *e;
4444
4445 /* If the symbol is a local symbol, then do not cache it, as a search
4446 for that symbol depends on the context. To determine whether
4447 the symbol is local or not, we check the block where we found it
4448 against the global and static blocks of its associated symtab. */
4449 if (sym
4450 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4451 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4452 return;
4453
4454 h = msymbol_hash (name) % HASH_SIZE;
4455 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4456 sizeof (*e));
4457 e->next = sym_cache->root[h];
4458 sym_cache->root[h] = e;
4459 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4460 strcpy (copy, name);
4461 e->sym = sym;
4462 e->namespace = namespace;
4463 e->block = block;
4464 }
4465 \f
4466 /* Symbol Lookup */
4467
4468 /* Return nonzero if wild matching should be used when searching for
4469 all symbols matching LOOKUP_NAME.
4470
4471 LOOKUP_NAME is expected to be a symbol name after transformation
4472 for Ada lookups (see ada_name_for_lookup). */
4473
4474 static int
4475 should_use_wild_match (const char *lookup_name)
4476 {
4477 return (strstr (lookup_name, "__") == NULL);
4478 }
4479
4480 /* Return the result of a standard (literal, C-like) lookup of NAME in
4481 given DOMAIN, visible from lexical block BLOCK. */
4482
4483 static struct symbol *
4484 standard_lookup (const char *name, const struct block *block,
4485 domain_enum domain)
4486 {
4487 /* Initialize it just to avoid a GCC false warning. */
4488 struct symbol *sym = NULL;
4489
4490 if (lookup_cached_symbol (name, domain, &sym, NULL))
4491 return sym;
4492 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4493 cache_symbol (name, domain, sym, block_found);
4494 return sym;
4495 }
4496
4497
4498 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4499 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4500 since they contend in overloading in the same way. */
4501 static int
4502 is_nonfunction (struct ada_symbol_info syms[], int n)
4503 {
4504 int i;
4505
4506 for (i = 0; i < n; i += 1)
4507 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4508 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4509 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4510 return 1;
4511
4512 return 0;
4513 }
4514
4515 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4516 struct types. Otherwise, they may not. */
4517
4518 static int
4519 equiv_types (struct type *type0, struct type *type1)
4520 {
4521 if (type0 == type1)
4522 return 1;
4523 if (type0 == NULL || type1 == NULL
4524 || TYPE_CODE (type0) != TYPE_CODE (type1))
4525 return 0;
4526 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4527 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4528 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4529 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4530 return 1;
4531
4532 return 0;
4533 }
4534
4535 /* True iff SYM0 represents the same entity as SYM1, or one that is
4536 no more defined than that of SYM1. */
4537
4538 static int
4539 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4540 {
4541 if (sym0 == sym1)
4542 return 1;
4543 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4544 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4545 return 0;
4546
4547 switch (SYMBOL_CLASS (sym0))
4548 {
4549 case LOC_UNDEF:
4550 return 1;
4551 case LOC_TYPEDEF:
4552 {
4553 struct type *type0 = SYMBOL_TYPE (sym0);
4554 struct type *type1 = SYMBOL_TYPE (sym1);
4555 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4556 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4557 int len0 = strlen (name0);
4558
4559 return
4560 TYPE_CODE (type0) == TYPE_CODE (type1)
4561 && (equiv_types (type0, type1)
4562 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4563 && strncmp (name1 + len0, "___XV", 5) == 0));
4564 }
4565 case LOC_CONST:
4566 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4567 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4568 default:
4569 return 0;
4570 }
4571 }
4572
4573 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4574 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4575
4576 static void
4577 add_defn_to_vec (struct obstack *obstackp,
4578 struct symbol *sym,
4579 const struct block *block)
4580 {
4581 int i;
4582 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4583
4584 /* Do not try to complete stub types, as the debugger is probably
4585 already scanning all symbols matching a certain name at the
4586 time when this function is called. Trying to replace the stub
4587 type by its associated full type will cause us to restart a scan
4588 which may lead to an infinite recursion. Instead, the client
4589 collecting the matching symbols will end up collecting several
4590 matches, with at least one of them complete. It can then filter
4591 out the stub ones if needed. */
4592
4593 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4594 {
4595 if (lesseq_defined_than (sym, prevDefns[i].sym))
4596 return;
4597 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4598 {
4599 prevDefns[i].sym = sym;
4600 prevDefns[i].block = block;
4601 return;
4602 }
4603 }
4604
4605 {
4606 struct ada_symbol_info info;
4607
4608 info.sym = sym;
4609 info.block = block;
4610 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4611 }
4612 }
4613
4614 /* Number of ada_symbol_info structures currently collected in
4615 current vector in *OBSTACKP. */
4616
4617 static int
4618 num_defns_collected (struct obstack *obstackp)
4619 {
4620 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4621 }
4622
4623 /* Vector of ada_symbol_info structures currently collected in current
4624 vector in *OBSTACKP. If FINISH, close off the vector and return
4625 its final address. */
4626
4627 static struct ada_symbol_info *
4628 defns_collected (struct obstack *obstackp, int finish)
4629 {
4630 if (finish)
4631 return obstack_finish (obstackp);
4632 else
4633 return (struct ada_symbol_info *) obstack_base (obstackp);
4634 }
4635
4636 /* Return a bound minimal symbol matching NAME according to Ada
4637 decoding rules. Returns an invalid symbol if there is no such
4638 minimal symbol. Names prefixed with "standard__" are handled
4639 specially: "standard__" is first stripped off, and only static and
4640 global symbols are searched. */
4641
4642 struct bound_minimal_symbol
4643 ada_lookup_simple_minsym (const char *name)
4644 {
4645 struct bound_minimal_symbol result;
4646 struct objfile *objfile;
4647 struct minimal_symbol *msymbol;
4648 const int wild_match_p = should_use_wild_match (name);
4649
4650 memset (&result, 0, sizeof (result));
4651
4652 /* Special case: If the user specifies a symbol name inside package
4653 Standard, do a non-wild matching of the symbol name without
4654 the "standard__" prefix. This was primarily introduced in order
4655 to allow the user to specifically access the standard exceptions
4656 using, for instance, Standard.Constraint_Error when Constraint_Error
4657 is ambiguous (due to the user defining its own Constraint_Error
4658 entity inside its program). */
4659 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4660 name += sizeof ("standard__") - 1;
4661
4662 ALL_MSYMBOLS (objfile, msymbol)
4663 {
4664 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4665 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4666 {
4667 result.minsym = msymbol;
4668 result.objfile = objfile;
4669 break;
4670 }
4671 }
4672
4673 return result;
4674 }
4675
4676 /* For all subprograms that statically enclose the subprogram of the
4677 selected frame, add symbols matching identifier NAME in DOMAIN
4678 and their blocks to the list of data in OBSTACKP, as for
4679 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4680 with a wildcard prefix. */
4681
4682 static void
4683 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4684 const char *name, domain_enum namespace,
4685 int wild_match_p)
4686 {
4687 }
4688
4689 /* True if TYPE is definitely an artificial type supplied to a symbol
4690 for which no debugging information was given in the symbol file. */
4691
4692 static int
4693 is_nondebugging_type (struct type *type)
4694 {
4695 const char *name = ada_type_name (type);
4696
4697 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4698 }
4699
4700 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4701 that are deemed "identical" for practical purposes.
4702
4703 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4704 types and that their number of enumerals is identical (in other
4705 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4706
4707 static int
4708 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4709 {
4710 int i;
4711
4712 /* The heuristic we use here is fairly conservative. We consider
4713 that 2 enumerate types are identical if they have the same
4714 number of enumerals and that all enumerals have the same
4715 underlying value and name. */
4716
4717 /* All enums in the type should have an identical underlying value. */
4718 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4719 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4720 return 0;
4721
4722 /* All enumerals should also have the same name (modulo any numerical
4723 suffix). */
4724 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4725 {
4726 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4727 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4728 int len_1 = strlen (name_1);
4729 int len_2 = strlen (name_2);
4730
4731 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4732 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4733 if (len_1 != len_2
4734 || strncmp (TYPE_FIELD_NAME (type1, i),
4735 TYPE_FIELD_NAME (type2, i),
4736 len_1) != 0)
4737 return 0;
4738 }
4739
4740 return 1;
4741 }
4742
4743 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4744 that are deemed "identical" for practical purposes. Sometimes,
4745 enumerals are not strictly identical, but their types are so similar
4746 that they can be considered identical.
4747
4748 For instance, consider the following code:
4749
4750 type Color is (Black, Red, Green, Blue, White);
4751 type RGB_Color is new Color range Red .. Blue;
4752
4753 Type RGB_Color is a subrange of an implicit type which is a copy
4754 of type Color. If we call that implicit type RGB_ColorB ("B" is
4755 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4756 As a result, when an expression references any of the enumeral
4757 by name (Eg. "print green"), the expression is technically
4758 ambiguous and the user should be asked to disambiguate. But
4759 doing so would only hinder the user, since it wouldn't matter
4760 what choice he makes, the outcome would always be the same.
4761 So, for practical purposes, we consider them as the same. */
4762
4763 static int
4764 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4765 {
4766 int i;
4767
4768 /* Before performing a thorough comparison check of each type,
4769 we perform a series of inexpensive checks. We expect that these
4770 checks will quickly fail in the vast majority of cases, and thus
4771 help prevent the unnecessary use of a more expensive comparison.
4772 Said comparison also expects us to make some of these checks
4773 (see ada_identical_enum_types_p). */
4774
4775 /* Quick check: All symbols should have an enum type. */
4776 for (i = 0; i < nsyms; i++)
4777 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4778 return 0;
4779
4780 /* Quick check: They should all have the same value. */
4781 for (i = 1; i < nsyms; i++)
4782 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4783 return 0;
4784
4785 /* Quick check: They should all have the same number of enumerals. */
4786 for (i = 1; i < nsyms; i++)
4787 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4788 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4789 return 0;
4790
4791 /* All the sanity checks passed, so we might have a set of
4792 identical enumeration types. Perform a more complete
4793 comparison of the type of each symbol. */
4794 for (i = 1; i < nsyms; i++)
4795 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4796 SYMBOL_TYPE (syms[0].sym)))
4797 return 0;
4798
4799 return 1;
4800 }
4801
4802 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4803 duplicate other symbols in the list (The only case I know of where
4804 this happens is when object files containing stabs-in-ecoff are
4805 linked with files containing ordinary ecoff debugging symbols (or no
4806 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4807 Returns the number of items in the modified list. */
4808
4809 static int
4810 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4811 {
4812 int i, j;
4813
4814 /* We should never be called with less than 2 symbols, as there
4815 cannot be any extra symbol in that case. But it's easy to
4816 handle, since we have nothing to do in that case. */
4817 if (nsyms < 2)
4818 return nsyms;
4819
4820 i = 0;
4821 while (i < nsyms)
4822 {
4823 int remove_p = 0;
4824
4825 /* If two symbols have the same name and one of them is a stub type,
4826 the get rid of the stub. */
4827
4828 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4829 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4830 {
4831 for (j = 0; j < nsyms; j++)
4832 {
4833 if (j != i
4834 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4835 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4836 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4837 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4838 remove_p = 1;
4839 }
4840 }
4841
4842 /* Two symbols with the same name, same class and same address
4843 should be identical. */
4844
4845 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4846 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4847 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4848 {
4849 for (j = 0; j < nsyms; j += 1)
4850 {
4851 if (i != j
4852 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4853 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4854 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4855 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4856 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4857 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4858 remove_p = 1;
4859 }
4860 }
4861
4862 if (remove_p)
4863 {
4864 for (j = i + 1; j < nsyms; j += 1)
4865 syms[j - 1] = syms[j];
4866 nsyms -= 1;
4867 }
4868
4869 i += 1;
4870 }
4871
4872 /* If all the remaining symbols are identical enumerals, then
4873 just keep the first one and discard the rest.
4874
4875 Unlike what we did previously, we do not discard any entry
4876 unless they are ALL identical. This is because the symbol
4877 comparison is not a strict comparison, but rather a practical
4878 comparison. If all symbols are considered identical, then
4879 we can just go ahead and use the first one and discard the rest.
4880 But if we cannot reduce the list to a single element, we have
4881 to ask the user to disambiguate anyways. And if we have to
4882 present a multiple-choice menu, it's less confusing if the list
4883 isn't missing some choices that were identical and yet distinct. */
4884 if (symbols_are_identical_enums (syms, nsyms))
4885 nsyms = 1;
4886
4887 return nsyms;
4888 }
4889
4890 /* Given a type that corresponds to a renaming entity, use the type name
4891 to extract the scope (package name or function name, fully qualified,
4892 and following the GNAT encoding convention) where this renaming has been
4893 defined. The string returned needs to be deallocated after use. */
4894
4895 static char *
4896 xget_renaming_scope (struct type *renaming_type)
4897 {
4898 /* The renaming types adhere to the following convention:
4899 <scope>__<rename>___<XR extension>.
4900 So, to extract the scope, we search for the "___XR" extension,
4901 and then backtrack until we find the first "__". */
4902
4903 const char *name = type_name_no_tag (renaming_type);
4904 char *suffix = strstr (name, "___XR");
4905 char *last;
4906 int scope_len;
4907 char *scope;
4908
4909 /* Now, backtrack a bit until we find the first "__". Start looking
4910 at suffix - 3, as the <rename> part is at least one character long. */
4911
4912 for (last = suffix - 3; last > name; last--)
4913 if (last[0] == '_' && last[1] == '_')
4914 break;
4915
4916 /* Make a copy of scope and return it. */
4917
4918 scope_len = last - name;
4919 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4920
4921 strncpy (scope, name, scope_len);
4922 scope[scope_len] = '\0';
4923
4924 return scope;
4925 }
4926
4927 /* Return nonzero if NAME corresponds to a package name. */
4928
4929 static int
4930 is_package_name (const char *name)
4931 {
4932 /* Here, We take advantage of the fact that no symbols are generated
4933 for packages, while symbols are generated for each function.
4934 So the condition for NAME represent a package becomes equivalent
4935 to NAME not existing in our list of symbols. There is only one
4936 small complication with library-level functions (see below). */
4937
4938 char *fun_name;
4939
4940 /* If it is a function that has not been defined at library level,
4941 then we should be able to look it up in the symbols. */
4942 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4943 return 0;
4944
4945 /* Library-level function names start with "_ada_". See if function
4946 "_ada_" followed by NAME can be found. */
4947
4948 /* Do a quick check that NAME does not contain "__", since library-level
4949 functions names cannot contain "__" in them. */
4950 if (strstr (name, "__") != NULL)
4951 return 0;
4952
4953 fun_name = xstrprintf ("_ada_%s", name);
4954
4955 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4956 }
4957
4958 /* Return nonzero if SYM corresponds to a renaming entity that is
4959 not visible from FUNCTION_NAME. */
4960
4961 static int
4962 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4963 {
4964 char *scope;
4965 struct cleanup *old_chain;
4966
4967 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4968 return 0;
4969
4970 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4971 old_chain = make_cleanup (xfree, scope);
4972
4973 /* If the rename has been defined in a package, then it is visible. */
4974 if (is_package_name (scope))
4975 {
4976 do_cleanups (old_chain);
4977 return 0;
4978 }
4979
4980 /* Check that the rename is in the current function scope by checking
4981 that its name starts with SCOPE. */
4982
4983 /* If the function name starts with "_ada_", it means that it is
4984 a library-level function. Strip this prefix before doing the
4985 comparison, as the encoding for the renaming does not contain
4986 this prefix. */
4987 if (strncmp (function_name, "_ada_", 5) == 0)
4988 function_name += 5;
4989
4990 {
4991 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4992
4993 do_cleanups (old_chain);
4994 return is_invisible;
4995 }
4996 }
4997
4998 /* Remove entries from SYMS that corresponds to a renaming entity that
4999 is not visible from the function associated with CURRENT_BLOCK or
5000 that is superfluous due to the presence of more specific renaming
5001 information. Places surviving symbols in the initial entries of
5002 SYMS and returns the number of surviving symbols.
5003
5004 Rationale:
5005 First, in cases where an object renaming is implemented as a
5006 reference variable, GNAT may produce both the actual reference
5007 variable and the renaming encoding. In this case, we discard the
5008 latter.
5009
5010 Second, GNAT emits a type following a specified encoding for each renaming
5011 entity. Unfortunately, STABS currently does not support the definition
5012 of types that are local to a given lexical block, so all renamings types
5013 are emitted at library level. As a consequence, if an application
5014 contains two renaming entities using the same name, and a user tries to
5015 print the value of one of these entities, the result of the ada symbol
5016 lookup will also contain the wrong renaming type.
5017
5018 This function partially covers for this limitation by attempting to
5019 remove from the SYMS list renaming symbols that should be visible
5020 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5021 method with the current information available. The implementation
5022 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5023
5024 - When the user tries to print a rename in a function while there
5025 is another rename entity defined in a package: Normally, the
5026 rename in the function has precedence over the rename in the
5027 package, so the latter should be removed from the list. This is
5028 currently not the case.
5029
5030 - This function will incorrectly remove valid renames if
5031 the CURRENT_BLOCK corresponds to a function which symbol name
5032 has been changed by an "Export" pragma. As a consequence,
5033 the user will be unable to print such rename entities. */
5034
5035 static int
5036 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5037 int nsyms, const struct block *current_block)
5038 {
5039 struct symbol *current_function;
5040 const char *current_function_name;
5041 int i;
5042 int is_new_style_renaming;
5043
5044 /* If there is both a renaming foo___XR... encoded as a variable and
5045 a simple variable foo in the same block, discard the latter.
5046 First, zero out such symbols, then compress. */
5047 is_new_style_renaming = 0;
5048 for (i = 0; i < nsyms; i += 1)
5049 {
5050 struct symbol *sym = syms[i].sym;
5051 const struct block *block = syms[i].block;
5052 const char *name;
5053 const char *suffix;
5054
5055 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5056 continue;
5057 name = SYMBOL_LINKAGE_NAME (sym);
5058 suffix = strstr (name, "___XR");
5059
5060 if (suffix != NULL)
5061 {
5062 int name_len = suffix - name;
5063 int j;
5064
5065 is_new_style_renaming = 1;
5066 for (j = 0; j < nsyms; j += 1)
5067 if (i != j && syms[j].sym != NULL
5068 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5069 name_len) == 0
5070 && block == syms[j].block)
5071 syms[j].sym = NULL;
5072 }
5073 }
5074 if (is_new_style_renaming)
5075 {
5076 int j, k;
5077
5078 for (j = k = 0; j < nsyms; j += 1)
5079 if (syms[j].sym != NULL)
5080 {
5081 syms[k] = syms[j];
5082 k += 1;
5083 }
5084 return k;
5085 }
5086
5087 /* Extract the function name associated to CURRENT_BLOCK.
5088 Abort if unable to do so. */
5089
5090 if (current_block == NULL)
5091 return nsyms;
5092
5093 current_function = block_linkage_function (current_block);
5094 if (current_function == NULL)
5095 return nsyms;
5096
5097 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5098 if (current_function_name == NULL)
5099 return nsyms;
5100
5101 /* Check each of the symbols, and remove it from the list if it is
5102 a type corresponding to a renaming that is out of the scope of
5103 the current block. */
5104
5105 i = 0;
5106 while (i < nsyms)
5107 {
5108 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5109 == ADA_OBJECT_RENAMING
5110 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5111 {
5112 int j;
5113
5114 for (j = i + 1; j < nsyms; j += 1)
5115 syms[j - 1] = syms[j];
5116 nsyms -= 1;
5117 }
5118 else
5119 i += 1;
5120 }
5121
5122 return nsyms;
5123 }
5124
5125 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5126 whose name and domain match NAME and DOMAIN respectively.
5127 If no match was found, then extend the search to "enclosing"
5128 routines (in other words, if we're inside a nested function,
5129 search the symbols defined inside the enclosing functions).
5130 If WILD_MATCH_P is nonzero, perform the naming matching in
5131 "wild" mode (see function "wild_match" for more info).
5132
5133 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5134
5135 static void
5136 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5137 const struct block *block, domain_enum domain,
5138 int wild_match_p)
5139 {
5140 int block_depth = 0;
5141
5142 while (block != NULL)
5143 {
5144 block_depth += 1;
5145 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5146 wild_match_p);
5147
5148 /* If we found a non-function match, assume that's the one. */
5149 if (is_nonfunction (defns_collected (obstackp, 0),
5150 num_defns_collected (obstackp)))
5151 return;
5152
5153 block = BLOCK_SUPERBLOCK (block);
5154 }
5155
5156 /* If no luck so far, try to find NAME as a local symbol in some lexically
5157 enclosing subprogram. */
5158 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5159 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5160 }
5161
5162 /* An object of this type is used as the user_data argument when
5163 calling the map_matching_symbols method. */
5164
5165 struct match_data
5166 {
5167 struct objfile *objfile;
5168 struct obstack *obstackp;
5169 struct symbol *arg_sym;
5170 int found_sym;
5171 };
5172
5173 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5174 to a list of symbols. DATA0 is a pointer to a struct match_data *
5175 containing the obstack that collects the symbol list, the file that SYM
5176 must come from, a flag indicating whether a non-argument symbol has
5177 been found in the current block, and the last argument symbol
5178 passed in SYM within the current block (if any). When SYM is null,
5179 marking the end of a block, the argument symbol is added if no
5180 other has been found. */
5181
5182 static int
5183 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5184 {
5185 struct match_data *data = (struct match_data *) data0;
5186
5187 if (sym == NULL)
5188 {
5189 if (!data->found_sym && data->arg_sym != NULL)
5190 add_defn_to_vec (data->obstackp,
5191 fixup_symbol_section (data->arg_sym, data->objfile),
5192 block);
5193 data->found_sym = 0;
5194 data->arg_sym = NULL;
5195 }
5196 else
5197 {
5198 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5199 return 0;
5200 else if (SYMBOL_IS_ARGUMENT (sym))
5201 data->arg_sym = sym;
5202 else
5203 {
5204 data->found_sym = 1;
5205 add_defn_to_vec (data->obstackp,
5206 fixup_symbol_section (sym, data->objfile),
5207 block);
5208 }
5209 }
5210 return 0;
5211 }
5212
5213 /* Implements compare_names, but only applying the comparision using
5214 the given CASING. */
5215
5216 static int
5217 compare_names_with_case (const char *string1, const char *string2,
5218 enum case_sensitivity casing)
5219 {
5220 while (*string1 != '\0' && *string2 != '\0')
5221 {
5222 char c1, c2;
5223
5224 if (isspace (*string1) || isspace (*string2))
5225 return strcmp_iw_ordered (string1, string2);
5226
5227 if (casing == case_sensitive_off)
5228 {
5229 c1 = tolower (*string1);
5230 c2 = tolower (*string2);
5231 }
5232 else
5233 {
5234 c1 = *string1;
5235 c2 = *string2;
5236 }
5237 if (c1 != c2)
5238 break;
5239
5240 string1 += 1;
5241 string2 += 1;
5242 }
5243
5244 switch (*string1)
5245 {
5246 case '(':
5247 return strcmp_iw_ordered (string1, string2);
5248 case '_':
5249 if (*string2 == '\0')
5250 {
5251 if (is_name_suffix (string1))
5252 return 0;
5253 else
5254 return 1;
5255 }
5256 /* FALLTHROUGH */
5257 default:
5258 if (*string2 == '(')
5259 return strcmp_iw_ordered (string1, string2);
5260 else
5261 {
5262 if (casing == case_sensitive_off)
5263 return tolower (*string1) - tolower (*string2);
5264 else
5265 return *string1 - *string2;
5266 }
5267 }
5268 }
5269
5270 /* Compare STRING1 to STRING2, with results as for strcmp.
5271 Compatible with strcmp_iw_ordered in that...
5272
5273 strcmp_iw_ordered (STRING1, STRING2) <= 0
5274
5275 ... implies...
5276
5277 compare_names (STRING1, STRING2) <= 0
5278
5279 (they may differ as to what symbols compare equal). */
5280
5281 static int
5282 compare_names (const char *string1, const char *string2)
5283 {
5284 int result;
5285
5286 /* Similar to what strcmp_iw_ordered does, we need to perform
5287 a case-insensitive comparison first, and only resort to
5288 a second, case-sensitive, comparison if the first one was
5289 not sufficient to differentiate the two strings. */
5290
5291 result = compare_names_with_case (string1, string2, case_sensitive_off);
5292 if (result == 0)
5293 result = compare_names_with_case (string1, string2, case_sensitive_on);
5294
5295 return result;
5296 }
5297
5298 /* Add to OBSTACKP all non-local symbols whose name and domain match
5299 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5300 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5301
5302 static void
5303 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5304 domain_enum domain, int global,
5305 int is_wild_match)
5306 {
5307 struct objfile *objfile;
5308 struct match_data data;
5309
5310 memset (&data, 0, sizeof data);
5311 data.obstackp = obstackp;
5312
5313 ALL_OBJFILES (objfile)
5314 {
5315 data.objfile = objfile;
5316
5317 if (is_wild_match)
5318 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5319 aux_add_nonlocal_symbols, &data,
5320 wild_match, NULL);
5321 else
5322 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5323 aux_add_nonlocal_symbols, &data,
5324 full_match, compare_names);
5325 }
5326
5327 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5328 {
5329 ALL_OBJFILES (objfile)
5330 {
5331 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5332 strcpy (name1, "_ada_");
5333 strcpy (name1 + sizeof ("_ada_") - 1, name);
5334 data.objfile = objfile;
5335 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5336 global,
5337 aux_add_nonlocal_symbols,
5338 &data,
5339 full_match, compare_names);
5340 }
5341 }
5342 }
5343
5344 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5345 non-zero, enclosing scope and in global scopes, returning the number of
5346 matches.
5347 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5348 indicating the symbols found and the blocks and symbol tables (if
5349 any) in which they were found. This vector is transient---good only to
5350 the next call of ada_lookup_symbol_list.
5351
5352 When full_search is non-zero, any non-function/non-enumeral
5353 symbol match within the nest of blocks whose innermost member is BLOCK0,
5354 is the one match returned (no other matches in that or
5355 enclosing blocks is returned). If there are any matches in or
5356 surrounding BLOCK0, then these alone are returned.
5357
5358 Names prefixed with "standard__" are handled specially: "standard__"
5359 is first stripped off, and only static and global symbols are searched. */
5360
5361 static int
5362 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5363 domain_enum namespace,
5364 struct ada_symbol_info **results,
5365 int full_search)
5366 {
5367 struct symbol *sym;
5368 const struct block *block;
5369 const char *name;
5370 const int wild_match_p = should_use_wild_match (name0);
5371 int cacheIfUnique;
5372 int ndefns;
5373
5374 obstack_free (&symbol_list_obstack, NULL);
5375 obstack_init (&symbol_list_obstack);
5376
5377 cacheIfUnique = 0;
5378
5379 /* Search specified block and its superiors. */
5380
5381 name = name0;
5382 block = block0;
5383
5384 /* Special case: If the user specifies a symbol name inside package
5385 Standard, do a non-wild matching of the symbol name without
5386 the "standard__" prefix. This was primarily introduced in order
5387 to allow the user to specifically access the standard exceptions
5388 using, for instance, Standard.Constraint_Error when Constraint_Error
5389 is ambiguous (due to the user defining its own Constraint_Error
5390 entity inside its program). */
5391 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5392 {
5393 block = NULL;
5394 name = name0 + sizeof ("standard__") - 1;
5395 }
5396
5397 /* Check the non-global symbols. If we have ANY match, then we're done. */
5398
5399 if (block != NULL)
5400 {
5401 if (full_search)
5402 {
5403 ada_add_local_symbols (&symbol_list_obstack, name, block,
5404 namespace, wild_match_p);
5405 }
5406 else
5407 {
5408 /* In the !full_search case we're are being called by
5409 ada_iterate_over_symbols, and we don't want to search
5410 superblocks. */
5411 ada_add_block_symbols (&symbol_list_obstack, block, name,
5412 namespace, NULL, wild_match_p);
5413 }
5414 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5415 goto done;
5416 }
5417
5418 /* No non-global symbols found. Check our cache to see if we have
5419 already performed this search before. If we have, then return
5420 the same result. */
5421
5422 cacheIfUnique = 1;
5423 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5424 {
5425 if (sym != NULL)
5426 add_defn_to_vec (&symbol_list_obstack, sym, block);
5427 goto done;
5428 }
5429
5430 /* Search symbols from all global blocks. */
5431
5432 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5433 wild_match_p);
5434
5435 /* Now add symbols from all per-file blocks if we've gotten no hits
5436 (not strictly correct, but perhaps better than an error). */
5437
5438 if (num_defns_collected (&symbol_list_obstack) == 0)
5439 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5440 wild_match_p);
5441
5442 done:
5443 ndefns = num_defns_collected (&symbol_list_obstack);
5444 *results = defns_collected (&symbol_list_obstack, 1);
5445
5446 ndefns = remove_extra_symbols (*results, ndefns);
5447
5448 if (ndefns == 0 && full_search)
5449 cache_symbol (name0, namespace, NULL, NULL);
5450
5451 if (ndefns == 1 && full_search && cacheIfUnique)
5452 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5453
5454 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5455
5456 return ndefns;
5457 }
5458
5459 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5460 in global scopes, returning the number of matches, and setting *RESULTS
5461 to a vector of (SYM,BLOCK) tuples.
5462 See ada_lookup_symbol_list_worker for further details. */
5463
5464 int
5465 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5466 domain_enum domain, struct ada_symbol_info **results)
5467 {
5468 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5469 }
5470
5471 /* Implementation of the la_iterate_over_symbols method. */
5472
5473 static void
5474 ada_iterate_over_symbols (const struct block *block,
5475 const char *name, domain_enum domain,
5476 symbol_found_callback_ftype *callback,
5477 void *data)
5478 {
5479 int ndefs, i;
5480 struct ada_symbol_info *results;
5481
5482 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5483 for (i = 0; i < ndefs; ++i)
5484 {
5485 if (! (*callback) (results[i].sym, data))
5486 break;
5487 }
5488 }
5489
5490 /* If NAME is the name of an entity, return a string that should
5491 be used to look that entity up in Ada units. This string should
5492 be deallocated after use using xfree.
5493
5494 NAME can have any form that the "break" or "print" commands might
5495 recognize. In other words, it does not have to be the "natural"
5496 name, or the "encoded" name. */
5497
5498 char *
5499 ada_name_for_lookup (const char *name)
5500 {
5501 char *canon;
5502 int nlen = strlen (name);
5503
5504 if (name[0] == '<' && name[nlen - 1] == '>')
5505 {
5506 canon = xmalloc (nlen - 1);
5507 memcpy (canon, name + 1, nlen - 2);
5508 canon[nlen - 2] = '\0';
5509 }
5510 else
5511 canon = xstrdup (ada_encode (ada_fold_name (name)));
5512 return canon;
5513 }
5514
5515 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5516 to 1, but choosing the first symbol found if there are multiple
5517 choices.
5518
5519 The result is stored in *INFO, which must be non-NULL.
5520 If no match is found, INFO->SYM is set to NULL. */
5521
5522 void
5523 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5524 domain_enum namespace,
5525 struct ada_symbol_info *info)
5526 {
5527 struct ada_symbol_info *candidates;
5528 int n_candidates;
5529
5530 gdb_assert (info != NULL);
5531 memset (info, 0, sizeof (struct ada_symbol_info));
5532
5533 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5534 if (n_candidates == 0)
5535 return;
5536
5537 *info = candidates[0];
5538 info->sym = fixup_symbol_section (info->sym, NULL);
5539 }
5540
5541 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5542 scope and in global scopes, or NULL if none. NAME is folded and
5543 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5544 choosing the first symbol if there are multiple choices.
5545 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5546
5547 struct symbol *
5548 ada_lookup_symbol (const char *name, const struct block *block0,
5549 domain_enum namespace, int *is_a_field_of_this)
5550 {
5551 struct ada_symbol_info info;
5552
5553 if (is_a_field_of_this != NULL)
5554 *is_a_field_of_this = 0;
5555
5556 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5557 block0, namespace, &info);
5558 return info.sym;
5559 }
5560
5561 static struct symbol *
5562 ada_lookup_symbol_nonlocal (const char *name,
5563 const struct block *block,
5564 const domain_enum domain)
5565 {
5566 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5567 }
5568
5569
5570 /* True iff STR is a possible encoded suffix of a normal Ada name
5571 that is to be ignored for matching purposes. Suffixes of parallel
5572 names (e.g., XVE) are not included here. Currently, the possible suffixes
5573 are given by any of the regular expressions:
5574
5575 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5576 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5577 TKB [subprogram suffix for task bodies]
5578 _E[0-9]+[bs]$ [protected object entry suffixes]
5579 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5580
5581 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5582 match is performed. This sequence is used to differentiate homonyms,
5583 is an optional part of a valid name suffix. */
5584
5585 static int
5586 is_name_suffix (const char *str)
5587 {
5588 int k;
5589 const char *matching;
5590 const int len = strlen (str);
5591
5592 /* Skip optional leading __[0-9]+. */
5593
5594 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5595 {
5596 str += 3;
5597 while (isdigit (str[0]))
5598 str += 1;
5599 }
5600
5601 /* [.$][0-9]+ */
5602
5603 if (str[0] == '.' || str[0] == '$')
5604 {
5605 matching = str + 1;
5606 while (isdigit (matching[0]))
5607 matching += 1;
5608 if (matching[0] == '\0')
5609 return 1;
5610 }
5611
5612 /* ___[0-9]+ */
5613
5614 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5615 {
5616 matching = str + 3;
5617 while (isdigit (matching[0]))
5618 matching += 1;
5619 if (matching[0] == '\0')
5620 return 1;
5621 }
5622
5623 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5624
5625 if (strcmp (str, "TKB") == 0)
5626 return 1;
5627
5628 #if 0
5629 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5630 with a N at the end. Unfortunately, the compiler uses the same
5631 convention for other internal types it creates. So treating
5632 all entity names that end with an "N" as a name suffix causes
5633 some regressions. For instance, consider the case of an enumerated
5634 type. To support the 'Image attribute, it creates an array whose
5635 name ends with N.
