ad08c5fc57824b429dd708a6b43f8f1f71b2cb43
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *, CORE_ADDR *);
105
106 static struct value *convert_actual (struct value *, struct type *,
107 CORE_ADDR *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *,
110 CORE_ADDR *);
111
112 static void ada_add_block_symbols (struct obstack *,
113 struct block *, const char *,
114 domain_enum, struct objfile *, int);
115
116 static int is_nonfunction (struct ada_symbol_info *, int);
117
118 static void add_defn_to_vec (struct obstack *, struct symbol *,
119 struct block *);
120
121 static int num_defns_collected (struct obstack *);
122
123 static struct ada_symbol_info *defns_collected (struct obstack *, int);
124
125 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
126 *, const char *, int,
127 domain_enum, int);
128
129 static struct value *resolve_subexp (struct expression **, int *, int,
130 struct type *);
131
132 static void replace_operator_with_call (struct expression **, int, int, int,
133 struct symbol *, struct block *);
134
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
136
137 static char *ada_op_name (enum exp_opcode);
138
139 static const char *ada_decoded_op_name (enum exp_opcode);
140
141 static int numeric_type_p (struct type *);
142
143 static int integer_type_p (struct type *);
144
145 static int scalar_type_p (struct type *);
146
147 static int discrete_type_p (struct type *);
148
149 static enum ada_renaming_category parse_old_style_renaming (struct type *,
150 const char **,
151 int *,
152 const char **);
153
154 static struct symbol *find_old_style_renaming_symbol (const char *,
155 struct block *);
156
157 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
158 int, int, int *);
159
160 static struct value *evaluate_subexp_type (struct expression *, int *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (char *, struct value *,
171 struct type *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *packed_array_type (struct type *, long *);
179
180 static struct type *decode_packed_array_type (struct type *);
181
182 static struct value *decode_packed_array (struct value *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
188
189 static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
191
192 static struct value *get_var_value (char *, char *);
193
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
195
196 static int equiv_types (struct type *, struct type *);
197
198 static int is_name_suffix (const char *);
199
200 static int wild_match (const char *, int, const char *);
201
202 static struct value *ada_coerce_ref (struct value *);
203
204 static LONGEST pos_atr (struct value *);
205
206 static struct value *value_pos_atr (struct type *, struct value *);
207
208 static struct value *value_val_atr (struct type *, struct value *);
209
210 static struct symbol *standard_lookup (const char *, const struct block *,
211 domain_enum);
212
213 static struct value *ada_search_struct_field (char *, struct value *, int,
214 struct type *);
215
216 static struct value *ada_value_primitive_field (struct value *, int, int,
217 struct type *);
218
219 static int find_struct_field (char *, struct type *, int,
220 struct type **, int *, int *, int *, int *);
221
222 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
223 struct value *);
224
225 static struct value *ada_to_fixed_value (struct value *);
226
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231 static struct value *ada_coerce_to_simple_array (struct value *);
232
233 static int ada_is_direct_array_type (struct type *);
234
235 static void ada_language_arch_info (struct gdbarch *,
236 struct language_arch_info *);
237
238 static void check_size (const struct type *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *, int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270 \f
271
272
273 /* Maximum-sized dynamic type. */
274 static unsigned int varsize_limit;
275
276 /* FIXME: brobecker/2003-09-17: No longer a const because it is
277 returned by a function that does not return a const char *. */
278 static char *ada_completer_word_break_characters =
279 #ifdef VMS
280 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281 #else
282 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
283 #endif
284
285 /* The name of the symbol to use to get the name of the main subprogram. */
286 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
287 = "__gnat_ada_main_program_name";
288
289 /* Limit on the number of warnings to raise per expression evaluation. */
290 static int warning_limit = 2;
291
292 /* Number of warning messages issued; reset to 0 by cleanups after
293 expression evaluation. */
294 static int warnings_issued = 0;
295
296 static const char *known_runtime_file_name_patterns[] = {
297 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298 };
299
300 static const char *known_auxiliary_function_name_patterns[] = {
301 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302 };
303
304 /* Space for allocating results of ada_lookup_symbol_list. */
305 static struct obstack symbol_list_obstack;
306
307 /* Utilities */
308
309 /* Given DECODED_NAME a string holding a symbol name in its
310 decoded form (ie using the Ada dotted notation), returns
311 its unqualified name. */
312
313 static const char *
314 ada_unqualified_name (const char *decoded_name)
315 {
316 const char *result = strrchr (decoded_name, '.');
317
318 if (result != NULL)
319 result++; /* Skip the dot... */
320 else
321 result = decoded_name;
322
323 return result;
324 }
325
326 /* Return a string starting with '<', followed by STR, and '>'.
327 The result is good until the next call. */
328
329 static char *
330 add_angle_brackets (const char *str)
331 {
332 static char *result = NULL;
333
334 xfree (result);
335 result = xstrprintf ("<%s>", str);
336 return result;
337 }
338
339 static char *
340 ada_get_gdb_completer_word_break_characters (void)
341 {
342 return ada_completer_word_break_characters;
343 }
344
345 /* Print an array element index using the Ada syntax. */
346
347 static void
348 ada_print_array_index (struct value *index_value, struct ui_file *stream,
349 const struct value_print_options *options)
350 {
351 LA_VALUE_PRINT (index_value, stream, options);
352 fprintf_filtered (stream, " => ");
353 }
354
355 /* Read the string located at ADDR from the inferior and store the
356 result into BUF. */
357
358 static void
359 extract_string (CORE_ADDR addr, char *buf)
360 {
361 int char_index = 0;
362
363 /* Loop, reading one byte at a time, until we reach the '\000'
364 end-of-string marker. */
365 do
366 {
367 target_read_memory (addr + char_index * sizeof (char),
368 buf + char_index * sizeof (char), sizeof (char));
369 char_index++;
370 }
371 while (buf[char_index - 1] != '\000');
372 }
373
374 /* Assuming VECT points to an array of *SIZE objects of size
375 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
376 updating *SIZE as necessary and returning the (new) array. */
377
378 void *
379 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
380 {
381 if (*size < min_size)
382 {
383 *size *= 2;
384 if (*size < min_size)
385 *size = min_size;
386 vect = xrealloc (vect, *size * element_size);
387 }
388 return vect;
389 }
390
391 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
392 suffix of FIELD_NAME beginning "___". */
393
394 static int
395 field_name_match (const char *field_name, const char *target)
396 {
397 int len = strlen (target);
398 return
399 (strncmp (field_name, target, len) == 0
400 && (field_name[len] == '\0'
401 || (strncmp (field_name + len, "___", 3) == 0
402 && strcmp (field_name + strlen (field_name) - 6,
403 "___XVN") != 0)));
404 }
405
406
407 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
408 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
409 and return its index. This function also handles fields whose name
410 have ___ suffixes because the compiler sometimes alters their name
411 by adding such a suffix to represent fields with certain constraints.
412 If the field could not be found, return a negative number if
413 MAYBE_MISSING is set. Otherwise raise an error. */
414
415 int
416 ada_get_field_index (const struct type *type, const char *field_name,
417 int maybe_missing)
418 {
419 int fieldno;
420 struct type *struct_type = check_typedef ((struct type *) type);
421
422 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
423 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
424 return fieldno;
425
426 if (!maybe_missing)
427 error (_("Unable to find field %s in struct %s. Aborting"),
428 field_name, TYPE_NAME (struct_type));
429
430 return -1;
431 }
432
433 /* The length of the prefix of NAME prior to any "___" suffix. */
434
435 int
436 ada_name_prefix_len (const char *name)
437 {
438 if (name == NULL)
439 return 0;
440 else
441 {
442 const char *p = strstr (name, "___");
443 if (p == NULL)
444 return strlen (name);
445 else
446 return p - name;
447 }
448 }
449
450 /* Return non-zero if SUFFIX is a suffix of STR.
451 Return zero if STR is null. */
452
453 static int
454 is_suffix (const char *str, const char *suffix)
455 {
456 int len1, len2;
457 if (str == NULL)
458 return 0;
459 len1 = strlen (str);
460 len2 = strlen (suffix);
461 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
462 }
463
464 /* The contents of value VAL, treated as a value of type TYPE. The
465 result is an lval in memory if VAL is. */
466
467 static struct value *
468 coerce_unspec_val_to_type (struct value *val, struct type *type)
469 {
470 type = ada_check_typedef (type);
471 if (value_type (val) == type)
472 return val;
473 else
474 {
475 struct value *result;
476
477 /* Make sure that the object size is not unreasonable before
478 trying to allocate some memory for it. */
479 check_size (type);
480
481 result = allocate_value (type);
482 set_value_component_location (result, val);
483 set_value_bitsize (result, value_bitsize (val));
484 set_value_bitpos (result, value_bitpos (val));
485 set_value_address (result, value_address (val));
486 if (value_lazy (val)
487 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
488 set_value_lazy (result, 1);
489 else
490 memcpy (value_contents_raw (result), value_contents (val),
491 TYPE_LENGTH (type));
492 return result;
493 }
494 }
495
496 static const gdb_byte *
497 cond_offset_host (const gdb_byte *valaddr, long offset)
498 {
499 if (valaddr == NULL)
500 return NULL;
501 else
502 return valaddr + offset;
503 }
504
505 static CORE_ADDR
506 cond_offset_target (CORE_ADDR address, long offset)
507 {
508 if (address == 0)
509 return 0;
510 else
511 return address + offset;
512 }
513
514 /* Issue a warning (as for the definition of warning in utils.c, but
515 with exactly one argument rather than ...), unless the limit on the
516 number of warnings has passed during the evaluation of the current
517 expression. */
518
519 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
520 provided by "complaint". */
521 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
522
523 static void
524 lim_warning (const char *format, ...)
525 {
526 va_list args;
527 va_start (args, format);
528
529 warnings_issued += 1;
530 if (warnings_issued <= warning_limit)
531 vwarning (format, args);
532
533 va_end (args);
534 }
535
536 /* Issue an error if the size of an object of type T is unreasonable,
537 i.e. if it would be a bad idea to allocate a value of this type in
538 GDB. */
539
540 static void
541 check_size (const struct type *type)
542 {
543 if (TYPE_LENGTH (type) > varsize_limit)
544 error (_("object size is larger than varsize-limit"));
545 }
546
547
548 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
549 gdbtypes.h, but some of the necessary definitions in that file
550 seem to have gone missing. */
551
552 /* Maximum value of a SIZE-byte signed integer type. */
553 static LONGEST
554 max_of_size (int size)
555 {
556 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
557 return top_bit | (top_bit - 1);
558 }
559
560 /* Minimum value of a SIZE-byte signed integer type. */
561 static LONGEST
562 min_of_size (int size)
563 {
564 return -max_of_size (size) - 1;
565 }
566
567 /* Maximum value of a SIZE-byte unsigned integer type. */
568 static ULONGEST
569 umax_of_size (int size)
570 {
571 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
572 return top_bit | (top_bit - 1);
573 }
574
575 /* Maximum value of integral type T, as a signed quantity. */
576 static LONGEST
577 max_of_type (struct type *t)
578 {
579 if (TYPE_UNSIGNED (t))
580 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
581 else
582 return max_of_size (TYPE_LENGTH (t));
583 }
584
585 /* Minimum value of integral type T, as a signed quantity. */
586 static LONGEST
587 min_of_type (struct type *t)
588 {
589 if (TYPE_UNSIGNED (t))
590 return 0;
591 else
592 return min_of_size (TYPE_LENGTH (t));
593 }
594
595 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
596 static LONGEST
597 discrete_type_high_bound (struct type *type)
598 {
599 switch (TYPE_CODE (type))
600 {
601 case TYPE_CODE_RANGE:
602 return TYPE_HIGH_BOUND (type);
603 case TYPE_CODE_ENUM:
604 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
605 case TYPE_CODE_BOOL:
606 return 1;
607 case TYPE_CODE_CHAR:
608 case TYPE_CODE_INT:
609 return max_of_type (type);
610 default:
611 error (_("Unexpected type in discrete_type_high_bound."));
612 }
613 }
614
615 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
616 static LONGEST
617 discrete_type_low_bound (struct type *type)
618 {
619 switch (TYPE_CODE (type))
620 {
621 case TYPE_CODE_RANGE:
622 return TYPE_LOW_BOUND (type);
623 case TYPE_CODE_ENUM:
624 return TYPE_FIELD_BITPOS (type, 0);
625 case TYPE_CODE_BOOL:
626 return 0;
627 case TYPE_CODE_CHAR:
628 case TYPE_CODE_INT:
629 return min_of_type (type);
630 default:
631 error (_("Unexpected type in discrete_type_low_bound."));
632 }
633 }
634
635 /* The identity on non-range types. For range types, the underlying
636 non-range scalar type. */
637
638 static struct type *
639 base_type (struct type *type)
640 {
641 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
642 {
643 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
644 return type;
645 type = TYPE_TARGET_TYPE (type);
646 }
647 return type;
648 }
649 \f
650
651 /* Language Selection */
652
653 /* If the main program is in Ada, return language_ada, otherwise return LANG
654 (the main program is in Ada iif the adainit symbol is found).
655
656 MAIN_PST is not used. */
657
658 enum language
659 ada_update_initial_language (enum language lang,
660 struct partial_symtab *main_pst)
661 {
662 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
663 (struct objfile *) NULL) != NULL)
664 return language_ada;
665
666 return lang;
667 }
668
669 /* If the main procedure is written in Ada, then return its name.
670 The result is good until the next call. Return NULL if the main
671 procedure doesn't appear to be in Ada. */
672
673 char *
674 ada_main_name (void)
675 {
676 struct minimal_symbol *msym;
677 static char *main_program_name = NULL;
678
679 /* For Ada, the name of the main procedure is stored in a specific
680 string constant, generated by the binder. Look for that symbol,
681 extract its address, and then read that string. If we didn't find
682 that string, then most probably the main procedure is not written
683 in Ada. */
684 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
685
686 if (msym != NULL)
687 {
688 CORE_ADDR main_program_name_addr;
689 int err_code;
690
691 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
692 if (main_program_name_addr == 0)
693 error (_("Invalid address for Ada main program name."));
694
695 xfree (main_program_name);
696 target_read_string (main_program_name_addr, &main_program_name,
697 1024, &err_code);
698
699 if (err_code != 0)
700 return NULL;
701 return main_program_name;
702 }
703
704 /* The main procedure doesn't seem to be in Ada. */
705 return NULL;
706 }
707 \f
708 /* Symbols */
709
710 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
711 of NULLs. */
712
713 const struct ada_opname_map ada_opname_table[] = {
714 {"Oadd", "\"+\"", BINOP_ADD},
715 {"Osubtract", "\"-\"", BINOP_SUB},
716 {"Omultiply", "\"*\"", BINOP_MUL},
717 {"Odivide", "\"/\"", BINOP_DIV},
718 {"Omod", "\"mod\"", BINOP_MOD},
719 {"Orem", "\"rem\"", BINOP_REM},
720 {"Oexpon", "\"**\"", BINOP_EXP},
721 {"Olt", "\"<\"", BINOP_LESS},
722 {"Ole", "\"<=\"", BINOP_LEQ},
723 {"Ogt", "\">\"", BINOP_GTR},
724 {"Oge", "\">=\"", BINOP_GEQ},
725 {"Oeq", "\"=\"", BINOP_EQUAL},
726 {"One", "\"/=\"", BINOP_NOTEQUAL},
727 {"Oand", "\"and\"", BINOP_BITWISE_AND},
728 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
729 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
730 {"Oconcat", "\"&\"", BINOP_CONCAT},
731 {"Oabs", "\"abs\"", UNOP_ABS},
732 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
733 {"Oadd", "\"+\"", UNOP_PLUS},
734 {"Osubtract", "\"-\"", UNOP_NEG},
735 {NULL, NULL}
736 };
737
738 /* The "encoded" form of DECODED, according to GNAT conventions.
739 The result is valid until the next call to ada_encode. */
740
741 char *
742 ada_encode (const char *decoded)
743 {
744 static char *encoding_buffer = NULL;
745 static size_t encoding_buffer_size = 0;
746 const char *p;
747 int k;
748
749 if (decoded == NULL)
750 return NULL;
751
752 GROW_VECT (encoding_buffer, encoding_buffer_size,
753 2 * strlen (decoded) + 10);
754
755 k = 0;
756 for (p = decoded; *p != '\0'; p += 1)
757 {
758 if (*p == '.')
759 {
760 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
761 k += 2;
762 }
763 else if (*p == '"')
764 {
765 const struct ada_opname_map *mapping;
766
767 for (mapping = ada_opname_table;
768 mapping->encoded != NULL
769 && strncmp (mapping->decoded, p,
770 strlen (mapping->decoded)) != 0; mapping += 1)
771 ;
772 if (mapping->encoded == NULL)
773 error (_("invalid Ada operator name: %s"), p);
774 strcpy (encoding_buffer + k, mapping->encoded);
775 k += strlen (mapping->encoded);
776 break;
777 }
778 else
779 {
780 encoding_buffer[k] = *p;
781 k += 1;
782 }
783 }
784
785 encoding_buffer[k] = '\0';
786 return encoding_buffer;
787 }
788
789 /* Return NAME folded to lower case, or, if surrounded by single
790 quotes, unfolded, but with the quotes stripped away. Result good
791 to next call. */
792
793 char *
794 ada_fold_name (const char *name)
795 {
796 static char *fold_buffer = NULL;
797 static size_t fold_buffer_size = 0;
798
799 int len = strlen (name);
800 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
801
802 if (name[0] == '\'')
803 {
804 strncpy (fold_buffer, name + 1, len - 2);
805 fold_buffer[len - 2] = '\000';
806 }
807 else
808 {
809 int i;
810 for (i = 0; i <= len; i += 1)
811 fold_buffer[i] = tolower (name[i]);
812 }
813
814 return fold_buffer;
815 }
816
817 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
818
819 static int
820 is_lower_alphanum (const char c)
821 {
822 return (isdigit (c) || (isalpha (c) && islower (c)));
823 }
824
825 /* Remove either of these suffixes:
826 . .{DIGIT}+
827 . ${DIGIT}+
828 . ___{DIGIT}+
829 . __{DIGIT}+.
830 These are suffixes introduced by the compiler for entities such as
831 nested subprogram for instance, in order to avoid name clashes.
832 They do not serve any purpose for the debugger. */
833
834 static void
835 ada_remove_trailing_digits (const char *encoded, int *len)
836 {
837 if (*len > 1 && isdigit (encoded[*len - 1]))
838 {
839 int i = *len - 2;
840 while (i > 0 && isdigit (encoded[i]))
841 i--;
842 if (i >= 0 && encoded[i] == '.')
843 *len = i;
844 else if (i >= 0 && encoded[i] == '$')
845 *len = i;
846 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
847 *len = i - 2;
848 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
849 *len = i - 1;
850 }
851 }
852
853 /* Remove the suffix introduced by the compiler for protected object
854 subprograms. */
855
856 static void
857 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
858 {
859 /* Remove trailing N. */
860
861 /* Protected entry subprograms are broken into two
862 separate subprograms: The first one is unprotected, and has
863 a 'N' suffix; the second is the protected version, and has
864 the 'P' suffix. The second calls the first one after handling
865 the protection. Since the P subprograms are internally generated,
866 we leave these names undecoded, giving the user a clue that this
867 entity is internal. */
868
869 if (*len > 1
870 && encoded[*len - 1] == 'N'
871 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
872 *len = *len - 1;
873 }
874
875 /* If ENCODED follows the GNAT entity encoding conventions, then return
876 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
877 replaced by ENCODED.
878
879 The resulting string is valid until the next call of ada_decode.
880 If the string is unchanged by decoding, the original string pointer
881 is returned. */
882
883 const char *
884 ada_decode (const char *encoded)
885 {
886 int i, j;
887 int len0;
888 const char *p;
889 char *decoded;
890 int at_start_name;
891 static char *decoding_buffer = NULL;
892 static size_t decoding_buffer_size = 0;
893
894 /* The name of the Ada main procedure starts with "_ada_".
895 This prefix is not part of the decoded name, so skip this part
896 if we see this prefix. */
897 if (strncmp (encoded, "_ada_", 5) == 0)
898 encoded += 5;
899
900 /* If the name starts with '_', then it is not a properly encoded
901 name, so do not attempt to decode it. Similarly, if the name
902 starts with '<', the name should not be decoded. */
903 if (encoded[0] == '_' || encoded[0] == '<')
904 goto Suppress;
905
906 len0 = strlen (encoded);
907
908 ada_remove_trailing_digits (encoded, &len0);
909 ada_remove_po_subprogram_suffix (encoded, &len0);
910
911 /* Remove the ___X.* suffix if present. Do not forget to verify that
912 the suffix is located before the current "end" of ENCODED. We want
913 to avoid re-matching parts of ENCODED that have previously been
914 marked as discarded (by decrementing LEN0). */
915 p = strstr (encoded, "___");
916 if (p != NULL && p - encoded < len0 - 3)
917 {
918 if (p[3] == 'X')
919 len0 = p - encoded;
920 else
921 goto Suppress;
922 }
923
924 /* Remove any trailing TKB suffix. It tells us that this symbol
925 is for the body of a task, but that information does not actually
926 appear in the decoded name. */
927
928 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
929 len0 -= 3;
930
931 /* Remove trailing "B" suffixes. */
932 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
933
934 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
935 len0 -= 1;
936
937 /* Make decoded big enough for possible expansion by operator name. */
938
939 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
940 decoded = decoding_buffer;
941
942 /* Remove trailing __{digit}+ or trailing ${digit}+. */
943
944 if (len0 > 1 && isdigit (encoded[len0 - 1]))
945 {
946 i = len0 - 2;
947 while ((i >= 0 && isdigit (encoded[i]))
948 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
949 i -= 1;
950 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
951 len0 = i - 1;
952 else if (encoded[i] == '$')
953 len0 = i;
954 }
955
956 /* The first few characters that are not alphabetic are not part
957 of any encoding we use, so we can copy them over verbatim. */
958
959 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
960 decoded[j] = encoded[i];
961
962 at_start_name = 1;
963 while (i < len0)
964 {
965 /* Is this a symbol function? */
966 if (at_start_name && encoded[i] == 'O')
967 {
968 int k;
969 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
970 {
971 int op_len = strlen (ada_opname_table[k].encoded);
972 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
973 op_len - 1) == 0)
974 && !isalnum (encoded[i + op_len]))
975 {
976 strcpy (decoded + j, ada_opname_table[k].decoded);
977 at_start_name = 0;
978 i += op_len;
979 j += strlen (ada_opname_table[k].decoded);
980 break;
981 }
982 }
983 if (ada_opname_table[k].encoded != NULL)
984 continue;
985 }
986 at_start_name = 0;
987
988 /* Replace "TK__" with "__", which will eventually be translated
989 into "." (just below). */
990
991 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
992 i += 2;
993
994 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
995 be translated into "." (just below). These are internal names
996 generated for anonymous blocks inside which our symbol is nested. */
997
998 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
999 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1000 && isdigit (encoded [i+4]))
1001 {
1002 int k = i + 5;
1003
1004 while (k < len0 && isdigit (encoded[k]))
1005 k++; /* Skip any extra digit. */
1006
1007 /* Double-check that the "__B_{DIGITS}+" sequence we found
1008 is indeed followed by "__". */
1009 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1010 i = k;
1011 }
1012
1013 /* Remove _E{DIGITS}+[sb] */
1014
1015 /* Just as for protected object subprograms, there are 2 categories
1016 of subprograms created by the compiler for each entry. The first
1017 one implements the actual entry code, and has a suffix following
1018 the convention above; the second one implements the barrier and
1019 uses the same convention as above, except that the 'E' is replaced
1020 by a 'B'.
1021
1022 Just as above, we do not decode the name of barrier functions
1023 to give the user a clue that the code he is debugging has been
1024 internally generated. */
1025
1026 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1027 && isdigit (encoded[i+2]))
1028 {
1029 int k = i + 3;
1030
1031 while (k < len0 && isdigit (encoded[k]))
1032 k++;
1033
1034 if (k < len0
1035 && (encoded[k] == 'b' || encoded[k] == 's'))
1036 {
1037 k++;
1038 /* Just as an extra precaution, make sure that if this
1039 suffix is followed by anything else, it is a '_'.
1040 Otherwise, we matched this sequence by accident. */
1041 if (k == len0
1042 || (k < len0 && encoded[k] == '_'))
1043 i = k;
1044 }
1045 }
1046
1047 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1048 the GNAT front-end in protected object subprograms. */
1049
1050 if (i < len0 + 3
1051 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1052 {
1053 /* Backtrack a bit up until we reach either the begining of
1054 the encoded name, or "__". Make sure that we only find
1055 digits or lowercase characters. */
1056 const char *ptr = encoded + i - 1;
1057
1058 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1059 ptr--;
1060 if (ptr < encoded
1061 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1062 i++;
1063 }
1064
1065 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1066 {
1067 /* This is a X[bn]* sequence not separated from the previous
1068 part of the name with a non-alpha-numeric character (in other
1069 words, immediately following an alpha-numeric character), then
1070 verify that it is placed at the end of the encoded name. If
1071 not, then the encoding is not valid and we should abort the
1072 decoding. Otherwise, just skip it, it is used in body-nested
1073 package names. */
1074 do
1075 i += 1;
1076 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1077 if (i < len0)
1078 goto Suppress;
1079 }
1080 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1081 {
1082 /* Replace '__' by '.'. */
1083 decoded[j] = '.';
1084 at_start_name = 1;
1085 i += 2;
1086 j += 1;
1087 }
1088 else
1089 {
1090 /* It's a character part of the decoded name, so just copy it
1091 over. */
1092 decoded[j] = encoded[i];
1093 i += 1;
1094 j += 1;
1095 }
1096 }
1097 decoded[j] = '\000';
1098
1099 /* Decoded names should never contain any uppercase character.
1100 Double-check this, and abort the decoding if we find one. */
1101
1102 for (i = 0; decoded[i] != '\0'; i += 1)
1103 if (isupper (decoded[i]) || decoded[i] == ' ')
1104 goto Suppress;
1105
1106 if (strcmp (decoded, encoded) == 0)
1107 return encoded;
1108 else
1109 return decoded;
1110
1111 Suppress:
1112 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1113 decoded = decoding_buffer;
1114 if (encoded[0] == '<')
1115 strcpy (decoded, encoded);
1116 else
1117 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1118 return decoded;
1119
1120 }
1121
1122 /* Table for keeping permanent unique copies of decoded names. Once
1123 allocated, names in this table are never released. While this is a
1124 storage leak, it should not be significant unless there are massive
1125 changes in the set of decoded names in successive versions of a
1126 symbol table loaded during a single session. */
1127 static struct htab *decoded_names_store;
1128
1129 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1130 in the language-specific part of GSYMBOL, if it has not been
1131 previously computed. Tries to save the decoded name in the same
1132 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1133 in any case, the decoded symbol has a lifetime at least that of
1134 GSYMBOL).
1135 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1136 const, but nevertheless modified to a semantically equivalent form
1137 when a decoded name is cached in it.
1138 */
1139
1140 char *
1141 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1142 {
1143 char **resultp =
1144 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1145 if (*resultp == NULL)
1146 {
1147 const char *decoded = ada_decode (gsymbol->name);
1148 if (gsymbol->obj_section != NULL)
1149 {
1150 struct objfile *objf = gsymbol->obj_section->objfile;
1151 *resultp = obsavestring (decoded, strlen (decoded),
1152 &objf->objfile_obstack);
1153 }
1154 /* Sometimes, we can't find a corresponding objfile, in which
1155 case, we put the result on the heap. Since we only decode
1156 when needed, we hope this usually does not cause a
1157 significant memory leak (FIXME). */
1158 if (*resultp == NULL)
1159 {
1160 char **slot = (char **) htab_find_slot (decoded_names_store,
1161 decoded, INSERT);
1162 if (*slot == NULL)
1163 *slot = xstrdup (decoded);
1164 *resultp = *slot;
1165 }
1166 }
1167
1168 return *resultp;
1169 }
1170
1171 static char *
1172 ada_la_decode (const char *encoded, int options)
1173 {
1174 return xstrdup (ada_decode (encoded));
1175 }
1176
1177 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1178 suffixes that encode debugging information or leading _ada_ on
1179 SYM_NAME (see is_name_suffix commentary for the debugging
1180 information that is ignored). If WILD, then NAME need only match a
1181 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1182 either argument is NULL. */
1183
1184 static int
1185 ada_match_name (const char *sym_name, const char *name, int wild)
1186 {
1187 if (sym_name == NULL || name == NULL)
1188 return 0;
1189 else if (wild)
1190 return wild_match (name, strlen (name), sym_name);
1191 else
1192 {
1193 int len_name = strlen (name);
1194 return (strncmp (sym_name, name, len_name) == 0
1195 && is_name_suffix (sym_name + len_name))
1196 || (strncmp (sym_name, "_ada_", 5) == 0
1197 && strncmp (sym_name + 5, name, len_name) == 0
1198 && is_name_suffix (sym_name + len_name + 5));
1199 }
1200 }
1201 \f
1202
1203 /* Arrays */
1204
1205 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1206
1207 static char *bound_name[] = {
1208 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1209 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1210 };
1211
1212 /* Maximum number of array dimensions we are prepared to handle. */
1213
1214 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1215
1216 /* Like modify_field, but allows bitpos > wordlength. */
1217
1218 static void
1219 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1220 {
1221 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1222 }
1223
1224
1225 /* The desc_* routines return primitive portions of array descriptors
1226 (fat pointers). */
1227
1228 /* The descriptor or array type, if any, indicated by TYPE; removes
1229 level of indirection, if needed. */
1230
1231 static struct type *
1232 desc_base_type (struct type *type)
1233 {
1234 if (type == NULL)
1235 return NULL;
1236 type = ada_check_typedef (type);
1237 if (type != NULL
1238 && (TYPE_CODE (type) == TYPE_CODE_PTR
1239 || TYPE_CODE (type) == TYPE_CODE_REF))
1240 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1241 else
1242 return type;
1243 }
1244
1245 /* True iff TYPE indicates a "thin" array pointer type. */
1246
1247 static int
1248 is_thin_pntr (struct type *type)
1249 {
1250 return
1251 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1252 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1253 }
1254
1255 /* The descriptor type for thin pointer type TYPE. */
1256
1257 static struct type *
1258 thin_descriptor_type (struct type *type)
1259 {
1260 struct type *base_type = desc_base_type (type);
1261 if (base_type == NULL)
1262 return NULL;
1263 if (is_suffix (ada_type_name (base_type), "___XVE"))
1264 return base_type;
1265 else
1266 {
1267 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1268 if (alt_type == NULL)
1269 return base_type;
1270 else
1271 return alt_type;
1272 }
1273 }
1274
1275 /* A pointer to the array data for thin-pointer value VAL. */
1276
1277 static struct value *
1278 thin_data_pntr (struct value *val)
1279 {
1280 struct type *type = value_type (val);
1281 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1282 data_type = lookup_pointer_type (data_type);
1283
1284 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1285 return value_cast (data_type, value_copy (val));
1286 else
1287 return value_from_longest (data_type, value_address (val));
1288 }
1289
1290 /* True iff TYPE indicates a "thick" array pointer type. */
1291
1292 static int
1293 is_thick_pntr (struct type *type)
1294 {
1295 type = desc_base_type (type);
1296 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1297 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1298 }
1299
1300 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1301 pointer to one, the type of its bounds data; otherwise, NULL. */
1302
1303 static struct type *
1304 desc_bounds_type (struct type *type)
1305 {
1306 struct type *r;
1307
1308 type = desc_base_type (type);
1309
1310 if (type == NULL)
1311 return NULL;
1312 else if (is_thin_pntr (type))
1313 {
1314 type = thin_descriptor_type (type);
1315 if (type == NULL)
1316 return NULL;
1317 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1318 if (r != NULL)
1319 return ada_check_typedef (r);
1320 }
1321 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1322 {
1323 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1324 if (r != NULL)
1325 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1326 }
1327 return NULL;
1328 }
1329
1330 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1331 one, a pointer to its bounds data. Otherwise NULL. */
1332
1333 static struct value *
1334 desc_bounds (struct value *arr)
1335 {
1336 struct type *type = ada_check_typedef (value_type (arr));
1337 if (is_thin_pntr (type))
1338 {
1339 struct type *bounds_type =
1340 desc_bounds_type (thin_descriptor_type (type));
1341 LONGEST addr;
1342
1343 if (bounds_type == NULL)
1344 error (_("Bad GNAT array descriptor"));
1345
1346 /* NOTE: The following calculation is not really kosher, but
1347 since desc_type is an XVE-encoded type (and shouldn't be),
1348 the correct calculation is a real pain. FIXME (and fix GCC). */
1349 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1350 addr = value_as_long (arr);
1351 else
1352 addr = value_address (arr);
1353
1354 return
1355 value_from_longest (lookup_pointer_type (bounds_type),
1356 addr - TYPE_LENGTH (bounds_type));
1357 }
1358
1359 else if (is_thick_pntr (type))
1360 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1361 _("Bad GNAT array descriptor"));
1362 else
1363 return NULL;
1364 }
1365
1366 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1367 position of the field containing the address of the bounds data. */
1368
1369 static int
1370 fat_pntr_bounds_bitpos (struct type *type)
1371 {
1372 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1373 }
1374
1375 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1376 size of the field containing the address of the bounds data. */
1377
1378 static int
1379 fat_pntr_bounds_bitsize (struct type *type)
1380 {
1381 type = desc_base_type (type);
1382
1383 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1384 return TYPE_FIELD_BITSIZE (type, 1);
1385 else
1386 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1387 }
1388
1389 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1390 pointer to one, the type of its array data (a array-with-no-bounds type);
1391 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1392 data. */
1393
1394 static struct type *
1395 desc_data_target_type (struct type *type)
1396 {
1397 type = desc_base_type (type);
1398
1399 /* NOTE: The following is bogus; see comment in desc_bounds. */
1400 if (is_thin_pntr (type))
1401 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1402 else if (is_thick_pntr (type))
1403 {
1404 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1405
1406 if (data_type
1407 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1408 return TYPE_TARGET_TYPE (data_type);
1409 }
1410
1411 return NULL;
1412 }
1413
1414 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1415 its array data. */
1416
1417 static struct value *
1418 desc_data (struct value *arr)
1419 {
1420 struct type *type = value_type (arr);
1421 if (is_thin_pntr (type))
1422 return thin_data_pntr (arr);
1423 else if (is_thick_pntr (type))
1424 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1425 _("Bad GNAT array descriptor"));
1426 else
1427 return NULL;
1428 }
1429
1430
1431 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1432 position of the field containing the address of the data. */
1433
1434 static int
1435 fat_pntr_data_bitpos (struct type *type)
1436 {
1437 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1438 }
1439
1440 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1441 size of the field containing the address of the data. */
1442
1443 static int
1444 fat_pntr_data_bitsize (struct type *type)
1445 {
1446 type = desc_base_type (type);
1447
1448 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1449 return TYPE_FIELD_BITSIZE (type, 0);
1450 else
1451 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1452 }
1453
1454 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1455 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1456 bound, if WHICH is 1. The first bound is I=1. */
1457
1458 static struct value *
1459 desc_one_bound (struct value *bounds, int i, int which)
1460 {
1461 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1462 _("Bad GNAT array descriptor bounds"));
1463 }
1464
1465 /* If BOUNDS is an array-bounds structure type, return the bit position
1466 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1467 bound, if WHICH is 1. The first bound is I=1. */
1468
1469 static int
1470 desc_bound_bitpos (struct type *type, int i, int which)
1471 {
1472 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1473 }
1474
1475 /* If BOUNDS is an array-bounds structure type, return the bit field size
1476 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1477 bound, if WHICH is 1. The first bound is I=1. */
1478
1479 static int
1480 desc_bound_bitsize (struct type *type, int i, int which)
1481 {
1482 type = desc_base_type (type);
1483
1484 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1485 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1486 else
1487 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1488 }
1489
1490 /* If TYPE is the type of an array-bounds structure, the type of its
1491 Ith bound (numbering from 1). Otherwise, NULL. */
1492
1493 static struct type *
1494 desc_index_type (struct type *type, int i)
1495 {
1496 type = desc_base_type (type);
1497
1498 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1499 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1500 else
1501 return NULL;
1502 }
1503
1504 /* The number of index positions in the array-bounds type TYPE.
1505 Return 0 if TYPE is NULL. */
1506
1507 static int
1508 desc_arity (struct type *type)
1509 {
1510 type = desc_base_type (type);
1511
1512 if (type != NULL)
1513 return TYPE_NFIELDS (type) / 2;
1514 return 0;
1515 }
1516
1517 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1518 an array descriptor type (representing an unconstrained array
1519 type). */
1520
1521 static int
1522 ada_is_direct_array_type (struct type *type)
1523 {
1524 if (type == NULL)
1525 return 0;
1526 type = ada_check_typedef (type);
1527 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1528 || ada_is_array_descriptor_type (type));
1529 }
1530
1531 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1532 * to one. */
1533
1534 static int
1535 ada_is_array_type (struct type *type)
1536 {
1537 while (type != NULL
1538 && (TYPE_CODE (type) == TYPE_CODE_PTR
1539 || TYPE_CODE (type) == TYPE_CODE_REF))
1540 type = TYPE_TARGET_TYPE (type);
1541 return ada_is_direct_array_type (type);
1542 }
1543
1544 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1545
1546 int
1547 ada_is_simple_array_type (struct type *type)
1548 {
1549 if (type == NULL)
1550 return 0;
1551 type = ada_check_typedef (type);
1552 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1553 || (TYPE_CODE (type) == TYPE_CODE_PTR
1554 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1555 }
1556
1557 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1558
1559 int
1560 ada_is_array_descriptor_type (struct type *type)
1561 {
1562 struct type *data_type = desc_data_target_type (type);
1563
1564 if (type == NULL)
1565 return 0;
1566 type = ada_check_typedef (type);
1567 return (data_type != NULL
1568 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1569 && desc_arity (desc_bounds_type (type)) > 0);
1570 }
1571
1572 /* Non-zero iff type is a partially mal-formed GNAT array
1573 descriptor. FIXME: This is to compensate for some problems with
1574 debugging output from GNAT. Re-examine periodically to see if it
1575 is still needed. */
1576
1577 int
1578 ada_is_bogus_array_descriptor (struct type *type)
1579 {
1580 return
1581 type != NULL
1582 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1583 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1584 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1585 && !ada_is_array_descriptor_type (type);
1586 }
1587
1588
1589 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1590 (fat pointer) returns the type of the array data described---specifically,
1591 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1592 in from the descriptor; otherwise, they are left unspecified. If
1593 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1594 returns NULL. The result is simply the type of ARR if ARR is not
1595 a descriptor. */
1596 struct type *
1597 ada_type_of_array (struct value *arr, int bounds)
1598 {
1599 if (ada_is_packed_array_type (value_type (arr)))
1600 return decode_packed_array_type (value_type (arr));
1601
1602 if (!ada_is_array_descriptor_type (value_type (arr)))
1603 return value_type (arr);
1604
1605 if (!bounds)
1606 return
1607 ada_check_typedef (desc_data_target_type (value_type (arr)));
1608 else
1609 {
1610 struct type *elt_type;
1611 int arity;
1612 struct value *descriptor;
1613 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1614
1615 elt_type = ada_array_element_type (value_type (arr), -1);
1616 arity = ada_array_arity (value_type (arr));
1617
1618 if (elt_type == NULL || arity == 0)
1619 return ada_check_typedef (value_type (arr));
1620
1621 descriptor = desc_bounds (arr);
1622 if (value_as_long (descriptor) == 0)
1623 return NULL;
1624 while (arity > 0)
1625 {
1626 struct type *range_type = alloc_type (objf);
1627 struct type *array_type = alloc_type (objf);
1628 struct value *low = desc_one_bound (descriptor, arity, 0);
1629 struct value *high = desc_one_bound (descriptor, arity, 1);
1630 arity -= 1;
1631
1632 create_range_type (range_type, value_type (low),
1633 longest_to_int (value_as_long (low)),
1634 longest_to_int (value_as_long (high)));
1635 elt_type = create_array_type (array_type, elt_type, range_type);
1636 }
1637
1638 return lookup_pointer_type (elt_type);
1639 }
1640 }
1641
1642 /* If ARR does not represent an array, returns ARR unchanged.
