Add ifunc tests for call, jmp, add, test
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
115 static int is_nonfunction (struct block_symbol *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct block_symbol *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270
271 static struct type *ada_find_any_type (const char *name);
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319 static char *ada_completer_word_break_characters =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = program_space_data (pspace, ada_pspace_data_handle);
463 if (data == NULL)
464 {
465 data = XCNEW (struct ada_pspace_data);
466 set_program_space_data (pspace, ada_pspace_data_handle, data);
467 }
468
469 return data;
470 }
471
472 /* The cleanup callback for this module's per-program-space data. */
473
474 static void
475 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
476 {
477 struct ada_pspace_data *pspace_data = data;
478
479 if (pspace_data->sym_cache != NULL)
480 ada_free_symbol_cache (pspace_data->sym_cache);
481 xfree (pspace_data);
482 }
483
484 /* Utilities */
485
486 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
487 all typedef layers have been peeled. Otherwise, return TYPE.
488
489 Normally, we really expect a typedef type to only have 1 typedef layer.
490 In other words, we really expect the target type of a typedef type to be
491 a non-typedef type. This is particularly true for Ada units, because
492 the language does not have a typedef vs not-typedef distinction.
493 In that respect, the Ada compiler has been trying to eliminate as many
494 typedef definitions in the debugging information, since they generally
495 do not bring any extra information (we still use typedef under certain
496 circumstances related mostly to the GNAT encoding).
497
498 Unfortunately, we have seen situations where the debugging information
499 generated by the compiler leads to such multiple typedef layers. For
500 instance, consider the following example with stabs:
501
502 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
503 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
504
505 This is an error in the debugging information which causes type
506 pck__float_array___XUP to be defined twice, and the second time,
507 it is defined as a typedef of a typedef.
508
509 This is on the fringe of legality as far as debugging information is
510 concerned, and certainly unexpected. But it is easy to handle these
511 situations correctly, so we can afford to be lenient in this case. */
512
513 static struct type *
514 ada_typedef_target_type (struct type *type)
515 {
516 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
517 type = TYPE_TARGET_TYPE (type);
518 return type;
519 }
520
521 /* Given DECODED_NAME a string holding a symbol name in its
522 decoded form (ie using the Ada dotted notation), returns
523 its unqualified name. */
524
525 static const char *
526 ada_unqualified_name (const char *decoded_name)
527 {
528 const char *result;
529
530 /* If the decoded name starts with '<', it means that the encoded
531 name does not follow standard naming conventions, and thus that
532 it is not your typical Ada symbol name. Trying to unqualify it
533 is therefore pointless and possibly erroneous. */
534 if (decoded_name[0] == '<')
535 return decoded_name;
536
537 result = strrchr (decoded_name, '.');
538 if (result != NULL)
539 result++; /* Skip the dot... */
540 else
541 result = decoded_name;
542
543 return result;
544 }
545
546 /* Return a string starting with '<', followed by STR, and '>'.
547 The result is good until the next call. */
548
549 static char *
550 add_angle_brackets (const char *str)
551 {
552 static char *result = NULL;
553
554 xfree (result);
555 result = xstrprintf ("<%s>", str);
556 return result;
557 }
558
559 static char *
560 ada_get_gdb_completer_word_break_characters (void)
561 {
562 return ada_completer_word_break_characters;
563 }
564
565 /* Print an array element index using the Ada syntax. */
566
567 static void
568 ada_print_array_index (struct value *index_value, struct ui_file *stream,
569 const struct value_print_options *options)
570 {
571 LA_VALUE_PRINT (index_value, stream, options);
572 fprintf_filtered (stream, " => ");
573 }
574
575 /* Assuming VECT points to an array of *SIZE objects of size
576 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
577 updating *SIZE as necessary and returning the (new) array. */
578
579 void *
580 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
581 {
582 if (*size < min_size)
583 {
584 *size *= 2;
585 if (*size < min_size)
586 *size = min_size;
587 vect = xrealloc (vect, *size * element_size);
588 }
589 return vect;
590 }
591
592 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
593 suffix of FIELD_NAME beginning "___". */
594
595 static int
596 field_name_match (const char *field_name, const char *target)
597 {
598 int len = strlen (target);
599
600 return
601 (strncmp (field_name, target, len) == 0
602 && (field_name[len] == '\0'
603 || (startswith (field_name + len, "___")
604 && strcmp (field_name + strlen (field_name) - 6,
605 "___XVN") != 0)));
606 }
607
608
609 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
610 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
611 and return its index. This function also handles fields whose name
612 have ___ suffixes because the compiler sometimes alters their name
613 by adding such a suffix to represent fields with certain constraints.
614 If the field could not be found, return a negative number if
615 MAYBE_MISSING is set. Otherwise raise an error. */
616
617 int
618 ada_get_field_index (const struct type *type, const char *field_name,
619 int maybe_missing)
620 {
621 int fieldno;
622 struct type *struct_type = check_typedef ((struct type *) type);
623
624 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
625 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
626 return fieldno;
627
628 if (!maybe_missing)
629 error (_("Unable to find field %s in struct %s. Aborting"),
630 field_name, TYPE_NAME (struct_type));
631
632 return -1;
633 }
634
635 /* The length of the prefix of NAME prior to any "___" suffix. */
636
637 int
638 ada_name_prefix_len (const char *name)
639 {
640 if (name == NULL)
641 return 0;
642 else
643 {
644 const char *p = strstr (name, "___");
645
646 if (p == NULL)
647 return strlen (name);
648 else
649 return p - name;
650 }
651 }
652
653 /* Return non-zero if SUFFIX is a suffix of STR.
654 Return zero if STR is null. */
655
656 static int
657 is_suffix (const char *str, const char *suffix)
658 {
659 int len1, len2;
660
661 if (str == NULL)
662 return 0;
663 len1 = strlen (str);
664 len2 = strlen (suffix);
665 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
666 }
667
668 /* The contents of value VAL, treated as a value of type TYPE. The
669 result is an lval in memory if VAL is. */
670
671 static struct value *
672 coerce_unspec_val_to_type (struct value *val, struct type *type)
673 {
674 type = ada_check_typedef (type);
675 if (value_type (val) == type)
676 return val;
677 else
678 {
679 struct value *result;
680
681 /* Make sure that the object size is not unreasonable before
682 trying to allocate some memory for it. */
683 ada_ensure_varsize_limit (type);
684
685 if (value_lazy (val)
686 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
687 result = allocate_value_lazy (type);
688 else
689 {
690 result = allocate_value (type);
691 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
692 }
693 set_value_component_location (result, val);
694 set_value_bitsize (result, value_bitsize (val));
695 set_value_bitpos (result, value_bitpos (val));
696 set_value_address (result, value_address (val));
697 return result;
698 }
699 }
700
701 static const gdb_byte *
702 cond_offset_host (const gdb_byte *valaddr, long offset)
703 {
704 if (valaddr == NULL)
705 return NULL;
706 else
707 return valaddr + offset;
708 }
709
710 static CORE_ADDR
711 cond_offset_target (CORE_ADDR address, long offset)
712 {
713 if (address == 0)
714 return 0;
715 else
716 return address + offset;
717 }
718
719 /* Issue a warning (as for the definition of warning in utils.c, but
720 with exactly one argument rather than ...), unless the limit on the
721 number of warnings has passed during the evaluation of the current
722 expression. */
723
724 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
725 provided by "complaint". */
726 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
727
728 static void
729 lim_warning (const char *format, ...)
730 {
731 va_list args;
732
733 va_start (args, format);
734 warnings_issued += 1;
735 if (warnings_issued <= warning_limit)
736 vwarning (format, args);
737
738 va_end (args);
739 }
740
741 /* Issue an error if the size of an object of type T is unreasonable,
742 i.e. if it would be a bad idea to allocate a value of this type in
743 GDB. */
744
745 void
746 ada_ensure_varsize_limit (const struct type *type)
747 {
748 if (TYPE_LENGTH (type) > varsize_limit)
749 error (_("object size is larger than varsize-limit"));
750 }
751
752 /* Maximum value of a SIZE-byte signed integer type. */
753 static LONGEST
754 max_of_size (int size)
755 {
756 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
757
758 return top_bit | (top_bit - 1);
759 }
760
761 /* Minimum value of a SIZE-byte signed integer type. */
762 static LONGEST
763 min_of_size (int size)
764 {
765 return -max_of_size (size) - 1;
766 }
767
768 /* Maximum value of a SIZE-byte unsigned integer type. */
769 static ULONGEST
770 umax_of_size (int size)
771 {
772 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
773
774 return top_bit | (top_bit - 1);
775 }
776
777 /* Maximum value of integral type T, as a signed quantity. */
778 static LONGEST
779 max_of_type (struct type *t)
780 {
781 if (TYPE_UNSIGNED (t))
782 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
783 else
784 return max_of_size (TYPE_LENGTH (t));
785 }
786
787 /* Minimum value of integral type T, as a signed quantity. */
788 static LONGEST
789 min_of_type (struct type *t)
790 {
791 if (TYPE_UNSIGNED (t))
792 return 0;
793 else
794 return min_of_size (TYPE_LENGTH (t));
795 }
796
797 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
798 LONGEST
799 ada_discrete_type_high_bound (struct type *type)
800 {
801 type = resolve_dynamic_type (type, NULL, 0);
802 switch (TYPE_CODE (type))
803 {
804 case TYPE_CODE_RANGE:
805 return TYPE_HIGH_BOUND (type);
806 case TYPE_CODE_ENUM:
807 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
808 case TYPE_CODE_BOOL:
809 return 1;
810 case TYPE_CODE_CHAR:
811 case TYPE_CODE_INT:
812 return max_of_type (type);
813 default:
814 error (_("Unexpected type in ada_discrete_type_high_bound."));
815 }
816 }
817
818 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
819 LONGEST
820 ada_discrete_type_low_bound (struct type *type)
821 {
822 type = resolve_dynamic_type (type, NULL, 0);
823 switch (TYPE_CODE (type))
824 {
825 case TYPE_CODE_RANGE:
826 return TYPE_LOW_BOUND (type);
827 case TYPE_CODE_ENUM:
828 return TYPE_FIELD_ENUMVAL (type, 0);
829 case TYPE_CODE_BOOL:
830 return 0;
831 case TYPE_CODE_CHAR:
832 case TYPE_CODE_INT:
833 return min_of_type (type);
834 default:
835 error (_("Unexpected type in ada_discrete_type_low_bound."));
836 }
837 }
838
839 /* The identity on non-range types. For range types, the underlying
840 non-range scalar type. */
841
842 static struct type *
843 get_base_type (struct type *type)
844 {
845 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
846 {
847 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
848 return type;
849 type = TYPE_TARGET_TYPE (type);
850 }
851 return type;
852 }
853
854 /* Return a decoded version of the given VALUE. This means returning
855 a value whose type is obtained by applying all the GNAT-specific
856 encondings, making the resulting type a static but standard description
857 of the initial type. */
858
859 struct value *
860 ada_get_decoded_value (struct value *value)
861 {
862 struct type *type = ada_check_typedef (value_type (value));
863
864 if (ada_is_array_descriptor_type (type)
865 || (ada_is_constrained_packed_array_type (type)
866 && TYPE_CODE (type) != TYPE_CODE_PTR))
867 {
868 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
869 value = ada_coerce_to_simple_array_ptr (value);
870 else
871 value = ada_coerce_to_simple_array (value);
872 }
873 else
874 value = ada_to_fixed_value (value);
875
876 return value;
877 }
878
879 /* Same as ada_get_decoded_value, but with the given TYPE.
880 Because there is no associated actual value for this type,
881 the resulting type might be a best-effort approximation in
882 the case of dynamic types. */
883
884 struct type *
885 ada_get_decoded_type (struct type *type)
886 {
887 type = to_static_fixed_type (type);
888 if (ada_is_constrained_packed_array_type (type))
889 type = ada_coerce_to_simple_array_type (type);
890 return type;
891 }
892
893 \f
894
895 /* Language Selection */
896
897 /* If the main program is in Ada, return language_ada, otherwise return LANG
898 (the main program is in Ada iif the adainit symbol is found). */
899
900 enum language
901 ada_update_initial_language (enum language lang)
902 {
903 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
904 (struct objfile *) NULL).minsym != NULL)
905 return language_ada;
906
907 return lang;
908 }
909
910 /* If the main procedure is written in Ada, then return its name.
911 The result is good until the next call. Return NULL if the main
912 procedure doesn't appear to be in Ada. */
913
914 char *
915 ada_main_name (void)
916 {
917 struct bound_minimal_symbol msym;
918 static char *main_program_name = NULL;
919
920 /* For Ada, the name of the main procedure is stored in a specific
921 string constant, generated by the binder. Look for that symbol,
922 extract its address, and then read that string. If we didn't find
923 that string, then most probably the main procedure is not written
924 in Ada. */
925 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
926
927 if (msym.minsym != NULL)
928 {
929 CORE_ADDR main_program_name_addr;
930 int err_code;
931
932 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
933 if (main_program_name_addr == 0)
934 error (_("Invalid address for Ada main program name."));
935
936 xfree (main_program_name);
937 target_read_string (main_program_name_addr, &main_program_name,
938 1024, &err_code);
939
940 if (err_code != 0)
941 return NULL;
942 return main_program_name;
943 }
944
945 /* The main procedure doesn't seem to be in Ada. */
946 return NULL;
947 }
948 \f
949 /* Symbols */
950
951 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
952 of NULLs. */
953
954 const struct ada_opname_map ada_opname_table[] = {
955 {"Oadd", "\"+\"", BINOP_ADD},
956 {"Osubtract", "\"-\"", BINOP_SUB},
957 {"Omultiply", "\"*\"", BINOP_MUL},
958 {"Odivide", "\"/\"", BINOP_DIV},
959 {"Omod", "\"mod\"", BINOP_MOD},
960 {"Orem", "\"rem\"", BINOP_REM},
961 {"Oexpon", "\"**\"", BINOP_EXP},
962 {"Olt", "\"<\"", BINOP_LESS},
963 {"Ole", "\"<=\"", BINOP_LEQ},
964 {"Ogt", "\">\"", BINOP_GTR},
965 {"Oge", "\">=\"", BINOP_GEQ},
966 {"Oeq", "\"=\"", BINOP_EQUAL},
967 {"One", "\"/=\"", BINOP_NOTEQUAL},
968 {"Oand", "\"and\"", BINOP_BITWISE_AND},
969 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
970 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
971 {"Oconcat", "\"&\"", BINOP_CONCAT},
972 {"Oabs", "\"abs\"", UNOP_ABS},
973 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
974 {"Oadd", "\"+\"", UNOP_PLUS},
975 {"Osubtract", "\"-\"", UNOP_NEG},
976 {NULL, NULL}
977 };
978
979 /* The "encoded" form of DECODED, according to GNAT conventions.
980 The result is valid until the next call to ada_encode. */
981
982 char *
983 ada_encode (const char *decoded)
984 {
985 static char *encoding_buffer = NULL;
986 static size_t encoding_buffer_size = 0;
987 const char *p;
988 int k;
989
990 if (decoded == NULL)
991 return NULL;
992
993 GROW_VECT (encoding_buffer, encoding_buffer_size,
994 2 * strlen (decoded) + 10);
995
996 k = 0;
997 for (p = decoded; *p != '\0'; p += 1)
998 {
999 if (*p == '.')
1000 {
1001 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1002 k += 2;
1003 }
1004 else if (*p == '"')
1005 {
1006 const struct ada_opname_map *mapping;
1007
1008 for (mapping = ada_opname_table;
1009 mapping->encoded != NULL
1010 && !startswith (p, mapping->decoded); mapping += 1)
1011 ;
1012 if (mapping->encoded == NULL)
1013 error (_("invalid Ada operator name: %s"), p);
1014 strcpy (encoding_buffer + k, mapping->encoded);
1015 k += strlen (mapping->encoded);
1016 break;
1017 }
1018 else
1019 {
1020 encoding_buffer[k] = *p;
1021 k += 1;
1022 }
1023 }
1024
1025 encoding_buffer[k] = '\0';
1026 return encoding_buffer;
1027 }
1028
1029 /* Return NAME folded to lower case, or, if surrounded by single
1030 quotes, unfolded, but with the quotes stripped away. Result good
1031 to next call. */
1032
1033 char *
1034 ada_fold_name (const char *name)
1035 {
1036 static char *fold_buffer = NULL;
1037 static size_t fold_buffer_size = 0;
1038
1039 int len = strlen (name);
1040 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1041
1042 if (name[0] == '\'')
1043 {
1044 strncpy (fold_buffer, name + 1, len - 2);
1045 fold_buffer[len - 2] = '\000';
1046 }
1047 else
1048 {
1049 int i;
1050
1051 for (i = 0; i <= len; i += 1)
1052 fold_buffer[i] = tolower (name[i]);
1053 }
1054
1055 return fold_buffer;
1056 }
1057
1058 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1059
1060 static int
1061 is_lower_alphanum (const char c)
1062 {
1063 return (isdigit (c) || (isalpha (c) && islower (c)));
1064 }
1065
1066 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1067 This function saves in LEN the length of that same symbol name but
1068 without either of these suffixes:
1069 . .{DIGIT}+
1070 . ${DIGIT}+
1071 . ___{DIGIT}+
1072 . __{DIGIT}+.
1073
1074 These are suffixes introduced by the compiler for entities such as
1075 nested subprogram for instance, in order to avoid name clashes.
1076 They do not serve any purpose for the debugger. */
1077
1078 static void
1079 ada_remove_trailing_digits (const char *encoded, int *len)
1080 {
1081 if (*len > 1 && isdigit (encoded[*len - 1]))
1082 {
1083 int i = *len - 2;
1084
1085 while (i > 0 && isdigit (encoded[i]))
1086 i--;
1087 if (i >= 0 && encoded[i] == '.')
1088 *len = i;
1089 else if (i >= 0 && encoded[i] == '$')
1090 *len = i;
1091 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1092 *len = i - 2;
1093 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1094 *len = i - 1;
1095 }
1096 }
1097
1098 /* Remove the suffix introduced by the compiler for protected object
1099 subprograms. */
1100
1101 static void
1102 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1103 {
1104 /* Remove trailing N. */
1105
1106 /* Protected entry subprograms are broken into two
1107 separate subprograms: The first one is unprotected, and has
1108 a 'N' suffix; the second is the protected version, and has
1109 the 'P' suffix. The second calls the first one after handling
1110 the protection. Since the P subprograms are internally generated,
1111 we leave these names undecoded, giving the user a clue that this
1112 entity is internal. */
1113
1114 if (*len > 1
1115 && encoded[*len - 1] == 'N'
1116 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1117 *len = *len - 1;
1118 }
1119
1120 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1121
1122 static void
1123 ada_remove_Xbn_suffix (const char *encoded, int *len)
1124 {
1125 int i = *len - 1;
1126
1127 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1128 i--;
1129
1130 if (encoded[i] != 'X')
1131 return;
1132
1133 if (i == 0)
1134 return;
1135
1136 if (isalnum (encoded[i-1]))
1137 *len = i;
1138 }
1139
1140 /* If ENCODED follows the GNAT entity encoding conventions, then return
1141 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1142 replaced by ENCODED.
1143
1144 The resulting string is valid until the next call of ada_decode.
1145 If the string is unchanged by decoding, the original string pointer
1146 is returned. */
1147
1148 const char *
1149 ada_decode (const char *encoded)
1150 {
1151 int i, j;
1152 int len0;
1153 const char *p;
1154 char *decoded;
1155 int at_start_name;
1156 static char *decoding_buffer = NULL;
1157 static size_t decoding_buffer_size = 0;
1158
1159 /* The name of the Ada main procedure starts with "_ada_".
1160 This prefix is not part of the decoded name, so skip this part
1161 if we see this prefix. */
1162 if (startswith (encoded, "_ada_"))
1163 encoded += 5;
1164
1165 /* If the name starts with '_', then it is not a properly encoded
1166 name, so do not attempt to decode it. Similarly, if the name
1167 starts with '<', the name should not be decoded. */
1168 if (encoded[0] == '_' || encoded[0] == '<')
1169 goto Suppress;
1170
1171 len0 = strlen (encoded);
1172
1173 ada_remove_trailing_digits (encoded, &len0);
1174 ada_remove_po_subprogram_suffix (encoded, &len0);
1175
1176 /* Remove the ___X.* suffix if present. Do not forget to verify that
1177 the suffix is located before the current "end" of ENCODED. We want
1178 to avoid re-matching parts of ENCODED that have previously been
1179 marked as discarded (by decrementing LEN0). */
1180 p = strstr (encoded, "___");
1181 if (p != NULL && p - encoded < len0 - 3)
1182 {
1183 if (p[3] == 'X')
1184 len0 = p - encoded;
1185 else
1186 goto Suppress;
1187 }
1188
1189 /* Remove any trailing TKB suffix. It tells us that this symbol
1190 is for the body of a task, but that information does not actually
1191 appear in the decoded name. */
1192
1193 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1194 len0 -= 3;
1195
1196 /* Remove any trailing TB suffix. The TB suffix is slightly different
1197 from the TKB suffix because it is used for non-anonymous task
1198 bodies. */
1199
1200 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1201 len0 -= 2;
1202
1203 /* Remove trailing "B" suffixes. */
1204 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1205
1206 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1207 len0 -= 1;
1208
1209 /* Make decoded big enough for possible expansion by operator name. */
1210
1211 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1212 decoded = decoding_buffer;
1213
1214 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1215
1216 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1217 {
1218 i = len0 - 2;
1219 while ((i >= 0 && isdigit (encoded[i]))
1220 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1221 i -= 1;
1222 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1223 len0 = i - 1;
1224 else if (encoded[i] == '$')
1225 len0 = i;
1226 }
1227
1228 /* The first few characters that are not alphabetic are not part
1229 of any encoding we use, so we can copy them over verbatim. */
1230
1231 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1232 decoded[j] = encoded[i];
1233
1234 at_start_name = 1;
1235 while (i < len0)
1236 {
1237 /* Is this a symbol function? */
1238 if (at_start_name && encoded[i] == 'O')
1239 {
1240 int k;
1241
1242 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1243 {
1244 int op_len = strlen (ada_opname_table[k].encoded);
1245 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1246 op_len - 1) == 0)
1247 && !isalnum (encoded[i + op_len]))
1248 {
1249 strcpy (decoded + j, ada_opname_table[k].decoded);
1250 at_start_name = 0;
1251 i += op_len;
1252 j += strlen (ada_opname_table[k].decoded);
1253 break;
1254 }
1255 }
1256 if (ada_opname_table[k].encoded != NULL)
1257 continue;
1258 }
1259 at_start_name = 0;
1260
1261 /* Replace "TK__" with "__", which will eventually be translated
1262 into "." (just below). */
1263
1264 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1265 i += 2;
1266
1267 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1268 be translated into "." (just below). These are internal names
1269 generated for anonymous blocks inside which our symbol is nested. */
1270
1271 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1272 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1273 && isdigit (encoded [i+4]))
1274 {
1275 int k = i + 5;
1276
1277 while (k < len0 && isdigit (encoded[k]))
1278 k++; /* Skip any extra digit. */
1279
1280 /* Double-check that the "__B_{DIGITS}+" sequence we found
1281 is indeed followed by "__". */
1282 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1283 i = k;
1284 }
1285
1286 /* Remove _E{DIGITS}+[sb] */
1287
1288 /* Just as for protected object subprograms, there are 2 categories
1289 of subprograms created by the compiler for each entry. The first
1290 one implements the actual entry code, and has a suffix following
1291 the convention above; the second one implements the barrier and
1292 uses the same convention as above, except that the 'E' is replaced
1293 by a 'B'.
1294
1295 Just as above, we do not decode the name of barrier functions
1296 to give the user a clue that the code he is debugging has been
1297 internally generated. */
1298
1299 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1300 && isdigit (encoded[i+2]))
1301 {
1302 int k = i + 3;
1303
1304 while (k < len0 && isdigit (encoded[k]))
1305 k++;
1306
1307 if (k < len0
1308 && (encoded[k] == 'b' || encoded[k] == 's'))
1309 {
1310 k++;
1311 /* Just as an extra precaution, make sure that if this
1312 suffix is followed by anything else, it is a '_'.
1313 Otherwise, we matched this sequence by accident. */
1314 if (k == len0
1315 || (k < len0 && encoded[k] == '_'))
1316 i = k;
1317 }
1318 }
1319
1320 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1321 the GNAT front-end in protected object subprograms. */
1322
1323 if (i < len0 + 3
1324 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1325 {
1326 /* Backtrack a bit up until we reach either the begining of
1327 the encoded name, or "__". Make sure that we only find
1328 digits or lowercase characters. */
1329 const char *ptr = encoded + i - 1;
1330
1331 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1332 ptr--;
1333 if (ptr < encoded
1334 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1335 i++;
1336 }
1337
1338 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1339 {
1340 /* This is a X[bn]* sequence not separated from the previous
1341 part of the name with a non-alpha-numeric character (in other
1342 words, immediately following an alpha-numeric character), then
1343 verify that it is placed at the end of the encoded name. If
1344 not, then the encoding is not valid and we should abort the
1345 decoding. Otherwise, just skip it, it is used in body-nested
1346 package names. */
1347 do
1348 i += 1;
1349 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1350 if (i < len0)
1351 goto Suppress;
1352 }
1353 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1354 {
1355 /* Replace '__' by '.'. */
1356 decoded[j] = '.';
1357 at_start_name = 1;
1358 i += 2;
1359 j += 1;
1360 }
1361 else
1362 {
1363 /* It's a character part of the decoded name, so just copy it
1364 over. */
1365 decoded[j] = encoded[i];
1366 i += 1;
1367 j += 1;
1368 }
1369 }
1370 decoded[j] = '\000';
1371
1372 /* Decoded names should never contain any uppercase character.
1373 Double-check this, and abort the decoding if we find one. */
1374
1375 for (i = 0; decoded[i] != '\0'; i += 1)
1376 if (isupper (decoded[i]) || decoded[i] == ' ')
1377 goto Suppress;
1378
1379 if (strcmp (decoded, encoded) == 0)
1380 return encoded;
1381 else
1382 return decoded;
1383
1384 Suppress:
1385 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1386 decoded = decoding_buffer;
1387 if (encoded[0] == '<')
1388 strcpy (decoded, encoded);
1389 else
1390 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1391 return decoded;
1392
1393 }
1394
1395 /* Table for keeping permanent unique copies of decoded names. Once
1396 allocated, names in this table are never released. While this is a
1397 storage leak, it should not be significant unless there are massive
1398 changes in the set of decoded names in successive versions of a
1399 symbol table loaded during a single session. */
1400 static struct htab *decoded_names_store;
1401
1402 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1403 in the language-specific part of GSYMBOL, if it has not been
1404 previously computed. Tries to save the decoded name in the same
1405 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1406 in any case, the decoded symbol has a lifetime at least that of
1407 GSYMBOL).
1408 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1409 const, but nevertheless modified to a semantically equivalent form
1410 when a decoded name is cached in it. */
1411
1412 const char *
1413 ada_decode_symbol (const struct general_symbol_info *arg)
1414 {
1415 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1416 const char **resultp =
1417 &gsymbol->language_specific.mangled_lang.demangled_name;
1418
1419 if (!gsymbol->ada_mangled)
1420 {
1421 const char *decoded = ada_decode (gsymbol->name);
1422 struct obstack *obstack = gsymbol->language_specific.obstack;
1423
1424 gsymbol->ada_mangled = 1;
1425
1426 if (obstack != NULL)
1427 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1428 else
1429 {
1430 /* Sometimes, we can't find a corresponding objfile, in
1431 which case, we put the result on the heap. Since we only
1432 decode when needed, we hope this usually does not cause a
1433 significant memory leak (FIXME). */
1434
1435 char **slot = (char **) htab_find_slot (decoded_names_store,
1436 decoded, INSERT);
1437
1438 if (*slot == NULL)
1439 *slot = xstrdup (decoded);
1440 *resultp = *slot;
1441 }
1442 }
1443
1444 return *resultp;
1445 }
1446
1447 static char *
1448 ada_la_decode (const char *encoded, int options)
1449 {
1450 return xstrdup (ada_decode (encoded));
1451 }
1452
1453 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1454 suffixes that encode debugging information or leading _ada_ on
1455 SYM_NAME (see is_name_suffix commentary for the debugging
1456 information that is ignored). If WILD, then NAME need only match a
1457 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1458 either argument is NULL. */
1459
1460 static int
1461 match_name (const char *sym_name, const char *name, int wild)
1462 {
1463 if (sym_name == NULL || name == NULL)
1464 return 0;
1465 else if (wild)
1466 return wild_match (sym_name, name) == 0;
1467 else
1468 {
1469 int len_name = strlen (name);
1470
1471 return (strncmp (sym_name, name, len_name) == 0
1472 && is_name_suffix (sym_name + len_name))
1473 || (startswith (sym_name, "_ada_")
1474 && strncmp (sym_name + 5, name, len_name) == 0
1475 && is_name_suffix (sym_name + len_name + 5));
1476 }
1477 }
1478 \f
1479
1480 /* Arrays */
1481
1482 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1483 generated by the GNAT compiler to describe the index type used
1484 for each dimension of an array, check whether it follows the latest
1485 known encoding. If not, fix it up to conform to the latest encoding.
1486 Otherwise, do nothing. This function also does nothing if
1487 INDEX_DESC_TYPE is NULL.
1488
1489 The GNAT encoding used to describle the array index type evolved a bit.
1490 Initially, the information would be provided through the name of each
1491 field of the structure type only, while the type of these fields was
1492 described as unspecified and irrelevant. The debugger was then expected
1493 to perform a global type lookup using the name of that field in order
1494 to get access to the full index type description. Because these global
1495 lookups can be very expensive, the encoding was later enhanced to make
1496 the global lookup unnecessary by defining the field type as being
1497 the full index type description.
1498
1499 The purpose of this routine is to allow us to support older versions
1500 of the compiler by detecting the use of the older encoding, and by
1501 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1502 we essentially replace each field's meaningless type by the associated
1503 index subtype). */
1504
1505 void
1506 ada_fixup_array_indexes_type (struct type *index_desc_type)
1507 {
1508 int i;
1509
1510 if (index_desc_type == NULL)
1511 return;
1512 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1513
1514 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1515 to check one field only, no need to check them all). If not, return
1516 now.
1517
1518 If our INDEX_DESC_TYPE was generated using the older encoding,
1519 the field type should be a meaningless integer type whose name
1520 is not equal to the field name. */
1521 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1522 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1523 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1524 return;
1525
1526 /* Fixup each field of INDEX_DESC_TYPE. */
1527 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1528 {
1529 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1530 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1531
1532 if (raw_type)
1533 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1534 }
1535 }
1536
1537 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1538
1539 static char *bound_name[] = {
1540 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1541 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1542 };
1543
1544 /* Maximum number of array dimensions we are prepared to handle. */
1545
1546 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1547
1548
1549 /* The desc_* routines return primitive portions of array descriptors
1550 (fat pointers). */
1551
1552 /* The descriptor or array type, if any, indicated by TYPE; removes
1553 level of indirection, if needed. */
1554
1555 static struct type *
1556 desc_base_type (struct type *type)
1557 {
1558 if (type == NULL)
1559 return NULL;
1560 type = ada_check_typedef (type);
1561 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1562 type = ada_typedef_target_type (type);
1563
1564 if (type != NULL
1565 && (TYPE_CODE (type) == TYPE_CODE_PTR
1566 || TYPE_CODE (type) == TYPE_CODE_REF))
1567 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1568 else
1569 return type;
1570 }
1571
1572 /* True iff TYPE indicates a "thin" array pointer type. */
1573
1574 static int
1575 is_thin_pntr (struct type *type)
1576 {
1577 return
1578 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1579 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1580 }
1581
1582 /* The descriptor type for thin pointer type TYPE. */
1583
1584 static struct type *
1585 thin_descriptor_type (struct type *type)
1586 {
1587 struct type *base_type = desc_base_type (type);
1588
1589 if (base_type == NULL)
1590 return NULL;
1591 if (is_suffix (ada_type_name (base_type), "___XVE"))
1592 return base_type;
1593 else
1594 {
1595 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1596
1597 if (alt_type == NULL)
1598 return base_type;
1599 else
1600 return alt_type;
1601 }
1602 }
1603
1604 /* A pointer to the array data for thin-pointer value VAL. */
1605
1606 static struct value *
1607 thin_data_pntr (struct value *val)
1608 {
1609 struct type *type = ada_check_typedef (value_type (val));
1610 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1611
1612 data_type = lookup_pointer_type (data_type);
1613
1614 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1615 return value_cast (data_type, value_copy (val));
1616 else
1617 return value_from_longest (data_type, value_address (val));
1618 }
1619
1620 /* True iff TYPE indicates a "thick" array pointer type. */
1621
1622 static int
1623 is_thick_pntr (struct type *type)
1624 {
1625 type = desc_base_type (type);
1626 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1627 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1628 }
1629
1630 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1631 pointer to one, the type of its bounds data; otherwise, NULL. */
1632
1633 static struct type *
1634 desc_bounds_type (struct type *type)
1635 {
1636 struct type *r;
1637
1638 type = desc_base_type (type);
1639
1640 if (type == NULL)
1641 return NULL;
1642 else if (is_thin_pntr (type))
1643 {
1644 type = thin_descriptor_type (type);
1645 if (type == NULL)
1646 return NULL;
1647 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1648 if (r != NULL)
1649 return ada_check_typedef (r);
1650 }
1651 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1652 {
1653 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1654 if (r != NULL)
1655 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1656 }
1657 return NULL;
1658 }
1659
1660 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1661 one, a pointer to its bounds data. Otherwise NULL. */
1662
1663 static struct value *
1664 desc_bounds (struct value *arr)
1665 {
1666 struct type *type = ada_check_typedef (value_type (arr));
1667
1668 if (is_thin_pntr (type))
1669 {
1670 struct type *bounds_type =
1671 desc_bounds_type (thin_descriptor_type (type));
1672 LONGEST addr;
1673
1674 if (bounds_type == NULL)
1675 error (_("Bad GNAT array descriptor"));
1676
1677 /* NOTE: The following calculation is not really kosher, but
1678 since desc_type is an XVE-encoded type (and shouldn't be),
1679 the correct calculation is a real pain. FIXME (and fix GCC). */
1680 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1681 addr = value_as_long (arr);
1682 else
1683 addr = value_address (arr);
1684
1685 return
1686 value_from_longest (lookup_pointer_type (bounds_type),
1687 addr - TYPE_LENGTH (bounds_type));
1688 }
1689
1690 else if (is_thick_pntr (type))
1691 {
1692 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1693 _("Bad GNAT array descriptor"));
1694 struct type *p_bounds_type = value_type (p_bounds);
1695
1696 if (p_bounds_type
1697 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1698 {
1699 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1700
1701 if (TYPE_STUB (target_type))
1702 p_bounds = value_cast (lookup_pointer_type
1703 (ada_check_typedef (target_type)),
1704 p_bounds);
1705 }
1706 else
1707 error (_("Bad GNAT array descriptor"));
1708
1709 return p_bounds;
1710 }
1711 else
1712 return NULL;
1713 }
1714
1715 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1716 position of the field containing the address of the bounds data. */
1717
1718 static int
1719 fat_pntr_bounds_bitpos (struct type *type)
1720 {
1721 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1722 }
1723
1724 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1725 size of the field containing the address of the bounds data. */
1726
1727 static int
1728 fat_pntr_bounds_bitsize (struct type *type)
1729 {
1730 type = desc_base_type (type);
1731
1732 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1733 return TYPE_FIELD_BITSIZE (type, 1);
1734 else
1735 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1736 }
1737
1738 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1739 pointer to one, the type of its array data (a array-with-no-bounds type);
1740 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1741 data. */
1742
1743 static struct type *
1744 desc_data_target_type (struct type *type)
1745 {
1746 type = desc_base_type (type);
1747
1748 /* NOTE: The following is bogus; see comment in desc_bounds. */
1749 if (is_thin_pntr (type))
1750 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1751 else if (is_thick_pntr (type))
1752 {
1753 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1754
1755 if (data_type
1756 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1757 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1758 }
1759
1760 return NULL;
1761 }
1762
1763 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1764 its array data. */
1765
1766 static struct value *
1767 desc_data (struct value *arr)
1768 {
1769 struct type *type = value_type (arr);
1770
1771 if (is_thin_pntr (type))
1772 return thin_data_pntr (arr);
1773 else if (is_thick_pntr (type))
1774 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1775 _("Bad GNAT array descriptor"));
1776 else
1777 return NULL;
1778 }
1779
1780
1781 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1782 position of the field containing the address of the data. */
1783
1784 static int
1785 fat_pntr_data_bitpos (struct type *type)
1786 {
1787 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1788 }
1789
1790 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1791 size of the field containing the address of the data. */
1792
1793 static int
1794 fat_pntr_data_bitsize (struct type *type)
1795 {
1796 type = desc_base_type (type);
1797
1798 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1799 return TYPE_FIELD_BITSIZE (type, 0);
1800 else
1801 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1802 }
1803
1804 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1805 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1806 bound, if WHICH is 1. The first bound is I=1. */
1807
1808 static struct value *
1809 desc_one_bound (struct value *bounds, int i, int which)
1810 {
1811 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1812 _("Bad GNAT array descriptor bounds"));
1813 }
1814
1815 /* If BOUNDS is an array-bounds structure type, return the bit position
1816 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1817 bound, if WHICH is 1. The first bound is I=1. */
1818
1819 static int
1820 desc_bound_bitpos (struct type *type, int i, int which)
1821 {
1822 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1823 }
1824
1825 /* If BOUNDS is an array-bounds structure type, return the bit field size
1826 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1827 bound, if WHICH is 1. The first bound is I=1. */
1828
1829 static int
1830 desc_bound_bitsize (struct type *type, int i, int which)
1831 {
1832 type = desc_base_type (type);
1833
1834 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1835 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1836 else
1837 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1838 }
1839
1840 /* If TYPE is the type of an array-bounds structure, the type of its
1841 Ith bound (numbering from 1). Otherwise, NULL. */
1842
1843 static struct type *
1844 desc_index_type (struct type *type, int i)
1845 {
1846 type = desc_base_type (type);
1847
1848 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1849 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1850 else
1851 return NULL;
1852 }
1853
1854 /* The number of index positions in the array-bounds type TYPE.
1855 Return 0 if TYPE is NULL. */
1856
1857 static int
1858 desc_arity (struct type *type)
1859 {
1860 type = desc_base_type (type);
1861
1862 if (type != NULL)
1863 return TYPE_NFIELDS (type) / 2;
1864 return 0;
1865 }
1866
1867 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1868 an array descriptor type (representing an unconstrained array
1869 type). */
1870
1871 static int
1872 ada_is_direct_array_type (struct type *type)
1873 {
1874 if (type == NULL)
1875 return 0;
1876 type = ada_check_typedef (type);
1877 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1878 || ada_is_array_descriptor_type (type));
1879 }
1880
1881 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1882 * to one. */
1883
1884 static int
1885 ada_is_array_type (struct type *type)
1886 {
1887 while (type != NULL
1888 && (TYPE_CODE (type) == TYPE_CODE_PTR
1889 || TYPE_CODE (type) == TYPE_CODE_REF))
1890 type = TYPE_TARGET_TYPE (type);
1891 return ada_is_direct_array_type (type);
1892 }
1893
1894 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1895
1896 int
1897 ada_is_simple_array_type (struct type *type)
1898 {
1899 if (type == NULL)
1900 return 0;
1901 type = ada_check_typedef (type);
1902 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1903 || (TYPE_CODE (type) == TYPE_CODE_PTR
1904 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1905 == TYPE_CODE_ARRAY));
1906 }
1907
1908 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1909
1910 int
1911 ada_is_array_descriptor_type (struct type *type)
1912 {
1913 struct type *data_type = desc_data_target_type (type);
1914
1915 if (type == NULL)
1916 return 0;
1917 type = ada_check_typedef (type);
1918 return (data_type != NULL
1919 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1920 && desc_arity (desc_bounds_type (type)) > 0);
1921 }
1922
1923 /* Non-zero iff type is a partially mal-formed GNAT array
1924 descriptor. FIXME: This is to compensate for some problems with
1925 debugging output from GNAT. Re-examine periodically to see if it
1926 is still needed. */
1927
1928 int
1929 ada_is_bogus_array_descriptor (struct type *type)
1930 {
1931 return
1932 type != NULL
1933 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1934 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1935 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1936 && !ada_is_array_descriptor_type (type);
1937 }
1938
1939
1940 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1941 (fat pointer) returns the type of the array data described---specifically,
1942 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1943 in from the descriptor; otherwise, they are left unspecified. If
1944 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1945 returns NULL. The result is simply the type of ARR if ARR is not
1946 a descriptor. */
1947 struct type *
1948 ada_type_of_array (struct value *arr, int bounds)
1949 {
1950 if (ada_is_constrained_packed_array_type (value_type (arr)))
1951 return decode_constrained_packed_array_type (value_type (arr));
1952
1953 if (!ada_is_array_descriptor_type (value_type (arr)))
1954 return value_type (arr);
1955
1956 if (!bounds)
1957 {
1958 struct type *array_type =
1959 ada_check_typedef (desc_data_target_type (value_type (arr)));
1960
1961 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1962 TYPE_FIELD_BITSIZE (array_type, 0) =
1963 decode_packed_array_bitsize (value_type (arr));
1964
1965 return array_type;
1966 }
1967 else
1968 {
1969 struct type *elt_type;
1970 int arity;
1971 struct value *descriptor;
1972
1973 elt_type = ada_array_element_type (value_type (arr), -1);
1974 arity = ada_array_arity (value_type (arr));
1975
1976 if (elt_type == NULL || arity == 0)
1977 return ada_check_typedef (value_type (arr));
1978
1979 descriptor = desc_bounds (arr);
1980 if (value_as_long (descriptor) == 0)
1981 return NULL;
1982 while (arity > 0)
1983 {
1984 struct type *range_type = alloc_type_copy (value_type (arr));
1985 struct type *array_type = alloc_type_copy (value_type (arr));
1986 struct value *low = desc_one_bound (descriptor, arity, 0);
1987 struct value *high = desc_one_bound (descriptor, arity, 1);
1988
1989 arity -= 1;
1990 create_static_range_type (range_type, value_type (low),
1991 longest_to_int (value_as_long (low)),
1992 longest_to_int (value_as_long (high)));
1993 elt_type = create_array_type (array_type, elt_type, range_type);
1994
1995 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1996 {
1997 /* We need to store the element packed bitsize, as well as
1998 recompute the array size, because it was previously
1999 computed based on the unpacked element size. */
2000 LONGEST lo = value_as_long (low);
2001 LONGEST hi = value_as_long (high);
2002
2003 TYPE_FIELD_BITSIZE (elt_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2005 /* If the array has no element, then the size is already
2006 zero, and does not need to be recomputed. */
2007 if (lo < hi)
2008 {
2009 int array_bitsize =
2010 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2011
2012 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2013 }
2014 }
2015 }
2016
2017 return lookup_pointer_type (elt_type);
2018 }
2019 }
2020
2021 /* If ARR does not represent an array, returns ARR unchanged.
2022 Otherwise, returns either a standard GDB array with bounds set
2023 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2024 GDB array. Returns NULL if ARR is a null fat pointer. */
2025
2026 struct value *
2027 ada_coerce_to_simple_array_ptr (struct value *arr)
2028 {
2029 if (ada_is_array_descriptor_type (value_type (arr)))
2030 {
2031 struct type *arrType = ada_type_of_array (arr, 1);
2032
2033 if (arrType == NULL)
2034 return NULL;
2035 return value_cast (arrType, value_copy (desc_data (arr)));
2036 }
2037 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2038 return decode_constrained_packed_array (arr);
2039 else
2040 return arr;
2041 }
2042
2043 /* If ARR does not represent an array, returns ARR unchanged.
2044 Otherwise, returns a standard GDB array describing ARR (which may
2045 be ARR itself if it already is in the proper form). */
2046
2047 struct value *
2048 ada_coerce_to_simple_array (struct value *arr)
2049 {
2050 if (ada_is_array_descriptor_type (value_type (arr)))
2051 {
2052 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2053
2054 if (arrVal == NULL)
2055 error (_("Bounds unavailable for null array pointer."));
2056 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2057 return value_ind (arrVal);
2058 }
2059 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2060 return decode_constrained_packed_array (arr);
2061 else
2062 return arr;
2063 }
2064
2065 /* If TYPE represents a GNAT array type, return it translated to an
2066 ordinary GDB array type (possibly with BITSIZE fields indicating
2067 packing). For other types, is the identity. */
2068
2069 struct type *
2070 ada_coerce_to_simple_array_type (struct type *type)
2071 {
2072 if (ada_is_constrained_packed_array_type (type))
2073 return decode_constrained_packed_array_type (type);
2074
2075 if (ada_is_array_descriptor_type (type))
2076 return ada_check_typedef (desc_data_target_type (type));
2077
2078 return type;
2079 }
2080
2081 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2082
2083 static int
2084 ada_is_packed_array_type (struct type *type)
2085 {
2086 if (type == NULL)
2087 return 0;
2088 type = desc_base_type (type);
2089 type = ada_check_typedef (type);
2090 return
2091 ada_type_name (type) != NULL
2092 && strstr (ada_type_name (type), "___XP") != NULL;
2093 }
2094
2095 /* Non-zero iff TYPE represents a standard GNAT constrained
2096 packed-array type. */
2097
2098 int
2099 ada_is_constrained_packed_array_type (struct type *type)
2100 {
2101 return ada_is_packed_array_type (type)
2102 && !ada_is_array_descriptor_type (type);
2103 }
2104
2105 /* Non-zero iff TYPE represents an array descriptor for a
2106 unconstrained packed-array type. */
2107
2108 static int
2109 ada_is_unconstrained_packed_array_type (struct type *type)
2110 {
2111 return ada_is_packed_array_type (type)
2112 && ada_is_array_descriptor_type (type);
2113 }
2114
2115 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2116 return the size of its elements in bits. */
2117
2118 static long
2119 decode_packed_array_bitsize (struct type *type)
2120 {
2121 const char *raw_name;
2122 const char *tail;
2123 long bits;
2124
2125 /* Access to arrays implemented as fat pointers are encoded as a typedef
2126 of the fat pointer type. We need the name of the fat pointer type
2127 to do the decoding, so strip the typedef layer. */
2128 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2129 type = ada_typedef_target_type (type);
2130
2131 raw_name = ada_type_name (ada_check_typedef (type));
2132 if (!raw_name)
2133 raw_name = ada_type_name (desc_base_type (type));
2134
2135 if (!raw_name)
2136 return 0;
2137
2138 tail = strstr (raw_name, "___XP");
2139 gdb_assert (tail != NULL);
2140
2141 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2142 {
2143 lim_warning
2144 (_("could not understand bit size information on packed array"));
2145 return 0;
2146 }
2147
2148 return bits;
2149 }
2150
2151 /* Given that TYPE is a standard GDB array type with all bounds filled
2152 in, and that the element size of its ultimate scalar constituents
2153 (that is, either its elements, or, if it is an array of arrays, its
2154 elements' elements, etc.) is *ELT_BITS, return an identical type,
2155 but with the bit sizes of its elements (and those of any
2156 constituent arrays) recorded in the BITSIZE components of its
2157 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2158 in bits.
2159
2160 Note that, for arrays whose index type has an XA encoding where
2161 a bound references a record discriminant, getting that discriminant,
2162 and therefore the actual value of that bound, is not possible
2163 because none of the given parameters gives us access to the record.