5636 Having a single character like this as a suffix carrying some
5637 information is a bit risky. Perhaps we should change the encoding
5638 to be something like "_N" instead. In the meantime, do not do
5639 the following check. */
5640 /* Protected Object Subprograms */
5641 if (len == 1 && str [0] == 'N')
5642 return 1;
5643 #endif
5644
5645 /* _E[0-9]+[bs]$ */
5646 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5647 {
5648 matching = str + 3;
5649 while (isdigit (matching[0]))
5650 matching += 1;
5651 if ((matching[0] == 'b' || matching[0] == 's')
5652 && matching [1] == '\0')
5653 return 1;
5654 }
5655
5656 /* ??? We should not modify STR directly, as we are doing below. This
5657 is fine in this case, but may become problematic later if we find
5658 that this alternative did not work, and want to try matching
5659 another one from the begining of STR. Since we modified it, we
5660 won't be able to find the begining of the string anymore! */
5661 if (str[0] == 'X')
5662 {
5663 str += 1;
5664 while (str[0] != '_' && str[0] != '\0')
5665 {
5666 if (str[0] != 'n' && str[0] != 'b')
5667 return 0;
5668 str += 1;
5669 }
5670 }
5671
5672 if (str[0] == '\000')
5673 return 1;
5674
5675 if (str[0] == '_')
5676 {
5677 if (str[1] != '_' || str[2] == '\000')
5678 return 0;
5679 if (str[2] == '_')
5680 {
5681 if (strcmp (str + 3, "JM") == 0)
5682 return 1;
5683 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5684 the LJM suffix in favor of the JM one. But we will
5685 still accept LJM as a valid suffix for a reasonable
5686 amount of time, just to allow ourselves to debug programs
5687 compiled using an older version of GNAT. */
5688 if (strcmp (str + 3, "LJM") == 0)
5689 return 1;
5690 if (str[3] != 'X')
5691 return 0;
5692 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5693 || str[4] == 'U' || str[4] == 'P')
5694 return 1;
5695 if (str[4] == 'R' && str[5] != 'T')
5696 return 1;
5697 return 0;
5698 }
5699 if (!isdigit (str[2]))
5700 return 0;
5701 for (k = 3; str[k] != '\0'; k += 1)
5702 if (!isdigit (str[k]) && str[k] != '_')
5703 return 0;
5704 return 1;
5705 }
5706 if (str[0] == '$' && isdigit (str[1]))
5707 {
5708 for (k = 2; str[k] != '\0'; k += 1)
5709 if (!isdigit (str[k]) && str[k] != '_')
5710 return 0;
5711 return 1;
5712 }
5713 return 0;
5714 }
5715
5716 /* Return non-zero if the string starting at NAME and ending before
5717 NAME_END contains no capital letters. */
5718
5719 static int
5720 is_valid_name_for_wild_match (const char *name0)
5721 {
5722 const char *decoded_name = ada_decode (name0);
5723 int i;
5724
5725 /* If the decoded name starts with an angle bracket, it means that
5726 NAME0 does not follow the GNAT encoding format. It should then
5727 not be allowed as a possible wild match. */
5728 if (decoded_name[0] == '<')
5729 return 0;
5730
5731 for (i=0; decoded_name[i] != '\0'; i++)
5732 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5733 return 0;
5734
5735 return 1;
5736 }
5737
5738 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5739 that could start a simple name. Assumes that *NAMEP points into
5740 the string beginning at NAME0. */
5741
5742 static int
5743 advance_wild_match (const char **namep, const char *name0, int target0)
5744 {
5745 const char *name = *namep;
5746
5747 while (1)
5748 {
5749 int t0, t1;
5750
5751 t0 = *name;
5752 if (t0 == '_')
5753 {
5754 t1 = name[1];
5755 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5756 {
5757 name += 1;
5758 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5759 break;
5760 else
5761 name += 1;
5762 }
5763 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5764 || name[2] == target0))
5765 {
5766 name += 2;
5767 break;
5768 }
5769 else
5770 return 0;
5771 }
5772 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5773 name += 1;
5774 else
5775 return 0;
5776 }
5777
5778 *namep = name;
5779 return 1;
5780 }
5781
5782 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5783 informational suffixes of NAME (i.e., for which is_name_suffix is
5784 true). Assumes that PATN is a lower-cased Ada simple name. */
5785
5786 static int
5787 wild_match (const char *name, const char *patn)
5788 {
5789 const char *p;
5790 const char *name0 = name;
5791
5792 while (1)
5793 {
5794 const char *match = name;
5795
5796 if (*name == *patn)
5797 {
5798 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5799 if (*p != *name)
5800 break;
5801 if (*p == '\0' && is_name_suffix (name))
5802 return match != name0 && !is_valid_name_for_wild_match (name0);
5803
5804 if (name[-1] == '_')
5805 name -= 1;
5806 }
5807 if (!advance_wild_match (&name, name0, *patn))
5808 return 1;
5809 }
5810 }
5811
5812 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5813 informational suffix. */
5814
5815 static int
5816 full_match (const char *sym_name, const char *search_name)
5817 {
5818 return !match_name (sym_name, search_name, 0);
5819 }
5820
5821
5822 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5823 vector *defn_symbols, updating the list of symbols in OBSTACKP
5824 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5825 OBJFILE is the section containing BLOCK. */
5826
5827 static void
5828 ada_add_block_symbols (struct obstack *obstackp,
5829 const struct block *block, const char *name,
5830 domain_enum domain, struct objfile *objfile,
5831 int wild)
5832 {
5833 struct block_iterator iter;
5834 int name_len = strlen (name);
5835 /* A matching argument symbol, if any. */
5836 struct symbol *arg_sym;
5837 /* Set true when we find a matching non-argument symbol. */
5838 int found_sym;
5839 struct symbol *sym;
5840
5841 arg_sym = NULL;
5842 found_sym = 0;
5843 if (wild)
5844 {
5845 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5846 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5847 {
5848 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5849 SYMBOL_DOMAIN (sym), domain)
5850 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5851 {
5852 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5853 continue;
5854 else if (SYMBOL_IS_ARGUMENT (sym))
5855 arg_sym = sym;
5856 else
5857 {
5858 found_sym = 1;
5859 add_defn_to_vec (obstackp,
5860 fixup_symbol_section (sym, objfile),
5861 block);
5862 }
5863 }
5864 }
5865 }
5866 else
5867 {
5868 for (sym = block_iter_match_first (block, name, full_match, &iter);
5869 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5870 {
5871 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5872 SYMBOL_DOMAIN (sym), domain))
5873 {
5874 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5875 {
5876 if (SYMBOL_IS_ARGUMENT (sym))
5877 arg_sym = sym;
5878 else
5879 {
5880 found_sym = 1;
5881 add_defn_to_vec (obstackp,
5882 fixup_symbol_section (sym, objfile),
5883 block);
5884 }
5885 }
5886 }
5887 }
5888 }
5889
5890 if (!found_sym && arg_sym != NULL)
5891 {
5892 add_defn_to_vec (obstackp,
5893 fixup_symbol_section (arg_sym, objfile),
5894 block);
5895 }
5896
5897 if (!wild)
5898 {
5899 arg_sym = NULL;
5900 found_sym = 0;
5901
5902 ALL_BLOCK_SYMBOLS (block, iter, sym)
5903 {
5904 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5905 SYMBOL_DOMAIN (sym), domain))
5906 {
5907 int cmp;
5908
5909 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5910 if (cmp == 0)
5911 {
5912 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5913 if (cmp == 0)
5914 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5915 name_len);
5916 }
5917
5918 if (cmp == 0
5919 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5920 {
5921 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5922 {
5923 if (SYMBOL_IS_ARGUMENT (sym))
5924 arg_sym = sym;
5925 else
5926 {
5927 found_sym = 1;
5928 add_defn_to_vec (obstackp,
5929 fixup_symbol_section (sym, objfile),
5930 block);
5931 }
5932 }
5933 }
5934 }
5935 }
5936
5937 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5938 They aren't parameters, right? */
5939 if (!found_sym && arg_sym != NULL)
5940 {
5941 add_defn_to_vec (obstackp,
5942 fixup_symbol_section (arg_sym, objfile),
5943 block);
5944 }
5945 }
5946 }
5947 \f
5948
5949 /* Symbol Completion */
5950
5951 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5952 name in a form that's appropriate for the completion. The result
5953 does not need to be deallocated, but is only good until the next call.
5954
5955 TEXT_LEN is equal to the length of TEXT.
5956 Perform a wild match if WILD_MATCH_P is set.
5957 ENCODED_P should be set if TEXT represents the start of a symbol name
5958 in its encoded form. */
5959
5960 static const char *
5961 symbol_completion_match (const char *sym_name,
5962 const char *text, int text_len,
5963 int wild_match_p, int encoded_p)
5964 {
5965 const int verbatim_match = (text[0] == '<');
5966 int match = 0;
5967
5968 if (verbatim_match)
5969 {
5970 /* Strip the leading angle bracket. */
5971 text = text + 1;
5972 text_len--;
5973 }
5974
5975 /* First, test against the fully qualified name of the symbol. */
5976
5977 if (strncmp (sym_name, text, text_len) == 0)
5978 match = 1;
5979
5980 if (match && !encoded_p)
5981 {
5982 /* One needed check before declaring a positive match is to verify
5983 that iff we are doing a verbatim match, the decoded version
5984 of the symbol name starts with '<'. Otherwise, this symbol name
5985 is not a suitable completion. */
5986 const char *sym_name_copy = sym_name;
5987 int has_angle_bracket;
5988
5989 sym_name = ada_decode (sym_name);
5990 has_angle_bracket = (sym_name[0] == '<');
5991 match = (has_angle_bracket == verbatim_match);
5992 sym_name = sym_name_copy;
5993 }
5994
5995 if (match && !verbatim_match)
5996 {
5997 /* When doing non-verbatim match, another check that needs to
5998 be done is to verify that the potentially matching symbol name
5999 does not include capital letters, because the ada-mode would
6000 not be able to understand these symbol names without the
6001 angle bracket notation. */
6002 const char *tmp;
6003
6004 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6005 if (*tmp != '\0')
6006 match = 0;
6007 }
6008
6009 /* Second: Try wild matching... */
6010
6011 if (!match && wild_match_p)
6012 {
6013 /* Since we are doing wild matching, this means that TEXT
6014 may represent an unqualified symbol name. We therefore must
6015 also compare TEXT against the unqualified name of the symbol. */
6016 sym_name = ada_unqualified_name (ada_decode (sym_name));
6017
6018 if (strncmp (sym_name, text, text_len) == 0)
6019 match = 1;
6020 }
6021
6022 /* Finally: If we found a mach, prepare the result to return. */
6023
6024 if (!match)
6025 return NULL;
6026
6027 if (verbatim_match)
6028 sym_name = add_angle_brackets (sym_name);
6029
6030 if (!encoded_p)
6031 sym_name = ada_decode (sym_name);
6032
6033 return sym_name;
6034 }
6035
6036 /* A companion function to ada_make_symbol_completion_list().
6037 Check if SYM_NAME represents a symbol which name would be suitable
6038 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6039 it is appended at the end of the given string vector SV.
6040
6041 ORIG_TEXT is the string original string from the user command
6042 that needs to be completed. WORD is the entire command on which
6043 completion should be performed. These two parameters are used to
6044 determine which part of the symbol name should be added to the
6045 completion vector.
6046 if WILD_MATCH_P is set, then wild matching is performed.
6047 ENCODED_P should be set if TEXT represents a symbol name in its
6048 encoded formed (in which case the completion should also be
6049 encoded). */
6050
6051 static void
6052 symbol_completion_add (VEC(char_ptr) **sv,
6053 const char *sym_name,
6054 const char *text, int text_len,
6055 const char *orig_text, const char *word,
6056 int wild_match_p, int encoded_p)
6057 {
6058 const char *match = symbol_completion_match (sym_name, text, text_len,
6059 wild_match_p, encoded_p);
6060 char *completion;
6061
6062 if (match == NULL)
6063 return;
6064
6065 /* We found a match, so add the appropriate completion to the given
6066 string vector. */
6067
6068 if (word == orig_text)
6069 {
6070 completion = xmalloc (strlen (match) + 5);
6071 strcpy (completion, match);
6072 }
6073 else if (word > orig_text)
6074 {
6075 /* Return some portion of sym_name. */
6076 completion = xmalloc (strlen (match) + 5);
6077 strcpy (completion, match + (word - orig_text));
6078 }
6079 else
6080 {
6081 /* Return some of ORIG_TEXT plus sym_name. */
6082 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6083 strncpy (completion, word, orig_text - word);
6084 completion[orig_text - word] = '\0';
6085 strcat (completion, match);
6086 }
6087
6088 VEC_safe_push (char_ptr, *sv, completion);
6089 }
6090
6091 /* An object of this type is passed as the user_data argument to the
6092 expand_symtabs_matching method. */
6093 struct add_partial_datum
6094 {
6095 VEC(char_ptr) **completions;
6096 const char *text;
6097 int text_len;
6098 const char *text0;
6099 const char *word;
6100 int wild_match;
6101 int encoded;
6102 };
6103
6104 /* A callback for expand_symtabs_matching. */
6105
6106 static int
6107 ada_complete_symbol_matcher (const char *name, void *user_data)
6108 {
6109 struct add_partial_datum *data = user_data;
6110
6111 return symbol_completion_match (name, data->text, data->text_len,
6112 data->wild_match, data->encoded) != NULL;
6113 }
6114
6115 /* Return a list of possible symbol names completing TEXT0. WORD is
6116 the entire command on which completion is made. */
6117
6118 static VEC (char_ptr) *
6119 ada_make_symbol_completion_list (const char *text0, const char *word,
6120 enum type_code code)
6121 {
6122 char *text;
6123 int text_len;
6124 int wild_match_p;
6125 int encoded_p;
6126 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6127 struct symbol *sym;
6128 struct symtab *s;
6129 struct minimal_symbol *msymbol;
6130 struct objfile *objfile;
6131 struct block *b, *surrounding_static_block = 0;
6132 int i;
6133 struct block_iterator iter;
6134 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6135
6136 gdb_assert (code == TYPE_CODE_UNDEF);
6137
6138 if (text0[0] == '<')
6139 {
6140 text = xstrdup (text0);
6141 make_cleanup (xfree, text);
6142 text_len = strlen (text);
6143 wild_match_p = 0;
6144 encoded_p = 1;
6145 }
6146 else
6147 {
6148 text = xstrdup (ada_encode (text0));
6149 make_cleanup (xfree, text);
6150 text_len = strlen (text);
6151 for (i = 0; i < text_len; i++)
6152 text[i] = tolower (text[i]);
6153
6154 encoded_p = (strstr (text0, "__") != NULL);
6155 /* If the name contains a ".", then the user is entering a fully
6156 qualified entity name, and the match must not be done in wild
6157 mode. Similarly, if the user wants to complete what looks like
6158 an encoded name, the match must not be done in wild mode. */
6159 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6160 }
6161
6162 /* First, look at the partial symtab symbols. */
6163 {
6164 struct add_partial_datum data;
6165
6166 data.completions = &completions;
6167 data.text = text;
6168 data.text_len = text_len;
6169 data.text0 = text0;
6170 data.word = word;
6171 data.wild_match = wild_match_p;
6172 data.encoded = encoded_p;
6173 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6174 &data);
6175 }
6176
6177 /* At this point scan through the misc symbol vectors and add each
6178 symbol you find to the list. Eventually we want to ignore
6179 anything that isn't a text symbol (everything else will be
6180 handled by the psymtab code above). */
6181
6182 ALL_MSYMBOLS (objfile, msymbol)
6183 {
6184 QUIT;
6185 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
6186 text, text_len, text0, word, wild_match_p,
6187 encoded_p);
6188 }
6189
6190 /* Search upwards from currently selected frame (so that we can
6191 complete on local vars. */
6192
6193 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6194 {
6195 if (!BLOCK_SUPERBLOCK (b))
6196 surrounding_static_block = b; /* For elmin of dups */
6197
6198 ALL_BLOCK_SYMBOLS (b, iter, sym)
6199 {
6200 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6201 text, text_len, text0, word,
6202 wild_match_p, encoded_p);
6203 }
6204 }
6205
6206 /* Go through the symtabs and check the externs and statics for
6207 symbols which match. */
6208
6209 ALL_SYMTABS (objfile, s)
6210 {
6211 QUIT;
6212 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6213 ALL_BLOCK_SYMBOLS (b, iter, sym)
6214 {
6215 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6216 text, text_len, text0, word,
6217 wild_match_p, encoded_p);
6218 }
6219 }
6220
6221 ALL_SYMTABS (objfile, s)
6222 {
6223 QUIT;
6224 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6225 /* Don't do this block twice. */
6226 if (b == surrounding_static_block)
6227 continue;
6228 ALL_BLOCK_SYMBOLS (b, iter, sym)
6229 {
6230 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6231 text, text_len, text0, word,
6232 wild_match_p, encoded_p);
6233 }
6234 }
6235
6236 do_cleanups (old_chain);
6237 return completions;
6238 }
6239
6240 /* Field Access */
6241
6242 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6243 for tagged types. */
6244
6245 static int
6246 ada_is_dispatch_table_ptr_type (struct type *type)
6247 {
6248 const char *name;
6249
6250 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6251 return 0;
6252
6253 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6254 if (name == NULL)
6255 return 0;
6256
6257 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6258 }
6259
6260 /* Return non-zero if TYPE is an interface tag. */
6261
6262 static int
6263 ada_is_interface_tag (struct type *type)
6264 {
6265 const char *name = TYPE_NAME (type);
6266
6267 if (name == NULL)
6268 return 0;
6269
6270 return (strcmp (name, "ada__tags__interface_tag") == 0);
6271 }
6272
6273 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6274 to be invisible to users. */
6275
6276 int
6277 ada_is_ignored_field (struct type *type, int field_num)
6278 {
6279 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6280 return 1;
6281
6282 /* Check the name of that field. */
6283 {
6284 const char *name = TYPE_FIELD_NAME (type, field_num);
6285
6286 /* Anonymous field names should not be printed.
6287 brobecker/2007-02-20: I don't think this can actually happen
6288 but we don't want to print the value of annonymous fields anyway. */
6289 if (name == NULL)
6290 return 1;
6291
6292 /* Normally, fields whose name start with an underscore ("_")
6293 are fields that have been internally generated by the compiler,
6294 and thus should not be printed. The "_parent" field is special,
6295 however: This is a field internally generated by the compiler
6296 for tagged types, and it contains the components inherited from
6297 the parent type. This field should not be printed as is, but
6298 should not be ignored either. */
6299 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6300 return 1;
6301 }
6302
6303 /* If this is the dispatch table of a tagged type or an interface tag,
6304 then ignore. */
6305 if (ada_is_tagged_type (type, 1)
6306 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6307 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6308 return 1;
6309
6310 /* Not a special field, so it should not be ignored. */
6311 return 0;
6312 }
6313
6314 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6315 pointer or reference type whose ultimate target has a tag field. */
6316
6317 int
6318 ada_is_tagged_type (struct type *type, int refok)
6319 {
6320 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6321 }
6322
6323 /* True iff TYPE represents the type of X'Tag */
6324
6325 int
6326 ada_is_tag_type (struct type *type)
6327 {
6328 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6329 return 0;
6330 else
6331 {
6332 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6333
6334 return (name != NULL
6335 && strcmp (name, "ada__tags__dispatch_table") == 0);
6336 }
6337 }
6338
6339 /* The type of the tag on VAL. */
6340
6341 struct type *
6342 ada_tag_type (struct value *val)
6343 {
6344 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6345 }
6346
6347 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6348 retired at Ada 05). */
6349
6350 static int
6351 is_ada95_tag (struct value *tag)
6352 {
6353 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6354 }
6355
6356 /* The value of the tag on VAL. */
6357
6358 struct value *
6359 ada_value_tag (struct value *val)
6360 {
6361 return ada_value_struct_elt (val, "_tag", 0);
6362 }
6363
6364 /* The value of the tag on the object of type TYPE whose contents are
6365 saved at VALADDR, if it is non-null, or is at memory address
6366 ADDRESS. */
6367
6368 static struct value *
6369 value_tag_from_contents_and_address (struct type *type,
6370 const gdb_byte *valaddr,
6371 CORE_ADDR address)
6372 {
6373 int tag_byte_offset;
6374 struct type *tag_type;
6375
6376 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6377 NULL, NULL, NULL))
6378 {
6379 const gdb_byte *valaddr1 = ((valaddr == NULL)
6380 ? NULL
6381 : valaddr + tag_byte_offset);
6382 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6383
6384 return value_from_contents_and_address (tag_type, valaddr1, address1);
6385 }
6386 return NULL;
6387 }
6388
6389 static struct type *
6390 type_from_tag (struct value *tag)
6391 {
6392 const char *type_name = ada_tag_name (tag);
6393
6394 if (type_name != NULL)
6395 return ada_find_any_type (ada_encode (type_name));
6396 return NULL;
6397 }
6398
6399 /* Given a value OBJ of a tagged type, return a value of this
6400 type at the base address of the object. The base address, as
6401 defined in Ada.Tags, it is the address of the primary tag of
6402 the object, and therefore where the field values of its full
6403 view can be fetched. */
6404
6405 struct value *
6406 ada_tag_value_at_base_address (struct value *obj)
6407 {
6408 volatile struct gdb_exception e;
6409 struct value *val;
6410 LONGEST offset_to_top = 0;
6411 struct type *ptr_type, *obj_type;
6412 struct value *tag;
6413 CORE_ADDR base_address;
6414
6415 obj_type = value_type (obj);
6416
6417 /* It is the responsability of the caller to deref pointers. */
6418
6419 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6420 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6421 return obj;
6422
6423 tag = ada_value_tag (obj);
6424 if (!tag)
6425 return obj;
6426
6427 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6428
6429 if (is_ada95_tag (tag))
6430 return obj;
6431
6432 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6433 ptr_type = lookup_pointer_type (ptr_type);
6434 val = value_cast (ptr_type, tag);
6435 if (!val)
6436 return obj;
6437
6438 /* It is perfectly possible that an exception be raised while
6439 trying to determine the base address, just like for the tag;
6440 see ada_tag_name for more details. We do not print the error
6441 message for the same reason. */
6442
6443 TRY_CATCH (e, RETURN_MASK_ERROR)
6444 {
6445 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6446 }
6447
6448 if (e.reason < 0)
6449 return obj;
6450
6451 /* If offset is null, nothing to do. */
6452
6453 if (offset_to_top == 0)
6454 return obj;
6455
6456 /* -1 is a special case in Ada.Tags; however, what should be done
6457 is not quite clear from the documentation. So do nothing for
6458 now. */
6459
6460 if (offset_to_top == -1)
6461 return obj;
6462
6463 base_address = value_address (obj) - offset_to_top;
6464 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6465
6466 /* Make sure that we have a proper tag at the new address.
6467 Otherwise, offset_to_top is bogus (which can happen when
6468 the object is not initialized yet). */
6469
6470 if (!tag)
6471 return obj;
6472
6473 obj_type = type_from_tag (tag);
6474
6475 if (!obj_type)
6476 return obj;
6477
6478 return value_from_contents_and_address (obj_type, NULL, base_address);
6479 }
6480
6481 /* Return the "ada__tags__type_specific_data" type. */
6482
6483 static struct type *
6484 ada_get_tsd_type (struct inferior *inf)
6485 {
6486 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6487
6488 if (data->tsd_type == 0)
6489 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6490 return data->tsd_type;
6491 }
6492
6493 /* Return the TSD (type-specific data) associated to the given TAG.
6494 TAG is assumed to be the tag of a tagged-type entity.
6495
6496 May return NULL if we are unable to get the TSD. */
6497
6498 static struct value *
6499 ada_get_tsd_from_tag (struct value *tag)
6500 {
6501 struct value *val;
6502 struct type *type;
6503
6504 /* First option: The TSD is simply stored as a field of our TAG.
6505 Only older versions of GNAT would use this format, but we have
6506 to test it first, because there are no visible markers for
6507 the current approach except the absence of that field. */
6508
6509 val = ada_value_struct_elt (tag, "tsd", 1);
6510 if (val)
6511 return val;
6512
6513 /* Try the second representation for the dispatch table (in which
6514 there is no explicit 'tsd' field in the referent of the tag pointer,
6515 and instead the tsd pointer is stored just before the dispatch
6516 table. */
6517
6518 type = ada_get_tsd_type (current_inferior());
6519 if (type == NULL)
6520 return NULL;
6521 type = lookup_pointer_type (lookup_pointer_type (type));
6522 val = value_cast (type, tag);
6523 if (val == NULL)
6524 return NULL;
6525 return value_ind (value_ptradd (val, -1));
6526 }
6527
6528 /* Given the TSD of a tag (type-specific data), return a string
6529 containing the name of the associated type.
6530
6531 The returned value is good until the next call. May return NULL
6532 if we are unable to determine the tag name. */
6533
6534 static char *
6535 ada_tag_name_from_tsd (struct value *tsd)
6536 {
6537 static char name[1024];
6538 char *p;
6539 struct value *val;
6540
6541 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6542 if (val == NULL)
6543 return NULL;
6544 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6545 for (p = name; *p != '\0'; p += 1)
6546 if (isalpha (*p))
6547 *p = tolower (*p);
6548 return name;
6549 }
6550
6551 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6552 a C string.
6553
6554 Return NULL if the TAG is not an Ada tag, or if we were unable to
6555 determine the name of that tag. The result is good until the next
6556 call. */
6557
6558 const char *
6559 ada_tag_name (struct value *tag)
6560 {
6561 volatile struct gdb_exception e;
6562 char *name = NULL;
6563
6564 if (!ada_is_tag_type (value_type (tag)))
6565 return NULL;
6566
6567 /* It is perfectly possible that an exception be raised while trying
6568 to determine the TAG's name, even under normal circumstances:
6569 The associated variable may be uninitialized or corrupted, for
6570 instance. We do not let any exception propagate past this point.
6571 instead we return NULL.
6572
6573 We also do not print the error message either (which often is very
6574 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6575 the caller print a more meaningful message if necessary. */
6576 TRY_CATCH (e, RETURN_MASK_ERROR)
6577 {
6578 struct value *tsd = ada_get_tsd_from_tag (tag);
6579
6580 if (tsd != NULL)
6581 name = ada_tag_name_from_tsd (tsd);
6582 }
6583
6584 return name;
6585 }
6586
6587 /* The parent type of TYPE, or NULL if none. */
6588
6589 struct type *
6590 ada_parent_type (struct type *type)
6591 {
6592 int i;
6593
6594 type = ada_check_typedef (type);
6595
6596 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6597 return NULL;
6598
6599 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6600 if (ada_is_parent_field (type, i))
6601 {
6602 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6603
6604 /* If the _parent field is a pointer, then dereference it. */
6605 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6606 parent_type = TYPE_TARGET_TYPE (parent_type);
6607 /* If there is a parallel XVS type, get the actual base type. */
6608 parent_type = ada_get_base_type (parent_type);
6609
6610 return ada_check_typedef (parent_type);
6611 }
6612
6613 return NULL;
6614 }
6615
6616 /* True iff field number FIELD_NUM of structure type TYPE contains the
6617 parent-type (inherited) fields of a derived type. Assumes TYPE is
6618 a structure type with at least FIELD_NUM+1 fields. */
6619
6620 int
6621 ada_is_parent_field (struct type *type, int field_num)
6622 {
6623 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6624
6625 return (name != NULL
6626 && (strncmp (name, "PARENT", 6) == 0
6627 || strncmp (name, "_parent", 7) == 0));
6628 }
6629
6630 /* True iff field number FIELD_NUM of structure type TYPE is a
6631 transparent wrapper field (which should be silently traversed when doing
6632 field selection and flattened when printing). Assumes TYPE is a
6633 structure type with at least FIELD_NUM+1 fields. Such fields are always
6634 structures. */
6635
6636 int
6637 ada_is_wrapper_field (struct type *type, int field_num)
6638 {
6639 const char *name = TYPE_FIELD_NAME (type, field_num);
6640
6641 return (name != NULL
6642 && (strncmp (name, "PARENT", 6) == 0
6643 || strcmp (name, "REP") == 0
6644 || strncmp (name, "_parent", 7) == 0
6645 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6646 }
6647
6648 /* True iff field number FIELD_NUM of structure or union type TYPE
6649 is a variant wrapper. Assumes TYPE is a structure type with at least
6650 FIELD_NUM+1 fields. */
6651
6652 int
6653 ada_is_variant_part (struct type *type, int field_num)
6654 {
6655 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6656
6657 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6658 || (is_dynamic_field (type, field_num)
6659 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6660 == TYPE_CODE_UNION)));
6661 }
6662
6663 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6664 whose discriminants are contained in the record type OUTER_TYPE,
6665 returns the type of the controlling discriminant for the variant.
6666 May return NULL if the type could not be found. */
6667
6668 struct type *
6669 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6670 {
6671 char *name = ada_variant_discrim_name (var_type);
6672
6673 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6674 }
6675
6676 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6677 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6678 represents a 'when others' clause; otherwise 0. */
6679
6680 int
6681 ada_is_others_clause (struct type *type, int field_num)
6682 {
6683 const char *name = TYPE_FIELD_NAME (type, field_num);
6684
6685 return (name != NULL && name[0] == 'O');
6686 }
6687
6688 /* Assuming that TYPE0 is the type of the variant part of a record,
6689 returns the name of the discriminant controlling the variant.
6690 The value is valid until the next call to ada_variant_discrim_name. */
6691
6692 char *
6693 ada_variant_discrim_name (struct type *type0)
6694 {
6695 static char *result = NULL;
6696 static size_t result_len = 0;
6697 struct type *type;
6698 const char *name;
6699 const char *discrim_end;
6700 const char *discrim_start;
6701
6702 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6703 type = TYPE_TARGET_TYPE (type0);
6704 else
6705 type = type0;
6706
6707 name = ada_type_name (type);
6708
6709 if (name == NULL || name[0] == '\000')
6710 return "";
6711
6712 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6713 discrim_end -= 1)
6714 {
6715 if (strncmp (discrim_end, "___XVN", 6) == 0)
6716 break;
6717 }
6718 if (discrim_end == name)
6719 return "";
6720
6721 for (discrim_start = discrim_end; discrim_start != name + 3;
6722 discrim_start -= 1)
6723 {
6724 if (discrim_start == name + 1)
6725 return "";
6726 if ((discrim_start > name + 3
6727 && strncmp (discrim_start - 3, "___", 3) == 0)
6728 || discrim_start[-1] == '.')
6729 break;
6730 }
6731
6732 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6733 strncpy (result, discrim_start, discrim_end - discrim_start);
6734 result[discrim_end - discrim_start] = '\0';
6735 return result;
6736 }
6737
6738 /* Scan STR for a subtype-encoded number, beginning at position K.
6739 Put the position of the character just past the number scanned in
6740 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6741 Return 1 if there was a valid number at the given position, and 0
6742 otherwise. A "subtype-encoded" number consists of the absolute value
6743 in decimal, followed by the letter 'm' to indicate a negative number.
6744 Assumes 0m does not occur. */
6745
6746 int
6747 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6748 {
6749 ULONGEST RU;
6750
6751 if (!isdigit (str[k]))
6752 return 0;
6753
6754 /* Do it the hard way so as not to make any assumption about
6755 the relationship of unsigned long (%lu scan format code) and
6756 LONGEST. */
6757 RU = 0;
6758 while (isdigit (str[k]))
6759 {
6760 RU = RU * 10 + (str[k] - '0');
6761 k += 1;
6762 }
6763
6764 if (str[k] == 'm')
6765 {
6766 if (R != NULL)
6767 *R = (-(LONGEST) (RU - 1)) - 1;
6768 k += 1;
6769 }
6770 else if (R != NULL)
6771 *R = (LONGEST) RU;
6772
6773 /* NOTE on the above: Technically, C does not say what the results of
6774 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6775 number representable as a LONGEST (although either would probably work
6776 in most implementations). When RU>0, the locution in the then branch
6777 above is always equivalent to the negative of RU. */
6778
6779 if (new_k != NULL)
6780 *new_k = k;
6781 return 1;
6782 }
6783
6784 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6785 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6786 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6787
6788 int
6789 ada_in_variant (LONGEST val, struct type *type, int field_num)
6790 {
6791 const char *name = TYPE_FIELD_NAME (type, field_num);
6792 int p;
6793
6794 p = 0;
6795 while (1)
6796 {
6797 switch (name[p])
6798 {
6799 case '\0':
6800 return 0;
6801 case 'S':
6802 {
6803 LONGEST W;
6804
6805 if (!ada_scan_number (name, p + 1, &W, &p))
6806 return 0;
6807 if (val == W)
6808 return 1;
6809 break;
6810 }
6811 case 'R':
6812 {
6813 LONGEST L, U;
6814
6815 if (!ada_scan_number (name, p + 1, &L, &p)
6816 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6817 return 0;
6818 if (val >= L && val <= U)
6819 return 1;
6820 break;
6821 }
6822 case 'O':
6823 return 1;
6824 default:
6825 return 0;
6826 }
6827 }
6828 }
6829
6830 /* FIXME: Lots of redundancy below. Try to consolidate. */
6831
6832 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6833 ARG_TYPE, extract and return the value of one of its (non-static)
6834 fields. FIELDNO says which field. Differs from value_primitive_field
6835 only in that it can handle packed values of arbitrary type. */
6836
6837 static struct value *
6838 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6839 struct type *arg_type)
6840 {
6841 struct type *type;
6842
6843 arg_type = ada_check_typedef (arg_type);
6844 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6845
6846 /* Handle packed fields. */
6847
6848 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6849 {
6850 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6851 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6852
6853 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6854 offset + bit_pos / 8,
6855 bit_pos % 8, bit_size, type);
6856 }
6857 else
6858 return value_primitive_field (arg1, offset, fieldno, arg_type);
6859 }
6860
6861 /* Find field with name NAME in object of type TYPE. If found,
6862 set the following for each argument that is non-null:
6863 - *FIELD_TYPE_P to the field's type;
6864 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6865 an object of that type;
6866 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6867 - *BIT_SIZE_P to its size in bits if the field is packed, and
6868 0 otherwise;
6869 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6870 fields up to but not including the desired field, or by the total
6871 number of fields if not found. A NULL value of NAME never
6872 matches; the function just counts visible fields in this case.
