2007-02-09 Gabriel Dos Reis <gdr@integrable-solutions.net>
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include "defs.h"
25 #include <stdio.h>
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <stdarg.h>
29 #include "demangle.h"
30 #include "gdb_regex.h"
31 #include "frame.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "gdbcmd.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37 #include "language.h"
38 #include "c-lang.h"
39 #include "inferior.h"
40 #include "symfile.h"
41 #include "objfiles.h"
42 #include "breakpoint.h"
43 #include "gdbcore.h"
44 #include "hashtab.h"
45 #include "gdb_obstack.h"
46 #include "ada-lang.h"
47 #include "completer.h"
48 #include "gdb_stat.h"
49 #ifdef UI_OUT
50 #include "ui-out.h"
51 #endif
52 #include "block.h"
53 #include "infcall.h"
54 #include "dictionary.h"
55 #include "exceptions.h"
56 #include "annotate.h"
57 #include "valprint.h"
58 #include "source.h"
59
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
62 #endif
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72
73 static void extract_string (CORE_ADDR addr, char *buf);
74
75 static struct type *ada_create_fundamental_type (struct objfile *, int);
76
77 static void modify_general_field (char *, LONGEST, int, int);
78
79 static struct type *desc_base_type (struct type *);
80
81 static struct type *desc_bounds_type (struct type *);
82
83 static struct value *desc_bounds (struct value *);
84
85 static int fat_pntr_bounds_bitpos (struct type *);
86
87 static int fat_pntr_bounds_bitsize (struct type *);
88
89 static struct type *desc_data_type (struct type *);
90
91 static struct value *desc_data (struct value *);
92
93 static int fat_pntr_data_bitpos (struct type *);
94
95 static int fat_pntr_data_bitsize (struct type *);
96
97 static struct value *desc_one_bound (struct value *, int, int);
98
99 static int desc_bound_bitpos (struct type *, int, int);
100
101 static int desc_bound_bitsize (struct type *, int, int);
102
103 static struct type *desc_index_type (struct type *, int);
104
105 static int desc_arity (struct type *);
106
107 static int ada_type_match (struct type *, struct type *, int);
108
109 static int ada_args_match (struct symbol *, struct value **, int);
110
111 static struct value *ensure_lval (struct value *, CORE_ADDR *);
112
113 static struct value *convert_actual (struct value *, struct type *,
114 CORE_ADDR *);
115
116 static struct value *make_array_descriptor (struct type *, struct value *,
117 CORE_ADDR *);
118
119 static void ada_add_block_symbols (struct obstack *,
120 struct block *, const char *,
121 domain_enum, struct objfile *,
122 struct symtab *, int);
123
124 static int is_nonfunction (struct ada_symbol_info *, int);
125
126 static void add_defn_to_vec (struct obstack *, struct symbol *,
127 struct block *, struct symtab *);
128
129 static int num_defns_collected (struct obstack *);
130
131 static struct ada_symbol_info *defns_collected (struct obstack *, int);
132
133 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
134 *, const char *, int,
135 domain_enum, int);
136
137 static struct symtab *symtab_for_sym (struct symbol *);
138
139 static struct value *resolve_subexp (struct expression **, int *, int,
140 struct type *);
141
142 static void replace_operator_with_call (struct expression **, int, int, int,
143 struct symbol *, struct block *);
144
145 static int possible_user_operator_p (enum exp_opcode, struct value **);
146
147 static char *ada_op_name (enum exp_opcode);
148
149 static const char *ada_decoded_op_name (enum exp_opcode);
150
151 static int numeric_type_p (struct type *);
152
153 static int integer_type_p (struct type *);
154
155 static int scalar_type_p (struct type *);
156
157 static int discrete_type_p (struct type *);
158
159 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
160 int, int, int *);
161
162 static struct value *evaluate_subexp (struct type *, struct expression *,
163 int *, enum noside);
164
165 static struct value *evaluate_subexp_type (struct expression *, int *);
166
167 static int is_dynamic_field (struct type *, int);
168
169 static struct type *to_fixed_variant_branch_type (struct type *,
170 const gdb_byte *,
171 CORE_ADDR, struct value *);
172
173 static struct type *to_fixed_array_type (struct type *, struct value *, int);
174
175 static struct type *to_fixed_range_type (char *, struct value *,
176 struct objfile *);
177
178 static struct type *to_static_fixed_type (struct type *);
179
180 static struct value *unwrap_value (struct value *);
181
182 static struct type *packed_array_type (struct type *, long *);
183
184 static struct type *decode_packed_array_type (struct type *);
185
186 static struct value *decode_packed_array (struct value *);
187
188 static struct value *value_subscript_packed (struct value *, int,
189 struct value **);
190
191 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196 static struct value *get_var_value (char *, char *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int wild_match (const char *, int, const char *);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 struct value *);
228
229 static struct value *ada_to_fixed_value (struct value *);
230
231 static int ada_resolve_function (struct ada_symbol_info *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static struct value *ada_coerce_to_simple_array (struct value *);
236
237 static int ada_is_direct_array_type (struct type *);
238
239 static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
241
242 static void check_size (const struct type *);
243
244 static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247 static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *, int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274 \f
275
276
277 /* Maximum-sized dynamic type. */
278 static unsigned int varsize_limit;
279
280 /* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282 static char *ada_completer_word_break_characters =
283 #ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285 #else
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
287 #endif
288
289 /* The name of the symbol to use to get the name of the main subprogram. */
290 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
292
293 /* The name of the runtime function called when an exception is raised. */
294 static const char raise_sym_name[] = "__gnat_raise_nodefer_with_msg";
295
296 /* The name of the runtime function called when an unhandled exception
297 is raised. */
298 static const char raise_unhandled_sym_name[] = "__gnat_unhandled_exception";
299
300 /* The name of the runtime function called when an assert failure is
301 raised. */
302 static const char raise_assert_sym_name[] =
303 "system__assertions__raise_assert_failure";
304
305 /* A string that reflects the longest exception expression rewrite,
306 aside from the exception name. */
307 static const char longest_exception_template[] =
308 "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";
309
310 /* Limit on the number of warnings to raise per expression evaluation. */
311 static int warning_limit = 2;
312
313 /* Number of warning messages issued; reset to 0 by cleanups after
314 expression evaluation. */
315 static int warnings_issued = 0;
316
317 static const char *known_runtime_file_name_patterns[] = {
318 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
319 };
320
321 static const char *known_auxiliary_function_name_patterns[] = {
322 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
323 };
324
325 /* Space for allocating results of ada_lookup_symbol_list. */
326 static struct obstack symbol_list_obstack;
327
328 /* Utilities */
329
330
331 static char *
332 ada_get_gdb_completer_word_break_characters (void)
333 {
334 return ada_completer_word_break_characters;
335 }
336
337 /* Print an array element index using the Ada syntax. */
338
339 static void
340 ada_print_array_index (struct value *index_value, struct ui_file *stream,
341 int format, enum val_prettyprint pretty)
342 {
343 LA_VALUE_PRINT (index_value, stream, format, pretty);
344 fprintf_filtered (stream, " => ");
345 }
346
347 /* Read the string located at ADDR from the inferior and store the
348 result into BUF. */
349
350 static void
351 extract_string (CORE_ADDR addr, char *buf)
352 {
353 int char_index = 0;
354
355 /* Loop, reading one byte at a time, until we reach the '\000'
356 end-of-string marker. */
357 do
358 {
359 target_read_memory (addr + char_index * sizeof (char),
360 buf + char_index * sizeof (char), sizeof (char));
361 char_index++;
362 }
363 while (buf[char_index - 1] != '\000');
364 }
365
366 /* Assuming VECT points to an array of *SIZE objects of size
367 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
368 updating *SIZE as necessary and returning the (new) array. */
369
370 void *
371 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
372 {
373 if (*size < min_size)
374 {
375 *size *= 2;
376 if (*size < min_size)
377 *size = min_size;
378 vect = xrealloc (vect, *size * element_size);
379 }
380 return vect;
381 }
382
383 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
384 suffix of FIELD_NAME beginning "___". */
385
386 static int
387 field_name_match (const char *field_name, const char *target)
388 {
389 int len = strlen (target);
390 return
391 (strncmp (field_name, target, len) == 0
392 && (field_name[len] == '\0'
393 || (strncmp (field_name + len, "___", 3) == 0
394 && strcmp (field_name + strlen (field_name) - 6,
395 "___XVN") != 0)));
396 }
397
398
399 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
400 FIELD_NAME, and return its index. This function also handles fields
401 whose name have ___ suffixes because the compiler sometimes alters
402 their name by adding such a suffix to represent fields with certain
403 constraints. If the field could not be found, return a negative
404 number if MAYBE_MISSING is set. Otherwise raise an error. */
405
406 int
407 ada_get_field_index (const struct type *type, const char *field_name,
408 int maybe_missing)
409 {
410 int fieldno;
411 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
412 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
413 return fieldno;
414
415 if (!maybe_missing)
416 error (_("Unable to find field %s in struct %s. Aborting"),
417 field_name, TYPE_NAME (type));
418
419 return -1;
420 }
421
422 /* The length of the prefix of NAME prior to any "___" suffix. */
423
424 int
425 ada_name_prefix_len (const char *name)
426 {
427 if (name == NULL)
428 return 0;
429 else
430 {
431 const char *p = strstr (name, "___");
432 if (p == NULL)
433 return strlen (name);
434 else
435 return p - name;
436 }
437 }
438
439 /* Return non-zero if SUFFIX is a suffix of STR.
440 Return zero if STR is null. */
441
442 static int
443 is_suffix (const char *str, const char *suffix)
444 {
445 int len1, len2;
446 if (str == NULL)
447 return 0;
448 len1 = strlen (str);
449 len2 = strlen (suffix);
450 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
451 }
452
453 /* Create a value of type TYPE whose contents come from VALADDR, if it
454 is non-null, and whose memory address (in the inferior) is
455 ADDRESS. */
456
457 struct value *
458 value_from_contents_and_address (struct type *type,
459 const gdb_byte *valaddr,
460 CORE_ADDR address)
461 {
462 struct value *v = allocate_value (type);
463 if (valaddr == NULL)
464 set_value_lazy (v, 1);
465 else
466 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
467 VALUE_ADDRESS (v) = address;
468 if (address != 0)
469 VALUE_LVAL (v) = lval_memory;
470 return v;
471 }
472
473 /* The contents of value VAL, treated as a value of type TYPE. The
474 result is an lval in memory if VAL is. */
475
476 static struct value *
477 coerce_unspec_val_to_type (struct value *val, struct type *type)
478 {
479 type = ada_check_typedef (type);
480 if (value_type (val) == type)
481 return val;
482 else
483 {
484 struct value *result;
485
486 /* Make sure that the object size is not unreasonable before
487 trying to allocate some memory for it. */
488 check_size (type);
489
490 result = allocate_value (type);
491 VALUE_LVAL (result) = VALUE_LVAL (val);
492 set_value_bitsize (result, value_bitsize (val));
493 set_value_bitpos (result, value_bitpos (val));
494 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
495 if (value_lazy (val)
496 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
497 set_value_lazy (result, 1);
498 else
499 memcpy (value_contents_raw (result), value_contents (val),
500 TYPE_LENGTH (type));
501 return result;
502 }
503 }
504
505 static const gdb_byte *
506 cond_offset_host (const gdb_byte *valaddr, long offset)
507 {
508 if (valaddr == NULL)
509 return NULL;
510 else
511 return valaddr + offset;
512 }
513
514 static CORE_ADDR
515 cond_offset_target (CORE_ADDR address, long offset)
516 {
517 if (address == 0)
518 return 0;
519 else
520 return address + offset;
521 }
522
523 /* Issue a warning (as for the definition of warning in utils.c, but
524 with exactly one argument rather than ...), unless the limit on the
525 number of warnings has passed during the evaluation of the current
526 expression. */
527
528 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
529 provided by "complaint". */
530 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
531
532 static void
533 lim_warning (const char *format, ...)
534 {
535 va_list args;
536 va_start (args, format);
537
538 warnings_issued += 1;
539 if (warnings_issued <= warning_limit)
540 vwarning (format, args);
541
542 va_end (args);
543 }
544
545 /* Issue an error if the size of an object of type T is unreasonable,
546 i.e. if it would be a bad idea to allocate a value of this type in
547 GDB. */
548
549 static void
550 check_size (const struct type *type)
551 {
552 if (TYPE_LENGTH (type) > varsize_limit)
553 error (_("object size is larger than varsize-limit"));
554 }
555
556
557 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
558 gdbtypes.h, but some of the necessary definitions in that file
559 seem to have gone missing. */
560
561 /* Maximum value of a SIZE-byte signed integer type. */
562 static LONGEST
563 max_of_size (int size)
564 {
565 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
566 return top_bit | (top_bit - 1);
567 }
568
569 /* Minimum value of a SIZE-byte signed integer type. */
570 static LONGEST
571 min_of_size (int size)
572 {
573 return -max_of_size (size) - 1;
574 }
575
576 /* Maximum value of a SIZE-byte unsigned integer type. */
577 static ULONGEST
578 umax_of_size (int size)
579 {
580 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
581 return top_bit | (top_bit - 1);
582 }
583
584 /* Maximum value of integral type T, as a signed quantity. */
585 static LONGEST
586 max_of_type (struct type *t)
587 {
588 if (TYPE_UNSIGNED (t))
589 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
590 else
591 return max_of_size (TYPE_LENGTH (t));
592 }
593
594 /* Minimum value of integral type T, as a signed quantity. */
595 static LONGEST
596 min_of_type (struct type *t)
597 {
598 if (TYPE_UNSIGNED (t))
599 return 0;
600 else
601 return min_of_size (TYPE_LENGTH (t));
602 }
603
604 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
605 static struct value *
606 discrete_type_high_bound (struct type *type)
607 {
608 switch (TYPE_CODE (type))
609 {
610 case TYPE_CODE_RANGE:
611 return value_from_longest (TYPE_TARGET_TYPE (type),
612 TYPE_HIGH_BOUND (type));
613 case TYPE_CODE_ENUM:
614 return
615 value_from_longest (type,
616 TYPE_FIELD_BITPOS (type,
617 TYPE_NFIELDS (type) - 1));
618 case TYPE_CODE_INT:
619 return value_from_longest (type, max_of_type (type));
620 default:
621 error (_("Unexpected type in discrete_type_high_bound."));
622 }
623 }
624
625 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
626 static struct value *
627 discrete_type_low_bound (struct type *type)
628 {
629 switch (TYPE_CODE (type))
630 {
631 case TYPE_CODE_RANGE:
632 return value_from_longest (TYPE_TARGET_TYPE (type),
633 TYPE_LOW_BOUND (type));
634 case TYPE_CODE_ENUM:
635 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
636 case TYPE_CODE_INT:
637 return value_from_longest (type, min_of_type (type));
638 default:
639 error (_("Unexpected type in discrete_type_low_bound."));
640 }
641 }
642
643 /* The identity on non-range types. For range types, the underlying
644 non-range scalar type. */
645
646 static struct type *
647 base_type (struct type *type)
648 {
649 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
650 {
651 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
652 return type;
653 type = TYPE_TARGET_TYPE (type);
654 }
655 return type;
656 }
657 \f
658
659 /* Language Selection */
660
661 /* If the main program is in Ada, return language_ada, otherwise return LANG
662 (the main program is in Ada iif the adainit symbol is found).
663
664 MAIN_PST is not used. */
665
666 enum language
667 ada_update_initial_language (enum language lang,
668 struct partial_symtab *main_pst)
669 {
670 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
671 (struct objfile *) NULL) != NULL)
672 return language_ada;
673
674 return lang;
675 }
676
677 /* If the main procedure is written in Ada, then return its name.
678 The result is good until the next call. Return NULL if the main
679 procedure doesn't appear to be in Ada. */
680
681 char *
682 ada_main_name (void)
683 {
684 struct minimal_symbol *msym;
685 CORE_ADDR main_program_name_addr;
686 static char main_program_name[1024];
687
688 /* For Ada, the name of the main procedure is stored in a specific
689 string constant, generated by the binder. Look for that symbol,
690 extract its address, and then read that string. If we didn't find
691 that string, then most probably the main procedure is not written
692 in Ada. */
693 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
694
695 if (msym != NULL)
696 {
697 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
698 if (main_program_name_addr == 0)
699 error (_("Invalid address for Ada main program name."));
700
701 extract_string (main_program_name_addr, main_program_name);
702 return main_program_name;
703 }
704
705 /* The main procedure doesn't seem to be in Ada. */
706 return NULL;
707 }
708 \f
709 /* Symbols */
710
711 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
712 of NULLs. */
713
714 const struct ada_opname_map ada_opname_table[] = {
715 {"Oadd", "\"+\"", BINOP_ADD},
716 {"Osubtract", "\"-\"", BINOP_SUB},
717 {"Omultiply", "\"*\"", BINOP_MUL},
718 {"Odivide", "\"/\"", BINOP_DIV},
719 {"Omod", "\"mod\"", BINOP_MOD},
720 {"Orem", "\"rem\"", BINOP_REM},
721 {"Oexpon", "\"**\"", BINOP_EXP},
722 {"Olt", "\"<\"", BINOP_LESS},
723 {"Ole", "\"<=\"", BINOP_LEQ},
724 {"Ogt", "\">\"", BINOP_GTR},
725 {"Oge", "\">=\"", BINOP_GEQ},
726 {"Oeq", "\"=\"", BINOP_EQUAL},
727 {"One", "\"/=\"", BINOP_NOTEQUAL},
728 {"Oand", "\"and\"", BINOP_BITWISE_AND},
729 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
730 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
731 {"Oconcat", "\"&\"", BINOP_CONCAT},
732 {"Oabs", "\"abs\"", UNOP_ABS},
733 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
734 {"Oadd", "\"+\"", UNOP_PLUS},
735 {"Osubtract", "\"-\"", UNOP_NEG},
736 {NULL, NULL}
737 };
738
739 /* Return non-zero if STR should be suppressed in info listings. */
740
741 static int
742 is_suppressed_name (const char *str)
743 {
744 if (strncmp (str, "_ada_", 5) == 0)
745 str += 5;
746 if (str[0] == '_' || str[0] == '\000')
747 return 1;
748 else
749 {
750 const char *p;
751 const char *suffix = strstr (str, "___");
752 if (suffix != NULL && suffix[3] != 'X')
753 return 1;
754 if (suffix == NULL)
755 suffix = str + strlen (str);
756 for (p = suffix - 1; p != str; p -= 1)
757 if (isupper (*p))
758 {
759 int i;
760 if (p[0] == 'X' && p[-1] != '_')
761 goto OK;
762 if (*p != 'O')
763 return 1;
764 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
765 if (strncmp (ada_opname_table[i].encoded, p,
766 strlen (ada_opname_table[i].encoded)) == 0)
767 goto OK;
768 return 1;
769 OK:;
770 }
771 return 0;
772 }
773 }
774
775 /* The "encoded" form of DECODED, according to GNAT conventions.
776 The result is valid until the next call to ada_encode. */
777
778 char *
779 ada_encode (const char *decoded)
780 {
781 static char *encoding_buffer = NULL;
782 static size_t encoding_buffer_size = 0;
783 const char *p;
784 int k;
785
786 if (decoded == NULL)
787 return NULL;
788
789 GROW_VECT (encoding_buffer, encoding_buffer_size,
790 2 * strlen (decoded) + 10);
791
792 k = 0;
793 for (p = decoded; *p != '\0'; p += 1)
794 {
795 if (!ADA_RETAIN_DOTS && *p == '.')
796 {
797 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
798 k += 2;
799 }
800 else if (*p == '"')
801 {
802 const struct ada_opname_map *mapping;
803
804 for (mapping = ada_opname_table;
805 mapping->encoded != NULL
806 && strncmp (mapping->decoded, p,
807 strlen (mapping->decoded)) != 0; mapping += 1)
808 ;
809 if (mapping->encoded == NULL)
810 error (_("invalid Ada operator name: %s"), p);
811 strcpy (encoding_buffer + k, mapping->encoded);
812 k += strlen (mapping->encoded);
813 break;
814 }
815 else
816 {
817 encoding_buffer[k] = *p;
818 k += 1;
819 }
820 }
821
822 encoding_buffer[k] = '\0';
823 return encoding_buffer;
824 }
825
826 /* Return NAME folded to lower case, or, if surrounded by single
827 quotes, unfolded, but with the quotes stripped away. Result good
828 to next call. */
829
830 char *
831 ada_fold_name (const char *name)
832 {
833 static char *fold_buffer = NULL;
834 static size_t fold_buffer_size = 0;
835
836 int len = strlen (name);
837 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
838
839 if (name[0] == '\'')
840 {
841 strncpy (fold_buffer, name + 1, len - 2);
842 fold_buffer[len - 2] = '\000';
843 }
844 else
845 {
846 int i;
847 for (i = 0; i <= len; i += 1)
848 fold_buffer[i] = tolower (name[i]);
849 }
850
851 return fold_buffer;
852 }
853
854 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
855
856 static int
857 is_lower_alphanum (const char c)
858 {
859 return (isdigit (c) || (isalpha (c) && islower (c)));
860 }
861
862 /* Decode:
863 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
864 These are suffixes introduced by GNAT5 to nested subprogram
865 names, and do not serve any purpose for the debugger.
866 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
867 . Discard final N if it follows a lowercase alphanumeric character
868 (protected object subprogram suffix)
869 . Convert other instances of embedded "__" to `.'.
870 . Discard leading _ada_.
871 . Convert operator names to the appropriate quoted symbols.
872 . Remove everything after first ___ if it is followed by
873 'X'.
874 . Replace TK__ with __, and a trailing B or TKB with nothing.
875 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
876 . Put symbols that should be suppressed in <...> brackets.
877 . Remove trailing X[bn]* suffix (indicating names in package bodies).
878
879 The resulting string is valid until the next call of ada_decode.
880 If the string is unchanged by demangling, the original string pointer
881 is returned. */
882
883 const char *
884 ada_decode (const char *encoded)
885 {
886 int i, j;
887 int len0;
888 const char *p;
889 char *decoded;
890 int at_start_name;
891 static char *decoding_buffer = NULL;
892 static size_t decoding_buffer_size = 0;
893
894 if (strncmp (encoded, "_ada_", 5) == 0)
895 encoded += 5;
896
897 if (encoded[0] == '_' || encoded[0] == '<')
898 goto Suppress;
899
900 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
901 len0 = strlen (encoded);
902 if (len0 > 1 && isdigit (encoded[len0 - 1]))
903 {
904 i = len0 - 2;
905 while (i > 0 && isdigit (encoded[i]))
906 i--;
907 if (i >= 0 && encoded[i] == '.')
908 len0 = i;
909 else if (i >= 0 && encoded[i] == '$')
910 len0 = i;
911 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
912 len0 = i - 2;
913 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
914 len0 = i - 1;
915 }
916
917 /* Remove trailing N. */
918
919 /* Protected entry subprograms are broken into two
920 separate subprograms: The first one is unprotected, and has
921 a 'N' suffix; the second is the protected version, and has
922 the 'P' suffix. The second calls the first one after handling
923 the protection. Since the P subprograms are internally generated,
924 we leave these names undecoded, giving the user a clue that this
925 entity is internal. */
926
927 if (len0 > 1
928 && encoded[len0 - 1] == 'N'
929 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
930 len0--;
931
932 /* Remove the ___X.* suffix if present. Do not forget to verify that
933 the suffix is located before the current "end" of ENCODED. We want
934 to avoid re-matching parts of ENCODED that have previously been
935 marked as discarded (by decrementing LEN0). */
936 p = strstr (encoded, "___");
937 if (p != NULL && p - encoded < len0 - 3)
938 {
939 if (p[3] == 'X')
940 len0 = p - encoded;
941 else
942 goto Suppress;
943 }
944
945 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
946 len0 -= 3;
947
948 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
949 len0 -= 1;
950
951 /* Make decoded big enough for possible expansion by operator name. */
952 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
953 decoded = decoding_buffer;
954
955 if (len0 > 1 && isdigit (encoded[len0 - 1]))
956 {
957 i = len0 - 2;
958 while ((i >= 0 && isdigit (encoded[i]))
959 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
960 i -= 1;
961 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
962 len0 = i - 1;
963 else if (encoded[i] == '$')
964 len0 = i;
965 }
966
967 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
968 decoded[j] = encoded[i];
969
970 at_start_name = 1;
971 while (i < len0)
972 {
973 if (at_start_name && encoded[i] == 'O')
974 {
975 int k;
976 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
977 {
978 int op_len = strlen (ada_opname_table[k].encoded);
979 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
980 op_len - 1) == 0)
981 && !isalnum (encoded[i + op_len]))
982 {
983 strcpy (decoded + j, ada_opname_table[k].decoded);
984 at_start_name = 0;
985 i += op_len;
986 j += strlen (ada_opname_table[k].decoded);
987 break;
988 }
989 }
990 if (ada_opname_table[k].encoded != NULL)
991 continue;
992 }
993 at_start_name = 0;
994
995 /* Replace "TK__" with "__", which will eventually be translated
996 into "." (just below). */
997
998 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
999 i += 2;
1000
1001 /* Remove _E{DIGITS}+[sb] */
1002
1003 /* Just as for protected object subprograms, there are 2 categories
1004 of subprograms created by the compiler for each entry. The first
1005 one implements the actual entry code, and has a suffix following
1006 the convention above; the second one implements the barrier and
1007 uses the same convention as above, except that the 'E' is replaced
1008 by a 'B'.
1009
1010 Just as above, we do not decode the name of barrier functions
1011 to give the user a clue that the code he is debugging has been
1012 internally generated. */
1013
1014 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1015 && isdigit (encoded[i+2]))
1016 {
1017 int k = i + 3;
1018
1019 while (k < len0 && isdigit (encoded[k]))
1020 k++;
1021
1022 if (k < len0
1023 && (encoded[k] == 'b' || encoded[k] == 's'))
1024 {
1025 k++;
1026 /* Just as an extra precaution, make sure that if this
1027 suffix is followed by anything else, it is a '_'.
1028 Otherwise, we matched this sequence by accident. */
1029 if (k == len0
1030 || (k < len0 && encoded[k] == '_'))
1031 i = k;
1032 }
1033 }
1034
1035 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1036 the GNAT front-end in protected object subprograms. */
1037
1038 if (i < len0 + 3
1039 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1040 {
1041 /* Backtrack a bit up until we reach either the begining of
1042 the encoded name, or "__". Make sure that we only find
1043 digits or lowercase characters. */
1044 const char *ptr = encoded + i - 1;
1045
1046 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1047 ptr--;
1048 if (ptr < encoded
1049 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1050 i++;
1051 }
1052
1053 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1054 {
1055 do
1056 i += 1;
1057 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1058 if (i < len0)
1059 goto Suppress;
1060 }
1061 else if (!ADA_RETAIN_DOTS
1062 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1063 {
1064 decoded[j] = '.';
1065 at_start_name = 1;
1066 i += 2;
1067 j += 1;
1068 }
1069 else
1070 {
1071 decoded[j] = encoded[i];
1072 i += 1;
1073 j += 1;
1074 }
1075 }
1076 decoded[j] = '\000';
1077
1078 for (i = 0; decoded[i] != '\0'; i += 1)
1079 if (isupper (decoded[i]) || decoded[i] == ' ')
1080 goto Suppress;
1081
1082 if (strcmp (decoded, encoded) == 0)
1083 return encoded;
1084 else
1085 return decoded;
1086
1087 Suppress:
1088 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1089 decoded = decoding_buffer;
1090 if (encoded[0] == '<')
1091 strcpy (decoded, encoded);
1092 else
1093 sprintf (decoded, "<%s>", encoded);
1094 return decoded;
1095
1096 }
1097
1098 /* Table for keeping permanent unique copies of decoded names. Once
1099 allocated, names in this table are never released. While this is a
1100 storage leak, it should not be significant unless there are massive
1101 changes in the set of decoded names in successive versions of a
1102 symbol table loaded during a single session. */
1103 static struct htab *decoded_names_store;
1104
1105 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1106 in the language-specific part of GSYMBOL, if it has not been
1107 previously computed. Tries to save the decoded name in the same
1108 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1109 in any case, the decoded symbol has a lifetime at least that of
1110 GSYMBOL).
1111 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1112 const, but nevertheless modified to a semantically equivalent form
1113 when a decoded name is cached in it.
1114 */
1115
1116 char *
1117 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1118 {
1119 char **resultp =
1120 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1121 if (*resultp == NULL)
1122 {
1123 const char *decoded = ada_decode (gsymbol->name);
1124 if (gsymbol->bfd_section != NULL)
1125 {
1126 bfd *obfd = gsymbol->bfd_section->owner;
1127 if (obfd != NULL)
1128 {
1129 struct objfile *objf;
1130 ALL_OBJFILES (objf)
1131 {
1132 if (obfd == objf->obfd)
1133 {
1134 *resultp = obsavestring (decoded, strlen (decoded),
1135 &objf->objfile_obstack);
1136 break;
1137 }
1138 }
1139 }
1140 }
1141 /* Sometimes, we can't find a corresponding objfile, in which
1142 case, we put the result on the heap. Since we only decode
1143 when needed, we hope this usually does not cause a
1144 significant memory leak (FIXME). */
1145 if (*resultp == NULL)
1146 {
1147 char **slot = (char **) htab_find_slot (decoded_names_store,
1148 decoded, INSERT);
1149 if (*slot == NULL)
1150 *slot = xstrdup (decoded);
1151 *resultp = *slot;
1152 }
1153 }
1154
1155 return *resultp;
1156 }
1157
1158 char *
1159 ada_la_decode (const char *encoded, int options)
1160 {
1161 return xstrdup (ada_decode (encoded));
1162 }
1163
1164 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1165 suffixes that encode debugging information or leading _ada_ on
1166 SYM_NAME (see is_name_suffix commentary for the debugging
1167 information that is ignored). If WILD, then NAME need only match a
1168 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1169 either argument is NULL. */
1170
1171 int
1172 ada_match_name (const char *sym_name, const char *name, int wild)
1173 {
1174 if (sym_name == NULL || name == NULL)
1175 return 0;
1176 else if (wild)
1177 return wild_match (name, strlen (name), sym_name);
1178 else
1179 {
1180 int len_name = strlen (name);
1181 return (strncmp (sym_name, name, len_name) == 0
1182 && is_name_suffix (sym_name + len_name))
1183 || (strncmp (sym_name, "_ada_", 5) == 0
1184 && strncmp (sym_name + 5, name, len_name) == 0
1185 && is_name_suffix (sym_name + len_name + 5));
1186 }
1187 }
1188
1189 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1190 suppressed in info listings. */
1191
1192 int
1193 ada_suppress_symbol_printing (struct symbol *sym)
1194 {
1195 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1196 return 1;
1197 else
1198 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1199 }
1200 \f
1201
1202 /* Arrays */
1203
1204 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1205
1206 static char *bound_name[] = {
1207 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1208 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1209 };
1210
1211 /* Maximum number of array dimensions we are prepared to handle. */
1212
1213 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1214
1215 /* Like modify_field, but allows bitpos > wordlength. */
1216
1217 static void
1218 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1219 {
1220 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1221 }
1222
1223
1224 /* The desc_* routines return primitive portions of array descriptors
1225 (fat pointers). */
1226
1227 /* The descriptor or array type, if any, indicated by TYPE; removes
1228 level of indirection, if needed. */
1229
1230 static struct type *
1231 desc_base_type (struct type *type)
1232 {
1233 if (type == NULL)
1234 return NULL;
1235 type = ada_check_typedef (type);
1236 if (type != NULL
1237 && (TYPE_CODE (type) == TYPE_CODE_PTR
1238 || TYPE_CODE (type) == TYPE_CODE_REF))
1239 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1240 else
1241 return type;
1242 }
1243
1244 /* True iff TYPE indicates a "thin" array pointer type. */
1245
1246 static int
1247 is_thin_pntr (struct type *type)
1248 {
1249 return
1250 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1251 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1252 }
1253
1254 /* The descriptor type for thin pointer type TYPE. */
1255
1256 static struct type *
1257 thin_descriptor_type (struct type *type)
1258 {
1259 struct type *base_type = desc_base_type (type);
1260 if (base_type == NULL)
1261 return NULL;
1262 if (is_suffix (ada_type_name (base_type), "___XVE"))
1263 return base_type;
1264 else
1265 {
1266 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1267 if (alt_type == NULL)
1268 return base_type;
1269 else
1270 return alt_type;
1271 }
1272 }
1273
1274 /* A pointer to the array data for thin-pointer value VAL. */
1275
1276 static struct value *
1277 thin_data_pntr (struct value *val)
1278 {
1279 struct type *type = value_type (val);
1280 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1281 return value_cast (desc_data_type (thin_descriptor_type (type)),
1282 value_copy (val));
1283 else
1284 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1285 VALUE_ADDRESS (val) + value_offset (val));
1286 }
1287
1288 /* True iff TYPE indicates a "thick" array pointer type. */
1289
1290 static int
1291 is_thick_pntr (struct type *type)
1292 {
1293 type = desc_base_type (type);
1294 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1295 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1296 }
1297
1298 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1299 pointer to one, the type of its bounds data; otherwise, NULL. */
1300
1301 static struct type *
1302 desc_bounds_type (struct type *type)
1303 {
1304 struct type *r;
1305
1306 type = desc_base_type (type);
1307
1308 if (type == NULL)
1309 return NULL;
1310 else if (is_thin_pntr (type))
1311 {
1312 type = thin_descriptor_type (type);
1313 if (type == NULL)
1314 return NULL;
1315 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1316 if (r != NULL)
1317 return ada_check_typedef (r);
1318 }
1319 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1320 {
1321 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1322 if (r != NULL)
1323 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1324 }
1325 return NULL;
1326 }
1327
1328 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1329 one, a pointer to its bounds data. Otherwise NULL. */
1330
1331 static struct value *
1332 desc_bounds (struct value *arr)
1333 {
1334 struct type *type = ada_check_typedef (value_type (arr));
1335 if (is_thin_pntr (type))
1336 {
1337 struct type *bounds_type =
1338 desc_bounds_type (thin_descriptor_type (type));
1339 LONGEST addr;
1340
1341 if (desc_bounds_type == NULL)
1342 error (_("Bad GNAT array descriptor"));
1343
1344 /* NOTE: The following calculation is not really kosher, but
1345 since desc_type is an XVE-encoded type (and shouldn't be),
1346 the correct calculation is a real pain. FIXME (and fix GCC). */
1347 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1348 addr = value_as_long (arr);
1349 else
1350 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1351
1352 return
1353 value_from_longest (lookup_pointer_type (bounds_type),
1354 addr - TYPE_LENGTH (bounds_type));
1355 }
1356
1357 else if (is_thick_pntr (type))
1358 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1359 _("Bad GNAT array descriptor"));
1360 else
1361 return NULL;
1362 }
1363
1364 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1365 position of the field containing the address of the bounds data. */
1366
1367 static int
1368 fat_pntr_bounds_bitpos (struct type *type)
1369 {
1370 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1371 }
1372
1373 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1374 size of the field containing the address of the bounds data. */
1375
1376 static int
1377 fat_pntr_bounds_bitsize (struct type *type)
1378 {
1379 type = desc_base_type (type);
1380
1381 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1382 return TYPE_FIELD_BITSIZE (type, 1);
1383 else
1384 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1385 }
1386
1387 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1388 pointer to one, the type of its array data (a
1389 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1390 ada_type_of_array to get an array type with bounds data. */
1391
1392 static struct type *
1393 desc_data_type (struct type *type)
1394 {
1395 type = desc_base_type (type);
1396
1397 /* NOTE: The following is bogus; see comment in desc_bounds. */
1398 if (is_thin_pntr (type))
1399 return lookup_pointer_type
1400 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1401 else if (is_thick_pntr (type))
1402 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1403 else
1404 return NULL;
1405 }
1406
1407 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1408 its array data. */
1409
1410 static struct value *
1411 desc_data (struct value *arr)
1412 {
1413 struct type *type = value_type (arr);
1414 if (is_thin_pntr (type))
1415 return thin_data_pntr (arr);
1416 else if (is_thick_pntr (type))
1417 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1418 _("Bad GNAT array descriptor"));
1419 else
1420 return NULL;
1421 }
1422
1423
1424 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1425 position of the field containing the address of the data. */
1426
1427 static int
1428 fat_pntr_data_bitpos (struct type *type)
1429 {
1430 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1431 }
1432
1433 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1434 size of the field containing the address of the data. */
1435
1436 static int
1437 fat_pntr_data_bitsize (struct type *type)
1438 {
1439 type = desc_base_type (type);
1440
1441 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1442 return TYPE_FIELD_BITSIZE (type, 0);
1443 else
1444 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1445 }
1446
1447 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1448 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1449 bound, if WHICH is 1. The first bound is I=1. */
1450
1451 static struct value *
1452 desc_one_bound (struct value *bounds, int i, int which)
1453 {
1454 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1455 _("Bad GNAT array descriptor bounds"));
1456 }
1457
1458 /* If BOUNDS is an array-bounds structure type, return the bit position
1459 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1460 bound, if WHICH is 1. The first bound is I=1. */
1461
1462 static int
1463 desc_bound_bitpos (struct type *type, int i, int which)
1464 {
1465 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1466 }
1467
1468 /* If BOUNDS is an array-bounds structure type, return the bit field size
1469 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1470 bound, if WHICH is 1. The first bound is I=1. */
1471
1472 static int
1473 desc_bound_bitsize (struct type *type, int i, int which)
1474 {
1475 type = desc_base_type (type);
1476
1477 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1478 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1479 else
1480 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1481 }
1482
1483 /* If TYPE is the type of an array-bounds structure, the type of its
1484 Ith bound (numbering from 1). Otherwise, NULL. */
1485
1486 static struct type *
1487 desc_index_type (struct type *type, int i)
1488 {
1489 type = desc_base_type (type);
1490
1491 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1492 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1493 else
1494 return NULL;
1495 }
1496
1497 /* The number of index positions in the array-bounds type TYPE.