2164 This function assumes that it is OK in the context where it is being
2165 used to return an array whose bounds are still dynamic and where
2166 the length is arbitrary. */
2167
2168 static struct type *
2169 constrained_packed_array_type (struct type *type, long *elt_bits)
2170 {
2171 struct type *new_elt_type;
2172 struct type *new_type;
2173 struct type *index_type_desc;
2174 struct type *index_type;
2175 LONGEST low_bound, high_bound;
2176
2177 type = ada_check_typedef (type);
2178 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2179 return type;
2180
2181 index_type_desc = ada_find_parallel_type (type, "___XA");
2182 if (index_type_desc)
2183 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2184 NULL);
2185 else
2186 index_type = TYPE_INDEX_TYPE (type);
2187
2188 new_type = alloc_type_copy (type);
2189 new_elt_type =
2190 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2191 elt_bits);
2192 create_array_type (new_type, new_elt_type, index_type);
2193 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2194 TYPE_NAME (new_type) = ada_type_name (type);
2195
2196 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2197 && is_dynamic_type (check_typedef (index_type)))
2198 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2199 low_bound = high_bound = 0;
2200 if (high_bound < low_bound)
2201 *elt_bits = TYPE_LENGTH (new_type) = 0;
2202 else
2203 {
2204 *elt_bits *= (high_bound - low_bound + 1);
2205 TYPE_LENGTH (new_type) =
2206 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2207 }
2208
2209 TYPE_FIXED_INSTANCE (new_type) = 1;
2210 return new_type;
2211 }
2212
2213 /* The array type encoded by TYPE, where
2214 ada_is_constrained_packed_array_type (TYPE). */
2215
2216 static struct type *
2217 decode_constrained_packed_array_type (struct type *type)
2218 {
2219 const char *raw_name = ada_type_name (ada_check_typedef (type));
2220 char *name;
2221 const char *tail;
2222 struct type *shadow_type;
2223 long bits;
2224
2225 if (!raw_name)
2226 raw_name = ada_type_name (desc_base_type (type));
2227
2228 if (!raw_name)
2229 return NULL;
2230
2231 name = (char *) alloca (strlen (raw_name) + 1);
2232 tail = strstr (raw_name, "___XP");
2233 type = desc_base_type (type);
2234
2235 memcpy (name, raw_name, tail - raw_name);
2236 name[tail - raw_name] = '\000';
2237
2238 shadow_type = ada_find_parallel_type_with_name (type, name);
2239
2240 if (shadow_type == NULL)
2241 {
2242 lim_warning (_("could not find bounds information on packed array"));
2243 return NULL;
2244 }
2245 shadow_type = check_typedef (shadow_type);
2246
2247 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2248 {
2249 lim_warning (_("could not understand bounds "
2250 "information on packed array"));
2251 return NULL;
2252 }
2253
2254 bits = decode_packed_array_bitsize (type);
2255 return constrained_packed_array_type (shadow_type, &bits);
2256 }
2257
2258 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2259 array, returns a simple array that denotes that array. Its type is a
2260 standard GDB array type except that the BITSIZEs of the array
2261 target types are set to the number of bits in each element, and the
2262 type length is set appropriately. */
2263
2264 static struct value *
2265 decode_constrained_packed_array (struct value *arr)
2266 {
2267 struct type *type;
2268
2269 /* If our value is a pointer, then dereference it. Likewise if
2270 the value is a reference. Make sure that this operation does not
2271 cause the target type to be fixed, as this would indirectly cause
2272 this array to be decoded. The rest of the routine assumes that
2273 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2274 and "value_ind" routines to perform the dereferencing, as opposed
2275 to using "ada_coerce_ref" or "ada_value_ind". */
2276 arr = coerce_ref (arr);
2277 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2278 arr = value_ind (arr);
2279
2280 type = decode_constrained_packed_array_type (value_type (arr));
2281 if (type == NULL)
2282 {
2283 error (_("can't unpack array"));
2284 return NULL;
2285 }
2286
2287 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2288 && ada_is_modular_type (value_type (arr)))
2289 {
2290 /* This is a (right-justified) modular type representing a packed
2291 array with no wrapper. In order to interpret the value through
2292 the (left-justified) packed array type we just built, we must
2293 first left-justify it. */
2294 int bit_size, bit_pos;
2295 ULONGEST mod;
2296
2297 mod = ada_modulus (value_type (arr)) - 1;
2298 bit_size = 0;
2299 while (mod > 0)
2300 {
2301 bit_size += 1;
2302 mod >>= 1;
2303 }
2304 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2305 arr = ada_value_primitive_packed_val (arr, NULL,
2306 bit_pos / HOST_CHAR_BIT,
2307 bit_pos % HOST_CHAR_BIT,
2308 bit_size,
2309 type);
2310 }
2311
2312 return coerce_unspec_val_to_type (arr, type);
2313 }
2314
2315
2316 /* The value of the element of packed array ARR at the ARITY indices
2317 given in IND. ARR must be a simple array. */
2318
2319 static struct value *
2320 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2321 {
2322 int i;
2323 int bits, elt_off, bit_off;
2324 long elt_total_bit_offset;
2325 struct type *elt_type;
2326 struct value *v;
2327
2328 bits = 0;
2329 elt_total_bit_offset = 0;
2330 elt_type = ada_check_typedef (value_type (arr));
2331 for (i = 0; i < arity; i += 1)
2332 {
2333 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2334 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2335 error
2336 (_("attempt to do packed indexing of "
2337 "something other than a packed array"));
2338 else
2339 {
2340 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2341 LONGEST lowerbound, upperbound;
2342 LONGEST idx;
2343
2344 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2345 {
2346 lim_warning (_("don't know bounds of array"));
2347 lowerbound = upperbound = 0;
2348 }
2349
2350 idx = pos_atr (ind[i]);
2351 if (idx < lowerbound || idx > upperbound)
2352 lim_warning (_("packed array index %ld out of bounds"),
2353 (long) idx);
2354 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2355 elt_total_bit_offset += (idx - lowerbound) * bits;
2356 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2357 }
2358 }
2359 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2360 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2361
2362 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2363 bits, elt_type);
2364 return v;
2365 }
2366
2367 /* Non-zero iff TYPE includes negative integer values. */
2368
2369 static int
2370 has_negatives (struct type *type)
2371 {
2372 switch (TYPE_CODE (type))
2373 {
2374 default:
2375 return 0;
2376 case TYPE_CODE_INT:
2377 return !TYPE_UNSIGNED (type);
2378 case TYPE_CODE_RANGE:
2379 return TYPE_LOW_BOUND (type) < 0;
2380 }
2381 }
2382
2383
2384 /* Create a new value of type TYPE from the contents of OBJ starting
2385 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2386 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2387 assigning through the result will set the field fetched from.
2388 VALADDR is ignored unless OBJ is NULL, in which case,
2389 VALADDR+OFFSET must address the start of storage containing the
2390 packed value. The value returned in this case is never an lval.
2391 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2392
2393 struct value *
2394 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2395 long offset, int bit_offset, int bit_size,
2396 struct type *type)
2397 {
2398 struct value *v;
2399 int src, /* Index into the source area */
2400 targ, /* Index into the target area */
2401 srcBitsLeft, /* Number of source bits left to move */
2402 nsrc, ntarg, /* Number of source and target bytes */
2403 unusedLS, /* Number of bits in next significant
2404 byte of source that are unused */
2405 accumSize; /* Number of meaningful bits in accum */
2406 unsigned char *bytes; /* First byte containing data to unpack */
2407 unsigned char *unpacked;
2408 unsigned long accum; /* Staging area for bits being transferred */
2409 unsigned char sign;
2410 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2411 /* Transmit bytes from least to most significant; delta is the direction
2412 the indices move. */
2413 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2414
2415 type = ada_check_typedef (type);
2416
2417 if (obj == NULL)
2418 {
2419 v = allocate_value (type);
2420 bytes = (unsigned char *) (valaddr + offset);
2421 }
2422 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2423 {
2424 v = value_at (type, value_address (obj) + offset);
2425 type = value_type (v);
2426 if (TYPE_LENGTH (type) * HOST_CHAR_BIT < bit_size)
2427 {
2428 /* This can happen in the case of an array of dynamic objects,
2429 where the size of each element changes from element to element.
2430 In that case, we're initially given the array stride, but
2431 after resolving the element type, we find that its size is
2432 less than this stride. In that case, adjust bit_size to
2433 match TYPE's length, and recompute LEN accordingly. */
2434 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2435 len = TYPE_LENGTH (type) + (bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 }
2437 bytes = (unsigned char *) alloca (len);
2438 read_memory (value_address (v), bytes, len);
2439 }
2440 else
2441 {
2442 v = allocate_value (type);
2443 bytes = (unsigned char *) value_contents (obj) + offset;
2444 }
2445
2446 if (obj != NULL)
2447 {
2448 long new_offset = offset;
2449
2450 set_value_component_location (v, obj);
2451 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2452 set_value_bitsize (v, bit_size);
2453 if (value_bitpos (v) >= HOST_CHAR_BIT)
2454 {
2455 ++new_offset;
2456 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2457 }
2458 set_value_offset (v, new_offset);
2459
2460 /* Also set the parent value. This is needed when trying to
2461 assign a new value (in inferior memory). */
2462 set_value_parent (v, obj);
2463 }
2464 else
2465 set_value_bitsize (v, bit_size);
2466 unpacked = (unsigned char *) value_contents (v);
2467
2468 srcBitsLeft = bit_size;
2469 nsrc = len;
2470 ntarg = TYPE_LENGTH (type);
2471 sign = 0;
2472 if (bit_size == 0)
2473 {
2474 memset (unpacked, 0, TYPE_LENGTH (type));
2475 return v;
2476 }
2477 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2478 {
2479 src = len - 1;
2480 if (has_negatives (type)
2481 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2482 sign = ~0;
2483
2484 unusedLS =
2485 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2486 % HOST_CHAR_BIT;
2487
2488 switch (TYPE_CODE (type))
2489 {
2490 case TYPE_CODE_ARRAY:
2491 case TYPE_CODE_UNION:
2492 case TYPE_CODE_STRUCT:
2493 /* Non-scalar values must be aligned at a byte boundary... */
2494 accumSize =
2495 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2496 /* ... And are placed at the beginning (most-significant) bytes
2497 of the target. */
2498 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2499 ntarg = targ + 1;
2500 break;
2501 default:
2502 accumSize = 0;
2503 targ = TYPE_LENGTH (type) - 1;
2504 break;
2505 }
2506 }
2507 else
2508 {
2509 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2510
2511 src = targ = 0;
2512 unusedLS = bit_offset;
2513 accumSize = 0;
2514
2515 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2516 sign = ~0;
2517 }
2518
2519 accum = 0;
2520 while (nsrc > 0)
2521 {
2522 /* Mask for removing bits of the next source byte that are not
2523 part of the value. */
2524 unsigned int unusedMSMask =
2525 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2526 1;
2527 /* Sign-extend bits for this byte. */
2528 unsigned int signMask = sign & ~unusedMSMask;
2529
2530 accum |=
2531 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2532 accumSize += HOST_CHAR_BIT - unusedLS;
2533 if (accumSize >= HOST_CHAR_BIT)
2534 {
2535 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2536 accumSize -= HOST_CHAR_BIT;
2537 accum >>= HOST_CHAR_BIT;
2538 ntarg -= 1;
2539 targ += delta;
2540 }
2541 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2542 unusedLS = 0;
2543 nsrc -= 1;
2544 src += delta;
2545 }
2546 while (ntarg > 0)
2547 {
2548 accum |= sign << accumSize;
2549 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2550 accumSize -= HOST_CHAR_BIT;
2551 if (accumSize < 0)
2552 accumSize = 0;
2553 accum >>= HOST_CHAR_BIT;
2554 ntarg -= 1;
2555 targ += delta;
2556 }
2557
2558 if (is_dynamic_type (value_type (v)))
2559 v = value_from_contents_and_address (value_type (v), value_contents (v),
2560 0);
2561 return v;
2562 }
2563
2564 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2565 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2566 not overlap. */
2567 static void
2568 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2569 int src_offset, int n, int bits_big_endian_p)
2570 {
2571 unsigned int accum, mask;
2572 int accum_bits, chunk_size;
2573
2574 target += targ_offset / HOST_CHAR_BIT;
2575 targ_offset %= HOST_CHAR_BIT;
2576 source += src_offset / HOST_CHAR_BIT;
2577 src_offset %= HOST_CHAR_BIT;
2578 if (bits_big_endian_p)
2579 {
2580 accum = (unsigned char) *source;
2581 source += 1;
2582 accum_bits = HOST_CHAR_BIT - src_offset;
2583
2584 while (n > 0)
2585 {
2586 int unused_right;
2587
2588 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2589 accum_bits += HOST_CHAR_BIT;
2590 source += 1;
2591 chunk_size = HOST_CHAR_BIT - targ_offset;
2592 if (chunk_size > n)
2593 chunk_size = n;
2594 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2595 mask = ((1 << chunk_size) - 1) << unused_right;
2596 *target =
2597 (*target & ~mask)
2598 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2599 n -= chunk_size;
2600 accum_bits -= chunk_size;
2601 target += 1;
2602 targ_offset = 0;
2603 }
2604 }
2605 else
2606 {
2607 accum = (unsigned char) *source >> src_offset;
2608 source += 1;
2609 accum_bits = HOST_CHAR_BIT - src_offset;
2610
2611 while (n > 0)
2612 {
2613 accum = accum + ((unsigned char) *source << accum_bits);
2614 accum_bits += HOST_CHAR_BIT;
2615 source += 1;
2616 chunk_size = HOST_CHAR_BIT - targ_offset;
2617 if (chunk_size > n)
2618 chunk_size = n;
2619 mask = ((1 << chunk_size) - 1) << targ_offset;
2620 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2621 n -= chunk_size;
2622 accum_bits -= chunk_size;
2623 accum >>= chunk_size;
2624 target += 1;
2625 targ_offset = 0;
2626 }
2627 }
2628 }
2629
2630 /* Store the contents of FROMVAL into the location of TOVAL.
2631 Return a new value with the location of TOVAL and contents of
2632 FROMVAL. Handles assignment into packed fields that have
2633 floating-point or non-scalar types. */
2634
2635 static struct value *
2636 ada_value_assign (struct value *toval, struct value *fromval)
2637 {
2638 struct type *type = value_type (toval);
2639 int bits = value_bitsize (toval);
2640
2641 toval = ada_coerce_ref (toval);
2642 fromval = ada_coerce_ref (fromval);
2643
2644 if (ada_is_direct_array_type (value_type (toval)))
2645 toval = ada_coerce_to_simple_array (toval);
2646 if (ada_is_direct_array_type (value_type (fromval)))
2647 fromval = ada_coerce_to_simple_array (fromval);
2648
2649 if (!deprecated_value_modifiable (toval))
2650 error (_("Left operand of assignment is not a modifiable lvalue."));
2651
2652 if (VALUE_LVAL (toval) == lval_memory
2653 && bits > 0
2654 && (TYPE_CODE (type) == TYPE_CODE_FLT
2655 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2656 {
2657 int len = (value_bitpos (toval)
2658 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2659 int from_size;
2660 gdb_byte *buffer = alloca (len);
2661 struct value *val;
2662 CORE_ADDR to_addr = value_address (toval);
2663
2664 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2665 fromval = value_cast (type, fromval);
2666
2667 read_memory (to_addr, buffer, len);
2668 from_size = value_bitsize (fromval);
2669 if (from_size == 0)
2670 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2671 if (gdbarch_bits_big_endian (get_type_arch (type)))
2672 move_bits (buffer, value_bitpos (toval),
2673 value_contents (fromval), from_size - bits, bits, 1);
2674 else
2675 move_bits (buffer, value_bitpos (toval),
2676 value_contents (fromval), 0, bits, 0);
2677 write_memory_with_notification (to_addr, buffer, len);
2678
2679 val = value_copy (toval);
2680 memcpy (value_contents_raw (val), value_contents (fromval),
2681 TYPE_LENGTH (type));
2682 deprecated_set_value_type (val, type);
2683
2684 return val;
2685 }
2686
2687 return value_assign (toval, fromval);
2688 }
2689
2690
2691 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2692 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2693 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2694 COMPONENT, and not the inferior's memory. The current contents
2695 of COMPONENT are ignored.
2696
2697 Although not part of the initial design, this function also works
2698 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2699 had a null address, and COMPONENT had an address which is equal to
2700 its offset inside CONTAINER. */
2701
2702 static void
2703 value_assign_to_component (struct value *container, struct value *component,
2704 struct value *val)
2705 {
2706 LONGEST offset_in_container =
2707 (LONGEST) (value_address (component) - value_address (container));
2708 int bit_offset_in_container =
2709 value_bitpos (component) - value_bitpos (container);
2710 int bits;
2711
2712 val = value_cast (value_type (component), val);
2713
2714 if (value_bitsize (component) == 0)
2715 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2716 else
2717 bits = value_bitsize (component);
2718
2719 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2720 move_bits (value_contents_writeable (container) + offset_in_container,
2721 value_bitpos (container) + bit_offset_in_container,
2722 value_contents (val),
2723 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2724 bits, 1);
2725 else
2726 move_bits (value_contents_writeable (container) + offset_in_container,
2727 value_bitpos (container) + bit_offset_in_container,
2728 value_contents (val), 0, bits, 0);
2729 }
2730
2731 /* The value of the element of array ARR at the ARITY indices given in IND.
2732 ARR may be either a simple array, GNAT array descriptor, or pointer
2733 thereto. */
2734
2735 struct value *
2736 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2737 {
2738 int k;
2739 struct value *elt;
2740 struct type *elt_type;
2741
2742 elt = ada_coerce_to_simple_array (arr);
2743
2744 elt_type = ada_check_typedef (value_type (elt));
2745 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2746 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2747 return value_subscript_packed (elt, arity, ind);
2748
2749 for (k = 0; k < arity; k += 1)
2750 {
2751 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2752 error (_("too many subscripts (%d expected)"), k);
2753 elt = value_subscript (elt, pos_atr (ind[k]));
2754 }
2755 return elt;
2756 }
2757
2758 /* Assuming ARR is a pointer to a GDB array, the value of the element
2759 of *ARR at the ARITY indices given in IND.
2760 Does not read the entire array into memory. */
2761
2762 static struct value *
2763 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2764 {
2765 int k;
2766 struct type *type
2767 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
2768
2769 for (k = 0; k < arity; k += 1)
2770 {
2771 LONGEST lwb, upb;
2772 struct value *lwb_value;
2773
2774 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2775 error (_("too many subscripts (%d expected)"), k);
2776 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2777 value_copy (arr));
2778 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2779 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2780 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2781 type = TYPE_TARGET_TYPE (type);
2782 }
2783
2784 return value_ind (arr);
2785 }
2786
2787 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2788 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2789 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2790 this array is LOW, as per Ada rules. */
2791 static struct value *
2792 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2793 int low, int high)
2794 {
2795 struct type *type0 = ada_check_typedef (type);
2796 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2797 struct type *index_type
2798 = create_static_range_type (NULL, base_index_type, low, high);
2799 struct type *slice_type =
2800 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2801 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2802 LONGEST base_low_pos, low_pos;
2803 CORE_ADDR base;
2804
2805 if (!discrete_position (base_index_type, low, &low_pos)
2806 || !discrete_position (base_index_type, base_low, &base_low_pos))
2807 {
2808 warning (_("unable to get positions in slice, use bounds instead"));
2809 low_pos = low;
2810 base_low_pos = base_low;
2811 }
2812
2813 base = value_as_address (array_ptr)
2814 + ((low_pos - base_low_pos)
2815 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2816 return value_at_lazy (slice_type, base);
2817 }
2818
2819
2820 static struct value *
2821 ada_value_slice (struct value *array, int low, int high)
2822 {
2823 struct type *type = ada_check_typedef (value_type (array));
2824 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2825 struct type *index_type
2826 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2827 struct type *slice_type =
2828 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2829 LONGEST low_pos, high_pos;
2830
2831 if (!discrete_position (base_index_type, low, &low_pos)
2832 || !discrete_position (base_index_type, high, &high_pos))
2833 {
2834 warning (_("unable to get positions in slice, use bounds instead"));
2835 low_pos = low;
2836 high_pos = high;
2837 }
2838
2839 return value_cast (slice_type,
2840 value_slice (array, low, high_pos - low_pos + 1));
2841 }
2842
2843 /* If type is a record type in the form of a standard GNAT array
2844 descriptor, returns the number of dimensions for type. If arr is a
2845 simple array, returns the number of "array of"s that prefix its
2846 type designation. Otherwise, returns 0. */
2847
2848 int
2849 ada_array_arity (struct type *type)
2850 {
2851 int arity;
2852
2853 if (type == NULL)
2854 return 0;
2855
2856 type = desc_base_type (type);
2857
2858 arity = 0;
2859 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2860 return desc_arity (desc_bounds_type (type));
2861 else
2862 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2863 {
2864 arity += 1;
2865 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2866 }
2867
2868 return arity;
2869 }
2870
2871 /* If TYPE is a record type in the form of a standard GNAT array
2872 descriptor or a simple array type, returns the element type for
2873 TYPE after indexing by NINDICES indices, or by all indices if
2874 NINDICES is -1. Otherwise, returns NULL. */
2875
2876 struct type *
2877 ada_array_element_type (struct type *type, int nindices)
2878 {
2879 type = desc_base_type (type);
2880
2881 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2882 {
2883 int k;
2884 struct type *p_array_type;
2885
2886 p_array_type = desc_data_target_type (type);
2887
2888 k = ada_array_arity (type);
2889 if (k == 0)
2890 return NULL;
2891
2892 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2893 if (nindices >= 0 && k > nindices)
2894 k = nindices;
2895 while (k > 0 && p_array_type != NULL)
2896 {
2897 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2898 k -= 1;
2899 }
2900 return p_array_type;
2901 }
2902 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2903 {
2904 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2905 {
2906 type = TYPE_TARGET_TYPE (type);
2907 nindices -= 1;
2908 }
2909 return type;
2910 }
2911
2912 return NULL;
2913 }
2914
2915 /* The type of nth index in arrays of given type (n numbering from 1).
2916 Does not examine memory. Throws an error if N is invalid or TYPE
2917 is not an array type. NAME is the name of the Ada attribute being
2918 evaluated ('range, 'first, 'last, or 'length); it is used in building
2919 the error message. */
2920
2921 static struct type *
2922 ada_index_type (struct type *type, int n, const char *name)
2923 {
2924 struct type *result_type;
2925
2926 type = desc_base_type (type);
2927
2928 if (n < 0 || n > ada_array_arity (type))
2929 error (_("invalid dimension number to '%s"), name);
2930
2931 if (ada_is_simple_array_type (type))
2932 {
2933 int i;
2934
2935 for (i = 1; i < n; i += 1)
2936 type = TYPE_TARGET_TYPE (type);
2937 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2938 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2939 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2940 perhaps stabsread.c would make more sense. */
2941 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2942 result_type = NULL;
2943 }
2944 else
2945 {
2946 result_type = desc_index_type (desc_bounds_type (type), n);
2947 if (result_type == NULL)
2948 error (_("attempt to take bound of something that is not an array"));
2949 }
2950
2951 return result_type;
2952 }
2953
2954 /* Given that arr is an array type, returns the lower bound of the
2955 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2956 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2957 array-descriptor type. It works for other arrays with bounds supplied
2958 by run-time quantities other than discriminants. */
2959
2960 static LONGEST
2961 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2962 {
2963 struct type *type, *index_type_desc, *index_type;
2964 int i;
2965
2966 gdb_assert (which == 0 || which == 1);
2967
2968 if (ada_is_constrained_packed_array_type (arr_type))
2969 arr_type = decode_constrained_packed_array_type (arr_type);
2970
2971 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2972 return (LONGEST) - which;
2973
2974 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2975 type = TYPE_TARGET_TYPE (arr_type);
2976 else
2977 type = arr_type;
2978
2979 if (TYPE_FIXED_INSTANCE (type))
2980 {
2981 /* The array has already been fixed, so we do not need to
2982 check the parallel ___XA type again. That encoding has
2983 already been applied, so ignore it now. */
2984 index_type_desc = NULL;
2985 }
2986 else
2987 {
2988 index_type_desc = ada_find_parallel_type (type, "___XA");
2989 ada_fixup_array_indexes_type (index_type_desc);
2990 }
2991
2992 if (index_type_desc != NULL)
2993 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2994 NULL);
2995 else
2996 {
2997 struct type *elt_type = check_typedef (type);
2998
2999 for (i = 1; i < n; i++)
3000 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3001
3002 index_type = TYPE_INDEX_TYPE (elt_type);
3003 }
3004
3005 return
3006 (LONGEST) (which == 0
3007 ? ada_discrete_type_low_bound (index_type)
3008 : ada_discrete_type_high_bound (index_type));
3009 }
3010
3011 /* Given that arr is an array value, returns the lower bound of the
3012 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3013 WHICH is 1. This routine will also work for arrays with bounds
3014 supplied by run-time quantities other than discriminants. */
3015
3016 static LONGEST
3017 ada_array_bound (struct value *arr, int n, int which)
3018 {
3019 struct type *arr_type;
3020
3021 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3022 arr = value_ind (arr);
3023 arr_type = value_enclosing_type (arr);
3024
3025 if (ada_is_constrained_packed_array_type (arr_type))
3026 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3027 else if (ada_is_simple_array_type (arr_type))
3028 return ada_array_bound_from_type (arr_type, n, which);
3029 else
3030 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3031 }
3032
3033 /* Given that arr is an array value, returns the length of the
3034 nth index. This routine will also work for arrays with bounds
3035 supplied by run-time quantities other than discriminants.
3036 Does not work for arrays indexed by enumeration types with representation
3037 clauses at the moment. */
3038
3039 static LONGEST
3040 ada_array_length (struct value *arr, int n)
3041 {
3042 struct type *arr_type, *index_type;
3043 int low, high;
3044
3045 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3046 arr = value_ind (arr);
3047 arr_type = value_enclosing_type (arr);
3048
3049 if (ada_is_constrained_packed_array_type (arr_type))
3050 return ada_array_length (decode_constrained_packed_array (arr), n);
3051
3052 if (ada_is_simple_array_type (arr_type))
3053 {
3054 low = ada_array_bound_from_type (arr_type, n, 0);
3055 high = ada_array_bound_from_type (arr_type, n, 1);
3056 }
3057 else
3058 {
3059 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3060 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3061 }
3062
3063 arr_type = check_typedef (arr_type);
3064 index_type = TYPE_INDEX_TYPE (arr_type);
3065 if (index_type != NULL)
3066 {
3067 struct type *base_type;
3068 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3069 base_type = TYPE_TARGET_TYPE (index_type);
3070 else
3071 base_type = index_type;
3072
3073 low = pos_atr (value_from_longest (base_type, low));
3074 high = pos_atr (value_from_longest (base_type, high));
3075 }
3076 return high - low + 1;
3077 }
3078
3079 /* An empty array whose type is that of ARR_TYPE (an array type),
3080 with bounds LOW to LOW-1. */
3081
3082 static struct value *
3083 empty_array (struct type *arr_type, int low)
3084 {
3085 struct type *arr_type0 = ada_check_typedef (arr_type);
3086 struct type *index_type
3087 = create_static_range_type
3088 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3089 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3090
3091 return allocate_value (create_array_type (NULL, elt_type, index_type));
3092 }
3093 \f
3094
3095 /* Name resolution */
3096
3097 /* The "decoded" name for the user-definable Ada operator corresponding
3098 to OP. */
3099
3100 static const char *
3101 ada_decoded_op_name (enum exp_opcode op)
3102 {
3103 int i;
3104
3105 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3106 {
3107 if (ada_opname_table[i].op == op)
3108 return ada_opname_table[i].decoded;
3109 }
3110 error (_("Could not find operator name for opcode"));
3111 }
3112
3113
3114 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3115 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3116 undefined namespace) and converts operators that are
3117 user-defined into appropriate function calls. If CONTEXT_TYPE is
3118 non-null, it provides a preferred result type [at the moment, only
3119 type void has any effect---causing procedures to be preferred over
3120 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3121 return type is preferred. May change (expand) *EXP. */
3122
3123 static void
3124 resolve (struct expression **expp, int void_context_p)
3125 {
3126 struct type *context_type = NULL;
3127 int pc = 0;
3128
3129 if (void_context_p)
3130 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3131
3132 resolve_subexp (expp, &pc, 1, context_type);
3133 }
3134
3135 /* Resolve the operator of the subexpression beginning at
3136 position *POS of *EXPP. "Resolving" consists of replacing
3137 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3138 with their resolutions, replacing built-in operators with
3139 function calls to user-defined operators, where appropriate, and,
3140 when DEPROCEDURE_P is non-zero, converting function-valued variables
3141 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3142 are as in ada_resolve, above. */
3143
3144 static struct value *
3145 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3146 struct type *context_type)
3147 {
3148 int pc = *pos;
3149 int i;
3150 struct expression *exp; /* Convenience: == *expp. */
3151 enum exp_opcode op = (*expp)->elts[pc].opcode;
3152 struct value **argvec; /* Vector of operand types (alloca'ed). */
3153 int nargs; /* Number of operands. */
3154 int oplen;
3155
3156 argvec = NULL;
3157 nargs = 0;
3158 exp = *expp;
3159
3160 /* Pass one: resolve operands, saving their types and updating *pos,
3161 if needed. */
3162 switch (op)
3163 {
3164 case OP_FUNCALL:
3165 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3166 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3167 *pos += 7;
3168 else
3169 {
3170 *pos += 3;
3171 resolve_subexp (expp, pos, 0, NULL);
3172 }
3173 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3174 break;
3175
3176 case UNOP_ADDR:
3177 *pos += 1;
3178 resolve_subexp (expp, pos, 0, NULL);
3179 break;
3180
3181 case UNOP_QUAL:
3182 *pos += 3;
3183 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3184 break;
3185
3186 case OP_ATR_MODULUS:
3187 case OP_ATR_SIZE:
3188 case OP_ATR_TAG:
3189 case OP_ATR_FIRST:
3190 case OP_ATR_LAST:
3191 case OP_ATR_LENGTH:
3192 case OP_ATR_POS:
3193 case OP_ATR_VAL:
3194 case OP_ATR_MIN:
3195 case OP_ATR_MAX:
3196 case TERNOP_IN_RANGE:
3197 case BINOP_IN_BOUNDS:
3198 case UNOP_IN_RANGE:
3199 case OP_AGGREGATE:
3200 case OP_OTHERS:
3201 case OP_CHOICES:
3202 case OP_POSITIONAL:
3203 case OP_DISCRETE_RANGE:
3204 case OP_NAME:
3205 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3206 *pos += oplen;
3207 break;
3208
3209 case BINOP_ASSIGN:
3210 {
3211 struct value *arg1;
3212
3213 *pos += 1;
3214 arg1 = resolve_subexp (expp, pos, 0, NULL);
3215 if (arg1 == NULL)
3216 resolve_subexp (expp, pos, 1, NULL);
3217 else
3218 resolve_subexp (expp, pos, 1, value_type (arg1));
3219 break;
3220 }
3221
3222 case UNOP_CAST:
3223 *pos += 3;
3224 nargs = 1;
3225 break;
3226
3227 case BINOP_ADD:
3228 case BINOP_SUB:
3229 case BINOP_MUL:
3230 case BINOP_DIV:
3231 case BINOP_REM:
3232 case BINOP_MOD:
3233 case BINOP_EXP:
3234 case BINOP_CONCAT:
3235 case BINOP_LOGICAL_AND:
3236 case BINOP_LOGICAL_OR:
3237 case BINOP_BITWISE_AND:
3238 case BINOP_BITWISE_IOR:
3239 case BINOP_BITWISE_XOR:
3240
3241 case BINOP_EQUAL:
3242 case BINOP_NOTEQUAL:
3243 case BINOP_LESS:
3244 case BINOP_GTR:
3245 case BINOP_LEQ:
3246 case BINOP_GEQ:
3247
3248 case BINOP_REPEAT:
3249 case BINOP_SUBSCRIPT:
3250 case BINOP_COMMA:
3251 *pos += 1;
3252 nargs = 2;
3253 break;
3254
3255 case UNOP_NEG:
3256 case UNOP_PLUS:
3257 case UNOP_LOGICAL_NOT:
3258 case UNOP_ABS:
3259 case UNOP_IND:
3260 *pos += 1;
3261 nargs = 1;
3262 break;
3263
3264 case OP_LONG:
3265 case OP_DOUBLE:
3266 case OP_VAR_VALUE:
3267 *pos += 4;
3268 break;
3269
3270 case OP_TYPE:
3271 case OP_BOOL:
3272 case OP_LAST:
3273 case OP_INTERNALVAR:
3274 *pos += 3;
3275 break;
3276
3277 case UNOP_MEMVAL:
3278 *pos += 3;
3279 nargs = 1;
3280 break;
3281
3282 case OP_REGISTER:
3283 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3284 break;
3285
3286 case STRUCTOP_STRUCT:
3287 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3288 nargs = 1;
3289 break;
3290
3291 case TERNOP_SLICE:
3292 *pos += 1;
3293 nargs = 3;
3294 break;
3295
3296 case OP_STRING:
3297 break;
3298
3299 default:
3300 error (_("Unexpected operator during name resolution"));
3301 }
3302
3303 argvec = XALLOCAVEC (struct value *, nargs + 1);
3304 for (i = 0; i < nargs; i += 1)
3305 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3306 argvec[i] = NULL;
3307 exp = *expp;
3308
3309 /* Pass two: perform any resolution on principal operator. */
3310 switch (op)
3311 {
3312 default:
3313 break;
3314
3315 case OP_VAR_VALUE:
3316 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3317 {
3318 struct block_symbol *candidates;
3319 int n_candidates;
3320
3321 n_candidates =
3322 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3323 (exp->elts[pc + 2].symbol),
3324 exp->elts[pc + 1].block, VAR_DOMAIN,
3325 &candidates);
3326
3327 if (n_candidates > 1)
3328 {
3329 /* Types tend to get re-introduced locally, so if there
3330 are any local symbols that are not types, first filter
3331 out all types. */
3332 int j;
3333 for (j = 0; j < n_candidates; j += 1)
3334 switch (SYMBOL_CLASS (candidates[j].symbol))
3335 {
3336 case LOC_REGISTER:
3337 case LOC_ARG:
3338 case LOC_REF_ARG:
3339 case LOC_REGPARM_ADDR:
3340 case LOC_LOCAL:
3341 case LOC_COMPUTED:
3342 goto FoundNonType;
3343 default:
3344 break;
3345 }
3346 FoundNonType:
3347 if (j < n_candidates)
3348 {
3349 j = 0;
3350 while (j < n_candidates)
3351 {
3352 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3353 {
3354 candidates[j] = candidates[n_candidates - 1];
3355 n_candidates -= 1;
3356 }
3357 else
3358 j += 1;
3359 }
3360 }
3361 }
3362
3363 if (n_candidates == 0)
3364 error (_("No definition found for %s"),
3365 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3366 else if (n_candidates == 1)
3367 i = 0;
3368 else if (deprocedure_p
3369 && !is_nonfunction (candidates, n_candidates))
3370 {
3371 i = ada_resolve_function
3372 (candidates, n_candidates, NULL, 0,
3373 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3374 context_type);
3375 if (i < 0)
3376 error (_("Could not find a match for %s"),
3377 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3378 }
3379 else
3380 {
3381 printf_filtered (_("Multiple matches for %s\n"),
3382 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3383 user_select_syms (candidates, n_candidates, 1);
3384 i = 0;
3385 }
3386
3387 exp->elts[pc + 1].block = candidates[i].block;
3388 exp->elts[pc + 2].symbol = candidates[i].symbol;
3389 if (innermost_block == NULL
3390 || contained_in (candidates[i].block, innermost_block))
3391 innermost_block = candidates[i].block;
3392 }
3393
3394 if (deprocedure_p
3395 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3396 == TYPE_CODE_FUNC))
3397 {
3398 replace_operator_with_call (expp, pc, 0, 0,
3399 exp->elts[pc + 2].symbol,
3400 exp->elts[pc + 1].block);
3401 exp = *expp;
3402 }
3403 break;
3404
3405 case OP_FUNCALL:
3406 {
3407 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3408 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3409 {
3410 struct block_symbol *candidates;
3411 int n_candidates;
3412
3413 n_candidates =
3414 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3415 (exp->elts[pc + 5].symbol),
3416 exp->elts[pc + 4].block, VAR_DOMAIN,
3417 &candidates);
3418 if (n_candidates == 1)
3419 i = 0;
3420 else
3421 {
3422 i = ada_resolve_function
3423 (candidates, n_candidates,
3424 argvec, nargs,
3425 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3426 context_type);
3427 if (i < 0)
3428 error (_("Could not find a match for %s"),
3429 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3430 }
3431
3432 exp->elts[pc + 4].block = candidates[i].block;
3433 exp->elts[pc + 5].symbol = candidates[i].symbol;
3434 if (innermost_block == NULL
3435 || contained_in (candidates[i].block, innermost_block))
3436 innermost_block = candidates[i].block;
3437 }
3438 }
3439 break;
3440 case BINOP_ADD:
3441 case BINOP_SUB:
3442 case BINOP_MUL:
3443 case BINOP_DIV:
3444 case BINOP_REM:
3445 case BINOP_MOD:
3446 case BINOP_CONCAT:
3447 case BINOP_BITWISE_AND:
3448 case BINOP_BITWISE_IOR:
3449 case BINOP_BITWISE_XOR:
3450 case BINOP_EQUAL:
3451 case BINOP_NOTEQUAL:
3452 case BINOP_LESS:
3453 case BINOP_GTR:
3454 case BINOP_LEQ:
3455 case BINOP_GEQ:
3456 case BINOP_EXP:
3457 case UNOP_NEG:
3458 case UNOP_PLUS:
3459 case UNOP_LOGICAL_NOT:
3460 case UNOP_ABS:
3461 if (possible_user_operator_p (op, argvec))
3462 {
3463 struct block_symbol *candidates;
3464 int n_candidates;
3465
3466 n_candidates =
3467 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3468 (struct block *) NULL, VAR_DOMAIN,
3469 &candidates);
3470 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3471 ada_decoded_op_name (op), NULL);
3472 if (i < 0)
3473 break;
3474
3475 replace_operator_with_call (expp, pc, nargs, 1,
3476 candidates[i].symbol,
3477 candidates[i].block);
3478 exp = *expp;
3479 }
3480 break;
3481
3482 case OP_TYPE:
3483 case OP_REGISTER:
3484 return NULL;
3485 }
3486
3487 *pos = pc;
3488 return evaluate_subexp_type (exp, pos);
3489 }
3490
3491 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3492 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3493 a non-pointer. */
3494 /* The term "match" here is rather loose. The match is heuristic and
3495 liberal. */
3496
3497 static int
3498 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3499 {
3500 ftype = ada_check_typedef (ftype);
3501 atype = ada_check_typedef (atype);
3502
3503 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3504 ftype = TYPE_TARGET_TYPE (ftype);
3505 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3506 atype = TYPE_TARGET_TYPE (atype);
3507
3508 switch (TYPE_CODE (ftype))
3509 {
3510 default:
3511 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3512 case TYPE_CODE_PTR:
3513 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3514 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3515 TYPE_TARGET_TYPE (atype), 0);
3516 else
3517 return (may_deref
3518 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3519 case TYPE_CODE_INT:
3520 case TYPE_CODE_ENUM:
3521 case TYPE_CODE_RANGE:
3522 switch (TYPE_CODE (atype))
3523 {
3524 case TYPE_CODE_INT:
3525 case TYPE_CODE_ENUM:
3526 case TYPE_CODE_RANGE:
3527 return 1;
3528 default:
3529 return 0;
3530 }
3531
3532 case TYPE_CODE_ARRAY:
3533 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3534 || ada_is_array_descriptor_type (atype));
3535
3536 case TYPE_CODE_STRUCT:
3537 if (ada_is_array_descriptor_type (ftype))
3538 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3539 || ada_is_array_descriptor_type (atype));
3540 else
3541 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3542 && !ada_is_array_descriptor_type (atype));
3543
3544 case TYPE_CODE_UNION:
3545 case TYPE_CODE_FLT:
3546 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3547 }
3548 }
3549
3550 /* Return non-zero if the formals of FUNC "sufficiently match" the
3551 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3552 may also be an enumeral, in which case it is treated as a 0-
3553 argument function. */
3554
3555 static int
3556 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3557 {
3558 int i;
3559 struct type *func_type = SYMBOL_TYPE (func);
3560
3561 if (SYMBOL_CLASS (func) == LOC_CONST
3562 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3563 return (n_actuals == 0);
3564 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3565 return 0;
3566
3567 if (TYPE_NFIELDS (func_type) != n_actuals)
3568 return 0;
3569
3570 for (i = 0; i < n_actuals; i += 1)
3571 {
3572 if (actuals[i] == NULL)
3573 return 0;
3574 else
3575 {
3576 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3577 i));
3578 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3579
3580 if (!ada_type_match (ftype, atype, 1))
3581 return 0;
3582 }
3583 }
3584 return 1;
3585 }
3586
3587 /* False iff function type FUNC_TYPE definitely does not produce a value
3588 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3589 FUNC_TYPE is not a valid function type with a non-null return type
3590 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3591
3592 static int
3593 return_match (struct type *func_type, struct type *context_type)
3594 {
3595 struct type *return_type;
3596
3597 if (func_type == NULL)
3598 return 1;
3599
3600 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3601 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3602 else
3603 return_type = get_base_type (func_type);
3604 if (return_type == NULL)
3605 return 1;
3606
3607 context_type = get_base_type (context_type);
3608
3609 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3610 return context_type == NULL || return_type == context_type;
3611 else if (context_type == NULL)
3612 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3613 else
3614 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3615 }
3616
3617
3618 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3619 function (if any) that matches the types of the NARGS arguments in
3620 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3621 that returns that type, then eliminate matches that don't. If
3622 CONTEXT_TYPE is void and there is at least one match that does not
3623 return void, eliminate all matches that do.
3624
3625 Asks the user if there is more than one match remaining. Returns -1
3626 if there is no such symbol or none is selected. NAME is used
3627 solely for messages. May re-arrange and modify SYMS in
3628 the process; the index returned is for the modified vector. */
3629
3630 static int
3631 ada_resolve_function (struct block_symbol syms[],
3632 int nsyms, struct value **args, int nargs,
3633 const char *name, struct type *context_type)
3634 {
3635 int fallback;
3636 int k;
3637 int m; /* Number of hits */
3638
3639 m = 0;
3640 /* In the first pass of the loop, we only accept functions matching
3641 context_type. If none are found, we add a second pass of the loop
3642 where every function is accepted. */
3643 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3644 {
3645 for (k = 0; k < nsyms; k += 1)
3646 {
3647 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3648
3649 if (ada_args_match (syms[k].symbol, args, nargs)
3650 && (fallback || return_match (type, context_type)))
3651 {
3652 syms[m] = syms[k];
3653 m += 1;
3654 }
3655 }
3656 }
3657
3658 /* If we got multiple matches, ask the user which one to use. Don't do this
3659 interactive thing during completion, though, as the purpose of the
3660 completion is providing a list of all possible matches. Prompting the
3661 user to filter it down would be completely unexpected in this case. */
3662 if (m == 0)
3663 return -1;
3664 else if (m > 1 && !parse_completion)
3665 {
3666 printf_filtered (_("Multiple matches for %s\n"), name);
3667 user_select_syms (syms, m, 1);
3668 return 0;
3669 }
3670 return 0;
3671 }
3672
3673 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3674 in a listing of choices during disambiguation (see sort_choices, below).
3675 The idea is that overloadings of a subprogram name from the
3676 same package should sort in their source order. We settle for ordering
3677 such symbols by their trailing number (__N or $N). */
3678
3679 static int
3680 encoded_ordered_before (const char *N0, const char *N1)
3681 {
3682 if (N1 == NULL)
3683 return 0;
3684 else if (N0 == NULL)
3685 return 1;
3686 else
3687 {
3688 int k0, k1;
3689
3690 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3691 ;
3692 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3693 ;
3694 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3695 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3696 {
3697 int n0, n1;
3698
3699 n0 = k0;
3700 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3701 n0 -= 1;
3702 n1 = k1;
3703 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3704 n1 -= 1;
3705 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3706 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3707 }
3708 return (strcmp (N0, N1) < 0);
3709 }
3710 }
3711
3712 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3713 encoded names. */
3714
3715 static void
3716 sort_choices (struct block_symbol syms[], int nsyms)
3717 {
3718 int i;
3719
3720 for (i = 1; i < nsyms; i += 1)
3721 {
3722 struct block_symbol sym = syms[i];
3723 int j;
3724
3725 for (j = i - 1; j >= 0; j -= 1)
3726 {
3727 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3728 SYMBOL_LINKAGE_NAME (sym.symbol)))
3729 break;
3730 syms[j + 1] = syms[j];
3731 }
3732 syms[j + 1] = sym;
3733 }
3734 }
3735
3736 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3737 by asking the user (if necessary), returning the number selected,
3738 and setting the first elements of SYMS items. Error if no symbols
3739 selected. */
3740
3741 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3742 to be re-integrated one of these days. */
3743
3744 int
3745 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3746 {
3747 int i;
3748 int *chosen = XALLOCAVEC (int , nsyms);
3749 int n_chosen;
3750 int first_choice = (max_results == 1) ? 1 : 2;
3751 const char *select_mode = multiple_symbols_select_mode ();
3752
3753 if (max_results < 1)
3754 error (_("Request to select 0 symbols!"));
3755 if (nsyms <= 1)
3756 return nsyms;
3757
3758 if (select_mode == multiple_symbols_cancel)
3759 error (_("\
3760 canceled because the command is ambiguous\n\
3761 See set/show multiple-symbol."));
3762
3763 /* If select_mode is "all", then return all possible symbols.
3764 Only do that if more than one symbol can be selected, of course.
3765 Otherwise, display the menu as usual. */
3766 if (select_mode == multiple_symbols_all && max_results > 1)
3767 return nsyms;
3768
3769 printf_unfiltered (_("[0] cancel\n"));
3770 if (max_results > 1)
3771 printf_unfiltered (_("[1] all\n"));
3772
3773 sort_choices (syms, nsyms);
3774
3775 for (i = 0; i < nsyms; i += 1)
3776 {
3777 if (syms[i].symbol == NULL)
3778 continue;
3779
3780 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3781 {
3782 struct symtab_and_line sal =
3783 find_function_start_sal (syms[i].symbol, 1);
3784
3785 if (sal.symtab == NULL)
3786 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3787 i + first_choice,
3788 SYMBOL_PRINT_NAME (syms[i].symbol),
3789 sal.line);
3790 else
3791 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3792 SYMBOL_PRINT_NAME (syms[i].symbol),
3793 symtab_to_filename_for_display (sal.symtab),
3794 sal.line);
3795 continue;
3796 }
3797 else
3798 {
3799 int is_enumeral =
3800 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3801 && SYMBOL_TYPE (syms[i].symbol) != NULL
3802 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3803 struct symtab *symtab = NULL;
3804
3805 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3806 symtab = symbol_symtab (syms[i].symbol);
3807
3808 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3809 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3810 i + first_choice,
3811 SYMBOL_PRINT_NAME (syms[i].symbol),
3812 symtab_to_filename_for_display (symtab),
3813 SYMBOL_LINE (syms[i].symbol));
3814 else if (is_enumeral
3815 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3816 {
3817 printf_unfiltered (("[%d] "), i + first_choice);
3818 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3819 gdb_stdout, -1, 0, &type_print_raw_options);
3820 printf_unfiltered (_("'(%s) (enumeral)\n"),
3821 SYMBOL_PRINT_NAME (syms[i].symbol));
3822 }
3823 else if (symtab != NULL)
3824 printf_unfiltered (is_enumeral
3825 ? _("[%d] %s in %s (enumeral)\n")
3826 : _("[%d] %s at %s:?\n"),
3827 i + first_choice,
3828 SYMBOL_PRINT_NAME (syms[i].symbol),
3829 symtab_to_filename_for_display (symtab));
3830 else
3831 printf_unfiltered (is_enumeral
3832 ? _("[%d] %s (enumeral)\n")
3833 : _("[%d] %s at ?\n"),
3834 i + first_choice,
3835 SYMBOL_PRINT_NAME (syms[i].symbol));
3836 }
3837 }
3838
3839 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3840 "overload-choice");
3841
3842 for (i = 0; i < n_chosen; i += 1)
3843 syms[i] = syms[chosen[i]];
3844
3845 return n_chosen;
3846 }
3847
3848 /* Read and validate a set of numeric choices from the user in the
3849 range 0 .. N_CHOICES-1. Place the results in increasing
3850 order in CHOICES[0 .. N-1], and return N.
3851
3852 The user types choices as a sequence of numbers on one line
3853 separated by blanks, encoding them as follows:
3854
3855 + A choice of 0 means to cancel the selection, throwing an error.