6873
6874 Returns 1 if found, 0 otherwise. */
6875
6876 static int
6877 find_struct_field (const char *name, struct type *type, int offset,
6878 struct type **field_type_p,
6879 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6880 int *index_p)
6881 {
6882 int i;
6883
6884 type = ada_check_typedef (type);
6885
6886 if (field_type_p != NULL)
6887 *field_type_p = NULL;
6888 if (byte_offset_p != NULL)
6889 *byte_offset_p = 0;
6890 if (bit_offset_p != NULL)
6891 *bit_offset_p = 0;
6892 if (bit_size_p != NULL)
6893 *bit_size_p = 0;
6894
6895 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6896 {
6897 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6898 int fld_offset = offset + bit_pos / 8;
6899 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6900
6901 if (t_field_name == NULL)
6902 continue;
6903
6904 else if (name != NULL && field_name_match (t_field_name, name))
6905 {
6906 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6907
6908 if (field_type_p != NULL)
6909 *field_type_p = TYPE_FIELD_TYPE (type, i);
6910 if (byte_offset_p != NULL)
6911 *byte_offset_p = fld_offset;
6912 if (bit_offset_p != NULL)
6913 *bit_offset_p = bit_pos % 8;
6914 if (bit_size_p != NULL)
6915 *bit_size_p = bit_size;
6916 return 1;
6917 }
6918 else if (ada_is_wrapper_field (type, i))
6919 {
6920 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6921 field_type_p, byte_offset_p, bit_offset_p,
6922 bit_size_p, index_p))
6923 return 1;
6924 }
6925 else if (ada_is_variant_part (type, i))
6926 {
6927 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6928 fixed type?? */
6929 int j;
6930 struct type *field_type
6931 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6932
6933 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6934 {
6935 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6936 fld_offset
6937 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6938 field_type_p, byte_offset_p,
6939 bit_offset_p, bit_size_p, index_p))
6940 return 1;
6941 }
6942 }
6943 else if (index_p != NULL)
6944 *index_p += 1;
6945 }
6946 return 0;
6947 }
6948
6949 /* Number of user-visible fields in record type TYPE. */
6950
6951 static int
6952 num_visible_fields (struct type *type)
6953 {
6954 int n;
6955
6956 n = 0;
6957 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6958 return n;
6959 }
6960
6961 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6962 and search in it assuming it has (class) type TYPE.
6963 If found, return value, else return NULL.
6964
6965 Searches recursively through wrapper fields (e.g., '_parent'). */
6966
6967 static struct value *
6968 ada_search_struct_field (char *name, struct value *arg, int offset,
6969 struct type *type)
6970 {
6971 int i;
6972
6973 type = ada_check_typedef (type);
6974 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6975 {
6976 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6977
6978 if (t_field_name == NULL)
6979 continue;
6980
6981 else if (field_name_match (t_field_name, name))
6982 return ada_value_primitive_field (arg, offset, i, type);
6983
6984 else if (ada_is_wrapper_field (type, i))
6985 {
6986 struct value *v = /* Do not let indent join lines here. */
6987 ada_search_struct_field (name, arg,
6988 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6989 TYPE_FIELD_TYPE (type, i));
6990
6991 if (v != NULL)
6992 return v;
6993 }
6994
6995 else if (ada_is_variant_part (type, i))
6996 {
6997 /* PNH: Do we ever get here? See find_struct_field. */
6998 int j;
6999 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7000 i));
7001 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7002
7003 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7004 {
7005 struct value *v = ada_search_struct_field /* Force line
7006 break. */
7007 (name, arg,
7008 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7009 TYPE_FIELD_TYPE (field_type, j));
7010
7011 if (v != NULL)
7012 return v;
7013 }
7014 }
7015 }
7016 return NULL;
7017 }
7018
7019 static struct value *ada_index_struct_field_1 (int *, struct value *,
7020 int, struct type *);
7021
7022
7023 /* Return field #INDEX in ARG, where the index is that returned by
7024 * find_struct_field through its INDEX_P argument. Adjust the address
7025 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7026 * If found, return value, else return NULL. */
7027
7028 static struct value *
7029 ada_index_struct_field (int index, struct value *arg, int offset,
7030 struct type *type)
7031 {
7032 return ada_index_struct_field_1 (&index, arg, offset, type);
7033 }
7034
7035
7036 /* Auxiliary function for ada_index_struct_field. Like
7037 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7038 * *INDEX_P. */
7039
7040 static struct value *
7041 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7042 struct type *type)
7043 {
7044 int i;
7045 type = ada_check_typedef (type);
7046
7047 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7048 {
7049 if (TYPE_FIELD_NAME (type, i) == NULL)
7050 continue;
7051 else if (ada_is_wrapper_field (type, i))
7052 {
7053 struct value *v = /* Do not let indent join lines here. */
7054 ada_index_struct_field_1 (index_p, arg,
7055 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7056 TYPE_FIELD_TYPE (type, i));
7057
7058 if (v != NULL)
7059 return v;
7060 }
7061
7062 else if (ada_is_variant_part (type, i))
7063 {
7064 /* PNH: Do we ever get here? See ada_search_struct_field,
7065 find_struct_field. */
7066 error (_("Cannot assign this kind of variant record"));
7067 }
7068 else if (*index_p == 0)
7069 return ada_value_primitive_field (arg, offset, i, type);
7070 else
7071 *index_p -= 1;
7072 }
7073 return NULL;
7074 }
7075
7076 /* Given ARG, a value of type (pointer or reference to a)*
7077 structure/union, extract the component named NAME from the ultimate
7078 target structure/union and return it as a value with its
7079 appropriate type.
7080
7081 The routine searches for NAME among all members of the structure itself
7082 and (recursively) among all members of any wrapper members
7083 (e.g., '_parent').
7084
7085 If NO_ERR, then simply return NULL in case of error, rather than
7086 calling error. */
7087
7088 struct value *
7089 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7090 {
7091 struct type *t, *t1;
7092 struct value *v;
7093
7094 v = NULL;
7095 t1 = t = ada_check_typedef (value_type (arg));
7096 if (TYPE_CODE (t) == TYPE_CODE_REF)
7097 {
7098 t1 = TYPE_TARGET_TYPE (t);
7099 if (t1 == NULL)
7100 goto BadValue;
7101 t1 = ada_check_typedef (t1);
7102 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7103 {
7104 arg = coerce_ref (arg);
7105 t = t1;
7106 }
7107 }
7108
7109 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7110 {
7111 t1 = TYPE_TARGET_TYPE (t);
7112 if (t1 == NULL)
7113 goto BadValue;
7114 t1 = ada_check_typedef (t1);
7115 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7116 {
7117 arg = value_ind (arg);
7118 t = t1;
7119 }
7120 else
7121 break;
7122 }
7123
7124 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7125 goto BadValue;
7126
7127 if (t1 == t)
7128 v = ada_search_struct_field (name, arg, 0, t);
7129 else
7130 {
7131 int bit_offset, bit_size, byte_offset;
7132 struct type *field_type;
7133 CORE_ADDR address;
7134
7135 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7136 address = value_address (ada_value_ind (arg));
7137 else
7138 address = value_address (ada_coerce_ref (arg));
7139
7140 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7141 if (find_struct_field (name, t1, 0,
7142 &field_type, &byte_offset, &bit_offset,
7143 &bit_size, NULL))
7144 {
7145 if (bit_size != 0)
7146 {
7147 if (TYPE_CODE (t) == TYPE_CODE_REF)
7148 arg = ada_coerce_ref (arg);
7149 else
7150 arg = ada_value_ind (arg);
7151 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7152 bit_offset, bit_size,
7153 field_type);
7154 }
7155 else
7156 v = value_at_lazy (field_type, address + byte_offset);
7157 }
7158 }
7159
7160 if (v != NULL || no_err)
7161 return v;
7162 else
7163 error (_("There is no member named %s."), name);
7164
7165 BadValue:
7166 if (no_err)
7167 return NULL;
7168 else
7169 error (_("Attempt to extract a component of "
7170 "a value that is not a record."));
7171 }
7172
7173 /* Given a type TYPE, look up the type of the component of type named NAME.
7174 If DISPP is non-null, add its byte displacement from the beginning of a
7175 structure (pointed to by a value) of type TYPE to *DISPP (does not
7176 work for packed fields).
7177
7178 Matches any field whose name has NAME as a prefix, possibly
7179 followed by "___".
7180
7181 TYPE can be either a struct or union. If REFOK, TYPE may also
7182 be a (pointer or reference)+ to a struct or union, and the
7183 ultimate target type will be searched.
7184
7185 Looks recursively into variant clauses and parent types.
7186
7187 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7188 TYPE is not a type of the right kind. */
7189
7190 static struct type *
7191 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7192 int noerr, int *dispp)
7193 {
7194 int i;
7195
7196 if (name == NULL)
7197 goto BadName;
7198
7199 if (refok && type != NULL)
7200 while (1)
7201 {
7202 type = ada_check_typedef (type);
7203 if (TYPE_CODE (type) != TYPE_CODE_PTR
7204 && TYPE_CODE (type) != TYPE_CODE_REF)
7205 break;
7206 type = TYPE_TARGET_TYPE (type);
7207 }
7208
7209 if (type == NULL
7210 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7211 && TYPE_CODE (type) != TYPE_CODE_UNION))
7212 {
7213 if (noerr)
7214 return NULL;
7215 else
7216 {
7217 target_terminal_ours ();
7218 gdb_flush (gdb_stdout);
7219 if (type == NULL)
7220 error (_("Type (null) is not a structure or union type"));
7221 else
7222 {
7223 /* XXX: type_sprint */
7224 fprintf_unfiltered (gdb_stderr, _("Type "));
7225 type_print (type, "", gdb_stderr, -1);
7226 error (_(" is not a structure or union type"));
7227 }
7228 }
7229 }
7230
7231 type = to_static_fixed_type (type);
7232
7233 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7234 {
7235 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7236 struct type *t;
7237 int disp;
7238
7239 if (t_field_name == NULL)
7240 continue;
7241
7242 else if (field_name_match (t_field_name, name))
7243 {
7244 if (dispp != NULL)
7245 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7246 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7247 }
7248
7249 else if (ada_is_wrapper_field (type, i))
7250 {
7251 disp = 0;
7252 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7253 0, 1, &disp);
7254 if (t != NULL)
7255 {
7256 if (dispp != NULL)
7257 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7258 return t;
7259 }
7260 }
7261
7262 else if (ada_is_variant_part (type, i))
7263 {
7264 int j;
7265 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7266 i));
7267
7268 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7269 {
7270 /* FIXME pnh 2008/01/26: We check for a field that is
7271 NOT wrapped in a struct, since the compiler sometimes
7272 generates these for unchecked variant types. Revisit
7273 if the compiler changes this practice. */
7274 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7275 disp = 0;
7276 if (v_field_name != NULL
7277 && field_name_match (v_field_name, name))
7278 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7279 else
7280 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7281 j),
7282 name, 0, 1, &disp);
7283
7284 if (t != NULL)
7285 {
7286 if (dispp != NULL)
7287 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7288 return t;
7289 }
7290 }
7291 }
7292
7293 }
7294
7295 BadName:
7296 if (!noerr)
7297 {
7298 target_terminal_ours ();
7299 gdb_flush (gdb_stdout);
7300 if (name == NULL)
7301 {
7302 /* XXX: type_sprint */
7303 fprintf_unfiltered (gdb_stderr, _("Type "));
7304 type_print (type, "", gdb_stderr, -1);
7305 error (_(" has no component named <null>"));
7306 }
7307 else
7308 {
7309 /* XXX: type_sprint */
7310 fprintf_unfiltered (gdb_stderr, _("Type "));
7311 type_print (type, "", gdb_stderr, -1);
7312 error (_(" has no component named %s"), name);
7313 }
7314 }
7315
7316 return NULL;
7317 }
7318
7319 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7320 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7321 represents an unchecked union (that is, the variant part of a
7322 record that is named in an Unchecked_Union pragma). */
7323
7324 static int
7325 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7326 {
7327 char *discrim_name = ada_variant_discrim_name (var_type);
7328
7329 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7330 == NULL);
7331 }
7332
7333
7334 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7335 within a value of type OUTER_TYPE that is stored in GDB at
7336 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7337 numbering from 0) is applicable. Returns -1 if none are. */
7338
7339 int
7340 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7341 const gdb_byte *outer_valaddr)
7342 {
7343 int others_clause;
7344 int i;
7345 char *discrim_name = ada_variant_discrim_name (var_type);
7346 struct value *outer;
7347 struct value *discrim;
7348 LONGEST discrim_val;
7349
7350 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7351 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7352 if (discrim == NULL)
7353 return -1;
7354 discrim_val = value_as_long (discrim);
7355
7356 others_clause = -1;
7357 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7358 {
7359 if (ada_is_others_clause (var_type, i))
7360 others_clause = i;
7361 else if (ada_in_variant (discrim_val, var_type, i))
7362 return i;
7363 }
7364
7365 return others_clause;
7366 }
7367 \f
7368
7369
7370 /* Dynamic-Sized Records */
7371
7372 /* Strategy: The type ostensibly attached to a value with dynamic size
7373 (i.e., a size that is not statically recorded in the debugging
7374 data) does not accurately reflect the size or layout of the value.
7375 Our strategy is to convert these values to values with accurate,
7376 conventional types that are constructed on the fly. */
7377
7378 /* There is a subtle and tricky problem here. In general, we cannot
7379 determine the size of dynamic records without its data. However,
7380 the 'struct value' data structure, which GDB uses to represent
7381 quantities in the inferior process (the target), requires the size
7382 of the type at the time of its allocation in order to reserve space
7383 for GDB's internal copy of the data. That's why the
7384 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7385 rather than struct value*s.
7386
7387 However, GDB's internal history variables ($1, $2, etc.) are
7388 struct value*s containing internal copies of the data that are not, in
7389 general, the same as the data at their corresponding addresses in
7390 the target. Fortunately, the types we give to these values are all
7391 conventional, fixed-size types (as per the strategy described
7392 above), so that we don't usually have to perform the
7393 'to_fixed_xxx_type' conversions to look at their values.
7394 Unfortunately, there is one exception: if one of the internal
7395 history variables is an array whose elements are unconstrained
7396 records, then we will need to create distinct fixed types for each
7397 element selected. */
7398
7399 /* The upshot of all of this is that many routines take a (type, host
7400 address, target address) triple as arguments to represent a value.
7401 The host address, if non-null, is supposed to contain an internal
7402 copy of the relevant data; otherwise, the program is to consult the
7403 target at the target address. */
7404
7405 /* Assuming that VAL0 represents a pointer value, the result of
7406 dereferencing it. Differs from value_ind in its treatment of
7407 dynamic-sized types. */
7408
7409 struct value *
7410 ada_value_ind (struct value *val0)
7411 {
7412 struct value *val = value_ind (val0);
7413
7414 if (ada_is_tagged_type (value_type (val), 0))
7415 val = ada_tag_value_at_base_address (val);
7416
7417 return ada_to_fixed_value (val);
7418 }
7419
7420 /* The value resulting from dereferencing any "reference to"
7421 qualifiers on VAL0. */
7422
7423 static struct value *
7424 ada_coerce_ref (struct value *val0)
7425 {
7426 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7427 {
7428 struct value *val = val0;
7429
7430 val = coerce_ref (val);
7431
7432 if (ada_is_tagged_type (value_type (val), 0))
7433 val = ada_tag_value_at_base_address (val);
7434
7435 return ada_to_fixed_value (val);
7436 }
7437 else
7438 return val0;
7439 }
7440
7441 /* Return OFF rounded upward if necessary to a multiple of
7442 ALIGNMENT (a power of 2). */
7443
7444 static unsigned int
7445 align_value (unsigned int off, unsigned int alignment)
7446 {
7447 return (off + alignment - 1) & ~(alignment - 1);
7448 }
7449
7450 /* Return the bit alignment required for field #F of template type TYPE. */
7451
7452 static unsigned int
7453 field_alignment (struct type *type, int f)
7454 {
7455 const char *name = TYPE_FIELD_NAME (type, f);
7456 int len;
7457 int align_offset;
7458
7459 /* The field name should never be null, unless the debugging information
7460 is somehow malformed. In this case, we assume the field does not
7461 require any alignment. */
7462 if (name == NULL)
7463 return 1;
7464
7465 len = strlen (name);
7466
7467 if (!isdigit (name[len - 1]))
7468 return 1;
7469
7470 if (isdigit (name[len - 2]))
7471 align_offset = len - 2;
7472 else
7473 align_offset = len - 1;
7474
7475 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7476 return TARGET_CHAR_BIT;
7477
7478 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7479 }
7480
7481 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7482
7483 static struct symbol *
7484 ada_find_any_type_symbol (const char *name)
7485 {
7486 struct symbol *sym;
7487
7488 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7489 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7490 return sym;
7491
7492 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7493 return sym;
7494 }
7495
7496 /* Find a type named NAME. Ignores ambiguity. This routine will look
7497 solely for types defined by debug info, it will not search the GDB
7498 primitive types. */
7499
7500 static struct type *
7501 ada_find_any_type (const char *name)
7502 {
7503 struct symbol *sym = ada_find_any_type_symbol (name);
7504
7505 if (sym != NULL)
7506 return SYMBOL_TYPE (sym);
7507
7508 return NULL;
7509 }
7510
7511 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7512 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7513 symbol, in which case it is returned. Otherwise, this looks for
7514 symbols whose name is that of NAME_SYM suffixed with "___XR".
7515 Return symbol if found, and NULL otherwise. */
7516
7517 struct symbol *
7518 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7519 {
7520 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7521 struct symbol *sym;
7522
7523 if (strstr (name, "___XR") != NULL)
7524 return name_sym;
7525
7526 sym = find_old_style_renaming_symbol (name, block);
7527
7528 if (sym != NULL)
7529 return sym;
7530
7531 /* Not right yet. FIXME pnh 7/20/2007. */
7532 sym = ada_find_any_type_symbol (name);
7533 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7534 return sym;
7535 else
7536 return NULL;
7537 }
7538
7539 static struct symbol *
7540 find_old_style_renaming_symbol (const char *name, const struct block *block)
7541 {
7542 const struct symbol *function_sym = block_linkage_function (block);
7543 char *rename;
7544
7545 if (function_sym != NULL)
7546 {
7547 /* If the symbol is defined inside a function, NAME is not fully
7548 qualified. This means we need to prepend the function name
7549 as well as adding the ``___XR'' suffix to build the name of
7550 the associated renaming symbol. */
7551 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7552 /* Function names sometimes contain suffixes used
7553 for instance to qualify nested subprograms. When building
7554 the XR type name, we need to make sure that this suffix is
7555 not included. So do not include any suffix in the function
7556 name length below. */
7557 int function_name_len = ada_name_prefix_len (function_name);
7558 const int rename_len = function_name_len + 2 /* "__" */
7559 + strlen (name) + 6 /* "___XR\0" */ ;
7560
7561 /* Strip the suffix if necessary. */
7562 ada_remove_trailing_digits (function_name, &function_name_len);
7563 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7564 ada_remove_Xbn_suffix (function_name, &function_name_len);
7565
7566 /* Library-level functions are a special case, as GNAT adds
7567 a ``_ada_'' prefix to the function name to avoid namespace
7568 pollution. However, the renaming symbols themselves do not
7569 have this prefix, so we need to skip this prefix if present. */
7570 if (function_name_len > 5 /* "_ada_" */
7571 && strstr (function_name, "_ada_") == function_name)
7572 {
7573 function_name += 5;
7574 function_name_len -= 5;
7575 }
7576
7577 rename = (char *) alloca (rename_len * sizeof (char));
7578 strncpy (rename, function_name, function_name_len);
7579 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7580 "__%s___XR", name);
7581 }
7582 else
7583 {
7584 const int rename_len = strlen (name) + 6;
7585
7586 rename = (char *) alloca (rename_len * sizeof (char));
7587 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7588 }
7589
7590 return ada_find_any_type_symbol (rename);
7591 }
7592
7593 /* Because of GNAT encoding conventions, several GDB symbols may match a
7594 given type name. If the type denoted by TYPE0 is to be preferred to
7595 that of TYPE1 for purposes of type printing, return non-zero;
7596 otherwise return 0. */
7597
7598 int
7599 ada_prefer_type (struct type *type0, struct type *type1)
7600 {
7601 if (type1 == NULL)
7602 return 1;
7603 else if (type0 == NULL)
7604 return 0;
7605 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7606 return 1;
7607 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7608 return 0;
7609 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7610 return 1;
7611 else if (ada_is_constrained_packed_array_type (type0))
7612 return 1;
7613 else if (ada_is_array_descriptor_type (type0)
7614 && !ada_is_array_descriptor_type (type1))
7615 return 1;
7616 else
7617 {
7618 const char *type0_name = type_name_no_tag (type0);
7619 const char *type1_name = type_name_no_tag (type1);
7620
7621 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7622 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7623 return 1;
7624 }
7625 return 0;
7626 }
7627
7628 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7629 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7630
7631 const char *
7632 ada_type_name (struct type *type)
7633 {
7634 if (type == NULL)
7635 return NULL;
7636 else if (TYPE_NAME (type) != NULL)
7637 return TYPE_NAME (type);
7638 else
7639 return TYPE_TAG_NAME (type);
7640 }
7641
7642 /* Search the list of "descriptive" types associated to TYPE for a type
7643 whose name is NAME. */
7644
7645 static struct type *
7646 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7647 {
7648 struct type *result;
7649
7650 if (ada_ignore_descriptive_types_p)
7651 return NULL;
7652
7653 /* If there no descriptive-type info, then there is no parallel type
7654 to be found. */
7655 if (!HAVE_GNAT_AUX_INFO (type))
7656 return NULL;
7657
7658 result = TYPE_DESCRIPTIVE_TYPE (type);
7659 while (result != NULL)
7660 {
7661 const char *result_name = ada_type_name (result);
7662
7663 if (result_name == NULL)
7664 {
7665 warning (_("unexpected null name on descriptive type"));
7666 return NULL;
7667 }
7668
7669 /* If the names match, stop. */
7670 if (strcmp (result_name, name) == 0)
7671 break;
7672
7673 /* Otherwise, look at the next item on the list, if any. */
7674 if (HAVE_GNAT_AUX_INFO (result))
7675 result = TYPE_DESCRIPTIVE_TYPE (result);
7676 else
7677 result = NULL;
7678 }
7679
7680 /* If we didn't find a match, see whether this is a packed array. With
7681 older compilers, the descriptive type information is either absent or
7682 irrelevant when it comes to packed arrays so the above lookup fails.
7683 Fall back to using a parallel lookup by name in this case. */
7684 if (result == NULL && ada_is_constrained_packed_array_type (type))
7685 return ada_find_any_type (name);
7686
7687 return result;
7688 }
7689
7690 /* Find a parallel type to TYPE with the specified NAME, using the
7691 descriptive type taken from the debugging information, if available,
7692 and otherwise using the (slower) name-based method. */
7693
7694 static struct type *
7695 ada_find_parallel_type_with_name (struct type *type, const char *name)
7696 {
7697 struct type *result = NULL;
7698
7699 if (HAVE_GNAT_AUX_INFO (type))
7700 result = find_parallel_type_by_descriptive_type (type, name);
7701 else
7702 result = ada_find_any_type (name);
7703
7704 return result;
7705 }
7706
7707 /* Same as above, but specify the name of the parallel type by appending
7708 SUFFIX to the name of TYPE. */
7709
7710 struct type *
7711 ada_find_parallel_type (struct type *type, const char *suffix)
7712 {
7713 char *name;
7714 const char *typename = ada_type_name (type);
7715 int len;
7716
7717 if (typename == NULL)
7718 return NULL;
7719
7720 len = strlen (typename);
7721
7722 name = (char *) alloca (len + strlen (suffix) + 1);
7723
7724 strcpy (name, typename);
7725 strcpy (name + len, suffix);
7726
7727 return ada_find_parallel_type_with_name (type, name);
7728 }
7729
7730 /* If TYPE is a variable-size record type, return the corresponding template
7731 type describing its fields. Otherwise, return NULL. */
7732
7733 static struct type *
7734 dynamic_template_type (struct type *type)
7735 {
7736 type = ada_check_typedef (type);
7737
7738 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7739 || ada_type_name (type) == NULL)
7740 return NULL;
7741 else
7742 {
7743 int len = strlen (ada_type_name (type));
7744
7745 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7746 return type;
7747 else
7748 return ada_find_parallel_type (type, "___XVE");
7749 }
7750 }
7751
7752 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7753 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7754
7755 static int
7756 is_dynamic_field (struct type *templ_type, int field_num)
7757 {
7758 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7759
7760 return name != NULL
7761 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7762 && strstr (name, "___XVL") != NULL;
7763 }
7764
7765 /* The index of the variant field of TYPE, or -1 if TYPE does not
7766 represent a variant record type. */
7767
7768 static int
7769 variant_field_index (struct type *type)
7770 {
7771 int f;
7772
7773 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7774 return -1;
7775
7776 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7777 {
7778 if (ada_is_variant_part (type, f))
7779 return f;
7780 }
7781 return -1;
7782 }
7783
7784 /* A record type with no fields. */
7785
7786 static struct type *
7787 empty_record (struct type *template)
7788 {
7789 struct type *type = alloc_type_copy (template);
7790
7791 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7792 TYPE_NFIELDS (type) = 0;
7793 TYPE_FIELDS (type) = NULL;
7794 INIT_CPLUS_SPECIFIC (type);
7795 TYPE_NAME (type) = "<empty>";
7796 TYPE_TAG_NAME (type) = NULL;
7797 TYPE_LENGTH (type) = 0;
7798 return type;
7799 }
7800
7801 /* An ordinary record type (with fixed-length fields) that describes
7802 the value of type TYPE at VALADDR or ADDRESS (see comments at
7803 the beginning of this section) VAL according to GNAT conventions.
7804 DVAL0 should describe the (portion of a) record that contains any
7805 necessary discriminants. It should be NULL if value_type (VAL) is
7806 an outer-level type (i.e., as opposed to a branch of a variant.) A
7807 variant field (unless unchecked) is replaced by a particular branch
7808 of the variant.
7809
7810 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7811 length are not statically known are discarded. As a consequence,
7812 VALADDR, ADDRESS and DVAL0 are ignored.
7813
7814 NOTE: Limitations: For now, we assume that dynamic fields and
7815 variants occupy whole numbers of bytes. However, they need not be
7816 byte-aligned. */
7817
7818 struct type *
7819 ada_template_to_fixed_record_type_1 (struct type *type,
7820 const gdb_byte *valaddr,
7821 CORE_ADDR address, struct value *dval0,
7822 int keep_dynamic_fields)
7823 {
7824 struct value *mark = value_mark ();
7825 struct value *dval;
7826 struct type *rtype;
7827 int nfields, bit_len;
7828 int variant_field;
7829 long off;
7830 int fld_bit_len;
7831 int f;
7832
7833 /* Compute the number of fields in this record type that are going
7834 to be processed: unless keep_dynamic_fields, this includes only
7835 fields whose position and length are static will be processed. */
7836 if (keep_dynamic_fields)
7837 nfields = TYPE_NFIELDS (type);
7838 else
7839 {
7840 nfields = 0;
7841 while (nfields < TYPE_NFIELDS (type)
7842 && !ada_is_variant_part (type, nfields)
7843 && !is_dynamic_field (type, nfields))
7844 nfields++;
7845 }
7846
7847 rtype = alloc_type_copy (type);
7848 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7849 INIT_CPLUS_SPECIFIC (rtype);
7850 TYPE_NFIELDS (rtype) = nfields;
7851 TYPE_FIELDS (rtype) = (struct field *)
7852 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7853 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7854 TYPE_NAME (rtype) = ada_type_name (type);
7855 TYPE_TAG_NAME (rtype) = NULL;
7856 TYPE_FIXED_INSTANCE (rtype) = 1;
7857
7858 off = 0;
7859 bit_len = 0;
7860 variant_field = -1;
7861
7862 for (f = 0; f < nfields; f += 1)
7863 {
7864 off = align_value (off, field_alignment (type, f))
7865 + TYPE_FIELD_BITPOS (type, f);
7866 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7867 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7868
7869 if (ada_is_variant_part (type, f))
7870 {
7871 variant_field = f;
7872 fld_bit_len = 0;
7873 }
7874 else if (is_dynamic_field (type, f))
7875 {
7876 const gdb_byte *field_valaddr = valaddr;
7877 CORE_ADDR field_address = address;
7878 struct type *field_type =
7879 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7880
7881 if (dval0 == NULL)
7882 {
7883 /* rtype's length is computed based on the run-time
7884 value of discriminants. If the discriminants are not
7885 initialized, the type size may be completely bogus and
7886 GDB may fail to allocate a value for it. So check the
7887 size first before creating the value. */
7888 check_size (rtype);
7889 dval = value_from_contents_and_address (rtype, valaddr, address);
7890 }
7891 else
7892 dval = dval0;
7893
7894 /* If the type referenced by this field is an aligner type, we need
7895 to unwrap that aligner type, because its size might not be set.
7896 Keeping the aligner type would cause us to compute the wrong
7897 size for this field, impacting the offset of the all the fields
7898 that follow this one. */
7899 if (ada_is_aligner_type (field_type))
7900 {
7901 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7902
7903 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7904 field_address = cond_offset_target (field_address, field_offset);
7905 field_type = ada_aligned_type (field_type);
7906 }
7907
7908 field_valaddr = cond_offset_host (field_valaddr,
7909 off / TARGET_CHAR_BIT);
7910 field_address = cond_offset_target (field_address,
7911 off / TARGET_CHAR_BIT);
7912
7913 /* Get the fixed type of the field. Note that, in this case,
7914 we do not want to get the real type out of the tag: if
7915 the current field is the parent part of a tagged record,
7916 we will get the tag of the object. Clearly wrong: the real
7917 type of the parent is not the real type of the child. We
7918 would end up in an infinite loop. */
7919 field_type = ada_get_base_type (field_type);
7920 field_type = ada_to_fixed_type (field_type, field_valaddr,
7921 field_address, dval, 0);
7922 /* If the field size is already larger than the maximum
7923 object size, then the record itself will necessarily
7924 be larger than the maximum object size. We need to make
7925 this check now, because the size might be so ridiculously
7926 large (due to an uninitialized variable in the inferior)
7927 that it would cause an overflow when adding it to the
7928 record size. */
7929 check_size (field_type);
7930
7931 TYPE_FIELD_TYPE (rtype, f) = field_type;
7932 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7933 /* The multiplication can potentially overflow. But because
7934 the field length has been size-checked just above, and
7935 assuming that the maximum size is a reasonable value,
7936 an overflow should not happen in practice. So rather than
7937 adding overflow recovery code to this already complex code,
7938 we just assume that it's not going to happen. */
7939 fld_bit_len =
7940 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7941 }
7942 else
7943 {
7944 /* Note: If this field's type is a typedef, it is important
7945 to preserve the typedef layer.