1643 Otherwise, returns either a standard GDB array with bounds set
1644 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1645 GDB array. Returns NULL if ARR is a null fat pointer. */
1646
1647 struct value *
1648 ada_coerce_to_simple_array_ptr (struct value *arr)
1649 {
1650 if (ada_is_array_descriptor_type (value_type (arr)))
1651 {
1652 struct type *arrType = ada_type_of_array (arr, 1);
1653 if (arrType == NULL)
1654 return NULL;
1655 return value_cast (arrType, value_copy (desc_data (arr)));
1656 }
1657 else if (ada_is_packed_array_type (value_type (arr)))
1658 return decode_packed_array (arr);
1659 else
1660 return arr;
1661 }
1662
1663 /* If ARR does not represent an array, returns ARR unchanged.
1664 Otherwise, returns a standard GDB array describing ARR (which may
1665 be ARR itself if it already is in the proper form). */
1666
1667 static struct value *
1668 ada_coerce_to_simple_array (struct value *arr)
1669 {
1670 if (ada_is_array_descriptor_type (value_type (arr)))
1671 {
1672 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1673 if (arrVal == NULL)
1674 error (_("Bounds unavailable for null array pointer."));
1675 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1676 return value_ind (arrVal);
1677 }
1678 else if (ada_is_packed_array_type (value_type (arr)))
1679 return decode_packed_array (arr);
1680 else
1681 return arr;
1682 }
1683
1684 /* If TYPE represents a GNAT array type, return it translated to an
1685 ordinary GDB array type (possibly with BITSIZE fields indicating
1686 packing). For other types, is the identity. */
1687
1688 struct type *
1689 ada_coerce_to_simple_array_type (struct type *type)
1690 {
1691 if (ada_is_packed_array_type (type))
1692 return decode_packed_array_type (type);
1693
1694 if (ada_is_array_descriptor_type (type))
1695 return ada_check_typedef (desc_data_target_type (type));
1696
1697 return type;
1698 }
1699
1700 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1701
1702 int
1703 ada_is_packed_array_type (struct type *type)
1704 {
1705 if (type == NULL)
1706 return 0;
1707 type = desc_base_type (type);
1708 type = ada_check_typedef (type);
1709 return
1710 ada_type_name (type) != NULL
1711 && strstr (ada_type_name (type), "___XP") != NULL;
1712 }
1713
1714 /* Given that TYPE is a standard GDB array type with all bounds filled
1715 in, and that the element size of its ultimate scalar constituents
1716 (that is, either its elements, or, if it is an array of arrays, its
1717 elements' elements, etc.) is *ELT_BITS, return an identical type,
1718 but with the bit sizes of its elements (and those of any
1719 constituent arrays) recorded in the BITSIZE components of its
1720 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1721 in bits. */
1722
1723 static struct type *
1724 packed_array_type (struct type *type, long *elt_bits)
1725 {
1726 struct type *new_elt_type;
1727 struct type *new_type;
1728 LONGEST low_bound, high_bound;
1729
1730 type = ada_check_typedef (type);
1731 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1732 return type;
1733
1734 new_type = alloc_type (TYPE_OBJFILE (type));
1735 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1736 elt_bits);
1737 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1738 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1739 TYPE_NAME (new_type) = ada_type_name (type);
1740
1741 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1742 &low_bound, &high_bound) < 0)
1743 low_bound = high_bound = 0;
1744 if (high_bound < low_bound)
1745 *elt_bits = TYPE_LENGTH (new_type) = 0;
1746 else
1747 {
1748 *elt_bits *= (high_bound - low_bound + 1);
1749 TYPE_LENGTH (new_type) =
1750 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1751 }
1752
1753 TYPE_FIXED_INSTANCE (new_type) = 1;
1754 return new_type;
1755 }
1756
1757 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1758
1759 static struct type *
1760 decode_packed_array_type (struct type *type)
1761 {
1762 struct symbol *sym;
1763 struct block **blocks;
1764 char *raw_name = ada_type_name (ada_check_typedef (type));
1765 char *name;
1766 char *tail;
1767 struct type *shadow_type;
1768 long bits;
1769 int i, n;
1770
1771 if (!raw_name)
1772 raw_name = ada_type_name (desc_base_type (type));
1773
1774 if (!raw_name)
1775 return NULL;
1776
1777 name = (char *) alloca (strlen (raw_name) + 1);
1778 tail = strstr (raw_name, "___XP");
1779 type = desc_base_type (type);
1780
1781 memcpy (name, raw_name, tail - raw_name);
1782 name[tail - raw_name] = '\000';
1783
1784 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1785 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1786 {
1787 lim_warning (_("could not find bounds information on packed array"));
1788 return NULL;
1789 }
1790 shadow_type = SYMBOL_TYPE (sym);
1791 CHECK_TYPEDEF (shadow_type);
1792
1793 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1794 {
1795 lim_warning (_("could not understand bounds information on packed array"));
1796 return NULL;
1797 }
1798
1799 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1800 {
1801 lim_warning
1802 (_("could not understand bit size information on packed array"));
1803 return NULL;
1804 }
1805
1806 return packed_array_type (shadow_type, &bits);
1807 }
1808
1809 /* Given that ARR is a struct value *indicating a GNAT packed array,
1810 returns a simple array that denotes that array. Its type is a
1811 standard GDB array type except that the BITSIZEs of the array
1812 target types are set to the number of bits in each element, and the
1813 type length is set appropriately. */
1814
1815 static struct value *
1816 decode_packed_array (struct value *arr)
1817 {
1818 struct type *type;
1819
1820 arr = ada_coerce_ref (arr);
1821
1822 /* If our value is a pointer, then dererence it. Make sure that
1823 this operation does not cause the target type to be fixed, as
1824 this would indirectly cause this array to be decoded. The rest
1825 of the routine assumes that the array hasn't been decoded yet,
1826 so we use the basic "value_ind" routine to perform the dereferencing,
1827 as opposed to using "ada_value_ind". */
1828 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1829 arr = value_ind (arr);
1830
1831 type = decode_packed_array_type (value_type (arr));
1832 if (type == NULL)
1833 {
1834 error (_("can't unpack array"));
1835 return NULL;
1836 }
1837
1838 if (gdbarch_bits_big_endian (current_gdbarch)
1839 && ada_is_modular_type (value_type (arr)))
1840 {
1841 /* This is a (right-justified) modular type representing a packed
1842 array with no wrapper. In order to interpret the value through
1843 the (left-justified) packed array type we just built, we must
1844 first left-justify it. */
1845 int bit_size, bit_pos;
1846 ULONGEST mod;
1847
1848 mod = ada_modulus (value_type (arr)) - 1;
1849 bit_size = 0;
1850 while (mod > 0)
1851 {
1852 bit_size += 1;
1853 mod >>= 1;
1854 }
1855 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1856 arr = ada_value_primitive_packed_val (arr, NULL,
1857 bit_pos / HOST_CHAR_BIT,
1858 bit_pos % HOST_CHAR_BIT,
1859 bit_size,
1860 type);
1861 }
1862
1863 return coerce_unspec_val_to_type (arr, type);
1864 }
1865
1866
1867 /* The value of the element of packed array ARR at the ARITY indices
1868 given in IND. ARR must be a simple array. */
1869
1870 static struct value *
1871 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1872 {
1873 int i;
1874 int bits, elt_off, bit_off;
1875 long elt_total_bit_offset;
1876 struct type *elt_type;
1877 struct value *v;
1878
1879 bits = 0;
1880 elt_total_bit_offset = 0;
1881 elt_type = ada_check_typedef (value_type (arr));
1882 for (i = 0; i < arity; i += 1)
1883 {
1884 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1885 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1886 error
1887 (_("attempt to do packed indexing of something other than a packed array"));
1888 else
1889 {
1890 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1891 LONGEST lowerbound, upperbound;
1892 LONGEST idx;
1893
1894 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1895 {
1896 lim_warning (_("don't know bounds of array"));
1897 lowerbound = upperbound = 0;
1898 }
1899
1900 idx = pos_atr (ind[i]);
1901 if (idx < lowerbound || idx > upperbound)
1902 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1903 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1904 elt_total_bit_offset += (idx - lowerbound) * bits;
1905 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1906 }
1907 }
1908 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1909 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1910
1911 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1912 bits, elt_type);
1913 return v;
1914 }
1915
1916 /* Non-zero iff TYPE includes negative integer values. */
1917
1918 static int
1919 has_negatives (struct type *type)
1920 {
1921 switch (TYPE_CODE (type))
1922 {
1923 default:
1924 return 0;
1925 case TYPE_CODE_INT:
1926 return !TYPE_UNSIGNED (type);
1927 case TYPE_CODE_RANGE:
1928 return TYPE_LOW_BOUND (type) < 0;
1929 }
1930 }
1931
1932
1933 /* Create a new value of type TYPE from the contents of OBJ starting
1934 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1935 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1936 assigning through the result will set the field fetched from.
1937 VALADDR is ignored unless OBJ is NULL, in which case,
1938 VALADDR+OFFSET must address the start of storage containing the
1939 packed value. The value returned in this case is never an lval.
1940 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1941
1942 struct value *
1943 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1944 long offset, int bit_offset, int bit_size,
1945 struct type *type)
1946 {
1947 struct value *v;
1948 int src, /* Index into the source area */
1949 targ, /* Index into the target area */
1950 srcBitsLeft, /* Number of source bits left to move */
1951 nsrc, ntarg, /* Number of source and target bytes */
1952 unusedLS, /* Number of bits in next significant
1953 byte of source that are unused */
1954 accumSize; /* Number of meaningful bits in accum */
1955 unsigned char *bytes; /* First byte containing data to unpack */
1956 unsigned char *unpacked;
1957 unsigned long accum; /* Staging area for bits being transferred */
1958 unsigned char sign;
1959 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1960 /* Transmit bytes from least to most significant; delta is the direction
1961 the indices move. */
1962 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
1963
1964 type = ada_check_typedef (type);
1965
1966 if (obj == NULL)
1967 {
1968 v = allocate_value (type);
1969 bytes = (unsigned char *) (valaddr + offset);
1970 }
1971 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
1972 {
1973 v = value_at (type,
1974 value_address (obj) + offset);
1975 bytes = (unsigned char *) alloca (len);
1976 read_memory (value_address (v), bytes, len);
1977 }
1978 else
1979 {
1980 v = allocate_value (type);
1981 bytes = (unsigned char *) value_contents (obj) + offset;
1982 }
1983
1984 if (obj != NULL)
1985 {
1986 CORE_ADDR new_addr;
1987 set_value_component_location (v, obj);
1988 new_addr = value_address (obj) + offset;
1989 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1990 set_value_bitsize (v, bit_size);
1991 if (value_bitpos (v) >= HOST_CHAR_BIT)
1992 {
1993 ++new_addr;
1994 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1995 }
1996 set_value_address (v, new_addr);
1997 }
1998 else
1999 set_value_bitsize (v, bit_size);
2000 unpacked = (unsigned char *) value_contents (v);
2001
2002 srcBitsLeft = bit_size;
2003 nsrc = len;
2004 ntarg = TYPE_LENGTH (type);
2005 sign = 0;
2006 if (bit_size == 0)
2007 {
2008 memset (unpacked, 0, TYPE_LENGTH (type));
2009 return v;
2010 }
2011 else if (gdbarch_bits_big_endian (current_gdbarch))
2012 {
2013 src = len - 1;
2014 if (has_negatives (type)
2015 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2016 sign = ~0;
2017
2018 unusedLS =
2019 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2020 % HOST_CHAR_BIT;
2021
2022 switch (TYPE_CODE (type))
2023 {
2024 case TYPE_CODE_ARRAY:
2025 case TYPE_CODE_UNION:
2026 case TYPE_CODE_STRUCT:
2027 /* Non-scalar values must be aligned at a byte boundary... */
2028 accumSize =
2029 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2030 /* ... And are placed at the beginning (most-significant) bytes
2031 of the target. */
2032 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2033 ntarg = targ + 1;
2034 break;
2035 default:
2036 accumSize = 0;
2037 targ = TYPE_LENGTH (type) - 1;
2038 break;
2039 }
2040 }
2041 else
2042 {
2043 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2044
2045 src = targ = 0;
2046 unusedLS = bit_offset;
2047 accumSize = 0;
2048
2049 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2050 sign = ~0;
2051 }
2052
2053 accum = 0;
2054 while (nsrc > 0)
2055 {
2056 /* Mask for removing bits of the next source byte that are not
2057 part of the value. */
2058 unsigned int unusedMSMask =
2059 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2060 1;
2061 /* Sign-extend bits for this byte. */
2062 unsigned int signMask = sign & ~unusedMSMask;
2063 accum |=
2064 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2065 accumSize += HOST_CHAR_BIT - unusedLS;
2066 if (accumSize >= HOST_CHAR_BIT)
2067 {
2068 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2069 accumSize -= HOST_CHAR_BIT;
2070 accum >>= HOST_CHAR_BIT;
2071 ntarg -= 1;
2072 targ += delta;
2073 }
2074 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2075 unusedLS = 0;
2076 nsrc -= 1;
2077 src += delta;
2078 }
2079 while (ntarg > 0)
2080 {
2081 accum |= sign << accumSize;
2082 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2083 accumSize -= HOST_CHAR_BIT;
2084 accum >>= HOST_CHAR_BIT;
2085 ntarg -= 1;
2086 targ += delta;
2087 }
2088
2089 return v;
2090 }
2091
2092 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2093 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2094 not overlap. */
2095 static void
2096 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2097 int src_offset, int n)
2098 {
2099 unsigned int accum, mask;
2100 int accum_bits, chunk_size;
2101
2102 target += targ_offset / HOST_CHAR_BIT;
2103 targ_offset %= HOST_CHAR_BIT;
2104 source += src_offset / HOST_CHAR_BIT;
2105 src_offset %= HOST_CHAR_BIT;
2106 if (gdbarch_bits_big_endian (current_gdbarch))
2107 {
2108 accum = (unsigned char) *source;
2109 source += 1;
2110 accum_bits = HOST_CHAR_BIT - src_offset;
2111
2112 while (n > 0)
2113 {
2114 int unused_right;
2115 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2116 accum_bits += HOST_CHAR_BIT;
2117 source += 1;
2118 chunk_size = HOST_CHAR_BIT - targ_offset;
2119 if (chunk_size > n)
2120 chunk_size = n;
2121 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2122 mask = ((1 << chunk_size) - 1) << unused_right;
2123 *target =
2124 (*target & ~mask)
2125 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2126 n -= chunk_size;
2127 accum_bits -= chunk_size;
2128 target += 1;
2129 targ_offset = 0;
2130 }
2131 }
2132 else
2133 {
2134 accum = (unsigned char) *source >> src_offset;
2135 source += 1;
2136 accum_bits = HOST_CHAR_BIT - src_offset;
2137
2138 while (n > 0)
2139 {
2140 accum = accum + ((unsigned char) *source << accum_bits);
2141 accum_bits += HOST_CHAR_BIT;
2142 source += 1;
2143 chunk_size = HOST_CHAR_BIT - targ_offset;
2144 if (chunk_size > n)
2145 chunk_size = n;
2146 mask = ((1 << chunk_size) - 1) << targ_offset;
2147 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2148 n -= chunk_size;
2149 accum_bits -= chunk_size;
2150 accum >>= chunk_size;
2151 target += 1;
2152 targ_offset = 0;
2153 }
2154 }
2155 }
2156
2157 /* Store the contents of FROMVAL into the location of TOVAL.
2158 Return a new value with the location of TOVAL and contents of
2159 FROMVAL. Handles assignment into packed fields that have
2160 floating-point or non-scalar types. */
2161
2162 static struct value *
2163 ada_value_assign (struct value *toval, struct value *fromval)
2164 {
2165 struct type *type = value_type (toval);
2166 int bits = value_bitsize (toval);
2167
2168 toval = ada_coerce_ref (toval);
2169 fromval = ada_coerce_ref (fromval);
2170
2171 if (ada_is_direct_array_type (value_type (toval)))
2172 toval = ada_coerce_to_simple_array (toval);
2173 if (ada_is_direct_array_type (value_type (fromval)))
2174 fromval = ada_coerce_to_simple_array (fromval);
2175
2176 if (!deprecated_value_modifiable (toval))
2177 error (_("Left operand of assignment is not a modifiable lvalue."));
2178
2179 if (VALUE_LVAL (toval) == lval_memory
2180 && bits > 0
2181 && (TYPE_CODE (type) == TYPE_CODE_FLT
2182 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2183 {
2184 int len = (value_bitpos (toval)
2185 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2186 int from_size;
2187 char *buffer = (char *) alloca (len);
2188 struct value *val;
2189 CORE_ADDR to_addr = value_address (toval);
2190
2191 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2192 fromval = value_cast (type, fromval);
2193
2194 read_memory (to_addr, buffer, len);
2195 from_size = value_bitsize (fromval);
2196 if (from_size == 0)
2197 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2198 if (gdbarch_bits_big_endian (current_gdbarch))
2199 move_bits (buffer, value_bitpos (toval),
2200 value_contents (fromval), from_size - bits, bits);
2201 else
2202 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2203 0, bits);
2204 write_memory (to_addr, buffer, len);
2205 if (deprecated_memory_changed_hook)
2206 deprecated_memory_changed_hook (to_addr, len);
2207
2208 val = value_copy (toval);
2209 memcpy (value_contents_raw (val), value_contents (fromval),
2210 TYPE_LENGTH (type));
2211 deprecated_set_value_type (val, type);
2212
2213 return val;
2214 }
2215
2216 return value_assign (toval, fromval);
2217 }
2218
2219
2220 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2221 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2222 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2223 * COMPONENT, and not the inferior's memory. The current contents
2224 * of COMPONENT are ignored. */
2225 static void
2226 value_assign_to_component (struct value *container, struct value *component,
2227 struct value *val)
2228 {
2229 LONGEST offset_in_container =
2230 (LONGEST) (value_address (component) - value_address (container));
2231 int bit_offset_in_container =
2232 value_bitpos (component) - value_bitpos (container);
2233 int bits;
2234
2235 val = value_cast (value_type (component), val);
2236
2237 if (value_bitsize (component) == 0)
2238 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2239 else
2240 bits = value_bitsize (component);
2241
2242 if (gdbarch_bits_big_endian (current_gdbarch))
2243 move_bits (value_contents_writeable (container) + offset_in_container,
2244 value_bitpos (container) + bit_offset_in_container,
2245 value_contents (val),
2246 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2247 bits);
2248 else
2249 move_bits (value_contents_writeable (container) + offset_in_container,
2250 value_bitpos (container) + bit_offset_in_container,
2251 value_contents (val), 0, bits);
2252 }
2253
2254 /* The value of the element of array ARR at the ARITY indices given in IND.
2255 ARR may be either a simple array, GNAT array descriptor, or pointer
2256 thereto. */
2257
2258 struct value *
2259 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2260 {
2261 int k;
2262 struct value *elt;
2263 struct type *elt_type;
2264
2265 elt = ada_coerce_to_simple_array (arr);
2266
2267 elt_type = ada_check_typedef (value_type (elt));
2268 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2269 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2270 return value_subscript_packed (elt, arity, ind);
2271
2272 for (k = 0; k < arity; k += 1)
2273 {
2274 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2275 error (_("too many subscripts (%d expected)"), k);
2276 elt = value_subscript (elt, pos_atr (ind[k]));
2277 }
2278 return elt;
2279 }
2280
2281 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2282 value of the element of *ARR at the ARITY indices given in
2283 IND. Does not read the entire array into memory. */
2284
2285 static struct value *
2286 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2287 struct value **ind)
2288 {
2289 int k;
2290
2291 for (k = 0; k < arity; k += 1)
2292 {
2293 LONGEST lwb, upb;
2294
2295 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2296 error (_("too many subscripts (%d expected)"), k);
2297 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2298 value_copy (arr));
2299 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2300 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2301 type = TYPE_TARGET_TYPE (type);
2302 }
2303
2304 return value_ind (arr);
2305 }
2306
2307 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2308 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2309 elements starting at index LOW. The lower bound of this array is LOW, as
2310 per Ada rules. */
2311 static struct value *
2312 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2313 int low, int high)
2314 {
2315 CORE_ADDR base = value_as_address (array_ptr)
2316 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2317 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2318 struct type *index_type =
2319 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2320 low, high);
2321 struct type *slice_type =
2322 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2323 return value_at_lazy (slice_type, base);
2324 }
2325
2326
2327 static struct value *
2328 ada_value_slice (struct value *array, int low, int high)
2329 {
2330 struct type *type = value_type (array);
2331 struct type *index_type =
2332 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2333 struct type *slice_type =
2334 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2335 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2336 }
2337
2338 /* If type is a record type in the form of a standard GNAT array
2339 descriptor, returns the number of dimensions for type. If arr is a
2340 simple array, returns the number of "array of"s that prefix its
2341 type designation. Otherwise, returns 0. */
2342
2343 int
2344 ada_array_arity (struct type *type)
2345 {
2346 int arity;
2347
2348 if (type == NULL)
2349 return 0;
2350
2351 type = desc_base_type (type);
2352
2353 arity = 0;
2354 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2355 return desc_arity (desc_bounds_type (type));
2356 else
2357 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2358 {
2359 arity += 1;
2360 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2361 }
2362
2363 return arity;
2364 }
2365
2366 /* If TYPE is a record type in the form of a standard GNAT array
2367 descriptor or a simple array type, returns the element type for
2368 TYPE after indexing by NINDICES indices, or by all indices if
2369 NINDICES is -1. Otherwise, returns NULL. */
2370
2371 struct type *
2372 ada_array_element_type (struct type *type, int nindices)
2373 {
2374 type = desc_base_type (type);
2375
2376 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2377 {
2378 int k;
2379 struct type *p_array_type;
2380
2381 p_array_type = desc_data_target_type (type);
2382
2383 k = ada_array_arity (type);
2384 if (k == 0)
2385 return NULL;
2386
2387 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2388 if (nindices >= 0 && k > nindices)
2389 k = nindices;
2390 while (k > 0 && p_array_type != NULL)
2391 {
2392 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2393 k -= 1;
2394 }
2395 return p_array_type;
2396 }
2397 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2398 {
2399 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2400 {
2401 type = TYPE_TARGET_TYPE (type);
2402 nindices -= 1;
2403 }
2404 return type;
2405 }
2406
2407 return NULL;
2408 }
2409
2410 /* The type of nth index in arrays of given type (n numbering from 1).
2411 Does not examine memory. Throws an error if N is invalid or TYPE
2412 is not an array type. NAME is the name of the Ada attribute being
2413 evaluated ('range, 'first, 'last, or 'length); it is used in building
2414 the error message. */
2415
2416 static struct type *
2417 ada_index_type (struct type *type, int n, const char *name)
2418 {
2419 struct type *result_type;
2420
2421 type = desc_base_type (type);
2422
2423 if (n < 0 || n > ada_array_arity (type))
2424 error (_("invalid dimension number to '%s"), name);
2425
2426 if (ada_is_simple_array_type (type))
2427 {
2428 int i;
2429
2430 for (i = 1; i < n; i += 1)
2431 type = TYPE_TARGET_TYPE (type);
2432 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2433 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2434 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2435 perhaps stabsread.c would make more sense. */
2436 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2437 result_type = NULL;
2438 }
2439 else
2440 {
2441 result_type = desc_index_type (desc_bounds_type (type), n);
2442 if (result_type == NULL)
2443 error (_("attempt to take bound of something that is not an array"));
2444 }
2445
2446 return result_type;
2447 }
2448
2449 /* Given that arr is an array type, returns the lower bound of the
2450 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2451 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2452 array-descriptor type. It works for other arrays with bounds supplied
2453 by run-time quantities other than discriminants. */
2454
2455 static LONGEST
2456 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2457 {
2458 struct type *type, *elt_type, *index_type_desc, *index_type;
2459 LONGEST retval;
2460 int i;
2461
2462 gdb_assert (which == 0 || which == 1);
2463
2464 if (ada_is_packed_array_type (arr_type))
2465 arr_type = decode_packed_array_type (arr_type);
2466
2467 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2468 return (LONGEST) - which;
2469
2470 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2471 type = TYPE_TARGET_TYPE (arr_type);
2472 else
2473 type = arr_type;
2474
2475 elt_type = type;
2476 for (i = n; i > 1; i--)
2477 elt_type = TYPE_TARGET_TYPE (type);
2478
2479 index_type_desc = ada_find_parallel_type (type, "___XA");
2480 if (index_type_desc != NULL)
2481 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2482 NULL, TYPE_INDEX_TYPE (elt_type));
2483 else
2484 index_type = TYPE_INDEX_TYPE (elt_type);
2485
2486 switch (TYPE_CODE (index_type))
2487 {
2488 case TYPE_CODE_RANGE:
2489 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2490 : TYPE_HIGH_BOUND (index_type);
2491 break;
2492 case TYPE_CODE_ENUM:
2493 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2494 : TYPE_FIELD_BITPOS (index_type,
2495 TYPE_NFIELDS (index_type) - 1);
2496 break;
2497 default:
2498 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2499 }
2500
2501 return retval;
2502 }
2503
2504 /* Given that arr is an array value, returns the lower bound of the
2505 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2506 WHICH is 1. This routine will also work for arrays with bounds
2507 supplied by run-time quantities other than discriminants. */
2508
2509 static LONGEST
2510 ada_array_bound (struct value *arr, int n, int which)
2511 {
2512 struct type *arr_type = value_type (arr);
2513
2514 if (ada_is_packed_array_type (arr_type))
2515 return ada_array_bound (decode_packed_array (arr), n, which);
2516 else if (ada_is_simple_array_type (arr_type))
2517 return ada_array_bound_from_type (arr_type, n, which);
2518 else
2519 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2520 }
2521
2522 /* Given that arr is an array value, returns the length of the
2523 nth index. This routine will also work for arrays with bounds
2524 supplied by run-time quantities other than discriminants.
2525 Does not work for arrays indexed by enumeration types with representation
2526 clauses at the moment. */
2527
2528 static LONGEST
2529 ada_array_length (struct value *arr, int n)
2530 {
2531 struct type *arr_type = ada_check_typedef (value_type (arr));
2532
2533 if (ada_is_packed_array_type (arr_type))
2534 return ada_array_length (decode_packed_array (arr), n);
2535
2536 if (ada_is_simple_array_type (arr_type))
2537 return (ada_array_bound_from_type (arr_type, n, 1)
2538 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2539 else
2540 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2541 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2542 }
2543
2544 /* An empty array whose type is that of ARR_TYPE (an array type),
2545 with bounds LOW to LOW-1. */
2546
2547 static struct value *
2548 empty_array (struct type *arr_type, int low)
2549 {
2550 struct type *index_type =
2551 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2552 low, low - 1);
2553 struct type *elt_type = ada_array_element_type (arr_type, 1);
2554 return allocate_value (create_array_type (NULL, elt_type, index_type));
2555 }
2556 \f
2557
2558 /* Name resolution */
2559
2560 /* The "decoded" name for the user-definable Ada operator corresponding
2561 to OP. */
2562
2563 static const char *
2564 ada_decoded_op_name (enum exp_opcode op)
2565 {
2566 int i;
2567
2568 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2569 {
2570 if (ada_opname_table[i].op == op)
2571 return ada_opname_table[i].decoded;
2572 }
2573 error (_("Could not find operator name for opcode"));
2574 }
2575
2576
2577 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2578 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2579 undefined namespace) and converts operators that are
2580 user-defined into appropriate function calls. If CONTEXT_TYPE is
2581 non-null, it provides a preferred result type [at the moment, only
2582 type void has any effect---causing procedures to be preferred over
2583 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2584 return type is preferred. May change (expand) *EXP. */
2585
2586 static void
2587 resolve (struct expression **expp, int void_context_p)
2588 {
2589 int pc;
2590 pc = 0;
2591 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2592 }
2593
2594 /* Resolve the operator of the subexpression beginning at
2595 position *POS of *EXPP. "Resolving" consists of replacing
2596 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2597 with their resolutions, replacing built-in operators with
2598 function calls to user-defined operators, where appropriate, and,
2599 when DEPROCEDURE_P is non-zero, converting function-valued variables
2600 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2601 are as in ada_resolve, above. */
2602
2603 static struct value *
2604 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2605 struct type *context_type)
2606 {
2607 int pc = *pos;
2608 int i;
2609 struct expression *exp; /* Convenience: == *expp. */
2610 enum exp_opcode op = (*expp)->elts[pc].opcode;
2611 struct value **argvec; /* Vector of operand types (alloca'ed). */
2612 int nargs; /* Number of operands. */
2613 int oplen;
2614
2615 argvec = NULL;
2616 nargs = 0;
2617 exp = *expp;
2618
2619 /* Pass one: resolve operands, saving their types and updating *pos,
2620 if needed. */
2621 switch (op)
2622 {
2623 case OP_FUNCALL:
2624 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2625 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2626 *pos += 7;
2627 else
2628 {
2629 *pos += 3;
2630 resolve_subexp (expp, pos, 0, NULL);
2631 }
2632 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2633 break;
2634
2635 case UNOP_ADDR:
2636 *pos += 1;
2637 resolve_subexp (expp, pos, 0, NULL);
2638 break;
2639
2640 case UNOP_QUAL:
2641 *pos += 3;
2642 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2643 break;
2644
2645 case OP_ATR_MODULUS:
2646 case OP_ATR_SIZE:
2647 case OP_ATR_TAG:
2648 case OP_ATR_FIRST:
2649 case OP_ATR_LAST:
2650 case OP_ATR_LENGTH:
2651 case OP_ATR_POS:
2652 case OP_ATR_VAL:
2653 case OP_ATR_MIN:
2654 case OP_ATR_MAX:
2655 case TERNOP_IN_RANGE:
2656 case BINOP_IN_BOUNDS:
2657 case UNOP_IN_RANGE:
2658 case OP_AGGREGATE:
2659 case OP_OTHERS:
2660 case OP_CHOICES:
2661 case OP_POSITIONAL:
2662 case OP_DISCRETE_RANGE:
2663 case OP_NAME:
2664 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2665 *pos += oplen;
2666 break;
2667
2668 case BINOP_ASSIGN:
2669 {
2670 struct value *arg1;
2671
2672 *pos += 1;
2673 arg1 = resolve_subexp (expp, pos, 0, NULL);
2674 if (arg1 == NULL)
2675 resolve_subexp (expp, pos, 1, NULL);
2676 else
2677 resolve_subexp (expp, pos, 1, value_type (arg1));
2678 break;
2679 }
2680
2681 case UNOP_CAST:
2682 *pos += 3;
2683 nargs = 1;
2684 break;
2685
2686 case BINOP_ADD:
2687 case BINOP_SUB:
2688 case BINOP_MUL:
2689 case BINOP_DIV:
2690 case BINOP_REM:
2691 case BINOP_MOD:
2692 case BINOP_EXP:
2693 case BINOP_CONCAT:
2694 case BINOP_LOGICAL_AND:
2695 case BINOP_LOGICAL_OR:
2696 case BINOP_BITWISE_AND:
2697 case BINOP_BITWISE_IOR:
2698 case BINOP_BITWISE_XOR:
2699
2700 case BINOP_EQUAL:
2701 case BINOP_NOTEQUAL:
2702 case BINOP_LESS:
2703 case BINOP_GTR:
2704 case BINOP_LEQ:
2705 case BINOP_GEQ:
2706
2707 case BINOP_REPEAT:
2708 case BINOP_SUBSCRIPT:
2709 case BINOP_COMMA:
2710 *pos += 1;
2711 nargs = 2;
2712 break;
2713
2714 case UNOP_NEG:
2715 case UNOP_PLUS:
2716 case UNOP_LOGICAL_NOT:
2717 case UNOP_ABS:
2718 case UNOP_IND:
2719 *pos += 1;
2720 nargs = 1;
2721 break;
2722
2723 case OP_LONG:
2724 case OP_DOUBLE:
2725 case OP_VAR_VALUE:
2726 *pos += 4;
2727 break;
2728
2729 case OP_TYPE:
2730 case OP_BOOL:
2731 case OP_LAST:
2732 case OP_INTERNALVAR:
2733 *pos += 3;
2734 break;
2735
2736 case UNOP_MEMVAL:
2737 *pos += 3;
2738 nargs = 1;
2739 break;
2740
2741 case OP_REGISTER:
2742 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2743 break;
2744
2745 case STRUCTOP_STRUCT:
2746 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2747 nargs = 1;
2748 break;
2749
2750 case TERNOP_SLICE:
2751 *pos += 1;
2752 nargs = 3;
2753 break;
2754
2755 case OP_STRING:
2756 break;
2757
2758 default:
2759 error (_("Unexpected operator during name resolution"));
2760 }
2761
2762 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2763 for (i = 0; i < nargs; i += 1)
2764 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2765 argvec[i] = NULL;
2766 exp = *expp;
2767
2768 /* Pass two: perform any resolution on principal operator. */
2769 switch (op)
2770 {
2771 default:
2772 break;
2773
2774 case OP_VAR_VALUE:
2775 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2776 {
2777 struct ada_symbol_info *candidates;
2778 int n_candidates;
2779
2780 n_candidates =
2781 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2782 (exp->elts[pc + 2].symbol),
2783 exp->elts[pc + 1].block, VAR_DOMAIN,
2784 &candidates);
2785
2786 if (n_candidates > 1)
2787 {
2788 /* Types tend to get re-introduced locally, so if there
2789 are any local symbols that are not types, first filter
2790 out all types. */
2791 int j;
2792 for (j = 0; j < n_candidates; j += 1)
2793 switch (SYMBOL_CLASS (candidates[j].sym))
2794 {
2795 case LOC_REGISTER:
2796 case LOC_ARG:
2797 case LOC_REF_ARG:
2798 case LOC_REGPARM_ADDR:
2799 case LOC_LOCAL:
2800 case LOC_COMPUTED:
2801 goto FoundNonType;
2802 default:
2803 break;
2804 }
2805 FoundNonType:
2806 if (j < n_candidates)
2807 {
2808 j = 0;
2809 while (j < n_candidates)
2810 {
2811 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2812 {
2813 candidates[j] = candidates[n_candidates - 1];
2814 n_candidates -= 1;
2815 }
2816 else
2817 j += 1;
2818 }
2819 }
2820 }
2821
2822 if (n_candidates == 0)
2823 error (_("No definition found for %s"),
2824 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2825 else if (n_candidates == 1)
2826 i = 0;
2827 else if (deprocedure_p
2828 && !is_nonfunction (candidates, n_candidates))
2829 {
2830 i = ada_resolve_function
2831 (candidates, n_candidates, NULL, 0,
2832 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2833 context_type);
2834 if (i < 0)
2835 error (_("Could not find a match for %s"),
2836 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2837 }
2838 else
2839 {
2840 printf_filtered (_("Multiple matches for %s\n"),
2841 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2842 user_select_syms (candidates, n_candidates, 1);
2843 i = 0;
2844 }
2845
2846 exp->elts[pc + 1].block = candidates[i].block;
2847 exp->elts[pc + 2].symbol = candidates[i].sym;
2848 if (innermost_block == NULL
2849 || contained_in (candidates[i].block, innermost_block))
2850 innermost_block = candidates[i].block;
2851 }
2852
2853 if (deprocedure_p
2854 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2855 == TYPE_CODE_FUNC))
2856 {
2857 replace_operator_with_call (expp, pc, 0, 0,
2858 exp->elts[pc + 2].symbol,
2859 exp->elts[pc + 1].block);
2860 exp = *expp;
2861 }
2862 break;
2863
2864 case OP_FUNCALL:
2865 {
2866 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2867 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2868 {
2869 struct ada_symbol_info *candidates;
2870 int n_candidates;
2871
2872 n_candidates =
2873 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2874 (exp->elts[pc + 5].symbol),
2875 exp->elts[pc + 4].block, VAR_DOMAIN,
2876 &candidates);
2877 if (n_candidates == 1)
2878 i = 0;
2879 else
2880 {
2881 i = ada_resolve_function
2882 (candidates, n_candidates,
2883 argvec, nargs,
2884 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2885 context_type);
2886 if (i < 0)
2887 error (_("Could not find a match for %s"),
2888 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2889 }
2890
2891 exp->elts[pc + 4].block = candidates[i].block;
2892 exp->elts[pc + 5].symbol = candidates[i].sym;
2893 if (innermost_block == NULL
2894 || contained_in (candidates[i].block, innermost_block))
2895 innermost_block = candidates[i].block;
2896 }
2897 }
2898 break;
2899 case BINOP_ADD:
2900 case BINOP_SUB:
2901 case BINOP_MUL:
2902 case BINOP_DIV:
2903 case BINOP_REM:
2904 case BINOP_MOD:
2905 case BINOP_CONCAT:
2906 case BINOP_BITWISE_AND:
2907 case BINOP_BITWISE_IOR:
2908 case BINOP_BITWISE_XOR:
2909 case BINOP_EQUAL:
2910 case BINOP_NOTEQUAL:
2911 case BINOP_LESS:
2912 case BINOP_GTR:
2913 case BINOP_LEQ:
2914 case BINOP_GEQ:
2915 case BINOP_EXP:
2916 case UNOP_NEG:
2917 case UNOP_PLUS:
2918 case UNOP_LOGICAL_NOT:
2919 case UNOP_ABS:
2920 if (possible_user_operator_p (op, argvec))
2921 {
2922 struct ada_symbol_info *candidates;
2923 int n_candidates;
2924
2925 n_candidates =
2926 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2927 (struct block *) NULL, VAR_DOMAIN,
2928 &candidates);
2929 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2930 ada_decoded_op_name (op), NULL);
2931 if (i < 0)
2932 break;
2933
2934 replace_operator_with_call (expp, pc, nargs, 1,
2935 candidates[i].sym, candidates[i].block);
2936 exp = *expp;
2937 }
2938 break;
2939
2940 case OP_TYPE:
2941 case OP_REGISTER:
2942 return NULL;
2943 }
2944
2945 *pos = pc;
2946 return evaluate_subexp_type (exp, pos);
2947 }
2948
2949 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2950 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2951 a non-pointer. A type of 'void' (which is never a valid expression type)
2952 by convention matches anything. */
2953 /* The term "match" here is rather loose. The match is heuristic and
2954 liberal. FIXME: TOO liberal, in fact. */
2955
2956 static int
2957 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2958 {
2959 ftype = ada_check_typedef (ftype);
2960 atype = ada_check_typedef (atype);
2961
2962 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2963 ftype = TYPE_TARGET_TYPE (ftype);
2964 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2965 atype = TYPE_TARGET_TYPE (atype);
2966
2967 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2968 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2969 return 1;
2970
2971 switch (TYPE_CODE (ftype))
2972 {
2973 default:
2974 return 1;
2975 case TYPE_CODE_PTR:
2976 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2977 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2978 TYPE_TARGET_TYPE (atype), 0);
2979 else
2980 return (may_deref
2981 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2982 case TYPE_CODE_INT:
2983 case TYPE_CODE_ENUM:
2984 case TYPE_CODE_RANGE:
2985 switch (TYPE_CODE (atype))
2986 {
2987 case TYPE_CODE_INT:
2988 case TYPE_CODE_ENUM:
2989 case TYPE_CODE_RANGE:
2990 return 1;
2991 default:
2992 return 0;
2993 }
2994
2995 case TYPE_CODE_ARRAY:
2996 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2997 || ada_is_array_descriptor_type (atype));
2998
2999 case TYPE_CODE_STRUCT:
3000 if (ada_is_array_descriptor_type (ftype))
3001 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3002 || ada_is_array_descriptor_type (atype));
3003 else
3004 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3005 && !ada_is_array_descriptor_type (atype));
3006
3007 case TYPE_CODE_UNION:
3008 case TYPE_CODE_FLT:
3009 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3010 }
3011 }
3012
3013 /* Return non-zero if the formals of FUNC "sufficiently match" the
3014 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3015 may also be an enumeral, in which case it is treated as a 0-
3016 argument function. */
3017
3018 static int
3019 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3020 {
3021 int i;
3022 struct type *func_type = SYMBOL_TYPE (func);
3023
3024 if (SYMBOL_CLASS (func) == LOC_CONST
3025 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3026 return (n_actuals == 0);
3027 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3028 return 0;
3029
3030 if (TYPE_NFIELDS (func_type) != n_actuals)
3031 return 0;
3032
3033 for (i = 0; i < n_actuals; i += 1)
3034 {
3035 if (actuals[i] == NULL)
3036 return 0;
3037 else
3038 {
3039 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3040 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3041
3042 if (!ada_type_match (ftype, atype, 1))
3043 return 0;
3044 }
3045 }
3046 return 1;
3047 }
3048
3049 /* False iff function type FUNC_TYPE definitely does not produce a value
3050 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3051 FUNC_TYPE is not a valid function type with a non-null return type
3052 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3053
3054 static int
3055 return_match (struct type *func_type, struct type *context_type)
3056 {
3057 struct type *return_type;
3058
3059 if (func_type == NULL)
3060 return 1;
3061
3062 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3063 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3064 else
3065 return_type = base_type (func_type);
3066 if (return_type == NULL)
3067 return 1;
3068
3069 context_type = base_type (context_type);
3070
3071 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3072 return context_type == NULL || return_type == context_type;
3073 else if (context_type == NULL)
3074 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3075 else
3076 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3077 }
3078
3079
3080 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3081 function (if any) that matches the types of the NARGS arguments in
3082 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3083 that returns that type, then eliminate matches that don't. If
3084 CONTEXT_TYPE is void and there is at least one match that does not
3085 return void, eliminate all matches that do.
