1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdb_regex.h"
28 #include "expression.h"
29 #include "parser-defs.h"
35 #include "breakpoint.h"
38 #include "gdb_obstack.h"
40 #include "completer.h"
47 #include "observable.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 static struct type
*desc_base_type (struct type
*);
71 static struct type
*desc_bounds_type (struct type
*);
73 static struct value
*desc_bounds (struct value
*);
75 static int fat_pntr_bounds_bitpos (struct type
*);
77 static int fat_pntr_bounds_bitsize (struct type
*);
79 static struct type
*desc_data_target_type (struct type
*);
81 static struct value
*desc_data (struct value
*);
83 static int fat_pntr_data_bitpos (struct type
*);
85 static int fat_pntr_data_bitsize (struct type
*);
87 static struct value
*desc_one_bound (struct value
*, int, int);
89 static int desc_bound_bitpos (struct type
*, int, int);
91 static int desc_bound_bitsize (struct type
*, int, int);
93 static struct type
*desc_index_type (struct type
*, int);
95 static int desc_arity (struct type
*);
97 static int ada_type_match (struct type
*, struct type
*, int);
99 static int ada_args_match (struct symbol
*, struct value
**, int);
101 static struct value
*make_array_descriptor (struct type
*, struct value
*);
103 static void ada_add_block_symbols (struct obstack
*,
104 const struct block
*,
105 const lookup_name_info
&lookup_name
,
106 domain_enum
, struct objfile
*);
108 static void ada_add_all_symbols (struct obstack
*, const struct block
*,
109 const lookup_name_info
&lookup_name
,
110 domain_enum
, int, int *);
112 static int is_nonfunction (struct block_symbol
*, int);
114 static void add_defn_to_vec (struct obstack
*, struct symbol
*,
115 const struct block
*);
117 static int num_defns_collected (struct obstack
*);
119 static struct block_symbol
*defns_collected (struct obstack
*, int);
121 static struct value
*resolve_subexp (expression_up
*, int *, int,
123 innermost_block_tracker
*);
125 static void replace_operator_with_call (expression_up
*, int, int, int,
126 struct symbol
*, const struct block
*);
128 static int possible_user_operator_p (enum exp_opcode
, struct value
**);
130 static const char *ada_op_name (enum exp_opcode
);
132 static const char *ada_decoded_op_name (enum exp_opcode
);
134 static int numeric_type_p (struct type
*);
136 static int integer_type_p (struct type
*);
138 static int scalar_type_p (struct type
*);
140 static int discrete_type_p (struct type
*);
142 static struct type
*ada_lookup_struct_elt_type (struct type
*, const char *,
145 static struct value
*evaluate_subexp_type (struct expression
*, int *);
147 static struct type
*ada_find_parallel_type_with_name (struct type
*,
150 static int is_dynamic_field (struct type
*, int);
152 static struct type
*to_fixed_variant_branch_type (struct type
*,
154 CORE_ADDR
, struct value
*);
156 static struct type
*to_fixed_array_type (struct type
*, struct value
*, int);
158 static struct type
*to_fixed_range_type (struct type
*, struct value
*);
160 static struct type
*to_static_fixed_type (struct type
*);
161 static struct type
*static_unwrap_type (struct type
*type
);
163 static struct value
*unwrap_value (struct value
*);
165 static struct type
*constrained_packed_array_type (struct type
*, long *);
167 static struct type
*decode_constrained_packed_array_type (struct type
*);
169 static long decode_packed_array_bitsize (struct type
*);
171 static struct value
*decode_constrained_packed_array (struct value
*);
173 static int ada_is_packed_array_type (struct type
*);
175 static int ada_is_unconstrained_packed_array_type (struct type
*);
177 static struct value
*value_subscript_packed (struct value
*, int,
180 static struct value
*coerce_unspec_val_to_type (struct value
*,
183 static int lesseq_defined_than (struct symbol
*, struct symbol
*);
185 static int equiv_types (struct type
*, struct type
*);
187 static int is_name_suffix (const char *);
189 static int advance_wild_match (const char **, const char *, int);
191 static bool wild_match (const char *name
, const char *patn
);
193 static struct value
*ada_coerce_ref (struct value
*);
195 static LONGEST
pos_atr (struct value
*);
197 static struct value
*value_pos_atr (struct type
*, struct value
*);
199 static struct value
*value_val_atr (struct type
*, struct value
*);
201 static struct symbol
*standard_lookup (const char *, const struct block
*,
204 static struct value
*ada_search_struct_field (const char *, struct value
*, int,
207 static struct value
*ada_value_primitive_field (struct value
*, int, int,
210 static int find_struct_field (const char *, struct type
*, int,
211 struct type
**, int *, int *, int *, int *);
213 static int ada_resolve_function (struct block_symbol
*, int,
214 struct value
**, int, const char *,
217 static int ada_is_direct_array_type (struct type
*);
219 static void ada_language_arch_info (struct gdbarch
*,
220 struct language_arch_info
*);
222 static struct value
*ada_index_struct_field (int, struct value
*, int,
225 static struct value
*assign_aggregate (struct value
*, struct value
*,
229 static void aggregate_assign_from_choices (struct value
*, struct value
*,
231 int *, LONGEST
*, int *,
232 int, LONGEST
, LONGEST
);
234 static void aggregate_assign_positional (struct value
*, struct value
*,
236 int *, LONGEST
*, int *, int,
240 static void aggregate_assign_others (struct value
*, struct value
*,
242 int *, LONGEST
*, int, LONGEST
, LONGEST
);
245 static void add_component_interval (LONGEST
, LONGEST
, LONGEST
*, int *, int);
248 static struct value
*ada_evaluate_subexp (struct type
*, struct expression
*,
251 static void ada_forward_operator_length (struct expression
*, int, int *,
254 static struct type
*ada_find_any_type (const char *name
);
256 static symbol_name_matcher_ftype
*ada_get_symbol_name_matcher
257 (const lookup_name_info
&lookup_name
);
261 /* The result of a symbol lookup to be stored in our symbol cache. */
265 /* The name used to perform the lookup. */
267 /* The namespace used during the lookup. */
269 /* The symbol returned by the lookup, or NULL if no matching symbol
272 /* The block where the symbol was found, or NULL if no matching
274 const struct block
*block
;
275 /* A pointer to the next entry with the same hash. */
276 struct cache_entry
*next
;
279 /* The Ada symbol cache, used to store the result of Ada-mode symbol
280 lookups in the course of executing the user's commands.
282 The cache is implemented using a simple, fixed-sized hash.
283 The size is fixed on the grounds that there are not likely to be
284 all that many symbols looked up during any given session, regardless
285 of the size of the symbol table. If we decide to go to a resizable
286 table, let's just use the stuff from libiberty instead. */
288 #define HASH_SIZE 1009
290 struct ada_symbol_cache
292 /* An obstack used to store the entries in our cache. */
293 struct obstack cache_space
;
295 /* The root of the hash table used to implement our symbol cache. */
296 struct cache_entry
*root
[HASH_SIZE
];
299 static void ada_free_symbol_cache (struct ada_symbol_cache
*sym_cache
);
301 /* Maximum-sized dynamic type. */
302 static unsigned int varsize_limit
;
304 static const char ada_completer_word_break_characters
[] =
306 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
308 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
311 /* The name of the symbol to use to get the name of the main subprogram. */
312 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME
[]
313 = "__gnat_ada_main_program_name";
315 /* Limit on the number of warnings to raise per expression evaluation. */
316 static int warning_limit
= 2;
318 /* Number of warning messages issued; reset to 0 by cleanups after
319 expression evaluation. */
320 static int warnings_issued
= 0;
322 static const char *known_runtime_file_name_patterns
[] = {
323 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
326 static const char *known_auxiliary_function_name_patterns
[] = {
327 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
330 /* Maintenance-related settings for this module. */
332 static struct cmd_list_element
*maint_set_ada_cmdlist
;
333 static struct cmd_list_element
*maint_show_ada_cmdlist
;
335 /* Implement the "maintenance set ada" (prefix) command. */
338 maint_set_ada_cmd (const char *args
, int from_tty
)
340 help_list (maint_set_ada_cmdlist
, "maintenance set ada ", all_commands
,
344 /* Implement the "maintenance show ada" (prefix) command. */
347 maint_show_ada_cmd (const char *args
, int from_tty
)
349 cmd_show_list (maint_show_ada_cmdlist
, from_tty
, "");
352 /* The "maintenance ada set/show ignore-descriptive-type" value. */
354 static bool ada_ignore_descriptive_types_p
= false;
356 /* Inferior-specific data. */
358 /* Per-inferior data for this module. */
360 struct ada_inferior_data
362 /* The ada__tags__type_specific_data type, which is used when decoding
363 tagged types. With older versions of GNAT, this type was directly
364 accessible through a component ("tsd") in the object tag. But this
365 is no longer the case, so we cache it for each inferior. */
366 struct type
*tsd_type
= nullptr;
368 /* The exception_support_info data. This data is used to determine
369 how to implement support for Ada exception catchpoints in a given
371 const struct exception_support_info
*exception_info
= nullptr;
374 /* Our key to this module's inferior data. */
375 static const struct inferior_key
<ada_inferior_data
> ada_inferior_data
;
377 /* Return our inferior data for the given inferior (INF).
379 This function always returns a valid pointer to an allocated
380 ada_inferior_data structure. If INF's inferior data has not
381 been previously set, this functions creates a new one with all
382 fields set to zero, sets INF's inferior to it, and then returns
383 a pointer to that newly allocated ada_inferior_data. */
385 static struct ada_inferior_data
*
386 get_ada_inferior_data (struct inferior
*inf
)
388 struct ada_inferior_data
*data
;
390 data
= ada_inferior_data
.get (inf
);
392 data
= ada_inferior_data
.emplace (inf
);
397 /* Perform all necessary cleanups regarding our module's inferior data
398 that is required after the inferior INF just exited. */
401 ada_inferior_exit (struct inferior
*inf
)
403 ada_inferior_data
.clear (inf
);
407 /* program-space-specific data. */
409 /* This module's per-program-space data. */
410 struct ada_pspace_data
414 if (sym_cache
!= NULL
)
415 ada_free_symbol_cache (sym_cache
);
418 /* The Ada symbol cache. */
419 struct ada_symbol_cache
*sym_cache
= nullptr;
422 /* Key to our per-program-space data. */
423 static const struct program_space_key
<ada_pspace_data
> ada_pspace_data_handle
;
425 /* Return this module's data for the given program space (PSPACE).
426 If not is found, add a zero'ed one now.
428 This function always returns a valid object. */
430 static struct ada_pspace_data
*
431 get_ada_pspace_data (struct program_space
*pspace
)
433 struct ada_pspace_data
*data
;
435 data
= ada_pspace_data_handle
.get (pspace
);
437 data
= ada_pspace_data_handle
.emplace (pspace
);
444 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
445 all typedef layers have been peeled. Otherwise, return TYPE.
447 Normally, we really expect a typedef type to only have 1 typedef layer.
448 In other words, we really expect the target type of a typedef type to be
449 a non-typedef type. This is particularly true for Ada units, because
450 the language does not have a typedef vs not-typedef distinction.
451 In that respect, the Ada compiler has been trying to eliminate as many
452 typedef definitions in the debugging information, since they generally
453 do not bring any extra information (we still use typedef under certain
454 circumstances related mostly to the GNAT encoding).
456 Unfortunately, we have seen situations where the debugging information
457 generated by the compiler leads to such multiple typedef layers. For
458 instance, consider the following example with stabs:
460 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
461 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
463 This is an error in the debugging information which causes type
464 pck__float_array___XUP to be defined twice, and the second time,
465 it is defined as a typedef of a typedef.
467 This is on the fringe of legality as far as debugging information is
468 concerned, and certainly unexpected. But it is easy to handle these
469 situations correctly, so we can afford to be lenient in this case. */
472 ada_typedef_target_type (struct type
*type
)
474 while (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
475 type
= TYPE_TARGET_TYPE (type
);
479 /* Given DECODED_NAME a string holding a symbol name in its
480 decoded form (ie using the Ada dotted notation), returns
481 its unqualified name. */
484 ada_unqualified_name (const char *decoded_name
)
488 /* If the decoded name starts with '<', it means that the encoded
489 name does not follow standard naming conventions, and thus that
490 it is not your typical Ada symbol name. Trying to unqualify it
491 is therefore pointless and possibly erroneous. */
492 if (decoded_name
[0] == '<')
495 result
= strrchr (decoded_name
, '.');
497 result
++; /* Skip the dot... */
499 result
= decoded_name
;
504 /* Return a string starting with '<', followed by STR, and '>'. */
507 add_angle_brackets (const char *str
)
509 return string_printf ("<%s>", str
);
513 ada_get_gdb_completer_word_break_characters (void)
515 return ada_completer_word_break_characters
;
518 /* Print an array element index using the Ada syntax. */
521 ada_print_array_index (struct value
*index_value
, struct ui_file
*stream
,
522 const struct value_print_options
*options
)
524 LA_VALUE_PRINT (index_value
, stream
, options
);
525 fprintf_filtered (stream
, " => ");
528 /* la_watch_location_expression for Ada. */
530 static gdb::unique_xmalloc_ptr
<char>
531 ada_watch_location_expression (struct type
*type
, CORE_ADDR addr
)
533 type
= check_typedef (TYPE_TARGET_TYPE (check_typedef (type
)));
534 std::string name
= type_to_string (type
);
535 return gdb::unique_xmalloc_ptr
<char>
536 (xstrprintf ("{%s} %s", name
.c_str (), core_addr_to_string (addr
)));
539 /* Assuming V points to an array of S objects, make sure that it contains at
540 least M objects, updating V and S as necessary. */
542 #define GROW_VECT(v, s, m) \
543 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
545 /* Assuming VECT points to an array of *SIZE objects of size
546 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
547 updating *SIZE as necessary and returning the (new) array. */
550 grow_vect (void *vect
, size_t *size
, size_t min_size
, int element_size
)
552 if (*size
< min_size
)
555 if (*size
< min_size
)
557 vect
= xrealloc (vect
, *size
* element_size
);
562 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
563 suffix of FIELD_NAME beginning "___". */
566 field_name_match (const char *field_name
, const char *target
)
568 int len
= strlen (target
);
571 (strncmp (field_name
, target
, len
) == 0
572 && (field_name
[len
] == '\0'
573 || (startswith (field_name
+ len
, "___")
574 && strcmp (field_name
+ strlen (field_name
) - 6,
579 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
580 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
581 and return its index. This function also handles fields whose name
582 have ___ suffixes because the compiler sometimes alters their name
583 by adding such a suffix to represent fields with certain constraints.
584 If the field could not be found, return a negative number if
585 MAYBE_MISSING is set. Otherwise raise an error. */
588 ada_get_field_index (const struct type
*type
, const char *field_name
,
592 struct type
*struct_type
= check_typedef ((struct type
*) type
);
594 for (fieldno
= 0; fieldno
< TYPE_NFIELDS (struct_type
); fieldno
++)
595 if (field_name_match (TYPE_FIELD_NAME (struct_type
, fieldno
), field_name
))
599 error (_("Unable to find field %s in struct %s. Aborting"),
600 field_name
, TYPE_NAME (struct_type
));
605 /* The length of the prefix of NAME prior to any "___" suffix. */
608 ada_name_prefix_len (const char *name
)
614 const char *p
= strstr (name
, "___");
617 return strlen (name
);
623 /* Return non-zero if SUFFIX is a suffix of STR.
624 Return zero if STR is null. */
627 is_suffix (const char *str
, const char *suffix
)
634 len2
= strlen (suffix
);
635 return (len1
>= len2
&& strcmp (str
+ len1
- len2
, suffix
) == 0);
638 /* The contents of value VAL, treated as a value of type TYPE. The
639 result is an lval in memory if VAL is. */
641 static struct value
*
642 coerce_unspec_val_to_type (struct value
*val
, struct type
*type
)
644 type
= ada_check_typedef (type
);
645 if (value_type (val
) == type
)
649 struct value
*result
;
651 /* Make sure that the object size is not unreasonable before
652 trying to allocate some memory for it. */
653 ada_ensure_varsize_limit (type
);
656 || TYPE_LENGTH (type
) > TYPE_LENGTH (value_type (val
)))
657 result
= allocate_value_lazy (type
);
660 result
= allocate_value (type
);
661 value_contents_copy_raw (result
, 0, val
, 0, TYPE_LENGTH (type
));
663 set_value_component_location (result
, val
);
664 set_value_bitsize (result
, value_bitsize (val
));
665 set_value_bitpos (result
, value_bitpos (val
));
666 if (VALUE_LVAL (result
) == lval_memory
)
667 set_value_address (result
, value_address (val
));
672 static const gdb_byte
*
673 cond_offset_host (const gdb_byte
*valaddr
, long offset
)
678 return valaddr
+ offset
;
682 cond_offset_target (CORE_ADDR address
, long offset
)
687 return address
+ offset
;
690 /* Issue a warning (as for the definition of warning in utils.c, but
691 with exactly one argument rather than ...), unless the limit on the
692 number of warnings has passed during the evaluation of the current
695 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
696 provided by "complaint". */
697 static void lim_warning (const char *format
, ...) ATTRIBUTE_PRINTF (1, 2);
700 lim_warning (const char *format
, ...)
704 va_start (args
, format
);
705 warnings_issued
+= 1;
706 if (warnings_issued
<= warning_limit
)
707 vwarning (format
, args
);
712 /* Issue an error if the size of an object of type T is unreasonable,
713 i.e. if it would be a bad idea to allocate a value of this type in
717 ada_ensure_varsize_limit (const struct type
*type
)
719 if (TYPE_LENGTH (type
) > varsize_limit
)
720 error (_("object size is larger than varsize-limit"));
723 /* Maximum value of a SIZE-byte signed integer type. */
725 max_of_size (int size
)
727 LONGEST top_bit
= (LONGEST
) 1 << (size
* 8 - 2);
729 return top_bit
| (top_bit
- 1);
732 /* Minimum value of a SIZE-byte signed integer type. */
734 min_of_size (int size
)
736 return -max_of_size (size
) - 1;
739 /* Maximum value of a SIZE-byte unsigned integer type. */
741 umax_of_size (int size
)
743 ULONGEST top_bit
= (ULONGEST
) 1 << (size
* 8 - 1);
745 return top_bit
| (top_bit
- 1);
748 /* Maximum value of integral type T, as a signed quantity. */
750 max_of_type (struct type
*t
)
752 if (TYPE_UNSIGNED (t
))
753 return (LONGEST
) umax_of_size (TYPE_LENGTH (t
));
755 return max_of_size (TYPE_LENGTH (t
));
758 /* Minimum value of integral type T, as a signed quantity. */
760 min_of_type (struct type
*t
)
762 if (TYPE_UNSIGNED (t
))
765 return min_of_size (TYPE_LENGTH (t
));
768 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
770 ada_discrete_type_high_bound (struct type
*type
)
772 type
= resolve_dynamic_type (type
, NULL
, 0);
773 switch (TYPE_CODE (type
))
775 case TYPE_CODE_RANGE
:
776 return TYPE_HIGH_BOUND (type
);
778 return TYPE_FIELD_ENUMVAL (type
, TYPE_NFIELDS (type
) - 1);
783 return max_of_type (type
);
785 error (_("Unexpected type in ada_discrete_type_high_bound."));
789 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
791 ada_discrete_type_low_bound (struct type
*type
)
793 type
= resolve_dynamic_type (type
, NULL
, 0);
794 switch (TYPE_CODE (type
))
796 case TYPE_CODE_RANGE
:
797 return TYPE_LOW_BOUND (type
);
799 return TYPE_FIELD_ENUMVAL (type
, 0);
804 return min_of_type (type
);
806 error (_("Unexpected type in ada_discrete_type_low_bound."));
810 /* The identity on non-range types. For range types, the underlying
811 non-range scalar type. */
814 get_base_type (struct type
*type
)
816 while (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
)
818 if (type
== TYPE_TARGET_TYPE (type
) || TYPE_TARGET_TYPE (type
) == NULL
)
820 type
= TYPE_TARGET_TYPE (type
);
825 /* Return a decoded version of the given VALUE. This means returning
826 a value whose type is obtained by applying all the GNAT-specific
827 encodings, making the resulting type a static but standard description
828 of the initial type. */
831 ada_get_decoded_value (struct value
*value
)
833 struct type
*type
= ada_check_typedef (value_type (value
));
835 if (ada_is_array_descriptor_type (type
)
836 || (ada_is_constrained_packed_array_type (type
)
837 && TYPE_CODE (type
) != TYPE_CODE_PTR
))
839 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
) /* array access type. */
840 value
= ada_coerce_to_simple_array_ptr (value
);
842 value
= ada_coerce_to_simple_array (value
);
845 value
= ada_to_fixed_value (value
);
850 /* Same as ada_get_decoded_value, but with the given TYPE.
851 Because there is no associated actual value for this type,
852 the resulting type might be a best-effort approximation in
853 the case of dynamic types. */
856 ada_get_decoded_type (struct type
*type
)
858 type
= to_static_fixed_type (type
);
859 if (ada_is_constrained_packed_array_type (type
))
860 type
= ada_coerce_to_simple_array_type (type
);
866 /* Language Selection */
868 /* If the main program is in Ada, return language_ada, otherwise return LANG
869 (the main program is in Ada iif the adainit symbol is found). */
872 ada_update_initial_language (enum language lang
)
874 if (lookup_minimal_symbol ("adainit", NULL
, NULL
).minsym
!= NULL
)
880 /* If the main procedure is written in Ada, then return its name.
881 The result is good until the next call. Return NULL if the main
882 procedure doesn't appear to be in Ada. */
887 struct bound_minimal_symbol msym
;
888 static gdb::unique_xmalloc_ptr
<char> main_program_name
;
890 /* For Ada, the name of the main procedure is stored in a specific
891 string constant, generated by the binder. Look for that symbol,
892 extract its address, and then read that string. If we didn't find
893 that string, then most probably the main procedure is not written
895 msym
= lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME
, NULL
, NULL
);
897 if (msym
.minsym
!= NULL
)
899 CORE_ADDR main_program_name_addr
;
902 main_program_name_addr
= BMSYMBOL_VALUE_ADDRESS (msym
);
903 if (main_program_name_addr
== 0)
904 error (_("Invalid address for Ada main program name."));
906 target_read_string (main_program_name_addr
, &main_program_name
,
911 return main_program_name
.get ();
914 /* The main procedure doesn't seem to be in Ada. */
920 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
923 const struct ada_opname_map ada_opname_table
[] = {
924 {"Oadd", "\"+\"", BINOP_ADD
},
925 {"Osubtract", "\"-\"", BINOP_SUB
},
926 {"Omultiply", "\"*\"", BINOP_MUL
},
927 {"Odivide", "\"/\"", BINOP_DIV
},
928 {"Omod", "\"mod\"", BINOP_MOD
},
929 {"Orem", "\"rem\"", BINOP_REM
},
930 {"Oexpon", "\"**\"", BINOP_EXP
},
931 {"Olt", "\"<\"", BINOP_LESS
},
932 {"Ole", "\"<=\"", BINOP_LEQ
},
933 {"Ogt", "\">\"", BINOP_GTR
},
934 {"Oge", "\">=\"", BINOP_GEQ
},
935 {"Oeq", "\"=\"", BINOP_EQUAL
},
936 {"One", "\"/=\"", BINOP_NOTEQUAL
},
937 {"Oand", "\"and\"", BINOP_BITWISE_AND
},
938 {"Oor", "\"or\"", BINOP_BITWISE_IOR
},
939 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR
},
940 {"Oconcat", "\"&\"", BINOP_CONCAT
},
941 {"Oabs", "\"abs\"", UNOP_ABS
},
942 {"Onot", "\"not\"", UNOP_LOGICAL_NOT
},
943 {"Oadd", "\"+\"", UNOP_PLUS
},
944 {"Osubtract", "\"-\"", UNOP_NEG
},
948 /* The "encoded" form of DECODED, according to GNAT conventions. The
949 result is valid until the next call to ada_encode. If
950 THROW_ERRORS, throw an error if invalid operator name is found.
951 Otherwise, return NULL in that case. */
954 ada_encode_1 (const char *decoded
, bool throw_errors
)
956 static char *encoding_buffer
= NULL
;
957 static size_t encoding_buffer_size
= 0;
964 GROW_VECT (encoding_buffer
, encoding_buffer_size
,
965 2 * strlen (decoded
) + 10);
968 for (p
= decoded
; *p
!= '\0'; p
+= 1)
972 encoding_buffer
[k
] = encoding_buffer
[k
+ 1] = '_';
977 const struct ada_opname_map
*mapping
;
979 for (mapping
= ada_opname_table
;
980 mapping
->encoded
!= NULL
981 && !startswith (p
, mapping
->decoded
); mapping
+= 1)
983 if (mapping
->encoded
== NULL
)
986 error (_("invalid Ada operator name: %s"), p
);
990 strcpy (encoding_buffer
+ k
, mapping
->encoded
);
991 k
+= strlen (mapping
->encoded
);
996 encoding_buffer
[k
] = *p
;
1001 encoding_buffer
[k
] = '\0';
1002 return encoding_buffer
;
1005 /* The "encoded" form of DECODED, according to GNAT conventions.
1006 The result is valid until the next call to ada_encode. */
1009 ada_encode (const char *decoded
)
1011 return ada_encode_1 (decoded
, true);
1014 /* Return NAME folded to lower case, or, if surrounded by single
1015 quotes, unfolded, but with the quotes stripped away. Result good
1019 ada_fold_name (const char *name
)
1021 static char *fold_buffer
= NULL
;
1022 static size_t fold_buffer_size
= 0;
1024 int len
= strlen (name
);
1025 GROW_VECT (fold_buffer
, fold_buffer_size
, len
+ 1);
1027 if (name
[0] == '\'')
1029 strncpy (fold_buffer
, name
+ 1, len
- 2);
1030 fold_buffer
[len
- 2] = '\000';
1036 for (i
= 0; i
<= len
; i
+= 1)
1037 fold_buffer
[i
] = tolower (name
[i
]);
1043 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1046 is_lower_alphanum (const char c
)
1048 return (isdigit (c
) || (isalpha (c
) && islower (c
)));
1051 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1052 This function saves in LEN the length of that same symbol name but
1053 without either of these suffixes:
1059 These are suffixes introduced by the compiler for entities such as
1060 nested subprogram for instance, in order to avoid name clashes.
1061 They do not serve any purpose for the debugger. */
1064 ada_remove_trailing_digits (const char *encoded
, int *len
)
1066 if (*len
> 1 && isdigit (encoded
[*len
- 1]))
1070 while (i
> 0 && isdigit (encoded
[i
]))
1072 if (i
>= 0 && encoded
[i
] == '.')
1074 else if (i
>= 0 && encoded
[i
] == '$')
1076 else if (i
>= 2 && startswith (encoded
+ i
- 2, "___"))
1078 else if (i
>= 1 && startswith (encoded
+ i
- 1, "__"))
1083 /* Remove the suffix introduced by the compiler for protected object
1087 ada_remove_po_subprogram_suffix (const char *encoded
, int *len
)
1089 /* Remove trailing N. */
1091 /* Protected entry subprograms are broken into two
1092 separate subprograms: The first one is unprotected, and has
1093 a 'N' suffix; the second is the protected version, and has
1094 the 'P' suffix. The second calls the first one after handling
1095 the protection. Since the P subprograms are internally generated,
1096 we leave these names undecoded, giving the user a clue that this
1097 entity is internal. */
1100 && encoded
[*len
- 1] == 'N'
1101 && (isdigit (encoded
[*len
- 2]) || islower (encoded
[*len
- 2])))
1105 /* If ENCODED follows the GNAT entity encoding conventions, then return
1106 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1107 replaced by ENCODED. */
1110 ada_decode (const char *encoded
)
1116 std::string decoded
;
1118 /* With function descriptors on PPC64, the value of a symbol named
1119 ".FN", if it exists, is the entry point of the function "FN". */
1120 if (encoded
[0] == '.')
1123 /* The name of the Ada main procedure starts with "_ada_".
1124 This prefix is not part of the decoded name, so skip this part
1125 if we see this prefix. */
1126 if (startswith (encoded
, "_ada_"))
1129 /* If the name starts with '_', then it is not a properly encoded
1130 name, so do not attempt to decode it. Similarly, if the name
1131 starts with '<', the name should not be decoded. */
1132 if (encoded
[0] == '_' || encoded
[0] == '<')
1135 len0
= strlen (encoded
);
1137 ada_remove_trailing_digits (encoded
, &len0
);
1138 ada_remove_po_subprogram_suffix (encoded
, &len0
);
1140 /* Remove the ___X.* suffix if present. Do not forget to verify that
1141 the suffix is located before the current "end" of ENCODED. We want
1142 to avoid re-matching parts of ENCODED that have previously been
1143 marked as discarded (by decrementing LEN0). */
1144 p
= strstr (encoded
, "___");
1145 if (p
!= NULL
&& p
- encoded
< len0
- 3)
1153 /* Remove any trailing TKB suffix. It tells us that this symbol
1154 is for the body of a task, but that information does not actually
1155 appear in the decoded name. */
1157 if (len0
> 3 && startswith (encoded
+ len0
- 3, "TKB"))
1160 /* Remove any trailing TB suffix. The TB suffix is slightly different
1161 from the TKB suffix because it is used for non-anonymous task
1164 if (len0
> 2 && startswith (encoded
+ len0
- 2, "TB"))
1167 /* Remove trailing "B" suffixes. */
1168 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1170 if (len0
> 1 && startswith (encoded
+ len0
- 1, "B"))
1173 /* Make decoded big enough for possible expansion by operator name. */
1175 decoded
.resize (2 * len0
+ 1, 'X');
1177 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1179 if (len0
> 1 && isdigit (encoded
[len0
- 1]))
1182 while ((i
>= 0 && isdigit (encoded
[i
]))
1183 || (i
>= 1 && encoded
[i
] == '_' && isdigit (encoded
[i
- 1])))
1185 if (i
> 1 && encoded
[i
] == '_' && encoded
[i
- 1] == '_')
1187 else if (encoded
[i
] == '$')
1191 /* The first few characters that are not alphabetic are not part
1192 of any encoding we use, so we can copy them over verbatim. */
1194 for (i
= 0, j
= 0; i
< len0
&& !isalpha (encoded
[i
]); i
+= 1, j
+= 1)
1195 decoded
[j
] = encoded
[i
];
1200 /* Is this a symbol function? */
1201 if (at_start_name
&& encoded
[i
] == 'O')
1205 for (k
= 0; ada_opname_table
[k
].encoded
!= NULL
; k
+= 1)
1207 int op_len
= strlen (ada_opname_table
[k
].encoded
);
1208 if ((strncmp (ada_opname_table
[k
].encoded
+ 1, encoded
+ i
+ 1,
1210 && !isalnum (encoded
[i
+ op_len
]))
1212 strcpy (&decoded
.front() + j
, ada_opname_table
[k
].decoded
);
1215 j
+= strlen (ada_opname_table
[k
].decoded
);
1219 if (ada_opname_table
[k
].encoded
!= NULL
)
1224 /* Replace "TK__" with "__", which will eventually be translated
1225 into "." (just below). */
1227 if (i
< len0
- 4 && startswith (encoded
+ i
, "TK__"))
1230 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1231 be translated into "." (just below). These are internal names
1232 generated for anonymous blocks inside which our symbol is nested. */
1234 if (len0
- i
> 5 && encoded
[i
] == '_' && encoded
[i
+1] == '_'
1235 && encoded
[i
+2] == 'B' && encoded
[i
+3] == '_'
1236 && isdigit (encoded
[i
+4]))
1240 while (k
< len0
&& isdigit (encoded
[k
]))
1241 k
++; /* Skip any extra digit. */
1243 /* Double-check that the "__B_{DIGITS}+" sequence we found
1244 is indeed followed by "__". */
1245 if (len0
- k
> 2 && encoded
[k
] == '_' && encoded
[k
+1] == '_')
1249 /* Remove _E{DIGITS}+[sb] */
1251 /* Just as for protected object subprograms, there are 2 categories
1252 of subprograms created by the compiler for each entry. The first
1253 one implements the actual entry code, and has a suffix following
1254 the convention above; the second one implements the barrier and
1255 uses the same convention as above, except that the 'E' is replaced
1258 Just as above, we do not decode the name of barrier functions
1259 to give the user a clue that the code he is debugging has been
1260 internally generated. */
1262 if (len0
- i
> 3 && encoded
[i
] == '_' && encoded
[i
+1] == 'E'
1263 && isdigit (encoded
[i
+2]))
1267 while (k
< len0
&& isdigit (encoded
[k
]))
1271 && (encoded
[k
] == 'b' || encoded
[k
] == 's'))
1274 /* Just as an extra precaution, make sure that if this
1275 suffix is followed by anything else, it is a '_'.
1276 Otherwise, we matched this sequence by accident. */
1278 || (k
< len0
&& encoded
[k
] == '_'))
1283 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1284 the GNAT front-end in protected object subprograms. */
1287 && encoded
[i
] == 'N' && encoded
[i
+1] == '_' && encoded
[i
+2] == '_')
1289 /* Backtrack a bit up until we reach either the begining of
1290 the encoded name, or "__". Make sure that we only find
1291 digits or lowercase characters. */
1292 const char *ptr
= encoded
+ i
- 1;
1294 while (ptr
>= encoded
&& is_lower_alphanum (ptr
[0]))
1297 || (ptr
> encoded
&& ptr
[0] == '_' && ptr
[-1] == '_'))
1301 if (encoded
[i
] == 'X' && i
!= 0 && isalnum (encoded
[i
- 1]))
1303 /* This is a X[bn]* sequence not separated from the previous
1304 part of the name with a non-alpha-numeric character (in other
1305 words, immediately following an alpha-numeric character), then
1306 verify that it is placed at the end of the encoded name. If
1307 not, then the encoding is not valid and we should abort the
1308 decoding. Otherwise, just skip it, it is used in body-nested
1312 while (i
< len0
&& (encoded
[i
] == 'b' || encoded
[i
] == 'n'));
1316 else if (i
< len0
- 2 && encoded
[i
] == '_' && encoded
[i
+ 1] == '_')
1318 /* Replace '__' by '.'. */
1326 /* It's a character part of the decoded name, so just copy it
1328 decoded
[j
] = encoded
[i
];
1335 /* Decoded names should never contain any uppercase character.
1336 Double-check this, and abort the decoding if we find one. */
1338 for (i
= 0; i
< decoded
.length(); ++i
)
1339 if (isupper (decoded
[i
]) || decoded
[i
] == ' ')
1345 if (encoded
[0] == '<')
1348 decoded
= '<' + std::string(encoded
) + '>';
1353 /* Table for keeping permanent unique copies of decoded names. Once
1354 allocated, names in this table are never released. While this is a
1355 storage leak, it should not be significant unless there are massive
1356 changes in the set of decoded names in successive versions of a
1357 symbol table loaded during a single session. */
1358 static struct htab
*decoded_names_store
;
1360 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1361 in the language-specific part of GSYMBOL, if it has not been
1362 previously computed. Tries to save the decoded name in the same
1363 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1364 in any case, the decoded symbol has a lifetime at least that of
1366 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1367 const, but nevertheless modified to a semantically equivalent form
1368 when a decoded name is cached in it. */
1371 ada_decode_symbol (const struct general_symbol_info
*arg
)
1373 struct general_symbol_info
*gsymbol
= (struct general_symbol_info
*) arg
;
1374 const char **resultp
=
1375 &gsymbol
->language_specific
.demangled_name
;
1377 if (!gsymbol
->ada_mangled
)
1379 std::string decoded
= ada_decode (gsymbol
->linkage_name ());
1380 struct obstack
*obstack
= gsymbol
->language_specific
.obstack
;
1382 gsymbol
->ada_mangled
= 1;
1384 if (obstack
!= NULL
)
1385 *resultp
= obstack_strdup (obstack
, decoded
.c_str ());
1388 /* Sometimes, we can't find a corresponding objfile, in
1389 which case, we put the result on the heap. Since we only
1390 decode when needed, we hope this usually does not cause a
1391 significant memory leak (FIXME). */
1393 char **slot
= (char **) htab_find_slot (decoded_names_store
,
1394 decoded
.c_str (), INSERT
);
1397 *slot
= xstrdup (decoded
.c_str ());
1406 ada_la_decode (const char *encoded
, int options
)
1408 return xstrdup (ada_decode (encoded
).c_str ());
1411 /* Implement la_sniff_from_mangled_name for Ada. */
1414 ada_sniff_from_mangled_name (const char *mangled
, char **out
)
1416 std::string demangled
= ada_decode (mangled
);
1420 if (demangled
!= mangled
&& demangled
[0] != '<')
1422 /* Set the gsymbol language to Ada, but still return 0.
1423 Two reasons for that:
1425 1. For Ada, we prefer computing the symbol's decoded name
1426 on the fly rather than pre-compute it, in order to save
1427 memory (Ada projects are typically very large).
1429 2. There are some areas in the definition of the GNAT
1430 encoding where, with a bit of bad luck, we might be able
1431 to decode a non-Ada symbol, generating an incorrect
1432 demangled name (Eg: names ending with "TB" for instance
1433 are identified as task bodies and so stripped from
1434 the decoded name returned).
1436 Returning 1, here, but not setting *DEMANGLED, helps us get a
1437 little bit of the best of both worlds. Because we're last,
1438 we should not affect any of the other languages that were
1439 able to demangle the symbol before us; we get to correctly
1440 tag Ada symbols as such; and even if we incorrectly tagged a
1441 non-Ada symbol, which should be rare, any routing through the
1442 Ada language should be transparent (Ada tries to behave much
1443 like C/C++ with non-Ada symbols). */
1454 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1455 generated by the GNAT compiler to describe the index type used
1456 for each dimension of an array, check whether it follows the latest
1457 known encoding. If not, fix it up to conform to the latest encoding.
1458 Otherwise, do nothing. This function also does nothing if
1459 INDEX_DESC_TYPE is NULL.
1461 The GNAT encoding used to describe the array index type evolved a bit.
1462 Initially, the information would be provided through the name of each
1463 field of the structure type only, while the type of these fields was
1464 described as unspecified and irrelevant. The debugger was then expected
1465 to perform a global type lookup using the name of that field in order
1466 to get access to the full index type description. Because these global
1467 lookups can be very expensive, the encoding was later enhanced to make
1468 the global lookup unnecessary by defining the field type as being
1469 the full index type description.
1471 The purpose of this routine is to allow us to support older versions
1472 of the compiler by detecting the use of the older encoding, and by
1473 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1474 we essentially replace each field's meaningless type by the associated
1478 ada_fixup_array_indexes_type (struct type
*index_desc_type
)
1482 if (index_desc_type
== NULL
)
1484 gdb_assert (TYPE_NFIELDS (index_desc_type
) > 0);
1486 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1487 to check one field only, no need to check them all). If not, return
1490 If our INDEX_DESC_TYPE was generated using the older encoding,
1491 the field type should be a meaningless integer type whose name
1492 is not equal to the field name. */
1493 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type
, 0)) != NULL
1494 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type
, 0)),
1495 TYPE_FIELD_NAME (index_desc_type
, 0)) == 0)
1498 /* Fixup each field of INDEX_DESC_TYPE. */
1499 for (i
= 0; i
< TYPE_NFIELDS (index_desc_type
); i
++)
1501 const char *name
= TYPE_FIELD_NAME (index_desc_type
, i
);
1502 struct type
*raw_type
= ada_check_typedef (ada_find_any_type (name
));
1505 TYPE_FIELD_TYPE (index_desc_type
, i
) = raw_type
;
1509 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1511 static const char *bound_name
[] = {
1512 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1513 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1516 /* Maximum number of array dimensions we are prepared to handle. */
1518 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1521 /* The desc_* routines return primitive portions of array descriptors
1524 /* The descriptor or array type, if any, indicated by TYPE; removes
1525 level of indirection, if needed. */
1527 static struct type
*
1528 desc_base_type (struct type
*type
)
1532 type
= ada_check_typedef (type
);
1533 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
1534 type
= ada_typedef_target_type (type
);
1537 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1538 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1539 return ada_check_typedef (TYPE_TARGET_TYPE (type
));
1544 /* True iff TYPE indicates a "thin" array pointer type. */
1547 is_thin_pntr (struct type
*type
)
1550 is_suffix (ada_type_name (desc_base_type (type
)), "___XUT")
1551 || is_suffix (ada_type_name (desc_base_type (type
)), "___XUT___XVE");
1554 /* The descriptor type for thin pointer type TYPE. */
1556 static struct type
*
1557 thin_descriptor_type (struct type
*type
)
1559 struct type
*base_type
= desc_base_type (type
);
1561 if (base_type
== NULL
)
1563 if (is_suffix (ada_type_name (base_type
), "___XVE"))
1567 struct type
*alt_type
= ada_find_parallel_type (base_type
, "___XVE");
1569 if (alt_type
== NULL
)
1576 /* A pointer to the array data for thin-pointer value VAL. */
1578 static struct value
*
1579 thin_data_pntr (struct value
*val
)
1581 struct type
*type
= ada_check_typedef (value_type (val
));
1582 struct type
*data_type
= desc_data_target_type (thin_descriptor_type (type
));
1584 data_type
= lookup_pointer_type (data_type
);
1586 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1587 return value_cast (data_type
, value_copy (val
));
1589 return value_from_longest (data_type
, value_address (val
));
1592 /* True iff TYPE indicates a "thick" array pointer type. */
1595 is_thick_pntr (struct type
*type
)
1597 type
= desc_base_type (type
);
1598 return (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_STRUCT
1599 && lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
);
1602 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1603 pointer to one, the type of its bounds data; otherwise, NULL. */
1605 static struct type
*
1606 desc_bounds_type (struct type
*type
)
1610 type
= desc_base_type (type
);
1614 else if (is_thin_pntr (type
))
1616 type
= thin_descriptor_type (type
);
1619 r
= lookup_struct_elt_type (type
, "BOUNDS", 1);
1621 return ada_check_typedef (r
);
1623 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1625 r
= lookup_struct_elt_type (type
, "P_BOUNDS", 1);
1627 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r
)));
1632 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1633 one, a pointer to its bounds data. Otherwise NULL. */
1635 static struct value
*
1636 desc_bounds (struct value
*arr
)
1638 struct type
*type
= ada_check_typedef (value_type (arr
));
1640 if (is_thin_pntr (type
))
1642 struct type
*bounds_type
=
1643 desc_bounds_type (thin_descriptor_type (type
));
1646 if (bounds_type
== NULL
)
1647 error (_("Bad GNAT array descriptor"));
1649 /* NOTE: The following calculation is not really kosher, but
1650 since desc_type is an XVE-encoded type (and shouldn't be),
1651 the correct calculation is a real pain. FIXME (and fix GCC). */
1652 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1653 addr
= value_as_long (arr
);
1655 addr
= value_address (arr
);
1658 value_from_longest (lookup_pointer_type (bounds_type
),
1659 addr
- TYPE_LENGTH (bounds_type
));
1662 else if (is_thick_pntr (type
))
1664 struct value
*p_bounds
= value_struct_elt (&arr
, NULL
, "P_BOUNDS", NULL
,
1665 _("Bad GNAT array descriptor"));
1666 struct type
*p_bounds_type
= value_type (p_bounds
);
1669 && TYPE_CODE (p_bounds_type
) == TYPE_CODE_PTR
)
1671 struct type
*target_type
= TYPE_TARGET_TYPE (p_bounds_type
);
1673 if (TYPE_STUB (target_type
))
1674 p_bounds
= value_cast (lookup_pointer_type
1675 (ada_check_typedef (target_type
)),
1679 error (_("Bad GNAT array descriptor"));
1687 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1688 position of the field containing the address of the bounds data. */
1691 fat_pntr_bounds_bitpos (struct type
*type
)
1693 return TYPE_FIELD_BITPOS (desc_base_type (type
), 1);
1696 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1697 size of the field containing the address of the bounds data. */
1700 fat_pntr_bounds_bitsize (struct type
*type
)
1702 type
= desc_base_type (type
);
1704 if (TYPE_FIELD_BITSIZE (type
, 1) > 0)
1705 return TYPE_FIELD_BITSIZE (type
, 1);
1707 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type
, 1)));
1710 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1711 pointer to one, the type of its array data (a array-with-no-bounds type);
1712 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1715 static struct type
*
1716 desc_data_target_type (struct type
*type
)
1718 type
= desc_base_type (type
);
1720 /* NOTE: The following is bogus; see comment in desc_bounds. */
1721 if (is_thin_pntr (type
))
1722 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type
), 1));
1723 else if (is_thick_pntr (type
))
1725 struct type
*data_type
= lookup_struct_elt_type (type
, "P_ARRAY", 1);
1728 && TYPE_CODE (ada_check_typedef (data_type
)) == TYPE_CODE_PTR
)
1729 return ada_check_typedef (TYPE_TARGET_TYPE (data_type
));
1735 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1738 static struct value
*
1739 desc_data (struct value
*arr
)
1741 struct type
*type
= value_type (arr
);
1743 if (is_thin_pntr (type
))
1744 return thin_data_pntr (arr
);
1745 else if (is_thick_pntr (type
))
1746 return value_struct_elt (&arr
, NULL
, "P_ARRAY", NULL
,
1747 _("Bad GNAT array descriptor"));
1753 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1754 position of the field containing the address of the data. */
1757 fat_pntr_data_bitpos (struct type
*type
)
1759 return TYPE_FIELD_BITPOS (desc_base_type (type
), 0);
1762 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1763 size of the field containing the address of the data. */
1766 fat_pntr_data_bitsize (struct type
*type
)
1768 type
= desc_base_type (type
);
1770 if (TYPE_FIELD_BITSIZE (type
, 0) > 0)
1771 return TYPE_FIELD_BITSIZE (type
, 0);
1773 return TARGET_CHAR_BIT
* TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0));
1776 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1777 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1778 bound, if WHICH is 1. The first bound is I=1. */
1780 static struct value
*
1781 desc_one_bound (struct value
*bounds
, int i
, int which
)
1783 return value_struct_elt (&bounds
, NULL
, bound_name
[2 * i
+ which
- 2], NULL
,
1784 _("Bad GNAT array descriptor bounds"));
1787 /* If BOUNDS is an array-bounds structure type, return the bit position
1788 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1789 bound, if WHICH is 1. The first bound is I=1. */
1792 desc_bound_bitpos (struct type
*type
, int i
, int which
)
1794 return TYPE_FIELD_BITPOS (desc_base_type (type
), 2 * i
+ which
- 2);
1797 /* If BOUNDS is an array-bounds structure type, return the bit field size
1798 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1799 bound, if WHICH is 1. The first bound is I=1. */
1802 desc_bound_bitsize (struct type
*type
, int i
, int which
)
1804 type
= desc_base_type (type
);
1806 if (TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2) > 0)
1807 return TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2);
1809 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 2 * i
+ which
- 2));
1812 /* If TYPE is the type of an array-bounds structure, the type of its
1813 Ith bound (numbering from 1). Otherwise, NULL. */
1815 static struct type
*
1816 desc_index_type (struct type
*type
, int i
)
1818 type
= desc_base_type (type
);
1820 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1821 return lookup_struct_elt_type (type
, bound_name
[2 * i
- 2], 1);
1826 /* The number of index positions in the array-bounds type TYPE.