3856 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3857 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3858
3859 The user is not allowed to choose more than MAX_RESULTS values.
3860
3861 ANNOTATION_SUFFIX, if present, is used to annotate the input
3862 prompts (for use with the -f switch). */
3863
3864 int
3865 get_selections (int *choices, int n_choices, int max_results,
3866 int is_all_choice, char *annotation_suffix)
3867 {
3868 char *args;
3869 char *prompt;
3870 int n_chosen;
3871 int first_choice = is_all_choice ? 2 : 1;
3872
3873 prompt = getenv ("PS2");
3874 if (prompt == NULL)
3875 prompt = "> ";
3876
3877 args = command_line_input (prompt, 0, annotation_suffix);
3878
3879 if (args == NULL)
3880 error_no_arg (_("one or more choice numbers"));
3881
3882 n_chosen = 0;
3883
3884 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3885 order, as given in args. Choices are validated. */
3886 while (1)
3887 {
3888 char *args2;
3889 int choice, j;
3890
3891 args = skip_spaces (args);
3892 if (*args == '\0' && n_chosen == 0)
3893 error_no_arg (_("one or more choice numbers"));
3894 else if (*args == '\0')
3895 break;
3896
3897 choice = strtol (args, &args2, 10);
3898 if (args == args2 || choice < 0
3899 || choice > n_choices + first_choice - 1)
3900 error (_("Argument must be choice number"));
3901 args = args2;
3902
3903 if (choice == 0)
3904 error (_("cancelled"));
3905
3906 if (choice < first_choice)
3907 {
3908 n_chosen = n_choices;
3909 for (j = 0; j < n_choices; j += 1)
3910 choices[j] = j;
3911 break;
3912 }
3913 choice -= first_choice;
3914
3915 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3916 {
3917 }
3918
3919 if (j < 0 || choice != choices[j])
3920 {
3921 int k;
3922
3923 for (k = n_chosen - 1; k > j; k -= 1)
3924 choices[k + 1] = choices[k];
3925 choices[j + 1] = choice;
3926 n_chosen += 1;
3927 }
3928 }
3929
3930 if (n_chosen > max_results)
3931 error (_("Select no more than %d of the above"), max_results);
3932
3933 return n_chosen;
3934 }
3935
3936 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3937 on the function identified by SYM and BLOCK, and taking NARGS
3938 arguments. Update *EXPP as needed to hold more space. */
3939
3940 static void
3941 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3942 int oplen, struct symbol *sym,
3943 const struct block *block)
3944 {
3945 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3946 symbol, -oplen for operator being replaced). */
3947 struct expression *newexp = (struct expression *)
3948 xzalloc (sizeof (struct expression)
3949 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3950 struct expression *exp = *expp;
3951
3952 newexp->nelts = exp->nelts + 7 - oplen;
3953 newexp->language_defn = exp->language_defn;
3954 newexp->gdbarch = exp->gdbarch;
3955 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3956 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3957 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3958
3959 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3960 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3961
3962 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3963 newexp->elts[pc + 4].block = block;
3964 newexp->elts[pc + 5].symbol = sym;
3965
3966 *expp = newexp;
3967 xfree (exp);
3968 }
3969
3970 /* Type-class predicates */
3971
3972 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3973 or FLOAT). */
3974
3975 static int
3976 numeric_type_p (struct type *type)
3977 {
3978 if (type == NULL)
3979 return 0;
3980 else
3981 {
3982 switch (TYPE_CODE (type))
3983 {
3984 case TYPE_CODE_INT:
3985 case TYPE_CODE_FLT:
3986 return 1;
3987 case TYPE_CODE_RANGE:
3988 return (type == TYPE_TARGET_TYPE (type)
3989 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3990 default:
3991 return 0;
3992 }
3993 }
3994 }
3995
3996 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3997
3998 static int
3999 integer_type_p (struct type *type)
4000 {
4001 if (type == NULL)
4002 return 0;
4003 else
4004 {
4005 switch (TYPE_CODE (type))
4006 {
4007 case TYPE_CODE_INT:
4008 return 1;
4009 case TYPE_CODE_RANGE:
4010 return (type == TYPE_TARGET_TYPE (type)
4011 || integer_type_p (TYPE_TARGET_TYPE (type)));
4012 default:
4013 return 0;
4014 }
4015 }
4016 }
4017
4018 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4019
4020 static int
4021 scalar_type_p (struct type *type)
4022 {
4023 if (type == NULL)
4024 return 0;
4025 else
4026 {
4027 switch (TYPE_CODE (type))
4028 {
4029 case TYPE_CODE_INT:
4030 case TYPE_CODE_RANGE:
4031 case TYPE_CODE_ENUM:
4032 case TYPE_CODE_FLT:
4033 return 1;
4034 default:
4035 return 0;
4036 }
4037 }
4038 }
4039
4040 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4041
4042 static int
4043 discrete_type_p (struct type *type)
4044 {
4045 if (type == NULL)
4046 return 0;
4047 else
4048 {
4049 switch (TYPE_CODE (type))
4050 {
4051 case TYPE_CODE_INT:
4052 case TYPE_CODE_RANGE:
4053 case TYPE_CODE_ENUM:
4054 case TYPE_CODE_BOOL:
4055 return 1;
4056 default:
4057 return 0;
4058 }
4059 }
4060 }
4061
4062 /* Returns non-zero if OP with operands in the vector ARGS could be
4063 a user-defined function. Errs on the side of pre-defined operators
4064 (i.e., result 0). */
4065
4066 static int
4067 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4068 {
4069 struct type *type0 =
4070 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4071 struct type *type1 =
4072 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4073
4074 if (type0 == NULL)
4075 return 0;
4076
4077 switch (op)
4078 {
4079 default:
4080 return 0;
4081
4082 case BINOP_ADD:
4083 case BINOP_SUB:
4084 case BINOP_MUL:
4085 case BINOP_DIV:
4086 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4087
4088 case BINOP_REM:
4089 case BINOP_MOD:
4090 case BINOP_BITWISE_AND:
4091 case BINOP_BITWISE_IOR:
4092 case BINOP_BITWISE_XOR:
4093 return (!(integer_type_p (type0) && integer_type_p (type1)));
4094
4095 case BINOP_EQUAL:
4096 case BINOP_NOTEQUAL:
4097 case BINOP_LESS:
4098 case BINOP_GTR:
4099 case BINOP_LEQ:
4100 case BINOP_GEQ:
4101 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4102
4103 case BINOP_CONCAT:
4104 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4105
4106 case BINOP_EXP:
4107 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4108
4109 case UNOP_NEG:
4110 case UNOP_PLUS:
4111 case UNOP_LOGICAL_NOT:
4112 case UNOP_ABS:
4113 return (!numeric_type_p (type0));
4114
4115 }
4116 }
4117 \f
4118 /* Renaming */
4119
4120 /* NOTES:
4121
4122 1. In the following, we assume that a renaming type's name may
4123 have an ___XD suffix. It would be nice if this went away at some
4124 point.
4125 2. We handle both the (old) purely type-based representation of
4126 renamings and the (new) variable-based encoding. At some point,
4127 it is devoutly to be hoped that the former goes away
4128 (FIXME: hilfinger-2007-07-09).
4129 3. Subprogram renamings are not implemented, although the XRS
4130 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4131
4132 /* If SYM encodes a renaming,
4133
4134 <renaming> renames <renamed entity>,
4135
4136 sets *LEN to the length of the renamed entity's name,
4137 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4138 the string describing the subcomponent selected from the renamed
4139 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4140 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4141 are undefined). Otherwise, returns a value indicating the category
4142 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4143 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4144 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4145 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4146 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4147 may be NULL, in which case they are not assigned.
4148
4149 [Currently, however, GCC does not generate subprogram renamings.] */
4150
4151 enum ada_renaming_category
4152 ada_parse_renaming (struct symbol *sym,
4153 const char **renamed_entity, int *len,
4154 const char **renaming_expr)
4155 {
4156 enum ada_renaming_category kind;
4157 const char *info;
4158 const char *suffix;
4159
4160 if (sym == NULL)
4161 return ADA_NOT_RENAMING;
4162 switch (SYMBOL_CLASS (sym))
4163 {
4164 default:
4165 return ADA_NOT_RENAMING;
4166 case LOC_TYPEDEF:
4167 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4168 renamed_entity, len, renaming_expr);
4169 case LOC_LOCAL:
4170 case LOC_STATIC:
4171 case LOC_COMPUTED:
4172 case LOC_OPTIMIZED_OUT:
4173 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4174 if (info == NULL)
4175 return ADA_NOT_RENAMING;
4176 switch (info[5])
4177 {
4178 case '_':
4179 kind = ADA_OBJECT_RENAMING;
4180 info += 6;
4181 break;
4182 case 'E':
4183 kind = ADA_EXCEPTION_RENAMING;
4184 info += 7;
4185 break;
4186 case 'P':
4187 kind = ADA_PACKAGE_RENAMING;
4188 info += 7;
4189 break;
4190 case 'S':
4191 kind = ADA_SUBPROGRAM_RENAMING;
4192 info += 7;
4193 break;
4194 default:
4195 return ADA_NOT_RENAMING;
4196 }
4197 }
4198
4199 if (renamed_entity != NULL)
4200 *renamed_entity = info;
4201 suffix = strstr (info, "___XE");
4202 if (suffix == NULL || suffix == info)
4203 return ADA_NOT_RENAMING;
4204 if (len != NULL)
4205 *len = strlen (info) - strlen (suffix);
4206 suffix += 5;
4207 if (renaming_expr != NULL)
4208 *renaming_expr = suffix;
4209 return kind;
4210 }
4211
4212 /* Assuming TYPE encodes a renaming according to the old encoding in
4213 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4214 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4215 ADA_NOT_RENAMING otherwise. */
4216 static enum ada_renaming_category
4217 parse_old_style_renaming (struct type *type,
4218 const char **renamed_entity, int *len,
4219 const char **renaming_expr)
4220 {
4221 enum ada_renaming_category kind;
4222 const char *name;
4223 const char *info;
4224 const char *suffix;
4225
4226 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4227 || TYPE_NFIELDS (type) != 1)
4228 return ADA_NOT_RENAMING;
4229
4230 name = type_name_no_tag (type);
4231 if (name == NULL)
4232 return ADA_NOT_RENAMING;
4233
4234 name = strstr (name, "___XR");
4235 if (name == NULL)
4236 return ADA_NOT_RENAMING;
4237 switch (name[5])
4238 {
4239 case '\0':
4240 case '_':
4241 kind = ADA_OBJECT_RENAMING;
4242 break;
4243 case 'E':
4244 kind = ADA_EXCEPTION_RENAMING;
4245 break;
4246 case 'P':
4247 kind = ADA_PACKAGE_RENAMING;
4248 break;
4249 case 'S':
4250 kind = ADA_SUBPROGRAM_RENAMING;
4251 break;
4252 default:
4253 return ADA_NOT_RENAMING;
4254 }
4255
4256 info = TYPE_FIELD_NAME (type, 0);
4257 if (info == NULL)
4258 return ADA_NOT_RENAMING;
4259 if (renamed_entity != NULL)
4260 *renamed_entity = info;
4261 suffix = strstr (info, "___XE");
4262 if (renaming_expr != NULL)
4263 *renaming_expr = suffix + 5;
4264 if (suffix == NULL || suffix == info)
4265 return ADA_NOT_RENAMING;
4266 if (len != NULL)
4267 *len = suffix - info;
4268 return kind;
4269 }
4270
4271 /* Compute the value of the given RENAMING_SYM, which is expected to
4272 be a symbol encoding a renaming expression. BLOCK is the block
4273 used to evaluate the renaming. */
4274
4275 static struct value *
4276 ada_read_renaming_var_value (struct symbol *renaming_sym,
4277 const struct block *block)
4278 {
4279 const char *sym_name;
4280 struct expression *expr;
4281 struct value *value;
4282 struct cleanup *old_chain = NULL;
4283
4284 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4285 expr = parse_exp_1 (&sym_name, 0, block, 0);
4286 old_chain = make_cleanup (free_current_contents, &expr);
4287 value = evaluate_expression (expr);
4288
4289 do_cleanups (old_chain);
4290 return value;
4291 }
4292 \f
4293
4294 /* Evaluation: Function Calls */
4295
4296 /* Return an lvalue containing the value VAL. This is the identity on
4297 lvalues, and otherwise has the side-effect of allocating memory
4298 in the inferior where a copy of the value contents is copied. */
4299
4300 static struct value *
4301 ensure_lval (struct value *val)
4302 {
4303 if (VALUE_LVAL (val) == not_lval
4304 || VALUE_LVAL (val) == lval_internalvar)
4305 {
4306 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4307 const CORE_ADDR addr =
4308 value_as_long (value_allocate_space_in_inferior (len));
4309
4310 set_value_address (val, addr);
4311 VALUE_LVAL (val) = lval_memory;
4312 write_memory (addr, value_contents (val), len);
4313 }
4314
4315 return val;
4316 }
4317
4318 /* Return the value ACTUAL, converted to be an appropriate value for a
4319 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4320 allocating any necessary descriptors (fat pointers), or copies of
4321 values not residing in memory, updating it as needed. */
4322
4323 struct value *
4324 ada_convert_actual (struct value *actual, struct type *formal_type0)
4325 {
4326 struct type *actual_type = ada_check_typedef (value_type (actual));
4327 struct type *formal_type = ada_check_typedef (formal_type0);
4328 struct type *formal_target =
4329 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4330 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4331 struct type *actual_target =
4332 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4333 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4334
4335 if (ada_is_array_descriptor_type (formal_target)
4336 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4337 return make_array_descriptor (formal_type, actual);
4338 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4339 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4340 {
4341 struct value *result;
4342
4343 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4344 && ada_is_array_descriptor_type (actual_target))
4345 result = desc_data (actual);
4346 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4347 {
4348 if (VALUE_LVAL (actual) != lval_memory)
4349 {
4350 struct value *val;
4351
4352 actual_type = ada_check_typedef (value_type (actual));
4353 val = allocate_value (actual_type);
4354 memcpy ((char *) value_contents_raw (val),
4355 (char *) value_contents (actual),
4356 TYPE_LENGTH (actual_type));
4357 actual = ensure_lval (val);
4358 }
4359 result = value_addr (actual);
4360 }
4361 else
4362 return actual;
4363 return value_cast_pointers (formal_type, result, 0);
4364 }
4365 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4366 return ada_value_ind (actual);
4367 else if (ada_is_aligner_type (formal_type))
4368 {
4369 /* We need to turn this parameter into an aligner type
4370 as well. */
4371 struct value *aligner = allocate_value (formal_type);
4372 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4373
4374 value_assign_to_component (aligner, component, actual);
4375 return aligner;
4376 }
4377
4378 return actual;
4379 }
4380
4381 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4382 type TYPE. This is usually an inefficient no-op except on some targets
4383 (such as AVR) where the representation of a pointer and an address
4384 differs. */
4385
4386 static CORE_ADDR
4387 value_pointer (struct value *value, struct type *type)
4388 {
4389 struct gdbarch *gdbarch = get_type_arch (type);
4390 unsigned len = TYPE_LENGTH (type);
4391 gdb_byte *buf = alloca (len);
4392 CORE_ADDR addr;
4393
4394 addr = value_address (value);
4395 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4396 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4397 return addr;
4398 }
4399
4400
4401 /* Push a descriptor of type TYPE for array value ARR on the stack at
4402 *SP, updating *SP to reflect the new descriptor. Return either
4403 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4404 to-descriptor type rather than a descriptor type), a struct value *
4405 representing a pointer to this descriptor. */
4406
4407 static struct value *
4408 make_array_descriptor (struct type *type, struct value *arr)
4409 {
4410 struct type *bounds_type = desc_bounds_type (type);
4411 struct type *desc_type = desc_base_type (type);
4412 struct value *descriptor = allocate_value (desc_type);
4413 struct value *bounds = allocate_value (bounds_type);
4414 int i;
4415
4416 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4417 i > 0; i -= 1)
4418 {
4419 modify_field (value_type (bounds), value_contents_writeable (bounds),
4420 ada_array_bound (arr, i, 0),
4421 desc_bound_bitpos (bounds_type, i, 0),
4422 desc_bound_bitsize (bounds_type, i, 0));
4423 modify_field (value_type (bounds), value_contents_writeable (bounds),
4424 ada_array_bound (arr, i, 1),
4425 desc_bound_bitpos (bounds_type, i, 1),
4426 desc_bound_bitsize (bounds_type, i, 1));
4427 }
4428
4429 bounds = ensure_lval (bounds);
4430
4431 modify_field (value_type (descriptor),
4432 value_contents_writeable (descriptor),
4433 value_pointer (ensure_lval (arr),
4434 TYPE_FIELD_TYPE (desc_type, 0)),
4435 fat_pntr_data_bitpos (desc_type),
4436 fat_pntr_data_bitsize (desc_type));
4437
4438 modify_field (value_type (descriptor),
4439 value_contents_writeable (descriptor),
4440 value_pointer (bounds,
4441 TYPE_FIELD_TYPE (desc_type, 1)),
4442 fat_pntr_bounds_bitpos (desc_type),
4443 fat_pntr_bounds_bitsize (desc_type));
4444
4445 descriptor = ensure_lval (descriptor);
4446
4447 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4448 return value_addr (descriptor);
4449 else
4450 return descriptor;
4451 }
4452 \f
4453 /* Symbol Cache Module */
4454
4455 /* Performance measurements made as of 2010-01-15 indicate that
4456 this cache does bring some noticeable improvements. Depending
4457 on the type of entity being printed, the cache can make it as much
4458 as an order of magnitude faster than without it.
4459
4460 The descriptive type DWARF extension has significantly reduced
4461 the need for this cache, at least when DWARF is being used. However,
4462 even in this case, some expensive name-based symbol searches are still
4463 sometimes necessary - to find an XVZ variable, mostly. */
4464
4465 /* Initialize the contents of SYM_CACHE. */
4466
4467 static void
4468 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4469 {
4470 obstack_init (&sym_cache->cache_space);
4471 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4472 }
4473
4474 /* Free the memory used by SYM_CACHE. */
4475
4476 static void
4477 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4478 {
4479 obstack_free (&sym_cache->cache_space, NULL);
4480 xfree (sym_cache);
4481 }
4482
4483 /* Return the symbol cache associated to the given program space PSPACE.
4484 If not allocated for this PSPACE yet, allocate and initialize one. */
4485
4486 static struct ada_symbol_cache *
4487 ada_get_symbol_cache (struct program_space *pspace)
4488 {
4489 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4490
4491 if (pspace_data->sym_cache == NULL)
4492 {
4493 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4494 ada_init_symbol_cache (pspace_data->sym_cache);
4495 }
4496
4497 return pspace_data->sym_cache;
4498 }
4499
4500 /* Clear all entries from the symbol cache. */
4501
4502 static void
4503 ada_clear_symbol_cache (void)
4504 {
4505 struct ada_symbol_cache *sym_cache
4506 = ada_get_symbol_cache (current_program_space);
4507
4508 obstack_free (&sym_cache->cache_space, NULL);
4509 ada_init_symbol_cache (sym_cache);
4510 }
4511
4512 /* Search our cache for an entry matching NAME and DOMAIN.
4513 Return it if found, or NULL otherwise. */
4514
4515 static struct cache_entry **
4516 find_entry (const char *name, domain_enum domain)
4517 {
4518 struct ada_symbol_cache *sym_cache
4519 = ada_get_symbol_cache (current_program_space);
4520 int h = msymbol_hash (name) % HASH_SIZE;
4521 struct cache_entry **e;
4522
4523 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4524 {
4525 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4526 return e;
4527 }
4528 return NULL;
4529 }
4530
4531 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4532 Return 1 if found, 0 otherwise.
4533
4534 If an entry was found and SYM is not NULL, set *SYM to the entry's
4535 SYM. Same principle for BLOCK if not NULL. */
4536
4537 static int
4538 lookup_cached_symbol (const char *name, domain_enum domain,
4539 struct symbol **sym, const struct block **block)
4540 {
4541 struct cache_entry **e = find_entry (name, domain);
4542
4543 if (e == NULL)
4544 return 0;
4545 if (sym != NULL)
4546 *sym = (*e)->sym;
4547 if (block != NULL)
4548 *block = (*e)->block;
4549 return 1;
4550 }
4551
4552 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4553 in domain DOMAIN, save this result in our symbol cache. */
4554
4555 static void
4556 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4557 const struct block *block)
4558 {
4559 struct ada_symbol_cache *sym_cache
4560 = ada_get_symbol_cache (current_program_space);
4561 int h;
4562 char *copy;
4563 struct cache_entry *e;
4564
4565 /* Symbols for builtin types don't have a block.
4566 For now don't cache such symbols. */
4567 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4568 return;
4569
4570 /* If the symbol is a local symbol, then do not cache it, as a search
4571 for that symbol depends on the context. To determine whether
4572 the symbol is local or not, we check the block where we found it
4573 against the global and static blocks of its associated symtab. */
4574 if (sym
4575 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4576 GLOBAL_BLOCK) != block
4577 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4578 STATIC_BLOCK) != block)
4579 return;
4580
4581 h = msymbol_hash (name) % HASH_SIZE;
4582 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4583 sizeof (*e));
4584 e->next = sym_cache->root[h];
4585 sym_cache->root[h] = e;
4586 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4587 strcpy (copy, name);
4588 e->sym = sym;
4589 e->domain = domain;
4590 e->block = block;
4591 }
4592 \f
4593 /* Symbol Lookup */
4594
4595 /* Return nonzero if wild matching should be used when searching for
4596 all symbols matching LOOKUP_NAME.
4597
4598 LOOKUP_NAME is expected to be a symbol name after transformation
4599 for Ada lookups (see ada_name_for_lookup). */
4600
4601 static int
4602 should_use_wild_match (const char *lookup_name)
4603 {
4604 return (strstr (lookup_name, "__") == NULL);
4605 }
4606
4607 /* Return the result of a standard (literal, C-like) lookup of NAME in
4608 given DOMAIN, visible from lexical block BLOCK. */
4609
4610 static struct symbol *
4611 standard_lookup (const char *name, const struct block *block,
4612 domain_enum domain)
4613 {
4614 /* Initialize it just to avoid a GCC false warning. */
4615 struct block_symbol sym = {NULL, NULL};
4616
4617 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4618 return sym.symbol;
4619 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4620 cache_symbol (name, domain, sym.symbol, sym.block);
4621 return sym.symbol;
4622 }
4623
4624
4625 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4626 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4627 since they contend in overloading in the same way. */
4628 static int
4629 is_nonfunction (struct block_symbol syms[], int n)
4630 {
4631 int i;
4632
4633 for (i = 0; i < n; i += 1)
4634 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4635 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4636 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4637 return 1;
4638
4639 return 0;
4640 }
4641
4642 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4643 struct types. Otherwise, they may not. */
4644
4645 static int
4646 equiv_types (struct type *type0, struct type *type1)
4647 {
4648 if (type0 == type1)
4649 return 1;
4650 if (type0 == NULL || type1 == NULL
4651 || TYPE_CODE (type0) != TYPE_CODE (type1))
4652 return 0;
4653 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4654 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4655 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4656 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4657 return 1;
4658
4659 return 0;
4660 }
4661
4662 /* True iff SYM0 represents the same entity as SYM1, or one that is
4663 no more defined than that of SYM1. */
4664
4665 static int
4666 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4667 {
4668 if (sym0 == sym1)
4669 return 1;
4670 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4671 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4672 return 0;
4673
4674 switch (SYMBOL_CLASS (sym0))
4675 {
4676 case LOC_UNDEF:
4677 return 1;
4678 case LOC_TYPEDEF:
4679 {
4680 struct type *type0 = SYMBOL_TYPE (sym0);
4681 struct type *type1 = SYMBOL_TYPE (sym1);
4682 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4683 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4684 int len0 = strlen (name0);
4685
4686 return
4687 TYPE_CODE (type0) == TYPE_CODE (type1)
4688 && (equiv_types (type0, type1)
4689 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4690 && startswith (name1 + len0, "___XV")));
4691 }
4692 case LOC_CONST:
4693 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4694 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4695 default:
4696 return 0;
4697 }
4698 }
4699
4700 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4701 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4702
4703 static void
4704 add_defn_to_vec (struct obstack *obstackp,
4705 struct symbol *sym,
4706 const struct block *block)
4707 {
4708 int i;
4709 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4710
4711 /* Do not try to complete stub types, as the debugger is probably
4712 already scanning all symbols matching a certain name at the
4713 time when this function is called. Trying to replace the stub
4714 type by its associated full type will cause us to restart a scan
4715 which may lead to an infinite recursion. Instead, the client
4716 collecting the matching symbols will end up collecting several
4717 matches, with at least one of them complete. It can then filter
4718 out the stub ones if needed. */
4719
4720 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4721 {
4722 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4723 return;
4724 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4725 {
4726 prevDefns[i].symbol = sym;
4727 prevDefns[i].block = block;
4728 return;
4729 }
4730 }
4731
4732 {
4733 struct block_symbol info;
4734
4735 info.symbol = sym;
4736 info.block = block;
4737 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4738 }
4739 }
4740
4741 /* Number of block_symbol structures currently collected in current vector in
4742 OBSTACKP. */
4743
4744 static int
4745 num_defns_collected (struct obstack *obstackp)
4746 {
4747 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4748 }
4749
4750 /* Vector of block_symbol structures currently collected in current vector in
4751 OBSTACKP. If FINISH, close off the vector and return its final address. */
4752
4753 static struct block_symbol *
4754 defns_collected (struct obstack *obstackp, int finish)
4755 {
4756 if (finish)
4757 return obstack_finish (obstackp);
4758 else
4759 return (struct block_symbol *) obstack_base (obstackp);
4760 }
4761
4762 /* Return a bound minimal symbol matching NAME according to Ada
4763 decoding rules. Returns an invalid symbol if there is no such
4764 minimal symbol. Names prefixed with "standard__" are handled
4765 specially: "standard__" is first stripped off, and only static and
4766 global symbols are searched. */
4767
4768 struct bound_minimal_symbol
4769 ada_lookup_simple_minsym (const char *name)
4770 {
4771 struct bound_minimal_symbol result;
4772 struct objfile *objfile;
4773 struct minimal_symbol *msymbol;
4774 const int wild_match_p = should_use_wild_match (name);
4775
4776 memset (&result, 0, sizeof (result));
4777
4778 /* Special case: If the user specifies a symbol name inside package
4779 Standard, do a non-wild matching of the symbol name without
4780 the "standard__" prefix. This was primarily introduced in order
4781 to allow the user to specifically access the standard exceptions
4782 using, for instance, Standard.Constraint_Error when Constraint_Error
4783 is ambiguous (due to the user defining its own Constraint_Error
4784 entity inside its program). */
4785 if (startswith (name, "standard__"))
4786 name += sizeof ("standard__") - 1;
4787
4788 ALL_MSYMBOLS (objfile, msymbol)
4789 {
4790 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4791 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4792 {
4793 result.minsym = msymbol;
4794 result.objfile = objfile;
4795 break;
4796 }
4797 }
4798
4799 return result;
4800 }
4801
4802 /* For all subprograms that statically enclose the subprogram of the
4803 selected frame, add symbols matching identifier NAME in DOMAIN
4804 and their blocks to the list of data in OBSTACKP, as for
4805 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4806 with a wildcard prefix. */
4807
4808 static void
4809 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4810 const char *name, domain_enum domain,
4811 int wild_match_p)
4812 {
4813 }
4814
4815 /* True if TYPE is definitely an artificial type supplied to a symbol
4816 for which no debugging information was given in the symbol file. */
4817
4818 static int
4819 is_nondebugging_type (struct type *type)
4820 {
4821 const char *name = ada_type_name (type);
4822
4823 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4824 }
4825
4826 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4827 that are deemed "identical" for practical purposes.
4828
4829 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4830 types and that their number of enumerals is identical (in other
4831 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4832
4833 static int
4834 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4835 {
4836 int i;
4837
4838 /* The heuristic we use here is fairly conservative. We consider
4839 that 2 enumerate types are identical if they have the same
4840 number of enumerals and that all enumerals have the same
4841 underlying value and name. */
4842
4843 /* All enums in the type should have an identical underlying value. */
4844 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4845 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4846 return 0;
4847
4848 /* All enumerals should also have the same name (modulo any numerical
4849 suffix). */
4850 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4851 {
4852 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4853 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4854 int len_1 = strlen (name_1);
4855 int len_2 = strlen (name_2);
4856
4857 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4858 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4859 if (len_1 != len_2
4860 || strncmp (TYPE_FIELD_NAME (type1, i),
4861 TYPE_FIELD_NAME (type2, i),
4862 len_1) != 0)
4863 return 0;
4864 }
4865
4866 return 1;
4867 }
4868
4869 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4870 that are deemed "identical" for practical purposes. Sometimes,
4871 enumerals are not strictly identical, but their types are so similar
4872 that they can be considered identical.
4873
4874 For instance, consider the following code:
4875
4876 type Color is (Black, Red, Green, Blue, White);
4877 type RGB_Color is new Color range Red .. Blue;
4878
4879 Type RGB_Color is a subrange of an implicit type which is a copy
4880 of type Color. If we call that implicit type RGB_ColorB ("B" is
4881 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4882 As a result, when an expression references any of the enumeral
4883 by name (Eg. "print green"), the expression is technically
4884 ambiguous and the user should be asked to disambiguate. But
4885 doing so would only hinder the user, since it wouldn't matter
4886 what choice he makes, the outcome would always be the same.
4887 So, for practical purposes, we consider them as the same. */
4888
4889 static int
4890 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
4891 {
4892 int i;
4893
4894 /* Before performing a thorough comparison check of each type,
4895 we perform a series of inexpensive checks. We expect that these
4896 checks will quickly fail in the vast majority of cases, and thus
4897 help prevent the unnecessary use of a more expensive comparison.
4898 Said comparison also expects us to make some of these checks
4899 (see ada_identical_enum_types_p). */
4900
4901 /* Quick check: All symbols should have an enum type. */
4902 for (i = 0; i < nsyms; i++)
4903 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4904 return 0;
4905
4906 /* Quick check: They should all have the same value. */
4907 for (i = 1; i < nsyms; i++)
4908 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4909 return 0;
4910
4911 /* Quick check: They should all have the same number of enumerals. */
4912 for (i = 1; i < nsyms; i++)
4913 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4914 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4915 return 0;
4916
4917 /* All the sanity checks passed, so we might have a set of
4918 identical enumeration types. Perform a more complete
4919 comparison of the type of each symbol. */
4920 for (i = 1; i < nsyms; i++)
4921 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4922 SYMBOL_TYPE (syms[0].symbol)))
4923 return 0;
4924
4925 return 1;
4926 }
4927
4928 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4929 duplicate other symbols in the list (The only case I know of where
4930 this happens is when object files containing stabs-in-ecoff are
4931 linked with files containing ordinary ecoff debugging symbols (or no
4932 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4933 Returns the number of items in the modified list. */
4934
4935 static int
4936 remove_extra_symbols (struct block_symbol *syms, int nsyms)
4937 {
4938 int i, j;
4939
4940 /* We should never be called with less than 2 symbols, as there
4941 cannot be any extra symbol in that case. But it's easy to
4942 handle, since we have nothing to do in that case. */
4943 if (nsyms < 2)
4944 return nsyms;
4945
4946 i = 0;
4947 while (i < nsyms)
4948 {
4949 int remove_p = 0;
4950
4951 /* If two symbols have the same name and one of them is a stub type,
4952 the get rid of the stub. */
4953
4954 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
4955 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
4956 {
4957 for (j = 0; j < nsyms; j++)
4958 {
4959 if (j != i
4960 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
4961 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
4962 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
4963 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
4964 remove_p = 1;
4965 }
4966 }
4967
4968 /* Two symbols with the same name, same class and same address
4969 should be identical. */
4970
4971 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
4972 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
4973 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
4974 {
4975 for (j = 0; j < nsyms; j += 1)
4976 {
4977 if (i != j
4978 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
4979 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
4980 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
4981 && SYMBOL_CLASS (syms[i].symbol)
4982 == SYMBOL_CLASS (syms[j].symbol)
4983 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
4984 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
4985 remove_p = 1;
4986 }
4987 }
4988
4989 if (remove_p)
4990 {
4991 for (j = i + 1; j < nsyms; j += 1)
4992 syms[j - 1] = syms[j];
4993 nsyms -= 1;
4994 }
4995
4996 i += 1;
4997 }
4998
4999 /* If all the remaining symbols are identical enumerals, then
5000 just keep the first one and discard the rest.
5001
5002 Unlike what we did previously, we do not discard any entry
5003 unless they are ALL identical. This is because the symbol
5004 comparison is not a strict comparison, but rather a practical
5005 comparison. If all symbols are considered identical, then
5006 we can just go ahead and use the first one and discard the rest.
5007 But if we cannot reduce the list to a single element, we have
5008 to ask the user to disambiguate anyways. And if we have to
5009 present a multiple-choice menu, it's less confusing if the list
5010 isn't missing some choices that were identical and yet distinct. */
5011 if (symbols_are_identical_enums (syms, nsyms))
5012 nsyms = 1;
5013
5014 return nsyms;
5015 }
5016
5017 /* Given a type that corresponds to a renaming entity, use the type name
5018 to extract the scope (package name or function name, fully qualified,
5019 and following the GNAT encoding convention) where this renaming has been
5020 defined. The string returned needs to be deallocated after use. */
5021
5022 static char *
5023 xget_renaming_scope (struct type *renaming_type)
5024 {
5025 /* The renaming types adhere to the following convention:
5026 <scope>__<rename>___<XR extension>.
5027 So, to extract the scope, we search for the "___XR" extension,
5028 and then backtrack until we find the first "__". */
5029
5030 const char *name = type_name_no_tag (renaming_type);
5031 char *suffix = strstr (name, "___XR");
5032 char *last;
5033 int scope_len;
5034 char *scope;
5035
5036 /* Now, backtrack a bit until we find the first "__". Start looking
5037 at suffix - 3, as the <rename> part is at least one character long. */
5038
5039 for (last = suffix - 3; last > name; last--)
5040 if (last[0] == '_' && last[1] == '_')
5041 break;
5042
5043 /* Make a copy of scope and return it. */
5044
5045 scope_len = last - name;
5046 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5047
5048 strncpy (scope, name, scope_len);
5049 scope[scope_len] = '\0';
5050
5051 return scope;
5052 }
5053
5054 /* Return nonzero if NAME corresponds to a package name. */
5055
5056 static int
5057 is_package_name (const char *name)
5058 {
5059 /* Here, We take advantage of the fact that no symbols are generated
5060 for packages, while symbols are generated for each function.
5061 So the condition for NAME represent a package becomes equivalent
5062 to NAME not existing in our list of symbols. There is only one
5063 small complication with library-level functions (see below). */
5064
5065 char *fun_name;
5066
5067 /* If it is a function that has not been defined at library level,
5068 then we should be able to look it up in the symbols. */
5069 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5070 return 0;
5071
5072 /* Library-level function names start with "_ada_". See if function
5073 "_ada_" followed by NAME can be found. */
5074
5075 /* Do a quick check that NAME does not contain "__", since library-level
5076 functions names cannot contain "__" in them. */
5077 if (strstr (name, "__") != NULL)
5078 return 0;
5079
5080 fun_name = xstrprintf ("_ada_%s", name);
5081
5082 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5083 }
5084
5085 /* Return nonzero if SYM corresponds to a renaming entity that is
5086 not visible from FUNCTION_NAME. */
5087
5088 static int
5089 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5090 {
5091 char *scope;
5092 struct cleanup *old_chain;
5093
5094 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5095 return 0;
5096
5097 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5098 old_chain = make_cleanup (xfree, scope);
5099
5100 /* If the rename has been defined in a package, then it is visible. */
5101 if (is_package_name (scope))
5102 {
5103 do_cleanups (old_chain);
5104 return 0;
5105 }
5106
5107 /* Check that the rename is in the current function scope by checking
5108 that its name starts with SCOPE. */
5109
5110 /* If the function name starts with "_ada_", it means that it is
5111 a library-level function. Strip this prefix before doing the
5112 comparison, as the encoding for the renaming does not contain
5113 this prefix. */
5114 if (startswith (function_name, "_ada_"))
5115 function_name += 5;
5116
5117 {
5118 int is_invisible = !startswith (function_name, scope);
5119
5120 do_cleanups (old_chain);
5121 return is_invisible;
5122 }
5123 }
5124
5125 /* Remove entries from SYMS that corresponds to a renaming entity that
5126 is not visible from the function associated with CURRENT_BLOCK or
5127 that is superfluous due to the presence of more specific renaming
5128 information. Places surviving symbols in the initial entries of
5129 SYMS and returns the number of surviving symbols.
5130
5131 Rationale:
5132 First, in cases where an object renaming is implemented as a
5133 reference variable, GNAT may produce both the actual reference
5134 variable and the renaming encoding. In this case, we discard the
5135 latter.
5136
5137 Second, GNAT emits a type following a specified encoding for each renaming
5138 entity. Unfortunately, STABS currently does not support the definition
5139 of types that are local to a given lexical block, so all renamings types
5140 are emitted at library level. As a consequence, if an application
5141 contains two renaming entities using the same name, and a user tries to
5142 print the value of one of these entities, the result of the ada symbol
5143 lookup will also contain the wrong renaming type.
5144
5145 This function partially covers for this limitation by attempting to
5146 remove from the SYMS list renaming symbols that should be visible
5147 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5148 method with the current information available. The implementation
5149 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5150
5151 - When the user tries to print a rename in a function while there
5152 is another rename entity defined in a package: Normally, the
5153 rename in the function has precedence over the rename in the
5154 package, so the latter should be removed from the list. This is
5155 currently not the case.
5156
5157 - This function will incorrectly remove valid renames if
5158 the CURRENT_BLOCK corresponds to a function which symbol name
5159 has been changed by an "Export" pragma. As a consequence,
5160 the user will be unable to print such rename entities. */
5161
5162 static int
5163 remove_irrelevant_renamings (struct block_symbol *syms,
5164 int nsyms, const struct block *current_block)
5165 {
5166 struct symbol *current_function;
5167 const char *current_function_name;
5168 int i;
5169 int is_new_style_renaming;
5170
5171 /* If there is both a renaming foo___XR... encoded as a variable and
5172 a simple variable foo in the same block, discard the latter.
5173 First, zero out such symbols, then compress. */
5174 is_new_style_renaming = 0;
5175 for (i = 0; i < nsyms; i += 1)
5176 {
5177 struct symbol *sym = syms[i].symbol;
5178 const struct block *block = syms[i].block;
5179 const char *name;
5180 const char *suffix;
5181
5182 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5183 continue;
5184 name = SYMBOL_LINKAGE_NAME (sym);
5185 suffix = strstr (name, "___XR");
5186
5187 if (suffix != NULL)
5188 {
5189 int name_len = suffix - name;
5190 int j;
5191
5192 is_new_style_renaming = 1;
5193 for (j = 0; j < nsyms; j += 1)
5194 if (i != j && syms[j].symbol != NULL
5195 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5196 name_len) == 0
5197 && block == syms[j].block)
5198 syms[j].symbol = NULL;
5199 }
5200 }
5201 if (is_new_style_renaming)
5202 {
5203 int j, k;
5204
5205 for (j = k = 0; j < nsyms; j += 1)
5206 if (syms[j].symbol != NULL)
5207 {
5208 syms[k] = syms[j];
5209 k += 1;
5210 }
5211 return k;
5212 }
5213
5214 /* Extract the function name associated to CURRENT_BLOCK.
5215 Abort if unable to do so. */
5216
5217 if (current_block == NULL)
5218 return nsyms;
5219
5220 current_function = block_linkage_function (current_block);
5221 if (current_function == NULL)
5222 return nsyms;
5223
5224 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5225 if (current_function_name == NULL)
5226 return nsyms;
5227
5228 /* Check each of the symbols, and remove it from the list if it is
5229 a type corresponding to a renaming that is out of the scope of
5230 the current block. */
5231
5232 i = 0;
5233 while (i < nsyms)
5234 {
5235 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5236 == ADA_OBJECT_RENAMING
5237 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5238 {
5239 int j;
5240
5241 for (j = i + 1; j < nsyms; j += 1)
5242 syms[j - 1] = syms[j];
5243 nsyms -= 1;
5244 }
5245 else
5246 i += 1;
5247 }
5248
5249 return nsyms;
5250 }
5251
5252 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5253 whose name and domain match NAME and DOMAIN respectively.
5254 If no match was found, then extend the search to "enclosing"
5255 routines (in other words, if we're inside a nested function,
5256 search the symbols defined inside the enclosing functions).
5257 If WILD_MATCH_P is nonzero, perform the naming matching in
5258 "wild" mode (see function "wild_match" for more info).
5259
5260 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5261
5262 static void
5263 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5264 const struct block *block, domain_enum domain,
5265 int wild_match_p)
5266 {
5267 int block_depth = 0;
5268
5269 while (block != NULL)
5270 {
5271 block_depth += 1;
5272 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5273 wild_match_p);
5274
5275 /* If we found a non-function match, assume that's the one. */
5276 if (is_nonfunction (defns_collected (obstackp, 0),
5277 num_defns_collected (obstackp)))
5278 return;
5279
5280 block = BLOCK_SUPERBLOCK (block);
5281 }
5282
5283 /* If no luck so far, try to find NAME as a local symbol in some lexically
5284 enclosing subprogram. */
5285 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5286 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5287 }
5288
5289 /* An object of this type is used as the user_data argument when
5290 calling the map_matching_symbols method. */
5291
5292 struct match_data
5293 {
5294 struct objfile *objfile;
5295 struct obstack *obstackp;
5296 struct symbol *arg_sym;
5297 int found_sym;
5298 };
5299
5300 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5301 to a list of symbols. DATA0 is a pointer to a struct match_data *
5302 containing the obstack that collects the symbol list, the file that SYM
5303 must come from, a flag indicating whether a non-argument symbol has
5304 been found in the current block, and the last argument symbol
5305 passed in SYM within the current block (if any). When SYM is null,
5306 marking the end of a block, the argument symbol is added if no
5307 other has been found. */
5308
5309 static int
5310 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5311 {
5312 struct match_data *data = (struct match_data *) data0;
5313
5314 if (sym == NULL)
5315 {
5316 if (!data->found_sym && data->arg_sym != NULL)
5317 add_defn_to_vec (data->obstackp,
5318 fixup_symbol_section (data->arg_sym, data->objfile),
5319 block);
5320 data->found_sym = 0;
5321 data->arg_sym = NULL;
5322 }
5323 else
5324 {
5325 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5326 return 0;
5327 else if (SYMBOL_IS_ARGUMENT (sym))
5328 data->arg_sym = sym;
5329 else
5330 {
5331 data->found_sym = 1;
5332 add_defn_to_vec (data->obstackp,
5333 fixup_symbol_section (sym, data->objfile),
5334 block);
5335 }
5336 }
5337 return 0;
5338 }
5339
5340 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5341 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5342 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5343 function "wild_match" for more information). Return whether we found such
5344 symbols. */
5345
5346 static int
5347 ada_add_block_renamings (struct obstack *obstackp,
5348 const struct block *block,
5349 const char *name,
5350 domain_enum domain,
5351 int wild_match_p)
5352 {
5353 struct using_direct *renaming;
5354 int defns_mark = num_defns_collected (obstackp);
5355
5356 for (renaming = block_using (block);
5357 renaming != NULL;
5358 renaming = renaming->next)
5359 {
5360 const char *r_name;
5361 int name_match;
5362
5363 /* Avoid infinite recursions: skip this renaming if we are actually
5364 already traversing it.
5365
5366 Currently, symbol lookup in Ada don't use the namespace machinery from
5367 C++/Fortran support: skip namespace imports that use them. */
5368 if (renaming->searched
5369 || (renaming->import_src != NULL
5370 && renaming->import_src[0] != '\0')
5371 || (renaming->import_dest != NULL
5372 && renaming->import_dest[0] != '\0'))
5373 continue;
5374 renaming->searched = 1;
5375
5376 /* TODO: here, we perform another name-based symbol lookup, which can
5377 pull its own multiple overloads. In theory, we should be able to do
5378 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5379 not a simple name. But in order to do this, we would need to enhance
5380 the DWARF reader to associate a symbol to this renaming, instead of a
5381 name. So, for now, we do something simpler: re-use the C++/Fortran
5382 namespace machinery. */
5383 r_name = (renaming->alias != NULL
5384 ? renaming->alias
5385 : renaming->declaration);
5386 name_match
5387 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5388 if (name_match == 0)
5389 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5390 1, NULL);
5391 renaming->searched = 0;
5392 }
5393 return num_defns_collected (obstackp) != defns_mark;
5394 }
5395
5396 /* Implements compare_names, but only applying the comparision using
5397 the given CASING. */
5398
5399 static int
5400 compare_names_with_case (const char *string1, const char *string2,
5401 enum case_sensitivity casing)
5402 {
5403 while (*string1 != '\0' && *string2 != '\0')
5404 {
5405 char c1, c2;
5406
5407 if (isspace (*string1) || isspace (*string2))
5408 return strcmp_iw_ordered (string1, string2);
5409
5410 if (casing == case_sensitive_off)
5411 {
5412 c1 = tolower (*string1);
5413 c2 = tolower (*string2);
5414 }
5415 else
5416 {
5417 c1 = *string1;
5418 c2 = *string2;
5419 }
5420 if (c1 != c2)
5421 break;
5422
5423 string1 += 1;
5424 string2 += 1;
5425 }
5426
5427 switch (*string1)
5428 {
5429 case '(':
5430 return strcmp_iw_ordered (string1, string2);
5431 case '_':
5432 if (*string2 == '\0')
5433 {
5434 if (is_name_suffix (string1))
5435 return 0;
5436 else
5437 return 1;
5438 }
5439 /* FALLTHROUGH */
5440 default:
5441 if (*string2 == '(')
5442 return strcmp_iw_ordered (string1, string2);
5443 else
5444 {
5445 if (casing == case_sensitive_off)
5446 return tolower (*string1) - tolower (*string2);
5447 else
5448 return *string1 - *string2;
5449 }
5450 }
5451 }
5452
5453 /* Compare STRING1 to STRING2, with results as for strcmp.
5454 Compatible with strcmp_iw_ordered in that...
5455
5456 strcmp_iw_ordered (STRING1, STRING2) <= 0
5457
5458 ... implies...
5459
5460 compare_names (STRING1, STRING2) <= 0
5461
5462 (they may differ as to what symbols compare equal). */
5463
5464 static int
5465 compare_names (const char *string1, const char *string2)
5466 {
5467 int result;
5468
5469 /* Similar to what strcmp_iw_ordered does, we need to perform
5470 a case-insensitive comparison first, and only resort to
5471 a second, case-sensitive, comparison if the first one was
5472 not sufficient to differentiate the two strings. */
5473
5474 result = compare_names_with_case (string1, string2, case_sensitive_off);
5475 if (result == 0)
5476 result = compare_names_with_case (string1, string2, case_sensitive_on);
5477
5478 return result;
5479 }
5480
5481 /* Add to OBSTACKP all non-local symbols whose name and domain match
5482 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5483 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5484
5485 static void
5486 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5487 domain_enum domain, int global,
5488 int is_wild_match)
5489 {
5490 struct objfile *objfile;
5491 struct compunit_symtab *cu;
5492 struct match_data data;
5493
5494 memset (&data, 0, sizeof data);
5495 data.obstackp = obstackp;
5496
5497 ALL_OBJFILES (objfile)
5498 {
5499 data.objfile = objfile;
5500
5501 if (is_wild_match)
5502 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5503 aux_add_nonlocal_symbols, &data,
5504 wild_match, NULL);
5505 else
5506 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5507 aux_add_nonlocal_symbols, &data,
5508 full_match, compare_names);
5509
5510 ALL_OBJFILE_COMPUNITS (objfile, cu)
5511 {
5512 const struct block *global_block
5513 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5514
5515 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5516 is_wild_match))
5517 data.found_sym = 1;
5518 }
5519 }
5520
5521 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5522 {
5523 ALL_OBJFILES (objfile)
5524 {
5525 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5526 strcpy (name1, "_ada_");
5527 strcpy (name1 + sizeof ("_ada_") - 1, name);
5528 data.objfile = objfile;
5529 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5530 global,
5531 aux_add_nonlocal_symbols,
5532 &data,
5533 full_match, compare_names);
5534 }
5535 }
5536 }
5537
5538 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5539 non-zero, enclosing scope and in global scopes, returning the number of
5540 matches. Add these to OBSTACKP.
5541
5542 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5543 symbol match within the nest of blocks whose innermost member is BLOCK,
5544 is the one match returned (no other matches in that or
5545 enclosing blocks is returned). If there are any matches in or
5546 surrounding BLOCK, then these alone are returned.
5547
5548 Names prefixed with "standard__" are handled specially: "standard__"
5549 is first stripped off, and only static and global symbols are searched.
5550
5551 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5552 to lookup global symbols. */
5553
5554 static void
5555 ada_add_all_symbols (struct obstack *obstackp,
5556 const struct block *block,
5557 const char *name,
5558 domain_enum domain,
5559 int full_search,
5560 int *made_global_lookup_p)
5561 {
5562 struct symbol *sym;
5563 const int wild_match_p = should_use_wild_match (name);
5564
5565 if (made_global_lookup_p)
5566 *made_global_lookup_p = 0;
5567
5568 /* Special case: If the user specifies a symbol name inside package
5569 Standard, do a non-wild matching of the symbol name without
5570 the "standard__" prefix. This was primarily introduced in order
5571 to allow the user to specifically access the standard exceptions
5572 using, for instance, Standard.Constraint_Error when Constraint_Error
5573 is ambiguous (due to the user defining its own Constraint_Error
5574 entity inside its program). */
5575 if (startswith (name, "standard__"))
5576 {
5577 block = NULL;
5578 name = name + sizeof ("standard__") - 1;
5579 }
5580
5581 /* Check the non-global symbols. If we have ANY match, then we're done. */
5582
5583 if (block != NULL)
5584 {
5585 if (full_search)
5586 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5587 else
5588 {
5589 /* In the !full_search case we're are being called by
5590 ada_iterate_over_symbols, and we don't want to search
5591 superblocks. */
5592 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5593 wild_match_p);
5594 }
5595 if (num_defns_collected (obstackp) > 0 || !full_search)
5596 return;
5597 }
5598
5599 /* No non-global symbols found. Check our cache to see if we have
5600 already performed this search before. If we have, then return
5601 the same result. */
5602
5603 if (lookup_cached_symbol (name, domain, &sym, &block))
5604 {
5605 if (sym != NULL)
5606 add_defn_to_vec (obstackp, sym, block);
5607 return;
5608 }
5609
5610 if (made_global_lookup_p)
5611 *made_global_lookup_p = 1;
5612
5613 /* Search symbols from all global blocks. */
5614
5615 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5616
5617 /* Now add symbols from all per-file blocks if we've gotten no hits
5618 (not strictly correct, but perhaps better than an error). */
5619
5620 if (num_defns_collected (obstackp) == 0)
5621 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5622 }
5623
5624 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5625 non-zero, enclosing scope and in global scopes, returning the number of
5626 matches.
5627 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5628 indicating the symbols found and the blocks and symbol tables (if
5629 any) in which they were found. This vector is transient---good only to
5630 the next call of ada_lookup_symbol_list.
5631
5632 When full_search is non-zero, any non-function/non-enumeral
5633 symbol match within the nest of blocks whose innermost member is BLOCK,
5634 is the one match returned (no other matches in that or
5635 enclosing blocks is returned). If there are any matches in or
5636 surrounding BLOCK, then these alone are returned.
5637
5638 Names prefixed with "standard__" are handled specially: "standard__"
5639 is first stripped off, and only static and global symbols are searched. */
5640
5641 static int
5642 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5643 domain_enum domain,
5644 struct block_symbol **results,
5645 int full_search)
5646 {
5647 const int wild_match_p = should_use_wild_match (name);
5648 int syms_from_global_search;
5649 int ndefns;
5650
5651 obstack_free (&symbol_list_obstack, NULL);
5652 obstack_init (&symbol_list_obstack);
5653 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5654 full_search, &syms_from_global_search);
5655
5656 ndefns = num_defns_collected (&symbol_list_obstack);
5657 *results = defns_collected (&symbol_list_obstack, 1);
5658
5659 ndefns = remove_extra_symbols (*results, ndefns);
5660
5661 if (ndefns == 0 && full_search && syms_from_global_search)
5662 cache_symbol (name, domain, NULL, NULL);
5663
5664 if (ndefns == 1 && full_search && syms_from_global_search)
5665 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5666
5667 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5668 return ndefns;
5669 }
5670
5671 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5672 in global scopes, returning the number of matches, and setting *RESULTS
5673 to a vector of (SYM,BLOCK) tuples.
5674 See ada_lookup_symbol_list_worker for further details. */
5675
5676 int
5677 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5678 domain_enum domain, struct block_symbol **results)
5679 {
5680 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5681 }
5682
5683 /* Implementation of the la_iterate_over_symbols method. */
5684
5685 static void
5686 ada_iterate_over_symbols (const struct block *block,
5687 const char *name, domain_enum domain,
5688 symbol_found_callback_ftype *callback,
5689 void *data)
5690 {
5691 int ndefs, i;
5692 struct block_symbol *results;
5693
5694 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5695 for (i = 0; i < ndefs; ++i)
5696 {
5697 if (! (*callback) (results[i].symbol, data))
5698 break;
5699 }
5700 }
5701
5702 /* If NAME is the name of an entity, return a string that should
5703 be used to look that entity up in Ada units. This string should
5704 be deallocated after use using xfree.