1498 Return 0 if TYPE is NULL. */
1499
1500 static int
1501 desc_arity (struct type *type)
1502 {
1503 type = desc_base_type (type);
1504
1505 if (type != NULL)
1506 return TYPE_NFIELDS (type) / 2;
1507 return 0;
1508 }
1509
1510 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1511 an array descriptor type (representing an unconstrained array
1512 type). */
1513
1514 static int
1515 ada_is_direct_array_type (struct type *type)
1516 {
1517 if (type == NULL)
1518 return 0;
1519 type = ada_check_typedef (type);
1520 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1521 || ada_is_array_descriptor_type (type));
1522 }
1523
1524 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1525 * to one. */
1526
1527 int
1528 ada_is_array_type (struct type *type)
1529 {
1530 while (type != NULL
1531 && (TYPE_CODE (type) == TYPE_CODE_PTR
1532 || TYPE_CODE (type) == TYPE_CODE_REF))
1533 type = TYPE_TARGET_TYPE (type);
1534 return ada_is_direct_array_type (type);
1535 }
1536
1537 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1538
1539 int
1540 ada_is_simple_array_type (struct type *type)
1541 {
1542 if (type == NULL)
1543 return 0;
1544 type = ada_check_typedef (type);
1545 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1546 || (TYPE_CODE (type) == TYPE_CODE_PTR
1547 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1548 }
1549
1550 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1551
1552 int
1553 ada_is_array_descriptor_type (struct type *type)
1554 {
1555 struct type *data_type = desc_data_type (type);
1556
1557 if (type == NULL)
1558 return 0;
1559 type = ada_check_typedef (type);
1560 return
1561 data_type != NULL
1562 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1563 && TYPE_TARGET_TYPE (data_type) != NULL
1564 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1565 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1566 && desc_arity (desc_bounds_type (type)) > 0;
1567 }
1568
1569 /* Non-zero iff type is a partially mal-formed GNAT array
1570 descriptor. FIXME: This is to compensate for some problems with
1571 debugging output from GNAT. Re-examine periodically to see if it
1572 is still needed. */
1573
1574 int
1575 ada_is_bogus_array_descriptor (struct type *type)
1576 {
1577 return
1578 type != NULL
1579 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1580 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1581 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1582 && !ada_is_array_descriptor_type (type);
1583 }
1584
1585
1586 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1587 (fat pointer) returns the type of the array data described---specifically,
1588 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1589 in from the descriptor; otherwise, they are left unspecified. If
1590 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1591 returns NULL. The result is simply the type of ARR if ARR is not
1592 a descriptor. */
1593 struct type *
1594 ada_type_of_array (struct value *arr, int bounds)
1595 {
1596 if (ada_is_packed_array_type (value_type (arr)))
1597 return decode_packed_array_type (value_type (arr));
1598
1599 if (!ada_is_array_descriptor_type (value_type (arr)))
1600 return value_type (arr);
1601
1602 if (!bounds)
1603 return
1604 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1605 else
1606 {
1607 struct type *elt_type;
1608 int arity;
1609 struct value *descriptor;
1610 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1611
1612 elt_type = ada_array_element_type (value_type (arr), -1);
1613 arity = ada_array_arity (value_type (arr));
1614
1615 if (elt_type == NULL || arity == 0)
1616 return ada_check_typedef (value_type (arr));
1617
1618 descriptor = desc_bounds (arr);
1619 if (value_as_long (descriptor) == 0)
1620 return NULL;
1621 while (arity > 0)
1622 {
1623 struct type *range_type = alloc_type (objf);
1624 struct type *array_type = alloc_type (objf);
1625 struct value *low = desc_one_bound (descriptor, arity, 0);
1626 struct value *high = desc_one_bound (descriptor, arity, 1);
1627 arity -= 1;
1628
1629 create_range_type (range_type, value_type (low),
1630 longest_to_int (value_as_long (low)),
1631 longest_to_int (value_as_long (high)));
1632 elt_type = create_array_type (array_type, elt_type, range_type);
1633 }
1634
1635 return lookup_pointer_type (elt_type);
1636 }
1637 }
1638
1639 /* If ARR does not represent an array, returns ARR unchanged.
1640 Otherwise, returns either a standard GDB array with bounds set
1641 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1642 GDB array. Returns NULL if ARR is a null fat pointer. */
1643
1644 struct value *
1645 ada_coerce_to_simple_array_ptr (struct value *arr)
1646 {
1647 if (ada_is_array_descriptor_type (value_type (arr)))
1648 {
1649 struct type *arrType = ada_type_of_array (arr, 1);
1650 if (arrType == NULL)
1651 return NULL;
1652 return value_cast (arrType, value_copy (desc_data (arr)));
1653 }
1654 else if (ada_is_packed_array_type (value_type (arr)))
1655 return decode_packed_array (arr);
1656 else
1657 return arr;
1658 }
1659
1660 /* If ARR does not represent an array, returns ARR unchanged.
1661 Otherwise, returns a standard GDB array describing ARR (which may
1662 be ARR itself if it already is in the proper form). */
1663
1664 static struct value *
1665 ada_coerce_to_simple_array (struct value *arr)
1666 {
1667 if (ada_is_array_descriptor_type (value_type (arr)))
1668 {
1669 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1670 if (arrVal == NULL)
1671 error (_("Bounds unavailable for null array pointer."));
1672 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1673 return value_ind (arrVal);
1674 }
1675 else if (ada_is_packed_array_type (value_type (arr)))
1676 return decode_packed_array (arr);
1677 else
1678 return arr;
1679 }
1680
1681 /* If TYPE represents a GNAT array type, return it translated to an
1682 ordinary GDB array type (possibly with BITSIZE fields indicating
1683 packing). For other types, is the identity. */
1684
1685 struct type *
1686 ada_coerce_to_simple_array_type (struct type *type)
1687 {
1688 struct value *mark = value_mark ();
1689 struct value *dummy = value_from_longest (builtin_type_long, 0);
1690 struct type *result;
1691 deprecated_set_value_type (dummy, type);
1692 result = ada_type_of_array (dummy, 0);
1693 value_free_to_mark (mark);
1694 return result;
1695 }
1696
1697 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1698
1699 int
1700 ada_is_packed_array_type (struct type *type)
1701 {
1702 if (type == NULL)
1703 return 0;
1704 type = desc_base_type (type);
1705 type = ada_check_typedef (type);
1706 return
1707 ada_type_name (type) != NULL
1708 && strstr (ada_type_name (type), "___XP") != NULL;
1709 }
1710
1711 /* Given that TYPE is a standard GDB array type with all bounds filled
1712 in, and that the element size of its ultimate scalar constituents
1713 (that is, either its elements, or, if it is an array of arrays, its
1714 elements' elements, etc.) is *ELT_BITS, return an identical type,
1715 but with the bit sizes of its elements (and those of any
1716 constituent arrays) recorded in the BITSIZE components of its
1717 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1718 in bits. */
1719
1720 static struct type *
1721 packed_array_type (struct type *type, long *elt_bits)
1722 {
1723 struct type *new_elt_type;
1724 struct type *new_type;
1725 LONGEST low_bound, high_bound;
1726
1727 type = ada_check_typedef (type);
1728 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1729 return type;
1730
1731 new_type = alloc_type (TYPE_OBJFILE (type));
1732 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1733 elt_bits);
1734 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1735 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1736 TYPE_NAME (new_type) = ada_type_name (type);
1737
1738 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1739 &low_bound, &high_bound) < 0)
1740 low_bound = high_bound = 0;
1741 if (high_bound < low_bound)
1742 *elt_bits = TYPE_LENGTH (new_type) = 0;
1743 else
1744 {
1745 *elt_bits *= (high_bound - low_bound + 1);
1746 TYPE_LENGTH (new_type) =
1747 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1748 }
1749
1750 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1751 return new_type;
1752 }
1753
1754 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1755
1756 static struct type *
1757 decode_packed_array_type (struct type *type)
1758 {
1759 struct symbol *sym;
1760 struct block **blocks;
1761 const char *raw_name = ada_type_name (ada_check_typedef (type));
1762 char *name = (char *) alloca (strlen (raw_name) + 1);
1763 char *tail = strstr (raw_name, "___XP");
1764 struct type *shadow_type;
1765 long bits;
1766 int i, n;
1767
1768 type = desc_base_type (type);
1769
1770 memcpy (name, raw_name, tail - raw_name);
1771 name[tail - raw_name] = '\000';
1772
1773 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1774 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1775 {
1776 lim_warning (_("could not find bounds information on packed array"));
1777 return NULL;
1778 }
1779 shadow_type = SYMBOL_TYPE (sym);
1780
1781 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1782 {
1783 lim_warning (_("could not understand bounds information on packed array"));
1784 return NULL;
1785 }
1786
1787 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1788 {
1789 lim_warning
1790 (_("could not understand bit size information on packed array"));
1791 return NULL;
1792 }
1793
1794 return packed_array_type (shadow_type, &bits);
1795 }
1796
1797 /* Given that ARR is a struct value *indicating a GNAT packed array,
1798 returns a simple array that denotes that array. Its type is a
1799 standard GDB array type except that the BITSIZEs of the array
1800 target types are set to the number of bits in each element, and the
1801 type length is set appropriately. */
1802
1803 static struct value *
1804 decode_packed_array (struct value *arr)
1805 {
1806 struct type *type;
1807
1808 arr = ada_coerce_ref (arr);
1809 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1810 arr = ada_value_ind (arr);
1811
1812 type = decode_packed_array_type (value_type (arr));
1813 if (type == NULL)
1814 {
1815 error (_("can't unpack array"));
1816 return NULL;
1817 }
1818
1819 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1820 {
1821 /* This is a (right-justified) modular type representing a packed
1822 array with no wrapper. In order to interpret the value through
1823 the (left-justified) packed array type we just built, we must
1824 first left-justify it. */
1825 int bit_size, bit_pos;
1826 ULONGEST mod;
1827
1828 mod = ada_modulus (value_type (arr)) - 1;
1829 bit_size = 0;
1830 while (mod > 0)
1831 {
1832 bit_size += 1;
1833 mod >>= 1;
1834 }
1835 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1836 arr = ada_value_primitive_packed_val (arr, NULL,
1837 bit_pos / HOST_CHAR_BIT,
1838 bit_pos % HOST_CHAR_BIT,
1839 bit_size,
1840 type);
1841 }
1842
1843 return coerce_unspec_val_to_type (arr, type);
1844 }
1845
1846
1847 /* The value of the element of packed array ARR at the ARITY indices
1848 given in IND. ARR must be a simple array. */
1849
1850 static struct value *
1851 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1852 {
1853 int i;
1854 int bits, elt_off, bit_off;
1855 long elt_total_bit_offset;
1856 struct type *elt_type;
1857 struct value *v;
1858
1859 bits = 0;
1860 elt_total_bit_offset = 0;
1861 elt_type = ada_check_typedef (value_type (arr));
1862 for (i = 0; i < arity; i += 1)
1863 {
1864 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1865 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1866 error
1867 (_("attempt to do packed indexing of something other than a packed array"));
1868 else
1869 {
1870 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1871 LONGEST lowerbound, upperbound;
1872 LONGEST idx;
1873
1874 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1875 {
1876 lim_warning (_("don't know bounds of array"));
1877 lowerbound = upperbound = 0;
1878 }
1879
1880 idx = value_as_long (value_pos_atr (ind[i]));
1881 if (idx < lowerbound || idx > upperbound)
1882 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1883 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1884 elt_total_bit_offset += (idx - lowerbound) * bits;
1885 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1886 }
1887 }
1888 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1889 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1890
1891 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1892 bits, elt_type);
1893 return v;
1894 }
1895
1896 /* Non-zero iff TYPE includes negative integer values. */
1897
1898 static int
1899 has_negatives (struct type *type)
1900 {
1901 switch (TYPE_CODE (type))
1902 {
1903 default:
1904 return 0;
1905 case TYPE_CODE_INT:
1906 return !TYPE_UNSIGNED (type);
1907 case TYPE_CODE_RANGE:
1908 return TYPE_LOW_BOUND (type) < 0;
1909 }
1910 }
1911
1912
1913 /* Create a new value of type TYPE from the contents of OBJ starting
1914 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1915 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1916 assigning through the result will set the field fetched from.
1917 VALADDR is ignored unless OBJ is NULL, in which case,
1918 VALADDR+OFFSET must address the start of storage containing the
1919 packed value. The value returned in this case is never an lval.
1920 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1921
1922 struct value *
1923 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1924 long offset, int bit_offset, int bit_size,
1925 struct type *type)
1926 {
1927 struct value *v;
1928 int src, /* Index into the source area */
1929 targ, /* Index into the target area */
1930 srcBitsLeft, /* Number of source bits left to move */
1931 nsrc, ntarg, /* Number of source and target bytes */
1932 unusedLS, /* Number of bits in next significant
1933 byte of source that are unused */
1934 accumSize; /* Number of meaningful bits in accum */
1935 unsigned char *bytes; /* First byte containing data to unpack */
1936 unsigned char *unpacked;
1937 unsigned long accum; /* Staging area for bits being transferred */
1938 unsigned char sign;
1939 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1940 /* Transmit bytes from least to most significant; delta is the direction
1941 the indices move. */
1942 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1943
1944 type = ada_check_typedef (type);
1945
1946 if (obj == NULL)
1947 {
1948 v = allocate_value (type);
1949 bytes = (unsigned char *) (valaddr + offset);
1950 }
1951 else if (value_lazy (obj))
1952 {
1953 v = value_at (type,
1954 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1955 bytes = (unsigned char *) alloca (len);
1956 read_memory (VALUE_ADDRESS (v), bytes, len);
1957 }
1958 else
1959 {
1960 v = allocate_value (type);
1961 bytes = (unsigned char *) value_contents (obj) + offset;
1962 }
1963
1964 if (obj != NULL)
1965 {
1966 VALUE_LVAL (v) = VALUE_LVAL (obj);
1967 if (VALUE_LVAL (obj) == lval_internalvar)
1968 VALUE_LVAL (v) = lval_internalvar_component;
1969 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1970 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1971 set_value_bitsize (v, bit_size);
1972 if (value_bitpos (v) >= HOST_CHAR_BIT)
1973 {
1974 VALUE_ADDRESS (v) += 1;
1975 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1976 }
1977 }
1978 else
1979 set_value_bitsize (v, bit_size);
1980 unpacked = (unsigned char *) value_contents (v);
1981
1982 srcBitsLeft = bit_size;
1983 nsrc = len;
1984 ntarg = TYPE_LENGTH (type);
1985 sign = 0;
1986 if (bit_size == 0)
1987 {
1988 memset (unpacked, 0, TYPE_LENGTH (type));
1989 return v;
1990 }
1991 else if (BITS_BIG_ENDIAN)
1992 {
1993 src = len - 1;
1994 if (has_negatives (type)
1995 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1996 sign = ~0;
1997
1998 unusedLS =
1999 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2000 % HOST_CHAR_BIT;
2001
2002 switch (TYPE_CODE (type))
2003 {
2004 case TYPE_CODE_ARRAY:
2005 case TYPE_CODE_UNION:
2006 case TYPE_CODE_STRUCT:
2007 /* Non-scalar values must be aligned at a byte boundary... */
2008 accumSize =
2009 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2010 /* ... And are placed at the beginning (most-significant) bytes
2011 of the target. */
2012 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2013 break;
2014 default:
2015 accumSize = 0;
2016 targ = TYPE_LENGTH (type) - 1;
2017 break;
2018 }
2019 }
2020 else
2021 {
2022 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2023
2024 src = targ = 0;
2025 unusedLS = bit_offset;
2026 accumSize = 0;
2027
2028 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2029 sign = ~0;
2030 }
2031
2032 accum = 0;
2033 while (nsrc > 0)
2034 {
2035 /* Mask for removing bits of the next source byte that are not
2036 part of the value. */
2037 unsigned int unusedMSMask =
2038 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2039 1;
2040 /* Sign-extend bits for this byte. */
2041 unsigned int signMask = sign & ~unusedMSMask;
2042 accum |=
2043 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2044 accumSize += HOST_CHAR_BIT - unusedLS;
2045 if (accumSize >= HOST_CHAR_BIT)
2046 {
2047 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2048 accumSize -= HOST_CHAR_BIT;
2049 accum >>= HOST_CHAR_BIT;
2050 ntarg -= 1;
2051 targ += delta;
2052 }
2053 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2054 unusedLS = 0;
2055 nsrc -= 1;
2056 src += delta;
2057 }
2058 while (ntarg > 0)
2059 {
2060 accum |= sign << accumSize;
2061 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2062 accumSize -= HOST_CHAR_BIT;
2063 accum >>= HOST_CHAR_BIT;
2064 ntarg -= 1;
2065 targ += delta;
2066 }
2067
2068 return v;
2069 }
2070
2071 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2072 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2073 not overlap. */
2074 static void
2075 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2076 int src_offset, int n)
2077 {
2078 unsigned int accum, mask;
2079 int accum_bits, chunk_size;
2080
2081 target += targ_offset / HOST_CHAR_BIT;
2082 targ_offset %= HOST_CHAR_BIT;
2083 source += src_offset / HOST_CHAR_BIT;
2084 src_offset %= HOST_CHAR_BIT;
2085 if (BITS_BIG_ENDIAN)
2086 {
2087 accum = (unsigned char) *source;
2088 source += 1;
2089 accum_bits = HOST_CHAR_BIT - src_offset;
2090
2091 while (n > 0)
2092 {
2093 int unused_right;
2094 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2095 accum_bits += HOST_CHAR_BIT;
2096 source += 1;
2097 chunk_size = HOST_CHAR_BIT - targ_offset;
2098 if (chunk_size > n)
2099 chunk_size = n;
2100 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2101 mask = ((1 << chunk_size) - 1) << unused_right;
2102 *target =
2103 (*target & ~mask)
2104 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2105 n -= chunk_size;
2106 accum_bits -= chunk_size;
2107 target += 1;
2108 targ_offset = 0;
2109 }
2110 }
2111 else
2112 {
2113 accum = (unsigned char) *source >> src_offset;
2114 source += 1;
2115 accum_bits = HOST_CHAR_BIT - src_offset;
2116
2117 while (n > 0)
2118 {
2119 accum = accum + ((unsigned char) *source << accum_bits);
2120 accum_bits += HOST_CHAR_BIT;
2121 source += 1;
2122 chunk_size = HOST_CHAR_BIT - targ_offset;
2123 if (chunk_size > n)
2124 chunk_size = n;
2125 mask = ((1 << chunk_size) - 1) << targ_offset;
2126 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2127 n -= chunk_size;
2128 accum_bits -= chunk_size;
2129 accum >>= chunk_size;
2130 target += 1;
2131 targ_offset = 0;
2132 }
2133 }
2134 }
2135
2136 /* Store the contents of FROMVAL into the location of TOVAL.
2137 Return a new value with the location of TOVAL and contents of
2138 FROMVAL. Handles assignment into packed fields that have
2139 floating-point or non-scalar types. */
2140
2141 static struct value *
2142 ada_value_assign (struct value *toval, struct value *fromval)
2143 {
2144 struct type *type = value_type (toval);
2145 int bits = value_bitsize (toval);
2146
2147 toval = ada_coerce_ref (toval);
2148 fromval = ada_coerce_ref (fromval);
2149
2150 if (ada_is_direct_array_type (value_type (toval)))
2151 toval = ada_coerce_to_simple_array (toval);
2152 if (ada_is_direct_array_type (value_type (fromval)))
2153 fromval = ada_coerce_to_simple_array (fromval);
2154
2155 if (!deprecated_value_modifiable (toval))
2156 error (_("Left operand of assignment is not a modifiable lvalue."));
2157
2158 if (VALUE_LVAL (toval) == lval_memory
2159 && bits > 0
2160 && (TYPE_CODE (type) == TYPE_CODE_FLT
2161 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2162 {
2163 int len = (value_bitpos (toval)
2164 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2165 char *buffer = (char *) alloca (len);
2166 struct value *val;
2167 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2168
2169 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2170 fromval = value_cast (type, fromval);
2171
2172 read_memory (to_addr, buffer, len);
2173 if (BITS_BIG_ENDIAN)
2174 move_bits (buffer, value_bitpos (toval),
2175 value_contents (fromval),
2176 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2177 bits, bits);
2178 else
2179 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2180 0, bits);
2181 write_memory (to_addr, buffer, len);
2182 if (deprecated_memory_changed_hook)
2183 deprecated_memory_changed_hook (to_addr, len);
2184
2185 val = value_copy (toval);
2186 memcpy (value_contents_raw (val), value_contents (fromval),
2187 TYPE_LENGTH (type));
2188 deprecated_set_value_type (val, type);
2189
2190 return val;
2191 }
2192
2193 return value_assign (toval, fromval);
2194 }
2195
2196
2197 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2198 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2199 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2200 * COMPONENT, and not the inferior's memory. The current contents
2201 * of COMPONENT are ignored. */
2202 static void
2203 value_assign_to_component (struct value *container, struct value *component,
2204 struct value *val)
2205 {
2206 LONGEST offset_in_container =
2207 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2208 - VALUE_ADDRESS (container) - value_offset (container));
2209 int bit_offset_in_container =
2210 value_bitpos (component) - value_bitpos (container);
2211 int bits;
2212
2213 val = value_cast (value_type (component), val);
2214
2215 if (value_bitsize (component) == 0)
2216 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2217 else
2218 bits = value_bitsize (component);
2219
2220 if (BITS_BIG_ENDIAN)
2221 move_bits (value_contents_writeable (container) + offset_in_container,
2222 value_bitpos (container) + bit_offset_in_container,
2223 value_contents (val),
2224 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2225 bits);
2226 else
2227 move_bits (value_contents_writeable (container) + offset_in_container,
2228 value_bitpos (container) + bit_offset_in_container,
2229 value_contents (val), 0, bits);
2230 }
2231
2232 /* The value of the element of array ARR at the ARITY indices given in IND.
2233 ARR may be either a simple array, GNAT array descriptor, or pointer
2234 thereto. */
2235
2236 struct value *
2237 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2238 {
2239 int k;
2240 struct value *elt;
2241 struct type *elt_type;
2242
2243 elt = ada_coerce_to_simple_array (arr);
2244
2245 elt_type = ada_check_typedef (value_type (elt));
2246 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2247 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2248 return value_subscript_packed (elt, arity, ind);
2249
2250 for (k = 0; k < arity; k += 1)
2251 {
2252 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2253 error (_("too many subscripts (%d expected)"), k);
2254 elt = value_subscript (elt, value_pos_atr (ind[k]));
2255 }
2256 return elt;
2257 }
2258
2259 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2260 value of the element of *ARR at the ARITY indices given in
2261 IND. Does not read the entire array into memory. */
2262
2263 struct value *
2264 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2265 struct value **ind)
2266 {
2267 int k;
2268
2269 for (k = 0; k < arity; k += 1)
2270 {
2271 LONGEST lwb, upb;
2272 struct value *idx;
2273
2274 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2275 error (_("too many subscripts (%d expected)"), k);
2276 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2277 value_copy (arr));
2278 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2279 idx = value_pos_atr (ind[k]);
2280 if (lwb != 0)
2281 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2282 arr = value_add (arr, idx);
2283 type = TYPE_TARGET_TYPE (type);
2284 }
2285
2286 return value_ind (arr);
2287 }
2288
2289 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2290 actual type of ARRAY_PTR is ignored), returns a reference to
2291 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2292 bound of this array is LOW, as per Ada rules. */
2293 static struct value *
2294 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2295 int low, int high)
2296 {
2297 CORE_ADDR base = value_as_address (array_ptr)
2298 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2299 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2300 struct type *index_type =
2301 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2302 low, high);
2303 struct type *slice_type =
2304 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2305 return value_from_pointer (lookup_reference_type (slice_type), base);
2306 }
2307
2308
2309 static struct value *
2310 ada_value_slice (struct value *array, int low, int high)
2311 {
2312 struct type *type = value_type (array);
2313 struct type *index_type =
2314 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2315 struct type *slice_type =
2316 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2317 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2318 }
2319
2320 /* If type is a record type in the form of a standard GNAT array
2321 descriptor, returns the number of dimensions for type. If arr is a
2322 simple array, returns the number of "array of"s that prefix its
2323 type designation. Otherwise, returns 0. */
2324
2325 int
2326 ada_array_arity (struct type *type)
2327 {
2328 int arity;
2329
2330 if (type == NULL)
2331 return 0;
2332
2333 type = desc_base_type (type);
2334
2335 arity = 0;
2336 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2337 return desc_arity (desc_bounds_type (type));
2338 else
2339 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2340 {
2341 arity += 1;
2342 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2343 }
2344
2345 return arity;
2346 }
2347
2348 /* If TYPE is a record type in the form of a standard GNAT array
2349 descriptor or a simple array type, returns the element type for
2350 TYPE after indexing by NINDICES indices, or by all indices if
2351 NINDICES is -1. Otherwise, returns NULL. */
2352
2353 struct type *
2354 ada_array_element_type (struct type *type, int nindices)
2355 {
2356 type = desc_base_type (type);
2357
2358 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2359 {
2360 int k;
2361 struct type *p_array_type;
2362
2363 p_array_type = desc_data_type (type);
2364
2365 k = ada_array_arity (type);
2366 if (k == 0)
2367 return NULL;
2368
2369 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2370 if (nindices >= 0 && k > nindices)
2371 k = nindices;
2372 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2373 while (k > 0 && p_array_type != NULL)
2374 {
2375 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2376 k -= 1;
2377 }
2378 return p_array_type;
2379 }
2380 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2381 {
2382 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2383 {
2384 type = TYPE_TARGET_TYPE (type);
2385 nindices -= 1;
2386 }
2387 return type;
2388 }
2389
2390 return NULL;
2391 }
2392
2393 /* The type of nth index in arrays of given type (n numbering from 1).
2394 Does not examine memory. */
2395
2396 struct type *
2397 ada_index_type (struct type *type, int n)
2398 {
2399 struct type *result_type;
2400
2401 type = desc_base_type (type);
2402
2403 if (n > ada_array_arity (type))
2404 return NULL;
2405
2406 if (ada_is_simple_array_type (type))
2407 {
2408 int i;
2409
2410 for (i = 1; i < n; i += 1)
2411 type = TYPE_TARGET_TYPE (type);
2412 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2413 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2414 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2415 perhaps stabsread.c would make more sense. */
2416 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2417 result_type = builtin_type_int;
2418
2419 return result_type;
2420 }
2421 else
2422 return desc_index_type (desc_bounds_type (type), n);
2423 }
2424
2425 /* Given that arr is an array type, returns the lower bound of the
2426 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2427 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2428 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2429 bounds type. It works for other arrays with bounds supplied by
2430 run-time quantities other than discriminants. */
2431
2432 LONGEST
2433 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2434 struct type ** typep)
2435 {
2436 struct type *type;
2437 struct type *index_type_desc;
2438
2439 if (ada_is_packed_array_type (arr_type))
2440 arr_type = decode_packed_array_type (arr_type);
2441
2442 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2443 {
2444 if (typep != NULL)
2445 *typep = builtin_type_int;
2446 return (LONGEST) - which;
2447 }
2448
2449 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2450 type = TYPE_TARGET_TYPE (arr_type);
2451 else
2452 type = arr_type;
2453
2454 index_type_desc = ada_find_parallel_type (type, "___XA");
2455 if (index_type_desc == NULL)
2456 {
2457 struct type *range_type;
2458 struct type *index_type;
2459
2460 while (n > 1)
2461 {
2462 type = TYPE_TARGET_TYPE (type);
2463 n -= 1;
2464 }
2465
2466 range_type = TYPE_INDEX_TYPE (type);
2467 index_type = TYPE_TARGET_TYPE (range_type);
2468 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2469 index_type = builtin_type_long;
2470 if (typep != NULL)
2471 *typep = index_type;
2472 return
2473 (LONGEST) (which == 0
2474 ? TYPE_LOW_BOUND (range_type)
2475 : TYPE_HIGH_BOUND (range_type));
2476 }
2477 else
2478 {
2479 struct type *index_type =
2480 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2481 NULL, TYPE_OBJFILE (arr_type));
2482 if (typep != NULL)
2483 *typep = TYPE_TARGET_TYPE (index_type);
2484 return
2485 (LONGEST) (which == 0
2486 ? TYPE_LOW_BOUND (index_type)
2487 : TYPE_HIGH_BOUND (index_type));
2488 }
2489 }
2490
2491 /* Given that arr is an array value, returns the lower bound of the
2492 nth index (numbering from 1) if which is 0, and the upper bound if
2493 which is 1. This routine will also work for arrays with bounds
2494 supplied by run-time quantities other than discriminants. */
2495
2496 struct value *
2497 ada_array_bound (struct value *arr, int n, int which)
2498 {
2499 struct type *arr_type = value_type (arr);
2500
2501 if (ada_is_packed_array_type (arr_type))
2502 return ada_array_bound (decode_packed_array (arr), n, which);
2503 else if (ada_is_simple_array_type (arr_type))
2504 {
2505 struct type *type;
2506 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2507 return value_from_longest (type, v);
2508 }
2509 else
2510 return desc_one_bound (desc_bounds (arr), n, which);
2511 }
2512
2513 /* Given that arr is an array value, returns the length of the
2514 nth index. This routine will also work for arrays with bounds
2515 supplied by run-time quantities other than discriminants.