3086
3087 Asks the user if there is more than one match remaining. Returns -1
3088 if there is no such symbol or none is selected. NAME is used
3089 solely for messages. May re-arrange and modify SYMS in
3090 the process; the index returned is for the modified vector. */
3091
3092 static int
3093 ada_resolve_function (struct ada_symbol_info syms[],
3094 int nsyms, struct value **args, int nargs,
3095 const char *name, struct type *context_type)
3096 {
3097 int k;
3098 int m; /* Number of hits */
3099 struct type *fallback;
3100 struct type *return_type;
3101
3102 return_type = context_type;
3103 if (context_type == NULL)
3104 fallback = builtin_type_void;
3105 else
3106 fallback = NULL;
3107
3108 m = 0;
3109 while (1)
3110 {
3111 for (k = 0; k < nsyms; k += 1)
3112 {
3113 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3114
3115 if (ada_args_match (syms[k].sym, args, nargs)
3116 && return_match (type, return_type))
3117 {
3118 syms[m] = syms[k];
3119 m += 1;
3120 }
3121 }
3122 if (m > 0 || return_type == fallback)
3123 break;
3124 else
3125 return_type = fallback;
3126 }
3127
3128 if (m == 0)
3129 return -1;
3130 else if (m > 1)
3131 {
3132 printf_filtered (_("Multiple matches for %s\n"), name);
3133 user_select_syms (syms, m, 1);
3134 return 0;
3135 }
3136 return 0;
3137 }
3138
3139 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3140 in a listing of choices during disambiguation (see sort_choices, below).
3141 The idea is that overloadings of a subprogram name from the
3142 same package should sort in their source order. We settle for ordering
3143 such symbols by their trailing number (__N or $N). */
3144
3145 static int
3146 encoded_ordered_before (char *N0, char *N1)
3147 {
3148 if (N1 == NULL)
3149 return 0;
3150 else if (N0 == NULL)
3151 return 1;
3152 else
3153 {
3154 int k0, k1;
3155 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3156 ;
3157 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3158 ;
3159 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3160 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3161 {
3162 int n0, n1;
3163 n0 = k0;
3164 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3165 n0 -= 1;
3166 n1 = k1;
3167 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3168 n1 -= 1;
3169 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3170 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3171 }
3172 return (strcmp (N0, N1) < 0);
3173 }
3174 }
3175
3176 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3177 encoded names. */
3178
3179 static void
3180 sort_choices (struct ada_symbol_info syms[], int nsyms)
3181 {
3182 int i;
3183 for (i = 1; i < nsyms; i += 1)
3184 {
3185 struct ada_symbol_info sym = syms[i];
3186 int j;
3187
3188 for (j = i - 1; j >= 0; j -= 1)
3189 {
3190 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3191 SYMBOL_LINKAGE_NAME (sym.sym)))
3192 break;
3193 syms[j + 1] = syms[j];
3194 }
3195 syms[j + 1] = sym;
3196 }
3197 }
3198
3199 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3200 by asking the user (if necessary), returning the number selected,
3201 and setting the first elements of SYMS items. Error if no symbols
3202 selected. */
3203
3204 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3205 to be re-integrated one of these days. */
3206
3207 int
3208 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3209 {
3210 int i;
3211 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3212 int n_chosen;
3213 int first_choice = (max_results == 1) ? 1 : 2;
3214 const char *select_mode = multiple_symbols_select_mode ();
3215
3216 if (max_results < 1)
3217 error (_("Request to select 0 symbols!"));
3218 if (nsyms <= 1)
3219 return nsyms;
3220
3221 if (select_mode == multiple_symbols_cancel)
3222 error (_("\
3223 canceled because the command is ambiguous\n\
3224 See set/show multiple-symbol."));
3225
3226 /* If select_mode is "all", then return all possible symbols.
3227 Only do that if more than one symbol can be selected, of course.
3228 Otherwise, display the menu as usual. */
3229 if (select_mode == multiple_symbols_all && max_results > 1)
3230 return nsyms;
3231
3232 printf_unfiltered (_("[0] cancel\n"));
3233 if (max_results > 1)
3234 printf_unfiltered (_("[1] all\n"));
3235
3236 sort_choices (syms, nsyms);
3237
3238 for (i = 0; i < nsyms; i += 1)
3239 {
3240 if (syms[i].sym == NULL)
3241 continue;
3242
3243 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3244 {
3245 struct symtab_and_line sal =
3246 find_function_start_sal (syms[i].sym, 1);
3247 if (sal.symtab == NULL)
3248 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3249 i + first_choice,
3250 SYMBOL_PRINT_NAME (syms[i].sym),
3251 sal.line);
3252 else
3253 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3254 SYMBOL_PRINT_NAME (syms[i].sym),
3255 sal.symtab->filename, sal.line);
3256 continue;
3257 }
3258 else
3259 {
3260 int is_enumeral =
3261 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3262 && SYMBOL_TYPE (syms[i].sym) != NULL
3263 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3264 struct symtab *symtab = syms[i].sym->symtab;
3265
3266 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3267 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3268 i + first_choice,
3269 SYMBOL_PRINT_NAME (syms[i].sym),
3270 symtab->filename, SYMBOL_LINE (syms[i].sym));
3271 else if (is_enumeral
3272 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3273 {
3274 printf_unfiltered (("[%d] "), i + first_choice);
3275 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3276 gdb_stdout, -1, 0);
3277 printf_unfiltered (_("'(%s) (enumeral)\n"),
3278 SYMBOL_PRINT_NAME (syms[i].sym));
3279 }
3280 else if (symtab != NULL)
3281 printf_unfiltered (is_enumeral
3282 ? _("[%d] %s in %s (enumeral)\n")
3283 : _("[%d] %s at %s:?\n"),
3284 i + first_choice,
3285 SYMBOL_PRINT_NAME (syms[i].sym),
3286 symtab->filename);
3287 else
3288 printf_unfiltered (is_enumeral
3289 ? _("[%d] %s (enumeral)\n")
3290 : _("[%d] %s at ?\n"),
3291 i + first_choice,
3292 SYMBOL_PRINT_NAME (syms[i].sym));
3293 }
3294 }
3295
3296 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3297 "overload-choice");
3298
3299 for (i = 0; i < n_chosen; i += 1)
3300 syms[i] = syms[chosen[i]];
3301
3302 return n_chosen;
3303 }
3304
3305 /* Read and validate a set of numeric choices from the user in the
3306 range 0 .. N_CHOICES-1. Place the results in increasing
3307 order in CHOICES[0 .. N-1], and return N.
3308
3309 The user types choices as a sequence of numbers on one line
3310 separated by blanks, encoding them as follows:
3311
3312 + A choice of 0 means to cancel the selection, throwing an error.
3313 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3314 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3315
3316 The user is not allowed to choose more than MAX_RESULTS values.
3317
3318 ANNOTATION_SUFFIX, if present, is used to annotate the input
3319 prompts (for use with the -f switch). */
3320
3321 int
3322 get_selections (int *choices, int n_choices, int max_results,
3323 int is_all_choice, char *annotation_suffix)
3324 {
3325 char *args;
3326 char *prompt;
3327 int n_chosen;
3328 int first_choice = is_all_choice ? 2 : 1;
3329
3330 prompt = getenv ("PS2");
3331 if (prompt == NULL)
3332 prompt = "> ";
3333
3334 args = command_line_input (prompt, 0, annotation_suffix);
3335
3336 if (args == NULL)
3337 error_no_arg (_("one or more choice numbers"));
3338
3339 n_chosen = 0;
3340
3341 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3342 order, as given in args. Choices are validated. */
3343 while (1)
3344 {
3345 char *args2;
3346 int choice, j;
3347
3348 while (isspace (*args))
3349 args += 1;
3350 if (*args == '\0' && n_chosen == 0)
3351 error_no_arg (_("one or more choice numbers"));
3352 else if (*args == '\0')
3353 break;
3354
3355 choice = strtol (args, &args2, 10);
3356 if (args == args2 || choice < 0
3357 || choice > n_choices + first_choice - 1)
3358 error (_("Argument must be choice number"));
3359 args = args2;
3360
3361 if (choice == 0)
3362 error (_("cancelled"));
3363
3364 if (choice < first_choice)
3365 {
3366 n_chosen = n_choices;
3367 for (j = 0; j < n_choices; j += 1)
3368 choices[j] = j;
3369 break;
3370 }
3371 choice -= first_choice;
3372
3373 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3374 {
3375 }
3376
3377 if (j < 0 || choice != choices[j])
3378 {
3379 int k;
3380 for (k = n_chosen - 1; k > j; k -= 1)
3381 choices[k + 1] = choices[k];
3382 choices[j + 1] = choice;
3383 n_chosen += 1;
3384 }
3385 }
3386
3387 if (n_chosen > max_results)
3388 error (_("Select no more than %d of the above"), max_results);
3389
3390 return n_chosen;
3391 }
3392
3393 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3394 on the function identified by SYM and BLOCK, and taking NARGS
3395 arguments. Update *EXPP as needed to hold more space. */
3396
3397 static void
3398 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3399 int oplen, struct symbol *sym,
3400 struct block *block)
3401 {
3402 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3403 symbol, -oplen for operator being replaced). */
3404 struct expression *newexp = (struct expression *)
3405 xmalloc (sizeof (struct expression)
3406 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3407 struct expression *exp = *expp;
3408
3409 newexp->nelts = exp->nelts + 7 - oplen;
3410 newexp->language_defn = exp->language_defn;
3411 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3412 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3413 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3414
3415 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3416 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3417
3418 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3419 newexp->elts[pc + 4].block = block;
3420 newexp->elts[pc + 5].symbol = sym;
3421
3422 *expp = newexp;
3423 xfree (exp);
3424 }
3425
3426 /* Type-class predicates */
3427
3428 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3429 or FLOAT). */
3430
3431 static int
3432 numeric_type_p (struct type *type)
3433 {
3434 if (type == NULL)
3435 return 0;
3436 else
3437 {
3438 switch (TYPE_CODE (type))
3439 {
3440 case TYPE_CODE_INT:
3441 case TYPE_CODE_FLT:
3442 return 1;
3443 case TYPE_CODE_RANGE:
3444 return (type == TYPE_TARGET_TYPE (type)
3445 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3446 default:
3447 return 0;
3448 }
3449 }
3450 }
3451
3452 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3453
3454 static int
3455 integer_type_p (struct type *type)
3456 {
3457 if (type == NULL)
3458 return 0;
3459 else
3460 {
3461 switch (TYPE_CODE (type))
3462 {
3463 case TYPE_CODE_INT:
3464 return 1;
3465 case TYPE_CODE_RANGE:
3466 return (type == TYPE_TARGET_TYPE (type)
3467 || integer_type_p (TYPE_TARGET_TYPE (type)));
3468 default:
3469 return 0;
3470 }
3471 }
3472 }
3473
3474 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3475
3476 static int
3477 scalar_type_p (struct type *type)
3478 {
3479 if (type == NULL)
3480 return 0;
3481 else
3482 {
3483 switch (TYPE_CODE (type))
3484 {
3485 case TYPE_CODE_INT:
3486 case TYPE_CODE_RANGE:
3487 case TYPE_CODE_ENUM:
3488 case TYPE_CODE_FLT:
3489 return 1;
3490 default:
3491 return 0;
3492 }
3493 }
3494 }
3495
3496 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3497
3498 static int
3499 discrete_type_p (struct type *type)
3500 {
3501 if (type == NULL)
3502 return 0;
3503 else
3504 {
3505 switch (TYPE_CODE (type))
3506 {
3507 case TYPE_CODE_INT:
3508 case TYPE_CODE_RANGE:
3509 case TYPE_CODE_ENUM:
3510 return 1;
3511 default:
3512 return 0;
3513 }
3514 }
3515 }
3516
3517 /* Returns non-zero if OP with operands in the vector ARGS could be
3518 a user-defined function. Errs on the side of pre-defined operators
3519 (i.e., result 0). */
3520
3521 static int
3522 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3523 {
3524 struct type *type0 =
3525 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3526 struct type *type1 =
3527 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3528
3529 if (type0 == NULL)
3530 return 0;
3531
3532 switch (op)
3533 {
3534 default:
3535 return 0;
3536
3537 case BINOP_ADD:
3538 case BINOP_SUB:
3539 case BINOP_MUL:
3540 case BINOP_DIV:
3541 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3542
3543 case BINOP_REM:
3544 case BINOP_MOD:
3545 case BINOP_BITWISE_AND:
3546 case BINOP_BITWISE_IOR:
3547 case BINOP_BITWISE_XOR:
3548 return (!(integer_type_p (type0) && integer_type_p (type1)));
3549
3550 case BINOP_EQUAL:
3551 case BINOP_NOTEQUAL:
3552 case BINOP_LESS:
3553 case BINOP_GTR:
3554 case BINOP_LEQ:
3555 case BINOP_GEQ:
3556 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3557
3558 case BINOP_CONCAT:
3559 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3560
3561 case BINOP_EXP:
3562 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3563
3564 case UNOP_NEG:
3565 case UNOP_PLUS:
3566 case UNOP_LOGICAL_NOT:
3567 case UNOP_ABS:
3568 return (!numeric_type_p (type0));
3569
3570 }
3571 }
3572 \f
3573 /* Renaming */
3574
3575 /* NOTES:
3576
3577 1. In the following, we assume that a renaming type's name may
3578 have an ___XD suffix. It would be nice if this went away at some
3579 point.
3580 2. We handle both the (old) purely type-based representation of
3581 renamings and the (new) variable-based encoding. At some point,
3582 it is devoutly to be hoped that the former goes away
3583 (FIXME: hilfinger-2007-07-09).
3584 3. Subprogram renamings are not implemented, although the XRS
3585 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3586
3587 /* If SYM encodes a renaming,
3588
3589 <renaming> renames <renamed entity>,
3590
3591 sets *LEN to the length of the renamed entity's name,
3592 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3593 the string describing the subcomponent selected from the renamed
3594 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3595 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3596 are undefined). Otherwise, returns a value indicating the category
3597 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3598 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3599 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3600 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3601 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3602 may be NULL, in which case they are not assigned.
3603
3604 [Currently, however, GCC does not generate subprogram renamings.] */
3605
3606 enum ada_renaming_category
3607 ada_parse_renaming (struct symbol *sym,
3608 const char **renamed_entity, int *len,
3609 const char **renaming_expr)
3610 {
3611 enum ada_renaming_category kind;
3612 const char *info;
3613 const char *suffix;
3614
3615 if (sym == NULL)
3616 return ADA_NOT_RENAMING;
3617 switch (SYMBOL_CLASS (sym))
3618 {
3619 default:
3620 return ADA_NOT_RENAMING;
3621 case LOC_TYPEDEF:
3622 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3623 renamed_entity, len, renaming_expr);
3624 case LOC_LOCAL:
3625 case LOC_STATIC:
3626 case LOC_COMPUTED:
3627 case LOC_OPTIMIZED_OUT:
3628 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3629 if (info == NULL)
3630 return ADA_NOT_RENAMING;
3631 switch (info[5])
3632 {
3633 case '_':
3634 kind = ADA_OBJECT_RENAMING;
3635 info += 6;
3636 break;
3637 case 'E':
3638 kind = ADA_EXCEPTION_RENAMING;
3639 info += 7;
3640 break;
3641 case 'P':
3642 kind = ADA_PACKAGE_RENAMING;
3643 info += 7;
3644 break;
3645 case 'S':
3646 kind = ADA_SUBPROGRAM_RENAMING;
3647 info += 7;
3648 break;
3649 default:
3650 return ADA_NOT_RENAMING;
3651 }
3652 }
3653
3654 if (renamed_entity != NULL)
3655 *renamed_entity = info;
3656 suffix = strstr (info, "___XE");
3657 if (suffix == NULL || suffix == info)
3658 return ADA_NOT_RENAMING;
3659 if (len != NULL)
3660 *len = strlen (info) - strlen (suffix);
3661 suffix += 5;
3662 if (renaming_expr != NULL)
3663 *renaming_expr = suffix;
3664 return kind;
3665 }
3666
3667 /* Assuming TYPE encodes a renaming according to the old encoding in
3668 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3669 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3670 ADA_NOT_RENAMING otherwise. */
3671 static enum ada_renaming_category
3672 parse_old_style_renaming (struct type *type,
3673 const char **renamed_entity, int *len,
3674 const char **renaming_expr)
3675 {
3676 enum ada_renaming_category kind;
3677 const char *name;
3678 const char *info;
3679 const char *suffix;
3680
3681 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3682 || TYPE_NFIELDS (type) != 1)
3683 return ADA_NOT_RENAMING;
3684
3685 name = type_name_no_tag (type);
3686 if (name == NULL)
3687 return ADA_NOT_RENAMING;
3688
3689 name = strstr (name, "___XR");
3690 if (name == NULL)
3691 return ADA_NOT_RENAMING;
3692 switch (name[5])
3693 {
3694 case '\0':
3695 case '_':
3696 kind = ADA_OBJECT_RENAMING;
3697 break;
3698 case 'E':
3699 kind = ADA_EXCEPTION_RENAMING;
3700 break;
3701 case 'P':
3702 kind = ADA_PACKAGE_RENAMING;
3703 break;
3704 case 'S':
3705 kind = ADA_SUBPROGRAM_RENAMING;
3706 break;
3707 default:
3708 return ADA_NOT_RENAMING;
3709 }
3710
3711 info = TYPE_FIELD_NAME (type, 0);
3712 if (info == NULL)
3713 return ADA_NOT_RENAMING;
3714 if (renamed_entity != NULL)
3715 *renamed_entity = info;
3716 suffix = strstr (info, "___XE");
3717 if (renaming_expr != NULL)
3718 *renaming_expr = suffix + 5;
3719 if (suffix == NULL || suffix == info)
3720 return ADA_NOT_RENAMING;
3721 if (len != NULL)
3722 *len = suffix - info;
3723 return kind;
3724 }
3725
3726 \f
3727
3728 /* Evaluation: Function Calls */
3729
3730 /* Return an lvalue containing the value VAL. This is the identity on
3731 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3732 on the stack, using and updating *SP as the stack pointer, and
3733 returning an lvalue whose value_address points to the copy. */
3734
3735 static struct value *
3736 ensure_lval (struct value *val, CORE_ADDR *sp)
3737 {
3738 if (! VALUE_LVAL (val))
3739 {
3740 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3741
3742 /* The following is taken from the structure-return code in
3743 call_function_by_hand. FIXME: Therefore, some refactoring seems
3744 indicated. */
3745 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3746 {
3747 /* Stack grows downward. Align SP and value_address (val) after
3748 reserving sufficient space. */
3749 *sp -= len;
3750 if (gdbarch_frame_align_p (current_gdbarch))
3751 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3752 set_value_address (val, *sp);
3753 }
3754 else
3755 {
3756 /* Stack grows upward. Align the frame, allocate space, and
3757 then again, re-align the frame. */
3758 if (gdbarch_frame_align_p (current_gdbarch))
3759 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3760 set_value_address (val, *sp);
3761 *sp += len;
3762 if (gdbarch_frame_align_p (current_gdbarch))
3763 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3764 }
3765 VALUE_LVAL (val) = lval_memory;
3766
3767 write_memory (value_address (val), value_contents_raw (val), len);
3768 }
3769
3770 return val;
3771 }
3772
3773 /* Return the value ACTUAL, converted to be an appropriate value for a
3774 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3775 allocating any necessary descriptors (fat pointers), or copies of
3776 values not residing in memory, updating it as needed. */
3777
3778 struct value *
3779 ada_convert_actual (struct value *actual, struct type *formal_type0,
3780 CORE_ADDR *sp)
3781 {
3782 struct type *actual_type = ada_check_typedef (value_type (actual));
3783 struct type *formal_type = ada_check_typedef (formal_type0);
3784 struct type *formal_target =
3785 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3786 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3787 struct type *actual_target =
3788 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3789 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3790
3791 if (ada_is_array_descriptor_type (formal_target)
3792 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3793 return make_array_descriptor (formal_type, actual, sp);
3794 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3795 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3796 {
3797 struct value *result;
3798 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3799 && ada_is_array_descriptor_type (actual_target))
3800 result = desc_data (actual);
3801 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3802 {
3803 if (VALUE_LVAL (actual) != lval_memory)
3804 {
3805 struct value *val;
3806 actual_type = ada_check_typedef (value_type (actual));
3807 val = allocate_value (actual_type);
3808 memcpy ((char *) value_contents_raw (val),
3809 (char *) value_contents (actual),
3810 TYPE_LENGTH (actual_type));
3811 actual = ensure_lval (val, sp);
3812 }
3813 result = value_addr (actual);
3814 }
3815 else
3816 return actual;
3817 return value_cast_pointers (formal_type, result);
3818 }
3819 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3820 return ada_value_ind (actual);
3821
3822 return actual;
3823 }
3824
3825
3826 /* Push a descriptor of type TYPE for array value ARR on the stack at
3827 *SP, updating *SP to reflect the new descriptor. Return either
3828 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3829 to-descriptor type rather than a descriptor type), a struct value *
3830 representing a pointer to this descriptor. */
3831
3832 static struct value *
3833 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3834 {
3835 struct type *bounds_type = desc_bounds_type (type);
3836 struct type *desc_type = desc_base_type (type);
3837 struct value *descriptor = allocate_value (desc_type);
3838 struct value *bounds = allocate_value (bounds_type);
3839 int i;
3840
3841 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3842 {
3843 modify_general_field (value_contents_writeable (bounds),
3844 ada_array_bound (arr, i, 0),
3845 desc_bound_bitpos (bounds_type, i, 0),
3846 desc_bound_bitsize (bounds_type, i, 0));
3847 modify_general_field (value_contents_writeable (bounds),
3848 ada_array_bound (arr, i, 1),
3849 desc_bound_bitpos (bounds_type, i, 1),
3850 desc_bound_bitsize (bounds_type, i, 1));
3851 }
3852
3853 bounds = ensure_lval (bounds, sp);
3854
3855 modify_general_field (value_contents_writeable (descriptor),
3856 value_address (ensure_lval (arr, sp)),
3857 fat_pntr_data_bitpos (desc_type),
3858 fat_pntr_data_bitsize (desc_type));
3859
3860 modify_general_field (value_contents_writeable (descriptor),
3861 value_address (bounds),
3862 fat_pntr_bounds_bitpos (desc_type),
3863 fat_pntr_bounds_bitsize (desc_type));
3864
3865 descriptor = ensure_lval (descriptor, sp);
3866
3867 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3868 return value_addr (descriptor);
3869 else
3870 return descriptor;
3871 }
3872 \f
3873 /* Dummy definitions for an experimental caching module that is not
3874 * used in the public sources. */
3875
3876 static int
3877 lookup_cached_symbol (const char *name, domain_enum namespace,
3878 struct symbol **sym, struct block **block)
3879 {
3880 return 0;
3881 }
3882
3883 static void
3884 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3885 struct block *block)
3886 {
3887 }
3888 \f
3889 /* Symbol Lookup */
3890
3891 /* Return the result of a standard (literal, C-like) lookup of NAME in
3892 given DOMAIN, visible from lexical block BLOCK. */
3893
3894 static struct symbol *
3895 standard_lookup (const char *name, const struct block *block,
3896 domain_enum domain)
3897 {
3898 struct symbol *sym;
3899
3900 if (lookup_cached_symbol (name, domain, &sym, NULL))
3901 return sym;
3902 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3903 cache_symbol (name, domain, sym, block_found);
3904 return sym;
3905 }
3906
3907
3908 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3909 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3910 since they contend in overloading in the same way. */
3911 static int
3912 is_nonfunction (struct ada_symbol_info syms[], int n)
3913 {
3914 int i;
3915
3916 for (i = 0; i < n; i += 1)
3917 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3918 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3919 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3920 return 1;
3921
3922 return 0;
3923 }
3924
3925 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3926 struct types. Otherwise, they may not. */
3927
3928 static int
3929 equiv_types (struct type *type0, struct type *type1)
3930 {
3931 if (type0 == type1)
3932 return 1;
3933 if (type0 == NULL || type1 == NULL
3934 || TYPE_CODE (type0) != TYPE_CODE (type1))
3935 return 0;
3936 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3937 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3938 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3939 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3940 return 1;
3941
3942 return 0;
3943 }
3944
3945 /* True iff SYM0 represents the same entity as SYM1, or one that is
3946 no more defined than that of SYM1. */
3947
3948 static int
3949 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3950 {
3951 if (sym0 == sym1)
3952 return 1;
3953 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3954 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3955 return 0;
3956
3957 switch (SYMBOL_CLASS (sym0))
3958 {
3959 case LOC_UNDEF:
3960 return 1;
3961 case LOC_TYPEDEF:
3962 {
3963 struct type *type0 = SYMBOL_TYPE (sym0);
3964 struct type *type1 = SYMBOL_TYPE (sym1);
3965 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3966 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3967 int len0 = strlen (name0);
3968 return
3969 TYPE_CODE (type0) == TYPE_CODE (type1)
3970 && (equiv_types (type0, type1)
3971 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3972 && strncmp (name1 + len0, "___XV", 5) == 0));
3973 }
3974 case LOC_CONST:
3975 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3976 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3977 default:
3978 return 0;
3979 }
3980 }
3981
3982 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3983 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3984
3985 static void
3986 add_defn_to_vec (struct obstack *obstackp,
3987 struct symbol *sym,
3988 struct block *block)
3989 {
3990 int i;
3991 size_t tmp;
3992 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3993
3994 /* Do not try to complete stub types, as the debugger is probably
3995 already scanning all symbols matching a certain name at the
3996 time when this function is called. Trying to replace the stub
3997 type by its associated full type will cause us to restart a scan
3998 which may lead to an infinite recursion. Instead, the client
3999 collecting the matching symbols will end up collecting several
4000 matches, with at least one of them complete. It can then filter
4001 out the stub ones if needed. */
4002
4003 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4004 {
4005 if (lesseq_defined_than (sym, prevDefns[i].sym))
4006 return;
4007 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4008 {
4009 prevDefns[i].sym = sym;
4010 prevDefns[i].block = block;
4011 return;
4012 }
4013 }
4014
4015 {
4016 struct ada_symbol_info info;
4017
4018 info.sym = sym;
4019 info.block = block;
4020 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4021 }
4022 }
4023
4024 /* Number of ada_symbol_info structures currently collected in
4025 current vector in *OBSTACKP. */
4026
4027 static int
4028 num_defns_collected (struct obstack *obstackp)
4029 {
4030 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4031 }
4032
4033 /* Vector of ada_symbol_info structures currently collected in current
4034 vector in *OBSTACKP. If FINISH, close off the vector and return
4035 its final address. */
4036
4037 static struct ada_symbol_info *
4038 defns_collected (struct obstack *obstackp, int finish)
4039 {
4040 if (finish)
4041 return obstack_finish (obstackp);
4042 else
4043 return (struct ada_symbol_info *) obstack_base (obstackp);
4044 }
4045
4046 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4047 Check the global symbols if GLOBAL, the static symbols if not.
4048 Do wild-card match if WILD. */
4049
4050 static struct partial_symbol *
4051 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4052 int global, domain_enum namespace, int wild)
4053 {
4054 struct partial_symbol **start;
4055 int name_len = strlen (name);
4056 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4057 int i;
4058
4059 if (length == 0)
4060 {
4061 return (NULL);
4062 }
4063
4064 start = (global ?
4065 pst->objfile->global_psymbols.list + pst->globals_offset :
4066 pst->objfile->static_psymbols.list + pst->statics_offset);
4067
4068 if (wild)
4069 {
4070 for (i = 0; i < length; i += 1)
4071 {
4072 struct partial_symbol *psym = start[i];
4073
4074 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4075 SYMBOL_DOMAIN (psym), namespace)
4076 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4077 return psym;
4078 }
4079 return NULL;
4080 }
4081 else
4082 {
4083 if (global)
4084 {
4085 int U;
4086 i = 0;
4087 U = length - 1;
4088 while (U - i > 4)
4089 {
4090 int M = (U + i) >> 1;
4091 struct partial_symbol *psym = start[M];
4092 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4093 i = M + 1;
4094 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4095 U = M - 1;
4096 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4097 i = M + 1;
4098 else
4099 U = M;
4100 }
4101 }
4102 else
4103 i = 0;
4104
4105 while (i < length)
4106 {
4107 struct partial_symbol *psym = start[i];
4108
4109 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4110 SYMBOL_DOMAIN (psym), namespace))
4111 {
4112 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4113
4114 if (cmp < 0)
4115 {
4116 if (global)
4117 break;
4118 }
4119 else if (cmp == 0
4120 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4121 + name_len))
4122 return psym;
4123 }
4124 i += 1;
4125 }
4126
4127 if (global)
4128 {
4129 int U;
4130 i = 0;
4131 U = length - 1;
4132 while (U - i > 4)
4133 {
4134 int M = (U + i) >> 1;
4135 struct partial_symbol *psym = start[M];
4136 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4137 i = M + 1;
4138 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4139 U = M - 1;
4140 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4141 i = M + 1;
4142 else
4143 U = M;
4144 }
4145 }
4146 else
4147 i = 0;
4148
4149 while (i < length)
4150 {
4151 struct partial_symbol *psym = start[i];
4152
4153 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4154 SYMBOL_DOMAIN (psym), namespace))
4155 {
4156 int cmp;
4157
4158 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4159 if (cmp == 0)
4160 {
4161 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4162 if (cmp == 0)
4163 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4164 name_len);
4165 }
4166
4167 if (cmp < 0)
4168 {
4169 if (global)
4170 break;
4171 }
4172 else if (cmp == 0
4173 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4174 + name_len + 5))
4175 return psym;
4176 }
4177 i += 1;
4178 }
4179 }
4180 return NULL;
4181 }
4182
4183 /* Return a minimal symbol matching NAME according to Ada decoding
4184 rules. Returns NULL if there is no such minimal symbol. Names
4185 prefixed with "standard__" are handled specially: "standard__" is
4186 first stripped off, and only static and global symbols are searched. */
4187
4188 struct minimal_symbol *
4189 ada_lookup_simple_minsym (const char *name)
4190 {
4191 struct objfile *objfile;
4192 struct minimal_symbol *msymbol;
4193 int wild_match;
4194
4195 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4196 {
4197 name += sizeof ("standard__") - 1;
4198 wild_match = 0;
4199 }
4200 else
4201 wild_match = (strstr (name, "__") == NULL);
4202
4203 ALL_MSYMBOLS (objfile, msymbol)
4204 {
4205 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4206 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4207 return msymbol;
4208 }
4209
4210 return NULL;
4211 }
4212
4213 /* For all subprograms that statically enclose the subprogram of the
4214 selected frame, add symbols matching identifier NAME in DOMAIN
4215 and their blocks to the list of data in OBSTACKP, as for
4216 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4217 wildcard prefix. */
4218
4219 static void
4220 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4221 const char *name, domain_enum namespace,
4222 int wild_match)
4223 {
4224 }
4225
4226 /* True if TYPE is definitely an artificial type supplied to a symbol
4227 for which no debugging information was given in the symbol file. */
4228
4229 static int
4230 is_nondebugging_type (struct type *type)
4231 {
4232 char *name = ada_type_name (type);
4233 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4234 }
4235
4236 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4237 duplicate other symbols in the list (The only case I know of where
4238 this happens is when object files containing stabs-in-ecoff are
4239 linked with files containing ordinary ecoff debugging symbols (or no
4240 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4241 Returns the number of items in the modified list. */
4242
4243 static int
4244 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4245 {
4246 int i, j;
4247
4248 i = 0;
4249 while (i < nsyms)
4250 {
4251 int remove = 0;
4252
4253 /* If two symbols have the same name and one of them is a stub type,
4254 the get rid of the stub. */
4255
4256 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4257 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4258 {
4259 for (j = 0; j < nsyms; j++)
4260 {
4261 if (j != i
4262 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4263 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4264 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4265 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4266 remove = 1;
4267 }
4268 }
4269
4270 /* Two symbols with the same name, same class and same address
4271 should be identical. */
4272
4273 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4274 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4275 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4276 {
4277 for (j = 0; j < nsyms; j += 1)
4278 {
4279 if (i != j
4280 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4281 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4282 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4283 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4284 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4285 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4286 remove = 1;
4287 }
4288 }
4289
4290 if (remove)
4291 {
4292 for (j = i + 1; j < nsyms; j += 1)
4293 syms[j - 1] = syms[j];
4294 nsyms -= 1;
4295 }
4296
4297 i += 1;
4298 }
4299 return nsyms;
4300 }
4301
4302 /* Given a type that corresponds to a renaming entity, use the type name
4303 to extract the scope (package name or function name, fully qualified,
4304 and following the GNAT encoding convention) where this renaming has been
4305 defined. The string returned needs to be deallocated after use. */
4306
4307 static char *
4308 xget_renaming_scope (struct type *renaming_type)
4309 {
4310 /* The renaming types adhere to the following convention:
4311 <scope>__<rename>___<XR extension>.
4312 So, to extract the scope, we search for the "___XR" extension,
4313 and then backtrack until we find the first "__". */
4314
4315 const char *name = type_name_no_tag (renaming_type);
4316 char *suffix = strstr (name, "___XR");
4317 char *last;
4318 int scope_len;
4319 char *scope;
4320
4321 /* Now, backtrack a bit until we find the first "__". Start looking
4322 at suffix - 3, as the <rename> part is at least one character long. */
4323
4324 for (last = suffix - 3; last > name; last--)
4325 if (last[0] == '_' && last[1] == '_')
4326 break;
4327
4328 /* Make a copy of scope and return it. */
4329
4330 scope_len = last - name;
4331 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4332
4333 strncpy (scope, name, scope_len);
4334 scope[scope_len] = '\0';
4335
4336 return scope;
4337 }
4338
4339 /* Return nonzero if NAME corresponds to a package name. */
4340
4341 static int
4342 is_package_name (const char *name)
4343 {
4344 /* Here, We take advantage of the fact that no symbols are generated
4345 for packages, while symbols are generated for each function.
4346 So the condition for NAME represent a package becomes equivalent
4347 to NAME not existing in our list of symbols. There is only one
4348 small complication with library-level functions (see below). */
4349
4350 char *fun_name;
4351
4352 /* If it is a function that has not been defined at library level,
4353 then we should be able to look it up in the symbols. */
4354 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4355 return 0;
4356
4357 /* Library-level function names start with "_ada_". See if function
4358 "_ada_" followed by NAME can be found. */
4359
4360 /* Do a quick check that NAME does not contain "__", since library-level
4361 functions names cannot contain "__" in them. */
4362 if (strstr (name, "__") != NULL)
4363 return 0;
4364
4365 fun_name = xstrprintf ("_ada_%s", name);
4366
4367 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4368 }
4369
4370 /* Return nonzero if SYM corresponds to a renaming entity that is
4371 not visible from FUNCTION_NAME. */
4372
4373 static int
4374 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4375 {
4376 char *scope;
4377
4378 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4379 return 0;
4380
4381 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4382
4383 make_cleanup (xfree, scope);
4384
4385 /* If the rename has been defined in a package, then it is visible. */
4386 if (is_package_name (scope))
4387 return 0;
4388
4389 /* Check that the rename is in the current function scope by checking
4390 that its name starts with SCOPE. */
4391
4392 /* If the function name starts with "_ada_", it means that it is
4393 a library-level function. Strip this prefix before doing the
4394 comparison, as the encoding for the renaming does not contain
4395 this prefix. */
4396 if (strncmp (function_name, "_ada_", 5) == 0)
4397 function_name += 5;
4398
4399 return (strncmp (function_name, scope, strlen (scope)) != 0);
4400 }
4401
4402 /* Remove entries from SYMS that corresponds to a renaming entity that
4403 is not visible from the function associated with CURRENT_BLOCK or
4404 that is superfluous due to the presence of more specific renaming
4405 information. Places surviving symbols in the initial entries of
4406 SYMS and returns the number of surviving symbols.
4407
4408 Rationale:
4409 First, in cases where an object renaming is implemented as a
4410 reference variable, GNAT may produce both the actual reference
4411 variable and the renaming encoding. In this case, we discard the
4412 latter.
4413
4414 Second, GNAT emits a type following a specified encoding for each renaming
4415 entity. Unfortunately, STABS currently does not support the definition
4416 of types that are local to a given lexical block, so all renamings types
4417 are emitted at library level. As a consequence, if an application
4418 contains two renaming entities using the same name, and a user tries to
4419 print the value of one of these entities, the result of the ada symbol
4420 lookup will also contain the wrong renaming type.
4421
4422 This function partially covers for this limitation by attempting to
4423 remove from the SYMS list renaming symbols that should be visible
4424 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4425 method with the current information available. The implementation
4426 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4427
4428 - When the user tries to print a rename in a function while there
4429 is another rename entity defined in a package: Normally, the
4430 rename in the function has precedence over the rename in the
4431 package, so the latter should be removed from the list. This is
4432 currently not the case.
4433
4434 - This function will incorrectly remove valid renames if
4435 the CURRENT_BLOCK corresponds to a function which symbol name
4436 has been changed by an "Export" pragma. As a consequence,
4437 the user will be unable to print such rename entities. */
4438
4439 static int
4440 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4441 int nsyms, const struct block *current_block)
4442 {
4443 struct symbol *current_function;
4444 char *current_function_name;
4445 int i;
4446 int is_new_style_renaming;
4447
4448 /* If there is both a renaming foo___XR... encoded as a variable and
4449 a simple variable foo in the same block, discard the latter.
4450 First, zero out such symbols, then compress. */
4451 is_new_style_renaming = 0;
4452 for (i = 0; i < nsyms; i += 1)
4453 {
4454 struct symbol *sym = syms[i].sym;
4455 struct block *block = syms[i].block;
4456 const char *name;
4457 const char *suffix;
4458
4459 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4460 continue;
4461 name = SYMBOL_LINKAGE_NAME (sym);
4462 suffix = strstr (name, "___XR");
4463
4464 if (suffix != NULL)
4465 {
4466 int name_len = suffix - name;
4467 int j;
4468 is_new_style_renaming = 1;
4469 for (j = 0; j < nsyms; j += 1)
4470 if (i != j && syms[j].sym != NULL
4471 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4472 name_len) == 0
4473 && block == syms[j].block)
4474 syms[j].sym = NULL;
4475 }
4476 }
4477 if (is_new_style_renaming)
4478 {
4479 int j, k;
4480
4481 for (j = k = 0; j < nsyms; j += 1)
4482 if (syms[j].sym != NULL)
4483 {
4484 syms[k] = syms[j];
4485 k += 1;
4486 }
4487 return k;
4488 }
4489
4490 /* Extract the function name associated to CURRENT_BLOCK.
4491 Abort if unable to do so. */
4492
4493 if (current_block == NULL)
4494 return nsyms;
4495
4496 current_function = block_linkage_function (current_block);
4497 if (current_function == NULL)
4498 return nsyms;
4499
4500 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4501 if (current_function_name == NULL)
4502 return nsyms;
4503
4504 /* Check each of the symbols, and remove it from the list if it is
4505 a type corresponding to a renaming that is out of the scope of
4506 the current block. */
4507
4508 i = 0;
4509 while (i < nsyms)
4510 {
4511 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4512 == ADA_OBJECT_RENAMING
4513 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4514 {
4515 int j;
4516 for (j = i + 1; j < nsyms; j += 1)
4517 syms[j - 1] = syms[j];
4518 nsyms -= 1;
4519 }
4520 else
4521 i += 1;
4522 }
4523
4524 return nsyms;
4525 }
4526
4527 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4528 whose name and domain match NAME and DOMAIN respectively.