5705
5706 NAME can have any form that the "break" or "print" commands might
5707 recognize. In other words, it does not have to be the "natural"
5708 name, or the "encoded" name. */
5709
5710 char *
5711 ada_name_for_lookup (const char *name)
5712 {
5713 char *canon;
5714 int nlen = strlen (name);
5715
5716 if (name[0] == '<' && name[nlen - 1] == '>')
5717 {
5718 canon = xmalloc (nlen - 1);
5719 memcpy (canon, name + 1, nlen - 2);
5720 canon[nlen - 2] = '\0';
5721 }
5722 else
5723 canon = xstrdup (ada_encode (ada_fold_name (name)));
5724 return canon;
5725 }
5726
5727 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5728 to 1, but choosing the first symbol found if there are multiple
5729 choices.
5730
5731 The result is stored in *INFO, which must be non-NULL.
5732 If no match is found, INFO->SYM is set to NULL. */
5733
5734 void
5735 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5736 domain_enum domain,
5737 struct block_symbol *info)
5738 {
5739 struct block_symbol *candidates;
5740 int n_candidates;
5741
5742 gdb_assert (info != NULL);
5743 memset (info, 0, sizeof (struct block_symbol));
5744
5745 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5746 if (n_candidates == 0)
5747 return;
5748
5749 *info = candidates[0];
5750 info->symbol = fixup_symbol_section (info->symbol, NULL);
5751 }
5752
5753 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5754 scope and in global scopes, or NULL if none. NAME is folded and
5755 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5756 choosing the first symbol if there are multiple choices.
5757 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5758
5759 struct block_symbol
5760 ada_lookup_symbol (const char *name, const struct block *block0,
5761 domain_enum domain, int *is_a_field_of_this)
5762 {
5763 struct block_symbol info;
5764
5765 if (is_a_field_of_this != NULL)
5766 *is_a_field_of_this = 0;
5767
5768 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5769 block0, domain, &info);
5770 return info;
5771 }
5772
5773 static struct block_symbol
5774 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5775 const char *name,
5776 const struct block *block,
5777 const domain_enum domain)
5778 {
5779 struct block_symbol sym;
5780
5781 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5782 if (sym.symbol != NULL)
5783 return sym;
5784
5785 /* If we haven't found a match at this point, try the primitive
5786 types. In other languages, this search is performed before
5787 searching for global symbols in order to short-circuit that
5788 global-symbol search if it happens that the name corresponds
5789 to a primitive type. But we cannot do the same in Ada, because
5790 it is perfectly legitimate for a program to declare a type which
5791 has the same name as a standard type. If looking up a type in
5792 that situation, we have traditionally ignored the primitive type
5793 in favor of user-defined types. This is why, unlike most other
5794 languages, we search the primitive types this late and only after
5795 having searched the global symbols without success. */
5796
5797 if (domain == VAR_DOMAIN)
5798 {
5799 struct gdbarch *gdbarch;
5800
5801 if (block == NULL)
5802 gdbarch = target_gdbarch ();
5803 else
5804 gdbarch = block_gdbarch (block);
5805 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5806 if (sym.symbol != NULL)
5807 return sym;
5808 }
5809
5810 return (struct block_symbol) {NULL, NULL};
5811 }
5812
5813
5814 /* True iff STR is a possible encoded suffix of a normal Ada name
5815 that is to be ignored for matching purposes. Suffixes of parallel
5816 names (e.g., XVE) are not included here. Currently, the possible suffixes
5817 are given by any of the regular expressions:
5818
5819 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5820 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5821 TKB [subprogram suffix for task bodies]
5822 _E[0-9]+[bs]$ [protected object entry suffixes]
5823 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5824
5825 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5826 match is performed. This sequence is used to differentiate homonyms,
5827 is an optional part of a valid name suffix. */
5828
5829 static int
5830 is_name_suffix (const char *str)
5831 {
5832 int k;
5833 const char *matching;
5834 const int len = strlen (str);
5835
5836 /* Skip optional leading __[0-9]+. */
5837
5838 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5839 {
5840 str += 3;
5841 while (isdigit (str[0]))
5842 str += 1;
5843 }
5844
5845 /* [.$][0-9]+ */
5846
5847 if (str[0] == '.' || str[0] == '$')
5848 {
5849 matching = str + 1;
5850 while (isdigit (matching[0]))
5851 matching += 1;
5852 if (matching[0] == '\0')
5853 return 1;
5854 }
5855
5856 /* ___[0-9]+ */
5857
5858 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5859 {
5860 matching = str + 3;
5861 while (isdigit (matching[0]))
5862 matching += 1;
5863 if (matching[0] == '\0')
5864 return 1;
5865 }
5866
5867 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5868
5869 if (strcmp (str, "TKB") == 0)
5870 return 1;
5871
5872 #if 0
5873 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5874 with a N at the end. Unfortunately, the compiler uses the same
5875 convention for other internal types it creates. So treating
5876 all entity names that end with an "N" as a name suffix causes
5877 some regressions. For instance, consider the case of an enumerated
5878 type. To support the 'Image attribute, it creates an array whose
5879 name ends with N.
5880 Having a single character like this as a suffix carrying some
5881 information is a bit risky. Perhaps we should change the encoding
5882 to be something like "_N" instead. In the meantime, do not do
5883 the following check. */
5884 /* Protected Object Subprograms */
5885 if (len == 1 && str [0] == 'N')
5886 return 1;
5887 #endif
5888
5889 /* _E[0-9]+[bs]$ */
5890 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5891 {
5892 matching = str + 3;
5893 while (isdigit (matching[0]))
5894 matching += 1;
5895 if ((matching[0] == 'b' || matching[0] == 's')
5896 && matching [1] == '\0')
5897 return 1;
5898 }
5899
5900 /* ??? We should not modify STR directly, as we are doing below. This
5901 is fine in this case, but may become problematic later if we find
5902 that this alternative did not work, and want to try matching
5903 another one from the begining of STR. Since we modified it, we
5904 won't be able to find the begining of the string anymore! */
5905 if (str[0] == 'X')
5906 {
5907 str += 1;
5908 while (str[0] != '_' && str[0] != '\0')
5909 {
5910 if (str[0] != 'n' && str[0] != 'b')
5911 return 0;
5912 str += 1;
5913 }
5914 }
5915
5916 if (str[0] == '\000')
5917 return 1;
5918
5919 if (str[0] == '_')
5920 {
5921 if (str[1] != '_' || str[2] == '\000')
5922 return 0;
5923 if (str[2] == '_')
5924 {
5925 if (strcmp (str + 3, "JM") == 0)
5926 return 1;
5927 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5928 the LJM suffix in favor of the JM one. But we will
5929 still accept LJM as a valid suffix for a reasonable
5930 amount of time, just to allow ourselves to debug programs
5931 compiled using an older version of GNAT. */
5932 if (strcmp (str + 3, "LJM") == 0)
5933 return 1;
5934 if (str[3] != 'X')
5935 return 0;
5936 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5937 || str[4] == 'U' || str[4] == 'P')
5938 return 1;
5939 if (str[4] == 'R' && str[5] != 'T')
5940 return 1;
5941 return 0;
5942 }
5943 if (!isdigit (str[2]))
5944 return 0;
5945 for (k = 3; str[k] != '\0'; k += 1)
5946 if (!isdigit (str[k]) && str[k] != '_')
5947 return 0;
5948 return 1;
5949 }
5950 if (str[0] == '$' && isdigit (str[1]))
5951 {
5952 for (k = 2; str[k] != '\0'; k += 1)
5953 if (!isdigit (str[k]) && str[k] != '_')
5954 return 0;
5955 return 1;
5956 }
5957 return 0;
5958 }
5959
5960 /* Return non-zero if the string starting at NAME and ending before
5961 NAME_END contains no capital letters. */
5962
5963 static int
5964 is_valid_name_for_wild_match (const char *name0)
5965 {
5966 const char *decoded_name = ada_decode (name0);
5967 int i;
5968
5969 /* If the decoded name starts with an angle bracket, it means that
5970 NAME0 does not follow the GNAT encoding format. It should then
5971 not be allowed as a possible wild match. */
5972 if (decoded_name[0] == '<')
5973 return 0;
5974
5975 for (i=0; decoded_name[i] != '\0'; i++)
5976 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5977 return 0;
5978
5979 return 1;
5980 }
5981
5982 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5983 that could start a simple name. Assumes that *NAMEP points into
5984 the string beginning at NAME0. */
5985
5986 static int
5987 advance_wild_match (const char **namep, const char *name0, int target0)
5988 {
5989 const char *name = *namep;
5990
5991 while (1)
5992 {
5993 int t0, t1;
5994
5995 t0 = *name;
5996 if (t0 == '_')
5997 {
5998 t1 = name[1];
5999 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6000 {
6001 name += 1;
6002 if (name == name0 + 5 && startswith (name0, "_ada"))
6003 break;
6004 else
6005 name += 1;
6006 }
6007 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6008 || name[2] == target0))
6009 {
6010 name += 2;
6011 break;
6012 }
6013 else
6014 return 0;
6015 }
6016 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6017 name += 1;
6018 else
6019 return 0;
6020 }
6021
6022 *namep = name;
6023 return 1;
6024 }
6025
6026 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6027 informational suffixes of NAME (i.e., for which is_name_suffix is
6028 true). Assumes that PATN is a lower-cased Ada simple name. */
6029
6030 static int
6031 wild_match (const char *name, const char *patn)
6032 {
6033 const char *p;
6034 const char *name0 = name;
6035
6036 while (1)
6037 {
6038 const char *match = name;
6039
6040 if (*name == *patn)
6041 {
6042 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6043 if (*p != *name)
6044 break;
6045 if (*p == '\0' && is_name_suffix (name))
6046 return match != name0 && !is_valid_name_for_wild_match (name0);
6047
6048 if (name[-1] == '_')
6049 name -= 1;
6050 }
6051 if (!advance_wild_match (&name, name0, *patn))
6052 return 1;
6053 }
6054 }
6055
6056 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6057 informational suffix. */
6058
6059 static int
6060 full_match (const char *sym_name, const char *search_name)
6061 {
6062 return !match_name (sym_name, search_name, 0);
6063 }
6064
6065
6066 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6067 vector *defn_symbols, updating the list of symbols in OBSTACKP
6068 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6069 OBJFILE is the section containing BLOCK. */
6070
6071 static void
6072 ada_add_block_symbols (struct obstack *obstackp,
6073 const struct block *block, const char *name,
6074 domain_enum domain, struct objfile *objfile,
6075 int wild)
6076 {
6077 struct block_iterator iter;
6078 int name_len = strlen (name);
6079 /* A matching argument symbol, if any. */
6080 struct symbol *arg_sym;
6081 /* Set true when we find a matching non-argument symbol. */
6082 int found_sym;
6083 struct symbol *sym;
6084
6085 arg_sym = NULL;
6086 found_sym = 0;
6087 if (wild)
6088 {
6089 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6090 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6091 {
6092 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6093 SYMBOL_DOMAIN (sym), domain)
6094 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6095 {
6096 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6097 continue;
6098 else if (SYMBOL_IS_ARGUMENT (sym))
6099 arg_sym = sym;
6100 else
6101 {
6102 found_sym = 1;
6103 add_defn_to_vec (obstackp,
6104 fixup_symbol_section (sym, objfile),
6105 block);
6106 }
6107 }
6108 }
6109 }
6110 else
6111 {
6112 for (sym = block_iter_match_first (block, name, full_match, &iter);
6113 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6114 {
6115 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6116 SYMBOL_DOMAIN (sym), domain))
6117 {
6118 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6119 {
6120 if (SYMBOL_IS_ARGUMENT (sym))
6121 arg_sym = sym;
6122 else
6123 {
6124 found_sym = 1;
6125 add_defn_to_vec (obstackp,
6126 fixup_symbol_section (sym, objfile),
6127 block);
6128 }
6129 }
6130 }
6131 }
6132 }
6133
6134 /* Handle renamings. */
6135
6136 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6137 found_sym = 1;
6138
6139 if (!found_sym && arg_sym != NULL)
6140 {
6141 add_defn_to_vec (obstackp,
6142 fixup_symbol_section (arg_sym, objfile),
6143 block);
6144 }
6145
6146 if (!wild)
6147 {
6148 arg_sym = NULL;
6149 found_sym = 0;
6150
6151 ALL_BLOCK_SYMBOLS (block, iter, sym)
6152 {
6153 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6154 SYMBOL_DOMAIN (sym), domain))
6155 {
6156 int cmp;
6157
6158 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6159 if (cmp == 0)
6160 {
6161 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6162 if (cmp == 0)
6163 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6164 name_len);
6165 }
6166
6167 if (cmp == 0
6168 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6169 {
6170 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6171 {
6172 if (SYMBOL_IS_ARGUMENT (sym))
6173 arg_sym = sym;
6174 else
6175 {
6176 found_sym = 1;
6177 add_defn_to_vec (obstackp,
6178 fixup_symbol_section (sym, objfile),
6179 block);
6180 }
6181 }
6182 }
6183 }
6184 }
6185
6186 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6187 They aren't parameters, right? */
6188 if (!found_sym && arg_sym != NULL)
6189 {
6190 add_defn_to_vec (obstackp,
6191 fixup_symbol_section (arg_sym, objfile),
6192 block);
6193 }
6194 }
6195 }
6196 \f
6197
6198 /* Symbol Completion */
6199
6200 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6201 name in a form that's appropriate for the completion. The result
6202 does not need to be deallocated, but is only good until the next call.
6203
6204 TEXT_LEN is equal to the length of TEXT.
6205 Perform a wild match if WILD_MATCH_P is set.
6206 ENCODED_P should be set if TEXT represents the start of a symbol name
6207 in its encoded form. */
6208
6209 static const char *
6210 symbol_completion_match (const char *sym_name,
6211 const char *text, int text_len,
6212 int wild_match_p, int encoded_p)
6213 {
6214 const int verbatim_match = (text[0] == '<');
6215 int match = 0;
6216
6217 if (verbatim_match)
6218 {
6219 /* Strip the leading angle bracket. */
6220 text = text + 1;
6221 text_len--;
6222 }
6223
6224 /* First, test against the fully qualified name of the symbol. */
6225
6226 if (strncmp (sym_name, text, text_len) == 0)
6227 match = 1;
6228
6229 if (match && !encoded_p)
6230 {
6231 /* One needed check before declaring a positive match is to verify
6232 that iff we are doing a verbatim match, the decoded version
6233 of the symbol name starts with '<'. Otherwise, this symbol name
6234 is not a suitable completion. */
6235 const char *sym_name_copy = sym_name;
6236 int has_angle_bracket;
6237
6238 sym_name = ada_decode (sym_name);
6239 has_angle_bracket = (sym_name[0] == '<');
6240 match = (has_angle_bracket == verbatim_match);
6241 sym_name = sym_name_copy;
6242 }
6243
6244 if (match && !verbatim_match)
6245 {
6246 /* When doing non-verbatim match, another check that needs to
6247 be done is to verify that the potentially matching symbol name
6248 does not include capital letters, because the ada-mode would
6249 not be able to understand these symbol names without the
6250 angle bracket notation. */
6251 const char *tmp;
6252
6253 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6254 if (*tmp != '\0')
6255 match = 0;
6256 }
6257
6258 /* Second: Try wild matching... */
6259
6260 if (!match && wild_match_p)
6261 {
6262 /* Since we are doing wild matching, this means that TEXT
6263 may represent an unqualified symbol name. We therefore must
6264 also compare TEXT against the unqualified name of the symbol. */
6265 sym_name = ada_unqualified_name (ada_decode (sym_name));
6266
6267 if (strncmp (sym_name, text, text_len) == 0)
6268 match = 1;
6269 }
6270
6271 /* Finally: If we found a mach, prepare the result to return. */
6272
6273 if (!match)
6274 return NULL;
6275
6276 if (verbatim_match)
6277 sym_name = add_angle_brackets (sym_name);
6278
6279 if (!encoded_p)
6280 sym_name = ada_decode (sym_name);
6281
6282 return sym_name;
6283 }
6284
6285 /* A companion function to ada_make_symbol_completion_list().
6286 Check if SYM_NAME represents a symbol which name would be suitable
6287 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6288 it is appended at the end of the given string vector SV.
6289
6290 ORIG_TEXT is the string original string from the user command
6291 that needs to be completed. WORD is the entire command on which
6292 completion should be performed. These two parameters are used to
6293 determine which part of the symbol name should be added to the
6294 completion vector.
6295 if WILD_MATCH_P is set, then wild matching is performed.
6296 ENCODED_P should be set if TEXT represents a symbol name in its
6297 encoded formed (in which case the completion should also be
6298 encoded). */
6299
6300 static void
6301 symbol_completion_add (VEC(char_ptr) **sv,
6302 const char *sym_name,
6303 const char *text, int text_len,
6304 const char *orig_text, const char *word,
6305 int wild_match_p, int encoded_p)
6306 {
6307 const char *match = symbol_completion_match (sym_name, text, text_len,
6308 wild_match_p, encoded_p);
6309 char *completion;
6310
6311 if (match == NULL)
6312 return;
6313
6314 /* We found a match, so add the appropriate completion to the given
6315 string vector. */
6316
6317 if (word == orig_text)
6318 {
6319 completion = xmalloc (strlen (match) + 5);
6320 strcpy (completion, match);
6321 }
6322 else if (word > orig_text)
6323 {
6324 /* Return some portion of sym_name. */
6325 completion = xmalloc (strlen (match) + 5);
6326 strcpy (completion, match + (word - orig_text));
6327 }
6328 else
6329 {
6330 /* Return some of ORIG_TEXT plus sym_name. */
6331 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6332 strncpy (completion, word, orig_text - word);
6333 completion[orig_text - word] = '\0';
6334 strcat (completion, match);
6335 }
6336
6337 VEC_safe_push (char_ptr, *sv, completion);
6338 }
6339
6340 /* An object of this type is passed as the user_data argument to the
6341 expand_symtabs_matching method. */
6342 struct add_partial_datum
6343 {
6344 VEC(char_ptr) **completions;
6345 const char *text;
6346 int text_len;
6347 const char *text0;
6348 const char *word;
6349 int wild_match;
6350 int encoded;
6351 };
6352
6353 /* A callback for expand_symtabs_matching. */
6354
6355 static int
6356 ada_complete_symbol_matcher (const char *name, void *user_data)
6357 {
6358 struct add_partial_datum *data = user_data;
6359
6360 return symbol_completion_match (name, data->text, data->text_len,
6361 data->wild_match, data->encoded) != NULL;
6362 }
6363
6364 /* Return a list of possible symbol names completing TEXT0. WORD is
6365 the entire command on which completion is made. */
6366
6367 static VEC (char_ptr) *
6368 ada_make_symbol_completion_list (const char *text0, const char *word,
6369 enum type_code code)
6370 {
6371 char *text;
6372 int text_len;
6373 int wild_match_p;
6374 int encoded_p;
6375 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6376 struct symbol *sym;
6377 struct compunit_symtab *s;
6378 struct minimal_symbol *msymbol;
6379 struct objfile *objfile;
6380 const struct block *b, *surrounding_static_block = 0;
6381 int i;
6382 struct block_iterator iter;
6383 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6384
6385 gdb_assert (code == TYPE_CODE_UNDEF);
6386
6387 if (text0[0] == '<')
6388 {
6389 text = xstrdup (text0);
6390 make_cleanup (xfree, text);
6391 text_len = strlen (text);
6392 wild_match_p = 0;
6393 encoded_p = 1;
6394 }
6395 else
6396 {
6397 text = xstrdup (ada_encode (text0));
6398 make_cleanup (xfree, text);
6399 text_len = strlen (text);
6400 for (i = 0; i < text_len; i++)
6401 text[i] = tolower (text[i]);
6402
6403 encoded_p = (strstr (text0, "__") != NULL);
6404 /* If the name contains a ".", then the user is entering a fully
6405 qualified entity name, and the match must not be done in wild
6406 mode. Similarly, if the user wants to complete what looks like
6407 an encoded name, the match must not be done in wild mode. */
6408 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6409 }
6410
6411 /* First, look at the partial symtab symbols. */
6412 {
6413 struct add_partial_datum data;
6414
6415 data.completions = &completions;
6416 data.text = text;
6417 data.text_len = text_len;
6418 data.text0 = text0;
6419 data.word = word;
6420 data.wild_match = wild_match_p;
6421 data.encoded = encoded_p;
6422 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6423 ALL_DOMAIN, &data);
6424 }
6425
6426 /* At this point scan through the misc symbol vectors and add each
6427 symbol you find to the list. Eventually we want to ignore
6428 anything that isn't a text symbol (everything else will be
6429 handled by the psymtab code above). */
6430
6431 ALL_MSYMBOLS (objfile, msymbol)
6432 {
6433 QUIT;
6434 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6435 text, text_len, text0, word, wild_match_p,
6436 encoded_p);
6437 }
6438
6439 /* Search upwards from currently selected frame (so that we can
6440 complete on local vars. */
6441
6442 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6443 {
6444 if (!BLOCK_SUPERBLOCK (b))
6445 surrounding_static_block = b; /* For elmin of dups */
6446
6447 ALL_BLOCK_SYMBOLS (b, iter, sym)
6448 {
6449 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6450 text, text_len, text0, word,
6451 wild_match_p, encoded_p);
6452 }
6453 }
6454
6455 /* Go through the symtabs and check the externs and statics for
6456 symbols which match. */
6457
6458 ALL_COMPUNITS (objfile, s)
6459 {
6460 QUIT;
6461 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6462 ALL_BLOCK_SYMBOLS (b, iter, sym)
6463 {
6464 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6465 text, text_len, text0, word,
6466 wild_match_p, encoded_p);
6467 }
6468 }
6469
6470 ALL_COMPUNITS (objfile, s)
6471 {
6472 QUIT;
6473 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6474 /* Don't do this block twice. */
6475 if (b == surrounding_static_block)
6476 continue;
6477 ALL_BLOCK_SYMBOLS (b, iter, sym)
6478 {
6479 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6480 text, text_len, text0, word,
6481 wild_match_p, encoded_p);
6482 }
6483 }
6484
6485 do_cleanups (old_chain);
6486 return completions;
6487 }
6488
6489 /* Field Access */
6490
6491 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6492 for tagged types. */
6493
6494 static int
6495 ada_is_dispatch_table_ptr_type (struct type *type)
6496 {
6497 const char *name;
6498
6499 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6500 return 0;
6501
6502 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6503 if (name == NULL)
6504 return 0;
6505
6506 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6507 }
6508
6509 /* Return non-zero if TYPE is an interface tag. */
6510
6511 static int
6512 ada_is_interface_tag (struct type *type)
6513 {
6514 const char *name = TYPE_NAME (type);
6515
6516 if (name == NULL)
6517 return 0;
6518
6519 return (strcmp (name, "ada__tags__interface_tag") == 0);
6520 }
6521
6522 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6523 to be invisible to users. */
6524
6525 int
6526 ada_is_ignored_field (struct type *type, int field_num)
6527 {
6528 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6529 return 1;
6530
6531 /* Check the name of that field. */
6532 {
6533 const char *name = TYPE_FIELD_NAME (type, field_num);
6534
6535 /* Anonymous field names should not be printed.
6536 brobecker/2007-02-20: I don't think this can actually happen
6537 but we don't want to print the value of annonymous fields anyway. */
6538 if (name == NULL)
6539 return 1;
6540
6541 /* Normally, fields whose name start with an underscore ("_")
6542 are fields that have been internally generated by the compiler,
6543 and thus should not be printed. The "_parent" field is special,
6544 however: This is a field internally generated by the compiler
6545 for tagged types, and it contains the components inherited from
6546 the parent type. This field should not be printed as is, but
6547 should not be ignored either. */
6548 if (name[0] == '_' && !startswith (name, "_parent"))
6549 return 1;
6550 }
6551
6552 /* If this is the dispatch table of a tagged type or an interface tag,
6553 then ignore. */
6554 if (ada_is_tagged_type (type, 1)
6555 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6556 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6557 return 1;
6558
6559 /* Not a special field, so it should not be ignored. */
6560 return 0;
6561 }
6562
6563 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6564 pointer or reference type whose ultimate target has a tag field. */
6565
6566 int
6567 ada_is_tagged_type (struct type *type, int refok)
6568 {
6569 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6570 }
6571
6572 /* True iff TYPE represents the type of X'Tag */
6573
6574 int
6575 ada_is_tag_type (struct type *type)
6576 {
6577 type = ada_check_typedef (type);
6578
6579 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6580 return 0;
6581 else
6582 {
6583 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6584
6585 return (name != NULL
6586 && strcmp (name, "ada__tags__dispatch_table") == 0);
6587 }
6588 }
6589
6590 /* The type of the tag on VAL. */
6591
6592 struct type *
6593 ada_tag_type (struct value *val)
6594 {
6595 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6596 }
6597
6598 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6599 retired at Ada 05). */
6600
6601 static int
6602 is_ada95_tag (struct value *tag)
6603 {
6604 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6605 }
6606
6607 /* The value of the tag on VAL. */
6608
6609 struct value *
6610 ada_value_tag (struct value *val)
6611 {
6612 return ada_value_struct_elt (val, "_tag", 0);
6613 }
6614
6615 /* The value of the tag on the object of type TYPE whose contents are
6616 saved at VALADDR, if it is non-null, or is at memory address
6617 ADDRESS. */
6618
6619 static struct value *
6620 value_tag_from_contents_and_address (struct type *type,
6621 const gdb_byte *valaddr,
6622 CORE_ADDR address)
6623 {
6624 int tag_byte_offset;
6625 struct type *tag_type;
6626
6627 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6628 NULL, NULL, NULL))
6629 {
6630 const gdb_byte *valaddr1 = ((valaddr == NULL)
6631 ? NULL
6632 : valaddr + tag_byte_offset);
6633 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6634
6635 return value_from_contents_and_address (tag_type, valaddr1, address1);
6636 }
6637 return NULL;
6638 }
6639
6640 static struct type *
6641 type_from_tag (struct value *tag)
6642 {
6643 const char *type_name = ada_tag_name (tag);
6644
6645 if (type_name != NULL)
6646 return ada_find_any_type (ada_encode (type_name));
6647 return NULL;
6648 }
6649
6650 /* Given a value OBJ of a tagged type, return a value of this
6651 type at the base address of the object. The base address, as
6652 defined in Ada.Tags, it is the address of the primary tag of
6653 the object, and therefore where the field values of its full
6654 view can be fetched. */
6655
6656 struct value *
6657 ada_tag_value_at_base_address (struct value *obj)
6658 {
6659 struct value *val;
6660 LONGEST offset_to_top = 0;
6661 struct type *ptr_type, *obj_type;
6662 struct value *tag;
6663 CORE_ADDR base_address;
6664
6665 obj_type = value_type (obj);
6666
6667 /* It is the responsability of the caller to deref pointers. */
6668
6669 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6670 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6671 return obj;
6672
6673 tag = ada_value_tag (obj);
6674 if (!tag)
6675 return obj;
6676
6677 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6678
6679 if (is_ada95_tag (tag))
6680 return obj;
6681
6682 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6683 ptr_type = lookup_pointer_type (ptr_type);
6684 val = value_cast (ptr_type, tag);
6685 if (!val)
6686 return obj;
6687
6688 /* It is perfectly possible that an exception be raised while
6689 trying to determine the base address, just like for the tag;
6690 see ada_tag_name for more details. We do not print the error
6691 message for the same reason. */
6692
6693 TRY
6694 {
6695 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6696 }
6697
6698 CATCH (e, RETURN_MASK_ERROR)
6699 {
6700 return obj;
6701 }
6702 END_CATCH
6703
6704 /* If offset is null, nothing to do. */
6705
6706 if (offset_to_top == 0)
6707 return obj;
6708
6709 /* -1 is a special case in Ada.Tags; however, what should be done
6710 is not quite clear from the documentation. So do nothing for
6711 now. */
6712
6713 if (offset_to_top == -1)
6714 return obj;
6715
6716 base_address = value_address (obj) - offset_to_top;
6717 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6718
6719 /* Make sure that we have a proper tag at the new address.
6720 Otherwise, offset_to_top is bogus (which can happen when
6721 the object is not initialized yet). */
6722
6723 if (!tag)
6724 return obj;
6725
6726 obj_type = type_from_tag (tag);
6727
6728 if (!obj_type)
6729 return obj;
6730
6731 return value_from_contents_and_address (obj_type, NULL, base_address);
6732 }
6733
6734 /* Return the "ada__tags__type_specific_data" type. */
6735
6736 static struct type *
6737 ada_get_tsd_type (struct inferior *inf)
6738 {
6739 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6740
6741 if (data->tsd_type == 0)
6742 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6743 return data->tsd_type;
6744 }
6745
6746 /* Return the TSD (type-specific data) associated to the given TAG.
6747 TAG is assumed to be the tag of a tagged-type entity.
6748
6749 May return NULL if we are unable to get the TSD. */
6750
6751 static struct value *
6752 ada_get_tsd_from_tag (struct value *tag)
6753 {
6754 struct value *val;
6755 struct type *type;
6756
6757 /* First option: The TSD is simply stored as a field of our TAG.
6758 Only older versions of GNAT would use this format, but we have
6759 to test it first, because there are no visible markers for
6760 the current approach except the absence of that field. */
6761
6762 val = ada_value_struct_elt (tag, "tsd", 1);
6763 if (val)
6764 return val;
6765
6766 /* Try the second representation for the dispatch table (in which
6767 there is no explicit 'tsd' field in the referent of the tag pointer,
6768 and instead the tsd pointer is stored just before the dispatch
6769 table. */
6770
6771 type = ada_get_tsd_type (current_inferior());
6772 if (type == NULL)
6773 return NULL;
6774 type = lookup_pointer_type (lookup_pointer_type (type));
6775 val = value_cast (type, tag);
6776 if (val == NULL)
6777 return NULL;
6778 return value_ind (value_ptradd (val, -1));
6779 }
6780
6781 /* Given the TSD of a tag (type-specific data), return a string
6782 containing the name of the associated type.
6783
6784 The returned value is good until the next call. May return NULL
6785 if we are unable to determine the tag name. */
6786
6787 static char *
6788 ada_tag_name_from_tsd (struct value *tsd)
6789 {
6790 static char name[1024];
6791 char *p;
6792 struct value *val;
6793
6794 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6795 if (val == NULL)
6796 return NULL;
6797 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6798 for (p = name; *p != '\0'; p += 1)
6799 if (isalpha (*p))
6800 *p = tolower (*p);
6801 return name;
6802 }
6803
6804 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6805 a C string.
6806
6807 Return NULL if the TAG is not an Ada tag, or if we were unable to
6808 determine the name of that tag. The result is good until the next
6809 call. */
6810
6811 const char *
6812 ada_tag_name (struct value *tag)
6813 {
6814 char *name = NULL;
6815
6816 if (!ada_is_tag_type (value_type (tag)))
6817 return NULL;
6818
6819 /* It is perfectly possible that an exception be raised while trying
6820 to determine the TAG's name, even under normal circumstances:
6821 The associated variable may be uninitialized or corrupted, for
6822 instance. We do not let any exception propagate past this point.
6823 instead we return NULL.
6824
6825 We also do not print the error message either (which often is very
6826 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6827 the caller print a more meaningful message if necessary. */
6828 TRY
6829 {
6830 struct value *tsd = ada_get_tsd_from_tag (tag);
6831
6832 if (tsd != NULL)
6833 name = ada_tag_name_from_tsd (tsd);
6834 }
6835 CATCH (e, RETURN_MASK_ERROR)
6836 {
6837 }
6838 END_CATCH
6839
6840 return name;
6841 }
6842
6843 /* The parent type of TYPE, or NULL if none. */
6844
6845 struct type *
6846 ada_parent_type (struct type *type)
6847 {
6848 int i;
6849
6850 type = ada_check_typedef (type);
6851
6852 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6853 return NULL;
6854
6855 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6856 if (ada_is_parent_field (type, i))
6857 {
6858 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6859
6860 /* If the _parent field is a pointer, then dereference it. */
6861 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6862 parent_type = TYPE_TARGET_TYPE (parent_type);
6863 /* If there is a parallel XVS type, get the actual base type. */
6864 parent_type = ada_get_base_type (parent_type);
6865
6866 return ada_check_typedef (parent_type);
6867 }
6868
6869 return NULL;
6870 }
6871
6872 /* True iff field number FIELD_NUM of structure type TYPE contains the
6873 parent-type (inherited) fields of a derived type. Assumes TYPE is
6874 a structure type with at least FIELD_NUM+1 fields. */
6875
6876 int
6877 ada_is_parent_field (struct type *type, int field_num)
6878 {
6879 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6880
6881 return (name != NULL
6882 && (startswith (name, "PARENT")
6883 || startswith (name, "_parent")));
6884 }
6885
6886 /* True iff field number FIELD_NUM of structure type TYPE is a
6887 transparent wrapper field (which should be silently traversed when doing
6888 field selection and flattened when printing). Assumes TYPE is a
6889 structure type with at least FIELD_NUM+1 fields. Such fields are always
6890 structures. */
6891
6892 int
6893 ada_is_wrapper_field (struct type *type, int field_num)
6894 {
6895 const char *name = TYPE_FIELD_NAME (type, field_num);
6896
6897 return (name != NULL
6898 && (startswith (name, "PARENT")
6899 || strcmp (name, "REP") == 0
6900 || startswith (name, "_parent")
6901 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6902 }
6903
6904 /* True iff field number FIELD_NUM of structure or union type TYPE
6905 is a variant wrapper. Assumes TYPE is a structure type with at least
6906 FIELD_NUM+1 fields. */
6907
6908 int
6909 ada_is_variant_part (struct type *type, int field_num)
6910 {
6911 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6912
6913 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6914 || (is_dynamic_field (type, field_num)
6915 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6916 == TYPE_CODE_UNION)));
6917 }
6918
6919 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6920 whose discriminants are contained in the record type OUTER_TYPE,
6921 returns the type of the controlling discriminant for the variant.
6922 May return NULL if the type could not be found. */
6923
6924 struct type *
6925 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6926 {
6927 char *name = ada_variant_discrim_name (var_type);
6928
6929 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6930 }
6931
6932 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6933 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6934 represents a 'when others' clause; otherwise 0. */
6935
6936 int
6937 ada_is_others_clause (struct type *type, int field_num)
6938 {
6939 const char *name = TYPE_FIELD_NAME (type, field_num);
6940
6941 return (name != NULL && name[0] == 'O');
6942 }
6943
6944 /* Assuming that TYPE0 is the type of the variant part of a record,
6945 returns the name of the discriminant controlling the variant.
6946 The value is valid until the next call to ada_variant_discrim_name. */
6947
6948 char *
6949 ada_variant_discrim_name (struct type *type0)
6950 {
6951 static char *result = NULL;
6952 static size_t result_len = 0;
6953 struct type *type;
6954 const char *name;
6955 const char *discrim_end;
6956 const char *discrim_start;
6957
6958 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6959 type = TYPE_TARGET_TYPE (type0);
6960 else
6961 type = type0;
6962
6963 name = ada_type_name (type);
6964
6965 if (name == NULL || name[0] == '\000')
6966 return "";
6967
6968 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6969 discrim_end -= 1)
6970 {
6971 if (startswith (discrim_end, "___XVN"))
6972 break;
6973 }
6974 if (discrim_end == name)
6975 return "";
6976
6977 for (discrim_start = discrim_end; discrim_start != name + 3;
6978 discrim_start -= 1)
6979 {
6980 if (discrim_start == name + 1)
6981 return "";
6982 if ((discrim_start > name + 3
6983 && startswith (discrim_start - 3, "___"))
6984 || discrim_start[-1] == '.')
6985 break;
6986 }
6987
6988 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6989 strncpy (result, discrim_start, discrim_end - discrim_start);
6990 result[discrim_end - discrim_start] = '\0';
6991 return result;
6992 }
6993
6994 /* Scan STR for a subtype-encoded number, beginning at position K.
6995 Put the position of the character just past the number scanned in
6996 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6997 Return 1 if there was a valid number at the given position, and 0
6998 otherwise. A "subtype-encoded" number consists of the absolute value
6999 in decimal, followed by the letter 'm' to indicate a negative number.
7000 Assumes 0m does not occur. */
7001
7002 int
7003 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7004 {
7005 ULONGEST RU;
7006
7007 if (!isdigit (str[k]))
7008 return 0;
7009
7010 /* Do it the hard way so as not to make any assumption about
7011 the relationship of unsigned long (%lu scan format code) and
7012 LONGEST. */
7013 RU = 0;
7014 while (isdigit (str[k]))
7015 {
7016 RU = RU * 10 + (str[k] - '0');
7017 k += 1;
7018 }
7019
7020 if (str[k] == 'm')
7021 {
7022 if (R != NULL)
7023 *R = (-(LONGEST) (RU - 1)) - 1;
7024 k += 1;
7025 }
7026 else if (R != NULL)
7027 *R = (LONGEST) RU;
7028
7029 /* NOTE on the above: Technically, C does not say what the results of
7030 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7031 number representable as a LONGEST (although either would probably work
7032 in most implementations). When RU>0, the locution in the then branch
7033 above is always equivalent to the negative of RU. */
7034
7035 if (new_k != NULL)
7036 *new_k = k;
7037 return 1;
7038 }
7039
7040 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7041 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7042 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7043
7044 int
7045 ada_in_variant (LONGEST val, struct type *type, int field_num)
7046 {
7047 const char *name = TYPE_FIELD_NAME (type, field_num);
7048 int p;
7049
7050 p = 0;
7051 while (1)
7052 {
7053 switch (name[p])
7054 {
7055 case '\0':
7056 return 0;
7057 case 'S':
7058 {
7059 LONGEST W;
7060
7061 if (!ada_scan_number (name, p + 1, &W, &p))
7062 return 0;
7063 if (val == W)
7064 return 1;
7065 break;
7066 }
7067 case 'R':
7068 {
7069 LONGEST L, U;
7070
7071 if (!ada_scan_number (name, p + 1, &L, &p)
7072 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7073 return 0;
7074 if (val >= L && val <= U)
7075 return 1;
7076 break;
7077 }
7078 case 'O':
7079 return 1;
7080 default:
7081 return 0;
7082 }
7083 }
7084 }
7085
7086 /* FIXME: Lots of redundancy below. Try to consolidate. */
7087
7088 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7089 ARG_TYPE, extract and return the value of one of its (non-static)
7090 fields. FIELDNO says which field. Differs from value_primitive_field
7091 only in that it can handle packed values of arbitrary type. */
7092
7093 static struct value *
7094 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7095 struct type *arg_type)
7096 {
7097 struct type *type;
7098
7099 arg_type = ada_check_typedef (arg_type);
7100 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7101
7102 /* Handle packed fields. */
7103
7104 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7105 {
7106 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7107 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7108
7109 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7110 offset + bit_pos / 8,
7111 bit_pos % 8, bit_size, type);
7112 }
7113 else
7114 return value_primitive_field (arg1, offset, fieldno, arg_type);
7115 }
7116
7117 /* Find field with name NAME in object of type TYPE. If found,
7118 set the following for each argument that is non-null:
7119 - *FIELD_TYPE_P to the field's type;
7120 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7121 an object of that type;
7122 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7123 - *BIT_SIZE_P to its size in bits if the field is packed, and
7124 0 otherwise;
7125 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7126 fields up to but not including the desired field, or by the total
7127 number of fields if not found. A NULL value of NAME never
7128 matches; the function just counts visible fields in this case.
7129
7130 Returns 1 if found, 0 otherwise. */
7131
7132 static int
7133 find_struct_field (const char *name, struct type *type, int offset,
7134 struct type **field_type_p,
7135 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7136 int *index_p)
7137 {
7138 int i;
7139
7140 type = ada_check_typedef (type);
7141
7142 if (field_type_p != NULL)
7143 *field_type_p = NULL;
7144 if (byte_offset_p != NULL)
7145 *byte_offset_p = 0;
7146 if (bit_offset_p != NULL)
7147 *bit_offset_p = 0;
7148 if (bit_size_p != NULL)
7149 *bit_size_p = 0;
7150
7151 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7152 {
7153 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7154 int fld_offset = offset + bit_pos / 8;
7155 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7156
7157 if (t_field_name == NULL)
7158 continue;
7159
7160 else if (name != NULL && field_name_match (t_field_name, name))
7161 {
7162 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7163
7164 if (field_type_p != NULL)
7165 *field_type_p = TYPE_FIELD_TYPE (type, i);
7166 if (byte_offset_p != NULL)
7167 *byte_offset_p = fld_offset;
7168 if (bit_offset_p != NULL)
7169 *bit_offset_p = bit_pos % 8;
7170 if (bit_size_p != NULL)
7171 *bit_size_p = bit_size;
7172 return 1;
7173 }
7174 else if (ada_is_wrapper_field (type, i))
7175 {
7176 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7177 field_type_p, byte_offset_p, bit_offset_p,
7178 bit_size_p, index_p))
7179 return 1;
7180 }
7181 else if (ada_is_variant_part (type, i))
7182 {
7183 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7184 fixed type?? */
7185 int j;
7186 struct type *field_type
7187 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7188
7189 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7190 {
7191 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7192 fld_offset
7193 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7194 field_type_p, byte_offset_p,
7195 bit_offset_p, bit_size_p, index_p))
7196 return 1;
7197 }
7198 }
7199 else if (index_p != NULL)
7200 *index_p += 1;
7201 }
7202 return 0;
7203 }
7204
7205 /* Number of user-visible fields in record type TYPE. */
7206
7207 static int
7208 num_visible_fields (struct type *type)
7209 {
7210 int n;
7211
7212 n = 0;
7213 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7214 return n;
7215 }
7216
7217 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7218 and search in it assuming it has (class) type TYPE.
7219 If found, return value, else return NULL.
7220
7221 Searches recursively through wrapper fields (e.g., '_parent'). */
7222
7223 static struct value *
7224 ada_search_struct_field (char *name, struct value *arg, int offset,
7225 struct type *type)
7226 {
7227 int i;
7228
7229 type = ada_check_typedef (type);
7230 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7231 {
7232 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7233
7234 if (t_field_name == NULL)
7235 continue;
7236
7237 else if (field_name_match (t_field_name, name))
7238 return ada_value_primitive_field (arg, offset, i, type);
7239
7240 else if (ada_is_wrapper_field (type, i))
7241 {
7242 struct value *v = /* Do not let indent join lines here. */
7243 ada_search_struct_field (name, arg,
7244 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7245 TYPE_FIELD_TYPE (type, i));
7246
7247 if (v != NULL)
7248 return v;
7249 }
7250
7251 else if (ada_is_variant_part (type, i))
7252 {
7253 /* PNH: Do we ever get here? See find_struct_field. */
7254 int j;
7255 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7256 i));
7257 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7258
7259 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7260 {
7261 struct value *v = ada_search_struct_field /* Force line
7262 break. */
7263 (name, arg,
7264 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7265 TYPE_FIELD_TYPE (field_type, j));
7266
7267 if (v != NULL)
7268 return v;
7269 }
7270 }
7271 }
7272 return NULL;
7273 }
7274
7275 static struct value *ada_index_struct_field_1 (int *, struct value *,
7276 int, struct type *);
7277
7278
7279 /* Return field #INDEX in ARG, where the index is that returned by
7280 * find_struct_field through its INDEX_P argument. Adjust the address
7281 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7282 * If found, return value, else return NULL. */
7283
7284 static struct value *
7285 ada_index_struct_field (int index, struct value *arg, int offset,
7286 struct type *type)
7287 {
7288 return ada_index_struct_field_1 (&index, arg, offset, type);
7289 }
7290
7291
7292 /* Auxiliary function for ada_index_struct_field. Like
7293 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7294 * *INDEX_P. */
7295
7296 static struct value *
7297 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7298 struct type *type)
7299 {
7300 int i;
7301 type = ada_check_typedef (type);
7302
7303 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7304 {
7305 if (TYPE_FIELD_NAME (type, i) == NULL)
7306 continue;
7307 else if (ada_is_wrapper_field (type, i))
7308 {
7309 struct value *v = /* Do not let indent join lines here. */
7310 ada_index_struct_field_1 (index_p, arg,
7311 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7312 TYPE_FIELD_TYPE (type, i));
7313
7314 if (v != NULL)
7315 return v;
7316 }
7317
7318 else if (ada_is_variant_part (type, i))
7319 {
7320 /* PNH: Do we ever get here? See ada_search_struct_field,
7321 find_struct_field. */
7322 error (_("Cannot assign this kind of variant record"));
7323 }
7324 else if (*index_p == 0)
7325 return ada_value_primitive_field (arg, offset, i, type);
7326 else
7327 *index_p -= 1;
7328 }
7329 return NULL;
7330 }
7331
7332 /* Given ARG, a value of type (pointer or reference to a)*
7333 structure/union, extract the component named NAME from the ultimate
7334 target structure/union and return it as a value with its
7335 appropriate type.
7336
7337 The routine searches for NAME among all members of the structure itself
7338 and (recursively) among all members of any wrapper members
7339 (e.g., '_parent').
7340
7341 If NO_ERR, then simply return NULL in case of error, rather than
7342 calling error. */
7343
7344 struct value *
7345 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7346 {
7347 struct type *t, *t1;
7348 struct value *v;
7349
7350 v = NULL;
7351 t1 = t = ada_check_typedef (value_type (arg));
7352 if (TYPE_CODE (t) == TYPE_CODE_REF)
7353 {
7354 t1 = TYPE_TARGET_TYPE (t);
7355 if (t1 == NULL)
7356 goto BadValue;
7357 t1 = ada_check_typedef (t1);
7358 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7359 {
7360 arg = coerce_ref (arg);
7361 t = t1;
7362 }
7363 }
7364
7365 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7366 {
7367 t1 = TYPE_TARGET_TYPE (t);
7368 if (t1 == NULL)
7369 goto BadValue;
7370 t1 = ada_check_typedef (t1);
7371 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7372 {
7373 arg = value_ind (arg);
7374 t = t1;
7375 }
7376 else
7377 break;
7378 }
7379
7380 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7381 goto BadValue;
7382
7383 if (t1 == t)
7384 v = ada_search_struct_field (name, arg, 0, t);
7385 else
7386 {
7387 int bit_offset, bit_size, byte_offset;
7388 struct type *field_type;
7389 CORE_ADDR address;
7390
7391 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7392 address = value_address (ada_value_ind (arg));
7393 else
7394 address = value_address (ada_coerce_ref (arg));
7395
7396 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7397 if (find_struct_field (name, t1, 0,
7398 &field_type, &byte_offset, &bit_offset,
7399 &bit_size, NULL))
7400 {
7401 if (bit_size != 0)
7402 {
7403 if (TYPE_CODE (t) == TYPE_CODE_REF)
7404 arg = ada_coerce_ref (arg);
7405 else
7406 arg = ada_value_ind (arg);
7407 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7408 bit_offset, bit_size,
7409 field_type);
7410 }
7411 else
7412 v = value_at_lazy (field_type, address + byte_offset);
7413 }
7414 }
7415
7416 if (v != NULL || no_err)
7417 return v;
7418 else
7419 error (_("There is no member named %s."), name);
7420
7421 BadValue:
7422 if (no_err)
7423 return NULL;
7424 else
7425 error (_("Attempt to extract a component of "
7426 "a value that is not a record."));
7427 }
7428
7429 /* Given a type TYPE, look up the type of the component of type named NAME.
7430 If DISPP is non-null, add its byte displacement from the beginning of a
7431 structure (pointed to by a value) of type TYPE to *DISPP (does not
7432 work for packed fields).
7433
7434 Matches any field whose name has NAME as a prefix, possibly
7435 followed by "___".
7436
7437 TYPE can be either a struct or union. If REFOK, TYPE may also
7438 be a (pointer or reference)+ to a struct or union, and the
7439 ultimate target type will be searched.