1827 Return 0 if TYPE is NULL. */
1830 desc_arity (struct type
*type
)
1832 type
= desc_base_type (type
);
1835 return TYPE_NFIELDS (type
) / 2;
1839 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1840 an array descriptor type (representing an unconstrained array
1844 ada_is_direct_array_type (struct type
*type
)
1848 type
= ada_check_typedef (type
);
1849 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1850 || ada_is_array_descriptor_type (type
));
1853 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1857 ada_is_array_type (struct type
*type
)
1860 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1861 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1862 type
= TYPE_TARGET_TYPE (type
);
1863 return ada_is_direct_array_type (type
);
1866 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1869 ada_is_simple_array_type (struct type
*type
)
1873 type
= ada_check_typedef (type
);
1874 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1875 || (TYPE_CODE (type
) == TYPE_CODE_PTR
1876 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type
)))
1877 == TYPE_CODE_ARRAY
));
1880 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1883 ada_is_array_descriptor_type (struct type
*type
)
1885 struct type
*data_type
= desc_data_target_type (type
);
1889 type
= ada_check_typedef (type
);
1890 return (data_type
!= NULL
1891 && TYPE_CODE (data_type
) == TYPE_CODE_ARRAY
1892 && desc_arity (desc_bounds_type (type
)) > 0);
1895 /* Non-zero iff type is a partially mal-formed GNAT array
1896 descriptor. FIXME: This is to compensate for some problems with
1897 debugging output from GNAT. Re-examine periodically to see if it
1901 ada_is_bogus_array_descriptor (struct type
*type
)
1905 && TYPE_CODE (type
) == TYPE_CODE_STRUCT
1906 && (lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
1907 || lookup_struct_elt_type (type
, "P_ARRAY", 1) != NULL
)
1908 && !ada_is_array_descriptor_type (type
);
1912 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1913 (fat pointer) returns the type of the array data described---specifically,
1914 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1915 in from the descriptor; otherwise, they are left unspecified. If
1916 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1917 returns NULL. The result is simply the type of ARR if ARR is not
1920 static struct type
*
1921 ada_type_of_array (struct value
*arr
, int bounds
)
1923 if (ada_is_constrained_packed_array_type (value_type (arr
)))
1924 return decode_constrained_packed_array_type (value_type (arr
));
1926 if (!ada_is_array_descriptor_type (value_type (arr
)))
1927 return value_type (arr
);
1931 struct type
*array_type
=
1932 ada_check_typedef (desc_data_target_type (value_type (arr
)));
1934 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
1935 TYPE_FIELD_BITSIZE (array_type
, 0) =
1936 decode_packed_array_bitsize (value_type (arr
));
1942 struct type
*elt_type
;
1944 struct value
*descriptor
;
1946 elt_type
= ada_array_element_type (value_type (arr
), -1);
1947 arity
= ada_array_arity (value_type (arr
));
1949 if (elt_type
== NULL
|| arity
== 0)
1950 return ada_check_typedef (value_type (arr
));
1952 descriptor
= desc_bounds (arr
);
1953 if (value_as_long (descriptor
) == 0)
1957 struct type
*range_type
= alloc_type_copy (value_type (arr
));
1958 struct type
*array_type
= alloc_type_copy (value_type (arr
));
1959 struct value
*low
= desc_one_bound (descriptor
, arity
, 0);
1960 struct value
*high
= desc_one_bound (descriptor
, arity
, 1);
1963 create_static_range_type (range_type
, value_type (low
),
1964 longest_to_int (value_as_long (low
)),
1965 longest_to_int (value_as_long (high
)));
1966 elt_type
= create_array_type (array_type
, elt_type
, range_type
);
1968 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
1970 /* We need to store the element packed bitsize, as well as
1971 recompute the array size, because it was previously
1972 computed based on the unpacked element size. */
1973 LONGEST lo
= value_as_long (low
);
1974 LONGEST hi
= value_as_long (high
);
1976 TYPE_FIELD_BITSIZE (elt_type
, 0) =
1977 decode_packed_array_bitsize (value_type (arr
));
1978 /* If the array has no element, then the size is already
1979 zero, and does not need to be recomputed. */
1983 (hi
- lo
+ 1) * TYPE_FIELD_BITSIZE (elt_type
, 0);
1985 TYPE_LENGTH (array_type
) = (array_bitsize
+ 7) / 8;
1990 return lookup_pointer_type (elt_type
);
1994 /* If ARR does not represent an array, returns ARR unchanged.
1995 Otherwise, returns either a standard GDB array with bounds set
1996 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1997 GDB array. Returns NULL if ARR is a null fat pointer. */
2000 ada_coerce_to_simple_array_ptr (struct value
*arr
)
2002 if (ada_is_array_descriptor_type (value_type (arr
)))
2004 struct type
*arrType
= ada_type_of_array (arr
, 1);
2006 if (arrType
== NULL
)
2008 return value_cast (arrType
, value_copy (desc_data (arr
)));
2010 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
2011 return decode_constrained_packed_array (arr
);
2016 /* If ARR does not represent an array, returns ARR unchanged.
2017 Otherwise, returns a standard GDB array describing ARR (which may
2018 be ARR itself if it already is in the proper form). */
2021 ada_coerce_to_simple_array (struct value
*arr
)
2023 if (ada_is_array_descriptor_type (value_type (arr
)))
2025 struct value
*arrVal
= ada_coerce_to_simple_array_ptr (arr
);
2028 error (_("Bounds unavailable for null array pointer."));
2029 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal
)));
2030 return value_ind (arrVal
);
2032 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
2033 return decode_constrained_packed_array (arr
);
2038 /* If TYPE represents a GNAT array type, return it translated to an
2039 ordinary GDB array type (possibly with BITSIZE fields indicating
2040 packing). For other types, is the identity. */
2043 ada_coerce_to_simple_array_type (struct type
*type
)
2045 if (ada_is_constrained_packed_array_type (type
))
2046 return decode_constrained_packed_array_type (type
);
2048 if (ada_is_array_descriptor_type (type
))
2049 return ada_check_typedef (desc_data_target_type (type
));
2054 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2057 ada_is_packed_array_type (struct type
*type
)
2061 type
= desc_base_type (type
);
2062 type
= ada_check_typedef (type
);
2064 ada_type_name (type
) != NULL
2065 && strstr (ada_type_name (type
), "___XP") != NULL
;
2068 /* Non-zero iff TYPE represents a standard GNAT constrained
2069 packed-array type. */
2072 ada_is_constrained_packed_array_type (struct type
*type
)
2074 return ada_is_packed_array_type (type
)
2075 && !ada_is_array_descriptor_type (type
);
2078 /* Non-zero iff TYPE represents an array descriptor for a
2079 unconstrained packed-array type. */
2082 ada_is_unconstrained_packed_array_type (struct type
*type
)
2084 return ada_is_packed_array_type (type
)
2085 && ada_is_array_descriptor_type (type
);
2088 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2089 return the size of its elements in bits. */
2092 decode_packed_array_bitsize (struct type
*type
)
2094 const char *raw_name
;
2098 /* Access to arrays implemented as fat pointers are encoded as a typedef
2099 of the fat pointer type. We need the name of the fat pointer type
2100 to do the decoding, so strip the typedef layer. */
2101 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
2102 type
= ada_typedef_target_type (type
);
2104 raw_name
= ada_type_name (ada_check_typedef (type
));
2106 raw_name
= ada_type_name (desc_base_type (type
));
2111 tail
= strstr (raw_name
, "___XP");
2112 gdb_assert (tail
!= NULL
);
2114 if (sscanf (tail
+ sizeof ("___XP") - 1, "%ld", &bits
) != 1)
2117 (_("could not understand bit size information on packed array"));
2124 /* Given that TYPE is a standard GDB array type with all bounds filled
2125 in, and that the element size of its ultimate scalar constituents
2126 (that is, either its elements, or, if it is an array of arrays, its
2127 elements' elements, etc.) is *ELT_BITS, return an identical type,
2128 but with the bit sizes of its elements (and those of any
2129 constituent arrays) recorded in the BITSIZE components of its
2130 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2133 Note that, for arrays whose index type has an XA encoding where
2134 a bound references a record discriminant, getting that discriminant,
2135 and therefore the actual value of that bound, is not possible
2136 because none of the given parameters gives us access to the record.
2137 This function assumes that it is OK in the context where it is being
2138 used to return an array whose bounds are still dynamic and where
2139 the length is arbitrary. */
2141 static struct type
*
2142 constrained_packed_array_type (struct type
*type
, long *elt_bits
)
2144 struct type
*new_elt_type
;
2145 struct type
*new_type
;
2146 struct type
*index_type_desc
;
2147 struct type
*index_type
;
2148 LONGEST low_bound
, high_bound
;
2150 type
= ada_check_typedef (type
);
2151 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
2154 index_type_desc
= ada_find_parallel_type (type
, "___XA");
2155 if (index_type_desc
)
2156 index_type
= to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, 0),
2159 index_type
= TYPE_INDEX_TYPE (type
);
2161 new_type
= alloc_type_copy (type
);
2163 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type
)),
2165 create_array_type (new_type
, new_elt_type
, index_type
);
2166 TYPE_FIELD_BITSIZE (new_type
, 0) = *elt_bits
;
2167 TYPE_NAME (new_type
) = ada_type_name (type
);
2169 if ((TYPE_CODE (check_typedef (index_type
)) == TYPE_CODE_RANGE
2170 && is_dynamic_type (check_typedef (index_type
)))
2171 || get_discrete_bounds (index_type
, &low_bound
, &high_bound
) < 0)
2172 low_bound
= high_bound
= 0;
2173 if (high_bound
< low_bound
)
2174 *elt_bits
= TYPE_LENGTH (new_type
) = 0;
2177 *elt_bits
*= (high_bound
- low_bound
+ 1);
2178 TYPE_LENGTH (new_type
) =
2179 (*elt_bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2182 TYPE_FIXED_INSTANCE (new_type
) = 1;
2186 /* The array type encoded by TYPE, where
2187 ada_is_constrained_packed_array_type (TYPE). */
2189 static struct type
*
2190 decode_constrained_packed_array_type (struct type
*type
)
2192 const char *raw_name
= ada_type_name (ada_check_typedef (type
));
2195 struct type
*shadow_type
;
2199 raw_name
= ada_type_name (desc_base_type (type
));
2204 name
= (char *) alloca (strlen (raw_name
) + 1);
2205 tail
= strstr (raw_name
, "___XP");
2206 type
= desc_base_type (type
);
2208 memcpy (name
, raw_name
, tail
- raw_name
);
2209 name
[tail
- raw_name
] = '\000';
2211 shadow_type
= ada_find_parallel_type_with_name (type
, name
);
2213 if (shadow_type
== NULL
)
2215 lim_warning (_("could not find bounds information on packed array"));
2218 shadow_type
= check_typedef (shadow_type
);
2220 if (TYPE_CODE (shadow_type
) != TYPE_CODE_ARRAY
)
2222 lim_warning (_("could not understand bounds "
2223 "information on packed array"));
2227 bits
= decode_packed_array_bitsize (type
);
2228 return constrained_packed_array_type (shadow_type
, &bits
);
2231 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2232 array, returns a simple array that denotes that array. Its type is a
2233 standard GDB array type except that the BITSIZEs of the array
2234 target types are set to the number of bits in each element, and the
2235 type length is set appropriately. */
2237 static struct value
*
2238 decode_constrained_packed_array (struct value
*arr
)
2242 /* If our value is a pointer, then dereference it. Likewise if
2243 the value is a reference. Make sure that this operation does not
2244 cause the target type to be fixed, as this would indirectly cause
2245 this array to be decoded. The rest of the routine assumes that
2246 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2247 and "value_ind" routines to perform the dereferencing, as opposed
2248 to using "ada_coerce_ref" or "ada_value_ind". */
2249 arr
= coerce_ref (arr
);
2250 if (TYPE_CODE (ada_check_typedef (value_type (arr
))) == TYPE_CODE_PTR
)
2251 arr
= value_ind (arr
);
2253 type
= decode_constrained_packed_array_type (value_type (arr
));
2256 error (_("can't unpack array"));
2260 if (type_byte_order (value_type (arr
)) == BFD_ENDIAN_BIG
2261 && ada_is_modular_type (value_type (arr
)))
2263 /* This is a (right-justified) modular type representing a packed
2264 array with no wrapper. In order to interpret the value through
2265 the (left-justified) packed array type we just built, we must
2266 first left-justify it. */
2267 int bit_size
, bit_pos
;
2270 mod
= ada_modulus (value_type (arr
)) - 1;
2277 bit_pos
= HOST_CHAR_BIT
* TYPE_LENGTH (value_type (arr
)) - bit_size
;
2278 arr
= ada_value_primitive_packed_val (arr
, NULL
,
2279 bit_pos
/ HOST_CHAR_BIT
,
2280 bit_pos
% HOST_CHAR_BIT
,
2285 return coerce_unspec_val_to_type (arr
, type
);
2289 /* The value of the element of packed array ARR at the ARITY indices
2290 given in IND. ARR must be a simple array. */
2292 static struct value
*
2293 value_subscript_packed (struct value
*arr
, int arity
, struct value
**ind
)
2296 int bits
, elt_off
, bit_off
;
2297 long elt_total_bit_offset
;
2298 struct type
*elt_type
;
2302 elt_total_bit_offset
= 0;
2303 elt_type
= ada_check_typedef (value_type (arr
));
2304 for (i
= 0; i
< arity
; i
+= 1)
2306 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
2307 || TYPE_FIELD_BITSIZE (elt_type
, 0) == 0)
2309 (_("attempt to do packed indexing of "
2310 "something other than a packed array"));
2313 struct type
*range_type
= TYPE_INDEX_TYPE (elt_type
);
2314 LONGEST lowerbound
, upperbound
;
2317 if (get_discrete_bounds (range_type
, &lowerbound
, &upperbound
) < 0)
2319 lim_warning (_("don't know bounds of array"));
2320 lowerbound
= upperbound
= 0;
2323 idx
= pos_atr (ind
[i
]);
2324 if (idx
< lowerbound
|| idx
> upperbound
)
2325 lim_warning (_("packed array index %ld out of bounds"),
2327 bits
= TYPE_FIELD_BITSIZE (elt_type
, 0);
2328 elt_total_bit_offset
+= (idx
- lowerbound
) * bits
;
2329 elt_type
= ada_check_typedef (TYPE_TARGET_TYPE (elt_type
));
2332 elt_off
= elt_total_bit_offset
/ HOST_CHAR_BIT
;
2333 bit_off
= elt_total_bit_offset
% HOST_CHAR_BIT
;
2335 v
= ada_value_primitive_packed_val (arr
, NULL
, elt_off
, bit_off
,
2340 /* Non-zero iff TYPE includes negative integer values. */
2343 has_negatives (struct type
*type
)
2345 switch (TYPE_CODE (type
))
2350 return !TYPE_UNSIGNED (type
);
2351 case TYPE_CODE_RANGE
:
2352 return TYPE_LOW_BOUND (type
) - TYPE_RANGE_DATA (type
)->bias
< 0;
2356 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2357 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2358 the unpacked buffer.
2360 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2361 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2363 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2366 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2368 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2371 ada_unpack_from_contents (const gdb_byte
*src
, int bit_offset
, int bit_size
,
2372 gdb_byte
*unpacked
, int unpacked_len
,
2373 int is_big_endian
, int is_signed_type
,
2376 int src_len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2377 int src_idx
; /* Index into the source area */
2378 int src_bytes_left
; /* Number of source bytes left to process. */
2379 int srcBitsLeft
; /* Number of source bits left to move */
2380 int unusedLS
; /* Number of bits in next significant
2381 byte of source that are unused */
2383 int unpacked_idx
; /* Index into the unpacked buffer */
2384 int unpacked_bytes_left
; /* Number of bytes left to set in unpacked. */
2386 unsigned long accum
; /* Staging area for bits being transferred */
2387 int accumSize
; /* Number of meaningful bits in accum */
2390 /* Transmit bytes from least to most significant; delta is the direction
2391 the indices move. */
2392 int delta
= is_big_endian
? -1 : 1;
2394 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2396 if ((bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
> unpacked_len
)
2397 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2398 bit_size
, unpacked_len
);
2400 srcBitsLeft
= bit_size
;
2401 src_bytes_left
= src_len
;
2402 unpacked_bytes_left
= unpacked_len
;
2407 src_idx
= src_len
- 1;
2409 && ((src
[0] << bit_offset
) & (1 << (HOST_CHAR_BIT
- 1))))
2413 (HOST_CHAR_BIT
- (bit_size
+ bit_offset
) % HOST_CHAR_BIT
)
2419 unpacked_idx
= unpacked_len
- 1;
2423 /* Non-scalar values must be aligned at a byte boundary... */
2425 (HOST_CHAR_BIT
- bit_size
% HOST_CHAR_BIT
) % HOST_CHAR_BIT
;
2426 /* ... And are placed at the beginning (most-significant) bytes
2428 unpacked_idx
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
- 1;
2429 unpacked_bytes_left
= unpacked_idx
+ 1;
2434 int sign_bit_offset
= (bit_size
+ bit_offset
- 1) % 8;
2436 src_idx
= unpacked_idx
= 0;
2437 unusedLS
= bit_offset
;
2440 if (is_signed_type
&& (src
[src_len
- 1] & (1 << sign_bit_offset
)))
2445 while (src_bytes_left
> 0)
2447 /* Mask for removing bits of the next source byte that are not
2448 part of the value. */
2449 unsigned int unusedMSMask
=
2450 (1 << (srcBitsLeft
>= HOST_CHAR_BIT
? HOST_CHAR_BIT
: srcBitsLeft
)) -
2452 /* Sign-extend bits for this byte. */
2453 unsigned int signMask
= sign
& ~unusedMSMask
;
2456 (((src
[src_idx
] >> unusedLS
) & unusedMSMask
) | signMask
) << accumSize
;
2457 accumSize
+= HOST_CHAR_BIT
- unusedLS
;
2458 if (accumSize
>= HOST_CHAR_BIT
)
2460 unpacked
[unpacked_idx
] = accum
& ~(~0UL << HOST_CHAR_BIT
);
2461 accumSize
-= HOST_CHAR_BIT
;
2462 accum
>>= HOST_CHAR_BIT
;
2463 unpacked_bytes_left
-= 1;
2464 unpacked_idx
+= delta
;
2466 srcBitsLeft
-= HOST_CHAR_BIT
- unusedLS
;
2468 src_bytes_left
-= 1;
2471 while (unpacked_bytes_left
> 0)
2473 accum
|= sign
<< accumSize
;
2474 unpacked
[unpacked_idx
] = accum
& ~(~0UL << HOST_CHAR_BIT
);
2475 accumSize
-= HOST_CHAR_BIT
;
2478 accum
>>= HOST_CHAR_BIT
;
2479 unpacked_bytes_left
-= 1;
2480 unpacked_idx
+= delta
;
2484 /* Create a new value of type TYPE from the contents of OBJ starting
2485 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2486 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2487 assigning through the result will set the field fetched from.
2488 VALADDR is ignored unless OBJ is NULL, in which case,
2489 VALADDR+OFFSET must address the start of storage containing the
2490 packed value. The value returned in this case is never an lval.
2491 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2494 ada_value_primitive_packed_val (struct value
*obj
, const gdb_byte
*valaddr
,
2495 long offset
, int bit_offset
, int bit_size
,
2499 const gdb_byte
*src
; /* First byte containing data to unpack */
2501 const int is_scalar
= is_scalar_type (type
);
2502 const int is_big_endian
= type_byte_order (type
) == BFD_ENDIAN_BIG
;
2503 gdb::byte_vector staging
;
2505 type
= ada_check_typedef (type
);
2508 src
= valaddr
+ offset
;
2510 src
= value_contents (obj
) + offset
;
2512 if (is_dynamic_type (type
))
2514 /* The length of TYPE might by dynamic, so we need to resolve
2515 TYPE in order to know its actual size, which we then use
2516 to create the contents buffer of the value we return.
2517 The difficulty is that the data containing our object is
2518 packed, and therefore maybe not at a byte boundary. So, what
2519 we do, is unpack the data into a byte-aligned buffer, and then
2520 use that buffer as our object's value for resolving the type. */
2521 int staging_len
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2522 staging
.resize (staging_len
);
2524 ada_unpack_from_contents (src
, bit_offset
, bit_size
,
2525 staging
.data (), staging
.size (),
2526 is_big_endian
, has_negatives (type
),
2528 type
= resolve_dynamic_type (type
, staging
.data (), 0);
2529 if (TYPE_LENGTH (type
) < (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
)
2531 /* This happens when the length of the object is dynamic,
2532 and is actually smaller than the space reserved for it.
2533 For instance, in an array of variant records, the bit_size
2534 we're given is the array stride, which is constant and
2535 normally equal to the maximum size of its element.
2536 But, in reality, each element only actually spans a portion
2538 bit_size
= TYPE_LENGTH (type
) * HOST_CHAR_BIT
;
2544 v
= allocate_value (type
);
2545 src
= valaddr
+ offset
;
2547 else if (VALUE_LVAL (obj
) == lval_memory
&& value_lazy (obj
))
2549 int src_len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2552 v
= value_at (type
, value_address (obj
) + offset
);
2553 buf
= (gdb_byte
*) alloca (src_len
);
2554 read_memory (value_address (v
), buf
, src_len
);
2559 v
= allocate_value (type
);
2560 src
= value_contents (obj
) + offset
;
2565 long new_offset
= offset
;
2567 set_value_component_location (v
, obj
);
2568 set_value_bitpos (v
, bit_offset
+ value_bitpos (obj
));
2569 set_value_bitsize (v
, bit_size
);
2570 if (value_bitpos (v
) >= HOST_CHAR_BIT
)
2573 set_value_bitpos (v
, value_bitpos (v
) - HOST_CHAR_BIT
);
2575 set_value_offset (v
, new_offset
);
2577 /* Also set the parent value. This is needed when trying to
2578 assign a new value (in inferior memory). */
2579 set_value_parent (v
, obj
);
2582 set_value_bitsize (v
, bit_size
);
2583 unpacked
= value_contents_writeable (v
);
2587 memset (unpacked
, 0, TYPE_LENGTH (type
));
2591 if (staging
.size () == TYPE_LENGTH (type
))
2593 /* Small short-cut: If we've unpacked the data into a buffer
2594 of the same size as TYPE's length, then we can reuse that,
2595 instead of doing the unpacking again. */
2596 memcpy (unpacked
, staging
.data (), staging
.size ());
2599 ada_unpack_from_contents (src
, bit_offset
, bit_size
,
2600 unpacked
, TYPE_LENGTH (type
),
2601 is_big_endian
, has_negatives (type
), is_scalar
);
2606 /* Store the contents of FROMVAL into the location of TOVAL.
2607 Return a new value with the location of TOVAL and contents of
2608 FROMVAL. Handles assignment into packed fields that have
2609 floating-point or non-scalar types. */
2611 static struct value
*
2612 ada_value_assign (struct value
*toval
, struct value
*fromval
)
2614 struct type
*type
= value_type (toval
);
2615 int bits
= value_bitsize (toval
);
2617 toval
= ada_coerce_ref (toval
);
2618 fromval
= ada_coerce_ref (fromval
);
2620 if (ada_is_direct_array_type (value_type (toval
)))
2621 toval
= ada_coerce_to_simple_array (toval
);
2622 if (ada_is_direct_array_type (value_type (fromval
)))
2623 fromval
= ada_coerce_to_simple_array (fromval
);
2625 if (!deprecated_value_modifiable (toval
))
2626 error (_("Left operand of assignment is not a modifiable lvalue."));
2628 if (VALUE_LVAL (toval
) == lval_memory
2630 && (TYPE_CODE (type
) == TYPE_CODE_FLT
2631 || TYPE_CODE (type
) == TYPE_CODE_STRUCT
))
2633 int len
= (value_bitpos (toval
)
2634 + bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2636 gdb_byte
*buffer
= (gdb_byte
*) alloca (len
);
2638 CORE_ADDR to_addr
= value_address (toval
);
2640 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
2641 fromval
= value_cast (type
, fromval
);
2643 read_memory (to_addr
, buffer
, len
);
2644 from_size
= value_bitsize (fromval
);
2646 from_size
= TYPE_LENGTH (value_type (fromval
)) * TARGET_CHAR_BIT
;
2648 const int is_big_endian
= type_byte_order (type
) == BFD_ENDIAN_BIG
;
2649 ULONGEST from_offset
= 0;
2650 if (is_big_endian
&& is_scalar_type (value_type (fromval
)))
2651 from_offset
= from_size
- bits
;
2652 copy_bitwise (buffer
, value_bitpos (toval
),
2653 value_contents (fromval
), from_offset
,
2654 bits
, is_big_endian
);
2655 write_memory_with_notification (to_addr
, buffer
, len
);
2657 val
= value_copy (toval
);
2658 memcpy (value_contents_raw (val
), value_contents (fromval
),
2659 TYPE_LENGTH (type
));
2660 deprecated_set_value_type (val
, type
);
2665 return value_assign (toval
, fromval
);
2669 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2670 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2671 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2672 COMPONENT, and not the inferior's memory. The current contents
2673 of COMPONENT are ignored.
2675 Although not part of the initial design, this function also works
2676 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2677 had a null address, and COMPONENT had an address which is equal to
2678 its offset inside CONTAINER. */
2681 value_assign_to_component (struct value
*container
, struct value
*component
,
2684 LONGEST offset_in_container
=
2685 (LONGEST
) (value_address (component
) - value_address (container
));
2686 int bit_offset_in_container
=
2687 value_bitpos (component
) - value_bitpos (container
);
2690 val
= value_cast (value_type (component
), val
);
2692 if (value_bitsize (component
) == 0)
2693 bits
= TARGET_CHAR_BIT
* TYPE_LENGTH (value_type (component
));
2695 bits
= value_bitsize (component
);
2697 if (type_byte_order (value_type (container
)) == BFD_ENDIAN_BIG
)
2701 if (is_scalar_type (check_typedef (value_type (component
))))
2703 = TYPE_LENGTH (value_type (component
)) * TARGET_CHAR_BIT
- bits
;
2706 copy_bitwise (value_contents_writeable (container
) + offset_in_container
,
2707 value_bitpos (container
) + bit_offset_in_container
,
2708 value_contents (val
), src_offset
, bits
, 1);
2711 copy_bitwise (value_contents_writeable (container
) + offset_in_container
,
2712 value_bitpos (container
) + bit_offset_in_container
,
2713 value_contents (val
), 0, bits
, 0);
2716 /* Determine if TYPE is an access to an unconstrained array. */
2719 ada_is_access_to_unconstrained_array (struct type
*type
)
2721 return (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
2722 && is_thick_pntr (ada_typedef_target_type (type
)));
2725 /* The value of the element of array ARR at the ARITY indices given in IND.
2726 ARR may be either a simple array, GNAT array descriptor, or pointer
2730 ada_value_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2734 struct type
*elt_type
;
2736 elt
= ada_coerce_to_simple_array (arr
);
2738 elt_type
= ada_check_typedef (value_type (elt
));
2739 if (TYPE_CODE (elt_type
) == TYPE_CODE_ARRAY
2740 && TYPE_FIELD_BITSIZE (elt_type
, 0) > 0)
2741 return value_subscript_packed (elt
, arity
, ind
);
2743 for (k
= 0; k
< arity
; k
+= 1)
2745 struct type
*saved_elt_type
= TYPE_TARGET_TYPE (elt_type
);
2747 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
)
2748 error (_("too many subscripts (%d expected)"), k
);
2750 elt
= value_subscript (elt
, pos_atr (ind
[k
]));
2752 if (ada_is_access_to_unconstrained_array (saved_elt_type
)
2753 && TYPE_CODE (value_type (elt
)) != TYPE_CODE_TYPEDEF
)
2755 /* The element is a typedef to an unconstrained array,
2756 except that the value_subscript call stripped the
2757 typedef layer. The typedef layer is GNAT's way to
2758 specify that the element is, at the source level, an
2759 access to the unconstrained array, rather than the
2760 unconstrained array. So, we need to restore that
2761 typedef layer, which we can do by forcing the element's
2762 type back to its original type. Otherwise, the returned
2763 value is going to be printed as the array, rather
2764 than as an access. Another symptom of the same issue
2765 would be that an expression trying to dereference the
2766 element would also be improperly rejected. */
2767 deprecated_set_value_type (elt
, saved_elt_type
);
2770 elt_type
= ada_check_typedef (value_type (elt
));
2776 /* Assuming ARR is a pointer to a GDB array, the value of the element
2777 of *ARR at the ARITY indices given in IND.
2778 Does not read the entire array into memory.
2780 Note: Unlike what one would expect, this function is used instead of
2781 ada_value_subscript for basically all non-packed array types. The reason
2782 for this is that a side effect of doing our own pointer arithmetics instead
2783 of relying on value_subscript is that there is no implicit typedef peeling.
2784 This is important for arrays of array accesses, where it allows us to
2785 preserve the fact that the array's element is an array access, where the
2786 access part os encoded in a typedef layer. */
2788 static struct value
*
2789 ada_value_ptr_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2792 struct value
*array_ind
= ada_value_ind (arr
);
2794 = check_typedef (value_enclosing_type (array_ind
));
2796 if (TYPE_CODE (type
) == TYPE_CODE_ARRAY
2797 && TYPE_FIELD_BITSIZE (type
, 0) > 0)
2798 return value_subscript_packed (array_ind
, arity
, ind
);
2800 for (k
= 0; k
< arity
; k
+= 1)
2803 struct value
*lwb_value
;
2805 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
2806 error (_("too many subscripts (%d expected)"), k
);
2807 arr
= value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type
)),
2809 get_discrete_bounds (TYPE_INDEX_TYPE (type
), &lwb
, &upb
);
2810 lwb_value
= value_from_longest (value_type(ind
[k
]), lwb
);
2811 arr
= value_ptradd (arr
, pos_atr (ind
[k
]) - pos_atr (lwb_value
));
2812 type
= TYPE_TARGET_TYPE (type
);
2815 return value_ind (arr
);
2818 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2819 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2820 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2821 this array is LOW, as per Ada rules. */
2822 static struct value
*
2823 ada_value_slice_from_ptr (struct value
*array_ptr
, struct type
*type
,
2826 struct type
*type0
= ada_check_typedef (type
);
2827 struct type
*base_index_type
= TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0
));
2828 struct type
*index_type
2829 = create_static_range_type (NULL
, base_index_type
, low
, high
);
2830 struct type
*slice_type
= create_array_type_with_stride
2831 (NULL
, TYPE_TARGET_TYPE (type0
), index_type
,
2832 get_dyn_prop (DYN_PROP_BYTE_STRIDE
, type0
),
2833 TYPE_FIELD_BITSIZE (type0
, 0));
2834 int base_low
= ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0
));
2835 LONGEST base_low_pos
, low_pos
;
2838 if (!discrete_position (base_index_type
, low
, &low_pos
)
2839 || !discrete_position (base_index_type
, base_low
, &base_low_pos
))
2841 warning (_("unable to get positions in slice, use bounds instead"));
2843 base_low_pos
= base_low
;
2846 base
= value_as_address (array_ptr
)
2847 + ((low_pos
- base_low_pos
)
2848 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0
)));
2849 return value_at_lazy (slice_type
, base
);
2853 static struct value
*
2854 ada_value_slice (struct value
*array
, int low
, int high
)
2856 struct type
*type
= ada_check_typedef (value_type (array
));
2857 struct type
*base_index_type
= TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
));
2858 struct type
*index_type
2859 = create_static_range_type (NULL
, TYPE_INDEX_TYPE (type
), low
, high
);
2860 struct type
*slice_type
= create_array_type_with_stride
2861 (NULL
, TYPE_TARGET_TYPE (type
), index_type
,
2862 get_dyn_prop (DYN_PROP_BYTE_STRIDE
, type
),
2863 TYPE_FIELD_BITSIZE (type
, 0));
2864 LONGEST low_pos
, high_pos
;
2866 if (!discrete_position (base_index_type
, low
, &low_pos
)
2867 || !discrete_position (base_index_type
, high
, &high_pos
))
2869 warning (_("unable to get positions in slice, use bounds instead"));
2874 return value_cast (slice_type
,
2875 value_slice (array
, low
, high_pos
- low_pos
+ 1));
2878 /* If type is a record type in the form of a standard GNAT array
2879 descriptor, returns the number of dimensions for type. If arr is a
2880 simple array, returns the number of "array of"s that prefix its
2881 type designation. Otherwise, returns 0. */
2884 ada_array_arity (struct type
*type
)
2891 type
= desc_base_type (type
);
2894 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2895 return desc_arity (desc_bounds_type (type
));
2897 while (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2900 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
2906 /* If TYPE is a record type in the form of a standard GNAT array
2907 descriptor or a simple array type, returns the element type for
2908 TYPE after indexing by NINDICES indices, or by all indices if
2909 NINDICES is -1. Otherwise, returns NULL. */
2912 ada_array_element_type (struct type
*type
, int nindices
)
2914 type
= desc_base_type (type
);
2916 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2919 struct type
*p_array_type
;
2921 p_array_type
= desc_data_target_type (type
);
2923 k
= ada_array_arity (type
);
2927 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2928 if (nindices
>= 0 && k
> nindices
)
2930 while (k
> 0 && p_array_type
!= NULL
)
2932 p_array_type
= ada_check_typedef (TYPE_TARGET_TYPE (p_array_type
));
2935 return p_array_type
;
2937 else if (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2939 while (nindices
!= 0 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2941 type
= TYPE_TARGET_TYPE (type
);
2950 /* The type of nth index in arrays of given type (n numbering from 1).
2951 Does not examine memory. Throws an error if N is invalid or TYPE
2952 is not an array type. NAME is the name of the Ada attribute being
2953 evaluated ('range, 'first, 'last, or 'length); it is used in building
2954 the error message. */
2956 static struct type
*
2957 ada_index_type (struct type
*type
, int n
, const char *name
)
2959 struct type
*result_type
;
2961 type
= desc_base_type (type
);
2963 if (n
< 0 || n
> ada_array_arity (type
))
2964 error (_("invalid dimension number to '%s"), name
);
2966 if (ada_is_simple_array_type (type
))
2970 for (i
= 1; i
< n
; i
+= 1)
2971 type
= TYPE_TARGET_TYPE (type
);
2972 result_type
= TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
));
2973 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2974 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2975 perhaps stabsread.c would make more sense. */
2976 if (result_type
&& TYPE_CODE (result_type
) == TYPE_CODE_UNDEF
)
2981 result_type
= desc_index_type (desc_bounds_type (type
), n
);
2982 if (result_type
== NULL
)
2983 error (_("attempt to take bound of something that is not an array"));
2989 /* Given that arr is an array type, returns the lower bound of the
2990 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2991 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2992 array-descriptor type. It works for other arrays with bounds supplied
2993 by run-time quantities other than discriminants. */
2996 ada_array_bound_from_type (struct type
*arr_type
, int n
, int which
)
2998 struct type
*type
, *index_type_desc
, *index_type
;
3001 gdb_assert (which
== 0 || which
== 1);
3003 if (ada_is_constrained_packed_array_type (arr_type
))
3004 arr_type
= decode_constrained_packed_array_type (arr_type
);
3006 if (arr_type
== NULL
|| !ada_is_simple_array_type (arr_type
))
3007 return (LONGEST
) - which
;
3009 if (TYPE_CODE (arr_type
) == TYPE_CODE_PTR
)
3010 type
= TYPE_TARGET_TYPE (arr_type
);
3014 if (TYPE_FIXED_INSTANCE (type
))
3016 /* The array has already been fixed, so we do not need to
3017 check the parallel ___XA type again. That encoding has
3018 already been applied, so ignore it now. */
3019 index_type_desc
= NULL
;
3023 index_type_desc
= ada_find_parallel_type (type
, "___XA");
3024 ada_fixup_array_indexes_type (index_type_desc
);
3027 if (index_type_desc
!= NULL
)
3028 index_type
= to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, n
- 1),
3032 struct type
*elt_type
= check_typedef (type
);
3034 for (i
= 1; i
< n
; i
++)
3035 elt_type
= check_typedef (TYPE_TARGET_TYPE (elt_type
));
3037 index_type
= TYPE_INDEX_TYPE (elt_type
);
3041 (LONGEST
) (which
== 0
3042 ? ada_discrete_type_low_bound (index_type
)
3043 : ada_discrete_type_high_bound (index_type
));
3046 /* Given that arr is an array value, returns the lower bound of the
3047 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3048 WHICH is 1. This routine will also work for arrays with bounds
3049 supplied by run-time quantities other than discriminants. */
3052 ada_array_bound (struct value
*arr
, int n
, int which
)
3054 struct type
*arr_type
;
3056 if (TYPE_CODE (check_typedef (value_type (arr
))) == TYPE_CODE_PTR
)
3057 arr
= value_ind (arr
);
3058 arr_type
= value_enclosing_type (arr
);
3060 if (ada_is_constrained_packed_array_type (arr_type
))
3061 return ada_array_bound (decode_constrained_packed_array (arr
), n
, which
);
3062 else if (ada_is_simple_array_type (arr_type
))
3063 return ada_array_bound_from_type (arr_type
, n
, which
);
3065 return value_as_long (desc_one_bound (desc_bounds (arr
), n
, which
));
3068 /* Given that arr is an array value, returns the length of the
3069 nth index. This routine will also work for arrays with bounds
3070 supplied by run-time quantities other than discriminants.