4529 If no match was found, then extend the search to "enclosing"
4530 routines (in other words, if we're inside a nested function,
4531 search the symbols defined inside the enclosing functions).
4532
4533 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4534
4535 static void
4536 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4537 struct block *block, domain_enum domain,
4538 int wild_match)
4539 {
4540 int block_depth = 0;
4541
4542 while (block != NULL)
4543 {
4544 block_depth += 1;
4545 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4546
4547 /* If we found a non-function match, assume that's the one. */
4548 if (is_nonfunction (defns_collected (obstackp, 0),
4549 num_defns_collected (obstackp)))
4550 return;
4551
4552 block = BLOCK_SUPERBLOCK (block);
4553 }
4554
4555 /* If no luck so far, try to find NAME as a local symbol in some lexically
4556 enclosing subprogram. */
4557 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4558 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4559 }
4560
4561 /* Add to OBSTACKP all non-local symbols whose name and domain match
4562 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4563 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4564
4565 static void
4566 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4567 domain_enum domain, int global,
4568 int wild_match)
4569 {
4570 struct objfile *objfile;
4571 struct partial_symtab *ps;
4572
4573 ALL_PSYMTABS (objfile, ps)
4574 {
4575 QUIT;
4576 if (ps->readin
4577 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4578 {
4579 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4580 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4581
4582 if (s == NULL || !s->primary)
4583 continue;
4584 ada_add_block_symbols (obstackp,
4585 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4586 name, domain, objfile, wild_match);
4587 }
4588 }
4589 }
4590
4591 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4592 scope and in global scopes, returning the number of matches. Sets
4593 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4594 indicating the symbols found and the blocks and symbol tables (if
4595 any) in which they were found. This vector are transient---good only to
4596 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4597 symbol match within the nest of blocks whose innermost member is BLOCK0,
4598 is the one match returned (no other matches in that or
4599 enclosing blocks is returned). If there are any matches in or
4600 surrounding BLOCK0, then these alone are returned. Otherwise, the
4601 search extends to global and file-scope (static) symbol tables.
4602 Names prefixed with "standard__" are handled specially: "standard__"
4603 is first stripped off, and only static and global symbols are searched. */
4604
4605 int
4606 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4607 domain_enum namespace,
4608 struct ada_symbol_info **results)
4609 {
4610 struct symbol *sym;
4611 struct block *block;
4612 const char *name;
4613 int wild_match;
4614 int cacheIfUnique;
4615 int ndefns;
4616
4617 obstack_free (&symbol_list_obstack, NULL);
4618 obstack_init (&symbol_list_obstack);
4619
4620 cacheIfUnique = 0;
4621
4622 /* Search specified block and its superiors. */
4623
4624 wild_match = (strstr (name0, "__") == NULL);
4625 name = name0;
4626 block = (struct block *) block0; /* FIXME: No cast ought to be
4627 needed, but adding const will
4628 have a cascade effect. */
4629
4630 /* Special case: If the user specifies a symbol name inside package
4631 Standard, do a non-wild matching of the symbol name without
4632 the "standard__" prefix. This was primarily introduced in order
4633 to allow the user to specifically access the standard exceptions
4634 using, for instance, Standard.Constraint_Error when Constraint_Error
4635 is ambiguous (due to the user defining its own Constraint_Error
4636 entity inside its program). */
4637 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4638 {
4639 wild_match = 0;
4640 block = NULL;
4641 name = name0 + sizeof ("standard__") - 1;
4642 }
4643
4644 /* Check the non-global symbols. If we have ANY match, then we're done. */
4645
4646 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4647 wild_match);
4648 if (num_defns_collected (&symbol_list_obstack) > 0)
4649 goto done;
4650
4651 /* No non-global symbols found. Check our cache to see if we have
4652 already performed this search before. If we have, then return
4653 the same result. */
4654
4655 cacheIfUnique = 1;
4656 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4657 {
4658 if (sym != NULL)
4659 add_defn_to_vec (&symbol_list_obstack, sym, block);
4660 goto done;
4661 }
4662
4663 /* Search symbols from all global blocks. */
4664
4665 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4666 wild_match);
4667
4668 /* Now add symbols from all per-file blocks if we've gotten no hits
4669 (not strictly correct, but perhaps better than an error). */
4670
4671 if (num_defns_collected (&symbol_list_obstack) == 0)
4672 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4673 wild_match);
4674
4675 done:
4676 ndefns = num_defns_collected (&symbol_list_obstack);
4677 *results = defns_collected (&symbol_list_obstack, 1);
4678
4679 ndefns = remove_extra_symbols (*results, ndefns);
4680
4681 if (ndefns == 0)
4682 cache_symbol (name0, namespace, NULL, NULL);
4683
4684 if (ndefns == 1 && cacheIfUnique)
4685 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4686
4687 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4688
4689 return ndefns;
4690 }
4691
4692 struct symbol *
4693 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4694 domain_enum namespace, struct block **block_found)
4695 {
4696 struct ada_symbol_info *candidates;
4697 int n_candidates;
4698
4699 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4700
4701 if (n_candidates == 0)
4702 return NULL;
4703
4704 if (block_found != NULL)
4705 *block_found = candidates[0].block;
4706
4707 return fixup_symbol_section (candidates[0].sym, NULL);
4708 }
4709
4710 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4711 scope and in global scopes, or NULL if none. NAME is folded and
4712 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4713 choosing the first symbol if there are multiple choices.
4714 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4715 table in which the symbol was found (in both cases, these
4716 assignments occur only if the pointers are non-null). */
4717 struct symbol *
4718 ada_lookup_symbol (const char *name, const struct block *block0,
4719 domain_enum namespace, int *is_a_field_of_this)
4720 {
4721 if (is_a_field_of_this != NULL)
4722 *is_a_field_of_this = 0;
4723
4724 return
4725 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4726 block0, namespace, NULL);
4727 }
4728
4729 static struct symbol *
4730 ada_lookup_symbol_nonlocal (const char *name,
4731 const char *linkage_name,
4732 const struct block *block,
4733 const domain_enum domain)
4734 {
4735 if (linkage_name == NULL)
4736 linkage_name = name;
4737 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4738 NULL);
4739 }
4740
4741
4742 /* True iff STR is a possible encoded suffix of a normal Ada name
4743 that is to be ignored for matching purposes. Suffixes of parallel
4744 names (e.g., XVE) are not included here. Currently, the possible suffixes
4745 are given by any of the regular expressions:
4746
4747 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4748 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4749 _E[0-9]+[bs]$ [protected object entry suffixes]
4750 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4751
4752 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4753 match is performed. This sequence is used to differentiate homonyms,
4754 is an optional part of a valid name suffix. */
4755
4756 static int
4757 is_name_suffix (const char *str)
4758 {
4759 int k;
4760 const char *matching;
4761 const int len = strlen (str);
4762
4763 /* Skip optional leading __[0-9]+. */
4764
4765 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4766 {
4767 str += 3;
4768 while (isdigit (str[0]))
4769 str += 1;
4770 }
4771
4772 /* [.$][0-9]+ */
4773
4774 if (str[0] == '.' || str[0] == '$')
4775 {
4776 matching = str + 1;
4777 while (isdigit (matching[0]))
4778 matching += 1;
4779 if (matching[0] == '\0')
4780 return 1;
4781 }
4782
4783 /* ___[0-9]+ */
4784
4785 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4786 {
4787 matching = str + 3;
4788 while (isdigit (matching[0]))
4789 matching += 1;
4790 if (matching[0] == '\0')
4791 return 1;
4792 }
4793
4794 #if 0
4795 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4796 with a N at the end. Unfortunately, the compiler uses the same
4797 convention for other internal types it creates. So treating
4798 all entity names that end with an "N" as a name suffix causes
4799 some regressions. For instance, consider the case of an enumerated
4800 type. To support the 'Image attribute, it creates an array whose
4801 name ends with N.
4802 Having a single character like this as a suffix carrying some
4803 information is a bit risky. Perhaps we should change the encoding
4804 to be something like "_N" instead. In the meantime, do not do
4805 the following check. */
4806 /* Protected Object Subprograms */
4807 if (len == 1 && str [0] == 'N')
4808 return 1;
4809 #endif
4810
4811 /* _E[0-9]+[bs]$ */
4812 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4813 {
4814 matching = str + 3;
4815 while (isdigit (matching[0]))
4816 matching += 1;
4817 if ((matching[0] == 'b' || matching[0] == 's')
4818 && matching [1] == '\0')
4819 return 1;
4820 }
4821
4822 /* ??? We should not modify STR directly, as we are doing below. This
4823 is fine in this case, but may become problematic later if we find
4824 that this alternative did not work, and want to try matching
4825 another one from the begining of STR. Since we modified it, we
4826 won't be able to find the begining of the string anymore! */
4827 if (str[0] == 'X')
4828 {
4829 str += 1;
4830 while (str[0] != '_' && str[0] != '\0')
4831 {
4832 if (str[0] != 'n' && str[0] != 'b')
4833 return 0;
4834 str += 1;
4835 }
4836 }
4837
4838 if (str[0] == '\000')
4839 return 1;
4840
4841 if (str[0] == '_')
4842 {
4843 if (str[1] != '_' || str[2] == '\000')
4844 return 0;
4845 if (str[2] == '_')
4846 {
4847 if (strcmp (str + 3, "JM") == 0)
4848 return 1;
4849 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4850 the LJM suffix in favor of the JM one. But we will
4851 still accept LJM as a valid suffix for a reasonable
4852 amount of time, just to allow ourselves to debug programs
4853 compiled using an older version of GNAT. */
4854 if (strcmp (str + 3, "LJM") == 0)
4855 return 1;
4856 if (str[3] != 'X')
4857 return 0;
4858 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4859 || str[4] == 'U' || str[4] == 'P')
4860 return 1;
4861 if (str[4] == 'R' && str[5] != 'T')
4862 return 1;
4863 return 0;
4864 }
4865 if (!isdigit (str[2]))
4866 return 0;
4867 for (k = 3; str[k] != '\0'; k += 1)
4868 if (!isdigit (str[k]) && str[k] != '_')
4869 return 0;
4870 return 1;
4871 }
4872 if (str[0] == '$' && isdigit (str[1]))
4873 {
4874 for (k = 2; str[k] != '\0'; k += 1)
4875 if (!isdigit (str[k]) && str[k] != '_')
4876 return 0;
4877 return 1;
4878 }
4879 return 0;
4880 }
4881
4882 /* Return non-zero if the string starting at NAME and ending before
4883 NAME_END contains no capital letters. */
4884
4885 static int
4886 is_valid_name_for_wild_match (const char *name0)
4887 {
4888 const char *decoded_name = ada_decode (name0);
4889 int i;
4890
4891 /* If the decoded name starts with an angle bracket, it means that
4892 NAME0 does not follow the GNAT encoding format. It should then
4893 not be allowed as a possible wild match. */
4894 if (decoded_name[0] == '<')
4895 return 0;
4896
4897 for (i=0; decoded_name[i] != '\0'; i++)
4898 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4899 return 0;
4900
4901 return 1;
4902 }
4903
4904 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4905 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4906 informational suffixes of NAME (i.e., for which is_name_suffix is
4907 true). */
4908
4909 static int
4910 wild_match (const char *patn0, int patn_len, const char *name0)
4911 {
4912 char* match;
4913 const char* start;
4914 start = name0;
4915 while (1)
4916 {
4917 match = strstr (start, patn0);
4918 if (match == NULL)
4919 return 0;
4920 if ((match == name0
4921 || match[-1] == '.'
4922 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4923 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4924 && is_name_suffix (match + patn_len))
4925 return (match == name0 || is_valid_name_for_wild_match (name0));
4926 start = match + 1;
4927 }
4928 }
4929
4930 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4931 vector *defn_symbols, updating the list of symbols in OBSTACKP
4932 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4933 OBJFILE is the section containing BLOCK.
4934 SYMTAB is recorded with each symbol added. */
4935
4936 static void
4937 ada_add_block_symbols (struct obstack *obstackp,
4938 struct block *block, const char *name,
4939 domain_enum domain, struct objfile *objfile,
4940 int wild)
4941 {
4942 struct dict_iterator iter;
4943 int name_len = strlen (name);
4944 /* A matching argument symbol, if any. */
4945 struct symbol *arg_sym;
4946 /* Set true when we find a matching non-argument symbol. */
4947 int found_sym;
4948 struct symbol *sym;
4949
4950 arg_sym = NULL;
4951 found_sym = 0;
4952 if (wild)
4953 {
4954 struct symbol *sym;
4955 ALL_BLOCK_SYMBOLS (block, iter, sym)
4956 {
4957 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4958 SYMBOL_DOMAIN (sym), domain)
4959 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4960 {
4961 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4962 continue;
4963 else if (SYMBOL_IS_ARGUMENT (sym))
4964 arg_sym = sym;
4965 else
4966 {
4967 found_sym = 1;
4968 add_defn_to_vec (obstackp,
4969 fixup_symbol_section (sym, objfile),
4970 block);
4971 }
4972 }
4973 }
4974 }
4975 else
4976 {
4977 ALL_BLOCK_SYMBOLS (block, iter, sym)
4978 {
4979 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4980 SYMBOL_DOMAIN (sym), domain))
4981 {
4982 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4983 if (cmp == 0
4984 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4985 {
4986 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4987 {
4988 if (SYMBOL_IS_ARGUMENT (sym))
4989 arg_sym = sym;
4990 else
4991 {
4992 found_sym = 1;
4993 add_defn_to_vec (obstackp,
4994 fixup_symbol_section (sym, objfile),
4995 block);
4996 }
4997 }
4998 }
4999 }
5000 }
5001 }
5002
5003 if (!found_sym && arg_sym != NULL)
5004 {
5005 add_defn_to_vec (obstackp,
5006 fixup_symbol_section (arg_sym, objfile),
5007 block);
5008 }
5009
5010 if (!wild)
5011 {
5012 arg_sym = NULL;
5013 found_sym = 0;
5014
5015 ALL_BLOCK_SYMBOLS (block, iter, sym)
5016 {
5017 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5018 SYMBOL_DOMAIN (sym), domain))
5019 {
5020 int cmp;
5021
5022 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5023 if (cmp == 0)
5024 {
5025 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5026 if (cmp == 0)
5027 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5028 name_len);
5029 }
5030
5031 if (cmp == 0
5032 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5033 {
5034 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5035 {
5036 if (SYMBOL_IS_ARGUMENT (sym))
5037 arg_sym = sym;
5038 else
5039 {
5040 found_sym = 1;
5041 add_defn_to_vec (obstackp,
5042 fixup_symbol_section (sym, objfile),
5043 block);
5044 }
5045 }
5046 }
5047 }
5048 }
5049
5050 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5051 They aren't parameters, right? */
5052 if (!found_sym && arg_sym != NULL)
5053 {
5054 add_defn_to_vec (obstackp,
5055 fixup_symbol_section (arg_sym, objfile),
5056 block);
5057 }
5058 }
5059 }
5060 \f
5061
5062 /* Symbol Completion */
5063
5064 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5065 name in a form that's appropriate for the completion. The result
5066 does not need to be deallocated, but is only good until the next call.
5067
5068 TEXT_LEN is equal to the length of TEXT.
5069 Perform a wild match if WILD_MATCH is set.
5070 ENCODED should be set if TEXT represents the start of a symbol name
5071 in its encoded form. */
5072
5073 static const char *
5074 symbol_completion_match (const char *sym_name,
5075 const char *text, int text_len,
5076 int wild_match, int encoded)
5077 {
5078 char *result;
5079 const int verbatim_match = (text[0] == '<');
5080 int match = 0;
5081
5082 if (verbatim_match)
5083 {
5084 /* Strip the leading angle bracket. */
5085 text = text + 1;
5086 text_len--;
5087 }
5088
5089 /* First, test against the fully qualified name of the symbol. */
5090
5091 if (strncmp (sym_name, text, text_len) == 0)
5092 match = 1;
5093
5094 if (match && !encoded)
5095 {
5096 /* One needed check before declaring a positive match is to verify
5097 that iff we are doing a verbatim match, the decoded version
5098 of the symbol name starts with '<'. Otherwise, this symbol name
5099 is not a suitable completion. */
5100 const char *sym_name_copy = sym_name;
5101 int has_angle_bracket;
5102
5103 sym_name = ada_decode (sym_name);
5104 has_angle_bracket = (sym_name[0] == '<');
5105 match = (has_angle_bracket == verbatim_match);
5106 sym_name = sym_name_copy;
5107 }
5108
5109 if (match && !verbatim_match)
5110 {
5111 /* When doing non-verbatim match, another check that needs to
5112 be done is to verify that the potentially matching symbol name
5113 does not include capital letters, because the ada-mode would
5114 not be able to understand these symbol names without the
5115 angle bracket notation. */
5116 const char *tmp;
5117
5118 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5119 if (*tmp != '\0')
5120 match = 0;
5121 }
5122
5123 /* Second: Try wild matching... */
5124
5125 if (!match && wild_match)
5126 {
5127 /* Since we are doing wild matching, this means that TEXT
5128 may represent an unqualified symbol name. We therefore must
5129 also compare TEXT against the unqualified name of the symbol. */
5130 sym_name = ada_unqualified_name (ada_decode (sym_name));
5131
5132 if (strncmp (sym_name, text, text_len) == 0)
5133 match = 1;
5134 }
5135
5136 /* Finally: If we found a mach, prepare the result to return. */
5137
5138 if (!match)
5139 return NULL;
5140
5141 if (verbatim_match)
5142 sym_name = add_angle_brackets (sym_name);
5143
5144 if (!encoded)
5145 sym_name = ada_decode (sym_name);
5146
5147 return sym_name;
5148 }
5149
5150 typedef char *char_ptr;
5151 DEF_VEC_P (char_ptr);
5152
5153 /* A companion function to ada_make_symbol_completion_list().
5154 Check if SYM_NAME represents a symbol which name would be suitable
5155 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5156 it is appended at the end of the given string vector SV.
5157
5158 ORIG_TEXT is the string original string from the user command
5159 that needs to be completed. WORD is the entire command on which
5160 completion should be performed. These two parameters are used to
5161 determine which part of the symbol name should be added to the
5162 completion vector.
5163 if WILD_MATCH is set, then wild matching is performed.
5164 ENCODED should be set if TEXT represents a symbol name in its
5165 encoded formed (in which case the completion should also be
5166 encoded). */
5167
5168 static void
5169 symbol_completion_add (VEC(char_ptr) **sv,
5170 const char *sym_name,
5171 const char *text, int text_len,
5172 const char *orig_text, const char *word,
5173 int wild_match, int encoded)
5174 {
5175 const char *match = symbol_completion_match (sym_name, text, text_len,
5176 wild_match, encoded);
5177 char *completion;
5178
5179 if (match == NULL)
5180 return;
5181
5182 /* We found a match, so add the appropriate completion to the given
5183 string vector. */
5184
5185 if (word == orig_text)
5186 {
5187 completion = xmalloc (strlen (match) + 5);
5188 strcpy (completion, match);
5189 }
5190 else if (word > orig_text)
5191 {
5192 /* Return some portion of sym_name. */
5193 completion = xmalloc (strlen (match) + 5);
5194 strcpy (completion, match + (word - orig_text));
5195 }
5196 else
5197 {
5198 /* Return some of ORIG_TEXT plus sym_name. */
5199 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5200 strncpy (completion, word, orig_text - word);
5201 completion[orig_text - word] = '\0';
5202 strcat (completion, match);
5203 }
5204
5205 VEC_safe_push (char_ptr, *sv, completion);
5206 }
5207
5208 /* Return a list of possible symbol names completing TEXT0. The list
5209 is NULL terminated. WORD is the entire command on which completion
5210 is made. */
5211
5212 static char **
5213 ada_make_symbol_completion_list (char *text0, char *word)
5214 {
5215 char *text;
5216 int text_len;
5217 int wild_match;
5218 int encoded;
5219 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5220 struct symbol *sym;
5221 struct symtab *s;
5222 struct partial_symtab *ps;
5223 struct minimal_symbol *msymbol;
5224 struct objfile *objfile;
5225 struct block *b, *surrounding_static_block = 0;
5226 int i;
5227 struct dict_iterator iter;
5228
5229 if (text0[0] == '<')
5230 {
5231 text = xstrdup (text0);
5232 make_cleanup (xfree, text);
5233 text_len = strlen (text);
5234 wild_match = 0;
5235 encoded = 1;
5236 }
5237 else
5238 {
5239 text = xstrdup (ada_encode (text0));
5240 make_cleanup (xfree, text);
5241 text_len = strlen (text);
5242 for (i = 0; i < text_len; i++)
5243 text[i] = tolower (text[i]);
5244
5245 encoded = (strstr (text0, "__") != NULL);
5246 /* If the name contains a ".", then the user is entering a fully
5247 qualified entity name, and the match must not be done in wild
5248 mode. Similarly, if the user wants to complete what looks like
5249 an encoded name, the match must not be done in wild mode. */
5250 wild_match = (strchr (text0, '.') == NULL && !encoded);
5251 }
5252
5253 /* First, look at the partial symtab symbols. */
5254 ALL_PSYMTABS (objfile, ps)
5255 {
5256 struct partial_symbol **psym;
5257
5258 /* If the psymtab's been read in we'll get it when we search
5259 through the blockvector. */
5260 if (ps->readin)
5261 continue;
5262
5263 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5264 psym < (objfile->global_psymbols.list + ps->globals_offset
5265 + ps->n_global_syms); psym++)
5266 {
5267 QUIT;
5268 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5269 text, text_len, text0, word,
5270 wild_match, encoded);
5271 }
5272
5273 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5274 psym < (objfile->static_psymbols.list + ps->statics_offset
5275 + ps->n_static_syms); psym++)
5276 {
5277 QUIT;
5278 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5279 text, text_len, text0, word,
5280 wild_match, encoded);
5281 }
5282 }
5283
5284 /* At this point scan through the misc symbol vectors and add each
5285 symbol you find to the list. Eventually we want to ignore
5286 anything that isn't a text symbol (everything else will be
5287 handled by the psymtab code above). */
5288
5289 ALL_MSYMBOLS (objfile, msymbol)
5290 {
5291 QUIT;
5292 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5293 text, text_len, text0, word, wild_match, encoded);
5294 }
5295
5296 /* Search upwards from currently selected frame (so that we can
5297 complete on local vars. */
5298
5299 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5300 {
5301 if (!BLOCK_SUPERBLOCK (b))
5302 surrounding_static_block = b; /* For elmin of dups */
5303
5304 ALL_BLOCK_SYMBOLS (b, iter, sym)
5305 {
5306 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5307 text, text_len, text0, word,
5308 wild_match, encoded);
5309 }
5310 }
5311
5312 /* Go through the symtabs and check the externs and statics for
5313 symbols which match. */
5314
5315 ALL_SYMTABS (objfile, s)
5316 {
5317 QUIT;
5318 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5319 ALL_BLOCK_SYMBOLS (b, iter, sym)
5320 {
5321 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5322 text, text_len, text0, word,
5323 wild_match, encoded);
5324 }
5325 }
5326
5327 ALL_SYMTABS (objfile, s)
5328 {
5329 QUIT;
5330 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5331 /* Don't do this block twice. */
5332 if (b == surrounding_static_block)
5333 continue;
5334 ALL_BLOCK_SYMBOLS (b, iter, sym)
5335 {
5336 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5337 text, text_len, text0, word,
5338 wild_match, encoded);
5339 }
5340 }
5341
5342 /* Append the closing NULL entry. */
5343 VEC_safe_push (char_ptr, completions, NULL);
5344
5345 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5346 return the copy. It's unfortunate that we have to make a copy
5347 of an array that we're about to destroy, but there is nothing much
5348 we can do about it. Fortunately, it's typically not a very large
5349 array. */
5350 {
5351 const size_t completions_size =
5352 VEC_length (char_ptr, completions) * sizeof (char *);
5353 char **result = malloc (completions_size);
5354
5355 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5356
5357 VEC_free (char_ptr, completions);
5358 return result;
5359 }
5360 }
5361
5362 /* Field Access */
5363
5364 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5365 for tagged types. */
5366
5367 static int
5368 ada_is_dispatch_table_ptr_type (struct type *type)
5369 {
5370 char *name;
5371
5372 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5373 return 0;
5374
5375 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5376 if (name == NULL)
5377 return 0;
5378
5379 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5380 }
5381
5382 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5383 to be invisible to users. */
5384
5385 int
5386 ada_is_ignored_field (struct type *type, int field_num)
5387 {
5388 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5389 return 1;
5390
5391 /* Check the name of that field. */
5392 {
5393 const char *name = TYPE_FIELD_NAME (type, field_num);
5394
5395 /* Anonymous field names should not be printed.
5396 brobecker/2007-02-20: I don't think this can actually happen
5397 but we don't want to print the value of annonymous fields anyway. */
5398 if (name == NULL)
5399 return 1;
5400
5401 /* A field named "_parent" is internally generated by GNAT for
5402 tagged types, and should not be printed either. */
5403 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5404 return 1;
5405 }
5406
5407 /* If this is the dispatch table of a tagged type, then ignore. */
5408 if (ada_is_tagged_type (type, 1)
5409 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5410 return 1;
5411
5412 /* Not a special field, so it should not be ignored. */
5413 return 0;
5414 }
5415
5416 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5417 pointer or reference type whose ultimate target has a tag field. */
5418
5419 int
5420 ada_is_tagged_type (struct type *type, int refok)
5421 {
5422 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5423 }
5424
5425 /* True iff TYPE represents the type of X'Tag */
5426
5427 int
5428 ada_is_tag_type (struct type *type)
5429 {
5430 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5431 return 0;
5432 else
5433 {
5434 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5435 return (name != NULL
5436 && strcmp (name, "ada__tags__dispatch_table") == 0);
5437 }
5438 }
5439
5440 /* The type of the tag on VAL. */
5441
5442 struct type *
5443 ada_tag_type (struct value *val)
5444 {
5445 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5446 }
5447
5448 /* The value of the tag on VAL. */
5449
5450 struct value *
5451 ada_value_tag (struct value *val)
5452 {
5453 return ada_value_struct_elt (val, "_tag", 0);
5454 }
5455
5456 /* The value of the tag on the object of type TYPE whose contents are
5457 saved at VALADDR, if it is non-null, or is at memory address
5458 ADDRESS. */
5459
5460 static struct value *
5461 value_tag_from_contents_and_address (struct type *type,
5462 const gdb_byte *valaddr,
5463 CORE_ADDR address)
5464 {
5465 int tag_byte_offset, dummy1, dummy2;
5466 struct type *tag_type;
5467 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5468 NULL, NULL, NULL))
5469 {
5470 const gdb_byte *valaddr1 = ((valaddr == NULL)
5471 ? NULL
5472 : valaddr + tag_byte_offset);
5473 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5474
5475 return value_from_contents_and_address (tag_type, valaddr1, address1);
5476 }
5477 return NULL;
5478 }
5479
5480 static struct type *
5481 type_from_tag (struct value *tag)
5482 {
5483 const char *type_name = ada_tag_name (tag);
5484 if (type_name != NULL)
5485 return ada_find_any_type (ada_encode (type_name));
5486 return NULL;
5487 }
5488
5489 struct tag_args
5490 {
5491 struct value *tag;
5492 char *name;
5493 };
5494
5495
5496 static int ada_tag_name_1 (void *);
5497 static int ada_tag_name_2 (struct tag_args *);
5498
5499 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5500 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5501 The value stored in ARGS->name is valid until the next call to
5502 ada_tag_name_1. */
5503
5504 static int
5505 ada_tag_name_1 (void *args0)
5506 {
5507 struct tag_args *args = (struct tag_args *) args0;
5508 static char name[1024];
5509 char *p;
5510 struct value *val;
5511 args->name = NULL;
5512 val = ada_value_struct_elt (args->tag, "tsd", 1);
5513 if (val == NULL)
5514 return ada_tag_name_2 (args);
5515 val = ada_value_struct_elt (val, "expanded_name", 1);
5516 if (val == NULL)
5517 return 0;
5518 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5519 for (p = name; *p != '\0'; p += 1)
5520 if (isalpha (*p))
5521 *p = tolower (*p);
5522 args->name = name;
5523 return 0;
5524 }
5525
5526 /* Utility function for ada_tag_name_1 that tries the second
5527 representation for the dispatch table (in which there is no
5528 explicit 'tsd' field in the referent of the tag pointer, and instead
5529 the tsd pointer is stored just before the dispatch table. */
5530
5531 static int
5532 ada_tag_name_2 (struct tag_args *args)
5533 {
5534 struct type *info_type;
5535 static char name[1024];
5536 char *p;
5537 struct value *val, *valp;
5538
5539 args->name = NULL;
5540 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5541 if (info_type == NULL)
5542 return 0;
5543 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5544 valp = value_cast (info_type, args->tag);
5545 if (valp == NULL)
5546 return 0;
5547 val = value_ind (value_ptradd (valp, -1));
5548 if (val == NULL)
5549 return 0;
5550 val = ada_value_struct_elt (val, "expanded_name", 1);
5551 if (val == NULL)
5552 return 0;
5553 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5554 for (p = name; *p != '\0'; p += 1)
5555 if (isalpha (*p))
5556 *p = tolower (*p);
5557 args->name = name;
5558 return 0;
5559 }
5560
5561 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5562 * a C string. */
5563
5564 const char *
5565 ada_tag_name (struct value *tag)
5566 {
5567 struct tag_args args;
5568 if (!ada_is_tag_type (value_type (tag)))
5569 return NULL;
5570 args.tag = tag;
5571 args.name = NULL;
5572 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5573 return args.name;
5574 }
5575
5576 /* The parent type of TYPE, or NULL if none. */
5577
5578 struct type *
5579 ada_parent_type (struct type *type)
5580 {
5581 int i;
5582
5583 type = ada_check_typedef (type);
5584
5585 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5586 return NULL;
5587
5588 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5589 if (ada_is_parent_field (type, i))
5590 {
5591 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5592
5593 /* If the _parent field is a pointer, then dereference it. */
5594 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5595 parent_type = TYPE_TARGET_TYPE (parent_type);
5596 /* If there is a parallel XVS type, get the actual base type. */
5597 parent_type = ada_get_base_type (parent_type);
5598
5599 return ada_check_typedef (parent_type);
5600 }
5601
5602 return NULL;
5603 }
5604
5605 /* True iff field number FIELD_NUM of structure type TYPE contains the
5606 parent-type (inherited) fields of a derived type. Assumes TYPE is
5607 a structure type with at least FIELD_NUM+1 fields. */
5608
5609 int
5610 ada_is_parent_field (struct type *type, int field_num)
5611 {
5612 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5613 return (name != NULL
5614 && (strncmp (name, "PARENT", 6) == 0
5615 || strncmp (name, "_parent", 7) == 0));
5616 }
5617
5618 /* True iff field number FIELD_NUM of structure type TYPE is a
5619 transparent wrapper field (which should be silently traversed when doing
5620 field selection and flattened when printing). Assumes TYPE is a
5621 structure type with at least FIELD_NUM+1 fields. Such fields are always
5622 structures. */
5623
5624 int
5625 ada_is_wrapper_field (struct type *type, int field_num)
5626 {
5627 const char *name = TYPE_FIELD_NAME (type, field_num);
5628 return (name != NULL
5629 && (strncmp (name, "PARENT", 6) == 0
5630 || strcmp (name, "REP") == 0
5631 || strncmp (name, "_parent", 7) == 0
5632 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5633 }
5634
5635 /* True iff field number FIELD_NUM of structure or union type TYPE
5636 is a variant wrapper. Assumes TYPE is a structure type with at least
5637 FIELD_NUM+1 fields. */
5638
5639 int
5640 ada_is_variant_part (struct type *type, int field_num)
5641 {
5642 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5643 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5644 || (is_dynamic_field (type, field_num)
5645 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5646 == TYPE_CODE_UNION)));
5647 }
5648
5649 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5650 whose discriminants are contained in the record type OUTER_TYPE,
5651 returns the type of the controlling discriminant for the variant.
5652 May return NULL if the type could not be found. */
5653
5654 struct type *
5655 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5656 {
5657 char *name = ada_variant_discrim_name (var_type);
5658 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5659 }
5660
5661 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5662 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5663 represents a 'when others' clause; otherwise 0. */
5664
5665 int
5666 ada_is_others_clause (struct type *type, int field_num)
5667 {
5668 const char *name = TYPE_FIELD_NAME (type, field_num);
5669 return (name != NULL && name[0] == 'O');
5670 }
5671
5672 /* Assuming that TYPE0 is the type of the variant part of a record,
5673 returns the name of the discriminant controlling the variant.
5674 The value is valid until the next call to ada_variant_discrim_name. */
5675
5676 char *
5677 ada_variant_discrim_name (struct type *type0)
5678 {
5679 static char *result = NULL;
5680 static size_t result_len = 0;
5681 struct type *type;
5682 const char *name;
5683 const char *discrim_end;
5684 const char *discrim_start;
5685
5686 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5687 type = TYPE_TARGET_TYPE (type0);
5688 else
5689 type = type0;
5690
5691 name = ada_type_name (type);
5692
5693 if (name == NULL || name[0] == '\000')
5694 return "";
5695
5696 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5697 discrim_end -= 1)
5698 {
5699 if (strncmp (discrim_end, "___XVN", 6) == 0)
5700 break;
5701 }
5702 if (discrim_end == name)
5703 return "";
5704
5705 for (discrim_start = discrim_end; discrim_start != name + 3;
5706 discrim_start -= 1)
5707 {
5708 if (discrim_start == name + 1)
5709 return "";
5710 if ((discrim_start > name + 3
5711 && strncmp (discrim_start - 3, "___", 3) == 0)
5712 || discrim_start[-1] == '.')
5713 break;
5714 }
5715
5716 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5717 strncpy (result, discrim_start, discrim_end - discrim_start);
5718 result[discrim_end - discrim_start] = '\0';
5719 return result;
5720 }
5721
5722 /* Scan STR for a subtype-encoded number, beginning at position K.
5723 Put the position of the character just past the number scanned in
5724 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5725 Return 1 if there was a valid number at the given position, and 0
5726 otherwise. A "subtype-encoded" number consists of the absolute value
5727 in decimal, followed by the letter 'm' to indicate a negative number.
5728 Assumes 0m does not occur. */
5729
5730 int
5731 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5732 {
5733 ULONGEST RU;
5734
5735 if (!isdigit (str[k]))
5736 return 0;
5737
5738 /* Do it the hard way so as not to make any assumption about
5739 the relationship of unsigned long (%lu scan format code) and
5740 LONGEST. */
5741 RU = 0;
5742 while (isdigit (str[k]))
5743 {
5744 RU = RU * 10 + (str[k] - '0');
5745 k += 1;
5746 }
5747
5748 if (str[k] == 'm')
5749 {
5750 if (R != NULL)
5751 *R = (-(LONGEST) (RU - 1)) - 1;
5752 k += 1;
5753 }
5754 else if (R != NULL)
5755 *R = (LONGEST) RU;
5756
5757 /* NOTE on the above: Technically, C does not say what the results of
5758 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5759 number representable as a LONGEST (although either would probably work
5760 in most implementations). When RU>0, the locution in the then branch
5761 above is always equivalent to the negative of RU. */
5762
5763 if (new_k != NULL)
5764 *new_k = k;
5765 return 1;
5766 }
5767
5768 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5769 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5770 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5771
5772 int
5773 ada_in_variant (LONGEST val, struct type *type, int field_num)
5774 {
5775 const char *name = TYPE_FIELD_NAME (type, field_num);
5776 int p;
5777
5778 p = 0;
5779 while (1)
5780 {
5781 switch (name[p])
5782 {
5783 case '\0':
5784 return 0;
5785 case 'S':
5786 {
5787 LONGEST W;
5788 if (!ada_scan_number (name, p + 1, &W, &p))
5789 return 0;
5790 if (val == W)
5791 return 1;
5792 break;
5793 }
5794 case 'R':
5795 {
5796 LONGEST L, U;
5797 if (!ada_scan_number (name, p + 1, &L, &p)
5798 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5799 return 0;
5800 if (val >= L && val <= U)
5801 return 1;
5802 break;
5803 }
5804 case 'O':
5805 return 1;
5806 default:
5807 return 0;
5808 }
5809 }
5810 }
5811
5812 /* FIXME: Lots of redundancy below. Try to consolidate. */
5813
5814 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5815 ARG_TYPE, extract and return the value of one of its (non-static)
5816 fields. FIELDNO says which field. Differs from value_primitive_field
5817 only in that it can handle packed values of arbitrary type. */
5818
5819 static struct value *
5820 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5821 struct type *arg_type)
5822 {
5823 struct type *type;
5824
5825 arg_type = ada_check_typedef (arg_type);
5826 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5827
5828 /* Handle packed fields. */
5829
5830 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5831 {
5832 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5833 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5834
5835 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5836 offset + bit_pos / 8,
5837 bit_pos % 8, bit_size, type);
5838 }
5839 else
5840 return value_primitive_field (arg1, offset, fieldno, arg_type);
5841 }
5842
5843 /* Find field with name NAME in object of type TYPE. If found,
5844 set the following for each argument that is non-null:
5845 - *FIELD_TYPE_P to the field's type;
5846 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5847 an object of that type;
5848 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5849 - *BIT_SIZE_P to its size in bits if the field is packed, and
5850 0 otherwise;
5851 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5852 fields up to but not including the desired field, or by the total
5853 number of fields if not found. A NULL value of NAME never
5854 matches; the function just counts visible fields in this case.
5855
5856 Returns 1 if found, 0 otherwise. */
5857
5858 static int
5859 find_struct_field (char *name, struct type *type, int offset,
5860 struct type **field_type_p,
5861 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5862 int *index_p)
5863 {
5864 int i;
5865
5866 type = ada_check_typedef (type);
5867
5868 if (field_type_p != NULL)
5869 *field_type_p = NULL;
5870 if (byte_offset_p != NULL)
5871 *byte_offset_p = 0;
5872 if (bit_offset_p != NULL)
5873 *bit_offset_p = 0;
5874 if (bit_size_p != NULL)
5875 *bit_size_p = 0;
5876
5877 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5878 {
5879 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5880 int fld_offset = offset + bit_pos / 8;
5881 char *t_field_name = TYPE_FIELD_NAME (type, i);
5882
5883 if (t_field_name == NULL)
5884 continue;
5885
5886 else if (name != NULL && field_name_match (t_field_name, name))
5887 {
5888 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5889 if (field_type_p != NULL)
5890 *field_type_p = TYPE_FIELD_TYPE (type, i);
5891 if (byte_offset_p != NULL)
5892 *byte_offset_p = fld_offset;
5893 if (bit_offset_p != NULL)
5894 *bit_offset_p = bit_pos % 8;
5895 if (bit_size_p != NULL)
5896 *bit_size_p = bit_size;
5897 return 1;
5898 }
5899 else if (ada_is_wrapper_field (type, i))
5900 {
5901 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5902 field_type_p, byte_offset_p, bit_offset_p,
5903 bit_size_p, index_p))
5904 return 1;
5905 }
5906 else if (ada_is_variant_part (type, i))
5907 {
5908 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5909 fixed type?? */
5910 int j;
5911 struct type *field_type
5912 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5913
5914 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5915 {
5916 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5917 fld_offset
5918 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5919 field_type_p, byte_offset_p,
5920 bit_offset_p, bit_size_p, index_p))
5921 return 1;
5922 }
5923 }
5924 else if (index_p != NULL)
5925 *index_p += 1;
5926 }
5927 return 0;
5928 }
5929
5930 /* Number of user-visible fields in record type TYPE. */
5931
5932 static int
5933 num_visible_fields (struct type *type)
5934 {
5935 int n;
5936 n = 0;
5937 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5938 return n;
5939 }
5940
5941 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5942 and search in it assuming it has (class) type TYPE.