2516 Does not work for arrays indexed by enumeration types with representation
2517 clauses at the moment. */
2518
2519 struct value *
2520 ada_array_length (struct value *arr, int n)
2521 {
2522 struct type *arr_type = ada_check_typedef (value_type (arr));
2523
2524 if (ada_is_packed_array_type (arr_type))
2525 return ada_array_length (decode_packed_array (arr), n);
2526
2527 if (ada_is_simple_array_type (arr_type))
2528 {
2529 struct type *type;
2530 LONGEST v =
2531 ada_array_bound_from_type (arr_type, n, 1, &type) -
2532 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2533 return value_from_longest (type, v);
2534 }
2535 else
2536 return
2537 value_from_longest (builtin_type_int,
2538 value_as_long (desc_one_bound (desc_bounds (arr),
2539 n, 1))
2540 - value_as_long (desc_one_bound (desc_bounds (arr),
2541 n, 0)) + 1);
2542 }
2543
2544 /* An empty array whose type is that of ARR_TYPE (an array type),
2545 with bounds LOW to LOW-1. */
2546
2547 static struct value *
2548 empty_array (struct type *arr_type, int low)
2549 {
2550 struct type *index_type =
2551 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2552 low, low - 1);
2553 struct type *elt_type = ada_array_element_type (arr_type, 1);
2554 return allocate_value (create_array_type (NULL, elt_type, index_type));
2555 }
2556 \f
2557
2558 /* Name resolution */
2559
2560 /* The "decoded" name for the user-definable Ada operator corresponding
2561 to OP. */
2562
2563 static const char *
2564 ada_decoded_op_name (enum exp_opcode op)
2565 {
2566 int i;
2567
2568 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2569 {
2570 if (ada_opname_table[i].op == op)
2571 return ada_opname_table[i].decoded;
2572 }
2573 error (_("Could not find operator name for opcode"));
2574 }
2575
2576
2577 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2578 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2579 undefined namespace) and converts operators that are
2580 user-defined into appropriate function calls. If CONTEXT_TYPE is
2581 non-null, it provides a preferred result type [at the moment, only
2582 type void has any effect---causing procedures to be preferred over
2583 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2584 return type is preferred. May change (expand) *EXP. */
2585
2586 static void
2587 resolve (struct expression **expp, int void_context_p)
2588 {
2589 int pc;
2590 pc = 0;
2591 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2592 }
2593
2594 /* Resolve the operator of the subexpression beginning at
2595 position *POS of *EXPP. "Resolving" consists of replacing
2596 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2597 with their resolutions, replacing built-in operators with
2598 function calls to user-defined operators, where appropriate, and,
2599 when DEPROCEDURE_P is non-zero, converting function-valued variables
2600 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2601 are as in ada_resolve, above. */
2602
2603 static struct value *
2604 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2605 struct type *context_type)
2606 {
2607 int pc = *pos;
2608 int i;
2609 struct expression *exp; /* Convenience: == *expp. */
2610 enum exp_opcode op = (*expp)->elts[pc].opcode;
2611 struct value **argvec; /* Vector of operand types (alloca'ed). */
2612 int nargs; /* Number of operands. */
2613 int oplen;
2614
2615 argvec = NULL;
2616 nargs = 0;
2617 exp = *expp;
2618
2619 /* Pass one: resolve operands, saving their types and updating *pos,
2620 if needed. */
2621 switch (op)
2622 {
2623 case OP_FUNCALL:
2624 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2625 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2626 *pos += 7;
2627 else
2628 {
2629 *pos += 3;
2630 resolve_subexp (expp, pos, 0, NULL);
2631 }
2632 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2633 break;
2634
2635 case UNOP_ADDR:
2636 *pos += 1;
2637 resolve_subexp (expp, pos, 0, NULL);
2638 break;
2639
2640 case UNOP_QUAL:
2641 *pos += 3;
2642 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2643 break;
2644
2645 case OP_ATR_MODULUS:
2646 case OP_ATR_SIZE:
2647 case OP_ATR_TAG:
2648 case OP_ATR_FIRST:
2649 case OP_ATR_LAST:
2650 case OP_ATR_LENGTH:
2651 case OP_ATR_POS:
2652 case OP_ATR_VAL:
2653 case OP_ATR_MIN:
2654 case OP_ATR_MAX:
2655 case TERNOP_IN_RANGE:
2656 case BINOP_IN_BOUNDS:
2657 case UNOP_IN_RANGE:
2658 case OP_AGGREGATE:
2659 case OP_OTHERS:
2660 case OP_CHOICES:
2661 case OP_POSITIONAL:
2662 case OP_DISCRETE_RANGE:
2663 case OP_NAME:
2664 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2665 *pos += oplen;
2666 break;
2667
2668 case BINOP_ASSIGN:
2669 {
2670 struct value *arg1;
2671
2672 *pos += 1;
2673 arg1 = resolve_subexp (expp, pos, 0, NULL);
2674 if (arg1 == NULL)
2675 resolve_subexp (expp, pos, 1, NULL);
2676 else
2677 resolve_subexp (expp, pos, 1, value_type (arg1));
2678 break;
2679 }
2680
2681 case UNOP_CAST:
2682 *pos += 3;
2683 nargs = 1;
2684 break;
2685
2686 case BINOP_ADD:
2687 case BINOP_SUB:
2688 case BINOP_MUL:
2689 case BINOP_DIV:
2690 case BINOP_REM:
2691 case BINOP_MOD:
2692 case BINOP_EXP:
2693 case BINOP_CONCAT:
2694 case BINOP_LOGICAL_AND:
2695 case BINOP_LOGICAL_OR:
2696 case BINOP_BITWISE_AND:
2697 case BINOP_BITWISE_IOR:
2698 case BINOP_BITWISE_XOR:
2699
2700 case BINOP_EQUAL:
2701 case BINOP_NOTEQUAL:
2702 case BINOP_LESS:
2703 case BINOP_GTR:
2704 case BINOP_LEQ:
2705 case BINOP_GEQ:
2706
2707 case BINOP_REPEAT:
2708 case BINOP_SUBSCRIPT:
2709 case BINOP_COMMA:
2710
2711 case UNOP_NEG:
2712 case UNOP_PLUS:
2713 case UNOP_LOGICAL_NOT:
2714 case UNOP_ABS:
2715 case UNOP_IND:
2716 *pos += 1;
2717 nargs = 1;
2718 break;
2719
2720 case OP_LONG:
2721 case OP_DOUBLE:
2722 case OP_VAR_VALUE:
2723 *pos += 4;
2724 break;
2725
2726 case OP_TYPE:
2727 case OP_BOOL:
2728 case OP_LAST:
2729 case OP_REGISTER:
2730 case OP_INTERNALVAR:
2731 *pos += 3;
2732 break;
2733
2734 case UNOP_MEMVAL:
2735 *pos += 3;
2736 nargs = 1;
2737 break;
2738
2739 case STRUCTOP_STRUCT:
2740 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2741 nargs = 1;
2742 break;
2743
2744 case TERNOP_SLICE:
2745 *pos += 1;
2746 nargs = 3;
2747 break;
2748
2749 case OP_STRING:
2750 break;
2751
2752 default:
2753 error (_("Unexpected operator during name resolution"));
2754 }
2755
2756 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2757 for (i = 0; i < nargs; i += 1)
2758 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2759 argvec[i] = NULL;
2760 exp = *expp;
2761
2762 /* Pass two: perform any resolution on principal operator. */
2763 switch (op)
2764 {
2765 default:
2766 break;
2767
2768 case OP_VAR_VALUE:
2769 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2770 {
2771 struct ada_symbol_info *candidates;
2772 int n_candidates;
2773
2774 n_candidates =
2775 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2776 (exp->elts[pc + 2].symbol),
2777 exp->elts[pc + 1].block, VAR_DOMAIN,
2778 &candidates);
2779
2780 if (n_candidates > 1)
2781 {
2782 /* Types tend to get re-introduced locally, so if there
2783 are any local symbols that are not types, first filter
2784 out all types. */
2785 int j;
2786 for (j = 0; j < n_candidates; j += 1)
2787 switch (SYMBOL_CLASS (candidates[j].sym))
2788 {
2789 case LOC_REGISTER:
2790 case LOC_ARG:
2791 case LOC_REF_ARG:
2792 case LOC_REGPARM:
2793 case LOC_REGPARM_ADDR:
2794 case LOC_LOCAL:
2795 case LOC_LOCAL_ARG:
2796 case LOC_BASEREG:
2797 case LOC_BASEREG_ARG:
2798 case LOC_COMPUTED:
2799 case LOC_COMPUTED_ARG:
2800 goto FoundNonType;
2801 default:
2802 break;
2803 }
2804 FoundNonType:
2805 if (j < n_candidates)
2806 {
2807 j = 0;
2808 while (j < n_candidates)
2809 {
2810 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2811 {
2812 candidates[j] = candidates[n_candidates - 1];
2813 n_candidates -= 1;
2814 }
2815 else
2816 j += 1;
2817 }
2818 }
2819 }
2820
2821 if (n_candidates == 0)
2822 error (_("No definition found for %s"),
2823 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2824 else if (n_candidates == 1)
2825 i = 0;
2826 else if (deprocedure_p
2827 && !is_nonfunction (candidates, n_candidates))
2828 {
2829 i = ada_resolve_function
2830 (candidates, n_candidates, NULL, 0,
2831 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2832 context_type);
2833 if (i < 0)
2834 error (_("Could not find a match for %s"),
2835 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2836 }
2837 else
2838 {
2839 printf_filtered (_("Multiple matches for %s\n"),
2840 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2841 user_select_syms (candidates, n_candidates, 1);
2842 i = 0;
2843 }
2844
2845 exp->elts[pc + 1].block = candidates[i].block;
2846 exp->elts[pc + 2].symbol = candidates[i].sym;
2847 if (innermost_block == NULL
2848 || contained_in (candidates[i].block, innermost_block))
2849 innermost_block = candidates[i].block;
2850 }
2851
2852 if (deprocedure_p
2853 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2854 == TYPE_CODE_FUNC))
2855 {
2856 replace_operator_with_call (expp, pc, 0, 0,
2857 exp->elts[pc + 2].symbol,
2858 exp->elts[pc + 1].block);
2859 exp = *expp;
2860 }
2861 break;
2862
2863 case OP_FUNCALL:
2864 {
2865 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2866 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2867 {
2868 struct ada_symbol_info *candidates;
2869 int n_candidates;
2870
2871 n_candidates =
2872 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2873 (exp->elts[pc + 5].symbol),
2874 exp->elts[pc + 4].block, VAR_DOMAIN,
2875 &candidates);
2876 if (n_candidates == 1)
2877 i = 0;
2878 else
2879 {
2880 i = ada_resolve_function
2881 (candidates, n_candidates,
2882 argvec, nargs,
2883 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2884 context_type);
2885 if (i < 0)
2886 error (_("Could not find a match for %s"),
2887 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2888 }
2889
2890 exp->elts[pc + 4].block = candidates[i].block;
2891 exp->elts[pc + 5].symbol = candidates[i].sym;
2892 if (innermost_block == NULL
2893 || contained_in (candidates[i].block, innermost_block))
2894 innermost_block = candidates[i].block;
2895 }
2896 }
2897 break;
2898 case BINOP_ADD:
2899 case BINOP_SUB:
2900 case BINOP_MUL:
2901 case BINOP_DIV:
2902 case BINOP_REM:
2903 case BINOP_MOD:
2904 case BINOP_CONCAT:
2905 case BINOP_BITWISE_AND:
2906 case BINOP_BITWISE_IOR:
2907 case BINOP_BITWISE_XOR:
2908 case BINOP_EQUAL:
2909 case BINOP_NOTEQUAL:
2910 case BINOP_LESS:
2911 case BINOP_GTR:
2912 case BINOP_LEQ:
2913 case BINOP_GEQ:
2914 case BINOP_EXP:
2915 case UNOP_NEG:
2916 case UNOP_PLUS:
2917 case UNOP_LOGICAL_NOT:
2918 case UNOP_ABS:
2919 if (possible_user_operator_p (op, argvec))
2920 {
2921 struct ada_symbol_info *candidates;
2922 int n_candidates;
2923
2924 n_candidates =
2925 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2926 (struct block *) NULL, VAR_DOMAIN,
2927 &candidates);
2928 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2929 ada_decoded_op_name (op), NULL);
2930 if (i < 0)
2931 break;
2932
2933 replace_operator_with_call (expp, pc, nargs, 1,
2934 candidates[i].sym, candidates[i].block);
2935 exp = *expp;
2936 }
2937 break;
2938
2939 case OP_TYPE:
2940 return NULL;
2941 }
2942
2943 *pos = pc;
2944 return evaluate_subexp_type (exp, pos);
2945 }
2946
2947 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2948 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2949 a non-pointer. A type of 'void' (which is never a valid expression type)
2950 by convention matches anything. */
2951 /* The term "match" here is rather loose. The match is heuristic and
2952 liberal. FIXME: TOO liberal, in fact. */
2953
2954 static int
2955 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2956 {
2957 ftype = ada_check_typedef (ftype);
2958 atype = ada_check_typedef (atype);
2959
2960 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2961 ftype = TYPE_TARGET_TYPE (ftype);
2962 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2963 atype = TYPE_TARGET_TYPE (atype);
2964
2965 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2966 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2967 return 1;
2968
2969 switch (TYPE_CODE (ftype))
2970 {
2971 default:
2972 return 1;
2973 case TYPE_CODE_PTR:
2974 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2975 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2976 TYPE_TARGET_TYPE (atype), 0);
2977 else
2978 return (may_deref
2979 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2980 case TYPE_CODE_INT:
2981 case TYPE_CODE_ENUM:
2982 case TYPE_CODE_RANGE:
2983 switch (TYPE_CODE (atype))
2984 {
2985 case TYPE_CODE_INT:
2986 case TYPE_CODE_ENUM:
2987 case TYPE_CODE_RANGE:
2988 return 1;
2989 default:
2990 return 0;
2991 }
2992
2993 case TYPE_CODE_ARRAY:
2994 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2995 || ada_is_array_descriptor_type (atype));
2996
2997 case TYPE_CODE_STRUCT:
2998 if (ada_is_array_descriptor_type (ftype))
2999 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3000 || ada_is_array_descriptor_type (atype));
3001 else
3002 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3003 && !ada_is_array_descriptor_type (atype));
3004
3005 case TYPE_CODE_UNION:
3006 case TYPE_CODE_FLT:
3007 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3008 }
3009 }
3010
3011 /* Return non-zero if the formals of FUNC "sufficiently match" the
3012 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3013 may also be an enumeral, in which case it is treated as a 0-
3014 argument function. */
3015
3016 static int
3017 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3018 {
3019 int i;
3020 struct type *func_type = SYMBOL_TYPE (func);
3021
3022 if (SYMBOL_CLASS (func) == LOC_CONST
3023 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3024 return (n_actuals == 0);
3025 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3026 return 0;
3027
3028 if (TYPE_NFIELDS (func_type) != n_actuals)
3029 return 0;
3030
3031 for (i = 0; i < n_actuals; i += 1)
3032 {
3033 if (actuals[i] == NULL)
3034 return 0;
3035 else
3036 {
3037 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3038 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3039
3040 if (!ada_type_match (ftype, atype, 1))
3041 return 0;
3042 }
3043 }
3044 return 1;
3045 }
3046
3047 /* False iff function type FUNC_TYPE definitely does not produce a value
3048 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3049 FUNC_TYPE is not a valid function type with a non-null return type
3050 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3051
3052 static int
3053 return_match (struct type *func_type, struct type *context_type)
3054 {
3055 struct type *return_type;
3056
3057 if (func_type == NULL)
3058 return 1;
3059
3060 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3061 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3062 else
3063 return_type = base_type (func_type);
3064 if (return_type == NULL)
3065 return 1;
3066
3067 context_type = base_type (context_type);
3068
3069 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3070 return context_type == NULL || return_type == context_type;
3071 else if (context_type == NULL)
3072 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3073 else
3074 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3075 }
3076
3077
3078 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3079 function (if any) that matches the types of the NARGS arguments in
3080 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3081 that returns that type, then eliminate matches that don't. If
3082 CONTEXT_TYPE is void and there is at least one match that does not
3083 return void, eliminate all matches that do.
3084
3085 Asks the user if there is more than one match remaining. Returns -1
3086 if there is no such symbol or none is selected. NAME is used
3087 solely for messages. May re-arrange and modify SYMS in
3088 the process; the index returned is for the modified vector. */
3089
3090 static int
3091 ada_resolve_function (struct ada_symbol_info syms[],
3092 int nsyms, struct value **args, int nargs,
3093 const char *name, struct type *context_type)
3094 {
3095 int k;
3096 int m; /* Number of hits */
3097 struct type *fallback;
3098 struct type *return_type;
3099
3100 return_type = context_type;
3101 if (context_type == NULL)
3102 fallback = builtin_type_void;
3103 else
3104 fallback = NULL;
3105
3106 m = 0;
3107 while (1)
3108 {
3109 for (k = 0; k < nsyms; k += 1)
3110 {
3111 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3112
3113 if (ada_args_match (syms[k].sym, args, nargs)
3114 && return_match (type, return_type))
3115 {
3116 syms[m] = syms[k];
3117 m += 1;
3118 }
3119 }
3120 if (m > 0 || return_type == fallback)
3121 break;
3122 else
3123 return_type = fallback;
3124 }
3125
3126 if (m == 0)
3127 return -1;
3128 else if (m > 1)
3129 {
3130 printf_filtered (_("Multiple matches for %s\n"), name);
3131 user_select_syms (syms, m, 1);
3132 return 0;
3133 }
3134 return 0;
3135 }
3136
3137 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3138 in a listing of choices during disambiguation (see sort_choices, below).
3139 The idea is that overloadings of a subprogram name from the
3140 same package should sort in their source order. We settle for ordering
3141 such symbols by their trailing number (__N or $N). */
3142
3143 static int
3144 encoded_ordered_before (char *N0, char *N1)
3145 {
3146 if (N1 == NULL)
3147 return 0;
3148 else if (N0 == NULL)
3149 return 1;
3150 else
3151 {
3152 int k0, k1;
3153 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3154 ;
3155 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3156 ;
3157 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3158 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3159 {
3160 int n0, n1;
3161 n0 = k0;
3162 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3163 n0 -= 1;
3164 n1 = k1;
3165 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3166 n1 -= 1;
3167 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3168 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3169 }
3170 return (strcmp (N0, N1) < 0);
3171 }
3172 }
3173
3174 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3175 encoded names. */
3176
3177 static void
3178 sort_choices (struct ada_symbol_info syms[], int nsyms)
3179 {
3180 int i;
3181 for (i = 1; i < nsyms; i += 1)
3182 {
3183 struct ada_symbol_info sym = syms[i];
3184 int j;
3185
3186 for (j = i - 1; j >= 0; j -= 1)
3187 {
3188 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3189 SYMBOL_LINKAGE_NAME (sym.sym)))
3190 break;
3191 syms[j + 1] = syms[j];
3192 }
3193 syms[j + 1] = sym;
3194 }
3195 }
3196
3197 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3198 by asking the user (if necessary), returning the number selected,
3199 and setting the first elements of SYMS items. Error if no symbols
3200 selected. */
3201
3202 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3203 to be re-integrated one of these days. */
3204
3205 int
3206 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3207 {
3208 int i;
3209 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3210 int n_chosen;
3211 int first_choice = (max_results == 1) ? 1 : 2;
3212
3213 if (max_results < 1)
3214 error (_("Request to select 0 symbols!"));
3215 if (nsyms <= 1)
3216 return nsyms;
3217
3218 printf_unfiltered (_("[0] cancel\n"));
3219 if (max_results > 1)
3220 printf_unfiltered (_("[1] all\n"));
3221
3222 sort_choices (syms, nsyms);
3223
3224 for (i = 0; i < nsyms; i += 1)
3225 {
3226 if (syms[i].sym == NULL)
3227 continue;
3228
3229 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3230 {
3231 struct symtab_and_line sal =
3232 find_function_start_sal (syms[i].sym, 1);
3233 if (sal.symtab == NULL)
3234 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3235 i + first_choice,
3236 SYMBOL_PRINT_NAME (syms[i].sym),
3237 sal.line);
3238 else
3239 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3240 SYMBOL_PRINT_NAME (syms[i].sym),
3241 sal.symtab->filename, sal.line);
3242 continue;
3243 }
3244 else
3245 {
3246 int is_enumeral =
3247 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3248 && SYMBOL_TYPE (syms[i].sym) != NULL
3249 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3250 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3251
3252 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3253 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3254 i + first_choice,
3255 SYMBOL_PRINT_NAME (syms[i].sym),
3256 symtab->filename, SYMBOL_LINE (syms[i].sym));
3257 else if (is_enumeral
3258 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3259 {
3260 printf_unfiltered (("[%d] "), i + first_choice);
3261 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3262 gdb_stdout, -1, 0);
3263 printf_unfiltered (_("'(%s) (enumeral)\n"),
3264 SYMBOL_PRINT_NAME (syms[i].sym));
3265 }
3266 else if (symtab != NULL)
3267 printf_unfiltered (is_enumeral
3268 ? _("[%d] %s in %s (enumeral)\n")
3269 : _("[%d] %s at %s:?\n"),
3270 i + first_choice,
3271 SYMBOL_PRINT_NAME (syms[i].sym),
3272 symtab->filename);
3273 else
3274 printf_unfiltered (is_enumeral
3275 ? _("[%d] %s (enumeral)\n")
3276 : _("[%d] %s at ?\n"),
3277 i + first_choice,
3278 SYMBOL_PRINT_NAME (syms[i].sym));
3279 }
3280 }
3281
3282 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3283 "overload-choice");
3284
3285 for (i = 0; i < n_chosen; i += 1)
3286 syms[i] = syms[chosen[i]];
3287
3288 return n_chosen;
3289 }
3290
3291 /* Read and validate a set of numeric choices from the user in the
3292 range 0 .. N_CHOICES-1. Place the results in increasing
3293 order in CHOICES[0 .. N-1], and return N.
3294
3295 The user types choices as a sequence of numbers on one line
3296 separated by blanks, encoding them as follows:
3297
3298 + A choice of 0 means to cancel the selection, throwing an error.
3299 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3300 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3301
3302 The user is not allowed to choose more than MAX_RESULTS values.
3303
3304 ANNOTATION_SUFFIX, if present, is used to annotate the input
3305 prompts (for use with the -f switch). */
3306
3307 int
3308 get_selections (int *choices, int n_choices, int max_results,
3309 int is_all_choice, char *annotation_suffix)
3310 {
3311 char *args;
3312 const char *prompt;
3313 int n_chosen;
3314 int first_choice = is_all_choice ? 2 : 1;
3315
3316 prompt = getenv ("PS2");
3317 if (prompt == NULL)
3318 prompt = ">";
3319
3320 printf_unfiltered (("%s "), prompt);
3321 gdb_flush (gdb_stdout);
3322
3323 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3324
3325 if (args == NULL)
3326 error_no_arg (_("one or more choice numbers"));
3327
3328 n_chosen = 0;
3329
3330 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3331 order, as given in args. Choices are validated. */
3332 while (1)
3333 {
3334 char *args2;
3335 int choice, j;
3336
3337 while (isspace (*args))
3338 args += 1;
3339 if (*args == '\0' && n_chosen == 0)
3340 error_no_arg (_("one or more choice numbers"));
3341 else if (*args == '\0')
3342 break;
3343
3344 choice = strtol (args, &args2, 10);
3345 if (args == args2 || choice < 0
3346 || choice > n_choices + first_choice - 1)
3347 error (_("Argument must be choice number"));
3348 args = args2;
3349
3350 if (choice == 0)
3351 error (_("cancelled"));
3352
3353 if (choice < first_choice)
3354 {
3355 n_chosen = n_choices;
3356 for (j = 0; j < n_choices; j += 1)
3357 choices[j] = j;
3358 break;
3359 }
3360 choice -= first_choice;
3361
3362 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3363 {
3364 }
3365
3366 if (j < 0 || choice != choices[j])
3367 {
3368 int k;
3369 for (k = n_chosen - 1; k > j; k -= 1)
3370 choices[k + 1] = choices[k];
3371 choices[j + 1] = choice;
3372 n_chosen += 1;
3373 }
3374 }
3375
3376 if (n_chosen > max_results)
3377 error (_("Select no more than %d of the above"), max_results);
3378
3379 return n_chosen;
3380 }
3381
3382 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3383 on the function identified by SYM and BLOCK, and taking NARGS
3384 arguments. Update *EXPP as needed to hold more space. */
3385
3386 static void
3387 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3388 int oplen, struct symbol *sym,
3389 struct block *block)
3390 {
3391 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3392 symbol, -oplen for operator being replaced). */
3393 struct expression *newexp = (struct expression *)
3394 xmalloc (sizeof (struct expression)
3395 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3396 struct expression *exp = *expp;
3397
3398 newexp->nelts = exp->nelts + 7 - oplen;
3399 newexp->language_defn = exp->language_defn;
3400 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3401 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3402 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3403
3404 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3405 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3406
3407 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3408 newexp->elts[pc + 4].block = block;
3409 newexp->elts[pc + 5].symbol = sym;
3410
3411 *expp = newexp;
3412 xfree (exp);
3413 }
3414
3415 /* Type-class predicates */
3416
3417 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3418 or FLOAT). */
3419
3420 static int
3421 numeric_type_p (struct type *type)
3422 {
3423 if (type == NULL)
3424 return 0;
3425 else
3426 {
3427 switch (TYPE_CODE (type))
3428 {
3429 case TYPE_CODE_INT:
3430 case TYPE_CODE_FLT:
3431 return 1;
3432 case TYPE_CODE_RANGE:
3433 return (type == TYPE_TARGET_TYPE (type)
3434 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3435 default:
3436 return 0;
3437 }
3438 }
3439 }
3440
3441 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3442
3443 static int
3444 integer_type_p (struct type *type)
3445 {
3446 if (type == NULL)
3447 return 0;
3448 else
3449 {
3450 switch (TYPE_CODE (type))
3451 {
3452 case TYPE_CODE_INT:
3453 return 1;
3454 case TYPE_CODE_RANGE:
3455 return (type == TYPE_TARGET_TYPE (type)
3456 || integer_type_p (TYPE_TARGET_TYPE (type)));
3457 default:
3458 return 0;
3459 }
3460 }
3461 }
3462
3463 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3464
3465 static int
3466 scalar_type_p (struct type *type)
3467 {
3468 if (type == NULL)
3469 return 0;
3470 else
3471 {
3472 switch (TYPE_CODE (type))
3473 {
3474 case TYPE_CODE_INT:
3475 case TYPE_CODE_RANGE:
3476 case TYPE_CODE_ENUM:
3477 case TYPE_CODE_FLT:
3478 return 1;
3479 default:
3480 return 0;
3481 }
3482 }
3483 }
3484
3485 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3486
3487 static int
3488 discrete_type_p (struct type *type)
3489 {
3490 if (type == NULL)
3491 return 0;
3492 else
3493 {
3494 switch (TYPE_CODE (type))
3495 {
3496 case TYPE_CODE_INT:
3497 case TYPE_CODE_RANGE:
3498 case TYPE_CODE_ENUM:
3499 return 1;
3500 default:
3501 return 0;
3502 }
3503 }
3504 }
3505
3506 /* Returns non-zero if OP with operands in the vector ARGS could be
3507 a user-defined function. Errs on the side of pre-defined operators
3508 (i.e., result 0). */
3509
3510 static int
3511 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3512 {
3513 struct type *type0 =
3514 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3515 struct type *type1 =
3516 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3517
3518 if (type0 == NULL)
3519 return 0;
3520
3521 switch (op)
3522 {
3523 default:
3524 return 0;
3525
3526 case BINOP_ADD:
3527 case BINOP_SUB:
3528 case BINOP_MUL:
3529 case BINOP_DIV:
3530 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3531
3532 case BINOP_REM:
3533 case BINOP_MOD:
3534 case BINOP_BITWISE_AND:
3535 case BINOP_BITWISE_IOR:
3536 case BINOP_BITWISE_XOR:
3537 return (!(integer_type_p (type0) && integer_type_p (type1)));
3538
3539 case BINOP_EQUAL:
3540 case BINOP_NOTEQUAL:
3541 case BINOP_LESS:
3542 case BINOP_GTR:
3543 case BINOP_LEQ:
3544 case BINOP_GEQ:
3545 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3546
3547 case BINOP_CONCAT:
3548 return
3549 ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
3550 && (TYPE_CODE (type0) != TYPE_CODE_PTR
3551 || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
3552 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
3553 && (TYPE_CODE (type1) != TYPE_CODE_PTR
3554 || (TYPE_CODE (TYPE_TARGET_TYPE (type1))
3555 != TYPE_CODE_ARRAY))));
3556
3557 case BINOP_EXP:
3558 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3559
3560 case UNOP_NEG:
3561 case UNOP_PLUS:
3562 case UNOP_LOGICAL_NOT:
3563 case UNOP_ABS:
3564 return (!numeric_type_p (type0));
3565
3566 }
3567 }
3568 \f
3569 /* Renaming */
3570
3571 /* NOTE: In the following, we assume that a renaming type's name may
3572 have an ___XD suffix. It would be nice if this went away at some
3573 point. */
3574
3575 /* If TYPE encodes a renaming, returns the renaming suffix, which
3576 is XR for an object renaming, XRP for a procedure renaming, XRE for
3577 an exception renaming, and XRS for a subprogram renaming. Returns
3578 NULL if NAME encodes none of these. */
3579
3580 const char *
3581 ada_renaming_type (struct type *type)
3582 {
3583 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3584 {
3585 const char *name = type_name_no_tag (type);
3586 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3587 if (suffix == NULL
3588 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3589 return NULL;
3590 else
3591 return suffix + 3;
3592 }
3593 else
3594 return NULL;
3595 }
3596
3597 /* Return non-zero iff SYM encodes an object renaming. */
3598
3599 int
3600 ada_is_object_renaming (struct symbol *sym)
3601 {
3602 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3603 return renaming_type != NULL
3604 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3605 }
3606
3607 /* Assuming that SYM encodes a non-object renaming, returns the original
3608 name of the renamed entity. The name is good until the end of
3609 parsing. */
3610
3611 char *
3612 ada_simple_renamed_entity (struct symbol *sym)
3613 {
3614 struct type *type;
3615 const char *raw_name;
3616 int len;
3617 char *result;
3618
3619 type = SYMBOL_TYPE (sym);
3620 if (type == NULL || TYPE_NFIELDS (type) < 1)
3621 error (_("Improperly encoded renaming."));
3622
3623 raw_name = TYPE_FIELD_NAME (type, 0);
3624 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3625 if (len <= 0)
3626 error (_("Improperly encoded renaming."));
3627
3628 result = xmalloc (len + 1);
3629 strncpy (result, raw_name, len);
3630 result[len] = '\000';
3631 return result;
3632 }
3633
3634 \f
3635
3636 /* Evaluation: Function Calls */
3637
3638 /* Return an lvalue containing the value VAL. This is the identity on
3639 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3640 on the stack, using and updating *SP as the stack pointer, and
3641 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3642
3643 static struct value *
3644 ensure_lval (struct value *val, CORE_ADDR *sp)
3645 {
3646 if (! VALUE_LVAL (val))
3647 {
3648 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3649
3650 /* The following is taken from the structure-return code in
3651 call_function_by_hand. FIXME: Therefore, some refactoring seems
3652 indicated. */
3653 if (INNER_THAN (1, 2))
3654 {
3655 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3656 reserving sufficient space. */
3657 *sp -= len;
3658 if (gdbarch_frame_align_p (current_gdbarch))
3659 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3660 VALUE_ADDRESS (val) = *sp;
3661 }
3662 else
3663 {
3664 /* Stack grows upward. Align the frame, allocate space, and
3665 then again, re-align the frame. */
3666 if (gdbarch_frame_align_p (current_gdbarch))
3667 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3668 VALUE_ADDRESS (val) = *sp;
3669 *sp += len;
3670 if (gdbarch_frame_align_p (current_gdbarch))
3671 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3672 }
3673
3674 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3675 }
3676
3677 return val;
3678 }
3679
3680 /* Return the value ACTUAL, converted to be an appropriate value for a
3681 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3682 allocating any necessary descriptors (fat pointers), or copies of
3683 values not residing in memory, updating it as needed. */
3684
3685 static struct value *
3686 convert_actual (struct value *actual, struct type *formal_type0,
3687 CORE_ADDR *sp)
3688 {
3689 struct type *actual_type = ada_check_typedef (value_type (actual));
3690 struct type *formal_type = ada_check_typedef (formal_type0);
3691 struct type *formal_target =
3692 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3693 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3694 struct type *actual_target =
3695 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3696 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3697
3698 if (ada_is_array_descriptor_type (formal_target)
3699 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3700 return make_array_descriptor (formal_type, actual, sp);
3701 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3702 {
3703 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3704 && ada_is_array_descriptor_type (actual_target))
3705 return desc_data (actual);
3706 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3707 {
3708 if (VALUE_LVAL (actual) != lval_memory)
3709 {
3710 struct value *val;
3711 actual_type = ada_check_typedef (value_type (actual));
3712 val = allocate_value (actual_type);
3713 memcpy ((char *) value_contents_raw (val),
3714 (char *) value_contents (actual),
3715 TYPE_LENGTH (actual_type));
3716 actual = ensure_lval (val, sp);
3717 }
3718 return value_addr (actual);
3719 }
3720 }
3721 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3722 return ada_value_ind (actual);
3723
3724 return actual;
3725 }
3726
3727
3728 /* Push a descriptor of type TYPE for array value ARR on the stack at
3729 *SP, updating *SP to reflect the new descriptor. Return either
3730 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3731 to-descriptor type rather than a descriptor type), a struct value *
3732 representing a pointer to this descriptor. */
3733
3734 static struct value *
3735 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3736 {
3737 struct type *bounds_type = desc_bounds_type (type);
3738 struct type *desc_type = desc_base_type (type);
3739 struct value *descriptor = allocate_value (desc_type);
3740 struct value *bounds = allocate_value (bounds_type);
3741 int i;
3742
3743 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3744 {
3745 modify_general_field (value_contents_writeable (bounds),
3746 value_as_long (ada_array_bound (arr, i, 0)),
3747 desc_bound_bitpos (bounds_type, i, 0),
3748 desc_bound_bitsize (bounds_type, i, 0));
3749 modify_general_field (value_contents_writeable (bounds),
3750 value_as_long (ada_array_bound (arr, i, 1)),
3751 desc_bound_bitpos (bounds_type, i, 1),
3752 desc_bound_bitsize (bounds_type, i, 1));
3753 }
3754
3755 bounds = ensure_lval (bounds, sp);
3756
3757 modify_general_field (value_contents_writeable (descriptor),
3758 VALUE_ADDRESS (ensure_lval (arr, sp)),
3759 fat_pntr_data_bitpos (desc_type),
3760 fat_pntr_data_bitsize (desc_type));
3761
3762 modify_general_field (value_contents_writeable (descriptor),
3763 VALUE_ADDRESS (bounds),
3764 fat_pntr_bounds_bitpos (desc_type),
3765 fat_pntr_bounds_bitsize (desc_type));
3766
3767 descriptor = ensure_lval (descriptor, sp);
3768
3769 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3770 return value_addr (descriptor);
3771 else
3772 return descriptor;
3773 }
3774
3775
3776 /* Assuming a dummy frame has been established on the target, perform any
3777 conversions needed for calling function FUNC on the NARGS actual
3778 parameters in ARGS, other than standard C conversions. Does
3779 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3780 does not match the number of arguments expected. Use *SP as a
3781 stack pointer for additional data that must be pushed, updating its
3782 value as needed. */
3783
3784 void
3785 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3786 CORE_ADDR *sp)
3787 {
3788 int i;
3789
3790 if (TYPE_NFIELDS (value_type (func)) == 0
3791 || nargs != TYPE_NFIELDS (value_type (func)))
3792 return;
3793
3794 for (i = 0; i < nargs; i += 1)
3795 args[i] =
3796 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3797 }
3798 \f
3799 /* Dummy definitions for an experimental caching module that is not
3800 * used in the public sources. */
3801
3802 static int
3803 lookup_cached_symbol (const char *name, domain_enum namespace,
3804 struct symbol **sym, struct block **block,
3805 struct symtab **symtab)
3806 {
3807 return 0;
3808 }
3809
3810 static void
3811 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3812 struct block *block, struct symtab *symtab)
3813 {
3814 }
3815 \f
3816 /* Symbol Lookup */
3817
3818 /* Return the result of a standard (literal, C-like) lookup of NAME in
3819 given DOMAIN, visible from lexical block BLOCK. */
3820
3821 static struct symbol *
3822 standard_lookup (const char *name, const struct block *block,
3823 domain_enum domain)
3824 {
3825 struct symbol *sym;
3826 struct symtab *symtab;
3827
3828 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3829 return sym;
3830 sym =
3831 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3832 cache_symbol (name, domain, sym, block_found, symtab);
3833 return sym;
3834 }
3835
3836
3837 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3838 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3839 since they contend in overloading in the same way. */
3840 static int
3841 is_nonfunction (struct ada_symbol_info syms[], int n)
3842 {
3843 int i;
3844
3845 for (i = 0; i < n; i += 1)
3846 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3847 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3848 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3849 return 1;
3850
3851 return 0;
3852 }
3853
3854 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3855 struct types. Otherwise, they may not. */
3856
3857 static int
3858 equiv_types (struct type *type0, struct type *type1)
3859 {
3860 if (type0 == type1)
3861 return 1;
3862 if (type0 == NULL || type1 == NULL
3863 || TYPE_CODE (type0) != TYPE_CODE (type1))
3864 return 0;
3865 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3866 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3867 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3868 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3869 return 1;
3870
3871 return 0;
3872 }
3873
3874 /* True iff SYM0 represents the same entity as SYM1, or one that is
3875 no more defined than that of SYM1. */
3876
3877 static int
3878 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3879 {
3880 if (sym0 == sym1)
3881 return 1;
3882 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3883 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3884 return 0;
3885
3886 switch (SYMBOL_CLASS (sym0))
3887 {
3888 case LOC_UNDEF:
3889 return 1;
3890 case LOC_TYPEDEF:
3891 {
3892 struct type *type0 = SYMBOL_TYPE (sym0);
3893 struct type *type1 = SYMBOL_TYPE (sym1);
3894 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3895 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3896 int len0 = strlen (name0);
3897 return
3898 TYPE_CODE (type0) == TYPE_CODE (type1)
3899 && (equiv_types (type0, type1)
3900 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3901 && strncmp (name1 + len0, "___XV", 5) == 0));
3902 }
3903 case LOC_CONST:
3904 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3905 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3906 default:
3907 return 0;
3908 }
3909 }
3910
3911 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3912 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3913
3914 static void
3915 add_defn_to_vec (struct obstack *obstackp,
3916 struct symbol *sym,
3917 struct block *block, struct symtab *symtab)
3918 {
3919 int i;
3920 size_t tmp;
3921 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3922
3923 /* Do not try to complete stub types, as the debugger is probably
3924 already scanning all symbols matching a certain name at the
3925 time when this function is called. Trying to replace the stub
3926 type by its associated full type will cause us to restart a scan
3927 which may lead to an infinite recursion. Instead, the client
3928 collecting the matching symbols will end up collecting several
3929 matches, with at least one of them complete. It can then filter
3930 out the stub ones if needed. */
3931
3932 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3933 {
3934 if (lesseq_defined_than (sym, prevDefns[i].sym))
3935 return;
3936 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3937 {
3938 prevDefns[i].sym = sym;
3939 prevDefns[i].block = block;
3940 prevDefns[i].symtab = symtab;
3941 return;
3942 }
3943 }
3944
3945 {
3946 struct ada_symbol_info info;
3947
3948 info.sym = sym;
3949 info.block = block;
3950 info.symtab = symtab;
3951 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3952 }
3953 }
3954
3955 /* Number of ada_symbol_info structures currently collected in
3956 current vector in *OBSTACKP. */
3957
3958 static int
3959 num_defns_collected (struct obstack *obstackp)
3960 {
3961 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3962 }
3963
3964 /* Vector of ada_symbol_info structures currently collected in current
3965 vector in *OBSTACKP. If FINISH, close off the vector and return
3966 its final address. */
3967
3968 static struct ada_symbol_info *
3969 defns_collected (struct obstack *obstackp, int finish)
3970 {
3971 if (finish)
3972 return obstack_finish (obstackp);
3973 else
3974 return (struct ada_symbol_info *) obstack_base (obstackp);
3975 }
3976
3977 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3978 Check the global symbols if GLOBAL, the static symbols if not.
3979 Do wild-card match if WILD. */
3980
3981 static struct partial_symbol *
3982 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3983 int global, domain_enum namespace, int wild)
3984 {
3985 struct partial_symbol **start;
3986 int name_len = strlen (name);
3987 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3988 int i;
3989
3990 if (length == 0)
3991 {
3992 return (NULL);
3993 }
3994
3995 start = (global ?