7946
7947 Otherwise, we might be transforming a typedef to a fat
7948 pointer (encoding a pointer to an unconstrained array),
7949 into a basic fat pointer (encoding an unconstrained
7950 array). As both types are implemented using the same
7951 structure, the typedef is the only clue which allows us
7952 to distinguish between the two options. Stripping it
7953 would prevent us from printing this field appropriately. */
7954 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7955 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7956 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7957 fld_bit_len =
7958 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7959 else
7960 {
7961 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7962
7963 /* We need to be careful of typedefs when computing
7964 the length of our field. If this is a typedef,
7965 get the length of the target type, not the length
7966 of the typedef. */
7967 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7968 field_type = ada_typedef_target_type (field_type);
7969
7970 fld_bit_len =
7971 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7972 }
7973 }
7974 if (off + fld_bit_len > bit_len)
7975 bit_len = off + fld_bit_len;
7976 off += fld_bit_len;
7977 TYPE_LENGTH (rtype) =
7978 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7979 }
7980
7981 /* We handle the variant part, if any, at the end because of certain
7982 odd cases in which it is re-ordered so as NOT to be the last field of
7983 the record. This can happen in the presence of representation
7984 clauses. */
7985 if (variant_field >= 0)
7986 {
7987 struct type *branch_type;
7988
7989 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7990
7991 if (dval0 == NULL)
7992 dval = value_from_contents_and_address (rtype, valaddr, address);
7993 else
7994 dval = dval0;
7995
7996 branch_type =
7997 to_fixed_variant_branch_type
7998 (TYPE_FIELD_TYPE (type, variant_field),
7999 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8000 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8001 if (branch_type == NULL)
8002 {
8003 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8004 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8005 TYPE_NFIELDS (rtype) -= 1;
8006 }
8007 else
8008 {
8009 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8010 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8011 fld_bit_len =
8012 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8013 TARGET_CHAR_BIT;
8014 if (off + fld_bit_len > bit_len)
8015 bit_len = off + fld_bit_len;
8016 TYPE_LENGTH (rtype) =
8017 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8018 }
8019 }
8020
8021 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8022 should contain the alignment of that record, which should be a strictly
8023 positive value. If null or negative, then something is wrong, most
8024 probably in the debug info. In that case, we don't round up the size
8025 of the resulting type. If this record is not part of another structure,
8026 the current RTYPE length might be good enough for our purposes. */
8027 if (TYPE_LENGTH (type) <= 0)
8028 {
8029 if (TYPE_NAME (rtype))
8030 warning (_("Invalid type size for `%s' detected: %d."),
8031 TYPE_NAME (rtype), TYPE_LENGTH (type));
8032 else
8033 warning (_("Invalid type size for <unnamed> detected: %d."),
8034 TYPE_LENGTH (type));
8035 }
8036 else
8037 {
8038 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8039 TYPE_LENGTH (type));
8040 }
8041
8042 value_free_to_mark (mark);
8043 if (TYPE_LENGTH (rtype) > varsize_limit)
8044 error (_("record type with dynamic size is larger than varsize-limit"));
8045 return rtype;
8046 }
8047
8048 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8049 of 1. */
8050
8051 static struct type *
8052 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8053 CORE_ADDR address, struct value *dval0)
8054 {
8055 return ada_template_to_fixed_record_type_1 (type, valaddr,
8056 address, dval0, 1);
8057 }
8058
8059 /* An ordinary record type in which ___XVL-convention fields and
8060 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8061 static approximations, containing all possible fields. Uses
8062 no runtime values. Useless for use in values, but that's OK,
8063 since the results are used only for type determinations. Works on both
8064 structs and unions. Representation note: to save space, we memorize
8065 the result of this function in the TYPE_TARGET_TYPE of the
8066 template type. */
8067
8068 static struct type *
8069 template_to_static_fixed_type (struct type *type0)
8070 {
8071 struct type *type;
8072 int nfields;
8073 int f;
8074
8075 if (TYPE_TARGET_TYPE (type0) != NULL)
8076 return TYPE_TARGET_TYPE (type0);
8077
8078 nfields = TYPE_NFIELDS (type0);
8079 type = type0;
8080
8081 for (f = 0; f < nfields; f += 1)
8082 {
8083 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
8084 struct type *new_type;
8085
8086 if (is_dynamic_field (type0, f))
8087 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8088 else
8089 new_type = static_unwrap_type (field_type);
8090 if (type == type0 && new_type != field_type)
8091 {
8092 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8093 TYPE_CODE (type) = TYPE_CODE (type0);
8094 INIT_CPLUS_SPECIFIC (type);
8095 TYPE_NFIELDS (type) = nfields;
8096 TYPE_FIELDS (type) = (struct field *)
8097 TYPE_ALLOC (type, nfields * sizeof (struct field));
8098 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8099 sizeof (struct field) * nfields);
8100 TYPE_NAME (type) = ada_type_name (type0);
8101 TYPE_TAG_NAME (type) = NULL;
8102 TYPE_FIXED_INSTANCE (type) = 1;
8103 TYPE_LENGTH (type) = 0;
8104 }
8105 TYPE_FIELD_TYPE (type, f) = new_type;
8106 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8107 }
8108 return type;
8109 }
8110
8111 /* Given an object of type TYPE whose contents are at VALADDR and
8112 whose address in memory is ADDRESS, returns a revision of TYPE,
8113 which should be a non-dynamic-sized record, in which the variant
8114 part, if any, is replaced with the appropriate branch. Looks
8115 for discriminant values in DVAL0, which can be NULL if the record
8116 contains the necessary discriminant values. */
8117
8118 static struct type *
8119 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8120 CORE_ADDR address, struct value *dval0)
8121 {
8122 struct value *mark = value_mark ();
8123 struct value *dval;
8124 struct type *rtype;
8125 struct type *branch_type;
8126 int nfields = TYPE_NFIELDS (type);
8127 int variant_field = variant_field_index (type);
8128
8129 if (variant_field == -1)
8130 return type;
8131
8132 if (dval0 == NULL)
8133 dval = value_from_contents_and_address (type, valaddr, address);
8134 else
8135 dval = dval0;
8136
8137 rtype = alloc_type_copy (type);
8138 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8139 INIT_CPLUS_SPECIFIC (rtype);
8140 TYPE_NFIELDS (rtype) = nfields;
8141 TYPE_FIELDS (rtype) =
8142 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8143 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8144 sizeof (struct field) * nfields);
8145 TYPE_NAME (rtype) = ada_type_name (type);
8146 TYPE_TAG_NAME (rtype) = NULL;
8147 TYPE_FIXED_INSTANCE (rtype) = 1;
8148 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8149
8150 branch_type = to_fixed_variant_branch_type
8151 (TYPE_FIELD_TYPE (type, variant_field),
8152 cond_offset_host (valaddr,
8153 TYPE_FIELD_BITPOS (type, variant_field)
8154 / TARGET_CHAR_BIT),
8155 cond_offset_target (address,
8156 TYPE_FIELD_BITPOS (type, variant_field)
8157 / TARGET_CHAR_BIT), dval);
8158 if (branch_type == NULL)
8159 {
8160 int f;
8161
8162 for (f = variant_field + 1; f < nfields; f += 1)
8163 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8164 TYPE_NFIELDS (rtype) -= 1;
8165 }
8166 else
8167 {
8168 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8169 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8170 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8171 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8172 }
8173 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8174
8175 value_free_to_mark (mark);
8176 return rtype;
8177 }
8178
8179 /* An ordinary record type (with fixed-length fields) that describes
8180 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8181 beginning of this section]. Any necessary discriminants' values
8182 should be in DVAL, a record value; it may be NULL if the object
8183 at ADDR itself contains any necessary discriminant values.
8184 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8185 values from the record are needed. Except in the case that DVAL,
8186 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8187 unchecked) is replaced by a particular branch of the variant.
8188
8189 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8190 is questionable and may be removed. It can arise during the
8191 processing of an unconstrained-array-of-record type where all the
8192 variant branches have exactly the same size. This is because in
8193 such cases, the compiler does not bother to use the XVS convention
8194 when encoding the record. I am currently dubious of this
8195 shortcut and suspect the compiler should be altered. FIXME. */
8196
8197 static struct type *
8198 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8199 CORE_ADDR address, struct value *dval)
8200 {
8201 struct type *templ_type;
8202
8203 if (TYPE_FIXED_INSTANCE (type0))
8204 return type0;
8205
8206 templ_type = dynamic_template_type (type0);
8207
8208 if (templ_type != NULL)
8209 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8210 else if (variant_field_index (type0) >= 0)
8211 {
8212 if (dval == NULL && valaddr == NULL && address == 0)
8213 return type0;
8214 return to_record_with_fixed_variant_part (type0, valaddr, address,
8215 dval);
8216 }
8217 else
8218 {
8219 TYPE_FIXED_INSTANCE (type0) = 1;
8220 return type0;
8221 }
8222
8223 }
8224
8225 /* An ordinary record type (with fixed-length fields) that describes
8226 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8227 union type. Any necessary discriminants' values should be in DVAL,
8228 a record value. That is, this routine selects the appropriate
8229 branch of the union at ADDR according to the discriminant value
8230 indicated in the union's type name. Returns VAR_TYPE0 itself if
8231 it represents a variant subject to a pragma Unchecked_Union. */
8232
8233 static struct type *
8234 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8235 CORE_ADDR address, struct value *dval)
8236 {
8237 int which;
8238 struct type *templ_type;
8239 struct type *var_type;
8240
8241 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8242 var_type = TYPE_TARGET_TYPE (var_type0);
8243 else
8244 var_type = var_type0;
8245
8246 templ_type = ada_find_parallel_type (var_type, "___XVU");
8247
8248 if (templ_type != NULL)
8249 var_type = templ_type;
8250
8251 if (is_unchecked_variant (var_type, value_type (dval)))
8252 return var_type0;
8253 which =
8254 ada_which_variant_applies (var_type,
8255 value_type (dval), value_contents (dval));
8256
8257 if (which < 0)
8258 return empty_record (var_type);
8259 else if (is_dynamic_field (var_type, which))
8260 return to_fixed_record_type
8261 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8262 valaddr, address, dval);
8263 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8264 return
8265 to_fixed_record_type
8266 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8267 else
8268 return TYPE_FIELD_TYPE (var_type, which);
8269 }
8270
8271 /* Assuming that TYPE0 is an array type describing the type of a value
8272 at ADDR, and that DVAL describes a record containing any
8273 discriminants used in TYPE0, returns a type for the value that
8274 contains no dynamic components (that is, no components whose sizes
8275 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8276 true, gives an error message if the resulting type's size is over
8277 varsize_limit. */
8278
8279 static struct type *
8280 to_fixed_array_type (struct type *type0, struct value *dval,
8281 int ignore_too_big)
8282 {
8283 struct type *index_type_desc;
8284 struct type *result;
8285 int constrained_packed_array_p;
8286
8287 type0 = ada_check_typedef (type0);
8288 if (TYPE_FIXED_INSTANCE (type0))
8289 return type0;
8290
8291 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8292 if (constrained_packed_array_p)
8293 type0 = decode_constrained_packed_array_type (type0);
8294
8295 index_type_desc = ada_find_parallel_type (type0, "___XA");
8296 ada_fixup_array_indexes_type (index_type_desc);
8297 if (index_type_desc == NULL)
8298 {
8299 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8300
8301 /* NOTE: elt_type---the fixed version of elt_type0---should never
8302 depend on the contents of the array in properly constructed
8303 debugging data. */
8304 /* Create a fixed version of the array element type.
8305 We're not providing the address of an element here,
8306 and thus the actual object value cannot be inspected to do
8307 the conversion. This should not be a problem, since arrays of
8308 unconstrained objects are not allowed. In particular, all
8309 the elements of an array of a tagged type should all be of
8310 the same type specified in the debugging info. No need to
8311 consult the object tag. */
8312 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8313
8314 /* Make sure we always create a new array type when dealing with
8315 packed array types, since we're going to fix-up the array
8316 type length and element bitsize a little further down. */
8317 if (elt_type0 == elt_type && !constrained_packed_array_p)
8318 result = type0;
8319 else
8320 result = create_array_type (alloc_type_copy (type0),
8321 elt_type, TYPE_INDEX_TYPE (type0));
8322 }
8323 else
8324 {
8325 int i;
8326 struct type *elt_type0;
8327
8328 elt_type0 = type0;
8329 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8330 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8331
8332 /* NOTE: result---the fixed version of elt_type0---should never
8333 depend on the contents of the array in properly constructed
8334 debugging data. */
8335 /* Create a fixed version of the array element type.
8336 We're not providing the address of an element here,
8337 and thus the actual object value cannot be inspected to do
8338 the conversion. This should not be a problem, since arrays of
8339 unconstrained objects are not allowed. In particular, all
8340 the elements of an array of a tagged type should all be of
8341 the same type specified in the debugging info. No need to
8342 consult the object tag. */
8343 result =
8344 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8345
8346 elt_type0 = type0;
8347 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8348 {
8349 struct type *range_type =
8350 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8351
8352 result = create_array_type (alloc_type_copy (elt_type0),
8353 result, range_type);
8354 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8355 }
8356 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8357 error (_("array type with dynamic size is larger than varsize-limit"));
8358 }
8359
8360 /* We want to preserve the type name. This can be useful when
8361 trying to get the type name of a value that has already been
8362 printed (for instance, if the user did "print VAR; whatis $". */
8363 TYPE_NAME (result) = TYPE_NAME (type0);
8364
8365 if (constrained_packed_array_p)
8366 {
8367 /* So far, the resulting type has been created as if the original
8368 type was a regular (non-packed) array type. As a result, the
8369 bitsize of the array elements needs to be set again, and the array
8370 length needs to be recomputed based on that bitsize. */
8371 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8372 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8373
8374 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8375 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8376 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8377 TYPE_LENGTH (result)++;
8378 }
8379
8380 TYPE_FIXED_INSTANCE (result) = 1;
8381 return result;
8382 }
8383
8384
8385 /* A standard type (containing no dynamically sized components)
8386 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8387 DVAL describes a record containing any discriminants used in TYPE0,
8388 and may be NULL if there are none, or if the object of type TYPE at
8389 ADDRESS or in VALADDR contains these discriminants.
8390
8391 If CHECK_TAG is not null, in the case of tagged types, this function
8392 attempts to locate the object's tag and use it to compute the actual
8393 type. However, when ADDRESS is null, we cannot use it to determine the
8394 location of the tag, and therefore compute the tagged type's actual type.
8395 So we return the tagged type without consulting the tag. */
8396
8397 static struct type *
8398 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8399 CORE_ADDR address, struct value *dval, int check_tag)
8400 {
8401 type = ada_check_typedef (type);
8402 switch (TYPE_CODE (type))
8403 {
8404 default:
8405 return type;
8406 case TYPE_CODE_STRUCT:
8407 {
8408 struct type *static_type = to_static_fixed_type (type);
8409 struct type *fixed_record_type =
8410 to_fixed_record_type (type, valaddr, address, NULL);
8411
8412 /* If STATIC_TYPE is a tagged type and we know the object's address,
8413 then we can determine its tag, and compute the object's actual
8414 type from there. Note that we have to use the fixed record
8415 type (the parent part of the record may have dynamic fields
8416 and the way the location of _tag is expressed may depend on
8417 them). */
8418
8419 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8420 {
8421 struct value *tag =
8422 value_tag_from_contents_and_address
8423 (fixed_record_type,
8424 valaddr,
8425 address);
8426 struct type *real_type = type_from_tag (tag);
8427 struct value *obj =
8428 value_from_contents_and_address (fixed_record_type,
8429 valaddr,
8430 address);
8431 if (real_type != NULL)
8432 return to_fixed_record_type
8433 (real_type, NULL,
8434 value_address (ada_tag_value_at_base_address (obj)), NULL);
8435 }
8436
8437 /* Check to see if there is a parallel ___XVZ variable.
8438 If there is, then it provides the actual size of our type. */
8439 else if (ada_type_name (fixed_record_type) != NULL)
8440 {
8441 const char *name = ada_type_name (fixed_record_type);
8442 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8443 int xvz_found = 0;
8444 LONGEST size;
8445
8446 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8447 size = get_int_var_value (xvz_name, &xvz_found);
8448 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8449 {
8450 fixed_record_type = copy_type (fixed_record_type);
8451 TYPE_LENGTH (fixed_record_type) = size;
8452
8453 /* The FIXED_RECORD_TYPE may have be a stub. We have
8454 observed this when the debugging info is STABS, and
8455 apparently it is something that is hard to fix.
8456
8457 In practice, we don't need the actual type definition
8458 at all, because the presence of the XVZ variable allows us
8459 to assume that there must be a XVS type as well, which we
8460 should be able to use later, when we need the actual type
8461 definition.
8462
8463 In the meantime, pretend that the "fixed" type we are
8464 returning is NOT a stub, because this can cause trouble
8465 when using this type to create new types targeting it.
8466 Indeed, the associated creation routines often check
8467 whether the target type is a stub and will try to replace
8468 it, thus using a type with the wrong size. This, in turn,
8469 might cause the new type to have the wrong size too.
8470 Consider the case of an array, for instance, where the size
8471 of the array is computed from the number of elements in
8472 our array multiplied by the size of its element. */
8473 TYPE_STUB (fixed_record_type) = 0;
8474 }
8475 }
8476 return fixed_record_type;
8477 }
8478 case TYPE_CODE_ARRAY:
8479 return to_fixed_array_type (type, dval, 1);
8480 case TYPE_CODE_UNION:
8481 if (dval == NULL)
8482 return type;
8483 else
8484 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8485 }
8486 }
8487
8488 /* The same as ada_to_fixed_type_1, except that it preserves the type
8489 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8490
8491 The typedef layer needs be preserved in order to differentiate between
8492 arrays and array pointers when both types are implemented using the same
8493 fat pointer. In the array pointer case, the pointer is encoded as
8494 a typedef of the pointer type. For instance, considering:
8495
8496 type String_Access is access String;
8497 S1 : String_Access := null;
8498
8499 To the debugger, S1 is defined as a typedef of type String. But
8500 to the user, it is a pointer. So if the user tries to print S1,
8501 we should not dereference the array, but print the array address
8502 instead.
8503
8504 If we didn't preserve the typedef layer, we would lose the fact that
8505 the type is to be presented as a pointer (needs de-reference before
8506 being printed). And we would also use the source-level type name. */
8507
8508 struct type *
8509 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8510 CORE_ADDR address, struct value *dval, int check_tag)
8511
8512 {
8513 struct type *fixed_type =
8514 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8515
8516 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8517 then preserve the typedef layer.
8518
8519 Implementation note: We can only check the main-type portion of
8520 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8521 from TYPE now returns a type that has the same instance flags
8522 as TYPE. For instance, if TYPE is a "typedef const", and its
8523 target type is a "struct", then the typedef elimination will return
8524 a "const" version of the target type. See check_typedef for more
8525 details about how the typedef layer elimination is done.
8526
8527 brobecker/2010-11-19: It seems to me that the only case where it is
8528 useful to preserve the typedef layer is when dealing with fat pointers.
8529 Perhaps, we could add a check for that and preserve the typedef layer
8530 only in that situation. But this seems unecessary so far, probably
8531 because we call check_typedef/ada_check_typedef pretty much everywhere.
8532 */
8533 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8534 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8535 == TYPE_MAIN_TYPE (fixed_type)))
8536 return type;
8537
8538 return fixed_type;
8539 }
8540
8541 /* A standard (static-sized) type corresponding as well as possible to
8542 TYPE0, but based on no runtime data. */
8543
8544 static struct type *
8545 to_static_fixed_type (struct type *type0)
8546 {
8547 struct type *type;
8548
8549 if (type0 == NULL)
8550 return NULL;
8551
8552 if (TYPE_FIXED_INSTANCE (type0))
8553 return type0;
8554
8555 type0 = ada_check_typedef (type0);
8556
8557 switch (TYPE_CODE (type0))
8558 {
8559 default:
8560 return type0;
8561 case TYPE_CODE_STRUCT:
8562 type = dynamic_template_type (type0);
8563 if (type != NULL)
8564 return template_to_static_fixed_type (type);
8565 else
8566 return template_to_static_fixed_type (type0);
8567 case TYPE_CODE_UNION:
8568 type = ada_find_parallel_type (type0, "___XVU");
8569 if (type != NULL)
8570 return template_to_static_fixed_type (type);
8571 else
8572 return template_to_static_fixed_type (type0);
8573 }
8574 }
8575
8576 /* A static approximation of TYPE with all type wrappers removed. */
8577
8578 static struct type *
8579 static_unwrap_type (struct type *type)
8580 {
8581 if (ada_is_aligner_type (type))
8582 {
8583 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8584 if (ada_type_name (type1) == NULL)
8585 TYPE_NAME (type1) = ada_type_name (type);
8586
8587 return static_unwrap_type (type1);
8588 }
8589 else
8590 {
8591 struct type *raw_real_type = ada_get_base_type (type);
8592
8593 if (raw_real_type == type)
8594 return type;
8595 else
8596 return to_static_fixed_type (raw_real_type);
8597 }
8598 }
8599
8600 /* In some cases, incomplete and private types require
8601 cross-references that are not resolved as records (for example,
8602 type Foo;
8603 type FooP is access Foo;
8604 V: FooP;
8605 type Foo is array ...;
8606 ). In these cases, since there is no mechanism for producing
8607 cross-references to such types, we instead substitute for FooP a
8608 stub enumeration type that is nowhere resolved, and whose tag is
8609 the name of the actual type. Call these types "non-record stubs". */
8610
8611 /* A type equivalent to TYPE that is not a non-record stub, if one
8612 exists, otherwise TYPE. */
8613
8614 struct type *
8615 ada_check_typedef (struct type *type)
8616 {
8617 if (type == NULL)
8618 return NULL;
8619
8620 /* If our type is a typedef type of a fat pointer, then we're done.
8621 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8622 what allows us to distinguish between fat pointers that represent
8623 array types, and fat pointers that represent array access types
8624 (in both cases, the compiler implements them as fat pointers). */
8625 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8626 && is_thick_pntr (ada_typedef_target_type (type)))
8627 return type;
8628
8629 CHECK_TYPEDEF (type);
8630 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8631 || !TYPE_STUB (type)
8632 || TYPE_TAG_NAME (type) == NULL)
8633 return type;
8634 else
8635 {
8636 const char *name = TYPE_TAG_NAME (type);
8637 struct type *type1 = ada_find_any_type (name);
8638
8639 if (type1 == NULL)
8640 return type;
8641
8642 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8643 stubs pointing to arrays, as we don't create symbols for array
8644 types, only for the typedef-to-array types). If that's the case,
8645 strip the typedef layer. */
8646 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8647 type1 = ada_check_typedef (type1);
8648
8649 return type1;
8650 }
8651 }
8652
8653 /* A value representing the data at VALADDR/ADDRESS as described by
8654 type TYPE0, but with a standard (static-sized) type that correctly
8655 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8656 type, then return VAL0 [this feature is simply to avoid redundant
8657 creation of struct values]. */
8658
8659 static struct value *
8660 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8661 struct value *val0)
8662 {
8663 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8664
8665 if (type == type0 && val0 != NULL)
8666 return val0;
8667 else
8668 return value_from_contents_and_address (type, 0, address);
8669 }
8670
8671 /* A value representing VAL, but with a standard (static-sized) type
8672 that correctly describes it. Does not necessarily create a new
8673 value. */
8674
8675 struct value *
8676 ada_to_fixed_value (struct value *val)
8677 {
8678 val = unwrap_value (val);
8679 val = ada_to_fixed_value_create (value_type (val),
8680 value_address (val),
8681 val);
8682 return val;
8683 }
8684 \f
8685
8686 /* Attributes */
8687
8688 /* Table mapping attribute numbers to names.
8689 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8690
8691 static const char *attribute_names[] = {
8692 "<?>",
8693
8694 "first",
8695 "last",
8696 "length",
8697 "image",
8698 "max",
8699 "min",
8700 "modulus",
8701 "pos",
8702 "size",
8703 "tag",
8704 "val",
8705 0
8706 };
8707
8708 const char *
8709 ada_attribute_name (enum exp_opcode n)
8710 {
8711 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8712 return attribute_names[n - OP_ATR_FIRST + 1];
8713 else
8714 return attribute_names[0];
8715 }
8716
8717 /* Evaluate the 'POS attribute applied to ARG. */
8718
8719 static LONGEST
8720 pos_atr (struct value *arg)
8721 {
8722 struct value *val = coerce_ref (arg);
8723 struct type *type = value_type (val);
8724
8725 if (!discrete_type_p (type))
8726 error (_("'POS only defined on discrete types"));
8727
8728 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8729 {
8730 int i;
8731 LONGEST v = value_as_long (val);
8732
8733 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8734 {
8735 if (v == TYPE_FIELD_ENUMVAL (type, i))
8736 return i;
8737 }
8738 error (_("enumeration value is invalid: can't find 'POS"));
8739 }
8740 else
8741 return value_as_long (val);
8742 }
8743
8744 static struct value *
8745 value_pos_atr (struct type *type, struct value *arg)
8746 {
8747 return value_from_longest (type, pos_atr (arg));
8748 }
8749
8750 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8751
8752 static struct value *
8753 value_val_atr (struct type *type, struct value *arg)
8754 {
8755 if (!discrete_type_p (type))
8756 error (_("'VAL only defined on discrete types"));
8757 if (!integer_type_p (value_type (arg)))
8758 error (_("'VAL requires integral argument"));
8759
8760 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8761 {
8762 long pos = value_as_long (arg);
8763
8764 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8765 error (_("argument to 'VAL out of range"));
8766 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8767 }
8768 else
8769 return value_from_longest (type, value_as_long (arg));
8770 }
8771 \f
8772
8773 /* Evaluation */
8774
8775 /* True if TYPE appears to be an Ada character type.
8776 [At the moment, this is true only for Character and Wide_Character;
8777 It is a heuristic test that could stand improvement]. */
8778
8779 int
8780 ada_is_character_type (struct type *type)
8781 {
8782 const char *name;
8783
8784 /* If the type code says it's a character, then assume it really is,
8785 and don't check any further. */
8786 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8787 return 1;
8788
8789 /* Otherwise, assume it's a character type iff it is a discrete type
8790 with a known character type name. */
8791 name = ada_type_name (type);
8792 return (name != NULL
8793 && (TYPE_CODE (type) == TYPE_CODE_INT
8794 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8795 && (strcmp (name, "character") == 0
8796 || strcmp (name, "wide_character") == 0
8797 || strcmp (name, "wide_wide_character") == 0
8798 || strcmp (name, "unsigned char") == 0));
8799 }
8800
8801 /* True if TYPE appears to be an Ada string type. */
8802
8803 int
8804 ada_is_string_type (struct type *type)
8805 {
8806 type = ada_check_typedef (type);
8807 if (type != NULL
8808 && TYPE_CODE (type) != TYPE_CODE_PTR
8809 && (ada_is_simple_array_type (type)
8810 || ada_is_array_descriptor_type (type))
8811 && ada_array_arity (type) == 1)
8812 {
8813 struct type *elttype = ada_array_element_type (type, 1);
8814
8815 return ada_is_character_type (elttype);
8816 }
8817 else
8818 return 0;
8819 }
8820
8821 /* The compiler sometimes provides a parallel XVS type for a given
8822 PAD type. Normally, it is safe to follow the PAD type directly,
8823 but older versions of the compiler have a bug that causes the offset
8824 of its "F" field to be wrong. Following that field in that case
8825 would lead to incorrect results, but this can be worked around
8826 by ignoring the PAD type and using the associated XVS type instead.
8827
8828 Set to True if the debugger should trust the contents of PAD types.
8829 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8830 static int trust_pad_over_xvs = 1;
8831
8832 /* True if TYPE is a struct type introduced by the compiler to force the
8833 alignment of a value. Such types have a single field with a
8834 distinctive name. */
8835
8836 int
8837 ada_is_aligner_type (struct type *type)
8838 {
8839 type = ada_check_typedef (type);
8840
8841 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8842 return 0;
8843
8844 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8845 && TYPE_NFIELDS (type) == 1
8846 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8847 }
8848
8849 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8850 the parallel type. */
8851
8852 struct type *
8853 ada_get_base_type (struct type *raw_type)
8854 {
8855 struct type *real_type_namer;
8856 struct type *raw_real_type;
8857
8858 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8859 return raw_type;
8860
8861 if (ada_is_aligner_type (raw_type))
8862 /* The encoding specifies that we should always use the aligner type.
8863 So, even if this aligner type has an associated XVS type, we should
8864 simply ignore it.
8865
8866 According to the compiler gurus, an XVS type parallel to an aligner
8867 type may exist because of a stabs limitation. In stabs, aligner
8868 types are empty because the field has a variable-sized type, and
8869 thus cannot actually be used as an aligner type. As a result,
8870 we need the associated parallel XVS type to decode the type.
8871 Since the policy in the compiler is to not change the internal
8872 representation based on the debugging info format, we sometimes
8873 end up having a redundant XVS type parallel to the aligner type. */
8874 return raw_type;
8875
8876 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8877 if (real_type_namer == NULL
8878 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8879 || TYPE_NFIELDS (real_type_namer) != 1)
8880 return raw_type;
8881
8882 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8883 {
8884 /* This is an older encoding form where the base type needs to be
8885 looked up by name. We prefer the newer enconding because it is
8886 more efficient. */
8887 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8888 if (raw_real_type == NULL)
8889 return raw_type;
8890 else
8891 return raw_real_type;
8892 }
8893
8894 /* The field in our XVS type is a reference to the base type. */
8895 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8896 }
8897
8898 /* The type of value designated by TYPE, with all aligners removed. */
8899
8900 struct type *
8901 ada_aligned_type (struct type *type)
8902 {
8903 if (ada_is_aligner_type (type))
8904 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8905 else
8906 return ada_get_base_type (type);
8907 }
8908
8909
8910 /* The address of the aligned value in an object at address VALADDR
8911 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8912
8913 const gdb_byte *
8914 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8915 {
8916 if (ada_is_aligner_type (type))
8917 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8918 valaddr +
8919 TYPE_FIELD_BITPOS (type,
8920 0) / TARGET_CHAR_BIT);
8921 else
8922 return valaddr;
8923 }
8924
8925
8926
8927 /* The printed representation of an enumeration literal with encoded
8928 name NAME. The value is good to the next call of ada_enum_name. */
8929 const char *
8930 ada_enum_name (const char *name)
8931 {
8932 static char *result;
8933 static size_t result_len = 0;
8934 char *tmp;
8935
8936 /* First, unqualify the enumeration name:
8937 1. Search for the last '.' character. If we find one, then skip
8938 all the preceding characters, the unqualified name starts
8939 right after that dot.