5943 If found, return value, else return NULL.
5944
5945 Searches recursively through wrapper fields (e.g., '_parent'). */
5946
5947 static struct value *
5948 ada_search_struct_field (char *name, struct value *arg, int offset,
5949 struct type *type)
5950 {
5951 int i;
5952 type = ada_check_typedef (type);
5953
5954 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5955 {
5956 char *t_field_name = TYPE_FIELD_NAME (type, i);
5957
5958 if (t_field_name == NULL)
5959 continue;
5960
5961 else if (field_name_match (t_field_name, name))
5962 return ada_value_primitive_field (arg, offset, i, type);
5963
5964 else if (ada_is_wrapper_field (type, i))
5965 {
5966 struct value *v = /* Do not let indent join lines here. */
5967 ada_search_struct_field (name, arg,
5968 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5969 TYPE_FIELD_TYPE (type, i));
5970 if (v != NULL)
5971 return v;
5972 }
5973
5974 else if (ada_is_variant_part (type, i))
5975 {
5976 /* PNH: Do we ever get here? See find_struct_field. */
5977 int j;
5978 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5979 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5980
5981 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5982 {
5983 struct value *v = ada_search_struct_field /* Force line break. */
5984 (name, arg,
5985 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5986 TYPE_FIELD_TYPE (field_type, j));
5987 if (v != NULL)
5988 return v;
5989 }
5990 }
5991 }
5992 return NULL;
5993 }
5994
5995 static struct value *ada_index_struct_field_1 (int *, struct value *,
5996 int, struct type *);
5997
5998
5999 /* Return field #INDEX in ARG, where the index is that returned by
6000 * find_struct_field through its INDEX_P argument. Adjust the address
6001 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6002 * If found, return value, else return NULL. */
6003
6004 static struct value *
6005 ada_index_struct_field (int index, struct value *arg, int offset,
6006 struct type *type)
6007 {
6008 return ada_index_struct_field_1 (&index, arg, offset, type);
6009 }
6010
6011
6012 /* Auxiliary function for ada_index_struct_field. Like
6013 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6014 * *INDEX_P. */
6015
6016 static struct value *
6017 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6018 struct type *type)
6019 {
6020 int i;
6021 type = ada_check_typedef (type);
6022
6023 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6024 {
6025 if (TYPE_FIELD_NAME (type, i) == NULL)
6026 continue;
6027 else if (ada_is_wrapper_field (type, i))
6028 {
6029 struct value *v = /* Do not let indent join lines here. */
6030 ada_index_struct_field_1 (index_p, arg,
6031 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6032 TYPE_FIELD_TYPE (type, i));
6033 if (v != NULL)
6034 return v;
6035 }
6036
6037 else if (ada_is_variant_part (type, i))
6038 {
6039 /* PNH: Do we ever get here? See ada_search_struct_field,
6040 find_struct_field. */
6041 error (_("Cannot assign this kind of variant record"));
6042 }
6043 else if (*index_p == 0)
6044 return ada_value_primitive_field (arg, offset, i, type);
6045 else
6046 *index_p -= 1;
6047 }
6048 return NULL;
6049 }
6050
6051 /* Given ARG, a value of type (pointer or reference to a)*
6052 structure/union, extract the component named NAME from the ultimate
6053 target structure/union and return it as a value with its
6054 appropriate type.
6055
6056 The routine searches for NAME among all members of the structure itself
6057 and (recursively) among all members of any wrapper members
6058 (e.g., '_parent').
6059
6060 If NO_ERR, then simply return NULL in case of error, rather than
6061 calling error. */
6062
6063 struct value *
6064 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6065 {
6066 struct type *t, *t1;
6067 struct value *v;
6068
6069 v = NULL;
6070 t1 = t = ada_check_typedef (value_type (arg));
6071 if (TYPE_CODE (t) == TYPE_CODE_REF)
6072 {
6073 t1 = TYPE_TARGET_TYPE (t);
6074 if (t1 == NULL)
6075 goto BadValue;
6076 t1 = ada_check_typedef (t1);
6077 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6078 {
6079 arg = coerce_ref (arg);
6080 t = t1;
6081 }
6082 }
6083
6084 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6085 {
6086 t1 = TYPE_TARGET_TYPE (t);
6087 if (t1 == NULL)
6088 goto BadValue;
6089 t1 = ada_check_typedef (t1);
6090 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6091 {
6092 arg = value_ind (arg);
6093 t = t1;
6094 }
6095 else
6096 break;
6097 }
6098
6099 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6100 goto BadValue;
6101
6102 if (t1 == t)
6103 v = ada_search_struct_field (name, arg, 0, t);
6104 else
6105 {
6106 int bit_offset, bit_size, byte_offset;
6107 struct type *field_type;
6108 CORE_ADDR address;
6109
6110 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6111 address = value_as_address (arg);
6112 else
6113 address = unpack_pointer (t, value_contents (arg));
6114
6115 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6116 if (find_struct_field (name, t1, 0,
6117 &field_type, &byte_offset, &bit_offset,
6118 &bit_size, NULL))
6119 {
6120 if (bit_size != 0)
6121 {
6122 if (TYPE_CODE (t) == TYPE_CODE_REF)
6123 arg = ada_coerce_ref (arg);
6124 else
6125 arg = ada_value_ind (arg);
6126 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6127 bit_offset, bit_size,
6128 field_type);
6129 }
6130 else
6131 v = value_at_lazy (field_type, address + byte_offset);
6132 }
6133 }
6134
6135 if (v != NULL || no_err)
6136 return v;
6137 else
6138 error (_("There is no member named %s."), name);
6139
6140 BadValue:
6141 if (no_err)
6142 return NULL;
6143 else
6144 error (_("Attempt to extract a component of a value that is not a record."));
6145 }
6146
6147 /* Given a type TYPE, look up the type of the component of type named NAME.
6148 If DISPP is non-null, add its byte displacement from the beginning of a
6149 structure (pointed to by a value) of type TYPE to *DISPP (does not
6150 work for packed fields).
6151
6152 Matches any field whose name has NAME as a prefix, possibly
6153 followed by "___".
6154
6155 TYPE can be either a struct or union. If REFOK, TYPE may also
6156 be a (pointer or reference)+ to a struct or union, and the
6157 ultimate target type will be searched.
6158
6159 Looks recursively into variant clauses and parent types.
6160
6161 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6162 TYPE is not a type of the right kind. */
6163
6164 static struct type *
6165 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6166 int noerr, int *dispp)
6167 {
6168 int i;
6169
6170 if (name == NULL)
6171 goto BadName;
6172
6173 if (refok && type != NULL)
6174 while (1)
6175 {
6176 type = ada_check_typedef (type);
6177 if (TYPE_CODE (type) != TYPE_CODE_PTR
6178 && TYPE_CODE (type) != TYPE_CODE_REF)
6179 break;
6180 type = TYPE_TARGET_TYPE (type);
6181 }
6182
6183 if (type == NULL
6184 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6185 && TYPE_CODE (type) != TYPE_CODE_UNION))
6186 {
6187 if (noerr)
6188 return NULL;
6189 else
6190 {
6191 target_terminal_ours ();
6192 gdb_flush (gdb_stdout);
6193 if (type == NULL)
6194 error (_("Type (null) is not a structure or union type"));
6195 else
6196 {
6197 /* XXX: type_sprint */
6198 fprintf_unfiltered (gdb_stderr, _("Type "));
6199 type_print (type, "", gdb_stderr, -1);
6200 error (_(" is not a structure or union type"));
6201 }
6202 }
6203 }
6204
6205 type = to_static_fixed_type (type);
6206
6207 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6208 {
6209 char *t_field_name = TYPE_FIELD_NAME (type, i);
6210 struct type *t;
6211 int disp;
6212
6213 if (t_field_name == NULL)
6214 continue;
6215
6216 else if (field_name_match (t_field_name, name))
6217 {
6218 if (dispp != NULL)
6219 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6220 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6221 }
6222
6223 else if (ada_is_wrapper_field (type, i))
6224 {
6225 disp = 0;
6226 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6227 0, 1, &disp);
6228 if (t != NULL)
6229 {
6230 if (dispp != NULL)
6231 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6232 return t;
6233 }
6234 }
6235
6236 else if (ada_is_variant_part (type, i))
6237 {
6238 int j;
6239 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6240
6241 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6242 {
6243 /* FIXME pnh 2008/01/26: We check for a field that is
6244 NOT wrapped in a struct, since the compiler sometimes
6245 generates these for unchecked variant types. Revisit
6246 if the compiler changes this practice. */
6247 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6248 disp = 0;
6249 if (v_field_name != NULL
6250 && field_name_match (v_field_name, name))
6251 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6252 else
6253 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6254 name, 0, 1, &disp);
6255
6256 if (t != NULL)
6257 {
6258 if (dispp != NULL)
6259 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6260 return t;
6261 }
6262 }
6263 }
6264
6265 }
6266
6267 BadName:
6268 if (!noerr)
6269 {
6270 target_terminal_ours ();
6271 gdb_flush (gdb_stdout);
6272 if (name == NULL)
6273 {
6274 /* XXX: type_sprint */
6275 fprintf_unfiltered (gdb_stderr, _("Type "));
6276 type_print (type, "", gdb_stderr, -1);
6277 error (_(" has no component named <null>"));
6278 }
6279 else
6280 {
6281 /* XXX: type_sprint */
6282 fprintf_unfiltered (gdb_stderr, _("Type "));
6283 type_print (type, "", gdb_stderr, -1);
6284 error (_(" has no component named %s"), name);
6285 }
6286 }
6287
6288 return NULL;
6289 }
6290
6291 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6292 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6293 represents an unchecked union (that is, the variant part of a
6294 record that is named in an Unchecked_Union pragma). */
6295
6296 static int
6297 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6298 {
6299 char *discrim_name = ada_variant_discrim_name (var_type);
6300 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6301 == NULL);
6302 }
6303
6304
6305 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6306 within a value of type OUTER_TYPE that is stored in GDB at
6307 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6308 numbering from 0) is applicable. Returns -1 if none are. */
6309
6310 int
6311 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6312 const gdb_byte *outer_valaddr)
6313 {
6314 int others_clause;
6315 int i;
6316 char *discrim_name = ada_variant_discrim_name (var_type);
6317 struct value *outer;
6318 struct value *discrim;
6319 LONGEST discrim_val;
6320
6321 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6322 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6323 if (discrim == NULL)
6324 return -1;
6325 discrim_val = value_as_long (discrim);
6326
6327 others_clause = -1;
6328 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6329 {
6330 if (ada_is_others_clause (var_type, i))
6331 others_clause = i;
6332 else if (ada_in_variant (discrim_val, var_type, i))
6333 return i;
6334 }
6335
6336 return others_clause;
6337 }
6338 \f
6339
6340
6341 /* Dynamic-Sized Records */
6342
6343 /* Strategy: The type ostensibly attached to a value with dynamic size
6344 (i.e., a size that is not statically recorded in the debugging
6345 data) does not accurately reflect the size or layout of the value.
6346 Our strategy is to convert these values to values with accurate,
6347 conventional types that are constructed on the fly. */
6348
6349 /* There is a subtle and tricky problem here. In general, we cannot
6350 determine the size of dynamic records without its data. However,
6351 the 'struct value' data structure, which GDB uses to represent
6352 quantities in the inferior process (the target), requires the size
6353 of the type at the time of its allocation in order to reserve space
6354 for GDB's internal copy of the data. That's why the
6355 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6356 rather than struct value*s.
6357
6358 However, GDB's internal history variables ($1, $2, etc.) are
6359 struct value*s containing internal copies of the data that are not, in
6360 general, the same as the data at their corresponding addresses in
6361 the target. Fortunately, the types we give to these values are all
6362 conventional, fixed-size types (as per the strategy described
6363 above), so that we don't usually have to perform the
6364 'to_fixed_xxx_type' conversions to look at their values.
6365 Unfortunately, there is one exception: if one of the internal
6366 history variables is an array whose elements are unconstrained
6367 records, then we will need to create distinct fixed types for each
6368 element selected. */
6369
6370 /* The upshot of all of this is that many routines take a (type, host
6371 address, target address) triple as arguments to represent a value.
6372 The host address, if non-null, is supposed to contain an internal
6373 copy of the relevant data; otherwise, the program is to consult the
6374 target at the target address. */
6375
6376 /* Assuming that VAL0 represents a pointer value, the result of
6377 dereferencing it. Differs from value_ind in its treatment of
6378 dynamic-sized types. */
6379
6380 struct value *
6381 ada_value_ind (struct value *val0)
6382 {
6383 struct value *val = unwrap_value (value_ind (val0));
6384 return ada_to_fixed_value (val);
6385 }
6386
6387 /* The value resulting from dereferencing any "reference to"
6388 qualifiers on VAL0. */
6389
6390 static struct value *
6391 ada_coerce_ref (struct value *val0)
6392 {
6393 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6394 {
6395 struct value *val = val0;
6396 val = coerce_ref (val);
6397 val = unwrap_value (val);
6398 return ada_to_fixed_value (val);
6399 }
6400 else
6401 return val0;
6402 }
6403
6404 /* Return OFF rounded upward if necessary to a multiple of
6405 ALIGNMENT (a power of 2). */
6406
6407 static unsigned int
6408 align_value (unsigned int off, unsigned int alignment)
6409 {
6410 return (off + alignment - 1) & ~(alignment - 1);
6411 }
6412
6413 /* Return the bit alignment required for field #F of template type TYPE. */
6414
6415 static unsigned int
6416 field_alignment (struct type *type, int f)
6417 {
6418 const char *name = TYPE_FIELD_NAME (type, f);
6419 int len;
6420 int align_offset;
6421
6422 /* The field name should never be null, unless the debugging information
6423 is somehow malformed. In this case, we assume the field does not
6424 require any alignment. */
6425 if (name == NULL)
6426 return 1;
6427
6428 len = strlen (name);
6429
6430 if (!isdigit (name[len - 1]))
6431 return 1;
6432
6433 if (isdigit (name[len - 2]))
6434 align_offset = len - 2;
6435 else
6436 align_offset = len - 1;
6437
6438 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6439 return TARGET_CHAR_BIT;
6440
6441 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6442 }
6443
6444 /* Find a symbol named NAME. Ignores ambiguity. */
6445
6446 struct symbol *
6447 ada_find_any_symbol (const char *name)
6448 {
6449 struct symbol *sym;
6450
6451 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6452 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6453 return sym;
6454
6455 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6456 return sym;
6457 }
6458
6459 /* Find a type named NAME. Ignores ambiguity. This routine will look
6460 solely for types defined by debug info, it will not search the GDB
6461 primitive types. */
6462
6463 struct type *
6464 ada_find_any_type (const char *name)
6465 {
6466 struct symbol *sym = ada_find_any_symbol (name);
6467
6468 if (sym != NULL)
6469 return SYMBOL_TYPE (sym);
6470
6471 return NULL;
6472 }
6473
6474 /* Given NAME and an associated BLOCK, search all symbols for
6475 NAME suffixed with "___XR", which is the ``renaming'' symbol
6476 associated to NAME. Return this symbol if found, return
6477 NULL otherwise. */
6478
6479 struct symbol *
6480 ada_find_renaming_symbol (const char *name, struct block *block)
6481 {
6482 struct symbol *sym;
6483
6484 sym = find_old_style_renaming_symbol (name, block);
6485
6486 if (sym != NULL)
6487 return sym;
6488
6489 /* Not right yet. FIXME pnh 7/20/2007. */
6490 sym = ada_find_any_symbol (name);
6491 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6492 return sym;
6493 else
6494 return NULL;
6495 }
6496
6497 static struct symbol *
6498 find_old_style_renaming_symbol (const char *name, struct block *block)
6499 {
6500 const struct symbol *function_sym = block_linkage_function (block);
6501 char *rename;
6502
6503 if (function_sym != NULL)
6504 {
6505 /* If the symbol is defined inside a function, NAME is not fully
6506 qualified. This means we need to prepend the function name
6507 as well as adding the ``___XR'' suffix to build the name of
6508 the associated renaming symbol. */
6509 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6510 /* Function names sometimes contain suffixes used
6511 for instance to qualify nested subprograms. When building
6512 the XR type name, we need to make sure that this suffix is
6513 not included. So do not include any suffix in the function
6514 name length below. */
6515 const int function_name_len = ada_name_prefix_len (function_name);
6516 const int rename_len = function_name_len + 2 /* "__" */
6517 + strlen (name) + 6 /* "___XR\0" */ ;
6518
6519 /* Strip the suffix if necessary. */
6520 function_name[function_name_len] = '\0';
6521
6522 /* Library-level functions are a special case, as GNAT adds
6523 a ``_ada_'' prefix to the function name to avoid namespace
6524 pollution. However, the renaming symbols themselves do not
6525 have this prefix, so we need to skip this prefix if present. */
6526 if (function_name_len > 5 /* "_ada_" */
6527 && strstr (function_name, "_ada_") == function_name)
6528 function_name = function_name + 5;
6529
6530 rename = (char *) alloca (rename_len * sizeof (char));
6531 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6532 function_name, name);
6533 }
6534 else
6535 {
6536 const int rename_len = strlen (name) + 6;
6537 rename = (char *) alloca (rename_len * sizeof (char));
6538 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6539 }
6540
6541 return ada_find_any_symbol (rename);
6542 }
6543
6544 /* Because of GNAT encoding conventions, several GDB symbols may match a
6545 given type name. If the type denoted by TYPE0 is to be preferred to
6546 that of TYPE1 for purposes of type printing, return non-zero;
6547 otherwise return 0. */
6548
6549 int
6550 ada_prefer_type (struct type *type0, struct type *type1)
6551 {
6552 if (type1 == NULL)
6553 return 1;
6554 else if (type0 == NULL)
6555 return 0;
6556 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6557 return 1;
6558 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6559 return 0;
6560 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6561 return 1;
6562 else if (ada_is_packed_array_type (type0))
6563 return 1;
6564 else if (ada_is_array_descriptor_type (type0)
6565 && !ada_is_array_descriptor_type (type1))
6566 return 1;
6567 else
6568 {
6569 const char *type0_name = type_name_no_tag (type0);
6570 const char *type1_name = type_name_no_tag (type1);
6571
6572 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6573 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6574 return 1;
6575 }
6576 return 0;
6577 }
6578
6579 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6580 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6581
6582 char *
6583 ada_type_name (struct type *type)
6584 {
6585 if (type == NULL)
6586 return NULL;
6587 else if (TYPE_NAME (type) != NULL)
6588 return TYPE_NAME (type);
6589 else
6590 return TYPE_TAG_NAME (type);
6591 }
6592
6593 /* Find a parallel type to TYPE whose name is formed by appending
6594 SUFFIX to the name of TYPE. */
6595
6596 struct type *
6597 ada_find_parallel_type (struct type *type, const char *suffix)
6598 {
6599 static char *name;
6600 static size_t name_len = 0;
6601 int len;
6602 char *typename = ada_type_name (type);
6603
6604 if (typename == NULL)
6605 return NULL;
6606
6607 len = strlen (typename);
6608
6609 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6610
6611 strcpy (name, typename);
6612 strcpy (name + len, suffix);
6613
6614 return ada_find_any_type (name);
6615 }
6616
6617
6618 /* If TYPE is a variable-size record type, return the corresponding template
6619 type describing its fields. Otherwise, return NULL. */
6620
6621 static struct type *
6622 dynamic_template_type (struct type *type)
6623 {
6624 type = ada_check_typedef (type);
6625
6626 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6627 || ada_type_name (type) == NULL)
6628 return NULL;
6629 else
6630 {
6631 int len = strlen (ada_type_name (type));
6632 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6633 return type;
6634 else
6635 return ada_find_parallel_type (type, "___XVE");
6636 }
6637 }
6638
6639 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6640 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6641
6642 static int
6643 is_dynamic_field (struct type *templ_type, int field_num)
6644 {
6645 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6646 return name != NULL
6647 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6648 && strstr (name, "___XVL") != NULL;
6649 }
6650
6651 /* The index of the variant field of TYPE, or -1 if TYPE does not
6652 represent a variant record type. */
6653
6654 static int
6655 variant_field_index (struct type *type)
6656 {
6657 int f;
6658
6659 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6660 return -1;
6661
6662 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6663 {
6664 if (ada_is_variant_part (type, f))
6665 return f;
6666 }
6667 return -1;
6668 }
6669
6670 /* A record type with no fields. */
6671
6672 static struct type *
6673 empty_record (struct objfile *objfile)
6674 {
6675 struct type *type = alloc_type (objfile);
6676 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6677 TYPE_NFIELDS (type) = 0;
6678 TYPE_FIELDS (type) = NULL;
6679 INIT_CPLUS_SPECIFIC (type);
6680 TYPE_NAME (type) = "<empty>";
6681 TYPE_TAG_NAME (type) = NULL;
6682 TYPE_LENGTH (type) = 0;
6683 return type;
6684 }
6685
6686 /* An ordinary record type (with fixed-length fields) that describes
6687 the value of type TYPE at VALADDR or ADDRESS (see comments at
6688 the beginning of this section) VAL according to GNAT conventions.
6689 DVAL0 should describe the (portion of a) record that contains any
6690 necessary discriminants. It should be NULL if value_type (VAL) is
6691 an outer-level type (i.e., as opposed to a branch of a variant.) A
6692 variant field (unless unchecked) is replaced by a particular branch
6693 of the variant.
6694
6695 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6696 length are not statically known are discarded. As a consequence,
6697 VALADDR, ADDRESS and DVAL0 are ignored.
6698
6699 NOTE: Limitations: For now, we assume that dynamic fields and
6700 variants occupy whole numbers of bytes. However, they need not be
6701 byte-aligned. */
6702
6703 struct type *
6704 ada_template_to_fixed_record_type_1 (struct type *type,
6705 const gdb_byte *valaddr,
6706 CORE_ADDR address, struct value *dval0,
6707 int keep_dynamic_fields)
6708 {
6709 struct value *mark = value_mark ();
6710 struct value *dval;
6711 struct type *rtype;
6712 int nfields, bit_len;
6713 int variant_field;
6714 long off;
6715 int fld_bit_len, bit_incr;
6716 int f;
6717
6718 /* Compute the number of fields in this record type that are going
6719 to be processed: unless keep_dynamic_fields, this includes only
6720 fields whose position and length are static will be processed. */
6721 if (keep_dynamic_fields)
6722 nfields = TYPE_NFIELDS (type);
6723 else
6724 {
6725 nfields = 0;
6726 while (nfields < TYPE_NFIELDS (type)
6727 && !ada_is_variant_part (type, nfields)
6728 && !is_dynamic_field (type, nfields))
6729 nfields++;
6730 }
6731
6732 rtype = alloc_type (TYPE_OBJFILE (type));
6733 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6734 INIT_CPLUS_SPECIFIC (rtype);
6735 TYPE_NFIELDS (rtype) = nfields;
6736 TYPE_FIELDS (rtype) = (struct field *)
6737 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6738 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6739 TYPE_NAME (rtype) = ada_type_name (type);
6740 TYPE_TAG_NAME (rtype) = NULL;
6741 TYPE_FIXED_INSTANCE (rtype) = 1;
6742
6743 off = 0;
6744 bit_len = 0;
6745 variant_field = -1;
6746
6747 for (f = 0; f < nfields; f += 1)
6748 {
6749 off = align_value (off, field_alignment (type, f))
6750 + TYPE_FIELD_BITPOS (type, f);
6751 TYPE_FIELD_BITPOS (rtype, f) = off;
6752 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6753
6754 if (ada_is_variant_part (type, f))
6755 {
6756 variant_field = f;
6757 fld_bit_len = bit_incr = 0;
6758 }
6759 else if (is_dynamic_field (type, f))
6760 {
6761 const gdb_byte *field_valaddr = valaddr;
6762 CORE_ADDR field_address = address;
6763 struct type *field_type =
6764 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6765
6766 if (dval0 == NULL)
6767 {
6768 /* rtype's length is computed based on the run-time
6769 value of discriminants. If the discriminants are not
6770 initialized, the type size may be completely bogus and
6771 GDB may fail to allocate a value for it. So check the
6772 size first before creating the value. */
6773 check_size (rtype);
6774 dval = value_from_contents_and_address (rtype, valaddr, address);
6775 }
6776 else
6777 dval = dval0;
6778
6779 /* If the type referenced by this field is an aligner type, we need
6780 to unwrap that aligner type, because its size might not be set.
6781 Keeping the aligner type would cause us to compute the wrong
6782 size for this field, impacting the offset of the all the fields
6783 that follow this one. */
6784 if (ada_is_aligner_type (field_type))
6785 {
6786 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6787
6788 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6789 field_address = cond_offset_target (field_address, field_offset);
6790 field_type = ada_aligned_type (field_type);
6791 }
6792
6793 field_valaddr = cond_offset_host (field_valaddr,
6794 off / TARGET_CHAR_BIT);
6795 field_address = cond_offset_target (field_address,
6796 off / TARGET_CHAR_BIT);
6797
6798 /* Get the fixed type of the field. Note that, in this case,
6799 we do not want to get the real type out of the tag: if
6800 the current field is the parent part of a tagged record,
6801 we will get the tag of the object. Clearly wrong: the real
6802 type of the parent is not the real type of the child. We
6803 would end up in an infinite loop. */
6804 field_type = ada_get_base_type (field_type);
6805 field_type = ada_to_fixed_type (field_type, field_valaddr,
6806 field_address, dval, 0);
6807
6808 TYPE_FIELD_TYPE (rtype, f) = field_type;
6809 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6810 bit_incr = fld_bit_len =
6811 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6812 }
6813 else
6814 {
6815 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6816 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6817 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6818 bit_incr = fld_bit_len =
6819 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6820 else
6821 bit_incr = fld_bit_len =
6822 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6823 }
6824 if (off + fld_bit_len > bit_len)
6825 bit_len = off + fld_bit_len;
6826 off += bit_incr;
6827 TYPE_LENGTH (rtype) =
6828 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6829 }
6830
6831 /* We handle the variant part, if any, at the end because of certain
6832 odd cases in which it is re-ordered so as NOT to be the last field of
6833 the record. This can happen in the presence of representation
6834 clauses. */
6835 if (variant_field >= 0)
6836 {
6837 struct type *branch_type;
6838
6839 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6840
6841 if (dval0 == NULL)
6842 dval = value_from_contents_and_address (rtype, valaddr, address);
6843 else
6844 dval = dval0;
6845
6846 branch_type =
6847 to_fixed_variant_branch_type
6848 (TYPE_FIELD_TYPE (type, variant_field),
6849 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6850 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6851 if (branch_type == NULL)
6852 {
6853 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6854 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6855 TYPE_NFIELDS (rtype) -= 1;
6856 }
6857 else
6858 {
6859 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6860 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6861 fld_bit_len =
6862 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6863 TARGET_CHAR_BIT;
6864 if (off + fld_bit_len > bit_len)
6865 bit_len = off + fld_bit_len;
6866 TYPE_LENGTH (rtype) =
6867 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6868 }
6869 }
6870
6871 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6872 should contain the alignment of that record, which should be a strictly
6873 positive value. If null or negative, then something is wrong, most
6874 probably in the debug info. In that case, we don't round up the size
6875 of the resulting type. If this record is not part of another structure,
6876 the current RTYPE length might be good enough for our purposes. */
6877 if (TYPE_LENGTH (type) <= 0)
6878 {
6879 if (TYPE_NAME (rtype))
6880 warning (_("Invalid type size for `%s' detected: %d."),
6881 TYPE_NAME (rtype), TYPE_LENGTH (type));
6882 else
6883 warning (_("Invalid type size for <unnamed> detected: %d."),
6884 TYPE_LENGTH (type));
6885 }
6886 else
6887 {
6888 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6889 TYPE_LENGTH (type));
6890 }
6891
6892 value_free_to_mark (mark);
6893 if (TYPE_LENGTH (rtype) > varsize_limit)
6894 error (_("record type with dynamic size is larger than varsize-limit"));
6895 return rtype;
6896 }
6897
6898 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6899 of 1. */
6900
6901 static struct type *
6902 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6903 CORE_ADDR address, struct value *dval0)
6904 {
6905 return ada_template_to_fixed_record_type_1 (type, valaddr,
6906 address, dval0, 1);
6907 }
6908
6909 /* An ordinary record type in which ___XVL-convention fields and
6910 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6911 static approximations, containing all possible fields. Uses
6912 no runtime values. Useless for use in values, but that's OK,
6913 since the results are used only for type determinations. Works on both
6914 structs and unions. Representation note: to save space, we memorize
6915 the result of this function in the TYPE_TARGET_TYPE of the
6916 template type. */
6917
6918 static struct type *
6919 template_to_static_fixed_type (struct type *type0)
6920 {
6921 struct type *type;
6922 int nfields;
6923 int f;
6924
6925 if (TYPE_TARGET_TYPE (type0) != NULL)
6926 return TYPE_TARGET_TYPE (type0);
6927
6928 nfields = TYPE_NFIELDS (type0);
6929 type = type0;
6930
6931 for (f = 0; f < nfields; f += 1)
6932 {
6933 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6934 struct type *new_type;
6935
6936 if (is_dynamic_field (type0, f))
6937 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6938 else
6939 new_type = static_unwrap_type (field_type);
6940 if (type == type0 && new_type != field_type)
6941 {
6942 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6943 TYPE_CODE (type) = TYPE_CODE (type0);
6944 INIT_CPLUS_SPECIFIC (type);
6945 TYPE_NFIELDS (type) = nfields;
6946 TYPE_FIELDS (type) = (struct field *)
6947 TYPE_ALLOC (type, nfields * sizeof (struct field));
6948 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6949 sizeof (struct field) * nfields);
6950 TYPE_NAME (type) = ada_type_name (type0);
6951 TYPE_TAG_NAME (type) = NULL;
6952 TYPE_FIXED_INSTANCE (type) = 1;
6953 TYPE_LENGTH (type) = 0;
6954 }
6955 TYPE_FIELD_TYPE (type, f) = new_type;
6956 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6957 }
6958 return type;
6959 }
6960
6961 /* Given an object of type TYPE whose contents are at VALADDR and
6962 whose address in memory is ADDRESS, returns a revision of TYPE,
6963 which should be a non-dynamic-sized record, in which the variant
6964 part, if any, is replaced with the appropriate branch. Looks
6965 for discriminant values in DVAL0, which can be NULL if the record
6966 contains the necessary discriminant values. */
6967
6968 static struct type *
6969 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6970 CORE_ADDR address, struct value *dval0)
6971 {
6972 struct value *mark = value_mark ();
6973 struct value *dval;
6974 struct type *rtype;
6975 struct type *branch_type;
6976 int nfields = TYPE_NFIELDS (type);
6977 int variant_field = variant_field_index (type);
6978
6979 if (variant_field == -1)
6980 return type;
6981
6982 if (dval0 == NULL)
6983 dval = value_from_contents_and_address (type, valaddr, address);
6984 else
6985 dval = dval0;
6986
6987 rtype = alloc_type (TYPE_OBJFILE (type));
6988 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6989 INIT_CPLUS_SPECIFIC (rtype);
6990 TYPE_NFIELDS (rtype) = nfields;
6991 TYPE_FIELDS (rtype) =
6992 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6993 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6994 sizeof (struct field) * nfields);
6995 TYPE_NAME (rtype) = ada_type_name (type);
6996 TYPE_TAG_NAME (rtype) = NULL;
6997 TYPE_FIXED_INSTANCE (rtype) = 1;
6998 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6999
7000 branch_type = to_fixed_variant_branch_type
7001 (TYPE_FIELD_TYPE (type, variant_field),
7002 cond_offset_host (valaddr,
7003 TYPE_FIELD_BITPOS (type, variant_field)
7004 / TARGET_CHAR_BIT),
7005 cond_offset_target (address,
7006 TYPE_FIELD_BITPOS (type, variant_field)
7007 / TARGET_CHAR_BIT), dval);
7008 if (branch_type == NULL)
7009 {
7010 int f;
7011 for (f = variant_field + 1; f < nfields; f += 1)
7012 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7013 TYPE_NFIELDS (rtype) -= 1;
7014 }
7015 else
7016 {
7017 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7018 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7019 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7020 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7021 }
7022 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7023
7024 value_free_to_mark (mark);
7025 return rtype;
7026 }
7027
7028 /* An ordinary record type (with fixed-length fields) that describes
7029 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7030 beginning of this section]. Any necessary discriminants' values
7031 should be in DVAL, a record value; it may be NULL if the object
7032 at ADDR itself contains any necessary discriminant values.
7033 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7034 values from the record are needed. Except in the case that DVAL,
7035 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7036 unchecked) is replaced by a particular branch of the variant.
7037
7038 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7039 is questionable and may be removed. It can arise during the
7040 processing of an unconstrained-array-of-record type where all the
7041 variant branches have exactly the same size. This is because in
7042 such cases, the compiler does not bother to use the XVS convention
7043 when encoding the record. I am currently dubious of this
7044 shortcut and suspect the compiler should be altered. FIXME. */
7045
7046 static struct type *
7047 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7048 CORE_ADDR address, struct value *dval)
7049 {
7050 struct type *templ_type;
7051
7052 if (TYPE_FIXED_INSTANCE (type0))
7053 return type0;
7054
7055 templ_type = dynamic_template_type (type0);
7056
7057 if (templ_type != NULL)
7058 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7059 else if (variant_field_index (type0) >= 0)
7060 {
7061 if (dval == NULL && valaddr == NULL && address == 0)
7062 return type0;
7063 return to_record_with_fixed_variant_part (type0, valaddr, address,
7064 dval);
7065 }
7066 else
7067 {
7068 TYPE_FIXED_INSTANCE (type0) = 1;
7069 return type0;
7070 }
7071
7072 }
7073
7074 /* An ordinary record type (with fixed-length fields) that describes
7075 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7076 union type. Any necessary discriminants' values should be in DVAL,
7077 a record value. That is, this routine selects the appropriate
7078 branch of the union at ADDR according to the discriminant value
7079 indicated in the union's type name. Returns VAR_TYPE0 itself if
7080 it represents a variant subject to a pragma Unchecked_Union. */
7081
7082 static struct type *
7083 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7084 CORE_ADDR address, struct value *dval)
7085 {
7086 int which;
7087 struct type *templ_type;
7088 struct type *var_type;
7089
7090 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7091 var_type = TYPE_TARGET_TYPE (var_type0);
7092 else
7093 var_type = var_type0;
7094
7095 templ_type = ada_find_parallel_type (var_type, "___XVU");
7096
7097 if (templ_type != NULL)
7098 var_type = templ_type;
7099
7100 if (is_unchecked_variant (var_type, value_type (dval)))
7101 return var_type0;
7102 which =
7103 ada_which_variant_applies (var_type,
7104 value_type (dval), value_contents (dval));
7105
7106 if (which < 0)
7107 return empty_record (TYPE_OBJFILE (var_type));
7108 else if (is_dynamic_field (var_type, which))
7109 return to_fixed_record_type
7110 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7111 valaddr, address, dval);
7112 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7113 return
7114 to_fixed_record_type
7115 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7116 else
7117 return TYPE_FIELD_TYPE (var_type, which);
7118 }
7119
7120 /* Assuming that TYPE0 is an array type describing the type of a value
7121 at ADDR, and that DVAL describes a record containing any
7122 discriminants used in TYPE0, returns a type for the value that
7123 contains no dynamic components (that is, no components whose sizes
7124 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7125 true, gives an error message if the resulting type's size is over
7126 varsize_limit. */
7127
7128 static struct type *
7129 to_fixed_array_type (struct type *type0, struct value *dval,
7130 int ignore_too_big)
7131 {
7132 struct type *index_type_desc;
7133 struct type *result;
7134 int packed_array_p;
7135
7136 if (TYPE_FIXED_INSTANCE (type0))
7137 return type0;
7138
7139 packed_array_p = ada_is_packed_array_type (type0);
7140 if (packed_array_p)
7141 type0 = decode_packed_array_type (type0);
7142
7143 index_type_desc = ada_find_parallel_type (type0, "___XA");
7144 if (index_type_desc == NULL)
7145 {
7146 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7147 /* NOTE: elt_type---the fixed version of elt_type0---should never
7148 depend on the contents of the array in properly constructed
7149 debugging data. */
7150 /* Create a fixed version of the array element type.
7151 We're not providing the address of an element here,
7152 and thus the actual object value cannot be inspected to do
7153 the conversion. This should not be a problem, since arrays of
7154 unconstrained objects are not allowed. In particular, all
7155 the elements of an array of a tagged type should all be of
7156 the same type specified in the debugging info. No need to
7157 consult the object tag. */
7158 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7159
7160 /* Make sure we always create a new array type when dealing with
7161 packed array types, since we're going to fix-up the array
7162 type length and element bitsize a little further down. */
7163 if (elt_type0 == elt_type && !packed_array_p)
7164 result = type0;
7165 else
7166 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7167 elt_type, TYPE_INDEX_TYPE (type0));
7168 }
7169 else
7170 {
7171 int i;
7172 struct type *elt_type0;
7173
7174 elt_type0 = type0;
7175 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7176 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7177
7178 /* NOTE: result---the fixed version of elt_type0---should never
7179 depend on the contents of the array in properly constructed
7180 debugging data. */
7181 /* Create a fixed version of the array element type.
7182 We're not providing the address of an element here,
7183 and thus the actual object value cannot be inspected to do
7184 the conversion. This should not be a problem, since arrays of
7185 unconstrained objects are not allowed. In particular, all
7186 the elements of an array of a tagged type should all be of
7187 the same type specified in the debugging info. No need to
7188 consult the object tag. */
7189 result =
7190 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7191
7192 elt_type0 = type0;
7193 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7194 {
7195 struct type *range_type =
7196 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7197 dval, TYPE_INDEX_TYPE (elt_type0));
7198 result = create_array_type (alloc_type (TYPE_OBJFILE (elt_type0)),
7199 result, range_type);
7200 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7201 }
7202 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7203 error (_("array type with dynamic size is larger than varsize-limit"));
7204 }
7205
7206 if (packed_array_p)
7207 {
7208 /* So far, the resulting type has been created as if the original
7209 type was a regular (non-packed) array type. As a result, the
7210 bitsize of the array elements needs to be set again, and the array
7211 length needs to be recomputed based on that bitsize. */
7212 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7213 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7214
7215 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7216 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7217 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7218 TYPE_LENGTH (result)++;
7219 }
7220
7221 TYPE_FIXED_INSTANCE (result) = 1;
7222 return result;
7223 }
7224
7225
7226 /* A standard type (containing no dynamically sized components)
7227 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7228 DVAL describes a record containing any discriminants used in TYPE0,
7229 and may be NULL if there are none, or if the object of type TYPE at
7230 ADDRESS or in VALADDR contains these discriminants.
7231
7232 If CHECK_TAG is not null, in the case of tagged types, this function
7233 attempts to locate the object's tag and use it to compute the actual
7234 type. However, when ADDRESS is null, we cannot use it to determine the
7235 location of the tag, and therefore compute the tagged type's actual type.
7236 So we return the tagged type without consulting the tag. */
7237
7238 static struct type *
7239 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7240 CORE_ADDR address, struct value *dval, int check_tag)
7241 {
7242 type = ada_check_typedef (type);
7243 switch (TYPE_CODE (type))
7244 {
7245 default:
7246 return type;
7247 case TYPE_CODE_STRUCT:
7248 {
7249 struct type *static_type = to_static_fixed_type (type);
7250 struct type *fixed_record_type =
7251 to_fixed_record_type (type, valaddr, address, NULL);
7252 /* If STATIC_TYPE is a tagged type and we know the object's address,
7253 then we can determine its tag, and compute the object's actual
7254 type from there. Note that we have to use the fixed record
7255 type (the parent part of the record may have dynamic fields
7256 and the way the location of _tag is expressed may depend on
7257 them). */
7258
7259 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7260 {
7261 struct type *real_type =
7262 type_from_tag (value_tag_from_contents_and_address
7263 (fixed_record_type,
7264 valaddr,
7265 address));
7266 if (real_type != NULL)
7267 return to_fixed_record_type (real_type, valaddr, address, NULL);
7268 }
7269
7270 /* Check to see if there is a parallel ___XVZ variable.
7271 If there is, then it provides the actual size of our type. */
7272 else if (ada_type_name (fixed_record_type) != NULL)
7273 {
7274 char *name = ada_type_name (fixed_record_type);
7275 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7276 int xvz_found = 0;
7277 LONGEST size;
7278
7279 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7280 size = get_int_var_value (xvz_name, &xvz_found);
7281 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7282 {
7283 fixed_record_type = copy_type (fixed_record_type);
7284 TYPE_LENGTH (fixed_record_type) = size;
7285
7286 /* The FIXED_RECORD_TYPE may have be a stub. We have
7287 observed this when the debugging info is STABS, and
7288 apparently it is something that is hard to fix.