7440
7441 Looks recursively into variant clauses and parent types.
7442
7443 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7444 TYPE is not a type of the right kind. */
7445
7446 static struct type *
7447 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7448 int noerr, int *dispp)
7449 {
7450 int i;
7451
7452 if (name == NULL)
7453 goto BadName;
7454
7455 if (refok && type != NULL)
7456 while (1)
7457 {
7458 type = ada_check_typedef (type);
7459 if (TYPE_CODE (type) != TYPE_CODE_PTR
7460 && TYPE_CODE (type) != TYPE_CODE_REF)
7461 break;
7462 type = TYPE_TARGET_TYPE (type);
7463 }
7464
7465 if (type == NULL
7466 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7467 && TYPE_CODE (type) != TYPE_CODE_UNION))
7468 {
7469 if (noerr)
7470 return NULL;
7471 else
7472 {
7473 target_terminal_ours ();
7474 gdb_flush (gdb_stdout);
7475 if (type == NULL)
7476 error (_("Type (null) is not a structure or union type"));
7477 else
7478 {
7479 /* XXX: type_sprint */
7480 fprintf_unfiltered (gdb_stderr, _("Type "));
7481 type_print (type, "", gdb_stderr, -1);
7482 error (_(" is not a structure or union type"));
7483 }
7484 }
7485 }
7486
7487 type = to_static_fixed_type (type);
7488
7489 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7490 {
7491 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7492 struct type *t;
7493 int disp;
7494
7495 if (t_field_name == NULL)
7496 continue;
7497
7498 else if (field_name_match (t_field_name, name))
7499 {
7500 if (dispp != NULL)
7501 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7502 return TYPE_FIELD_TYPE (type, i);
7503 }
7504
7505 else if (ada_is_wrapper_field (type, i))
7506 {
7507 disp = 0;
7508 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7509 0, 1, &disp);
7510 if (t != NULL)
7511 {
7512 if (dispp != NULL)
7513 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7514 return t;
7515 }
7516 }
7517
7518 else if (ada_is_variant_part (type, i))
7519 {
7520 int j;
7521 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7522 i));
7523
7524 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7525 {
7526 /* FIXME pnh 2008/01/26: We check for a field that is
7527 NOT wrapped in a struct, since the compiler sometimes
7528 generates these for unchecked variant types. Revisit
7529 if the compiler changes this practice. */
7530 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7531 disp = 0;
7532 if (v_field_name != NULL
7533 && field_name_match (v_field_name, name))
7534 t = TYPE_FIELD_TYPE (field_type, j);
7535 else
7536 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7537 j),
7538 name, 0, 1, &disp);
7539
7540 if (t != NULL)
7541 {
7542 if (dispp != NULL)
7543 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7544 return t;
7545 }
7546 }
7547 }
7548
7549 }
7550
7551 BadName:
7552 if (!noerr)
7553 {
7554 target_terminal_ours ();
7555 gdb_flush (gdb_stdout);
7556 if (name == NULL)
7557 {
7558 /* XXX: type_sprint */
7559 fprintf_unfiltered (gdb_stderr, _("Type "));
7560 type_print (type, "", gdb_stderr, -1);
7561 error (_(" has no component named <null>"));
7562 }
7563 else
7564 {
7565 /* XXX: type_sprint */
7566 fprintf_unfiltered (gdb_stderr, _("Type "));
7567 type_print (type, "", gdb_stderr, -1);
7568 error (_(" has no component named %s"), name);
7569 }
7570 }
7571
7572 return NULL;
7573 }
7574
7575 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7576 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7577 represents an unchecked union (that is, the variant part of a
7578 record that is named in an Unchecked_Union pragma). */
7579
7580 static int
7581 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7582 {
7583 char *discrim_name = ada_variant_discrim_name (var_type);
7584
7585 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7586 == NULL);
7587 }
7588
7589
7590 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7591 within a value of type OUTER_TYPE that is stored in GDB at
7592 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7593 numbering from 0) is applicable. Returns -1 if none are. */
7594
7595 int
7596 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7597 const gdb_byte *outer_valaddr)
7598 {
7599 int others_clause;
7600 int i;
7601 char *discrim_name = ada_variant_discrim_name (var_type);
7602 struct value *outer;
7603 struct value *discrim;
7604 LONGEST discrim_val;
7605
7606 /* Using plain value_from_contents_and_address here causes problems
7607 because we will end up trying to resolve a type that is currently
7608 being constructed. */
7609 outer = value_from_contents_and_address_unresolved (outer_type,
7610 outer_valaddr, 0);
7611 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7612 if (discrim == NULL)
7613 return -1;
7614 discrim_val = value_as_long (discrim);
7615
7616 others_clause = -1;
7617 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7618 {
7619 if (ada_is_others_clause (var_type, i))
7620 others_clause = i;
7621 else if (ada_in_variant (discrim_val, var_type, i))
7622 return i;
7623 }
7624
7625 return others_clause;
7626 }
7627 \f
7628
7629
7630 /* Dynamic-Sized Records */
7631
7632 /* Strategy: The type ostensibly attached to a value with dynamic size
7633 (i.e., a size that is not statically recorded in the debugging
7634 data) does not accurately reflect the size or layout of the value.
7635 Our strategy is to convert these values to values with accurate,
7636 conventional types that are constructed on the fly. */
7637
7638 /* There is a subtle and tricky problem here. In general, we cannot
7639 determine the size of dynamic records without its data. However,
7640 the 'struct value' data structure, which GDB uses to represent
7641 quantities in the inferior process (the target), requires the size
7642 of the type at the time of its allocation in order to reserve space
7643 for GDB's internal copy of the data. That's why the
7644 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7645 rather than struct value*s.
7646
7647 However, GDB's internal history variables ($1, $2, etc.) are
7648 struct value*s containing internal copies of the data that are not, in
7649 general, the same as the data at their corresponding addresses in
7650 the target. Fortunately, the types we give to these values are all
7651 conventional, fixed-size types (as per the strategy described
7652 above), so that we don't usually have to perform the
7653 'to_fixed_xxx_type' conversions to look at their values.
7654 Unfortunately, there is one exception: if one of the internal
7655 history variables is an array whose elements are unconstrained
7656 records, then we will need to create distinct fixed types for each
7657 element selected. */
7658
7659 /* The upshot of all of this is that many routines take a (type, host
7660 address, target address) triple as arguments to represent a value.
7661 The host address, if non-null, is supposed to contain an internal
7662 copy of the relevant data; otherwise, the program is to consult the
7663 target at the target address. */
7664
7665 /* Assuming that VAL0 represents a pointer value, the result of
7666 dereferencing it. Differs from value_ind in its treatment of
7667 dynamic-sized types. */
7668
7669 struct value *
7670 ada_value_ind (struct value *val0)
7671 {
7672 struct value *val = value_ind (val0);
7673
7674 if (ada_is_tagged_type (value_type (val), 0))
7675 val = ada_tag_value_at_base_address (val);
7676
7677 return ada_to_fixed_value (val);
7678 }
7679
7680 /* The value resulting from dereferencing any "reference to"
7681 qualifiers on VAL0. */
7682
7683 static struct value *
7684 ada_coerce_ref (struct value *val0)
7685 {
7686 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7687 {
7688 struct value *val = val0;
7689
7690 val = coerce_ref (val);
7691
7692 if (ada_is_tagged_type (value_type (val), 0))
7693 val = ada_tag_value_at_base_address (val);
7694
7695 return ada_to_fixed_value (val);
7696 }
7697 else
7698 return val0;
7699 }
7700
7701 /* Return OFF rounded upward if necessary to a multiple of
7702 ALIGNMENT (a power of 2). */
7703
7704 static unsigned int
7705 align_value (unsigned int off, unsigned int alignment)
7706 {
7707 return (off + alignment - 1) & ~(alignment - 1);
7708 }
7709
7710 /* Return the bit alignment required for field #F of template type TYPE. */
7711
7712 static unsigned int
7713 field_alignment (struct type *type, int f)
7714 {
7715 const char *name = TYPE_FIELD_NAME (type, f);
7716 int len;
7717 int align_offset;
7718
7719 /* The field name should never be null, unless the debugging information
7720 is somehow malformed. In this case, we assume the field does not
7721 require any alignment. */
7722 if (name == NULL)
7723 return 1;
7724
7725 len = strlen (name);
7726
7727 if (!isdigit (name[len - 1]))
7728 return 1;
7729
7730 if (isdigit (name[len - 2]))
7731 align_offset = len - 2;
7732 else
7733 align_offset = len - 1;
7734
7735 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7736 return TARGET_CHAR_BIT;
7737
7738 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7739 }
7740
7741 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7742
7743 static struct symbol *
7744 ada_find_any_type_symbol (const char *name)
7745 {
7746 struct symbol *sym;
7747
7748 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7749 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7750 return sym;
7751
7752 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7753 return sym;
7754 }
7755
7756 /* Find a type named NAME. Ignores ambiguity. This routine will look
7757 solely for types defined by debug info, it will not search the GDB
7758 primitive types. */
7759
7760 static struct type *
7761 ada_find_any_type (const char *name)
7762 {
7763 struct symbol *sym = ada_find_any_type_symbol (name);
7764
7765 if (sym != NULL)
7766 return SYMBOL_TYPE (sym);
7767
7768 return NULL;
7769 }
7770
7771 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7772 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7773 symbol, in which case it is returned. Otherwise, this looks for
7774 symbols whose name is that of NAME_SYM suffixed with "___XR".
7775 Return symbol if found, and NULL otherwise. */
7776
7777 struct symbol *
7778 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7779 {
7780 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7781 struct symbol *sym;
7782
7783 if (strstr (name, "___XR") != NULL)
7784 return name_sym;
7785
7786 sym = find_old_style_renaming_symbol (name, block);
7787
7788 if (sym != NULL)
7789 return sym;
7790
7791 /* Not right yet. FIXME pnh 7/20/2007. */
7792 sym = ada_find_any_type_symbol (name);
7793 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7794 return sym;
7795 else
7796 return NULL;
7797 }
7798
7799 static struct symbol *
7800 find_old_style_renaming_symbol (const char *name, const struct block *block)
7801 {
7802 const struct symbol *function_sym = block_linkage_function (block);
7803 char *rename;
7804
7805 if (function_sym != NULL)
7806 {
7807 /* If the symbol is defined inside a function, NAME is not fully
7808 qualified. This means we need to prepend the function name
7809 as well as adding the ``___XR'' suffix to build the name of
7810 the associated renaming symbol. */
7811 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7812 /* Function names sometimes contain suffixes used
7813 for instance to qualify nested subprograms. When building
7814 the XR type name, we need to make sure that this suffix is
7815 not included. So do not include any suffix in the function
7816 name length below. */
7817 int function_name_len = ada_name_prefix_len (function_name);
7818 const int rename_len = function_name_len + 2 /* "__" */
7819 + strlen (name) + 6 /* "___XR\0" */ ;
7820
7821 /* Strip the suffix if necessary. */
7822 ada_remove_trailing_digits (function_name, &function_name_len);
7823 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7824 ada_remove_Xbn_suffix (function_name, &function_name_len);
7825
7826 /* Library-level functions are a special case, as GNAT adds
7827 a ``_ada_'' prefix to the function name to avoid namespace
7828 pollution. However, the renaming symbols themselves do not
7829 have this prefix, so we need to skip this prefix if present. */
7830 if (function_name_len > 5 /* "_ada_" */
7831 && strstr (function_name, "_ada_") == function_name)
7832 {
7833 function_name += 5;
7834 function_name_len -= 5;
7835 }
7836
7837 rename = (char *) alloca (rename_len * sizeof (char));
7838 strncpy (rename, function_name, function_name_len);
7839 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7840 "__%s___XR", name);
7841 }
7842 else
7843 {
7844 const int rename_len = strlen (name) + 6;
7845
7846 rename = (char *) alloca (rename_len * sizeof (char));
7847 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7848 }
7849
7850 return ada_find_any_type_symbol (rename);
7851 }
7852
7853 /* Because of GNAT encoding conventions, several GDB symbols may match a
7854 given type name. If the type denoted by TYPE0 is to be preferred to
7855 that of TYPE1 for purposes of type printing, return non-zero;
7856 otherwise return 0. */
7857
7858 int
7859 ada_prefer_type (struct type *type0, struct type *type1)
7860 {
7861 if (type1 == NULL)
7862 return 1;
7863 else if (type0 == NULL)
7864 return 0;
7865 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7866 return 1;
7867 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7868 return 0;
7869 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7870 return 1;
7871 else if (ada_is_constrained_packed_array_type (type0))
7872 return 1;
7873 else if (ada_is_array_descriptor_type (type0)
7874 && !ada_is_array_descriptor_type (type1))
7875 return 1;
7876 else
7877 {
7878 const char *type0_name = type_name_no_tag (type0);
7879 const char *type1_name = type_name_no_tag (type1);
7880
7881 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7882 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7883 return 1;
7884 }
7885 return 0;
7886 }
7887
7888 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7889 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7890
7891 const char *
7892 ada_type_name (struct type *type)
7893 {
7894 if (type == NULL)
7895 return NULL;
7896 else if (TYPE_NAME (type) != NULL)
7897 return TYPE_NAME (type);
7898 else
7899 return TYPE_TAG_NAME (type);
7900 }
7901
7902 /* Search the list of "descriptive" types associated to TYPE for a type
7903 whose name is NAME. */
7904
7905 static struct type *
7906 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7907 {
7908 struct type *result, *tmp;
7909
7910 if (ada_ignore_descriptive_types_p)
7911 return NULL;
7912
7913 /* If there no descriptive-type info, then there is no parallel type
7914 to be found. */
7915 if (!HAVE_GNAT_AUX_INFO (type))
7916 return NULL;
7917
7918 result = TYPE_DESCRIPTIVE_TYPE (type);
7919 while (result != NULL)
7920 {
7921 const char *result_name = ada_type_name (result);
7922
7923 if (result_name == NULL)
7924 {
7925 warning (_("unexpected null name on descriptive type"));
7926 return NULL;
7927 }
7928
7929 /* If the names match, stop. */
7930 if (strcmp (result_name, name) == 0)
7931 break;
7932
7933 /* Otherwise, look at the next item on the list, if any. */
7934 if (HAVE_GNAT_AUX_INFO (result))
7935 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7936 else
7937 tmp = NULL;
7938
7939 /* If not found either, try after having resolved the typedef. */
7940 if (tmp != NULL)
7941 result = tmp;
7942 else
7943 {
7944 result = check_typedef (result);
7945 if (HAVE_GNAT_AUX_INFO (result))
7946 result = TYPE_DESCRIPTIVE_TYPE (result);
7947 else
7948 result = NULL;
7949 }
7950 }
7951
7952 /* If we didn't find a match, see whether this is a packed array. With
7953 older compilers, the descriptive type information is either absent or
7954 irrelevant when it comes to packed arrays so the above lookup fails.
7955 Fall back to using a parallel lookup by name in this case. */
7956 if (result == NULL && ada_is_constrained_packed_array_type (type))
7957 return ada_find_any_type (name);
7958
7959 return result;
7960 }
7961
7962 /* Find a parallel type to TYPE with the specified NAME, using the
7963 descriptive type taken from the debugging information, if available,
7964 and otherwise using the (slower) name-based method. */
7965
7966 static struct type *
7967 ada_find_parallel_type_with_name (struct type *type, const char *name)
7968 {
7969 struct type *result = NULL;
7970
7971 if (HAVE_GNAT_AUX_INFO (type))
7972 result = find_parallel_type_by_descriptive_type (type, name);
7973 else
7974 result = ada_find_any_type (name);
7975
7976 return result;
7977 }
7978
7979 /* Same as above, but specify the name of the parallel type by appending
7980 SUFFIX to the name of TYPE. */
7981
7982 struct type *
7983 ada_find_parallel_type (struct type *type, const char *suffix)
7984 {
7985 char *name;
7986 const char *type_name = ada_type_name (type);
7987 int len;
7988
7989 if (type_name == NULL)
7990 return NULL;
7991
7992 len = strlen (type_name);
7993
7994 name = (char *) alloca (len + strlen (suffix) + 1);
7995
7996 strcpy (name, type_name);
7997 strcpy (name + len, suffix);
7998
7999 return ada_find_parallel_type_with_name (type, name);
8000 }
8001
8002 /* If TYPE is a variable-size record type, return the corresponding template
8003 type describing its fields. Otherwise, return NULL. */
8004
8005 static struct type *
8006 dynamic_template_type (struct type *type)
8007 {
8008 type = ada_check_typedef (type);
8009
8010 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8011 || ada_type_name (type) == NULL)
8012 return NULL;
8013 else
8014 {
8015 int len = strlen (ada_type_name (type));
8016
8017 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8018 return type;
8019 else
8020 return ada_find_parallel_type (type, "___XVE");
8021 }
8022 }
8023
8024 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8025 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8026
8027 static int
8028 is_dynamic_field (struct type *templ_type, int field_num)
8029 {
8030 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8031
8032 return name != NULL
8033 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8034 && strstr (name, "___XVL") != NULL;
8035 }
8036
8037 /* The index of the variant field of TYPE, or -1 if TYPE does not
8038 represent a variant record type. */
8039
8040 static int
8041 variant_field_index (struct type *type)
8042 {
8043 int f;
8044
8045 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8046 return -1;
8047
8048 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8049 {
8050 if (ada_is_variant_part (type, f))
8051 return f;
8052 }
8053 return -1;
8054 }
8055
8056 /* A record type with no fields. */
8057
8058 static struct type *
8059 empty_record (struct type *templ)
8060 {
8061 struct type *type = alloc_type_copy (templ);
8062
8063 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8064 TYPE_NFIELDS (type) = 0;
8065 TYPE_FIELDS (type) = NULL;
8066 INIT_CPLUS_SPECIFIC (type);
8067 TYPE_NAME (type) = "<empty>";
8068 TYPE_TAG_NAME (type) = NULL;
8069 TYPE_LENGTH (type) = 0;
8070 return type;
8071 }
8072
8073 /* An ordinary record type (with fixed-length fields) that describes
8074 the value of type TYPE at VALADDR or ADDRESS (see comments at
8075 the beginning of this section) VAL according to GNAT conventions.
8076 DVAL0 should describe the (portion of a) record that contains any
8077 necessary discriminants. It should be NULL if value_type (VAL) is
8078 an outer-level type (i.e., as opposed to a branch of a variant.) A
8079 variant field (unless unchecked) is replaced by a particular branch
8080 of the variant.
8081
8082 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8083 length are not statically known are discarded. As a consequence,
8084 VALADDR, ADDRESS and DVAL0 are ignored.
8085
8086 NOTE: Limitations: For now, we assume that dynamic fields and
8087 variants occupy whole numbers of bytes. However, they need not be
8088 byte-aligned. */
8089
8090 struct type *
8091 ada_template_to_fixed_record_type_1 (struct type *type,
8092 const gdb_byte *valaddr,
8093 CORE_ADDR address, struct value *dval0,
8094 int keep_dynamic_fields)
8095 {
8096 struct value *mark = value_mark ();
8097 struct value *dval;
8098 struct type *rtype;
8099 int nfields, bit_len;
8100 int variant_field;
8101 long off;
8102 int fld_bit_len;
8103 int f;
8104
8105 /* Compute the number of fields in this record type that are going
8106 to be processed: unless keep_dynamic_fields, this includes only
8107 fields whose position and length are static will be processed. */
8108 if (keep_dynamic_fields)
8109 nfields = TYPE_NFIELDS (type);
8110 else
8111 {
8112 nfields = 0;
8113 while (nfields < TYPE_NFIELDS (type)
8114 && !ada_is_variant_part (type, nfields)
8115 && !is_dynamic_field (type, nfields))
8116 nfields++;
8117 }
8118
8119 rtype = alloc_type_copy (type);
8120 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8121 INIT_CPLUS_SPECIFIC (rtype);
8122 TYPE_NFIELDS (rtype) = nfields;
8123 TYPE_FIELDS (rtype) = (struct field *)
8124 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8125 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8126 TYPE_NAME (rtype) = ada_type_name (type);
8127 TYPE_TAG_NAME (rtype) = NULL;
8128 TYPE_FIXED_INSTANCE (rtype) = 1;
8129
8130 off = 0;
8131 bit_len = 0;
8132 variant_field = -1;
8133
8134 for (f = 0; f < nfields; f += 1)
8135 {
8136 off = align_value (off, field_alignment (type, f))
8137 + TYPE_FIELD_BITPOS (type, f);
8138 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8139 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8140
8141 if (ada_is_variant_part (type, f))
8142 {
8143 variant_field = f;
8144 fld_bit_len = 0;
8145 }
8146 else if (is_dynamic_field (type, f))
8147 {
8148 const gdb_byte *field_valaddr = valaddr;
8149 CORE_ADDR field_address = address;
8150 struct type *field_type =
8151 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8152
8153 if (dval0 == NULL)
8154 {
8155 /* rtype's length is computed based on the run-time
8156 value of discriminants. If the discriminants are not
8157 initialized, the type size may be completely bogus and
8158 GDB may fail to allocate a value for it. So check the
8159 size first before creating the value. */
8160 ada_ensure_varsize_limit (rtype);
8161 /* Using plain value_from_contents_and_address here
8162 causes problems because we will end up trying to
8163 resolve a type that is currently being
8164 constructed. */
8165 dval = value_from_contents_and_address_unresolved (rtype,
8166 valaddr,
8167 address);
8168 rtype = value_type (dval);
8169 }
8170 else
8171 dval = dval0;
8172
8173 /* If the type referenced by this field is an aligner type, we need
8174 to unwrap that aligner type, because its size might not be set.
8175 Keeping the aligner type would cause us to compute the wrong
8176 size for this field, impacting the offset of the all the fields
8177 that follow this one. */
8178 if (ada_is_aligner_type (field_type))
8179 {
8180 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8181
8182 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8183 field_address = cond_offset_target (field_address, field_offset);
8184 field_type = ada_aligned_type (field_type);
8185 }
8186
8187 field_valaddr = cond_offset_host (field_valaddr,
8188 off / TARGET_CHAR_BIT);
8189 field_address = cond_offset_target (field_address,
8190 off / TARGET_CHAR_BIT);
8191
8192 /* Get the fixed type of the field. Note that, in this case,
8193 we do not want to get the real type out of the tag: if
8194 the current field is the parent part of a tagged record,
8195 we will get the tag of the object. Clearly wrong: the real
8196 type of the parent is not the real type of the child. We
8197 would end up in an infinite loop. */
8198 field_type = ada_get_base_type (field_type);
8199 field_type = ada_to_fixed_type (field_type, field_valaddr,
8200 field_address, dval, 0);
8201 /* If the field size is already larger than the maximum
8202 object size, then the record itself will necessarily
8203 be larger than the maximum object size. We need to make
8204 this check now, because the size might be so ridiculously
8205 large (due to an uninitialized variable in the inferior)
8206 that it would cause an overflow when adding it to the
8207 record size. */
8208 ada_ensure_varsize_limit (field_type);
8209
8210 TYPE_FIELD_TYPE (rtype, f) = field_type;
8211 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8212 /* The multiplication can potentially overflow. But because
8213 the field length has been size-checked just above, and
8214 assuming that the maximum size is a reasonable value,
8215 an overflow should not happen in practice. So rather than
8216 adding overflow recovery code to this already complex code,
8217 we just assume that it's not going to happen. */
8218 fld_bit_len =
8219 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8220 }
8221 else
8222 {
8223 /* Note: If this field's type is a typedef, it is important
8224 to preserve the typedef layer.
8225
8226 Otherwise, we might be transforming a typedef to a fat
8227 pointer (encoding a pointer to an unconstrained array),
8228 into a basic fat pointer (encoding an unconstrained
8229 array). As both types are implemented using the same
8230 structure, the typedef is the only clue which allows us
8231 to distinguish between the two options. Stripping it
8232 would prevent us from printing this field appropriately. */
8233 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8234 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8235 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8236 fld_bit_len =
8237 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8238 else
8239 {
8240 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8241
8242 /* We need to be careful of typedefs when computing
8243 the length of our field. If this is a typedef,
8244 get the length of the target type, not the length
8245 of the typedef. */
8246 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8247 field_type = ada_typedef_target_type (field_type);
8248
8249 fld_bit_len =
8250 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8251 }
8252 }
8253 if (off + fld_bit_len > bit_len)
8254 bit_len = off + fld_bit_len;
8255 off += fld_bit_len;
8256 TYPE_LENGTH (rtype) =
8257 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8258 }
8259
8260 /* We handle the variant part, if any, at the end because of certain
8261 odd cases in which it is re-ordered so as NOT to be the last field of
8262 the record. This can happen in the presence of representation
8263 clauses. */
8264 if (variant_field >= 0)
8265 {
8266 struct type *branch_type;
8267
8268 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8269
8270 if (dval0 == NULL)
8271 {
8272 /* Using plain value_from_contents_and_address here causes
8273 problems because we will end up trying to resolve a type
8274 that is currently being constructed. */
8275 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8276 address);
8277 rtype = value_type (dval);
8278 }
8279 else
8280 dval = dval0;
8281
8282 branch_type =
8283 to_fixed_variant_branch_type
8284 (TYPE_FIELD_TYPE (type, variant_field),
8285 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8286 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8287 if (branch_type == NULL)
8288 {
8289 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8290 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8291 TYPE_NFIELDS (rtype) -= 1;
8292 }
8293 else
8294 {
8295 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8296 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8297 fld_bit_len =
8298 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8299 TARGET_CHAR_BIT;
8300 if (off + fld_bit_len > bit_len)
8301 bit_len = off + fld_bit_len;
8302 TYPE_LENGTH (rtype) =
8303 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8304 }
8305 }
8306
8307 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8308 should contain the alignment of that record, which should be a strictly
8309 positive value. If null or negative, then something is wrong, most
8310 probably in the debug info. In that case, we don't round up the size
8311 of the resulting type. If this record is not part of another structure,
8312 the current RTYPE length might be good enough for our purposes. */
8313 if (TYPE_LENGTH (type) <= 0)
8314 {
8315 if (TYPE_NAME (rtype))
8316 warning (_("Invalid type size for `%s' detected: %d."),
8317 TYPE_NAME (rtype), TYPE_LENGTH (type));
8318 else
8319 warning (_("Invalid type size for <unnamed> detected: %d."),
8320 TYPE_LENGTH (type));
8321 }
8322 else
8323 {
8324 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8325 TYPE_LENGTH (type));
8326 }
8327
8328 value_free_to_mark (mark);
8329 if (TYPE_LENGTH (rtype) > varsize_limit)
8330 error (_("record type with dynamic size is larger than varsize-limit"));
8331 return rtype;
8332 }
8333
8334 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8335 of 1. */
8336
8337 static struct type *
8338 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8339 CORE_ADDR address, struct value *dval0)
8340 {
8341 return ada_template_to_fixed_record_type_1 (type, valaddr,
8342 address, dval0, 1);
8343 }
8344
8345 /* An ordinary record type in which ___XVL-convention fields and
8346 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8347 static approximations, containing all possible fields. Uses
8348 no runtime values. Useless for use in values, but that's OK,
8349 since the results are used only for type determinations. Works on both
8350 structs and unions. Representation note: to save space, we memorize
8351 the result of this function in the TYPE_TARGET_TYPE of the
8352 template type. */
8353
8354 static struct type *
8355 template_to_static_fixed_type (struct type *type0)
8356 {
8357 struct type *type;
8358 int nfields;
8359 int f;
8360
8361 /* No need no do anything if the input type is already fixed. */
8362 if (TYPE_FIXED_INSTANCE (type0))
8363 return type0;
8364
8365 /* Likewise if we already have computed the static approximation. */
8366 if (TYPE_TARGET_TYPE (type0) != NULL)
8367 return TYPE_TARGET_TYPE (type0);
8368
8369 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8370 type = type0;
8371 nfields = TYPE_NFIELDS (type0);
8372
8373 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8374 recompute all over next time. */
8375 TYPE_TARGET_TYPE (type0) = type;
8376
8377 for (f = 0; f < nfields; f += 1)
8378 {
8379 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8380 struct type *new_type;
8381
8382 if (is_dynamic_field (type0, f))
8383 {
8384 field_type = ada_check_typedef (field_type);
8385 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8386 }
8387 else
8388 new_type = static_unwrap_type (field_type);
8389
8390 if (new_type != field_type)
8391 {
8392 /* Clone TYPE0 only the first time we get a new field type. */
8393 if (type == type0)
8394 {
8395 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8396 TYPE_CODE (type) = TYPE_CODE (type0);
8397 INIT_CPLUS_SPECIFIC (type);
8398 TYPE_NFIELDS (type) = nfields;
8399 TYPE_FIELDS (type) = (struct field *)
8400 TYPE_ALLOC (type, nfields * sizeof (struct field));
8401 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8402 sizeof (struct field) * nfields);
8403 TYPE_NAME (type) = ada_type_name (type0);
8404 TYPE_TAG_NAME (type) = NULL;
8405 TYPE_FIXED_INSTANCE (type) = 1;
8406 TYPE_LENGTH (type) = 0;
8407 }
8408 TYPE_FIELD_TYPE (type, f) = new_type;
8409 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8410 }
8411 }
8412
8413 return type;
8414 }
8415
8416 /* Given an object of type TYPE whose contents are at VALADDR and
8417 whose address in memory is ADDRESS, returns a revision of TYPE,
8418 which should be a non-dynamic-sized record, in which the variant
8419 part, if any, is replaced with the appropriate branch. Looks
8420 for discriminant values in DVAL0, which can be NULL if the record
8421 contains the necessary discriminant values. */
8422
8423 static struct type *
8424 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8425 CORE_ADDR address, struct value *dval0)
8426 {
8427 struct value *mark = value_mark ();
8428 struct value *dval;
8429 struct type *rtype;
8430 struct type *branch_type;
8431 int nfields = TYPE_NFIELDS (type);
8432 int variant_field = variant_field_index (type);
8433
8434 if (variant_field == -1)
8435 return type;
8436
8437 if (dval0 == NULL)
8438 {
8439 dval = value_from_contents_and_address (type, valaddr, address);
8440 type = value_type (dval);
8441 }
8442 else
8443 dval = dval0;
8444
8445 rtype = alloc_type_copy (type);
8446 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8447 INIT_CPLUS_SPECIFIC (rtype);
8448 TYPE_NFIELDS (rtype) = nfields;
8449 TYPE_FIELDS (rtype) =
8450 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8451 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8452 sizeof (struct field) * nfields);
8453 TYPE_NAME (rtype) = ada_type_name (type);
8454 TYPE_TAG_NAME (rtype) = NULL;
8455 TYPE_FIXED_INSTANCE (rtype) = 1;
8456 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8457
8458 branch_type = to_fixed_variant_branch_type
8459 (TYPE_FIELD_TYPE (type, variant_field),
8460 cond_offset_host (valaddr,
8461 TYPE_FIELD_BITPOS (type, variant_field)
8462 / TARGET_CHAR_BIT),
8463 cond_offset_target (address,
8464 TYPE_FIELD_BITPOS (type, variant_field)
8465 / TARGET_CHAR_BIT), dval);
8466 if (branch_type == NULL)
8467 {
8468 int f;
8469
8470 for (f = variant_field + 1; f < nfields; f += 1)
8471 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8472 TYPE_NFIELDS (rtype) -= 1;
8473 }
8474 else
8475 {
8476 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8477 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8478 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8479 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8480 }
8481 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8482
8483 value_free_to_mark (mark);
8484 return rtype;
8485 }
8486
8487 /* An ordinary record type (with fixed-length fields) that describes
8488 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8489 beginning of this section]. Any necessary discriminants' values
8490 should be in DVAL, a record value; it may be NULL if the object
8491 at ADDR itself contains any necessary discriminant values.
8492 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8493 values from the record are needed. Except in the case that DVAL,
8494 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8495 unchecked) is replaced by a particular branch of the variant.
8496
8497 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8498 is questionable and may be removed. It can arise during the
8499 processing of an unconstrained-array-of-record type where all the
8500 variant branches have exactly the same size. This is because in
8501 such cases, the compiler does not bother to use the XVS convention
8502 when encoding the record. I am currently dubious of this
8503 shortcut and suspect the compiler should be altered. FIXME. */
8504
8505 static struct type *
8506 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8507 CORE_ADDR address, struct value *dval)
8508 {
8509 struct type *templ_type;
8510
8511 if (TYPE_FIXED_INSTANCE (type0))
8512 return type0;
8513
8514 templ_type = dynamic_template_type (type0);
8515
8516 if (templ_type != NULL)
8517 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8518 else if (variant_field_index (type0) >= 0)
8519 {
8520 if (dval == NULL && valaddr == NULL && address == 0)
8521 return type0;
8522 return to_record_with_fixed_variant_part (type0, valaddr, address,
8523 dval);
8524 }
8525 else
8526 {
8527 TYPE_FIXED_INSTANCE (type0) = 1;
8528 return type0;
8529 }
8530
8531 }
8532
8533 /* An ordinary record type (with fixed-length fields) that describes
8534 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8535 union type. Any necessary discriminants' values should be in DVAL,
8536 a record value. That is, this routine selects the appropriate
8537 branch of the union at ADDR according to the discriminant value
8538 indicated in the union's type name. Returns VAR_TYPE0 itself if
8539 it represents a variant subject to a pragma Unchecked_Union. */
8540
8541 static struct type *
8542 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8543 CORE_ADDR address, struct value *dval)
8544 {
8545 int which;
8546 struct type *templ_type;
8547 struct type *var_type;
8548
8549 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8550 var_type = TYPE_TARGET_TYPE (var_type0);
8551 else
8552 var_type = var_type0;
8553
8554 templ_type = ada_find_parallel_type (var_type, "___XVU");
8555
8556 if (templ_type != NULL)
8557 var_type = templ_type;
8558
8559 if (is_unchecked_variant (var_type, value_type (dval)))
8560 return var_type0;
8561 which =
8562 ada_which_variant_applies (var_type,
8563 value_type (dval), value_contents (dval));
8564
8565 if (which < 0)
8566 return empty_record (var_type);
8567 else if (is_dynamic_field (var_type, which))
8568 return to_fixed_record_type
8569 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8570 valaddr, address, dval);
8571 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8572 return
8573 to_fixed_record_type
8574 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8575 else
8576 return TYPE_FIELD_TYPE (var_type, which);
8577 }
8578
8579 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8580 ENCODING_TYPE, a type following the GNAT conventions for discrete
8581 type encodings, only carries redundant information. */
8582
8583 static int
8584 ada_is_redundant_range_encoding (struct type *range_type,
8585 struct type *encoding_type)
8586 {
8587 struct type *fixed_range_type;
8588 char *bounds_str;
8589 int n;
8590 LONGEST lo, hi;
8591
8592 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8593
8594 if (TYPE_CODE (get_base_type (range_type))
8595 != TYPE_CODE (get_base_type (encoding_type)))
8596 {
8597 /* The compiler probably used a simple base type to describe
8598 the range type instead of the range's actual base type,
8599 expecting us to get the real base type from the encoding
8600 anyway. In this situation, the encoding cannot be ignored
8601 as redundant. */
8602 return 0;
8603 }
8604
8605 if (is_dynamic_type (range_type))
8606 return 0;
8607
8608 if (TYPE_NAME (encoding_type) == NULL)
8609 return 0;
8610
8611 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8612 if (bounds_str == NULL)
8613 return 0;
8614
8615 n = 8; /* Skip "___XDLU_". */
8616 if (!ada_scan_number (bounds_str, n, &lo, &n))
8617 return 0;
8618 if (TYPE_LOW_BOUND (range_type) != lo)
8619 return 0;
8620
8621 n += 2; /* Skip the "__" separator between the two bounds. */
8622 if (!ada_scan_number (bounds_str, n, &hi, &n))
8623 return 0;
8624 if (TYPE_HIGH_BOUND (range_type) != hi)
8625 return 0;
8626
8627 return 1;
8628 }
8629
8630 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8631 a type following the GNAT encoding for describing array type
8632 indices, only carries redundant information. */
8633
8634 static int
8635 ada_is_redundant_index_type_desc (struct type *array_type,
8636 struct type *desc_type)
8637 {
8638 struct type *this_layer = check_typedef (array_type);
8639 int i;
8640
8641 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8642 {
8643 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8644 TYPE_FIELD_TYPE (desc_type, i)))
8645 return 0;
8646 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8647 }
8648
8649 return 1;
8650 }
8651
8652 /* Assuming that TYPE0 is an array type describing the type of a value
8653 at ADDR, and that DVAL describes a record containing any
8654 discriminants used in TYPE0, returns a type for the value that
8655 contains no dynamic components (that is, no components whose sizes
8656 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8657 true, gives an error message if the resulting type's size is over
8658 varsize_limit. */
8659
8660 static struct type *
8661 to_fixed_array_type (struct type *type0, struct value *dval,
8662 int ignore_too_big)
8663 {
8664 struct type *index_type_desc;
8665 struct type *result;
8666 int constrained_packed_array_p;
8667 static const char *xa_suffix = "___XA";
8668
8669 type0 = ada_check_typedef (type0);
8670 if (TYPE_FIXED_INSTANCE (type0))
8671 return type0;
8672
8673 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8674 if (constrained_packed_array_p)
8675 type0 = decode_constrained_packed_array_type (type0);
8676
8677 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8678
8679 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8680 encoding suffixed with 'P' may still be generated. If so,
8681 it should be used to find the XA type. */
8682
8683 if (index_type_desc == NULL)
8684 {
8685 const char *type_name = ada_type_name (type0);
8686
8687 if (type_name != NULL)
8688 {
8689 const int len = strlen (type_name);
8690 char *name = (char *) alloca (len + strlen (xa_suffix));
8691
8692 if (type_name[len - 1] == 'P')
8693 {
8694 strcpy (name, type_name);
8695 strcpy (name + len - 1, xa_suffix);
8696 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8697 }
8698 }
8699 }
8700
8701 ada_fixup_array_indexes_type (index_type_desc);
8702 if (index_type_desc != NULL
8703 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8704 {
8705 /* Ignore this ___XA parallel type, as it does not bring any
8706 useful information. This allows us to avoid creating fixed
8707 versions of the array's index types, which would be identical
8708 to the original ones. This, in turn, can also help avoid
8709 the creation of fixed versions of the array itself. */
8710 index_type_desc = NULL;
8711 }
8712
8713 if (index_type_desc == NULL)
8714 {
8715 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8716
8717 /* NOTE: elt_type---the fixed version of elt_type0---should never
8718 depend on the contents of the array in properly constructed
8719 debugging data. */
8720 /* Create a fixed version of the array element type.
8721 We're not providing the address of an element here,
8722 and thus the actual object value cannot be inspected to do
8723 the conversion. This should not be a problem, since arrays of
8724 unconstrained objects are not allowed. In particular, all
8725 the elements of an array of a tagged type should all be of
8726 the same type specified in the debugging info. No need to
8727 consult the object tag. */
8728 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8729
8730 /* Make sure we always create a new array type when dealing with
8731 packed array types, since we're going to fix-up the array
8732 type length and element bitsize a little further down. */
8733 if (elt_type0 == elt_type && !constrained_packed_array_p)
8734 result = type0;
8735 else
8736 result = create_array_type (alloc_type_copy (type0),
8737 elt_type, TYPE_INDEX_TYPE (type0));
8738 }
8739 else
8740 {
8741 int i;
8742 struct type *elt_type0;
8743
8744 elt_type0 = type0;
8745 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8746 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8747
8748 /* NOTE: result---the fixed version of elt_type0---should never
8749 depend on the contents of the array in properly constructed
8750 debugging data. */
8751 /* Create a fixed version of the array element type.
8752 We're not providing the address of an element here,
8753 and thus the actual object value cannot be inspected to do
8754 the conversion. This should not be a problem, since arrays of
8755 unconstrained objects are not allowed. In particular, all
8756 the elements of an array of a tagged type should all be of
8757 the same type specified in the debugging info. No need to
8758 consult the object tag. */
8759 result =
8760 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8761
8762 elt_type0 = type0;
8763 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8764 {
8765 struct type *range_type =
8766 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8767
8768 result = create_array_type (alloc_type_copy (elt_type0),
8769 result, range_type);
8770 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8771 }
8772 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8773 error (_("array type with dynamic size is larger than varsize-limit"));
8774 }
8775
8776 /* We want to preserve the type name. This can be useful when
8777 trying to get the type name of a value that has already been
8778 printed (for instance, if the user did "print VAR; whatis $". */
8779 TYPE_NAME (result) = TYPE_NAME (type0);
8780
8781 if (constrained_packed_array_p)
8782 {
8783 /* So far, the resulting type has been created as if the original
8784 type was a regular (non-packed) array type. As a result, the
8785 bitsize of the array elements needs to be set again, and the array
8786 length needs to be recomputed based on that bitsize. */
8787 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8788 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8789
8790 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8791 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8792 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8793 TYPE_LENGTH (result)++;
8794 }
8795
8796 TYPE_FIXED_INSTANCE (result) = 1;
8797 return result;
8798 }
8799
8800
8801 /* A standard type (containing no dynamically sized components)
8802 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8803 DVAL describes a record containing any discriminants used in TYPE0,
8804 and may be NULL if there are none, or if the object of type TYPE at
8805 ADDRESS or in VALADDR contains these discriminants.
8806
8807 If CHECK_TAG is not null, in the case of tagged types, this function
8808 attempts to locate the object's tag and use it to compute the actual
8809 type. However, when ADDRESS is null, we cannot use it to determine the
8810 location of the tag, and therefore compute the tagged type's actual type.
8811 So we return the tagged type without consulting the tag. */
8812
8813 static struct type *
8814 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8815 CORE_ADDR address, struct value *dval, int check_tag)
8816 {
8817 type = ada_check_typedef (type);
8818 switch (TYPE_CODE (type))
8819 {
8820 default:
8821 return type;
8822 case TYPE_CODE_STRUCT:
8823 {
8824 struct type *static_type = to_static_fixed_type (type);
8825 struct type *fixed_record_type =
8826 to_fixed_record_type (type, valaddr, address, NULL);
8827
8828 /* If STATIC_TYPE is a tagged type and we know the object's address,
8829 then we can determine its tag, and compute the object's actual
8830 type from there. Note that we have to use the fixed record
8831 type (the parent part of the record may have dynamic fields
8832 and the way the location of _tag is expressed may depend on
8833 them). */
8834
8835 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8836 {
8837 struct value *tag =
8838 value_tag_from_contents_and_address
8839 (fixed_record_type,
8840 valaddr,
8841 address);
8842 struct type *real_type = type_from_tag (tag);
8843 struct value *obj =
8844 value_from_contents_and_address (fixed_record_type,
8845 valaddr,
8846 address);
8847 fixed_record_type = value_type (obj);
8848 if (real_type != NULL)
8849 return to_fixed_record_type
8850 (real_type, NULL,
8851 value_address (ada_tag_value_at_base_address (obj)), NULL);
8852 }
8853
8854 /* Check to see if there is a parallel ___XVZ variable.
8855 If there is, then it provides the actual size of our type. */
8856 else if (ada_type_name (fixed_record_type) != NULL)
8857 {
8858 const char *name = ada_type_name (fixed_record_type);
8859 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8860 int xvz_found = 0;
8861 LONGEST size;
8862
8863 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8864 size = get_int_var_value (xvz_name, &xvz_found);
8865 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8866 {
8867 fixed_record_type = copy_type (fixed_record_type);
8868 TYPE_LENGTH (fixed_record_type) = size;
8869
8870 /* The FIXED_RECORD_TYPE may have be a stub. We have
8871 observed this when the debugging info is STABS, and
8872 apparently it is something that is hard to fix.
8873
8874 In practice, we don't need the actual type definition
8875 at all, because the presence of the XVZ variable allows us
8876 to assume that there must be a XVS type as well, which we
8877 should be able to use later, when we need the actual type
8878 definition.
8879
8880 In the meantime, pretend that the "fixed" type we are
8881 returning is NOT a stub, because this can cause trouble
8882 when using this type to create new types targeting it.
8883 Indeed, the associated creation routines often check
8884 whether the target type is a stub and will try to replace
8885 it, thus using a type with the wrong size. This, in turn,
8886 might cause the new type to have the wrong size too.
8887 Consider the case of an array, for instance, where the size
8888 of the array is computed from the number of elements in
8889 our array multiplied by the size of its element. */
8890 TYPE_STUB (fixed_record_type) = 0;
8891 }
8892 }
8893 return fixed_record_type;
8894 }
8895 case TYPE_CODE_ARRAY:
8896 return to_fixed_array_type (type, dval, 1);
8897 case TYPE_CODE_UNION:
8898 if (dval == NULL)
8899 return type;
8900 else
8901 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8902 }
8903 }
8904
8905 /* The same as ada_to_fixed_type_1, except that it preserves the type
8906 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8907
8908 The typedef layer needs be preserved in order to differentiate between
8909 arrays and array pointers when both types are implemented using the same
8910 fat pointer. In the array pointer case, the pointer is encoded as
8911 a typedef of the pointer type. For instance, considering:
8912
8913 type String_Access is access String;
8914 S1 : String_Access := null;
8915
8916 To the debugger, S1 is defined as a typedef of type String. But
8917 to the user, it is a pointer. So if the user tries to print S1,
8918 we should not dereference the array, but print the array address
8919 instead.
8920
8921 If we didn't preserve the typedef layer, we would lose the fact that
8922 the type is to be presented as a pointer (needs de-reference before
8923 being printed). And we would also use the source-level type name. */
8924
8925 struct type *
8926 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8927 CORE_ADDR address, struct value *dval, int check_tag)
8928
8929 {
8930 struct type *fixed_type =
8931 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8932
8933 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8934 then preserve the typedef layer.
8935
8936 Implementation note: We can only check the main-type portion of
8937 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8938 from TYPE now returns a type that has the same instance flags
8939 as TYPE. For instance, if TYPE is a "typedef const", and its
8940 target type is a "struct", then the typedef elimination will return
8941 a "const" version of the target type. See check_typedef for more
8942 details about how the typedef layer elimination is done.
8943
8944 brobecker/2010-11-19: It seems to me that the only case where it is
8945 useful to preserve the typedef layer is when dealing with fat pointers.
8946 Perhaps, we could add a check for that and preserve the typedef layer
8947 only in that situation. But this seems unecessary so far, probably
8948 because we call check_typedef/ada_check_typedef pretty much everywhere.
8949 */
8950 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8951 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8952 == TYPE_MAIN_TYPE (fixed_type)))
8953 return type;
8954
8955 return fixed_type;
8956 }
8957
8958 /* A standard (static-sized) type corresponding as well as possible to
8959 TYPE0, but based on no runtime data. */
8960
8961 static struct type *
8962 to_static_fixed_type (struct type *type0)
8963 {
8964 struct type *type;
8965
8966 if (type0 == NULL)
8967 return NULL;
8968
8969 if (TYPE_FIXED_INSTANCE (type0))
8970 return type0;
8971
8972 type0 = ada_check_typedef (type0);
8973
8974 switch (TYPE_CODE (type0))
8975 {
8976 default:
8977 return type0;
8978 case TYPE_CODE_STRUCT:
8979 type = dynamic_template_type (type0);
8980 if (type != NULL)
8981 return template_to_static_fixed_type (type);
8982 else
8983 return template_to_static_fixed_type (type0);
8984 case TYPE_CODE_UNION:
8985 type = ada_find_parallel_type (type0, "___XVU");
8986 if (type != NULL)
8987 return template_to_static_fixed_type (type);
8988 else
8989 return template_to_static_fixed_type (type0);
8990 }
8991 }
8992
8993 /* A static approximation of TYPE with all type wrappers removed. */
8994
8995 static struct type *
8996 static_unwrap_type (struct type *type)
8997 {
8998 if (ada_is_aligner_type (type))
8999 {
9000 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9001 if (ada_type_name (type1) == NULL)
9002 TYPE_NAME (type1) = ada_type_name (type);
9003
9004 return static_unwrap_type (type1);
9005 }
9006 else
9007 {
9008 struct type *raw_real_type = ada_get_base_type (type);
9009
9010 if (raw_real_type == type)
9011 return type;
9012 else
9013 return to_static_fixed_type (raw_real_type);
9014 }
9015 }
9016
9017 /* In some cases, incomplete and private types require
9018 cross-references that are not resolved as records (for example,
9019 type Foo;
9020 type FooP is access Foo;
9021 V: FooP;
9022 type Foo is array ...;
9023 ). In these cases, since there is no mechanism for producing
9024 cross-references to such types, we instead substitute for FooP a
9025 stub enumeration type that is nowhere resolved, and whose tag is
9026 the name of the actual type. Call these types "non-record stubs". */
9027
9028 /* A type equivalent to TYPE that is not a non-record stub, if one
9029 exists, otherwise TYPE. */
9030
9031 struct type *
9032 ada_check_typedef (struct type *type)
9033 {
9034 if (type == NULL)
9035 return NULL;
9036
9037 /* If our type is a typedef type of a fat pointer, then we're done.
9038 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9039 what allows us to distinguish between fat pointers that represent
9040 array types, and fat pointers that represent array access types
9041 (in both cases, the compiler implements them as fat pointers). */
9042 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9043 && is_thick_pntr (ada_typedef_target_type (type)))
9044 return type;
9045
9046 type = check_typedef (type);
9047 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9048 || !TYPE_STUB (type)
9049 || TYPE_TAG_NAME (type) == NULL)
9050 return type;
9051 else
9052 {
9053 const char *name = TYPE_TAG_NAME (type);
9054 struct type *type1 = ada_find_any_type (name);
9055
9056 if (type1 == NULL)
9057 return type;
9058
9059 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9060 stubs pointing to arrays, as we don't create symbols for array
9061 types, only for the typedef-to-array types). If that's the case,
9062 strip the typedef layer. */
9063 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9064 type1 = ada_check_typedef (type1);
9065
9066 return type1;
9067 }
9068 }
9069
9070 /* A value representing the data at VALADDR/ADDRESS as described by
9071 type TYPE0, but with a standard (static-sized) type that correctly
9072 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9073 type, then return VAL0 [this feature is simply to avoid redundant
9074 creation of struct values]. */
9075
9076 static struct value *
9077 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9078 struct value *val0)
9079 {
9080 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9081
9082 if (type == type0 && val0 != NULL)
9083 return val0;
9084 else
9085 return value_from_contents_and_address (type, 0, address);
9086 }
9087
9088 /* A value representing VAL, but with a standard (static-sized) type
9089 that correctly describes it. Does not necessarily create a new
9090 value. */
9091
9092 struct value *
9093 ada_to_fixed_value (struct value *val)
9094 {
9095 val = unwrap_value (val);
9096 val = ada_to_fixed_value_create (value_type (val),
9097 value_address (val),
9098 val);
9099 return val;
9100 }
9101 \f
9102
9103 /* Attributes */
9104
9105 /* Table mapping attribute numbers to names.