3996 pst->objfile->global_psymbols.list + pst->globals_offset :
3997 pst->objfile->static_psymbols.list + pst->statics_offset);
3998
3999 if (wild)
4000 {
4001 for (i = 0; i < length; i += 1)
4002 {
4003 struct partial_symbol *psym = start[i];
4004
4005 if (SYMBOL_DOMAIN (psym) == namespace
4006 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4007 return psym;
4008 }
4009 return NULL;
4010 }
4011 else
4012 {
4013 if (global)
4014 {
4015 int U;
4016 i = 0;
4017 U = length - 1;
4018 while (U - i > 4)
4019 {
4020 int M = (U + i) >> 1;
4021 struct partial_symbol *psym = start[M];
4022 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4023 i = M + 1;
4024 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4025 U = M - 1;
4026 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4027 i = M + 1;
4028 else
4029 U = M;
4030 }
4031 }
4032 else
4033 i = 0;
4034
4035 while (i < length)
4036 {
4037 struct partial_symbol *psym = start[i];
4038
4039 if (SYMBOL_DOMAIN (psym) == namespace)
4040 {
4041 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4042
4043 if (cmp < 0)
4044 {
4045 if (global)
4046 break;
4047 }
4048 else if (cmp == 0
4049 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4050 + name_len))
4051 return psym;
4052 }
4053 i += 1;
4054 }
4055
4056 if (global)
4057 {
4058 int U;
4059 i = 0;
4060 U = length - 1;
4061 while (U - i > 4)
4062 {
4063 int M = (U + i) >> 1;
4064 struct partial_symbol *psym = start[M];
4065 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4066 i = M + 1;
4067 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4068 U = M - 1;
4069 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4070 i = M + 1;
4071 else
4072 U = M;
4073 }
4074 }
4075 else
4076 i = 0;
4077
4078 while (i < length)
4079 {
4080 struct partial_symbol *psym = start[i];
4081
4082 if (SYMBOL_DOMAIN (psym) == namespace)
4083 {
4084 int cmp;
4085
4086 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4087 if (cmp == 0)
4088 {
4089 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4090 if (cmp == 0)
4091 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4092 name_len);
4093 }
4094
4095 if (cmp < 0)
4096 {
4097 if (global)
4098 break;
4099 }
4100 else if (cmp == 0
4101 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4102 + name_len + 5))
4103 return psym;
4104 }
4105 i += 1;
4106 }
4107 }
4108 return NULL;
4109 }
4110
4111 /* Find a symbol table containing symbol SYM or NULL if none. */
4112
4113 static struct symtab *
4114 symtab_for_sym (struct symbol *sym)
4115 {
4116 struct symtab *s;
4117 struct objfile *objfile;
4118 struct block *b;
4119 struct symbol *tmp_sym;
4120 struct dict_iterator iter;
4121 int j;
4122
4123 ALL_PRIMARY_SYMTABS (objfile, s)
4124 {
4125 switch (SYMBOL_CLASS (sym))
4126 {
4127 case LOC_CONST:
4128 case LOC_STATIC:
4129 case LOC_TYPEDEF:
4130 case LOC_REGISTER:
4131 case LOC_LABEL:
4132 case LOC_BLOCK:
4133 case LOC_CONST_BYTES:
4134 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4135 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4136 return s;
4137 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4138 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4139 return s;
4140 break;
4141 default:
4142 break;
4143 }
4144 switch (SYMBOL_CLASS (sym))
4145 {
4146 case LOC_REGISTER:
4147 case LOC_ARG:
4148 case LOC_REF_ARG:
4149 case LOC_REGPARM:
4150 case LOC_REGPARM_ADDR:
4151 case LOC_LOCAL:
4152 case LOC_TYPEDEF:
4153 case LOC_LOCAL_ARG:
4154 case LOC_BASEREG:
4155 case LOC_BASEREG_ARG:
4156 case LOC_COMPUTED:
4157 case LOC_COMPUTED_ARG:
4158 for (j = FIRST_LOCAL_BLOCK;
4159 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4160 {
4161 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4162 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4163 return s;
4164 }
4165 break;
4166 default:
4167 break;
4168 }
4169 }
4170 return NULL;
4171 }
4172
4173 /* Return a minimal symbol matching NAME according to Ada decoding
4174 rules. Returns NULL if there is no such minimal symbol. Names
4175 prefixed with "standard__" are handled specially: "standard__" is
4176 first stripped off, and only static and global symbols are searched. */
4177
4178 struct minimal_symbol *
4179 ada_lookup_simple_minsym (const char *name)
4180 {
4181 struct objfile *objfile;
4182 struct minimal_symbol *msymbol;
4183 int wild_match;
4184
4185 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4186 {
4187 name += sizeof ("standard__") - 1;
4188 wild_match = 0;
4189 }
4190 else
4191 wild_match = (strstr (name, "__") == NULL);
4192
4193 ALL_MSYMBOLS (objfile, msymbol)
4194 {
4195 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4196 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4197 return msymbol;
4198 }
4199
4200 return NULL;
4201 }
4202
4203 /* For all subprograms that statically enclose the subprogram of the
4204 selected frame, add symbols matching identifier NAME in DOMAIN
4205 and their blocks to the list of data in OBSTACKP, as for
4206 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4207 wildcard prefix. */
4208
4209 static void
4210 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4211 const char *name, domain_enum namespace,
4212 int wild_match)
4213 {
4214 }
4215
4216 /* FIXME: The next two routines belong in symtab.c */
4217
4218 static void
4219 restore_language (void *lang)
4220 {
4221 set_language ((enum language) lang);
4222 }
4223
4224 /* As for lookup_symbol, but performed as if the current language
4225 were LANG. */
4226
4227 struct symbol *
4228 lookup_symbol_in_language (const char *name, const struct block *block,
4229 domain_enum domain, enum language lang,
4230 int *is_a_field_of_this, struct symtab **symtab)
4231 {
4232 struct cleanup *old_chain
4233 = make_cleanup (restore_language, (void *) current_language->la_language);
4234 struct symbol *result;
4235 set_language (lang);
4236 result = lookup_symbol (name, block, domain, is_a_field_of_this, symtab);
4237 do_cleanups (old_chain);
4238 return result;
4239 }
4240
4241 /* True if TYPE is definitely an artificial type supplied to a symbol
4242 for which no debugging information was given in the symbol file. */
4243
4244 static int
4245 is_nondebugging_type (struct type *type)
4246 {
4247 char *name = ada_type_name (type);
4248 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4249 }
4250
4251 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4252 duplicate other symbols in the list (The only case I know of where
4253 this happens is when object files containing stabs-in-ecoff are
4254 linked with files containing ordinary ecoff debugging symbols (or no
4255 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4256 Returns the number of items in the modified list. */
4257
4258 static int
4259 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4260 {
4261 int i, j;
4262
4263 i = 0;
4264 while (i < nsyms)
4265 {
4266 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4267 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4268 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4269 {
4270 for (j = 0; j < nsyms; j += 1)
4271 {
4272 if (i != j
4273 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4274 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4275 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4276 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4277 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4278 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4279 {
4280 int k;
4281 for (k = i + 1; k < nsyms; k += 1)
4282 syms[k - 1] = syms[k];
4283 nsyms -= 1;
4284 goto NextSymbol;
4285 }
4286 }
4287 }
4288 i += 1;
4289 NextSymbol:
4290 ;
4291 }
4292 return nsyms;
4293 }
4294
4295 /* Given a type that corresponds to a renaming entity, use the type name
4296 to extract the scope (package name or function name, fully qualified,
4297 and following the GNAT encoding convention) where this renaming has been
4298 defined. The string returned needs to be deallocated after use. */
4299
4300 static char *
4301 xget_renaming_scope (struct type *renaming_type)
4302 {
4303 /* The renaming types adhere to the following convention:
4304 <scope>__<rename>___<XR extension>.
4305 So, to extract the scope, we search for the "___XR" extension,
4306 and then backtrack until we find the first "__". */
4307
4308 const char *name = type_name_no_tag (renaming_type);
4309 char *suffix = strstr (name, "___XR");
4310 char *last;
4311 int scope_len;
4312 char *scope;
4313
4314 /* Now, backtrack a bit until we find the first "__". Start looking
4315 at suffix - 3, as the <rename> part is at least one character long. */
4316
4317 for (last = suffix - 3; last > name; last--)
4318 if (last[0] == '_' && last[1] == '_')
4319 break;
4320
4321 /* Make a copy of scope and return it. */
4322
4323 scope_len = last - name;
4324 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4325
4326 strncpy (scope, name, scope_len);
4327 scope[scope_len] = '\0';
4328
4329 return scope;
4330 }
4331
4332 /* Return nonzero if NAME corresponds to a package name. */
4333
4334 static int
4335 is_package_name (const char *name)
4336 {
4337 /* Here, We take advantage of the fact that no symbols are generated
4338 for packages, while symbols are generated for each function.
4339 So the condition for NAME represent a package becomes equivalent
4340 to NAME not existing in our list of symbols. There is only one
4341 small complication with library-level functions (see below). */
4342
4343 char *fun_name;
4344
4345 /* If it is a function that has not been defined at library level,
4346 then we should be able to look it up in the symbols. */
4347 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4348 return 0;
4349
4350 /* Library-level function names start with "_ada_". See if function
4351 "_ada_" followed by NAME can be found. */
4352
4353 /* Do a quick check that NAME does not contain "__", since library-level
4354 functions names cannot contain "__" in them. */
4355 if (strstr (name, "__") != NULL)
4356 return 0;
4357
4358 fun_name = xstrprintf ("_ada_%s", name);
4359
4360 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4361 }
4362
4363 /* Return nonzero if SYM corresponds to a renaming entity that is
4364 visible from FUNCTION_NAME. */
4365
4366 static int
4367 renaming_is_visible (const struct symbol *sym, char *function_name)
4368 {
4369 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4370
4371 make_cleanup (xfree, scope);
4372
4373 /* If the rename has been defined in a package, then it is visible. */
4374 if (is_package_name (scope))
4375 return 1;
4376
4377 /* Check that the rename is in the current function scope by checking
4378 that its name starts with SCOPE. */
4379
4380 /* If the function name starts with "_ada_", it means that it is
4381 a library-level function. Strip this prefix before doing the
4382 comparison, as the encoding for the renaming does not contain
4383 this prefix. */
4384 if (strncmp (function_name, "_ada_", 5) == 0)
4385 function_name += 5;
4386
4387 return (strncmp (function_name, scope, strlen (scope)) == 0);
4388 }
4389
4390 /* Iterates over the SYMS list and remove any entry that corresponds to
4391 a renaming entity that is not visible from the function associated
4392 with CURRENT_BLOCK.
4393
4394 Rationale:
4395 GNAT emits a type following a specified encoding for each renaming
4396 entity. Unfortunately, STABS currently does not support the definition
4397 of types that are local to a given lexical block, so all renamings types
4398 are emitted at library level. As a consequence, if an application
4399 contains two renaming entities using the same name, and a user tries to
4400 print the value of one of these entities, the result of the ada symbol
4401 lookup will also contain the wrong renaming type.
4402
4403 This function partially covers for this limitation by attempting to
4404 remove from the SYMS list renaming symbols that should be visible
4405 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4406 method with the current information available. The implementation
4407 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4408
4409 - When the user tries to print a rename in a function while there
4410 is another rename entity defined in a package: Normally, the
4411 rename in the function has precedence over the rename in the
4412 package, so the latter should be removed from the list. This is
4413 currently not the case.
4414
4415 - This function will incorrectly remove valid renames if
4416 the CURRENT_BLOCK corresponds to a function which symbol name
4417 has been changed by an "Export" pragma. As a consequence,
4418 the user will be unable to print such rename entities. */
4419
4420 static int
4421 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4422 int nsyms, const struct block *current_block)
4423 {
4424 struct symbol *current_function;
4425 char *current_function_name;
4426 int i;
4427
4428 /* Extract the function name associated to CURRENT_BLOCK.
4429 Abort if unable to do so. */
4430
4431 if (current_block == NULL)
4432 return nsyms;
4433
4434 current_function = block_function (current_block);
4435 if (current_function == NULL)
4436 return nsyms;
4437
4438 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4439 if (current_function_name == NULL)
4440 return nsyms;
4441
4442 /* Check each of the symbols, and remove it from the list if it is
4443 a type corresponding to a renaming that is out of the scope of
4444 the current block. */
4445
4446 i = 0;
4447 while (i < nsyms)
4448 {
4449 if (ada_is_object_renaming (syms[i].sym)
4450 && !renaming_is_visible (syms[i].sym, current_function_name))
4451 {
4452 int j;
4453 for (j = i + 1; j < nsyms; j++)
4454 syms[j - 1] = syms[j];
4455 nsyms -= 1;
4456 }
4457 else
4458 i += 1;
4459 }
4460
4461 return nsyms;
4462 }
4463
4464 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4465 scope and in global scopes, returning the number of matches. Sets
4466 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4467 indicating the symbols found and the blocks and symbol tables (if
4468 any) in which they were found. This vector are transient---good only to
4469 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4470 symbol match within the nest of blocks whose innermost member is BLOCK0,
4471 is the one match returned (no other matches in that or
4472 enclosing blocks is returned). If there are any matches in or
4473 surrounding BLOCK0, then these alone are returned. Otherwise, the
4474 search extends to global and file-scope (static) symbol tables.
4475 Names prefixed with "standard__" are handled specially: "standard__"
4476 is first stripped off, and only static and global symbols are searched. */
4477
4478 int
4479 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4480 domain_enum namespace,
4481 struct ada_symbol_info **results)
4482 {
4483 struct symbol *sym;
4484 struct symtab *s;
4485 struct partial_symtab *ps;
4486 struct blockvector *bv;
4487 struct objfile *objfile;
4488 struct block *block;
4489 const char *name;
4490 struct minimal_symbol *msymbol;
4491 int wild_match;
4492 int cacheIfUnique;
4493 int block_depth;
4494 int ndefns;
4495
4496 obstack_free (&symbol_list_obstack, NULL);
4497 obstack_init (&symbol_list_obstack);
4498
4499 cacheIfUnique = 0;
4500
4501 /* Search specified block and its superiors. */
4502
4503 wild_match = (strstr (name0, "__") == NULL);
4504 name = name0;
4505 block = (struct block *) block0; /* FIXME: No cast ought to be
4506 needed, but adding const will
4507 have a cascade effect. */
4508 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4509 {
4510 wild_match = 0;
4511 block = NULL;
4512 name = name0 + sizeof ("standard__") - 1;
4513 }
4514
4515 block_depth = 0;
4516 while (block != NULL)
4517 {
4518 block_depth += 1;
4519 ada_add_block_symbols (&symbol_list_obstack, block, name,
4520 namespace, NULL, NULL, wild_match);
4521
4522 /* If we found a non-function match, assume that's the one. */
4523 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4524 num_defns_collected (&symbol_list_obstack)))
4525 goto done;
4526
4527 block = BLOCK_SUPERBLOCK (block);
4528 }
4529
4530 /* If no luck so far, try to find NAME as a local symbol in some lexically
4531 enclosing subprogram. */
4532 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4533 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4534 name, namespace, wild_match);
4535
4536 /* If we found ANY matches among non-global symbols, we're done. */
4537
4538 if (num_defns_collected (&symbol_list_obstack) > 0)
4539 goto done;
4540
4541 cacheIfUnique = 1;
4542 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4543 {
4544 if (sym != NULL)
4545 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4546 goto done;
4547 }
4548
4549 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4550 tables, and psymtab's. */
4551
4552 ALL_PRIMARY_SYMTABS (objfile, s)
4553 {
4554 QUIT;
4555 bv = BLOCKVECTOR (s);
4556 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4557 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4558 objfile, s, wild_match);
4559 }
4560
4561 if (namespace == VAR_DOMAIN)
4562 {
4563 ALL_MSYMBOLS (objfile, msymbol)
4564 {
4565 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4566 {
4567 switch (MSYMBOL_TYPE (msymbol))
4568 {
4569 case mst_solib_trampoline:
4570 break;
4571 default:
4572 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4573 if (s != NULL)
4574 {
4575 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4576 QUIT;
4577 bv = BLOCKVECTOR (s);
4578 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4579 ada_add_block_symbols (&symbol_list_obstack, block,
4580 SYMBOL_LINKAGE_NAME (msymbol),
4581 namespace, objfile, s, wild_match);
4582
4583 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4584 {
4585 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4586 ada_add_block_symbols (&symbol_list_obstack, block,
4587 SYMBOL_LINKAGE_NAME (msymbol),
4588 namespace, objfile, s,
4589 wild_match);
4590 }
4591 }
4592 }
4593 }
4594 }
4595 }
4596
4597 ALL_PSYMTABS (objfile, ps)
4598 {
4599 QUIT;
4600 if (!ps->readin
4601 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4602 {
4603 s = PSYMTAB_TO_SYMTAB (ps);
4604 if (!s->primary)
4605 continue;
4606 bv = BLOCKVECTOR (s);
4607 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4608 ada_add_block_symbols (&symbol_list_obstack, block, name,
4609 namespace, objfile, s, wild_match);
4610 }
4611 }
4612
4613 /* Now add symbols from all per-file blocks if we've gotten no hits
4614 (Not strictly correct, but perhaps better than an error).
4615 Do the symtabs first, then check the psymtabs. */
4616
4617 if (num_defns_collected (&symbol_list_obstack) == 0)
4618 {
4619
4620 ALL_PRIMARY_SYMTABS (objfile, s)
4621 {
4622 QUIT;
4623 bv = BLOCKVECTOR (s);
4624 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4625 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4626 objfile, s, wild_match);
4627 }
4628
4629 ALL_PSYMTABS (objfile, ps)
4630 {
4631 QUIT;
4632 if (!ps->readin
4633 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4634 {
4635 s = PSYMTAB_TO_SYMTAB (ps);
4636 bv = BLOCKVECTOR (s);
4637 if (!s->primary)
4638 continue;
4639 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4640 ada_add_block_symbols (&symbol_list_obstack, block, name,
4641 namespace, objfile, s, wild_match);
4642 }
4643 }
4644 }
4645
4646 done:
4647 ndefns = num_defns_collected (&symbol_list_obstack);
4648 *results = defns_collected (&symbol_list_obstack, 1);
4649
4650 ndefns = remove_extra_symbols (*results, ndefns);
4651
4652 if (ndefns == 0)
4653 cache_symbol (name0, namespace, NULL, NULL, NULL);
4654
4655 if (ndefns == 1 && cacheIfUnique)
4656 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4657 (*results)[0].symtab);
4658
4659 ndefns = remove_out_of_scope_renamings (*results, ndefns, block0);
4660
4661 return ndefns;
4662 }
4663
4664 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4665 scope and in global scopes, or NULL if none. NAME is folded and
4666 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4667 choosing the first symbol if there are multiple choices.
4668 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4669 table in which the symbol was found (in both cases, these
4670 assignments occur only if the pointers are non-null). */
4671
4672 struct symbol *
4673 ada_lookup_symbol (const char *name, const struct block *block0,
4674 domain_enum namespace, int *is_a_field_of_this,
4675 struct symtab **symtab)
4676 {
4677 struct ada_symbol_info *candidates;
4678 int n_candidates;
4679
4680 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4681 block0, namespace, &candidates);
4682
4683 if (n_candidates == 0)
4684 return NULL;
4685
4686 if (is_a_field_of_this != NULL)
4687 *is_a_field_of_this = 0;
4688
4689 if (symtab != NULL)
4690 {
4691 *symtab = candidates[0].symtab;
4692 if (*symtab == NULL && candidates[0].block != NULL)
4693 {
4694 struct objfile *objfile;
4695 struct symtab *s;
4696 struct block *b;
4697 struct blockvector *bv;
4698
4699 /* Search the list of symtabs for one which contains the
4700 address of the start of this block. */
4701 ALL_PRIMARY_SYMTABS (objfile, s)
4702 {
4703 bv = BLOCKVECTOR (s);
4704 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4705 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4706 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4707 {
4708 *symtab = s;
4709 return fixup_symbol_section (candidates[0].sym, objfile);
4710 }
4711 }
4712 /* FIXME: brobecker/2004-11-12: I think that we should never
4713 reach this point. I don't see a reason why we would not
4714 find a symtab for a given block, so I suggest raising an
4715 internal_error exception here. Otherwise, we end up
4716 returning a symbol but no symtab, which certain parts of
4717 the code that rely (indirectly) on this function do not
4718 expect, eventually causing a SEGV. */
4719 return fixup_symbol_section (candidates[0].sym, NULL);
4720 }
4721 }
4722 return candidates[0].sym;
4723 }
4724
4725 static struct symbol *
4726 ada_lookup_symbol_nonlocal (const char *name,
4727 const char *linkage_name,
4728 const struct block *block,
4729 const domain_enum domain, struct symtab **symtab)
4730 {
4731 if (linkage_name == NULL)
4732 linkage_name = name;
4733 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4734 NULL, symtab);
4735 }
4736
4737
4738 /* True iff STR is a possible encoded suffix of a normal Ada name
4739 that is to be ignored for matching purposes. Suffixes of parallel
4740 names (e.g., XVE) are not included here. Currently, the possible suffixes
4741 are given by either of the regular expression:
4742
4743 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4744 as GNU/Linux]
4745 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4746 _E[0-9]+[bs]$ [protected object entry suffixes]
4747 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4748 */
4749
4750 static int
4751 is_name_suffix (const char *str)
4752 {
4753 int k;
4754 const char *matching;
4755 const int len = strlen (str);
4756
4757 /* (__[0-9]+)?\.[0-9]+ */
4758 matching = str;
4759 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4760 {
4761 matching += 3;
4762 while (isdigit (matching[0]))
4763 matching += 1;
4764 if (matching[0] == '\0')
4765 return 1;
4766 }
4767
4768 if (matching[0] == '.' || matching[0] == '$')
4769 {
4770 matching += 1;
4771 while (isdigit (matching[0]))
4772 matching += 1;
4773 if (matching[0] == '\0')
4774 return 1;
4775 }
4776
4777 /* ___[0-9]+ */
4778 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4779 {
4780 matching = str + 3;
4781 while (isdigit (matching[0]))
4782 matching += 1;
4783 if (matching[0] == '\0')
4784 return 1;
4785 }
4786
4787 #if 0
4788 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4789 with a N at the end. Unfortunately, the compiler uses the same
4790 convention for other internal types it creates. So treating
4791 all entity names that end with an "N" as a name suffix causes
4792 some regressions. For instance, consider the case of an enumerated
4793 type. To support the 'Image attribute, it creates an array whose
4794 name ends with N.
4795 Having a single character like this as a suffix carrying some
4796 information is a bit risky. Perhaps we should change the encoding
4797 to be something like "_N" instead. In the meantime, do not do
4798 the following check. */
4799 /* Protected Object Subprograms */
4800 if (len == 1 && str [0] == 'N')
4801 return 1;
4802 #endif
4803
4804 /* _E[0-9]+[bs]$ */
4805 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4806 {
4807 matching = str + 3;
4808 while (isdigit (matching[0]))
4809 matching += 1;
4810 if ((matching[0] == 'b' || matching[0] == 's')
4811 && matching [1] == '\0')
4812 return 1;
4813 }
4814
4815 /* ??? We should not modify STR directly, as we are doing below. This
4816 is fine in this case, but may become problematic later if we find
4817 that this alternative did not work, and want to try matching
4818 another one from the begining of STR. Since we modified it, we
4819 won't be able to find the begining of the string anymore! */
4820 if (str[0] == 'X')
4821 {
4822 str += 1;
4823 while (str[0] != '_' && str[0] != '\0')
4824 {
4825 if (str[0] != 'n' && str[0] != 'b')
4826 return 0;
4827 str += 1;
4828 }
4829 }
4830 if (str[0] == '\000')
4831 return 1;
4832 if (str[0] == '_')
4833 {
4834 if (str[1] != '_' || str[2] == '\000')
4835 return 0;
4836 if (str[2] == '_')
4837 {
4838 if (strcmp (str + 3, "JM") == 0)
4839 return 1;
4840 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4841 the LJM suffix in favor of the JM one. But we will
4842 still accept LJM as a valid suffix for a reasonable
4843 amount of time, just to allow ourselves to debug programs
4844 compiled using an older version of GNAT. */
4845 if (strcmp (str + 3, "LJM") == 0)
4846 return 1;
4847 if (str[3] != 'X')
4848 return 0;
4849 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4850 || str[4] == 'U' || str[4] == 'P')
4851 return 1;
4852 if (str[4] == 'R' && str[5] != 'T')
4853 return 1;
4854 return 0;
4855 }
4856 if (!isdigit (str[2]))
4857 return 0;
4858 for (k = 3; str[k] != '\0'; k += 1)
4859 if (!isdigit (str[k]) && str[k] != '_')
4860 return 0;
4861 return 1;
4862 }
4863 if (str[0] == '$' && isdigit (str[1]))
4864 {
4865 for (k = 2; str[k] != '\0'; k += 1)
4866 if (!isdigit (str[k]) && str[k] != '_')
4867 return 0;
4868 return 1;
4869 }
4870 return 0;
4871 }
4872
4873 /* Return nonzero if the given string starts with a dot ('.')
4874 followed by zero or more digits.
4875
4876 Note: brobecker/2003-11-10: A forward declaration has not been
4877 added at the begining of this file yet, because this function
4878 is only used to work around a problem found during wild matching
4879 when trying to match minimal symbol names against symbol names
4880 obtained from dwarf-2 data. This function is therefore currently
4881 only used in wild_match() and is likely to be deleted when the
4882 problem in dwarf-2 is fixed. */
4883
4884 static int
4885 is_dot_digits_suffix (const char *str)
4886 {
4887 if (str[0] != '.')
4888 return 0;
4889
4890 str++;
4891 while (isdigit (str[0]))
4892 str++;
4893 return (str[0] == '\0');
4894 }
4895
4896 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4897 Certain symbols appear at first to match, except that they turn out
4898 not to follow the Ada encoding and hence should not be used as a wild
4899 match of a given pattern. */
4900
4901 static int
4902 is_valid_name_for_wild_match (const char *name0)
4903 {
4904 const char *decoded_name = ada_decode (name0);
4905 int i;
4906
4907 for (i=0; decoded_name[i] != '\0'; i++)
4908 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4909 return 0;
4910
4911 return 1;
4912 }
4913
4914 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4915 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4916 informational suffixes of NAME (i.e., for which is_name_suffix is
4917 true). */
4918
4919 static int
4920 wild_match (const char *patn0, int patn_len, const char *name0)
4921 {
4922 int name_len;
4923 char *name;
4924 char *patn;
4925
4926 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4927 stored in the symbol table for nested function names is sometimes
4928 different from the name of the associated entity stored in
4929 the dwarf-2 data: This is the case for nested subprograms, where
4930 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4931 while the symbol name from the dwarf-2 data does not.
4932
4933 Although the DWARF-2 standard documents that entity names stored
4934 in the dwarf-2 data should be identical to the name as seen in
4935 the source code, GNAT takes a different approach as we already use
4936 a special encoding mechanism to convey the information so that
4937 a C debugger can still use the information generated to debug
4938 Ada programs. A corollary is that the symbol names in the dwarf-2
4939 data should match the names found in the symbol table. I therefore
4940 consider this issue as a compiler defect.
4941
4942 Until the compiler is properly fixed, we work-around the problem
4943 by ignoring such suffixes during the match. We do so by making
4944 a copy of PATN0 and NAME0, and then by stripping such a suffix
4945 if present. We then perform the match on the resulting strings. */
4946 {
4947 char *dot;
4948 name_len = strlen (name0);
4949
4950 name = (char *) alloca ((name_len + 1) * sizeof (char));
4951 strcpy (name, name0);
4952 dot = strrchr (name, '.');
4953 if (dot != NULL && is_dot_digits_suffix (dot))
4954 *dot = '\0';
4955
4956 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4957 strncpy (patn, patn0, patn_len);
4958 patn[patn_len] = '\0';
4959 dot = strrchr (patn, '.');
4960 if (dot != NULL && is_dot_digits_suffix (dot))
4961 {
4962 *dot = '\0';
4963 patn_len = dot - patn;
4964 }
4965 }
4966
4967 /* Now perform the wild match. */
4968
4969 name_len = strlen (name);
4970 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4971 && strncmp (patn, name + 5, patn_len) == 0
4972 && is_name_suffix (name + patn_len + 5))
4973 return 1;
4974
4975 while (name_len >= patn_len)
4976 {
4977 if (strncmp (patn, name, patn_len) == 0
4978 && is_name_suffix (name + patn_len))
4979 return (is_valid_name_for_wild_match (name0));
4980 do
4981 {
4982 name += 1;
4983 name_len -= 1;
4984 }
4985 while (name_len > 0
4986 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4987 if (name_len <= 0)
4988 return 0;
4989 if (name[0] == '_')
4990 {
4991 if (!islower (name[2]))
4992 return 0;
4993 name += 2;
4994 name_len -= 2;
4995 }
4996 else
4997 {
4998 if (!islower (name[1]))
4999 return 0;
5000 name += 1;
5001 name_len -= 1;
5002 }
5003 }
5004
5005 return 0;
5006 }
5007
5008
5009 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5010 vector *defn_symbols, updating the list of symbols in OBSTACKP
5011 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5012 OBJFILE is the section containing BLOCK.
5013 SYMTAB is recorded with each symbol added. */
5014
5015 static void
5016 ada_add_block_symbols (struct obstack *obstackp,
5017 struct block *block, const char *name,
5018 domain_enum domain, struct objfile *objfile,
5019 struct symtab *symtab, int wild)
5020 {
5021 struct dict_iterator iter;
5022 int name_len = strlen (name);
5023 /* A matching argument symbol, if any. */
5024 struct symbol *arg_sym;
5025 /* Set true when we find a matching non-argument symbol. */
5026 int found_sym;
5027 struct symbol *sym;
5028
5029 arg_sym = NULL;
5030 found_sym = 0;
5031 if (wild)
5032 {
5033 struct symbol *sym;
5034 ALL_BLOCK_SYMBOLS (block, iter, sym)
5035 {
5036 if (SYMBOL_DOMAIN (sym) == domain
5037 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5038 {
5039 switch (SYMBOL_CLASS (sym))
5040 {
5041 case LOC_ARG:
5042 case LOC_LOCAL_ARG:
5043 case LOC_REF_ARG:
5044 case LOC_REGPARM:
5045 case LOC_REGPARM_ADDR:
5046 case LOC_BASEREG_ARG:
5047 case LOC_COMPUTED_ARG:
5048 arg_sym = sym;
5049 break;
5050 case LOC_UNRESOLVED:
5051 continue;
5052 default:
5053 found_sym = 1;
5054 add_defn_to_vec (obstackp,
5055 fixup_symbol_section (sym, objfile),
5056 block, symtab);
5057 break;
5058 }
5059 }
5060 }
5061 }
5062 else
5063 {
5064 ALL_BLOCK_SYMBOLS (block, iter, sym)
5065 {
5066 if (SYMBOL_DOMAIN (sym) == domain)
5067 {
5068 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5069 if (cmp == 0
5070 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5071 {
5072 switch (SYMBOL_CLASS (sym))
5073 {
5074 case LOC_ARG:
5075 case LOC_LOCAL_ARG:
5076 case LOC_REF_ARG:
5077 case LOC_REGPARM:
5078 case LOC_REGPARM_ADDR:
5079 case LOC_BASEREG_ARG:
5080 case LOC_COMPUTED_ARG:
5081 arg_sym = sym;
5082 break;
5083 case LOC_UNRESOLVED:
5084 break;
5085 default:
5086 found_sym = 1;
5087 add_defn_to_vec (obstackp,
5088 fixup_symbol_section (sym, objfile),
5089 block, symtab);
5090 break;
5091 }
5092 }
5093 }
5094 }
5095 }
5096
5097 if (!found_sym && arg_sym != NULL)
5098 {
5099 add_defn_to_vec (obstackp,
5100 fixup_symbol_section (arg_sym, objfile),
5101 block, symtab);
5102 }
5103
5104 if (!wild)
5105 {
5106 arg_sym = NULL;
5107 found_sym = 0;
5108
5109 ALL_BLOCK_SYMBOLS (block, iter, sym)
5110 {
5111 if (SYMBOL_DOMAIN (sym) == domain)
5112 {
5113 int cmp;
5114
5115 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5116 if (cmp == 0)
5117 {
5118 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5119 if (cmp == 0)
5120 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5121 name_len);
5122 }
5123
5124 if (cmp == 0
5125 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5126 {
5127 switch (SYMBOL_CLASS (sym))
5128 {
5129 case LOC_ARG:
5130 case LOC_LOCAL_ARG:
5131 case LOC_REF_ARG:
5132 case LOC_REGPARM:
5133 case LOC_REGPARM_ADDR:
5134 case LOC_BASEREG_ARG:
5135 case LOC_COMPUTED_ARG:
5136 arg_sym = sym;
5137 break;
5138 case LOC_UNRESOLVED:
5139 break;
5140 default:
5141 found_sym = 1;
5142 add_defn_to_vec (obstackp,
5143 fixup_symbol_section (sym, objfile),
5144 block, symtab);
5145 break;
5146 }
5147 }
5148 }
5149 }
5150
5151 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5152 They aren't parameters, right? */
5153 if (!found_sym && arg_sym != NULL)
5154 {
5155 add_defn_to_vec (obstackp,
5156 fixup_symbol_section (arg_sym, objfile),
5157 block, symtab);
5158 }
5159 }
5160 }
5161 \f
5162 /* Field Access */
5163
5164 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5165 to be invisible to users. */
5166
5167 int
5168 ada_is_ignored_field (struct type *type, int field_num)
5169 {
5170 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5171 return 1;
5172 else
5173 {
5174 const char *name = TYPE_FIELD_NAME (type, field_num);
5175 return (name == NULL
5176 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5177 }
5178 }
5179
5180 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5181 pointer or reference type whose ultimate target has a tag field. */
5182
5183 int
5184 ada_is_tagged_type (struct type *type, int refok)
5185 {
5186 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5187 }
5188
5189 /* True iff TYPE represents the type of X'Tag */
5190
5191 int
5192 ada_is_tag_type (struct type *type)
5193 {
5194 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5195 return 0;
5196 else
5197 {
5198 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5199 return (name != NULL
5200 && strcmp (name, "ada__tags__dispatch_table") == 0);
5201 }
5202 }
5203
5204 /* The type of the tag on VAL. */
5205
5206 struct type *
5207 ada_tag_type (struct value *val)
5208 {
5209 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5210 }
5211
5212 /* The value of the tag on VAL. */
5213
5214 struct value *
5215 ada_value_tag (struct value *val)
5216 {
5217 return ada_value_struct_elt (val, "_tag", 0);
5218 }
5219
5220 /* The value of the tag on the object of type TYPE whose contents are
5221 saved at VALADDR, if it is non-null, or is at memory address
5222 ADDRESS. */
5223
5224 static struct value *
5225 value_tag_from_contents_and_address (struct type *type,
5226 const gdb_byte *valaddr,
5227 CORE_ADDR address)
5228 {
5229 int tag_byte_offset, dummy1, dummy2;
5230 struct type *tag_type;
5231 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5232 NULL, NULL, NULL))
5233 {
5234 const gdb_byte *valaddr1 = ((valaddr == NULL)
5235 ? NULL
5236 : valaddr + tag_byte_offset);
5237 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5238
5239 return value_from_contents_and_address (tag_type, valaddr1, address1);
5240 }
5241 return NULL;
5242 }
5243
5244 static struct type *
5245 type_from_tag (struct value *tag)
5246 {
5247 const char *type_name = ada_tag_name (tag);
5248 if (type_name != NULL)
5249 return ada_find_any_type (ada_encode (type_name));
5250 return NULL;
5251 }
5252
5253 struct tag_args
5254 {
5255 struct value *tag;
5256 char *name;
5257 };
5258
5259
5260 static int ada_tag_name_1 (void *);
5261 static int ada_tag_name_2 (struct tag_args *);
5262
5263 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5264 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5265 The value stored in ARGS->name is valid until the next call to
5266 ada_tag_name_1. */
5267
5268 static int
5269 ada_tag_name_1 (void *args0)
5270 {
5271 struct tag_args *args = (struct tag_args *) args0;
5272 static char name[1024];
5273 char *p;
5274 struct value *val;
5275 args->name = NULL;
5276 val = ada_value_struct_elt (args->tag, "tsd", 1);
5277 if (val == NULL)
5278 return ada_tag_name_2 (args);
5279 val = ada_value_struct_elt (val, "expanded_name", 1);
5280 if (val == NULL)
5281 return 0;
5282 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5283 for (p = name; *p != '\0'; p += 1)
5284 if (isalpha (*p))
5285 *p = tolower (*p);
5286 args->name = name;
5287 return 0;
5288 }
5289
5290 /* Utility function for ada_tag_name_1 that tries the second
5291 representation for the dispatch table (in which there is no
5292 explicit 'tsd' field in the referent of the tag pointer, and instead
5293 the tsd pointer is stored just before the dispatch table. */
5294
5295 static int
5296 ada_tag_name_2 (struct tag_args *args)
5297 {
5298 struct type *info_type;
5299 static char name[1024];
5300 char *p;
5301 struct value *val, *valp;
5302
5303 args->name = NULL;
5304 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5305 if (info_type == NULL)
5306 return 0;
5307 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5308 valp = value_cast (info_type, args->tag);
5309 if (valp == NULL)
5310 return 0;
5311 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5312 if (val == NULL)
5313 return 0;
5314 val = ada_value_struct_elt (val, "expanded_name", 1);
5315 if (val == NULL)
5316 return 0;
5317 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5318 for (p = name; *p != '\0'; p += 1)
5319 if (isalpha (*p))
5320 *p = tolower (*p);
5321 args->name = name;
5322 return 0;
5323 }
5324
5325 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5326 * a C string. */
5327
5328 const char *
5329 ada_tag_name (struct value *tag)
5330 {
5331 struct tag_args args;
5332 if (!ada_is_tag_type (value_type (tag)))
5333 return NULL;
5334 args.tag = tag;
5335 args.name = NULL;
5336 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5337 return args.name;
5338 }
5339
5340 /* The parent type of TYPE, or NULL if none. */
5341
5342 struct type *
5343 ada_parent_type (struct type *type)
5344 {
5345 int i;
5346
5347 type = ada_check_typedef (type);
5348
5349 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5350 return NULL;
5351
5352 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5353 if (ada_is_parent_field (type, i))
5354 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5355
5356 return NULL;
5357 }
5358
5359 /* True iff field number FIELD_NUM of structure type TYPE contains the
5360 parent-type (inherited) fields of a derived type. Assumes TYPE is
5361 a structure type with at least FIELD_NUM+1 fields. */
5362
5363 int
5364 ada_is_parent_field (struct type *type, int field_num)
5365 {
5366 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5367 return (name != NULL
5368 && (strncmp (name, "PARENT", 6) == 0
5369 || strncmp (name, "_parent", 7) == 0));
5370 }
5371
5372 /* True iff field number FIELD_NUM of structure type TYPE is a
5373 transparent wrapper field (which should be silently traversed when doing
5374 field selection and flattened when printing). Assumes TYPE is a
5375 structure type with at least FIELD_NUM+1 fields. Such fields are always
5376 structures. */
5377
5378 int
5379 ada_is_wrapper_field (struct type *type, int field_num)
5380 {
5381 const char *name = TYPE_FIELD_NAME (type, field_num);
5382 return (name != NULL
5383 && (strncmp (name, "PARENT", 6) == 0
5384 || strcmp (name, "REP") == 0
5385 || strncmp (name, "_parent", 7) == 0
5386 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5387 }
5388
5389 /* True iff field number FIELD_NUM of structure or union type TYPE
5390 is a variant wrapper. Assumes TYPE is a structure type with at least
5391 FIELD_NUM+1 fields. */
5392
5393 int
5394 ada_is_variant_part (struct type *type, int field_num)
5395 {
5396 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5397 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5398 || (is_dynamic_field (type, field_num)
5399 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5400 == TYPE_CODE_UNION)));
5401 }
5402
5403 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5404 whose discriminants are contained in the record type OUTER_TYPE,
5405 returns the type of the controlling discriminant for the variant. */
5406
5407 struct type *
5408 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5409 {
5410 char *name = ada_variant_discrim_name (var_type);
5411 struct type *type =
5412 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5413 if (type == NULL)
5414 return builtin_type_int;
5415 else
5416 return type;
5417 }
5418
5419 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5420 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5421 represents a 'when others' clause; otherwise 0. */
5422
5423 int
5424 ada_is_others_clause (struct type *type, int field_num)
5425 {
5426 const char *name = TYPE_FIELD_NAME (type, field_num);
5427 return (name != NULL && name[0] == 'O');
5428 }
5429
5430 /* Assuming that TYPE0 is the type of the variant part of a record,
5431 returns the name of the discriminant controlling the variant.