8940 2. Otherwise, we may be debugging on a target where the compiler
8941 translates dots into "__". Search forward for double underscores,
8942 but stop searching when we hit an overloading suffix, which is
8943 of the form "__" followed by digits. */
8944
8945 tmp = strrchr (name, '.');
8946 if (tmp != NULL)
8947 name = tmp + 1;
8948 else
8949 {
8950 while ((tmp = strstr (name, "__")) != NULL)
8951 {
8952 if (isdigit (tmp[2]))
8953 break;
8954 else
8955 name = tmp + 2;
8956 }
8957 }
8958
8959 if (name[0] == 'Q')
8960 {
8961 int v;
8962
8963 if (name[1] == 'U' || name[1] == 'W')
8964 {
8965 if (sscanf (name + 2, "%x", &v) != 1)
8966 return name;
8967 }
8968 else
8969 return name;
8970
8971 GROW_VECT (result, result_len, 16);
8972 if (isascii (v) && isprint (v))
8973 xsnprintf (result, result_len, "'%c'", v);
8974 else if (name[1] == 'U')
8975 xsnprintf (result, result_len, "[\"%02x\"]", v);
8976 else
8977 xsnprintf (result, result_len, "[\"%04x\"]", v);
8978
8979 return result;
8980 }
8981 else
8982 {
8983 tmp = strstr (name, "__");
8984 if (tmp == NULL)
8985 tmp = strstr (name, "$");
8986 if (tmp != NULL)
8987 {
8988 GROW_VECT (result, result_len, tmp - name + 1);
8989 strncpy (result, name, tmp - name);
8990 result[tmp - name] = '\0';
8991 return result;
8992 }
8993
8994 return name;
8995 }
8996 }
8997
8998 /* Evaluate the subexpression of EXP starting at *POS as for
8999 evaluate_type, updating *POS to point just past the evaluated
9000 expression. */
9001
9002 static struct value *
9003 evaluate_subexp_type (struct expression *exp, int *pos)
9004 {
9005 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9006 }
9007
9008 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9009 value it wraps. */
9010
9011 static struct value *
9012 unwrap_value (struct value *val)
9013 {
9014 struct type *type = ada_check_typedef (value_type (val));
9015
9016 if (ada_is_aligner_type (type))
9017 {
9018 struct value *v = ada_value_struct_elt (val, "F", 0);
9019 struct type *val_type = ada_check_typedef (value_type (v));
9020
9021 if (ada_type_name (val_type) == NULL)
9022 TYPE_NAME (val_type) = ada_type_name (type);
9023
9024 return unwrap_value (v);
9025 }
9026 else
9027 {
9028 struct type *raw_real_type =
9029 ada_check_typedef (ada_get_base_type (type));
9030
9031 /* If there is no parallel XVS or XVE type, then the value is
9032 already unwrapped. Return it without further modification. */
9033 if ((type == raw_real_type)
9034 && ada_find_parallel_type (type, "___XVE") == NULL)
9035 return val;
9036
9037 return
9038 coerce_unspec_val_to_type
9039 (val, ada_to_fixed_type (raw_real_type, 0,
9040 value_address (val),
9041 NULL, 1));
9042 }
9043 }
9044
9045 static struct value *
9046 cast_to_fixed (struct type *type, struct value *arg)
9047 {
9048 LONGEST val;
9049
9050 if (type == value_type (arg))
9051 return arg;
9052 else if (ada_is_fixed_point_type (value_type (arg)))
9053 val = ada_float_to_fixed (type,
9054 ada_fixed_to_float (value_type (arg),
9055 value_as_long (arg)));
9056 else
9057 {
9058 DOUBLEST argd = value_as_double (arg);
9059
9060 val = ada_float_to_fixed (type, argd);
9061 }
9062
9063 return value_from_longest (type, val);
9064 }
9065
9066 static struct value *
9067 cast_from_fixed (struct type *type, struct value *arg)
9068 {
9069 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9070 value_as_long (arg));
9071
9072 return value_from_double (type, val);
9073 }
9074
9075 /* Given two array types T1 and T2, return nonzero iff both arrays
9076 contain the same number of elements. */
9077
9078 static int
9079 ada_same_array_size_p (struct type *t1, struct type *t2)
9080 {
9081 LONGEST lo1, hi1, lo2, hi2;
9082
9083 /* Get the array bounds in order to verify that the size of
9084 the two arrays match. */
9085 if (!get_array_bounds (t1, &lo1, &hi1)
9086 || !get_array_bounds (t2, &lo2, &hi2))
9087 error (_("unable to determine array bounds"));
9088
9089 /* To make things easier for size comparison, normalize a bit
9090 the case of empty arrays by making sure that the difference
9091 between upper bound and lower bound is always -1. */
9092 if (lo1 > hi1)
9093 hi1 = lo1 - 1;
9094 if (lo2 > hi2)
9095 hi2 = lo2 - 1;
9096
9097 return (hi1 - lo1 == hi2 - lo2);
9098 }
9099
9100 /* Assuming that VAL is an array of integrals, and TYPE represents
9101 an array with the same number of elements, but with wider integral
9102 elements, return an array "casted" to TYPE. In practice, this
9103 means that the returned array is built by casting each element
9104 of the original array into TYPE's (wider) element type. */
9105
9106 static struct value *
9107 ada_promote_array_of_integrals (struct type *type, struct value *val)
9108 {
9109 struct type *elt_type = TYPE_TARGET_TYPE (type);
9110 LONGEST lo, hi;
9111 struct value *res;
9112 LONGEST i;
9113
9114 /* Verify that both val and type are arrays of scalars, and
9115 that the size of val's elements is smaller than the size
9116 of type's element. */
9117 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9118 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9119 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9120 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9121 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9122 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9123
9124 if (!get_array_bounds (type, &lo, &hi))
9125 error (_("unable to determine array bounds"));
9126
9127 res = allocate_value (type);
9128
9129 /* Promote each array element. */
9130 for (i = 0; i < hi - lo + 1; i++)
9131 {
9132 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9133
9134 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9135 value_contents_all (elt), TYPE_LENGTH (elt_type));
9136 }
9137
9138 return res;
9139 }
9140
9141 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9142 return the converted value. */
9143
9144 static struct value *
9145 coerce_for_assign (struct type *type, struct value *val)
9146 {
9147 struct type *type2 = value_type (val);
9148
9149 if (type == type2)
9150 return val;
9151
9152 type2 = ada_check_typedef (type2);
9153 type = ada_check_typedef (type);
9154
9155 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9156 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9157 {
9158 val = ada_value_ind (val);
9159 type2 = value_type (val);
9160 }
9161
9162 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9163 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9164 {
9165 if (!ada_same_array_size_p (type, type2))
9166 error (_("cannot assign arrays of different length"));
9167
9168 if (is_integral_type (TYPE_TARGET_TYPE (type))
9169 && is_integral_type (TYPE_TARGET_TYPE (type2))
9170 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9171 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9172 {
9173 /* Allow implicit promotion of the array elements to
9174 a wider type. */
9175 return ada_promote_array_of_integrals (type, val);
9176 }
9177
9178 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9179 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9180 error (_("Incompatible types in assignment"));
9181 deprecated_set_value_type (val, type);
9182 }
9183 return val;
9184 }
9185
9186 static struct value *
9187 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9188 {
9189 struct value *val;
9190 struct type *type1, *type2;
9191 LONGEST v, v1, v2;
9192
9193 arg1 = coerce_ref (arg1);
9194 arg2 = coerce_ref (arg2);
9195 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9196 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9197
9198 if (TYPE_CODE (type1) != TYPE_CODE_INT
9199 || TYPE_CODE (type2) != TYPE_CODE_INT)
9200 return value_binop (arg1, arg2, op);
9201
9202 switch (op)
9203 {
9204 case BINOP_MOD:
9205 case BINOP_DIV:
9206 case BINOP_REM:
9207 break;
9208 default:
9209 return value_binop (arg1, arg2, op);
9210 }
9211
9212 v2 = value_as_long (arg2);
9213 if (v2 == 0)
9214 error (_("second operand of %s must not be zero."), op_string (op));
9215
9216 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9217 return value_binop (arg1, arg2, op);
9218
9219 v1 = value_as_long (arg1);
9220 switch (op)
9221 {
9222 case BINOP_DIV:
9223 v = v1 / v2;
9224 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9225 v += v > 0 ? -1 : 1;
9226 break;
9227 case BINOP_REM:
9228 v = v1 % v2;
9229 if (v * v1 < 0)
9230 v -= v2;
9231 break;
9232 default:
9233 /* Should not reach this point. */
9234 v = 0;
9235 }
9236
9237 val = allocate_value (type1);
9238 store_unsigned_integer (value_contents_raw (val),
9239 TYPE_LENGTH (value_type (val)),
9240 gdbarch_byte_order (get_type_arch (type1)), v);
9241 return val;
9242 }
9243
9244 static int
9245 ada_value_equal (struct value *arg1, struct value *arg2)
9246 {
9247 if (ada_is_direct_array_type (value_type (arg1))
9248 || ada_is_direct_array_type (value_type (arg2)))
9249 {
9250 /* Automatically dereference any array reference before
9251 we attempt to perform the comparison. */
9252 arg1 = ada_coerce_ref (arg1);
9253 arg2 = ada_coerce_ref (arg2);
9254
9255 arg1 = ada_coerce_to_simple_array (arg1);
9256 arg2 = ada_coerce_to_simple_array (arg2);
9257 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9258 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9259 error (_("Attempt to compare array with non-array"));
9260 /* FIXME: The following works only for types whose
9261 representations use all bits (no padding or undefined bits)
9262 and do not have user-defined equality. */
9263 return
9264 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9265 && memcmp (value_contents (arg1), value_contents (arg2),
9266 TYPE_LENGTH (value_type (arg1))) == 0;
9267 }
9268 return value_equal (arg1, arg2);
9269 }
9270
9271 /* Total number of component associations in the aggregate starting at
9272 index PC in EXP. Assumes that index PC is the start of an
9273 OP_AGGREGATE. */
9274
9275 static int
9276 num_component_specs (struct expression *exp, int pc)
9277 {
9278 int n, m, i;
9279
9280 m = exp->elts[pc + 1].longconst;
9281 pc += 3;
9282 n = 0;
9283 for (i = 0; i < m; i += 1)
9284 {
9285 switch (exp->elts[pc].opcode)
9286 {
9287 default:
9288 n += 1;
9289 break;
9290 case OP_CHOICES:
9291 n += exp->elts[pc + 1].longconst;
9292 break;
9293 }
9294 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9295 }
9296 return n;
9297 }
9298
9299 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9300 component of LHS (a simple array or a record), updating *POS past
9301 the expression, assuming that LHS is contained in CONTAINER. Does
9302 not modify the inferior's memory, nor does it modify LHS (unless
9303 LHS == CONTAINER). */
9304
9305 static void
9306 assign_component (struct value *container, struct value *lhs, LONGEST index,
9307 struct expression *exp, int *pos)
9308 {
9309 struct value *mark = value_mark ();
9310 struct value *elt;
9311
9312 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9313 {
9314 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9315 struct value *index_val = value_from_longest (index_type, index);
9316
9317 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9318 }
9319 else
9320 {
9321 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9322 elt = ada_to_fixed_value (elt);
9323 }
9324
9325 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9326 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9327 else
9328 value_assign_to_component (container, elt,
9329 ada_evaluate_subexp (NULL, exp, pos,
9330 EVAL_NORMAL));
9331
9332 value_free_to_mark (mark);
9333 }
9334
9335 /* Assuming that LHS represents an lvalue having a record or array
9336 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9337 of that aggregate's value to LHS, advancing *POS past the
9338 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9339 lvalue containing LHS (possibly LHS itself). Does not modify
9340 the inferior's memory, nor does it modify the contents of
9341 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9342
9343 static struct value *
9344 assign_aggregate (struct value *container,
9345 struct value *lhs, struct expression *exp,
9346 int *pos, enum noside noside)
9347 {
9348 struct type *lhs_type;
9349 int n = exp->elts[*pos+1].longconst;
9350 LONGEST low_index, high_index;
9351 int num_specs;
9352 LONGEST *indices;
9353 int max_indices, num_indices;
9354 int i;
9355
9356 *pos += 3;
9357 if (noside != EVAL_NORMAL)
9358 {
9359 for (i = 0; i < n; i += 1)
9360 ada_evaluate_subexp (NULL, exp, pos, noside);
9361 return container;
9362 }
9363
9364 container = ada_coerce_ref (container);
9365 if (ada_is_direct_array_type (value_type (container)))
9366 container = ada_coerce_to_simple_array (container);
9367 lhs = ada_coerce_ref (lhs);
9368 if (!deprecated_value_modifiable (lhs))
9369 error (_("Left operand of assignment is not a modifiable lvalue."));
9370
9371 lhs_type = value_type (lhs);
9372 if (ada_is_direct_array_type (lhs_type))
9373 {
9374 lhs = ada_coerce_to_simple_array (lhs);
9375 lhs_type = value_type (lhs);
9376 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9377 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9378 }
9379 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9380 {
9381 low_index = 0;
9382 high_index = num_visible_fields (lhs_type) - 1;
9383 }
9384 else
9385 error (_("Left-hand side must be array or record."));
9386
9387 num_specs = num_component_specs (exp, *pos - 3);
9388 max_indices = 4 * num_specs + 4;
9389 indices = alloca (max_indices * sizeof (indices[0]));
9390 indices[0] = indices[1] = low_index - 1;
9391 indices[2] = indices[3] = high_index + 1;
9392 num_indices = 4;
9393
9394 for (i = 0; i < n; i += 1)
9395 {
9396 switch (exp->elts[*pos].opcode)
9397 {
9398 case OP_CHOICES:
9399 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9400 &num_indices, max_indices,
9401 low_index, high_index);
9402 break;
9403 case OP_POSITIONAL:
9404 aggregate_assign_positional (container, lhs, exp, pos, indices,
9405 &num_indices, max_indices,
9406 low_index, high_index);
9407 break;
9408 case OP_OTHERS:
9409 if (i != n-1)
9410 error (_("Misplaced 'others' clause"));
9411 aggregate_assign_others (container, lhs, exp, pos, indices,
9412 num_indices, low_index, high_index);
9413 break;
9414 default:
9415 error (_("Internal error: bad aggregate clause"));
9416 }
9417 }
9418
9419 return container;
9420 }
9421
9422 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9423 construct at *POS, updating *POS past the construct, given that
9424 the positions are relative to lower bound LOW, where HIGH is the
9425 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9426 updating *NUM_INDICES as needed. CONTAINER is as for
9427 assign_aggregate. */
9428 static void
9429 aggregate_assign_positional (struct value *container,
9430 struct value *lhs, struct expression *exp,
9431 int *pos, LONGEST *indices, int *num_indices,
9432 int max_indices, LONGEST low, LONGEST high)
9433 {
9434 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9435
9436 if (ind - 1 == high)
9437 warning (_("Extra components in aggregate ignored."));
9438 if (ind <= high)
9439 {
9440 add_component_interval (ind, ind, indices, num_indices, max_indices);
9441 *pos += 3;
9442 assign_component (container, lhs, ind, exp, pos);
9443 }
9444 else
9445 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9446 }
9447
9448 /* Assign into the components of LHS indexed by the OP_CHOICES
9449 construct at *POS, updating *POS past the construct, given that
9450 the allowable indices are LOW..HIGH. Record the indices assigned
9451 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9452 needed. CONTAINER is as for assign_aggregate. */
9453 static void
9454 aggregate_assign_from_choices (struct value *container,
9455 struct value *lhs, struct expression *exp,
9456 int *pos, LONGEST *indices, int *num_indices,
9457 int max_indices, LONGEST low, LONGEST high)
9458 {
9459 int j;
9460 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9461 int choice_pos, expr_pc;
9462 int is_array = ada_is_direct_array_type (value_type (lhs));
9463
9464 choice_pos = *pos += 3;
9465
9466 for (j = 0; j < n_choices; j += 1)
9467 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9468 expr_pc = *pos;
9469 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9470
9471 for (j = 0; j < n_choices; j += 1)
9472 {
9473 LONGEST lower, upper;
9474 enum exp_opcode op = exp->elts[choice_pos].opcode;
9475
9476 if (op == OP_DISCRETE_RANGE)
9477 {
9478 choice_pos += 1;
9479 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9480 EVAL_NORMAL));
9481 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9482 EVAL_NORMAL));
9483 }
9484 else if (is_array)
9485 {
9486 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9487 EVAL_NORMAL));
9488 upper = lower;
9489 }
9490 else
9491 {
9492 int ind;
9493 const char *name;
9494
9495 switch (op)
9496 {
9497 case OP_NAME:
9498 name = &exp->elts[choice_pos + 2].string;
9499 break;
9500 case OP_VAR_VALUE:
9501 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9502 break;
9503 default:
9504 error (_("Invalid record component association."));
9505 }
9506 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9507 ind = 0;
9508 if (! find_struct_field (name, value_type (lhs), 0,
9509 NULL, NULL, NULL, NULL, &ind))
9510 error (_("Unknown component name: %s."), name);
9511 lower = upper = ind;
9512 }
9513
9514 if (lower <= upper && (lower < low || upper > high))
9515 error (_("Index in component association out of bounds."));
9516
9517 add_component_interval (lower, upper, indices, num_indices,
9518 max_indices);
9519 while (lower <= upper)
9520 {
9521 int pos1;
9522
9523 pos1 = expr_pc;
9524 assign_component (container, lhs, lower, exp, &pos1);
9525 lower += 1;
9526 }
9527 }
9528 }
9529
9530 /* Assign the value of the expression in the OP_OTHERS construct in
9531 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9532 have not been previously assigned. The index intervals already assigned
9533 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9534 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9535 static void
9536 aggregate_assign_others (struct value *container,
9537 struct value *lhs, struct expression *exp,
9538 int *pos, LONGEST *indices, int num_indices,
9539 LONGEST low, LONGEST high)
9540 {
9541 int i;
9542 int expr_pc = *pos + 1;
9543
9544 for (i = 0; i < num_indices - 2; i += 2)
9545 {
9546 LONGEST ind;
9547
9548 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9549 {
9550 int localpos;
9551
9552 localpos = expr_pc;
9553 assign_component (container, lhs, ind, exp, &localpos);
9554 }
9555 }
9556 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9557 }
9558
9559 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9560 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9561 modifying *SIZE as needed. It is an error if *SIZE exceeds
9562 MAX_SIZE. The resulting intervals do not overlap. */
9563 static void
9564 add_component_interval (LONGEST low, LONGEST high,
9565 LONGEST* indices, int *size, int max_size)
9566 {
9567 int i, j;
9568
9569 for (i = 0; i < *size; i += 2) {
9570 if (high >= indices[i] && low <= indices[i + 1])
9571 {
9572 int kh;
9573
9574 for (kh = i + 2; kh < *size; kh += 2)
9575 if (high < indices[kh])
9576 break;
9577 if (low < indices[i])
9578 indices[i] = low;
9579 indices[i + 1] = indices[kh - 1];
9580 if (high > indices[i + 1])
9581 indices[i + 1] = high;
9582 memcpy (indices + i + 2, indices + kh, *size - kh);
9583 *size -= kh - i - 2;
9584 return;
9585 }
9586 else if (high < indices[i])
9587 break;
9588 }
9589
9590 if (*size == max_size)
9591 error (_("Internal error: miscounted aggregate components."));
9592 *size += 2;
9593 for (j = *size-1; j >= i+2; j -= 1)
9594 indices[j] = indices[j - 2];
9595 indices[i] = low;
9596 indices[i + 1] = high;
9597 }
9598
9599 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9600 is different. */
9601
9602 static struct value *
9603 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9604 {
9605 if (type == ada_check_typedef (value_type (arg2)))
9606 return arg2;
9607
9608 if (ada_is_fixed_point_type (type))
9609 return (cast_to_fixed (type, arg2));
9610
9611 if (ada_is_fixed_point_type (value_type (arg2)))
9612 return cast_from_fixed (type, arg2);
9613
9614 return value_cast (type, arg2);
9615 }
9616
9617 /* Evaluating Ada expressions, and printing their result.
9618 ------------------------------------------------------
9619
9620 1. Introduction:
9621 ----------------
9622
9623 We usually evaluate an Ada expression in order to print its value.
9624 We also evaluate an expression in order to print its type, which
9625 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9626 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9627 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9628 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9629 similar.
9630
9631 Evaluating expressions is a little more complicated for Ada entities
9632 than it is for entities in languages such as C. The main reason for
9633 this is that Ada provides types whose definition might be dynamic.
9634 One example of such types is variant records. Or another example
9635 would be an array whose bounds can only be known at run time.
9636
9637 The following description is a general guide as to what should be
9638 done (and what should NOT be done) in order to evaluate an expression
9639 involving such types, and when. This does not cover how the semantic
9640 information is encoded by GNAT as this is covered separatly. For the
9641 document used as the reference for the GNAT encoding, see exp_dbug.ads
9642 in the GNAT sources.
9643
9644 Ideally, we should embed each part of this description next to its
9645 associated code. Unfortunately, the amount of code is so vast right
9646 now that it's hard to see whether the code handling a particular
9647 situation might be duplicated or not. One day, when the code is
9648 cleaned up, this guide might become redundant with the comments
9649 inserted in the code, and we might want to remove it.
9650
9651 2. ``Fixing'' an Entity, the Simple Case:
9652 -----------------------------------------
9653
9654 When evaluating Ada expressions, the tricky issue is that they may
9655 reference entities whose type contents and size are not statically
9656 known. Consider for instance a variant record:
9657
9658 type Rec (Empty : Boolean := True) is record
9659 case Empty is
9660 when True => null;
9661 when False => Value : Integer;
9662 end case;
9663 end record;
9664 Yes : Rec := (Empty => False, Value => 1);
9665 No : Rec := (empty => True);
9666
9667 The size and contents of that record depends on the value of the
9668 descriminant (Rec.Empty). At this point, neither the debugging
9669 information nor the associated type structure in GDB are able to
9670 express such dynamic types. So what the debugger does is to create
9671 "fixed" versions of the type that applies to the specific object.
9672 We also informally refer to this opperation as "fixing" an object,
9673 which means creating its associated fixed type.
9674
9675 Example: when printing the value of variable "Yes" above, its fixed
9676 type would look like this:
9677
9678 type Rec is record
9679 Empty : Boolean;
9680 Value : Integer;
9681 end record;
9682
9683 On the other hand, if we printed the value of "No", its fixed type
9684 would become:
9685
9686 type Rec is record
9687 Empty : Boolean;
9688 end record;
9689
9690 Things become a little more complicated when trying to fix an entity
9691 with a dynamic type that directly contains another dynamic type,
9692 such as an array of variant records, for instance. There are
9693 two possible cases: Arrays, and records.
9694
9695 3. ``Fixing'' Arrays:
9696 ---------------------
9697
9698 The type structure in GDB describes an array in terms of its bounds,
9699 and the type of its elements. By design, all elements in the array
9700 have the same type and we cannot represent an array of variant elements
9701 using the current type structure in GDB. When fixing an array,
9702 we cannot fix the array element, as we would potentially need one
9703 fixed type per element of the array. As a result, the best we can do
9704 when fixing an array is to produce an array whose bounds and size
9705 are correct (allowing us to read it from memory), but without having
9706 touched its element type. Fixing each element will be done later,
9707 when (if) necessary.
9708
9709 Arrays are a little simpler to handle than records, because the same
9710 amount of memory is allocated for each element of the array, even if
9711 the amount of space actually used by each element differs from element
9712 to element. Consider for instance the following array of type Rec:
9713
9714 type Rec_Array is array (1 .. 2) of Rec;
9715
9716 The actual amount of memory occupied by each element might be different
9717 from element to element, depending on the value of their discriminant.
9718 But the amount of space reserved for each element in the array remains
9719 fixed regardless. So we simply need to compute that size using
9720 the debugging information available, from which we can then determine
9721 the array size (we multiply the number of elements of the array by
9722 the size of each element).
9723
9724 The simplest case is when we have an array of a constrained element
9725 type. For instance, consider the following type declarations:
9726
9727 type Bounded_String (Max_Size : Integer) is
9728 Length : Integer;
9729 Buffer : String (1 .. Max_Size);
9730 end record;
9731 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9732
9733 In this case, the compiler describes the array as an array of
9734 variable-size elements (identified by its XVS suffix) for which
9735 the size can be read in the parallel XVZ variable.
9736
9737 In the case of an array of an unconstrained element type, the compiler
9738 wraps the array element inside a private PAD type. This type should not
9739 be shown to the user, and must be "unwrap"'ed before printing. Note
9740 that we also use the adjective "aligner" in our code to designate
9741 these wrapper types.
9742
9743 In some cases, the size allocated for each element is statically
9744 known. In that case, the PAD type already has the correct size,
9745 and the array element should remain unfixed.
9746
9747 But there are cases when this size is not statically known.
9748 For instance, assuming that "Five" is an integer variable:
9749
9750 type Dynamic is array (1 .. Five) of Integer;
9751 type Wrapper (Has_Length : Boolean := False) is record
9752 Data : Dynamic;
9753 case Has_Length is
9754 when True => Length : Integer;
9755 when False => null;
9756 end case;
9757 end record;
9758 type Wrapper_Array is array (1 .. 2) of Wrapper;
9759
9760 Hello : Wrapper_Array := (others => (Has_Length => True,
9761 Data => (others => 17),
9762 Length => 1));
9763
9764
9765 The debugging info would describe variable Hello as being an
9766 array of a PAD type. The size of that PAD type is not statically
9767 known, but can be determined using a parallel XVZ variable.
9768 In that case, a copy of the PAD type with the correct size should
9769 be used for the fixed array.
9770
9771 3. ``Fixing'' record type objects:
9772 ----------------------------------
9773
9774 Things are slightly different from arrays in the case of dynamic
9775 record types. In this case, in order to compute the associated
9776 fixed type, we need to determine the size and offset of each of
9777 its components. This, in turn, requires us to compute the fixed
9778 type of each of these components.
9779
9780 Consider for instance the example:
9781
9782 type Bounded_String (Max_Size : Natural) is record
9783 Str : String (1 .. Max_Size);
9784 Length : Natural;
9785 end record;
9786 My_String : Bounded_String (Max_Size => 10);
9787
9788 In that case, the position of field "Length" depends on the size
9789 of field Str, which itself depends on the value of the Max_Size
9790 discriminant. In order to fix the type of variable My_String,
9791 we need to fix the type of field Str. Therefore, fixing a variant
9792 record requires us to fix each of its components.
9793
9794 However, if a component does not have a dynamic size, the component
9795 should not be fixed. In particular, fields that use a PAD type
9796 should not fixed. Here is an example where this might happen
9797 (assuming type Rec above):
9798
9799 type Container (Big : Boolean) is record
9800 First : Rec;
9801 After : Integer;
9802 case Big is
9803 when True => Another : Integer;
9804 when False => null;
9805 end case;
9806 end record;
9807 My_Container : Container := (Big => False,
9808 First => (Empty => True),
9809 After => 42);
9810
9811 In that example, the compiler creates a PAD type for component First,
9812 whose size is constant, and then positions the component After just
9813 right after it. The offset of component After is therefore constant
9814 in this case.
9815
9816 The debugger computes the position of each field based on an algorithm
9817 that uses, among other things, the actual position and size of the field
9818 preceding it. Let's now imagine that the user is trying to print
9819 the value of My_Container. If the type fixing was recursive, we would
9820 end up computing the offset of field After based on the size of the
9821 fixed version of field First. And since in our example First has
9822 only one actual field, the size of the fixed type is actually smaller
9823 than the amount of space allocated to that field, and thus we would
9824 compute the wrong offset of field After.
9825
9826 To make things more complicated, we need to watch out for dynamic
9827 components of variant records (identified by the ___XVL suffix in
9828 the component name). Even if the target type is a PAD type, the size
9829 of that type might not be statically known. So the PAD type needs
9830 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9831 we might end up with the wrong size for our component. This can be
9832 observed with the following type declarations:
9833
9834 type Octal is new Integer range 0 .. 7;
9835 type Octal_Array is array (Positive range <>) of Octal;
9836 pragma Pack (Octal_Array);
9837
9838 type Octal_Buffer (Size : Positive) is record
9839 Buffer : Octal_Array (1 .. Size);
9840 Length : Integer;
9841 end record;
9842
9843 In that case, Buffer is a PAD type whose size is unset and needs
9844 to be computed by fixing the unwrapped type.
9845
9846 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9847 ----------------------------------------------------------
9848
9849 Lastly, when should the sub-elements of an entity that remained unfixed
9850 thus far, be actually fixed?
9851
9852 The answer is: Only when referencing that element. For instance
9853 when selecting one component of a record, this specific component
9854 should be fixed at that point in time. Or when printing the value
9855 of a record, each component should be fixed before its value gets
9856 printed. Similarly for arrays, the element of the array should be
9857 fixed when printing each element of the array, or when extracting
9858 one element out of that array. On the other hand, fixing should
9859 not be performed on the elements when taking a slice of an array!
9860
9861 Note that one of the side-effects of miscomputing the offset and
9862 size of each field is that we end up also miscomputing the size
9863 of the containing type. This can have adverse results when computing
9864 the value of an entity. GDB fetches the value of an entity based
9865 on the size of its type, and thus a wrong size causes GDB to fetch
9866 the wrong amount of memory. In the case where the computed size is
9867 too small, GDB fetches too little data to print the value of our
9868 entiry. Results in this case as unpredicatble, as we usually read
9869 past the buffer containing the data =:-o. */
9870
9871 /* Implement the evaluate_exp routine in the exp_descriptor structure
9872 for the Ada language. */
9873
9874 static struct value *
9875 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9876 int *pos, enum noside noside)
9877 {
9878 enum exp_opcode op;
9879 int tem;
9880 int pc;
9881 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9882 struct type *type;
9883 int nargs, oplen;
9884 struct value **argvec;
9885
9886 pc = *pos;
9887 *pos += 1;
9888 op = exp->elts[pc].opcode;
9889
9890 switch (op)
9891 {
9892 default:
9893 *pos -= 1;
9894 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9895
9896 if (noside == EVAL_NORMAL)
9897 arg1 = unwrap_value (arg1);
9898
9899 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9900 then we need to perform the conversion manually, because
9901 evaluate_subexp_standard doesn't do it. This conversion is
9902 necessary in Ada because the different kinds of float/fixed
9903 types in Ada have different representations.
9904
9905 Similarly, we need to perform the conversion from OP_LONG
9906 ourselves. */
9907 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9908 arg1 = ada_value_cast (expect_type, arg1, noside);
9909
9910 return arg1;
9911
9912 case OP_STRING:
9913 {
9914 struct value *result;
9915
9916 *pos -= 1;
9917 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9918 /* The result type will have code OP_STRING, bashed there from
9919 OP_ARRAY. Bash it back. */
9920 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9921 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9922 return result;
9923 }
9924
9925 case UNOP_CAST:
9926 (*pos) += 2;
9927 type = exp->elts[pc + 1].type;
9928 arg1 = evaluate_subexp (type, exp, pos, noside);
9929 if (noside == EVAL_SKIP)
9930 goto nosideret;
9931 arg1 = ada_value_cast (type, arg1, noside);
9932 return arg1;
9933
9934 case UNOP_QUAL:
9935 (*pos) += 2;
9936 type = exp->elts[pc + 1].type;
9937 return ada_evaluate_subexp (type, exp, pos, noside);
9938
9939 case BINOP_ASSIGN:
9940 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9941 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9942 {
9943 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9944 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9945 return arg1;
9946 return ada_value_assign (arg1, arg1);
9947 }
9948 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9949 except if the lhs of our assignment is a convenience variable.
9950 In the case of assigning to a convenience variable, the lhs
9951 should be exactly the result of the evaluation of the rhs. */
9952 type = value_type (arg1);
9953 if (VALUE_LVAL (arg1) == lval_internalvar)
9954 type = NULL;
9955 arg2 = evaluate_subexp (type, exp, pos, noside);
9956 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9957 return arg1;
9958 if (ada_is_fixed_point_type (value_type (arg1)))
9959 arg2 = cast_to_fixed (value_type (arg1), arg2);
9960 else if (ada_is_fixed_point_type (value_type (arg2)))
9961 error
9962 (_("Fixed-point values must be assigned to fixed-point variables"));
9963 else
9964 arg2 = coerce_for_assign (value_type (arg1), arg2);
9965 return ada_value_assign (arg1, arg2);
9966
9967 case BINOP_ADD:
9968 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9969 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9970 if (noside == EVAL_SKIP)
9971 goto nosideret;
9972 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9973 return (value_from_longest
9974 (value_type (arg1),
9975 value_as_long (arg1) + value_as_long (arg2)));
9976 if ((ada_is_fixed_point_type (value_type (arg1))
9977 || ada_is_fixed_point_type (value_type (arg2)))
9978 && value_type (arg1) != value_type (arg2))
9979 error (_("Operands of fixed-point addition must have the same type"));
9980 /* Do the addition, and cast the result to the type of the first
9981 argument. We cannot cast the result to a reference type, so if
9982 ARG1 is a reference type, find its underlying type. */
9983 type = value_type (arg1);
9984 while (TYPE_CODE (type) == TYPE_CODE_REF)
9985 type = TYPE_TARGET_TYPE (type);
9986 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9987 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9988
9989 case BINOP_SUB:
9990 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9991 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9992 if (noside == EVAL_SKIP)
9993 goto nosideret;
9994 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9995 return (value_from_longest
9996 (value_type (arg1),
9997 value_as_long (arg1) - value_as_long (arg2)));
9998 if ((ada_is_fixed_point_type (value_type (arg1))
9999 || ada_is_fixed_point_type (value_type (arg2)))
10000 && value_type (arg1) != value_type (arg2))
10001 error (_("Operands of fixed-point subtraction "
10002 "must have the same type"));
10003 /* Do the substraction, and cast the result to the type of the first
10004 argument. We cannot cast the result to a reference type, so if
10005 ARG1 is a reference type, find its underlying type. */
10006 type = value_type (arg1);
10007 while (TYPE_CODE (type) == TYPE_CODE_REF)
10008 type = TYPE_TARGET_TYPE (type);
10009 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10010 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10011
10012 case BINOP_MUL:
10013 case BINOP_DIV:
10014 case BINOP_REM:
10015 case BINOP_MOD:
10016 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10017 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10018 if (noside == EVAL_SKIP)
10019 goto nosideret;
10020 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10021 {
10022 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10023 return value_zero (value_type (arg1), not_lval);
10024 }
10025 else
10026 {
10027 type = builtin_type (exp->gdbarch)->builtin_double;
10028 if (ada_is_fixed_point_type (value_type (arg1)))
10029 arg1 = cast_from_fixed (type, arg1);
10030 if (ada_is_fixed_point_type (value_type (arg2)))
10031 arg2 = cast_from_fixed (type, arg2);
10032 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10033 return ada_value_binop (arg1, arg2, op);
10034 }
10035
10036 case BINOP_EQUAL:
10037 case BINOP_NOTEQUAL:
10038 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10039 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10040 if (noside == EVAL_SKIP)
10041 goto nosideret;
10042 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10043 tem = 0;
10044 else
10045 {
10046 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10047 tem = ada_value_equal (arg1, arg2);
10048 }
10049 if (op == BINOP_NOTEQUAL)
10050 tem = !tem;
10051 type = language_bool_type (exp->language_defn, exp->gdbarch);
10052 return value_from_longest (type, (LONGEST) tem);
10053
10054 case UNOP_NEG:
10055 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10056 if (noside == EVAL_SKIP)
10057 goto nosideret;
10058 else if (ada_is_fixed_point_type (value_type (arg1)))
10059 return value_cast (value_type (arg1), value_neg (arg1));
10060 else
10061 {
10062 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10063 return value_neg (arg1);
10064 }
10065
10066 case BINOP_LOGICAL_AND:
10067 case BINOP_LOGICAL_OR:
10068 case UNOP_LOGICAL_NOT:
10069 {
10070 struct value *val;
10071
10072 *pos -= 1;
10073 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10074 type = language_bool_type (exp->language_defn, exp->gdbarch);
10075 return value_cast (type, val);
10076 }
10077
10078 case BINOP_BITWISE_AND:
10079 case BINOP_BITWISE_IOR:
10080 case BINOP_BITWISE_XOR:
10081 {
10082 struct value *val;
10083
10084 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10085 *pos = pc;
10086 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10087
10088 return value_cast (value_type (arg1), val);
10089 }
10090
10091 case OP_VAR_VALUE:
10092 *pos -= 1;
10093
10094 if (noside == EVAL_SKIP)
10095 {
10096 *pos += 4;
10097 goto nosideret;
10098 }
10099 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10100 /* Only encountered when an unresolved symbol occurs in a
10101 context other than a function call, in which case, it is
10102 invalid. */
10103 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10104 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10105 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10106 {
10107 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10108 /* Check to see if this is a tagged type. We also need to handle
10109 the case where the type is a reference to a tagged type, but
10110 we have to be careful to exclude pointers to tagged types.
10111 The latter should be shown as usual (as a pointer), whereas
10112 a reference should mostly be transparent to the user. */
10113 if (ada_is_tagged_type (type, 0)
10114 || (TYPE_CODE(type) == TYPE_CODE_REF
10115 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10116 {
10117 /* Tagged types are a little special in the fact that the real
10118 type is dynamic and can only be determined by inspecting the
10119 object's tag. This means that we need to get the object's
10120 value first (EVAL_NORMAL) and then extract the actual object
10121 type from its tag.
10122
10123 Note that we cannot skip the final step where we extract
10124 the object type from its tag, because the EVAL_NORMAL phase
10125 results in dynamic components being resolved into fixed ones.
10126 This can cause problems when trying to print the type
10127 description of tagged types whose parent has a dynamic size:
10128 We use the type name of the "_parent" component in order
10129 to print the name of the ancestor type in the type description.
10130 If that component had a dynamic size, the resolution into
10131 a fixed type would result in the loss of that type name,
10132 thus preventing us from printing the name of the ancestor
10133 type in the type description. */
10134 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10135
10136 if (TYPE_CODE (type) != TYPE_CODE_REF)
10137 {
10138 struct type *actual_type;
10139
10140 actual_type = type_from_tag (ada_value_tag (arg1));
10141 if (actual_type == NULL)
10142 /* If, for some reason, we were unable to determine
10143 the actual type from the tag, then use the static
10144 approximation that we just computed as a fallback.