9106 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9107
9108 static const char *attribute_names[] = {
9109 "<?>",
9110
9111 "first",
9112 "last",
9113 "length",
9114 "image",
9115 "max",
9116 "min",
9117 "modulus",
9118 "pos",
9119 "size",
9120 "tag",
9121 "val",
9122 0
9123 };
9124
9125 const char *
9126 ada_attribute_name (enum exp_opcode n)
9127 {
9128 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9129 return attribute_names[n - OP_ATR_FIRST + 1];
9130 else
9131 return attribute_names[0];
9132 }
9133
9134 /* Evaluate the 'POS attribute applied to ARG. */
9135
9136 static LONGEST
9137 pos_atr (struct value *arg)
9138 {
9139 struct value *val = coerce_ref (arg);
9140 struct type *type = value_type (val);
9141 LONGEST result;
9142
9143 if (!discrete_type_p (type))
9144 error (_("'POS only defined on discrete types"));
9145
9146 if (!discrete_position (type, value_as_long (val), &result))
9147 error (_("enumeration value is invalid: can't find 'POS"));
9148
9149 return result;
9150 }
9151
9152 static struct value *
9153 value_pos_atr (struct type *type, struct value *arg)
9154 {
9155 return value_from_longest (type, pos_atr (arg));
9156 }
9157
9158 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9159
9160 static struct value *
9161 value_val_atr (struct type *type, struct value *arg)
9162 {
9163 if (!discrete_type_p (type))
9164 error (_("'VAL only defined on discrete types"));
9165 if (!integer_type_p (value_type (arg)))
9166 error (_("'VAL requires integral argument"));
9167
9168 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9169 {
9170 long pos = value_as_long (arg);
9171
9172 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9173 error (_("argument to 'VAL out of range"));
9174 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9175 }
9176 else
9177 return value_from_longest (type, value_as_long (arg));
9178 }
9179 \f
9180
9181 /* Evaluation */
9182
9183 /* True if TYPE appears to be an Ada character type.
9184 [At the moment, this is true only for Character and Wide_Character;
9185 It is a heuristic test that could stand improvement]. */
9186
9187 int
9188 ada_is_character_type (struct type *type)
9189 {
9190 const char *name;
9191
9192 /* If the type code says it's a character, then assume it really is,
9193 and don't check any further. */
9194 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9195 return 1;
9196
9197 /* Otherwise, assume it's a character type iff it is a discrete type
9198 with a known character type name. */
9199 name = ada_type_name (type);
9200 return (name != NULL
9201 && (TYPE_CODE (type) == TYPE_CODE_INT
9202 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9203 && (strcmp (name, "character") == 0
9204 || strcmp (name, "wide_character") == 0
9205 || strcmp (name, "wide_wide_character") == 0
9206 || strcmp (name, "unsigned char") == 0));
9207 }
9208
9209 /* True if TYPE appears to be an Ada string type. */
9210
9211 int
9212 ada_is_string_type (struct type *type)
9213 {
9214 type = ada_check_typedef (type);
9215 if (type != NULL
9216 && TYPE_CODE (type) != TYPE_CODE_PTR
9217 && (ada_is_simple_array_type (type)
9218 || ada_is_array_descriptor_type (type))
9219 && ada_array_arity (type) == 1)
9220 {
9221 struct type *elttype = ada_array_element_type (type, 1);
9222
9223 return ada_is_character_type (elttype);
9224 }
9225 else
9226 return 0;
9227 }
9228
9229 /* The compiler sometimes provides a parallel XVS type for a given
9230 PAD type. Normally, it is safe to follow the PAD type directly,
9231 but older versions of the compiler have a bug that causes the offset
9232 of its "F" field to be wrong. Following that field in that case
9233 would lead to incorrect results, but this can be worked around
9234 by ignoring the PAD type and using the associated XVS type instead.
9235
9236 Set to True if the debugger should trust the contents of PAD types.
9237 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9238 static int trust_pad_over_xvs = 1;
9239
9240 /* True if TYPE is a struct type introduced by the compiler to force the
9241 alignment of a value. Such types have a single field with a
9242 distinctive name. */
9243
9244 int
9245 ada_is_aligner_type (struct type *type)
9246 {
9247 type = ada_check_typedef (type);
9248
9249 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9250 return 0;
9251
9252 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9253 && TYPE_NFIELDS (type) == 1
9254 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9255 }
9256
9257 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9258 the parallel type. */
9259
9260 struct type *
9261 ada_get_base_type (struct type *raw_type)
9262 {
9263 struct type *real_type_namer;
9264 struct type *raw_real_type;
9265
9266 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9267 return raw_type;
9268
9269 if (ada_is_aligner_type (raw_type))
9270 /* The encoding specifies that we should always use the aligner type.
9271 So, even if this aligner type has an associated XVS type, we should
9272 simply ignore it.
9273
9274 According to the compiler gurus, an XVS type parallel to an aligner
9275 type may exist because of a stabs limitation. In stabs, aligner
9276 types are empty because the field has a variable-sized type, and
9277 thus cannot actually be used as an aligner type. As a result,
9278 we need the associated parallel XVS type to decode the type.
9279 Since the policy in the compiler is to not change the internal
9280 representation based on the debugging info format, we sometimes
9281 end up having a redundant XVS type parallel to the aligner type. */
9282 return raw_type;
9283
9284 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9285 if (real_type_namer == NULL
9286 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9287 || TYPE_NFIELDS (real_type_namer) != 1)
9288 return raw_type;
9289
9290 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9291 {
9292 /* This is an older encoding form where the base type needs to be
9293 looked up by name. We prefer the newer enconding because it is
9294 more efficient. */
9295 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9296 if (raw_real_type == NULL)
9297 return raw_type;
9298 else
9299 return raw_real_type;
9300 }
9301
9302 /* The field in our XVS type is a reference to the base type. */
9303 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9304 }
9305
9306 /* The type of value designated by TYPE, with all aligners removed. */
9307
9308 struct type *
9309 ada_aligned_type (struct type *type)
9310 {
9311 if (ada_is_aligner_type (type))
9312 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9313 else
9314 return ada_get_base_type (type);
9315 }
9316
9317
9318 /* The address of the aligned value in an object at address VALADDR
9319 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9320
9321 const gdb_byte *
9322 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9323 {
9324 if (ada_is_aligner_type (type))
9325 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9326 valaddr +
9327 TYPE_FIELD_BITPOS (type,
9328 0) / TARGET_CHAR_BIT);
9329 else
9330 return valaddr;
9331 }
9332
9333
9334
9335 /* The printed representation of an enumeration literal with encoded
9336 name NAME. The value is good to the next call of ada_enum_name. */
9337 const char *
9338 ada_enum_name (const char *name)
9339 {
9340 static char *result;
9341 static size_t result_len = 0;
9342 char *tmp;
9343
9344 /* First, unqualify the enumeration name:
9345 1. Search for the last '.' character. If we find one, then skip
9346 all the preceding characters, the unqualified name starts
9347 right after that dot.
9348 2. Otherwise, we may be debugging on a target where the compiler
9349 translates dots into "__". Search forward for double underscores,
9350 but stop searching when we hit an overloading suffix, which is
9351 of the form "__" followed by digits. */
9352
9353 tmp = strrchr (name, '.');
9354 if (tmp != NULL)
9355 name = tmp + 1;
9356 else
9357 {
9358 while ((tmp = strstr (name, "__")) != NULL)
9359 {
9360 if (isdigit (tmp[2]))
9361 break;
9362 else
9363 name = tmp + 2;
9364 }
9365 }
9366
9367 if (name[0] == 'Q')
9368 {
9369 int v;
9370
9371 if (name[1] == 'U' || name[1] == 'W')
9372 {
9373 if (sscanf (name + 2, "%x", &v) != 1)
9374 return name;
9375 }
9376 else
9377 return name;
9378
9379 GROW_VECT (result, result_len, 16);
9380 if (isascii (v) && isprint (v))
9381 xsnprintf (result, result_len, "'%c'", v);
9382 else if (name[1] == 'U')
9383 xsnprintf (result, result_len, "[\"%02x\"]", v);
9384 else
9385 xsnprintf (result, result_len, "[\"%04x\"]", v);
9386
9387 return result;
9388 }
9389 else
9390 {
9391 tmp = strstr (name, "__");
9392 if (tmp == NULL)
9393 tmp = strstr (name, "$");
9394 if (tmp != NULL)
9395 {
9396 GROW_VECT (result, result_len, tmp - name + 1);
9397 strncpy (result, name, tmp - name);
9398 result[tmp - name] = '\0';
9399 return result;
9400 }
9401
9402 return name;
9403 }
9404 }
9405
9406 /* Evaluate the subexpression of EXP starting at *POS as for
9407 evaluate_type, updating *POS to point just past the evaluated
9408 expression. */
9409
9410 static struct value *
9411 evaluate_subexp_type (struct expression *exp, int *pos)
9412 {
9413 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9414 }
9415
9416 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9417 value it wraps. */
9418
9419 static struct value *
9420 unwrap_value (struct value *val)
9421 {
9422 struct type *type = ada_check_typedef (value_type (val));
9423
9424 if (ada_is_aligner_type (type))
9425 {
9426 struct value *v = ada_value_struct_elt (val, "F", 0);
9427 struct type *val_type = ada_check_typedef (value_type (v));
9428
9429 if (ada_type_name (val_type) == NULL)
9430 TYPE_NAME (val_type) = ada_type_name (type);
9431
9432 return unwrap_value (v);
9433 }
9434 else
9435 {
9436 struct type *raw_real_type =
9437 ada_check_typedef (ada_get_base_type (type));
9438
9439 /* If there is no parallel XVS or XVE type, then the value is
9440 already unwrapped. Return it without further modification. */
9441 if ((type == raw_real_type)
9442 && ada_find_parallel_type (type, "___XVE") == NULL)
9443 return val;
9444
9445 return
9446 coerce_unspec_val_to_type
9447 (val, ada_to_fixed_type (raw_real_type, 0,
9448 value_address (val),
9449 NULL, 1));
9450 }
9451 }
9452
9453 static struct value *
9454 cast_to_fixed (struct type *type, struct value *arg)
9455 {
9456 LONGEST val;
9457
9458 if (type == value_type (arg))
9459 return arg;
9460 else if (ada_is_fixed_point_type (value_type (arg)))
9461 val = ada_float_to_fixed (type,
9462 ada_fixed_to_float (value_type (arg),
9463 value_as_long (arg)));
9464 else
9465 {
9466 DOUBLEST argd = value_as_double (arg);
9467
9468 val = ada_float_to_fixed (type, argd);
9469 }
9470
9471 return value_from_longest (type, val);
9472 }
9473
9474 static struct value *
9475 cast_from_fixed (struct type *type, struct value *arg)
9476 {
9477 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9478 value_as_long (arg));
9479
9480 return value_from_double (type, val);
9481 }
9482
9483 /* Given two array types T1 and T2, return nonzero iff both arrays
9484 contain the same number of elements. */
9485
9486 static int
9487 ada_same_array_size_p (struct type *t1, struct type *t2)
9488 {
9489 LONGEST lo1, hi1, lo2, hi2;
9490
9491 /* Get the array bounds in order to verify that the size of
9492 the two arrays match. */
9493 if (!get_array_bounds (t1, &lo1, &hi1)
9494 || !get_array_bounds (t2, &lo2, &hi2))
9495 error (_("unable to determine array bounds"));
9496
9497 /* To make things easier for size comparison, normalize a bit
9498 the case of empty arrays by making sure that the difference
9499 between upper bound and lower bound is always -1. */
9500 if (lo1 > hi1)
9501 hi1 = lo1 - 1;
9502 if (lo2 > hi2)
9503 hi2 = lo2 - 1;
9504
9505 return (hi1 - lo1 == hi2 - lo2);
9506 }
9507
9508 /* Assuming that VAL is an array of integrals, and TYPE represents
9509 an array with the same number of elements, but with wider integral
9510 elements, return an array "casted" to TYPE. In practice, this
9511 means that the returned array is built by casting each element
9512 of the original array into TYPE's (wider) element type. */
9513
9514 static struct value *
9515 ada_promote_array_of_integrals (struct type *type, struct value *val)
9516 {
9517 struct type *elt_type = TYPE_TARGET_TYPE (type);
9518 LONGEST lo, hi;
9519 struct value *res;
9520 LONGEST i;
9521
9522 /* Verify that both val and type are arrays of scalars, and
9523 that the size of val's elements is smaller than the size
9524 of type's element. */
9525 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9526 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9527 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9528 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9529 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9530 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9531
9532 if (!get_array_bounds (type, &lo, &hi))
9533 error (_("unable to determine array bounds"));
9534
9535 res = allocate_value (type);
9536
9537 /* Promote each array element. */
9538 for (i = 0; i < hi - lo + 1; i++)
9539 {
9540 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9541
9542 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9543 value_contents_all (elt), TYPE_LENGTH (elt_type));
9544 }
9545
9546 return res;
9547 }
9548
9549 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9550 return the converted value. */
9551
9552 static struct value *
9553 coerce_for_assign (struct type *type, struct value *val)
9554 {
9555 struct type *type2 = value_type (val);
9556
9557 if (type == type2)
9558 return val;
9559
9560 type2 = ada_check_typedef (type2);
9561 type = ada_check_typedef (type);
9562
9563 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9564 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9565 {
9566 val = ada_value_ind (val);
9567 type2 = value_type (val);
9568 }
9569
9570 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9571 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9572 {
9573 if (!ada_same_array_size_p (type, type2))
9574 error (_("cannot assign arrays of different length"));
9575
9576 if (is_integral_type (TYPE_TARGET_TYPE (type))
9577 && is_integral_type (TYPE_TARGET_TYPE (type2))
9578 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9579 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9580 {
9581 /* Allow implicit promotion of the array elements to
9582 a wider type. */
9583 return ada_promote_array_of_integrals (type, val);
9584 }
9585
9586 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9587 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9588 error (_("Incompatible types in assignment"));
9589 deprecated_set_value_type (val, type);
9590 }
9591 return val;
9592 }
9593
9594 static struct value *
9595 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9596 {
9597 struct value *val;
9598 struct type *type1, *type2;
9599 LONGEST v, v1, v2;
9600
9601 arg1 = coerce_ref (arg1);
9602 arg2 = coerce_ref (arg2);
9603 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9604 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9605
9606 if (TYPE_CODE (type1) != TYPE_CODE_INT
9607 || TYPE_CODE (type2) != TYPE_CODE_INT)
9608 return value_binop (arg1, arg2, op);
9609
9610 switch (op)
9611 {
9612 case BINOP_MOD:
9613 case BINOP_DIV:
9614 case BINOP_REM:
9615 break;
9616 default:
9617 return value_binop (arg1, arg2, op);
9618 }
9619
9620 v2 = value_as_long (arg2);
9621 if (v2 == 0)
9622 error (_("second operand of %s must not be zero."), op_string (op));
9623
9624 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9625 return value_binop (arg1, arg2, op);
9626
9627 v1 = value_as_long (arg1);
9628 switch (op)
9629 {
9630 case BINOP_DIV:
9631 v = v1 / v2;
9632 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9633 v += v > 0 ? -1 : 1;
9634 break;
9635 case BINOP_REM:
9636 v = v1 % v2;
9637 if (v * v1 < 0)
9638 v -= v2;
9639 break;
9640 default:
9641 /* Should not reach this point. */
9642 v = 0;
9643 }
9644
9645 val = allocate_value (type1);
9646 store_unsigned_integer (value_contents_raw (val),
9647 TYPE_LENGTH (value_type (val)),
9648 gdbarch_byte_order (get_type_arch (type1)), v);
9649 return val;
9650 }
9651
9652 static int
9653 ada_value_equal (struct value *arg1, struct value *arg2)
9654 {
9655 if (ada_is_direct_array_type (value_type (arg1))
9656 || ada_is_direct_array_type (value_type (arg2)))
9657 {
9658 /* Automatically dereference any array reference before
9659 we attempt to perform the comparison. */
9660 arg1 = ada_coerce_ref (arg1);
9661 arg2 = ada_coerce_ref (arg2);
9662
9663 arg1 = ada_coerce_to_simple_array (arg1);
9664 arg2 = ada_coerce_to_simple_array (arg2);
9665 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9666 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9667 error (_("Attempt to compare array with non-array"));
9668 /* FIXME: The following works only for types whose
9669 representations use all bits (no padding or undefined bits)
9670 and do not have user-defined equality. */
9671 return
9672 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9673 && memcmp (value_contents (arg1), value_contents (arg2),
9674 TYPE_LENGTH (value_type (arg1))) == 0;
9675 }
9676 return value_equal (arg1, arg2);
9677 }
9678
9679 /* Total number of component associations in the aggregate starting at
9680 index PC in EXP. Assumes that index PC is the start of an
9681 OP_AGGREGATE. */
9682
9683 static int
9684 num_component_specs (struct expression *exp, int pc)
9685 {
9686 int n, m, i;
9687
9688 m = exp->elts[pc + 1].longconst;
9689 pc += 3;
9690 n = 0;
9691 for (i = 0; i < m; i += 1)
9692 {
9693 switch (exp->elts[pc].opcode)
9694 {
9695 default:
9696 n += 1;
9697 break;
9698 case OP_CHOICES:
9699 n += exp->elts[pc + 1].longconst;
9700 break;
9701 }
9702 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9703 }
9704 return n;
9705 }
9706
9707 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9708 component of LHS (a simple array or a record), updating *POS past
9709 the expression, assuming that LHS is contained in CONTAINER. Does
9710 not modify the inferior's memory, nor does it modify LHS (unless
9711 LHS == CONTAINER). */
9712
9713 static void
9714 assign_component (struct value *container, struct value *lhs, LONGEST index,
9715 struct expression *exp, int *pos)
9716 {
9717 struct value *mark = value_mark ();
9718 struct value *elt;
9719
9720 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9721 {
9722 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9723 struct value *index_val = value_from_longest (index_type, index);
9724
9725 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9726 }
9727 else
9728 {
9729 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9730 elt = ada_to_fixed_value (elt);
9731 }
9732
9733 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9734 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9735 else
9736 value_assign_to_component (container, elt,
9737 ada_evaluate_subexp (NULL, exp, pos,
9738 EVAL_NORMAL));
9739
9740 value_free_to_mark (mark);
9741 }
9742
9743 /* Assuming that LHS represents an lvalue having a record or array
9744 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9745 of that aggregate's value to LHS, advancing *POS past the
9746 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9747 lvalue containing LHS (possibly LHS itself). Does not modify
9748 the inferior's memory, nor does it modify the contents of
9749 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9750
9751 static struct value *
9752 assign_aggregate (struct value *container,
9753 struct value *lhs, struct expression *exp,
9754 int *pos, enum noside noside)
9755 {
9756 struct type *lhs_type;
9757 int n = exp->elts[*pos+1].longconst;
9758 LONGEST low_index, high_index;
9759 int num_specs;
9760 LONGEST *indices;
9761 int max_indices, num_indices;
9762 int i;
9763
9764 *pos += 3;
9765 if (noside != EVAL_NORMAL)
9766 {
9767 for (i = 0; i < n; i += 1)
9768 ada_evaluate_subexp (NULL, exp, pos, noside);
9769 return container;
9770 }
9771
9772 container = ada_coerce_ref (container);
9773 if (ada_is_direct_array_type (value_type (container)))
9774 container = ada_coerce_to_simple_array (container);
9775 lhs = ada_coerce_ref (lhs);
9776 if (!deprecated_value_modifiable (lhs))
9777 error (_("Left operand of assignment is not a modifiable lvalue."));
9778
9779 lhs_type = value_type (lhs);
9780 if (ada_is_direct_array_type (lhs_type))
9781 {
9782 lhs = ada_coerce_to_simple_array (lhs);
9783 lhs_type = value_type (lhs);
9784 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9785 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9786 }
9787 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9788 {
9789 low_index = 0;
9790 high_index = num_visible_fields (lhs_type) - 1;
9791 }
9792 else
9793 error (_("Left-hand side must be array or record."));
9794
9795 num_specs = num_component_specs (exp, *pos - 3);
9796 max_indices = 4 * num_specs + 4;
9797 indices = XALLOCAVEC (LONGEST, max_indices);
9798 indices[0] = indices[1] = low_index - 1;
9799 indices[2] = indices[3] = high_index + 1;
9800 num_indices = 4;
9801
9802 for (i = 0; i < n; i += 1)
9803 {
9804 switch (exp->elts[*pos].opcode)
9805 {
9806 case OP_CHOICES:
9807 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9808 &num_indices, max_indices,
9809 low_index, high_index);
9810 break;
9811 case OP_POSITIONAL:
9812 aggregate_assign_positional (container, lhs, exp, pos, indices,
9813 &num_indices, max_indices,
9814 low_index, high_index);
9815 break;
9816 case OP_OTHERS:
9817 if (i != n-1)
9818 error (_("Misplaced 'others' clause"));
9819 aggregate_assign_others (container, lhs, exp, pos, indices,
9820 num_indices, low_index, high_index);
9821 break;
9822 default:
9823 error (_("Internal error: bad aggregate clause"));
9824 }
9825 }
9826
9827 return container;
9828 }
9829
9830 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9831 construct at *POS, updating *POS past the construct, given that
9832 the positions are relative to lower bound LOW, where HIGH is the
9833 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9834 updating *NUM_INDICES as needed. CONTAINER is as for
9835 assign_aggregate. */
9836 static void
9837 aggregate_assign_positional (struct value *container,
9838 struct value *lhs, struct expression *exp,
9839 int *pos, LONGEST *indices, int *num_indices,
9840 int max_indices, LONGEST low, LONGEST high)
9841 {
9842 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9843
9844 if (ind - 1 == high)
9845 warning (_("Extra components in aggregate ignored."));
9846 if (ind <= high)
9847 {
9848 add_component_interval (ind, ind, indices, num_indices, max_indices);
9849 *pos += 3;
9850 assign_component (container, lhs, ind, exp, pos);
9851 }
9852 else
9853 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9854 }
9855
9856 /* Assign into the components of LHS indexed by the OP_CHOICES
9857 construct at *POS, updating *POS past the construct, given that
9858 the allowable indices are LOW..HIGH. Record the indices assigned
9859 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9860 needed. CONTAINER is as for assign_aggregate. */
9861 static void
9862 aggregate_assign_from_choices (struct value *container,
9863 struct value *lhs, struct expression *exp,
9864 int *pos, LONGEST *indices, int *num_indices,
9865 int max_indices, LONGEST low, LONGEST high)
9866 {
9867 int j;
9868 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9869 int choice_pos, expr_pc;
9870 int is_array = ada_is_direct_array_type (value_type (lhs));
9871
9872 choice_pos = *pos += 3;
9873
9874 for (j = 0; j < n_choices; j += 1)
9875 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9876 expr_pc = *pos;
9877 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9878
9879 for (j = 0; j < n_choices; j += 1)
9880 {
9881 LONGEST lower, upper;
9882 enum exp_opcode op = exp->elts[choice_pos].opcode;
9883
9884 if (op == OP_DISCRETE_RANGE)
9885 {
9886 choice_pos += 1;
9887 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9888 EVAL_NORMAL));
9889 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9890 EVAL_NORMAL));
9891 }
9892 else if (is_array)
9893 {
9894 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9895 EVAL_NORMAL));
9896 upper = lower;
9897 }
9898 else
9899 {
9900 int ind;
9901 const char *name;
9902
9903 switch (op)
9904 {
9905 case OP_NAME:
9906 name = &exp->elts[choice_pos + 2].string;
9907 break;
9908 case OP_VAR_VALUE:
9909 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9910 break;
9911 default:
9912 error (_("Invalid record component association."));
9913 }
9914 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9915 ind = 0;
9916 if (! find_struct_field (name, value_type (lhs), 0,
9917 NULL, NULL, NULL, NULL, &ind))
9918 error (_("Unknown component name: %s."), name);
9919 lower = upper = ind;
9920 }
9921
9922 if (lower <= upper && (lower < low || upper > high))
9923 error (_("Index in component association out of bounds."));
9924
9925 add_component_interval (lower, upper, indices, num_indices,
9926 max_indices);
9927 while (lower <= upper)
9928 {
9929 int pos1;
9930
9931 pos1 = expr_pc;
9932 assign_component (container, lhs, lower, exp, &pos1);
9933 lower += 1;
9934 }
9935 }
9936 }
9937
9938 /* Assign the value of the expression in the OP_OTHERS construct in
9939 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9940 have not been previously assigned. The index intervals already assigned
9941 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9942 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9943 static void
9944 aggregate_assign_others (struct value *container,
9945 struct value *lhs, struct expression *exp,
9946 int *pos, LONGEST *indices, int num_indices,
9947 LONGEST low, LONGEST high)
9948 {
9949 int i;
9950 int expr_pc = *pos + 1;
9951
9952 for (i = 0; i < num_indices - 2; i += 2)
9953 {
9954 LONGEST ind;
9955
9956 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9957 {
9958 int localpos;
9959
9960 localpos = expr_pc;
9961 assign_component (container, lhs, ind, exp, &localpos);
9962 }
9963 }
9964 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9965 }
9966
9967 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9968 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9969 modifying *SIZE as needed. It is an error if *SIZE exceeds
9970 MAX_SIZE. The resulting intervals do not overlap. */
9971 static void
9972 add_component_interval (LONGEST low, LONGEST high,
9973 LONGEST* indices, int *size, int max_size)
9974 {
9975 int i, j;
9976
9977 for (i = 0; i < *size; i += 2) {
9978 if (high >= indices[i] && low <= indices[i + 1])
9979 {
9980 int kh;
9981
9982 for (kh = i + 2; kh < *size; kh += 2)
9983 if (high < indices[kh])
9984 break;
9985 if (low < indices[i])
9986 indices[i] = low;
9987 indices[i + 1] = indices[kh - 1];
9988 if (high > indices[i + 1])
9989 indices[i + 1] = high;
9990 memcpy (indices + i + 2, indices + kh, *size - kh);
9991 *size -= kh - i - 2;
9992 return;
9993 }
9994 else if (high < indices[i])
9995 break;
9996 }
9997
9998 if (*size == max_size)
9999 error (_("Internal error: miscounted aggregate components."));
10000 *size += 2;
10001 for (j = *size-1; j >= i+2; j -= 1)
10002 indices[j] = indices[j - 2];
10003 indices[i] = low;
10004 indices[i + 1] = high;
10005 }
10006
10007 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10008 is different. */
10009
10010 static struct value *
10011 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10012 {
10013 if (type == ada_check_typedef (value_type (arg2)))
10014 return arg2;
10015
10016 if (ada_is_fixed_point_type (type))
10017 return (cast_to_fixed (type, arg2));
10018
10019 if (ada_is_fixed_point_type (value_type (arg2)))
10020 return cast_from_fixed (type, arg2);
10021
10022 return value_cast (type, arg2);
10023 }
10024
10025 /* Evaluating Ada expressions, and printing their result.
10026 ------------------------------------------------------
10027
10028 1. Introduction:
10029 ----------------
10030
10031 We usually evaluate an Ada expression in order to print its value.
10032 We also evaluate an expression in order to print its type, which
10033 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10034 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10035 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10036 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10037 similar.
10038
10039 Evaluating expressions is a little more complicated for Ada entities
10040 than it is for entities in languages such as C. The main reason for
10041 this is that Ada provides types whose definition might be dynamic.
10042 One example of such types is variant records. Or another example
10043 would be an array whose bounds can only be known at run time.
10044
10045 The following description is a general guide as to what should be
10046 done (and what should NOT be done) in order to evaluate an expression
10047 involving such types, and when. This does not cover how the semantic
10048 information is encoded by GNAT as this is covered separatly. For the
10049 document used as the reference for the GNAT encoding, see exp_dbug.ads
10050 in the GNAT sources.
10051
10052 Ideally, we should embed each part of this description next to its
10053 associated code. Unfortunately, the amount of code is so vast right
10054 now that it's hard to see whether the code handling a particular
10055 situation might be duplicated or not. One day, when the code is
10056 cleaned up, this guide might become redundant with the comments
10057 inserted in the code, and we might want to remove it.
10058
10059 2. ``Fixing'' an Entity, the Simple Case:
10060 -----------------------------------------
10061
10062 When evaluating Ada expressions, the tricky issue is that they may
10063 reference entities whose type contents and size are not statically
10064 known. Consider for instance a variant record:
10065
10066 type Rec (Empty : Boolean := True) is record
10067 case Empty is
10068 when True => null;
10069 when False => Value : Integer;
10070 end case;
10071 end record;
10072 Yes : Rec := (Empty => False, Value => 1);
10073 No : Rec := (empty => True);
10074
10075 The size and contents of that record depends on the value of the
10076 descriminant (Rec.Empty). At this point, neither the debugging
10077 information nor the associated type structure in GDB are able to
10078 express such dynamic types. So what the debugger does is to create
10079 "fixed" versions of the type that applies to the specific object.
10080 We also informally refer to this opperation as "fixing" an object,
10081 which means creating its associated fixed type.
10082
10083 Example: when printing the value of variable "Yes" above, its fixed
10084 type would look like this:
10085
10086 type Rec is record
10087 Empty : Boolean;
10088 Value : Integer;
10089 end record;
10090
10091 On the other hand, if we printed the value of "No", its fixed type
10092 would become:
10093
10094 type Rec is record
10095 Empty : Boolean;
10096 end record;
10097
10098 Things become a little more complicated when trying to fix an entity
10099 with a dynamic type that directly contains another dynamic type,
10100 such as an array of variant records, for instance. There are
10101 two possible cases: Arrays, and records.
10102
10103 3. ``Fixing'' Arrays:
10104 ---------------------
10105
10106 The type structure in GDB describes an array in terms of its bounds,
10107 and the type of its elements. By design, all elements in the array
10108 have the same type and we cannot represent an array of variant elements
10109 using the current type structure in GDB. When fixing an array,
10110 we cannot fix the array element, as we would potentially need one
10111 fixed type per element of the array. As a result, the best we can do
10112 when fixing an array is to produce an array whose bounds and size
10113 are correct (allowing us to read it from memory), but without having
10114 touched its element type. Fixing each element will be done later,
10115 when (if) necessary.
10116
10117 Arrays are a little simpler to handle than records, because the same
10118 amount of memory is allocated for each element of the array, even if
10119 the amount of space actually used by each element differs from element
10120 to element. Consider for instance the following array of type Rec:
10121
10122 type Rec_Array is array (1 .. 2) of Rec;
10123
10124 The actual amount of memory occupied by each element might be different
10125 from element to element, depending on the value of their discriminant.
10126 But the amount of space reserved for each element in the array remains
10127 fixed regardless. So we simply need to compute that size using
10128 the debugging information available, from which we can then determine
10129 the array size (we multiply the number of elements of the array by
10130 the size of each element).
10131
10132 The simplest case is when we have an array of a constrained element
10133 type. For instance, consider the following type declarations:
10134
10135 type Bounded_String (Max_Size : Integer) is
10136 Length : Integer;
10137 Buffer : String (1 .. Max_Size);
10138 end record;
10139 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10140
10141 In this case, the compiler describes the array as an array of
10142 variable-size elements (identified by its XVS suffix) for which
10143 the size can be read in the parallel XVZ variable.
10144
10145 In the case of an array of an unconstrained element type, the compiler
10146 wraps the array element inside a private PAD type. This type should not
10147 be shown to the user, and must be "unwrap"'ed before printing. Note
10148 that we also use the adjective "aligner" in our code to designate
10149 these wrapper types.
10150
10151 In some cases, the size allocated for each element is statically
10152 known. In that case, the PAD type already has the correct size,
10153 and the array element should remain unfixed.
10154
10155 But there are cases when this size is not statically known.
10156 For instance, assuming that "Five" is an integer variable:
10157
10158 type Dynamic is array (1 .. Five) of Integer;
10159 type Wrapper (Has_Length : Boolean := False) is record
10160 Data : Dynamic;
10161 case Has_Length is
10162 when True => Length : Integer;
10163 when False => null;
10164 end case;
10165 end record;
10166 type Wrapper_Array is array (1 .. 2) of Wrapper;
10167
10168 Hello : Wrapper_Array := (others => (Has_Length => True,
10169 Data => (others => 17),
10170 Length => 1));
10171
10172
10173 The debugging info would describe variable Hello as being an
10174 array of a PAD type. The size of that PAD type is not statically
10175 known, but can be determined using a parallel XVZ variable.
10176 In that case, a copy of the PAD type with the correct size should
10177 be used for the fixed array.
10178
10179 3. ``Fixing'' record type objects:
10180 ----------------------------------
10181
10182 Things are slightly different from arrays in the case of dynamic
10183 record types. In this case, in order to compute the associated
10184 fixed type, we need to determine the size and offset of each of
10185 its components. This, in turn, requires us to compute the fixed
10186 type of each of these components.
10187
10188 Consider for instance the example:
10189
10190 type Bounded_String (Max_Size : Natural) is record
10191 Str : String (1 .. Max_Size);
10192 Length : Natural;
10193 end record;
10194 My_String : Bounded_String (Max_Size => 10);
10195
10196 In that case, the position of field "Length" depends on the size
10197 of field Str, which itself depends on the value of the Max_Size
10198 discriminant. In order to fix the type of variable My_String,
10199 we need to fix the type of field Str. Therefore, fixing a variant
10200 record requires us to fix each of its components.
10201
10202 However, if a component does not have a dynamic size, the component
10203 should not be fixed. In particular, fields that use a PAD type
10204 should not fixed. Here is an example where this might happen
10205 (assuming type Rec above):
10206
10207 type Container (Big : Boolean) is record
10208 First : Rec;
10209 After : Integer;
10210 case Big is
10211 when True => Another : Integer;
10212 when False => null;
10213 end case;
10214 end record;
10215 My_Container : Container := (Big => False,
10216 First => (Empty => True),
10217 After => 42);
10218
10219 In that example, the compiler creates a PAD type for component First,
10220 whose size is constant, and then positions the component After just
10221 right after it. The offset of component After is therefore constant
10222 in this case.
10223
10224 The debugger computes the position of each field based on an algorithm
10225 that uses, among other things, the actual position and size of the field
10226 preceding it. Let's now imagine that the user is trying to print
10227 the value of My_Container. If the type fixing was recursive, we would
10228 end up computing the offset of field After based on the size of the
10229 fixed version of field First. And since in our example First has
10230 only one actual field, the size of the fixed type is actually smaller
10231 than the amount of space allocated to that field, and thus we would
10232 compute the wrong offset of field After.
10233
10234 To make things more complicated, we need to watch out for dynamic
10235 components of variant records (identified by the ___XVL suffix in
10236 the component name). Even if the target type is a PAD type, the size
10237 of that type might not be statically known. So the PAD type needs
10238 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10239 we might end up with the wrong size for our component. This can be
10240 observed with the following type declarations:
10241
10242 type Octal is new Integer range 0 .. 7;
10243 type Octal_Array is array (Positive range <>) of Octal;
10244 pragma Pack (Octal_Array);
10245
10246 type Octal_Buffer (Size : Positive) is record
10247 Buffer : Octal_Array (1 .. Size);
10248 Length : Integer;
10249 end record;
10250
10251 In that case, Buffer is a PAD type whose size is unset and needs
10252 to be computed by fixing the unwrapped type.
10253
10254 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10255 ----------------------------------------------------------
10256
10257 Lastly, when should the sub-elements of an entity that remained unfixed
10258 thus far, be actually fixed?
10259
10260 The answer is: Only when referencing that element. For instance
10261 when selecting one component of a record, this specific component
10262 should be fixed at that point in time. Or when printing the value
10263 of a record, each component should be fixed before its value gets
10264 printed. Similarly for arrays, the element of the array should be
10265 fixed when printing each element of the array, or when extracting
10266 one element out of that array. On the other hand, fixing should
10267 not be performed on the elements when taking a slice of an array!
10268
10269 Note that one of the side-effects of miscomputing the offset and
10270 size of each field is that we end up also miscomputing the size
10271 of the containing type. This can have adverse results when computing
10272 the value of an entity. GDB fetches the value of an entity based
10273 on the size of its type, and thus a wrong size causes GDB to fetch
10274 the wrong amount of memory. In the case where the computed size is
10275 too small, GDB fetches too little data to print the value of our
10276 entiry. Results in this case as unpredicatble, as we usually read
10277 past the buffer containing the data =:-o. */
10278
10279 /* Implement the evaluate_exp routine in the exp_descriptor structure
10280 for the Ada language. */
10281
10282 static struct value *
10283 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10284 int *pos, enum noside noside)
10285 {
10286 enum exp_opcode op;
10287 int tem;
10288 int pc;
10289 int preeval_pos;
10290 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10291 struct type *type;
10292 int nargs, oplen;
10293 struct value **argvec;
10294
10295 pc = *pos;
10296 *pos += 1;
10297 op = exp->elts[pc].opcode;
10298
10299 switch (op)
10300 {
10301 default:
10302 *pos -= 1;
10303 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10304
10305 if (noside == EVAL_NORMAL)
10306 arg1 = unwrap_value (arg1);
10307
10308 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10309 then we need to perform the conversion manually, because
10310 evaluate_subexp_standard doesn't do it. This conversion is
10311 necessary in Ada because the different kinds of float/fixed
10312 types in Ada have different representations.
10313
10314 Similarly, we need to perform the conversion from OP_LONG
10315 ourselves. */
10316 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10317 arg1 = ada_value_cast (expect_type, arg1, noside);
10318
10319 return arg1;
10320
10321 case OP_STRING:
10322 {
10323 struct value *result;
10324
10325 *pos -= 1;
10326 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10327 /* The result type will have code OP_STRING, bashed there from
10328 OP_ARRAY. Bash it back. */
10329 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10330 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10331 return result;
10332 }
10333
10334 case UNOP_CAST:
10335 (*pos) += 2;
10336 type = exp->elts[pc + 1].type;
10337 arg1 = evaluate_subexp (type, exp, pos, noside);
10338 if (noside == EVAL_SKIP)
10339 goto nosideret;
10340 arg1 = ada_value_cast (type, arg1, noside);
10341 return arg1;
10342
10343 case UNOP_QUAL:
10344 (*pos) += 2;
10345 type = exp->elts[pc + 1].type;
10346 return ada_evaluate_subexp (type, exp, pos, noside);
10347
10348 case BINOP_ASSIGN:
10349 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10350 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10351 {
10352 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10353 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10354 return arg1;
10355 return ada_value_assign (arg1, arg1);
10356 }
10357 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10358 except if the lhs of our assignment is a convenience variable.
10359 In the case of assigning to a convenience variable, the lhs
10360 should be exactly the result of the evaluation of the rhs. */
10361 type = value_type (arg1);
10362 if (VALUE_LVAL (arg1) == lval_internalvar)
10363 type = NULL;
10364 arg2 = evaluate_subexp (type, exp, pos, noside);
10365 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10366 return arg1;
10367 if (ada_is_fixed_point_type (value_type (arg1)))
10368 arg2 = cast_to_fixed (value_type (arg1), arg2);
10369 else if (ada_is_fixed_point_type (value_type (arg2)))
10370 error
10371 (_("Fixed-point values must be assigned to fixed-point variables"));
10372 else
10373 arg2 = coerce_for_assign (value_type (arg1), arg2);
10374 return ada_value_assign (arg1, arg2);
10375
10376 case BINOP_ADD:
10377 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10378 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10379 if (noside == EVAL_SKIP)
10380 goto nosideret;
10381 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10382 return (value_from_longest
10383 (value_type (arg1),
10384 value_as_long (arg1) + value_as_long (arg2)));
10385 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10386 return (value_from_longest
10387 (value_type (arg2),
10388 value_as_long (arg1) + value_as_long (arg2)));
10389 if ((ada_is_fixed_point_type (value_type (arg1))
10390 || ada_is_fixed_point_type (value_type (arg2)))
10391 && value_type (arg1) != value_type (arg2))
10392 error (_("Operands of fixed-point addition must have the same type"));
10393 /* Do the addition, and cast the result to the type of the first
10394 argument. We cannot cast the result to a reference type, so if
10395 ARG1 is a reference type, find its underlying type. */
10396 type = value_type (arg1);
10397 while (TYPE_CODE (type) == TYPE_CODE_REF)
10398 type = TYPE_TARGET_TYPE (type);
10399 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10400 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10401
10402 case BINOP_SUB:
10403 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10404 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10405 if (noside == EVAL_SKIP)
10406 goto nosideret;
10407 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10408 return (value_from_longest
10409 (value_type (arg1),
10410 value_as_long (arg1) - value_as_long (arg2)));
10411 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10412 return (value_from_longest
10413 (value_type (arg2),
10414 value_as_long (arg1) - value_as_long (arg2)));
10415 if ((ada_is_fixed_point_type (value_type (arg1))
10416 || ada_is_fixed_point_type (value_type (arg2)))
10417 && value_type (arg1) != value_type (arg2))
10418 error (_("Operands of fixed-point subtraction "
10419 "must have the same type"));
10420 /* Do the substraction, and cast the result to the type of the first
10421 argument. We cannot cast the result to a reference type, so if
10422 ARG1 is a reference type, find its underlying type. */
10423 type = value_type (arg1);
10424 while (TYPE_CODE (type) == TYPE_CODE_REF)
10425 type = TYPE_TARGET_TYPE (type);
10426 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10427 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10428
10429 case BINOP_MUL:
10430 case BINOP_DIV:
10431 case BINOP_REM:
10432 case BINOP_MOD:
10433 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10434 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10435 if (noside == EVAL_SKIP)
10436 goto nosideret;
10437 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10438 {
10439 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10440 return value_zero (value_type (arg1), not_lval);
10441 }
10442 else
10443 {
10444 type = builtin_type (exp->gdbarch)->builtin_double;
10445 if (ada_is_fixed_point_type (value_type (arg1)))
10446 arg1 = cast_from_fixed (type, arg1);
10447 if (ada_is_fixed_point_type (value_type (arg2)))
10448 arg2 = cast_from_fixed (type, arg2);
10449 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10450 return ada_value_binop (arg1, arg2, op);
10451 }
10452
10453 case BINOP_EQUAL:
10454 case BINOP_NOTEQUAL:
10455 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10456 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10457 if (noside == EVAL_SKIP)
10458 goto nosideret;
10459 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10460 tem = 0;
10461 else
10462 {
10463 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10464 tem = ada_value_equal (arg1, arg2);
10465 }
10466 if (op == BINOP_NOTEQUAL)
10467 tem = !tem;
10468 type = language_bool_type (exp->language_defn, exp->gdbarch);
10469 return value_from_longest (type, (LONGEST) tem);
10470
10471 case UNOP_NEG:
10472 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10473 if (noside == EVAL_SKIP)
10474 goto nosideret;
10475 else if (ada_is_fixed_point_type (value_type (arg1)))
10476 return value_cast (value_type (arg1), value_neg (arg1));
10477 else
10478 {
10479 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10480 return value_neg (arg1);
10481 }
10482
10483 case BINOP_LOGICAL_AND:
10484 case BINOP_LOGICAL_OR:
10485 case UNOP_LOGICAL_NOT:
10486 {
10487 struct value *val;
10488
10489 *pos -= 1;
10490 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10491 type = language_bool_type (exp->language_defn, exp->gdbarch);
10492 return value_cast (type, val);
10493 }
10494
10495 case BINOP_BITWISE_AND:
10496 case BINOP_BITWISE_IOR:
10497 case BINOP_BITWISE_XOR:
10498 {
10499 struct value *val;
10500
10501 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10502 *pos = pc;
10503 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10504
10505 return value_cast (value_type (arg1), val);
10506 }
10507
10508 case OP_VAR_VALUE:
10509 *pos -= 1;
10510
10511 if (noside == EVAL_SKIP)
10512 {
10513 *pos += 4;
10514 goto nosideret;
10515 }
10516
10517 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10518 /* Only encountered when an unresolved symbol occurs in a
10519 context other than a function call, in which case, it is
10520 invalid. */
10521 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10522 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10523
10524 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10525 {
10526 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10527 /* Check to see if this is a tagged type. We also need to handle
10528 the case where the type is a reference to a tagged type, but
10529 we have to be careful to exclude pointers to tagged types.
10530 The latter should be shown as usual (as a pointer), whereas
10531 a reference should mostly be transparent to the user. */
10532 if (ada_is_tagged_type (type, 0)
10533 || (TYPE_CODE (type) == TYPE_CODE_REF
10534 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10535 {
10536 /* Tagged types are a little special in the fact that the real
10537 type is dynamic and can only be determined by inspecting the
10538 object's tag. This means that we need to get the object's
10539 value first (EVAL_NORMAL) and then extract the actual object
10540 type from its tag.
10541
10542 Note that we cannot skip the final step where we extract
10543 the object type from its tag, because the EVAL_NORMAL phase
10544 results in dynamic components being resolved into fixed ones.
10545 This can cause problems when trying to print the type
10546 description of tagged types whose parent has a dynamic size:
10547 We use the type name of the "_parent" component in order
10548 to print the name of the ancestor type in the type description.
10549 If that component had a dynamic size, the resolution into
10550 a fixed type would result in the loss of that type name,
10551 thus preventing us from printing the name of the ancestor
10552 type in the type description. */
10553 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10554
10555 if (TYPE_CODE (type) != TYPE_CODE_REF)
10556 {
10557 struct type *actual_type;
10558
10559 actual_type = type_from_tag (ada_value_tag (arg1));
10560 if (actual_type == NULL)
10561 /* If, for some reason, we were unable to determine
10562 the actual type from the tag, then use the static
10563 approximation that we just computed as a fallback.
10564 This can happen if the debugging information is
10565 incomplete, for instance. */
10566 actual_type = type;
10567 return value_zero (actual_type, not_lval);
10568 }
10569 else
10570 {
10571 /* In the case of a ref, ada_coerce_ref takes care
10572 of determining the actual type. But the evaluation
10573 should return a ref as it should be valid to ask
10574 for its address; so rebuild a ref after coerce. */
10575 arg1 = ada_coerce_ref (arg1);
10576 return value_ref (arg1);
10577 }
10578 }
10579
10580 /* Records and unions for which GNAT encodings have been
10581 generated need to be statically fixed as well.
10582 Otherwise, non-static fixing produces a type where
10583 all dynamic properties are removed, which prevents "ptype"
10584 from being able to completely describe the type.