7289
7290 In practice, we don't need the actual type definition
7291 at all, because the presence of the XVZ variable allows us
7292 to assume that there must be a XVS type as well, which we
7293 should be able to use later, when we need the actual type
7294 definition.
7295
7296 In the meantime, pretend that the "fixed" type we are
7297 returning is NOT a stub, because this can cause trouble
7298 when using this type to create new types targeting it.
7299 Indeed, the associated creation routines often check
7300 whether the target type is a stub and will try to replace
7301 it, thus using a type with the wrong size. This, in turn,
7302 might cause the new type to have the wrong size too.
7303 Consider the case of an array, for instance, where the size
7304 of the array is computed from the number of elements in
7305 our array multiplied by the size of its element. */
7306 TYPE_STUB (fixed_record_type) = 0;
7307 }
7308 }
7309 return fixed_record_type;
7310 }
7311 case TYPE_CODE_ARRAY:
7312 return to_fixed_array_type (type, dval, 1);
7313 case TYPE_CODE_UNION:
7314 if (dval == NULL)
7315 return type;
7316 else
7317 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7318 }
7319 }
7320
7321 /* The same as ada_to_fixed_type_1, except that it preserves the type
7322 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7323 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7324
7325 struct type *
7326 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7327 CORE_ADDR address, struct value *dval, int check_tag)
7328
7329 {
7330 struct type *fixed_type =
7331 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7332
7333 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7334 && TYPE_TARGET_TYPE (type) == fixed_type)
7335 return type;
7336
7337 return fixed_type;
7338 }
7339
7340 /* A standard (static-sized) type corresponding as well as possible to
7341 TYPE0, but based on no runtime data. */
7342
7343 static struct type *
7344 to_static_fixed_type (struct type *type0)
7345 {
7346 struct type *type;
7347
7348 if (type0 == NULL)
7349 return NULL;
7350
7351 if (TYPE_FIXED_INSTANCE (type0))
7352 return type0;
7353
7354 type0 = ada_check_typedef (type0);
7355
7356 switch (TYPE_CODE (type0))
7357 {
7358 default:
7359 return type0;
7360 case TYPE_CODE_STRUCT:
7361 type = dynamic_template_type (type0);
7362 if (type != NULL)
7363 return template_to_static_fixed_type (type);
7364 else
7365 return template_to_static_fixed_type (type0);
7366 case TYPE_CODE_UNION:
7367 type = ada_find_parallel_type (type0, "___XVU");
7368 if (type != NULL)
7369 return template_to_static_fixed_type (type);
7370 else
7371 return template_to_static_fixed_type (type0);
7372 }
7373 }
7374
7375 /* A static approximation of TYPE with all type wrappers removed. */
7376
7377 static struct type *
7378 static_unwrap_type (struct type *type)
7379 {
7380 if (ada_is_aligner_type (type))
7381 {
7382 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7383 if (ada_type_name (type1) == NULL)
7384 TYPE_NAME (type1) = ada_type_name (type);
7385
7386 return static_unwrap_type (type1);
7387 }
7388 else
7389 {
7390 struct type *raw_real_type = ada_get_base_type (type);
7391 if (raw_real_type == type)
7392 return type;
7393 else
7394 return to_static_fixed_type (raw_real_type);
7395 }
7396 }
7397
7398 /* In some cases, incomplete and private types require
7399 cross-references that are not resolved as records (for example,
7400 type Foo;
7401 type FooP is access Foo;
7402 V: FooP;
7403 type Foo is array ...;
7404 ). In these cases, since there is no mechanism for producing
7405 cross-references to such types, we instead substitute for FooP a
7406 stub enumeration type that is nowhere resolved, and whose tag is
7407 the name of the actual type. Call these types "non-record stubs". */
7408
7409 /* A type equivalent to TYPE that is not a non-record stub, if one
7410 exists, otherwise TYPE. */
7411
7412 struct type *
7413 ada_check_typedef (struct type *type)
7414 {
7415 if (type == NULL)
7416 return NULL;
7417
7418 CHECK_TYPEDEF (type);
7419 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7420 || !TYPE_STUB (type)
7421 || TYPE_TAG_NAME (type) == NULL)
7422 return type;
7423 else
7424 {
7425 char *name = TYPE_TAG_NAME (type);
7426 struct type *type1 = ada_find_any_type (name);
7427 return (type1 == NULL) ? type : type1;
7428 }
7429 }
7430
7431 /* A value representing the data at VALADDR/ADDRESS as described by
7432 type TYPE0, but with a standard (static-sized) type that correctly
7433 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7434 type, then return VAL0 [this feature is simply to avoid redundant
7435 creation of struct values]. */
7436
7437 static struct value *
7438 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7439 struct value *val0)
7440 {
7441 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7442 if (type == type0 && val0 != NULL)
7443 return val0;
7444 else
7445 return value_from_contents_and_address (type, 0, address);
7446 }
7447
7448 /* A value representing VAL, but with a standard (static-sized) type
7449 that correctly describes it. Does not necessarily create a new
7450 value. */
7451
7452 static struct value *
7453 ada_to_fixed_value (struct value *val)
7454 {
7455 return ada_to_fixed_value_create (value_type (val),
7456 value_address (val),
7457 val);
7458 }
7459
7460 /* A value representing VAL, but with a standard (static-sized) type
7461 chosen to approximate the real type of VAL as well as possible, but
7462 without consulting any runtime values. For Ada dynamic-sized
7463 types, therefore, the type of the result is likely to be inaccurate. */
7464
7465 static struct value *
7466 ada_to_static_fixed_value (struct value *val)
7467 {
7468 struct type *type =
7469 to_static_fixed_type (static_unwrap_type (value_type (val)));
7470 if (type == value_type (val))
7471 return val;
7472 else
7473 return coerce_unspec_val_to_type (val, type);
7474 }
7475 \f
7476
7477 /* Attributes */
7478
7479 /* Table mapping attribute numbers to names.
7480 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7481
7482 static const char *attribute_names[] = {
7483 "<?>",
7484
7485 "first",
7486 "last",
7487 "length",
7488 "image",
7489 "max",
7490 "min",
7491 "modulus",
7492 "pos",
7493 "size",
7494 "tag",
7495 "val",
7496 0
7497 };
7498
7499 const char *
7500 ada_attribute_name (enum exp_opcode n)
7501 {
7502 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7503 return attribute_names[n - OP_ATR_FIRST + 1];
7504 else
7505 return attribute_names[0];
7506 }
7507
7508 /* Evaluate the 'POS attribute applied to ARG. */
7509
7510 static LONGEST
7511 pos_atr (struct value *arg)
7512 {
7513 struct value *val = coerce_ref (arg);
7514 struct type *type = value_type (val);
7515
7516 if (!discrete_type_p (type))
7517 error (_("'POS only defined on discrete types"));
7518
7519 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7520 {
7521 int i;
7522 LONGEST v = value_as_long (val);
7523
7524 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7525 {
7526 if (v == TYPE_FIELD_BITPOS (type, i))
7527 return i;
7528 }
7529 error (_("enumeration value is invalid: can't find 'POS"));
7530 }
7531 else
7532 return value_as_long (val);
7533 }
7534
7535 static struct value *
7536 value_pos_atr (struct type *type, struct value *arg)
7537 {
7538 return value_from_longest (type, pos_atr (arg));
7539 }
7540
7541 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7542
7543 static struct value *
7544 value_val_atr (struct type *type, struct value *arg)
7545 {
7546 if (!discrete_type_p (type))
7547 error (_("'VAL only defined on discrete types"));
7548 if (!integer_type_p (value_type (arg)))
7549 error (_("'VAL requires integral argument"));
7550
7551 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7552 {
7553 long pos = value_as_long (arg);
7554 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7555 error (_("argument to 'VAL out of range"));
7556 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7557 }
7558 else
7559 return value_from_longest (type, value_as_long (arg));
7560 }
7561 \f
7562
7563 /* Evaluation */
7564
7565 /* True if TYPE appears to be an Ada character type.
7566 [At the moment, this is true only for Character and Wide_Character;
7567 It is a heuristic test that could stand improvement]. */
7568
7569 int
7570 ada_is_character_type (struct type *type)
7571 {
7572 const char *name;
7573
7574 /* If the type code says it's a character, then assume it really is,
7575 and don't check any further. */
7576 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7577 return 1;
7578
7579 /* Otherwise, assume it's a character type iff it is a discrete type
7580 with a known character type name. */
7581 name = ada_type_name (type);
7582 return (name != NULL
7583 && (TYPE_CODE (type) == TYPE_CODE_INT
7584 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7585 && (strcmp (name, "character") == 0
7586 || strcmp (name, "wide_character") == 0
7587 || strcmp (name, "wide_wide_character") == 0
7588 || strcmp (name, "unsigned char") == 0));
7589 }
7590
7591 /* True if TYPE appears to be an Ada string type. */
7592
7593 int
7594 ada_is_string_type (struct type *type)
7595 {
7596 type = ada_check_typedef (type);
7597 if (type != NULL
7598 && TYPE_CODE (type) != TYPE_CODE_PTR
7599 && (ada_is_simple_array_type (type)
7600 || ada_is_array_descriptor_type (type))
7601 && ada_array_arity (type) == 1)
7602 {
7603 struct type *elttype = ada_array_element_type (type, 1);
7604
7605 return ada_is_character_type (elttype);
7606 }
7607 else
7608 return 0;
7609 }
7610
7611
7612 /* True if TYPE is a struct type introduced by the compiler to force the
7613 alignment of a value. Such types have a single field with a
7614 distinctive name. */
7615
7616 int
7617 ada_is_aligner_type (struct type *type)
7618 {
7619 type = ada_check_typedef (type);
7620
7621 /* If we can find a parallel XVS type, then the XVS type should
7622 be used instead of this type. And hence, this is not an aligner
7623 type. */
7624 if (ada_find_parallel_type (type, "___XVS") != NULL)
7625 return 0;
7626
7627 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7628 && TYPE_NFIELDS (type) == 1
7629 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7630 }
7631
7632 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7633 the parallel type. */
7634
7635 struct type *
7636 ada_get_base_type (struct type *raw_type)
7637 {
7638 struct type *real_type_namer;
7639 struct type *raw_real_type;
7640
7641 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7642 return raw_type;
7643
7644 if (ada_is_aligner_type (raw_type))
7645 /* The encoding specifies that we should always use the aligner type.
7646 So, even if this aligner type has an associated XVS type, we should
7647 simply ignore it.
7648
7649 According to the compiler gurus, an XVS type parallel to an aligner
7650 type may exist because of a stabs limitation. In stabs, aligner
7651 types are empty because the field has a variable-sized type, and
7652 thus cannot actually be used as an aligner type. As a result,
7653 we need the associated parallel XVS type to decode the type.
7654 Since the policy in the compiler is to not change the internal
7655 representation based on the debugging info format, we sometimes
7656 end up having a redundant XVS type parallel to the aligner type. */
7657 return raw_type;
7658
7659 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7660 if (real_type_namer == NULL
7661 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7662 || TYPE_NFIELDS (real_type_namer) != 1)
7663 return raw_type;
7664
7665 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7666 if (raw_real_type == NULL)
7667 return raw_type;
7668 else
7669 return raw_real_type;
7670 }
7671
7672 /* The type of value designated by TYPE, with all aligners removed. */
7673
7674 struct type *
7675 ada_aligned_type (struct type *type)
7676 {
7677 if (ada_is_aligner_type (type))
7678 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7679 else
7680 return ada_get_base_type (type);
7681 }
7682
7683
7684 /* The address of the aligned value in an object at address VALADDR
7685 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7686
7687 const gdb_byte *
7688 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7689 {
7690 if (ada_is_aligner_type (type))
7691 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7692 valaddr +
7693 TYPE_FIELD_BITPOS (type,
7694 0) / TARGET_CHAR_BIT);
7695 else
7696 return valaddr;
7697 }
7698
7699
7700
7701 /* The printed representation of an enumeration literal with encoded
7702 name NAME. The value is good to the next call of ada_enum_name. */
7703 const char *
7704 ada_enum_name (const char *name)
7705 {
7706 static char *result;
7707 static size_t result_len = 0;
7708 char *tmp;
7709
7710 /* First, unqualify the enumeration name:
7711 1. Search for the last '.' character. If we find one, then skip
7712 all the preceeding characters, the unqualified name starts
7713 right after that dot.
7714 2. Otherwise, we may be debugging on a target where the compiler
7715 translates dots into "__". Search forward for double underscores,
7716 but stop searching when we hit an overloading suffix, which is
7717 of the form "__" followed by digits. */
7718
7719 tmp = strrchr (name, '.');
7720 if (tmp != NULL)
7721 name = tmp + 1;
7722 else
7723 {
7724 while ((tmp = strstr (name, "__")) != NULL)
7725 {
7726 if (isdigit (tmp[2]))
7727 break;
7728 else
7729 name = tmp + 2;
7730 }
7731 }
7732
7733 if (name[0] == 'Q')
7734 {
7735 int v;
7736 if (name[1] == 'U' || name[1] == 'W')
7737 {
7738 if (sscanf (name + 2, "%x", &v) != 1)
7739 return name;
7740 }
7741 else
7742 return name;
7743
7744 GROW_VECT (result, result_len, 16);
7745 if (isascii (v) && isprint (v))
7746 xsnprintf (result, result_len, "'%c'", v);
7747 else if (name[1] == 'U')
7748 xsnprintf (result, result_len, "[\"%02x\"]", v);
7749 else
7750 xsnprintf (result, result_len, "[\"%04x\"]", v);
7751
7752 return result;
7753 }
7754 else
7755 {
7756 tmp = strstr (name, "__");
7757 if (tmp == NULL)
7758 tmp = strstr (name, "$");
7759 if (tmp != NULL)
7760 {
7761 GROW_VECT (result, result_len, tmp - name + 1);
7762 strncpy (result, name, tmp - name);
7763 result[tmp - name] = '\0';
7764 return result;
7765 }
7766
7767 return name;
7768 }
7769 }
7770
7771 /* Evaluate the subexpression of EXP starting at *POS as for
7772 evaluate_type, updating *POS to point just past the evaluated
7773 expression. */
7774
7775 static struct value *
7776 evaluate_subexp_type (struct expression *exp, int *pos)
7777 {
7778 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7779 }
7780
7781 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7782 value it wraps. */
7783
7784 static struct value *
7785 unwrap_value (struct value *val)
7786 {
7787 struct type *type = ada_check_typedef (value_type (val));
7788 if (ada_is_aligner_type (type))
7789 {
7790 struct value *v = ada_value_struct_elt (val, "F", 0);
7791 struct type *val_type = ada_check_typedef (value_type (v));
7792 if (ada_type_name (val_type) == NULL)
7793 TYPE_NAME (val_type) = ada_type_name (type);
7794
7795 return unwrap_value (v);
7796 }
7797 else
7798 {
7799 struct type *raw_real_type =
7800 ada_check_typedef (ada_get_base_type (type));
7801
7802 if (type == raw_real_type)
7803 return val;
7804
7805 return
7806 coerce_unspec_val_to_type
7807 (val, ada_to_fixed_type (raw_real_type, 0,
7808 value_address (val),
7809 NULL, 1));
7810 }
7811 }
7812
7813 static struct value *
7814 cast_to_fixed (struct type *type, struct value *arg)
7815 {
7816 LONGEST val;
7817
7818 if (type == value_type (arg))
7819 return arg;
7820 else if (ada_is_fixed_point_type (value_type (arg)))
7821 val = ada_float_to_fixed (type,
7822 ada_fixed_to_float (value_type (arg),
7823 value_as_long (arg)));
7824 else
7825 {
7826 DOUBLEST argd = value_as_double (arg);
7827 val = ada_float_to_fixed (type, argd);
7828 }
7829
7830 return value_from_longest (type, val);
7831 }
7832
7833 static struct value *
7834 cast_from_fixed (struct type *type, struct value *arg)
7835 {
7836 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7837 value_as_long (arg));
7838 return value_from_double (type, val);
7839 }
7840
7841 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7842 return the converted value. */
7843
7844 static struct value *
7845 coerce_for_assign (struct type *type, struct value *val)
7846 {
7847 struct type *type2 = value_type (val);
7848 if (type == type2)
7849 return val;
7850
7851 type2 = ada_check_typedef (type2);
7852 type = ada_check_typedef (type);
7853
7854 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7855 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7856 {
7857 val = ada_value_ind (val);
7858 type2 = value_type (val);
7859 }
7860
7861 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7862 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7863 {
7864 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7865 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7866 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7867 error (_("Incompatible types in assignment"));
7868 deprecated_set_value_type (val, type);
7869 }
7870 return val;
7871 }
7872
7873 static struct value *
7874 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7875 {
7876 struct value *val;
7877 struct type *type1, *type2;
7878 LONGEST v, v1, v2;
7879
7880 arg1 = coerce_ref (arg1);
7881 arg2 = coerce_ref (arg2);
7882 type1 = base_type (ada_check_typedef (value_type (arg1)));
7883 type2 = base_type (ada_check_typedef (value_type (arg2)));
7884
7885 if (TYPE_CODE (type1) != TYPE_CODE_INT
7886 || TYPE_CODE (type2) != TYPE_CODE_INT)
7887 return value_binop (arg1, arg2, op);
7888
7889 switch (op)
7890 {
7891 case BINOP_MOD:
7892 case BINOP_DIV:
7893 case BINOP_REM:
7894 break;
7895 default:
7896 return value_binop (arg1, arg2, op);
7897 }
7898
7899 v2 = value_as_long (arg2);
7900 if (v2 == 0)
7901 error (_("second operand of %s must not be zero."), op_string (op));
7902
7903 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7904 return value_binop (arg1, arg2, op);
7905
7906 v1 = value_as_long (arg1);
7907 switch (op)
7908 {
7909 case BINOP_DIV:
7910 v = v1 / v2;
7911 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7912 v += v > 0 ? -1 : 1;
7913 break;
7914 case BINOP_REM:
7915 v = v1 % v2;
7916 if (v * v1 < 0)
7917 v -= v2;
7918 break;
7919 default:
7920 /* Should not reach this point. */
7921 v = 0;
7922 }
7923
7924 val = allocate_value (type1);
7925 store_unsigned_integer (value_contents_raw (val),
7926 TYPE_LENGTH (value_type (val)), v);
7927 return val;
7928 }
7929
7930 static int
7931 ada_value_equal (struct value *arg1, struct value *arg2)
7932 {
7933 if (ada_is_direct_array_type (value_type (arg1))
7934 || ada_is_direct_array_type (value_type (arg2)))
7935 {
7936 /* Automatically dereference any array reference before
7937 we attempt to perform the comparison. */
7938 arg1 = ada_coerce_ref (arg1);
7939 arg2 = ada_coerce_ref (arg2);
7940
7941 arg1 = ada_coerce_to_simple_array (arg1);
7942 arg2 = ada_coerce_to_simple_array (arg2);
7943 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7944 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7945 error (_("Attempt to compare array with non-array"));
7946 /* FIXME: The following works only for types whose
7947 representations use all bits (no padding or undefined bits)
7948 and do not have user-defined equality. */
7949 return
7950 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7951 && memcmp (value_contents (arg1), value_contents (arg2),
7952 TYPE_LENGTH (value_type (arg1))) == 0;
7953 }
7954 return value_equal (arg1, arg2);
7955 }
7956
7957 /* Total number of component associations in the aggregate starting at
7958 index PC in EXP. Assumes that index PC is the start of an
7959 OP_AGGREGATE. */
7960
7961 static int
7962 num_component_specs (struct expression *exp, int pc)
7963 {
7964 int n, m, i;
7965 m = exp->elts[pc + 1].longconst;
7966 pc += 3;
7967 n = 0;
7968 for (i = 0; i < m; i += 1)
7969 {
7970 switch (exp->elts[pc].opcode)
7971 {
7972 default:
7973 n += 1;
7974 break;
7975 case OP_CHOICES:
7976 n += exp->elts[pc + 1].longconst;
7977 break;
7978 }
7979 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7980 }
7981 return n;
7982 }
7983
7984 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7985 component of LHS (a simple array or a record), updating *POS past
7986 the expression, assuming that LHS is contained in CONTAINER. Does
7987 not modify the inferior's memory, nor does it modify LHS (unless
7988 LHS == CONTAINER). */
7989
7990 static void
7991 assign_component (struct value *container, struct value *lhs, LONGEST index,
7992 struct expression *exp, int *pos)
7993 {
7994 struct value *mark = value_mark ();
7995 struct value *elt;
7996 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7997 {
7998 struct value *index_val = value_from_longest (builtin_type_int32, index);
7999 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8000 }
8001 else
8002 {
8003 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8004 elt = ada_to_fixed_value (unwrap_value (elt));
8005 }
8006
8007 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8008 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8009 else
8010 value_assign_to_component (container, elt,
8011 ada_evaluate_subexp (NULL, exp, pos,
8012 EVAL_NORMAL));
8013
8014 value_free_to_mark (mark);
8015 }
8016
8017 /* Assuming that LHS represents an lvalue having a record or array
8018 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8019 of that aggregate's value to LHS, advancing *POS past the
8020 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8021 lvalue containing LHS (possibly LHS itself). Does not modify
8022 the inferior's memory, nor does it modify the contents of
8023 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8024
8025 static struct value *
8026 assign_aggregate (struct value *container,
8027 struct value *lhs, struct expression *exp,
8028 int *pos, enum noside noside)
8029 {
8030 struct type *lhs_type;
8031 int n = exp->elts[*pos+1].longconst;
8032 LONGEST low_index, high_index;
8033 int num_specs;
8034 LONGEST *indices;
8035 int max_indices, num_indices;
8036 int is_array_aggregate;
8037 int i;
8038 struct value *mark = value_mark ();
8039
8040 *pos += 3;
8041 if (noside != EVAL_NORMAL)
8042 {
8043 int i;
8044 for (i = 0; i < n; i += 1)
8045 ada_evaluate_subexp (NULL, exp, pos, noside);
8046 return container;
8047 }
8048
8049 container = ada_coerce_ref (container);
8050 if (ada_is_direct_array_type (value_type (container)))
8051 container = ada_coerce_to_simple_array (container);
8052 lhs = ada_coerce_ref (lhs);
8053 if (!deprecated_value_modifiable (lhs))
8054 error (_("Left operand of assignment is not a modifiable lvalue."));
8055
8056 lhs_type = value_type (lhs);
8057 if (ada_is_direct_array_type (lhs_type))
8058 {
8059 lhs = ada_coerce_to_simple_array (lhs);
8060 lhs_type = value_type (lhs);
8061 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8062 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8063 is_array_aggregate = 1;
8064 }
8065 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8066 {
8067 low_index = 0;
8068 high_index = num_visible_fields (lhs_type) - 1;
8069 is_array_aggregate = 0;
8070 }
8071 else
8072 error (_("Left-hand side must be array or record."));
8073
8074 num_specs = num_component_specs (exp, *pos - 3);
8075 max_indices = 4 * num_specs + 4;
8076 indices = alloca (max_indices * sizeof (indices[0]));
8077 indices[0] = indices[1] = low_index - 1;
8078 indices[2] = indices[3] = high_index + 1;
8079 num_indices = 4;
8080
8081 for (i = 0; i < n; i += 1)
8082 {
8083 switch (exp->elts[*pos].opcode)
8084 {
8085 case OP_CHOICES:
8086 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8087 &num_indices, max_indices,
8088 low_index, high_index);
8089 break;
8090 case OP_POSITIONAL:
8091 aggregate_assign_positional (container, lhs, exp, pos, indices,
8092 &num_indices, max_indices,
8093 low_index, high_index);
8094 break;
8095 case OP_OTHERS:
8096 if (i != n-1)
8097 error (_("Misplaced 'others' clause"));
8098 aggregate_assign_others (container, lhs, exp, pos, indices,
8099 num_indices, low_index, high_index);
8100 break;
8101 default:
8102 error (_("Internal error: bad aggregate clause"));
8103 }
8104 }
8105
8106 return container;
8107 }
8108
8109 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8110 construct at *POS, updating *POS past the construct, given that
8111 the positions are relative to lower bound LOW, where HIGH is the
8112 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8113 updating *NUM_INDICES as needed. CONTAINER is as for
8114 assign_aggregate. */
8115 static void
8116 aggregate_assign_positional (struct value *container,
8117 struct value *lhs, struct expression *exp,
8118 int *pos, LONGEST *indices, int *num_indices,
8119 int max_indices, LONGEST low, LONGEST high)
8120 {
8121 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8122
8123 if (ind - 1 == high)
8124 warning (_("Extra components in aggregate ignored."));
8125 if (ind <= high)
8126 {
8127 add_component_interval (ind, ind, indices, num_indices, max_indices);
8128 *pos += 3;
8129 assign_component (container, lhs, ind, exp, pos);
8130 }
8131 else
8132 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8133 }
8134
8135 /* Assign into the components of LHS indexed by the OP_CHOICES
8136 construct at *POS, updating *POS past the construct, given that
8137 the allowable indices are LOW..HIGH. Record the indices assigned
8138 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8139 needed. CONTAINER is as for assign_aggregate. */
8140 static void
8141 aggregate_assign_from_choices (struct value *container,
8142 struct value *lhs, struct expression *exp,
8143 int *pos, LONGEST *indices, int *num_indices,
8144 int max_indices, LONGEST low, LONGEST high)
8145 {
8146 int j;
8147 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8148 int choice_pos, expr_pc;
8149 int is_array = ada_is_direct_array_type (value_type (lhs));
8150
8151 choice_pos = *pos += 3;
8152
8153 for (j = 0; j < n_choices; j += 1)
8154 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8155 expr_pc = *pos;
8156 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8157
8158 for (j = 0; j < n_choices; j += 1)
8159 {
8160 LONGEST lower, upper;
8161 enum exp_opcode op = exp->elts[choice_pos].opcode;
8162 if (op == OP_DISCRETE_RANGE)
8163 {
8164 choice_pos += 1;
8165 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8166 EVAL_NORMAL));
8167 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8168 EVAL_NORMAL));
8169 }
8170 else if (is_array)
8171 {
8172 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8173 EVAL_NORMAL));
8174 upper = lower;
8175 }
8176 else
8177 {
8178 int ind;
8179 char *name;
8180 switch (op)
8181 {
8182 case OP_NAME:
8183 name = &exp->elts[choice_pos + 2].string;
8184 break;
8185 case OP_VAR_VALUE:
8186 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8187 break;
8188 default:
8189 error (_("Invalid record component association."));
8190 }
8191 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8192 ind = 0;
8193 if (! find_struct_field (name, value_type (lhs), 0,
8194 NULL, NULL, NULL, NULL, &ind))
8195 error (_("Unknown component name: %s."), name);
8196 lower = upper = ind;
8197 }
8198
8199 if (lower <= upper && (lower < low || upper > high))
8200 error (_("Index in component association out of bounds."));
8201
8202 add_component_interval (lower, upper, indices, num_indices,
8203 max_indices);
8204 while (lower <= upper)
8205 {
8206 int pos1;
8207 pos1 = expr_pc;
8208 assign_component (container, lhs, lower, exp, &pos1);
8209 lower += 1;
8210 }
8211 }
8212 }
8213
8214 /* Assign the value of the expression in the OP_OTHERS construct in
8215 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8216 have not been previously assigned. The index intervals already assigned
8217 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8218 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8219 static void
8220 aggregate_assign_others (struct value *container,
8221 struct value *lhs, struct expression *exp,
8222 int *pos, LONGEST *indices, int num_indices,
8223 LONGEST low, LONGEST high)
8224 {
8225 int i;
8226 int expr_pc = *pos+1;
8227
8228 for (i = 0; i < num_indices - 2; i += 2)
8229 {
8230 LONGEST ind;
8231 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8232 {
8233 int pos;
8234 pos = expr_pc;
8235 assign_component (container, lhs, ind, exp, &pos);
8236 }
8237 }
8238 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8239 }
8240
8241 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8242 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8243 modifying *SIZE as needed. It is an error if *SIZE exceeds
8244 MAX_SIZE. The resulting intervals do not overlap. */
8245 static void
8246 add_component_interval (LONGEST low, LONGEST high,
8247 LONGEST* indices, int *size, int max_size)
8248 {
8249 int i, j;
8250 for (i = 0; i < *size; i += 2) {
8251 if (high >= indices[i] && low <= indices[i + 1])
8252 {
8253 int kh;
8254 for (kh = i + 2; kh < *size; kh += 2)
8255 if (high < indices[kh])
8256 break;
8257 if (low < indices[i])
8258 indices[i] = low;
8259 indices[i + 1] = indices[kh - 1];
8260 if (high > indices[i + 1])
8261 indices[i + 1] = high;
8262 memcpy (indices + i + 2, indices + kh, *size - kh);
8263 *size -= kh - i - 2;
8264 return;
8265 }
8266 else if (high < indices[i])
8267 break;
8268 }
8269
8270 if (*size == max_size)
8271 error (_("Internal error: miscounted aggregate components."));
8272 *size += 2;
8273 for (j = *size-1; j >= i+2; j -= 1)
8274 indices[j] = indices[j - 2];
8275 indices[i] = low;
8276 indices[i + 1] = high;
8277 }
8278
8279 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8280 is different. */
8281
8282 static struct value *
8283 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8284 {
8285 if (type == ada_check_typedef (value_type (arg2)))
8286 return arg2;
8287
8288 if (ada_is_fixed_point_type (type))
8289 return (cast_to_fixed (type, arg2));
8290
8291 if (ada_is_fixed_point_type (value_type (arg2)))
8292 return cast_from_fixed (type, arg2);
8293
8294 return value_cast (type, arg2);
8295 }
8296
8297 /* Evaluating Ada expressions, and printing their result.
8298 ------------------------------------------------------
8299
8300 We usually evaluate an Ada expression in order to print its value.
8301 We also evaluate an expression in order to print its type, which
8302 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8303 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8304 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8305 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8306 similar.
8307
8308 Evaluating expressions is a little more complicated for Ada entities
8309 than it is for entities in languages such as C. The main reason for
8310 this is that Ada provides types whose definition might be dynamic.
8311 One example of such types is variant records. Or another example
8312 would be an array whose bounds can only be known at run time.
8313
8314 The following description is a general guide as to what should be
8315 done (and what should NOT be done) in order to evaluate an expression
8316 involving such types, and when. This does not cover how the semantic
8317 information is encoded by GNAT as this is covered separatly. For the
8318 document used as the reference for the GNAT encoding, see exp_dbug.ads
8319 in the GNAT sources.
8320
8321 Ideally, we should embed each part of this description next to its
8322 associated code. Unfortunately, the amount of code is so vast right
8323 now that it's hard to see whether the code handling a particular
8324 situation might be duplicated or not. One day, when the code is
8325 cleaned up, this guide might become redundant with the comments
8326 inserted in the code, and we might want to remove it.
8327
8328 When evaluating Ada expressions, the tricky issue is that they may
8329 reference entities whose type contents and size are not statically
8330 known. Consider for instance a variant record:
8331
8332 type Rec (Empty : Boolean := True) is record
8333 case Empty is
8334 when True => null;
8335 when False => Value : Integer;
8336 end case;
8337 end record;
8338 Yes : Rec := (Empty => False, Value => 1);
8339 No : Rec := (empty => True);
8340
8341 The size and contents of that record depends on the value of the
8342 descriminant (Rec.Empty). At this point, neither the debugging
8343 information nor the associated type structure in GDB are able to
8344 express such dynamic types. So what the debugger does is to create
8345 "fixed" versions of the type that applies to the specific object.
8346 We also informally refer to this opperation as "fixing" an object,
8347 which means creating its associated fixed type.
8348
8349 Example: when printing the value of variable "Yes" above, its fixed
8350 type would look like this:
8351
8352 type Rec is record
8353 Empty : Boolean;
8354 Value : Integer;
8355 end record;
8356
8357 On the other hand, if we printed the value of "No", its fixed type
8358 would become:
8359
8360 type Rec is record
8361 Empty : Boolean;
8362 end record;
8363
8364 Things become a little more complicated when trying to fix an entity
8365 with a dynamic type that directly contains another dynamic type,
8366 such as an array of variant records, for instance. There are
8367 two possible cases: Arrays, and records.
8368
8369 Arrays are a little simpler to handle, because the same amount of
8370 memory is allocated for each element of the array, even if the amount
8371 of space used by each element changes from element to element.
8372 Consider for instance the following array of type Rec:
8373
8374 type Rec_Array is array (1 .. 2) of Rec;
8375
8376 The type structure in GDB describes an array in terms of its
8377 bounds, and the type of its elements. By design, all elements
8378 in the array have the same type. So we cannot use a fixed type
8379 for the array elements in this case, since the fixed type depends
8380 on the actual value of each element.
8381
8382 Fortunately, what happens in practice is that each element of
8383 the array has the same size, which is the maximum size that
8384 might be needed in order to hold an object of the element type.
8385 And the compiler shows it in the debugging information by wrapping
8386 the array element inside a private PAD type. This type should not
8387 be shown to the user, and must be "unwrap"'ed before printing. Note
8388 that we also use the adjective "aligner" in our code to designate
8389 these wrapper types.
8390
8391 These wrapper types should have a constant size, which is the size
8392 of each element of the array. In the case when the size is statically
8393 known, the PAD type will already have the right size, and the array
8394 element type should remain unfixed. But there are cases when
8395 this size is not statically known. For instance, assuming that
8396 "Five" is an integer variable:
8397
8398 type Dynamic is array (1 .. Five) of Integer;
8399 type Wrapper (Has_Length : Boolean := False) is record
8400 Data : Dynamic;
8401 case Has_Length is
8402 when True => Length : Integer;
8403 when False => null;
8404 end case;
8405 end record;
8406 type Wrapper_Array is array (1 .. 2) of Wrapper;
8407
8408 Hello : Wrapper_Array := (others => (Has_Length => True,
8409 Data => (others => 17),
8410 Length => 1));
8411
8412
8413 The debugging info would describe variable Hello as being an
8414 array of a PAD type. The size of that PAD type is not statically
8415 known, but can be determined using a parallel XVZ variable.
8416 In that case, a copy of the PAD type with the correct size should
8417 be used for the fixed array.
8418
8419 However, things are slightly different in the case of dynamic
8420 record types. In this case, in order to compute the associated
8421 fixed type, we need to determine the size and offset of each of
8422 its components. This, in turn, requires us to compute the fixed
8423 type of each of these components.
8424
8425 Consider for instance the example:
8426
8427 type Bounded_String (Max_Size : Natural) is record
8428 Str : String (1 .. Max_Size);
8429 Length : Natural;
8430 end record;
8431 My_String : Bounded_String (Max_Size => 10);
8432
8433 In that case, the position of field "Length" depends on the size
8434 of field Str, which itself depends on the value of the Max_Size
8435 discriminant. In order to fix the type of variable My_String,
8436 we need to fix the type of field Str. Therefore, fixing a variant
8437 record requires us to fix each of its components.
8438
8439 However, if a component does not have a dynamic size, the component
8440 should not be fixed. In particular, fields that use a PAD type
8441 should not fixed. Here is an example where this might happen
8442 (assuming type Rec above):
8443
8444 type Container (Big : Boolean) is record
8445 First : Rec;
8446 After : Integer;
8447 case Big is
8448 when True => Another : Integer;
8449 when False => null;
8450 end case;
8451 end record;
8452 My_Container : Container := (Big => False,
8453 First => (Empty => True),
8454 After => 42);
8455
8456 In that example, the compiler creates a PAD type for component First,
8457 whose size is constant, and then positions the component After just
8458 right after it. The offset of component After is therefore constant
8459 in this case.
8460
8461 The debugger computes the position of each field based on an algorithm
8462 that uses, among other things, the actual position and size of the field
8463 preceding it. Let's now imagine that the user is trying to print the
8464 value of My_Container. If the type fixing was recursive, we would
8465 end up computing the offset of field After based on the size of the
8466 fixed version of field First. And since in our example First has
8467 only one actual field, the size of the fixed type is actually smaller
8468 than the amount of space allocated to that field, and thus we would
8469 compute the wrong offset of field After.
8470
8471 Unfortunately, we need to watch out for dynamic components of variant
8472 records (identified by the ___XVL suffix in the component name).
8473 Even if the target type is a PAD type, the size of that type might
8474 not be statically known. So the PAD type needs to be unwrapped and
8475 the resulting type needs to be fixed. Otherwise, we might end up
8476 with the wrong size for our component. This can be observed with
8477 the following type declarations:
8478
8479 type Octal is new Integer range 0 .. 7;
8480 type Octal_Array is array (Positive range <>) of Octal;
8481 pragma Pack (Octal_Array);
8482
8483 type Octal_Buffer (Size : Positive) is record
8484 Buffer : Octal_Array (1 .. Size);
8485 Length : Integer;
8486 end record;
8487
8488 In that case, Buffer is a PAD type whose size is unset and needs
8489 to be computed by fixing the unwrapped type.
8490
8491 Lastly, when should the sub-elements of a type that remained unfixed
8492 thus far, be actually fixed?
8493
8494 The answer is: Only when referencing that element. For instance
8495 when selecting one component of a record, this specific component
8496 should be fixed at that point in time. Or when printing the value
8497 of a record, each component should be fixed before its value gets
8498 printed. Similarly for arrays, the element of the array should be
8499 fixed when printing each element of the array, or when extracting
8500 one element out of that array. On the other hand, fixing should
8501 not be performed on the elements when taking a slice of an array!
8502
8503 Note that one of the side-effects of miscomputing the offset and
8504 size of each field is that we end up also miscomputing the size
8505 of the containing type. This can have adverse results when computing
8506 the value of an entity. GDB fetches the value of an entity based
8507 on the size of its type, and thus a wrong size causes GDB to fetch
8508 the wrong amount of memory. In the case where the computed size is
8509 too small, GDB fetches too little data to print the value of our
8510 entiry. Results in this case as unpredicatble, as we usually read
8511 past the buffer containing the data =:-o. */
8512
8513 /* Implement the evaluate_exp routine in the exp_descriptor structure
8514 for the Ada language. */
8515
8516 static struct value *
8517 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8518 int *pos, enum noside noside)
8519 {
8520 enum exp_opcode op;
8521 int tem, tem2, tem3;
8522 int pc;
8523 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8524 struct type *type;
8525 int nargs, oplen;
8526 struct value **argvec;
8527
8528 pc = *pos;
8529 *pos += 1;
8530 op = exp->elts[pc].opcode;
8531
8532 switch (op)
8533 {
8534 default:
8535 *pos -= 1;
8536 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8537 arg1 = unwrap_value (arg1);
8538
8539 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8540 then we need to perform the conversion manually, because
8541 evaluate_subexp_standard doesn't do it. This conversion is
8542 necessary in Ada because the different kinds of float/fixed
8543 types in Ada have different representations.
8544
8545 Similarly, we need to perform the conversion from OP_LONG
8546 ourselves. */
8547 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8548 arg1 = ada_value_cast (expect_type, arg1, noside);
8549
8550 return arg1;
8551
8552 case OP_STRING:
8553 {
8554 struct value *result;
8555 *pos -= 1;
8556 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8557 /* The result type will have code OP_STRING, bashed there from
8558 OP_ARRAY. Bash it back. */
8559 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8560 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8561 return result;
8562 }
8563
8564 case UNOP_CAST:
8565 (*pos) += 2;
8566 type = exp->elts[pc + 1].type;
8567 arg1 = evaluate_subexp (type, exp, pos, noside);
8568 if (noside == EVAL_SKIP)
8569 goto nosideret;
8570 arg1 = ada_value_cast (type, arg1, noside);
8571 return arg1;
8572
8573 case UNOP_QUAL:
8574 (*pos) += 2;
8575 type = exp->elts[pc + 1].type;
8576 return ada_evaluate_subexp (type, exp, pos, noside);
8577
8578 case BINOP_ASSIGN:
8579 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8580 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8581 {
8582 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8583 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8584 return arg1;
8585 return ada_value_assign (arg1, arg1);
8586 }
8587 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8588 except if the lhs of our assignment is a convenience variable.