10145 This can happen if the debugging information is
10146 incomplete, for instance. */
10147 actual_type = type;
10148 return value_zero (actual_type, not_lval);
10149 }
10150 else
10151 {
10152 /* In the case of a ref, ada_coerce_ref takes care
10153 of determining the actual type. But the evaluation
10154 should return a ref as it should be valid to ask
10155 for its address; so rebuild a ref after coerce. */
10156 arg1 = ada_coerce_ref (arg1);
10157 return value_ref (arg1);
10158 }
10159 }
10160
10161 *pos += 4;
10162 return value_zero
10163 (to_static_fixed_type
10164 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
10165 not_lval);
10166 }
10167 else
10168 {
10169 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10170 return ada_to_fixed_value (arg1);
10171 }
10172
10173 case OP_FUNCALL:
10174 (*pos) += 2;
10175
10176 /* Allocate arg vector, including space for the function to be
10177 called in argvec[0] and a terminating NULL. */
10178 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10179 argvec =
10180 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10181
10182 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10183 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10184 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10185 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10186 else
10187 {
10188 for (tem = 0; tem <= nargs; tem += 1)
10189 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10190 argvec[tem] = 0;
10191
10192 if (noside == EVAL_SKIP)
10193 goto nosideret;
10194 }
10195
10196 if (ada_is_constrained_packed_array_type
10197 (desc_base_type (value_type (argvec[0]))))
10198 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10199 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10200 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10201 /* This is a packed array that has already been fixed, and
10202 therefore already coerced to a simple array. Nothing further
10203 to do. */
10204 ;
10205 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10206 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10207 && VALUE_LVAL (argvec[0]) == lval_memory))
10208 argvec[0] = value_addr (argvec[0]);
10209
10210 type = ada_check_typedef (value_type (argvec[0]));
10211
10212 /* Ada allows us to implicitly dereference arrays when subscripting
10213 them. So, if this is an array typedef (encoding use for array
10214 access types encoded as fat pointers), strip it now. */
10215 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10216 type = ada_typedef_target_type (type);
10217
10218 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10219 {
10220 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10221 {
10222 case TYPE_CODE_FUNC:
10223 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10224 break;
10225 case TYPE_CODE_ARRAY:
10226 break;
10227 case TYPE_CODE_STRUCT:
10228 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10229 argvec[0] = ada_value_ind (argvec[0]);
10230 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10231 break;
10232 default:
10233 error (_("cannot subscript or call something of type `%s'"),
10234 ada_type_name (value_type (argvec[0])));
10235 break;
10236 }
10237 }
10238
10239 switch (TYPE_CODE (type))
10240 {
10241 case TYPE_CODE_FUNC:
10242 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10243 {
10244 struct type *rtype = TYPE_TARGET_TYPE (type);
10245
10246 if (TYPE_GNU_IFUNC (type))
10247 return allocate_value (TYPE_TARGET_TYPE (rtype));
10248 return allocate_value (rtype);
10249 }
10250 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10251 case TYPE_CODE_INTERNAL_FUNCTION:
10252 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10253 /* We don't know anything about what the internal
10254 function might return, but we have to return
10255 something. */
10256 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10257 not_lval);
10258 else
10259 return call_internal_function (exp->gdbarch, exp->language_defn,
10260 argvec[0], nargs, argvec + 1);
10261
10262 case TYPE_CODE_STRUCT:
10263 {
10264 int arity;
10265
10266 arity = ada_array_arity (type);
10267 type = ada_array_element_type (type, nargs);
10268 if (type == NULL)
10269 error (_("cannot subscript or call a record"));
10270 if (arity != nargs)
10271 error (_("wrong number of subscripts; expecting %d"), arity);
10272 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10273 return value_zero (ada_aligned_type (type), lval_memory);
10274 return
10275 unwrap_value (ada_value_subscript
10276 (argvec[0], nargs, argvec + 1));
10277 }
10278 case TYPE_CODE_ARRAY:
10279 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10280 {
10281 type = ada_array_element_type (type, nargs);
10282 if (type == NULL)
10283 error (_("element type of array unknown"));
10284 else
10285 return value_zero (ada_aligned_type (type), lval_memory);
10286 }
10287 return
10288 unwrap_value (ada_value_subscript
10289 (ada_coerce_to_simple_array (argvec[0]),
10290 nargs, argvec + 1));
10291 case TYPE_CODE_PTR: /* Pointer to array */
10292 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10293 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10294 {
10295 type = ada_array_element_type (type, nargs);
10296 if (type == NULL)
10297 error (_("element type of array unknown"));
10298 else
10299 return value_zero (ada_aligned_type (type), lval_memory);
10300 }
10301 return
10302 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10303 nargs, argvec + 1));
10304
10305 default:
10306 error (_("Attempt to index or call something other than an "
10307 "array or function"));
10308 }
10309
10310 case TERNOP_SLICE:
10311 {
10312 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10313 struct value *low_bound_val =
10314 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10315 struct value *high_bound_val =
10316 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10317 LONGEST low_bound;
10318 LONGEST high_bound;
10319
10320 low_bound_val = coerce_ref (low_bound_val);
10321 high_bound_val = coerce_ref (high_bound_val);
10322 low_bound = pos_atr (low_bound_val);
10323 high_bound = pos_atr (high_bound_val);
10324
10325 if (noside == EVAL_SKIP)
10326 goto nosideret;
10327
10328 /* If this is a reference to an aligner type, then remove all
10329 the aligners. */
10330 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10331 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10332 TYPE_TARGET_TYPE (value_type (array)) =
10333 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10334
10335 if (ada_is_constrained_packed_array_type (value_type (array)))
10336 error (_("cannot slice a packed array"));
10337
10338 /* If this is a reference to an array or an array lvalue,
10339 convert to a pointer. */
10340 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10341 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10342 && VALUE_LVAL (array) == lval_memory))
10343 array = value_addr (array);
10344
10345 if (noside == EVAL_AVOID_SIDE_EFFECTS
10346 && ada_is_array_descriptor_type (ada_check_typedef
10347 (value_type (array))))
10348 return empty_array (ada_type_of_array (array, 0), low_bound);
10349
10350 array = ada_coerce_to_simple_array_ptr (array);
10351
10352 /* If we have more than one level of pointer indirection,
10353 dereference the value until we get only one level. */
10354 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10355 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10356 == TYPE_CODE_PTR))
10357 array = value_ind (array);
10358
10359 /* Make sure we really do have an array type before going further,
10360 to avoid a SEGV when trying to get the index type or the target
10361 type later down the road if the debug info generated by
10362 the compiler is incorrect or incomplete. */
10363 if (!ada_is_simple_array_type (value_type (array)))
10364 error (_("cannot take slice of non-array"));
10365
10366 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10367 == TYPE_CODE_PTR)
10368 {
10369 struct type *type0 = ada_check_typedef (value_type (array));
10370
10371 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10372 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10373 else
10374 {
10375 struct type *arr_type0 =
10376 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10377
10378 return ada_value_slice_from_ptr (array, arr_type0,
10379 longest_to_int (low_bound),
10380 longest_to_int (high_bound));
10381 }
10382 }
10383 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10384 return array;
10385 else if (high_bound < low_bound)
10386 return empty_array (value_type (array), low_bound);
10387 else
10388 return ada_value_slice (array, longest_to_int (low_bound),
10389 longest_to_int (high_bound));
10390 }
10391
10392 case UNOP_IN_RANGE:
10393 (*pos) += 2;
10394 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10395 type = check_typedef (exp->elts[pc + 1].type);
10396
10397 if (noside == EVAL_SKIP)
10398 goto nosideret;
10399
10400 switch (TYPE_CODE (type))
10401 {
10402 default:
10403 lim_warning (_("Membership test incompletely implemented; "
10404 "always returns true"));
10405 type = language_bool_type (exp->language_defn, exp->gdbarch);
10406 return value_from_longest (type, (LONGEST) 1);
10407
10408 case TYPE_CODE_RANGE:
10409 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10410 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10411 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10412 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10413 type = language_bool_type (exp->language_defn, exp->gdbarch);
10414 return
10415 value_from_longest (type,
10416 (value_less (arg1, arg3)
10417 || value_equal (arg1, arg3))
10418 && (value_less (arg2, arg1)
10419 || value_equal (arg2, arg1)));
10420 }
10421
10422 case BINOP_IN_BOUNDS:
10423 (*pos) += 2;
10424 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10425 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10426
10427 if (noside == EVAL_SKIP)
10428 goto nosideret;
10429
10430 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10431 {
10432 type = language_bool_type (exp->language_defn, exp->gdbarch);
10433 return value_zero (type, not_lval);
10434 }
10435
10436 tem = longest_to_int (exp->elts[pc + 1].longconst);
10437
10438 type = ada_index_type (value_type (arg2), tem, "range");
10439 if (!type)
10440 type = value_type (arg1);
10441
10442 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10443 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10444
10445 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10446 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10447 type = language_bool_type (exp->language_defn, exp->gdbarch);
10448 return
10449 value_from_longest (type,
10450 (value_less (arg1, arg3)
10451 || value_equal (arg1, arg3))
10452 && (value_less (arg2, arg1)
10453 || value_equal (arg2, arg1)));
10454
10455 case TERNOP_IN_RANGE:
10456 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10457 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10458 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10459
10460 if (noside == EVAL_SKIP)
10461 goto nosideret;
10462
10463 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10464 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10465 type = language_bool_type (exp->language_defn, exp->gdbarch);
10466 return
10467 value_from_longest (type,
10468 (value_less (arg1, arg3)
10469 || value_equal (arg1, arg3))
10470 && (value_less (arg2, arg1)
10471 || value_equal (arg2, arg1)));
10472
10473 case OP_ATR_FIRST:
10474 case OP_ATR_LAST:
10475 case OP_ATR_LENGTH:
10476 {
10477 struct type *type_arg;
10478
10479 if (exp->elts[*pos].opcode == OP_TYPE)
10480 {
10481 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10482 arg1 = NULL;
10483 type_arg = check_typedef (exp->elts[pc + 2].type);
10484 }
10485 else
10486 {
10487 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10488 type_arg = NULL;
10489 }
10490
10491 if (exp->elts[*pos].opcode != OP_LONG)
10492 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10493 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10494 *pos += 4;
10495
10496 if (noside == EVAL_SKIP)
10497 goto nosideret;
10498
10499 if (type_arg == NULL)
10500 {
10501 arg1 = ada_coerce_ref (arg1);
10502
10503 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10504 arg1 = ada_coerce_to_simple_array (arg1);
10505
10506 if (op == OP_ATR_LENGTH)
10507 type = builtin_type (exp->gdbarch)->builtin_int;
10508 else
10509 {
10510 type = ada_index_type (value_type (arg1), tem,
10511 ada_attribute_name (op));
10512 if (type == NULL)
10513 type = builtin_type (exp->gdbarch)->builtin_int;
10514 }
10515
10516 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10517 return allocate_value (type);
10518
10519 switch (op)
10520 {
10521 default: /* Should never happen. */
10522 error (_("unexpected attribute encountered"));
10523 case OP_ATR_FIRST:
10524 return value_from_longest
10525 (type, ada_array_bound (arg1, tem, 0));
10526 case OP_ATR_LAST:
10527 return value_from_longest
10528 (type, ada_array_bound (arg1, tem, 1));
10529 case OP_ATR_LENGTH:
10530 return value_from_longest
10531 (type, ada_array_length (arg1, tem));
10532 }
10533 }
10534 else if (discrete_type_p (type_arg))
10535 {
10536 struct type *range_type;
10537 const char *name = ada_type_name (type_arg);
10538
10539 range_type = NULL;
10540 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10541 range_type = to_fixed_range_type (type_arg, NULL);
10542 if (range_type == NULL)
10543 range_type = type_arg;
10544 switch (op)
10545 {
10546 default:
10547 error (_("unexpected attribute encountered"));
10548 case OP_ATR_FIRST:
10549 return value_from_longest
10550 (range_type, ada_discrete_type_low_bound (range_type));
10551 case OP_ATR_LAST:
10552 return value_from_longest
10553 (range_type, ada_discrete_type_high_bound (range_type));
10554 case OP_ATR_LENGTH:
10555 error (_("the 'length attribute applies only to array types"));
10556 }
10557 }
10558 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10559 error (_("unimplemented type attribute"));
10560 else
10561 {
10562 LONGEST low, high;
10563
10564 if (ada_is_constrained_packed_array_type (type_arg))
10565 type_arg = decode_constrained_packed_array_type (type_arg);
10566
10567 if (op == OP_ATR_LENGTH)
10568 type = builtin_type (exp->gdbarch)->builtin_int;
10569 else
10570 {
10571 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10572 if (type == NULL)
10573 type = builtin_type (exp->gdbarch)->builtin_int;
10574 }
10575
10576 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10577 return allocate_value (type);
10578
10579 switch (op)
10580 {
10581 default:
10582 error (_("unexpected attribute encountered"));
10583 case OP_ATR_FIRST:
10584 low = ada_array_bound_from_type (type_arg, tem, 0);
10585 return value_from_longest (type, low);
10586 case OP_ATR_LAST:
10587 high = ada_array_bound_from_type (type_arg, tem, 1);
10588 return value_from_longest (type, high);
10589 case OP_ATR_LENGTH:
10590 low = ada_array_bound_from_type (type_arg, tem, 0);
10591 high = ada_array_bound_from_type (type_arg, tem, 1);
10592 return value_from_longest (type, high - low + 1);
10593 }
10594 }
10595 }
10596
10597 case OP_ATR_TAG:
10598 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10599 if (noside == EVAL_SKIP)
10600 goto nosideret;
10601
10602 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10603 return value_zero (ada_tag_type (arg1), not_lval);
10604
10605 return ada_value_tag (arg1);
10606
10607 case OP_ATR_MIN:
10608 case OP_ATR_MAX:
10609 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10610 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10611 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10612 if (noside == EVAL_SKIP)
10613 goto nosideret;
10614 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10615 return value_zero (value_type (arg1), not_lval);
10616 else
10617 {
10618 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10619 return value_binop (arg1, arg2,
10620 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10621 }
10622
10623 case OP_ATR_MODULUS:
10624 {
10625 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10626
10627 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10628 if (noside == EVAL_SKIP)
10629 goto nosideret;
10630
10631 if (!ada_is_modular_type (type_arg))
10632 error (_("'modulus must be applied to modular type"));
10633
10634 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10635 ada_modulus (type_arg));
10636 }
10637
10638
10639 case OP_ATR_POS:
10640 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10641 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10642 if (noside == EVAL_SKIP)
10643 goto nosideret;
10644 type = builtin_type (exp->gdbarch)->builtin_int;
10645 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10646 return value_zero (type, not_lval);
10647 else
10648 return value_pos_atr (type, arg1);
10649
10650 case OP_ATR_SIZE:
10651 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10652 type = value_type (arg1);
10653
10654 /* If the argument is a reference, then dereference its type, since
10655 the user is really asking for the size of the actual object,
10656 not the size of the pointer. */
10657 if (TYPE_CODE (type) == TYPE_CODE_REF)
10658 type = TYPE_TARGET_TYPE (type);
10659
10660 if (noside == EVAL_SKIP)
10661 goto nosideret;
10662 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10663 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10664 else
10665 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10666 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10667
10668 case OP_ATR_VAL:
10669 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10670 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10671 type = exp->elts[pc + 2].type;
10672 if (noside == EVAL_SKIP)
10673 goto nosideret;
10674 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10675 return value_zero (type, not_lval);
10676 else
10677 return value_val_atr (type, arg1);
10678
10679 case BINOP_EXP:
10680 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10681 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10682 if (noside == EVAL_SKIP)
10683 goto nosideret;
10684 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10685 return value_zero (value_type (arg1), not_lval);
10686 else
10687 {
10688 /* For integer exponentiation operations,
10689 only promote the first argument. */
10690 if (is_integral_type (value_type (arg2)))
10691 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10692 else
10693 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10694
10695 return value_binop (arg1, arg2, op);
10696 }
10697
10698 case UNOP_PLUS:
10699 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10700 if (noside == EVAL_SKIP)
10701 goto nosideret;
10702 else
10703 return arg1;
10704
10705 case UNOP_ABS:
10706 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10707 if (noside == EVAL_SKIP)
10708 goto nosideret;
10709 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10710 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10711 return value_neg (arg1);
10712 else
10713 return arg1;
10714
10715 case UNOP_IND:
10716 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10717 if (noside == EVAL_SKIP)
10718 goto nosideret;
10719 type = ada_check_typedef (value_type (arg1));
10720 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10721 {
10722 if (ada_is_array_descriptor_type (type))
10723 /* GDB allows dereferencing GNAT array descriptors. */
10724 {
10725 struct type *arrType = ada_type_of_array (arg1, 0);
10726
10727 if (arrType == NULL)
10728 error (_("Attempt to dereference null array pointer."));
10729 return value_at_lazy (arrType, 0);
10730 }
10731 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10732 || TYPE_CODE (type) == TYPE_CODE_REF
10733 /* In C you can dereference an array to get the 1st elt. */
10734 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10735 {
10736 type = to_static_fixed_type
10737 (ada_aligned_type
10738 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10739 check_size (type);
10740 return value_zero (type, lval_memory);
10741 }
10742 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10743 {
10744 /* GDB allows dereferencing an int. */
10745 if (expect_type == NULL)
10746 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10747 lval_memory);
10748 else
10749 {
10750 expect_type =
10751 to_static_fixed_type (ada_aligned_type (expect_type));
10752 return value_zero (expect_type, lval_memory);
10753 }
10754 }
10755 else
10756 error (_("Attempt to take contents of a non-pointer value."));
10757 }
10758 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10759 type = ada_check_typedef (value_type (arg1));
10760
10761 if (TYPE_CODE (type) == TYPE_CODE_INT)
10762 /* GDB allows dereferencing an int. If we were given
10763 the expect_type, then use that as the target type.
10764 Otherwise, assume that the target type is an int. */
10765 {
10766 if (expect_type != NULL)
10767 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10768 arg1));
10769 else
10770 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10771 (CORE_ADDR) value_as_address (arg1));
10772 }
10773
10774 if (ada_is_array_descriptor_type (type))
10775 /* GDB allows dereferencing GNAT array descriptors. */
10776 return ada_coerce_to_simple_array (arg1);
10777 else
10778 return ada_value_ind (arg1);
10779
10780 case STRUCTOP_STRUCT:
10781 tem = longest_to_int (exp->elts[pc + 1].longconst);
10782 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10783 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10784 if (noside == EVAL_SKIP)
10785 goto nosideret;
10786 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10787 {
10788 struct type *type1 = value_type (arg1);
10789
10790 if (ada_is_tagged_type (type1, 1))
10791 {
10792 type = ada_lookup_struct_elt_type (type1,
10793 &exp->elts[pc + 2].string,
10794 1, 1, NULL);
10795 if (type == NULL)
10796 /* In this case, we assume that the field COULD exist
10797 in some extension of the type. Return an object of
10798 "type" void, which will match any formal
10799 (see ada_type_match). */
10800 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10801 lval_memory);
10802 }
10803 else
10804 type =
10805 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10806 0, NULL);
10807
10808 return value_zero (ada_aligned_type (type), lval_memory);
10809 }
10810 else
10811 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10812 arg1 = unwrap_value (arg1);
10813 return ada_to_fixed_value (arg1);
10814
10815 case OP_TYPE:
10816 /* The value is not supposed to be used. This is here to make it
10817 easier to accommodate expressions that contain types. */
10818 (*pos) += 2;
10819 if (noside == EVAL_SKIP)
10820 goto nosideret;
10821 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10822 return allocate_value (exp->elts[pc + 1].type);
10823 else
10824 error (_("Attempt to use a type name as an expression"));
10825
10826 case OP_AGGREGATE:
10827 case OP_CHOICES:
10828 case OP_OTHERS:
10829 case OP_DISCRETE_RANGE:
10830 case OP_POSITIONAL:
10831 case OP_NAME:
10832 if (noside == EVAL_NORMAL)
10833 switch (op)
10834 {
10835 case OP_NAME:
10836 error (_("Undefined name, ambiguous name, or renaming used in "
10837 "component association: %s."), &exp->elts[pc+2].string);
10838 case OP_AGGREGATE:
10839 error (_("Aggregates only allowed on the right of an assignment"));
10840 default:
10841 internal_error (__FILE__, __LINE__,
10842 _("aggregate apparently mangled"));
10843 }
10844
10845 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10846 *pos += oplen - 1;
10847 for (tem = 0; tem < nargs; tem += 1)
10848 ada_evaluate_subexp (NULL, exp, pos, noside);
10849 goto nosideret;
10850 }
10851
10852 nosideret:
10853 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10854 }
10855 \f
10856
10857 /* Fixed point */
10858
10859 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10860 type name that encodes the 'small and 'delta information.
10861 Otherwise, return NULL. */
10862
10863 static const char *
10864 fixed_type_info (struct type *type)
10865 {
10866 const char *name = ada_type_name (type);
10867 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10868
10869 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10870 {
10871 const char *tail = strstr (name, "___XF_");
10872
10873 if (tail == NULL)
10874 return NULL;
10875 else
10876 return tail + 5;
10877 }
10878 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10879 return fixed_type_info (TYPE_TARGET_TYPE (type));
10880 else
10881 return NULL;
10882 }
10883
10884 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10885
10886 int
10887 ada_is_fixed_point_type (struct type *type)
10888 {
10889 return fixed_type_info (type) != NULL;
10890 }
10891
10892 /* Return non-zero iff TYPE represents a System.Address type. */
10893
10894 int
10895 ada_is_system_address_type (struct type *type)
10896 {
10897 return (TYPE_NAME (type)
10898 && strcmp (TYPE_NAME (type), "system__address") == 0);
10899 }
10900
10901 /* Assuming that TYPE is the representation of an Ada fixed-point
10902 type, return its delta, or -1 if the type is malformed and the
10903 delta cannot be determined. */
10904
10905 DOUBLEST
10906 ada_delta (struct type *type)
10907 {
10908 const char *encoding = fixed_type_info (type);
10909 DOUBLEST num, den;
10910
10911 /* Strictly speaking, num and den are encoded as integer. However,
10912 they may not fit into a long, and they will have to be converted
10913 to DOUBLEST anyway. So scan them as DOUBLEST. */
10914 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10915 &num, &den) < 2)
10916 return -1.0;
10917 else
10918 return num / den;
10919 }
10920
10921 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10922 factor ('SMALL value) associated with the type. */
10923
10924 static DOUBLEST
10925 scaling_factor (struct type *type)
10926 {
10927 const char *encoding = fixed_type_info (type);
10928 DOUBLEST num0, den0, num1, den1;
10929 int n;
10930
10931 /* Strictly speaking, num's and den's are encoded as integer. However,
10932 they may not fit into a long, and they will have to be converted
10933 to DOUBLEST anyway. So scan them as DOUBLEST. */
10934 n = sscanf (encoding,
10935 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10936 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10937 &num0, &den0, &num1, &den1);
10938
10939 if (n < 2)
10940 return 1.0;
10941 else if (n == 4)
10942 return num1 / den1;
10943 else
10944 return num0 / den0;
10945 }
10946
10947
10948 /* Assuming that X is the representation of a value of fixed-point
10949 type TYPE, return its floating-point equivalent. */
10950
10951 DOUBLEST
10952 ada_fixed_to_float (struct type *type, LONGEST x)
10953 {
10954 return (DOUBLEST) x *scaling_factor (type);
10955 }
10956
10957 /* The representation of a fixed-point value of type TYPE
10958 corresponding to the value X. */
10959
10960 LONGEST
10961 ada_float_to_fixed (struct type *type, DOUBLEST x)
10962 {
10963 return (LONGEST) (x / scaling_factor (type) + 0.5);
10964 }
10965
10966 \f
10967
10968 /* Range types */
10969
10970 /* Scan STR beginning at position K for a discriminant name, and
10971 return the value of that discriminant field of DVAL in *PX. If
10972 PNEW_K is not null, put the position of the character beyond the
10973 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10974 not alter *PX and *PNEW_K if unsuccessful. */
10975
10976 static int
10977 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10978 int *pnew_k)
10979 {
10980 static char *bound_buffer = NULL;
10981 static size_t bound_buffer_len = 0;
10982 char *bound;
10983 char *pend;
10984 struct value *bound_val;
10985
10986 if (dval == NULL || str == NULL || str[k] == '\0')
10987 return 0;
10988
10989 pend = strstr (str + k, "__");
10990 if (pend == NULL)
10991 {
10992 bound = str + k;
10993 k += strlen (bound);
10994 }
10995 else
10996 {
10997 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10998 bound = bound_buffer;
10999 strncpy (bound_buffer, str + k, pend - (str + k));
11000 bound[pend - (str + k)] = '\0';
11001 k = pend - str;
11002 }
11003
11004 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11005 if (bound_val == NULL)
11006 return 0;
11007
11008 *px = value_as_long (bound_val);
11009 if (pnew_k != NULL)
11010 *pnew_k = k;
11011 return 1;
11012 }
11013
11014 /* Value of variable named NAME in the current environment. If
11015 no such variable found, then if ERR_MSG is null, returns 0, and
11016 otherwise causes an error with message ERR_MSG. */
11017
11018 static struct value *
11019 get_var_value (char *name, char *err_msg)
11020 {
11021 struct ada_symbol_info *syms;
11022 int nsyms;
11023
11024 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11025 &syms);
11026
11027 if (nsyms != 1)
11028 {
11029 if (err_msg == NULL)
11030 return 0;
11031 else
11032 error (("%s"), err_msg);
11033 }
11034
11035 return value_of_variable (syms[0].sym, syms[0].block);
11036 }
11037
11038 /* Value of integer variable named NAME in the current environment. If
11039 no such variable found, returns 0, and sets *FLAG to 0. If
11040 successful, sets *FLAG to 1. */
11041
11042 LONGEST
11043 get_int_var_value (char *name, int *flag)
11044 {
11045 struct value *var_val = get_var_value (name, 0);
11046
11047 if (var_val == 0)
11048 {
11049 if (flag != NULL)
11050 *flag = 0;
11051 return 0;
11052 }
11053 else
11054 {
11055 if (flag != NULL)
11056 *flag = 1;
11057 return value_as_long (var_val);
11058 }
11059 }
11060
11061
11062 /* Return a range type whose base type is that of the range type named
11063 NAME in the current environment, and whose bounds are calculated
11064 from NAME according to the GNAT range encoding conventions.
11065 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11066 corresponding range type from debug information; fall back to using it
11067 if symbol lookup fails. If a new type must be created, allocate it
11068 like ORIG_TYPE was. The bounds information, in general, is encoded
11069 in NAME, the base type given in the named range type. */
11070
11071 static struct type *
11072 to_fixed_range_type (struct type *raw_type, struct value *dval)
11073 {
11074 const char *name;
11075 struct type *base_type;
11076 char *subtype_info;
11077
11078 gdb_assert (raw_type != NULL);
11079 gdb_assert (TYPE_NAME (raw_type) != NULL);
11080
11081 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11082 base_type = TYPE_TARGET_TYPE (raw_type);
11083 else
11084 base_type = raw_type;
11085
11086 name = TYPE_NAME (raw_type);
11087 subtype_info = strstr (name, "___XD");
11088 if (subtype_info == NULL)
11089 {
11090 LONGEST L = ada_discrete_type_low_bound (raw_type);
11091 LONGEST U = ada_discrete_type_high_bound (raw_type);
11092
11093 if (L < INT_MIN || U > INT_MAX)
11094 return raw_type;
11095 else
11096 return create_range_type (alloc_type_copy (raw_type), raw_type,
11097 ada_discrete_type_low_bound (raw_type),
11098 ada_discrete_type_high_bound (raw_type));
11099 }
11100 else
11101 {
11102 static char *name_buf = NULL;
11103 static size_t name_len = 0;
11104 int prefix_len = subtype_info - name;
11105 LONGEST L, U;
11106 struct type *type;
11107 char *bounds_str;
11108 int n;
11109
11110 GROW_VECT (name_buf, name_len, prefix_len + 5);
11111 strncpy (name_buf, name, prefix_len);
11112 name_buf[prefix_len] = '\0';
11113
11114 subtype_info += 5;
11115 bounds_str = strchr (subtype_info, '_');
11116 n = 1;
11117
11118 if (*subtype_info == 'L')
11119 {
11120 if (!ada_scan_number (bounds_str, n, &L, &n)
11121 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11122 return raw_type;
11123 if (bounds_str[n] == '_')
11124 n += 2;
11125 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11126 n += 1;
11127 subtype_info += 1;
11128 }
11129 else
11130 {
11131 int ok;
11132
11133 strcpy (name_buf + prefix_len, "___L");
11134 L = get_int_var_value (name_buf, &ok);
11135 if (!ok)
11136 {
11137 lim_warning (_("Unknown lower bound, using 1."));
11138 L = 1;
11139 }
11140 }
11141
11142 if (*subtype_info == 'U')
11143 {
11144 if (!ada_scan_number (bounds_str, n, &U, &n)
11145 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11146 return raw_type;
11147 }
11148 else
11149 {
11150 int ok;
11151
11152 strcpy (name_buf + prefix_len, "___U");
11153 U = get_int_var_value (name_buf, &ok);
11154 if (!ok)
11155 {
11156 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11157 U = L;
11158 }
11159 }
11160
11161 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
11162 TYPE_NAME (type) = name;
11163 return type;
11164 }
11165 }
11166
11167 /* True iff NAME is the name of a range type. */
11168
11169 int
11170 ada_is_range_type_name (const char *name)
11171 {
11172 return (name != NULL && strstr (name, "___XD"));
11173 }
11174 \f
11175
11176 /* Modular types */
11177
11178 /* True iff TYPE is an Ada modular type. */
11179
11180 int
11181 ada_is_modular_type (struct type *type)
11182 {
11183 struct type *subranged_type = get_base_type (type);
11184
11185 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11186 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11187 && TYPE_UNSIGNED (subranged_type));
11188 }
11189
11190 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11191
11192 ULONGEST
11193 ada_modulus (struct type *type)
11194 {
11195 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11196 }
11197 \f
11198
11199 /* Ada exception catchpoint support:
11200 ---------------------------------
11201
11202 We support 3 kinds of exception catchpoints:
11203 . catchpoints on Ada exceptions
11204 . catchpoints on unhandled Ada exceptions
11205 . catchpoints on failed assertions
11206
11207 Exceptions raised during failed assertions, or unhandled exceptions
11208 could perfectly be caught with the general catchpoint on Ada exceptions.
11209 However, we can easily differentiate these two special cases, and having
11210 the option to distinguish these two cases from the rest can be useful
11211 to zero-in on certain situations.
11212
11213 Exception catchpoints are a specialized form of breakpoint,
11214 since they rely on inserting breakpoints inside known routines
11215 of the GNAT runtime. The implementation therefore uses a standard
11216 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11217 of breakpoint_ops.
11218
11219 Support in the runtime for exception catchpoints have been changed
11220 a few times already, and these changes affect the implementation
11221 of these catchpoints. In order to be able to support several
11222 variants of the runtime, we use a sniffer that will determine
11223 the runtime variant used by the program being debugged. */
11224
11225 /* Ada's standard exceptions. */
11226
11227 static char *standard_exc[] = {
11228 "constraint_error",
11229 "program_error",
11230 "storage_error",
11231 "tasking_error"
11232 };
11233
11234 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11235
11236 /* A structure that describes how to support exception catchpoints
11237 for a given executable. */
11238
11239 struct exception_support_info
11240 {
11241 /* The name of the symbol to break on in order to insert
11242 a catchpoint on exceptions. */
11243 const char *catch_exception_sym;
11244
11245 /* The name of the symbol to break on in order to insert
11246 a catchpoint on unhandled exceptions. */
11247 const char *catch_exception_unhandled_sym;
11248
11249 /* The name of the symbol to break on in order to insert
11250 a catchpoint on failed assertions. */
11251 const char *catch_assert_sym;
11252
11253 /* Assuming that the inferior just triggered an unhandled exception
11254 catchpoint, this function is responsible for returning the address
11255 in inferior memory where the name of that exception is stored.
11256 Return zero if the address could not be computed. */
11257 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11258 };
11259
11260 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11261 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11262
11263 /* The following exception support info structure describes how to
11264 implement exception catchpoints with the latest version of the
11265 Ada runtime (as of 2007-03-06). */
11266
11267 static const struct exception_support_info default_exception_support_info =
11268 {
11269 "__gnat_debug_raise_exception", /* catch_exception_sym */
11270 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11271 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11272 ada_unhandled_exception_name_addr
11273 };
11274
11275 /* The following exception support info structure describes how to
11276 implement exception catchpoints with a slightly older version
11277 of the Ada runtime. */
11278
11279 static const struct exception_support_info exception_support_info_fallback =
11280 {
11281 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11282 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11283 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11284 ada_unhandled_exception_name_addr_from_raise
11285 };
11286
11287 /* Return nonzero if we can detect the exception support routines
11288 described in EINFO.
11289
11290 This function errors out if an abnormal situation is detected
11291 (for instance, if we find the exception support routines, but
11292 that support is found to be incomplete). */
11293
11294 static int
11295 ada_has_this_exception_support (const struct exception_support_info *einfo)
11296 {
11297 struct symbol *sym;
11298
11299 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11300 that should be compiled with debugging information. As a result, we
11301 expect to find that symbol in the symtabs. */
11302
11303 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11304 if (sym == NULL)
11305 {
11306 /* Perhaps we did not find our symbol because the Ada runtime was
11307 compiled without debugging info, or simply stripped of it.
11308 It happens on some GNU/Linux distributions for instance, where
11309 users have to install a separate debug package in order to get
11310 the runtime's debugging info. In that situation, let the user
11311 know why we cannot insert an Ada exception catchpoint.
11312
11313 Note: Just for the purpose of inserting our Ada exception
11314 catchpoint, we could rely purely on the associated minimal symbol.
11315 But we would be operating in degraded mode anyway, since we are
11316 still lacking the debugging info needed later on to extract
11317 the name of the exception being raised (this name is printed in
11318 the catchpoint message, and is also used when trying to catch
11319 a specific exception). We do not handle this case for now. */
11320 struct minimal_symbol *msym
11321 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11322
11323 if (msym && MSYMBOL_TYPE (msym) != mst_solib_trampoline)
11324 error (_("Your Ada runtime appears to be missing some debugging "
11325 "information.\nCannot insert Ada exception catchpoint "
11326 "in this configuration."));
11327
11328 return 0;
11329 }
11330
11331 /* Make sure that the symbol we found corresponds to a function. */
11332
11333 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11334 error (_("Symbol \"%s\" is not a function (class = %d)"),
11335 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11336
11337 return 1;
11338 }
11339
11340 /* Inspect the Ada runtime and determine which exception info structure
11341 should be used to provide support for exception catchpoints.