5432 The value is valid until the next call to ada_variant_discrim_name. */
5433
5434 char *
5435 ada_variant_discrim_name (struct type *type0)
5436 {
5437 static char *result = NULL;
5438 static size_t result_len = 0;
5439 struct type *type;
5440 const char *name;
5441 const char *discrim_end;
5442 const char *discrim_start;
5443
5444 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5445 type = TYPE_TARGET_TYPE (type0);
5446 else
5447 type = type0;
5448
5449 name = ada_type_name (type);
5450
5451 if (name == NULL || name[0] == '\000')
5452 return "";
5453
5454 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5455 discrim_end -= 1)
5456 {
5457 if (strncmp (discrim_end, "___XVN", 6) == 0)
5458 break;
5459 }
5460 if (discrim_end == name)
5461 return "";
5462
5463 for (discrim_start = discrim_end; discrim_start != name + 3;
5464 discrim_start -= 1)
5465 {
5466 if (discrim_start == name + 1)
5467 return "";
5468 if ((discrim_start > name + 3
5469 && strncmp (discrim_start - 3, "___", 3) == 0)
5470 || discrim_start[-1] == '.')
5471 break;
5472 }
5473
5474 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5475 strncpy (result, discrim_start, discrim_end - discrim_start);
5476 result[discrim_end - discrim_start] = '\0';
5477 return result;
5478 }
5479
5480 /* Scan STR for a subtype-encoded number, beginning at position K.
5481 Put the position of the character just past the number scanned in
5482 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5483 Return 1 if there was a valid number at the given position, and 0
5484 otherwise. A "subtype-encoded" number consists of the absolute value
5485 in decimal, followed by the letter 'm' to indicate a negative number.
5486 Assumes 0m does not occur. */
5487
5488 int
5489 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5490 {
5491 ULONGEST RU;
5492
5493 if (!isdigit (str[k]))
5494 return 0;
5495
5496 /* Do it the hard way so as not to make any assumption about
5497 the relationship of unsigned long (%lu scan format code) and
5498 LONGEST. */
5499 RU = 0;
5500 while (isdigit (str[k]))
5501 {
5502 RU = RU * 10 + (str[k] - '0');
5503 k += 1;
5504 }
5505
5506 if (str[k] == 'm')
5507 {
5508 if (R != NULL)
5509 *R = (-(LONGEST) (RU - 1)) - 1;
5510 k += 1;
5511 }
5512 else if (R != NULL)
5513 *R = (LONGEST) RU;
5514
5515 /* NOTE on the above: Technically, C does not say what the results of
5516 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5517 number representable as a LONGEST (although either would probably work
5518 in most implementations). When RU>0, the locution in the then branch
5519 above is always equivalent to the negative of RU. */
5520
5521 if (new_k != NULL)
5522 *new_k = k;
5523 return 1;
5524 }
5525
5526 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5527 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5528 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5529
5530 int
5531 ada_in_variant (LONGEST val, struct type *type, int field_num)
5532 {
5533 const char *name = TYPE_FIELD_NAME (type, field_num);
5534 int p;
5535
5536 p = 0;
5537 while (1)
5538 {
5539 switch (name[p])
5540 {
5541 case '\0':
5542 return 0;
5543 case 'S':
5544 {
5545 LONGEST W;
5546 if (!ada_scan_number (name, p + 1, &W, &p))
5547 return 0;
5548 if (val == W)
5549 return 1;
5550 break;
5551 }
5552 case 'R':
5553 {
5554 LONGEST L, U;
5555 if (!ada_scan_number (name, p + 1, &L, &p)
5556 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5557 return 0;
5558 if (val >= L && val <= U)
5559 return 1;
5560 break;
5561 }
5562 case 'O':
5563 return 1;
5564 default:
5565 return 0;
5566 }
5567 }
5568 }
5569
5570 /* FIXME: Lots of redundancy below. Try to consolidate. */
5571
5572 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5573 ARG_TYPE, extract and return the value of one of its (non-static)
5574 fields. FIELDNO says which field. Differs from value_primitive_field
5575 only in that it can handle packed values of arbitrary type. */
5576
5577 static struct value *
5578 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5579 struct type *arg_type)
5580 {
5581 struct type *type;
5582
5583 arg_type = ada_check_typedef (arg_type);
5584 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5585
5586 /* Handle packed fields. */
5587
5588 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5589 {
5590 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5591 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5592
5593 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5594 offset + bit_pos / 8,
5595 bit_pos % 8, bit_size, type);
5596 }
5597 else
5598 return value_primitive_field (arg1, offset, fieldno, arg_type);
5599 }
5600
5601 /* Find field with name NAME in object of type TYPE. If found,
5602 set the following for each argument that is non-null:
5603 - *FIELD_TYPE_P to the field's type;
5604 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5605 an object of that type;
5606 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5607 - *BIT_SIZE_P to its size in bits if the field is packed, and
5608 0 otherwise;
5609 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5610 fields up to but not including the desired field, or by the total
5611 number of fields if not found. A NULL value of NAME never
5612 matches; the function just counts visible fields in this case.
5613
5614 Returns 1 if found, 0 otherwise. */
5615
5616 static int
5617 find_struct_field (char *name, struct type *type, int offset,
5618 struct type **field_type_p,
5619 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5620 int *index_p)
5621 {
5622 int i;
5623
5624 type = ada_check_typedef (type);
5625
5626 if (field_type_p != NULL)
5627 *field_type_p = NULL;
5628 if (byte_offset_p != NULL)
5629 *byte_offset_p = 0;
5630 if (bit_offset_p != NULL)
5631 *bit_offset_p = 0;
5632 if (bit_size_p != NULL)
5633 *bit_size_p = 0;
5634
5635 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5636 {
5637 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5638 int fld_offset = offset + bit_pos / 8;
5639 char *t_field_name = TYPE_FIELD_NAME (type, i);
5640
5641 if (t_field_name == NULL)
5642 continue;
5643
5644 else if (name != NULL && field_name_match (t_field_name, name))
5645 {
5646 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5647 if (field_type_p != NULL)
5648 *field_type_p = TYPE_FIELD_TYPE (type, i);
5649 if (byte_offset_p != NULL)
5650 *byte_offset_p = fld_offset;
5651 if (bit_offset_p != NULL)
5652 *bit_offset_p = bit_pos % 8;
5653 if (bit_size_p != NULL)
5654 *bit_size_p = bit_size;
5655 return 1;
5656 }
5657 else if (ada_is_wrapper_field (type, i))
5658 {
5659 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5660 field_type_p, byte_offset_p, bit_offset_p,
5661 bit_size_p, index_p))
5662 return 1;
5663 }
5664 else if (ada_is_variant_part (type, i))
5665 {
5666 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5667 fixed type?? */
5668 int j;
5669 struct type *field_type
5670 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5671
5672 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5673 {
5674 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5675 fld_offset
5676 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5677 field_type_p, byte_offset_p,
5678 bit_offset_p, bit_size_p, index_p))
5679 return 1;
5680 }
5681 }
5682 else if (index_p != NULL)
5683 *index_p += 1;
5684 }
5685 return 0;
5686 }
5687
5688 /* Number of user-visible fields in record type TYPE. */
5689
5690 static int
5691 num_visible_fields (struct type *type)
5692 {
5693 int n;
5694 n = 0;
5695 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5696 return n;
5697 }
5698
5699 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5700 and search in it assuming it has (class) type TYPE.
5701 If found, return value, else return NULL.
5702
5703 Searches recursively through wrapper fields (e.g., '_parent'). */
5704
5705 static struct value *
5706 ada_search_struct_field (char *name, struct value *arg, int offset,
5707 struct type *type)
5708 {
5709 int i;
5710 type = ada_check_typedef (type);
5711
5712 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5713 {
5714 char *t_field_name = TYPE_FIELD_NAME (type, i);
5715
5716 if (t_field_name == NULL)
5717 continue;
5718
5719 else if (field_name_match (t_field_name, name))
5720 return ada_value_primitive_field (arg, offset, i, type);
5721
5722 else if (ada_is_wrapper_field (type, i))
5723 {
5724 struct value *v = /* Do not let indent join lines here. */
5725 ada_search_struct_field (name, arg,
5726 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5727 TYPE_FIELD_TYPE (type, i));
5728 if (v != NULL)
5729 return v;
5730 }
5731
5732 else if (ada_is_variant_part (type, i))
5733 {
5734 /* PNH: Do we ever get here? See find_struct_field. */
5735 int j;
5736 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5737 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5738
5739 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5740 {
5741 struct value *v = ada_search_struct_field /* Force line break. */
5742 (name, arg,
5743 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5744 TYPE_FIELD_TYPE (field_type, j));
5745 if (v != NULL)
5746 return v;
5747 }
5748 }
5749 }
5750 return NULL;
5751 }
5752
5753 static struct value *ada_index_struct_field_1 (int *, struct value *,
5754 int, struct type *);
5755
5756
5757 /* Return field #INDEX in ARG, where the index is that returned by
5758 * find_struct_field through its INDEX_P argument. Adjust the address
5759 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5760 * If found, return value, else return NULL. */
5761
5762 static struct value *
5763 ada_index_struct_field (int index, struct value *arg, int offset,
5764 struct type *type)
5765 {
5766 return ada_index_struct_field_1 (&index, arg, offset, type);
5767 }
5768
5769
5770 /* Auxiliary function for ada_index_struct_field. Like
5771 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5772 * *INDEX_P. */
5773
5774 static struct value *
5775 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5776 struct type *type)
5777 {
5778 int i;
5779 type = ada_check_typedef (type);
5780
5781 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5782 {
5783 if (TYPE_FIELD_NAME (type, i) == NULL)
5784 continue;
5785 else if (ada_is_wrapper_field (type, i))
5786 {
5787 struct value *v = /* Do not let indent join lines here. */
5788 ada_index_struct_field_1 (index_p, arg,
5789 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5790 TYPE_FIELD_TYPE (type, i));
5791 if (v != NULL)
5792 return v;
5793 }
5794
5795 else if (ada_is_variant_part (type, i))
5796 {
5797 /* PNH: Do we ever get here? See ada_search_struct_field,
5798 find_struct_field. */
5799 error (_("Cannot assign this kind of variant record"));
5800 }
5801 else if (*index_p == 0)
5802 return ada_value_primitive_field (arg, offset, i, type);
5803 else
5804 *index_p -= 1;
5805 }
5806 return NULL;
5807 }
5808
5809 /* Given ARG, a value of type (pointer or reference to a)*
5810 structure/union, extract the component named NAME from the ultimate
5811 target structure/union and return it as a value with its
5812 appropriate type. If ARG is a pointer or reference and the field
5813 is not packed, returns a reference to the field, otherwise the
5814 value of the field (an lvalue if ARG is an lvalue).
5815
5816 The routine searches for NAME among all members of the structure itself
5817 and (recursively) among all members of any wrapper members
5818 (e.g., '_parent').
5819
5820 If NO_ERR, then simply return NULL in case of error, rather than
5821 calling error. */
5822
5823 struct value *
5824 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5825 {
5826 struct type *t, *t1;
5827 struct value *v;
5828
5829 v = NULL;
5830 t1 = t = ada_check_typedef (value_type (arg));
5831 if (TYPE_CODE (t) == TYPE_CODE_REF)
5832 {
5833 t1 = TYPE_TARGET_TYPE (t);
5834 if (t1 == NULL)
5835 goto BadValue;
5836 t1 = ada_check_typedef (t1);
5837 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5838 {
5839 arg = coerce_ref (arg);
5840 t = t1;
5841 }
5842 }
5843
5844 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5845 {
5846 t1 = TYPE_TARGET_TYPE (t);
5847 if (t1 == NULL)
5848 goto BadValue;
5849 t1 = ada_check_typedef (t1);
5850 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5851 {
5852 arg = value_ind (arg);
5853 t = t1;
5854 }
5855 else
5856 break;
5857 }
5858
5859 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5860 goto BadValue;
5861
5862 if (t1 == t)
5863 v = ada_search_struct_field (name, arg, 0, t);
5864 else
5865 {
5866 int bit_offset, bit_size, byte_offset;
5867 struct type *field_type;
5868 CORE_ADDR address;
5869
5870 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5871 address = value_as_address (arg);
5872 else
5873 address = unpack_pointer (t, value_contents (arg));
5874
5875 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5876 if (find_struct_field (name, t1, 0,
5877 &field_type, &byte_offset, &bit_offset,
5878 &bit_size, NULL))
5879 {
5880 if (bit_size != 0)
5881 {
5882 if (TYPE_CODE (t) == TYPE_CODE_REF)
5883 arg = ada_coerce_ref (arg);
5884 else
5885 arg = ada_value_ind (arg);
5886 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5887 bit_offset, bit_size,
5888 field_type);
5889 }
5890 else
5891 v = value_from_pointer (lookup_reference_type (field_type),
5892 address + byte_offset);
5893 }
5894 }
5895
5896 if (v != NULL || no_err)
5897 return v;
5898 else
5899 error (_("There is no member named %s."), name);
5900
5901 BadValue:
5902 if (no_err)
5903 return NULL;
5904 else
5905 error (_("Attempt to extract a component of a value that is not a record."));
5906 }
5907
5908 /* Given a type TYPE, look up the type of the component of type named NAME.
5909 If DISPP is non-null, add its byte displacement from the beginning of a
5910 structure (pointed to by a value) of type TYPE to *DISPP (does not
5911 work for packed fields).
5912
5913 Matches any field whose name has NAME as a prefix, possibly
5914 followed by "___".
5915
5916 TYPE can be either a struct or union. If REFOK, TYPE may also
5917 be a (pointer or reference)+ to a struct or union, and the
5918 ultimate target type will be searched.
5919
5920 Looks recursively into variant clauses and parent types.
5921
5922 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5923 TYPE is not a type of the right kind. */
5924
5925 static struct type *
5926 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5927 int noerr, int *dispp)
5928 {
5929 int i;
5930
5931 if (name == NULL)
5932 goto BadName;
5933
5934 if (refok && type != NULL)
5935 while (1)
5936 {
5937 type = ada_check_typedef (type);
5938 if (TYPE_CODE (type) != TYPE_CODE_PTR
5939 && TYPE_CODE (type) != TYPE_CODE_REF)
5940 break;
5941 type = TYPE_TARGET_TYPE (type);
5942 }
5943
5944 if (type == NULL
5945 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5946 && TYPE_CODE (type) != TYPE_CODE_UNION))
5947 {
5948 if (noerr)
5949 return NULL;
5950 else
5951 {
5952 target_terminal_ours ();
5953 gdb_flush (gdb_stdout);
5954 if (type == NULL)
5955 error (_("Type (null) is not a structure or union type"));
5956 else
5957 {
5958 /* XXX: type_sprint */
5959 fprintf_unfiltered (gdb_stderr, _("Type "));
5960 type_print (type, "", gdb_stderr, -1);
5961 error (_(" is not a structure or union type"));
5962 }
5963 }
5964 }
5965
5966 type = to_static_fixed_type (type);
5967
5968 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5969 {
5970 char *t_field_name = TYPE_FIELD_NAME (type, i);
5971 struct type *t;
5972 int disp;
5973
5974 if (t_field_name == NULL)
5975 continue;
5976
5977 else if (field_name_match (t_field_name, name))
5978 {
5979 if (dispp != NULL)
5980 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5981 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5982 }
5983
5984 else if (ada_is_wrapper_field (type, i))
5985 {
5986 disp = 0;
5987 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5988 0, 1, &disp);
5989 if (t != NULL)
5990 {
5991 if (dispp != NULL)
5992 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5993 return t;
5994 }
5995 }
5996
5997 else if (ada_is_variant_part (type, i))
5998 {
5999 int j;
6000 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6001
6002 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6003 {
6004 disp = 0;
6005 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6006 name, 0, 1, &disp);
6007 if (t != NULL)
6008 {
6009 if (dispp != NULL)
6010 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6011 return t;
6012 }
6013 }
6014 }
6015
6016 }
6017
6018 BadName:
6019 if (!noerr)
6020 {
6021 target_terminal_ours ();
6022 gdb_flush (gdb_stdout);
6023 if (name == NULL)
6024 {
6025 /* XXX: type_sprint */
6026 fprintf_unfiltered (gdb_stderr, _("Type "));
6027 type_print (type, "", gdb_stderr, -1);
6028 error (_(" has no component named <null>"));
6029 }
6030 else
6031 {
6032 /* XXX: type_sprint */
6033 fprintf_unfiltered (gdb_stderr, _("Type "));
6034 type_print (type, "", gdb_stderr, -1);
6035 error (_(" has no component named %s"), name);
6036 }
6037 }
6038
6039 return NULL;
6040 }
6041
6042 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6043 within a value of type OUTER_TYPE that is stored in GDB at
6044 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6045 numbering from 0) is applicable. Returns -1 if none are. */
6046
6047 int
6048 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6049 const gdb_byte *outer_valaddr)
6050 {
6051 int others_clause;
6052 int i;
6053 int disp;
6054 struct type *discrim_type;
6055 char *discrim_name = ada_variant_discrim_name (var_type);
6056 LONGEST discrim_val;
6057
6058 disp = 0;
6059 discrim_type =
6060 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6061 if (discrim_type == NULL)
6062 return -1;
6063 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6064
6065 others_clause = -1;
6066 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6067 {
6068 if (ada_is_others_clause (var_type, i))
6069 others_clause = i;
6070 else if (ada_in_variant (discrim_val, var_type, i))
6071 return i;
6072 }
6073
6074 return others_clause;
6075 }
6076 \f
6077
6078
6079 /* Dynamic-Sized Records */
6080
6081 /* Strategy: The type ostensibly attached to a value with dynamic size
6082 (i.e., a size that is not statically recorded in the debugging
6083 data) does not accurately reflect the size or layout of the value.
6084 Our strategy is to convert these values to values with accurate,
6085 conventional types that are constructed on the fly. */
6086
6087 /* There is a subtle and tricky problem here. In general, we cannot
6088 determine the size of dynamic records without its data. However,
6089 the 'struct value' data structure, which GDB uses to represent
6090 quantities in the inferior process (the target), requires the size
6091 of the type at the time of its allocation in order to reserve space
6092 for GDB's internal copy of the data. That's why the
6093 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6094 rather than struct value*s.
6095
6096 However, GDB's internal history variables ($1, $2, etc.) are
6097 struct value*s containing internal copies of the data that are not, in
6098 general, the same as the data at their corresponding addresses in
6099 the target. Fortunately, the types we give to these values are all
6100 conventional, fixed-size types (as per the strategy described
6101 above), so that we don't usually have to perform the
6102 'to_fixed_xxx_type' conversions to look at their values.
6103 Unfortunately, there is one exception: if one of the internal
6104 history variables is an array whose elements are unconstrained
6105 records, then we will need to create distinct fixed types for each
6106 element selected. */
6107
6108 /* The upshot of all of this is that many routines take a (type, host
6109 address, target address) triple as arguments to represent a value.
6110 The host address, if non-null, is supposed to contain an internal
6111 copy of the relevant data; otherwise, the program is to consult the
6112 target at the target address. */
6113
6114 /* Assuming that VAL0 represents a pointer value, the result of
6115 dereferencing it. Differs from value_ind in its treatment of
6116 dynamic-sized types. */
6117
6118 struct value *
6119 ada_value_ind (struct value *val0)
6120 {
6121 struct value *val = unwrap_value (value_ind (val0));
6122 return ada_to_fixed_value (val);
6123 }
6124
6125 /* The value resulting from dereferencing any "reference to"
6126 qualifiers on VAL0. */
6127
6128 static struct value *
6129 ada_coerce_ref (struct value *val0)
6130 {
6131 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6132 {
6133 struct value *val = val0;
6134 val = coerce_ref (val);
6135 val = unwrap_value (val);
6136 return ada_to_fixed_value (val);
6137 }
6138 else
6139 return val0;
6140 }
6141
6142 /* Return OFF rounded upward if necessary to a multiple of
6143 ALIGNMENT (a power of 2). */
6144
6145 static unsigned int
6146 align_value (unsigned int off, unsigned int alignment)
6147 {
6148 return (off + alignment - 1) & ~(alignment - 1);
6149 }
6150
6151 /* Return the bit alignment required for field #F of template type TYPE. */
6152
6153 static unsigned int
6154 field_alignment (struct type *type, int f)
6155 {
6156 const char *name = TYPE_FIELD_NAME (type, f);
6157 int len = (name == NULL) ? 0 : strlen (name);
6158 int align_offset;
6159
6160 if (!isdigit (name[len - 1]))
6161 return 1;
6162
6163 if (isdigit (name[len - 2]))
6164 align_offset = len - 2;
6165 else
6166 align_offset = len - 1;
6167
6168 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6169 return TARGET_CHAR_BIT;
6170
6171 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6172 }
6173
6174 /* Find a symbol named NAME. Ignores ambiguity. */
6175
6176 struct symbol *
6177 ada_find_any_symbol (const char *name)
6178 {
6179 struct symbol *sym;
6180
6181 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6182 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6183 return sym;
6184
6185 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6186 return sym;
6187 }
6188
6189 /* Find a type named NAME. Ignores ambiguity. */
6190
6191 struct type *
6192 ada_find_any_type (const char *name)
6193 {
6194 struct symbol *sym = ada_find_any_symbol (name);
6195
6196 if (sym != NULL)
6197 return SYMBOL_TYPE (sym);
6198
6199 return NULL;
6200 }
6201
6202 /* Given a symbol NAME and its associated BLOCK, search all symbols
6203 for its ___XR counterpart, which is the ``renaming'' symbol
6204 associated to NAME. Return this symbol if found, return
6205 NULL otherwise. */
6206
6207 struct symbol *
6208 ada_find_renaming_symbol (const char *name, struct block *block)
6209 {
6210 const struct symbol *function_sym = block_function (block);
6211 char *rename;
6212
6213 if (function_sym != NULL)
6214 {
6215 /* If the symbol is defined inside a function, NAME is not fully
6216 qualified. This means we need to prepend the function name
6217 as well as adding the ``___XR'' suffix to build the name of
6218 the associated renaming symbol. */
6219 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6220 /* Function names sometimes contain suffixes used
6221 for instance to qualify nested subprograms. When building
6222 the XR type name, we need to make sure that this suffix is
6223 not included. So do not include any suffix in the function
6224 name length below. */
6225 const int function_name_len = ada_name_prefix_len (function_name);
6226 const int rename_len = function_name_len + 2 /* "__" */
6227 + strlen (name) + 6 /* "___XR\0" */ ;
6228
6229 /* Strip the suffix if necessary. */
6230 function_name[function_name_len] = '\0';
6231
6232 /* Library-level functions are a special case, as GNAT adds
6233 a ``_ada_'' prefix to the function name to avoid namespace
6234 pollution. However, the renaming symbol themselves do not
6235 have this prefix, so we need to skip this prefix if present. */
6236 if (function_name_len > 5 /* "_ada_" */
6237 && strstr (function_name, "_ada_") == function_name)
6238 function_name = function_name + 5;
6239
6240 rename = (char *) alloca (rename_len * sizeof (char));
6241 sprintf (rename, "%s__%s___XR", function_name, name);
6242 }
6243 else
6244 {
6245 const int rename_len = strlen (name) + 6;
6246 rename = (char *) alloca (rename_len * sizeof (char));
6247 sprintf (rename, "%s___XR", name);
6248 }
6249
6250 return ada_find_any_symbol (rename);
6251 }
6252
6253 /* Because of GNAT encoding conventions, several GDB symbols may match a
6254 given type name. If the type denoted by TYPE0 is to be preferred to
6255 that of TYPE1 for purposes of type printing, return non-zero;
6256 otherwise return 0. */
6257
6258 int
6259 ada_prefer_type (struct type *type0, struct type *type1)
6260 {
6261 if (type1 == NULL)
6262 return 1;
6263 else if (type0 == NULL)
6264 return 0;
6265 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6266 return 1;
6267 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6268 return 0;
6269 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6270 return 1;
6271 else if (ada_is_packed_array_type (type0))
6272 return 1;
6273 else if (ada_is_array_descriptor_type (type0)
6274 && !ada_is_array_descriptor_type (type1))
6275 return 1;
6276 else if (ada_renaming_type (type0) != NULL
6277 && ada_renaming_type (type1) == NULL)
6278 return 1;
6279 return 0;
6280 }
6281
6282 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6283 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6284
6285 char *
6286 ada_type_name (struct type *type)
6287 {
6288 if (type == NULL)
6289 return NULL;
6290 else if (TYPE_NAME (type) != NULL)
6291 return TYPE_NAME (type);
6292 else
6293 return TYPE_TAG_NAME (type);
6294 }
6295
6296 /* Find a parallel type to TYPE whose name is formed by appending
6297 SUFFIX to the name of TYPE. */
6298
6299 struct type *
6300 ada_find_parallel_type (struct type *type, const char *suffix)
6301 {
6302 static char *name;
6303 static size_t name_len = 0;
6304 int len;
6305 char *typename = ada_type_name (type);
6306
6307 if (typename == NULL)
6308 return NULL;
6309
6310 len = strlen (typename);
6311
6312 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6313
6314 strcpy (name, typename);
6315 strcpy (name + len, suffix);
6316
6317 return ada_find_any_type (name);
6318 }
6319
6320
6321 /* If TYPE is a variable-size record type, return the corresponding template
6322 type describing its fields. Otherwise, return NULL. */
6323
6324 static struct type *
6325 dynamic_template_type (struct type *type)
6326 {
6327 type = ada_check_typedef (type);
6328
6329 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6330 || ada_type_name (type) == NULL)
6331 return NULL;
6332 else
6333 {
6334 int len = strlen (ada_type_name (type));
6335 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6336 return type;
6337 else
6338 return ada_find_parallel_type (type, "___XVE");
6339 }
6340 }
6341
6342 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6343 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6344
6345 static int
6346 is_dynamic_field (struct type *templ_type, int field_num)
6347 {
6348 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6349 return name != NULL
6350 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6351 && strstr (name, "___XVL") != NULL;
6352 }
6353
6354 /* The index of the variant field of TYPE, or -1 if TYPE does not
6355 represent a variant record type. */
6356
6357 static int
6358 variant_field_index (struct type *type)
6359 {
6360 int f;
6361
6362 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6363 return -1;
6364
6365 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6366 {
6367 if (ada_is_variant_part (type, f))
6368 return f;
6369 }
6370 return -1;
6371 }
6372
6373 /* A record type with no fields. */
6374
6375 static struct type *
6376 empty_record (struct objfile *objfile)
6377 {
6378 struct type *type = alloc_type (objfile);
6379 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6380 TYPE_NFIELDS (type) = 0;
6381 TYPE_FIELDS (type) = NULL;
6382 TYPE_NAME (type) = "<empty>";
6383 TYPE_TAG_NAME (type) = NULL;
6384 TYPE_FLAGS (type) = 0;
6385 TYPE_LENGTH (type) = 0;
6386 return type;
6387 }
6388
6389 /* An ordinary record type (with fixed-length fields) that describes
6390 the value of type TYPE at VALADDR or ADDRESS (see comments at
6391 the beginning of this section) VAL according to GNAT conventions.
6392 DVAL0 should describe the (portion of a) record that contains any
6393 necessary discriminants. It should be NULL if value_type (VAL) is
6394 an outer-level type (i.e., as opposed to a branch of a variant.) A
6395 variant field (unless unchecked) is replaced by a particular branch
6396 of the variant.
6397
6398 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6399 length are not statically known are discarded. As a consequence,
6400 VALADDR, ADDRESS and DVAL0 are ignored.
6401
6402 NOTE: Limitations: For now, we assume that dynamic fields and
6403 variants occupy whole numbers of bytes. However, they need not be
6404 byte-aligned. */
6405
6406 struct type *
6407 ada_template_to_fixed_record_type_1 (struct type *type,
6408 const gdb_byte *valaddr,
6409 CORE_ADDR address, struct value *dval0,
6410 int keep_dynamic_fields)
6411 {
6412 struct value *mark = value_mark ();
6413 struct value *dval;
6414 struct type *rtype;
6415 int nfields, bit_len;
6416 int variant_field;
6417 long off;
6418 int fld_bit_len, bit_incr;
6419 int f;
6420
6421 /* Compute the number of fields in this record type that are going
6422 to be processed: unless keep_dynamic_fields, this includes only
6423 fields whose position and length are static will be processed. */
6424 if (keep_dynamic_fields)
6425 nfields = TYPE_NFIELDS (type);
6426 else
6427 {
6428 nfields = 0;
6429 while (nfields < TYPE_NFIELDS (type)
6430 && !ada_is_variant_part (type, nfields)
6431 && !is_dynamic_field (type, nfields))
6432 nfields++;
6433 }
6434
6435 rtype = alloc_type (TYPE_OBJFILE (type));
6436 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6437 INIT_CPLUS_SPECIFIC (rtype);
6438 TYPE_NFIELDS (rtype) = nfields;
6439 TYPE_FIELDS (rtype) = (struct field *)
6440 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6441 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6442 TYPE_NAME (rtype) = ada_type_name (type);
6443 TYPE_TAG_NAME (rtype) = NULL;
6444 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6445
6446 off = 0;
6447 bit_len = 0;
6448 variant_field = -1;
6449
6450 for (f = 0; f < nfields; f += 1)
6451 {
6452 off = align_value (off, field_alignment (type, f))
6453 + TYPE_FIELD_BITPOS (type, f);
6454 TYPE_FIELD_BITPOS (rtype, f) = off;
6455 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6456
6457 if (ada_is_variant_part (type, f))
6458 {
6459 variant_field = f;
6460 fld_bit_len = bit_incr = 0;
6461 }
6462 else if (is_dynamic_field (type, f))
6463 {
6464 if (dval0 == NULL)
6465 dval = value_from_contents_and_address (rtype, valaddr, address);
6466 else
6467 dval = dval0;
6468
6469 TYPE_FIELD_TYPE (rtype, f) =
6470 ada_to_fixed_type
6471 (ada_get_base_type
6472 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6473 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6474 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6475 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6476 bit_incr = fld_bit_len =
6477 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6478 }
6479 else
6480 {
6481 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6482 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6483 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6484 bit_incr = fld_bit_len =
6485 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6486 else
6487 bit_incr = fld_bit_len =
6488 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6489 }
6490 if (off + fld_bit_len > bit_len)
6491 bit_len = off + fld_bit_len;
6492 off += bit_incr;
6493 TYPE_LENGTH (rtype) =
6494 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6495 }
6496
6497 /* We handle the variant part, if any, at the end because of certain
6498 odd cases in which it is re-ordered so as NOT the last field of
6499 the record. This can happen in the presence of representation
6500 clauses. */
6501 if (variant_field >= 0)
6502 {
6503 struct type *branch_type;
6504
6505 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6506
6507 if (dval0 == NULL)
6508 dval = value_from_contents_and_address (rtype, valaddr, address);
6509 else
6510 dval = dval0;
6511
6512 branch_type =
6513 to_fixed_variant_branch_type
6514 (TYPE_FIELD_TYPE (type, variant_field),
6515 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6516 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6517 if (branch_type == NULL)
6518 {
6519 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6520 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6521 TYPE_NFIELDS (rtype) -= 1;
6522 }
6523 else
6524 {
6525 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6526 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6527 fld_bit_len =
6528 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6529 TARGET_CHAR_BIT;
6530 if (off + fld_bit_len > bit_len)
6531 bit_len = off + fld_bit_len;
6532 TYPE_LENGTH (rtype) =
6533 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6534 }
6535 }
6536
6537 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6538 should contain the alignment of that record, which should be a strictly
6539 positive value. If null or negative, then something is wrong, most
6540 probably in the debug info. In that case, we don't round up the size
6541 of the resulting type. If this record is not part of another structure,
6542 the current RTYPE length might be good enough for our purposes. */
6543 if (TYPE_LENGTH (type) <= 0)
6544 {
6545 if (TYPE_NAME (rtype))
6546 warning (_("Invalid type size for `%s' detected: %d."),
6547 TYPE_NAME (rtype), TYPE_LENGTH (type));
6548 else
6549 warning (_("Invalid type size for <unnamed> detected: %d."),
6550 TYPE_LENGTH (type));
6551 }
6552 else
6553 {
6554 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6555 TYPE_LENGTH (type));
6556 }
6557
6558 value_free_to_mark (mark);
6559 if (TYPE_LENGTH (rtype) > varsize_limit)
6560 error (_("record type with dynamic size is larger than varsize-limit"));
6561 return rtype;
6562 }
6563
6564 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6565 of 1. */
6566
6567 static struct type *
6568 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6569 CORE_ADDR address, struct value *dval0)
6570 {
6571 return ada_template_to_fixed_record_type_1 (type, valaddr,
6572 address, dval0, 1);
6573 }
6574
6575 /* An ordinary record type in which ___XVL-convention fields and
6576 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6577 static approximations, containing all possible fields. Uses
6578 no runtime values. Useless for use in values, but that's OK,
6579 since the results are used only for type determinations. Works on both
6580 structs and unions. Representation note: to save space, we memorize
6581 the result of this function in the TYPE_TARGET_TYPE of the
6582 template type. */
6583
6584 static struct type *
6585 template_to_static_fixed_type (struct type *type0)
6586 {
6587 struct type *type;
6588 int nfields;
6589 int f;
6590
6591 if (TYPE_TARGET_TYPE (type0) != NULL)
6592 return TYPE_TARGET_TYPE (type0);
6593
6594 nfields = TYPE_NFIELDS (type0);
6595 type = type0;
6596
6597 for (f = 0; f < nfields; f += 1)
6598 {
6599 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6600 struct type *new_type;
6601
6602 if (is_dynamic_field (type0, f))
6603 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6604 else
6605 new_type = to_static_fixed_type (field_type);
6606 if (type == type0 && new_type != field_type)
6607 {
6608 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6609 TYPE_CODE (type) = TYPE_CODE (type0);
6610 INIT_CPLUS_SPECIFIC (type);
6611 TYPE_NFIELDS (type) = nfields;
6612 TYPE_FIELDS (type) = (struct field *)
6613 TYPE_ALLOC (type, nfields * sizeof (struct field));
6614 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6615 sizeof (struct field) * nfields);
6616 TYPE_NAME (type) = ada_type_name (type0);
6617 TYPE_TAG_NAME (type) = NULL;
6618 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6619 TYPE_LENGTH (type) = 0;
6620 }
6621 TYPE_FIELD_TYPE (type, f) = new_type;
6622 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6623 }
6624 return type;
6625 }
6626
6627 /* Given an object of type TYPE whose contents are at VALADDR and
6628 whose address in memory is ADDRESS, returns a revision of TYPE --
6629 a non-dynamic-sized record with a variant part -- in which
6630 the variant part is replaced with the appropriate branch. Looks
6631 for discriminant values in DVAL0, which can be NULL if the record
6632 contains the necessary discriminant values. */
6633
6634 static struct type *
6635 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6636 CORE_ADDR address, struct value *dval0)
6637 {
6638 struct value *mark = value_mark ();
6639 struct value *dval;
6640 struct type *rtype;
6641 struct type *branch_type;
6642 int nfields = TYPE_NFIELDS (type);
6643 int variant_field = variant_field_index (type);
6644
6645 if (variant_field == -1)
6646 return type;
6647
6648 if (dval0 == NULL)
6649 dval = value_from_contents_and_address (type, valaddr, address);
6650 else
6651 dval = dval0;
6652
6653 rtype = alloc_type (TYPE_OBJFILE (type));
6654 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6655 INIT_CPLUS_SPECIFIC (rtype);
6656 TYPE_NFIELDS (rtype) = nfields;
6657 TYPE_FIELDS (rtype) =
6658 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6659 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6660 sizeof (struct field) * nfields);
6661 TYPE_NAME (rtype) = ada_type_name (type);
6662 TYPE_TAG_NAME (rtype) = NULL;
6663 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6664 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6665
6666 branch_type = to_fixed_variant_branch_type
6667 (TYPE_FIELD_TYPE (type, variant_field),
6668 cond_offset_host (valaddr,
6669 TYPE_FIELD_BITPOS (type, variant_field)
6670 / TARGET_CHAR_BIT),
6671 cond_offset_target (address,
6672 TYPE_FIELD_BITPOS (type, variant_field)
6673 / TARGET_CHAR_BIT), dval);
6674 if (branch_type == NULL)
6675 {
6676 int f;
6677 for (f = variant_field + 1; f < nfields; f += 1)
6678 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6679 TYPE_NFIELDS (rtype) -= 1;
6680 }
6681 else
6682 {
6683 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6684 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6685 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6686 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6687 }
6688 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6689
6690 value_free_to_mark (mark);
6691 return rtype;
6692 }
6693
6694 /* An ordinary record type (with fixed-length fields) that describes
6695 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6696 beginning of this section]. Any necessary discriminants' values
6697 should be in DVAL, a record value; it may be NULL if the object
6698 at ADDR itself contains any necessary discriminant values.