10585 For instance, a case statement in a variant record would be
10586 replaced by the relevant components based on the actual
10587 value of the discriminants. */
10588 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10589 && dynamic_template_type (type) != NULL)
10590 || (TYPE_CODE (type) == TYPE_CODE_UNION
10591 && ada_find_parallel_type (type, "___XVU") != NULL))
10592 {
10593 *pos += 4;
10594 return value_zero (to_static_fixed_type (type), not_lval);
10595 }
10596 }
10597
10598 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10599 return ada_to_fixed_value (arg1);
10600
10601 case OP_FUNCALL:
10602 (*pos) += 2;
10603
10604 /* Allocate arg vector, including space for the function to be
10605 called in argvec[0] and a terminating NULL. */
10606 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10607 argvec = XALLOCAVEC (struct value *, nargs + 2);
10608
10609 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10610 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10611 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10612 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10613 else
10614 {
10615 for (tem = 0; tem <= nargs; tem += 1)
10616 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10617 argvec[tem] = 0;
10618
10619 if (noside == EVAL_SKIP)
10620 goto nosideret;
10621 }
10622
10623 if (ada_is_constrained_packed_array_type
10624 (desc_base_type (value_type (argvec[0]))))
10625 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10626 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10627 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10628 /* This is a packed array that has already been fixed, and
10629 therefore already coerced to a simple array. Nothing further
10630 to do. */
10631 ;
10632 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10633 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10634 && VALUE_LVAL (argvec[0]) == lval_memory))
10635 argvec[0] = value_addr (argvec[0]);
10636
10637 type = ada_check_typedef (value_type (argvec[0]));
10638
10639 /* Ada allows us to implicitly dereference arrays when subscripting
10640 them. So, if this is an array typedef (encoding use for array
10641 access types encoded as fat pointers), strip it now. */
10642 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10643 type = ada_typedef_target_type (type);
10644
10645 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10646 {
10647 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10648 {
10649 case TYPE_CODE_FUNC:
10650 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10651 break;
10652 case TYPE_CODE_ARRAY:
10653 break;
10654 case TYPE_CODE_STRUCT:
10655 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10656 argvec[0] = ada_value_ind (argvec[0]);
10657 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10658 break;
10659 default:
10660 error (_("cannot subscript or call something of type `%s'"),
10661 ada_type_name (value_type (argvec[0])));
10662 break;
10663 }
10664 }
10665
10666 switch (TYPE_CODE (type))
10667 {
10668 case TYPE_CODE_FUNC:
10669 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10670 {
10671 struct type *rtype = TYPE_TARGET_TYPE (type);
10672
10673 if (TYPE_GNU_IFUNC (type))
10674 return allocate_value (TYPE_TARGET_TYPE (rtype));
10675 return allocate_value (rtype);
10676 }
10677 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10678 case TYPE_CODE_INTERNAL_FUNCTION:
10679 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10680 /* We don't know anything about what the internal
10681 function might return, but we have to return
10682 something. */
10683 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10684 not_lval);
10685 else
10686 return call_internal_function (exp->gdbarch, exp->language_defn,
10687 argvec[0], nargs, argvec + 1);
10688
10689 case TYPE_CODE_STRUCT:
10690 {
10691 int arity;
10692
10693 arity = ada_array_arity (type);
10694 type = ada_array_element_type (type, nargs);
10695 if (type == NULL)
10696 error (_("cannot subscript or call a record"));
10697 if (arity != nargs)
10698 error (_("wrong number of subscripts; expecting %d"), arity);
10699 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10700 return value_zero (ada_aligned_type (type), lval_memory);
10701 return
10702 unwrap_value (ada_value_subscript
10703 (argvec[0], nargs, argvec + 1));
10704 }
10705 case TYPE_CODE_ARRAY:
10706 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10707 {
10708 type = ada_array_element_type (type, nargs);
10709 if (type == NULL)
10710 error (_("element type of array unknown"));
10711 else
10712 return value_zero (ada_aligned_type (type), lval_memory);
10713 }
10714 return
10715 unwrap_value (ada_value_subscript
10716 (ada_coerce_to_simple_array (argvec[0]),
10717 nargs, argvec + 1));
10718 case TYPE_CODE_PTR: /* Pointer to array */
10719 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10720 {
10721 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10722 type = ada_array_element_type (type, nargs);
10723 if (type == NULL)
10724 error (_("element type of array unknown"));
10725 else
10726 return value_zero (ada_aligned_type (type), lval_memory);
10727 }
10728 return
10729 unwrap_value (ada_value_ptr_subscript (argvec[0],
10730 nargs, argvec + 1));
10731
10732 default:
10733 error (_("Attempt to index or call something other than an "
10734 "array or function"));
10735 }
10736
10737 case TERNOP_SLICE:
10738 {
10739 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10740 struct value *low_bound_val =
10741 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10742 struct value *high_bound_val =
10743 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10744 LONGEST low_bound;
10745 LONGEST high_bound;
10746
10747 low_bound_val = coerce_ref (low_bound_val);
10748 high_bound_val = coerce_ref (high_bound_val);
10749 low_bound = value_as_long (low_bound_val);
10750 high_bound = value_as_long (high_bound_val);
10751
10752 if (noside == EVAL_SKIP)
10753 goto nosideret;
10754
10755 /* If this is a reference to an aligner type, then remove all
10756 the aligners. */
10757 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10758 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10759 TYPE_TARGET_TYPE (value_type (array)) =
10760 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10761
10762 if (ada_is_constrained_packed_array_type (value_type (array)))
10763 error (_("cannot slice a packed array"));
10764
10765 /* If this is a reference to an array or an array lvalue,
10766 convert to a pointer. */
10767 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10768 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10769 && VALUE_LVAL (array) == lval_memory))
10770 array = value_addr (array);
10771
10772 if (noside == EVAL_AVOID_SIDE_EFFECTS
10773 && ada_is_array_descriptor_type (ada_check_typedef
10774 (value_type (array))))
10775 return empty_array (ada_type_of_array (array, 0), low_bound);
10776
10777 array = ada_coerce_to_simple_array_ptr (array);
10778
10779 /* If we have more than one level of pointer indirection,
10780 dereference the value until we get only one level. */
10781 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10782 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10783 == TYPE_CODE_PTR))
10784 array = value_ind (array);
10785
10786 /* Make sure we really do have an array type before going further,
10787 to avoid a SEGV when trying to get the index type or the target
10788 type later down the road if the debug info generated by
10789 the compiler is incorrect or incomplete. */
10790 if (!ada_is_simple_array_type (value_type (array)))
10791 error (_("cannot take slice of non-array"));
10792
10793 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10794 == TYPE_CODE_PTR)
10795 {
10796 struct type *type0 = ada_check_typedef (value_type (array));
10797
10798 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10799 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10800 else
10801 {
10802 struct type *arr_type0 =
10803 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10804
10805 return ada_value_slice_from_ptr (array, arr_type0,
10806 longest_to_int (low_bound),
10807 longest_to_int (high_bound));
10808 }
10809 }
10810 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10811 return array;
10812 else if (high_bound < low_bound)
10813 return empty_array (value_type (array), low_bound);
10814 else
10815 return ada_value_slice (array, longest_to_int (low_bound),
10816 longest_to_int (high_bound));
10817 }
10818
10819 case UNOP_IN_RANGE:
10820 (*pos) += 2;
10821 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10822 type = check_typedef (exp->elts[pc + 1].type);
10823
10824 if (noside == EVAL_SKIP)
10825 goto nosideret;
10826
10827 switch (TYPE_CODE (type))
10828 {
10829 default:
10830 lim_warning (_("Membership test incompletely implemented; "
10831 "always returns true"));
10832 type = language_bool_type (exp->language_defn, exp->gdbarch);
10833 return value_from_longest (type, (LONGEST) 1);
10834
10835 case TYPE_CODE_RANGE:
10836 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10837 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10838 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10839 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10840 type = language_bool_type (exp->language_defn, exp->gdbarch);
10841 return
10842 value_from_longest (type,
10843 (value_less (arg1, arg3)
10844 || value_equal (arg1, arg3))
10845 && (value_less (arg2, arg1)
10846 || value_equal (arg2, arg1)));
10847 }
10848
10849 case BINOP_IN_BOUNDS:
10850 (*pos) += 2;
10851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10852 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10853
10854 if (noside == EVAL_SKIP)
10855 goto nosideret;
10856
10857 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10858 {
10859 type = language_bool_type (exp->language_defn, exp->gdbarch);
10860 return value_zero (type, not_lval);
10861 }
10862
10863 tem = longest_to_int (exp->elts[pc + 1].longconst);
10864
10865 type = ada_index_type (value_type (arg2), tem, "range");
10866 if (!type)
10867 type = value_type (arg1);
10868
10869 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10870 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10871
10872 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10873 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10874 type = language_bool_type (exp->language_defn, exp->gdbarch);
10875 return
10876 value_from_longest (type,
10877 (value_less (arg1, arg3)
10878 || value_equal (arg1, arg3))
10879 && (value_less (arg2, arg1)
10880 || value_equal (arg2, arg1)));
10881
10882 case TERNOP_IN_RANGE:
10883 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10884 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10885 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10886
10887 if (noside == EVAL_SKIP)
10888 goto nosideret;
10889
10890 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10891 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10892 type = language_bool_type (exp->language_defn, exp->gdbarch);
10893 return
10894 value_from_longest (type,
10895 (value_less (arg1, arg3)
10896 || value_equal (arg1, arg3))
10897 && (value_less (arg2, arg1)
10898 || value_equal (arg2, arg1)));
10899
10900 case OP_ATR_FIRST:
10901 case OP_ATR_LAST:
10902 case OP_ATR_LENGTH:
10903 {
10904 struct type *type_arg;
10905
10906 if (exp->elts[*pos].opcode == OP_TYPE)
10907 {
10908 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10909 arg1 = NULL;
10910 type_arg = check_typedef (exp->elts[pc + 2].type);
10911 }
10912 else
10913 {
10914 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10915 type_arg = NULL;
10916 }
10917
10918 if (exp->elts[*pos].opcode != OP_LONG)
10919 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10920 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10921 *pos += 4;
10922
10923 if (noside == EVAL_SKIP)
10924 goto nosideret;
10925
10926 if (type_arg == NULL)
10927 {
10928 arg1 = ada_coerce_ref (arg1);
10929
10930 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10931 arg1 = ada_coerce_to_simple_array (arg1);
10932
10933 if (op == OP_ATR_LENGTH)
10934 type = builtin_type (exp->gdbarch)->builtin_int;
10935 else
10936 {
10937 type = ada_index_type (value_type (arg1), tem,
10938 ada_attribute_name (op));
10939 if (type == NULL)
10940 type = builtin_type (exp->gdbarch)->builtin_int;
10941 }
10942
10943 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10944 return allocate_value (type);
10945
10946 switch (op)
10947 {
10948 default: /* Should never happen. */
10949 error (_("unexpected attribute encountered"));
10950 case OP_ATR_FIRST:
10951 return value_from_longest
10952 (type, ada_array_bound (arg1, tem, 0));
10953 case OP_ATR_LAST:
10954 return value_from_longest
10955 (type, ada_array_bound (arg1, tem, 1));
10956 case OP_ATR_LENGTH:
10957 return value_from_longest
10958 (type, ada_array_length (arg1, tem));
10959 }
10960 }
10961 else if (discrete_type_p (type_arg))
10962 {
10963 struct type *range_type;
10964 const char *name = ada_type_name (type_arg);
10965
10966 range_type = NULL;
10967 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10968 range_type = to_fixed_range_type (type_arg, NULL);
10969 if (range_type == NULL)
10970 range_type = type_arg;
10971 switch (op)
10972 {
10973 default:
10974 error (_("unexpected attribute encountered"));
10975 case OP_ATR_FIRST:
10976 return value_from_longest
10977 (range_type, ada_discrete_type_low_bound (range_type));
10978 case OP_ATR_LAST:
10979 return value_from_longest
10980 (range_type, ada_discrete_type_high_bound (range_type));
10981 case OP_ATR_LENGTH:
10982 error (_("the 'length attribute applies only to array types"));
10983 }
10984 }
10985 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10986 error (_("unimplemented type attribute"));
10987 else
10988 {
10989 LONGEST low, high;
10990
10991 if (ada_is_constrained_packed_array_type (type_arg))
10992 type_arg = decode_constrained_packed_array_type (type_arg);
10993
10994 if (op == OP_ATR_LENGTH)
10995 type = builtin_type (exp->gdbarch)->builtin_int;
10996 else
10997 {
10998 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10999 if (type == NULL)
11000 type = builtin_type (exp->gdbarch)->builtin_int;
11001 }
11002
11003 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11004 return allocate_value (type);
11005
11006 switch (op)
11007 {
11008 default:
11009 error (_("unexpected attribute encountered"));
11010 case OP_ATR_FIRST:
11011 low = ada_array_bound_from_type (type_arg, tem, 0);
11012 return value_from_longest (type, low);
11013 case OP_ATR_LAST:
11014 high = ada_array_bound_from_type (type_arg, tem, 1);
11015 return value_from_longest (type, high);
11016 case OP_ATR_LENGTH:
11017 low = ada_array_bound_from_type (type_arg, tem, 0);
11018 high = ada_array_bound_from_type (type_arg, tem, 1);
11019 return value_from_longest (type, high - low + 1);
11020 }
11021 }
11022 }
11023
11024 case OP_ATR_TAG:
11025 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11026 if (noside == EVAL_SKIP)
11027 goto nosideret;
11028
11029 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11030 return value_zero (ada_tag_type (arg1), not_lval);
11031
11032 return ada_value_tag (arg1);
11033
11034 case OP_ATR_MIN:
11035 case OP_ATR_MAX:
11036 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11037 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11038 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11039 if (noside == EVAL_SKIP)
11040 goto nosideret;
11041 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11042 return value_zero (value_type (arg1), not_lval);
11043 else
11044 {
11045 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11046 return value_binop (arg1, arg2,
11047 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11048 }
11049
11050 case OP_ATR_MODULUS:
11051 {
11052 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11053
11054 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11055 if (noside == EVAL_SKIP)
11056 goto nosideret;
11057
11058 if (!ada_is_modular_type (type_arg))
11059 error (_("'modulus must be applied to modular type"));
11060
11061 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11062 ada_modulus (type_arg));
11063 }
11064
11065
11066 case OP_ATR_POS:
11067 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11068 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11069 if (noside == EVAL_SKIP)
11070 goto nosideret;
11071 type = builtin_type (exp->gdbarch)->builtin_int;
11072 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11073 return value_zero (type, not_lval);
11074 else
11075 return value_pos_atr (type, arg1);
11076
11077 case OP_ATR_SIZE:
11078 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11079 type = value_type (arg1);
11080
11081 /* If the argument is a reference, then dereference its type, since
11082 the user is really asking for the size of the actual object,
11083 not the size of the pointer. */
11084 if (TYPE_CODE (type) == TYPE_CODE_REF)
11085 type = TYPE_TARGET_TYPE (type);
11086
11087 if (noside == EVAL_SKIP)
11088 goto nosideret;
11089 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11090 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11091 else
11092 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11093 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11094
11095 case OP_ATR_VAL:
11096 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11097 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11098 type = exp->elts[pc + 2].type;
11099 if (noside == EVAL_SKIP)
11100 goto nosideret;
11101 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11102 return value_zero (type, not_lval);
11103 else
11104 return value_val_atr (type, arg1);
11105
11106 case BINOP_EXP:
11107 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11108 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11109 if (noside == EVAL_SKIP)
11110 goto nosideret;
11111 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11112 return value_zero (value_type (arg1), not_lval);
11113 else
11114 {
11115 /* For integer exponentiation operations,
11116 only promote the first argument. */
11117 if (is_integral_type (value_type (arg2)))
11118 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11119 else
11120 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11121
11122 return value_binop (arg1, arg2, op);
11123 }
11124
11125 case UNOP_PLUS:
11126 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11127 if (noside == EVAL_SKIP)
11128 goto nosideret;
11129 else
11130 return arg1;
11131
11132 case UNOP_ABS:
11133 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11134 if (noside == EVAL_SKIP)
11135 goto nosideret;
11136 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11137 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11138 return value_neg (arg1);
11139 else
11140 return arg1;
11141
11142 case UNOP_IND:
11143 preeval_pos = *pos;
11144 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11145 if (noside == EVAL_SKIP)
11146 goto nosideret;
11147 type = ada_check_typedef (value_type (arg1));
11148 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11149 {
11150 if (ada_is_array_descriptor_type (type))
11151 /* GDB allows dereferencing GNAT array descriptors. */
11152 {
11153 struct type *arrType = ada_type_of_array (arg1, 0);
11154
11155 if (arrType == NULL)
11156 error (_("Attempt to dereference null array pointer."));
11157 return value_at_lazy (arrType, 0);
11158 }
11159 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11160 || TYPE_CODE (type) == TYPE_CODE_REF
11161 /* In C you can dereference an array to get the 1st elt. */
11162 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11163 {
11164 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11165 only be determined by inspecting the object's tag.
11166 This means that we need to evaluate completely the
11167 expression in order to get its type. */
11168
11169 if ((TYPE_CODE (type) == TYPE_CODE_REF
11170 || TYPE_CODE (type) == TYPE_CODE_PTR)
11171 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11172 {
11173 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11174 EVAL_NORMAL);
11175 type = value_type (ada_value_ind (arg1));
11176 }
11177 else
11178 {
11179 type = to_static_fixed_type
11180 (ada_aligned_type
11181 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11182 }
11183 ada_ensure_varsize_limit (type);
11184 return value_zero (type, lval_memory);
11185 }
11186 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11187 {
11188 /* GDB allows dereferencing an int. */
11189 if (expect_type == NULL)
11190 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11191 lval_memory);
11192 else
11193 {
11194 expect_type =
11195 to_static_fixed_type (ada_aligned_type (expect_type));
11196 return value_zero (expect_type, lval_memory);
11197 }
11198 }
11199 else
11200 error (_("Attempt to take contents of a non-pointer value."));
11201 }
11202 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11203 type = ada_check_typedef (value_type (arg1));
11204
11205 if (TYPE_CODE (type) == TYPE_CODE_INT)
11206 /* GDB allows dereferencing an int. If we were given
11207 the expect_type, then use that as the target type.
11208 Otherwise, assume that the target type is an int. */
11209 {
11210 if (expect_type != NULL)
11211 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11212 arg1));
11213 else
11214 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11215 (CORE_ADDR) value_as_address (arg1));
11216 }
11217
11218 if (ada_is_array_descriptor_type (type))
11219 /* GDB allows dereferencing GNAT array descriptors. */
11220 return ada_coerce_to_simple_array (arg1);
11221 else
11222 return ada_value_ind (arg1);
11223
11224 case STRUCTOP_STRUCT:
11225 tem = longest_to_int (exp->elts[pc + 1].longconst);
11226 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11227 preeval_pos = *pos;
11228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11229 if (noside == EVAL_SKIP)
11230 goto nosideret;
11231 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11232 {
11233 struct type *type1 = value_type (arg1);
11234
11235 if (ada_is_tagged_type (type1, 1))
11236 {
11237 type = ada_lookup_struct_elt_type (type1,
11238 &exp->elts[pc + 2].string,
11239 1, 1, NULL);
11240
11241 /* If the field is not found, check if it exists in the
11242 extension of this object's type. This means that we
11243 need to evaluate completely the expression. */
11244
11245 if (type == NULL)
11246 {
11247 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11248 EVAL_NORMAL);
11249 arg1 = ada_value_struct_elt (arg1,
11250 &exp->elts[pc + 2].string,
11251 0);
11252 arg1 = unwrap_value (arg1);
11253 type = value_type (ada_to_fixed_value (arg1));
11254 }
11255 }
11256 else
11257 type =
11258 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11259 0, NULL);
11260
11261 return value_zero (ada_aligned_type (type), lval_memory);
11262 }
11263 else
11264 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11265 arg1 = unwrap_value (arg1);
11266 return ada_to_fixed_value (arg1);
11267
11268 case OP_TYPE:
11269 /* The value is not supposed to be used. This is here to make it
11270 easier to accommodate expressions that contain types. */
11271 (*pos) += 2;
11272 if (noside == EVAL_SKIP)
11273 goto nosideret;
11274 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11275 return allocate_value (exp->elts[pc + 1].type);
11276 else
11277 error (_("Attempt to use a type name as an expression"));
11278
11279 case OP_AGGREGATE:
11280 case OP_CHOICES:
11281 case OP_OTHERS:
11282 case OP_DISCRETE_RANGE:
11283 case OP_POSITIONAL:
11284 case OP_NAME:
11285 if (noside == EVAL_NORMAL)
11286 switch (op)
11287 {
11288 case OP_NAME:
11289 error (_("Undefined name, ambiguous name, or renaming used in "
11290 "component association: %s."), &exp->elts[pc+2].string);
11291 case OP_AGGREGATE:
11292 error (_("Aggregates only allowed on the right of an assignment"));
11293 default:
11294 internal_error (__FILE__, __LINE__,
11295 _("aggregate apparently mangled"));
11296 }
11297
11298 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11299 *pos += oplen - 1;
11300 for (tem = 0; tem < nargs; tem += 1)
11301 ada_evaluate_subexp (NULL, exp, pos, noside);
11302 goto nosideret;
11303 }
11304
11305 nosideret:
11306 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11307 }
11308 \f
11309
11310 /* Fixed point */
11311
11312 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11313 type name that encodes the 'small and 'delta information.
11314 Otherwise, return NULL. */
11315
11316 static const char *
11317 fixed_type_info (struct type *type)
11318 {
11319 const char *name = ada_type_name (type);
11320 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11321
11322 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11323 {
11324 const char *tail = strstr (name, "___XF_");
11325
11326 if (tail == NULL)
11327 return NULL;
11328 else
11329 return tail + 5;
11330 }
11331 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11332 return fixed_type_info (TYPE_TARGET_TYPE (type));
11333 else
11334 return NULL;
11335 }
11336
11337 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11338
11339 int
11340 ada_is_fixed_point_type (struct type *type)
11341 {
11342 return fixed_type_info (type) != NULL;
11343 }
11344
11345 /* Return non-zero iff TYPE represents a System.Address type. */
11346
11347 int
11348 ada_is_system_address_type (struct type *type)
11349 {
11350 return (TYPE_NAME (type)
11351 && strcmp (TYPE_NAME (type), "system__address") == 0);
11352 }
11353
11354 /* Assuming that TYPE is the representation of an Ada fixed-point
11355 type, return its delta, or -1 if the type is malformed and the
11356 delta cannot be determined. */
11357
11358 DOUBLEST
11359 ada_delta (struct type *type)
11360 {
11361 const char *encoding = fixed_type_info (type);
11362 DOUBLEST num, den;
11363
11364 /* Strictly speaking, num and den are encoded as integer. However,
11365 they may not fit into a long, and they will have to be converted
11366 to DOUBLEST anyway. So scan them as DOUBLEST. */
11367 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11368 &num, &den) < 2)
11369 return -1.0;
11370 else
11371 return num / den;
11372 }
11373
11374 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11375 factor ('SMALL value) associated with the type. */
11376
11377 static DOUBLEST
11378 scaling_factor (struct type *type)
11379 {
11380 const char *encoding = fixed_type_info (type);
11381 DOUBLEST num0, den0, num1, den1;
11382 int n;
11383
11384 /* Strictly speaking, num's and den's are encoded as integer. However,
11385 they may not fit into a long, and they will have to be converted
11386 to DOUBLEST anyway. So scan them as DOUBLEST. */
11387 n = sscanf (encoding,
11388 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11389 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11390 &num0, &den0, &num1, &den1);
11391
11392 if (n < 2)
11393 return 1.0;
11394 else if (n == 4)
11395 return num1 / den1;
11396 else
11397 return num0 / den0;
11398 }
11399
11400
11401 /* Assuming that X is the representation of a value of fixed-point
11402 type TYPE, return its floating-point equivalent. */
11403
11404 DOUBLEST
11405 ada_fixed_to_float (struct type *type, LONGEST x)
11406 {
11407 return (DOUBLEST) x *scaling_factor (type);
11408 }
11409
11410 /* The representation of a fixed-point value of type TYPE
11411 corresponding to the value X. */
11412
11413 LONGEST
11414 ada_float_to_fixed (struct type *type, DOUBLEST x)
11415 {
11416 return (LONGEST) (x / scaling_factor (type) + 0.5);
11417 }
11418
11419 \f
11420
11421 /* Range types */
11422
11423 /* Scan STR beginning at position K for a discriminant name, and
11424 return the value of that discriminant field of DVAL in *PX. If
11425 PNEW_K is not null, put the position of the character beyond the
11426 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11427 not alter *PX and *PNEW_K if unsuccessful. */
11428
11429 static int
11430 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11431 int *pnew_k)
11432 {
11433 static char *bound_buffer = NULL;
11434 static size_t bound_buffer_len = 0;
11435 char *bound;
11436 char *pend;
11437 struct value *bound_val;
11438
11439 if (dval == NULL || str == NULL || str[k] == '\0')
11440 return 0;
11441
11442 pend = strstr (str + k, "__");
11443 if (pend == NULL)
11444 {
11445 bound = str + k;
11446 k += strlen (bound);
11447 }
11448 else
11449 {
11450 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11451 bound = bound_buffer;
11452 strncpy (bound_buffer, str + k, pend - (str + k));
11453 bound[pend - (str + k)] = '\0';
11454 k = pend - str;
11455 }
11456
11457 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11458 if (bound_val == NULL)
11459 return 0;
11460
11461 *px = value_as_long (bound_val);
11462 if (pnew_k != NULL)
11463 *pnew_k = k;
11464 return 1;
11465 }
11466
11467 /* Value of variable named NAME in the current environment. If
11468 no such variable found, then if ERR_MSG is null, returns 0, and
11469 otherwise causes an error with message ERR_MSG. */
11470
11471 static struct value *
11472 get_var_value (char *name, char *err_msg)
11473 {
11474 struct block_symbol *syms;
11475 int nsyms;
11476
11477 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11478 &syms);
11479
11480 if (nsyms != 1)
11481 {
11482 if (err_msg == NULL)
11483 return 0;
11484 else
11485 error (("%s"), err_msg);
11486 }
11487
11488 return value_of_variable (syms[0].symbol, syms[0].block);
11489 }
11490
11491 /* Value of integer variable named NAME in the current environment. If
11492 no such variable found, returns 0, and sets *FLAG to 0. If
11493 successful, sets *FLAG to 1. */
11494
11495 LONGEST
11496 get_int_var_value (char *name, int *flag)
11497 {
11498 struct value *var_val = get_var_value (name, 0);
11499
11500 if (var_val == 0)
11501 {
11502 if (flag != NULL)
11503 *flag = 0;
11504 return 0;
11505 }
11506 else
11507 {
11508 if (flag != NULL)
11509 *flag = 1;
11510 return value_as_long (var_val);
11511 }
11512 }
11513
11514
11515 /* Return a range type whose base type is that of the range type named
11516 NAME in the current environment, and whose bounds are calculated
11517 from NAME according to the GNAT range encoding conventions.
11518 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11519 corresponding range type from debug information; fall back to using it
11520 if symbol lookup fails. If a new type must be created, allocate it
11521 like ORIG_TYPE was. The bounds information, in general, is encoded
11522 in NAME, the base type given in the named range type. */
11523
11524 static struct type *
11525 to_fixed_range_type (struct type *raw_type, struct value *dval)
11526 {
11527 const char *name;
11528 struct type *base_type;
11529 char *subtype_info;
11530
11531 gdb_assert (raw_type != NULL);
11532 gdb_assert (TYPE_NAME (raw_type) != NULL);
11533
11534 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11535 base_type = TYPE_TARGET_TYPE (raw_type);
11536 else
11537 base_type = raw_type;
11538
11539 name = TYPE_NAME (raw_type);
11540 subtype_info = strstr (name, "___XD");
11541 if (subtype_info == NULL)
11542 {
11543 LONGEST L = ada_discrete_type_low_bound (raw_type);
11544 LONGEST U = ada_discrete_type_high_bound (raw_type);
11545
11546 if (L < INT_MIN || U > INT_MAX)
11547 return raw_type;
11548 else
11549 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11550 L, U);
11551 }
11552 else
11553 {
11554 static char *name_buf = NULL;
11555 static size_t name_len = 0;
11556 int prefix_len = subtype_info - name;
11557 LONGEST L, U;
11558 struct type *type;
11559 char *bounds_str;
11560 int n;
11561
11562 GROW_VECT (name_buf, name_len, prefix_len + 5);
11563 strncpy (name_buf, name, prefix_len);
11564 name_buf[prefix_len] = '\0';
11565
11566 subtype_info += 5;
11567 bounds_str = strchr (subtype_info, '_');
11568 n = 1;
11569
11570 if (*subtype_info == 'L')
11571 {
11572 if (!ada_scan_number (bounds_str, n, &L, &n)
11573 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11574 return raw_type;
11575 if (bounds_str[n] == '_')
11576 n += 2;
11577 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11578 n += 1;
11579 subtype_info += 1;
11580 }
11581 else
11582 {
11583 int ok;
11584
11585 strcpy (name_buf + prefix_len, "___L");
11586 L = get_int_var_value (name_buf, &ok);
11587 if (!ok)
11588 {
11589 lim_warning (_("Unknown lower bound, using 1."));
11590 L = 1;
11591 }
11592 }
11593
11594 if (*subtype_info == 'U')
11595 {
11596 if (!ada_scan_number (bounds_str, n, &U, &n)
11597 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11598 return raw_type;
11599 }
11600 else
11601 {
11602 int ok;
11603
11604 strcpy (name_buf + prefix_len, "___U");
11605 U = get_int_var_value (name_buf, &ok);
11606 if (!ok)
11607 {
11608 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11609 U = L;
11610 }
11611 }
11612
11613 type = create_static_range_type (alloc_type_copy (raw_type),
11614 base_type, L, U);
11615 TYPE_NAME (type) = name;
11616 return type;
11617 }
11618 }
11619
11620 /* True iff NAME is the name of a range type. */
11621
11622 int
11623 ada_is_range_type_name (const char *name)
11624 {
11625 return (name != NULL && strstr (name, "___XD"));
11626 }
11627 \f
11628
11629 /* Modular types */
11630
11631 /* True iff TYPE is an Ada modular type. */
11632
11633 int
11634 ada_is_modular_type (struct type *type)
11635 {
11636 struct type *subranged_type = get_base_type (type);
11637
11638 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11639 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11640 && TYPE_UNSIGNED (subranged_type));
11641 }
11642
11643 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11644
11645 ULONGEST
11646 ada_modulus (struct type *type)
11647 {
11648 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11649 }
11650 \f
11651
11652 /* Ada exception catchpoint support:
11653 ---------------------------------
11654
11655 We support 3 kinds of exception catchpoints:
11656 . catchpoints on Ada exceptions
11657 . catchpoints on unhandled Ada exceptions
11658 . catchpoints on failed assertions
11659
11660 Exceptions raised during failed assertions, or unhandled exceptions
11661 could perfectly be caught with the general catchpoint on Ada exceptions.
11662 However, we can easily differentiate these two special cases, and having
11663 the option to distinguish these two cases from the rest can be useful
11664 to zero-in on certain situations.
11665
11666 Exception catchpoints are a specialized form of breakpoint,
11667 since they rely on inserting breakpoints inside known routines
11668 of the GNAT runtime. The implementation therefore uses a standard
11669 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11670 of breakpoint_ops.
11671
11672 Support in the runtime for exception catchpoints have been changed
11673 a few times already, and these changes affect the implementation
11674 of these catchpoints. In order to be able to support several
11675 variants of the runtime, we use a sniffer that will determine
11676 the runtime variant used by the program being debugged. */
11677
11678 /* Ada's standard exceptions.
11679
11680 The Ada 83 standard also defined Numeric_Error. But there so many
11681 situations where it was unclear from the Ada 83 Reference Manual
11682 (RM) whether Constraint_Error or Numeric_Error should be raised,
11683 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11684 Interpretation saying that anytime the RM says that Numeric_Error
11685 should be raised, the implementation may raise Constraint_Error.
11686 Ada 95 went one step further and pretty much removed Numeric_Error
11687 from the list of standard exceptions (it made it a renaming of
11688 Constraint_Error, to help preserve compatibility when compiling
11689 an Ada83 compiler). As such, we do not include Numeric_Error from
11690 this list of standard exceptions. */
11691
11692 static char *standard_exc[] = {
11693 "constraint_error",
11694 "program_error",
11695 "storage_error",
11696 "tasking_error"
11697 };
11698
11699 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11700
11701 /* A structure that describes how to support exception catchpoints
11702 for a given executable. */
11703
11704 struct exception_support_info
11705 {
11706 /* The name of the symbol to break on in order to insert
11707 a catchpoint on exceptions. */
11708 const char *catch_exception_sym;
11709
11710 /* The name of the symbol to break on in order to insert
11711 a catchpoint on unhandled exceptions. */
11712 const char *catch_exception_unhandled_sym;
11713
11714 /* The name of the symbol to break on in order to insert
11715 a catchpoint on failed assertions. */
11716 const char *catch_assert_sym;
11717
11718 /* Assuming that the inferior just triggered an unhandled exception
11719 catchpoint, this function is responsible for returning the address
11720 in inferior memory where the name of that exception is stored.
11721 Return zero if the address could not be computed. */
11722 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11723 };
11724
11725 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11726 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11727
11728 /* The following exception support info structure describes how to
11729 implement exception catchpoints with the latest version of the
11730 Ada runtime (as of 2007-03-06). */
11731
11732 static const struct exception_support_info default_exception_support_info =
11733 {
11734 "__gnat_debug_raise_exception", /* catch_exception_sym */
11735 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11736 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11737 ada_unhandled_exception_name_addr
11738 };
11739
11740 /* The following exception support info structure describes how to
11741 implement exception catchpoints with a slightly older version
11742 of the Ada runtime. */
11743
11744 static const struct exception_support_info exception_support_info_fallback =
11745 {
11746 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11747 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11748 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11749 ada_unhandled_exception_name_addr_from_raise
11750 };
11751
11752 /* Return nonzero if we can detect the exception support routines
11753 described in EINFO.
11754
11755 This function errors out if an abnormal situation is detected
11756 (for instance, if we find the exception support routines, but
11757 that support is found to be incomplete). */
11758
11759 static int
11760 ada_has_this_exception_support (const struct exception_support_info *einfo)
11761 {
11762 struct symbol *sym;
11763
11764 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11765 that should be compiled with debugging information. As a result, we
11766 expect to find that symbol in the symtabs. */
11767
11768 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11769 if (sym == NULL)
11770 {
11771 /* Perhaps we did not find our symbol because the Ada runtime was
11772 compiled without debugging info, or simply stripped of it.
11773 It happens on some GNU/Linux distributions for instance, where
11774 users have to install a separate debug package in order to get
11775 the runtime's debugging info. In that situation, let the user
11776 know why we cannot insert an Ada exception catchpoint.
11777
11778 Note: Just for the purpose of inserting our Ada exception
11779 catchpoint, we could rely purely on the associated minimal symbol.
11780 But we would be operating in degraded mode anyway, since we are
11781 still lacking the debugging info needed later on to extract
11782 the name of the exception being raised (this name is printed in
11783 the catchpoint message, and is also used when trying to catch
11784 a specific exception). We do not handle this case for now. */
11785 struct bound_minimal_symbol msym
11786 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11787
11788 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11789 error (_("Your Ada runtime appears to be missing some debugging "
11790 "information.\nCannot insert Ada exception catchpoint "
11791 "in this configuration."));
11792
11793 return 0;
11794 }
11795
11796 /* Make sure that the symbol we found corresponds to a function. */
11797
11798 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11799 error (_("Symbol \"%s\" is not a function (class = %d)"),
11800 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11801
11802 return 1;
11803 }
11804
11805 /* Inspect the Ada runtime and determine which exception info structure
11806 should be used to provide support for exception catchpoints.
11807
11808 This function will always set the per-inferior exception_info,
11809 or raise an error. */
11810
11811 static void
11812 ada_exception_support_info_sniffer (void)
11813 {
11814 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11815
11816 /* If the exception info is already known, then no need to recompute it. */
11817 if (data->exception_info != NULL)
11818 return;
11819
11820 /* Check the latest (default) exception support info. */
11821 if (ada_has_this_exception_support (&default_exception_support_info))
11822 {
11823 data->exception_info = &default_exception_support_info;
11824 return;
11825 }
11826
11827 /* Try our fallback exception suport info. */
11828 if (ada_has_this_exception_support (&exception_support_info_fallback))
11829 {
11830 data->exception_info = &exception_support_info_fallback;
11831 return;
11832 }
11833
11834 /* Sometimes, it is normal for us to not be able to find the routine
11835 we are looking for. This happens when the program is linked with
11836 the shared version of the GNAT runtime, and the program has not been
11837 started yet. Inform the user of these two possible causes if
11838 applicable. */
11839
11840 if (ada_update_initial_language (language_unknown) != language_ada)
11841 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11842
11843 /* If the symbol does not exist, then check that the program is
11844 already started, to make sure that shared libraries have been
11845 loaded. If it is not started, this may mean that the symbol is
11846 in a shared library. */
11847
11848 if (ptid_get_pid (inferior_ptid) == 0)
11849 error (_("Unable to insert catchpoint. Try to start the program first."));
11850
11851 /* At this point, we know that we are debugging an Ada program and
11852 that the inferior has been started, but we still are not able to
11853 find the run-time symbols. That can mean that we are in
11854 configurable run time mode, or that a-except as been optimized
11855 out by the linker... In any case, at this point it is not worth
11856 supporting this feature. */
11857
11858 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11859 }
11860
11861 /* True iff FRAME is very likely to be that of a function that is
11862 part of the runtime system. This is all very heuristic, but is
11863 intended to be used as advice as to what frames are uninteresting
11864 to most users. */
11865
11866 static int
11867 is_known_support_routine (struct frame_info *frame)
11868 {
11869 struct symtab_and_line sal;
11870 char *func_name;
11871 enum language func_lang;
11872 int i;
11873 const char *fullname;
11874
11875 /* If this code does not have any debugging information (no symtab),
11876 This cannot be any user code. */
11877
11878 find_frame_sal (frame, &sal);
11879 if (sal.symtab == NULL)
11880 return 1;
11881
11882 /* If there is a symtab, but the associated source file cannot be
11883 located, then assume this is not user code: Selecting a frame
11884 for which we cannot display the code would not be very helpful
11885 for the user. This should also take care of case such as VxWorks
11886 where the kernel has some debugging info provided for a few units. */
11887
11888 fullname = symtab_to_fullname (sal.symtab);
11889 if (access (fullname, R_OK) != 0)
11890 return 1;
11891
11892 /* Check the unit filename againt the Ada runtime file naming.
11893 We also check the name of the objfile against the name of some
11894 known system libraries that sometimes come with debugging info
11895 too. */
11896
11897 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11898 {
11899 re_comp (known_runtime_file_name_patterns[i]);
11900 if (re_exec (lbasename (sal.symtab->filename)))
11901 return 1;
11902 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11903 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11904 return 1;
11905 }
11906
11907 /* Check whether the function is a GNAT-generated entity. */
11908
11909 find_frame_funname (frame, &func_name, &func_lang, NULL);
11910 if (func_name == NULL)
11911 return 1;
11912
11913 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11914 {
11915 re_comp (known_auxiliary_function_name_patterns[i]);
11916 if (re_exec (func_name))
11917 {
11918 xfree (func_name);
11919 return 1;
11920 }
11921 }
11922
11923 xfree (func_name);
11924 return 0;
11925 }
11926
11927 /* Find the first frame that contains debugging information and that is not
11928 part of the Ada run-time, starting from FI and moving upward. */
11929
11930 void
11931 ada_find_printable_frame (struct frame_info *fi)
11932 {
11933 for (; fi != NULL; fi = get_prev_frame (fi))
11934 {
11935 if (!is_known_support_routine (fi))
11936 {
11937 select_frame (fi);
11938 break;
11939 }
11940 }
11941
11942 }
11943
11944 /* Assuming that the inferior just triggered an unhandled exception
11945 catchpoint, return the address in inferior memory where the name
11946 of the exception is stored.
11947
11948 Return zero if the address could not be computed. */
11949
11950 static CORE_ADDR
11951 ada_unhandled_exception_name_addr (void)
11952 {
11953 return parse_and_eval_address ("e.full_name");
11954 }
11955
11956 /* Same as ada_unhandled_exception_name_addr, except that this function
11957 should be used when the inferior uses an older version of the runtime,
11958 where the exception name needs to be extracted from a specific frame
11959 several frames up in the callstack. */
11960
11961 static CORE_ADDR
11962 ada_unhandled_exception_name_addr_from_raise (void)
11963 {
11964 int frame_level;
11965 struct frame_info *fi;
11966 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11967 struct cleanup *old_chain;
11968
11969 /* To determine the name of this exception, we need to select
11970 the frame corresponding to RAISE_SYM_NAME. This frame is
11971 at least 3 levels up, so we simply skip the first 3 frames
11972 without checking the name of their associated function. */
11973 fi = get_current_frame ();
11974 for (frame_level = 0; frame_level < 3; frame_level += 1)
11975 if (fi != NULL)
11976 fi = get_prev_frame (fi);
11977
11978 old_chain = make_cleanup (null_cleanup, NULL);
11979 while (fi != NULL)
11980 {
11981 char *func_name;
11982 enum language func_lang;
11983
11984 find_frame_funname (fi, &func_name, &func_lang, NULL);
11985 if (func_name != NULL)
11986 {
11987 make_cleanup (xfree, func_name);
11988
11989 if (strcmp (func_name,
11990 data->exception_info->catch_exception_sym) == 0)
11991 break; /* We found the frame we were looking for... */
11992 fi = get_prev_frame (fi);
11993 }
11994 }
11995 do_cleanups (old_chain);
11996
11997 if (fi == NULL)
11998 return 0;
11999
12000 select_frame (fi);
12001 return parse_and_eval_address ("id.full_name");
12002 }
12003
12004 /* Assuming the inferior just triggered an Ada exception catchpoint
12005 (of any type), return the address in inferior memory where the name
12006 of the exception is stored, if applicable.
12007
12008 Return zero if the address could not be computed, or if not relevant. */
12009
12010 static CORE_ADDR
12011 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12012 struct breakpoint *b)
12013 {
12014 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12015
12016 switch (ex)
12017 {
12018 case ada_catch_exception:
12019 return (parse_and_eval_address ("e.full_name"));
12020 break;
12021
12022 case ada_catch_exception_unhandled:
12023 return data->exception_info->unhandled_exception_name_addr ();
12024 break;
12025
12026 case ada_catch_assert:
12027 return 0; /* Exception name is not relevant in this case. */
12028 break;
12029
12030 default:
12031 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12032 break;
12033 }
12034
12035 return 0; /* Should never be reached. */
12036 }
12037
12038 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12039 any error that ada_exception_name_addr_1 might cause to be thrown.
12040 When an error is intercepted, a warning with the error message is printed,
12041 and zero is returned. */
12042
12043 static CORE_ADDR
12044 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12045 struct breakpoint *b)
12046 {
12047 CORE_ADDR result = 0;
12048
12049 TRY
12050 {
12051 result = ada_exception_name_addr_1 (ex, b);
12052 }
12053
12054 CATCH (e, RETURN_MASK_ERROR)
12055 {
12056 warning (_("failed to get exception name: %s"), e.message);
12057 return 0;
12058 }
12059 END_CATCH
12060
12061 return result;
12062 }
12063
12064 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12065
12066 /* Ada catchpoints.
12067
12068 In the case of catchpoints on Ada exceptions, the catchpoint will
12069 stop the target on every exception the program throws. When a user
12070 specifies the name of a specific exception, we translate this
12071 request into a condition expression (in text form), and then parse
12072 it into an expression stored in each of the catchpoint's locations.
12073 We then use this condition to check whether the exception that was
12074 raised is the one the user is interested in. If not, then the
12075 target is resumed again. We store the name of the requested
12076 exception, in order to be able to re-set the condition expression
12077 when symbols change. */
12078
12079 /* An instance of this type is used to represent an Ada catchpoint
12080 breakpoint location. It includes a "struct bp_location" as a kind
12081 of base class; users downcast to "struct bp_location *" when
12082 needed. */
12083
12084 struct ada_catchpoint_location
12085 {
12086 /* The base class. */
12087 struct bp_location base;
12088
12089 /* The condition that checks whether the exception that was raised
12090 is the specific exception the user specified on catchpoint
12091 creation. */
12092 struct expression *excep_cond_expr;
12093 };
12094
12095 /* Implement the DTOR method in the bp_location_ops structure for all
12096 Ada exception catchpoint kinds. */
12097
12098 static void
12099 ada_catchpoint_location_dtor (struct bp_location *bl)
12100 {
12101 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12102
12103 xfree (al->excep_cond_expr);
12104 }
12105
12106 /* The vtable to be used in Ada catchpoint locations. */
12107
12108 static const struct bp_location_ops ada_catchpoint_location_ops =
12109 {
12110 ada_catchpoint_location_dtor
12111 };
12112
12113 /* An instance of this type is used to represent an Ada catchpoint.
12114 It includes a "struct breakpoint" as a kind of base class; users
12115 downcast to "struct breakpoint *" when needed. */
12116
12117 struct ada_catchpoint
12118 {
12119 /* The base class. */
12120 struct breakpoint base;
12121
12122 /* The name of the specific exception the user specified. */
12123 char *excep_string;
12124 };
12125
12126 /* Parse the exception condition string in the context of each of the
12127 catchpoint's locations, and store them for later evaluation. */
12128
12129 static void
12130 create_excep_cond_exprs (struct ada_catchpoint *c)
12131 {
12132 struct cleanup *old_chain;
12133 struct bp_location *bl;
12134 char *cond_string;
12135
12136 /* Nothing to do if there's no specific exception to catch. */
12137 if (c->excep_string == NULL)
12138 return;
12139
12140 /* Same if there are no locations... */
12141 if (c->base.loc == NULL)
12142 return;
12143
12144 /* Compute the condition expression in text form, from the specific
12145 expection we want to catch. */
12146 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12147 old_chain = make_cleanup (xfree, cond_string);
12148
12149 /* Iterate over all the catchpoint's locations, and parse an
12150 expression for each. */
12151 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12152 {
12153 struct ada_catchpoint_location *ada_loc
12154 = (struct ada_catchpoint_location *) bl;
12155 struct expression *exp = NULL;
12156
12157 if (!bl->shlib_disabled)
12158 {
12159 const char *s;
12160
12161 s = cond_string;
12162 TRY
12163 {
12164 exp = parse_exp_1 (&s, bl->address,
12165 block_for_pc (bl->address), 0);
12166 }
12167 CATCH (e, RETURN_MASK_ERROR)
12168 {
12169 warning (_("failed to reevaluate internal exception condition "
12170 "for catchpoint %d: %s"),
12171 c->base.number, e.message);
12172 /* There is a bug in GCC on sparc-solaris when building with
12173 optimization which causes EXP to change unexpectedly
12174 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12175 The problem should be fixed starting with GCC 4.9.
12176 In the meantime, work around it by forcing EXP back
12177 to NULL. */
12178 exp = NULL;
12179 }
12180 END_CATCH
12181 }
12182
12183 ada_loc->excep_cond_expr = exp;
12184 }
12185
12186 do_cleanups (old_chain);
12187 }
12188
12189 /* Implement the DTOR method in the breakpoint_ops structure for all
12190 exception catchpoint kinds. */
12191
12192 static void
12193 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12194 {
12195 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12196
12197 xfree (c->excep_string);
12198
12199 bkpt_breakpoint_ops.dtor (b);
12200 }
12201
12202 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12203 structure for all exception catchpoint kinds. */
12204
12205 static struct bp_location *
12206 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12207 struct breakpoint *self)
12208 {
12209 struct ada_catchpoint_location *loc;
12210
12211 loc = XNEW (struct ada_catchpoint_location);
12212 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12213 loc->excep_cond_expr = NULL;
12214 return &loc->base;
12215 }
12216
12217 /* Implement the RE_SET method in the breakpoint_ops structure for all
12218 exception catchpoint kinds. */
12219
12220 static void
12221 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12222 {
12223 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12224
12225 /* Call the base class's method. This updates the catchpoint's
12226 locations. */
12227 bkpt_breakpoint_ops.re_set (b);
12228
12229 /* Reparse the exception conditional expressions. One for each
12230 location. */
12231 create_excep_cond_exprs (c);
12232 }
12233
12234 /* Returns true if we should stop for this breakpoint hit. If the
12235 user specified a specific exception, we only want to cause a stop
12236 if the program thrown that exception. */
12237
12238 static int
12239 should_stop_exception (const struct bp_location *bl)
12240 {
12241 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12242 const struct ada_catchpoint_location *ada_loc
12243 = (const struct ada_catchpoint_location *) bl;
12244 int stop;
12245
12246 /* With no specific exception, should always stop. */
12247 if (c->excep_string == NULL)
12248 return 1;
12249
12250 if (ada_loc->excep_cond_expr == NULL)
12251 {
12252 /* We will have a NULL expression if back when we were creating
12253 the expressions, this location's had failed to parse. */
12254 return 1;
12255 }
12256
12257 stop = 1;
12258 TRY
12259 {
12260 struct value *mark;
12261
12262 mark = value_mark ();
12263 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12264 value_free_to_mark (mark);
12265 }
12266 CATCH (ex, RETURN_MASK_ALL)
12267 {
12268 exception_fprintf (gdb_stderr, ex,
12269 _("Error in testing exception condition:\n"));
12270 }
12271 END_CATCH
12272
12273 return stop;
12274 }
12275
12276 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12277 for all exception catchpoint kinds. */
12278
12279 static void
12280 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12281 {
12282 bs->stop = should_stop_exception (bs->bp_location_at);
12283 }
12284
12285 /* Implement the PRINT_IT method in the breakpoint_ops structure
12286 for all exception catchpoint kinds. */
12287
12288 static enum print_stop_action
12289 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12290 {
12291 struct ui_out *uiout = current_uiout;
12292 struct breakpoint *b = bs->breakpoint_at;
12293
12294 annotate_catchpoint (b->number);
12295
12296 if (ui_out_is_mi_like_p (uiout))
12297 {
12298 ui_out_field_string (uiout, "reason",
12299 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12300 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12301 }
12302
12303 ui_out_text (uiout,
12304 b->disposition == disp_del ? "\nTemporary catchpoint "
12305 : "\nCatchpoint ");
12306 ui_out_field_int (uiout, "bkptno", b->number);
12307 ui_out_text (uiout, ", ");
12308
12309 switch (ex)
12310 {
12311 case ada_catch_exception:
12312 case ada_catch_exception_unhandled:
12313 {
12314 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12315 char exception_name[256];
12316
12317 if (addr != 0)
12318 {
12319 read_memory (addr, (gdb_byte *) exception_name,
12320 sizeof (exception_name) - 1);
12321 exception_name [sizeof (exception_name) - 1] = '\0';
12322 }
12323 else
12324 {
12325 /* For some reason, we were unable to read the exception
12326 name. This could happen if the Runtime was compiled
12327 without debugging info, for instance. In that case,
12328 just replace the exception name by the generic string
12329 "exception" - it will read as "an exception" in the
12330 notification we are about to print. */
12331 memcpy (exception_name, "exception", sizeof ("exception"));
12332 }
12333 /* In the case of unhandled exception breakpoints, we print
12334 the exception name as "unhandled EXCEPTION_NAME", to make
12335 it clearer to the user which kind of catchpoint just got
12336 hit. We used ui_out_text to make sure that this extra
12337 info does not pollute the exception name in the MI case. */
12338 if (ex == ada_catch_exception_unhandled)
12339 ui_out_text (uiout, "unhandled ");
12340 ui_out_field_string (uiout, "exception-name", exception_name);
12341 }
12342 break;
12343 case ada_catch_assert:
12344 /* In this case, the name of the exception is not really
12345 important. Just print "failed assertion" to make it clearer
12346 that his program just hit an assertion-failure catchpoint.