3071 Does not work for arrays indexed by enumeration types with representation
3072 clauses at the moment. */
3075 ada_array_length (struct value
*arr
, int n
)
3077 struct type
*arr_type
, *index_type
;
3080 if (TYPE_CODE (check_typedef (value_type (arr
))) == TYPE_CODE_PTR
)
3081 arr
= value_ind (arr
);
3082 arr_type
= value_enclosing_type (arr
);
3084 if (ada_is_constrained_packed_array_type (arr_type
))
3085 return ada_array_length (decode_constrained_packed_array (arr
), n
);
3087 if (ada_is_simple_array_type (arr_type
))
3089 low
= ada_array_bound_from_type (arr_type
, n
, 0);
3090 high
= ada_array_bound_from_type (arr_type
, n
, 1);
3094 low
= value_as_long (desc_one_bound (desc_bounds (arr
), n
, 0));
3095 high
= value_as_long (desc_one_bound (desc_bounds (arr
), n
, 1));
3098 arr_type
= check_typedef (arr_type
);
3099 index_type
= ada_index_type (arr_type
, n
, "length");
3100 if (index_type
!= NULL
)
3102 struct type
*base_type
;
3103 if (TYPE_CODE (index_type
) == TYPE_CODE_RANGE
)
3104 base_type
= TYPE_TARGET_TYPE (index_type
);
3106 base_type
= index_type
;
3108 low
= pos_atr (value_from_longest (base_type
, low
));
3109 high
= pos_atr (value_from_longest (base_type
, high
));
3111 return high
- low
+ 1;
3114 /* An array whose type is that of ARR_TYPE (an array type), with
3115 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3116 less than LOW, then LOW-1 is used. */
3118 static struct value
*
3119 empty_array (struct type
*arr_type
, int low
, int high
)
3121 struct type
*arr_type0
= ada_check_typedef (arr_type
);
3122 struct type
*index_type
3123 = create_static_range_type
3124 (NULL
, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0
)), low
,
3125 high
< low
? low
- 1 : high
);
3126 struct type
*elt_type
= ada_array_element_type (arr_type0
, 1);
3128 return allocate_value (create_array_type (NULL
, elt_type
, index_type
));
3132 /* Name resolution */
3134 /* The "decoded" name for the user-definable Ada operator corresponding
3138 ada_decoded_op_name (enum exp_opcode op
)
3142 for (i
= 0; ada_opname_table
[i
].encoded
!= NULL
; i
+= 1)
3144 if (ada_opname_table
[i
].op
== op
)
3145 return ada_opname_table
[i
].decoded
;
3147 error (_("Could not find operator name for opcode"));
3150 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3151 in a listing of choices during disambiguation (see sort_choices, below).
3152 The idea is that overloadings of a subprogram name from the
3153 same package should sort in their source order. We settle for ordering
3154 such symbols by their trailing number (__N or $N). */
3157 encoded_ordered_before (const char *N0
, const char *N1
)
3161 else if (N0
== NULL
)
3167 for (k0
= strlen (N0
) - 1; k0
> 0 && isdigit (N0
[k0
]); k0
-= 1)
3169 for (k1
= strlen (N1
) - 1; k1
> 0 && isdigit (N1
[k1
]); k1
-= 1)
3171 if ((N0
[k0
] == '_' || N0
[k0
] == '$') && N0
[k0
+ 1] != '\000'
3172 && (N1
[k1
] == '_' || N1
[k1
] == '$') && N1
[k1
+ 1] != '\000')
3177 while (N0
[n0
] == '_' && n0
> 0 && N0
[n0
- 1] == '_')
3180 while (N1
[n1
] == '_' && n1
> 0 && N1
[n1
- 1] == '_')
3182 if (n0
== n1
&& strncmp (N0
, N1
, n0
) == 0)
3183 return (atoi (N0
+ k0
+ 1) < atoi (N1
+ k1
+ 1));
3185 return (strcmp (N0
, N1
) < 0);
3189 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3193 sort_choices (struct block_symbol syms
[], int nsyms
)
3197 for (i
= 1; i
< nsyms
; i
+= 1)
3199 struct block_symbol sym
= syms
[i
];
3202 for (j
= i
- 1; j
>= 0; j
-= 1)
3204 if (encoded_ordered_before (syms
[j
].symbol
->linkage_name (),
3205 sym
.symbol
->linkage_name ()))
3207 syms
[j
+ 1] = syms
[j
];
3213 /* Whether GDB should display formals and return types for functions in the
3214 overloads selection menu. */
3215 static bool print_signatures
= true;
3217 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3218 all but functions, the signature is just the name of the symbol. For
3219 functions, this is the name of the function, the list of types for formals
3220 and the return type (if any). */
3223 ada_print_symbol_signature (struct ui_file
*stream
, struct symbol
*sym
,
3224 const struct type_print_options
*flags
)
3226 struct type
*type
= SYMBOL_TYPE (sym
);
3228 fprintf_filtered (stream
, "%s", sym
->print_name ());
3229 if (!print_signatures
3231 || TYPE_CODE (type
) != TYPE_CODE_FUNC
)
3234 if (TYPE_NFIELDS (type
) > 0)
3238 fprintf_filtered (stream
, " (");
3239 for (i
= 0; i
< TYPE_NFIELDS (type
); ++i
)
3242 fprintf_filtered (stream
, "; ");
3243 ada_print_type (TYPE_FIELD_TYPE (type
, i
), NULL
, stream
, -1, 0,
3246 fprintf_filtered (stream
, ")");
3248 if (TYPE_TARGET_TYPE (type
) != NULL
3249 && TYPE_CODE (TYPE_TARGET_TYPE (type
)) != TYPE_CODE_VOID
)
3251 fprintf_filtered (stream
, " return ");
3252 ada_print_type (TYPE_TARGET_TYPE (type
), NULL
, stream
, -1, 0, flags
);
3256 /* Read and validate a set of numeric choices from the user in the
3257 range 0 .. N_CHOICES-1. Place the results in increasing
3258 order in CHOICES[0 .. N-1], and return N.
3260 The user types choices as a sequence of numbers on one line
3261 separated by blanks, encoding them as follows:
3263 + A choice of 0 means to cancel the selection, throwing an error.
3264 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3265 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3267 The user is not allowed to choose more than MAX_RESULTS values.
3269 ANNOTATION_SUFFIX, if present, is used to annotate the input
3270 prompts (for use with the -f switch). */
3273 get_selections (int *choices
, int n_choices
, int max_results
,
3274 int is_all_choice
, const char *annotation_suffix
)
3279 int first_choice
= is_all_choice
? 2 : 1;
3281 prompt
= getenv ("PS2");
3285 args
= command_line_input (prompt
, annotation_suffix
);
3288 error_no_arg (_("one or more choice numbers"));
3292 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3293 order, as given in args. Choices are validated. */
3299 args
= skip_spaces (args
);
3300 if (*args
== '\0' && n_chosen
== 0)
3301 error_no_arg (_("one or more choice numbers"));
3302 else if (*args
== '\0')
3305 choice
= strtol (args
, &args2
, 10);
3306 if (args
== args2
|| choice
< 0
3307 || choice
> n_choices
+ first_choice
- 1)
3308 error (_("Argument must be choice number"));
3312 error (_("cancelled"));
3314 if (choice
< first_choice
)
3316 n_chosen
= n_choices
;
3317 for (j
= 0; j
< n_choices
; j
+= 1)
3321 choice
-= first_choice
;
3323 for (j
= n_chosen
- 1; j
>= 0 && choice
< choices
[j
]; j
-= 1)
3327 if (j
< 0 || choice
!= choices
[j
])
3331 for (k
= n_chosen
- 1; k
> j
; k
-= 1)
3332 choices
[k
+ 1] = choices
[k
];
3333 choices
[j
+ 1] = choice
;
3338 if (n_chosen
> max_results
)
3339 error (_("Select no more than %d of the above"), max_results
);
3344 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3345 by asking the user (if necessary), returning the number selected,
3346 and setting the first elements of SYMS items. Error if no symbols
3349 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3350 to be re-integrated one of these days. */
3353 user_select_syms (struct block_symbol
*syms
, int nsyms
, int max_results
)
3356 int *chosen
= XALLOCAVEC (int , nsyms
);
3358 int first_choice
= (max_results
== 1) ? 1 : 2;
3359 const char *select_mode
= multiple_symbols_select_mode ();
3361 if (max_results
< 1)
3362 error (_("Request to select 0 symbols!"));
3366 if (select_mode
== multiple_symbols_cancel
)
3368 canceled because the command is ambiguous\n\
3369 See set/show multiple-symbol."));
3371 /* If select_mode is "all", then return all possible symbols.
3372 Only do that if more than one symbol can be selected, of course.
3373 Otherwise, display the menu as usual. */
3374 if (select_mode
== multiple_symbols_all
&& max_results
> 1)
3377 printf_filtered (_("[0] cancel\n"));
3378 if (max_results
> 1)
3379 printf_filtered (_("[1] all\n"));
3381 sort_choices (syms
, nsyms
);
3383 for (i
= 0; i
< nsyms
; i
+= 1)
3385 if (syms
[i
].symbol
== NULL
)
3388 if (SYMBOL_CLASS (syms
[i
].symbol
) == LOC_BLOCK
)
3390 struct symtab_and_line sal
=
3391 find_function_start_sal (syms
[i
].symbol
, 1);
3393 printf_filtered ("[%d] ", i
+ first_choice
);
3394 ada_print_symbol_signature (gdb_stdout
, syms
[i
].symbol
,
3395 &type_print_raw_options
);
3396 if (sal
.symtab
== NULL
)
3397 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3398 metadata_style
.style ().ptr (), nullptr, sal
.line
);
3402 styled_string (file_name_style
.style (),
3403 symtab_to_filename_for_display (sal
.symtab
)),
3410 (SYMBOL_CLASS (syms
[i
].symbol
) == LOC_CONST
3411 && SYMBOL_TYPE (syms
[i
].symbol
) != NULL
3412 && TYPE_CODE (SYMBOL_TYPE (syms
[i
].symbol
)) == TYPE_CODE_ENUM
);
3413 struct symtab
*symtab
= NULL
;
3415 if (SYMBOL_OBJFILE_OWNED (syms
[i
].symbol
))
3416 symtab
= symbol_symtab (syms
[i
].symbol
);
3418 if (SYMBOL_LINE (syms
[i
].symbol
) != 0 && symtab
!= NULL
)
3420 printf_filtered ("[%d] ", i
+ first_choice
);
3421 ada_print_symbol_signature (gdb_stdout
, syms
[i
].symbol
,
3422 &type_print_raw_options
);
3423 printf_filtered (_(" at %s:%d\n"),
3424 symtab_to_filename_for_display (symtab
),
3425 SYMBOL_LINE (syms
[i
].symbol
));
3427 else if (is_enumeral
3428 && TYPE_NAME (SYMBOL_TYPE (syms
[i
].symbol
)) != NULL
)
3430 printf_filtered (("[%d] "), i
+ first_choice
);
3431 ada_print_type (SYMBOL_TYPE (syms
[i
].symbol
), NULL
,
3432 gdb_stdout
, -1, 0, &type_print_raw_options
);
3433 printf_filtered (_("'(%s) (enumeral)\n"),
3434 syms
[i
].symbol
->print_name ());
3438 printf_filtered ("[%d] ", i
+ first_choice
);
3439 ada_print_symbol_signature (gdb_stdout
, syms
[i
].symbol
,
3440 &type_print_raw_options
);
3443 printf_filtered (is_enumeral
3444 ? _(" in %s (enumeral)\n")
3446 symtab_to_filename_for_display (symtab
));
3448 printf_filtered (is_enumeral
3449 ? _(" (enumeral)\n")
3455 n_chosen
= get_selections (chosen
, nsyms
, max_results
, max_results
> 1,
3458 for (i
= 0; i
< n_chosen
; i
+= 1)
3459 syms
[i
] = syms
[chosen
[i
]];
3464 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3465 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3466 undefined namespace) and converts operators that are
3467 user-defined into appropriate function calls. If CONTEXT_TYPE is
3468 non-null, it provides a preferred result type [at the moment, only
3469 type void has any effect---causing procedures to be preferred over
3470 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3471 return type is preferred. May change (expand) *EXP. */
3474 resolve (expression_up
*expp
, int void_context_p
, int parse_completion
,
3475 innermost_block_tracker
*tracker
)
3477 struct type
*context_type
= NULL
;
3481 context_type
= builtin_type ((*expp
)->gdbarch
)->builtin_void
;
3483 resolve_subexp (expp
, &pc
, 1, context_type
, parse_completion
, tracker
);
3486 /* Resolve the operator of the subexpression beginning at
3487 position *POS of *EXPP. "Resolving" consists of replacing
3488 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3489 with their resolutions, replacing built-in operators with
3490 function calls to user-defined operators, where appropriate, and,
3491 when DEPROCEDURE_P is non-zero, converting function-valued variables
3492 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3493 are as in ada_resolve, above. */
3495 static struct value
*
3496 resolve_subexp (expression_up
*expp
, int *pos
, int deprocedure_p
,
3497 struct type
*context_type
, int parse_completion
,
3498 innermost_block_tracker
*tracker
)
3502 struct expression
*exp
; /* Convenience: == *expp. */
3503 enum exp_opcode op
= (*expp
)->elts
[pc
].opcode
;
3504 struct value
**argvec
; /* Vector of operand types (alloca'ed). */
3505 int nargs
; /* Number of operands. */
3512 /* Pass one: resolve operands, saving their types and updating *pos,
3517 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
3518 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
3523 resolve_subexp (expp
, pos
, 0, NULL
, parse_completion
, tracker
);
3525 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
3530 resolve_subexp (expp
, pos
, 0, NULL
, parse_completion
, tracker
);
3535 resolve_subexp (expp
, pos
, 1, check_typedef (exp
->elts
[pc
+ 1].type
),
3536 parse_completion
, tracker
);
3539 case OP_ATR_MODULUS
:
3549 case TERNOP_IN_RANGE
:
3550 case BINOP_IN_BOUNDS
:
3556 case OP_DISCRETE_RANGE
:
3558 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
3567 arg1
= resolve_subexp (expp
, pos
, 0, NULL
, parse_completion
, tracker
);
3569 resolve_subexp (expp
, pos
, 1, NULL
, parse_completion
, tracker
);
3571 resolve_subexp (expp
, pos
, 1, value_type (arg1
), parse_completion
,
3589 case BINOP_LOGICAL_AND
:
3590 case BINOP_LOGICAL_OR
:
3591 case BINOP_BITWISE_AND
:
3592 case BINOP_BITWISE_IOR
:
3593 case BINOP_BITWISE_XOR
:
3596 case BINOP_NOTEQUAL
:
3603 case BINOP_SUBSCRIPT
:
3611 case UNOP_LOGICAL_NOT
:
3621 case OP_VAR_MSYM_VALUE
:
3628 case OP_INTERNALVAR
:
3638 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
3641 case STRUCTOP_STRUCT
:
3642 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
3655 error (_("Unexpected operator during name resolution"));
3658 argvec
= XALLOCAVEC (struct value
*, nargs
+ 1);
3659 for (i
= 0; i
< nargs
; i
+= 1)
3660 argvec
[i
] = resolve_subexp (expp
, pos
, 1, NULL
, parse_completion
,
3665 /* Pass two: perform any resolution on principal operator. */
3672 if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
3674 std::vector
<struct block_symbol
> candidates
;
3678 ada_lookup_symbol_list (exp
->elts
[pc
+ 2].symbol
->linkage_name (),
3679 exp
->elts
[pc
+ 1].block
, VAR_DOMAIN
,
3682 if (n_candidates
> 1)
3684 /* Types tend to get re-introduced locally, so if there
3685 are any local symbols that are not types, first filter
3688 for (j
= 0; j
< n_candidates
; j
+= 1)
3689 switch (SYMBOL_CLASS (candidates
[j
].symbol
))
3694 case LOC_REGPARM_ADDR
:
3702 if (j
< n_candidates
)
3705 while (j
< n_candidates
)
3707 if (SYMBOL_CLASS (candidates
[j
].symbol
) == LOC_TYPEDEF
)
3709 candidates
[j
] = candidates
[n_candidates
- 1];
3718 if (n_candidates
== 0)
3719 error (_("No definition found for %s"),
3720 exp
->elts
[pc
+ 2].symbol
->print_name ());
3721 else if (n_candidates
== 1)
3723 else if (deprocedure_p
3724 && !is_nonfunction (candidates
.data (), n_candidates
))
3726 i
= ada_resolve_function
3727 (candidates
.data (), n_candidates
, NULL
, 0,
3728 exp
->elts
[pc
+ 2].symbol
->linkage_name (),
3729 context_type
, parse_completion
);
3731 error (_("Could not find a match for %s"),
3732 exp
->elts
[pc
+ 2].symbol
->print_name ());
3736 printf_filtered (_("Multiple matches for %s\n"),
3737 exp
->elts
[pc
+ 2].symbol
->print_name ());
3738 user_select_syms (candidates
.data (), n_candidates
, 1);
3742 exp
->elts
[pc
+ 1].block
= candidates
[i
].block
;
3743 exp
->elts
[pc
+ 2].symbol
= candidates
[i
].symbol
;
3744 tracker
->update (candidates
[i
]);
3748 && (TYPE_CODE (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
))
3751 replace_operator_with_call (expp
, pc
, 0, 4,
3752 exp
->elts
[pc
+ 2].symbol
,
3753 exp
->elts
[pc
+ 1].block
);
3760 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
3761 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
3763 std::vector
<struct block_symbol
> candidates
;
3767 ada_lookup_symbol_list (exp
->elts
[pc
+ 5].symbol
->linkage_name (),
3768 exp
->elts
[pc
+ 4].block
, VAR_DOMAIN
,
3771 if (n_candidates
== 1)
3775 i
= ada_resolve_function
3776 (candidates
.data (), n_candidates
,
3778 exp
->elts
[pc
+ 5].symbol
->linkage_name (),
3779 context_type
, parse_completion
);
3781 error (_("Could not find a match for %s"),
3782 exp
->elts
[pc
+ 5].symbol
->print_name ());
3785 exp
->elts
[pc
+ 4].block
= candidates
[i
].block
;
3786 exp
->elts
[pc
+ 5].symbol
= candidates
[i
].symbol
;
3787 tracker
->update (candidates
[i
]);
3798 case BINOP_BITWISE_AND
:
3799 case BINOP_BITWISE_IOR
:
3800 case BINOP_BITWISE_XOR
:
3802 case BINOP_NOTEQUAL
:
3810 case UNOP_LOGICAL_NOT
:
3812 if (possible_user_operator_p (op
, argvec
))
3814 std::vector
<struct block_symbol
> candidates
;
3818 ada_lookup_symbol_list (ada_decoded_op_name (op
),
3822 i
= ada_resolve_function (candidates
.data (), n_candidates
, argvec
,
3823 nargs
, ada_decoded_op_name (op
), NULL
,
3828 replace_operator_with_call (expp
, pc
, nargs
, 1,
3829 candidates
[i
].symbol
,
3830 candidates
[i
].block
);
3841 if (exp
->elts
[pc
].opcode
== OP_VAR_MSYM_VALUE
)
3842 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS
,
3843 exp
->elts
[pc
+ 1].objfile
,
3844 exp
->elts
[pc
+ 2].msymbol
);
3846 return evaluate_subexp_type (exp
, pos
);
3849 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3850 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3852 /* The term "match" here is rather loose. The match is heuristic and
3856 ada_type_match (struct type
*ftype
, struct type
*atype
, int may_deref
)
3858 ftype
= ada_check_typedef (ftype
);
3859 atype
= ada_check_typedef (atype
);
3861 if (TYPE_CODE (ftype
) == TYPE_CODE_REF
)
3862 ftype
= TYPE_TARGET_TYPE (ftype
);
3863 if (TYPE_CODE (atype
) == TYPE_CODE_REF
)
3864 atype
= TYPE_TARGET_TYPE (atype
);
3866 switch (TYPE_CODE (ftype
))
3869 return TYPE_CODE (ftype
) == TYPE_CODE (atype
);
3871 if (TYPE_CODE (atype
) == TYPE_CODE_PTR
)
3872 return ada_type_match (TYPE_TARGET_TYPE (ftype
),
3873 TYPE_TARGET_TYPE (atype
), 0);
3876 && ada_type_match (TYPE_TARGET_TYPE (ftype
), atype
, 0));
3878 case TYPE_CODE_ENUM
:
3879 case TYPE_CODE_RANGE
:
3880 switch (TYPE_CODE (atype
))
3883 case TYPE_CODE_ENUM
:
3884 case TYPE_CODE_RANGE
:
3890 case TYPE_CODE_ARRAY
:
3891 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
3892 || ada_is_array_descriptor_type (atype
));
3894 case TYPE_CODE_STRUCT
:
3895 if (ada_is_array_descriptor_type (ftype
))
3896 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
3897 || ada_is_array_descriptor_type (atype
));
3899 return (TYPE_CODE (atype
) == TYPE_CODE_STRUCT
3900 && !ada_is_array_descriptor_type (atype
));
3902 case TYPE_CODE_UNION
:
3904 return (TYPE_CODE (atype
) == TYPE_CODE (ftype
));
3908 /* Return non-zero if the formals of FUNC "sufficiently match" the
3909 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3910 may also be an enumeral, in which case it is treated as a 0-
3911 argument function. */
3914 ada_args_match (struct symbol
*func
, struct value
**actuals
, int n_actuals
)
3917 struct type
*func_type
= SYMBOL_TYPE (func
);
3919 if (SYMBOL_CLASS (func
) == LOC_CONST
3920 && TYPE_CODE (func_type
) == TYPE_CODE_ENUM
)
3921 return (n_actuals
== 0);
3922 else if (func_type
== NULL
|| TYPE_CODE (func_type
) != TYPE_CODE_FUNC
)
3925 if (TYPE_NFIELDS (func_type
) != n_actuals
)
3928 for (i
= 0; i
< n_actuals
; i
+= 1)
3930 if (actuals
[i
] == NULL
)
3934 struct type
*ftype
= ada_check_typedef (TYPE_FIELD_TYPE (func_type
,
3936 struct type
*atype
= ada_check_typedef (value_type (actuals
[i
]));
3938 if (!ada_type_match (ftype
, atype
, 1))
3945 /* False iff function type FUNC_TYPE definitely does not produce a value
3946 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3947 FUNC_TYPE is not a valid function type with a non-null return type
3948 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3951 return_match (struct type
*func_type
, struct type
*context_type
)
3953 struct type
*return_type
;
3955 if (func_type
== NULL
)
3958 if (TYPE_CODE (func_type
) == TYPE_CODE_FUNC
)
3959 return_type
= get_base_type (TYPE_TARGET_TYPE (func_type
));
3961 return_type
= get_base_type (func_type
);
3962 if (return_type
== NULL
)
3965 context_type
= get_base_type (context_type
);
3967 if (TYPE_CODE (return_type
) == TYPE_CODE_ENUM
)
3968 return context_type
== NULL
|| return_type
== context_type
;
3969 else if (context_type
== NULL
)
3970 return TYPE_CODE (return_type
) != TYPE_CODE_VOID
;
3972 return TYPE_CODE (return_type
) == TYPE_CODE (context_type
);
3976 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3977 function (if any) that matches the types of the NARGS arguments in
3978 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3979 that returns that type, then eliminate matches that don't. If
3980 CONTEXT_TYPE is void and there is at least one match that does not
3981 return void, eliminate all matches that do.
3983 Asks the user if there is more than one match remaining. Returns -1
3984 if there is no such symbol or none is selected. NAME is used
3985 solely for messages. May re-arrange and modify SYMS in
3986 the process; the index returned is for the modified vector. */
3989 ada_resolve_function (struct block_symbol syms
[],
3990 int nsyms
, struct value
**args
, int nargs
,
3991 const char *name
, struct type
*context_type
,
3992 int parse_completion
)
3996 int m
; /* Number of hits */
3999 /* In the first pass of the loop, we only accept functions matching
4000 context_type. If none are found, we add a second pass of the loop
4001 where every function is accepted. */
4002 for (fallback
= 0; m
== 0 && fallback
< 2; fallback
++)
4004 for (k
= 0; k
< nsyms
; k
+= 1)
4006 struct type
*type
= ada_check_typedef (SYMBOL_TYPE (syms
[k
].symbol
));
4008 if (ada_args_match (syms
[k
].symbol
, args
, nargs
)
4009 && (fallback
|| return_match (type
, context_type
)))
4017 /* If we got multiple matches, ask the user which one to use. Don't do this
4018 interactive thing during completion, though, as the purpose of the
4019 completion is providing a list of all possible matches. Prompting the
4020 user to filter it down would be completely unexpected in this case. */
4023 else if (m
> 1 && !parse_completion
)
4025 printf_filtered (_("Multiple matches for %s\n"), name
);
4026 user_select_syms (syms
, m
, 1);
4032 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4033 on the function identified by SYM and BLOCK, and taking NARGS
4034 arguments. Update *EXPP as needed to hold more space. */
4037 replace_operator_with_call (expression_up
*expp
, int pc
, int nargs
,
4038 int oplen
, struct symbol
*sym
,
4039 const struct block
*block
)
4041 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4042 symbol, -oplen for operator being replaced). */
4043 struct expression
*newexp
= (struct expression
*)
4044 xzalloc (sizeof (struct expression
)
4045 + EXP_ELEM_TO_BYTES ((*expp
)->nelts
+ 7 - oplen
));
4046 struct expression
*exp
= expp
->get ();
4048 newexp
->nelts
= exp
->nelts
+ 7 - oplen
;
4049 newexp
->language_defn
= exp
->language_defn
;
4050 newexp
->gdbarch
= exp
->gdbarch
;
4051 memcpy (newexp
->elts
, exp
->elts
, EXP_ELEM_TO_BYTES (pc
));
4052 memcpy (newexp
->elts
+ pc
+ 7, exp
->elts
+ pc
+ oplen
,
4053 EXP_ELEM_TO_BYTES (exp
->nelts
- pc
- oplen
));
4055 newexp
->elts
[pc
].opcode
= newexp
->elts
[pc
+ 2].opcode
= OP_FUNCALL
;
4056 newexp
->elts
[pc
+ 1].longconst
= (LONGEST
) nargs
;
4058 newexp
->elts
[pc
+ 3].opcode
= newexp
->elts
[pc
+ 6].opcode
= OP_VAR_VALUE
;
4059 newexp
->elts
[pc
+ 4].block
= block
;
4060 newexp
->elts
[pc
+ 5].symbol
= sym
;
4062 expp
->reset (newexp
);
4065 /* Type-class predicates */
4067 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4071 numeric_type_p (struct type
*type
)
4077 switch (TYPE_CODE (type
))
4082 case TYPE_CODE_RANGE
:
4083 return (type
== TYPE_TARGET_TYPE (type
)
4084 || numeric_type_p (TYPE_TARGET_TYPE (type
)));
4091 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4094 integer_type_p (struct type
*type
)
4100 switch (TYPE_CODE (type
))
4104 case TYPE_CODE_RANGE
:
4105 return (type
== TYPE_TARGET_TYPE (type
)
4106 || integer_type_p (TYPE_TARGET_TYPE (type
)));
4113 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4116 scalar_type_p (struct type
*type
)
4122 switch (TYPE_CODE (type
))
4125 case TYPE_CODE_RANGE
:
4126 case TYPE_CODE_ENUM
:
4135 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4138 discrete_type_p (struct type
*type
)
4144 switch (TYPE_CODE (type
))
4147 case TYPE_CODE_RANGE
:
4148 case TYPE_CODE_ENUM
:
4149 case TYPE_CODE_BOOL
:
4157 /* Returns non-zero if OP with operands in the vector ARGS could be
4158 a user-defined function. Errs on the side of pre-defined operators
4159 (i.e., result 0). */
4162 possible_user_operator_p (enum exp_opcode op
, struct value
*args
[])
4164 struct type
*type0
=
4165 (args
[0] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[0]));
4166 struct type
*type1
=
4167 (args
[1] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[1]));
4181 return (!(numeric_type_p (type0
) && numeric_type_p (type1
)));
4185 case BINOP_BITWISE_AND
:
4186 case BINOP_BITWISE_IOR
:
4187 case BINOP_BITWISE_XOR
:
4188 return (!(integer_type_p (type0
) && integer_type_p (type1
)));
4191 case BINOP_NOTEQUAL
:
4196 return (!(scalar_type_p (type0
) && scalar_type_p (type1
)));
4199 return !ada_is_array_type (type0
) || !ada_is_array_type (type1
);
4202 return (!(numeric_type_p (type0
) && integer_type_p (type1
)));
4206 case UNOP_LOGICAL_NOT
:
4208 return (!numeric_type_p (type0
));
4217 1. In the following, we assume that a renaming type's name may
4218 have an ___XD suffix. It would be nice if this went away at some
4220 2. We handle both the (old) purely type-based representation of
4221 renamings and the (new) variable-based encoding. At some point,
4222 it is devoutly to be hoped that the former goes away
4223 (FIXME: hilfinger-2007-07-09).
4224 3. Subprogram renamings are not implemented, although the XRS
4225 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4227 /* If SYM encodes a renaming,
4229 <renaming> renames <renamed entity>,
4231 sets *LEN to the length of the renamed entity's name,
4232 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4233 the string describing the subcomponent selected from the renamed
4234 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4235 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4236 are undefined). Otherwise, returns a value indicating the category
4237 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4238 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4239 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4240 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4241 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4242 may be NULL, in which case they are not assigned.
4244 [Currently, however, GCC does not generate subprogram renamings.] */
4246 enum ada_renaming_category
4247 ada_parse_renaming (struct symbol
*sym
,
4248 const char **renamed_entity
, int *len
,
4249 const char **renaming_expr
)
4251 enum ada_renaming_category kind
;
4256 return ADA_NOT_RENAMING
;
4257 switch (SYMBOL_CLASS (sym
))
4260 return ADA_NOT_RENAMING
;
4264 case LOC_OPTIMIZED_OUT
:
4265 info
= strstr (sym
->linkage_name (), "___XR");
4267 return ADA_NOT_RENAMING
;
4271 kind
= ADA_OBJECT_RENAMING
;
4275 kind
= ADA_EXCEPTION_RENAMING
;
4279 kind
= ADA_PACKAGE_RENAMING
;
4283 kind
= ADA_SUBPROGRAM_RENAMING
;
4287 return ADA_NOT_RENAMING
;
4291 if (renamed_entity
!= NULL
)
4292 *renamed_entity
= info
;
4293 suffix
= strstr (info
, "___XE");
4294 if (suffix
== NULL
|| suffix
== info
)
4295 return ADA_NOT_RENAMING
;
4297 *len
= strlen (info
) - strlen (suffix
);
4299 if (renaming_expr
!= NULL
)
4300 *renaming_expr
= suffix
;
4304 /* Compute the value of the given RENAMING_SYM, which is expected to
4305 be a symbol encoding a renaming expression. BLOCK is the block
4306 used to evaluate the renaming. */
4308 static struct value
*
4309 ada_read_renaming_var_value (struct symbol
*renaming_sym
,
4310 const struct block
*block
)
4312 const char *sym_name
;
4314 sym_name
= renaming_sym
->linkage_name ();
4315 expression_up expr
= parse_exp_1 (&sym_name
, 0, block
, 0);
4316 return evaluate_expression (expr
.get ());
4320 /* Evaluation: Function Calls */
4322 /* Return an lvalue containing the value VAL. This is the identity on
4323 lvalues, and otherwise has the side-effect of allocating memory
4324 in the inferior where a copy of the value contents is copied. */
4326 static struct value
*
4327 ensure_lval (struct value
*val
)
4329 if (VALUE_LVAL (val
) == not_lval
4330 || VALUE_LVAL (val
) == lval_internalvar
)
4332 int len
= TYPE_LENGTH (ada_check_typedef (value_type (val
)));
4333 const CORE_ADDR addr
=
4334 value_as_long (value_allocate_space_in_inferior (len
));
4336 VALUE_LVAL (val
) = lval_memory
;
4337 set_value_address (val
, addr
);
4338 write_memory (addr
, value_contents (val
), len
);
4344 /* Given ARG, a value of type (pointer or reference to a)*
4345 structure/union, extract the component named NAME from the ultimate
4346 target structure/union and return it as a value with its
4349 The routine searches for NAME among all members of the structure itself
4350 and (recursively) among all members of any wrapper members
4353 If NO_ERR, then simply return NULL in case of error, rather than
4356 static struct value
*
4357 ada_value_struct_elt (struct value
*arg
, const char *name
, int no_err
)
4359 struct type
*t
, *t1
;
4364 t1
= t
= ada_check_typedef (value_type (arg
));
4365 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
4367 t1
= TYPE_TARGET_TYPE (t
);
4370 t1
= ada_check_typedef (t1
);
4371 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
4373 arg
= coerce_ref (arg
);
4378 while (TYPE_CODE (t
) == TYPE_CODE_PTR
)
4380 t1
= TYPE_TARGET_TYPE (t
);
4383 t1
= ada_check_typedef (t1
);
4384 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
4386 arg
= value_ind (arg
);
4393 if (TYPE_CODE (t1
) != TYPE_CODE_STRUCT
&& TYPE_CODE (t1
) != TYPE_CODE_UNION
)
4397 v
= ada_search_struct_field (name
, arg
, 0, t
);
4400 int bit_offset
, bit_size
, byte_offset
;
4401 struct type
*field_type
;
4404 if (TYPE_CODE (t
) == TYPE_CODE_PTR
)
4405 address
= value_address (ada_value_ind (arg
));
4407 address
= value_address (ada_coerce_ref (arg
));
4409 /* Check to see if this is a tagged type. We also need to handle
4410 the case where the type is a reference to a tagged type, but
4411 we have to be careful to exclude pointers to tagged types.
4412 The latter should be shown as usual (as a pointer), whereas
4413 a reference should mostly be transparent to the user. */
4415 if (ada_is_tagged_type (t1
, 0)
4416 || (TYPE_CODE (t1
) == TYPE_CODE_REF
4417 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1
), 0)))
4419 /* We first try to find the searched field in the current type.
4420 If not found then let's look in the fixed type. */
4422 if (!find_struct_field (name
, t1
, 0,
4423 &field_type
, &byte_offset
, &bit_offset
,
4432 /* Convert to fixed type in all cases, so that we have proper
4433 offsets to each field in unconstrained record types. */
4434 t1
= ada_to_fixed_type (ada_get_base_type (t1
), NULL
,
4435 address
, NULL
, check_tag
);
4437 if (find_struct_field (name
, t1
, 0,
4438 &field_type
, &byte_offset
, &bit_offset
,
4443 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
4444 arg
= ada_coerce_ref (arg
);
4446 arg
= ada_value_ind (arg
);
4447 v
= ada_value_primitive_packed_val (arg
, NULL
, byte_offset
,
4448 bit_offset
, bit_size
,
4452 v
= value_at_lazy (field_type
, address
+ byte_offset
);
4456 if (v
!= NULL
|| no_err
)
4459 error (_("There is no member named %s."), name
);
4465 error (_("Attempt to extract a component of "
4466 "a value that is not a record."));
4469 /* Return the value ACTUAL, converted to be an appropriate value for a
4470 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4471 allocating any necessary descriptors (fat pointers), or copies of
4472 values not residing in memory, updating it as needed. */
4475 ada_convert_actual (struct value
*actual
, struct type
*formal_type0
)
4477 struct type
*actual_type
= ada_check_typedef (value_type (actual
));
4478 struct type
*formal_type
= ada_check_typedef (formal_type0
);
4479 struct type
*formal_target
=
4480 TYPE_CODE (formal_type
) == TYPE_CODE_PTR
4481 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type
)) : formal_type
;
4482 struct type
*actual_target
=
4483 TYPE_CODE (actual_type
) == TYPE_CODE_PTR
4484 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type
)) : actual_type
;
4486 if (ada_is_array_descriptor_type (formal_target
)
4487 && TYPE_CODE (actual_target
) == TYPE_CODE_ARRAY
)
4488 return make_array_descriptor (formal_type
, actual
);
4489 else if (TYPE_CODE (formal_type
) == TYPE_CODE_PTR
4490 || TYPE_CODE (formal_type
) == TYPE_CODE_REF
)
4492 struct value
*result
;
4494 if (TYPE_CODE (formal_target
) == TYPE_CODE_ARRAY
4495 && ada_is_array_descriptor_type (actual_target
))
4496 result
= desc_data (actual
);
4497 else if (TYPE_CODE (formal_type
) != TYPE_CODE_PTR
)
4499 if (VALUE_LVAL (actual
) != lval_memory
)
4503 actual_type
= ada_check_typedef (value_type (actual
));
4504 val
= allocate_value (actual_type
);
4505 memcpy ((char *) value_contents_raw (val
),
4506 (char *) value_contents (actual
),
4507 TYPE_LENGTH (actual_type
));
4508 actual
= ensure_lval (val
);
4510 result
= value_addr (actual
);
4514 return value_cast_pointers (formal_type
, result
, 0);
4516 else if (TYPE_CODE (actual_type
) == TYPE_CODE_PTR
)
4517 return ada_value_ind (actual
);
4518 else if (ada_is_aligner_type (formal_type
))
4520 /* We need to turn this parameter into an aligner type
4522 struct value
*aligner
= allocate_value (formal_type
);
4523 struct value
*component
= ada_value_struct_elt (aligner
, "F", 0);
4525 value_assign_to_component (aligner
, component
, actual
);
4532 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4533 type TYPE. This is usually an inefficient no-op except on some targets
4534 (such as AVR) where the representation of a pointer and an address
4538 value_pointer (struct value
*value
, struct type
*type
)
4540 struct gdbarch
*gdbarch
= get_type_arch (type
);
4541 unsigned len
= TYPE_LENGTH (type
);
4542 gdb_byte
*buf
= (gdb_byte
*) alloca (len
);
4545 addr
= value_address (value
);
4546 gdbarch_address_to_pointer (gdbarch
, type
, buf
, addr
);
4547 addr
= extract_unsigned_integer (buf
, len
, type_byte_order (type
));
4552 /* Push a descriptor of type TYPE for array value ARR on the stack at
4553 *SP, updating *SP to reflect the new descriptor. Return either
4554 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4555 to-descriptor type rather than a descriptor type), a struct value *
4556 representing a pointer to this descriptor. */
4558 static struct value
*
4559 make_array_descriptor (struct type
*type
, struct value
*arr
)
4561 struct type
*bounds_type
= desc_bounds_type (type
);
4562 struct type
*desc_type
= desc_base_type (type
);
4563 struct value
*descriptor
= allocate_value (desc_type
);
4564 struct value
*bounds
= allocate_value (bounds_type
);
4567 for (i
= ada_array_arity (ada_check_typedef (value_type (arr
)));
4570 modify_field (value_type (bounds
), value_contents_writeable (bounds
),
4571 ada_array_bound (arr
, i
, 0),
4572 desc_bound_bitpos (bounds_type
, i
, 0),
4573 desc_bound_bitsize (bounds_type
, i
, 0));
4574 modify_field (value_type (bounds
), value_contents_writeable (bounds
),
4575 ada_array_bound (arr
, i
, 1),
4576 desc_bound_bitpos (bounds_type
, i
, 1),
4577 desc_bound_bitsize (bounds_type
, i
, 1));
4580 bounds
= ensure_lval (bounds
);
4582 modify_field (value_type (descriptor
),
4583 value_contents_writeable (descriptor
),
4584 value_pointer (ensure_lval (arr
),
4585 TYPE_FIELD_TYPE (desc_type
, 0)),
4586 fat_pntr_data_bitpos (desc_type
),
4587 fat_pntr_data_bitsize (desc_type
));
4589 modify_field (value_type (descriptor
),
4590 value_contents_writeable (descriptor
),
4591 value_pointer (bounds
,
4592 TYPE_FIELD_TYPE (desc_type
, 1)),
4593 fat_pntr_bounds_bitpos (desc_type
),
4594 fat_pntr_bounds_bitsize (desc_type
));
4596 descriptor
= ensure_lval (descriptor
);
4598 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
4599 return value_addr (descriptor
);
4604 /* Symbol Cache Module */
4606 /* Performance measurements made as of 2010-01-15 indicate that
4607 this cache does bring some noticeable improvements. Depending
4608 on the type of entity being printed, the cache can make it as much
4609 as an order of magnitude faster than without it.
4611 The descriptive type DWARF extension has significantly reduced
4612 the need for this cache, at least when DWARF is being used. However,
4613 even in this case, some expensive name-based symbol searches are still
4614 sometimes necessary - to find an XVZ variable, mostly. */
4616 /* Initialize the contents of SYM_CACHE. */
4619 ada_init_symbol_cache (struct ada_symbol_cache
*sym_cache
)
4621 obstack_init (&sym_cache
->cache_space
);
4622 memset (sym_cache
->root
, '\000', sizeof (sym_cache
->root
));
4625 /* Free the memory used by SYM_CACHE. */
4628 ada_free_symbol_cache (struct ada_symbol_cache
*sym_cache
)
4630 obstack_free (&sym_cache
->cache_space
, NULL
);
4634 /* Return the symbol cache associated to the given program space PSPACE.
4635 If not allocated for this PSPACE yet, allocate and initialize one. */
4637 static struct ada_symbol_cache
*
4638 ada_get_symbol_cache (struct program_space
*pspace
)
4640 struct ada_pspace_data
*pspace_data
= get_ada_pspace_data (pspace
);
4642 if (pspace_data
->sym_cache
== NULL
)
4644 pspace_data
->sym_cache
= XCNEW (struct ada_symbol_cache
);
4645 ada_init_symbol_cache (pspace_data
->sym_cache
);
4648 return pspace_data
->sym_cache
;
4651 /* Clear all entries from the symbol cache. */
4654 ada_clear_symbol_cache (void)
4656 struct ada_symbol_cache
*sym_cache
4657 = ada_get_symbol_cache (current_program_space
);
4659 obstack_free (&sym_cache
->cache_space
, NULL
);
4660 ada_init_symbol_cache (sym_cache
);
4663 /* Search our cache for an entry matching NAME and DOMAIN.
4664 Return it if found, or NULL otherwise. */
4666 static struct cache_entry
**
4667 find_entry (const char *name
, domain_enum domain
)
4669 struct ada_symbol_cache
*sym_cache
4670 = ada_get_symbol_cache (current_program_space
);
4671 int h
= msymbol_hash (name
) % HASH_SIZE
;
4672 struct cache_entry
**e
;
4674 for (e
= &sym_cache
->root
[h
]; *e
!= NULL
; e
= &(*e
)->next
)
4676 if (domain
== (*e
)->domain
&& strcmp (name
, (*e
)->name
) == 0)
4682 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4683 Return 1 if found, 0 otherwise.
4685 If an entry was found and SYM is not NULL, set *SYM to the entry's
4686 SYM. Same principle for BLOCK if not NULL. */
4689 lookup_cached_symbol (const char *name
, domain_enum domain
,
4690 struct symbol
**sym
, const struct block
**block
)
4692 struct cache_entry
**e
= find_entry (name
, domain
);
4699 *block
= (*e
)->block
;
4703 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4704 in domain DOMAIN, save this result in our symbol cache. */
4707 cache_symbol (const char *name
, domain_enum domain
, struct symbol
*sym
,
4708 const struct block
*block
)
4710 struct ada_symbol_cache
*sym_cache
4711 = ada_get_symbol_cache (current_program_space
);
4714 struct cache_entry
*e
;
4716 /* Symbols for builtin types don't have a block.
4717 For now don't cache such symbols. */
4718 if (sym
!= NULL
&& !SYMBOL_OBJFILE_OWNED (sym
))
4721 /* If the symbol is a local symbol, then do not cache it, as a search
4722 for that symbol depends on the context. To determine whether
4723 the symbol is local or not, we check the block where we found it
4724 against the global and static blocks of its associated symtab. */
4726 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym
)),
4727 GLOBAL_BLOCK
) != block
4728 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym
)),
4729 STATIC_BLOCK
) != block
)
4732 h
= msymbol_hash (name
) % HASH_SIZE
;
4733 e
= XOBNEW (&sym_cache
->cache_space
, cache_entry
);
4734 e
->next
= sym_cache
->root
[h
];
4735 sym_cache
->root
[h
] = e
;
4737 = (char *) obstack_alloc (&sym_cache
->cache_space
, strlen (name
) + 1);
4738 strcpy (copy
, name
);
4746 /* Return the symbol name match type that should be used used when
4747 searching for all symbols matching LOOKUP_NAME.