6699 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6700 values from the record are needed. Except in the case that DVAL,
6701 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6702 unchecked) is replaced by a particular branch of the variant.
6703
6704 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6705 is questionable and may be removed. It can arise during the
6706 processing of an unconstrained-array-of-record type where all the
6707 variant branches have exactly the same size. This is because in
6708 such cases, the compiler does not bother to use the XVS convention
6709 when encoding the record. I am currently dubious of this
6710 shortcut and suspect the compiler should be altered. FIXME. */
6711
6712 static struct type *
6713 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6714 CORE_ADDR address, struct value *dval)
6715 {
6716 struct type *templ_type;
6717
6718 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6719 return type0;
6720
6721 templ_type = dynamic_template_type (type0);
6722
6723 if (templ_type != NULL)
6724 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6725 else if (variant_field_index (type0) >= 0)
6726 {
6727 if (dval == NULL && valaddr == NULL && address == 0)
6728 return type0;
6729 return to_record_with_fixed_variant_part (type0, valaddr, address,
6730 dval);
6731 }
6732 else
6733 {
6734 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6735 return type0;
6736 }
6737
6738 }
6739
6740 /* An ordinary record type (with fixed-length fields) that describes
6741 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6742 union type. Any necessary discriminants' values should be in DVAL,
6743 a record value. That is, this routine selects the appropriate
6744 branch of the union at ADDR according to the discriminant value
6745 indicated in the union's type name. */
6746
6747 static struct type *
6748 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6749 CORE_ADDR address, struct value *dval)
6750 {
6751 int which;
6752 struct type *templ_type;
6753 struct type *var_type;
6754
6755 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6756 var_type = TYPE_TARGET_TYPE (var_type0);
6757 else
6758 var_type = var_type0;
6759
6760 templ_type = ada_find_parallel_type (var_type, "___XVU");
6761
6762 if (templ_type != NULL)
6763 var_type = templ_type;
6764
6765 which =
6766 ada_which_variant_applies (var_type,
6767 value_type (dval), value_contents (dval));
6768
6769 if (which < 0)
6770 return empty_record (TYPE_OBJFILE (var_type));
6771 else if (is_dynamic_field (var_type, which))
6772 return to_fixed_record_type
6773 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6774 valaddr, address, dval);
6775 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6776 return
6777 to_fixed_record_type
6778 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6779 else
6780 return TYPE_FIELD_TYPE (var_type, which);
6781 }
6782
6783 /* Assuming that TYPE0 is an array type describing the type of a value
6784 at ADDR, and that DVAL describes a record containing any
6785 discriminants used in TYPE0, returns a type for the value that
6786 contains no dynamic components (that is, no components whose sizes
6787 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6788 true, gives an error message if the resulting type's size is over
6789 varsize_limit. */
6790
6791 static struct type *
6792 to_fixed_array_type (struct type *type0, struct value *dval,
6793 int ignore_too_big)
6794 {
6795 struct type *index_type_desc;
6796 struct type *result;
6797
6798 if (ada_is_packed_array_type (type0) /* revisit? */
6799 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6800 return type0;
6801
6802 index_type_desc = ada_find_parallel_type (type0, "___XA");
6803 if (index_type_desc == NULL)
6804 {
6805 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6806 /* NOTE: elt_type---the fixed version of elt_type0---should never
6807 depend on the contents of the array in properly constructed
6808 debugging data. */
6809 /* Create a fixed version of the array element type.
6810 We're not providing the address of an element here,
6811 and thus the actual object value cannot be inspected to do
6812 the conversion. This should not be a problem, since arrays of
6813 unconstrained objects are not allowed. In particular, all
6814 the elements of an array of a tagged type should all be of
6815 the same type specified in the debugging info. No need to
6816 consult the object tag. */
6817 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6818
6819 if (elt_type0 == elt_type)
6820 result = type0;
6821 else
6822 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6823 elt_type, TYPE_INDEX_TYPE (type0));
6824 }
6825 else
6826 {
6827 int i;
6828 struct type *elt_type0;
6829
6830 elt_type0 = type0;
6831 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6832 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6833
6834 /* NOTE: result---the fixed version of elt_type0---should never
6835 depend on the contents of the array in properly constructed
6836 debugging data. */
6837 /* Create a fixed version of the array element type.
6838 We're not providing the address of an element here,
6839 and thus the actual object value cannot be inspected to do
6840 the conversion. This should not be a problem, since arrays of
6841 unconstrained objects are not allowed. In particular, all
6842 the elements of an array of a tagged type should all be of
6843 the same type specified in the debugging info. No need to
6844 consult the object tag. */
6845 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6846 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6847 {
6848 struct type *range_type =
6849 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6850 dval, TYPE_OBJFILE (type0));
6851 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6852 result, range_type);
6853 }
6854 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6855 error (_("array type with dynamic size is larger than varsize-limit"));
6856 }
6857
6858 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6859 return result;
6860 }
6861
6862
6863 /* A standard type (containing no dynamically sized components)
6864 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6865 DVAL describes a record containing any discriminants used in TYPE0,
6866 and may be NULL if there are none, or if the object of type TYPE at
6867 ADDRESS or in VALADDR contains these discriminants.
6868
6869 In the case of tagged types, this function attempts to locate the object's
6870 tag and use it to compute the actual type. However, when ADDRESS is null,
6871 we cannot use it to determine the location of the tag, and therefore
6872 compute the tagged type's actual type. So we return the tagged type
6873 without consulting the tag. */
6874
6875 struct type *
6876 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6877 CORE_ADDR address, struct value *dval)
6878 {
6879 type = ada_check_typedef (type);
6880 switch (TYPE_CODE (type))
6881 {
6882 default:
6883 return type;
6884 case TYPE_CODE_STRUCT:
6885 {
6886 struct type *static_type = to_static_fixed_type (type);
6887
6888 /* If STATIC_TYPE is a tagged type and we know the object's address,
6889 then we can determine its tag, and compute the object's actual
6890 type from there. */
6891
6892 if (address != 0 && ada_is_tagged_type (static_type, 0))
6893 {
6894 struct type *real_type =
6895 type_from_tag (value_tag_from_contents_and_address (static_type,
6896 valaddr,
6897 address));
6898 if (real_type != NULL)
6899 type = real_type;
6900 }
6901 return to_fixed_record_type (type, valaddr, address, NULL);
6902 }
6903 case TYPE_CODE_ARRAY:
6904 return to_fixed_array_type (type, dval, 1);
6905 case TYPE_CODE_UNION:
6906 if (dval == NULL)
6907 return type;
6908 else
6909 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6910 }
6911 }
6912
6913 /* A standard (static-sized) type corresponding as well as possible to
6914 TYPE0, but based on no runtime data. */
6915
6916 static struct type *
6917 to_static_fixed_type (struct type *type0)
6918 {
6919 struct type *type;
6920
6921 if (type0 == NULL)
6922 return NULL;
6923
6924 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6925 return type0;
6926
6927 type0 = ada_check_typedef (type0);
6928
6929 switch (TYPE_CODE (type0))
6930 {
6931 default:
6932 return type0;
6933 case TYPE_CODE_STRUCT:
6934 type = dynamic_template_type (type0);
6935 if (type != NULL)
6936 return template_to_static_fixed_type (type);
6937 else
6938 return template_to_static_fixed_type (type0);
6939 case TYPE_CODE_UNION:
6940 type = ada_find_parallel_type (type0, "___XVU");
6941 if (type != NULL)
6942 return template_to_static_fixed_type (type);
6943 else
6944 return template_to_static_fixed_type (type0);
6945 }
6946 }
6947
6948 /* A static approximation of TYPE with all type wrappers removed. */
6949
6950 static struct type *
6951 static_unwrap_type (struct type *type)
6952 {
6953 if (ada_is_aligner_type (type))
6954 {
6955 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6956 if (ada_type_name (type1) == NULL)
6957 TYPE_NAME (type1) = ada_type_name (type);
6958
6959 return static_unwrap_type (type1);
6960 }
6961 else
6962 {
6963 struct type *raw_real_type = ada_get_base_type (type);
6964 if (raw_real_type == type)
6965 return type;
6966 else
6967 return to_static_fixed_type (raw_real_type);
6968 }
6969 }
6970
6971 /* In some cases, incomplete and private types require
6972 cross-references that are not resolved as records (for example,
6973 type Foo;
6974 type FooP is access Foo;
6975 V: FooP;
6976 type Foo is array ...;
6977 ). In these cases, since there is no mechanism for producing
6978 cross-references to such types, we instead substitute for FooP a
6979 stub enumeration type that is nowhere resolved, and whose tag is
6980 the name of the actual type. Call these types "non-record stubs". */
6981
6982 /* A type equivalent to TYPE that is not a non-record stub, if one
6983 exists, otherwise TYPE. */
6984
6985 struct type *
6986 ada_check_typedef (struct type *type)
6987 {
6988 CHECK_TYPEDEF (type);
6989 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6990 || !TYPE_STUB (type)
6991 || TYPE_TAG_NAME (type) == NULL)
6992 return type;
6993 else
6994 {
6995 char *name = TYPE_TAG_NAME (type);
6996 struct type *type1 = ada_find_any_type (name);
6997 return (type1 == NULL) ? type : type1;
6998 }
6999 }
7000
7001 /* A value representing the data at VALADDR/ADDRESS as described by
7002 type TYPE0, but with a standard (static-sized) type that correctly
7003 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7004 type, then return VAL0 [this feature is simply to avoid redundant
7005 creation of struct values]. */
7006
7007 static struct value *
7008 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7009 struct value *val0)
7010 {
7011 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
7012 if (type == type0 && val0 != NULL)
7013 return val0;
7014 else
7015 return value_from_contents_and_address (type, 0, address);
7016 }
7017
7018 /* A value representing VAL, but with a standard (static-sized) type
7019 that correctly describes it. Does not necessarily create a new
7020 value. */
7021
7022 static struct value *
7023 ada_to_fixed_value (struct value *val)
7024 {
7025 return ada_to_fixed_value_create (value_type (val),
7026 VALUE_ADDRESS (val) + value_offset (val),
7027 val);
7028 }
7029
7030 /* A value representing VAL, but with a standard (static-sized) type
7031 chosen to approximate the real type of VAL as well as possible, but
7032 without consulting any runtime values. For Ada dynamic-sized
7033 types, therefore, the type of the result is likely to be inaccurate. */
7034
7035 struct value *
7036 ada_to_static_fixed_value (struct value *val)
7037 {
7038 struct type *type =
7039 to_static_fixed_type (static_unwrap_type (value_type (val)));
7040 if (type == value_type (val))
7041 return val;
7042 else
7043 return coerce_unspec_val_to_type (val, type);
7044 }
7045 \f
7046
7047 /* Attributes */
7048
7049 /* Table mapping attribute numbers to names.
7050 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7051
7052 static const char *attribute_names[] = {
7053 "<?>",
7054
7055 "first",
7056 "last",
7057 "length",
7058 "image",
7059 "max",
7060 "min",
7061 "modulus",
7062 "pos",
7063 "size",
7064 "tag",
7065 "val",
7066 0
7067 };
7068
7069 const char *
7070 ada_attribute_name (enum exp_opcode n)
7071 {
7072 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7073 return attribute_names[n - OP_ATR_FIRST + 1];
7074 else
7075 return attribute_names[0];
7076 }
7077
7078 /* Evaluate the 'POS attribute applied to ARG. */
7079
7080 static LONGEST
7081 pos_atr (struct value *arg)
7082 {
7083 struct type *type = value_type (arg);
7084
7085 if (!discrete_type_p (type))
7086 error (_("'POS only defined on discrete types"));
7087
7088 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7089 {
7090 int i;
7091 LONGEST v = value_as_long (arg);
7092
7093 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7094 {
7095 if (v == TYPE_FIELD_BITPOS (type, i))
7096 return i;
7097 }
7098 error (_("enumeration value is invalid: can't find 'POS"));
7099 }
7100 else
7101 return value_as_long (arg);
7102 }
7103
7104 static struct value *
7105 value_pos_atr (struct value *arg)
7106 {
7107 return value_from_longest (builtin_type_int, pos_atr (arg));
7108 }
7109
7110 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7111
7112 static struct value *
7113 value_val_atr (struct type *type, struct value *arg)
7114 {
7115 if (!discrete_type_p (type))
7116 error (_("'VAL only defined on discrete types"));
7117 if (!integer_type_p (value_type (arg)))
7118 error (_("'VAL requires integral argument"));
7119
7120 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7121 {
7122 long pos = value_as_long (arg);
7123 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7124 error (_("argument to 'VAL out of range"));
7125 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7126 }
7127 else
7128 return value_from_longest (type, value_as_long (arg));
7129 }
7130 \f
7131
7132 /* Evaluation */
7133
7134 /* True if TYPE appears to be an Ada character type.
7135 [At the moment, this is true only for Character and Wide_Character;
7136 It is a heuristic test that could stand improvement]. */
7137
7138 int
7139 ada_is_character_type (struct type *type)
7140 {
7141 const char *name = ada_type_name (type);
7142 return
7143 name != NULL
7144 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7145 || TYPE_CODE (type) == TYPE_CODE_INT
7146 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7147 && (strcmp (name, "character") == 0
7148 || strcmp (name, "wide_character") == 0
7149 || strcmp (name, "unsigned char") == 0);
7150 }
7151
7152 /* True if TYPE appears to be an Ada string type. */
7153
7154 int
7155 ada_is_string_type (struct type *type)
7156 {
7157 type = ada_check_typedef (type);
7158 if (type != NULL
7159 && TYPE_CODE (type) != TYPE_CODE_PTR
7160 && (ada_is_simple_array_type (type)
7161 || ada_is_array_descriptor_type (type))
7162 && ada_array_arity (type) == 1)
7163 {
7164 struct type *elttype = ada_array_element_type (type, 1);
7165
7166 return ada_is_character_type (elttype);
7167 }
7168 else
7169 return 0;
7170 }
7171
7172
7173 /* True if TYPE is a struct type introduced by the compiler to force the
7174 alignment of a value. Such types have a single field with a
7175 distinctive name. */
7176
7177 int
7178 ada_is_aligner_type (struct type *type)
7179 {
7180 type = ada_check_typedef (type);
7181
7182 /* If we can find a parallel XVS type, then the XVS type should
7183 be used instead of this type. And hence, this is not an aligner
7184 type. */
7185 if (ada_find_parallel_type (type, "___XVS") != NULL)
7186 return 0;
7187
7188 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7189 && TYPE_NFIELDS (type) == 1
7190 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7191 }
7192
7193 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7194 the parallel type. */
7195
7196 struct type *
7197 ada_get_base_type (struct type *raw_type)
7198 {
7199 struct type *real_type_namer;
7200 struct type *raw_real_type;
7201
7202 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7203 return raw_type;
7204
7205 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7206 if (real_type_namer == NULL
7207 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7208 || TYPE_NFIELDS (real_type_namer) != 1)
7209 return raw_type;
7210
7211 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7212 if (raw_real_type == NULL)
7213 return raw_type;
7214 else
7215 return raw_real_type;
7216 }
7217
7218 /* The type of value designated by TYPE, with all aligners removed. */
7219
7220 struct type *
7221 ada_aligned_type (struct type *type)
7222 {
7223 if (ada_is_aligner_type (type))
7224 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7225 else
7226 return ada_get_base_type (type);
7227 }
7228
7229
7230 /* The address of the aligned value in an object at address VALADDR
7231 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7232
7233 const gdb_byte *
7234 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7235 {
7236 if (ada_is_aligner_type (type))
7237 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7238 valaddr +
7239 TYPE_FIELD_BITPOS (type,
7240 0) / TARGET_CHAR_BIT);
7241 else
7242 return valaddr;
7243 }
7244
7245
7246
7247 /* The printed representation of an enumeration literal with encoded
7248 name NAME. The value is good to the next call of ada_enum_name. */
7249 const char *
7250 ada_enum_name (const char *name)
7251 {
7252 static char *result;
7253 static size_t result_len = 0;
7254 char *tmp;
7255
7256 /* First, unqualify the enumeration name:
7257 1. Search for the last '.' character. If we find one, then skip
7258 all the preceeding characters, the unqualified name starts
7259 right after that dot.
7260 2. Otherwise, we may be debugging on a target where the compiler
7261 translates dots into "__". Search forward for double underscores,
7262 but stop searching when we hit an overloading suffix, which is
7263 of the form "__" followed by digits. */
7264
7265 tmp = strrchr (name, '.');
7266 if (tmp != NULL)
7267 name = tmp + 1;
7268 else
7269 {
7270 while ((tmp = strstr (name, "__")) != NULL)
7271 {
7272 if (isdigit (tmp[2]))
7273 break;
7274 else
7275 name = tmp + 2;
7276 }
7277 }
7278
7279 if (name[0] == 'Q')
7280 {
7281 int v;
7282 if (name[1] == 'U' || name[1] == 'W')
7283 {
7284 if (sscanf (name + 2, "%x", &v) != 1)
7285 return name;
7286 }
7287 else
7288 return name;
7289
7290 GROW_VECT (result, result_len, 16);
7291 if (isascii (v) && isprint (v))
7292 sprintf (result, "'%c'", v);
7293 else if (name[1] == 'U')
7294 sprintf (result, "[\"%02x\"]", v);
7295 else
7296 sprintf (result, "[\"%04x\"]", v);
7297
7298 return result;
7299 }
7300 else
7301 {
7302 tmp = strstr (name, "__");
7303 if (tmp == NULL)
7304 tmp = strstr (name, "$");
7305 if (tmp != NULL)
7306 {
7307 GROW_VECT (result, result_len, tmp - name + 1);
7308 strncpy (result, name, tmp - name);
7309 result[tmp - name] = '\0';
7310 return result;
7311 }
7312
7313 return name;
7314 }
7315 }
7316
7317 static struct value *
7318 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7319 enum noside noside)
7320 {
7321 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7322 (expect_type, exp, pos, noside);
7323 }
7324
7325 /* Evaluate the subexpression of EXP starting at *POS as for
7326 evaluate_type, updating *POS to point just past the evaluated
7327 expression. */
7328
7329 static struct value *
7330 evaluate_subexp_type (struct expression *exp, int *pos)
7331 {
7332 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7333 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7334 }
7335
7336 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7337 value it wraps. */
7338
7339 static struct value *
7340 unwrap_value (struct value *val)
7341 {
7342 struct type *type = ada_check_typedef (value_type (val));
7343 if (ada_is_aligner_type (type))
7344 {
7345 struct value *v = value_struct_elt (&val, NULL, "F",
7346 NULL, "internal structure");
7347 struct type *val_type = ada_check_typedef (value_type (v));
7348 if (ada_type_name (val_type) == NULL)
7349 TYPE_NAME (val_type) = ada_type_name (type);
7350
7351 return unwrap_value (v);
7352 }
7353 else
7354 {
7355 struct type *raw_real_type =
7356 ada_check_typedef (ada_get_base_type (type));
7357
7358 if (type == raw_real_type)
7359 return val;
7360
7361 return
7362 coerce_unspec_val_to_type
7363 (val, ada_to_fixed_type (raw_real_type, 0,
7364 VALUE_ADDRESS (val) + value_offset (val),
7365 NULL));
7366 }
7367 }
7368
7369 static struct value *
7370 cast_to_fixed (struct type *type, struct value *arg)
7371 {
7372 LONGEST val;
7373
7374 if (type == value_type (arg))
7375 return arg;
7376 else if (ada_is_fixed_point_type (value_type (arg)))
7377 val = ada_float_to_fixed (type,
7378 ada_fixed_to_float (value_type (arg),
7379 value_as_long (arg)));
7380 else
7381 {
7382 DOUBLEST argd =
7383 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7384 val = ada_float_to_fixed (type, argd);
7385 }
7386
7387 return value_from_longest (type, val);
7388 }
7389
7390 static struct value *
7391 cast_from_fixed_to_double (struct value *arg)
7392 {
7393 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7394 value_as_long (arg));
7395 return value_from_double (builtin_type_double, val);
7396 }
7397
7398 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7399 return the converted value. */
7400
7401 static struct value *
7402 coerce_for_assign (struct type *type, struct value *val)
7403 {
7404 struct type *type2 = value_type (val);
7405 if (type == type2)
7406 return val;
7407
7408 type2 = ada_check_typedef (type2);
7409 type = ada_check_typedef (type);
7410
7411 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7412 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7413 {
7414 val = ada_value_ind (val);
7415 type2 = value_type (val);
7416 }
7417
7418 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7419 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7420 {
7421 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7422 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7423 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7424 error (_("Incompatible types in assignment"));
7425 deprecated_set_value_type (val, type);
7426 }
7427 return val;
7428 }
7429
7430 static struct value *
7431 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7432 {
7433 struct value *val;
7434 struct type *type1, *type2;
7435 LONGEST v, v1, v2;
7436
7437 arg1 = coerce_ref (arg1);
7438 arg2 = coerce_ref (arg2);
7439 type1 = base_type (ada_check_typedef (value_type (arg1)));
7440 type2 = base_type (ada_check_typedef (value_type (arg2)));
7441
7442 if (TYPE_CODE (type1) != TYPE_CODE_INT
7443 || TYPE_CODE (type2) != TYPE_CODE_INT)
7444 return value_binop (arg1, arg2, op);
7445
7446 switch (op)
7447 {
7448 case BINOP_MOD:
7449 case BINOP_DIV:
7450 case BINOP_REM:
7451 break;
7452 default:
7453 return value_binop (arg1, arg2, op);
7454 }
7455
7456 v2 = value_as_long (arg2);
7457 if (v2 == 0)
7458 error (_("second operand of %s must not be zero."), op_string (op));
7459
7460 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7461 return value_binop (arg1, arg2, op);
7462
7463 v1 = value_as_long (arg1);
7464 switch (op)
7465 {
7466 case BINOP_DIV:
7467 v = v1 / v2;
7468 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7469 v += v > 0 ? -1 : 1;
7470 break;
7471 case BINOP_REM:
7472 v = v1 % v2;
7473 if (v * v1 < 0)
7474 v -= v2;
7475 break;
7476 default:
7477 /* Should not reach this point. */
7478 v = 0;
7479 }
7480
7481 val = allocate_value (type1);
7482 store_unsigned_integer (value_contents_raw (val),
7483 TYPE_LENGTH (value_type (val)), v);
7484 return val;
7485 }
7486
7487 static int
7488 ada_value_equal (struct value *arg1, struct value *arg2)
7489 {
7490 if (ada_is_direct_array_type (value_type (arg1))
7491 || ada_is_direct_array_type (value_type (arg2)))
7492 {
7493 arg1 = ada_coerce_to_simple_array (arg1);
7494 arg2 = ada_coerce_to_simple_array (arg2);
7495 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7496 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7497 error (_("Attempt to compare array with non-array"));
7498 /* FIXME: The following works only for types whose
7499 representations use all bits (no padding or undefined bits)
7500 and do not have user-defined equality. */
7501 return
7502 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7503 && memcmp (value_contents (arg1), value_contents (arg2),
7504 TYPE_LENGTH (value_type (arg1))) == 0;
7505 }
7506 return value_equal (arg1, arg2);
7507 }
7508
7509 /* Total number of component associations in the aggregate starting at
7510 index PC in EXP. Assumes that index PC is the start of an
7511 OP_AGGREGATE. */
7512
7513 static int
7514 num_component_specs (struct expression *exp, int pc)
7515 {
7516 int n, m, i;
7517 m = exp->elts[pc + 1].longconst;
7518 pc += 3;
7519 n = 0;
7520 for (i = 0; i < m; i += 1)
7521 {
7522 switch (exp->elts[pc].opcode)
7523 {
7524 default:
7525 n += 1;
7526 break;
7527 case OP_CHOICES:
7528 n += exp->elts[pc + 1].longconst;
7529 break;
7530 }
7531 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7532 }
7533 return n;
7534 }
7535
7536 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7537 component of LHS (a simple array or a record), updating *POS past
7538 the expression, assuming that LHS is contained in CONTAINER. Does
7539 not modify the inferior's memory, nor does it modify LHS (unless
7540 LHS == CONTAINER). */
7541
7542 static void
7543 assign_component (struct value *container, struct value *lhs, LONGEST index,
7544 struct expression *exp, int *pos)
7545 {
7546 struct value *mark = value_mark ();
7547 struct value *elt;
7548 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7549 {
7550 struct value *index_val = value_from_longest (builtin_type_int, index);
7551 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7552 }
7553 else
7554 {
7555 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7556 elt = ada_to_fixed_value (unwrap_value (elt));
7557 }
7558
7559 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7560 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7561 else
7562 value_assign_to_component (container, elt,
7563 ada_evaluate_subexp (NULL, exp, pos,
7564 EVAL_NORMAL));
7565
7566 value_free_to_mark (mark);
7567 }
7568
7569 /* Assuming that LHS represents an lvalue having a record or array
7570 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7571 of that aggregate's value to LHS, advancing *POS past the
7572 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7573 lvalue containing LHS (possibly LHS itself). Does not modify
7574 the inferior's memory, nor does it modify the contents of
7575 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7576
7577 static struct value *
7578 assign_aggregate (struct value *container,
7579 struct value *lhs, struct expression *exp,
7580 int *pos, enum noside noside)
7581 {
7582 struct type *lhs_type;
7583 int n = exp->elts[*pos+1].longconst;
7584 LONGEST low_index, high_index;
7585 int num_specs;
7586 LONGEST *indices;
7587 int max_indices, num_indices;
7588 int is_array_aggregate;
7589 int i;
7590 struct value *mark = value_mark ();
7591
7592 *pos += 3;
7593 if (noside != EVAL_NORMAL)
7594 {
7595 int i;
7596 for (i = 0; i < n; i += 1)
7597 ada_evaluate_subexp (NULL, exp, pos, noside);
7598 return container;
7599 }
7600
7601 container = ada_coerce_ref (container);
7602 if (ada_is_direct_array_type (value_type (container)))
7603 container = ada_coerce_to_simple_array (container);
7604 lhs = ada_coerce_ref (lhs);
7605 if (!deprecated_value_modifiable (lhs))
7606 error (_("Left operand of assignment is not a modifiable lvalue."));
7607
7608 lhs_type = value_type (lhs);
7609 if (ada_is_direct_array_type (lhs_type))
7610 {
7611 lhs = ada_coerce_to_simple_array (lhs);
7612 lhs_type = value_type (lhs);
7613 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7614 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7615 is_array_aggregate = 1;
7616 }
7617 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7618 {
7619 low_index = 0;
7620 high_index = num_visible_fields (lhs_type) - 1;
7621 is_array_aggregate = 0;
7622 }
7623 else
7624 error (_("Left-hand side must be array or record."));
7625
7626 num_specs = num_component_specs (exp, *pos - 3);
7627 max_indices = 4 * num_specs + 4;
7628 indices = alloca (max_indices * sizeof (indices[0]));
7629 indices[0] = indices[1] = low_index - 1;
7630 indices[2] = indices[3] = high_index + 1;
7631 num_indices = 4;
7632
7633 for (i = 0; i < n; i += 1)
7634 {
7635 switch (exp->elts[*pos].opcode)
7636 {
7637 case OP_CHOICES:
7638 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7639 &num_indices, max_indices,
7640 low_index, high_index);
7641 break;
7642 case OP_POSITIONAL:
7643 aggregate_assign_positional (container, lhs, exp, pos, indices,
7644 &num_indices, max_indices,
7645 low_index, high_index);
7646 break;
7647 case OP_OTHERS:
7648 if (i != n-1)
7649 error (_("Misplaced 'others' clause"));
7650 aggregate_assign_others (container, lhs, exp, pos, indices,
7651 num_indices, low_index, high_index);
7652 break;
7653 default:
7654 error (_("Internal error: bad aggregate clause"));
7655 }
7656 }
7657
7658 return container;
7659 }
7660
7661 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7662 construct at *POS, updating *POS past the construct, given that
7663 the positions are relative to lower bound LOW, where HIGH is the
7664 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7665 updating *NUM_INDICES as needed. CONTAINER is as for
7666 assign_aggregate. */
7667 static void
7668 aggregate_assign_positional (struct value *container,
7669 struct value *lhs, struct expression *exp,
7670 int *pos, LONGEST *indices, int *num_indices,
7671 int max_indices, LONGEST low, LONGEST high)
7672 {
7673 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7674
7675 if (ind - 1 == high)
7676 warning (_("Extra components in aggregate ignored."));
7677 if (ind <= high)
7678 {
7679 add_component_interval (ind, ind, indices, num_indices, max_indices);
7680 *pos += 3;
7681 assign_component (container, lhs, ind, exp, pos);
7682 }
7683 else
7684 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7685 }
7686
7687 /* Assign into the components of LHS indexed by the OP_CHOICES
7688 construct at *POS, updating *POS past the construct, given that
7689 the allowable indices are LOW..HIGH. Record the indices assigned
7690 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7691 needed. CONTAINER is as for assign_aggregate. */
7692 static void
7693 aggregate_assign_from_choices (struct value *container,
7694 struct value *lhs, struct expression *exp,
7695 int *pos, LONGEST *indices, int *num_indices,
7696 int max_indices, LONGEST low, LONGEST high)
7697 {
7698 int j;
7699 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7700 int choice_pos, expr_pc;
7701 int is_array = ada_is_direct_array_type (value_type (lhs));
7702
7703 choice_pos = *pos += 3;
7704
7705 for (j = 0; j < n_choices; j += 1)
7706 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7707 expr_pc = *pos;
7708 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7709
7710 for (j = 0; j < n_choices; j += 1)
7711 {
7712 LONGEST lower, upper;
7713 enum exp_opcode op = exp->elts[choice_pos].opcode;
7714 if (op == OP_DISCRETE_RANGE)
7715 {
7716 choice_pos += 1;
7717 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7718 EVAL_NORMAL));
7719 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7720 EVAL_NORMAL));
7721 }
7722 else if (is_array)
7723 {
7724 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7725 EVAL_NORMAL));
7726 upper = lower;
7727 }
7728 else
7729 {
7730 int ind;
7731 char *name;
7732 switch (op)
7733 {
7734 case OP_NAME:
7735 name = &exp->elts[choice_pos + 2].string;
7736 break;
7737 case OP_VAR_VALUE:
7738 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7739 break;
7740 default:
7741 error (_("Invalid record component association."));
7742 }
7743 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7744 ind = 0;
7745 if (! find_struct_field (name, value_type (lhs), 0,
7746 NULL, NULL, NULL, NULL, &ind))
7747 error (_("Unknown component name: %s."), name);
7748 lower = upper = ind;
7749 }
7750
7751 if (lower <= upper && (lower < low || upper > high))
7752 error (_("Index in component association out of bounds."));
7753
7754 add_component_interval (lower, upper, indices, num_indices,
7755 max_indices);
7756 while (lower <= upper)
7757 {
7758 int pos1;
7759 pos1 = expr_pc;
7760 assign_component (container, lhs, lower, exp, &pos1);
7761 lower += 1;
7762 }
7763 }
7764 }
7765
7766 /* Assign the value of the expression in the OP_OTHERS construct in
7767 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7768 have not been previously assigned. The index intervals already assigned
7769 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7770 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7771 static void
7772 aggregate_assign_others (struct value *container,
7773 struct value *lhs, struct expression *exp,
7774 int *pos, LONGEST *indices, int num_indices,
7775 LONGEST low, LONGEST high)
7776 {
7777 int i;
7778 int expr_pc = *pos+1;
7779
7780 for (i = 0; i < num_indices - 2; i += 2)
7781 {
7782 LONGEST ind;
7783 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7784 {
7785 int pos;
7786 pos = expr_pc;
7787 assign_component (container, lhs, ind, exp, &pos);
7788 }
7789 }
7790 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7791 }
7792
7793 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7794 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7795 modifying *SIZE as needed. It is an error if *SIZE exceeds
7796 MAX_SIZE. The resulting intervals do not overlap. */
7797 static void
7798 add_component_interval (LONGEST low, LONGEST high,
7799 LONGEST* indices, int *size, int max_size)
7800 {
7801 int i, j;
7802 for (i = 0; i < *size; i += 2) {
7803 if (high >= indices[i] && low <= indices[i + 1])
7804 {
7805 int kh;
7806 for (kh = i + 2; kh < *size; kh += 2)
7807 if (high < indices[kh])
7808 break;
7809 if (low < indices[i])
7810 indices[i] = low;
7811 indices[i + 1] = indices[kh - 1];
7812 if (high > indices[i + 1])
7813 indices[i + 1] = high;
7814 memcpy (indices + i + 2, indices + kh, *size - kh);
7815 *size -= kh - i - 2;
7816 return;
7817 }
7818 else if (high < indices[i])
7819 break;
7820 }
7821
7822 if (*size == max_size)
7823 error (_("Internal error: miscounted aggregate components."));
7824 *size += 2;
7825 for (j = *size-1; j >= i+2; j -= 1)
7826 indices[j] = indices[j - 2];
7827 indices[i] = low;
7828 indices[i + 1] = high;
7829 }
7830
7831 static struct value *
7832 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7833 int *pos, enum noside noside)
7834 {
7835 enum exp_opcode op;
7836 int tem, tem2, tem3;
7837 int pc;
7838 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7839 struct type *type;
7840 int nargs, oplen;
7841 struct value **argvec;
7842
7843 pc = *pos;
7844 *pos += 1;
7845 op = exp->elts[pc].opcode;
7846
7847 switch (op)
7848 {
7849 default:
7850 *pos -= 1;
7851 return
7852 unwrap_value (evaluate_subexp_standard
7853 (expect_type, exp, pos, noside));
7854
7855 case OP_STRING:
7856 {
7857 struct value *result;
7858 *pos -= 1;
7859 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7860 /* The result type will have code OP_STRING, bashed there from
7861 OP_ARRAY. Bash it back. */
7862 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7863 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7864 return result;
7865 }
7866
7867 case UNOP_CAST:
7868 (*pos) += 2;
7869 type = exp->elts[pc + 1].type;
7870 arg1 = evaluate_subexp (type, exp, pos, noside);
7871 if (noside == EVAL_SKIP)
7872 goto nosideret;
7873 if (type != ada_check_typedef (value_type (arg1)))
7874 {
7875 if (ada_is_fixed_point_type (type))
7876 arg1 = cast_to_fixed (type, arg1);
7877 else if (ada_is_fixed_point_type (value_type (arg1)))
7878 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7879 else if (VALUE_LVAL (arg1) == lval_memory)
7880 {
7881 /* This is in case of the really obscure (and undocumented,
7882 but apparently expected) case of (Foo) Bar.all, where Bar
7883 is an integer constant and Foo is a dynamic-sized type.