8589 In the case of assigning to a convenience variable, the lhs
8590 should be exactly the result of the evaluation of the rhs. */
8591 type = value_type (arg1);
8592 if (VALUE_LVAL (arg1) == lval_internalvar)
8593 type = NULL;
8594 arg2 = evaluate_subexp (type, exp, pos, noside);
8595 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8596 return arg1;
8597 if (ada_is_fixed_point_type (value_type (arg1)))
8598 arg2 = cast_to_fixed (value_type (arg1), arg2);
8599 else if (ada_is_fixed_point_type (value_type (arg2)))
8600 error
8601 (_("Fixed-point values must be assigned to fixed-point variables"));
8602 else
8603 arg2 = coerce_for_assign (value_type (arg1), arg2);
8604 return ada_value_assign (arg1, arg2);
8605
8606 case BINOP_ADD:
8607 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8608 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8609 if (noside == EVAL_SKIP)
8610 goto nosideret;
8611 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8612 return (value_from_longest
8613 (value_type (arg1),
8614 value_as_long (arg1) + value_as_long (arg2)));
8615 if ((ada_is_fixed_point_type (value_type (arg1))
8616 || ada_is_fixed_point_type (value_type (arg2)))
8617 && value_type (arg1) != value_type (arg2))
8618 error (_("Operands of fixed-point addition must have the same type"));
8619 /* Do the addition, and cast the result to the type of the first
8620 argument. We cannot cast the result to a reference type, so if
8621 ARG1 is a reference type, find its underlying type. */
8622 type = value_type (arg1);
8623 while (TYPE_CODE (type) == TYPE_CODE_REF)
8624 type = TYPE_TARGET_TYPE (type);
8625 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8626 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8627
8628 case BINOP_SUB:
8629 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8630 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8631 if (noside == EVAL_SKIP)
8632 goto nosideret;
8633 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8634 return (value_from_longest
8635 (value_type (arg1),
8636 value_as_long (arg1) - value_as_long (arg2)));
8637 if ((ada_is_fixed_point_type (value_type (arg1))
8638 || ada_is_fixed_point_type (value_type (arg2)))
8639 && value_type (arg1) != value_type (arg2))
8640 error (_("Operands of fixed-point subtraction must have the same type"));
8641 /* Do the substraction, and cast the result to the type of the first
8642 argument. We cannot cast the result to a reference type, so if
8643 ARG1 is a reference type, find its underlying type. */
8644 type = value_type (arg1);
8645 while (TYPE_CODE (type) == TYPE_CODE_REF)
8646 type = TYPE_TARGET_TYPE (type);
8647 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8648 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8649
8650 case BINOP_MUL:
8651 case BINOP_DIV:
8652 case BINOP_REM:
8653 case BINOP_MOD:
8654 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8655 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8656 if (noside == EVAL_SKIP)
8657 goto nosideret;
8658 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8659 {
8660 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8661 return value_zero (value_type (arg1), not_lval);
8662 }
8663 else
8664 {
8665 type = builtin_type (exp->gdbarch)->builtin_double;
8666 if (ada_is_fixed_point_type (value_type (arg1)))
8667 arg1 = cast_from_fixed (type, arg1);
8668 if (ada_is_fixed_point_type (value_type (arg2)))
8669 arg2 = cast_from_fixed (type, arg2);
8670 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8671 return ada_value_binop (arg1, arg2, op);
8672 }
8673
8674 case BINOP_EQUAL:
8675 case BINOP_NOTEQUAL:
8676 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8677 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8678 if (noside == EVAL_SKIP)
8679 goto nosideret;
8680 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8681 tem = 0;
8682 else
8683 {
8684 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8685 tem = ada_value_equal (arg1, arg2);
8686 }
8687 if (op == BINOP_NOTEQUAL)
8688 tem = !tem;
8689 type = language_bool_type (exp->language_defn, exp->gdbarch);
8690 return value_from_longest (type, (LONGEST) tem);
8691
8692 case UNOP_NEG:
8693 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8694 if (noside == EVAL_SKIP)
8695 goto nosideret;
8696 else if (ada_is_fixed_point_type (value_type (arg1)))
8697 return value_cast (value_type (arg1), value_neg (arg1));
8698 else
8699 {
8700 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8701 return value_neg (arg1);
8702 }
8703
8704 case BINOP_LOGICAL_AND:
8705 case BINOP_LOGICAL_OR:
8706 case UNOP_LOGICAL_NOT:
8707 {
8708 struct value *val;
8709
8710 *pos -= 1;
8711 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8712 type = language_bool_type (exp->language_defn, exp->gdbarch);
8713 return value_cast (type, val);
8714 }
8715
8716 case BINOP_BITWISE_AND:
8717 case BINOP_BITWISE_IOR:
8718 case BINOP_BITWISE_XOR:
8719 {
8720 struct value *val;
8721
8722 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8723 *pos = pc;
8724 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8725
8726 return value_cast (value_type (arg1), val);
8727 }
8728
8729 case OP_VAR_VALUE:
8730 *pos -= 1;
8731
8732 if (noside == EVAL_SKIP)
8733 {
8734 *pos += 4;
8735 goto nosideret;
8736 }
8737 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8738 /* Only encountered when an unresolved symbol occurs in a
8739 context other than a function call, in which case, it is
8740 invalid. */
8741 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8742 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8743 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8744 {
8745 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8746 if (ada_is_tagged_type (type, 0))
8747 {
8748 /* Tagged types are a little special in the fact that the real
8749 type is dynamic and can only be determined by inspecting the
8750 object's tag. This means that we need to get the object's
8751 value first (EVAL_NORMAL) and then extract the actual object
8752 type from its tag.
8753
8754 Note that we cannot skip the final step where we extract
8755 the object type from its tag, because the EVAL_NORMAL phase
8756 results in dynamic components being resolved into fixed ones.
8757 This can cause problems when trying to print the type
8758 description of tagged types whose parent has a dynamic size:
8759 We use the type name of the "_parent" component in order
8760 to print the name of the ancestor type in the type description.
8761 If that component had a dynamic size, the resolution into
8762 a fixed type would result in the loss of that type name,
8763 thus preventing us from printing the name of the ancestor
8764 type in the type description. */
8765 struct type *actual_type;
8766
8767 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8768 actual_type = type_from_tag (ada_value_tag (arg1));
8769 if (actual_type == NULL)
8770 /* If, for some reason, we were unable to determine
8771 the actual type from the tag, then use the static
8772 approximation that we just computed as a fallback.
8773 This can happen if the debugging information is
8774 incomplete, for instance. */
8775 actual_type = type;
8776
8777 return value_zero (actual_type, not_lval);
8778 }
8779
8780 *pos += 4;
8781 return value_zero
8782 (to_static_fixed_type
8783 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8784 not_lval);
8785 }
8786 else
8787 {
8788 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8789 arg1 = unwrap_value (arg1);
8790 return ada_to_fixed_value (arg1);
8791 }
8792
8793 case OP_FUNCALL:
8794 (*pos) += 2;
8795
8796 /* Allocate arg vector, including space for the function to be
8797 called in argvec[0] and a terminating NULL. */
8798 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8799 argvec =
8800 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8801
8802 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8803 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8804 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8805 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8806 else
8807 {
8808 for (tem = 0; tem <= nargs; tem += 1)
8809 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8810 argvec[tem] = 0;
8811
8812 if (noside == EVAL_SKIP)
8813 goto nosideret;
8814 }
8815
8816 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8817 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8818 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8819 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8820 /* This is a packed array that has already been fixed, and
8821 therefore already coerced to a simple array. Nothing further
8822 to do. */
8823 ;
8824 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8825 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8826 && VALUE_LVAL (argvec[0]) == lval_memory))
8827 argvec[0] = value_addr (argvec[0]);
8828
8829 type = ada_check_typedef (value_type (argvec[0]));
8830 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8831 {
8832 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8833 {
8834 case TYPE_CODE_FUNC:
8835 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8836 break;
8837 case TYPE_CODE_ARRAY:
8838 break;
8839 case TYPE_CODE_STRUCT:
8840 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8841 argvec[0] = ada_value_ind (argvec[0]);
8842 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8843 break;
8844 default:
8845 error (_("cannot subscript or call something of type `%s'"),
8846 ada_type_name (value_type (argvec[0])));
8847 break;
8848 }
8849 }
8850
8851 switch (TYPE_CODE (type))
8852 {
8853 case TYPE_CODE_FUNC:
8854 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8855 return allocate_value (TYPE_TARGET_TYPE (type));
8856 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8857 case TYPE_CODE_STRUCT:
8858 {
8859 int arity;
8860
8861 arity = ada_array_arity (type);
8862 type = ada_array_element_type (type, nargs);
8863 if (type == NULL)
8864 error (_("cannot subscript or call a record"));
8865 if (arity != nargs)
8866 error (_("wrong number of subscripts; expecting %d"), arity);
8867 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8868 return value_zero (ada_aligned_type (type), lval_memory);
8869 return
8870 unwrap_value (ada_value_subscript
8871 (argvec[0], nargs, argvec + 1));
8872 }
8873 case TYPE_CODE_ARRAY:
8874 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8875 {
8876 type = ada_array_element_type (type, nargs);
8877 if (type == NULL)
8878 error (_("element type of array unknown"));
8879 else
8880 return value_zero (ada_aligned_type (type), lval_memory);
8881 }
8882 return
8883 unwrap_value (ada_value_subscript
8884 (ada_coerce_to_simple_array (argvec[0]),
8885 nargs, argvec + 1));
8886 case TYPE_CODE_PTR: /* Pointer to array */
8887 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8888 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8889 {
8890 type = ada_array_element_type (type, nargs);
8891 if (type == NULL)
8892 error (_("element type of array unknown"));
8893 else
8894 return value_zero (ada_aligned_type (type), lval_memory);
8895 }
8896 return
8897 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8898 nargs, argvec + 1));
8899
8900 default:
8901 error (_("Attempt to index or call something other than an "
8902 "array or function"));
8903 }
8904
8905 case TERNOP_SLICE:
8906 {
8907 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8908 struct value *low_bound_val =
8909 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8910 struct value *high_bound_val =
8911 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8912 LONGEST low_bound;
8913 LONGEST high_bound;
8914 low_bound_val = coerce_ref (low_bound_val);
8915 high_bound_val = coerce_ref (high_bound_val);
8916 low_bound = pos_atr (low_bound_val);
8917 high_bound = pos_atr (high_bound_val);
8918
8919 if (noside == EVAL_SKIP)
8920 goto nosideret;
8921
8922 /* If this is a reference to an aligner type, then remove all
8923 the aligners. */
8924 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8925 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8926 TYPE_TARGET_TYPE (value_type (array)) =
8927 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8928
8929 if (ada_is_packed_array_type (value_type (array)))
8930 error (_("cannot slice a packed array"));
8931
8932 /* If this is a reference to an array or an array lvalue,
8933 convert to a pointer. */
8934 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8935 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8936 && VALUE_LVAL (array) == lval_memory))
8937 array = value_addr (array);
8938
8939 if (noside == EVAL_AVOID_SIDE_EFFECTS
8940 && ada_is_array_descriptor_type (ada_check_typedef
8941 (value_type (array))))
8942 return empty_array (ada_type_of_array (array, 0), low_bound);
8943
8944 array = ada_coerce_to_simple_array_ptr (array);
8945
8946 /* If we have more than one level of pointer indirection,
8947 dereference the value until we get only one level. */
8948 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8949 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8950 == TYPE_CODE_PTR))
8951 array = value_ind (array);
8952
8953 /* Make sure we really do have an array type before going further,
8954 to avoid a SEGV when trying to get the index type or the target
8955 type later down the road if the debug info generated by
8956 the compiler is incorrect or incomplete. */
8957 if (!ada_is_simple_array_type (value_type (array)))
8958 error (_("cannot take slice of non-array"));
8959
8960 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8961 {
8962 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8963 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8964 low_bound);
8965 else
8966 {
8967 struct type *arr_type0 =
8968 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8969 NULL, 1);
8970 return ada_value_slice_from_ptr (array, arr_type0,
8971 longest_to_int (low_bound),
8972 longest_to_int (high_bound));
8973 }
8974 }
8975 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8976 return array;
8977 else if (high_bound < low_bound)
8978 return empty_array (value_type (array), low_bound);
8979 else
8980 return ada_value_slice (array, longest_to_int (low_bound),
8981 longest_to_int (high_bound));
8982 }
8983
8984 case UNOP_IN_RANGE:
8985 (*pos) += 2;
8986 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8987 type = check_typedef (exp->elts[pc + 1].type);
8988
8989 if (noside == EVAL_SKIP)
8990 goto nosideret;
8991
8992 switch (TYPE_CODE (type))
8993 {
8994 default:
8995 lim_warning (_("Membership test incompletely implemented; "
8996 "always returns true"));
8997 type = language_bool_type (exp->language_defn, exp->gdbarch);
8998 return value_from_longest (type, (LONGEST) 1);
8999
9000 case TYPE_CODE_RANGE:
9001 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9002 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9003 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9004 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9005 type = language_bool_type (exp->language_defn, exp->gdbarch);
9006 return
9007 value_from_longest (type,
9008 (value_less (arg1, arg3)
9009 || value_equal (arg1, arg3))
9010 && (value_less (arg2, arg1)
9011 || value_equal (arg2, arg1)));
9012 }
9013
9014 case BINOP_IN_BOUNDS:
9015 (*pos) += 2;
9016 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9017 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9018
9019 if (noside == EVAL_SKIP)
9020 goto nosideret;
9021
9022 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9023 {
9024 type = language_bool_type (exp->language_defn, exp->gdbarch);
9025 return value_zero (type, not_lval);
9026 }
9027
9028 tem = longest_to_int (exp->elts[pc + 1].longconst);
9029
9030 type = ada_index_type (value_type (arg2), tem, "range");
9031 if (!type)
9032 type = value_type (arg1);
9033
9034 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9035 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9036
9037 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9038 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9039 type = language_bool_type (exp->language_defn, exp->gdbarch);
9040 return
9041 value_from_longest (type,
9042 (value_less (arg1, arg3)
9043 || value_equal (arg1, arg3))
9044 && (value_less (arg2, arg1)
9045 || value_equal (arg2, arg1)));
9046
9047 case TERNOP_IN_RANGE:
9048 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9049 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9050 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9051
9052 if (noside == EVAL_SKIP)
9053 goto nosideret;
9054
9055 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9056 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9057 type = language_bool_type (exp->language_defn, exp->gdbarch);
9058 return
9059 value_from_longest (type,
9060 (value_less (arg1, arg3)
9061 || value_equal (arg1, arg3))
9062 && (value_less (arg2, arg1)
9063 || value_equal (arg2, arg1)));
9064
9065 case OP_ATR_FIRST:
9066 case OP_ATR_LAST:
9067 case OP_ATR_LENGTH:
9068 {
9069 struct type *type_arg;
9070 if (exp->elts[*pos].opcode == OP_TYPE)
9071 {
9072 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9073 arg1 = NULL;
9074 type_arg = check_typedef (exp->elts[pc + 2].type);
9075 }
9076 else
9077 {
9078 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9079 type_arg = NULL;
9080 }
9081
9082 if (exp->elts[*pos].opcode != OP_LONG)
9083 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9084 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9085 *pos += 4;
9086
9087 if (noside == EVAL_SKIP)
9088 goto nosideret;
9089
9090 if (type_arg == NULL)
9091 {
9092 arg1 = ada_coerce_ref (arg1);
9093
9094 if (ada_is_packed_array_type (value_type (arg1)))
9095 arg1 = ada_coerce_to_simple_array (arg1);
9096
9097 type = ada_index_type (value_type (arg1), tem,
9098 ada_attribute_name (op));
9099 if (type == NULL)
9100 type = builtin_type (exp->gdbarch)->builtin_int;
9101
9102 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9103 return allocate_value (type);
9104
9105 switch (op)
9106 {
9107 default: /* Should never happen. */
9108 error (_("unexpected attribute encountered"));
9109 case OP_ATR_FIRST:
9110 return value_from_longest
9111 (type, ada_array_bound (arg1, tem, 0));
9112 case OP_ATR_LAST:
9113 return value_from_longest
9114 (type, ada_array_bound (arg1, tem, 1));
9115 case OP_ATR_LENGTH:
9116 return value_from_longest
9117 (type, ada_array_length (arg1, tem));
9118 }
9119 }
9120 else if (discrete_type_p (type_arg))
9121 {
9122 struct type *range_type;
9123 char *name = ada_type_name (type_arg);
9124 range_type = NULL;
9125 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9126 range_type = to_fixed_range_type (name, NULL, type_arg);
9127 if (range_type == NULL)
9128 range_type = type_arg;
9129 switch (op)
9130 {
9131 default:
9132 error (_("unexpected attribute encountered"));
9133 case OP_ATR_FIRST:
9134 return value_from_longest
9135 (range_type, discrete_type_low_bound (range_type));
9136 case OP_ATR_LAST:
9137 return value_from_longest
9138 (range_type, discrete_type_high_bound (range_type));
9139 case OP_ATR_LENGTH:
9140 error (_("the 'length attribute applies only to array types"));
9141 }
9142 }
9143 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9144 error (_("unimplemented type attribute"));
9145 else
9146 {
9147 LONGEST low, high;
9148
9149 if (ada_is_packed_array_type (type_arg))
9150 type_arg = decode_packed_array_type (type_arg);
9151
9152 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9153 if (type == NULL)
9154 type = builtin_type (exp->gdbarch)->builtin_int;
9155
9156 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9157 return allocate_value (type);
9158
9159 switch (op)
9160 {
9161 default:
9162 error (_("unexpected attribute encountered"));
9163 case OP_ATR_FIRST:
9164 low = ada_array_bound_from_type (type_arg, tem, 0);
9165 return value_from_longest (type, low);
9166 case OP_ATR_LAST:
9167 high = ada_array_bound_from_type (type_arg, tem, 1);
9168 return value_from_longest (type, high);
9169 case OP_ATR_LENGTH:
9170 low = ada_array_bound_from_type (type_arg, tem, 0);
9171 high = ada_array_bound_from_type (type_arg, tem, 1);
9172 return value_from_longest (type, high - low + 1);
9173 }
9174 }
9175 }
9176
9177 case OP_ATR_TAG:
9178 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9179 if (noside == EVAL_SKIP)
9180 goto nosideret;
9181
9182 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9183 return value_zero (ada_tag_type (arg1), not_lval);
9184
9185 return ada_value_tag (arg1);
9186
9187 case OP_ATR_MIN:
9188 case OP_ATR_MAX:
9189 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9190 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9191 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9192 if (noside == EVAL_SKIP)
9193 goto nosideret;
9194 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9195 return value_zero (value_type (arg1), not_lval);
9196 else
9197 {
9198 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9199 return value_binop (arg1, arg2,
9200 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9201 }
9202
9203 case OP_ATR_MODULUS:
9204 {
9205 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9206 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9207
9208 if (noside == EVAL_SKIP)
9209 goto nosideret;
9210
9211 if (!ada_is_modular_type (type_arg))
9212 error (_("'modulus must be applied to modular type"));
9213
9214 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9215 ada_modulus (type_arg));
9216 }
9217
9218
9219 case OP_ATR_POS:
9220 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9221 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9222 if (noside == EVAL_SKIP)
9223 goto nosideret;
9224 type = builtin_type (exp->gdbarch)->builtin_int;
9225 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9226 return value_zero (type, not_lval);
9227 else
9228 return value_pos_atr (type, arg1);
9229
9230 case OP_ATR_SIZE:
9231 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9232 type = value_type (arg1);
9233
9234 /* If the argument is a reference, then dereference its type, since
9235 the user is really asking for the size of the actual object,
9236 not the size of the pointer. */
9237 if (TYPE_CODE (type) == TYPE_CODE_REF)
9238 type = TYPE_TARGET_TYPE (type);
9239
9240 if (noside == EVAL_SKIP)
9241 goto nosideret;
9242 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9243 return value_zero (builtin_type_int32, not_lval);
9244 else
9245 return value_from_longest (builtin_type_int32,
9246 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9247
9248 case OP_ATR_VAL:
9249 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9250 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9251 type = exp->elts[pc + 2].type;
9252 if (noside == EVAL_SKIP)
9253 goto nosideret;
9254 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9255 return value_zero (type, not_lval);
9256 else
9257 return value_val_atr (type, arg1);
9258
9259 case BINOP_EXP:
9260 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9261 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9262 if (noside == EVAL_SKIP)
9263 goto nosideret;
9264 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9265 return value_zero (value_type (arg1), not_lval);
9266 else
9267 {
9268 /* For integer exponentiation operations,
9269 only promote the first argument. */
9270 if (is_integral_type (value_type (arg2)))
9271 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9272 else
9273 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9274
9275 return value_binop (arg1, arg2, op);
9276 }
9277
9278 case UNOP_PLUS:
9279 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9280 if (noside == EVAL_SKIP)
9281 goto nosideret;
9282 else
9283 return arg1;
9284
9285 case UNOP_ABS:
9286 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9287 if (noside == EVAL_SKIP)
9288 goto nosideret;
9289 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9290 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9291 return value_neg (arg1);
9292 else
9293 return arg1;
9294
9295 case UNOP_IND:
9296 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9297 if (noside == EVAL_SKIP)
9298 goto nosideret;
9299 type = ada_check_typedef (value_type (arg1));
9300 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9301 {
9302 if (ada_is_array_descriptor_type (type))
9303 /* GDB allows dereferencing GNAT array descriptors. */
9304 {
9305 struct type *arrType = ada_type_of_array (arg1, 0);
9306 if (arrType == NULL)
9307 error (_("Attempt to dereference null array pointer."));
9308 return value_at_lazy (arrType, 0);
9309 }
9310 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9311 || TYPE_CODE (type) == TYPE_CODE_REF
9312 /* In C you can dereference an array to get the 1st elt. */
9313 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9314 {
9315 type = to_static_fixed_type
9316 (ada_aligned_type
9317 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9318 check_size (type);
9319 return value_zero (type, lval_memory);
9320 }
9321 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9322 {
9323 /* GDB allows dereferencing an int. */
9324 if (expect_type == NULL)
9325 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9326 lval_memory);
9327 else
9328 {
9329 expect_type =
9330 to_static_fixed_type (ada_aligned_type (expect_type));
9331 return value_zero (expect_type, lval_memory);
9332 }
9333 }
9334 else
9335 error (_("Attempt to take contents of a non-pointer value."));
9336 }
9337 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9338 type = ada_check_typedef (value_type (arg1));
9339
9340 if (TYPE_CODE (type) == TYPE_CODE_INT)
9341 /* GDB allows dereferencing an int. If we were given
9342 the expect_type, then use that as the target type.
9343 Otherwise, assume that the target type is an int. */
9344 {
9345 if (expect_type != NULL)
9346 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9347 arg1));
9348 else
9349 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9350 (CORE_ADDR) value_as_address (arg1));
9351 }
9352
9353 if (ada_is_array_descriptor_type (type))
9354 /* GDB allows dereferencing GNAT array descriptors. */
9355 return ada_coerce_to_simple_array (arg1);
9356 else
9357 return ada_value_ind (arg1);
9358
9359 case STRUCTOP_STRUCT:
9360 tem = longest_to_int (exp->elts[pc + 1].longconst);
9361 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9362 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9363 if (noside == EVAL_SKIP)
9364 goto nosideret;
9365 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9366 {
9367 struct type *type1 = value_type (arg1);
9368 if (ada_is_tagged_type (type1, 1))
9369 {
9370 type = ada_lookup_struct_elt_type (type1,
9371 &exp->elts[pc + 2].string,
9372 1, 1, NULL);
9373 if (type == NULL)
9374 /* In this case, we assume that the field COULD exist
9375 in some extension of the type. Return an object of
9376 "type" void, which will match any formal
9377 (see ada_type_match). */
9378 return value_zero (builtin_type_void, lval_memory);
9379 }
9380 else
9381 type =
9382 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9383 0, NULL);
9384
9385 return value_zero (ada_aligned_type (type), lval_memory);
9386 }
9387 else
9388 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9389 arg1 = unwrap_value (arg1);
9390 return ada_to_fixed_value (arg1);
9391
9392 case OP_TYPE:
9393 /* The value is not supposed to be used. This is here to make it
9394 easier to accommodate expressions that contain types. */
9395 (*pos) += 2;
9396 if (noside == EVAL_SKIP)
9397 goto nosideret;
9398 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9399 return allocate_value (exp->elts[pc + 1].type);
9400 else
9401 error (_("Attempt to use a type name as an expression"));
9402
9403 case OP_AGGREGATE:
9404 case OP_CHOICES:
9405 case OP_OTHERS:
9406 case OP_DISCRETE_RANGE:
9407 case OP_POSITIONAL:
9408 case OP_NAME:
9409 if (noside == EVAL_NORMAL)
9410 switch (op)
9411 {
9412 case OP_NAME:
9413 error (_("Undefined name, ambiguous name, or renaming used in "
9414 "component association: %s."), &exp->elts[pc+2].string);
9415 case OP_AGGREGATE:
9416 error (_("Aggregates only allowed on the right of an assignment"));
9417 default:
9418 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9419 }
9420
9421 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9422 *pos += oplen - 1;
9423 for (tem = 0; tem < nargs; tem += 1)
9424 ada_evaluate_subexp (NULL, exp, pos, noside);
9425 goto nosideret;
9426 }
9427
9428 nosideret:
9429 return value_from_longest (builtin_type_int8, (LONGEST) 1);
9430 }
9431 \f
9432
9433 /* Fixed point */
9434
9435 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9436 type name that encodes the 'small and 'delta information.
9437 Otherwise, return NULL. */
9438
9439 static const char *
9440 fixed_type_info (struct type *type)
9441 {
9442 const char *name = ada_type_name (type);
9443 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9444
9445 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9446 {
9447 const char *tail = strstr (name, "___XF_");
9448 if (tail == NULL)
9449 return NULL;
9450 else
9451 return tail + 5;
9452 }
9453 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9454 return fixed_type_info (TYPE_TARGET_TYPE (type));
9455 else
9456 return NULL;
9457 }
9458
9459 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9460
9461 int
9462 ada_is_fixed_point_type (struct type *type)
9463 {
9464 return fixed_type_info (type) != NULL;
9465 }
9466
9467 /* Return non-zero iff TYPE represents a System.Address type. */
9468
9469 int
9470 ada_is_system_address_type (struct type *type)
9471 {
9472 return (TYPE_NAME (type)
9473 && strcmp (TYPE_NAME (type), "system__address") == 0);
9474 }
9475
9476 /* Assuming that TYPE is the representation of an Ada fixed-point
9477 type, return its delta, or -1 if the type is malformed and the
9478 delta cannot be determined. */
9479
9480 DOUBLEST
9481 ada_delta (struct type *type)
9482 {
9483 const char *encoding = fixed_type_info (type);
9484 DOUBLEST num, den;
9485
9486 /* Strictly speaking, num and den are encoded as integer. However,
9487 they may not fit into a long, and they will have to be converted
9488 to DOUBLEST anyway. So scan them as DOUBLEST. */
9489 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9490 &num, &den) < 2)
9491 return -1.0;
9492 else
9493 return num / den;
9494 }
9495
9496 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9497 factor ('SMALL value) associated with the type. */
9498
9499 static DOUBLEST
9500 scaling_factor (struct type *type)
9501 {
9502 const char *encoding = fixed_type_info (type);
9503 DOUBLEST num0, den0, num1, den1;
9504 int n;
9505
9506 /* Strictly speaking, num's and den's are encoded as integer. However,
9507 they may not fit into a long, and they will have to be converted
9508 to DOUBLEST anyway. So scan them as DOUBLEST. */
9509 n = sscanf (encoding,
9510 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9511 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9512 &num0, &den0, &num1, &den1);
9513
9514 if (n < 2)
9515 return 1.0;
9516 else if (n == 4)
9517 return num1 / den1;
9518 else
9519 return num0 / den0;
9520 }
9521
9522
9523 /* Assuming that X is the representation of a value of fixed-point
9524 type TYPE, return its floating-point equivalent. */
9525
9526 DOUBLEST
9527 ada_fixed_to_float (struct type *type, LONGEST x)
9528 {
9529 return (DOUBLEST) x *scaling_factor (type);
9530 }
9531
9532 /* The representation of a fixed-point value of type TYPE
9533 corresponding to the value X. */
9534
9535 LONGEST
9536 ada_float_to_fixed (struct type *type, DOUBLEST x)
9537 {
9538 return (LONGEST) (x / scaling_factor (type) + 0.5);
9539 }
9540
9541
9542 /* VAX floating formats */
9543
9544 /* Non-zero iff TYPE represents one of the special VAX floating-point
9545 types. */
9546
9547 int
9548 ada_is_vax_floating_type (struct type *type)
9549 {
9550 int name_len =
9551 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9552 return
9553 name_len > 6
9554 && (TYPE_CODE (type) == TYPE_CODE_INT
9555 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9556 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9557 }
9558
9559 /* The type of special VAX floating-point type this is, assuming
9560 ada_is_vax_floating_point. */
9561
9562 int
9563 ada_vax_float_type_suffix (struct type *type)
9564 {
9565 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9566 }
9567
9568 /* A value representing the special debugging function that outputs
9569 VAX floating-point values of the type represented by TYPE. Assumes
9570 ada_is_vax_floating_type (TYPE). */
9571
9572 struct value *
9573 ada_vax_float_print_function (struct type *type)
9574 {
9575 switch (ada_vax_float_type_suffix (type))
9576 {
9577 case 'F':
9578 return get_var_value ("DEBUG_STRING_F", 0);
9579 case 'D':
9580 return get_var_value ("DEBUG_STRING_D", 0);
9581 case 'G':
9582 return get_var_value ("DEBUG_STRING_G", 0);
9583 default:
9584 error (_("invalid VAX floating-point type"));
9585 }
9586 }
9587 \f
9588
9589 /* Range types */
9590
9591 /* Scan STR beginning at position K for a discriminant name, and
9592 return the value of that discriminant field of DVAL in *PX. If
9593 PNEW_K is not null, put the position of the character beyond the
9594 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9595 not alter *PX and *PNEW_K if unsuccessful. */
9596
9597 static int
9598 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9599 int *pnew_k)
9600 {
9601 static char *bound_buffer = NULL;
9602 static size_t bound_buffer_len = 0;
9603 char *bound;
9604 char *pend;
9605 struct value *bound_val;
9606
9607 if (dval == NULL || str == NULL || str[k] == '\0')
9608 return 0;
9609
9610 pend = strstr (str + k, "__");
9611 if (pend == NULL)
9612 {
9613 bound = str + k;
9614 k += strlen (bound);
9615 }
9616 else
9617 {
9618 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9619 bound = bound_buffer;
9620 strncpy (bound_buffer, str + k, pend - (str + k));
9621 bound[pend - (str + k)] = '\0';
9622 k = pend - str;
9623 }
9624
9625 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9626 if (bound_val == NULL)
9627 return 0;
9628
9629 *px = value_as_long (bound_val);
9630 if (pnew_k != NULL)
9631 *pnew_k = k;
9632 return 1;
9633 }
9634
9635 /* Value of variable named NAME in the current environment. If
9636 no such variable found, then if ERR_MSG is null, returns 0, and
9637 otherwise causes an error with message ERR_MSG. */
9638
9639 static struct value *
9640 get_var_value (char *name, char *err_msg)
9641 {
9642 struct ada_symbol_info *syms;
9643 int nsyms;
9644
9645 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9646 &syms);
9647
9648 if (nsyms != 1)
9649 {
9650 if (err_msg == NULL)
9651 return 0;
9652 else
9653 error (("%s"), err_msg);
9654 }
9655
9656 return value_of_variable (syms[0].sym, syms[0].block);
9657 }
9658
9659 /* Value of integer variable named NAME in the current environment. If
9660 no such variable found, returns 0, and sets *FLAG to 0. If
9661 successful, sets *FLAG to 1. */
9662
9663 LONGEST
9664 get_int_var_value (char *name, int *flag)
9665 {
9666 struct value *var_val = get_var_value (name, 0);
9667
9668 if (var_val == 0)
9669 {
9670 if (flag != NULL)
9671 *flag = 0;
9672 return 0;
9673 }
9674 else
9675 {
9676 if (flag != NULL)
9677 *flag = 1;
9678 return value_as_long (var_val);
9679 }
9680 }
9681
9682
9683 /* Return a range type whose base type is that of the range type named
9684 NAME in the current environment, and whose bounds are calculated
9685 from NAME according to the GNAT range encoding conventions.
9686 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9687 corresponding range type from debug information; fall back to using it
9688 if symbol lookup fails. If a new type must be created, allocate it
9689 like ORIG_TYPE was. The bounds information, in general, is encoded
9690 in NAME, the base type given in the named range type. */
9691
9692 static struct type *
9693 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9694 {
9695 struct type *raw_type = ada_find_any_type (name);
9696 struct type *base_type;
9697 char *subtype_info;
9698
9699 /* Fall back to the original type if symbol lookup failed. */
9700 if (raw_type == NULL)
9701 raw_type = orig_type;
9702
9703 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9704 base_type = TYPE_TARGET_TYPE (raw_type);
9705 else
9706 base_type = raw_type;
9707
9708 subtype_info = strstr (name, "___XD");
9709 if (subtype_info == NULL)
9710 {
9711 LONGEST L = discrete_type_low_bound (raw_type);
9712 LONGEST U = discrete_type_high_bound (raw_type);
9713 if (L < INT_MIN || U > INT_MAX)
9714 return raw_type;
9715 else
9716 return create_range_type (alloc_type (TYPE_OBJFILE (orig_type)),
9717 raw_type,
9718 discrete_type_low_bound (raw_type),
9719 discrete_type_high_bound (raw_type));
9720 }
9721 else
9722 {
9723 static char *name_buf = NULL;
9724 static size_t name_len = 0;
9725 int prefix_len = subtype_info - name;
9726 LONGEST L, U;
9727 struct type *type;
9728 char *bounds_str;
9729 int n;
9730
9731 GROW_VECT (name_buf, name_len, prefix_len + 5);
9732 strncpy (name_buf, name, prefix_len);
9733 name_buf[prefix_len] = '\0';
9734
9735 subtype_info += 5;
9736 bounds_str = strchr (subtype_info, '_');
9737 n = 1;
9738
9739 if (*subtype_info == 'L')
9740 {
9741 if (!ada_scan_number (bounds_str, n, &L, &n)
9742 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9743 return raw_type;
9744 if (bounds_str[n] == '_')
9745 n += 2;
9746 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9747 n += 1;
9748 subtype_info += 1;
9749 }
9750 else
9751 {
9752 int ok;
9753 strcpy (name_buf + prefix_len, "___L");
9754 L = get_int_var_value (name_buf, &ok);
9755 if (!ok)
9756 {
9757 lim_warning (_("Unknown lower bound, using 1."));
9758 L = 1;
9759 }
9760 }
9761
9762 if (*subtype_info == 'U')
9763 {
9764 if (!ada_scan_number (bounds_str, n, &U, &n)
9765 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9766 return raw_type;
9767 }
9768 else
9769 {
9770 int ok;
9771 strcpy (name_buf + prefix_len, "___U");
9772 U = get_int_var_value (name_buf, &ok);
9773 if (!ok)
9774 {
9775 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9776 U = L;
9777 }
9778 }
9779
9780 type = create_range_type (alloc_type (TYPE_OBJFILE (orig_type)),
9781 base_type, L, U);
9782 TYPE_NAME (type) = name;
9783 return type;
9784 }
9785 }
9786
9787 /* True iff NAME is the name of a range type. */
9788
9789 int
9790 ada_is_range_type_name (const char *name)
9791 {
9792 return (name != NULL && strstr (name, "___XD"));
9793 }
9794 \f
9795
9796 /* Modular types */
9797
9798 /* True iff TYPE is an Ada modular type. */
9799
9800 int
9801 ada_is_modular_type (struct type *type)
9802 {
9803 struct type *subranged_type = base_type (type);
9804
9805 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9806 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9807 && TYPE_UNSIGNED (subranged_type));
9808 }
9809
9810 /* Try to determine the lower and upper bounds of the given modular type
9811 using the type name only. Return non-zero and set L and U as the lower
9812 and upper bounds (respectively) if successful. */
9813
9814 int
9815 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9816 {
9817 char *name = ada_type_name (type);
9818 char *suffix;
9819 int k;
9820 LONGEST U;
9821
9822 if (name == NULL)
9823 return 0;
9824
9825 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9826 we are looking for static bounds, which means an __XDLU suffix.
9827 Moreover, we know that the lower bound of modular types is always
9828 zero, so the actual suffix should start with "__XDLU_0__", and
9829 then be followed by the upper bound value. */
9830 suffix = strstr (name, "__XDLU_0__");
9831 if (suffix == NULL)
9832 return 0;
9833 k = 10;
9834 if (!ada_scan_number (suffix, k, &U, NULL))
9835 return 0;
9836
9837 *modulus = (ULONGEST) U + 1;
9838 return 1;
9839 }
9840
9841 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9842
9843 ULONGEST
9844 ada_modulus (struct type *type)
9845 {
9846 ULONGEST modulus;
9847
9848 /* Normally, the modulus of a modular type is equal to the value of
9849 its upper bound + 1. However, the upper bound is currently stored
9850 as an int, which is not always big enough to hold the actual bound
9851 value. To workaround this, try to take advantage of the encoding
9852 that GNAT uses with with discrete types. To avoid some unnecessary
9853 parsing, we do this only when the size of TYPE is greater than
9854 the size of the field holding the bound. */
9855 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9856 && ada_modulus_from_name (type, &modulus))
9857 return modulus;
9858
9859 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9860 }
9861 \f
9862
9863 /* Ada exception catchpoint support:
9864 ---------------------------------
9865
9866 We support 3 kinds of exception catchpoints:
9867 . catchpoints on Ada exceptions
9868 . catchpoints on unhandled Ada exceptions
9869 . catchpoints on failed assertions
9870
9871 Exceptions raised during failed assertions, or unhandled exceptions
9872 could perfectly be caught with the general catchpoint on Ada exceptions.
9873 However, we can easily differentiate these two special cases, and having
9874 the option to distinguish these two cases from the rest can be useful
9875 to zero-in on certain situations.
9876
9877 Exception catchpoints are a specialized form of breakpoint,
9878 since they rely on inserting breakpoints inside known routines
9879 of the GNAT runtime. The implementation therefore uses a standard
9880 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9881 of breakpoint_ops.
9882
9883 Support in the runtime for exception catchpoints have been changed
9884 a few times already, and these changes affect the implementation
9885 of these catchpoints. In order to be able to support several
9886 variants of the runtime, we use a sniffer that will determine
9887 the runtime variant used by the program being debugged.
9888
9889 At this time, we do not support the use of conditions on Ada exception
9890 catchpoints. The COND and COND_STRING fields are therefore set
9891 to NULL (most of the time, see below).
9892
9893 Conditions where EXP_STRING, COND, and COND_STRING are used:
9894
9895 When a user specifies the name of a specific exception in the case
9896 of catchpoints on Ada exceptions, we store the name of that exception
9897 in the EXP_STRING. We then translate this request into an actual
9898 condition stored in COND_STRING, and then parse it into an expression
9899 stored in COND. */
9900
9901 /* The different types of catchpoints that we introduced for catching
9902 Ada exceptions. */
9903
9904 enum exception_catchpoint_kind
9905 {
9906 ex_catch_exception,
9907 ex_catch_exception_unhandled,
9908 ex_catch_assert
9909 };
9910
9911 /* Ada's standard exceptions. */
9912
9913 static char *standard_exc[] = {
9914 "constraint_error",
9915 "program_error",
9916 "storage_error",
9917 "tasking_error"
9918 };
9919
9920 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9921
9922 /* A structure that describes how to support exception catchpoints
9923 for a given executable. */
9924
9925 struct exception_support_info
9926 {
9927 /* The name of the symbol to break on in order to insert
9928 a catchpoint on exceptions. */
9929 const char *catch_exception_sym;
9930
9931 /* The name of the symbol to break on in order to insert
9932 a catchpoint on unhandled exceptions. */
9933 const char *catch_exception_unhandled_sym;
9934
9935 /* The name of the symbol to break on in order to insert
9936 a catchpoint on failed assertions. */
9937 const char *catch_assert_sym;
9938
9939 /* Assuming that the inferior just triggered an unhandled exception
9940 catchpoint, this function is responsible for returning the address
9941 in inferior memory where the name of that exception is stored.