4749 LOOKUP_NAME is expected to be a symbol name after transformation
4752 static symbol_name_match_type
4753 name_match_type_from_name (const char *lookup_name
)
4755 return (strstr (lookup_name
, "__") == NULL
4756 ? symbol_name_match_type::WILD
4757 : symbol_name_match_type::FULL
);
4760 /* Return the result of a standard (literal, C-like) lookup of NAME in
4761 given DOMAIN, visible from lexical block BLOCK. */
4763 static struct symbol
*
4764 standard_lookup (const char *name
, const struct block
*block
,
4767 /* Initialize it just to avoid a GCC false warning. */
4768 struct block_symbol sym
= {};
4770 if (lookup_cached_symbol (name
, domain
, &sym
.symbol
, NULL
))
4772 ada_lookup_encoded_symbol (name
, block
, domain
, &sym
);
4773 cache_symbol (name
, domain
, sym
.symbol
, sym
.block
);
4778 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4779 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4780 since they contend in overloading in the same way. */
4782 is_nonfunction (struct block_symbol syms
[], int n
)
4786 for (i
= 0; i
< n
; i
+= 1)
4787 if (TYPE_CODE (SYMBOL_TYPE (syms
[i
].symbol
)) != TYPE_CODE_FUNC
4788 && (TYPE_CODE (SYMBOL_TYPE (syms
[i
].symbol
)) != TYPE_CODE_ENUM
4789 || SYMBOL_CLASS (syms
[i
].symbol
) != LOC_CONST
))
4795 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4796 struct types. Otherwise, they may not. */
4799 equiv_types (struct type
*type0
, struct type
*type1
)
4803 if (type0
== NULL
|| type1
== NULL
4804 || TYPE_CODE (type0
) != TYPE_CODE (type1
))
4806 if ((TYPE_CODE (type0
) == TYPE_CODE_STRUCT
4807 || TYPE_CODE (type0
) == TYPE_CODE_ENUM
)
4808 && ada_type_name (type0
) != NULL
&& ada_type_name (type1
) != NULL
4809 && strcmp (ada_type_name (type0
), ada_type_name (type1
)) == 0)
4815 /* True iff SYM0 represents the same entity as SYM1, or one that is
4816 no more defined than that of SYM1. */
4819 lesseq_defined_than (struct symbol
*sym0
, struct symbol
*sym1
)
4823 if (SYMBOL_DOMAIN (sym0
) != SYMBOL_DOMAIN (sym1
)
4824 || SYMBOL_CLASS (sym0
) != SYMBOL_CLASS (sym1
))
4827 switch (SYMBOL_CLASS (sym0
))
4833 struct type
*type0
= SYMBOL_TYPE (sym0
);
4834 struct type
*type1
= SYMBOL_TYPE (sym1
);
4835 const char *name0
= sym0
->linkage_name ();
4836 const char *name1
= sym1
->linkage_name ();
4837 int len0
= strlen (name0
);
4840 TYPE_CODE (type0
) == TYPE_CODE (type1
)
4841 && (equiv_types (type0
, type1
)
4842 || (len0
< strlen (name1
) && strncmp (name0
, name1
, len0
) == 0
4843 && startswith (name1
+ len0
, "___XV")));
4846 return SYMBOL_VALUE (sym0
) == SYMBOL_VALUE (sym1
)
4847 && equiv_types (SYMBOL_TYPE (sym0
), SYMBOL_TYPE (sym1
));
4851 const char *name0
= sym0
->linkage_name ();
4852 const char *name1
= sym1
->linkage_name ();
4853 return (strcmp (name0
, name1
) == 0
4854 && SYMBOL_VALUE_ADDRESS (sym0
) == SYMBOL_VALUE_ADDRESS (sym1
));
4862 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4863 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4866 add_defn_to_vec (struct obstack
*obstackp
,
4868 const struct block
*block
)
4871 struct block_symbol
*prevDefns
= defns_collected (obstackp
, 0);
4873 /* Do not try to complete stub types, as the debugger is probably
4874 already scanning all symbols matching a certain name at the
4875 time when this function is called. Trying to replace the stub
4876 type by its associated full type will cause us to restart a scan
4877 which may lead to an infinite recursion. Instead, the client
4878 collecting the matching symbols will end up collecting several
4879 matches, with at least one of them complete. It can then filter
4880 out the stub ones if needed. */
4882 for (i
= num_defns_collected (obstackp
) - 1; i
>= 0; i
-= 1)
4884 if (lesseq_defined_than (sym
, prevDefns
[i
].symbol
))
4886 else if (lesseq_defined_than (prevDefns
[i
].symbol
, sym
))
4888 prevDefns
[i
].symbol
= sym
;
4889 prevDefns
[i
].block
= block
;
4895 struct block_symbol info
;
4899 obstack_grow (obstackp
, &info
, sizeof (struct block_symbol
));
4903 /* Number of block_symbol structures currently collected in current vector in
4907 num_defns_collected (struct obstack
*obstackp
)
4909 return obstack_object_size (obstackp
) / sizeof (struct block_symbol
);
4912 /* Vector of block_symbol structures currently collected in current vector in
4913 OBSTACKP. If FINISH, close off the vector and return its final address. */
4915 static struct block_symbol
*
4916 defns_collected (struct obstack
*obstackp
, int finish
)
4919 return (struct block_symbol
*) obstack_finish (obstackp
);
4921 return (struct block_symbol
*) obstack_base (obstackp
);
4924 /* Return a bound minimal symbol matching NAME according to Ada
4925 decoding rules. Returns an invalid symbol if there is no such
4926 minimal symbol. Names prefixed with "standard__" are handled
4927 specially: "standard__" is first stripped off, and only static and
4928 global symbols are searched. */
4930 struct bound_minimal_symbol
4931 ada_lookup_simple_minsym (const char *name
)
4933 struct bound_minimal_symbol result
;
4935 memset (&result
, 0, sizeof (result
));
4937 symbol_name_match_type match_type
= name_match_type_from_name (name
);
4938 lookup_name_info
lookup_name (name
, match_type
);
4940 symbol_name_matcher_ftype
*match_name
4941 = ada_get_symbol_name_matcher (lookup_name
);
4943 for (objfile
*objfile
: current_program_space
->objfiles ())
4945 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
4947 if (match_name (msymbol
->linkage_name (), lookup_name
, NULL
)
4948 && MSYMBOL_TYPE (msymbol
) != mst_solib_trampoline
)
4950 result
.minsym
= msymbol
;
4951 result
.objfile
= objfile
;
4960 /* For all subprograms that statically enclose the subprogram of the
4961 selected frame, add symbols matching identifier NAME in DOMAIN
4962 and their blocks to the list of data in OBSTACKP, as for
4963 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4964 with a wildcard prefix. */
4967 add_symbols_from_enclosing_procs (struct obstack
*obstackp
,
4968 const lookup_name_info
&lookup_name
,
4973 /* True if TYPE is definitely an artificial type supplied to a symbol
4974 for which no debugging information was given in the symbol file. */
4977 is_nondebugging_type (struct type
*type
)
4979 const char *name
= ada_type_name (type
);
4981 return (name
!= NULL
&& strcmp (name
, "<variable, no debug info>") == 0);
4984 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4985 that are deemed "identical" for practical purposes.
4987 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4988 types and that their number of enumerals is identical (in other
4989 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4992 ada_identical_enum_types_p (struct type
*type1
, struct type
*type2
)
4996 /* The heuristic we use here is fairly conservative. We consider
4997 that 2 enumerate types are identical if they have the same
4998 number of enumerals and that all enumerals have the same
4999 underlying value and name. */
5001 /* All enums in the type should have an identical underlying value. */
5002 for (i
= 0; i
< TYPE_NFIELDS (type1
); i
++)
5003 if (TYPE_FIELD_ENUMVAL (type1
, i
) != TYPE_FIELD_ENUMVAL (type2
, i
))
5006 /* All enumerals should also have the same name (modulo any numerical
5008 for (i
= 0; i
< TYPE_NFIELDS (type1
); i
++)
5010 const char *name_1
= TYPE_FIELD_NAME (type1
, i
);
5011 const char *name_2
= TYPE_FIELD_NAME (type2
, i
);
5012 int len_1
= strlen (name_1
);
5013 int len_2
= strlen (name_2
);
5015 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1
, i
), &len_1
);
5016 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2
, i
), &len_2
);
5018 || strncmp (TYPE_FIELD_NAME (type1
, i
),
5019 TYPE_FIELD_NAME (type2
, i
),
5027 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5028 that are deemed "identical" for practical purposes. Sometimes,
5029 enumerals are not strictly identical, but their types are so similar
5030 that they can be considered identical.
5032 For instance, consider the following code:
5034 type Color is (Black, Red, Green, Blue, White);
5035 type RGB_Color is new Color range Red .. Blue;
5037 Type RGB_Color is a subrange of an implicit type which is a copy
5038 of type Color. If we call that implicit type RGB_ColorB ("B" is
5039 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5040 As a result, when an expression references any of the enumeral
5041 by name (Eg. "print green"), the expression is technically
5042 ambiguous and the user should be asked to disambiguate. But
5043 doing so would only hinder the user, since it wouldn't matter
5044 what choice he makes, the outcome would always be the same.
5045 So, for practical purposes, we consider them as the same. */
5048 symbols_are_identical_enums (const std::vector
<struct block_symbol
> &syms
)
5052 /* Before performing a thorough comparison check of each type,
5053 we perform a series of inexpensive checks. We expect that these
5054 checks will quickly fail in the vast majority of cases, and thus
5055 help prevent the unnecessary use of a more expensive comparison.
5056 Said comparison also expects us to make some of these checks
5057 (see ada_identical_enum_types_p). */
5059 /* Quick check: All symbols should have an enum type. */
5060 for (i
= 0; i
< syms
.size (); i
++)
5061 if (TYPE_CODE (SYMBOL_TYPE (syms
[i
].symbol
)) != TYPE_CODE_ENUM
)
5064 /* Quick check: They should all have the same value. */
5065 for (i
= 1; i
< syms
.size (); i
++)
5066 if (SYMBOL_VALUE (syms
[i
].symbol
) != SYMBOL_VALUE (syms
[0].symbol
))
5069 /* Quick check: They should all have the same number of enumerals. */
5070 for (i
= 1; i
< syms
.size (); i
++)
5071 if (TYPE_NFIELDS (SYMBOL_TYPE (syms
[i
].symbol
))
5072 != TYPE_NFIELDS (SYMBOL_TYPE (syms
[0].symbol
)))
5075 /* All the sanity checks passed, so we might have a set of
5076 identical enumeration types. Perform a more complete
5077 comparison of the type of each symbol. */
5078 for (i
= 1; i
< syms
.size (); i
++)
5079 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms
[i
].symbol
),
5080 SYMBOL_TYPE (syms
[0].symbol
)))
5086 /* Remove any non-debugging symbols in SYMS that definitely
5087 duplicate other symbols in the list (The only case I know of where
5088 this happens is when object files containing stabs-in-ecoff are
5089 linked with files containing ordinary ecoff debugging symbols (or no
5090 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5091 Returns the number of items in the modified list. */
5094 remove_extra_symbols (std::vector
<struct block_symbol
> *syms
)
5098 /* We should never be called with less than 2 symbols, as there
5099 cannot be any extra symbol in that case. But it's easy to
5100 handle, since we have nothing to do in that case. */
5101 if (syms
->size () < 2)
5102 return syms
->size ();
5105 while (i
< syms
->size ())
5109 /* If two symbols have the same name and one of them is a stub type,
5110 the get rid of the stub. */
5112 if (TYPE_STUB (SYMBOL_TYPE ((*syms
)[i
].symbol
))
5113 && (*syms
)[i
].symbol
->linkage_name () != NULL
)
5115 for (j
= 0; j
< syms
->size (); j
++)
5118 && !TYPE_STUB (SYMBOL_TYPE ((*syms
)[j
].symbol
))
5119 && (*syms
)[j
].symbol
->linkage_name () != NULL
5120 && strcmp ((*syms
)[i
].symbol
->linkage_name (),
5121 (*syms
)[j
].symbol
->linkage_name ()) == 0)
5126 /* Two symbols with the same name, same class and same address
5127 should be identical. */
5129 else if ((*syms
)[i
].symbol
->linkage_name () != NULL
5130 && SYMBOL_CLASS ((*syms
)[i
].symbol
) == LOC_STATIC
5131 && is_nondebugging_type (SYMBOL_TYPE ((*syms
)[i
].symbol
)))
5133 for (j
= 0; j
< syms
->size (); j
+= 1)
5136 && (*syms
)[j
].symbol
->linkage_name () != NULL
5137 && strcmp ((*syms
)[i
].symbol
->linkage_name (),
5138 (*syms
)[j
].symbol
->linkage_name ()) == 0
5139 && SYMBOL_CLASS ((*syms
)[i
].symbol
)
5140 == SYMBOL_CLASS ((*syms
)[j
].symbol
)
5141 && SYMBOL_VALUE_ADDRESS ((*syms
)[i
].symbol
)
5142 == SYMBOL_VALUE_ADDRESS ((*syms
)[j
].symbol
))
5148 syms
->erase (syms
->begin () + i
);
5153 /* If all the remaining symbols are identical enumerals, then
5154 just keep the first one and discard the rest.
5156 Unlike what we did previously, we do not discard any entry
5157 unless they are ALL identical. This is because the symbol
5158 comparison is not a strict comparison, but rather a practical
5159 comparison. If all symbols are considered identical, then
5160 we can just go ahead and use the first one and discard the rest.
5161 But if we cannot reduce the list to a single element, we have
5162 to ask the user to disambiguate anyways. And if we have to
5163 present a multiple-choice menu, it's less confusing if the list
5164 isn't missing some choices that were identical and yet distinct. */
5165 if (symbols_are_identical_enums (*syms
))
5168 return syms
->size ();
5171 /* Given a type that corresponds to a renaming entity, use the type name
5172 to extract the scope (package name or function name, fully qualified,
5173 and following the GNAT encoding convention) where this renaming has been
5177 xget_renaming_scope (struct type
*renaming_type
)
5179 /* The renaming types adhere to the following convention:
5180 <scope>__<rename>___<XR extension>.
5181 So, to extract the scope, we search for the "___XR" extension,
5182 and then backtrack until we find the first "__". */
5184 const char *name
= TYPE_NAME (renaming_type
);
5185 const char *suffix
= strstr (name
, "___XR");
5188 /* Now, backtrack a bit until we find the first "__". Start looking
5189 at suffix - 3, as the <rename> part is at least one character long. */
5191 for (last
= suffix
- 3; last
> name
; last
--)
5192 if (last
[0] == '_' && last
[1] == '_')
5195 /* Make a copy of scope and return it. */
5196 return std::string (name
, last
);
5199 /* Return nonzero if NAME corresponds to a package name. */
5202 is_package_name (const char *name
)
5204 /* Here, We take advantage of the fact that no symbols are generated
5205 for packages, while symbols are generated for each function.
5206 So the condition for NAME represent a package becomes equivalent
5207 to NAME not existing in our list of symbols. There is only one
5208 small complication with library-level functions (see below). */
5210 /* If it is a function that has not been defined at library level,
5211 then we should be able to look it up in the symbols. */
5212 if (standard_lookup (name
, NULL
, VAR_DOMAIN
) != NULL
)
5215 /* Library-level function names start with "_ada_". See if function
5216 "_ada_" followed by NAME can be found. */
5218 /* Do a quick check that NAME does not contain "__", since library-level
5219 functions names cannot contain "__" in them. */
5220 if (strstr (name
, "__") != NULL
)
5223 std::string fun_name
= string_printf ("_ada_%s", name
);
5225 return (standard_lookup (fun_name
.c_str (), NULL
, VAR_DOMAIN
) == NULL
);
5228 /* Return nonzero if SYM corresponds to a renaming entity that is
5229 not visible from FUNCTION_NAME. */
5232 old_renaming_is_invisible (const struct symbol
*sym
, const char *function_name
)
5234 if (SYMBOL_CLASS (sym
) != LOC_TYPEDEF
)
5237 std::string scope
= xget_renaming_scope (SYMBOL_TYPE (sym
));
5239 /* If the rename has been defined in a package, then it is visible. */
5240 if (is_package_name (scope
.c_str ()))
5243 /* Check that the rename is in the current function scope by checking
5244 that its name starts with SCOPE. */
5246 /* If the function name starts with "_ada_", it means that it is
5247 a library-level function. Strip this prefix before doing the
5248 comparison, as the encoding for the renaming does not contain
5250 if (startswith (function_name
, "_ada_"))
5253 return !startswith (function_name
, scope
.c_str ());
5256 /* Remove entries from SYMS that corresponds to a renaming entity that
5257 is not visible from the function associated with CURRENT_BLOCK or
5258 that is superfluous due to the presence of more specific renaming
5259 information. Places surviving symbols in the initial entries of
5260 SYMS and returns the number of surviving symbols.
5263 First, in cases where an object renaming is implemented as a
5264 reference variable, GNAT may produce both the actual reference
5265 variable and the renaming encoding. In this case, we discard the
5268 Second, GNAT emits a type following a specified encoding for each renaming
5269 entity. Unfortunately, STABS currently does not support the definition
5270 of types that are local to a given lexical block, so all renamings types
5271 are emitted at library level. As a consequence, if an application
5272 contains two renaming entities using the same name, and a user tries to
5273 print the value of one of these entities, the result of the ada symbol
5274 lookup will also contain the wrong renaming type.
5276 This function partially covers for this limitation by attempting to
5277 remove from the SYMS list renaming symbols that should be visible
5278 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5279 method with the current information available. The implementation
5280 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5282 - When the user tries to print a rename in a function while there
5283 is another rename entity defined in a package: Normally, the
5284 rename in the function has precedence over the rename in the
5285 package, so the latter should be removed from the list. This is
5286 currently not the case.
5288 - This function will incorrectly remove valid renames if
5289 the CURRENT_BLOCK corresponds to a function which symbol name
5290 has been changed by an "Export" pragma. As a consequence,
5291 the user will be unable to print such rename entities. */
5294 remove_irrelevant_renamings (std::vector
<struct block_symbol
> *syms
,
5295 const struct block
*current_block
)
5297 struct symbol
*current_function
;
5298 const char *current_function_name
;
5300 int is_new_style_renaming
;
5302 /* If there is both a renaming foo___XR... encoded as a variable and
5303 a simple variable foo in the same block, discard the latter.
5304 First, zero out such symbols, then compress. */
5305 is_new_style_renaming
= 0;
5306 for (i
= 0; i
< syms
->size (); i
+= 1)
5308 struct symbol
*sym
= (*syms
)[i
].symbol
;
5309 const struct block
*block
= (*syms
)[i
].block
;
5313 if (sym
== NULL
|| SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
5315 name
= sym
->linkage_name ();
5316 suffix
= strstr (name
, "___XR");
5320 int name_len
= suffix
- name
;
5323 is_new_style_renaming
= 1;
5324 for (j
= 0; j
< syms
->size (); j
+= 1)
5325 if (i
!= j
&& (*syms
)[j
].symbol
!= NULL
5326 && strncmp (name
, (*syms
)[j
].symbol
->linkage_name (),
5328 && block
== (*syms
)[j
].block
)
5329 (*syms
)[j
].symbol
= NULL
;
5332 if (is_new_style_renaming
)
5336 for (j
= k
= 0; j
< syms
->size (); j
+= 1)
5337 if ((*syms
)[j
].symbol
!= NULL
)
5339 (*syms
)[k
] = (*syms
)[j
];
5345 /* Extract the function name associated to CURRENT_BLOCK.
5346 Abort if unable to do so. */
5348 if (current_block
== NULL
)
5349 return syms
->size ();
5351 current_function
= block_linkage_function (current_block
);
5352 if (current_function
== NULL
)
5353 return syms
->size ();
5355 current_function_name
= current_function
->linkage_name ();
5356 if (current_function_name
== NULL
)
5357 return syms
->size ();
5359 /* Check each of the symbols, and remove it from the list if it is
5360 a type corresponding to a renaming that is out of the scope of
5361 the current block. */
5364 while (i
< syms
->size ())
5366 if (ada_parse_renaming ((*syms
)[i
].symbol
, NULL
, NULL
, NULL
)
5367 == ADA_OBJECT_RENAMING
5368 && old_renaming_is_invisible ((*syms
)[i
].symbol
,
5369 current_function_name
))
5370 syms
->erase (syms
->begin () + i
);
5375 return syms
->size ();
5378 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5379 whose name and domain match NAME and DOMAIN respectively.
5380 If no match was found, then extend the search to "enclosing"
5381 routines (in other words, if we're inside a nested function,
5382 search the symbols defined inside the enclosing functions).
5383 If WILD_MATCH_P is nonzero, perform the naming matching in
5384 "wild" mode (see function "wild_match" for more info).
5386 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5389 ada_add_local_symbols (struct obstack
*obstackp
,
5390 const lookup_name_info
&lookup_name
,
5391 const struct block
*block
, domain_enum domain
)
5393 int block_depth
= 0;
5395 while (block
!= NULL
)
5398 ada_add_block_symbols (obstackp
, block
, lookup_name
, domain
, NULL
);
5400 /* If we found a non-function match, assume that's the one. */
5401 if (is_nonfunction (defns_collected (obstackp
, 0),
5402 num_defns_collected (obstackp
)))
5405 block
= BLOCK_SUPERBLOCK (block
);
5408 /* If no luck so far, try to find NAME as a local symbol in some lexically
5409 enclosing subprogram. */
5410 if (num_defns_collected (obstackp
) == 0 && block_depth
> 2)
5411 add_symbols_from_enclosing_procs (obstackp
, lookup_name
, domain
);
5414 /* An object of this type is used as the user_data argument when
5415 calling the map_matching_symbols method. */
5419 struct objfile
*objfile
;
5420 struct obstack
*obstackp
;
5421 struct symbol
*arg_sym
;
5425 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5426 to a list of symbols. DATA is a pointer to a struct match_data *
5427 containing the obstack that collects the symbol list, the file that SYM
5428 must come from, a flag indicating whether a non-argument symbol has
5429 been found in the current block, and the last argument symbol
5430 passed in SYM within the current block (if any). When SYM is null,
5431 marking the end of a block, the argument symbol is added if no
5432 other has been found. */
5435 aux_add_nonlocal_symbols (struct block_symbol
*bsym
,
5436 struct match_data
*data
)
5438 const struct block
*block
= bsym
->block
;
5439 struct symbol
*sym
= bsym
->symbol
;
5443 if (!data
->found_sym
&& data
->arg_sym
!= NULL
)
5444 add_defn_to_vec (data
->obstackp
,
5445 fixup_symbol_section (data
->arg_sym
, data
->objfile
),
5447 data
->found_sym
= 0;
5448 data
->arg_sym
= NULL
;
5452 if (SYMBOL_CLASS (sym
) == LOC_UNRESOLVED
)
5454 else if (SYMBOL_IS_ARGUMENT (sym
))
5455 data
->arg_sym
= sym
;
5458 data
->found_sym
= 1;
5459 add_defn_to_vec (data
->obstackp
,
5460 fixup_symbol_section (sym
, data
->objfile
),
5467 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5468 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5469 symbols to OBSTACKP. Return whether we found such symbols. */
5472 ada_add_block_renamings (struct obstack
*obstackp
,
5473 const struct block
*block
,
5474 const lookup_name_info
&lookup_name
,
5477 struct using_direct
*renaming
;
5478 int defns_mark
= num_defns_collected (obstackp
);
5480 symbol_name_matcher_ftype
*name_match
5481 = ada_get_symbol_name_matcher (lookup_name
);
5483 for (renaming
= block_using (block
);
5485 renaming
= renaming
->next
)
5489 /* Avoid infinite recursions: skip this renaming if we are actually
5490 already traversing it.
5492 Currently, symbol lookup in Ada don't use the namespace machinery from
5493 C++/Fortran support: skip namespace imports that use them. */
5494 if (renaming
->searched
5495 || (renaming
->import_src
!= NULL
5496 && renaming
->import_src
[0] != '\0')
5497 || (renaming
->import_dest
!= NULL
5498 && renaming
->import_dest
[0] != '\0'))
5500 renaming
->searched
= 1;
5502 /* TODO: here, we perform another name-based symbol lookup, which can
5503 pull its own multiple overloads. In theory, we should be able to do
5504 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5505 not a simple name. But in order to do this, we would need to enhance
5506 the DWARF reader to associate a symbol to this renaming, instead of a
5507 name. So, for now, we do something simpler: re-use the C++/Fortran
5508 namespace machinery. */
5509 r_name
= (renaming
->alias
!= NULL
5511 : renaming
->declaration
);
5512 if (name_match (r_name
, lookup_name
, NULL
))
5514 lookup_name_info
decl_lookup_name (renaming
->declaration
,
5515 lookup_name
.match_type ());
5516 ada_add_all_symbols (obstackp
, block
, decl_lookup_name
, domain
,
5519 renaming
->searched
= 0;
5521 return num_defns_collected (obstackp
) != defns_mark
;
5524 /* Implements compare_names, but only applying the comparision using
5525 the given CASING. */
5528 compare_names_with_case (const char *string1
, const char *string2
,
5529 enum case_sensitivity casing
)
5531 while (*string1
!= '\0' && *string2
!= '\0')
5535 if (isspace (*string1
) || isspace (*string2
))
5536 return strcmp_iw_ordered (string1
, string2
);
5538 if (casing
== case_sensitive_off
)
5540 c1
= tolower (*string1
);
5541 c2
= tolower (*string2
);
5558 return strcmp_iw_ordered (string1
, string2
);
5560 if (*string2
== '\0')
5562 if (is_name_suffix (string1
))
5569 if (*string2
== '(')
5570 return strcmp_iw_ordered (string1
, string2
);
5573 if (casing
== case_sensitive_off
)
5574 return tolower (*string1
) - tolower (*string2
);
5576 return *string1
- *string2
;
5581 /* Compare STRING1 to STRING2, with results as for strcmp.
5582 Compatible with strcmp_iw_ordered in that...
5584 strcmp_iw_ordered (STRING1, STRING2) <= 0
5588 compare_names (STRING1, STRING2) <= 0
5590 (they may differ as to what symbols compare equal). */
5593 compare_names (const char *string1
, const char *string2
)
5597 /* Similar to what strcmp_iw_ordered does, we need to perform
5598 a case-insensitive comparison first, and only resort to
5599 a second, case-sensitive, comparison if the first one was
5600 not sufficient to differentiate the two strings. */
5602 result
= compare_names_with_case (string1
, string2
, case_sensitive_off
);
5604 result
= compare_names_with_case (string1
, string2
, case_sensitive_on
);
5609 /* Convenience function to get at the Ada encoded lookup name for
5610 LOOKUP_NAME, as a C string. */
5613 ada_lookup_name (const lookup_name_info
&lookup_name
)
5615 return lookup_name
.ada ().lookup_name ().c_str ();
5618 /* Add to OBSTACKP all non-local symbols whose name and domain match
5619 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5620 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5621 symbols otherwise. */
5624 add_nonlocal_symbols (struct obstack
*obstackp
,
5625 const lookup_name_info
&lookup_name
,
5626 domain_enum domain
, int global
)
5628 struct match_data data
;
5630 memset (&data
, 0, sizeof data
);
5631 data
.obstackp
= obstackp
;
5633 bool is_wild_match
= lookup_name
.ada ().wild_match_p ();
5635 auto callback
= [&] (struct block_symbol
*bsym
)
5637 return aux_add_nonlocal_symbols (bsym
, &data
);
5640 for (objfile
*objfile
: current_program_space
->objfiles ())
5642 data
.objfile
= objfile
;
5644 objfile
->sf
->qf
->map_matching_symbols (objfile
, lookup_name
,
5645 domain
, global
, callback
,
5647 ? NULL
: compare_names
));
5649 for (compunit_symtab
*cu
: objfile
->compunits ())
5651 const struct block
*global_block
5652 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu
), GLOBAL_BLOCK
);
5654 if (ada_add_block_renamings (obstackp
, global_block
, lookup_name
,
5660 if (num_defns_collected (obstackp
) == 0 && global
&& !is_wild_match
)
5662 const char *name
= ada_lookup_name (lookup_name
);
5663 lookup_name_info
name1 (std::string ("<_ada_") + name
+ '>',
5664 symbol_name_match_type::FULL
);
5666 for (objfile
*objfile
: current_program_space
->objfiles ())
5668 data
.objfile
= objfile
;
5669 objfile
->sf
->qf
->map_matching_symbols (objfile
, name1
,
5670 domain
, global
, callback
,
5676 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5677 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5678 returning the number of matches. Add these to OBSTACKP.
5680 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5681 symbol match within the nest of blocks whose innermost member is BLOCK,
5682 is the one match returned (no other matches in that or
5683 enclosing blocks is returned). If there are any matches in or
5684 surrounding BLOCK, then these alone are returned.
5686 Names prefixed with "standard__" are handled specially:
5687 "standard__" is first stripped off (by the lookup_name
5688 constructor), and only static and global symbols are searched.
5690 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5691 to lookup global symbols. */
5694 ada_add_all_symbols (struct obstack
*obstackp
,
5695 const struct block
*block
,
5696 const lookup_name_info
&lookup_name
,
5699 int *made_global_lookup_p
)
5703 if (made_global_lookup_p
)
5704 *made_global_lookup_p
= 0;
5706 /* Special case: If the user specifies a symbol name inside package
5707 Standard, do a non-wild matching of the symbol name without
5708 the "standard__" prefix. This was primarily introduced in order
5709 to allow the user to specifically access the standard exceptions
5710 using, for instance, Standard.Constraint_Error when Constraint_Error
5711 is ambiguous (due to the user defining its own Constraint_Error
5712 entity inside its program). */
5713 if (lookup_name
.ada ().standard_p ())
5716 /* Check the non-global symbols. If we have ANY match, then we're done. */
5721 ada_add_local_symbols (obstackp
, lookup_name
, block
, domain
);
5724 /* In the !full_search case we're are being called by
5725 ada_iterate_over_symbols, and we don't want to search
5727 ada_add_block_symbols (obstackp
, block
, lookup_name
, domain
, NULL
);
5729 if (num_defns_collected (obstackp
) > 0 || !full_search
)
5733 /* No non-global symbols found. Check our cache to see if we have
5734 already performed this search before. If we have, then return
5737 if (lookup_cached_symbol (ada_lookup_name (lookup_name
),
5738 domain
, &sym
, &block
))
5741 add_defn_to_vec (obstackp
, sym
, block
);
5745 if (made_global_lookup_p
)
5746 *made_global_lookup_p
= 1;
5748 /* Search symbols from all global blocks. */
5750 add_nonlocal_symbols (obstackp
, lookup_name
, domain
, 1);
5752 /* Now add symbols from all per-file blocks if we've gotten no hits
5753 (not strictly correct, but perhaps better than an error). */
5755 if (num_defns_collected (obstackp
) == 0)
5756 add_nonlocal_symbols (obstackp
, lookup_name
, domain
, 0);
5759 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5760 is non-zero, enclosing scope and in global scopes, returning the number of
5762 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5763 found and the blocks and symbol tables (if any) in which they were
5766 When full_search is non-zero, any non-function/non-enumeral
5767 symbol match within the nest of blocks whose innermost member is BLOCK,
5768 is the one match returned (no other matches in that or
5769 enclosing blocks is returned). If there are any matches in or
5770 surrounding BLOCK, then these alone are returned.
5772 Names prefixed with "standard__" are handled specially: "standard__"
5773 is first stripped off, and only static and global symbols are searched. */
5776 ada_lookup_symbol_list_worker (const lookup_name_info
&lookup_name
,
5777 const struct block
*block
,
5779 std::vector
<struct block_symbol
> *results
,
5782 int syms_from_global_search
;
5784 auto_obstack obstack
;
5786 ada_add_all_symbols (&obstack
, block
, lookup_name
,
5787 domain
, full_search
, &syms_from_global_search
);
5789 ndefns
= num_defns_collected (&obstack
);
5791 struct block_symbol
*base
= defns_collected (&obstack
, 1);
5792 for (int i
= 0; i
< ndefns
; ++i
)
5793 results
->push_back (base
[i
]);
5795 ndefns
= remove_extra_symbols (results
);
5797 if (ndefns
== 0 && full_search
&& syms_from_global_search
)
5798 cache_symbol (ada_lookup_name (lookup_name
), domain
, NULL
, NULL
);
5800 if (ndefns
== 1 && full_search
&& syms_from_global_search
)
5801 cache_symbol (ada_lookup_name (lookup_name
), domain
,
5802 (*results
)[0].symbol
, (*results
)[0].block
);
5804 ndefns
= remove_irrelevant_renamings (results
, block
);
5809 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5810 in global scopes, returning the number of matches, and filling *RESULTS
5811 with (SYM,BLOCK) tuples.
5813 See ada_lookup_symbol_list_worker for further details. */
5816 ada_lookup_symbol_list (const char *name
, const struct block
*block
,
5818 std::vector
<struct block_symbol
> *results
)
5820 symbol_name_match_type name_match_type
= name_match_type_from_name (name
);
5821 lookup_name_info
lookup_name (name
, name_match_type
);
5823 return ada_lookup_symbol_list_worker (lookup_name
, block
, domain
, results
, 1);
5826 /* Implementation of the la_iterate_over_symbols method. */
5829 ada_iterate_over_symbols
5830 (const struct block
*block
, const lookup_name_info
&name
,
5832 gdb::function_view
<symbol_found_callback_ftype
> callback
)
5835 std::vector
<struct block_symbol
> results
;
5837 ndefs
= ada_lookup_symbol_list_worker (name
, block
, domain
, &results
, 0);
5839 for (i
= 0; i
< ndefs
; ++i
)
5841 if (!callback (&results
[i
]))
5848 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5849 to 1, but choosing the first symbol found if there are multiple
5852 The result is stored in *INFO, which must be non-NULL.
5853 If no match is found, INFO->SYM is set to NULL. */
5856 ada_lookup_encoded_symbol (const char *name
, const struct block
*block
,
5858 struct block_symbol
*info
)
5860 /* Since we already have an encoded name, wrap it in '<>' to force a
5861 verbatim match. Otherwise, if the name happens to not look like
5862 an encoded name (because it doesn't include a "__"),
5863 ada_lookup_name_info would re-encode/fold it again, and that
5864 would e.g., incorrectly lowercase object renaming names like
5865 "R28b" -> "r28b". */
5866 std::string verbatim
= std::string ("<") + name
+ '>';
5868 gdb_assert (info
!= NULL
);
5869 *info
= ada_lookup_symbol (verbatim
.c_str (), block
, domain
);
5872 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5873 scope and in global scopes, or NULL if none. NAME is folded and
5874 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5875 choosing the first symbol if there are multiple choices. */
5878 ada_lookup_symbol (const char *name
, const struct block
*block0
,
5881 std::vector
<struct block_symbol
> candidates
;
5884 n_candidates
= ada_lookup_symbol_list (name
, block0
, domain
, &candidates
);
5886 if (n_candidates
== 0)
5889 block_symbol info
= candidates
[0];
5890 info
.symbol
= fixup_symbol_section (info
.symbol
, NULL
);
5894 static struct block_symbol
5895 ada_lookup_symbol_nonlocal (const struct language_defn
*langdef
,
5897 const struct block
*block
,
5898 const domain_enum domain
)
5900 struct block_symbol sym
;
5902 sym
= ada_lookup_symbol (name
, block_static_block (block
), domain
);
5903 if (sym
.symbol
!= NULL
)
5906 /* If we haven't found a match at this point, try the primitive
5907 types. In other languages, this search is performed before
5908 searching for global symbols in order to short-circuit that
5909 global-symbol search if it happens that the name corresponds
5910 to a primitive type. But we cannot do the same in Ada, because
5911 it is perfectly legitimate for a program to declare a type which
5912 has the same name as a standard type. If looking up a type in
5913 that situation, we have traditionally ignored the primitive type
5914 in favor of user-defined types. This is why, unlike most other
5915 languages, we search the primitive types this late and only after
5916 having searched the global symbols without success. */
5918 if (domain
== VAR_DOMAIN
)
5920 struct gdbarch
*gdbarch
;
5923 gdbarch
= target_gdbarch ();
5925 gdbarch
= block_gdbarch (block
);
5926 sym
.symbol
= language_lookup_primitive_type_as_symbol (langdef
, gdbarch
, name
);
5927 if (sym
.symbol
!= NULL
)
5935 /* True iff STR is a possible encoded suffix of a normal Ada name
5936 that is to be ignored for matching purposes. Suffixes of parallel
5937 names (e.g., XVE) are not included here. Currently, the possible suffixes
5938 are given by any of the regular expressions:
5940 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5941 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5942 TKB [subprogram suffix for task bodies]
5943 _E[0-9]+[bs]$ [protected object entry suffixes]
5944 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5946 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5947 match is performed. This sequence is used to differentiate homonyms,
5948 is an optional part of a valid name suffix. */
5951 is_name_suffix (const char *str
)
5954 const char *matching
;
5955 const int len
= strlen (str
);
5957 /* Skip optional leading __[0-9]+. */
5959 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && isdigit (str
[2]))
5962 while (isdigit (str
[0]))
5968 if (str
[0] == '.' || str
[0] == '$')
5971 while (isdigit (matching
[0]))
5973 if (matching
[0] == '\0')
5979 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && str
[2] == '_')
5982 while (isdigit (matching
[0]))
5984 if (matching
[0] == '\0')
5988 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5990 if (strcmp (str
, "TKB") == 0)
5994 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5995 with a N at the end. Unfortunately, the compiler uses the same
5996 convention for other internal types it creates. So treating
5997 all entity names that end with an "N" as a name suffix causes
5998 some regressions. For instance, consider the case of an enumerated
5999 type. To support the 'Image attribute, it creates an array whose
6001 Having a single character like this as a suffix carrying some
6002 information is a bit risky. Perhaps we should change the encoding
6003 to be something like "_N" instead. In the meantime, do not do
6004 the following check. */
6005 /* Protected Object Subprograms */
6006 if (len
== 1 && str
[0] == 'N')
6011 if (len
> 3 && str
[0] == '_' && str
[1] == 'E' && isdigit (str
[2]))
6014 while (isdigit (matching
[0]))
6016 if ((matching
[0] == 'b' || matching
[0] == 's')
6017 && matching
[1] == '\0')
6021 /* ??? We should not modify STR directly, as we are doing below. This
6022 is fine in this case, but may become problematic later if we find
6023 that this alternative did not work, and want to try matching
6024 another one from the begining of STR. Since we modified it, we
6025 won't be able to find the begining of the string anymore! */
6029 while (str
[0] != '_' && str
[0] != '\0')
6031 if (str
[0] != 'n' && str
[0] != 'b')
6037 if (str
[0] == '\000')
6042 if (str
[1] != '_' || str
[2] == '\000')
6046 if (strcmp (str
+ 3, "JM") == 0)
6048 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6049 the LJM suffix in favor of the JM one. But we will
6050 still accept LJM as a valid suffix for a reasonable
6051 amount of time, just to allow ourselves to debug programs
6052 compiled using an older version of GNAT. */
6053 if (strcmp (str
+ 3, "LJM") == 0)
6057 if (str
[4] == 'F' || str
[4] == 'D' || str
[4] == 'B'
6058 || str
[4] == 'U' || str
[4] == 'P')
6060 if (str
[4] == 'R' && str
[5] != 'T')
6064 if (!isdigit (str
[2]))
6066 for (k
= 3; str
[k
] != '\0'; k
+= 1)
6067 if (!isdigit (str
[k
]) && str
[k
] != '_')
6071 if (str
[0] == '$' && isdigit (str
[1]))
6073 for (k
= 2; str
[k
] != '\0'; k
+= 1)
6074 if (!isdigit (str
[k
]) && str
[k
] != '_')
6081 /* Return non-zero if the string starting at NAME and ending before
6082 NAME_END contains no capital letters. */
6085 is_valid_name_for_wild_match (const char *name0
)
6087 std::string decoded_name
= ada_decode (name0
);
6090 /* If the decoded name starts with an angle bracket, it means that
6091 NAME0 does not follow the GNAT encoding format. It should then
6092 not be allowed as a possible wild match. */
6093 if (decoded_name
[0] == '<')
6096 for (i
=0; decoded_name
[i
] != '\0'; i
++)
6097 if (isalpha (decoded_name
[i
]) && !islower (decoded_name
[i
]))
6103 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6104 that could start a simple name. Assumes that *NAMEP points into
6105 the string beginning at NAME0. */
6108 advance_wild_match (const char **namep
, const char *name0
, int target0
)
6110 const char *name
= *namep
;
6120 if ((t1
>= 'a' && t1
<= 'z') || (t1
>= '0' && t1
<= '9'))
6123 if (name
== name0
+ 5 && startswith (name0
, "_ada"))
6128 else if (t1
== '_' && ((name
[2] >= 'a' && name
[2] <= 'z')
6129 || name
[2] == target0
))
6137 else if ((t0
>= 'a' && t0
<= 'z') || (t0
>= '0' && t0
<= '9'))
6147 /* Return true iff NAME encodes a name of the form prefix.PATN.