7884 If we don't do this, ARG1 will simply be relabeled with
7885 TYPE. */
7886 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7887 return value_zero (to_static_fixed_type (type), not_lval);
7888 arg1 =
7889 ada_to_fixed_value_create
7890 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7891 }
7892 else
7893 arg1 = value_cast (type, arg1);
7894 }
7895 return arg1;
7896
7897 case UNOP_QUAL:
7898 (*pos) += 2;
7899 type = exp->elts[pc + 1].type;
7900 return ada_evaluate_subexp (type, exp, pos, noside);
7901
7902 case BINOP_ASSIGN:
7903 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7904 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7905 {
7906 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7907 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7908 return arg1;
7909 return ada_value_assign (arg1, arg1);
7910 }
7911 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7912 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7913 return arg1;
7914 if (ada_is_fixed_point_type (value_type (arg1)))
7915 arg2 = cast_to_fixed (value_type (arg1), arg2);
7916 else if (ada_is_fixed_point_type (value_type (arg2)))
7917 error
7918 (_("Fixed-point values must be assigned to fixed-point variables"));
7919 else
7920 arg2 = coerce_for_assign (value_type (arg1), arg2);
7921 return ada_value_assign (arg1, arg2);
7922
7923 case BINOP_ADD:
7924 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7925 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7926 if (noside == EVAL_SKIP)
7927 goto nosideret;
7928 if ((ada_is_fixed_point_type (value_type (arg1))
7929 || ada_is_fixed_point_type (value_type (arg2)))
7930 && value_type (arg1) != value_type (arg2))
7931 error (_("Operands of fixed-point addition must have the same type"));
7932 return value_cast (value_type (arg1), value_add (arg1, arg2));
7933
7934 case BINOP_SUB:
7935 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7936 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7937 if (noside == EVAL_SKIP)
7938 goto nosideret;
7939 if ((ada_is_fixed_point_type (value_type (arg1))
7940 || ada_is_fixed_point_type (value_type (arg2)))
7941 && value_type (arg1) != value_type (arg2))
7942 error (_("Operands of fixed-point subtraction must have the same type"));
7943 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7944
7945 case BINOP_MUL:
7946 case BINOP_DIV:
7947 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7948 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7949 if (noside == EVAL_SKIP)
7950 goto nosideret;
7951 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7952 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7953 return value_zero (value_type (arg1), not_lval);
7954 else
7955 {
7956 if (ada_is_fixed_point_type (value_type (arg1)))
7957 arg1 = cast_from_fixed_to_double (arg1);
7958 if (ada_is_fixed_point_type (value_type (arg2)))
7959 arg2 = cast_from_fixed_to_double (arg2);
7960 return ada_value_binop (arg1, arg2, op);
7961 }
7962
7963 case BINOP_REM:
7964 case BINOP_MOD:
7965 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7966 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7967 if (noside == EVAL_SKIP)
7968 goto nosideret;
7969 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7970 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7971 return value_zero (value_type (arg1), not_lval);
7972 else
7973 return ada_value_binop (arg1, arg2, op);
7974
7975 case BINOP_EQUAL:
7976 case BINOP_NOTEQUAL:
7977 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7978 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7979 if (noside == EVAL_SKIP)
7980 goto nosideret;
7981 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7982 tem = 0;
7983 else
7984 tem = ada_value_equal (arg1, arg2);
7985 if (op == BINOP_NOTEQUAL)
7986 tem = !tem;
7987 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7988
7989 case UNOP_NEG:
7990 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7991 if (noside == EVAL_SKIP)
7992 goto nosideret;
7993 else if (ada_is_fixed_point_type (value_type (arg1)))
7994 return value_cast (value_type (arg1), value_neg (arg1));
7995 else
7996 return value_neg (arg1);
7997
7998 case OP_VAR_VALUE:
7999 *pos -= 1;
8000 if (noside == EVAL_SKIP)
8001 {
8002 *pos += 4;
8003 goto nosideret;
8004 }
8005 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8006 /* Only encountered when an unresolved symbol occurs in a
8007 context other than a function call, in which case, it is
8008 invalid. */
8009 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8010 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8011 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8012 {
8013 *pos += 4;
8014 return value_zero
8015 (to_static_fixed_type
8016 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8017 not_lval);
8018 }
8019 else
8020 {
8021 arg1 =
8022 unwrap_value (evaluate_subexp_standard
8023 (expect_type, exp, pos, noside));
8024 return ada_to_fixed_value (arg1);
8025 }
8026
8027 case OP_FUNCALL:
8028 (*pos) += 2;
8029
8030 /* Allocate arg vector, including space for the function to be
8031 called in argvec[0] and a terminating NULL. */
8032 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8033 argvec =
8034 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8035
8036 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8037 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8038 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8039 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8040 else
8041 {
8042 for (tem = 0; tem <= nargs; tem += 1)
8043 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8044 argvec[tem] = 0;
8045
8046 if (noside == EVAL_SKIP)
8047 goto nosideret;
8048 }
8049
8050 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8051 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8052 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8053 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8054 && VALUE_LVAL (argvec[0]) == lval_memory))
8055 argvec[0] = value_addr (argvec[0]);
8056
8057 type = ada_check_typedef (value_type (argvec[0]));
8058 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8059 {
8060 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8061 {
8062 case TYPE_CODE_FUNC:
8063 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8064 break;
8065 case TYPE_CODE_ARRAY:
8066 break;
8067 case TYPE_CODE_STRUCT:
8068 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8069 argvec[0] = ada_value_ind (argvec[0]);
8070 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8071 break;
8072 default:
8073 error (_("cannot subscript or call something of type `%s'"),
8074 ada_type_name (value_type (argvec[0])));
8075 break;
8076 }
8077 }
8078
8079 switch (TYPE_CODE (type))
8080 {
8081 case TYPE_CODE_FUNC:
8082 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8083 return allocate_value (TYPE_TARGET_TYPE (type));
8084 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8085 case TYPE_CODE_STRUCT:
8086 {
8087 int arity;
8088
8089 arity = ada_array_arity (type);
8090 type = ada_array_element_type (type, nargs);
8091 if (type == NULL)
8092 error (_("cannot subscript or call a record"));
8093 if (arity != nargs)
8094 error (_("wrong number of subscripts; expecting %d"), arity);
8095 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8096 return allocate_value (ada_aligned_type (type));
8097 return
8098 unwrap_value (ada_value_subscript
8099 (argvec[0], nargs, argvec + 1));
8100 }
8101 case TYPE_CODE_ARRAY:
8102 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8103 {
8104 type = ada_array_element_type (type, nargs);
8105 if (type == NULL)
8106 error (_("element type of array unknown"));
8107 else
8108 return allocate_value (ada_aligned_type (type));
8109 }
8110 return
8111 unwrap_value (ada_value_subscript
8112 (ada_coerce_to_simple_array (argvec[0]),
8113 nargs, argvec + 1));
8114 case TYPE_CODE_PTR: /* Pointer to array */
8115 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8116 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8117 {
8118 type = ada_array_element_type (type, nargs);
8119 if (type == NULL)
8120 error (_("element type of array unknown"));
8121 else
8122 return allocate_value (ada_aligned_type (type));
8123 }
8124 return
8125 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8126 nargs, argvec + 1));
8127
8128 default:
8129 error (_("Attempt to index or call something other than an "
8130 "array or function"));
8131 }
8132
8133 case TERNOP_SLICE:
8134 {
8135 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8136 struct value *low_bound_val =
8137 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8138 struct value *high_bound_val =
8139 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8140 LONGEST low_bound;
8141 LONGEST high_bound;
8142 low_bound_val = coerce_ref (low_bound_val);
8143 high_bound_val = coerce_ref (high_bound_val);
8144 low_bound = pos_atr (low_bound_val);
8145 high_bound = pos_atr (high_bound_val);
8146
8147 if (noside == EVAL_SKIP)
8148 goto nosideret;
8149
8150 /* If this is a reference to an aligner type, then remove all
8151 the aligners. */
8152 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8153 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8154 TYPE_TARGET_TYPE (value_type (array)) =
8155 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8156
8157 if (ada_is_packed_array_type (value_type (array)))
8158 error (_("cannot slice a packed array"));
8159
8160 /* If this is a reference to an array or an array lvalue,
8161 convert to a pointer. */
8162 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8163 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8164 && VALUE_LVAL (array) == lval_memory))
8165 array = value_addr (array);
8166
8167 if (noside == EVAL_AVOID_SIDE_EFFECTS
8168 && ada_is_array_descriptor_type (ada_check_typedef
8169 (value_type (array))))
8170 return empty_array (ada_type_of_array (array, 0), low_bound);
8171
8172 array = ada_coerce_to_simple_array_ptr (array);
8173
8174 /* If we have more than one level of pointer indirection,
8175 dereference the value until we get only one level. */
8176 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8177 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8178 == TYPE_CODE_PTR))
8179 array = value_ind (array);
8180
8181 /* Make sure we really do have an array type before going further,
8182 to avoid a SEGV when trying to get the index type or the target
8183 type later down the road if the debug info generated by
8184 the compiler is incorrect or incomplete. */
8185 if (!ada_is_simple_array_type (value_type (array)))
8186 error (_("cannot take slice of non-array"));
8187
8188 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8189 {
8190 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8191 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8192 low_bound);
8193 else
8194 {
8195 struct type *arr_type0 =
8196 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8197 NULL, 1);
8198 return ada_value_slice_ptr (array, arr_type0,
8199 longest_to_int (low_bound),
8200 longest_to_int (high_bound));
8201 }
8202 }
8203 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8204 return array;
8205 else if (high_bound < low_bound)
8206 return empty_array (value_type (array), low_bound);
8207 else
8208 return ada_value_slice (array, longest_to_int (low_bound),
8209 longest_to_int (high_bound));
8210 }
8211
8212 case UNOP_IN_RANGE:
8213 (*pos) += 2;
8214 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8215 type = exp->elts[pc + 1].type;
8216
8217 if (noside == EVAL_SKIP)
8218 goto nosideret;
8219
8220 switch (TYPE_CODE (type))
8221 {
8222 default:
8223 lim_warning (_("Membership test incompletely implemented; "
8224 "always returns true"));
8225 return value_from_longest (builtin_type_int, (LONGEST) 1);
8226
8227 case TYPE_CODE_RANGE:
8228 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8229 arg3 = value_from_longest (builtin_type_int,
8230 TYPE_HIGH_BOUND (type));
8231 return
8232 value_from_longest (builtin_type_int,
8233 (value_less (arg1, arg3)
8234 || value_equal (arg1, arg3))
8235 && (value_less (arg2, arg1)
8236 || value_equal (arg2, arg1)));
8237 }
8238
8239 case BINOP_IN_BOUNDS:
8240 (*pos) += 2;
8241 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8242 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8243
8244 if (noside == EVAL_SKIP)
8245 goto nosideret;
8246
8247 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8248 return value_zero (builtin_type_int, not_lval);
8249
8250 tem = longest_to_int (exp->elts[pc + 1].longconst);
8251
8252 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8253 error (_("invalid dimension number to 'range"));
8254
8255 arg3 = ada_array_bound (arg2, tem, 1);
8256 arg2 = ada_array_bound (arg2, tem, 0);
8257
8258 return
8259 value_from_longest (builtin_type_int,
8260 (value_less (arg1, arg3)
8261 || value_equal (arg1, arg3))
8262 && (value_less (arg2, arg1)
8263 || value_equal (arg2, arg1)));
8264
8265 case TERNOP_IN_RANGE:
8266 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8267 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8268 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8269
8270 if (noside == EVAL_SKIP)
8271 goto nosideret;
8272
8273 return
8274 value_from_longest (builtin_type_int,
8275 (value_less (arg1, arg3)
8276 || value_equal (arg1, arg3))
8277 && (value_less (arg2, arg1)
8278 || value_equal (arg2, arg1)));
8279
8280 case OP_ATR_FIRST:
8281 case OP_ATR_LAST:
8282 case OP_ATR_LENGTH:
8283 {
8284 struct type *type_arg;
8285 if (exp->elts[*pos].opcode == OP_TYPE)
8286 {
8287 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8288 arg1 = NULL;
8289 type_arg = exp->elts[pc + 2].type;
8290 }
8291 else
8292 {
8293 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8294 type_arg = NULL;
8295 }
8296
8297 if (exp->elts[*pos].opcode != OP_LONG)
8298 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8299 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8300 *pos += 4;
8301
8302 if (noside == EVAL_SKIP)
8303 goto nosideret;
8304
8305 if (type_arg == NULL)
8306 {
8307 arg1 = ada_coerce_ref (arg1);
8308
8309 if (ada_is_packed_array_type (value_type (arg1)))
8310 arg1 = ada_coerce_to_simple_array (arg1);
8311
8312 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8313 error (_("invalid dimension number to '%s"),
8314 ada_attribute_name (op));
8315
8316 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8317 {
8318 type = ada_index_type (value_type (arg1), tem);
8319 if (type == NULL)
8320 error
8321 (_("attempt to take bound of something that is not an array"));
8322 return allocate_value (type);
8323 }
8324
8325 switch (op)
8326 {
8327 default: /* Should never happen. */
8328 error (_("unexpected attribute encountered"));
8329 case OP_ATR_FIRST:
8330 return ada_array_bound (arg1, tem, 0);
8331 case OP_ATR_LAST:
8332 return ada_array_bound (arg1, tem, 1);
8333 case OP_ATR_LENGTH:
8334 return ada_array_length (arg1, tem);
8335 }
8336 }
8337 else if (discrete_type_p (type_arg))
8338 {
8339 struct type *range_type;
8340 char *name = ada_type_name (type_arg);
8341 range_type = NULL;
8342 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8343 range_type =
8344 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8345 if (range_type == NULL)
8346 range_type = type_arg;
8347 switch (op)
8348 {
8349 default:
8350 error (_("unexpected attribute encountered"));
8351 case OP_ATR_FIRST:
8352 return discrete_type_low_bound (range_type);
8353 case OP_ATR_LAST:
8354 return discrete_type_high_bound (range_type);
8355 case OP_ATR_LENGTH:
8356 error (_("the 'length attribute applies only to array types"));
8357 }
8358 }
8359 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8360 error (_("unimplemented type attribute"));
8361 else
8362 {
8363 LONGEST low, high;
8364
8365 if (ada_is_packed_array_type (type_arg))
8366 type_arg = decode_packed_array_type (type_arg);
8367
8368 if (tem < 1 || tem > ada_array_arity (type_arg))
8369 error (_("invalid dimension number to '%s"),
8370 ada_attribute_name (op));
8371
8372 type = ada_index_type (type_arg, tem);
8373 if (type == NULL)
8374 error
8375 (_("attempt to take bound of something that is not an array"));
8376 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8377 return allocate_value (type);
8378
8379 switch (op)
8380 {
8381 default:
8382 error (_("unexpected attribute encountered"));
8383 case OP_ATR_FIRST:
8384 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8385 return value_from_longest (type, low);
8386 case OP_ATR_LAST:
8387 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8388 return value_from_longest (type, high);
8389 case OP_ATR_LENGTH:
8390 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8391 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8392 return value_from_longest (type, high - low + 1);
8393 }
8394 }
8395 }
8396
8397 case OP_ATR_TAG:
8398 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8399 if (noside == EVAL_SKIP)
8400 goto nosideret;
8401
8402 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8403 return value_zero (ada_tag_type (arg1), not_lval);
8404
8405 return ada_value_tag (arg1);
8406
8407 case OP_ATR_MIN:
8408 case OP_ATR_MAX:
8409 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8410 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8411 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8412 if (noside == EVAL_SKIP)
8413 goto nosideret;
8414 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8415 return value_zero (value_type (arg1), not_lval);
8416 else
8417 return value_binop (arg1, arg2,
8418 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8419
8420 case OP_ATR_MODULUS:
8421 {
8422 struct type *type_arg = exp->elts[pc + 2].type;
8423 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8424
8425 if (noside == EVAL_SKIP)
8426 goto nosideret;
8427
8428 if (!ada_is_modular_type (type_arg))
8429 error (_("'modulus must be applied to modular type"));
8430
8431 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8432 ada_modulus (type_arg));
8433 }
8434
8435
8436 case OP_ATR_POS:
8437 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8438 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8439 if (noside == EVAL_SKIP)
8440 goto nosideret;
8441 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8442 return value_zero (builtin_type_int, not_lval);
8443 else
8444 return value_pos_atr (arg1);
8445
8446 case OP_ATR_SIZE:
8447 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8448 if (noside == EVAL_SKIP)
8449 goto nosideret;
8450 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8451 return value_zero (builtin_type_int, not_lval);
8452 else
8453 return value_from_longest (builtin_type_int,
8454 TARGET_CHAR_BIT
8455 * TYPE_LENGTH (value_type (arg1)));
8456
8457 case OP_ATR_VAL:
8458 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8459 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8460 type = exp->elts[pc + 2].type;
8461 if (noside == EVAL_SKIP)
8462 goto nosideret;
8463 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8464 return value_zero (type, not_lval);
8465 else
8466 return value_val_atr (type, arg1);
8467
8468 case BINOP_EXP:
8469 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8470 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8471 if (noside == EVAL_SKIP)
8472 goto nosideret;
8473 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8474 return value_zero (value_type (arg1), not_lval);
8475 else
8476 return value_binop (arg1, arg2, op);
8477
8478 case UNOP_PLUS:
8479 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8480 if (noside == EVAL_SKIP)
8481 goto nosideret;
8482 else
8483 return arg1;
8484
8485 case UNOP_ABS:
8486 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8487 if (noside == EVAL_SKIP)
8488 goto nosideret;
8489 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8490 return value_neg (arg1);
8491 else
8492 return arg1;
8493
8494 case UNOP_IND:
8495 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8496 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8497 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8498 if (noside == EVAL_SKIP)
8499 goto nosideret;
8500 type = ada_check_typedef (value_type (arg1));
8501 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8502 {
8503 if (ada_is_array_descriptor_type (type))
8504 /* GDB allows dereferencing GNAT array descriptors. */
8505 {
8506 struct type *arrType = ada_type_of_array (arg1, 0);
8507 if (arrType == NULL)
8508 error (_("Attempt to dereference null array pointer."));
8509 return value_at_lazy (arrType, 0);
8510 }
8511 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8512 || TYPE_CODE (type) == TYPE_CODE_REF
8513 /* In C you can dereference an array to get the 1st elt. */
8514 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8515 {
8516 type = to_static_fixed_type
8517 (ada_aligned_type
8518 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8519 check_size (type);
8520 return value_zero (type, lval_memory);
8521 }
8522 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8523 /* GDB allows dereferencing an int. */
8524 return value_zero (builtin_type_int, lval_memory);
8525 else
8526 error (_("Attempt to take contents of a non-pointer value."));
8527 }
8528 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8529 type = ada_check_typedef (value_type (arg1));
8530
8531 if (ada_is_array_descriptor_type (type))
8532 /* GDB allows dereferencing GNAT array descriptors. */
8533 return ada_coerce_to_simple_array (arg1);
8534 else
8535 return ada_value_ind (arg1);
8536
8537 case STRUCTOP_STRUCT:
8538 tem = longest_to_int (exp->elts[pc + 1].longconst);
8539 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8540 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8541 if (noside == EVAL_SKIP)
8542 goto nosideret;
8543 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8544 {
8545 struct type *type1 = value_type (arg1);
8546 if (ada_is_tagged_type (type1, 1))
8547 {
8548 type = ada_lookup_struct_elt_type (type1,
8549 &exp->elts[pc + 2].string,
8550 1, 1, NULL);
8551 if (type == NULL)
8552 /* In this case, we assume that the field COULD exist
8553 in some extension of the type. Return an object of
8554 "type" void, which will match any formal
8555 (see ada_type_match). */
8556 return value_zero (builtin_type_void, lval_memory);
8557 }
8558 else
8559 type =
8560 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8561 0, NULL);
8562
8563 return value_zero (ada_aligned_type (type), lval_memory);
8564 }
8565 else
8566 return
8567 ada_to_fixed_value (unwrap_value
8568 (ada_value_struct_elt
8569 (arg1, &exp->elts[pc + 2].string, 0)));
8570 case OP_TYPE:
8571 /* The value is not supposed to be used. This is here to make it
8572 easier to accommodate expressions that contain types. */
8573 (*pos) += 2;
8574 if (noside == EVAL_SKIP)
8575 goto nosideret;
8576 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8577 return allocate_value (exp->elts[pc + 1].type);
8578 else
8579 error (_("Attempt to use a type name as an expression"));
8580
8581 case OP_AGGREGATE:
8582 case OP_CHOICES:
8583 case OP_OTHERS:
8584 case OP_DISCRETE_RANGE:
8585 case OP_POSITIONAL:
8586 case OP_NAME:
8587 if (noside == EVAL_NORMAL)
8588 switch (op)
8589 {
8590 case OP_NAME:
8591 error (_("Undefined name, ambiguous name, or renaming used in "
8592 "component association: %s."), &exp->elts[pc+2].string);
8593 case OP_AGGREGATE:
8594 error (_("Aggregates only allowed on the right of an assignment"));
8595 default:
8596 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8597 }
8598
8599 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8600 *pos += oplen - 1;
8601 for (tem = 0; tem < nargs; tem += 1)
8602 ada_evaluate_subexp (NULL, exp, pos, noside);
8603 goto nosideret;
8604 }
8605
8606 nosideret:
8607 return value_from_longest (builtin_type_long, (LONGEST) 1);
8608 }
8609 \f
8610
8611 /* Fixed point */
8612
8613 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8614 type name that encodes the 'small and 'delta information.
8615 Otherwise, return NULL. */
8616
8617 static const char *
8618 fixed_type_info (struct type *type)
8619 {
8620 const char *name = ada_type_name (type);
8621 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8622
8623 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8624 {
8625 const char *tail = strstr (name, "___XF_");
8626 if (tail == NULL)
8627 return NULL;
8628 else
8629 return tail + 5;
8630 }
8631 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8632 return fixed_type_info (TYPE_TARGET_TYPE (type));
8633 else
8634 return NULL;
8635 }
8636
8637 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8638
8639 int
8640 ada_is_fixed_point_type (struct type *type)
8641 {
8642 return fixed_type_info (type) != NULL;
8643 }
8644
8645 /* Return non-zero iff TYPE represents a System.Address type. */
8646
8647 int
8648 ada_is_system_address_type (struct type *type)
8649 {
8650 return (TYPE_NAME (type)
8651 && strcmp (TYPE_NAME (type), "system__address") == 0);
8652 }
8653
8654 /* Assuming that TYPE is the representation of an Ada fixed-point
8655 type, return its delta, or -1 if the type is malformed and the
8656 delta cannot be determined. */
8657
8658 DOUBLEST
8659 ada_delta (struct type *type)
8660 {
8661 const char *encoding = fixed_type_info (type);
8662 long num, den;
8663
8664 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8665 return -1.0;
8666 else
8667 return (DOUBLEST) num / (DOUBLEST) den;
8668 }
8669
8670 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8671 factor ('SMALL value) associated with the type. */
8672
8673 static DOUBLEST
8674 scaling_factor (struct type *type)
8675 {
8676 const char *encoding = fixed_type_info (type);
8677 unsigned long num0, den0, num1, den1;
8678 int n;
8679
8680 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8681
8682 if (n < 2)
8683 return 1.0;
8684 else if (n == 4)
8685 return (DOUBLEST) num1 / (DOUBLEST) den1;
8686 else
8687 return (DOUBLEST) num0 / (DOUBLEST) den0;
8688 }
8689
8690
8691 /* Assuming that X is the representation of a value of fixed-point
8692 type TYPE, return its floating-point equivalent. */
8693
8694 DOUBLEST
8695 ada_fixed_to_float (struct type *type, LONGEST x)
8696 {
8697 return (DOUBLEST) x *scaling_factor (type);
8698 }
8699
8700 /* The representation of a fixed-point value of type TYPE
8701 corresponding to the value X. */
8702
8703 LONGEST
8704 ada_float_to_fixed (struct type *type, DOUBLEST x)
8705 {
8706 return (LONGEST) (x / scaling_factor (type) + 0.5);
8707 }
8708
8709
8710 /* VAX floating formats */
8711
8712 /* Non-zero iff TYPE represents one of the special VAX floating-point
8713 types. */
8714
8715 int
8716 ada_is_vax_floating_type (struct type *type)
8717 {
8718 int name_len =
8719 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8720 return
8721 name_len > 6
8722 && (TYPE_CODE (type) == TYPE_CODE_INT
8723 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8724 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8725 }
8726
8727 /* The type of special VAX floating-point type this is, assuming
8728 ada_is_vax_floating_point. */
8729
8730 int
8731 ada_vax_float_type_suffix (struct type *type)
8732 {
8733 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8734 }
8735
8736 /* A value representing the special debugging function that outputs
8737 VAX floating-point values of the type represented by TYPE. Assumes
8738 ada_is_vax_floating_type (TYPE). */
8739
8740 struct value *
8741 ada_vax_float_print_function (struct type *type)
8742 {
8743 switch (ada_vax_float_type_suffix (type))
8744 {
8745 case 'F':
8746 return get_var_value ("DEBUG_STRING_F", 0);
8747 case 'D':
8748 return get_var_value ("DEBUG_STRING_D", 0);
8749 case 'G':
8750 return get_var_value ("DEBUG_STRING_G", 0);
8751 default:
8752 error (_("invalid VAX floating-point type"));
8753 }
8754 }
8755 \f
8756
8757 /* Range types */
8758
8759 /* Scan STR beginning at position K for a discriminant name, and
8760 return the value of that discriminant field of DVAL in *PX. If
8761 PNEW_K is not null, put the position of the character beyond the
8762 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8763 not alter *PX and *PNEW_K if unsuccessful. */
8764
8765 static int
8766 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8767 int *pnew_k)
8768 {
8769 static char *bound_buffer = NULL;
8770 static size_t bound_buffer_len = 0;
8771 char *bound;
8772 char *pend;
8773 struct value *bound_val;
8774
8775 if (dval == NULL || str == NULL || str[k] == '\0')
8776 return 0;
8777
8778 pend = strstr (str + k, "__");
8779 if (pend == NULL)
8780 {
8781 bound = str + k;
8782 k += strlen (bound);
8783 }
8784 else
8785 {
8786 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8787 bound = bound_buffer;
8788 strncpy (bound_buffer, str + k, pend - (str + k));
8789 bound[pend - (str + k)] = '\0';
8790 k = pend - str;
8791 }
8792
8793 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8794 if (bound_val == NULL)
8795 return 0;
8796
8797 *px = value_as_long (bound_val);
8798 if (pnew_k != NULL)
8799 *pnew_k = k;
8800 return 1;
8801 }
8802
8803 /* Value of variable named NAME in the current environment. If
8804 no such variable found, then if ERR_MSG is null, returns 0, and
8805 otherwise causes an error with message ERR_MSG. */
8806
8807 static struct value *
8808 get_var_value (char *name, char *err_msg)
8809 {
8810 struct ada_symbol_info *syms;
8811 int nsyms;
8812
8813 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8814 &syms);
8815
8816 if (nsyms != 1)
8817 {
8818 if (err_msg == NULL)
8819 return 0;
8820 else
8821 error (("%s"), err_msg);
8822 }
8823
8824 return value_of_variable (syms[0].sym, syms[0].block);
8825 }
8826
8827 /* Value of integer variable named NAME in the current environment. If
8828 no such variable found, returns 0, and sets *FLAG to 0. If
8829 successful, sets *FLAG to 1. */
8830
8831 LONGEST
8832 get_int_var_value (char *name, int *flag)
8833 {
8834 struct value *var_val = get_var_value (name, 0);
8835
8836 if (var_val == 0)
8837 {
8838 if (flag != NULL)
8839 *flag = 0;
8840 return 0;
8841 }
8842 else
8843 {
8844 if (flag != NULL)
8845 *flag = 1;
8846 return value_as_long (var_val);
8847 }
8848 }
8849
8850
8851 /* Return a range type whose base type is that of the range type named
8852 NAME in the current environment, and whose bounds are calculated
8853 from NAME according to the GNAT range encoding conventions.
8854 Extract discriminant values, if needed, from DVAL. If a new type
8855 must be created, allocate in OBJFILE's space. The bounds
8856 information, in general, is encoded in NAME, the base type given in
8857 the named range type. */
8858
8859 static struct type *
8860 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8861 {
8862 struct type *raw_type = ada_find_any_type (name);
8863 struct type *base_type;
8864 char *subtype_info;
8865
8866 if (raw_type == NULL)
8867 base_type = builtin_type_int;
8868 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8869 base_type = TYPE_TARGET_TYPE (raw_type);
8870 else
8871 base_type = raw_type;
8872
8873 subtype_info = strstr (name, "___XD");
8874 if (subtype_info == NULL)
8875 return raw_type;
8876 else
8877 {
8878 static char *name_buf = NULL;
8879 static size_t name_len = 0;
8880 int prefix_len = subtype_info - name;
8881 LONGEST L, U;
8882 struct type *type;
8883 char *bounds_str;
8884 int n;
8885
8886 GROW_VECT (name_buf, name_len, prefix_len + 5);
8887 strncpy (name_buf, name, prefix_len);
8888 name_buf[prefix_len] = '\0';
8889
8890 subtype_info += 5;
8891 bounds_str = strchr (subtype_info, '_');
8892 n = 1;
8893
8894 if (*subtype_info == 'L')
8895 {
8896 if (!ada_scan_number (bounds_str, n, &L, &n)
8897 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8898 return raw_type;
8899 if (bounds_str[n] == '_')
8900 n += 2;
8901 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8902 n += 1;
8903 subtype_info += 1;
8904 }
8905 else
8906 {
8907 int ok;
8908 strcpy (name_buf + prefix_len, "___L");
8909 L = get_int_var_value (name_buf, &ok);
8910 if (!ok)
8911 {
8912 lim_warning (_("Unknown lower bound, using 1."));
8913 L = 1;
8914 }
8915 }
8916
8917 if (*subtype_info == 'U')
8918 {
8919 if (!ada_scan_number (bounds_str, n, &U, &n)
8920 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8921 return raw_type;
8922 }
8923 else
8924 {
8925 int ok;
8926 strcpy (name_buf + prefix_len, "___U");
8927 U = get_int_var_value (name_buf, &ok);
8928 if (!ok)
8929 {
8930 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8931 U = L;
8932 }
8933 }
8934
8935 if (objfile == NULL)
8936 objfile = TYPE_OBJFILE (base_type);
8937 type = create_range_type (alloc_type (objfile), base_type, L, U);
8938 TYPE_NAME (type) = name;
8939 return type;
8940 }
8941 }
8942
8943 /* True iff NAME is the name of a range type. */
8944
8945 int
8946 ada_is_range_type_name (const char *name)
8947 {
8948 return (name != NULL && strstr (name, "___XD"));
8949 }
8950 \f
8951
8952 /* Modular types */
8953
8954 /* True iff TYPE is an Ada modular type. */
8955
8956 int
8957 ada_is_modular_type (struct type *type)
8958 {
8959 struct type *subranged_type = base_type (type);
8960
8961 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8962 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8963 && TYPE_UNSIGNED (subranged_type));
8964 }
8965
8966 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8967
8968 ULONGEST
8969 ada_modulus (struct type * type)
8970 {
8971 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8972 }
8973 \f
8974
8975 /* Ada exception catchpoint support:
8976 ---------------------------------
8977
8978 We support 3 kinds of exception catchpoints:
8979 . catchpoints on Ada exceptions
8980 . catchpoints on unhandled Ada exceptions
8981 . catchpoints on failed assertions
8982
8983 Exceptions raised during failed assertions, or unhandled exceptions
8984 could perfectly be caught with the general catchpoint on Ada exceptions.
8985 However, we can easily differentiate these two special cases, and having
8986 the option to distinguish these two cases from the rest can be useful
8987 to zero-in on certain situations.
8988
8989 Exception catchpoints are a specialized form of breakpoint,
8990 since they rely on inserting breakpoints inside known routines
8991 of the GNAT runtime. The implementation therefore uses a standard
8992 breakpoint structure of the BP_BREAKPOINT type, but with its own set
8993 of breakpoint_ops.
8994
8995 At this time, we do not support the use of conditions on Ada exception
8996 catchpoints. The COND and COND_STRING fields are therefore set
8997 to NULL (most of the time, see below).
8998
8999 Conditions where EXP_STRING, COND, and COND_STRING are used:
9000
9001 When a user specifies the name of a specific exception in the case
9002 of catchpoints on Ada exceptions, we store the name of that exception
9003 in the EXP_STRING. We then translate this request into an actual
9004 condition stored in COND_STRING, and then parse it into an expression
9005 stored in COND. */
9006
9007 /* The different types of catchpoints that we introduced for catching
9008 Ada exceptions. */
9009
9010 enum exception_catchpoint_kind
9011 {
9012 ex_catch_exception,
9013 ex_catch_exception_unhandled,
9014 ex_catch_assert
9015 };
9016
9017 /* Return the name of the function at PC, NULL if could not find it.
9018 This function only checks the debugging information, not the symbol
9019 table. */
9020
9021 static char *
9022 function_name_from_pc (CORE_ADDR pc)
9023 {
9024 char *func_name;
9025
9026 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9027 return NULL;
9028
9029 return func_name;
9030 }
9031
9032 /* True iff FRAME is very likely to be that of a function that is
9033 part of the runtime system. This is all very heuristic, but is
9034 intended to be used as advice as to what frames are uninteresting
9035 to most users. */
9036
9037 static int
9038 is_known_support_routine (struct frame_info *frame)
9039 {
9040 struct symtab_and_line sal;
9041 char *func_name;
9042 int i;
9043
9044 /* If this code does not have any debugging information (no symtab),
9045 This cannot be any user code. */
9046
9047 find_frame_sal (frame, &sal);
9048 if (sal.symtab == NULL)
9049 return 1;
9050
9051 /* If there is a symtab, but the associated source file cannot be
9052 located, then assume this is not user code: Selecting a frame
9053 for which we cannot display the code would not be very helpful
9054 for the user. This should also take care of case such as VxWorks
9055 where the kernel has some debugging info provided for a few units. */
9056
9057 if (symtab_to_fullname (sal.symtab) == NULL)
9058 return 1;
9059
9060 /* Check the unit filename againt the Ada runtime file naming.
9061 We also check the name of the objfile against the name of some
9062 known system libraries that sometimes come with debugging info
9063 too. */
9064
9065 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9066 {
9067 re_comp (known_runtime_file_name_patterns[i]);
9068 if (re_exec (sal.symtab->filename))
9069 return 1;
9070 if (sal.symtab->objfile != NULL
9071 && re_exec (sal.symtab->objfile->name))
9072 return 1;
9073 }
9074
9075 /* Check whether the function is a GNAT-generated entity. */
9076
9077 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9078 if (func_name == NULL)
9079 return 1;
9080
9081 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9082 {
9083 re_comp (known_auxiliary_function_name_patterns[i]);
9084 if (re_exec (func_name))
9085 return 1;
9086 }
9087
9088 return 0;
9089 }
9090
9091 /* Find the first frame that contains debugging information and that is not
9092 part of the Ada run-time, starting from FI and moving upward. */
9093
9094 static void
9095 ada_find_printable_frame (struct frame_info *fi)
9096 {
9097 for (; fi != NULL; fi = get_prev_frame (fi))
9098 {
9099 if (!is_known_support_routine (fi))
9100 {
9101 select_frame (fi);
9102 break;
9103 }
9104 }
9105
9106 }
9107
9108 /* Assuming that the inferior just triggered an unhandled exception
9109 catchpoint, return the address in inferior memory where the name
9110 of the exception is stored.
9111
9112 Return zero if the address could not be computed. */
9113
9114 static CORE_ADDR
9115 ada_unhandled_exception_name_addr (void)
9116 {
9117 int frame_level;
9118 struct frame_info *fi;
9119
9120 /* To determine the name of this exception, we need to select
9121 the frame corresponding to RAISE_SYM_NAME. This frame is
9122 at least 3 levels up, so we simply skip the first 3 frames
9123 without checking the name of their associated function. */
9124 fi = get_current_frame ();
9125 for (frame_level = 0; frame_level < 3; frame_level += 1)
9126 if (fi != NULL)
9127 fi = get_prev_frame (fi);
9128
9129 while (fi != NULL)
9130 {
9131 const char *func_name =
9132 function_name_from_pc (get_frame_address_in_block (fi));
9133 if (func_name != NULL
9134 && strcmp (func_name, raise_sym_name) == 0)
9135 break; /* We found the frame we were looking for... */
9136 fi = get_prev_frame (fi);
9137 }
9138
9139 if (fi == NULL)
9140 return 0;
9141
9142 select_frame (fi);
9143 return parse_and_eval_address ("id.full_name");
9144 }
9145
9146 /* Assuming the inferior just triggered an Ada exception catchpoint
9147 (of any type), return the address in inferior memory where the name
9148 of the exception is stored, if applicable.