11342
11343 This function will always set the per-inferior exception_info,
11344 or raise an error. */
11345
11346 static void
11347 ada_exception_support_info_sniffer (void)
11348 {
11349 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11350
11351 /* If the exception info is already known, then no need to recompute it. */
11352 if (data->exception_info != NULL)
11353 return;
11354
11355 /* Check the latest (default) exception support info. */
11356 if (ada_has_this_exception_support (&default_exception_support_info))
11357 {
11358 data->exception_info = &default_exception_support_info;
11359 return;
11360 }
11361
11362 /* Try our fallback exception suport info. */
11363 if (ada_has_this_exception_support (&exception_support_info_fallback))
11364 {
11365 data->exception_info = &exception_support_info_fallback;
11366 return;
11367 }
11368
11369 /* Sometimes, it is normal for us to not be able to find the routine
11370 we are looking for. This happens when the program is linked with
11371 the shared version of the GNAT runtime, and the program has not been
11372 started yet. Inform the user of these two possible causes if
11373 applicable. */
11374
11375 if (ada_update_initial_language (language_unknown) != language_ada)
11376 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11377
11378 /* If the symbol does not exist, then check that the program is
11379 already started, to make sure that shared libraries have been
11380 loaded. If it is not started, this may mean that the symbol is
11381 in a shared library. */
11382
11383 if (ptid_get_pid (inferior_ptid) == 0)
11384 error (_("Unable to insert catchpoint. Try to start the program first."));
11385
11386 /* At this point, we know that we are debugging an Ada program and
11387 that the inferior has been started, but we still are not able to
11388 find the run-time symbols. That can mean that we are in
11389 configurable run time mode, or that a-except as been optimized
11390 out by the linker... In any case, at this point it is not worth
11391 supporting this feature. */
11392
11393 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11394 }
11395
11396 /* True iff FRAME is very likely to be that of a function that is
11397 part of the runtime system. This is all very heuristic, but is
11398 intended to be used as advice as to what frames are uninteresting
11399 to most users. */
11400
11401 static int
11402 is_known_support_routine (struct frame_info *frame)
11403 {
11404 struct symtab_and_line sal;
11405 char *func_name;
11406 enum language func_lang;
11407 int i;
11408 const char *fullname;
11409
11410 /* If this code does not have any debugging information (no symtab),
11411 This cannot be any user code. */
11412
11413 find_frame_sal (frame, &sal);
11414 if (sal.symtab == NULL)
11415 return 1;
11416
11417 /* If there is a symtab, but the associated source file cannot be
11418 located, then assume this is not user code: Selecting a frame
11419 for which we cannot display the code would not be very helpful
11420 for the user. This should also take care of case such as VxWorks
11421 where the kernel has some debugging info provided for a few units. */
11422
11423 fullname = symtab_to_fullname (sal.symtab);
11424 if (access (fullname, R_OK) != 0)
11425 return 1;
11426
11427 /* Check the unit filename againt the Ada runtime file naming.
11428 We also check the name of the objfile against the name of some
11429 known system libraries that sometimes come with debugging info
11430 too. */
11431
11432 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11433 {
11434 re_comp (known_runtime_file_name_patterns[i]);
11435 if (re_exec (lbasename (sal.symtab->filename)))
11436 return 1;
11437 if (sal.symtab->objfile != NULL
11438 && re_exec (objfile_name (sal.symtab->objfile)))
11439 return 1;
11440 }
11441
11442 /* Check whether the function is a GNAT-generated entity. */
11443
11444 find_frame_funname (frame, &func_name, &func_lang, NULL);
11445 if (func_name == NULL)
11446 return 1;
11447
11448 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11449 {
11450 re_comp (known_auxiliary_function_name_patterns[i]);
11451 if (re_exec (func_name))
11452 {
11453 xfree (func_name);
11454 return 1;
11455 }
11456 }
11457
11458 xfree (func_name);
11459 return 0;
11460 }
11461
11462 /* Find the first frame that contains debugging information and that is not
11463 part of the Ada run-time, starting from FI and moving upward. */
11464
11465 void
11466 ada_find_printable_frame (struct frame_info *fi)
11467 {
11468 for (; fi != NULL; fi = get_prev_frame (fi))
11469 {
11470 if (!is_known_support_routine (fi))
11471 {
11472 select_frame (fi);
11473 break;
11474 }
11475 }
11476
11477 }
11478
11479 /* Assuming that the inferior just triggered an unhandled exception
11480 catchpoint, return the address in inferior memory where the name
11481 of the exception is stored.
11482
11483 Return zero if the address could not be computed. */
11484
11485 static CORE_ADDR
11486 ada_unhandled_exception_name_addr (void)
11487 {
11488 return parse_and_eval_address ("e.full_name");
11489 }
11490
11491 /* Same as ada_unhandled_exception_name_addr, except that this function
11492 should be used when the inferior uses an older version of the runtime,
11493 where the exception name needs to be extracted from a specific frame
11494 several frames up in the callstack. */
11495
11496 static CORE_ADDR
11497 ada_unhandled_exception_name_addr_from_raise (void)
11498 {
11499 int frame_level;
11500 struct frame_info *fi;
11501 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11502 struct cleanup *old_chain;
11503
11504 /* To determine the name of this exception, we need to select
11505 the frame corresponding to RAISE_SYM_NAME. This frame is
11506 at least 3 levels up, so we simply skip the first 3 frames
11507 without checking the name of their associated function. */
11508 fi = get_current_frame ();
11509 for (frame_level = 0; frame_level < 3; frame_level += 1)
11510 if (fi != NULL)
11511 fi = get_prev_frame (fi);
11512
11513 old_chain = make_cleanup (null_cleanup, NULL);
11514 while (fi != NULL)
11515 {
11516 char *func_name;
11517 enum language func_lang;
11518
11519 find_frame_funname (fi, &func_name, &func_lang, NULL);
11520 if (func_name != NULL)
11521 {
11522 make_cleanup (xfree, func_name);
11523
11524 if (strcmp (func_name,
11525 data->exception_info->catch_exception_sym) == 0)
11526 break; /* We found the frame we were looking for... */
11527 fi = get_prev_frame (fi);
11528 }
11529 }
11530 do_cleanups (old_chain);
11531
11532 if (fi == NULL)
11533 return 0;
11534
11535 select_frame (fi);
11536 return parse_and_eval_address ("id.full_name");
11537 }
11538
11539 /* Assuming the inferior just triggered an Ada exception catchpoint
11540 (of any type), return the address in inferior memory where the name
11541 of the exception is stored, if applicable.
11542
11543 Return zero if the address could not be computed, or if not relevant. */
11544
11545 static CORE_ADDR
11546 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11547 struct breakpoint *b)
11548 {
11549 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11550
11551 switch (ex)
11552 {
11553 case ada_catch_exception:
11554 return (parse_and_eval_address ("e.full_name"));
11555 break;
11556
11557 case ada_catch_exception_unhandled:
11558 return data->exception_info->unhandled_exception_name_addr ();
11559 break;
11560
11561 case ada_catch_assert:
11562 return 0; /* Exception name is not relevant in this case. */
11563 break;
11564
11565 default:
11566 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11567 break;
11568 }
11569
11570 return 0; /* Should never be reached. */
11571 }
11572
11573 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11574 any error that ada_exception_name_addr_1 might cause to be thrown.
11575 When an error is intercepted, a warning with the error message is printed,
11576 and zero is returned. */
11577
11578 static CORE_ADDR
11579 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11580 struct breakpoint *b)
11581 {
11582 volatile struct gdb_exception e;
11583 CORE_ADDR result = 0;
11584
11585 TRY_CATCH (e, RETURN_MASK_ERROR)
11586 {
11587 result = ada_exception_name_addr_1 (ex, b);
11588 }
11589
11590 if (e.reason < 0)
11591 {
11592 warning (_("failed to get exception name: %s"), e.message);
11593 return 0;
11594 }
11595
11596 return result;
11597 }
11598
11599 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11600
11601 /* Ada catchpoints.
11602
11603 In the case of catchpoints on Ada exceptions, the catchpoint will
11604 stop the target on every exception the program throws. When a user
11605 specifies the name of a specific exception, we translate this
11606 request into a condition expression (in text form), and then parse
11607 it into an expression stored in each of the catchpoint's locations.
11608 We then use this condition to check whether the exception that was
11609 raised is the one the user is interested in. If not, then the
11610 target is resumed again. We store the name of the requested
11611 exception, in order to be able to re-set the condition expression
11612 when symbols change. */
11613
11614 /* An instance of this type is used to represent an Ada catchpoint
11615 breakpoint location. It includes a "struct bp_location" as a kind
11616 of base class; users downcast to "struct bp_location *" when
11617 needed. */
11618
11619 struct ada_catchpoint_location
11620 {
11621 /* The base class. */
11622 struct bp_location base;
11623
11624 /* The condition that checks whether the exception that was raised
11625 is the specific exception the user specified on catchpoint
11626 creation. */
11627 struct expression *excep_cond_expr;
11628 };
11629
11630 /* Implement the DTOR method in the bp_location_ops structure for all
11631 Ada exception catchpoint kinds. */
11632
11633 static void
11634 ada_catchpoint_location_dtor (struct bp_location *bl)
11635 {
11636 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11637
11638 xfree (al->excep_cond_expr);
11639 }
11640
11641 /* The vtable to be used in Ada catchpoint locations. */
11642
11643 static const struct bp_location_ops ada_catchpoint_location_ops =
11644 {
11645 ada_catchpoint_location_dtor
11646 };
11647
11648 /* An instance of this type is used to represent an Ada catchpoint.
11649 It includes a "struct breakpoint" as a kind of base class; users
11650 downcast to "struct breakpoint *" when needed. */
11651
11652 struct ada_catchpoint
11653 {
11654 /* The base class. */
11655 struct breakpoint base;
11656
11657 /* The name of the specific exception the user specified. */
11658 char *excep_string;
11659 };
11660
11661 /* Parse the exception condition string in the context of each of the
11662 catchpoint's locations, and store them for later evaluation. */
11663
11664 static void
11665 create_excep_cond_exprs (struct ada_catchpoint *c)
11666 {
11667 struct cleanup *old_chain;
11668 struct bp_location *bl;
11669 char *cond_string;
11670
11671 /* Nothing to do if there's no specific exception to catch. */
11672 if (c->excep_string == NULL)
11673 return;
11674
11675 /* Same if there are no locations... */
11676 if (c->base.loc == NULL)
11677 return;
11678
11679 /* Compute the condition expression in text form, from the specific
11680 expection we want to catch. */
11681 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11682 old_chain = make_cleanup (xfree, cond_string);
11683
11684 /* Iterate over all the catchpoint's locations, and parse an
11685 expression for each. */
11686 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11687 {
11688 struct ada_catchpoint_location *ada_loc
11689 = (struct ada_catchpoint_location *) bl;
11690 struct expression *exp = NULL;
11691
11692 if (!bl->shlib_disabled)
11693 {
11694 volatile struct gdb_exception e;
11695 const char *s;
11696
11697 s = cond_string;
11698 TRY_CATCH (e, RETURN_MASK_ERROR)
11699 {
11700 exp = parse_exp_1 (&s, bl->address,
11701 block_for_pc (bl->address), 0);
11702 }
11703 if (e.reason < 0)
11704 {
11705 warning (_("failed to reevaluate internal exception condition "
11706 "for catchpoint %d: %s"),
11707 c->base.number, e.message);
11708 /* There is a bug in GCC on sparc-solaris when building with
11709 optimization which causes EXP to change unexpectedly
11710 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11711 The problem should be fixed starting with GCC 4.9.
11712 In the meantime, work around it by forcing EXP back
11713 to NULL. */
11714 exp = NULL;
11715 }
11716 }
11717
11718 ada_loc->excep_cond_expr = exp;
11719 }
11720
11721 do_cleanups (old_chain);
11722 }
11723
11724 /* Implement the DTOR method in the breakpoint_ops structure for all
11725 exception catchpoint kinds. */
11726
11727 static void
11728 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11729 {
11730 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11731
11732 xfree (c->excep_string);
11733
11734 bkpt_breakpoint_ops.dtor (b);
11735 }
11736
11737 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11738 structure for all exception catchpoint kinds. */
11739
11740 static struct bp_location *
11741 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11742 struct breakpoint *self)
11743 {
11744 struct ada_catchpoint_location *loc;
11745
11746 loc = XNEW (struct ada_catchpoint_location);
11747 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11748 loc->excep_cond_expr = NULL;
11749 return &loc->base;
11750 }
11751
11752 /* Implement the RE_SET method in the breakpoint_ops structure for all
11753 exception catchpoint kinds. */
11754
11755 static void
11756 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11757 {
11758 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11759
11760 /* Call the base class's method. This updates the catchpoint's
11761 locations. */
11762 bkpt_breakpoint_ops.re_set (b);
11763
11764 /* Reparse the exception conditional expressions. One for each
11765 location. */
11766 create_excep_cond_exprs (c);
11767 }
11768
11769 /* Returns true if we should stop for this breakpoint hit. If the
11770 user specified a specific exception, we only want to cause a stop
11771 if the program thrown that exception. */
11772
11773 static int
11774 should_stop_exception (const struct bp_location *bl)
11775 {
11776 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11777 const struct ada_catchpoint_location *ada_loc
11778 = (const struct ada_catchpoint_location *) bl;
11779 volatile struct gdb_exception ex;
11780 int stop;
11781
11782 /* With no specific exception, should always stop. */
11783 if (c->excep_string == NULL)
11784 return 1;
11785
11786 if (ada_loc->excep_cond_expr == NULL)
11787 {
11788 /* We will have a NULL expression if back when we were creating
11789 the expressions, this location's had failed to parse. */
11790 return 1;
11791 }
11792
11793 stop = 1;
11794 TRY_CATCH (ex, RETURN_MASK_ALL)
11795 {
11796 struct value *mark;
11797
11798 mark = value_mark ();
11799 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11800 value_free_to_mark (mark);
11801 }
11802 if (ex.reason < 0)
11803 exception_fprintf (gdb_stderr, ex,
11804 _("Error in testing exception condition:\n"));
11805 return stop;
11806 }
11807
11808 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11809 for all exception catchpoint kinds. */
11810
11811 static void
11812 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11813 {
11814 bs->stop = should_stop_exception (bs->bp_location_at);
11815 }
11816
11817 /* Implement the PRINT_IT method in the breakpoint_ops structure
11818 for all exception catchpoint kinds. */
11819
11820 static enum print_stop_action
11821 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11822 {
11823 struct ui_out *uiout = current_uiout;
11824 struct breakpoint *b = bs->breakpoint_at;
11825
11826 annotate_catchpoint (b->number);
11827
11828 if (ui_out_is_mi_like_p (uiout))
11829 {
11830 ui_out_field_string (uiout, "reason",
11831 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11832 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11833 }
11834
11835 ui_out_text (uiout,
11836 b->disposition == disp_del ? "\nTemporary catchpoint "
11837 : "\nCatchpoint ");
11838 ui_out_field_int (uiout, "bkptno", b->number);
11839 ui_out_text (uiout, ", ");
11840
11841 switch (ex)
11842 {
11843 case ada_catch_exception:
11844 case ada_catch_exception_unhandled:
11845 {
11846 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11847 char exception_name[256];
11848
11849 if (addr != 0)
11850 {
11851 read_memory (addr, (gdb_byte *) exception_name,
11852 sizeof (exception_name) - 1);
11853 exception_name [sizeof (exception_name) - 1] = '\0';
11854 }
11855 else
11856 {
11857 /* For some reason, we were unable to read the exception
11858 name. This could happen if the Runtime was compiled
11859 without debugging info, for instance. In that case,
11860 just replace the exception name by the generic string
11861 "exception" - it will read as "an exception" in the
11862 notification we are about to print. */
11863 memcpy (exception_name, "exception", sizeof ("exception"));
11864 }
11865 /* In the case of unhandled exception breakpoints, we print
11866 the exception name as "unhandled EXCEPTION_NAME", to make
11867 it clearer to the user which kind of catchpoint just got
11868 hit. We used ui_out_text to make sure that this extra
11869 info does not pollute the exception name in the MI case. */
11870 if (ex == ada_catch_exception_unhandled)
11871 ui_out_text (uiout, "unhandled ");
11872 ui_out_field_string (uiout, "exception-name", exception_name);
11873 }
11874 break;
11875 case ada_catch_assert:
11876 /* In this case, the name of the exception is not really
11877 important. Just print "failed assertion" to make it clearer
11878 that his program just hit an assertion-failure catchpoint.
11879 We used ui_out_text because this info does not belong in
11880 the MI output. */
11881 ui_out_text (uiout, "failed assertion");
11882 break;
11883 }
11884 ui_out_text (uiout, " at ");
11885 ada_find_printable_frame (get_current_frame ());
11886
11887 return PRINT_SRC_AND_LOC;
11888 }
11889
11890 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11891 for all exception catchpoint kinds. */
11892
11893 static void
11894 print_one_exception (enum ada_exception_catchpoint_kind ex,
11895 struct breakpoint *b, struct bp_location **last_loc)
11896 {
11897 struct ui_out *uiout = current_uiout;
11898 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11899 struct value_print_options opts;
11900
11901 get_user_print_options (&opts);
11902 if (opts.addressprint)
11903 {
11904 annotate_field (4);
11905 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11906 }
11907
11908 annotate_field (5);
11909 *last_loc = b->loc;
11910 switch (ex)
11911 {
11912 case ada_catch_exception:
11913 if (c->excep_string != NULL)
11914 {
11915 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11916
11917 ui_out_field_string (uiout, "what", msg);
11918 xfree (msg);
11919 }
11920 else
11921 ui_out_field_string (uiout, "what", "all Ada exceptions");
11922
11923 break;
11924
11925 case ada_catch_exception_unhandled:
11926 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11927 break;
11928
11929 case ada_catch_assert:
11930 ui_out_field_string (uiout, "what", "failed Ada assertions");
11931 break;
11932
11933 default:
11934 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11935 break;
11936 }
11937 }
11938
11939 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11940 for all exception catchpoint kinds. */
11941
11942 static void
11943 print_mention_exception (enum ada_exception_catchpoint_kind ex,
11944 struct breakpoint *b)
11945 {
11946 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11947 struct ui_out *uiout = current_uiout;
11948
11949 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11950 : _("Catchpoint "));
11951 ui_out_field_int (uiout, "bkptno", b->number);
11952 ui_out_text (uiout, ": ");
11953
11954 switch (ex)
11955 {
11956 case ada_catch_exception:
11957 if (c->excep_string != NULL)
11958 {
11959 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11960 struct cleanup *old_chain = make_cleanup (xfree, info);
11961
11962 ui_out_text (uiout, info);
11963 do_cleanups (old_chain);
11964 }
11965 else
11966 ui_out_text (uiout, _("all Ada exceptions"));
11967 break;
11968
11969 case ada_catch_exception_unhandled:
11970 ui_out_text (uiout, _("unhandled Ada exceptions"));
11971 break;
11972
11973 case ada_catch_assert:
11974 ui_out_text (uiout, _("failed Ada assertions"));
11975 break;
11976
11977 default:
11978 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11979 break;
11980 }
11981 }
11982
11983 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11984 for all exception catchpoint kinds. */
11985
11986 static void
11987 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
11988 struct breakpoint *b, struct ui_file *fp)
11989 {
11990 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11991
11992 switch (ex)
11993 {
11994 case ada_catch_exception:
11995 fprintf_filtered (fp, "catch exception");
11996 if (c->excep_string != NULL)
11997 fprintf_filtered (fp, " %s", c->excep_string);
11998 break;
11999
12000 case ada_catch_exception_unhandled:
12001 fprintf_filtered (fp, "catch exception unhandled");
12002 break;
12003
12004 case ada_catch_assert:
12005 fprintf_filtered (fp, "catch assert");
12006 break;
12007
12008 default:
12009 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12010 }
12011 print_recreate_thread (b, fp);
12012 }
12013
12014 /* Virtual table for "catch exception" breakpoints. */
12015
12016 static void
12017 dtor_catch_exception (struct breakpoint *b)
12018 {
12019 dtor_exception (ada_catch_exception, b);
12020 }
12021
12022 static struct bp_location *
12023 allocate_location_catch_exception (struct breakpoint *self)
12024 {
12025 return allocate_location_exception (ada_catch_exception, self);
12026 }
12027
12028 static void
12029 re_set_catch_exception (struct breakpoint *b)
12030 {
12031 re_set_exception (ada_catch_exception, b);
12032 }
12033
12034 static void
12035 check_status_catch_exception (bpstat bs)
12036 {
12037 check_status_exception (ada_catch_exception, bs);
12038 }
12039
12040 static enum print_stop_action
12041 print_it_catch_exception (bpstat bs)
12042 {
12043 return print_it_exception (ada_catch_exception, bs);
12044 }
12045
12046 static void
12047 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12048 {
12049 print_one_exception (ada_catch_exception, b, last_loc);
12050 }
12051
12052 static void
12053 print_mention_catch_exception (struct breakpoint *b)
12054 {
12055 print_mention_exception (ada_catch_exception, b);
12056 }
12057
12058 static void
12059 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12060 {
12061 print_recreate_exception (ada_catch_exception, b, fp);
12062 }
12063
12064 static struct breakpoint_ops catch_exception_breakpoint_ops;
12065
12066 /* Virtual table for "catch exception unhandled" breakpoints. */
12067
12068 static void
12069 dtor_catch_exception_unhandled (struct breakpoint *b)
12070 {
12071 dtor_exception (ada_catch_exception_unhandled, b);
12072 }
12073
12074 static struct bp_location *
12075 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12076 {
12077 return allocate_location_exception (ada_catch_exception_unhandled, self);
12078 }
12079
12080 static void
12081 re_set_catch_exception_unhandled (struct breakpoint *b)
12082 {
12083 re_set_exception (ada_catch_exception_unhandled, b);
12084 }
12085
12086 static void
12087 check_status_catch_exception_unhandled (bpstat bs)
12088 {
12089 check_status_exception (ada_catch_exception_unhandled, bs);
12090 }
12091
12092 static enum print_stop_action
12093 print_it_catch_exception_unhandled (bpstat bs)
12094 {
12095 return print_it_exception (ada_catch_exception_unhandled, bs);
12096 }
12097
12098 static void
12099 print_one_catch_exception_unhandled (struct breakpoint *b,
12100 struct bp_location **last_loc)
12101 {
12102 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12103 }
12104
12105 static void
12106 print_mention_catch_exception_unhandled (struct breakpoint *b)
12107 {
12108 print_mention_exception (ada_catch_exception_unhandled, b);
12109 }
12110
12111 static void
12112 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12113 struct ui_file *fp)
12114 {
12115 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12116 }
12117
12118 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12119
12120 /* Virtual table for "catch assert" breakpoints. */
12121
12122 static void
12123 dtor_catch_assert (struct breakpoint *b)
12124 {
12125 dtor_exception (ada_catch_assert, b);
12126 }
12127
12128 static struct bp_location *
12129 allocate_location_catch_assert (struct breakpoint *self)
12130 {
12131 return allocate_location_exception (ada_catch_assert, self);
12132 }
12133
12134 static void
12135 re_set_catch_assert (struct breakpoint *b)
12136 {
12137 re_set_exception (ada_catch_assert, b);
12138 }
12139
12140 static void
12141 check_status_catch_assert (bpstat bs)
12142 {
12143 check_status_exception (ada_catch_assert, bs);
12144 }
12145
12146 static enum print_stop_action
12147 print_it_catch_assert (bpstat bs)
12148 {
12149 return print_it_exception (ada_catch_assert, bs);
12150 }
12151
12152 static void
12153 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12154 {
12155 print_one_exception (ada_catch_assert, b, last_loc);
12156 }
12157
12158 static void
12159 print_mention_catch_assert (struct breakpoint *b)
12160 {
12161 print_mention_exception (ada_catch_assert, b);
12162 }
12163
12164 static void
12165 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12166 {
12167 print_recreate_exception (ada_catch_assert, b, fp);
12168 }
12169
12170 static struct breakpoint_ops catch_assert_breakpoint_ops;
12171
12172 /* Return a newly allocated copy of the first space-separated token
12173 in ARGSP, and then adjust ARGSP to point immediately after that
12174 token.
12175
12176 Return NULL if ARGPS does not contain any more tokens. */
12177
12178 static char *
12179 ada_get_next_arg (char **argsp)
12180 {
12181 char *args = *argsp;
12182 char *end;
12183 char *result;
12184
12185 args = skip_spaces (args);
12186 if (args[0] == '\0')
12187 return NULL; /* No more arguments. */
12188
12189 /* Find the end of the current argument. */
12190
12191 end = skip_to_space (args);
12192
12193 /* Adjust ARGSP to point to the start of the next argument. */
12194
12195 *argsp = end;
12196
12197 /* Make a copy of the current argument and return it. */
12198
12199 result = xmalloc (end - args + 1);
12200 strncpy (result, args, end - args);
12201 result[end - args] = '\0';
12202
12203 return result;
12204 }
12205
12206 /* Split the arguments specified in a "catch exception" command.
12207 Set EX to the appropriate catchpoint type.
12208 Set EXCEP_STRING to the name of the specific exception if
12209 specified by the user.
12210 If a condition is found at the end of the arguments, the condition
12211 expression is stored in COND_STRING (memory must be deallocated
12212 after use). Otherwise COND_STRING is set to NULL. */
12213
12214 static void
12215 catch_ada_exception_command_split (char *args,
12216 enum ada_exception_catchpoint_kind *ex,
12217 char **excep_string,
12218 char **cond_string)
12219 {
12220 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12221 char *exception_name;
12222 char *cond = NULL;
12223
12224 exception_name = ada_get_next_arg (&args);
12225 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12226 {
12227 /* This is not an exception name; this is the start of a condition
12228 expression for a catchpoint on all exceptions. So, "un-get"
12229 this token, and set exception_name to NULL. */
12230 xfree (exception_name);
12231 exception_name = NULL;
12232 args -= 2;
12233 }
12234 make_cleanup (xfree, exception_name);
12235
12236 /* Check to see if we have a condition. */
12237
12238 args = skip_spaces (args);
12239 if (strncmp (args, "if", 2) == 0
12240 && (isspace (args[2]) || args[2] == '\0'))
12241 {
12242 args += 2;
12243 args = skip_spaces (args);
12244
12245 if (args[0] == '\0')
12246 error (_("Condition missing after `if' keyword"));
12247 cond = xstrdup (args);
12248 make_cleanup (xfree, cond);
12249
12250 args += strlen (args);
12251 }
12252
12253 /* Check that we do not have any more arguments. Anything else
12254 is unexpected. */
12255
12256 if (args[0] != '\0')
12257 error (_("Junk at end of expression"));
12258
12259 discard_cleanups (old_chain);
12260
12261 if (exception_name == NULL)
12262 {
12263 /* Catch all exceptions. */
12264 *ex = ada_catch_exception;
12265 *excep_string = NULL;
12266 }
12267 else if (strcmp (exception_name, "unhandled") == 0)
12268 {
12269 /* Catch unhandled exceptions. */
12270 *ex = ada_catch_exception_unhandled;
12271 *excep_string = NULL;
12272 }
12273 else
12274 {
12275 /* Catch a specific exception. */
12276 *ex = ada_catch_exception;
12277 *excep_string = exception_name;
12278 }
12279 *cond_string = cond;
12280 }
12281
12282 /* Return the name of the symbol on which we should break in order to
12283 implement a catchpoint of the EX kind. */
12284
12285 static const char *
12286 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12287 {
12288 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12289
12290 gdb_assert (data->exception_info != NULL);
12291
12292 switch (ex)
12293 {
12294 case ada_catch_exception:
12295 return (data->exception_info->catch_exception_sym);
12296 break;
12297 case ada_catch_exception_unhandled:
12298 return (data->exception_info->catch_exception_unhandled_sym);
12299 break;
12300 case ada_catch_assert:
12301 return (data->exception_info->catch_assert_sym);
12302 break;
12303 default:
12304 internal_error (__FILE__, __LINE__,
12305 _("unexpected catchpoint kind (%d)"), ex);
12306 }
12307 }
12308
12309 /* Return the breakpoint ops "virtual table" used for catchpoints
12310 of the EX kind. */
12311
12312 static const struct breakpoint_ops *
12313 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12314 {
12315 switch (ex)
12316 {
12317 case ada_catch_exception:
12318 return (&catch_exception_breakpoint_ops);
12319 break;
12320 case ada_catch_exception_unhandled:
12321 return (&catch_exception_unhandled_breakpoint_ops);
12322 break;
12323 case ada_catch_assert:
12324 return (&catch_assert_breakpoint_ops);
12325 break;
12326 default:
12327 internal_error (__FILE__, __LINE__,
12328 _("unexpected catchpoint kind (%d)"), ex);
12329 }
12330 }
12331
12332 /* Return the condition that will be used to match the current exception
12333 being raised with the exception that the user wants to catch. This
12334 assumes that this condition is used when the inferior just triggered
12335 an exception catchpoint.
12336
12337 The string returned is a newly allocated string that needs to be
12338 deallocated later. */
12339
12340 static char *
12341 ada_exception_catchpoint_cond_string (const char *excep_string)
12342 {
12343 int i;
12344
12345 /* The standard exceptions are a special case. They are defined in
12346 runtime units that have been compiled without debugging info; if
12347 EXCEP_STRING is the not-fully-qualified name of a standard
12348 exception (e.g. "constraint_error") then, during the evaluation
12349 of the condition expression, the symbol lookup on this name would
12350 *not* return this standard exception. The catchpoint condition
12351 may then be set only on user-defined exceptions which have the
12352 same not-fully-qualified name (e.g. my_package.constraint_error).
12353
12354 To avoid this unexcepted behavior, these standard exceptions are
12355 systematically prefixed by "standard". This means that "catch
12356 exception constraint_error" is rewritten into "catch exception
12357 standard.constraint_error".
12358
12359 If an exception named contraint_error is defined in another package of
12360 the inferior program, then the only way to specify this exception as a
12361 breakpoint condition is to use its fully-qualified named:
12362 e.g. my_package.constraint_error. */
12363
12364 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12365 {
12366 if (strcmp (standard_exc [i], excep_string) == 0)
12367 {
12368 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12369 excep_string);
12370 }
12371 }
12372 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12373 }
12374
12375 /* Return the symtab_and_line that should be used to insert an exception
12376 catchpoint of the TYPE kind.
12377
12378 EXCEP_STRING should contain the name of a specific exception that
12379 the catchpoint should catch, or NULL otherwise.
12380
12381 ADDR_STRING returns the name of the function where the real
12382 breakpoint that implements the catchpoints is set, depending on the
12383 type of catchpoint we need to create. */
12384
12385 static struct symtab_and_line
12386 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12387 char **addr_string, const struct breakpoint_ops **ops)
12388 {
12389 const char *sym_name;
12390 struct symbol *sym;
12391
12392 /* First, find out which exception support info to use. */
12393 ada_exception_support_info_sniffer ();
12394
12395 /* Then lookup the function on which we will break in order to catch
12396 the Ada exceptions requested by the user. */
12397 sym_name = ada_exception_sym_name (ex);
12398 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12399
12400 /* We can assume that SYM is not NULL at this stage. If the symbol
12401 did not exist, ada_exception_support_info_sniffer would have
12402 raised an exception.
12403
12404 Also, ada_exception_support_info_sniffer should have already
12405 verified that SYM is a function symbol. */
12406 gdb_assert (sym != NULL);
12407 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12408
12409 /* Set ADDR_STRING. */
12410 *addr_string = xstrdup (sym_name);
12411
12412 /* Set OPS. */
12413 *ops = ada_exception_breakpoint_ops (ex);
12414
12415 return find_function_start_sal (sym, 1);
12416 }
12417
12418 /* Create an Ada exception catchpoint.
12419
12420 EX_KIND is the kind of exception catchpoint to be created.
12421
12422 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12423 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12424 of the exception to which this catchpoint applies. When not NULL,
12425 the string must be allocated on the heap, and its deallocation
12426 is no longer the responsibility of the caller.
12427
12428 COND_STRING, if not NULL, is the catchpoint condition. This string
12429 must be allocated on the heap, and its deallocation is no longer
12430 the responsibility of the caller.
12431
12432 TEMPFLAG, if nonzero, means that the underlying breakpoint
12433 should be temporary.
12434
12435 FROM_TTY is the usual argument passed to all commands implementations. */
12436
12437 void
12438 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12439 enum ada_exception_catchpoint_kind ex_kind,
12440 char *excep_string,
12441 char *cond_string,
12442 int tempflag,
12443 int disabled,
12444 int from_tty)
12445 {
12446 struct ada_catchpoint *c;
12447 char *addr_string = NULL;
12448 const struct breakpoint_ops *ops = NULL;
12449 struct symtab_and_line sal
12450 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12451
12452 c = XNEW (struct ada_catchpoint);
12453 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12454 ops, tempflag, disabled, from_tty);
12455 c->excep_string = excep_string;
12456 create_excep_cond_exprs (c);
12457 if (cond_string != NULL)
12458 set_breakpoint_condition (&c->base, cond_string, from_tty);
12459 install_breakpoint (0, &c->base, 1);
12460 }
12461
12462 /* Implement the "catch exception" command. */
12463
12464 static void
12465 catch_ada_exception_command (char *arg, int from_tty,
12466 struct cmd_list_element *command)
12467 {
12468 struct gdbarch *gdbarch = get_current_arch ();
12469 int tempflag;
12470 enum ada_exception_catchpoint_kind ex_kind;
12471 char *excep_string = NULL;
12472 char *cond_string = NULL;
12473
12474 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12475
12476 if (!arg)
12477 arg = "";
12478 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12479 &cond_string);
12480 create_ada_exception_catchpoint (gdbarch, ex_kind,
12481 excep_string, cond_string,
12482 tempflag, 1 /* enabled */,
12483 from_tty);
12484 }
12485
12486 /* Split the arguments specified in a "catch assert" command.
12487
12488 ARGS contains the command's arguments (or the empty string if
12489 no arguments were passed).