6148 Ignores any informational suffixes of NAME (i.e., for which
6149 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6153 wild_match (const char *name
, const char *patn
)
6156 const char *name0
= name
;
6160 const char *match
= name
;
6164 for (name
+= 1, p
= patn
+ 1; *p
!= '\0'; name
+= 1, p
+= 1)
6167 if (*p
== '\0' && is_name_suffix (name
))
6168 return match
== name0
|| is_valid_name_for_wild_match (name0
);
6170 if (name
[-1] == '_')
6173 if (!advance_wild_match (&name
, name0
, *patn
))
6178 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6179 any trailing suffixes that encode debugging information or leading
6180 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6181 information that is ignored). */
6184 full_match (const char *sym_name
, const char *search_name
)
6186 size_t search_name_len
= strlen (search_name
);
6188 if (strncmp (sym_name
, search_name
, search_name_len
) == 0
6189 && is_name_suffix (sym_name
+ search_name_len
))
6192 if (startswith (sym_name
, "_ada_")
6193 && strncmp (sym_name
+ 5, search_name
, search_name_len
) == 0
6194 && is_name_suffix (sym_name
+ search_name_len
+ 5))
6200 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6201 *defn_symbols, updating the list of symbols in OBSTACKP (if
6202 necessary). OBJFILE is the section containing BLOCK. */
6205 ada_add_block_symbols (struct obstack
*obstackp
,
6206 const struct block
*block
,
6207 const lookup_name_info
&lookup_name
,
6208 domain_enum domain
, struct objfile
*objfile
)
6210 struct block_iterator iter
;
6211 /* A matching argument symbol, if any. */
6212 struct symbol
*arg_sym
;
6213 /* Set true when we find a matching non-argument symbol. */
6219 for (sym
= block_iter_match_first (block
, lookup_name
, &iter
);
6221 sym
= block_iter_match_next (lookup_name
, &iter
))
6223 if (symbol_matches_domain (sym
->language (), SYMBOL_DOMAIN (sym
), domain
))
6225 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
6227 if (SYMBOL_IS_ARGUMENT (sym
))
6232 add_defn_to_vec (obstackp
,
6233 fixup_symbol_section (sym
, objfile
),
6240 /* Handle renamings. */
6242 if (ada_add_block_renamings (obstackp
, block
, lookup_name
, domain
))
6245 if (!found_sym
&& arg_sym
!= NULL
)
6247 add_defn_to_vec (obstackp
,
6248 fixup_symbol_section (arg_sym
, objfile
),
6252 if (!lookup_name
.ada ().wild_match_p ())
6256 const std::string
&ada_lookup_name
= lookup_name
.ada ().lookup_name ();
6257 const char *name
= ada_lookup_name
.c_str ();
6258 size_t name_len
= ada_lookup_name
.size ();
6260 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
6262 if (symbol_matches_domain (sym
->language (),
6263 SYMBOL_DOMAIN (sym
), domain
))
6267 cmp
= (int) '_' - (int) sym
->linkage_name ()[0];
6270 cmp
= !startswith (sym
->linkage_name (), "_ada_");
6272 cmp
= strncmp (name
, sym
->linkage_name () + 5,
6277 && is_name_suffix (sym
->linkage_name () + name_len
+ 5))
6279 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
6281 if (SYMBOL_IS_ARGUMENT (sym
))
6286 add_defn_to_vec (obstackp
,
6287 fixup_symbol_section (sym
, objfile
),
6295 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6296 They aren't parameters, right? */
6297 if (!found_sym
&& arg_sym
!= NULL
)
6299 add_defn_to_vec (obstackp
,
6300 fixup_symbol_section (arg_sym
, objfile
),
6307 /* Symbol Completion */
6312 ada_lookup_name_info::matches
6313 (const char *sym_name
,
6314 symbol_name_match_type match_type
,
6315 completion_match_result
*comp_match_res
) const
6318 const char *text
= m_encoded_name
.c_str ();
6319 size_t text_len
= m_encoded_name
.size ();
6321 /* First, test against the fully qualified name of the symbol. */
6323 if (strncmp (sym_name
, text
, text_len
) == 0)
6326 std::string decoded_name
= ada_decode (sym_name
);
6327 if (match
&& !m_encoded_p
)
6329 /* One needed check before declaring a positive match is to verify
6330 that iff we are doing a verbatim match, the decoded version
6331 of the symbol name starts with '<'. Otherwise, this symbol name
6332 is not a suitable completion. */
6334 bool has_angle_bracket
= (decoded_name
[0] == '<');
6335 match
= (has_angle_bracket
== m_verbatim_p
);
6338 if (match
&& !m_verbatim_p
)
6340 /* When doing non-verbatim match, another check that needs to
6341 be done is to verify that the potentially matching symbol name
6342 does not include capital letters, because the ada-mode would
6343 not be able to understand these symbol names without the
6344 angle bracket notation. */
6347 for (tmp
= sym_name
; *tmp
!= '\0' && !isupper (*tmp
); tmp
++);
6352 /* Second: Try wild matching... */
6354 if (!match
&& m_wild_match_p
)
6356 /* Since we are doing wild matching, this means that TEXT
6357 may represent an unqualified symbol name. We therefore must
6358 also compare TEXT against the unqualified name of the symbol. */
6359 sym_name
= ada_unqualified_name (decoded_name
.c_str ());
6361 if (strncmp (sym_name
, text
, text_len
) == 0)
6365 /* Finally: If we found a match, prepare the result to return. */
6370 if (comp_match_res
!= NULL
)
6372 std::string
&match_str
= comp_match_res
->match
.storage ();
6375 match_str
= ada_decode (sym_name
);
6379 match_str
= add_angle_brackets (sym_name
);
6381 match_str
= sym_name
;
6385 comp_match_res
->set_match (match_str
.c_str ());
6391 /* Add the list of possible symbol names completing TEXT to TRACKER.
6392 WORD is the entire command on which completion is made. */
6395 ada_collect_symbol_completion_matches (completion_tracker
&tracker
,
6396 complete_symbol_mode mode
,
6397 symbol_name_match_type name_match_type
,
6398 const char *text
, const char *word
,
6399 enum type_code code
)
6402 const struct block
*b
, *surrounding_static_block
= 0;
6403 struct block_iterator iter
;
6405 gdb_assert (code
== TYPE_CODE_UNDEF
);
6407 lookup_name_info
lookup_name (text
, name_match_type
, true);
6409 /* First, look at the partial symtab symbols. */
6410 expand_symtabs_matching (NULL
,
6416 /* At this point scan through the misc symbol vectors and add each
6417 symbol you find to the list. Eventually we want to ignore
6418 anything that isn't a text symbol (everything else will be
6419 handled by the psymtab code above). */
6421 for (objfile
*objfile
: current_program_space
->objfiles ())
6423 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
6427 if (completion_skip_symbol (mode
, msymbol
))
6430 language symbol_language
= msymbol
->language ();
6432 /* Ada minimal symbols won't have their language set to Ada. If
6433 we let completion_list_add_name compare using the
6434 default/C-like matcher, then when completing e.g., symbols in a
6435 package named "pck", we'd match internal Ada symbols like
6436 "pckS", which are invalid in an Ada expression, unless you wrap
6437 them in '<' '>' to request a verbatim match.
6439 Unfortunately, some Ada encoded names successfully demangle as
6440 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6441 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6442 with the wrong language set. Paper over that issue here. */
6443 if (symbol_language
== language_auto
6444 || symbol_language
== language_cplus
)
6445 symbol_language
= language_ada
;
6447 completion_list_add_name (tracker
,
6449 msymbol
->linkage_name (),
6450 lookup_name
, text
, word
);
6454 /* Search upwards from currently selected frame (so that we can
6455 complete on local vars. */
6457 for (b
= get_selected_block (0); b
!= NULL
; b
= BLOCK_SUPERBLOCK (b
))
6459 if (!BLOCK_SUPERBLOCK (b
))
6460 surrounding_static_block
= b
; /* For elmin of dups */
6462 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
6464 if (completion_skip_symbol (mode
, sym
))
6467 completion_list_add_name (tracker
,
6469 sym
->linkage_name (),
6470 lookup_name
, text
, word
);
6474 /* Go through the symtabs and check the externs and statics for
6475 symbols which match. */
6477 for (objfile
*objfile
: current_program_space
->objfiles ())
6479 for (compunit_symtab
*s
: objfile
->compunits ())
6482 b
= BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s
), GLOBAL_BLOCK
);
6483 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
6485 if (completion_skip_symbol (mode
, sym
))
6488 completion_list_add_name (tracker
,
6490 sym
->linkage_name (),
6491 lookup_name
, text
, word
);
6496 for (objfile
*objfile
: current_program_space
->objfiles ())
6498 for (compunit_symtab
*s
: objfile
->compunits ())
6501 b
= BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s
), STATIC_BLOCK
);
6502 /* Don't do this block twice. */
6503 if (b
== surrounding_static_block
)
6505 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
6507 if (completion_skip_symbol (mode
, sym
))
6510 completion_list_add_name (tracker
,
6512 sym
->linkage_name (),
6513 lookup_name
, text
, word
);
6521 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6522 for tagged types. */
6525 ada_is_dispatch_table_ptr_type (struct type
*type
)
6529 if (TYPE_CODE (type
) != TYPE_CODE_PTR
)
6532 name
= TYPE_NAME (TYPE_TARGET_TYPE (type
));
6536 return (strcmp (name
, "ada__tags__dispatch_table") == 0);
6539 /* Return non-zero if TYPE is an interface tag. */
6542 ada_is_interface_tag (struct type
*type
)
6544 const char *name
= TYPE_NAME (type
);
6549 return (strcmp (name
, "ada__tags__interface_tag") == 0);
6552 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6553 to be invisible to users. */
6556 ada_is_ignored_field (struct type
*type
, int field_num
)
6558 if (field_num
< 0 || field_num
> TYPE_NFIELDS (type
))
6561 /* Check the name of that field. */
6563 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6565 /* Anonymous field names should not be printed.
6566 brobecker/2007-02-20: I don't think this can actually happen
6567 but we don't want to print the value of anonymous fields anyway. */
6571 /* Normally, fields whose name start with an underscore ("_")
6572 are fields that have been internally generated by the compiler,
6573 and thus should not be printed. The "_parent" field is special,
6574 however: This is a field internally generated by the compiler
6575 for tagged types, and it contains the components inherited from
6576 the parent type. This field should not be printed as is, but
6577 should not be ignored either. */
6578 if (name
[0] == '_' && !startswith (name
, "_parent"))
6582 /* If this is the dispatch table of a tagged type or an interface tag,
6584 if (ada_is_tagged_type (type
, 1)
6585 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type
, field_num
))
6586 || ada_is_interface_tag (TYPE_FIELD_TYPE (type
, field_num
))))
6589 /* Not a special field, so it should not be ignored. */
6593 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6594 pointer or reference type whose ultimate target has a tag field. */
6597 ada_is_tagged_type (struct type
*type
, int refok
)
6599 return (ada_lookup_struct_elt_type (type
, "_tag", refok
, 1) != NULL
);
6602 /* True iff TYPE represents the type of X'Tag */
6605 ada_is_tag_type (struct type
*type
)
6607 type
= ada_check_typedef (type
);
6609 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_PTR
)
6613 const char *name
= ada_type_name (TYPE_TARGET_TYPE (type
));
6615 return (name
!= NULL
6616 && strcmp (name
, "ada__tags__dispatch_table") == 0);
6620 /* The type of the tag on VAL. */
6622 static struct type
*
6623 ada_tag_type (struct value
*val
)
6625 return ada_lookup_struct_elt_type (value_type (val
), "_tag", 1, 0);
6628 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6629 retired at Ada 05). */
6632 is_ada95_tag (struct value
*tag
)
6634 return ada_value_struct_elt (tag
, "tsd", 1) != NULL
;
6637 /* The value of the tag on VAL. */
6639 static struct value
*
6640 ada_value_tag (struct value
*val
)
6642 return ada_value_struct_elt (val
, "_tag", 0);
6645 /* The value of the tag on the object of type TYPE whose contents are
6646 saved at VALADDR, if it is non-null, or is at memory address
6649 static struct value
*
6650 value_tag_from_contents_and_address (struct type
*type
,
6651 const gdb_byte
*valaddr
,
6654 int tag_byte_offset
;
6655 struct type
*tag_type
;
6657 if (find_struct_field ("_tag", type
, 0, &tag_type
, &tag_byte_offset
,
6660 const gdb_byte
*valaddr1
= ((valaddr
== NULL
)
6662 : valaddr
+ tag_byte_offset
);
6663 CORE_ADDR address1
= (address
== 0) ? 0 : address
+ tag_byte_offset
;
6665 return value_from_contents_and_address (tag_type
, valaddr1
, address1
);
6670 static struct type
*
6671 type_from_tag (struct value
*tag
)
6673 const char *type_name
= ada_tag_name (tag
);
6675 if (type_name
!= NULL
)
6676 return ada_find_any_type (ada_encode (type_name
));
6680 /* Given a value OBJ of a tagged type, return a value of this
6681 type at the base address of the object. The base address, as
6682 defined in Ada.Tags, it is the address of the primary tag of
6683 the object, and therefore where the field values of its full
6684 view can be fetched. */
6687 ada_tag_value_at_base_address (struct value
*obj
)
6690 LONGEST offset_to_top
= 0;
6691 struct type
*ptr_type
, *obj_type
;
6693 CORE_ADDR base_address
;
6695 obj_type
= value_type (obj
);
6697 /* It is the responsability of the caller to deref pointers. */
6699 if (TYPE_CODE (obj_type
) == TYPE_CODE_PTR
6700 || TYPE_CODE (obj_type
) == TYPE_CODE_REF
)
6703 tag
= ada_value_tag (obj
);
6707 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6709 if (is_ada95_tag (tag
))
6712 ptr_type
= language_lookup_primitive_type
6713 (language_def (language_ada
), target_gdbarch(), "storage_offset");
6714 ptr_type
= lookup_pointer_type (ptr_type
);
6715 val
= value_cast (ptr_type
, tag
);
6719 /* It is perfectly possible that an exception be raised while
6720 trying to determine the base address, just like for the tag;
6721 see ada_tag_name for more details. We do not print the error
6722 message for the same reason. */
6726 offset_to_top
= value_as_long (value_ind (value_ptradd (val
, -2)));
6729 catch (const gdb_exception_error
&e
)
6734 /* If offset is null, nothing to do. */
6736 if (offset_to_top
== 0)
6739 /* -1 is a special case in Ada.Tags; however, what should be done
6740 is not quite clear from the documentation. So do nothing for
6743 if (offset_to_top
== -1)
6746 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6747 from the base address. This was however incompatible with
6748 C++ dispatch table: C++ uses a *negative* value to *add*
6749 to the base address. Ada's convention has therefore been
6750 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6751 use the same convention. Here, we support both cases by
6752 checking the sign of OFFSET_TO_TOP. */
6754 if (offset_to_top
> 0)
6755 offset_to_top
= -offset_to_top
;
6757 base_address
= value_address (obj
) + offset_to_top
;
6758 tag
= value_tag_from_contents_and_address (obj_type
, NULL
, base_address
);
6760 /* Make sure that we have a proper tag at the new address.
6761 Otherwise, offset_to_top is bogus (which can happen when
6762 the object is not initialized yet). */
6767 obj_type
= type_from_tag (tag
);
6772 return value_from_contents_and_address (obj_type
, NULL
, base_address
);
6775 /* Return the "ada__tags__type_specific_data" type. */
6777 static struct type
*
6778 ada_get_tsd_type (struct inferior
*inf
)
6780 struct ada_inferior_data
*data
= get_ada_inferior_data (inf
);
6782 if (data
->tsd_type
== 0)
6783 data
->tsd_type
= ada_find_any_type ("ada__tags__type_specific_data");
6784 return data
->tsd_type
;
6787 /* Return the TSD (type-specific data) associated to the given TAG.
6788 TAG is assumed to be the tag of a tagged-type entity.
6790 May return NULL if we are unable to get the TSD. */
6792 static struct value
*
6793 ada_get_tsd_from_tag (struct value
*tag
)
6798 /* First option: The TSD is simply stored as a field of our TAG.
6799 Only older versions of GNAT would use this format, but we have
6800 to test it first, because there are no visible markers for
6801 the current approach except the absence of that field. */
6803 val
= ada_value_struct_elt (tag
, "tsd", 1);
6807 /* Try the second representation for the dispatch table (in which
6808 there is no explicit 'tsd' field in the referent of the tag pointer,
6809 and instead the tsd pointer is stored just before the dispatch
6812 type
= ada_get_tsd_type (current_inferior());
6815 type
= lookup_pointer_type (lookup_pointer_type (type
));
6816 val
= value_cast (type
, tag
);
6819 return value_ind (value_ptradd (val
, -1));
6822 /* Given the TSD of a tag (type-specific data), return a string
6823 containing the name of the associated type.
6825 The returned value is good until the next call. May return NULL
6826 if we are unable to determine the tag name. */
6829 ada_tag_name_from_tsd (struct value
*tsd
)
6831 static char name
[1024];
6835 val
= ada_value_struct_elt (tsd
, "expanded_name", 1);
6838 read_memory_string (value_as_address (val
), name
, sizeof (name
) - 1);
6839 for (p
= name
; *p
!= '\0'; p
+= 1)
6845 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6848 Return NULL if the TAG is not an Ada tag, or if we were unable to
6849 determine the name of that tag. The result is good until the next
6853 ada_tag_name (struct value
*tag
)
6857 if (!ada_is_tag_type (value_type (tag
)))
6860 /* It is perfectly possible that an exception be raised while trying
6861 to determine the TAG's name, even under normal circumstances:
6862 The associated variable may be uninitialized or corrupted, for
6863 instance. We do not let any exception propagate past this point.
6864 instead we return NULL.
6866 We also do not print the error message either (which often is very
6867 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6868 the caller print a more meaningful message if necessary. */
6871 struct value
*tsd
= ada_get_tsd_from_tag (tag
);
6874 name
= ada_tag_name_from_tsd (tsd
);
6876 catch (const gdb_exception_error
&e
)
6883 /* The parent type of TYPE, or NULL if none. */
6886 ada_parent_type (struct type
*type
)
6890 type
= ada_check_typedef (type
);
6892 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
6895 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6896 if (ada_is_parent_field (type
, i
))
6898 struct type
*parent_type
= TYPE_FIELD_TYPE (type
, i
);
6900 /* If the _parent field is a pointer, then dereference it. */
6901 if (TYPE_CODE (parent_type
) == TYPE_CODE_PTR
)
6902 parent_type
= TYPE_TARGET_TYPE (parent_type
);
6903 /* If there is a parallel XVS type, get the actual base type. */
6904 parent_type
= ada_get_base_type (parent_type
);
6906 return ada_check_typedef (parent_type
);
6912 /* True iff field number FIELD_NUM of structure type TYPE contains the
6913 parent-type (inherited) fields of a derived type. Assumes TYPE is
6914 a structure type with at least FIELD_NUM+1 fields. */
6917 ada_is_parent_field (struct type
*type
, int field_num
)
6919 const char *name
= TYPE_FIELD_NAME (ada_check_typedef (type
), field_num
);
6921 return (name
!= NULL
6922 && (startswith (name
, "PARENT")
6923 || startswith (name
, "_parent")));
6926 /* True iff field number FIELD_NUM of structure type TYPE is a
6927 transparent wrapper field (which should be silently traversed when doing
6928 field selection and flattened when printing). Assumes TYPE is a
6929 structure type with at least FIELD_NUM+1 fields. Such fields are always
6933 ada_is_wrapper_field (struct type
*type
, int field_num
)
6935 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6937 if (name
!= NULL
&& strcmp (name
, "RETVAL") == 0)
6939 /* This happens in functions with "out" or "in out" parameters
6940 which are passed by copy. For such functions, GNAT describes
6941 the function's return type as being a struct where the return
6942 value is in a field called RETVAL, and where the other "out"
6943 or "in out" parameters are fields of that struct. This is not
6948 return (name
!= NULL
6949 && (startswith (name
, "PARENT")
6950 || strcmp (name
, "REP") == 0
6951 || startswith (name
, "_parent")
6952 || name
[0] == 'S' || name
[0] == 'R' || name
[0] == 'O'));
6955 /* True iff field number FIELD_NUM of structure or union type TYPE
6956 is a variant wrapper. Assumes TYPE is a structure type with at least
6957 FIELD_NUM+1 fields. */
6960 ada_is_variant_part (struct type
*type
, int field_num
)
6962 /* Only Ada types are eligible. */
6963 if (!ADA_TYPE_P (type
))
6966 struct type
*field_type
= TYPE_FIELD_TYPE (type
, field_num
);
6968 return (TYPE_CODE (field_type
) == TYPE_CODE_UNION
6969 || (is_dynamic_field (type
, field_num
)
6970 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type
))
6971 == TYPE_CODE_UNION
)));
6974 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6975 whose discriminants are contained in the record type OUTER_TYPE,
6976 returns the type of the controlling discriminant for the variant.
6977 May return NULL if the type could not be found. */
6980 ada_variant_discrim_type (struct type
*var_type
, struct type
*outer_type
)
6982 const char *name
= ada_variant_discrim_name (var_type
);
6984 return ada_lookup_struct_elt_type (outer_type
, name
, 1, 1);
6987 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6988 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6989 represents a 'when others' clause; otherwise 0. */
6992 ada_is_others_clause (struct type
*type
, int field_num
)
6994 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6996 return (name
!= NULL
&& name
[0] == 'O');
6999 /* Assuming that TYPE0 is the type of the variant part of a record,
7000 returns the name of the discriminant controlling the variant.
7001 The value is valid until the next call to ada_variant_discrim_name. */
7004 ada_variant_discrim_name (struct type
*type0
)
7006 static char *result
= NULL
;
7007 static size_t result_len
= 0;
7010 const char *discrim_end
;
7011 const char *discrim_start
;
7013 if (TYPE_CODE (type0
) == TYPE_CODE_PTR
)
7014 type
= TYPE_TARGET_TYPE (type0
);
7018 name
= ada_type_name (type
);
7020 if (name
== NULL
|| name
[0] == '\000')
7023 for (discrim_end
= name
+ strlen (name
) - 6; discrim_end
!= name
;
7026 if (startswith (discrim_end
, "___XVN"))
7029 if (discrim_end
== name
)
7032 for (discrim_start
= discrim_end
; discrim_start
!= name
+ 3;
7035 if (discrim_start
== name
+ 1)
7037 if ((discrim_start
> name
+ 3
7038 && startswith (discrim_start
- 3, "___"))
7039 || discrim_start
[-1] == '.')
7043 GROW_VECT (result
, result_len
, discrim_end
- discrim_start
+ 1);
7044 strncpy (result
, discrim_start
, discrim_end
- discrim_start
);
7045 result
[discrim_end
- discrim_start
] = '\0';
7049 /* Scan STR for a subtype-encoded number, beginning at position K.
7050 Put the position of the character just past the number scanned in
7051 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7052 Return 1 if there was a valid number at the given position, and 0
7053 otherwise. A "subtype-encoded" number consists of the absolute value
7054 in decimal, followed by the letter 'm' to indicate a negative number.
7055 Assumes 0m does not occur. */
7058 ada_scan_number (const char str
[], int k
, LONGEST
* R
, int *new_k
)
7062 if (!isdigit (str
[k
]))
7065 /* Do it the hard way so as not to make any assumption about
7066 the relationship of unsigned long (%lu scan format code) and
7069 while (isdigit (str
[k
]))
7071 RU
= RU
* 10 + (str
[k
] - '0');
7078 *R
= (-(LONGEST
) (RU
- 1)) - 1;
7084 /* NOTE on the above: Technically, C does not say what the results of
7085 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7086 number representable as a LONGEST (although either would probably work
7087 in most implementations). When RU>0, the locution in the then branch
7088 above is always equivalent to the negative of RU. */
7095 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7096 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7097 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7100 ada_in_variant (LONGEST val
, struct type
*type
, int field_num
)
7102 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
7116 if (!ada_scan_number (name
, p
+ 1, &W
, &p
))
7126 if (!ada_scan_number (name
, p
+ 1, &L
, &p
)
7127 || name
[p
] != 'T' || !ada_scan_number (name
, p
+ 1, &U
, &p
))
7129 if (val
>= L
&& val
<= U
)
7141 /* FIXME: Lots of redundancy below. Try to consolidate. */
7143 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7144 ARG_TYPE, extract and return the value of one of its (non-static)
7145 fields. FIELDNO says which field. Differs from value_primitive_field
7146 only in that it can handle packed values of arbitrary type. */
7148 static struct value
*
7149 ada_value_primitive_field (struct value
*arg1
, int offset
, int fieldno
,
7150 struct type
*arg_type
)
7154 arg_type
= ada_check_typedef (arg_type
);
7155 type
= TYPE_FIELD_TYPE (arg_type
, fieldno
);
7157 /* Handle packed fields. It might be that the field is not packed
7158 relative to its containing structure, but the structure itself is
7159 packed; in this case we must take the bit-field path. */
7160 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
) != 0 || value_bitpos (arg1
) != 0)
7162 int bit_pos
= TYPE_FIELD_BITPOS (arg_type
, fieldno
);
7163 int bit_size
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
7165 return ada_value_primitive_packed_val (arg1
, value_contents (arg1
),
7166 offset
+ bit_pos
/ 8,
7167 bit_pos
% 8, bit_size
, type
);
7170 return value_primitive_field (arg1
, offset
, fieldno
, arg_type
);
7173 /* Find field with name NAME in object of type TYPE. If found,
7174 set the following for each argument that is non-null:
7175 - *FIELD_TYPE_P to the field's type;
7176 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7177 an object of that type;
7178 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7179 - *BIT_SIZE_P to its size in bits if the field is packed, and
7181 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7182 fields up to but not including the desired field, or by the total
7183 number of fields if not found. A NULL value of NAME never
7184 matches; the function just counts visible fields in this case.
7186 Notice that we need to handle when a tagged record hierarchy
7187 has some components with the same name, like in this scenario:
7189 type Top_T is tagged record
7195 type Middle_T is new Top.Top_T with record
7196 N : Character := 'a';
7200 type Bottom_T is new Middle.Middle_T with record
7202 C : Character := '5';
7204 A : Character := 'J';
7207 Let's say we now have a variable declared and initialized as follow:
7209 TC : Top_A := new Bottom_T;
7211 And then we use this variable to call this function
7213 procedure Assign (Obj: in out Top_T; TV : Integer);
7217 Assign (Top_T (B), 12);
7219 Now, we're in the debugger, and we're inside that procedure
7220 then and we want to print the value of obj.c:
7222 Usually, the tagged record or one of the parent type owns the
7223 component to print and there's no issue but in this particular
7224 case, what does it mean to ask for Obj.C? Since the actual
7225 type for object is type Bottom_T, it could mean two things: type
7226 component C from the Middle_T view, but also component C from
7227 Bottom_T. So in that "undefined" case, when the component is
7228 not found in the non-resolved type (which includes all the
7229 components of the parent type), then resolve it and see if we
7230 get better luck once expanded.
7232 In the case of homonyms in the derived tagged type, we don't
7233 guaranty anything, and pick the one that's easiest for us
7236 Returns 1 if found, 0 otherwise. */
7239 find_struct_field (const char *name
, struct type
*type
, int offset
,
7240 struct type
**field_type_p
,
7241 int *byte_offset_p
, int *bit_offset_p
, int *bit_size_p
,
7245 int parent_offset
= -1;
7247 type
= ada_check_typedef (type
);
7249 if (field_type_p
!= NULL
)
7250 *field_type_p
= NULL
;
7251 if (byte_offset_p
!= NULL
)
7253 if (bit_offset_p
!= NULL
)
7255 if (bit_size_p
!= NULL
)
7258 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7260 int bit_pos
= TYPE_FIELD_BITPOS (type
, i
);
7261 int fld_offset
= offset
+ bit_pos
/ 8;
7262 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
7264 if (t_field_name
== NULL
)
7267 else if (ada_is_parent_field (type
, i
))
7269 /* This is a field pointing us to the parent type of a tagged
7270 type. As hinted in this function's documentation, we give
7271 preference to fields in the current record first, so what
7272 we do here is just record the index of this field before
7273 we skip it. If it turns out we couldn't find our field
7274 in the current record, then we'll get back to it and search
7275 inside it whether the field might exist in the parent. */
7281 else if (name
!= NULL
&& field_name_match (t_field_name
, name
))
7283 int bit_size
= TYPE_FIELD_BITSIZE (type
, i
);
7285 if (field_type_p
!= NULL
)
7286 *field_type_p
= TYPE_FIELD_TYPE (type
, i
);
7287 if (byte_offset_p
!= NULL
)
7288 *byte_offset_p
= fld_offset
;
7289 if (bit_offset_p
!= NULL
)
7290 *bit_offset_p
= bit_pos
% 8;
7291 if (bit_size_p
!= NULL
)
7292 *bit_size_p
= bit_size
;
7295 else if (ada_is_wrapper_field (type
, i
))
7297 if (find_struct_field (name
, TYPE_FIELD_TYPE (type
, i
), fld_offset
,
7298 field_type_p
, byte_offset_p
, bit_offset_p
,
7299 bit_size_p
, index_p
))
7302 else if (ada_is_variant_part (type
, i
))
7304 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7307 struct type
*field_type
7308 = ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
7310 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
7312 if (find_struct_field (name
, TYPE_FIELD_TYPE (field_type
, j
),
7314 + TYPE_FIELD_BITPOS (field_type
, j
) / 8,
7315 field_type_p
, byte_offset_p
,
7316 bit_offset_p
, bit_size_p
, index_p
))
7320 else if (index_p
!= NULL
)
7324 /* Field not found so far. If this is a tagged type which
7325 has a parent, try finding that field in the parent now. */
7327 if (parent_offset
!= -1)
7329 int bit_pos
= TYPE_FIELD_BITPOS (type
, parent_offset
);
7330 int fld_offset
= offset
+ bit_pos
/ 8;
7332 if (find_struct_field (name
, TYPE_FIELD_TYPE (type
, parent_offset
),
7333 fld_offset
, field_type_p
, byte_offset_p
,
7334 bit_offset_p
, bit_size_p
, index_p
))
7341 /* Number of user-visible fields in record type TYPE. */
7344 num_visible_fields (struct type
*type
)
7349 find_struct_field (NULL
, type
, 0, NULL
, NULL
, NULL
, NULL
, &n
);
7353 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7354 and search in it assuming it has (class) type TYPE.
7355 If found, return value, else return NULL.
7357 Searches recursively through wrapper fields (e.g., '_parent').
7359 In the case of homonyms in the tagged types, please refer to the
7360 long explanation in find_struct_field's function documentation. */
7362 static struct value
*
7363 ada_search_struct_field (const char *name
, struct value
*arg
, int offset
,
7367 int parent_offset
= -1;
7369 type
= ada_check_typedef (type
);
7370 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7372 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
7374 if (t_field_name
== NULL
)
7377 else if (ada_is_parent_field (type
, i
))
7379 /* This is a field pointing us to the parent type of a tagged
7380 type. As hinted in this function's documentation, we give
7381 preference to fields in the current record first, so what
7382 we do here is just record the index of this field before
7383 we skip it. If it turns out we couldn't find our field
7384 in the current record, then we'll get back to it and search
7385 inside it whether the field might exist in the parent. */
7391 else if (field_name_match (t_field_name
, name
))
7392 return ada_value_primitive_field (arg
, offset
, i
, type
);
7394 else if (ada_is_wrapper_field (type
, i
))
7396 struct value
*v
= /* Do not let indent join lines here. */
7397 ada_search_struct_field (name
, arg
,
7398 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
7399 TYPE_FIELD_TYPE (type
, i
));
7405 else if (ada_is_variant_part (type
, i
))
7407 /* PNH: Do we ever get here? See find_struct_field. */
7409 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
,
7411 int var_offset
= offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
7413 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
7415 struct value
*v
= ada_search_struct_field
/* Force line
7418 var_offset
+ TYPE_FIELD_BITPOS (field_type
, j
) / 8,
7419 TYPE_FIELD_TYPE (field_type
, j
));
7427 /* Field not found so far. If this is a tagged type which
7428 has a parent, try finding that field in the parent now. */
7430 if (parent_offset
!= -1)
7432 struct value
*v
= ada_search_struct_field (
7433 name
, arg
, offset
+ TYPE_FIELD_BITPOS (type
, parent_offset
) / 8,
7434 TYPE_FIELD_TYPE (type
, parent_offset
));
7443 static struct value
*ada_index_struct_field_1 (int *, struct value
*,
7444 int, struct type
*);
7447 /* Return field #INDEX in ARG, where the index is that returned by
7448 * find_struct_field through its INDEX_P argument. Adjust the address
7449 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7450 * If found, return value, else return NULL. */
7452 static struct value
*
7453 ada_index_struct_field (int index
, struct value
*arg
, int offset
,
7456 return ada_index_struct_field_1 (&index
, arg
, offset
, type
);
7460 /* Auxiliary function for ada_index_struct_field. Like
7461 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7464 static struct value
*
7465 ada_index_struct_field_1 (int *index_p
, struct value
*arg
, int offset
,
7469 type
= ada_check_typedef (type
);
7471 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7473 if (TYPE_FIELD_NAME (type
, i
) == NULL
)
7475 else if (ada_is_wrapper_field (type
, i
))
7477 struct value
*v
= /* Do not let indent join lines here. */
7478 ada_index_struct_field_1 (index_p
, arg
,
7479 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
7480 TYPE_FIELD_TYPE (type
, i
));
7486 else if (ada_is_variant_part (type
, i
))
7488 /* PNH: Do we ever get here? See ada_search_struct_field,
7489 find_struct_field. */
7490 error (_("Cannot assign this kind of variant record"));
7492 else if (*index_p
== 0)
7493 return ada_value_primitive_field (arg
, offset
, i
, type
);
7500 /* Return a string representation of type TYPE. */
7503 type_as_string (struct type
*type
)
7505 string_file tmp_stream
;
7507 type_print (type
, "", &tmp_stream
, -1);
7509 return std::move (tmp_stream
.string ());
7512 /* Given a type TYPE, look up the type of the component of type named NAME.
7513 If DISPP is non-null, add its byte displacement from the beginning of a
7514 structure (pointed to by a value) of type TYPE to *DISPP (does not
7515 work for packed fields).
7517 Matches any field whose name has NAME as a prefix, possibly
7520 TYPE can be either a struct or union. If REFOK, TYPE may also
7521 be a (pointer or reference)+ to a struct or union, and the
7522 ultimate target type will be searched.
7524 Looks recursively into variant clauses and parent types.
7526 In the case of homonyms in the tagged types, please refer to the
7527 long explanation in find_struct_field's function documentation.
7529 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7530 TYPE is not a type of the right kind. */
7532 static struct type
*
7533 ada_lookup_struct_elt_type (struct type
*type
, const char *name
, int refok
,
7537 int parent_offset
= -1;
7542 if (refok
&& type
!= NULL
)
7545 type
= ada_check_typedef (type
);
7546 if (TYPE_CODE (type
) != TYPE_CODE_PTR
7547 && TYPE_CODE (type
) != TYPE_CODE_REF
)
7549 type
= TYPE_TARGET_TYPE (type
);
7553 || (TYPE_CODE (type
) != TYPE_CODE_STRUCT
7554 && TYPE_CODE (type
) != TYPE_CODE_UNION
))
7559 error (_("Type %s is not a structure or union type"),
7560 type
!= NULL
? type_as_string (type
).c_str () : _("(null)"));
7563 type
= to_static_fixed_type (type
);
7565 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7567 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
7570 if (t_field_name
== NULL
)
7573 else if (ada_is_parent_field (type
, i
))
7575 /* This is a field pointing us to the parent type of a tagged
7576 type. As hinted in this function's documentation, we give
7577 preference to fields in the current record first, so what
7578 we do here is just record the index of this field before
7579 we skip it. If it turns out we couldn't find our field
7580 in the current record, then we'll get back to it and search
7581 inside it whether the field might exist in the parent. */
7587 else if (field_name_match (t_field_name
, name
))
7588 return TYPE_FIELD_TYPE (type
, i
);
7590 else if (ada_is_wrapper_field (type
, i
))
7592 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type
, i
), name
,
7598 else if (ada_is_variant_part (type
, i
))
7601 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
,
7604 for (j
= TYPE_NFIELDS (field_type
) - 1; j
>= 0; j
-= 1)
7606 /* FIXME pnh 2008/01/26: We check for a field that is
7607 NOT wrapped in a struct, since the compiler sometimes
7608 generates these for unchecked variant types. Revisit
7609 if the compiler changes this practice. */
7610 const char *v_field_name
= TYPE_FIELD_NAME (field_type
, j
);
7612 if (v_field_name
!= NULL
7613 && field_name_match (v_field_name
, name
))
7614 t
= TYPE_FIELD_TYPE (field_type
, j
);
7616 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type
,
7627 /* Field not found so far. If this is a tagged type which
7628 has a parent, try finding that field in the parent now. */
7630 if (parent_offset
!= -1)
7634 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type
, parent_offset
),
7643 const char *name_str
= name
!= NULL
? name
: _("<null>");
7645 error (_("Type %s has no component named %s"),
7646 type_as_string (type
).c_str (), name_str
);
7652 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7653 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7654 represents an unchecked union (that is, the variant part of a
7655 record that is named in an Unchecked_Union pragma). */
7658 is_unchecked_variant (struct type
*var_type
, struct type
*outer_type
)
7660 const char *discrim_name
= ada_variant_discrim_name (var_type
);
7662 return (ada_lookup_struct_elt_type (outer_type
, discrim_name
, 0, 1) == NULL
);
7666 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7667 within a value of type OUTER_TYPE that is stored in GDB at
7668 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7669 numbering from 0) is applicable. Returns -1 if none are. */
7672 ada_which_variant_applies (struct type
*var_type
, struct type
*outer_type
,
7673 const gdb_byte
*outer_valaddr
)
7677 const char *discrim_name
= ada_variant_discrim_name (var_type
);
7678 struct value
*outer
;
7679 struct value
*discrim
;
7680 LONGEST discrim_val
;
7682 /* Using plain value_from_contents_and_address here causes problems
7683 because we will end up trying to resolve a type that is currently
7684 being constructed. */
7685 outer
= value_from_contents_and_address_unresolved (outer_type
,
7687 discrim
= ada_value_struct_elt (outer
, discrim_name
, 1);
7688 if (discrim
== NULL
)
7690 discrim_val
= value_as_long (discrim
);
7693 for (i
= 0; i
< TYPE_NFIELDS (var_type
); i
+= 1)
7695 if (ada_is_others_clause (var_type
, i
))
7697 else if (ada_in_variant (discrim_val
, var_type
, i
))
7701 return others_clause
;
7706 /* Dynamic-Sized Records */
7708 /* Strategy: The type ostensibly attached to a value with dynamic size
7709 (i.e., a size that is not statically recorded in the debugging
7710 data) does not accurately reflect the size or layout of the value.
7711 Our strategy is to convert these values to values with accurate,
7712 conventional types that are constructed on the fly. */
7714 /* There is a subtle and tricky problem here. In general, we cannot
7715 determine the size of dynamic records without its data. However,
7716 the 'struct value' data structure, which GDB uses to represent
7717 quantities in the inferior process (the target), requires the size
7718 of the type at the time of its allocation in order to reserve space
7719 for GDB's internal copy of the data. That's why the
7720 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7721 rather than struct value*s.
7723 However, GDB's internal history variables ($1, $2, etc.) are
7724 struct value*s containing internal copies of the data that are not, in
7725 general, the same as the data at their corresponding addresses in
7726 the target. Fortunately, the types we give to these values are all
7727 conventional, fixed-size types (as per the strategy described
7728 above), so that we don't usually have to perform the
7729 'to_fixed_xxx_type' conversions to look at their values.
7730 Unfortunately, there is one exception: if one of the internal
7731 history variables is an array whose elements are unconstrained
7732 records, then we will need to create distinct fixed types for each
7733 element selected. */
7735 /* The upshot of all of this is that many routines take a (type, host
7736 address, target address) triple as arguments to represent a value.
7737 The host address, if non-null, is supposed to contain an internal
7738 copy of the relevant data; otherwise, the program is to consult the
7739 target at the target address. */
7741 /* Assuming that VAL0 represents a pointer value, the result of
7742 dereferencing it. Differs from value_ind in its treatment of
7743 dynamic-sized types. */
7746 ada_value_ind (struct value
*val0
)
7748 struct value
*val
= value_ind (val0
);
7750 if (ada_is_tagged_type (value_type (val
), 0))
7751 val
= ada_tag_value_at_base_address (val
);
7753 return ada_to_fixed_value (val
);
7756 /* The value resulting from dereferencing any "reference to"
7757 qualifiers on VAL0. */
7759 static struct value
*
7760 ada_coerce_ref (struct value
*val0
)
7762 if (TYPE_CODE (value_type (val0
)) == TYPE_CODE_REF
)
7764 struct value
*val
= val0
;
7766 val
= coerce_ref (val
);
7768 if (ada_is_tagged_type (value_type (val
), 0))
7769 val
= ada_tag_value_at_base_address (val
);
7771 return ada_to_fixed_value (val
);
7777 /* Return OFF rounded upward if necessary to a multiple of
7778 ALIGNMENT (a power of 2). */
7781 align_value (unsigned int off
, unsigned int alignment
)
7783 return (off
+ alignment
- 1) & ~(alignment
- 1);
7786 /* Return the bit alignment required for field #F of template type TYPE. */
7789 field_alignment (struct type
*type
, int f
)
7791 const char *name
= TYPE_FIELD_NAME (type
, f
);
7795 /* The field name should never be null, unless the debugging information
7796 is somehow malformed. In this case, we assume the field does not
7797 require any alignment. */
7801 len
= strlen (name
);
7803 if (!isdigit (name
[len
- 1]))
7806 if (isdigit (name
[len
- 2]))
7807 align_offset
= len
- 2;
7809 align_offset
= len
- 1;
7811 if (align_offset
< 7 || !startswith (name
+ align_offset
- 6, "___XV"))
7812 return TARGET_CHAR_BIT
;
7814 return atoi (name
+ align_offset
) * TARGET_CHAR_BIT
;
7817 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7819 static struct symbol
*
7820 ada_find_any_type_symbol (const char *name
)
7824 sym
= standard_lookup (name
, get_selected_block (NULL
), VAR_DOMAIN
);
7825 if (sym
!= NULL
&& SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
7828 sym
= standard_lookup (name
, NULL
, STRUCT_DOMAIN
);
7832 /* Find a type named NAME. Ignores ambiguity. This routine will look
7833 solely for types defined by debug info, it will not search the GDB
7836 static struct type
*
7837 ada_find_any_type (const char *name
)
7839 struct symbol
*sym
= ada_find_any_type_symbol (name
);
7842 return SYMBOL_TYPE (sym
);
7847 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7848 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7849 symbol, in which case it is returned. Otherwise, this looks for
7850 symbols whose name is that of NAME_SYM suffixed with "___XR".
7851 Return symbol if found, and NULL otherwise. */
7854 ada_is_renaming_symbol (struct symbol
*name_sym
)
7856 const char *name
= name_sym
->linkage_name ();
7857 return strstr (name
, "___XR") != NULL
;
7860 /* Because of GNAT encoding conventions, several GDB symbols may match a
7861 given type name. If the type denoted by TYPE0 is to be preferred to
7862 that of TYPE1 for purposes of type printing, return non-zero;
7863 otherwise return 0. */
7866 ada_prefer_type (struct type
*type0
, struct type
*type1
)
7870 else if (type0
== NULL
)
7872 else if (TYPE_CODE (type1
) == TYPE_CODE_VOID
)
7874 else if (TYPE_CODE (type0
) == TYPE_CODE_VOID
)
7876 else if (TYPE_NAME (type1
) == NULL
&& TYPE_NAME (type0
) != NULL
)
7878 else if (ada_is_constrained_packed_array_type (type0
))
7880 else if (ada_is_array_descriptor_type (type0
)
7881 && !ada_is_array_descriptor_type (type1
))
7885 const char *type0_name
= TYPE_NAME (type0
);
7886 const char *type1_name
= TYPE_NAME (type1
);
7888 if (type0_name
!= NULL
&& strstr (type0_name
, "___XR") != NULL
7889 && (type1_name
== NULL
|| strstr (type1_name
, "___XR") == NULL
))
7895 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7899 ada_type_name (struct type
*type
)
7903 return TYPE_NAME (type
);
7906 /* Search the list of "descriptive" types associated to TYPE for a type
7907 whose name is NAME. */
7909 static struct type
*
7910 find_parallel_type_by_descriptive_type (struct type
*type
, const char *name
)
7912 struct type
*result
, *tmp
;
7914 if (ada_ignore_descriptive_types_p
)
7917 /* If there no descriptive-type info, then there is no parallel type
7919 if (!HAVE_GNAT_AUX_INFO (type
))
7922 result
= TYPE_DESCRIPTIVE_TYPE (type
);
7923 while (result
!= NULL
)
7925 const char *result_name
= ada_type_name (result
);
7927 if (result_name
== NULL
)
7929 warning (_("unexpected null name on descriptive type"));
7933 /* If the names match, stop. */
7934 if (strcmp (result_name
, name
) == 0)
7937 /* Otherwise, look at the next item on the list, if any. */
7938 if (HAVE_GNAT_AUX_INFO (result
))
7939 tmp
= TYPE_DESCRIPTIVE_TYPE (result
);
7943 /* If not found either, try after having resolved the typedef. */
7948 result
= check_typedef (result
);
7949 if (HAVE_GNAT_AUX_INFO (result
))
7950 result
= TYPE_DESCRIPTIVE_TYPE (result
);
7956 /* If we didn't find a match, see whether this is a packed array. With
7957 older compilers, the descriptive type information is either absent or
7958 irrelevant when it comes to packed arrays so the above lookup fails.