9942 Return zero if the address could not be computed. */
9943 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9944 };
9945
9946 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9947 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9948
9949 /* The following exception support info structure describes how to
9950 implement exception catchpoints with the latest version of the
9951 Ada runtime (as of 2007-03-06). */
9952
9953 static const struct exception_support_info default_exception_support_info =
9954 {
9955 "__gnat_debug_raise_exception", /* catch_exception_sym */
9956 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9957 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9958 ada_unhandled_exception_name_addr
9959 };
9960
9961 /* The following exception support info structure describes how to
9962 implement exception catchpoints with a slightly older version
9963 of the Ada runtime. */
9964
9965 static const struct exception_support_info exception_support_info_fallback =
9966 {
9967 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9968 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9969 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9970 ada_unhandled_exception_name_addr_from_raise
9971 };
9972
9973 /* For each executable, we sniff which exception info structure to use
9974 and cache it in the following global variable. */
9975
9976 static const struct exception_support_info *exception_info = NULL;
9977
9978 /* Inspect the Ada runtime and determine which exception info structure
9979 should be used to provide support for exception catchpoints.
9980
9981 This function will always set exception_info, or raise an error. */
9982
9983 static void
9984 ada_exception_support_info_sniffer (void)
9985 {
9986 struct symbol *sym;
9987
9988 /* If the exception info is already known, then no need to recompute it. */
9989 if (exception_info != NULL)
9990 return;
9991
9992 /* Check the latest (default) exception support info. */
9993 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9994 NULL, VAR_DOMAIN);
9995 if (sym != NULL)
9996 {
9997 exception_info = &default_exception_support_info;
9998 return;
9999 }
10000
10001 /* Try our fallback exception suport info. */
10002 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10003 NULL, VAR_DOMAIN);
10004 if (sym != NULL)
10005 {
10006 exception_info = &exception_support_info_fallback;
10007 return;
10008 }
10009
10010 /* Sometimes, it is normal for us to not be able to find the routine
10011 we are looking for. This happens when the program is linked with
10012 the shared version of the GNAT runtime, and the program has not been
10013 started yet. Inform the user of these two possible causes if
10014 applicable. */
10015
10016 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10017 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10018
10019 /* If the symbol does not exist, then check that the program is
10020 already started, to make sure that shared libraries have been
10021 loaded. If it is not started, this may mean that the symbol is
10022 in a shared library. */
10023
10024 if (ptid_get_pid (inferior_ptid) == 0)
10025 error (_("Unable to insert catchpoint. Try to start the program first."));
10026
10027 /* At this point, we know that we are debugging an Ada program and
10028 that the inferior has been started, but we still are not able to
10029 find the run-time symbols. That can mean that we are in
10030 configurable run time mode, or that a-except as been optimized
10031 out by the linker... In any case, at this point it is not worth
10032 supporting this feature. */
10033
10034 error (_("Cannot insert catchpoints in this configuration."));
10035 }
10036
10037 /* An observer of "executable_changed" events.
10038 Its role is to clear certain cached values that need to be recomputed
10039 each time a new executable is loaded by GDB. */
10040
10041 static void
10042 ada_executable_changed_observer (void)
10043 {
10044 /* If the executable changed, then it is possible that the Ada runtime
10045 is different. So we need to invalidate the exception support info
10046 cache. */
10047 exception_info = NULL;
10048 }
10049
10050 /* Return the name of the function at PC, NULL if could not find it.
10051 This function only checks the debugging information, not the symbol
10052 table. */
10053
10054 static char *
10055 function_name_from_pc (CORE_ADDR pc)
10056 {
10057 char *func_name;
10058
10059 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10060 return NULL;
10061
10062 return func_name;
10063 }
10064
10065 /* True iff FRAME is very likely to be that of a function that is
10066 part of the runtime system. This is all very heuristic, but is
10067 intended to be used as advice as to what frames are uninteresting
10068 to most users. */
10069
10070 static int
10071 is_known_support_routine (struct frame_info *frame)
10072 {
10073 struct symtab_and_line sal;
10074 char *func_name;
10075 int i;
10076
10077 /* If this code does not have any debugging information (no symtab),
10078 This cannot be any user code. */
10079
10080 find_frame_sal (frame, &sal);
10081 if (sal.symtab == NULL)
10082 return 1;
10083
10084 /* If there is a symtab, but the associated source file cannot be
10085 located, then assume this is not user code: Selecting a frame
10086 for which we cannot display the code would not be very helpful
10087 for the user. This should also take care of case such as VxWorks
10088 where the kernel has some debugging info provided for a few units. */
10089
10090 if (symtab_to_fullname (sal.symtab) == NULL)
10091 return 1;
10092
10093 /* Check the unit filename againt the Ada runtime file naming.
10094 We also check the name of the objfile against the name of some
10095 known system libraries that sometimes come with debugging info
10096 too. */
10097
10098 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10099 {
10100 re_comp (known_runtime_file_name_patterns[i]);
10101 if (re_exec (sal.symtab->filename))
10102 return 1;
10103 if (sal.symtab->objfile != NULL
10104 && re_exec (sal.symtab->objfile->name))
10105 return 1;
10106 }
10107
10108 /* Check whether the function is a GNAT-generated entity. */
10109
10110 func_name = function_name_from_pc (get_frame_address_in_block (frame));
10111 if (func_name == NULL)
10112 return 1;
10113
10114 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10115 {
10116 re_comp (known_auxiliary_function_name_patterns[i]);
10117 if (re_exec (func_name))
10118 return 1;
10119 }
10120
10121 return 0;
10122 }
10123
10124 /* Find the first frame that contains debugging information and that is not
10125 part of the Ada run-time, starting from FI and moving upward. */
10126
10127 void
10128 ada_find_printable_frame (struct frame_info *fi)
10129 {
10130 for (; fi != NULL; fi = get_prev_frame (fi))
10131 {
10132 if (!is_known_support_routine (fi))
10133 {
10134 select_frame (fi);
10135 break;
10136 }
10137 }
10138
10139 }
10140
10141 /* Assuming that the inferior just triggered an unhandled exception
10142 catchpoint, return the address in inferior memory where the name
10143 of the exception is stored.
10144
10145 Return zero if the address could not be computed. */
10146
10147 static CORE_ADDR
10148 ada_unhandled_exception_name_addr (void)
10149 {
10150 return parse_and_eval_address ("e.full_name");
10151 }
10152
10153 /* Same as ada_unhandled_exception_name_addr, except that this function
10154 should be used when the inferior uses an older version of the runtime,
10155 where the exception name needs to be extracted from a specific frame
10156 several frames up in the callstack. */
10157
10158 static CORE_ADDR
10159 ada_unhandled_exception_name_addr_from_raise (void)
10160 {
10161 int frame_level;
10162 struct frame_info *fi;
10163
10164 /* To determine the name of this exception, we need to select
10165 the frame corresponding to RAISE_SYM_NAME. This frame is
10166 at least 3 levels up, so we simply skip the first 3 frames
10167 without checking the name of their associated function. */
10168 fi = get_current_frame ();
10169 for (frame_level = 0; frame_level < 3; frame_level += 1)
10170 if (fi != NULL)
10171 fi = get_prev_frame (fi);
10172
10173 while (fi != NULL)
10174 {
10175 const char *func_name =
10176 function_name_from_pc (get_frame_address_in_block (fi));
10177 if (func_name != NULL
10178 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10179 break; /* We found the frame we were looking for... */
10180 fi = get_prev_frame (fi);
10181 }
10182
10183 if (fi == NULL)
10184 return 0;
10185
10186 select_frame (fi);
10187 return parse_and_eval_address ("id.full_name");
10188 }
10189
10190 /* Assuming the inferior just triggered an Ada exception catchpoint
10191 (of any type), return the address in inferior memory where the name
10192 of the exception is stored, if applicable.
10193
10194 Return zero if the address could not be computed, or if not relevant. */
10195
10196 static CORE_ADDR
10197 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10198 struct breakpoint *b)
10199 {
10200 switch (ex)
10201 {
10202 case ex_catch_exception:
10203 return (parse_and_eval_address ("e.full_name"));
10204 break;
10205
10206 case ex_catch_exception_unhandled:
10207 return exception_info->unhandled_exception_name_addr ();
10208 break;
10209
10210 case ex_catch_assert:
10211 return 0; /* Exception name is not relevant in this case. */
10212 break;
10213
10214 default:
10215 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10216 break;
10217 }
10218
10219 return 0; /* Should never be reached. */
10220 }
10221
10222 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10223 any error that ada_exception_name_addr_1 might cause to be thrown.
10224 When an error is intercepted, a warning with the error message is printed,
10225 and zero is returned. */
10226
10227 static CORE_ADDR
10228 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10229 struct breakpoint *b)
10230 {
10231 struct gdb_exception e;
10232 CORE_ADDR result = 0;
10233
10234 TRY_CATCH (e, RETURN_MASK_ERROR)
10235 {
10236 result = ada_exception_name_addr_1 (ex, b);
10237 }
10238
10239 if (e.reason < 0)
10240 {
10241 warning (_("failed to get exception name: %s"), e.message);
10242 return 0;
10243 }
10244
10245 return result;
10246 }
10247
10248 /* Implement the PRINT_IT method in the breakpoint_ops structure
10249 for all exception catchpoint kinds. */
10250
10251 static enum print_stop_action
10252 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10253 {
10254 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10255 char exception_name[256];
10256
10257 if (addr != 0)
10258 {
10259 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10260 exception_name [sizeof (exception_name) - 1] = '\0';
10261 }
10262
10263 ada_find_printable_frame (get_current_frame ());
10264
10265 annotate_catchpoint (b->number);
10266 switch (ex)
10267 {
10268 case ex_catch_exception:
10269 if (addr != 0)
10270 printf_filtered (_("\nCatchpoint %d, %s at "),
10271 b->number, exception_name);
10272 else
10273 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10274 break;
10275 case ex_catch_exception_unhandled:
10276 if (addr != 0)
10277 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10278 b->number, exception_name);
10279 else
10280 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10281 b->number);
10282 break;
10283 case ex_catch_assert:
10284 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10285 b->number);
10286 break;
10287 }
10288
10289 return PRINT_SRC_AND_LOC;
10290 }
10291
10292 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10293 for all exception catchpoint kinds. */
10294
10295 static void
10296 print_one_exception (enum exception_catchpoint_kind ex,
10297 struct breakpoint *b, CORE_ADDR *last_addr)
10298 {
10299 struct value_print_options opts;
10300
10301 get_user_print_options (&opts);
10302 if (opts.addressprint)
10303 {
10304 annotate_field (4);
10305 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10306 }
10307
10308 annotate_field (5);
10309 *last_addr = b->loc->address;
10310 switch (ex)
10311 {
10312 case ex_catch_exception:
10313 if (b->exp_string != NULL)
10314 {
10315 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10316
10317 ui_out_field_string (uiout, "what", msg);
10318 xfree (msg);
10319 }
10320 else
10321 ui_out_field_string (uiout, "what", "all Ada exceptions");
10322
10323 break;
10324
10325 case ex_catch_exception_unhandled:
10326 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10327 break;
10328
10329 case ex_catch_assert:
10330 ui_out_field_string (uiout, "what", "failed Ada assertions");
10331 break;
10332
10333 default:
10334 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10335 break;
10336 }
10337 }
10338
10339 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10340 for all exception catchpoint kinds. */
10341
10342 static void
10343 print_mention_exception (enum exception_catchpoint_kind ex,
10344 struct breakpoint *b)
10345 {
10346 switch (ex)
10347 {
10348 case ex_catch_exception:
10349 if (b->exp_string != NULL)
10350 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10351 b->number, b->exp_string);
10352 else
10353 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10354
10355 break;
10356
10357 case ex_catch_exception_unhandled:
10358 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10359 b->number);
10360 break;
10361
10362 case ex_catch_assert:
10363 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10364 break;
10365
10366 default:
10367 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10368 break;
10369 }
10370 }
10371
10372 /* Virtual table for "catch exception" breakpoints. */
10373
10374 static enum print_stop_action
10375 print_it_catch_exception (struct breakpoint *b)
10376 {
10377 return print_it_exception (ex_catch_exception, b);
10378 }
10379
10380 static void
10381 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10382 {
10383 print_one_exception (ex_catch_exception, b, last_addr);
10384 }
10385
10386 static void
10387 print_mention_catch_exception (struct breakpoint *b)
10388 {
10389 print_mention_exception (ex_catch_exception, b);
10390 }
10391
10392 static struct breakpoint_ops catch_exception_breakpoint_ops =
10393 {
10394 NULL, /* insert */
10395 NULL, /* remove */
10396 NULL, /* breakpoint_hit */
10397 print_it_catch_exception,
10398 print_one_catch_exception,
10399 print_mention_catch_exception
10400 };
10401
10402 /* Virtual table for "catch exception unhandled" breakpoints. */
10403
10404 static enum print_stop_action
10405 print_it_catch_exception_unhandled (struct breakpoint *b)
10406 {
10407 return print_it_exception (ex_catch_exception_unhandled, b);
10408 }
10409
10410 static void
10411 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10412 {
10413 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10414 }
10415
10416 static void
10417 print_mention_catch_exception_unhandled (struct breakpoint *b)
10418 {
10419 print_mention_exception (ex_catch_exception_unhandled, b);
10420 }
10421
10422 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10423 NULL, /* insert */
10424 NULL, /* remove */
10425 NULL, /* breakpoint_hit */
10426 print_it_catch_exception_unhandled,
10427 print_one_catch_exception_unhandled,
10428 print_mention_catch_exception_unhandled
10429 };
10430
10431 /* Virtual table for "catch assert" breakpoints. */
10432
10433 static enum print_stop_action
10434 print_it_catch_assert (struct breakpoint *b)
10435 {
10436 return print_it_exception (ex_catch_assert, b);
10437 }
10438
10439 static void
10440 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10441 {
10442 print_one_exception (ex_catch_assert, b, last_addr);
10443 }
10444
10445 static void
10446 print_mention_catch_assert (struct breakpoint *b)
10447 {
10448 print_mention_exception (ex_catch_assert, b);
10449 }
10450
10451 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10452 NULL, /* insert */
10453 NULL, /* remove */
10454 NULL, /* breakpoint_hit */
10455 print_it_catch_assert,
10456 print_one_catch_assert,
10457 print_mention_catch_assert
10458 };
10459
10460 /* Return non-zero if B is an Ada exception catchpoint. */
10461
10462 int
10463 ada_exception_catchpoint_p (struct breakpoint *b)
10464 {
10465 return (b->ops == &catch_exception_breakpoint_ops
10466 || b->ops == &catch_exception_unhandled_breakpoint_ops
10467 || b->ops == &catch_assert_breakpoint_ops);
10468 }
10469
10470 /* Return a newly allocated copy of the first space-separated token
10471 in ARGSP, and then adjust ARGSP to point immediately after that
10472 token.
10473
10474 Return NULL if ARGPS does not contain any more tokens. */
10475
10476 static char *
10477 ada_get_next_arg (char **argsp)
10478 {
10479 char *args = *argsp;
10480 char *end;
10481 char *result;
10482
10483 /* Skip any leading white space. */
10484
10485 while (isspace (*args))
10486 args++;
10487
10488 if (args[0] == '\0')
10489 return NULL; /* No more arguments. */
10490
10491 /* Find the end of the current argument. */
10492
10493 end = args;
10494 while (*end != '\0' && !isspace (*end))
10495 end++;
10496
10497 /* Adjust ARGSP to point to the start of the next argument. */
10498
10499 *argsp = end;
10500
10501 /* Make a copy of the current argument and return it. */
10502
10503 result = xmalloc (end - args + 1);
10504 strncpy (result, args, end - args);
10505 result[end - args] = '\0';
10506
10507 return result;
10508 }
10509
10510 /* Split the arguments specified in a "catch exception" command.
10511 Set EX to the appropriate catchpoint type.
10512 Set EXP_STRING to the name of the specific exception if
10513 specified by the user. */
10514
10515 static void
10516 catch_ada_exception_command_split (char *args,
10517 enum exception_catchpoint_kind *ex,
10518 char **exp_string)
10519 {
10520 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10521 char *exception_name;
10522
10523 exception_name = ada_get_next_arg (&args);
10524 make_cleanup (xfree, exception_name);
10525
10526 /* Check that we do not have any more arguments. Anything else
10527 is unexpected. */
10528
10529 while (isspace (*args))
10530 args++;
10531
10532 if (args[0] != '\0')
10533 error (_("Junk at end of expression"));
10534
10535 discard_cleanups (old_chain);
10536
10537 if (exception_name == NULL)
10538 {
10539 /* Catch all exceptions. */
10540 *ex = ex_catch_exception;
10541 *exp_string = NULL;
10542 }
10543 else if (strcmp (exception_name, "unhandled") == 0)
10544 {
10545 /* Catch unhandled exceptions. */
10546 *ex = ex_catch_exception_unhandled;
10547 *exp_string = NULL;
10548 }
10549 else
10550 {
10551 /* Catch a specific exception. */
10552 *ex = ex_catch_exception;
10553 *exp_string = exception_name;
10554 }
10555 }
10556
10557 /* Return the name of the symbol on which we should break in order to
10558 implement a catchpoint of the EX kind. */
10559
10560 static const char *
10561 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10562 {
10563 gdb_assert (exception_info != NULL);
10564
10565 switch (ex)
10566 {
10567 case ex_catch_exception:
10568 return (exception_info->catch_exception_sym);
10569 break;
10570 case ex_catch_exception_unhandled:
10571 return (exception_info->catch_exception_unhandled_sym);
10572 break;
10573 case ex_catch_assert:
10574 return (exception_info->catch_assert_sym);
10575 break;
10576 default:
10577 internal_error (__FILE__, __LINE__,
10578 _("unexpected catchpoint kind (%d)"), ex);
10579 }
10580 }
10581
10582 /* Return the breakpoint ops "virtual table" used for catchpoints
10583 of the EX kind. */
10584
10585 static struct breakpoint_ops *
10586 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10587 {
10588 switch (ex)
10589 {
10590 case ex_catch_exception:
10591 return (&catch_exception_breakpoint_ops);
10592 break;
10593 case ex_catch_exception_unhandled:
10594 return (&catch_exception_unhandled_breakpoint_ops);
10595 break;
10596 case ex_catch_assert:
10597 return (&catch_assert_breakpoint_ops);
10598 break;
10599 default:
10600 internal_error (__FILE__, __LINE__,
10601 _("unexpected catchpoint kind (%d)"), ex);
10602 }
10603 }
10604
10605 /* Return the condition that will be used to match the current exception
10606 being raised with the exception that the user wants to catch. This
10607 assumes that this condition is used when the inferior just triggered
10608 an exception catchpoint.
10609
10610 The string returned is a newly allocated string that needs to be
10611 deallocated later. */
10612
10613 static char *
10614 ada_exception_catchpoint_cond_string (const char *exp_string)
10615 {
10616 int i;
10617
10618 /* The standard exceptions are a special case. They are defined in
10619 runtime units that have been compiled without debugging info; if
10620 EXP_STRING is the not-fully-qualified name of a standard
10621 exception (e.g. "constraint_error") then, during the evaluation
10622 of the condition expression, the symbol lookup on this name would
10623 *not* return this standard exception. The catchpoint condition
10624 may then be set only on user-defined exceptions which have the
10625 same not-fully-qualified name (e.g. my_package.constraint_error).
10626
10627 To avoid this unexcepted behavior, these standard exceptions are
10628 systematically prefixed by "standard". This means that "catch
10629 exception constraint_error" is rewritten into "catch exception
10630 standard.constraint_error".
10631
10632 If an exception named contraint_error is defined in another package of
10633 the inferior program, then the only way to specify this exception as a
10634 breakpoint condition is to use its fully-qualified named:
10635 e.g. my_package.constraint_error. */
10636
10637 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10638 {
10639 if (strcmp (standard_exc [i], exp_string) == 0)
10640 {
10641 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10642 exp_string);
10643 }
10644 }
10645 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10646 }
10647
10648 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10649
10650 static struct expression *
10651 ada_parse_catchpoint_condition (char *cond_string,
10652 struct symtab_and_line sal)
10653 {
10654 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10655 }
10656
10657 /* Return the symtab_and_line that should be used to insert an exception
10658 catchpoint of the TYPE kind.
10659
10660 EX_STRING should contain the name of a specific exception
10661 that the catchpoint should catch, or NULL otherwise.
10662
10663 The idea behind all the remaining parameters is that their names match
10664 the name of certain fields in the breakpoint structure that are used to
10665 handle exception catchpoints. This function returns the value to which
10666 these fields should be set, depending on the type of catchpoint we need
10667 to create.
10668
10669 If COND and COND_STRING are both non-NULL, any value they might
10670 hold will be free'ed, and then replaced by newly allocated ones.
10671 These parameters are left untouched otherwise. */
10672
10673 static struct symtab_and_line
10674 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10675 char **addr_string, char **cond_string,
10676 struct expression **cond, struct breakpoint_ops **ops)
10677 {
10678 const char *sym_name;
10679 struct symbol *sym;
10680 struct symtab_and_line sal;
10681
10682 /* First, find out which exception support info to use. */
10683 ada_exception_support_info_sniffer ();
10684
10685 /* Then lookup the function on which we will break in order to catch
10686 the Ada exceptions requested by the user. */
10687
10688 sym_name = ada_exception_sym_name (ex);
10689 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10690
10691 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10692 that should be compiled with debugging information. As a result, we
10693 expect to find that symbol in the symtabs. If we don't find it, then
10694 the target most likely does not support Ada exceptions, or we cannot
10695 insert exception breakpoints yet, because the GNAT runtime hasn't been
10696 loaded yet. */
10697
10698 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10699 in such a way that no debugging information is produced for the symbol
10700 we are looking for. In this case, we could search the minimal symbols
10701 as a fall-back mechanism. This would still be operating in degraded
10702 mode, however, as we would still be missing the debugging information
10703 that is needed in order to extract the name of the exception being
10704 raised (this name is printed in the catchpoint message, and is also
10705 used when trying to catch a specific exception). We do not handle
10706 this case for now. */
10707
10708 if (sym == NULL)
10709 error (_("Unable to break on '%s' in this configuration."), sym_name);
10710
10711 /* Make sure that the symbol we found corresponds to a function. */
10712 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10713 error (_("Symbol \"%s\" is not a function (class = %d)"),
10714 sym_name, SYMBOL_CLASS (sym));
10715
10716 sal = find_function_start_sal (sym, 1);
10717
10718 /* Set ADDR_STRING. */
10719
10720 *addr_string = xstrdup (sym_name);
10721
10722 /* Set the COND and COND_STRING (if not NULL). */
10723
10724 if (cond_string != NULL && cond != NULL)
10725 {
10726 if (*cond_string != NULL)
10727 {
10728 xfree (*cond_string);
10729 *cond_string = NULL;
10730 }
10731 if (*cond != NULL)
10732 {
10733 xfree (*cond);
10734 *cond = NULL;
10735 }
10736 if (exp_string != NULL)
10737 {
10738 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10739 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10740 }
10741 }
10742
10743 /* Set OPS. */
10744 *ops = ada_exception_breakpoint_ops (ex);
10745
10746 return sal;
10747 }
10748
10749 /* Parse the arguments (ARGS) of the "catch exception" command.
10750
10751 Set TYPE to the appropriate exception catchpoint type.
10752 If the user asked the catchpoint to catch only a specific
10753 exception, then save the exception name in ADDR_STRING.
10754
10755 See ada_exception_sal for a description of all the remaining
10756 function arguments of this function. */
10757
10758 struct symtab_and_line
10759 ada_decode_exception_location (char *args, char **addr_string,
10760 char **exp_string, char **cond_string,
10761 struct expression **cond,
10762 struct breakpoint_ops **ops)
10763 {
10764 enum exception_catchpoint_kind ex;
10765
10766 catch_ada_exception_command_split (args, &ex, exp_string);
10767 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10768 cond, ops);
10769 }
10770
10771 struct symtab_and_line
10772 ada_decode_assert_location (char *args, char **addr_string,
10773 struct breakpoint_ops **ops)
10774 {
10775 /* Check that no argument where provided at the end of the command. */
10776
10777 if (args != NULL)
10778 {
10779 while (isspace (*args))
10780 args++;
10781 if (*args != '\0')
10782 error (_("Junk at end of arguments."));
10783 }
10784
10785 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10786 ops);
10787 }
10788
10789 /* Operators */
10790 /* Information about operators given special treatment in functions
10791 below. */
10792 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10793
10794 #define ADA_OPERATORS \
10795 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10796 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10797 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10798 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10799 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10800 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10801 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10802 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10803 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10804 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10805 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10806 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10807 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10808 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10809 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10810 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10811 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10812 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10813 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10814
10815 static void
10816 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10817 {
10818 switch (exp->elts[pc - 1].opcode)
10819 {
10820 default:
10821 operator_length_standard (exp, pc, oplenp, argsp);
10822 break;
10823
10824 #define OP_DEFN(op, len, args, binop) \
10825 case op: *oplenp = len; *argsp = args; break;
10826 ADA_OPERATORS;
10827 #undef OP_DEFN
10828
10829 case OP_AGGREGATE:
10830 *oplenp = 3;
10831 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10832 break;
10833
10834 case OP_CHOICES:
10835 *oplenp = 3;
10836 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10837 break;
10838 }
10839 }
10840
10841 static char *
10842 ada_op_name (enum exp_opcode opcode)
10843 {
10844 switch (opcode)
10845 {
10846 default:
10847 return op_name_standard (opcode);
10848
10849 #define OP_DEFN(op, len, args, binop) case op: return #op;
10850 ADA_OPERATORS;
10851 #undef OP_DEFN
10852
10853 case OP_AGGREGATE:
10854 return "OP_AGGREGATE";
10855 case OP_CHOICES:
10856 return "OP_CHOICES";
10857 case OP_NAME:
10858 return "OP_NAME";
10859 }
10860 }
10861
10862 /* As for operator_length, but assumes PC is pointing at the first
10863 element of the operator, and gives meaningful results only for the
10864 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10865
10866 static void
10867 ada_forward_operator_length (struct expression *exp, int pc,
10868 int *oplenp, int *argsp)
10869 {
10870 switch (exp->elts[pc].opcode)
10871 {
10872 default:
10873 *oplenp = *argsp = 0;
10874 break;
10875
10876 #define OP_DEFN(op, len, args, binop) \
10877 case op: *oplenp = len; *argsp = args; break;
10878 ADA_OPERATORS;
10879 #undef OP_DEFN
10880
10881 case OP_AGGREGATE:
10882 *oplenp = 3;
10883 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10884 break;
10885
10886 case OP_CHOICES:
10887 *oplenp = 3;
10888 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10889 break;
10890
10891 case OP_STRING:
10892 case OP_NAME:
10893 {
10894 int len = longest_to_int (exp->elts[pc + 1].longconst);
10895 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10896 *argsp = 0;
10897 break;
10898 }
10899 }
10900 }
10901
10902 static int
10903 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10904 {
10905 enum exp_opcode op = exp->elts[elt].opcode;
10906 int oplen, nargs;
10907 int pc = elt;
10908 int i;
10909
10910 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10911
10912 switch (op)
10913 {
10914 /* Ada attributes ('Foo). */
10915 case OP_ATR_FIRST:
10916 case OP_ATR_LAST:
10917 case OP_ATR_LENGTH:
10918 case OP_ATR_IMAGE:
10919 case OP_ATR_MAX:
10920 case OP_ATR_MIN:
10921 case OP_ATR_MODULUS:
10922 case OP_ATR_POS:
10923 case OP_ATR_SIZE:
10924 case OP_ATR_TAG:
10925 case OP_ATR_VAL:
10926 break;
10927
10928 case UNOP_IN_RANGE:
10929 case UNOP_QUAL:
10930 /* XXX: gdb_sprint_host_address, type_sprint */
10931 fprintf_filtered (stream, _("Type @"));
10932 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10933 fprintf_filtered (stream, " (");
10934 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10935 fprintf_filtered (stream, ")");
10936 break;
10937 case BINOP_IN_BOUNDS:
10938 fprintf_filtered (stream, " (%d)",
10939 longest_to_int (exp->elts[pc + 2].longconst));
10940 break;
10941 case TERNOP_IN_RANGE:
10942 break;
10943
10944 case OP_AGGREGATE:
10945 case OP_OTHERS:
10946 case OP_DISCRETE_RANGE:
10947 case OP_POSITIONAL:
10948 case OP_CHOICES:
10949 break;
10950
10951 case OP_NAME:
10952 case OP_STRING:
10953 {
10954 char *name = &exp->elts[elt + 2].string;
10955 int len = longest_to_int (exp->elts[elt + 1].longconst);
10956 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10957 break;
10958 }
10959
10960 default:
10961 return dump_subexp_body_standard (exp, stream, elt);
10962 }
10963
10964 elt += oplen;
10965 for (i = 0; i < nargs; i += 1)
10966 elt = dump_subexp (exp, stream, elt);
10967
10968 return elt;
10969 }
10970
10971 /* The Ada extension of print_subexp (q.v.). */
10972
10973 static void
10974 ada_print_subexp (struct expression *exp, int *pos,
10975 struct ui_file *stream, enum precedence prec)
10976 {
10977 int oplen, nargs, i;
10978 int pc = *pos;
10979 enum exp_opcode op = exp->elts[pc].opcode;
10980
10981 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10982
10983 *pos += oplen;
10984 switch (op)
10985 {
10986 default:
10987 *pos -= oplen;
10988 print_subexp_standard (exp, pos, stream, prec);
10989 return;
10990
10991 case OP_VAR_VALUE:
10992 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10993 return;
10994
10995 case BINOP_IN_BOUNDS:
10996 /* XXX: sprint_subexp */
10997 print_subexp (exp, pos, stream, PREC_SUFFIX);
10998 fputs_filtered (" in ", stream);
10999 print_subexp (exp, pos, stream, PREC_SUFFIX);
11000 fputs_filtered ("'range", stream);
11001 if (exp->elts[pc + 1].longconst > 1)
11002 fprintf_filtered (stream, "(%ld)",
11003 (long) exp->elts[pc + 1].longconst);
11004 return;
11005
11006 case TERNOP_IN_RANGE:
11007 if (prec >= PREC_EQUAL)
11008 fputs_filtered ("(", stream);
11009 /* XXX: sprint_subexp */
11010 print_subexp (exp, pos, stream, PREC_SUFFIX);
11011 fputs_filtered (" in ", stream);
11012 print_subexp (exp, pos, stream, PREC_EQUAL);
11013 fputs_filtered (" .. ", stream);
11014 print_subexp (exp, pos, stream, PREC_EQUAL);
11015 if (prec >= PREC_EQUAL)
11016 fputs_filtered (")", stream);
11017 return;
11018
11019 case OP_ATR_FIRST:
11020 case OP_ATR_LAST:
11021 case OP_ATR_LENGTH:
11022 case OP_ATR_IMAGE:
11023 case OP_ATR_MAX:
11024 case OP_ATR_MIN:
11025 case OP_ATR_MODULUS:
11026 case OP_ATR_POS:
11027 case OP_ATR_SIZE:
11028 case OP_ATR_TAG:
11029 case OP_ATR_VAL:
11030 if (exp->elts[*pos].opcode == OP_TYPE)
11031 {
11032 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11033 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11034 *pos += 3;
11035 }
11036 else
11037 print_subexp (exp, pos, stream, PREC_SUFFIX);
11038 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11039 if (nargs > 1)
11040 {
11041 int tem;
11042 for (tem = 1; tem < nargs; tem += 1)
11043 {
11044 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11045 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11046 }
11047 fputs_filtered (")", stream);
11048 }
11049 return;
11050
11051 case UNOP_QUAL:
11052 type_print (exp->elts[pc + 1].type, "", stream, 0);
11053 fputs_filtered ("'(", stream);
11054 print_subexp (exp, pos, stream, PREC_PREFIX);
11055 fputs_filtered (")", stream);
11056 return;
11057
11058 case UNOP_IN_RANGE:
11059 /* XXX: sprint_subexp */
11060 print_subexp (exp, pos, stream, PREC_SUFFIX);
11061 fputs_filtered (" in ", stream);
11062 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11063 return;
11064
11065 case OP_DISCRETE_RANGE:
11066 print_subexp (exp, pos, stream, PREC_SUFFIX);
11067 fputs_filtered ("..", stream);
11068 print_subexp (exp, pos, stream, PREC_SUFFIX);
11069 return;
11070
11071 case OP_OTHERS:
11072 fputs_filtered ("others => ", stream);
11073 print_subexp (exp, pos, stream, PREC_SUFFIX);
11074 return;
11075
11076 case OP_CHOICES:
11077 for (i = 0; i < nargs-1; i += 1)
11078 {
11079 if (i > 0)
11080 fputs_filtered ("|", stream);
11081 print_subexp (exp, pos, stream, PREC_SUFFIX);
11082 }
11083 fputs_filtered (" => ", stream);
11084 print_subexp (exp, pos, stream, PREC_SUFFIX);
11085 return;
11086
11087 case OP_POSITIONAL:
11088 print_subexp (exp, pos, stream, PREC_SUFFIX);
11089 return;
11090
11091 case OP_AGGREGATE:
11092 fputs_filtered ("(", stream);
11093 for (i = 0; i < nargs; i += 1)
11094 {
11095 if (i > 0)
11096 fputs_filtered (", ", stream);
11097 print_subexp (exp, pos, stream, PREC_SUFFIX);
11098 }
11099 fputs_filtered (")", stream);
11100 return;
11101 }
11102 }
11103
11104 /* Table mapping opcodes into strings for printing operators
11105 and precedences of the operators. */
11106
11107 static const struct op_print ada_op_print_tab[] = {
11108 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11109 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11110 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11111 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11112 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11113 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11114 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11115 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11116 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11117 {">=", BINOP_GEQ, PREC_ORDER, 0},
11118 {">", BINOP_GTR, PREC_ORDER, 0},
11119 {"<", BINOP_LESS, PREC_ORDER, 0},
11120 {">>", BINOP_RSH, PREC_SHIFT, 0},
11121 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11122 {"+", BINOP_ADD, PREC_ADD, 0},
11123 {"-", BINOP_SUB, PREC_ADD, 0},
11124 {"&", BINOP_CONCAT, PREC_ADD, 0},
11125 {"*", BINOP_MUL, PREC_MUL, 0},
11126 {"/", BINOP_DIV, PREC_MUL, 0},
11127 {"rem", BINOP_REM, PREC_MUL, 0},
11128 {"mod", BINOP_MOD, PREC_MUL, 0},
11129 {"**", BINOP_EXP, PREC_REPEAT, 0},
11130 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11131 {"-", UNOP_NEG, PREC_PREFIX, 0},
11132 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11133 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11134 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11135 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11136 {".all", UNOP_IND, PREC_SUFFIX, 1},
11137 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11138 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11139 {NULL, 0, 0, 0}
11140 };
11141 \f
11142 enum ada_primitive_types {
11143 ada_primitive_type_int,
11144 ada_primitive_type_long,
11145 ada_primitive_type_short,
11146 ada_primitive_type_char,
11147 ada_primitive_type_float,
11148 ada_primitive_type_double,
11149 ada_primitive_type_void,
11150 ada_primitive_type_long_long,
11151 ada_primitive_type_long_double,
11152 ada_primitive_type_natural,
11153 ada_primitive_type_positive,
11154 ada_primitive_type_system_address,
11155 nr_ada_primitive_types
11156 };
11157
11158 static void
11159 ada_language_arch_info (struct gdbarch *gdbarch,
11160 struct language_arch_info *lai)
11161 {
11162 const struct builtin_type *builtin = builtin_type (gdbarch);
11163 lai->primitive_type_vector
11164 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11165 struct type *);
11166 lai->primitive_type_vector [ada_primitive_type_int] =
11167 init_type (TYPE_CODE_INT,
11168 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11169 0, "integer", (struct objfile *) NULL);
11170 lai->primitive_type_vector [ada_primitive_type_long] =
11171 init_type (TYPE_CODE_INT,
11172 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
11173 0, "long_integer", (struct objfile *) NULL);
11174 lai->primitive_type_vector [ada_primitive_type_short] =
11175 init_type (TYPE_CODE_INT,
11176 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
11177 0, "short_integer", (struct objfile *) NULL);
11178 lai->string_char_type =
11179 lai->primitive_type_vector [ada_primitive_type_char] =
11180 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
11181 0, "character", (struct objfile *) NULL);
11182 lai->primitive_type_vector [ada_primitive_type_float] =
11183 init_type (TYPE_CODE_FLT,
11184 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
11185 0, "float", (struct objfile *) NULL);
11186 lai->primitive_type_vector [ada_primitive_type_double] =
11187 init_type (TYPE_CODE_FLT,
11188 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
11189 0, "long_float", (struct objfile *) NULL);
11190 lai->primitive_type_vector [ada_primitive_type_long_long] =
11191 init_type (TYPE_CODE_INT,
11192 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
11193 0, "long_long_integer", (struct objfile *) NULL);
11194 lai->primitive_type_vector [ada_primitive_type_long_double] =
11195 init_type (TYPE_CODE_FLT,
11196 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
11197 0, "long_long_float", (struct objfile *) NULL);
11198 lai->primitive_type_vector [ada_primitive_type_natural] =
11199 init_type (TYPE_CODE_INT,
11200 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11201 0, "natural", (struct objfile *) NULL);
11202 lai->primitive_type_vector [ada_primitive_type_positive] =
11203 init_type (TYPE_CODE_INT,
11204 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11205 0, "positive", (struct objfile *) NULL);
11206 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
11207
11208 lai->primitive_type_vector [ada_primitive_type_system_address] =
11209 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
11210 (struct objfile *) NULL));
11211 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11212 = "system__address";
11213
11214 lai->bool_type_symbol = NULL;
11215 lai->bool_type_default = builtin->builtin_bool;
11216 }
11217 \f
11218 /* Language vector */
11219
11220 /* Not really used, but needed in the ada_language_defn. */
11221
11222 static void
11223 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11224 {
11225 ada_emit_char (c, type, stream, quoter, 1);
11226 }
11227
11228 static int
11229 parse (void)
11230 {
11231 warnings_issued = 0;
11232 return ada_parse ();
11233 }
11234
11235 static const struct exp_descriptor ada_exp_descriptor = {
11236 ada_print_subexp,
11237 ada_operator_length,
11238 ada_op_name,
11239 ada_dump_subexp_body,
11240 ada_evaluate_subexp
11241 };
11242
11243 const struct language_defn ada_language_defn = {
11244 "ada", /* Language name */
11245 language_ada,
11246 range_check_off,
11247 type_check_off,
11248 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11249 that's not quite what this means. */
11250 array_row_major,
11251 macro_expansion_no,
11252 &ada_exp_descriptor,
11253 parse,
11254 ada_error,
11255 resolve,
11256 ada_printchar, /* Print a character constant */
11257 ada_printstr, /* Function to print string constant */
11258 emit_char, /* Function to print single char (not used) */
11259 ada_print_type, /* Print a type using appropriate syntax */
11260 default_print_typedef, /* Print a typedef using appropriate syntax */
11261 ada_val_print, /* Print a value using appropriate syntax */
11262 ada_value_print, /* Print a top-level value */
11263 NULL, /* Language specific skip_trampoline */
11264 NULL, /* name_of_this */
11265 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11266 basic_lookup_transparent_type, /* lookup_transparent_type */
11267 ada_la_decode, /* Language specific symbol demangler */
11268 NULL, /* Language specific class_name_from_physname */
11269 ada_op_print_tab, /* expression operators for printing */
11270 0, /* c-style arrays */
11271 1, /* String lower bound */
11272 ada_get_gdb_completer_word_break_characters,
11273 ada_make_symbol_completion_list,
11274 ada_language_arch_info,
11275 ada_print_array_index,
11276 default_pass_by_reference,
11277 c_get_string,
11278 LANG_MAGIC
11279 };
11280
11281 /* Provide a prototype to silence -Wmissing-prototypes. */
11282 extern initialize_file_ftype _initialize_ada_language;
11283
11284 void
11285 _initialize_ada_language (void)
11286 {
11287 add_language (&ada_language_defn);
11288
11289 varsize_limit = 65536;
11290
11291 obstack_init (&symbol_list_obstack);
11292
11293 decoded_names_store = htab_create_alloc
11294 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11295 NULL, xcalloc, xfree);
11296
11297 observer_attach_executable_changed (ada_executable_changed_observer);
11298 }
This page took 0.246335 seconds and 3 git commands to generate.