12347 We used ui_out_text because this info does not belong in
12348 the MI output. */
12349 ui_out_text (uiout, "failed assertion");
12350 break;
12351 }
12352 ui_out_text (uiout, " at ");
12353 ada_find_printable_frame (get_current_frame ());
12354
12355 return PRINT_SRC_AND_LOC;
12356 }
12357
12358 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12359 for all exception catchpoint kinds. */
12360
12361 static void
12362 print_one_exception (enum ada_exception_catchpoint_kind ex,
12363 struct breakpoint *b, struct bp_location **last_loc)
12364 {
12365 struct ui_out *uiout = current_uiout;
12366 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12367 struct value_print_options opts;
12368
12369 get_user_print_options (&opts);
12370 if (opts.addressprint)
12371 {
12372 annotate_field (4);
12373 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12374 }
12375
12376 annotate_field (5);
12377 *last_loc = b->loc;
12378 switch (ex)
12379 {
12380 case ada_catch_exception:
12381 if (c->excep_string != NULL)
12382 {
12383 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12384
12385 ui_out_field_string (uiout, "what", msg);
12386 xfree (msg);
12387 }
12388 else
12389 ui_out_field_string (uiout, "what", "all Ada exceptions");
12390
12391 break;
12392
12393 case ada_catch_exception_unhandled:
12394 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12395 break;
12396
12397 case ada_catch_assert:
12398 ui_out_field_string (uiout, "what", "failed Ada assertions");
12399 break;
12400
12401 default:
12402 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12403 break;
12404 }
12405 }
12406
12407 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12408 for all exception catchpoint kinds. */
12409
12410 static void
12411 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12412 struct breakpoint *b)
12413 {
12414 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12415 struct ui_out *uiout = current_uiout;
12416
12417 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12418 : _("Catchpoint "));
12419 ui_out_field_int (uiout, "bkptno", b->number);
12420 ui_out_text (uiout, ": ");
12421
12422 switch (ex)
12423 {
12424 case ada_catch_exception:
12425 if (c->excep_string != NULL)
12426 {
12427 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12428 struct cleanup *old_chain = make_cleanup (xfree, info);
12429
12430 ui_out_text (uiout, info);
12431 do_cleanups (old_chain);
12432 }
12433 else
12434 ui_out_text (uiout, _("all Ada exceptions"));
12435 break;
12436
12437 case ada_catch_exception_unhandled:
12438 ui_out_text (uiout, _("unhandled Ada exceptions"));
12439 break;
12440
12441 case ada_catch_assert:
12442 ui_out_text (uiout, _("failed Ada assertions"));
12443 break;
12444
12445 default:
12446 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12447 break;
12448 }
12449 }
12450
12451 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12452 for all exception catchpoint kinds. */
12453
12454 static void
12455 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12456 struct breakpoint *b, struct ui_file *fp)
12457 {
12458 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12459
12460 switch (ex)
12461 {
12462 case ada_catch_exception:
12463 fprintf_filtered (fp, "catch exception");
12464 if (c->excep_string != NULL)
12465 fprintf_filtered (fp, " %s", c->excep_string);
12466 break;
12467
12468 case ada_catch_exception_unhandled:
12469 fprintf_filtered (fp, "catch exception unhandled");
12470 break;
12471
12472 case ada_catch_assert:
12473 fprintf_filtered (fp, "catch assert");
12474 break;
12475
12476 default:
12477 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12478 }
12479 print_recreate_thread (b, fp);
12480 }
12481
12482 /* Virtual table for "catch exception" breakpoints. */
12483
12484 static void
12485 dtor_catch_exception (struct breakpoint *b)
12486 {
12487 dtor_exception (ada_catch_exception, b);
12488 }
12489
12490 static struct bp_location *
12491 allocate_location_catch_exception (struct breakpoint *self)
12492 {
12493 return allocate_location_exception (ada_catch_exception, self);
12494 }
12495
12496 static void
12497 re_set_catch_exception (struct breakpoint *b)
12498 {
12499 re_set_exception (ada_catch_exception, b);
12500 }
12501
12502 static void
12503 check_status_catch_exception (bpstat bs)
12504 {
12505 check_status_exception (ada_catch_exception, bs);
12506 }
12507
12508 static enum print_stop_action
12509 print_it_catch_exception (bpstat bs)
12510 {
12511 return print_it_exception (ada_catch_exception, bs);
12512 }
12513
12514 static void
12515 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12516 {
12517 print_one_exception (ada_catch_exception, b, last_loc);
12518 }
12519
12520 static void
12521 print_mention_catch_exception (struct breakpoint *b)
12522 {
12523 print_mention_exception (ada_catch_exception, b);
12524 }
12525
12526 static void
12527 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12528 {
12529 print_recreate_exception (ada_catch_exception, b, fp);
12530 }
12531
12532 static struct breakpoint_ops catch_exception_breakpoint_ops;
12533
12534 /* Virtual table for "catch exception unhandled" breakpoints. */
12535
12536 static void
12537 dtor_catch_exception_unhandled (struct breakpoint *b)
12538 {
12539 dtor_exception (ada_catch_exception_unhandled, b);
12540 }
12541
12542 static struct bp_location *
12543 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12544 {
12545 return allocate_location_exception (ada_catch_exception_unhandled, self);
12546 }
12547
12548 static void
12549 re_set_catch_exception_unhandled (struct breakpoint *b)
12550 {
12551 re_set_exception (ada_catch_exception_unhandled, b);
12552 }
12553
12554 static void
12555 check_status_catch_exception_unhandled (bpstat bs)
12556 {
12557 check_status_exception (ada_catch_exception_unhandled, bs);
12558 }
12559
12560 static enum print_stop_action
12561 print_it_catch_exception_unhandled (bpstat bs)
12562 {
12563 return print_it_exception (ada_catch_exception_unhandled, bs);
12564 }
12565
12566 static void
12567 print_one_catch_exception_unhandled (struct breakpoint *b,
12568 struct bp_location **last_loc)
12569 {
12570 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12571 }
12572
12573 static void
12574 print_mention_catch_exception_unhandled (struct breakpoint *b)
12575 {
12576 print_mention_exception (ada_catch_exception_unhandled, b);
12577 }
12578
12579 static void
12580 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12581 struct ui_file *fp)
12582 {
12583 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12584 }
12585
12586 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12587
12588 /* Virtual table for "catch assert" breakpoints. */
12589
12590 static void
12591 dtor_catch_assert (struct breakpoint *b)
12592 {
12593 dtor_exception (ada_catch_assert, b);
12594 }
12595
12596 static struct bp_location *
12597 allocate_location_catch_assert (struct breakpoint *self)
12598 {
12599 return allocate_location_exception (ada_catch_assert, self);
12600 }
12601
12602 static void
12603 re_set_catch_assert (struct breakpoint *b)
12604 {
12605 re_set_exception (ada_catch_assert, b);
12606 }
12607
12608 static void
12609 check_status_catch_assert (bpstat bs)
12610 {
12611 check_status_exception (ada_catch_assert, bs);
12612 }
12613
12614 static enum print_stop_action
12615 print_it_catch_assert (bpstat bs)
12616 {
12617 return print_it_exception (ada_catch_assert, bs);
12618 }
12619
12620 static void
12621 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12622 {
12623 print_one_exception (ada_catch_assert, b, last_loc);
12624 }
12625
12626 static void
12627 print_mention_catch_assert (struct breakpoint *b)
12628 {
12629 print_mention_exception (ada_catch_assert, b);
12630 }
12631
12632 static void
12633 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12634 {
12635 print_recreate_exception (ada_catch_assert, b, fp);
12636 }
12637
12638 static struct breakpoint_ops catch_assert_breakpoint_ops;
12639
12640 /* Return a newly allocated copy of the first space-separated token
12641 in ARGSP, and then adjust ARGSP to point immediately after that
12642 token.
12643
12644 Return NULL if ARGPS does not contain any more tokens. */
12645
12646 static char *
12647 ada_get_next_arg (char **argsp)
12648 {
12649 char *args = *argsp;
12650 char *end;
12651 char *result;
12652
12653 args = skip_spaces (args);
12654 if (args[0] == '\0')
12655 return NULL; /* No more arguments. */
12656
12657 /* Find the end of the current argument. */
12658
12659 end = skip_to_space (args);
12660
12661 /* Adjust ARGSP to point to the start of the next argument. */
12662
12663 *argsp = end;
12664
12665 /* Make a copy of the current argument and return it. */
12666
12667 result = xmalloc (end - args + 1);
12668 strncpy (result, args, end - args);
12669 result[end - args] = '\0';
12670
12671 return result;
12672 }
12673
12674 /* Split the arguments specified in a "catch exception" command.
12675 Set EX to the appropriate catchpoint type.
12676 Set EXCEP_STRING to the name of the specific exception if
12677 specified by the user.
12678 If a condition is found at the end of the arguments, the condition
12679 expression is stored in COND_STRING (memory must be deallocated
12680 after use). Otherwise COND_STRING is set to NULL. */
12681
12682 static void
12683 catch_ada_exception_command_split (char *args,
12684 enum ada_exception_catchpoint_kind *ex,
12685 char **excep_string,
12686 char **cond_string)
12687 {
12688 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12689 char *exception_name;
12690 char *cond = NULL;
12691
12692 exception_name = ada_get_next_arg (&args);
12693 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12694 {
12695 /* This is not an exception name; this is the start of a condition
12696 expression for a catchpoint on all exceptions. So, "un-get"
12697 this token, and set exception_name to NULL. */
12698 xfree (exception_name);
12699 exception_name = NULL;
12700 args -= 2;
12701 }
12702 make_cleanup (xfree, exception_name);
12703
12704 /* Check to see if we have a condition. */
12705
12706 args = skip_spaces (args);
12707 if (startswith (args, "if")
12708 && (isspace (args[2]) || args[2] == '\0'))
12709 {
12710 args += 2;
12711 args = skip_spaces (args);
12712
12713 if (args[0] == '\0')
12714 error (_("Condition missing after `if' keyword"));
12715 cond = xstrdup (args);
12716 make_cleanup (xfree, cond);
12717
12718 args += strlen (args);
12719 }
12720
12721 /* Check that we do not have any more arguments. Anything else
12722 is unexpected. */
12723
12724 if (args[0] != '\0')
12725 error (_("Junk at end of expression"));
12726
12727 discard_cleanups (old_chain);
12728
12729 if (exception_name == NULL)
12730 {
12731 /* Catch all exceptions. */
12732 *ex = ada_catch_exception;
12733 *excep_string = NULL;
12734 }
12735 else if (strcmp (exception_name, "unhandled") == 0)
12736 {
12737 /* Catch unhandled exceptions. */
12738 *ex = ada_catch_exception_unhandled;
12739 *excep_string = NULL;
12740 }
12741 else
12742 {
12743 /* Catch a specific exception. */
12744 *ex = ada_catch_exception;
12745 *excep_string = exception_name;
12746 }
12747 *cond_string = cond;
12748 }
12749
12750 /* Return the name of the symbol on which we should break in order to
12751 implement a catchpoint of the EX kind. */
12752
12753 static const char *
12754 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12755 {
12756 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12757
12758 gdb_assert (data->exception_info != NULL);
12759
12760 switch (ex)
12761 {
12762 case ada_catch_exception:
12763 return (data->exception_info->catch_exception_sym);
12764 break;
12765 case ada_catch_exception_unhandled:
12766 return (data->exception_info->catch_exception_unhandled_sym);
12767 break;
12768 case ada_catch_assert:
12769 return (data->exception_info->catch_assert_sym);
12770 break;
12771 default:
12772 internal_error (__FILE__, __LINE__,
12773 _("unexpected catchpoint kind (%d)"), ex);
12774 }
12775 }
12776
12777 /* Return the breakpoint ops "virtual table" used for catchpoints
12778 of the EX kind. */
12779
12780 static const struct breakpoint_ops *
12781 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12782 {
12783 switch (ex)
12784 {
12785 case ada_catch_exception:
12786 return (&catch_exception_breakpoint_ops);
12787 break;
12788 case ada_catch_exception_unhandled:
12789 return (&catch_exception_unhandled_breakpoint_ops);
12790 break;
12791 case ada_catch_assert:
12792 return (&catch_assert_breakpoint_ops);
12793 break;
12794 default:
12795 internal_error (__FILE__, __LINE__,
12796 _("unexpected catchpoint kind (%d)"), ex);
12797 }
12798 }
12799
12800 /* Return the condition that will be used to match the current exception
12801 being raised with the exception that the user wants to catch. This
12802 assumes that this condition is used when the inferior just triggered
12803 an exception catchpoint.
12804
12805 The string returned is a newly allocated string that needs to be
12806 deallocated later. */
12807
12808 static char *
12809 ada_exception_catchpoint_cond_string (const char *excep_string)
12810 {
12811 int i;
12812
12813 /* The standard exceptions are a special case. They are defined in
12814 runtime units that have been compiled without debugging info; if
12815 EXCEP_STRING is the not-fully-qualified name of a standard
12816 exception (e.g. "constraint_error") then, during the evaluation
12817 of the condition expression, the symbol lookup on this name would
12818 *not* return this standard exception. The catchpoint condition
12819 may then be set only on user-defined exceptions which have the
12820 same not-fully-qualified name (e.g. my_package.constraint_error).
12821
12822 To avoid this unexcepted behavior, these standard exceptions are
12823 systematically prefixed by "standard". This means that "catch
12824 exception constraint_error" is rewritten into "catch exception
12825 standard.constraint_error".
12826
12827 If an exception named contraint_error is defined in another package of
12828 the inferior program, then the only way to specify this exception as a
12829 breakpoint condition is to use its fully-qualified named:
12830 e.g. my_package.constraint_error. */
12831
12832 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12833 {
12834 if (strcmp (standard_exc [i], excep_string) == 0)
12835 {
12836 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12837 excep_string);
12838 }
12839 }
12840 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12841 }
12842
12843 /* Return the symtab_and_line that should be used to insert an exception
12844 catchpoint of the TYPE kind.
12845
12846 EXCEP_STRING should contain the name of a specific exception that
12847 the catchpoint should catch, or NULL otherwise.
12848
12849 ADDR_STRING returns the name of the function where the real
12850 breakpoint that implements the catchpoints is set, depending on the
12851 type of catchpoint we need to create. */
12852
12853 static struct symtab_and_line
12854 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12855 char **addr_string, const struct breakpoint_ops **ops)
12856 {
12857 const char *sym_name;
12858 struct symbol *sym;
12859
12860 /* First, find out which exception support info to use. */
12861 ada_exception_support_info_sniffer ();
12862
12863 /* Then lookup the function on which we will break in order to catch
12864 the Ada exceptions requested by the user. */
12865 sym_name = ada_exception_sym_name (ex);
12866 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12867
12868 /* We can assume that SYM is not NULL at this stage. If the symbol
12869 did not exist, ada_exception_support_info_sniffer would have
12870 raised an exception.
12871
12872 Also, ada_exception_support_info_sniffer should have already
12873 verified that SYM is a function symbol. */
12874 gdb_assert (sym != NULL);
12875 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12876
12877 /* Set ADDR_STRING. */
12878 *addr_string = xstrdup (sym_name);
12879
12880 /* Set OPS. */
12881 *ops = ada_exception_breakpoint_ops (ex);
12882
12883 return find_function_start_sal (sym, 1);
12884 }
12885
12886 /* Create an Ada exception catchpoint.
12887
12888 EX_KIND is the kind of exception catchpoint to be created.
12889
12890 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12891 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12892 of the exception to which this catchpoint applies. When not NULL,
12893 the string must be allocated on the heap, and its deallocation
12894 is no longer the responsibility of the caller.
12895
12896 COND_STRING, if not NULL, is the catchpoint condition. This string
12897 must be allocated on the heap, and its deallocation is no longer
12898 the responsibility of the caller.
12899
12900 TEMPFLAG, if nonzero, means that the underlying breakpoint
12901 should be temporary.
12902
12903 FROM_TTY is the usual argument passed to all commands implementations. */
12904
12905 void
12906 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12907 enum ada_exception_catchpoint_kind ex_kind,
12908 char *excep_string,
12909 char *cond_string,
12910 int tempflag,
12911 int disabled,
12912 int from_tty)
12913 {
12914 struct ada_catchpoint *c;
12915 char *addr_string = NULL;
12916 const struct breakpoint_ops *ops = NULL;
12917 struct symtab_and_line sal
12918 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12919
12920 c = XNEW (struct ada_catchpoint);
12921 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12922 ops, tempflag, disabled, from_tty);
12923 c->excep_string = excep_string;
12924 create_excep_cond_exprs (c);
12925 if (cond_string != NULL)
12926 set_breakpoint_condition (&c->base, cond_string, from_tty);
12927 install_breakpoint (0, &c->base, 1);
12928 }
12929
12930 /* Implement the "catch exception" command. */
12931
12932 static void
12933 catch_ada_exception_command (char *arg, int from_tty,
12934 struct cmd_list_element *command)
12935 {
12936 struct gdbarch *gdbarch = get_current_arch ();
12937 int tempflag;
12938 enum ada_exception_catchpoint_kind ex_kind;
12939 char *excep_string = NULL;
12940 char *cond_string = NULL;
12941
12942 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12943
12944 if (!arg)
12945 arg = "";
12946 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12947 &cond_string);
12948 create_ada_exception_catchpoint (gdbarch, ex_kind,
12949 excep_string, cond_string,
12950 tempflag, 1 /* enabled */,
12951 from_tty);
12952 }
12953
12954 /* Split the arguments specified in a "catch assert" command.
12955
12956 ARGS contains the command's arguments (or the empty string if
12957 no arguments were passed).
12958
12959 If ARGS contains a condition, set COND_STRING to that condition
12960 (the memory needs to be deallocated after use). */
12961
12962 static void
12963 catch_ada_assert_command_split (char *args, char **cond_string)
12964 {
12965 args = skip_spaces (args);
12966
12967 /* Check whether a condition was provided. */
12968 if (startswith (args, "if")
12969 && (isspace (args[2]) || args[2] == '\0'))
12970 {
12971 args += 2;
12972 args = skip_spaces (args);
12973 if (args[0] == '\0')
12974 error (_("condition missing after `if' keyword"));
12975 *cond_string = xstrdup (args);
12976 }
12977
12978 /* Otherwise, there should be no other argument at the end of
12979 the command. */
12980 else if (args[0] != '\0')
12981 error (_("Junk at end of arguments."));
12982 }
12983
12984 /* Implement the "catch assert" command. */
12985
12986 static void
12987 catch_assert_command (char *arg, int from_tty,
12988 struct cmd_list_element *command)
12989 {
12990 struct gdbarch *gdbarch = get_current_arch ();
12991 int tempflag;
12992 char *cond_string = NULL;
12993
12994 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12995
12996 if (!arg)
12997 arg = "";
12998 catch_ada_assert_command_split (arg, &cond_string);
12999 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13000 NULL, cond_string,
13001 tempflag, 1 /* enabled */,
13002 from_tty);
13003 }
13004
13005 /* Return non-zero if the symbol SYM is an Ada exception object. */
13006
13007 static int
13008 ada_is_exception_sym (struct symbol *sym)
13009 {
13010 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13011
13012 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13013 && SYMBOL_CLASS (sym) != LOC_BLOCK
13014 && SYMBOL_CLASS (sym) != LOC_CONST
13015 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13016 && type_name != NULL && strcmp (type_name, "exception") == 0);
13017 }
13018
13019 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13020 Ada exception object. This matches all exceptions except the ones
13021 defined by the Ada language. */
13022
13023 static int
13024 ada_is_non_standard_exception_sym (struct symbol *sym)
13025 {
13026 int i;
13027
13028 if (!ada_is_exception_sym (sym))
13029 return 0;
13030
13031 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13032 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13033 return 0; /* A standard exception. */
13034
13035 /* Numeric_Error is also a standard exception, so exclude it.
13036 See the STANDARD_EXC description for more details as to why
13037 this exception is not listed in that array. */
13038 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13039 return 0;
13040
13041 return 1;
13042 }
13043
13044 /* A helper function for qsort, comparing two struct ada_exc_info
13045 objects.
13046
13047 The comparison is determined first by exception name, and then
13048 by exception address. */
13049
13050 static int
13051 compare_ada_exception_info (const void *a, const void *b)
13052 {
13053 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13054 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13055 int result;
13056
13057 result = strcmp (exc_a->name, exc_b->name);
13058 if (result != 0)
13059 return result;
13060
13061 if (exc_a->addr < exc_b->addr)
13062 return -1;
13063 if (exc_a->addr > exc_b->addr)
13064 return 1;
13065
13066 return 0;
13067 }
13068
13069 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13070 routine, but keeping the first SKIP elements untouched.
13071
13072 All duplicates are also removed. */
13073
13074 static void
13075 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13076 int skip)
13077 {
13078 struct ada_exc_info *to_sort
13079 = VEC_address (ada_exc_info, *exceptions) + skip;
13080 int to_sort_len
13081 = VEC_length (ada_exc_info, *exceptions) - skip;
13082 int i, j;
13083
13084 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13085 compare_ada_exception_info);
13086
13087 for (i = 1, j = 1; i < to_sort_len; i++)
13088 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13089 to_sort[j++] = to_sort[i];
13090 to_sort_len = j;
13091 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13092 }
13093
13094 /* A function intended as the "name_matcher" callback in the struct
13095 quick_symbol_functions' expand_symtabs_matching method.
13096
13097 SEARCH_NAME is the symbol's search name.
13098
13099 If USER_DATA is not NULL, it is a pointer to a regext_t object
13100 used to match the symbol (by natural name). Otherwise, when USER_DATA
13101 is null, no filtering is performed, and all symbols are a positive
13102 match. */
13103
13104 static int
13105 ada_exc_search_name_matches (const char *search_name, void *user_data)
13106 {
13107 regex_t *preg = user_data;
13108
13109 if (preg == NULL)
13110 return 1;
13111
13112 /* In Ada, the symbol "search name" is a linkage name, whereas
13113 the regular expression used to do the matching refers to
13114 the natural name. So match against the decoded name. */
13115 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13116 }
13117
13118 /* Add all exceptions defined by the Ada standard whose name match
13119 a regular expression.
13120
13121 If PREG is not NULL, then this regexp_t object is used to
13122 perform the symbol name matching. Otherwise, no name-based
13123 filtering is performed.
13124
13125 EXCEPTIONS is a vector of exceptions to which matching exceptions
13126 gets pushed. */
13127
13128 static void
13129 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13130 {
13131 int i;
13132
13133 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13134 {
13135 if (preg == NULL
13136 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13137 {
13138 struct bound_minimal_symbol msymbol
13139 = ada_lookup_simple_minsym (standard_exc[i]);
13140
13141 if (msymbol.minsym != NULL)
13142 {
13143 struct ada_exc_info info
13144 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13145
13146 VEC_safe_push (ada_exc_info, *exceptions, &info);
13147 }
13148 }
13149 }
13150 }
13151
13152 /* Add all Ada exceptions defined locally and accessible from the given
13153 FRAME.
13154
13155 If PREG is not NULL, then this regexp_t object is used to
13156 perform the symbol name matching. Otherwise, no name-based
13157 filtering is performed.
13158
13159 EXCEPTIONS is a vector of exceptions to which matching exceptions
13160 gets pushed. */
13161
13162 static void
13163 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13164 VEC(ada_exc_info) **exceptions)
13165 {
13166 const struct block *block = get_frame_block (frame, 0);
13167
13168 while (block != 0)
13169 {
13170 struct block_iterator iter;
13171 struct symbol *sym;
13172
13173 ALL_BLOCK_SYMBOLS (block, iter, sym)
13174 {
13175 switch (SYMBOL_CLASS (sym))
13176 {
13177 case LOC_TYPEDEF:
13178 case LOC_BLOCK:
13179 case LOC_CONST:
13180 break;
13181 default:
13182 if (ada_is_exception_sym (sym))
13183 {
13184 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13185 SYMBOL_VALUE_ADDRESS (sym)};
13186
13187 VEC_safe_push (ada_exc_info, *exceptions, &info);
13188 }
13189 }
13190 }
13191 if (BLOCK_FUNCTION (block) != NULL)
13192 break;
13193 block = BLOCK_SUPERBLOCK (block);
13194 }
13195 }
13196
13197 /* Add all exceptions defined globally whose name name match
13198 a regular expression, excluding standard exceptions.
13199
13200 The reason we exclude standard exceptions is that they need
13201 to be handled separately: Standard exceptions are defined inside
13202 a runtime unit which is normally not compiled with debugging info,
13203 and thus usually do not show up in our symbol search. However,
13204 if the unit was in fact built with debugging info, we need to
13205 exclude them because they would duplicate the entry we found
13206 during the special loop that specifically searches for those
13207 standard exceptions.
13208
13209 If PREG is not NULL, then this regexp_t object is used to
13210 perform the symbol name matching. Otherwise, no name-based
13211 filtering is performed.
13212
13213 EXCEPTIONS is a vector of exceptions to which matching exceptions
13214 gets pushed. */
13215
13216 static void
13217 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13218 {
13219 struct objfile *objfile;
13220 struct compunit_symtab *s;
13221
13222 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13223 VARIABLES_DOMAIN, preg);
13224
13225 ALL_COMPUNITS (objfile, s)
13226 {
13227 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13228 int i;
13229
13230 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13231 {
13232 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13233 struct block_iterator iter;
13234 struct symbol *sym;
13235
13236 ALL_BLOCK_SYMBOLS (b, iter, sym)
13237 if (ada_is_non_standard_exception_sym (sym)
13238 && (preg == NULL
13239 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13240 0, NULL, 0) == 0))
13241 {
13242 struct ada_exc_info info
13243 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13244
13245 VEC_safe_push (ada_exc_info, *exceptions, &info);
13246 }
13247 }
13248 }
13249 }
13250
13251 /* Implements ada_exceptions_list with the regular expression passed
13252 as a regex_t, rather than a string.
13253
13254 If not NULL, PREG is used to filter out exceptions whose names
13255 do not match. Otherwise, all exceptions are listed. */
13256
13257 static VEC(ada_exc_info) *
13258 ada_exceptions_list_1 (regex_t *preg)
13259 {
13260 VEC(ada_exc_info) *result = NULL;
13261 struct cleanup *old_chain
13262 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13263 int prev_len;
13264
13265 /* First, list the known standard exceptions. These exceptions
13266 need to be handled separately, as they are usually defined in
13267 runtime units that have been compiled without debugging info. */
13268
13269 ada_add_standard_exceptions (preg, &result);
13270
13271 /* Next, find all exceptions whose scope is local and accessible
13272 from the currently selected frame. */
13273
13274 if (has_stack_frames ())
13275 {
13276 prev_len = VEC_length (ada_exc_info, result);
13277 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13278 &result);
13279 if (VEC_length (ada_exc_info, result) > prev_len)
13280 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13281 }
13282
13283 /* Add all exceptions whose scope is global. */
13284
13285 prev_len = VEC_length (ada_exc_info, result);
13286 ada_add_global_exceptions (preg, &result);
13287 if (VEC_length (ada_exc_info, result) > prev_len)
13288 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13289
13290 discard_cleanups (old_chain);
13291 return result;
13292 }
13293
13294 /* Return a vector of ada_exc_info.
13295
13296 If REGEXP is NULL, all exceptions are included in the result.
13297 Otherwise, it should contain a valid regular expression,
13298 and only the exceptions whose names match that regular expression
13299 are included in the result.
13300
13301 The exceptions are sorted in the following order:
13302 - Standard exceptions (defined by the Ada language), in
13303 alphabetical order;
13304 - Exceptions only visible from the current frame, in
13305 alphabetical order;
13306 - Exceptions whose scope is global, in alphabetical order. */
13307
13308 VEC(ada_exc_info) *
13309 ada_exceptions_list (const char *regexp)
13310 {
13311 VEC(ada_exc_info) *result = NULL;
13312 struct cleanup *old_chain = NULL;
13313 regex_t reg;
13314
13315 if (regexp != NULL)
13316 old_chain = compile_rx_or_error (&reg, regexp,
13317 _("invalid regular expression"));
13318
13319 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13320
13321 if (old_chain != NULL)
13322 do_cleanups (old_chain);
13323 return result;
13324 }
13325
13326 /* Implement the "info exceptions" command. */
13327
13328 static void
13329 info_exceptions_command (char *regexp, int from_tty)
13330 {
13331 VEC(ada_exc_info) *exceptions;
13332 struct cleanup *cleanup;
13333 struct gdbarch *gdbarch = get_current_arch ();
13334 int ix;
13335 struct ada_exc_info *info;
13336
13337 exceptions = ada_exceptions_list (regexp);
13338 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13339
13340 if (regexp != NULL)
13341 printf_filtered
13342 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13343 else
13344 printf_filtered (_("All defined Ada exceptions:\n"));
13345
13346 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13347 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13348
13349 do_cleanups (cleanup);
13350 }
13351
13352 /* Operators */
13353 /* Information about operators given special treatment in functions
13354 below. */
13355 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13356
13357 #define ADA_OPERATORS \
13358 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13359 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13360 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13361 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13362 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13363 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13364 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13365 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13366 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13367 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13368 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13369 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13370 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13371 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13372 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13373 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13374 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13375 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13376 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13377
13378 static void
13379 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13380 int *argsp)
13381 {
13382 switch (exp->elts[pc - 1].opcode)
13383 {
13384 default:
13385 operator_length_standard (exp, pc, oplenp, argsp);
13386 break;
13387
13388 #define OP_DEFN(op, len, args, binop) \
13389 case op: *oplenp = len; *argsp = args; break;
13390 ADA_OPERATORS;
13391 #undef OP_DEFN
13392
13393 case OP_AGGREGATE:
13394 *oplenp = 3;
13395 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13396 break;
13397
13398 case OP_CHOICES:
13399 *oplenp = 3;
13400 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13401 break;
13402 }
13403 }
13404
13405 /* Implementation of the exp_descriptor method operator_check. */
13406
13407 static int
13408 ada_operator_check (struct expression *exp, int pos,
13409 int (*objfile_func) (struct objfile *objfile, void *data),
13410 void *data)
13411 {
13412 const union exp_element *const elts = exp->elts;
13413 struct type *type = NULL;
13414
13415 switch (elts[pos].opcode)
13416 {
13417 case UNOP_IN_RANGE:
13418 case UNOP_QUAL:
13419 type = elts[pos + 1].type;
13420 break;
13421
13422 default:
13423 return operator_check_standard (exp, pos, objfile_func, data);
13424 }
13425
13426 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13427
13428 if (type && TYPE_OBJFILE (type)
13429 && (*objfile_func) (TYPE_OBJFILE (type), data))
13430 return 1;
13431
13432 return 0;
13433 }
13434
13435 static char *
13436 ada_op_name (enum exp_opcode opcode)
13437 {
13438 switch (opcode)
13439 {
13440 default:
13441 return op_name_standard (opcode);
13442
13443 #define OP_DEFN(op, len, args, binop) case op: return #op;
13444 ADA_OPERATORS;
13445 #undef OP_DEFN
13446
13447 case OP_AGGREGATE:
13448 return "OP_AGGREGATE";
13449 case OP_CHOICES:
13450 return "OP_CHOICES";
13451 case OP_NAME:
13452 return "OP_NAME";
13453 }
13454 }
13455
13456 /* As for operator_length, but assumes PC is pointing at the first
13457 element of the operator, and gives meaningful results only for the
13458 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13459
13460 static void
13461 ada_forward_operator_length (struct expression *exp, int pc,
13462 int *oplenp, int *argsp)
13463 {
13464 switch (exp->elts[pc].opcode)
13465 {
13466 default:
13467 *oplenp = *argsp = 0;
13468 break;
13469
13470 #define OP_DEFN(op, len, args, binop) \
13471 case op: *oplenp = len; *argsp = args; break;
13472 ADA_OPERATORS;
13473 #undef OP_DEFN
13474
13475 case OP_AGGREGATE:
13476 *oplenp = 3;
13477 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13478 break;
13479
13480 case OP_CHOICES:
13481 *oplenp = 3;
13482 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13483 break;
13484
13485 case OP_STRING:
13486 case OP_NAME:
13487 {
13488 int len = longest_to_int (exp->elts[pc + 1].longconst);
13489
13490 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13491 *argsp = 0;
13492 break;
13493 }
13494 }
13495 }
13496
13497 static int
13498 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13499 {
13500 enum exp_opcode op = exp->elts[elt].opcode;
13501 int oplen, nargs;
13502 int pc = elt;
13503 int i;
13504
13505 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13506
13507 switch (op)
13508 {
13509 /* Ada attributes ('Foo). */
13510 case OP_ATR_FIRST:
13511 case OP_ATR_LAST:
13512 case OP_ATR_LENGTH:
13513 case OP_ATR_IMAGE:
13514 case OP_ATR_MAX:
13515 case OP_ATR_MIN:
13516 case OP_ATR_MODULUS:
13517 case OP_ATR_POS:
13518 case OP_ATR_SIZE:
13519 case OP_ATR_TAG:
13520 case OP_ATR_VAL:
13521 break;
13522
13523 case UNOP_IN_RANGE:
13524 case UNOP_QUAL:
13525 /* XXX: gdb_sprint_host_address, type_sprint */
13526 fprintf_filtered (stream, _("Type @"));
13527 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13528 fprintf_filtered (stream, " (");
13529 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13530 fprintf_filtered (stream, ")");
13531 break;
13532 case BINOP_IN_BOUNDS:
13533 fprintf_filtered (stream, " (%d)",
13534 longest_to_int (exp->elts[pc + 2].longconst));
13535 break;
13536 case TERNOP_IN_RANGE:
13537 break;
13538
13539 case OP_AGGREGATE:
13540 case OP_OTHERS:
13541 case OP_DISCRETE_RANGE:
13542 case OP_POSITIONAL:
13543 case OP_CHOICES:
13544 break;
13545
13546 case OP_NAME:
13547 case OP_STRING:
13548 {
13549 char *name = &exp->elts[elt + 2].string;
13550 int len = longest_to_int (exp->elts[elt + 1].longconst);
13551
13552 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13553 break;
13554 }
13555
13556 default:
13557 return dump_subexp_body_standard (exp, stream, elt);
13558 }
13559
13560 elt += oplen;
13561 for (i = 0; i < nargs; i += 1)
13562 elt = dump_subexp (exp, stream, elt);
13563
13564 return elt;
13565 }
13566
13567 /* The Ada extension of print_subexp (q.v.). */
13568
13569 static void
13570 ada_print_subexp (struct expression *exp, int *pos,
13571 struct ui_file *stream, enum precedence prec)
13572 {
13573 int oplen, nargs, i;
13574 int pc = *pos;
13575 enum exp_opcode op = exp->elts[pc].opcode;
13576
13577 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13578
13579 *pos += oplen;
13580 switch (op)
13581 {
13582 default:
13583 *pos -= oplen;
13584 print_subexp_standard (exp, pos, stream, prec);
13585 return;
13586
13587 case OP_VAR_VALUE:
13588 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13589 return;
13590
13591 case BINOP_IN_BOUNDS:
13592 /* XXX: sprint_subexp */
13593 print_subexp (exp, pos, stream, PREC_SUFFIX);
13594 fputs_filtered (" in ", stream);
13595 print_subexp (exp, pos, stream, PREC_SUFFIX);
13596 fputs_filtered ("'range", stream);
13597 if (exp->elts[pc + 1].longconst > 1)
13598 fprintf_filtered (stream, "(%ld)",
13599 (long) exp->elts[pc + 1].longconst);
13600 return;
13601
13602 case TERNOP_IN_RANGE:
13603 if (prec >= PREC_EQUAL)
13604 fputs_filtered ("(", stream);
13605 /* XXX: sprint_subexp */
13606 print_subexp (exp, pos, stream, PREC_SUFFIX);
13607 fputs_filtered (" in ", stream);
13608 print_subexp (exp, pos, stream, PREC_EQUAL);
13609 fputs_filtered (" .. ", stream);
13610 print_subexp (exp, pos, stream, PREC_EQUAL);
13611 if (prec >= PREC_EQUAL)
13612 fputs_filtered (")", stream);
13613 return;
13614
13615 case OP_ATR_FIRST:
13616 case OP_ATR_LAST:
13617 case OP_ATR_LENGTH:
13618 case OP_ATR_IMAGE:
13619 case OP_ATR_MAX:
13620 case OP_ATR_MIN:
13621 case OP_ATR_MODULUS:
13622 case OP_ATR_POS:
13623 case OP_ATR_SIZE:
13624 case OP_ATR_TAG:
13625 case OP_ATR_VAL:
13626 if (exp->elts[*pos].opcode == OP_TYPE)
13627 {
13628 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13629 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13630 &type_print_raw_options);
13631 *pos += 3;
13632 }
13633 else
13634 print_subexp (exp, pos, stream, PREC_SUFFIX);
13635 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13636 if (nargs > 1)
13637 {
13638 int tem;
13639
13640 for (tem = 1; tem < nargs; tem += 1)
13641 {
13642 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13643 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13644 }
13645 fputs_filtered (")", stream);
13646 }
13647 return;
13648
13649 case UNOP_QUAL:
13650 type_print (exp->elts[pc + 1].type, "", stream, 0);
13651 fputs_filtered ("'(", stream);
13652 print_subexp (exp, pos, stream, PREC_PREFIX);
13653 fputs_filtered (")", stream);
13654 return;
13655
13656 case UNOP_IN_RANGE:
13657 /* XXX: sprint_subexp */
13658 print_subexp (exp, pos, stream, PREC_SUFFIX);
13659 fputs_filtered (" in ", stream);
13660 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13661 &type_print_raw_options);
13662 return;
13663
13664 case OP_DISCRETE_RANGE:
13665 print_subexp (exp, pos, stream, PREC_SUFFIX);
13666 fputs_filtered ("..", stream);
13667 print_subexp (exp, pos, stream, PREC_SUFFIX);
13668 return;
13669
13670 case OP_OTHERS:
13671 fputs_filtered ("others => ", stream);
13672 print_subexp (exp, pos, stream, PREC_SUFFIX);
13673 return;
13674
13675 case OP_CHOICES:
13676 for (i = 0; i < nargs-1; i += 1)
13677 {
13678 if (i > 0)
13679 fputs_filtered ("|", stream);
13680 print_subexp (exp, pos, stream, PREC_SUFFIX);
13681 }
13682 fputs_filtered (" => ", stream);
13683 print_subexp (exp, pos, stream, PREC_SUFFIX);
13684 return;
13685
13686 case OP_POSITIONAL:
13687 print_subexp (exp, pos, stream, PREC_SUFFIX);
13688 return;
13689
13690 case OP_AGGREGATE:
13691 fputs_filtered ("(", stream);
13692 for (i = 0; i < nargs; i += 1)
13693 {
13694 if (i > 0)
13695 fputs_filtered (", ", stream);
13696 print_subexp (exp, pos, stream, PREC_SUFFIX);
13697 }
13698 fputs_filtered (")", stream);
13699 return;
13700 }
13701 }
13702
13703 /* Table mapping opcodes into strings for printing operators
13704 and precedences of the operators. */
13705
13706 static const struct op_print ada_op_print_tab[] = {
13707 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13708 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13709 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13710 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13711 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13712 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13713 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13714 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13715 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13716 {">=", BINOP_GEQ, PREC_ORDER, 0},
13717 {">", BINOP_GTR, PREC_ORDER, 0},
13718 {"<", BINOP_LESS, PREC_ORDER, 0},
13719 {">>", BINOP_RSH, PREC_SHIFT, 0},
13720 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13721 {"+", BINOP_ADD, PREC_ADD, 0},
13722 {"-", BINOP_SUB, PREC_ADD, 0},
13723 {"&", BINOP_CONCAT, PREC_ADD, 0},
13724 {"*", BINOP_MUL, PREC_MUL, 0},
13725 {"/", BINOP_DIV, PREC_MUL, 0},
13726 {"rem", BINOP_REM, PREC_MUL, 0},
13727 {"mod", BINOP_MOD, PREC_MUL, 0},
13728 {"**", BINOP_EXP, PREC_REPEAT, 0},
13729 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13730 {"-", UNOP_NEG, PREC_PREFIX, 0},
13731 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13732 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13733 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13734 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13735 {".all", UNOP_IND, PREC_SUFFIX, 1},
13736 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13737 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13738 {NULL, OP_NULL, PREC_SUFFIX, 0}
13739 };
13740 \f
13741 enum ada_primitive_types {
13742 ada_primitive_type_int,
13743 ada_primitive_type_long,
13744 ada_primitive_type_short,
13745 ada_primitive_type_char,
13746 ada_primitive_type_float,
13747 ada_primitive_type_double,
13748 ada_primitive_type_void,
13749 ada_primitive_type_long_long,
13750 ada_primitive_type_long_double,
13751 ada_primitive_type_natural,
13752 ada_primitive_type_positive,
13753 ada_primitive_type_system_address,
13754 nr_ada_primitive_types
13755 };
13756
13757 static void
13758 ada_language_arch_info (struct gdbarch *gdbarch,
13759 struct language_arch_info *lai)
13760 {
13761 const struct builtin_type *builtin = builtin_type (gdbarch);
13762
13763 lai->primitive_type_vector
13764 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13765 struct type *);
13766
13767 lai->primitive_type_vector [ada_primitive_type_int]
13768 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13769 0, "integer");
13770 lai->primitive_type_vector [ada_primitive_type_long]
13771 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13772 0, "long_integer");
13773 lai->primitive_type_vector [ada_primitive_type_short]
13774 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13775 0, "short_integer");
13776 lai->string_char_type
13777 = lai->primitive_type_vector [ada_primitive_type_char]
13778 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13779 lai->primitive_type_vector [ada_primitive_type_float]
13780 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13781 "float", NULL);
13782 lai->primitive_type_vector [ada_primitive_type_double]
13783 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13784 "long_float", NULL);
13785 lai->primitive_type_vector [ada_primitive_type_long_long]
13786 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13787 0, "long_long_integer");
13788 lai->primitive_type_vector [ada_primitive_type_long_double]
13789 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13790 "long_long_float", NULL);
13791 lai->primitive_type_vector [ada_primitive_type_natural]
13792 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13793 0, "natural");
13794 lai->primitive_type_vector [ada_primitive_type_positive]
13795 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13796 0, "positive");
13797 lai->primitive_type_vector [ada_primitive_type_void]
13798 = builtin->builtin_void;
13799
13800 lai->primitive_type_vector [ada_primitive_type_system_address]
13801 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13802 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13803 = "system__address";
13804
13805 lai->bool_type_symbol = NULL;
13806 lai->bool_type_default = builtin->builtin_bool;
13807 }
13808 \f
13809 /* Language vector */
13810
13811 /* Not really used, but needed in the ada_language_defn. */
13812
13813 static void
13814 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13815 {
13816 ada_emit_char (c, type, stream, quoter, 1);
13817 }
13818
13819 static int
13820 parse (struct parser_state *ps)
13821 {
13822 warnings_issued = 0;
13823 return ada_parse (ps);
13824 }
13825
13826 static const struct exp_descriptor ada_exp_descriptor = {
13827 ada_print_subexp,
13828 ada_operator_length,
13829 ada_operator_check,
13830 ada_op_name,
13831 ada_dump_subexp_body,
13832 ada_evaluate_subexp
13833 };
13834
13835 /* Implement the "la_get_symbol_name_cmp" language_defn method
13836 for Ada. */
13837
13838 static symbol_name_cmp_ftype
13839 ada_get_symbol_name_cmp (const char *lookup_name)
13840 {
13841 if (should_use_wild_match (lookup_name))
13842 return wild_match;
13843 else
13844 return compare_names;
13845 }
13846
13847 /* Implement the "la_read_var_value" language_defn method for Ada. */
13848
13849 static struct value *
13850 ada_read_var_value (struct symbol *var, const struct block *var_block,
13851 struct frame_info *frame)
13852 {
13853 const struct block *frame_block = NULL;
13854 struct symbol *renaming_sym = NULL;
13855
13856 /* The only case where default_read_var_value is not sufficient
13857 is when VAR is a renaming... */
13858 if (frame)
13859 frame_block = get_frame_block (frame, NULL);
13860 if (frame_block)
13861 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13862 if (renaming_sym != NULL)
13863 return ada_read_renaming_var_value (renaming_sym, frame_block);
13864
13865 /* This is a typical case where we expect the default_read_var_value
13866 function to work. */
13867 return default_read_var_value (var, var_block, frame);
13868 }
13869
13870 const struct language_defn ada_language_defn = {
13871 "ada", /* Language name */
13872 "Ada",
13873 language_ada,
13874 range_check_off,
13875 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13876 that's not quite what this means. */
13877 array_row_major,
13878 macro_expansion_no,
13879 &ada_exp_descriptor,
13880 parse,
13881 ada_error,
13882 resolve,
13883 ada_printchar, /* Print a character constant */
13884 ada_printstr, /* Function to print string constant */
13885 emit_char, /* Function to print single char (not used) */
13886 ada_print_type, /* Print a type using appropriate syntax */
13887 ada_print_typedef, /* Print a typedef using appropriate syntax */
13888 ada_val_print, /* Print a value using appropriate syntax */
13889 ada_value_print, /* Print a top-level value */
13890 ada_read_var_value, /* la_read_var_value */
13891 NULL, /* Language specific skip_trampoline */
13892 NULL, /* name_of_this */
13893 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13894 basic_lookup_transparent_type, /* lookup_transparent_type */
13895 ada_la_decode, /* Language specific symbol demangler */
13896 NULL, /* Language specific
13897 class_name_from_physname */
13898 ada_op_print_tab, /* expression operators for printing */
13899 0, /* c-style arrays */
13900 1, /* String lower bound */
13901 ada_get_gdb_completer_word_break_characters,
13902 ada_make_symbol_completion_list,
13903 ada_language_arch_info,
13904 ada_print_array_index,
13905 default_pass_by_reference,
13906 c_get_string,
13907 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13908 ada_iterate_over_symbols,
13909 &ada_varobj_ops,
13910 NULL,
13911 NULL,
13912 LANG_MAGIC
13913 };
13914
13915 /* Provide a prototype to silence -Wmissing-prototypes. */
13916 extern initialize_file_ftype _initialize_ada_language;
13917
13918 /* Command-list for the "set/show ada" prefix command. */
13919 static struct cmd_list_element *set_ada_list;
13920 static struct cmd_list_element *show_ada_list;
13921
13922 /* Implement the "set ada" prefix command. */
13923
13924 static void
13925 set_ada_command (char *arg, int from_tty)
13926 {
13927 printf_unfiltered (_(\
13928 "\"set ada\" must be followed by the name of a setting.\n"));
13929 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13930 }
13931
13932 /* Implement the "show ada" prefix command. */
13933
13934 static void
13935 show_ada_command (char *args, int from_tty)
13936 {
13937 cmd_show_list (show_ada_list, from_tty, "");
13938 }
13939
13940 static void
13941 initialize_ada_catchpoint_ops (void)
13942 {
13943 struct breakpoint_ops *ops;
13944
13945 initialize_breakpoint_ops ();
13946
13947 ops = &catch_exception_breakpoint_ops;
13948 *ops = bkpt_breakpoint_ops;
13949 ops->dtor = dtor_catch_exception;
13950 ops->allocate_location = allocate_location_catch_exception;
13951 ops->re_set = re_set_catch_exception;
13952 ops->check_status = check_status_catch_exception;
13953 ops->print_it = print_it_catch_exception;
13954 ops->print_one = print_one_catch_exception;
13955 ops->print_mention = print_mention_catch_exception;
13956 ops->print_recreate = print_recreate_catch_exception;
13957
13958 ops = &catch_exception_unhandled_breakpoint_ops;
13959 *ops = bkpt_breakpoint_ops;
13960 ops->dtor = dtor_catch_exception_unhandled;
13961 ops->allocate_location = allocate_location_catch_exception_unhandled;
13962 ops->re_set = re_set_catch_exception_unhandled;
13963 ops->check_status = check_status_catch_exception_unhandled;
13964 ops->print_it = print_it_catch_exception_unhandled;
13965 ops->print_one = print_one_catch_exception_unhandled;
13966 ops->print_mention = print_mention_catch_exception_unhandled;
13967 ops->print_recreate = print_recreate_catch_exception_unhandled;
13968
13969 ops = &catch_assert_breakpoint_ops;
13970 *ops = bkpt_breakpoint_ops;
13971 ops->dtor = dtor_catch_assert;
13972 ops->allocate_location = allocate_location_catch_assert;
13973 ops->re_set = re_set_catch_assert;
13974 ops->check_status = check_status_catch_assert;
13975 ops->print_it = print_it_catch_assert;
13976 ops->print_one = print_one_catch_assert;
13977 ops->print_mention = print_mention_catch_assert;
13978 ops->print_recreate = print_recreate_catch_assert;
13979 }
13980
13981 /* This module's 'new_objfile' observer. */
13982
13983 static void
13984 ada_new_objfile_observer (struct objfile *objfile)
13985 {
13986 ada_clear_symbol_cache ();
13987 }
13988
13989 /* This module's 'free_objfile' observer. */
13990
13991 static void
13992 ada_free_objfile_observer (struct objfile *objfile)
13993 {
13994 ada_clear_symbol_cache ();
13995 }
13996
13997 void
13998 _initialize_ada_language (void)
13999 {
14000 add_language (&ada_language_defn);
14001
14002 initialize_ada_catchpoint_ops ();
14003
14004 add_prefix_cmd ("ada", no_class, set_ada_command,
14005 _("Prefix command for changing Ada-specfic settings"),
14006 &set_ada_list, "set ada ", 0, &setlist);
14007
14008 add_prefix_cmd ("ada", no_class, show_ada_command,
14009 _("Generic command for showing Ada-specific settings."),
14010 &show_ada_list, "show ada ", 0, &showlist);
14011
14012 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14013 &trust_pad_over_xvs, _("\
14014 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14015 Show whether an optimization trusting PAD types over XVS types is activated"),
14016 _("\
14017 This is related to the encoding used by the GNAT compiler. The debugger\n\
14018 should normally trust the contents of PAD types, but certain older versions\n\
14019 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14020 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14021 work around this bug. It is always safe to turn this option \"off\", but\n\
14022 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14023 this option to \"off\" unless necessary."),
14024 NULL, NULL, &set_ada_list, &show_ada_list);
14025
14026 add_catch_command ("exception", _("\
14027 Catch Ada exceptions, when raised.\n\
14028 With an argument, catch only exceptions with the given name."),
14029 catch_ada_exception_command,
14030 NULL,
14031 CATCH_PERMANENT,
14032 CATCH_TEMPORARY);
14033 add_catch_command ("assert", _("\
14034 Catch failed Ada assertions, when raised.\n\
14035 With an argument, catch only exceptions with the given name."),
14036 catch_assert_command,
14037 NULL,
14038 CATCH_PERMANENT,
14039 CATCH_TEMPORARY);
14040
14041 varsize_limit = 65536;
14042
14043 add_info ("exceptions", info_exceptions_command,
14044 _("\
14045 List all Ada exception names.\n\
14046 If a regular expression is passed as an argument, only those matching\n\
14047 the regular expression are listed."));
14048
14049 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14050 _("Set Ada maintenance-related variables."),
14051 &maint_set_ada_cmdlist, "maintenance set ada ",
14052 0/*allow-unknown*/, &maintenance_set_cmdlist);
14053
14054 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14055 _("Show Ada maintenance-related variables"),
14056 &maint_show_ada_cmdlist, "maintenance show ada ",
14057 0/*allow-unknown*/, &maintenance_show_cmdlist);
14058
14059 add_setshow_boolean_cmd
14060 ("ignore-descriptive-types", class_maintenance,
14061 &ada_ignore_descriptive_types_p,
14062 _("Set whether descriptive types generated by GNAT should be ignored."),
14063 _("Show whether descriptive types generated by GNAT should be ignored."),
14064 _("\
14065 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14066 DWARF attribute."),
14067 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14068
14069 obstack_init (&symbol_list_obstack);
14070
14071 decoded_names_store = htab_create_alloc
14072 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14073 NULL, xcalloc, xfree);
14074
14075 /* The ada-lang observers. */
14076 observer_attach_new_objfile (ada_new_objfile_observer);
14077 observer_attach_free_objfile (ada_free_objfile_observer);
14078 observer_attach_inferior_exit (ada_inferior_exit);
14079
14080 /* Setup various context-specific data. */
14081 ada_inferior_data
14082 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14083 ada_pspace_data_handle
14084 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14085 }
This page took 0.53015 seconds and 4 git commands to generate.