7959 Fall back to using a parallel lookup by name in this case. */
7960 if (result
== NULL
&& ada_is_constrained_packed_array_type (type
))
7961 return ada_find_any_type (name
);
7966 /* Find a parallel type to TYPE with the specified NAME, using the
7967 descriptive type taken from the debugging information, if available,
7968 and otherwise using the (slower) name-based method. */
7970 static struct type
*
7971 ada_find_parallel_type_with_name (struct type
*type
, const char *name
)
7973 struct type
*result
= NULL
;
7975 if (HAVE_GNAT_AUX_INFO (type
))
7976 result
= find_parallel_type_by_descriptive_type (type
, name
);
7978 result
= ada_find_any_type (name
);
7983 /* Same as above, but specify the name of the parallel type by appending
7984 SUFFIX to the name of TYPE. */
7987 ada_find_parallel_type (struct type
*type
, const char *suffix
)
7990 const char *type_name
= ada_type_name (type
);
7993 if (type_name
== NULL
)
7996 len
= strlen (type_name
);
7998 name
= (char *) alloca (len
+ strlen (suffix
) + 1);
8000 strcpy (name
, type_name
);
8001 strcpy (name
+ len
, suffix
);
8003 return ada_find_parallel_type_with_name (type
, name
);
8006 /* If TYPE is a variable-size record type, return the corresponding template
8007 type describing its fields. Otherwise, return NULL. */
8009 static struct type
*
8010 dynamic_template_type (struct type
*type
)
8012 type
= ada_check_typedef (type
);
8014 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
8015 || ada_type_name (type
) == NULL
)
8019 int len
= strlen (ada_type_name (type
));
8021 if (len
> 6 && strcmp (ada_type_name (type
) + len
- 6, "___XVE") == 0)
8024 return ada_find_parallel_type (type
, "___XVE");
8028 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8029 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8032 is_dynamic_field (struct type
*templ_type
, int field_num
)
8034 const char *name
= TYPE_FIELD_NAME (templ_type
, field_num
);
8037 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type
, field_num
)) == TYPE_CODE_PTR
8038 && strstr (name
, "___XVL") != NULL
;
8041 /* The index of the variant field of TYPE, or -1 if TYPE does not
8042 represent a variant record type. */
8045 variant_field_index (struct type
*type
)
8049 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
8052 for (f
= 0; f
< TYPE_NFIELDS (type
); f
+= 1)
8054 if (ada_is_variant_part (type
, f
))
8060 /* A record type with no fields. */
8062 static struct type
*
8063 empty_record (struct type
*templ
)
8065 struct type
*type
= alloc_type_copy (templ
);
8067 TYPE_CODE (type
) = TYPE_CODE_STRUCT
;
8068 TYPE_NFIELDS (type
) = 0;
8069 TYPE_FIELDS (type
) = NULL
;
8070 INIT_NONE_SPECIFIC (type
);
8071 TYPE_NAME (type
) = "<empty>";
8072 TYPE_LENGTH (type
) = 0;
8076 /* An ordinary record type (with fixed-length fields) that describes
8077 the value of type TYPE at VALADDR or ADDRESS (see comments at
8078 the beginning of this section) VAL according to GNAT conventions.
8079 DVAL0 should describe the (portion of a) record that contains any
8080 necessary discriminants. It should be NULL if value_type (VAL) is
8081 an outer-level type (i.e., as opposed to a branch of a variant.) A
8082 variant field (unless unchecked) is replaced by a particular branch
8085 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8086 length are not statically known are discarded. As a consequence,
8087 VALADDR, ADDRESS and DVAL0 are ignored.
8089 NOTE: Limitations: For now, we assume that dynamic fields and
8090 variants occupy whole numbers of bytes. However, they need not be
8094 ada_template_to_fixed_record_type_1 (struct type
*type
,
8095 const gdb_byte
*valaddr
,
8096 CORE_ADDR address
, struct value
*dval0
,
8097 int keep_dynamic_fields
)
8099 struct value
*mark
= value_mark ();
8102 int nfields
, bit_len
;
8108 /* Compute the number of fields in this record type that are going
8109 to be processed: unless keep_dynamic_fields, this includes only
8110 fields whose position and length are static will be processed. */
8111 if (keep_dynamic_fields
)
8112 nfields
= TYPE_NFIELDS (type
);
8116 while (nfields
< TYPE_NFIELDS (type
)
8117 && !ada_is_variant_part (type
, nfields
)
8118 && !is_dynamic_field (type
, nfields
))
8122 rtype
= alloc_type_copy (type
);
8123 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
8124 INIT_NONE_SPECIFIC (rtype
);
8125 TYPE_NFIELDS (rtype
) = nfields
;
8126 TYPE_FIELDS (rtype
) = (struct field
*)
8127 TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
8128 memset (TYPE_FIELDS (rtype
), 0, sizeof (struct field
) * nfields
);
8129 TYPE_NAME (rtype
) = ada_type_name (type
);
8130 TYPE_FIXED_INSTANCE (rtype
) = 1;
8136 for (f
= 0; f
< nfields
; f
+= 1)
8138 off
= align_value (off
, field_alignment (type
, f
))
8139 + TYPE_FIELD_BITPOS (type
, f
);
8140 SET_FIELD_BITPOS (TYPE_FIELD (rtype
, f
), off
);
8141 TYPE_FIELD_BITSIZE (rtype
, f
) = 0;
8143 if (ada_is_variant_part (type
, f
))
8148 else if (is_dynamic_field (type
, f
))
8150 const gdb_byte
*field_valaddr
= valaddr
;
8151 CORE_ADDR field_address
= address
;
8152 struct type
*field_type
=
8153 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type
, f
));
8157 /* rtype's length is computed based on the run-time
8158 value of discriminants. If the discriminants are not
8159 initialized, the type size may be completely bogus and
8160 GDB may fail to allocate a value for it. So check the
8161 size first before creating the value. */
8162 ada_ensure_varsize_limit (rtype
);
8163 /* Using plain value_from_contents_and_address here
8164 causes problems because we will end up trying to
8165 resolve a type that is currently being
8167 dval
= value_from_contents_and_address_unresolved (rtype
,
8170 rtype
= value_type (dval
);
8175 /* If the type referenced by this field is an aligner type, we need
8176 to unwrap that aligner type, because its size might not be set.
8177 Keeping the aligner type would cause us to compute the wrong
8178 size for this field, impacting the offset of the all the fields
8179 that follow this one. */
8180 if (ada_is_aligner_type (field_type
))
8182 long field_offset
= TYPE_FIELD_BITPOS (field_type
, f
);
8184 field_valaddr
= cond_offset_host (field_valaddr
, field_offset
);
8185 field_address
= cond_offset_target (field_address
, field_offset
);
8186 field_type
= ada_aligned_type (field_type
);
8189 field_valaddr
= cond_offset_host (field_valaddr
,
8190 off
/ TARGET_CHAR_BIT
);
8191 field_address
= cond_offset_target (field_address
,
8192 off
/ TARGET_CHAR_BIT
);
8194 /* Get the fixed type of the field. Note that, in this case,
8195 we do not want to get the real type out of the tag: if
8196 the current field is the parent part of a tagged record,
8197 we will get the tag of the object. Clearly wrong: the real
8198 type of the parent is not the real type of the child. We
8199 would end up in an infinite loop. */
8200 field_type
= ada_get_base_type (field_type
);
8201 field_type
= ada_to_fixed_type (field_type
, field_valaddr
,
8202 field_address
, dval
, 0);
8203 /* If the field size is already larger than the maximum
8204 object size, then the record itself will necessarily
8205 be larger than the maximum object size. We need to make
8206 this check now, because the size might be so ridiculously
8207 large (due to an uninitialized variable in the inferior)
8208 that it would cause an overflow when adding it to the
8210 ada_ensure_varsize_limit (field_type
);
8212 TYPE_FIELD_TYPE (rtype
, f
) = field_type
;
8213 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
8214 /* The multiplication can potentially overflow. But because
8215 the field length has been size-checked just above, and
8216 assuming that the maximum size is a reasonable value,
8217 an overflow should not happen in practice. So rather than
8218 adding overflow recovery code to this already complex code,
8219 we just assume that it's not going to happen. */
8221 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, f
)) * TARGET_CHAR_BIT
;
8225 /* Note: If this field's type is a typedef, it is important
8226 to preserve the typedef layer.
8228 Otherwise, we might be transforming a typedef to a fat
8229 pointer (encoding a pointer to an unconstrained array),
8230 into a basic fat pointer (encoding an unconstrained
8231 array). As both types are implemented using the same
8232 structure, the typedef is the only clue which allows us
8233 to distinguish between the two options. Stripping it
8234 would prevent us from printing this field appropriately. */
8235 TYPE_FIELD_TYPE (rtype
, f
) = TYPE_FIELD_TYPE (type
, f
);
8236 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
8237 if (TYPE_FIELD_BITSIZE (type
, f
) > 0)
8239 TYPE_FIELD_BITSIZE (rtype
, f
) = TYPE_FIELD_BITSIZE (type
, f
);
8242 struct type
*field_type
= TYPE_FIELD_TYPE (type
, f
);
8244 /* We need to be careful of typedefs when computing
8245 the length of our field. If this is a typedef,
8246 get the length of the target type, not the length
8248 if (TYPE_CODE (field_type
) == TYPE_CODE_TYPEDEF
)
8249 field_type
= ada_typedef_target_type (field_type
);
8252 TYPE_LENGTH (ada_check_typedef (field_type
)) * TARGET_CHAR_BIT
;
8255 if (off
+ fld_bit_len
> bit_len
)
8256 bit_len
= off
+ fld_bit_len
;
8258 TYPE_LENGTH (rtype
) =
8259 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
8262 /* We handle the variant part, if any, at the end because of certain
8263 odd cases in which it is re-ordered so as NOT to be the last field of
8264 the record. This can happen in the presence of representation
8266 if (variant_field
>= 0)
8268 struct type
*branch_type
;
8270 off
= TYPE_FIELD_BITPOS (rtype
, variant_field
);
8274 /* Using plain value_from_contents_and_address here causes
8275 problems because we will end up trying to resolve a type
8276 that is currently being constructed. */
8277 dval
= value_from_contents_and_address_unresolved (rtype
, valaddr
,
8279 rtype
= value_type (dval
);
8285 to_fixed_variant_branch_type
8286 (TYPE_FIELD_TYPE (type
, variant_field
),
8287 cond_offset_host (valaddr
, off
/ TARGET_CHAR_BIT
),
8288 cond_offset_target (address
, off
/ TARGET_CHAR_BIT
), dval
);
8289 if (branch_type
== NULL
)
8291 for (f
= variant_field
+ 1; f
< TYPE_NFIELDS (rtype
); f
+= 1)
8292 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
8293 TYPE_NFIELDS (rtype
) -= 1;
8297 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
8298 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
8300 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, variant_field
)) *
8302 if (off
+ fld_bit_len
> bit_len
)
8303 bit_len
= off
+ fld_bit_len
;
8304 TYPE_LENGTH (rtype
) =
8305 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
8309 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8310 should contain the alignment of that record, which should be a strictly
8311 positive value. If null or negative, then something is wrong, most
8312 probably in the debug info. In that case, we don't round up the size
8313 of the resulting type. If this record is not part of another structure,
8314 the current RTYPE length might be good enough for our purposes. */
8315 if (TYPE_LENGTH (type
) <= 0)
8317 if (TYPE_NAME (rtype
))
8318 warning (_("Invalid type size for `%s' detected: %s."),
8319 TYPE_NAME (rtype
), pulongest (TYPE_LENGTH (type
)));
8321 warning (_("Invalid type size for <unnamed> detected: %s."),
8322 pulongest (TYPE_LENGTH (type
)));
8326 TYPE_LENGTH (rtype
) = align_value (TYPE_LENGTH (rtype
),
8327 TYPE_LENGTH (type
));
8330 value_free_to_mark (mark
);
8331 if (TYPE_LENGTH (rtype
) > varsize_limit
)
8332 error (_("record type with dynamic size is larger than varsize-limit"));
8336 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8339 static struct type
*
8340 template_to_fixed_record_type (struct type
*type
, const gdb_byte
*valaddr
,
8341 CORE_ADDR address
, struct value
*dval0
)
8343 return ada_template_to_fixed_record_type_1 (type
, valaddr
,
8347 /* An ordinary record type in which ___XVL-convention fields and
8348 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8349 static approximations, containing all possible fields. Uses
8350 no runtime values. Useless for use in values, but that's OK,
8351 since the results are used only for type determinations. Works on both
8352 structs and unions. Representation note: to save space, we memorize
8353 the result of this function in the TYPE_TARGET_TYPE of the
8356 static struct type
*
8357 template_to_static_fixed_type (struct type
*type0
)
8363 /* No need no do anything if the input type is already fixed. */
8364 if (TYPE_FIXED_INSTANCE (type0
))
8367 /* Likewise if we already have computed the static approximation. */
8368 if (TYPE_TARGET_TYPE (type0
) != NULL
)
8369 return TYPE_TARGET_TYPE (type0
);
8371 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8373 nfields
= TYPE_NFIELDS (type0
);
8375 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8376 recompute all over next time. */
8377 TYPE_TARGET_TYPE (type0
) = type
;
8379 for (f
= 0; f
< nfields
; f
+= 1)
8381 struct type
*field_type
= TYPE_FIELD_TYPE (type0
, f
);
8382 struct type
*new_type
;
8384 if (is_dynamic_field (type0
, f
))
8386 field_type
= ada_check_typedef (field_type
);
8387 new_type
= to_static_fixed_type (TYPE_TARGET_TYPE (field_type
));
8390 new_type
= static_unwrap_type (field_type
);
8392 if (new_type
!= field_type
)
8394 /* Clone TYPE0 only the first time we get a new field type. */
8397 TYPE_TARGET_TYPE (type0
) = type
= alloc_type_copy (type0
);
8398 TYPE_CODE (type
) = TYPE_CODE (type0
);
8399 INIT_NONE_SPECIFIC (type
);
8400 TYPE_NFIELDS (type
) = nfields
;
8401 TYPE_FIELDS (type
) = (struct field
*)
8402 TYPE_ALLOC (type
, nfields
* sizeof (struct field
));
8403 memcpy (TYPE_FIELDS (type
), TYPE_FIELDS (type0
),
8404 sizeof (struct field
) * nfields
);
8405 TYPE_NAME (type
) = ada_type_name (type0
);
8406 TYPE_FIXED_INSTANCE (type
) = 1;
8407 TYPE_LENGTH (type
) = 0;
8409 TYPE_FIELD_TYPE (type
, f
) = new_type
;
8410 TYPE_FIELD_NAME (type
, f
) = TYPE_FIELD_NAME (type0
, f
);
8417 /* Given an object of type TYPE whose contents are at VALADDR and
8418 whose address in memory is ADDRESS, returns a revision of TYPE,
8419 which should be a non-dynamic-sized record, in which the variant
8420 part, if any, is replaced with the appropriate branch. Looks
8421 for discriminant values in DVAL0, which can be NULL if the record
8422 contains the necessary discriminant values. */
8424 static struct type
*
8425 to_record_with_fixed_variant_part (struct type
*type
, const gdb_byte
*valaddr
,
8426 CORE_ADDR address
, struct value
*dval0
)
8428 struct value
*mark
= value_mark ();
8431 struct type
*branch_type
;
8432 int nfields
= TYPE_NFIELDS (type
);
8433 int variant_field
= variant_field_index (type
);
8435 if (variant_field
== -1)
8440 dval
= value_from_contents_and_address (type
, valaddr
, address
);
8441 type
= value_type (dval
);
8446 rtype
= alloc_type_copy (type
);
8447 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
8448 INIT_NONE_SPECIFIC (rtype
);
8449 TYPE_NFIELDS (rtype
) = nfields
;
8450 TYPE_FIELDS (rtype
) =
8451 (struct field
*) TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
8452 memcpy (TYPE_FIELDS (rtype
), TYPE_FIELDS (type
),
8453 sizeof (struct field
) * nfields
);
8454 TYPE_NAME (rtype
) = ada_type_name (type
);
8455 TYPE_FIXED_INSTANCE (rtype
) = 1;
8456 TYPE_LENGTH (rtype
) = TYPE_LENGTH (type
);
8458 branch_type
= to_fixed_variant_branch_type
8459 (TYPE_FIELD_TYPE (type
, variant_field
),
8460 cond_offset_host (valaddr
,
8461 TYPE_FIELD_BITPOS (type
, variant_field
)
8463 cond_offset_target (address
,
8464 TYPE_FIELD_BITPOS (type
, variant_field
)
8465 / TARGET_CHAR_BIT
), dval
);
8466 if (branch_type
== NULL
)
8470 for (f
= variant_field
+ 1; f
< nfields
; f
+= 1)
8471 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
8472 TYPE_NFIELDS (rtype
) -= 1;
8476 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
8477 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
8478 TYPE_FIELD_BITSIZE (rtype
, variant_field
) = 0;
8479 TYPE_LENGTH (rtype
) += TYPE_LENGTH (branch_type
);
8481 TYPE_LENGTH (rtype
) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type
, variant_field
));
8483 value_free_to_mark (mark
);
8487 /* An ordinary record type (with fixed-length fields) that describes
8488 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8489 beginning of this section]. Any necessary discriminants' values
8490 should be in DVAL, a record value; it may be NULL if the object
8491 at ADDR itself contains any necessary discriminant values.
8492 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8493 values from the record are needed. Except in the case that DVAL,
8494 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8495 unchecked) is replaced by a particular branch of the variant.
8497 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8498 is questionable and may be removed. It can arise during the
8499 processing of an unconstrained-array-of-record type where all the
8500 variant branches have exactly the same size. This is because in
8501 such cases, the compiler does not bother to use the XVS convention
8502 when encoding the record. I am currently dubious of this
8503 shortcut and suspect the compiler should be altered. FIXME. */
8505 static struct type
*
8506 to_fixed_record_type (struct type
*type0
, const gdb_byte
*valaddr
,
8507 CORE_ADDR address
, struct value
*dval
)
8509 struct type
*templ_type
;
8511 if (TYPE_FIXED_INSTANCE (type0
))
8514 templ_type
= dynamic_template_type (type0
);
8516 if (templ_type
!= NULL
)
8517 return template_to_fixed_record_type (templ_type
, valaddr
, address
, dval
);
8518 else if (variant_field_index (type0
) >= 0)
8520 if (dval
== NULL
&& valaddr
== NULL
&& address
== 0)
8522 return to_record_with_fixed_variant_part (type0
, valaddr
, address
,
8527 TYPE_FIXED_INSTANCE (type0
) = 1;
8533 /* An ordinary record type (with fixed-length fields) that describes
8534 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8535 union type. Any necessary discriminants' values should be in DVAL,
8536 a record value. That is, this routine selects the appropriate
8537 branch of the union at ADDR according to the discriminant value
8538 indicated in the union's type name. Returns VAR_TYPE0 itself if
8539 it represents a variant subject to a pragma Unchecked_Union. */
8541 static struct type
*
8542 to_fixed_variant_branch_type (struct type
*var_type0
, const gdb_byte
*valaddr
,
8543 CORE_ADDR address
, struct value
*dval
)
8546 struct type
*templ_type
;
8547 struct type
*var_type
;
8549 if (TYPE_CODE (var_type0
) == TYPE_CODE_PTR
)
8550 var_type
= TYPE_TARGET_TYPE (var_type0
);
8552 var_type
= var_type0
;
8554 templ_type
= ada_find_parallel_type (var_type
, "___XVU");
8556 if (templ_type
!= NULL
)
8557 var_type
= templ_type
;
8559 if (is_unchecked_variant (var_type
, value_type (dval
)))
8562 ada_which_variant_applies (var_type
,
8563 value_type (dval
), value_contents (dval
));
8566 return empty_record (var_type
);
8567 else if (is_dynamic_field (var_type
, which
))
8568 return to_fixed_record_type
8569 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type
, which
)),
8570 valaddr
, address
, dval
);
8571 else if (variant_field_index (TYPE_FIELD_TYPE (var_type
, which
)) >= 0)
8573 to_fixed_record_type
8574 (TYPE_FIELD_TYPE (var_type
, which
), valaddr
, address
, dval
);
8576 return TYPE_FIELD_TYPE (var_type
, which
);
8579 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8580 ENCODING_TYPE, a type following the GNAT conventions for discrete
8581 type encodings, only carries redundant information. */
8584 ada_is_redundant_range_encoding (struct type
*range_type
,
8585 struct type
*encoding_type
)
8587 const char *bounds_str
;
8591 gdb_assert (TYPE_CODE (range_type
) == TYPE_CODE_RANGE
);
8593 if (TYPE_CODE (get_base_type (range_type
))
8594 != TYPE_CODE (get_base_type (encoding_type
)))
8596 /* The compiler probably used a simple base type to describe
8597 the range type instead of the range's actual base type,
8598 expecting us to get the real base type from the encoding
8599 anyway. In this situation, the encoding cannot be ignored
8604 if (is_dynamic_type (range_type
))
8607 if (TYPE_NAME (encoding_type
) == NULL
)
8610 bounds_str
= strstr (TYPE_NAME (encoding_type
), "___XDLU_");
8611 if (bounds_str
== NULL
)
8614 n
= 8; /* Skip "___XDLU_". */
8615 if (!ada_scan_number (bounds_str
, n
, &lo
, &n
))
8617 if (TYPE_LOW_BOUND (range_type
) != lo
)
8620 n
+= 2; /* Skip the "__" separator between the two bounds. */
8621 if (!ada_scan_number (bounds_str
, n
, &hi
, &n
))
8623 if (TYPE_HIGH_BOUND (range_type
) != hi
)
8629 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8630 a type following the GNAT encoding for describing array type
8631 indices, only carries redundant information. */
8634 ada_is_redundant_index_type_desc (struct type
*array_type
,
8635 struct type
*desc_type
)
8637 struct type
*this_layer
= check_typedef (array_type
);
8640 for (i
= 0; i
< TYPE_NFIELDS (desc_type
); i
++)
8642 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer
),
8643 TYPE_FIELD_TYPE (desc_type
, i
)))
8645 this_layer
= check_typedef (TYPE_TARGET_TYPE (this_layer
));
8651 /* Assuming that TYPE0 is an array type describing the type of a value
8652 at ADDR, and that DVAL describes a record containing any
8653 discriminants used in TYPE0, returns a type for the value that
8654 contains no dynamic components (that is, no components whose sizes
8655 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8656 true, gives an error message if the resulting type's size is over
8659 static struct type
*
8660 to_fixed_array_type (struct type
*type0
, struct value
*dval
,
8663 struct type
*index_type_desc
;
8664 struct type
*result
;
8665 int constrained_packed_array_p
;
8666 static const char *xa_suffix
= "___XA";
8668 type0
= ada_check_typedef (type0
);
8669 if (TYPE_FIXED_INSTANCE (type0
))
8672 constrained_packed_array_p
= ada_is_constrained_packed_array_type (type0
);
8673 if (constrained_packed_array_p
)
8674 type0
= decode_constrained_packed_array_type (type0
);
8676 index_type_desc
= ada_find_parallel_type (type0
, xa_suffix
);
8678 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8679 encoding suffixed with 'P' may still be generated. If so,
8680 it should be used to find the XA type. */
8682 if (index_type_desc
== NULL
)
8684 const char *type_name
= ada_type_name (type0
);
8686 if (type_name
!= NULL
)
8688 const int len
= strlen (type_name
);
8689 char *name
= (char *) alloca (len
+ strlen (xa_suffix
));
8691 if (type_name
[len
- 1] == 'P')
8693 strcpy (name
, type_name
);
8694 strcpy (name
+ len
- 1, xa_suffix
);
8695 index_type_desc
= ada_find_parallel_type_with_name (type0
, name
);
8700 ada_fixup_array_indexes_type (index_type_desc
);
8701 if (index_type_desc
!= NULL
8702 && ada_is_redundant_index_type_desc (type0
, index_type_desc
))
8704 /* Ignore this ___XA parallel type, as it does not bring any
8705 useful information. This allows us to avoid creating fixed
8706 versions of the array's index types, which would be identical
8707 to the original ones. This, in turn, can also help avoid
8708 the creation of fixed versions of the array itself. */
8709 index_type_desc
= NULL
;
8712 if (index_type_desc
== NULL
)
8714 struct type
*elt_type0
= ada_check_typedef (TYPE_TARGET_TYPE (type0
));
8716 /* NOTE: elt_type---the fixed version of elt_type0---should never
8717 depend on the contents of the array in properly constructed
8719 /* Create a fixed version of the array element type.
8720 We're not providing the address of an element here,
8721 and thus the actual object value cannot be inspected to do
8722 the conversion. This should not be a problem, since arrays of
8723 unconstrained objects are not allowed. In particular, all
8724 the elements of an array of a tagged type should all be of
8725 the same type specified in the debugging info. No need to
8726 consult the object tag. */
8727 struct type
*elt_type
= ada_to_fixed_type (elt_type0
, 0, 0, dval
, 1);
8729 /* Make sure we always create a new array type when dealing with
8730 packed array types, since we're going to fix-up the array
8731 type length and element bitsize a little further down. */
8732 if (elt_type0
== elt_type
&& !constrained_packed_array_p
)
8735 result
= create_array_type (alloc_type_copy (type0
),
8736 elt_type
, TYPE_INDEX_TYPE (type0
));
8741 struct type
*elt_type0
;
8744 for (i
= TYPE_NFIELDS (index_type_desc
); i
> 0; i
-= 1)
8745 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
8747 /* NOTE: result---the fixed version of elt_type0---should never
8748 depend on the contents of the array in properly constructed
8750 /* Create a fixed version of the array element type.
8751 We're not providing the address of an element here,
8752 and thus the actual object value cannot be inspected to do
8753 the conversion. This should not be a problem, since arrays of
8754 unconstrained objects are not allowed. In particular, all
8755 the elements of an array of a tagged type should all be of
8756 the same type specified in the debugging info. No need to
8757 consult the object tag. */
8759 ada_to_fixed_type (ada_check_typedef (elt_type0
), 0, 0, dval
, 1);
8762 for (i
= TYPE_NFIELDS (index_type_desc
) - 1; i
>= 0; i
-= 1)
8764 struct type
*range_type
=
8765 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, i
), dval
);
8767 result
= create_array_type (alloc_type_copy (elt_type0
),
8768 result
, range_type
);
8769 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
8771 if (!ignore_too_big
&& TYPE_LENGTH (result
) > varsize_limit
)
8772 error (_("array type with dynamic size is larger than varsize-limit"));
8775 /* We want to preserve the type name. This can be useful when
8776 trying to get the type name of a value that has already been
8777 printed (for instance, if the user did "print VAR; whatis $". */
8778 TYPE_NAME (result
) = TYPE_NAME (type0
);
8780 if (constrained_packed_array_p
)
8782 /* So far, the resulting type has been created as if the original
8783 type was a regular (non-packed) array type. As a result, the
8784 bitsize of the array elements needs to be set again, and the array
8785 length needs to be recomputed based on that bitsize. */
8786 int len
= TYPE_LENGTH (result
) / TYPE_LENGTH (TYPE_TARGET_TYPE (result
));
8787 int elt_bitsize
= TYPE_FIELD_BITSIZE (type0
, 0);
8789 TYPE_FIELD_BITSIZE (result
, 0) = TYPE_FIELD_BITSIZE (type0
, 0);
8790 TYPE_LENGTH (result
) = len
* elt_bitsize
/ HOST_CHAR_BIT
;
8791 if (TYPE_LENGTH (result
) * HOST_CHAR_BIT
< len
* elt_bitsize
)
8792 TYPE_LENGTH (result
)++;
8795 TYPE_FIXED_INSTANCE (result
) = 1;
8800 /* A standard type (containing no dynamically sized components)
8801 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8802 DVAL describes a record containing any discriminants used in TYPE0,
8803 and may be NULL if there are none, or if the object of type TYPE at
8804 ADDRESS or in VALADDR contains these discriminants.
8806 If CHECK_TAG is not null, in the case of tagged types, this function
8807 attempts to locate the object's tag and use it to compute the actual
8808 type. However, when ADDRESS is null, we cannot use it to determine the
8809 location of the tag, and therefore compute the tagged type's actual type.
8810 So we return the tagged type without consulting the tag. */
8812 static struct type
*
8813 ada_to_fixed_type_1 (struct type
*type
, const gdb_byte
*valaddr
,
8814 CORE_ADDR address
, struct value
*dval
, int check_tag
)
8816 type
= ada_check_typedef (type
);
8818 /* Only un-fixed types need to be handled here. */
8819 if (!HAVE_GNAT_AUX_INFO (type
))
8822 switch (TYPE_CODE (type
))
8826 case TYPE_CODE_STRUCT
:
8828 struct type
*static_type
= to_static_fixed_type (type
);
8829 struct type
*fixed_record_type
=
8830 to_fixed_record_type (type
, valaddr
, address
, NULL
);
8832 /* If STATIC_TYPE is a tagged type and we know the object's address,
8833 then we can determine its tag, and compute the object's actual
8834 type from there. Note that we have to use the fixed record
8835 type (the parent part of the record may have dynamic fields
8836 and the way the location of _tag is expressed may depend on
8839 if (check_tag
&& address
!= 0 && ada_is_tagged_type (static_type
, 0))
8842 value_tag_from_contents_and_address
8846 struct type
*real_type
= type_from_tag (tag
);
8848 value_from_contents_and_address (fixed_record_type
,
8851 fixed_record_type
= value_type (obj
);
8852 if (real_type
!= NULL
)
8853 return to_fixed_record_type
8855 value_address (ada_tag_value_at_base_address (obj
)), NULL
);
8858 /* Check to see if there is a parallel ___XVZ variable.
8859 If there is, then it provides the actual size of our type. */
8860 else if (ada_type_name (fixed_record_type
) != NULL
)
8862 const char *name
= ada_type_name (fixed_record_type
);
8864 = (char *) alloca (strlen (name
) + 7 /* "___XVZ\0" */);
8865 bool xvz_found
= false;
8868 xsnprintf (xvz_name
, strlen (name
) + 7, "%s___XVZ", name
);
8871 xvz_found
= get_int_var_value (xvz_name
, size
);
8873 catch (const gdb_exception_error
&except
)
8875 /* We found the variable, but somehow failed to read
8876 its value. Rethrow the same error, but with a little
8877 bit more information, to help the user understand
8878 what went wrong (Eg: the variable might have been
8880 throw_error (except
.error
,
8881 _("unable to read value of %s (%s)"),
8882 xvz_name
, except
.what ());
8885 if (xvz_found
&& TYPE_LENGTH (fixed_record_type
) != size
)
8887 fixed_record_type
= copy_type (fixed_record_type
);
8888 TYPE_LENGTH (fixed_record_type
) = size
;
8890 /* The FIXED_RECORD_TYPE may have be a stub. We have
8891 observed this when the debugging info is STABS, and
8892 apparently it is something that is hard to fix.
8894 In practice, we don't need the actual type definition
8895 at all, because the presence of the XVZ variable allows us
8896 to assume that there must be a XVS type as well, which we
8897 should be able to use later, when we need the actual type
8900 In the meantime, pretend that the "fixed" type we are
8901 returning is NOT a stub, because this can cause trouble
8902 when using this type to create new types targeting it.
8903 Indeed, the associated creation routines often check
8904 whether the target type is a stub and will try to replace
8905 it, thus using a type with the wrong size. This, in turn,
8906 might cause the new type to have the wrong size too.
8907 Consider the case of an array, for instance, where the size
8908 of the array is computed from the number of elements in
8909 our array multiplied by the size of its element. */
8910 TYPE_STUB (fixed_record_type
) = 0;
8913 return fixed_record_type
;
8915 case TYPE_CODE_ARRAY
:
8916 return to_fixed_array_type (type
, dval
, 1);
8917 case TYPE_CODE_UNION
:
8921 return to_fixed_variant_branch_type (type
, valaddr
, address
, dval
);
8925 /* The same as ada_to_fixed_type_1, except that it preserves the type
8926 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8928 The typedef layer needs be preserved in order to differentiate between
8929 arrays and array pointers when both types are implemented using the same
8930 fat pointer. In the array pointer case, the pointer is encoded as
8931 a typedef of the pointer type. For instance, considering:
8933 type String_Access is access String;
8934 S1 : String_Access := null;
8936 To the debugger, S1 is defined as a typedef of type String. But
8937 to the user, it is a pointer. So if the user tries to print S1,
8938 we should not dereference the array, but print the array address
8941 If we didn't preserve the typedef layer, we would lose the fact that
8942 the type is to be presented as a pointer (needs de-reference before
8943 being printed). And we would also use the source-level type name. */
8946 ada_to_fixed_type (struct type
*type
, const gdb_byte
*valaddr
,
8947 CORE_ADDR address
, struct value
*dval
, int check_tag
)
8950 struct type
*fixed_type
=
8951 ada_to_fixed_type_1 (type
, valaddr
, address
, dval
, check_tag
);
8953 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8954 then preserve the typedef layer.
8956 Implementation note: We can only check the main-type portion of
8957 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8958 from TYPE now returns a type that has the same instance flags
8959 as TYPE. For instance, if TYPE is a "typedef const", and its
8960 target type is a "struct", then the typedef elimination will return
8961 a "const" version of the target type. See check_typedef for more
8962 details about how the typedef layer elimination is done.
8964 brobecker/2010-11-19: It seems to me that the only case where it is
8965 useful to preserve the typedef layer is when dealing with fat pointers.
8966 Perhaps, we could add a check for that and preserve the typedef layer
8967 only in that situation. But this seems unnecessary so far, probably
8968 because we call check_typedef/ada_check_typedef pretty much everywhere.
8970 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
8971 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type
))
8972 == TYPE_MAIN_TYPE (fixed_type
)))
8978 /* A standard (static-sized) type corresponding as well as possible to
8979 TYPE0, but based on no runtime data. */
8981 static struct type
*
8982 to_static_fixed_type (struct type
*type0
)
8989 if (TYPE_FIXED_INSTANCE (type0
))
8992 type0
= ada_check_typedef (type0
);
8994 switch (TYPE_CODE (type0
))
8998 case TYPE_CODE_STRUCT
:
8999 type
= dynamic_template_type (type0
);
9001 return template_to_static_fixed_type (type
);
9003 return template_to_static_fixed_type (type0
);
9004 case TYPE_CODE_UNION
:
9005 type
= ada_find_parallel_type (type0
, "___XVU");
9007 return template_to_static_fixed_type (type
);
9009 return template_to_static_fixed_type (type0
);
9013 /* A static approximation of TYPE with all type wrappers removed. */
9015 static struct type
*
9016 static_unwrap_type (struct type
*type
)
9018 if (ada_is_aligner_type (type
))
9020 struct type
*type1
= TYPE_FIELD_TYPE (ada_check_typedef (type
), 0);
9021 if (ada_type_name (type1
) == NULL
)
9022 TYPE_NAME (type1
) = ada_type_name (type
);
9024 return static_unwrap_type (type1
);
9028 struct type
*raw_real_type
= ada_get_base_type (type
);
9030 if (raw_real_type
== type
)
9033 return to_static_fixed_type (raw_real_type
);
9037 /* In some cases, incomplete and private types require
9038 cross-references that are not resolved as records (for example,
9040 type FooP is access Foo;
9042 type Foo is array ...;
9043 ). In these cases, since there is no mechanism for producing
9044 cross-references to such types, we instead substitute for FooP a
9045 stub enumeration type that is nowhere resolved, and whose tag is
9046 the name of the actual type. Call these types "non-record stubs". */
9048 /* A type equivalent to TYPE that is not a non-record stub, if one
9049 exists, otherwise TYPE. */
9052 ada_check_typedef (struct type
*type
)
9057 /* If our type is an access to an unconstrained array, which is encoded
9058 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9059 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9060 what allows us to distinguish between fat pointers that represent
9061 array types, and fat pointers that represent array access types
9062 (in both cases, the compiler implements them as fat pointers). */
9063 if (ada_is_access_to_unconstrained_array (type
))
9066 type
= check_typedef (type
);
9067 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
9068 || !TYPE_STUB (type
)
9069 || TYPE_NAME (type
) == NULL
)
9073 const char *name
= TYPE_NAME (type
);
9074 struct type
*type1
= ada_find_any_type (name
);
9079 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9080 stubs pointing to arrays, as we don't create symbols for array
9081 types, only for the typedef-to-array types). If that's the case,
9082 strip the typedef layer. */
9083 if (TYPE_CODE (type1
) == TYPE_CODE_TYPEDEF
)
9084 type1
= ada_check_typedef (type1
);
9090 /* A value representing the data at VALADDR/ADDRESS as described by
9091 type TYPE0, but with a standard (static-sized) type that correctly
9092 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9093 type, then return VAL0 [this feature is simply to avoid redundant
9094 creation of struct values]. */
9096 static struct value
*
9097 ada_to_fixed_value_create (struct type
*type0
, CORE_ADDR address
,
9100 struct type
*type
= ada_to_fixed_type (type0
, 0, address
, NULL
, 1);
9102 if (type
== type0
&& val0
!= NULL
)
9105 if (VALUE_LVAL (val0
) != lval_memory
)
9107 /* Our value does not live in memory; it could be a convenience
9108 variable, for instance. Create a not_lval value using val0's
9110 return value_from_contents (type
, value_contents (val0
));
9113 return value_from_contents_and_address (type
, 0, address
);
9116 /* A value representing VAL, but with a standard (static-sized) type
9117 that correctly describes it. Does not necessarily create a new
9121 ada_to_fixed_value (struct value
*val
)
9123 val
= unwrap_value (val
);
9124 val
= ada_to_fixed_value_create (value_type (val
), value_address (val
), val
);
9131 /* Table mapping attribute numbers to names.
9132 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9134 static const char *attribute_names
[] = {
9152 ada_attribute_name (enum exp_opcode n
)
9154 if (n
>= OP_ATR_FIRST
&& n
<= (int) OP_ATR_VAL
)
9155 return attribute_names
[n
- OP_ATR_FIRST
+ 1];
9157 return attribute_names
[0];
9160 /* Evaluate the 'POS attribute applied to ARG. */
9163 pos_atr (struct value
*arg
)
9165 struct value
*val
= coerce_ref (arg
);
9166 struct type
*type
= value_type (val
);
9169 if (!discrete_type_p (type
))
9170 error (_("'POS only defined on discrete types"));
9172 if (!discrete_position (type
, value_as_long (val
), &result
))
9173 error (_("enumeration value is invalid: can't find 'POS"));
9178 static struct value
*
9179 value_pos_atr (struct type
*type
, struct value
*arg
)
9181 return value_from_longest (type
, pos_atr (arg
));
9184 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9186 static struct value
*
9187 value_val_atr (struct type
*type
, struct value
*arg
)
9189 if (!discrete_type_p (type
))
9190 error (_("'VAL only defined on discrete types"));
9191 if (!integer_type_p (value_type (arg
)))
9192 error (_("'VAL requires integral argument"));
9194 if (TYPE_CODE (type
) == TYPE_CODE_ENUM
)
9196 long pos
= value_as_long (arg
);
9198 if (pos
< 0 || pos
>= TYPE_NFIELDS (type
))
9199 error (_("argument to 'VAL out of range"));
9200 return value_from_longest (type
, TYPE_FIELD_ENUMVAL (type
, pos
));
9203 return value_from_longest (type
, value_as_long (arg
));
9209 /* True if TYPE appears to be an Ada character type.
9210 [At the moment, this is true only for Character and Wide_Character;
9211 It is a heuristic test that could stand improvement]. */
9214 ada_is_character_type (struct type
*type
)
9218 /* If the type code says it's a character, then assume it really is,
9219 and don't check any further. */
9220 if (TYPE_CODE (type
) == TYPE_CODE_CHAR
)
9223 /* Otherwise, assume it's a character type iff it is a discrete type
9224 with a known character type name. */
9225 name
= ada_type_name (type
);
9226 return (name
!= NULL
9227 && (TYPE_CODE (type
) == TYPE_CODE_INT
9228 || TYPE_CODE (type
) == TYPE_CODE_RANGE
)
9229 && (strcmp (name
, "character") == 0
9230 || strcmp (name
, "wide_character") == 0
9231 || strcmp (name
, "wide_wide_character") == 0
9232 || strcmp (name
, "unsigned char") == 0));
9235 /* True if TYPE appears to be an Ada string type. */
9238 ada_is_string_type (struct type
*type
)
9240 type
= ada_check_typedef (type
);
9242 && TYPE_CODE (type
) != TYPE_CODE_PTR
9243 && (ada_is_simple_array_type (type
)
9244 || ada_is_array_descriptor_type (type
))
9245 && ada_array_arity (type
) == 1)
9247 struct type
*elttype
= ada_array_element_type (type
, 1);
9249 return ada_is_character_type (elttype
);
9255 /* The compiler sometimes provides a parallel XVS type for a given
9256 PAD type. Normally, it is safe to follow the PAD type directly,
9257 but older versions of the compiler have a bug that causes the offset
9258 of its "F" field to be wrong. Following that field in that case
9259 would lead to incorrect results, but this can be worked around
9260 by ignoring the PAD type and using the associated XVS type instead.
9262 Set to True if the debugger should trust the contents of PAD types.
9263 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9264 static bool trust_pad_over_xvs
= true;
9266 /* True if TYPE is a struct type introduced by the compiler to force the
9267 alignment of a value. Such types have a single field with a
9268 distinctive name. */
9271 ada_is_aligner_type (struct type
*type
)
9273 type
= ada_check_typedef (type
);
9275 if (!trust_pad_over_xvs
&& ada_find_parallel_type (type
, "___XVS") != NULL
)
9278 return (TYPE_CODE (type
) == TYPE_CODE_STRUCT
9279 && TYPE_NFIELDS (type
) == 1
9280 && strcmp (TYPE_FIELD_NAME (type
, 0), "F") == 0);
9283 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9284 the parallel type. */
9287 ada_get_base_type (struct type
*raw_type
)
9289 struct type
*real_type_namer
;
9290 struct type
*raw_real_type
;
9292 if (raw_type
== NULL
|| TYPE_CODE (raw_type
) != TYPE_CODE_STRUCT
)
9295 if (ada_is_aligner_type (raw_type
))
9296 /* The encoding specifies that we should always use the aligner type.