12490
12491 If ARGS contains a condition, set COND_STRING to that condition
12492 (the memory needs to be deallocated after use). */
12493
12494 static void
12495 catch_ada_assert_command_split (char *args, char **cond_string)
12496 {
12497 args = skip_spaces (args);
12498
12499 /* Check whether a condition was provided. */
12500 if (strncmp (args, "if", 2) == 0
12501 && (isspace (args[2]) || args[2] == '\0'))
12502 {
12503 args += 2;
12504 args = skip_spaces (args);
12505 if (args[0] == '\0')
12506 error (_("condition missing after `if' keyword"));
12507 *cond_string = xstrdup (args);
12508 }
12509
12510 /* Otherwise, there should be no other argument at the end of
12511 the command. */
12512 else if (args[0] != '\0')
12513 error (_("Junk at end of arguments."));
12514 }
12515
12516 /* Implement the "catch assert" command. */
12517
12518 static void
12519 catch_assert_command (char *arg, int from_tty,
12520 struct cmd_list_element *command)
12521 {
12522 struct gdbarch *gdbarch = get_current_arch ();
12523 int tempflag;
12524 char *cond_string = NULL;
12525
12526 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12527
12528 if (!arg)
12529 arg = "";
12530 catch_ada_assert_command_split (arg, &cond_string);
12531 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12532 NULL, cond_string,
12533 tempflag, 1 /* enabled */,
12534 from_tty);
12535 }
12536
12537 /* Return non-zero if the symbol SYM is an Ada exception object. */
12538
12539 static int
12540 ada_is_exception_sym (struct symbol *sym)
12541 {
12542 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12543
12544 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12545 && SYMBOL_CLASS (sym) != LOC_BLOCK
12546 && SYMBOL_CLASS (sym) != LOC_CONST
12547 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12548 && type_name != NULL && strcmp (type_name, "exception") == 0);
12549 }
12550
12551 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12552 Ada exception object. This matches all exceptions except the ones
12553 defined by the Ada language. */
12554
12555 static int
12556 ada_is_non_standard_exception_sym (struct symbol *sym)
12557 {
12558 int i;
12559
12560 if (!ada_is_exception_sym (sym))
12561 return 0;
12562
12563 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12564 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12565 return 0; /* A standard exception. */
12566
12567 /* Numeric_Error is also a standard exception, so exclude it.
12568 See the STANDARD_EXC description for more details as to why
12569 this exception is not listed in that array. */
12570 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12571 return 0;
12572
12573 return 1;
12574 }
12575
12576 /* A helper function for qsort, comparing two struct ada_exc_info
12577 objects.
12578
12579 The comparison is determined first by exception name, and then
12580 by exception address. */
12581
12582 static int
12583 compare_ada_exception_info (const void *a, const void *b)
12584 {
12585 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12586 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12587 int result;
12588
12589 result = strcmp (exc_a->name, exc_b->name);
12590 if (result != 0)
12591 return result;
12592
12593 if (exc_a->addr < exc_b->addr)
12594 return -1;
12595 if (exc_a->addr > exc_b->addr)
12596 return 1;
12597
12598 return 0;
12599 }
12600
12601 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12602 routine, but keeping the first SKIP elements untouched.
12603
12604 All duplicates are also removed. */
12605
12606 static void
12607 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12608 int skip)
12609 {
12610 struct ada_exc_info *to_sort
12611 = VEC_address (ada_exc_info, *exceptions) + skip;
12612 int to_sort_len
12613 = VEC_length (ada_exc_info, *exceptions) - skip;
12614 int i, j;
12615
12616 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12617 compare_ada_exception_info);
12618
12619 for (i = 1, j = 1; i < to_sort_len; i++)
12620 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12621 to_sort[j++] = to_sort[i];
12622 to_sort_len = j;
12623 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12624 }
12625
12626 /* A function intended as the "name_matcher" callback in the struct
12627 quick_symbol_functions' expand_symtabs_matching method.
12628
12629 SEARCH_NAME is the symbol's search name.
12630
12631 If USER_DATA is not NULL, it is a pointer to a regext_t object
12632 used to match the symbol (by natural name). Otherwise, when USER_DATA
12633 is null, no filtering is performed, and all symbols are a positive
12634 match. */
12635
12636 static int
12637 ada_exc_search_name_matches (const char *search_name, void *user_data)
12638 {
12639 regex_t *preg = user_data;
12640
12641 if (preg == NULL)
12642 return 1;
12643
12644 /* In Ada, the symbol "search name" is a linkage name, whereas
12645 the regular expression used to do the matching refers to
12646 the natural name. So match against the decoded name. */
12647 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12648 }
12649
12650 /* Add all exceptions defined by the Ada standard whose name match
12651 a regular expression.
12652
12653 If PREG is not NULL, then this regexp_t object is used to
12654 perform the symbol name matching. Otherwise, no name-based
12655 filtering is performed.
12656
12657 EXCEPTIONS is a vector of exceptions to which matching exceptions
12658 gets pushed. */
12659
12660 static void
12661 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12662 {
12663 int i;
12664
12665 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12666 {
12667 if (preg == NULL
12668 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12669 {
12670 struct bound_minimal_symbol msymbol
12671 = ada_lookup_simple_minsym (standard_exc[i]);
12672
12673 if (msymbol.minsym != NULL)
12674 {
12675 struct ada_exc_info info
12676 = {standard_exc[i], SYMBOL_VALUE_ADDRESS (msymbol.minsym)};
12677
12678 VEC_safe_push (ada_exc_info, *exceptions, &info);
12679 }
12680 }
12681 }
12682 }
12683
12684 /* Add all Ada exceptions defined locally and accessible from the given
12685 FRAME.
12686
12687 If PREG is not NULL, then this regexp_t object is used to
12688 perform the symbol name matching. Otherwise, no name-based
12689 filtering is performed.
12690
12691 EXCEPTIONS is a vector of exceptions to which matching exceptions
12692 gets pushed. */
12693
12694 static void
12695 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12696 VEC(ada_exc_info) **exceptions)
12697 {
12698 struct block *block = get_frame_block (frame, 0);
12699
12700 while (block != 0)
12701 {
12702 struct block_iterator iter;
12703 struct symbol *sym;
12704
12705 ALL_BLOCK_SYMBOLS (block, iter, sym)
12706 {
12707 switch (SYMBOL_CLASS (sym))
12708 {
12709 case LOC_TYPEDEF:
12710 case LOC_BLOCK:
12711 case LOC_CONST:
12712 break;
12713 default:
12714 if (ada_is_exception_sym (sym))
12715 {
12716 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12717 SYMBOL_VALUE_ADDRESS (sym)};
12718
12719 VEC_safe_push (ada_exc_info, *exceptions, &info);
12720 }
12721 }
12722 }
12723 if (BLOCK_FUNCTION (block) != NULL)
12724 break;
12725 block = BLOCK_SUPERBLOCK (block);
12726 }
12727 }
12728
12729 /* Add all exceptions defined globally whose name name match
12730 a regular expression, excluding standard exceptions.
12731
12732 The reason we exclude standard exceptions is that they need
12733 to be handled separately: Standard exceptions are defined inside
12734 a runtime unit which is normally not compiled with debugging info,
12735 and thus usually do not show up in our symbol search. However,
12736 if the unit was in fact built with debugging info, we need to
12737 exclude them because they would duplicate the entry we found
12738 during the special loop that specifically searches for those
12739 standard exceptions.
12740
12741 If PREG is not NULL, then this regexp_t object is used to
12742 perform the symbol name matching. Otherwise, no name-based
12743 filtering is performed.
12744
12745 EXCEPTIONS is a vector of exceptions to which matching exceptions
12746 gets pushed. */
12747
12748 static void
12749 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12750 {
12751 struct objfile *objfile;
12752 struct symtab *s;
12753
12754 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12755 VARIABLES_DOMAIN, preg);
12756
12757 ALL_PRIMARY_SYMTABS (objfile, s)
12758 {
12759 struct blockvector *bv = BLOCKVECTOR (s);
12760 int i;
12761
12762 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12763 {
12764 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12765 struct block_iterator iter;
12766 struct symbol *sym;
12767
12768 ALL_BLOCK_SYMBOLS (b, iter, sym)
12769 if (ada_is_non_standard_exception_sym (sym)
12770 && (preg == NULL
12771 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12772 0, NULL, 0) == 0))
12773 {
12774 struct ada_exc_info info
12775 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12776
12777 VEC_safe_push (ada_exc_info, *exceptions, &info);
12778 }
12779 }
12780 }
12781 }
12782
12783 /* Implements ada_exceptions_list with the regular expression passed
12784 as a regex_t, rather than a string.
12785
12786 If not NULL, PREG is used to filter out exceptions whose names
12787 do not match. Otherwise, all exceptions are listed. */
12788
12789 static VEC(ada_exc_info) *
12790 ada_exceptions_list_1 (regex_t *preg)
12791 {
12792 VEC(ada_exc_info) *result = NULL;
12793 struct cleanup *old_chain
12794 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12795 int prev_len;
12796
12797 /* First, list the known standard exceptions. These exceptions
12798 need to be handled separately, as they are usually defined in
12799 runtime units that have been compiled without debugging info. */
12800
12801 ada_add_standard_exceptions (preg, &result);
12802
12803 /* Next, find all exceptions whose scope is local and accessible
12804 from the currently selected frame. */
12805
12806 if (has_stack_frames ())
12807 {
12808 prev_len = VEC_length (ada_exc_info, result);
12809 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12810 &result);
12811 if (VEC_length (ada_exc_info, result) > prev_len)
12812 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12813 }
12814
12815 /* Add all exceptions whose scope is global. */
12816
12817 prev_len = VEC_length (ada_exc_info, result);
12818 ada_add_global_exceptions (preg, &result);
12819 if (VEC_length (ada_exc_info, result) > prev_len)
12820 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12821
12822 discard_cleanups (old_chain);
12823 return result;
12824 }
12825
12826 /* Return a vector of ada_exc_info.
12827
12828 If REGEXP is NULL, all exceptions are included in the result.
12829 Otherwise, it should contain a valid regular expression,
12830 and only the exceptions whose names match that regular expression
12831 are included in the result.
12832
12833 The exceptions are sorted in the following order:
12834 - Standard exceptions (defined by the Ada language), in
12835 alphabetical order;
12836 - Exceptions only visible from the current frame, in
12837 alphabetical order;
12838 - Exceptions whose scope is global, in alphabetical order. */
12839
12840 VEC(ada_exc_info) *
12841 ada_exceptions_list (const char *regexp)
12842 {
12843 VEC(ada_exc_info) *result = NULL;
12844 struct cleanup *old_chain = NULL;
12845 regex_t reg;
12846
12847 if (regexp != NULL)
12848 old_chain = compile_rx_or_error (&reg, regexp,
12849 _("invalid regular expression"));
12850
12851 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12852
12853 if (old_chain != NULL)
12854 do_cleanups (old_chain);
12855 return result;
12856 }
12857
12858 /* Implement the "info exceptions" command. */
12859
12860 static void
12861 info_exceptions_command (char *regexp, int from_tty)
12862 {
12863 VEC(ada_exc_info) *exceptions;
12864 struct cleanup *cleanup;
12865 struct gdbarch *gdbarch = get_current_arch ();
12866 int ix;
12867 struct ada_exc_info *info;
12868
12869 exceptions = ada_exceptions_list (regexp);
12870 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12871
12872 if (regexp != NULL)
12873 printf_filtered
12874 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12875 else
12876 printf_filtered (_("All defined Ada exceptions:\n"));
12877
12878 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12879 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12880
12881 do_cleanups (cleanup);
12882 }
12883
12884 /* Operators */
12885 /* Information about operators given special treatment in functions
12886 below. */
12887 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12888
12889 #define ADA_OPERATORS \
12890 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12891 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12892 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12893 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12894 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12895 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12896 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12897 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12898 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12899 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12900 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12901 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12902 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12903 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12904 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12905 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12906 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12907 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12908 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12909
12910 static void
12911 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12912 int *argsp)
12913 {
12914 switch (exp->elts[pc - 1].opcode)
12915 {
12916 default:
12917 operator_length_standard (exp, pc, oplenp, argsp);
12918 break;
12919
12920 #define OP_DEFN(op, len, args, binop) \
12921 case op: *oplenp = len; *argsp = args; break;
12922 ADA_OPERATORS;
12923 #undef OP_DEFN
12924
12925 case OP_AGGREGATE:
12926 *oplenp = 3;
12927 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12928 break;
12929
12930 case OP_CHOICES:
12931 *oplenp = 3;
12932 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12933 break;
12934 }
12935 }
12936
12937 /* Implementation of the exp_descriptor method operator_check. */
12938
12939 static int
12940 ada_operator_check (struct expression *exp, int pos,
12941 int (*objfile_func) (struct objfile *objfile, void *data),
12942 void *data)
12943 {
12944 const union exp_element *const elts = exp->elts;
12945 struct type *type = NULL;
12946
12947 switch (elts[pos].opcode)
12948 {
12949 case UNOP_IN_RANGE:
12950 case UNOP_QUAL:
12951 type = elts[pos + 1].type;
12952 break;
12953
12954 default:
12955 return operator_check_standard (exp, pos, objfile_func, data);
12956 }
12957
12958 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12959
12960 if (type && TYPE_OBJFILE (type)
12961 && (*objfile_func) (TYPE_OBJFILE (type), data))
12962 return 1;
12963
12964 return 0;
12965 }
12966
12967 static char *
12968 ada_op_name (enum exp_opcode opcode)
12969 {
12970 switch (opcode)
12971 {
12972 default:
12973 return op_name_standard (opcode);
12974
12975 #define OP_DEFN(op, len, args, binop) case op: return #op;
12976 ADA_OPERATORS;
12977 #undef OP_DEFN
12978
12979 case OP_AGGREGATE:
12980 return "OP_AGGREGATE";
12981 case OP_CHOICES:
12982 return "OP_CHOICES";
12983 case OP_NAME:
12984 return "OP_NAME";
12985 }
12986 }
12987
12988 /* As for operator_length, but assumes PC is pointing at the first
12989 element of the operator, and gives meaningful results only for the
12990 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12991
12992 static void
12993 ada_forward_operator_length (struct expression *exp, int pc,
12994 int *oplenp, int *argsp)
12995 {
12996 switch (exp->elts[pc].opcode)
12997 {
12998 default:
12999 *oplenp = *argsp = 0;
13000 break;
13001
13002 #define OP_DEFN(op, len, args, binop) \
13003 case op: *oplenp = len; *argsp = args; break;
13004 ADA_OPERATORS;
13005 #undef OP_DEFN
13006
13007 case OP_AGGREGATE:
13008 *oplenp = 3;
13009 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13010 break;
13011
13012 case OP_CHOICES:
13013 *oplenp = 3;
13014 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13015 break;
13016
13017 case OP_STRING:
13018 case OP_NAME:
13019 {
13020 int len = longest_to_int (exp->elts[pc + 1].longconst);
13021
13022 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13023 *argsp = 0;
13024 break;
13025 }
13026 }
13027 }
13028
13029 static int
13030 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13031 {
13032 enum exp_opcode op = exp->elts[elt].opcode;
13033 int oplen, nargs;
13034 int pc = elt;
13035 int i;
13036
13037 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13038
13039 switch (op)
13040 {
13041 /* Ada attributes ('Foo). */
13042 case OP_ATR_FIRST:
13043 case OP_ATR_LAST:
13044 case OP_ATR_LENGTH:
13045 case OP_ATR_IMAGE:
13046 case OP_ATR_MAX:
13047 case OP_ATR_MIN:
13048 case OP_ATR_MODULUS:
13049 case OP_ATR_POS:
13050 case OP_ATR_SIZE:
13051 case OP_ATR_TAG:
13052 case OP_ATR_VAL:
13053 break;
13054
13055 case UNOP_IN_RANGE:
13056 case UNOP_QUAL:
13057 /* XXX: gdb_sprint_host_address, type_sprint */
13058 fprintf_filtered (stream, _("Type @"));
13059 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13060 fprintf_filtered (stream, " (");
13061 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13062 fprintf_filtered (stream, ")");
13063 break;
13064 case BINOP_IN_BOUNDS:
13065 fprintf_filtered (stream, " (%d)",
13066 longest_to_int (exp->elts[pc + 2].longconst));
13067 break;
13068 case TERNOP_IN_RANGE:
13069 break;
13070
13071 case OP_AGGREGATE:
13072 case OP_OTHERS:
13073 case OP_DISCRETE_RANGE:
13074 case OP_POSITIONAL:
13075 case OP_CHOICES:
13076 break;
13077
13078 case OP_NAME:
13079 case OP_STRING:
13080 {
13081 char *name = &exp->elts[elt + 2].string;
13082 int len = longest_to_int (exp->elts[elt + 1].longconst);
13083
13084 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13085 break;
13086 }
13087
13088 default:
13089 return dump_subexp_body_standard (exp, stream, elt);
13090 }
13091
13092 elt += oplen;
13093 for (i = 0; i < nargs; i += 1)
13094 elt = dump_subexp (exp, stream, elt);
13095
13096 return elt;
13097 }
13098
13099 /* The Ada extension of print_subexp (q.v.). */
13100
13101 static void
13102 ada_print_subexp (struct expression *exp, int *pos,
13103 struct ui_file *stream, enum precedence prec)
13104 {
13105 int oplen, nargs, i;
13106 int pc = *pos;
13107 enum exp_opcode op = exp->elts[pc].opcode;
13108
13109 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13110
13111 *pos += oplen;
13112 switch (op)
13113 {
13114 default:
13115 *pos -= oplen;
13116 print_subexp_standard (exp, pos, stream, prec);
13117 return;
13118
13119 case OP_VAR_VALUE:
13120 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13121 return;
13122
13123 case BINOP_IN_BOUNDS:
13124 /* XXX: sprint_subexp */
13125 print_subexp (exp, pos, stream, PREC_SUFFIX);
13126 fputs_filtered (" in ", stream);
13127 print_subexp (exp, pos, stream, PREC_SUFFIX);
13128 fputs_filtered ("'range", stream);
13129 if (exp->elts[pc + 1].longconst > 1)
13130 fprintf_filtered (stream, "(%ld)",
13131 (long) exp->elts[pc + 1].longconst);
13132 return;
13133
13134 case TERNOP_IN_RANGE:
13135 if (prec >= PREC_EQUAL)
13136 fputs_filtered ("(", stream);
13137 /* XXX: sprint_subexp */
13138 print_subexp (exp, pos, stream, PREC_SUFFIX);
13139 fputs_filtered (" in ", stream);
13140 print_subexp (exp, pos, stream, PREC_EQUAL);
13141 fputs_filtered (" .. ", stream);
13142 print_subexp (exp, pos, stream, PREC_EQUAL);
13143 if (prec >= PREC_EQUAL)
13144 fputs_filtered (")", stream);
13145 return;
13146
13147 case OP_ATR_FIRST:
13148 case OP_ATR_LAST:
13149 case OP_ATR_LENGTH:
13150 case OP_ATR_IMAGE:
13151 case OP_ATR_MAX:
13152 case OP_ATR_MIN:
13153 case OP_ATR_MODULUS:
13154 case OP_ATR_POS:
13155 case OP_ATR_SIZE:
13156 case OP_ATR_TAG:
13157 case OP_ATR_VAL:
13158 if (exp->elts[*pos].opcode == OP_TYPE)
13159 {
13160 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13161 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13162 &type_print_raw_options);
13163 *pos += 3;
13164 }
13165 else
13166 print_subexp (exp, pos, stream, PREC_SUFFIX);
13167 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13168 if (nargs > 1)
13169 {
13170 int tem;
13171
13172 for (tem = 1; tem < nargs; tem += 1)
13173 {
13174 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13175 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13176 }
13177 fputs_filtered (")", stream);
13178 }
13179 return;
13180
13181 case UNOP_QUAL:
13182 type_print (exp->elts[pc + 1].type, "", stream, 0);
13183 fputs_filtered ("'(", stream);
13184 print_subexp (exp, pos, stream, PREC_PREFIX);
13185 fputs_filtered (")", stream);
13186 return;
13187
13188 case UNOP_IN_RANGE:
13189 /* XXX: sprint_subexp */
13190 print_subexp (exp, pos, stream, PREC_SUFFIX);
13191 fputs_filtered (" in ", stream);
13192 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13193 &type_print_raw_options);
13194 return;
13195
13196 case OP_DISCRETE_RANGE:
13197 print_subexp (exp, pos, stream, PREC_SUFFIX);
13198 fputs_filtered ("..", stream);
13199 print_subexp (exp, pos, stream, PREC_SUFFIX);
13200 return;
13201
13202 case OP_OTHERS:
13203 fputs_filtered ("others => ", stream);
13204 print_subexp (exp, pos, stream, PREC_SUFFIX);
13205 return;
13206
13207 case OP_CHOICES:
13208 for (i = 0; i < nargs-1; i += 1)
13209 {
13210 if (i > 0)
13211 fputs_filtered ("|", stream);
13212 print_subexp (exp, pos, stream, PREC_SUFFIX);
13213 }
13214 fputs_filtered (" => ", stream);
13215 print_subexp (exp, pos, stream, PREC_SUFFIX);
13216 return;
13217
13218 case OP_POSITIONAL:
13219 print_subexp (exp, pos, stream, PREC_SUFFIX);
13220 return;
13221
13222 case OP_AGGREGATE:
13223 fputs_filtered ("(", stream);
13224 for (i = 0; i < nargs; i += 1)
13225 {
13226 if (i > 0)
13227 fputs_filtered (", ", stream);
13228 print_subexp (exp, pos, stream, PREC_SUFFIX);
13229 }
13230 fputs_filtered (")", stream);
13231 return;
13232 }
13233 }
13234
13235 /* Table mapping opcodes into strings for printing operators
13236 and precedences of the operators. */
13237
13238 static const struct op_print ada_op_print_tab[] = {
13239 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13240 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13241 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13242 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13243 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13244 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13245 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13246 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13247 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13248 {">=", BINOP_GEQ, PREC_ORDER, 0},
13249 {">", BINOP_GTR, PREC_ORDER, 0},
13250 {"<", BINOP_LESS, PREC_ORDER, 0},
13251 {">>", BINOP_RSH, PREC_SHIFT, 0},
13252 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13253 {"+", BINOP_ADD, PREC_ADD, 0},
13254 {"-", BINOP_SUB, PREC_ADD, 0},
13255 {"&", BINOP_CONCAT, PREC_ADD, 0},
13256 {"*", BINOP_MUL, PREC_MUL, 0},
13257 {"/", BINOP_DIV, PREC_MUL, 0},
13258 {"rem", BINOP_REM, PREC_MUL, 0},
13259 {"mod", BINOP_MOD, PREC_MUL, 0},
13260 {"**", BINOP_EXP, PREC_REPEAT, 0},
13261 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13262 {"-", UNOP_NEG, PREC_PREFIX, 0},
13263 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13264 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13265 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13266 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13267 {".all", UNOP_IND, PREC_SUFFIX, 1},
13268 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13269 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13270 {NULL, 0, 0, 0}
13271 };
13272 \f
13273 enum ada_primitive_types {
13274 ada_primitive_type_int,
13275 ada_primitive_type_long,
13276 ada_primitive_type_short,
13277 ada_primitive_type_char,
13278 ada_primitive_type_float,
13279 ada_primitive_type_double,
13280 ada_primitive_type_void,
13281 ada_primitive_type_long_long,
13282 ada_primitive_type_long_double,
13283 ada_primitive_type_natural,
13284 ada_primitive_type_positive,
13285 ada_primitive_type_system_address,
13286 nr_ada_primitive_types
13287 };
13288
13289 static void
13290 ada_language_arch_info (struct gdbarch *gdbarch,
13291 struct language_arch_info *lai)
13292 {
13293 const struct builtin_type *builtin = builtin_type (gdbarch);
13294
13295 lai->primitive_type_vector
13296 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13297 struct type *);
13298
13299 lai->primitive_type_vector [ada_primitive_type_int]
13300 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13301 0, "integer");
13302 lai->primitive_type_vector [ada_primitive_type_long]
13303 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13304 0, "long_integer");
13305 lai->primitive_type_vector [ada_primitive_type_short]
13306 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13307 0, "short_integer");
13308 lai->string_char_type
13309 = lai->primitive_type_vector [ada_primitive_type_char]
13310 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13311 lai->primitive_type_vector [ada_primitive_type_float]
13312 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13313 "float", NULL);
13314 lai->primitive_type_vector [ada_primitive_type_double]
13315 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13316 "long_float", NULL);
13317 lai->primitive_type_vector [ada_primitive_type_long_long]
13318 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13319 0, "long_long_integer");
13320 lai->primitive_type_vector [ada_primitive_type_long_double]
13321 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13322 "long_long_float", NULL);
13323 lai->primitive_type_vector [ada_primitive_type_natural]
13324 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13325 0, "natural");
13326 lai->primitive_type_vector [ada_primitive_type_positive]
13327 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13328 0, "positive");
13329 lai->primitive_type_vector [ada_primitive_type_void]
13330 = builtin->builtin_void;
13331
13332 lai->primitive_type_vector [ada_primitive_type_system_address]
13333 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13334 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13335 = "system__address";
13336
13337 lai->bool_type_symbol = NULL;
13338 lai->bool_type_default = builtin->builtin_bool;
13339 }
13340 \f
13341 /* Language vector */
13342
13343 /* Not really used, but needed in the ada_language_defn. */
13344
13345 static void
13346 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13347 {
13348 ada_emit_char (c, type, stream, quoter, 1);
13349 }
13350
13351 static int
13352 parse (void)
13353 {
13354 warnings_issued = 0;
13355 return ada_parse ();
13356 }
13357
13358 static const struct exp_descriptor ada_exp_descriptor = {
13359 ada_print_subexp,
13360 ada_operator_length,
13361 ada_operator_check,
13362 ada_op_name,
13363 ada_dump_subexp_body,
13364 ada_evaluate_subexp
13365 };
13366
13367 /* Implement the "la_get_symbol_name_cmp" language_defn method
13368 for Ada. */
13369
13370 static symbol_name_cmp_ftype
13371 ada_get_symbol_name_cmp (const char *lookup_name)
13372 {
13373 if (should_use_wild_match (lookup_name))
13374 return wild_match;
13375 else
13376 return compare_names;
13377 }
13378
13379 /* Implement the "la_read_var_value" language_defn method for Ada. */
13380
13381 static struct value *
13382 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13383 {
13384 struct block *frame_block = NULL;
13385 struct symbol *renaming_sym = NULL;
13386
13387 /* The only case where default_read_var_value is not sufficient
13388 is when VAR is a renaming... */
13389 if (frame)
13390 frame_block = get_frame_block (frame, NULL);
13391 if (frame_block)
13392 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13393 if (renaming_sym != NULL)
13394 return ada_read_renaming_var_value (renaming_sym, frame_block);
13395
13396 /* This is a typical case where we expect the default_read_var_value
13397 function to work. */
13398 return default_read_var_value (var, frame);
13399 }
13400
13401 const struct language_defn ada_language_defn = {
13402 "ada", /* Language name */
13403 "Ada",
13404 language_ada,
13405 range_check_off,
13406 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13407 that's not quite what this means. */
13408 array_row_major,
13409 macro_expansion_no,
13410 &ada_exp_descriptor,
13411 parse,
13412 ada_error,
13413 resolve,
13414 ada_printchar, /* Print a character constant */
13415 ada_printstr, /* Function to print string constant */
13416 emit_char, /* Function to print single char (not used) */
13417 ada_print_type, /* Print a type using appropriate syntax */
13418 ada_print_typedef, /* Print a typedef using appropriate syntax */
13419 ada_val_print, /* Print a value using appropriate syntax */
13420 ada_value_print, /* Print a top-level value */
13421 ada_read_var_value, /* la_read_var_value */
13422 NULL, /* Language specific skip_trampoline */
13423 NULL, /* name_of_this */
13424 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13425 basic_lookup_transparent_type, /* lookup_transparent_type */
13426 ada_la_decode, /* Language specific symbol demangler */
13427 NULL, /* Language specific
13428 class_name_from_physname */
13429 ada_op_print_tab, /* expression operators for printing */
13430 0, /* c-style arrays */
13431 1, /* String lower bound */
13432 ada_get_gdb_completer_word_break_characters,
13433 ada_make_symbol_completion_list,
13434 ada_language_arch_info,
13435 ada_print_array_index,
13436 default_pass_by_reference,
13437 c_get_string,
13438 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13439 ada_iterate_over_symbols,
13440 &ada_varobj_ops,
13441 LANG_MAGIC
13442 };
13443
13444 /* Provide a prototype to silence -Wmissing-prototypes. */
13445 extern initialize_file_ftype _initialize_ada_language;
13446
13447 /* Command-list for the "set/show ada" prefix command. */
13448 static struct cmd_list_element *set_ada_list;
13449 static struct cmd_list_element *show_ada_list;
13450
13451 /* Implement the "set ada" prefix command. */
13452
13453 static void
13454 set_ada_command (char *arg, int from_tty)
13455 {
13456 printf_unfiltered (_(\
13457 "\"set ada\" must be followed by the name of a setting.\n"));
13458 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
13459 }
13460
13461 /* Implement the "show ada" prefix command. */
13462
13463 static void
13464 show_ada_command (char *args, int from_tty)
13465 {
13466 cmd_show_list (show_ada_list, from_tty, "");
13467 }
13468
13469 static void
13470 initialize_ada_catchpoint_ops (void)
13471 {
13472 struct breakpoint_ops *ops;
13473
13474 initialize_breakpoint_ops ();
13475
13476 ops = &catch_exception_breakpoint_ops;
13477 *ops = bkpt_breakpoint_ops;
13478 ops->dtor = dtor_catch_exception;
13479 ops->allocate_location = allocate_location_catch_exception;
13480 ops->re_set = re_set_catch_exception;
13481 ops->check_status = check_status_catch_exception;
13482 ops->print_it = print_it_catch_exception;
13483 ops->print_one = print_one_catch_exception;
13484 ops->print_mention = print_mention_catch_exception;
13485 ops->print_recreate = print_recreate_catch_exception;
13486
13487 ops = &catch_exception_unhandled_breakpoint_ops;
13488 *ops = bkpt_breakpoint_ops;
13489 ops->dtor = dtor_catch_exception_unhandled;
13490 ops->allocate_location = allocate_location_catch_exception_unhandled;
13491 ops->re_set = re_set_catch_exception_unhandled;
13492 ops->check_status = check_status_catch_exception_unhandled;
13493 ops->print_it = print_it_catch_exception_unhandled;
13494 ops->print_one = print_one_catch_exception_unhandled;
13495 ops->print_mention = print_mention_catch_exception_unhandled;
13496 ops->print_recreate = print_recreate_catch_exception_unhandled;
13497
13498 ops = &catch_assert_breakpoint_ops;
13499 *ops = bkpt_breakpoint_ops;
13500 ops->dtor = dtor_catch_assert;
13501 ops->allocate_location = allocate_location_catch_assert;
13502 ops->re_set = re_set_catch_assert;
13503 ops->check_status = check_status_catch_assert;
13504 ops->print_it = print_it_catch_assert;
13505 ops->print_one = print_one_catch_assert;
13506 ops->print_mention = print_mention_catch_assert;
13507 ops->print_recreate = print_recreate_catch_assert;
13508 }
13509
13510 /* This module's 'new_objfile' observer. */
13511
13512 static void
13513 ada_new_objfile_observer (struct objfile *objfile)
13514 {
13515 ada_clear_symbol_cache ();
13516 }
13517
13518 /* This module's 'free_objfile' observer. */
13519
13520 static void
13521 ada_free_objfile_observer (struct objfile *objfile)
13522 {
13523 ada_clear_symbol_cache ();
13524 }
13525
13526 void
13527 _initialize_ada_language (void)
13528 {
13529 add_language (&ada_language_defn);
13530
13531 initialize_ada_catchpoint_ops ();
13532
13533 add_prefix_cmd ("ada", no_class, set_ada_command,
13534 _("Prefix command for changing Ada-specfic settings"),
13535 &set_ada_list, "set ada ", 0, &setlist);
13536
13537 add_prefix_cmd ("ada", no_class, show_ada_command,
13538 _("Generic command for showing Ada-specific settings."),
13539 &show_ada_list, "show ada ", 0, &showlist);
13540
13541 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13542 &trust_pad_over_xvs, _("\
13543 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13544 Show whether an optimization trusting PAD types over XVS types is activated"),
13545 _("\
13546 This is related to the encoding used by the GNAT compiler. The debugger\n\
13547 should normally trust the contents of PAD types, but certain older versions\n\
13548 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13549 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13550 work around this bug. It is always safe to turn this option \"off\", but\n\
13551 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13552 this option to \"off\" unless necessary."),
13553 NULL, NULL, &set_ada_list, &show_ada_list);
13554
13555 add_catch_command ("exception", _("\
13556 Catch Ada exceptions, when raised.\n\
13557 With an argument, catch only exceptions with the given name."),
13558 catch_ada_exception_command,
13559 NULL,
13560 CATCH_PERMANENT,
13561 CATCH_TEMPORARY);
13562 add_catch_command ("assert", _("\
13563 Catch failed Ada assertions, when raised.\n\
13564 With an argument, catch only exceptions with the given name."),
13565 catch_assert_command,
13566 NULL,
13567 CATCH_PERMANENT,
13568 CATCH_TEMPORARY);
13569
13570 varsize_limit = 65536;
13571
13572 add_info ("exceptions", info_exceptions_command,
13573 _("\
13574 List all Ada exception names.\n\
13575 If a regular expression is passed as an argument, only those matching\n\
13576 the regular expression are listed."));
13577
13578 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13579 _("Set Ada maintenance-related variables."),
13580 &maint_set_ada_cmdlist, "maintenance set ada ",
13581 0/*allow-unknown*/, &maintenance_set_cmdlist);
13582
13583 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13584 _("Show Ada maintenance-related variables"),
13585 &maint_show_ada_cmdlist, "maintenance show ada ",
13586 0/*allow-unknown*/, &maintenance_show_cmdlist);
13587
13588 add_setshow_boolean_cmd
13589 ("ignore-descriptive-types", class_maintenance,
13590 &ada_ignore_descriptive_types_p,
13591 _("Set whether descriptive types generated by GNAT should be ignored."),
13592 _("Show whether descriptive types generated by GNAT should be ignored."),
13593 _("\
13594 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13595 DWARF attribute."),
13596 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13597
13598 obstack_init (&symbol_list_obstack);
13599
13600 decoded_names_store = htab_create_alloc
13601 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13602 NULL, xcalloc, xfree);
13603
13604 /* The ada-lang observers. */
13605 observer_attach_new_objfile (ada_new_objfile_observer);
13606 observer_attach_free_objfile (ada_free_objfile_observer);
13607 observer_attach_inferior_exit (ada_inferior_exit);
13608
13609 /* Setup various context-specific data. */
13610 ada_inferior_data
13611 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13612 ada_pspace_data_handle
13613 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13614 }
This page took 0.314536 seconds and 4 git commands to generate.