9149
9150 Return zero if the address could not be computed, or if not relevant. */
9151
9152 static CORE_ADDR
9153 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9154 struct breakpoint *b)
9155 {
9156 switch (ex)
9157 {
9158 case ex_catch_exception:
9159 return (parse_and_eval_address ("e.full_name"));
9160 break;
9161
9162 case ex_catch_exception_unhandled:
9163 return ada_unhandled_exception_name_addr ();
9164 break;
9165
9166 case ex_catch_assert:
9167 return 0; /* Exception name is not relevant in this case. */
9168 break;
9169
9170 default:
9171 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9172 break;
9173 }
9174
9175 return 0; /* Should never be reached. */
9176 }
9177
9178 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9179 any error that ada_exception_name_addr_1 might cause to be thrown.
9180 When an error is intercepted, a warning with the error message is printed,
9181 and zero is returned. */
9182
9183 static CORE_ADDR
9184 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9185 struct breakpoint *b)
9186 {
9187 struct gdb_exception e;
9188 CORE_ADDR result = 0;
9189
9190 TRY_CATCH (e, RETURN_MASK_ERROR)
9191 {
9192 result = ada_exception_name_addr_1 (ex, b);
9193 }
9194
9195 if (e.reason < 0)
9196 {
9197 warning (_("failed to get exception name: %s"), e.message);
9198 return 0;
9199 }
9200
9201 return result;
9202 }
9203
9204 /* Implement the PRINT_IT method in the breakpoint_ops structure
9205 for all exception catchpoint kinds. */
9206
9207 static enum print_stop_action
9208 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9209 {
9210 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9211 char exception_name[256];
9212
9213 if (addr != 0)
9214 {
9215 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9216 exception_name [sizeof (exception_name) - 1] = '\0';
9217 }
9218
9219 ada_find_printable_frame (get_current_frame ());
9220
9221 annotate_catchpoint (b->number);
9222 switch (ex)
9223 {
9224 case ex_catch_exception:
9225 if (addr != 0)
9226 printf_filtered (_("\nCatchpoint %d, %s at "),
9227 b->number, exception_name);
9228 else
9229 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9230 break;
9231 case ex_catch_exception_unhandled:
9232 if (addr != 0)
9233 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9234 b->number, exception_name);
9235 else
9236 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9237 b->number);
9238 break;
9239 case ex_catch_assert:
9240 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9241 b->number);
9242 break;
9243 }
9244
9245 return PRINT_SRC_AND_LOC;
9246 }
9247
9248 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9249 for all exception catchpoint kinds. */
9250
9251 static void
9252 print_one_exception (enum exception_catchpoint_kind ex,
9253 struct breakpoint *b, CORE_ADDR *last_addr)
9254 {
9255 if (addressprint)
9256 {
9257 annotate_field (4);
9258 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9259 }
9260
9261 annotate_field (5);
9262 *last_addr = b->loc->address;
9263 switch (ex)
9264 {
9265 case ex_catch_exception:
9266 if (b->exp_string != NULL)
9267 {
9268 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9269
9270 ui_out_field_string (uiout, "what", msg);
9271 xfree (msg);
9272 }
9273 else
9274 ui_out_field_string (uiout, "what", "all Ada exceptions");
9275
9276 break;
9277
9278 case ex_catch_exception_unhandled:
9279 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9280 break;
9281
9282 case ex_catch_assert:
9283 ui_out_field_string (uiout, "what", "failed Ada assertions");
9284 break;
9285
9286 default:
9287 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9288 break;
9289 }
9290 }
9291
9292 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9293 for all exception catchpoint kinds. */
9294
9295 static void
9296 print_mention_exception (enum exception_catchpoint_kind ex,
9297 struct breakpoint *b)
9298 {
9299 switch (ex)
9300 {
9301 case ex_catch_exception:
9302 if (b->exp_string != NULL)
9303 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9304 b->number, b->exp_string);
9305 else
9306 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9307
9308 break;
9309
9310 case ex_catch_exception_unhandled:
9311 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9312 b->number);
9313 break;
9314
9315 case ex_catch_assert:
9316 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9317 break;
9318
9319 default:
9320 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9321 break;
9322 }
9323 }
9324
9325 /* Virtual table for "catch exception" breakpoints. */
9326
9327 static enum print_stop_action
9328 print_it_catch_exception (struct breakpoint *b)
9329 {
9330 return print_it_exception (ex_catch_exception, b);
9331 }
9332
9333 static void
9334 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9335 {
9336 print_one_exception (ex_catch_exception, b, last_addr);
9337 }
9338
9339 static void
9340 print_mention_catch_exception (struct breakpoint *b)
9341 {
9342 print_mention_exception (ex_catch_exception, b);
9343 }
9344
9345 static struct breakpoint_ops catch_exception_breakpoint_ops =
9346 {
9347 print_it_catch_exception,
9348 print_one_catch_exception,
9349 print_mention_catch_exception
9350 };
9351
9352 /* Virtual table for "catch exception unhandled" breakpoints. */
9353
9354 static enum print_stop_action
9355 print_it_catch_exception_unhandled (struct breakpoint *b)
9356 {
9357 return print_it_exception (ex_catch_exception_unhandled, b);
9358 }
9359
9360 static void
9361 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9362 {
9363 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9364 }
9365
9366 static void
9367 print_mention_catch_exception_unhandled (struct breakpoint *b)
9368 {
9369 print_mention_exception (ex_catch_exception_unhandled, b);
9370 }
9371
9372 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9373 print_it_catch_exception_unhandled,
9374 print_one_catch_exception_unhandled,
9375 print_mention_catch_exception_unhandled
9376 };
9377
9378 /* Virtual table for "catch assert" breakpoints. */
9379
9380 static enum print_stop_action
9381 print_it_catch_assert (struct breakpoint *b)
9382 {
9383 return print_it_exception (ex_catch_assert, b);
9384 }
9385
9386 static void
9387 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9388 {
9389 print_one_exception (ex_catch_assert, b, last_addr);
9390 }
9391
9392 static void
9393 print_mention_catch_assert (struct breakpoint *b)
9394 {
9395 print_mention_exception (ex_catch_assert, b);
9396 }
9397
9398 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9399 print_it_catch_assert,
9400 print_one_catch_assert,
9401 print_mention_catch_assert
9402 };
9403
9404 /* Return non-zero if B is an Ada exception catchpoint. */
9405
9406 int
9407 ada_exception_catchpoint_p (struct breakpoint *b)
9408 {
9409 return (b->ops == &catch_exception_breakpoint_ops
9410 || b->ops == &catch_exception_unhandled_breakpoint_ops
9411 || b->ops == &catch_assert_breakpoint_ops);
9412 }
9413
9414 /* Cause the appropriate error if no appropriate runtime symbol is
9415 found to set a breakpoint, using ERR_DESC to describe the
9416 breakpoint. */
9417
9418 static void
9419 error_breakpoint_runtime_sym_not_found (const char *err_desc)
9420 {
9421 /* If we are not debugging an Ada program, we cannot put exception
9422 catchpoints! */
9423
9424 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9425 error (_("Unable to break on %s. Is this an Ada main program?"),
9426 err_desc);
9427
9428 /* If the symbol does not exist, then check that the program is
9429 already started, to make sure that shared libraries have been
9430 loaded. If it is not started, this may mean that the symbol is
9431 in a shared library. */
9432
9433 if (ptid_get_pid (inferior_ptid) == 0)
9434 error (_("Unable to break on %s. Try to start the program first."),
9435 err_desc);
9436
9437 /* At this point, we know that we are debugging an Ada program and
9438 that the inferior has been started, but we still are not able to
9439 find the run-time symbols. That can mean that we are in
9440 configurable run time mode, or that a-except as been optimized
9441 out by the linker... In any case, at this point it is not worth
9442 supporting this feature. */
9443
9444 error (_("Cannot break on %s in this configuration."), err_desc);
9445 }
9446
9447 /* Return a newly allocated copy of the first space-separated token
9448 in ARGSP, and then adjust ARGSP to point immediately after that
9449 token.
9450
9451 Return NULL if ARGPS does not contain any more tokens. */
9452
9453 static char *
9454 ada_get_next_arg (char **argsp)
9455 {
9456 char *args = *argsp;
9457 char *end;
9458 char *result;
9459
9460 /* Skip any leading white space. */
9461
9462 while (isspace (*args))
9463 args++;
9464
9465 if (args[0] == '\0')
9466 return NULL; /* No more arguments. */
9467
9468 /* Find the end of the current argument. */
9469
9470 end = args;
9471 while (*end != '\0' && !isspace (*end))
9472 end++;
9473
9474 /* Adjust ARGSP to point to the start of the next argument. */
9475
9476 *argsp = end;
9477
9478 /* Make a copy of the current argument and return it. */
9479
9480 result = xmalloc (end - args + 1);
9481 strncpy (result, args, end - args);
9482 result[end - args] = '\0';
9483
9484 return result;
9485 }
9486
9487 /* Split the arguments specified in a "catch exception" command.
9488 Set EX to the appropriate catchpoint type.
9489 Set EXP_STRING to the name of the specific exception if
9490 specified by the user. */
9491
9492 static void
9493 catch_ada_exception_command_split (char *args,
9494 enum exception_catchpoint_kind *ex,
9495 char **exp_string)
9496 {
9497 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9498 char *exception_name;
9499
9500 exception_name = ada_get_next_arg (&args);
9501 make_cleanup (xfree, exception_name);
9502
9503 /* Check that we do not have any more arguments. Anything else
9504 is unexpected. */
9505
9506 while (isspace (*args))
9507 args++;
9508
9509 if (args[0] != '\0')
9510 error (_("Junk at end of expression"));
9511
9512 discard_cleanups (old_chain);
9513
9514 if (exception_name == NULL)
9515 {
9516 /* Catch all exceptions. */
9517 *ex = ex_catch_exception;
9518 *exp_string = NULL;
9519 }
9520 else if (strcmp (exception_name, "unhandled") == 0)
9521 {
9522 /* Catch unhandled exceptions. */
9523 *ex = ex_catch_exception_unhandled;
9524 *exp_string = NULL;
9525 }
9526 else
9527 {
9528 /* Catch a specific exception. */
9529 *ex = ex_catch_exception;
9530 *exp_string = exception_name;
9531 }
9532 }
9533
9534 /* Return the name of the symbol on which we should break in order to
9535 implement a catchpoint of the EX kind. */
9536
9537 static const char *
9538 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9539 {
9540 switch (ex)
9541 {
9542 case ex_catch_exception:
9543 return (raise_sym_name);
9544 break;
9545 case ex_catch_exception_unhandled:
9546 return (raise_unhandled_sym_name);
9547 break;
9548 case ex_catch_assert:
9549 return (raise_assert_sym_name);
9550 break;
9551 default:
9552 internal_error (__FILE__, __LINE__,
9553 _("unexpected catchpoint kind (%d)"), ex);
9554 }
9555 }
9556
9557 /* Return the breakpoint ops "virtual table" used for catchpoints
9558 of the EX kind. */
9559
9560 static struct breakpoint_ops *
9561 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9562 {
9563 switch (ex)
9564 {
9565 case ex_catch_exception:
9566 return (&catch_exception_breakpoint_ops);
9567 break;
9568 case ex_catch_exception_unhandled:
9569 return (&catch_exception_unhandled_breakpoint_ops);
9570 break;
9571 case ex_catch_assert:
9572 return (&catch_assert_breakpoint_ops);
9573 break;
9574 default:
9575 internal_error (__FILE__, __LINE__,
9576 _("unexpected catchpoint kind (%d)"), ex);
9577 }
9578 }
9579
9580 /* Return the condition that will be used to match the current exception
9581 being raised with the exception that the user wants to catch. This
9582 assumes that this condition is used when the inferior just triggered
9583 an exception catchpoint.
9584
9585 The string returned is a newly allocated string that needs to be
9586 deallocated later. */
9587
9588 static char *
9589 ada_exception_catchpoint_cond_string (const char *exp_string)
9590 {
9591 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9592 }
9593
9594 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9595
9596 static struct expression *
9597 ada_parse_catchpoint_condition (char *cond_string,
9598 struct symtab_and_line sal)
9599 {
9600 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9601 }
9602
9603 /* Return the symtab_and_line that should be used to insert an exception
9604 catchpoint of the TYPE kind.
9605
9606 EX_STRING should contain the name of a specific exception
9607 that the catchpoint should catch, or NULL otherwise.
9608
9609 The idea behind all the remaining parameters is that their names match
9610 the name of certain fields in the breakpoint structure that are used to
9611 handle exception catchpoints. This function returns the value to which
9612 these fields should be set, depending on the type of catchpoint we need
9613 to create.
9614
9615 If COND and COND_STRING are both non-NULL, any value they might
9616 hold will be free'ed, and then replaced by newly allocated ones.
9617 These parameters are left untouched otherwise. */
9618
9619 static struct symtab_and_line
9620 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9621 char **addr_string, char **cond_string,
9622 struct expression **cond, struct breakpoint_ops **ops)
9623 {
9624 const char *sym_name;
9625 struct symbol *sym;
9626 struct symtab_and_line sal;
9627
9628 /* First lookup the function on which we will break in order to catch
9629 the Ada exceptions requested by the user. */
9630
9631 sym_name = ada_exception_sym_name (ex);
9632 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9633
9634 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9635 that should be compiled with debugging information. As a result, we
9636 expect to find that symbol in the symtabs. If we don't find it, then
9637 the target most likely does not support Ada exceptions, or we cannot
9638 insert exception breakpoints yet, because the GNAT runtime hasn't been
9639 loaded yet. */
9640
9641 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9642 in such a way that no debugging information is produced for the symbol
9643 we are looking for. In this case, we could search the minimal symbols
9644 as a fall-back mechanism. This would still be operating in degraded
9645 mode, however, as we would still be missing the debugging information
9646 that is needed in order to extract the name of the exception being
9647 raised (this name is printed in the catchpoint message, and is also
9648 used when trying to catch a specific exception). We do not handle
9649 this case for now. */
9650
9651 if (sym == NULL)
9652 error_breakpoint_runtime_sym_not_found (sym_name);
9653
9654 /* Make sure that the symbol we found corresponds to a function. */
9655 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9656 error (_("Symbol \"%s\" is not a function (class = %d)"),
9657 sym_name, SYMBOL_CLASS (sym));
9658
9659 sal = find_function_start_sal (sym, 1);
9660
9661 /* Set ADDR_STRING. */
9662
9663 *addr_string = xstrdup (sym_name);
9664
9665 /* Set the COND and COND_STRING (if not NULL). */
9666
9667 if (cond_string != NULL && cond != NULL)
9668 {
9669 if (*cond_string != NULL)
9670 {
9671 xfree (*cond_string);
9672 *cond_string = NULL;
9673 }
9674 if (*cond != NULL)
9675 {
9676 xfree (*cond);
9677 *cond = NULL;
9678 }
9679 if (exp_string != NULL)
9680 {
9681 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9682 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9683 }
9684 }
9685
9686 /* Set OPS. */
9687 *ops = ada_exception_breakpoint_ops (ex);
9688
9689 return sal;
9690 }
9691
9692 /* Parse the arguments (ARGS) of the "catch exception" command.
9693
9694 Set TYPE to the appropriate exception catchpoint type.
9695 If the user asked the catchpoint to catch only a specific
9696 exception, then save the exception name in ADDR_STRING.
9697
9698 See ada_exception_sal for a description of all the remaining
9699 function arguments of this function. */
9700
9701 struct symtab_and_line
9702 ada_decode_exception_location (char *args, char **addr_string,
9703 char **exp_string, char **cond_string,
9704 struct expression **cond,
9705 struct breakpoint_ops **ops)
9706 {
9707 enum exception_catchpoint_kind ex;
9708
9709 catch_ada_exception_command_split (args, &ex, exp_string);
9710 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9711 cond, ops);
9712 }
9713
9714 struct symtab_and_line
9715 ada_decode_assert_location (char *args, char **addr_string,
9716 struct breakpoint_ops **ops)
9717 {
9718 /* Check that no argument where provided at the end of the command. */
9719
9720 if (args != NULL)
9721 {
9722 while (isspace (*args))
9723 args++;
9724 if (*args != '\0')
9725 error (_("Junk at end of arguments."));
9726 }
9727
9728 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9729 ops);
9730 }
9731
9732 /* Operators */
9733 /* Information about operators given special treatment in functions
9734 below. */
9735 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9736
9737 #define ADA_OPERATORS \
9738 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9739 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9740 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9741 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9742 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9743 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9744 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9745 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9746 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9747 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9748 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9749 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9750 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9751 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9752 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9753 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9754 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9755 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9756 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9757
9758 static void
9759 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9760 {
9761 switch (exp->elts[pc - 1].opcode)
9762 {
9763 default:
9764 operator_length_standard (exp, pc, oplenp, argsp);
9765 break;
9766
9767 #define OP_DEFN(op, len, args, binop) \
9768 case op: *oplenp = len; *argsp = args; break;
9769 ADA_OPERATORS;
9770 #undef OP_DEFN
9771
9772 case OP_AGGREGATE:
9773 *oplenp = 3;
9774 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9775 break;
9776
9777 case OP_CHOICES:
9778 *oplenp = 3;
9779 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9780 break;
9781 }
9782 }
9783
9784 static char *
9785 ada_op_name (enum exp_opcode opcode)
9786 {
9787 switch (opcode)
9788 {
9789 default:
9790 return op_name_standard (opcode);
9791
9792 #define OP_DEFN(op, len, args, binop) case op: return #op;
9793 ADA_OPERATORS;
9794 #undef OP_DEFN
9795
9796 case OP_AGGREGATE:
9797 return "OP_AGGREGATE";
9798 case OP_CHOICES:
9799 return "OP_CHOICES";
9800 case OP_NAME:
9801 return "OP_NAME";
9802 }
9803 }
9804
9805 /* As for operator_length, but assumes PC is pointing at the first
9806 element of the operator, and gives meaningful results only for the
9807 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9808
9809 static void
9810 ada_forward_operator_length (struct expression *exp, int pc,
9811 int *oplenp, int *argsp)
9812 {
9813 switch (exp->elts[pc].opcode)
9814 {
9815 default:
9816 *oplenp = *argsp = 0;
9817 break;
9818
9819 #define OP_DEFN(op, len, args, binop) \
9820 case op: *oplenp = len; *argsp = args; break;
9821 ADA_OPERATORS;
9822 #undef OP_DEFN
9823
9824 case OP_AGGREGATE:
9825 *oplenp = 3;
9826 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9827 break;
9828
9829 case OP_CHOICES:
9830 *oplenp = 3;
9831 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9832 break;
9833
9834 case OP_STRING:
9835 case OP_NAME:
9836 {
9837 int len = longest_to_int (exp->elts[pc + 1].longconst);
9838 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9839 *argsp = 0;
9840 break;
9841 }
9842 }
9843 }
9844
9845 static int
9846 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9847 {
9848 enum exp_opcode op = exp->elts[elt].opcode;
9849 int oplen, nargs;
9850 int pc = elt;
9851 int i;
9852
9853 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9854
9855 switch (op)
9856 {
9857 /* Ada attributes ('Foo). */
9858 case OP_ATR_FIRST:
9859 case OP_ATR_LAST:
9860 case OP_ATR_LENGTH:
9861 case OP_ATR_IMAGE:
9862 case OP_ATR_MAX:
9863 case OP_ATR_MIN:
9864 case OP_ATR_MODULUS:
9865 case OP_ATR_POS:
9866 case OP_ATR_SIZE:
9867 case OP_ATR_TAG:
9868 case OP_ATR_VAL:
9869 break;
9870
9871 case UNOP_IN_RANGE:
9872 case UNOP_QUAL:
9873 /* XXX: gdb_sprint_host_address, type_sprint */
9874 fprintf_filtered (stream, _("Type @"));
9875 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9876 fprintf_filtered (stream, " (");
9877 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9878 fprintf_filtered (stream, ")");
9879 break;
9880 case BINOP_IN_BOUNDS:
9881 fprintf_filtered (stream, " (%d)",
9882 longest_to_int (exp->elts[pc + 2].longconst));
9883 break;
9884 case TERNOP_IN_RANGE:
9885 break;
9886
9887 case OP_AGGREGATE:
9888 case OP_OTHERS:
9889 case OP_DISCRETE_RANGE:
9890 case OP_POSITIONAL:
9891 case OP_CHOICES:
9892 break;
9893
9894 case OP_NAME:
9895 case OP_STRING:
9896 {
9897 char *name = &exp->elts[elt + 2].string;
9898 int len = longest_to_int (exp->elts[elt + 1].longconst);
9899 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9900 break;
9901 }
9902
9903 default:
9904 return dump_subexp_body_standard (exp, stream, elt);
9905 }
9906
9907 elt += oplen;
9908 for (i = 0; i < nargs; i += 1)
9909 elt = dump_subexp (exp, stream, elt);
9910
9911 return elt;
9912 }
9913
9914 /* The Ada extension of print_subexp (q.v.). */
9915
9916 static void
9917 ada_print_subexp (struct expression *exp, int *pos,
9918 struct ui_file *stream, enum precedence prec)
9919 {
9920 int oplen, nargs, i;
9921 int pc = *pos;
9922 enum exp_opcode op = exp->elts[pc].opcode;
9923
9924 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9925
9926 *pos += oplen;
9927 switch (op)
9928 {
9929 default:
9930 *pos -= oplen;
9931 print_subexp_standard (exp, pos, stream, prec);
9932 return;
9933
9934 case OP_VAR_VALUE:
9935 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
9936 return;
9937
9938 case BINOP_IN_BOUNDS:
9939 /* XXX: sprint_subexp */
9940 print_subexp (exp, pos, stream, PREC_SUFFIX);
9941 fputs_filtered (" in ", stream);
9942 print_subexp (exp, pos, stream, PREC_SUFFIX);
9943 fputs_filtered ("'range", stream);
9944 if (exp->elts[pc + 1].longconst > 1)
9945 fprintf_filtered (stream, "(%ld)",
9946 (long) exp->elts[pc + 1].longconst);
9947 return;
9948
9949 case TERNOP_IN_RANGE:
9950 if (prec >= PREC_EQUAL)
9951 fputs_filtered ("(", stream);
9952 /* XXX: sprint_subexp */
9953 print_subexp (exp, pos, stream, PREC_SUFFIX);
9954 fputs_filtered (" in ", stream);
9955 print_subexp (exp, pos, stream, PREC_EQUAL);
9956 fputs_filtered (" .. ", stream);
9957 print_subexp (exp, pos, stream, PREC_EQUAL);
9958 if (prec >= PREC_EQUAL)
9959 fputs_filtered (")", stream);
9960 return;
9961
9962 case OP_ATR_FIRST:
9963 case OP_ATR_LAST:
9964 case OP_ATR_LENGTH:
9965 case OP_ATR_IMAGE:
9966 case OP_ATR_MAX:
9967 case OP_ATR_MIN:
9968 case OP_ATR_MODULUS:
9969 case OP_ATR_POS:
9970 case OP_ATR_SIZE:
9971 case OP_ATR_TAG:
9972 case OP_ATR_VAL:
9973 if (exp->elts[*pos].opcode == OP_TYPE)
9974 {
9975 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
9976 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
9977 *pos += 3;
9978 }
9979 else
9980 print_subexp (exp, pos, stream, PREC_SUFFIX);
9981 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
9982 if (nargs > 1)
9983 {
9984 int tem;
9985 for (tem = 1; tem < nargs; tem += 1)
9986 {
9987 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
9988 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
9989 }
9990 fputs_filtered (")", stream);
9991 }
9992 return;
9993
9994 case UNOP_QUAL:
9995 type_print (exp->elts[pc + 1].type, "", stream, 0);
9996 fputs_filtered ("'(", stream);
9997 print_subexp (exp, pos, stream, PREC_PREFIX);
9998 fputs_filtered (")", stream);
9999 return;
10000
10001 case UNOP_IN_RANGE:
10002 /* XXX: sprint_subexp */
10003 print_subexp (exp, pos, stream, PREC_SUFFIX);
10004 fputs_filtered (" in ", stream);
10005 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10006 return;
10007
10008 case OP_DISCRETE_RANGE:
10009 print_subexp (exp, pos, stream, PREC_SUFFIX);
10010 fputs_filtered ("..", stream);
10011 print_subexp (exp, pos, stream, PREC_SUFFIX);
10012 return;
10013
10014 case OP_OTHERS:
10015 fputs_filtered ("others => ", stream);
10016 print_subexp (exp, pos, stream, PREC_SUFFIX);
10017 return;
10018
10019 case OP_CHOICES:
10020 for (i = 0; i < nargs-1; i += 1)
10021 {
10022 if (i > 0)
10023 fputs_filtered ("|", stream);
10024 print_subexp (exp, pos, stream, PREC_SUFFIX);
10025 }
10026 fputs_filtered (" => ", stream);
10027 print_subexp (exp, pos, stream, PREC_SUFFIX);
10028 return;
10029
10030 case OP_POSITIONAL:
10031 print_subexp (exp, pos, stream, PREC_SUFFIX);
10032 return;
10033
10034 case OP_AGGREGATE:
10035 fputs_filtered ("(", stream);
10036 for (i = 0; i < nargs; i += 1)
10037 {
10038 if (i > 0)
10039 fputs_filtered (", ", stream);
10040 print_subexp (exp, pos, stream, PREC_SUFFIX);
10041 }
10042 fputs_filtered (")", stream);
10043 return;
10044 }
10045 }
10046
10047 /* Table mapping opcodes into strings for printing operators
10048 and precedences of the operators. */
10049
10050 static const struct op_print ada_op_print_tab[] = {
10051 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10052 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10053 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10054 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10055 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10056 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10057 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10058 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10059 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10060 {">=", BINOP_GEQ, PREC_ORDER, 0},
10061 {">", BINOP_GTR, PREC_ORDER, 0},
10062 {"<", BINOP_LESS, PREC_ORDER, 0},
10063 {">>", BINOP_RSH, PREC_SHIFT, 0},
10064 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10065 {"+", BINOP_ADD, PREC_ADD, 0},
10066 {"-", BINOP_SUB, PREC_ADD, 0},
10067 {"&", BINOP_CONCAT, PREC_ADD, 0},
10068 {"*", BINOP_MUL, PREC_MUL, 0},
10069 {"/", BINOP_DIV, PREC_MUL, 0},
10070 {"rem", BINOP_REM, PREC_MUL, 0},
10071 {"mod", BINOP_MOD, PREC_MUL, 0},
10072 {"**", BINOP_EXP, PREC_REPEAT, 0},
10073 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10074 {"-", UNOP_NEG, PREC_PREFIX, 0},
10075 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10076 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10077 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10078 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10079 {".all", UNOP_IND, PREC_SUFFIX, 1},
10080 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10081 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10082 {NULL, 0, 0, 0}
10083 };
10084 \f
10085 /* Fundamental Ada Types */
10086
10087 /* Create a fundamental Ada type using default reasonable for the current
10088 target machine.
10089
10090 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10091 define fundamental types such as "int" or "double". Others (stabs or
10092 DWARF version 2, etc) do define fundamental types. For the formats which
10093 don't provide fundamental types, gdb can create such types using this
10094 function.
10095
10096 FIXME: Some compilers distinguish explicitly signed integral types
10097 (signed short, signed int, signed long) from "regular" integral types
10098 (short, int, long) in the debugging information. There is some dis-
10099 agreement as to how useful this feature is. In particular, gcc does
10100 not support this. Also, only some debugging formats allow the
10101 distinction to be passed on to a debugger. For now, we always just
10102 use "short", "int", or "long" as the type name, for both the implicit
10103 and explicitly signed types. This also makes life easier for the
10104 gdb test suite since we don't have to account for the differences
10105 in output depending upon what the compiler and debugging format
10106 support. We will probably have to re-examine the issue when gdb
10107 starts taking it's fundamental type information directly from the
10108 debugging information supplied by the compiler. fnf@cygnus.com */
10109
10110 static struct type *
10111 ada_create_fundamental_type (struct objfile *objfile, int typeid)
10112 {
10113 struct type *type = NULL;
10114
10115 switch (typeid)
10116 {
10117 default:
10118 /* FIXME: For now, if we are asked to produce a type not in this
10119 language, create the equivalent of a C integer type with the
10120 name "<?type?>". When all the dust settles from the type
10121 reconstruction work, this should probably become an error. */
10122 type = init_type (TYPE_CODE_INT,
10123 TARGET_INT_BIT / TARGET_CHAR_BIT,
10124 0, "<?type?>", objfile);
10125 warning (_("internal error: no Ada fundamental type %d"), typeid);
10126 break;
10127 case FT_VOID:
10128 type = init_type (TYPE_CODE_VOID,
10129 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10130 0, "void", objfile);
10131 break;
10132 case FT_CHAR:
10133 type = init_type (TYPE_CODE_INT,
10134 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10135 0, "character", objfile);
10136 break;
10137 case FT_SIGNED_CHAR:
10138 type = init_type (TYPE_CODE_INT,
10139 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10140 0, "signed char", objfile);
10141 break;
10142 case FT_UNSIGNED_CHAR:
10143 type = init_type (TYPE_CODE_INT,
10144 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10145 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10146 break;
10147 case FT_SHORT:
10148 type = init_type (TYPE_CODE_INT,
10149 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10150 0, "short_integer", objfile);
10151 break;
10152 case FT_SIGNED_SHORT:
10153 type = init_type (TYPE_CODE_INT,
10154 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10155 0, "short_integer", objfile);
10156 break;
10157 case FT_UNSIGNED_SHORT:
10158 type = init_type (TYPE_CODE_INT,
10159 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10160 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10161 break;
10162 case FT_INTEGER:
10163 type = init_type (TYPE_CODE_INT,
10164 TARGET_INT_BIT / TARGET_CHAR_BIT,
10165 0, "integer", objfile);
10166 break;
10167 case FT_SIGNED_INTEGER:
10168 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT /
10169 TARGET_CHAR_BIT,
10170 0, "integer", objfile); /* FIXME -fnf */
10171 break;
10172 case FT_UNSIGNED_INTEGER:
10173 type = init_type (TYPE_CODE_INT,
10174 TARGET_INT_BIT / TARGET_CHAR_BIT,
10175 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10176 break;
10177 case FT_LONG:
10178 type = init_type (TYPE_CODE_INT,
10179 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10180 0, "long_integer", objfile);
10181 break;
10182 case FT_SIGNED_LONG:
10183 type = init_type (TYPE_CODE_INT,
10184 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10185 0, "long_integer", objfile);
10186 break;
10187 case FT_UNSIGNED_LONG:
10188 type = init_type (TYPE_CODE_INT,
10189 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10190 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10191 break;
10192 case FT_LONG_LONG:
10193 type = init_type (TYPE_CODE_INT,
10194 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10195 0, "long_long_integer", objfile);
10196 break;
10197 case FT_SIGNED_LONG_LONG:
10198 type = init_type (TYPE_CODE_INT,
10199 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10200 0, "long_long_integer", objfile);
10201 break;
10202 case FT_UNSIGNED_LONG_LONG:
10203 type = init_type (TYPE_CODE_INT,
10204 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10205 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10206 break;
10207 case FT_FLOAT:
10208 type = init_type (TYPE_CODE_FLT,
10209 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10210 0, "float", objfile);
10211 break;
10212 case FT_DBL_PREC_FLOAT:
10213 type = init_type (TYPE_CODE_FLT,
10214 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10215 0, "long_float", objfile);
10216 break;
10217 case FT_EXT_PREC_FLOAT:
10218 type = init_type (TYPE_CODE_FLT,
10219 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10220 0, "long_long_float", objfile);
10221 break;
10222 }
10223 return (type);
10224 }
10225
10226 enum ada_primitive_types {
10227 ada_primitive_type_int,
10228 ada_primitive_type_long,
10229 ada_primitive_type_short,
10230 ada_primitive_type_char,
10231 ada_primitive_type_float,
10232 ada_primitive_type_double,
10233 ada_primitive_type_void,
10234 ada_primitive_type_long_long,
10235 ada_primitive_type_long_double,
10236 ada_primitive_type_natural,
10237 ada_primitive_type_positive,
10238 ada_primitive_type_system_address,
10239 nr_ada_primitive_types
10240 };
10241
10242 static void
10243 ada_language_arch_info (struct gdbarch *current_gdbarch,
10244 struct language_arch_info *lai)
10245 {
10246 const struct builtin_type *builtin = builtin_type (current_gdbarch);
10247 lai->primitive_type_vector
10248 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
10249 struct type *);
10250 lai->primitive_type_vector [ada_primitive_type_int] =
10251 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10252 0, "integer", (struct objfile *) NULL);
10253 lai->primitive_type_vector [ada_primitive_type_long] =
10254 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
10255 0, "long_integer", (struct objfile *) NULL);
10256 lai->primitive_type_vector [ada_primitive_type_short] =
10257 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10258 0, "short_integer", (struct objfile *) NULL);
10259 lai->string_char_type =
10260 lai->primitive_type_vector [ada_primitive_type_char] =
10261 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10262 0, "character", (struct objfile *) NULL);
10263 lai->primitive_type_vector [ada_primitive_type_float] =
10264 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10265 0, "float", (struct objfile *) NULL);
10266 lai->primitive_type_vector [ada_primitive_type_double] =
10267 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10268 0, "long_float", (struct objfile *) NULL);
10269 lai->primitive_type_vector [ada_primitive_type_long_long] =
10270 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10271 0, "long_long_integer", (struct objfile *) NULL);
10272 lai->primitive_type_vector [ada_primitive_type_long_double] =
10273 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10274 0, "long_long_float", (struct objfile *) NULL);
10275 lai->primitive_type_vector [ada_primitive_type_natural] =
10276 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10277 0, "natural", (struct objfile *) NULL);
10278 lai->primitive_type_vector [ada_primitive_type_positive] =
10279 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10280 0, "positive", (struct objfile *) NULL);
10281 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10282
10283 lai->primitive_type_vector [ada_primitive_type_system_address] =
10284 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10285 (struct objfile *) NULL));
10286 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10287 = "system__address";
10288 }
10289 \f
10290 /* Language vector */
10291
10292 /* Not really used, but needed in the ada_language_defn. */
10293
10294 static void
10295 emit_char (int c, struct ui_file *stream, int quoter)
10296 {
10297 ada_emit_char (c, stream, quoter, 1);
10298 }
10299
10300 static int
10301 parse (void)
10302 {
10303 warnings_issued = 0;
10304 return ada_parse ();
10305 }
10306
10307 static const struct exp_descriptor ada_exp_descriptor = {
10308 ada_print_subexp,
10309 ada_operator_length,
10310 ada_op_name,
10311 ada_dump_subexp_body,
10312 ada_evaluate_subexp
10313 };
10314
10315 const struct language_defn ada_language_defn = {
10316 "ada", /* Language name */
10317 language_ada,
10318 NULL,
10319 range_check_off,
10320 type_check_off,
10321 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10322 that's not quite what this means. */
10323 array_row_major,
10324 &ada_exp_descriptor,
10325 parse,
10326 ada_error,
10327 resolve,
10328 ada_printchar, /* Print a character constant */
10329 ada_printstr, /* Function to print string constant */
10330 emit_char, /* Function to print single char (not used) */
10331 ada_create_fundamental_type, /* Create fundamental type in this language */
10332 ada_print_type, /* Print a type using appropriate syntax */
10333 ada_val_print, /* Print a value using appropriate syntax */
10334 ada_value_print, /* Print a top-level value */
10335 NULL, /* Language specific skip_trampoline */
10336 NULL, /* value_of_this */
10337 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10338 basic_lookup_transparent_type, /* lookup_transparent_type */
10339 ada_la_decode, /* Language specific symbol demangler */
10340 NULL, /* Language specific class_name_from_physname */
10341 ada_op_print_tab, /* expression operators for printing */
10342 0, /* c-style arrays */
10343 1, /* String lower bound */
10344 NULL,
10345 ada_get_gdb_completer_word_break_characters,
10346 ada_language_arch_info,
10347 ada_print_array_index,
10348 LANG_MAGIC
10349 };
10350
10351 void
10352 _initialize_ada_language (void)
10353 {
10354 add_language (&ada_language_defn);
10355
10356 varsize_limit = 65536;
10357
10358 obstack_init (&symbol_list_obstack);
10359
10360 decoded_names_store = htab_create_alloc
10361 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10362 NULL, xcalloc, xfree);
10363 }
This page took 0.25552 seconds and 4 git commands to generate.