9297 So, even if this aligner type has an associated XVS type, we should
9300 According to the compiler gurus, an XVS type parallel to an aligner
9301 type may exist because of a stabs limitation. In stabs, aligner
9302 types are empty because the field has a variable-sized type, and
9303 thus cannot actually be used as an aligner type. As a result,
9304 we need the associated parallel XVS type to decode the type.
9305 Since the policy in the compiler is to not change the internal
9306 representation based on the debugging info format, we sometimes
9307 end up having a redundant XVS type parallel to the aligner type. */
9310 real_type_namer
= ada_find_parallel_type (raw_type
, "___XVS");
9311 if (real_type_namer
== NULL
9312 || TYPE_CODE (real_type_namer
) != TYPE_CODE_STRUCT
9313 || TYPE_NFIELDS (real_type_namer
) != 1)
9316 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer
, 0)) != TYPE_CODE_REF
)
9318 /* This is an older encoding form where the base type needs to be
9319 looked up by name. We prefer the newer encoding because it is
9321 raw_real_type
= ada_find_any_type (TYPE_FIELD_NAME (real_type_namer
, 0));
9322 if (raw_real_type
== NULL
)
9325 return raw_real_type
;
9328 /* The field in our XVS type is a reference to the base type. */
9329 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer
, 0));
9332 /* The type of value designated by TYPE, with all aligners removed. */
9335 ada_aligned_type (struct type
*type
)
9337 if (ada_is_aligner_type (type
))
9338 return ada_aligned_type (TYPE_FIELD_TYPE (type
, 0));
9340 return ada_get_base_type (type
);
9344 /* The address of the aligned value in an object at address VALADDR
9345 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9348 ada_aligned_value_addr (struct type
*type
, const gdb_byte
*valaddr
)
9350 if (ada_is_aligner_type (type
))
9351 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type
, 0),
9353 TYPE_FIELD_BITPOS (type
,
9354 0) / TARGET_CHAR_BIT
);
9361 /* The printed representation of an enumeration literal with encoded
9362 name NAME. The value is good to the next call of ada_enum_name. */
9364 ada_enum_name (const char *name
)
9366 static char *result
;
9367 static size_t result_len
= 0;
9370 /* First, unqualify the enumeration name:
9371 1. Search for the last '.' character. If we find one, then skip
9372 all the preceding characters, the unqualified name starts
9373 right after that dot.
9374 2. Otherwise, we may be debugging on a target where the compiler
9375 translates dots into "__". Search forward for double underscores,
9376 but stop searching when we hit an overloading suffix, which is
9377 of the form "__" followed by digits. */
9379 tmp
= strrchr (name
, '.');
9384 while ((tmp
= strstr (name
, "__")) != NULL
)
9386 if (isdigit (tmp
[2]))
9397 if (name
[1] == 'U' || name
[1] == 'W')
9399 if (sscanf (name
+ 2, "%x", &v
) != 1)
9402 else if (((name
[1] >= '0' && name
[1] <= '9')
9403 || (name
[1] >= 'a' && name
[1] <= 'z'))
9406 GROW_VECT (result
, result_len
, 4);
9407 xsnprintf (result
, result_len
, "'%c'", name
[1]);
9413 GROW_VECT (result
, result_len
, 16);
9414 if (isascii (v
) && isprint (v
))
9415 xsnprintf (result
, result_len
, "'%c'", v
);
9416 else if (name
[1] == 'U')
9417 xsnprintf (result
, result_len
, "[\"%02x\"]", v
);
9419 xsnprintf (result
, result_len
, "[\"%04x\"]", v
);
9425 tmp
= strstr (name
, "__");
9427 tmp
= strstr (name
, "$");
9430 GROW_VECT (result
, result_len
, tmp
- name
+ 1);
9431 strncpy (result
, name
, tmp
- name
);
9432 result
[tmp
- name
] = '\0';
9440 /* Evaluate the subexpression of EXP starting at *POS as for
9441 evaluate_type, updating *POS to point just past the evaluated
9444 static struct value
*
9445 evaluate_subexp_type (struct expression
*exp
, int *pos
)
9447 return evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
9450 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9453 static struct value
*
9454 unwrap_value (struct value
*val
)
9456 struct type
*type
= ada_check_typedef (value_type (val
));
9458 if (ada_is_aligner_type (type
))
9460 struct value
*v
= ada_value_struct_elt (val
, "F", 0);
9461 struct type
*val_type
= ada_check_typedef (value_type (v
));
9463 if (ada_type_name (val_type
) == NULL
)
9464 TYPE_NAME (val_type
) = ada_type_name (type
);
9466 return unwrap_value (v
);
9470 struct type
*raw_real_type
=
9471 ada_check_typedef (ada_get_base_type (type
));
9473 /* If there is no parallel XVS or XVE type, then the value is
9474 already unwrapped. Return it without further modification. */
9475 if ((type
== raw_real_type
)
9476 && ada_find_parallel_type (type
, "___XVE") == NULL
)
9480 coerce_unspec_val_to_type
9481 (val
, ada_to_fixed_type (raw_real_type
, 0,
9482 value_address (val
),
9487 static struct value
*
9488 cast_from_fixed (struct type
*type
, struct value
*arg
)
9490 struct value
*scale
= ada_scaling_factor (value_type (arg
));
9491 arg
= value_cast (value_type (scale
), arg
);
9493 arg
= value_binop (arg
, scale
, BINOP_MUL
);
9494 return value_cast (type
, arg
);
9497 static struct value
*
9498 cast_to_fixed (struct type
*type
, struct value
*arg
)
9500 if (type
== value_type (arg
))
9503 struct value
*scale
= ada_scaling_factor (type
);
9504 if (ada_is_fixed_point_type (value_type (arg
)))
9505 arg
= cast_from_fixed (value_type (scale
), arg
);
9507 arg
= value_cast (value_type (scale
), arg
);
9509 arg
= value_binop (arg
, scale
, BINOP_DIV
);
9510 return value_cast (type
, arg
);
9513 /* Given two array types T1 and T2, return nonzero iff both arrays
9514 contain the same number of elements. */
9517 ada_same_array_size_p (struct type
*t1
, struct type
*t2
)
9519 LONGEST lo1
, hi1
, lo2
, hi2
;
9521 /* Get the array bounds in order to verify that the size of
9522 the two arrays match. */
9523 if (!get_array_bounds (t1
, &lo1
, &hi1
)
9524 || !get_array_bounds (t2
, &lo2
, &hi2
))
9525 error (_("unable to determine array bounds"));
9527 /* To make things easier for size comparison, normalize a bit
9528 the case of empty arrays by making sure that the difference
9529 between upper bound and lower bound is always -1. */
9535 return (hi1
- lo1
== hi2
- lo2
);
9538 /* Assuming that VAL is an array of integrals, and TYPE represents
9539 an array with the same number of elements, but with wider integral
9540 elements, return an array "casted" to TYPE. In practice, this
9541 means that the returned array is built by casting each element
9542 of the original array into TYPE's (wider) element type. */
9544 static struct value
*
9545 ada_promote_array_of_integrals (struct type
*type
, struct value
*val
)
9547 struct type
*elt_type
= TYPE_TARGET_TYPE (type
);
9552 /* Verify that both val and type are arrays of scalars, and
9553 that the size of val's elements is smaller than the size
9554 of type's element. */
9555 gdb_assert (TYPE_CODE (type
) == TYPE_CODE_ARRAY
);
9556 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type
)));
9557 gdb_assert (TYPE_CODE (value_type (val
)) == TYPE_CODE_ARRAY
);
9558 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val
))));
9559 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type
))
9560 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val
))));
9562 if (!get_array_bounds (type
, &lo
, &hi
))
9563 error (_("unable to determine array bounds"));
9565 res
= allocate_value (type
);
9567 /* Promote each array element. */
9568 for (i
= 0; i
< hi
- lo
+ 1; i
++)
9570 struct value
*elt
= value_cast (elt_type
, value_subscript (val
, lo
+ i
));
9572 memcpy (value_contents_writeable (res
) + (i
* TYPE_LENGTH (elt_type
)),
9573 value_contents_all (elt
), TYPE_LENGTH (elt_type
));
9579 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9580 return the converted value. */
9582 static struct value
*
9583 coerce_for_assign (struct type
*type
, struct value
*val
)
9585 struct type
*type2
= value_type (val
);
9590 type2
= ada_check_typedef (type2
);
9591 type
= ada_check_typedef (type
);
9593 if (TYPE_CODE (type2
) == TYPE_CODE_PTR
9594 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
9596 val
= ada_value_ind (val
);
9597 type2
= value_type (val
);
9600 if (TYPE_CODE (type2
) == TYPE_CODE_ARRAY
9601 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
9603 if (!ada_same_array_size_p (type
, type2
))
9604 error (_("cannot assign arrays of different length"));
9606 if (is_integral_type (TYPE_TARGET_TYPE (type
))
9607 && is_integral_type (TYPE_TARGET_TYPE (type2
))
9608 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
9609 < TYPE_LENGTH (TYPE_TARGET_TYPE (type
)))
9611 /* Allow implicit promotion of the array elements to
9613 return ada_promote_array_of_integrals (type
, val
);
9616 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
9617 != TYPE_LENGTH (TYPE_TARGET_TYPE (type
)))
9618 error (_("Incompatible types in assignment"));
9619 deprecated_set_value_type (val
, type
);
9624 static struct value
*
9625 ada_value_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
9628 struct type
*type1
, *type2
;
9631 arg1
= coerce_ref (arg1
);
9632 arg2
= coerce_ref (arg2
);
9633 type1
= get_base_type (ada_check_typedef (value_type (arg1
)));
9634 type2
= get_base_type (ada_check_typedef (value_type (arg2
)));
9636 if (TYPE_CODE (type1
) != TYPE_CODE_INT
9637 || TYPE_CODE (type2
) != TYPE_CODE_INT
)
9638 return value_binop (arg1
, arg2
, op
);
9647 return value_binop (arg1
, arg2
, op
);
9650 v2
= value_as_long (arg2
);
9652 error (_("second operand of %s must not be zero."), op_string (op
));
9654 if (TYPE_UNSIGNED (type1
) || op
== BINOP_MOD
)
9655 return value_binop (arg1
, arg2
, op
);
9657 v1
= value_as_long (arg1
);
9662 if (!TRUNCATION_TOWARDS_ZERO
&& v1
* (v1
% v2
) < 0)
9663 v
+= v
> 0 ? -1 : 1;
9671 /* Should not reach this point. */
9675 val
= allocate_value (type1
);
9676 store_unsigned_integer (value_contents_raw (val
),
9677 TYPE_LENGTH (value_type (val
)),
9678 type_byte_order (type1
), v
);
9683 ada_value_equal (struct value
*arg1
, struct value
*arg2
)
9685 if (ada_is_direct_array_type (value_type (arg1
))
9686 || ada_is_direct_array_type (value_type (arg2
)))
9688 struct type
*arg1_type
, *arg2_type
;
9690 /* Automatically dereference any array reference before
9691 we attempt to perform the comparison. */
9692 arg1
= ada_coerce_ref (arg1
);
9693 arg2
= ada_coerce_ref (arg2
);
9695 arg1
= ada_coerce_to_simple_array (arg1
);
9696 arg2
= ada_coerce_to_simple_array (arg2
);
9698 arg1_type
= ada_check_typedef (value_type (arg1
));
9699 arg2_type
= ada_check_typedef (value_type (arg2
));
9701 if (TYPE_CODE (arg1_type
) != TYPE_CODE_ARRAY
9702 || TYPE_CODE (arg2_type
) != TYPE_CODE_ARRAY
)
9703 error (_("Attempt to compare array with non-array"));
9704 /* FIXME: The following works only for types whose
9705 representations use all bits (no padding or undefined bits)
9706 and do not have user-defined equality. */
9707 return (TYPE_LENGTH (arg1_type
) == TYPE_LENGTH (arg2_type
)
9708 && memcmp (value_contents (arg1
), value_contents (arg2
),
9709 TYPE_LENGTH (arg1_type
)) == 0);
9711 return value_equal (arg1
, arg2
);
9714 /* Total number of component associations in the aggregate starting at
9715 index PC in EXP. Assumes that index PC is the start of an
9719 num_component_specs (struct expression
*exp
, int pc
)
9723 m
= exp
->elts
[pc
+ 1].longconst
;
9726 for (i
= 0; i
< m
; i
+= 1)
9728 switch (exp
->elts
[pc
].opcode
)
9734 n
+= exp
->elts
[pc
+ 1].longconst
;
9737 ada_evaluate_subexp (NULL
, exp
, &pc
, EVAL_SKIP
);
9742 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9743 component of LHS (a simple array or a record), updating *POS past
9744 the expression, assuming that LHS is contained in CONTAINER. Does
9745 not modify the inferior's memory, nor does it modify LHS (unless
9746 LHS == CONTAINER). */
9749 assign_component (struct value
*container
, struct value
*lhs
, LONGEST index
,
9750 struct expression
*exp
, int *pos
)
9752 struct value
*mark
= value_mark ();
9754 struct type
*lhs_type
= check_typedef (value_type (lhs
));
9756 if (TYPE_CODE (lhs_type
) == TYPE_CODE_ARRAY
)
9758 struct type
*index_type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9759 struct value
*index_val
= value_from_longest (index_type
, index
);
9761 elt
= unwrap_value (ada_value_subscript (lhs
, 1, &index_val
));
9765 elt
= ada_index_struct_field (index
, lhs
, 0, value_type (lhs
));
9766 elt
= ada_to_fixed_value (elt
);
9769 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
9770 assign_aggregate (container
, elt
, exp
, pos
, EVAL_NORMAL
);
9772 value_assign_to_component (container
, elt
,
9773 ada_evaluate_subexp (NULL
, exp
, pos
,
9776 value_free_to_mark (mark
);
9779 /* Assuming that LHS represents an lvalue having a record or array
9780 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9781 of that aggregate's value to LHS, advancing *POS past the
9782 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9783 lvalue containing LHS (possibly LHS itself). Does not modify
9784 the inferior's memory, nor does it modify the contents of
9785 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9787 static struct value
*
9788 assign_aggregate (struct value
*container
,
9789 struct value
*lhs
, struct expression
*exp
,
9790 int *pos
, enum noside noside
)
9792 struct type
*lhs_type
;
9793 int n
= exp
->elts
[*pos
+1].longconst
;
9794 LONGEST low_index
, high_index
;
9797 int max_indices
, num_indices
;
9801 if (noside
!= EVAL_NORMAL
)
9803 for (i
= 0; i
< n
; i
+= 1)
9804 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
9808 container
= ada_coerce_ref (container
);
9809 if (ada_is_direct_array_type (value_type (container
)))
9810 container
= ada_coerce_to_simple_array (container
);
9811 lhs
= ada_coerce_ref (lhs
);
9812 if (!deprecated_value_modifiable (lhs
))
9813 error (_("Left operand of assignment is not a modifiable lvalue."));
9815 lhs_type
= check_typedef (value_type (lhs
));
9816 if (ada_is_direct_array_type (lhs_type
))
9818 lhs
= ada_coerce_to_simple_array (lhs
);
9819 lhs_type
= check_typedef (value_type (lhs
));
9820 low_index
= TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type
);
9821 high_index
= TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type
);
9823 else if (TYPE_CODE (lhs_type
) == TYPE_CODE_STRUCT
)
9826 high_index
= num_visible_fields (lhs_type
) - 1;
9829 error (_("Left-hand side must be array or record."));
9831 num_specs
= num_component_specs (exp
, *pos
- 3);
9832 max_indices
= 4 * num_specs
+ 4;
9833 indices
= XALLOCAVEC (LONGEST
, max_indices
);
9834 indices
[0] = indices
[1] = low_index
- 1;
9835 indices
[2] = indices
[3] = high_index
+ 1;
9838 for (i
= 0; i
< n
; i
+= 1)
9840 switch (exp
->elts
[*pos
].opcode
)
9843 aggregate_assign_from_choices (container
, lhs
, exp
, pos
, indices
,
9844 &num_indices
, max_indices
,
9845 low_index
, high_index
);
9848 aggregate_assign_positional (container
, lhs
, exp
, pos
, indices
,
9849 &num_indices
, max_indices
,
9850 low_index
, high_index
);
9854 error (_("Misplaced 'others' clause"));
9855 aggregate_assign_others (container
, lhs
, exp
, pos
, indices
,
9856 num_indices
, low_index
, high_index
);
9859 error (_("Internal error: bad aggregate clause"));
9866 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9867 construct at *POS, updating *POS past the construct, given that
9868 the positions are relative to lower bound LOW, where HIGH is the
9869 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9870 updating *NUM_INDICES as needed. CONTAINER is as for
9871 assign_aggregate. */
9873 aggregate_assign_positional (struct value
*container
,
9874 struct value
*lhs
, struct expression
*exp
,
9875 int *pos
, LONGEST
*indices
, int *num_indices
,
9876 int max_indices
, LONGEST low
, LONGEST high
)
9878 LONGEST ind
= longest_to_int (exp
->elts
[*pos
+ 1].longconst
) + low
;
9880 if (ind
- 1 == high
)
9881 warning (_("Extra components in aggregate ignored."));
9884 add_component_interval (ind
, ind
, indices
, num_indices
, max_indices
);
9886 assign_component (container
, lhs
, ind
, exp
, pos
);
9889 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9892 /* Assign into the components of LHS indexed by the OP_CHOICES
9893 construct at *POS, updating *POS past the construct, given that
9894 the allowable indices are LOW..HIGH. Record the indices assigned
9895 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9896 needed. CONTAINER is as for assign_aggregate. */
9898 aggregate_assign_from_choices (struct value
*container
,
9899 struct value
*lhs
, struct expression
*exp
,
9900 int *pos
, LONGEST
*indices
, int *num_indices
,
9901 int max_indices
, LONGEST low
, LONGEST high
)
9904 int n_choices
= longest_to_int (exp
->elts
[*pos
+1].longconst
);
9905 int choice_pos
, expr_pc
;
9906 int is_array
= ada_is_direct_array_type (value_type (lhs
));
9908 choice_pos
= *pos
+= 3;
9910 for (j
= 0; j
< n_choices
; j
+= 1)
9911 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9913 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9915 for (j
= 0; j
< n_choices
; j
+= 1)
9917 LONGEST lower
, upper
;
9918 enum exp_opcode op
= exp
->elts
[choice_pos
].opcode
;
9920 if (op
== OP_DISCRETE_RANGE
)
9923 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
9925 upper
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
9930 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, &choice_pos
,
9942 name
= &exp
->elts
[choice_pos
+ 2].string
;
9945 name
= exp
->elts
[choice_pos
+ 2].symbol
->natural_name ();
9948 error (_("Invalid record component association."));
9950 ada_evaluate_subexp (NULL
, exp
, &choice_pos
, EVAL_SKIP
);
9952 if (! find_struct_field (name
, value_type (lhs
), 0,
9953 NULL
, NULL
, NULL
, NULL
, &ind
))
9954 error (_("Unknown component name: %s."), name
);
9955 lower
= upper
= ind
;
9958 if (lower
<= upper
&& (lower
< low
|| upper
> high
))
9959 error (_("Index in component association out of bounds."));
9961 add_component_interval (lower
, upper
, indices
, num_indices
,
9963 while (lower
<= upper
)
9968 assign_component (container
, lhs
, lower
, exp
, &pos1
);
9974 /* Assign the value of the expression in the OP_OTHERS construct in
9975 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9976 have not been previously assigned. The index intervals already assigned
9977 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9978 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9980 aggregate_assign_others (struct value
*container
,
9981 struct value
*lhs
, struct expression
*exp
,
9982 int *pos
, LONGEST
*indices
, int num_indices
,
9983 LONGEST low
, LONGEST high
)
9986 int expr_pc
= *pos
+ 1;
9988 for (i
= 0; i
< num_indices
- 2; i
+= 2)
9992 for (ind
= indices
[i
+ 1] + 1; ind
< indices
[i
+ 2]; ind
+= 1)
9997 assign_component (container
, lhs
, ind
, exp
, &localpos
);
10000 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
10003 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10004 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10005 modifying *SIZE as needed. It is an error if *SIZE exceeds
10006 MAX_SIZE. The resulting intervals do not overlap. */
10008 add_component_interval (LONGEST low
, LONGEST high
,
10009 LONGEST
* indices
, int *size
, int max_size
)
10013 for (i
= 0; i
< *size
; i
+= 2) {
10014 if (high
>= indices
[i
] && low
<= indices
[i
+ 1])
10018 for (kh
= i
+ 2; kh
< *size
; kh
+= 2)
10019 if (high
< indices
[kh
])
10021 if (low
< indices
[i
])
10023 indices
[i
+ 1] = indices
[kh
- 1];
10024 if (high
> indices
[i
+ 1])
10025 indices
[i
+ 1] = high
;
10026 memcpy (indices
+ i
+ 2, indices
+ kh
, *size
- kh
);
10027 *size
-= kh
- i
- 2;
10030 else if (high
< indices
[i
])
10034 if (*size
== max_size
)
10035 error (_("Internal error: miscounted aggregate components."));
10037 for (j
= *size
-1; j
>= i
+2; j
-= 1)
10038 indices
[j
] = indices
[j
- 2];
10040 indices
[i
+ 1] = high
;
10043 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10046 static struct value
*
10047 ada_value_cast (struct type
*type
, struct value
*arg2
)
10049 if (type
== ada_check_typedef (value_type (arg2
)))
10052 if (ada_is_fixed_point_type (type
))
10053 return cast_to_fixed (type
, arg2
);
10055 if (ada_is_fixed_point_type (value_type (arg2
)))
10056 return cast_from_fixed (type
, arg2
);
10058 return value_cast (type
, arg2
);
10061 /* Evaluating Ada expressions, and printing their result.
10062 ------------------------------------------------------
10067 We usually evaluate an Ada expression in order to print its value.
10068 We also evaluate an expression in order to print its type, which
10069 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10070 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10071 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10072 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10075 Evaluating expressions is a little more complicated for Ada entities
10076 than it is for entities in languages such as C. The main reason for
10077 this is that Ada provides types whose definition might be dynamic.
10078 One example of such types is variant records. Or another example
10079 would be an array whose bounds can only be known at run time.
10081 The following description is a general guide as to what should be
10082 done (and what should NOT be done) in order to evaluate an expression
10083 involving such types, and when. This does not cover how the semantic
10084 information is encoded by GNAT as this is covered separatly. For the
10085 document used as the reference for the GNAT encoding, see exp_dbug.ads
10086 in the GNAT sources.
10088 Ideally, we should embed each part of this description next to its
10089 associated code. Unfortunately, the amount of code is so vast right
10090 now that it's hard to see whether the code handling a particular
10091 situation might be duplicated or not. One day, when the code is
10092 cleaned up, this guide might become redundant with the comments
10093 inserted in the code, and we might want to remove it.
10095 2. ``Fixing'' an Entity, the Simple Case:
10096 -----------------------------------------
10098 When evaluating Ada expressions, the tricky issue is that they may
10099 reference entities whose type contents and size are not statically
10100 known. Consider for instance a variant record:
10102 type Rec (Empty : Boolean := True) is record
10105 when False => Value : Integer;
10108 Yes : Rec := (Empty => False, Value => 1);
10109 No : Rec := (empty => True);
10111 The size and contents of that record depends on the value of the
10112 descriminant (Rec.Empty). At this point, neither the debugging
10113 information nor the associated type structure in GDB are able to
10114 express such dynamic types. So what the debugger does is to create
10115 "fixed" versions of the type that applies to the specific object.
10116 We also informally refer to this operation as "fixing" an object,
10117 which means creating its associated fixed type.
10119 Example: when printing the value of variable "Yes" above, its fixed
10120 type would look like this:
10127 On the other hand, if we printed the value of "No", its fixed type
10134 Things become a little more complicated when trying to fix an entity
10135 with a dynamic type that directly contains another dynamic type,
10136 such as an array of variant records, for instance. There are
10137 two possible cases: Arrays, and records.
10139 3. ``Fixing'' Arrays:
10140 ---------------------
10142 The type structure in GDB describes an array in terms of its bounds,
10143 and the type of its elements. By design, all elements in the array
10144 have the same type and we cannot represent an array of variant elements
10145 using the current type structure in GDB. When fixing an array,
10146 we cannot fix the array element, as we would potentially need one
10147 fixed type per element of the array. As a result, the best we can do
10148 when fixing an array is to produce an array whose bounds and size
10149 are correct (allowing us to read it from memory), but without having
10150 touched its element type. Fixing each element will be done later,
10151 when (if) necessary.
10153 Arrays are a little simpler to handle than records, because the same
10154 amount of memory is allocated for each element of the array, even if
10155 the amount of space actually used by each element differs from element
10156 to element. Consider for instance the following array of type Rec:
10158 type Rec_Array is array (1 .. 2) of Rec;
10160 The actual amount of memory occupied by each element might be different
10161 from element to element, depending on the value of their discriminant.
10162 But the amount of space reserved for each element in the array remains
10163 fixed regardless. So we simply need to compute that size using
10164 the debugging information available, from which we can then determine
10165 the array size (we multiply the number of elements of the array by
10166 the size of each element).
10168 The simplest case is when we have an array of a constrained element
10169 type. For instance, consider the following type declarations:
10171 type Bounded_String (Max_Size : Integer) is
10173 Buffer : String (1 .. Max_Size);
10175 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10177 In this case, the compiler describes the array as an array of
10178 variable-size elements (identified by its XVS suffix) for which
10179 the size can be read in the parallel XVZ variable.
10181 In the case of an array of an unconstrained element type, the compiler
10182 wraps the array element inside a private PAD type. This type should not
10183 be shown to the user, and must be "unwrap"'ed before printing. Note
10184 that we also use the adjective "aligner" in our code to designate
10185 these wrapper types.
10187 In some cases, the size allocated for each element is statically
10188 known. In that case, the PAD type already has the correct size,
10189 and the array element should remain unfixed.
10191 But there are cases when this size is not statically known.
10192 For instance, assuming that "Five" is an integer variable:
10194 type Dynamic is array (1 .. Five) of Integer;
10195 type Wrapper (Has_Length : Boolean := False) is record
10198 when True => Length : Integer;
10199 when False => null;
10202 type Wrapper_Array is array (1 .. 2) of Wrapper;
10204 Hello : Wrapper_Array := (others => (Has_Length => True,
10205 Data => (others => 17),
10209 The debugging info would describe variable Hello as being an
10210 array of a PAD type. The size of that PAD type is not statically
10211 known, but can be determined using a parallel XVZ variable.
10212 In that case, a copy of the PAD type with the correct size should
10213 be used for the fixed array.
10215 3. ``Fixing'' record type objects:
10216 ----------------------------------
10218 Things are slightly different from arrays in the case of dynamic
10219 record types. In this case, in order to compute the associated
10220 fixed type, we need to determine the size and offset of each of
10221 its components. This, in turn, requires us to compute the fixed
10222 type of each of these components.
10224 Consider for instance the example:
10226 type Bounded_String (Max_Size : Natural) is record
10227 Str : String (1 .. Max_Size);
10230 My_String : Bounded_String (Max_Size => 10);
10232 In that case, the position of field "Length" depends on the size
10233 of field Str, which itself depends on the value of the Max_Size
10234 discriminant. In order to fix the type of variable My_String,
10235 we need to fix the type of field Str. Therefore, fixing a variant
10236 record requires us to fix each of its components.
10238 However, if a component does not have a dynamic size, the component
10239 should not be fixed. In particular, fields that use a PAD type
10240 should not fixed. Here is an example where this might happen
10241 (assuming type Rec above):
10243 type Container (Big : Boolean) is record
10247 when True => Another : Integer;
10248 when False => null;
10251 My_Container : Container := (Big => False,
10252 First => (Empty => True),
10255 In that example, the compiler creates a PAD type for component First,
10256 whose size is constant, and then positions the component After just
10257 right after it. The offset of component After is therefore constant
10260 The debugger computes the position of each field based on an algorithm
10261 that uses, among other things, the actual position and size of the field
10262 preceding it. Let's now imagine that the user is trying to print
10263 the value of My_Container. If the type fixing was recursive, we would
10264 end up computing the offset of field After based on the size of the
10265 fixed version of field First. And since in our example First has
10266 only one actual field, the size of the fixed type is actually smaller
10267 than the amount of space allocated to that field, and thus we would
10268 compute the wrong offset of field After.
10270 To make things more complicated, we need to watch out for dynamic
10271 components of variant records (identified by the ___XVL suffix in
10272 the component name). Even if the target type is a PAD type, the size
10273 of that type might not be statically known. So the PAD type needs
10274 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10275 we might end up with the wrong size for our component. This can be
10276 observed with the following type declarations:
10278 type Octal is new Integer range 0 .. 7;
10279 type Octal_Array is array (Positive range <>) of Octal;
10280 pragma Pack (Octal_Array);
10282 type Octal_Buffer (Size : Positive) is record
10283 Buffer : Octal_Array (1 .. Size);
10287 In that case, Buffer is a PAD type whose size is unset and needs
10288 to be computed by fixing the unwrapped type.
10290 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10291 ----------------------------------------------------------
10293 Lastly, when should the sub-elements of an entity that remained unfixed
10294 thus far, be actually fixed?
10296 The answer is: Only when referencing that element. For instance
10297 when selecting one component of a record, this specific component
10298 should be fixed at that point in time. Or when printing the value
10299 of a record, each component should be fixed before its value gets
10300 printed. Similarly for arrays, the element of the array should be
10301 fixed when printing each element of the array, or when extracting
10302 one element out of that array. On the other hand, fixing should
10303 not be performed on the elements when taking a slice of an array!
10305 Note that one of the side effects of miscomputing the offset and
10306 size of each field is that we end up also miscomputing the size
10307 of the containing type. This can have adverse results when computing
10308 the value of an entity. GDB fetches the value of an entity based
10309 on the size of its type, and thus a wrong size causes GDB to fetch
10310 the wrong amount of memory. In the case where the computed size is
10311 too small, GDB fetches too little data to print the value of our
10312 entity. Results in this case are unpredictable, as we usually read
10313 past the buffer containing the data =:-o. */
10315 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10316 for that subexpression cast to TO_TYPE. Advance *POS over the
10320 ada_evaluate_subexp_for_cast (expression
*exp
, int *pos
,
10321 enum noside noside
, struct type
*to_type
)
10325 if (exp
->elts
[pc
].opcode
== OP_VAR_MSYM_VALUE
10326 || exp
->elts
[pc
].opcode
== OP_VAR_VALUE
)
10331 if (exp
->elts
[pc
].opcode
== OP_VAR_MSYM_VALUE
)
10333 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10334 return value_zero (to_type
, not_lval
);
10336 val
= evaluate_var_msym_value (noside
,
10337 exp
->elts
[pc
+ 1].objfile
,
10338 exp
->elts
[pc
+ 2].msymbol
);
10341 val
= evaluate_var_value (noside
,
10342 exp
->elts
[pc
+ 1].block
,
10343 exp
->elts
[pc
+ 2].symbol
);
10345 if (noside
== EVAL_SKIP
)
10346 return eval_skip_value (exp
);
10348 val
= ada_value_cast (to_type
, val
);
10350 /* Follow the Ada language semantics that do not allow taking
10351 an address of the result of a cast (view conversion in Ada). */
10352 if (VALUE_LVAL (val
) == lval_memory
)
10354 if (value_lazy (val
))
10355 value_fetch_lazy (val
);
10356 VALUE_LVAL (val
) = not_lval
;
10361 value
*val
= evaluate_subexp (to_type
, exp
, pos
, noside
);
10362 if (noside
== EVAL_SKIP
)
10363 return eval_skip_value (exp
);
10364 return ada_value_cast (to_type
, val
);
10367 /* Implement the evaluate_exp routine in the exp_descriptor structure
10368 for the Ada language. */
10370 static struct value
*
10371 ada_evaluate_subexp (struct type
*expect_type
, struct expression
*exp
,
10372 int *pos
, enum noside noside
)
10374 enum exp_opcode op
;
10378 struct value
*arg1
= NULL
, *arg2
= NULL
, *arg3
;
10381 struct value
**argvec
;
10385 op
= exp
->elts
[pc
].opcode
;
10391 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10393 if (noside
== EVAL_NORMAL
)
10394 arg1
= unwrap_value (arg1
);
10396 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10397 then we need to perform the conversion manually, because
10398 evaluate_subexp_standard doesn't do it. This conversion is
10399 necessary in Ada because the different kinds of float/fixed
10400 types in Ada have different representations.
10402 Similarly, we need to perform the conversion from OP_LONG
10404 if ((op
== OP_FLOAT
|| op
== OP_LONG
) && expect_type
!= NULL
)
10405 arg1
= ada_value_cast (expect_type
, arg1
);
10411 struct value
*result
;
10414 result
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10415 /* The result type will have code OP_STRING, bashed there from
10416 OP_ARRAY. Bash it back. */
10417 if (TYPE_CODE (value_type (result
)) == TYPE_CODE_STRING
)
10418 TYPE_CODE (value_type (result
)) = TYPE_CODE_ARRAY
;
10424 type
= exp
->elts
[pc
+ 1].type
;
10425 return ada_evaluate_subexp_for_cast (exp
, pos
, noside
, type
);
10429 type
= exp
->elts
[pc
+ 1].type
;
10430 return ada_evaluate_subexp (type
, exp
, pos
, noside
);
10433 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10434 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
10436 arg1
= assign_aggregate (arg1
, arg1
, exp
, pos
, noside
);
10437 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10439 return ada_value_assign (arg1
, arg1
);
10441 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10442 except if the lhs of our assignment is a convenience variable.
10443 In the case of assigning to a convenience variable, the lhs
10444 should be exactly the result of the evaluation of the rhs. */
10445 type
= value_type (arg1
);
10446 if (VALUE_LVAL (arg1
) == lval_internalvar
)
10448 arg2
= evaluate_subexp (type
, exp
, pos
, noside
);
10449 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10451 if (VALUE_LVAL (arg1
) == lval_internalvar
)
10455 else if (ada_is_fixed_point_type (value_type (arg1
)))
10456 arg2
= cast_to_fixed (value_type (arg1
), arg2
);
10457 else if (ada_is_fixed_point_type (value_type (arg2
)))
10459 (_("Fixed-point values must be assigned to fixed-point variables"));
10461 arg2
= coerce_for_assign (value_type (arg1
), arg2
);
10462 return ada_value_assign (arg1
, arg2
);
10465 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10466 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10467 if (noside
== EVAL_SKIP
)
10469 if (TYPE_CODE (value_type (arg1
)) == TYPE_CODE_PTR
)
10470 return (value_from_longest
10471 (value_type (arg1
),
10472 value_as_long (arg1
) + value_as_long (arg2
)));
10473 if (TYPE_CODE (value_type (arg2
)) == TYPE_CODE_PTR
)
10474 return (value_from_longest
10475 (value_type (arg2
),
10476 value_as_long (arg1
) + value_as_long (arg2
)));
10477 if ((ada_is_fixed_point_type (value_type (arg1
))
10478 || ada_is_fixed_point_type (value_type (arg2
)))
10479 && value_type (arg1
) != value_type (arg2
))
10480 error (_("Operands of fixed-point addition must have the same type"));
10481 /* Do the addition, and cast the result to the type of the first
10482 argument. We cannot cast the result to a reference type, so if
10483 ARG1 is a reference type, find its underlying type. */
10484 type
= value_type (arg1
);
10485 while (TYPE_CODE (type
) == TYPE_CODE_REF
)
10486 type
= TYPE_TARGET_TYPE (type
);
10487 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10488 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_ADD
));
10491 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10492 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10493 if (noside
== EVAL_SKIP
)
10495 if (TYPE_CODE (value_type (arg1
)) == TYPE_CODE_PTR
)
10496 return (value_from_longest
10497 (value_type (arg1
),
10498 value_as_long (arg1
) - value_as_long (arg2
)));
10499 if (TYPE_CODE (value_type (arg2
)) == TYPE_CODE_PTR
)
10500 return (value_from_longest
10501 (value_type (arg2
),
10502 value_as_long (arg1
) - value_as_long (arg2
)));
10503 if ((ada_is_fixed_point_type (value_type (arg1
))
10504 || ada_is_fixed_point_type (value_type (arg2
)))
10505 && value_type (arg1
) != value_type (arg2
))
10506 error (_("Operands of fixed-point subtraction "
10507 "must have the same type"));
10508 /* Do the substraction, and cast the result to the type of the first
10509 argument. We cannot cast the result to a reference type, so if
10510 ARG1 is a reference type, find its underlying type. */
10511 type
= value_type (arg1
);
10512 while (TYPE_CODE (type
) == TYPE_CODE_REF
)
10513 type
= TYPE_TARGET_TYPE (type
);
10514 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10515 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_SUB
));
10521 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10522 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10523 if (noside
== EVAL_SKIP
)
10525 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10527 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10528 return value_zero (value_type (arg1
), not_lval
);
10532 type
= builtin_type (exp
->gdbarch
)->builtin_double
;
10533 if (ada_is_fixed_point_type (value_type (arg1
)))
10534 arg1
= cast_from_fixed (type
, arg1
);
10535 if (ada_is_fixed_point_type (value_type (arg2
)))
10536 arg2
= cast_from_fixed (type
, arg2
);
10537 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10538 return ada_value_binop (arg1
, arg2
, op
);
10542 case BINOP_NOTEQUAL
:
10543 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10544 arg2
= evaluate_subexp (value_type (arg1
), exp
, pos
, noside
);
10545 if (noside
== EVAL_SKIP
)
10547 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10551 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10552 tem
= ada_value_equal (arg1
, arg2
);
10554 if (op
== BINOP_NOTEQUAL
)
10556 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10557 return value_from_longest (type
, (LONGEST
) tem
);
10560 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10561 if (noside
== EVAL_SKIP
)
10563 else if (ada_is_fixed_point_type (value_type (arg1
)))
10564 return value_cast (value_type (arg1
), value_neg (arg1
));
10567 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
10568 return value_neg (arg1
);
10571 case BINOP_LOGICAL_AND
:
10572 case BINOP_LOGICAL_OR
:
10573 case UNOP_LOGICAL_NOT
:
10578 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10579 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10580 return value_cast (type
, val
);
10583 case BINOP_BITWISE_AND
:
10584 case BINOP_BITWISE_IOR
:
10585 case BINOP_BITWISE_XOR
:
10589 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
10591 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10593 return value_cast (value_type (arg1
), val
);
10599 if (noside
== EVAL_SKIP
)
10605 if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
10606 /* Only encountered when an unresolved symbol occurs in a
10607 context other than a function call, in which case, it is
10609 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10610 exp
->elts
[pc
+ 2].symbol
->print_name ());
10612 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10614 type
= static_unwrap_type (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
));
10615 /* Check to see if this is a tagged type. We also need to handle
10616 the case where the type is a reference to a tagged type, but
10617 we have to be careful to exclude pointers to tagged types.
10618 The latter should be shown as usual (as a pointer), whereas
10619 a reference should mostly be transparent to the user. */
10620 if (ada_is_tagged_type (type
, 0)
10621 || (TYPE_CODE (type
) == TYPE_CODE_REF
10622 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0)))
10624 /* Tagged types are a little special in the fact that the real
10625 type is dynamic and can only be determined by inspecting the
10626 object's tag. This means that we need to get the object's
10627 value first (EVAL_NORMAL) and then extract the actual object
10630 Note that we cannot skip the final step where we extract
10631 the object type from its tag, because the EVAL_NORMAL phase
10632 results in dynamic components being resolved into fixed ones.
10633 This can cause problems when trying to print the type
10634 description of tagged types whose parent has a dynamic size:
10635 We use the type name of the "_parent" component in order
10636 to print the name of the ancestor type in the type description.
10637 If that component had a dynamic size, the resolution into
10638 a fixed type would result in the loss of that type name,
10639 thus preventing us from printing the name of the ancestor
10640 type in the type description. */
10641 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_NORMAL
);
10643 if (TYPE_CODE (type
) != TYPE_CODE_REF
)
10645 struct type
*actual_type
;
10647 actual_type
= type_from_tag (ada_value_tag (arg1
));
10648 if (actual_type
== NULL
)
10649 /* If, for some reason, we were unable to determine
10650 the actual type from the tag, then use the static
10651 approximation that we just computed as a fallback.
10652 This can happen if the debugging information is
10653 incomplete, for instance. */
10654 actual_type
= type
;
10655 return value_zero (actual_type
, not_lval
);
10659 /* In the case of a ref, ada_coerce_ref takes care
10660 of determining the actual type. But the evaluation
10661 should return a ref as it should be valid to ask
10662 for its address; so rebuild a ref after coerce. */
10663 arg1
= ada_coerce_ref (arg1
);
10664 return value_ref (arg1
, TYPE_CODE_REF
);
10668 /* Records and unions for which GNAT encodings have been
10669 generated need to be statically fixed as well.
10670 Otherwise, non-static fixing produces a type where
10671 all dynamic properties are removed, which prevents "ptype"
10672 from being able to completely describe the type.
10673 For instance, a case statement in a variant record would be
10674 replaced by the relevant components based on the actual
10675 value of the discriminants. */
10676 if ((TYPE_CODE (type
) == TYPE_CODE_STRUCT
10677 && dynamic_template_type (type
) != NULL
)
10678 || (TYPE_CODE (type
) == TYPE_CODE_UNION
10679 && ada_find_parallel_type (type
, "___XVU") != NULL
))
10682 return value_zero (to_static_fixed_type (type
), not_lval
);
10686 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10687 return ada_to_fixed_value (arg1
);
10692 /* Allocate arg vector, including space for the function to be
10693 called in argvec[0] and a terminating NULL. */
10694 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
10695 argvec
= XALLOCAVEC (struct value
*, nargs
+ 2);
10697 if (exp
->elts
[*pos
].opcode
== OP_VAR_VALUE
10698 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
10699 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10700 exp
->elts
[pc
+ 5].symbol
->print_name ());
10703 for (tem
= 0; tem
<= nargs
; tem
+= 1)
10704 argvec
[tem
] = evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10707 if (noside
== EVAL_SKIP
)
10711 if (ada_is_constrained_packed_array_type
10712 (desc_base_type (value_type (argvec
[0]))))
10713 argvec
[0] = ada_coerce_to_simple_array (argvec
[0]);
10714 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
10715 && TYPE_FIELD_BITSIZE (value_type (argvec
[0]), 0) != 0)
10716 /* This is a packed array that has already been fixed, and
10717 therefore already coerced to a simple array. Nothing further
10720 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_REF
)
10722 /* Make sure we dereference references so that all the code below
10723 feels like it's really handling the referenced value. Wrapping
10724 types (for alignment) may be there, so make sure we strip them as
10726 argvec
[0] = ada_to_fixed_value (coerce_ref (argvec
[0]));
10728 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
10729 && VALUE_LVAL (argvec
[0]) == lval_memory
)
10730 argvec
[0] = value_addr (argvec
[0]);
10732 type
= ada_check_typedef (value_type (argvec
[0]));
10734 /* Ada allows us to implicitly dereference arrays when subscripting
10735 them. So, if this is an array typedef (encoding use for array
10736 access types encoded as fat pointers), strip it now. */
10737 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
10738 type
= ada_typedef_target_type (type
);
10740 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
10742 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type
))))
10744 case TYPE_CODE_FUNC
:
10745 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
10747 case TYPE_CODE_ARRAY
:
10749 case TYPE_CODE_STRUCT
:
10750 if (noside
!= EVAL_AVOID_SIDE_EFFECTS
)
10751 argvec
[0] = ada_value_ind (argvec
[0]);
10752 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
10755 error (_("cannot subscript or call something of type `%s'"),
10756 ada_type_name (value_type (argvec
[0])));
10761 switch (TYPE_CODE (type
))
10763 case TYPE_CODE_FUNC
:
10764 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10766 if (TYPE_TARGET_TYPE (type
) == NULL
)
10767 error_call_unknown_return_type (NULL
);
10768 return allocate_value (TYPE_TARGET_TYPE (type
));
10770 return call_function_by_hand (argvec
[0], NULL
,
10771 gdb::make_array_view (argvec
+ 1,
10773 case TYPE_CODE_INTERNAL_FUNCTION
:
10774 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10775 /* We don't know anything about what the internal
10776 function might return, but we have to return
10778 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
10781 return call_internal_function (exp
->gdbarch
, exp
->language_defn
,
10782 argvec
[0], nargs
, argvec
+ 1);
10784 case TYPE_CODE_STRUCT
:
10788 arity
= ada_array_arity (type
);
10789 type
= ada_array_element_type (type
, nargs
);
10791 error (_("cannot subscript or call a record"));
10792 if (arity
!= nargs
)
10793 error (_("wrong number of subscripts; expecting %d"), arity
);
10794 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10795 return value_zero (ada_aligned_type (type
), lval_memory
);
10797 unwrap_value (ada_value_subscript
10798 (argvec
[0], nargs
, argvec
+ 1));
10800 case TYPE_CODE_ARRAY
:
10801 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10803 type
= ada_array_element_type (type
, nargs
);
10805 error (_("element type of array unknown"));
10807 return value_zero (ada_aligned_type (type
), lval_memory
);
10810 unwrap_value (ada_value_subscript
10811 (ada_coerce_to_simple_array (argvec
[0]),
10812 nargs
, argvec
+ 1));
10813 case TYPE_CODE_PTR
: /* Pointer to array */
10814 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10816 type
= to_fixed_array_type (TYPE_TARGET_TYPE (type
), NULL
, 1);
10817 type
= ada_array_element_type (type
, nargs
);
10819 error (_("element type of array unknown"));
10821 return value_zero (ada_aligned_type (type
), lval_memory
);
10824 unwrap_value (ada_value_ptr_subscript (argvec
[0],
10825 nargs
, argvec
+ 1));
10828 error (_("Attempt to index or call something other than an "
10829 "array or function"));
10834 struct value
*array
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10835 struct value
*low_bound_val
=
10836 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10837 struct value
*high_bound_val
=
10838 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10840 LONGEST high_bound
;
10842 low_bound_val
= coerce_ref (low_bound_val
);
10843 high_bound_val
= coerce_ref (high_bound_val
);
10844 low_bound
= value_as_long (low_bound_val
);
10845 high_bound
= value_as_long (high_bound_val
);
10847 if (noside
== EVAL_SKIP
)
10850 /* If this is a reference to an aligner type, then remove all
10852 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
10853 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array
))))
10854 TYPE_TARGET_TYPE (value_type (array
)) =
10855 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array
)));
10857 if (ada_is_constrained_packed_array_type (value_type (array
)))
10858 error (_("cannot slice a packed array"));
10860 /* If this is a reference to an array or an array lvalue,
10861 convert to a pointer. */
10862 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
10863 || (TYPE_CODE (value_type (array
)) == TYPE_CODE_ARRAY
10864 && VALUE_LVAL (array
) == lval_memory
))
10865 array
= value_addr (array
);
10867 if (noside
== EVAL_AVOID_SIDE_EFFECTS
10868 && ada_is_array_descriptor_type (ada_check_typedef
10869 (value_type (array
))))
10870 return empty_array (ada_type_of_array (array
, 0), low_bound
,
10873 array
= ada_coerce_to_simple_array_ptr (array
);
10875 /* If we have more than one level of pointer indirection,
10876 dereference the value until we get only one level. */
10877 while (TYPE_CODE (value_type (array
)) == TYPE_CODE_PTR
10878 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array
)))
10880 array
= value_ind (array
);
10882 /* Make sure we really do have an array type before going further,
10883 to avoid a SEGV when trying to get the index type or the target
10884 type later down the road if the debug info generated by
10885 the compiler is incorrect or incomplete. */
10886 if (!ada_is_simple_array_type (value_type (array
)))
10887 error (_("cannot take slice of non-array"));
10889 if (TYPE_CODE (ada_check_typedef (value_type (array
)))
10892 struct type
*type0
= ada_check_typedef (value_type (array
));
10894 if (high_bound
< low_bound
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10895 return empty_array (TYPE_TARGET_TYPE (type0
), low_bound
, high_bound
);
10898 struct type
*arr_type0
=
10899 to_fixed_array_type (TYPE_TARGET_TYPE (type0
), NULL
, 1);
10901 return ada_value_slice_from_ptr (array
, arr_type0
,
10902 longest_to_int (low_bound
),
10903 longest_to_int (high_bound
));
10906 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10908 else if (high_bound
< low_bound
)
10909 return empty_array (value_type (array
), low_bound
, high_bound
);
10911 return ada_value_slice (array
, longest_to_int (low_bound
),
10912 longest_to_int (high_bound
));
10915 case UNOP_IN_RANGE
:
10917 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10918 type
= check_typedef (exp
->elts
[pc
+ 1].type
);
10920 if (noside
== EVAL_SKIP
)
10923 switch (TYPE_CODE (type
))
10926 lim_warning (_("Membership test incompletely implemented; "
10927 "always returns true"));
10928 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10929 return value_from_longest (type
, (LONGEST
) 1);
10931 case TYPE_CODE_RANGE
:
10932 arg2
= value_from_longest (type
, TYPE_LOW_BOUND (type
));
10933 arg3
= value_from_longest (type
, TYPE_HIGH_BOUND (type
));
10934 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10935 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10936 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10938 value_from_longest (type
,
10939 (value_less (arg1
, arg3
)
10940 || value_equal (arg1
, arg3
))
10941 && (value_less (arg2
, arg1
)
10942 || value_equal (arg2
, arg1
)));
10945 case BINOP_IN_BOUNDS
:
10947 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10948 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10950 if (noside
== EVAL_SKIP
)
10953 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10955 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10956 return value_zero (type
, not_lval
);
10959 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
10961 type
= ada_index_type (value_type (arg2
), tem
, "range");
10963 type
= value_type (arg1
);
10965 arg3
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 1));
10966 arg2
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 0));
10968 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10969 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10970 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10972 value_from_longest (type
,
10973 (value_less (arg1
, arg3
)
10974 || value_equal (arg1
, arg3
))
10975 && (value_less (arg2
, arg1
)
10976 || value_equal (arg2
, arg1
)));
10978 case TERNOP_IN_RANGE
:
10979 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10980 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10981 arg3
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10983 if (noside
== EVAL_SKIP
)
10986 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10987 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10988 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10990 value_from_longest (type
,
10991 (value_less (arg1
, arg3
)
10992 || value_equal (arg1
, arg3
))
10993 && (value_less (arg2
, arg1
)
10994 || value_equal (arg2
, arg1
)));
10998 case OP_ATR_LENGTH
:
11000 struct type
*type_arg
;
11002 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
11004 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
11006 type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
11010 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11014 if (exp
->elts
[*pos
].opcode
!= OP_LONG
)
11015 error (_("Invalid operand to '%s"), ada_attribute_name (op
));
11016 tem
= longest_to_int (exp
->elts
[*pos
+ 2].longconst
);
11019 if (noside
== EVAL_SKIP
)
11021 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11023 if (type_arg
== NULL
)
11024 type_arg
= value_type (arg1
);
11026 if (ada_is_constrained_packed_array_type (type_arg
))
11027 type_arg
= decode_constrained_packed_array_type (type_arg
);
11029 if (!discrete_type_p (type_arg
))
11033 default: /* Should never happen. */
11034 error (_("unexpected attribute encountered"));
11037 type_arg
= ada_index_type (type_arg
, tem
,
11038 ada_attribute_name (op
));
11040 case OP_ATR_LENGTH
:
11041 type_arg
= builtin_type (exp
->gdbarch
)->builtin_int
;
11046 return value_zero (type_arg
, not_lval
);
11048 else if (type_arg
== NULL
)
11050 arg1
= ada_coerce_ref (arg1
);
11052 if (ada_is_constrained_packed_array_type (value_type (arg1
)))
11053 arg1
= ada_coerce_to_simple_array (arg1
);
11055 if (op
== OP_ATR_LENGTH
)
11056 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
11059 type
= ada_index_type (value_type (arg1
), tem
,
11060 ada_attribute_name (op
));
11062 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
11067 default: /* Should never happen. */
11068 error (_("unexpected attribute encountered"));
11070 return value_from_longest
11071 (type
, ada_array_bound (arg1
, tem
, 0));
11073 return value_from_longest
11074 (type
, ada_array_bound (arg1
, tem
, 1));
11075 case OP_ATR_LENGTH
:
11076 return value_from_longest
11077 (type
, ada_array_length (arg1
, tem
));
11080 else if (discrete_type_p (type_arg
))
11082 struct type
*range_type
;
11083 const char *name
= ada_type_name (type_arg
);
11086 if (name
!= NULL
&& TYPE_CODE (type_arg
) != TYPE_CODE_ENUM
)
11087 range_type
= to_fixed_range_type (type_arg
, NULL
);
11088 if (range_type
== NULL
)
11089 range_type
= type_arg
;
11093 error (_("unexpected attribute encountered"));
11095 return value_from_longest
11096 (range_type
, ada_discrete_type_low_bound (range_type
));
11098 return value_from_longest
11099 (range_type
, ada_discrete_type_high_bound (range_type
));
11100 case OP_ATR_LENGTH
:
11101 error (_("the 'length attribute applies only to array types"));
11104 else if (TYPE_CODE (type_arg
) == TYPE_CODE_FLT
)
11105 error (_("unimplemented type attribute"));
11110 if (ada_is_constrained_packed_array_type (type_arg
))
11111 type_arg
= decode_constrained_packed_array_type (type_arg
);
11113 if (op
== OP_ATR_LENGTH
)
11114 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
11117 type
= ada_index_type (type_arg
, tem
, ada_attribute_name (op
));
11119 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
11125 error (_("unexpected attribute encountered"));
11127 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
11128 return value_from_longest (type
, low
);
11130 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
11131 return value_from_longest (type
, high
);
11132 case OP_ATR_LENGTH
:
11133 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
11134 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
11135 return value_from_longest (type
, high
- low
+ 1);
11141 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11142 if (noside
== EVAL_SKIP
)
11145 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11146 return value_zero (ada_tag_type (arg1
), not_lval
);
11148 return ada_value_tag (arg1
);
11152 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
11153 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11154 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11155 if (noside
== EVAL_SKIP
)
11157 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11158 return value_zero (value_type (arg1
), not_lval
);
11161 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
11162 return value_binop (arg1
, arg2
,
11163 op
== OP_ATR_MIN
? BINOP_MIN
: BINOP_MAX
);
11166 case OP_ATR_MODULUS
:
11168 struct type
*type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
11170 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
11171 if (noside
== EVAL_SKIP
)
11174 if (!ada_is_modular_type (type_arg
))
11175 error (_("'modulus must be applied to modular type"));
11177 return value_from_longest (TYPE_TARGET_TYPE (type_arg
),
11178 ada_modulus (type_arg
));
11183 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
11184 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11185 if (noside
== EVAL_SKIP
)
11187 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
11188 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11189 return value_zero (type
, not_lval
);
11191 return value_pos_atr (type
, arg1
);
11194 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11195 type
= value_type (arg1
);
11197 /* If the argument is a reference, then dereference its type, since
11198 the user is really asking for the size of the actual object,
11199 not the size of the pointer. */
11200 if (TYPE_CODE (type
) == TYPE_CODE_REF
)
11201 type
= TYPE_TARGET_TYPE (type
);
11203 if (noside
== EVAL_SKIP
)
11205 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11206 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
, not_lval
);
11208 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
,
11209 TARGET_CHAR_BIT
* TYPE_LENGTH (type
));
11212 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
11213 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11214 type
= exp
->elts
[pc
+ 2].type
;
11215 if (noside
== EVAL_SKIP
)
11217 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11218 return value_zero (type
, not_lval
);
11220 return value_val_atr (type
, arg1
);
11223 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11224 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11225 if (noside
== EVAL_SKIP
)
11227 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11228 return value_zero (value_type (arg1
), not_lval
);
11231 /* For integer exponentiation operations,
11232 only promote the first argument. */
11233 if (is_integral_type (value_type (arg2
)))
11234 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
11236 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
11238 return value_binop (arg1
, arg2
, op
);
11242 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11243 if (noside
== EVAL_SKIP
)
11249 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11250 if (noside
== EVAL_SKIP
)
11252 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
11253 if (value_less (arg1
, value_zero (value_type (arg1
), not_lval
)))
11254 return value_neg (arg1
);
11259 preeval_pos
= *pos
;
11260 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11261 if (noside
== EVAL_SKIP
)
11263 type
= ada_check_typedef (value_type (arg1
));
11264 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11266 if (ada_is_array_descriptor_type (type
))
11267 /* GDB allows dereferencing GNAT array descriptors. */
11269 struct type
*arrType
= ada_type_of_array (arg1
, 0);
11271 if (arrType
== NULL
)
11272 error (_("Attempt to dereference null array pointer."));
11273 return value_at_lazy (arrType
, 0);
11275 else if (TYPE_CODE (type
) == TYPE_CODE_PTR
11276 || TYPE_CODE (type
) == TYPE_CODE_REF
11277 /* In C you can dereference an array to get the 1st elt. */
11278 || TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
11280 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11281 only be determined by inspecting the object's tag.
11282 This means that we need to evaluate completely the
11283 expression in order to get its type. */
11285 if ((TYPE_CODE (type
) == TYPE_CODE_REF
11286 || TYPE_CODE (type
) == TYPE_CODE_PTR
)
11287 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0))
11289 arg1
= evaluate_subexp (NULL_TYPE
, exp
, &preeval_pos
,
11291 type
= value_type (ada_value_ind (arg1
));
11295 type
= to_static_fixed_type
11297 (ada_check_typedef (TYPE_TARGET_TYPE (type
))));
11299 ada_ensure_varsize_limit (type
);
11300 return value_zero (type
, lval_memory
);
11302 else if (TYPE_CODE (type
) == TYPE_CODE_INT
)
11304 /* GDB allows dereferencing an int. */
11305 if (expect_type
== NULL
)
11306 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
11311 to_static_fixed_type (ada_aligned_type (expect_type
));
11312 return value_zero (expect_type
, lval_memory
);
11316 error (_("Attempt to take contents of a non-pointer value."));
11318 arg1
= ada_coerce_ref (arg1
); /* FIXME: What is this for?? */
11319 type
= ada_check_typedef (value_type (arg1
));
11321 if (TYPE_CODE (type
) == TYPE_CODE_INT
)
11322 /* GDB allows dereferencing an int. If we were given
11323 the expect_type, then use that as the target type.
11324 Otherwise, assume that the target type is an int. */
11326 if (expect_type
!= NULL
)
11327 return ada_value_ind (value_cast (lookup_pointer_type (expect_type
),
11330 return value_at_lazy (builtin_type (exp
->gdbarch
)->builtin_int
,
11331 (CORE_ADDR
) value_as_address (arg1
));
11334 if (ada_is_array_descriptor_type (type
))
11335 /* GDB allows dereferencing GNAT array descriptors. */
11336 return ada_coerce_to_simple_array (arg1
);
11338 return ada_value_ind (arg1
);
11340 case STRUCTOP_STRUCT
:
11341 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
11342 (*pos
) += 3 + BYTES_TO_EXP_ELEM (tem
+ 1);
11343 preeval_pos
= *pos
;
11344 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11345 if (noside
== EVAL_SKIP
)
11347 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11349 struct type
*type1
= value_type (arg1
);
11351 if (ada_is_tagged_type (type1
, 1))
11353 type
= ada_lookup_struct_elt_type (type1
,
11354 &exp
->elts
[pc
+ 2].string
,
11357 /* If the field is not found, check if it exists in the
11358 extension of this object's type. This means that we
11359 need to evaluate completely the expression. */
11363 arg1
= evaluate_subexp (NULL_TYPE
, exp
, &preeval_pos
,
11365 arg1
= ada_value_struct_elt (arg1
,
11366 &exp
->elts
[pc
+ 2].string
,
11368 arg1
= unwrap_value (arg1
);
11369 type
= value_type (ada_to_fixed_value (arg1
));
11374 ada_lookup_struct_elt_type (type1
, &exp
->elts
[pc
+ 2].string
, 1,
11377 return value_zero (ada_aligned_type (type
), lval_memory
);
11381 arg1
= ada_value_struct_elt (arg1
, &exp
->elts
[pc
+ 2].string
, 0);
11382 arg1
= unwrap_value (arg1
);
11383 return ada_to_fixed_value (arg1
);
11387 /* The value is not supposed to be used. This is here to make it
11388 easier to accommodate expressions that contain types. */
11390 if (noside
== EVAL_SKIP
)
11392 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11393 return allocate_value (exp
->elts
[pc
+ 1].type
);
11395 error (_("Attempt to use a type name as an expression"));
11400 case OP_DISCRETE_RANGE
:
11401 case OP_POSITIONAL
:
11403 if (noside
== EVAL_NORMAL
)
11407 error (_("Undefined name, ambiguous name, or renaming used in "
11408 "component association: %s."), &exp
->elts
[pc
+2].string
);
11410 error (_("Aggregates only allowed on the right of an assignment"));
11412 internal_error (__FILE__
, __LINE__
,
11413 _("aggregate apparently mangled"));
11416 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
11418 for (tem
= 0; tem
< nargs
; tem
+= 1)
11419 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
11424 return eval_skip_value (exp
);
11430 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11431 type name that encodes the 'small and 'delta information.
11432 Otherwise, return NULL. */
11434 static const char *
11435 fixed_type_info (struct type
*type
)
11437 const char *name
= ada_type_name (type
);
11438 enum type_code code
= (type
== NULL
) ? TYPE_CODE_UNDEF
: TYPE_CODE (type
);
11440 if ((code
== TYPE_CODE_INT
|| code
== TYPE_CODE_RANGE
) && name
!= NULL
)
11442 const char *tail
= strstr (name
, "___XF_");
11449 else if (code
== TYPE_CODE_RANGE
&& TYPE_TARGET_TYPE (type
) != type
)
11450 return fixed_type_info (TYPE_TARGET_TYPE (type
));
11455 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11458 ada_is_fixed_point_type (struct type
*type
)
11460 return fixed_type_info (type
) != NULL
;
11463 /* Return non-zero iff TYPE represents a System.Address type. */
11466 ada_is_system_address_type (struct type
*type
)
11468 return (TYPE_NAME (type
)
11469 && strcmp (TYPE_NAME (type
), "system__address") == 0);
11472 /* Assuming that TYPE is the representation of an Ada fixed-point
11473 type, return the target floating-point type to be used to represent
11474 of this type during internal computation. */
11476 static struct type
*
11477 ada_scaling_type (struct type
*type
)
11479 return builtin_type (get_type_arch (type
))->builtin_long_double
;
11482 /* Assuming that TYPE is the representation of an Ada fixed-point
11483 type, return its delta, or NULL if the type is malformed and the
11484 delta cannot be determined. */
11487 ada_delta (struct type
*type
)
11489 const char *encoding
= fixed_type_info (type
);
11490 struct type
*scale_type
= ada_scaling_type (type
);
11492 long long num
, den
;
11494 if (sscanf (encoding
, "_%lld_%lld", &num
, &den
) < 2)
11497 return value_binop (value_from_longest (scale_type
, num
),
11498 value_from_longest (scale_type
, den
), BINOP_DIV
);
11501 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11502 factor ('SMALL value) associated with the type. */
11505 ada_scaling_factor (struct type
*type
)
11507 const char *encoding
= fixed_type_info (type
);
11508 struct type
*scale_type
= ada_scaling_type (type
);
11510 long long num0
, den0
, num1
, den1
;
11513 n
= sscanf (encoding
, "_%lld_%lld_%lld_%lld",
11514 &num0
, &den0
, &num1
, &den1
);
11517 return value_from_longest (scale_type
, 1);
11519 return value_binop (value_from_longest (scale_type
, num1
),
11520 value_from_longest (scale_type
, den1
), BINOP_DIV
);
11522 return value_binop (value_from_longest (scale_type
, num0
),
11523 value_from_longest (scale_type
, den0
), BINOP_DIV
);
11530 /* Scan STR beginning at position K for a discriminant name, and
11531 return the value of that discriminant field of DVAL in *PX. If
11532 PNEW_K is not null, put the position of the character beyond the
11533 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11534 not alter *PX and *PNEW_K if unsuccessful. */
11537 scan_discrim_bound (const char *str
, int k
, struct value
*dval
, LONGEST
* px
,
11540 static char *bound_buffer
= NULL
;
11541 static size_t bound_buffer_len
= 0;
11542 const char *pstart
, *pend
, *bound
;
11543 struct value
*bound_val
;
11545 if (dval
== NULL
|| str
== NULL
|| str
[k
] == '\0')
11549 pend
= strstr (pstart
, "__");
11553 k
+= strlen (bound
);
11557 int len
= pend
- pstart
;
11559 /* Strip __ and beyond. */
11560 GROW_VECT (bound_buffer
, bound_buffer_len
, len
+ 1);
11561 strncpy (bound_buffer
, pstart
, len
);
11562 bound_buffer
[len
] = '\0';
11564 bound
= bound_buffer
;
11568 bound_val
= ada_search_struct_field (bound
, dval
, 0, value_type (dval
));
11569 if (bound_val
== NULL
)
11572 *px
= value_as_long (bound_val
);
11573 if (pnew_k
!= NULL
)
11578 /* Value of variable named NAME in the current environment. If
11579 no such variable found, then if ERR_MSG is null, returns 0, and
11580 otherwise causes an error with message ERR_MSG. */
11582 static struct value
*
11583 get_var_value (const char *name
, const char *err_msg
)
11585 lookup_name_info
lookup_name (name
, symbol_name_match_type::FULL
);
11587 std::vector
<struct block_symbol
> syms
;
11588 int nsyms
= ada_lookup_symbol_list_worker (lookup_name
,
11589 get_selected_block (0),
11590 VAR_DOMAIN
, &syms
, 1);
11594 if (err_msg
== NULL
)
11597 error (("%s"), err_msg
);
11600 return value_of_variable (syms
[0].symbol
, syms
[0].block
);
11603 /* Value of integer variable named NAME in the current environment.
11604 If no such variable is found, returns false. Otherwise, sets VALUE
11605 to the variable's value and returns true. */
11608 get_int_var_value (const char *name
, LONGEST
&value
)
11610 struct value
*var_val
= get_var_value (name
, 0);
11615 value
= value_as_long (var_val
);
11620 /* Return a range type whose base type is that of the range type named
11621 NAME in the current environment, and whose bounds are calculated
11622 from NAME according to the GNAT range encoding conventions.
11623 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11624 corresponding range type from debug information; fall back to using it
11625 if symbol lookup fails. If a new type must be created, allocate it
11626 like ORIG_TYPE was. The bounds information, in general, is encoded
11627 in NAME, the base type given in the named range type. */
11629 static struct type
*
11630 to_fixed_range_type (struct type
*raw_type
, struct value
*dval
)
11633 struct type
*base_type
;
11634 const char *subtype_info
;
11636 gdb_assert (raw_type
!= NULL
);
11637 gdb_assert (TYPE_NAME (raw_type
) != NULL
);
11639 if (TYPE_CODE (raw_type
) == TYPE_CODE_RANGE
)
11640 base_type
= TYPE_TARGET_TYPE (raw_type
);
11642 base_type
= raw_type
;
11644 name
= TYPE_NAME (raw_type
);
11645 subtype_info
= strstr (name
, "___XD");
11646 if (subtype_info
== NULL
)
11648 LONGEST L
= ada_discrete_type_low_bound (raw_type
);
11649 LONGEST U
= ada_discrete_type_high_bound (raw_type
);
11651 if (L
< INT_MIN
|| U
> INT_MAX
)
11654 return create_static_range_type (alloc_type_copy (raw_type
), raw_type
,
11659 static char *name_buf
= NULL
;
11660 static size_t name_len
= 0;
11661 int prefix_len
= subtype_info
- name
;
11664 const char *bounds_str
;
11667 GROW_VECT (name_buf
, name_len
, prefix_len
+ 5);
11668 strncpy (name_buf
, name
, prefix_len
);
11669 name_buf
[prefix_len
] = '\0';
11672 bounds_str
= strchr (subtype_info
, '_');
11675 if (*subtype_info
== 'L')
11677 if (!ada_scan_number (bounds_str
, n
, &L
, &n
)
11678 && !scan_discrim_bound (bounds_str
, n
, dval
, &L
, &n
))
11680 if (bounds_str
[n
] == '_')
11682 else if (bounds_str
[n
] == '.') /* FIXME? SGI Workshop kludge. */
11688 strcpy (name_buf
+ prefix_len
, "___L");
11689 if (!get_int_var_value (name_buf
, L
))
11691 lim_warning (_("Unknown lower bound, using 1."));
11696 if (*subtype_info
== 'U')
11698 if (!ada_scan_number (bounds_str
, n
, &U
, &n
)
11699 && !scan_discrim_bound (bounds_str
, n
, dval
, &U
, &n
))
11704 strcpy (name_buf
+ prefix_len
, "___U");
11705 if (!get_int_var_value (name_buf
, U
))
11707 lim_warning (_("Unknown upper bound, using %ld."), (long) L
);
11712 type
= create_static_range_type (alloc_type_copy (raw_type
),
11714 /* create_static_range_type alters the resulting type's length
11715 to match the size of the base_type, which is not what we want.
11716 Set it back to the original range type's length. */
11717 TYPE_LENGTH (type
) = TYPE_LENGTH (raw_type
);
11718 TYPE_NAME (type
) = name
;
11723 /* True iff NAME is the name of a range type. */
11726 ada_is_range_type_name (const char *name
)
11728 return (name
!= NULL
&& strstr (name
, "___XD"));
11732 /* Modular types */
11734 /* True iff TYPE is an Ada modular type. */
11737 ada_is_modular_type (struct type
*type
)
11739 struct type
*subranged_type
= get_base_type (type
);
11741 return (subranged_type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
11742 && TYPE_CODE (subranged_type
) == TYPE_CODE_INT
11743 && TYPE_UNSIGNED (subranged_type
));
11746 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11749 ada_modulus (struct type
*type
)
11751 return (ULONGEST
) TYPE_HIGH_BOUND (type
) + 1;
11755 /* Ada exception catchpoint support:
11756 ---------------------------------
11758 We support 3 kinds of exception catchpoints:
11759 . catchpoints on Ada exceptions
11760 . catchpoints on unhandled Ada exceptions
11761 . catchpoints on failed assertions
11763 Exceptions raised during failed assertions, or unhandled exceptions
11764 could perfectly be caught with the general catchpoint on Ada exceptions.
11765 However, we can easily differentiate these two special cases, and having
11766 the option to distinguish these two cases from the rest can be useful
11767 to zero-in on certain situations.
11769 Exception catchpoints are a specialized form of breakpoint,
11770 since they rely on inserting breakpoints inside known routines
11771 of the GNAT runtime. The implementation therefore uses a standard
11772 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11775 Support in the runtime for exception catchpoints have been changed
11776 a few times already, and these changes affect the implementation
11777 of these catchpoints. In order to be able to support several
11778 variants of the runtime, we use a sniffer that will determine
11779 the runtime variant used by the program being debugged. */
11781 /* Ada's standard exceptions.
11783 The Ada 83 standard also defined Numeric_Error. But there so many
11784 situations where it was unclear from the Ada 83 Reference Manual
11785 (RM) whether Constraint_Error or Numeric_Error should be raised,
11786 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11787 Interpretation saying that anytime the RM says that Numeric_Error
11788 should be raised, the implementation may raise Constraint_Error.
11789 Ada 95 went one step further and pretty much removed Numeric_Error
11790 from the list of standard exceptions (it made it a renaming of
11791 Constraint_Error, to help preserve compatibility when compiling
11792 an Ada83 compiler). As such, we do not include Numeric_Error from
11793 this list of standard exceptions. */
11795 static const char *standard_exc
[] = {
11796 "constraint_error",
11802 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype
) (void);
11804 /* A structure that describes how to support exception catchpoints
11805 for a given executable. */
11807 struct exception_support_info
11809 /* The name of the symbol to break on in order to insert
11810 a catchpoint on exceptions. */
11811 const char *catch_exception_sym
;
11813 /* The name of the symbol to break on in order to insert
11814 a catchpoint on unhandled exceptions. */
11815 const char *catch_exception_unhandled_sym
;
11817 /* The name of the symbol to break on in order to insert
11818 a catchpoint on failed assertions. */
11819 const char *catch_assert_sym
;
11821 /* The name of the symbol to break on in order to insert
11822 a catchpoint on exception handling. */
11823 const char *catch_handlers_sym
;
11825 /* Assuming that the inferior just triggered an unhandled exception
11826 catchpoint, this function is responsible for returning the address
11827 in inferior memory where the name of that exception is stored.
11828 Return zero if the address could not be computed. */
11829 ada_unhandled_exception_name_addr_ftype
*unhandled_exception_name_addr
;
11832 static CORE_ADDR
ada_unhandled_exception_name_addr (void);
11833 static CORE_ADDR
ada_unhandled_exception_name_addr_from_raise (void);
11835 /* The following exception support info structure describes how to
11836 implement exception catchpoints with the latest version of the
11837 Ada runtime (as of 2019-08-??). */
11839 static const struct exception_support_info default_exception_support_info
=
11841 "__gnat_debug_raise_exception", /* catch_exception_sym */
11842 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11843 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11844 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11845 ada_unhandled_exception_name_addr
11848 /* The following exception support info structure describes how to
11849 implement exception catchpoints with an earlier version of the
11850 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11852 static const struct exception_support_info exception_support_info_v0
=
11854 "__gnat_debug_raise_exception", /* catch_exception_sym */
11855 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11856 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11857 "__gnat_begin_handler", /* catch_handlers_sym */
11858 ada_unhandled_exception_name_addr
11861 /* The following exception support info structure describes how to
11862 implement exception catchpoints with a slightly older version
11863 of the Ada runtime. */
11865 static const struct exception_support_info exception_support_info_fallback
=
11867 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11868 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11869 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11870 "__gnat_begin_handler", /* catch_handlers_sym */
11871 ada_unhandled_exception_name_addr_from_raise
11874 /* Return nonzero if we can detect the exception support routines
11875 described in EINFO.
11877 This function errors out if an abnormal situation is detected
11878 (for instance, if we find the exception support routines, but
11879 that support is found to be incomplete). */
11882 ada_has_this_exception_support (const struct exception_support_info
*einfo
)
11884 struct symbol
*sym
;
11886 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11887 that should be compiled with debugging information. As a result, we
11888 expect to find that symbol in the symtabs. */
11890 sym
= standard_lookup (einfo
->catch_exception_sym
, NULL
, VAR_DOMAIN
);
11893 /* Perhaps we did not find our symbol because the Ada runtime was
11894 compiled without debugging info, or simply stripped of it.
11895 It happens on some GNU/Linux distributions for instance, where
11896 users have to install a separate debug package in order to get
11897 the runtime's debugging info. In that situation, let the user
11898 know why we cannot insert an Ada exception catchpoint.
11900 Note: Just for the purpose of inserting our Ada exception
11901 catchpoint, we could rely purely on the associated minimal symbol.
11902 But we would be operating in degraded mode anyway, since we are
11903 still lacking the debugging info needed later on to extract
11904 the name of the exception being raised (this name is printed in
11905 the catchpoint message, and is also used when trying to catch
11906 a specific exception). We do not handle this case for now. */
11907 struct bound_minimal_symbol msym
11908 = lookup_minimal_symbol (einfo
->catch_exception_sym
, NULL
, NULL
);
11910 if (msym
.minsym
&& MSYMBOL_TYPE (msym
.minsym
) != mst_solib_trampoline
)
11911 error (_("Your Ada runtime appears to be missing some debugging "
11912 "information.\nCannot insert Ada exception catchpoint "
11913 "in this configuration."));
11918 /* Make sure that the symbol we found corresponds to a function. */
11920 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
11922 error (_("Symbol \"%s\" is not a function (class = %d)"),
11923 sym
->linkage_name (), SYMBOL_CLASS (sym
));
11927 sym
= standard_lookup (einfo
->catch_handlers_sym
, NULL
, VAR_DOMAIN
);
11930 struct bound_minimal_symbol msym
11931 = lookup_minimal_symbol (einfo
->catch_handlers_sym
, NULL
, NULL
);
11933 if (msym
.minsym
&& MSYMBOL_TYPE (msym
.minsym
) != mst_solib_trampoline
)
11934 error (_("Your Ada runtime appears to be missing some debugging "
11935 "information.\nCannot insert Ada exception catchpoint "
11936 "in this configuration."));
11941 /* Make sure that the symbol we found corresponds to a function. */
11943 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
11945 error (_("Symbol \"%s\" is not a function (class = %d)"),
11946 sym
->linkage_name (), SYMBOL_CLASS (sym
));
11953 /* Inspect the Ada runtime and determine which exception info structure
11954 should be used to provide support for exception catchpoints.
11956 This function will always set the per-inferior exception_info,
11957 or raise an error. */
11960 ada_exception_support_info_sniffer (void)
11962 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11964 /* If the exception info is already known, then no need to recompute it. */
11965 if (data
->exception_info
!= NULL
)
11968 /* Check the latest (default) exception support info. */
11969 if (ada_has_this_exception_support (&default_exception_support_info
))
11971 data
->exception_info
= &default_exception_support_info
;
11975 /* Try the v0 exception suport info. */
11976 if (ada_has_this_exception_support (&exception_support_info_v0
))
11978 data
->exception_info
= &exception_support_info_v0
;
11982 /* Try our fallback exception suport info. */
11983 if (ada_has_this_exception_support (&exception_support_info_fallback
))
11985 data
->exception_info
= &exception_support_info_fallback
;
11989 /* Sometimes, it is normal for us to not be able to find the routine
11990 we are looking for. This happens when the program is linked with
11991 the shared version of the GNAT runtime, and the program has not been
11992 started yet. Inform the user of these two possible causes if
11995 if (ada_update_initial_language (language_unknown
) != language_ada
)
11996 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11998 /* If the symbol does not exist, then check that the program is
11999 already started, to make sure that shared libraries have been
12000 loaded. If it is not started, this may mean that the symbol is
12001 in a shared library. */
12003 if (inferior_ptid
.pid () == 0)
12004 error (_("Unable to insert catchpoint. Try to start the program first."));
12006 /* At this point, we know that we are debugging an Ada program and
12007 that the inferior has been started, but we still are not able to
12008 find the run-time symbols. That can mean that we are in
12009 configurable run time mode, or that a-except as been optimized
12010 out by the linker... In any case, at this point it is not worth
12011 supporting this feature. */
12013 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12016 /* True iff FRAME is very likely to be that of a function that is
12017 part of the runtime system. This is all very heuristic, but is
12018 intended to be used as advice as to what frames are uninteresting
12022 is_known_support_routine (struct frame_info
*frame
)
12024 enum language func_lang
;
12026 const char *fullname
;
12028 /* If this code does not have any debugging information (no symtab),
12029 This cannot be any user code. */
12031 symtab_and_line sal
= find_frame_sal (frame
);
12032 if (sal
.symtab
== NULL
)
12035 /* If there is a symtab, but the associated source file cannot be
12036 located, then assume this is not user code: Selecting a frame
12037 for which we cannot display the code would not be very helpful
12038 for the user. This should also take care of case such as VxWorks
12039 where the kernel has some debugging info provided for a few units. */
12041 fullname
= symtab_to_fullname (sal
.symtab
);
12042 if (access (fullname
, R_OK
) != 0)
12045 /* Check the unit filename against the Ada runtime file naming.
12046 We also check the name of the objfile against the name of some
12047 known system libraries that sometimes come with debugging info
12050 for (i
= 0; known_runtime_file_name_patterns
[i
] != NULL
; i
+= 1)
12052 re_comp (known_runtime_file_name_patterns
[i
]);
12053 if (re_exec (lbasename (sal
.symtab
->filename
)))
12055 if (SYMTAB_OBJFILE (sal
.symtab
) != NULL
12056 && re_exec (objfile_name (SYMTAB_OBJFILE (sal
.symtab
))))
12060 /* Check whether the function is a GNAT-generated entity. */
12062 gdb::unique_xmalloc_ptr
<char> func_name
12063 = find_frame_funname (frame
, &func_lang
, NULL
);
12064 if (func_name
== NULL
)
12067 for (i
= 0; known_auxiliary_function_name_patterns
[i
] != NULL
; i
+= 1)
12069 re_comp (known_auxiliary_function_name_patterns
[i
]);
12070 if (re_exec (func_name
.get ()))
12077 /* Find the first frame that contains debugging information and that is not
12078 part of the Ada run-time, starting from FI and moving upward. */
12081 ada_find_printable_frame (struct frame_info
*fi
)
12083 for (; fi
!= NULL
; fi
= get_prev_frame (fi
))
12085 if (!is_known_support_routine (fi
))
12094 /* Assuming that the inferior just triggered an unhandled exception
12095 catchpoint, return the address in inferior memory where the name
12096 of the exception is stored.
12098 Return zero if the address could not be computed. */
12101 ada_unhandled_exception_name_addr (void)
12103 return parse_and_eval_address ("e.full_name");
12106 /* Same as ada_unhandled_exception_name_addr, except that this function
12107 should be used when the inferior uses an older version of the runtime,
12108 where the exception name needs to be extracted from a specific frame
12109 several frames up in the callstack. */
12112 ada_unhandled_exception_name_addr_from_raise (void)
12115 struct frame_info
*fi
;
12116 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
12118 /* To determine the name of this exception, we need to select
12119 the frame corresponding to RAISE_SYM_NAME. This frame is
12120 at least 3 levels up, so we simply skip the first 3 frames
12121 without checking the name of their associated function. */
12122 fi
= get_current_frame ();
12123 for (frame_level
= 0; frame_level
< 3; frame_level
+= 1)
12125 fi
= get_prev_frame (fi
);
12129 enum language func_lang
;
12131 gdb::unique_xmalloc_ptr
<char> func_name
12132 = find_frame_funname (fi
, &func_lang
, NULL
);
12133 if (func_name
!= NULL
)
12135 if (strcmp (func_name
.get (),
12136 data
->exception_info
->catch_exception_sym
) == 0)
12137 break; /* We found the frame we were looking for... */
12139 fi
= get_prev_frame (fi
);
12146 return parse_and_eval_address ("id.full_name");
12149 /* Assuming the inferior just triggered an Ada exception catchpoint
12150 (of any type), return the address in inferior memory where the name
12151 of the exception is stored, if applicable.
12153 Assumes the selected frame is the current frame.
12155 Return zero if the address could not be computed, or if not relevant. */
12158 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex
,
12159 struct breakpoint
*b
)
12161 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
12165 case ada_catch_exception
:
12166 return (parse_and_eval_address ("e.full_name"));
12169 case ada_catch_exception_unhandled
:
12170 return data
->exception_info
->unhandled_exception_name_addr ();
12173 case ada_catch_handlers
:
12174 return 0; /* The runtimes does not provide access to the exception
12178 case ada_catch_assert
:
12179 return 0; /* Exception name is not relevant in this case. */
12183 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12187 return 0; /* Should never be reached. */
12190 /* Assuming the inferior is stopped at an exception catchpoint,
12191 return the message which was associated to the exception, if
12192 available. Return NULL if the message could not be retrieved.
12194 Note: The exception message can be associated to an exception
12195 either through the use of the Raise_Exception function, or
12196 more simply (Ada 2005 and later), via:
12198 raise Exception_Name with "exception message";
12202 static gdb::unique_xmalloc_ptr
<char>
12203 ada_exception_message_1 (void)
12205 struct value
*e_msg_val
;
12208 /* For runtimes that support this feature, the exception message
12209 is passed as an unbounded string argument called "message". */
12210 e_msg_val
= parse_and_eval ("message");
12211 if (e_msg_val
== NULL
)
12212 return NULL
; /* Exception message not supported. */
12214 e_msg_val
= ada_coerce_to_simple_array (e_msg_val
);
12215 gdb_assert (e_msg_val
!= NULL
);
12216 e_msg_len
= TYPE_LENGTH (value_type (e_msg_val
));
12218 /* If the message string is empty, then treat it as if there was
12219 no exception message. */
12220 if (e_msg_len
<= 0)
12223 gdb::unique_xmalloc_ptr
<char> e_msg ((char *) xmalloc (e_msg_len
+ 1));
12224 read_memory_string (value_address (e_msg_val
), e_msg
.get (), e_msg_len
+ 1);
12225 e_msg
.get ()[e_msg_len
] = '\0';
12230 /* Same as ada_exception_message_1, except that all exceptions are
12231 contained here (returning NULL instead). */
12233 static gdb::unique_xmalloc_ptr
<char>
12234 ada_exception_message (void)
12236 gdb::unique_xmalloc_ptr
<char> e_msg
;
12240 e_msg
= ada_exception_message_1 ();
12242 catch (const gdb_exception_error
&e
)
12244 e_msg
.reset (nullptr);
12250 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12251 any error that ada_exception_name_addr_1 might cause to be thrown.
12252 When an error is intercepted, a warning with the error message is printed,
12253 and zero is returned. */
12256 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex
,
12257 struct breakpoint
*b
)
12259 CORE_ADDR result
= 0;
12263 result
= ada_exception_name_addr_1 (ex
, b
);
12266 catch (const gdb_exception_error
&e
)
12268 warning (_("failed to get exception name: %s"), e
.what ());
12275 static std::string ada_exception_catchpoint_cond_string
12276 (const char *excep_string
,
12277 enum ada_exception_catchpoint_kind ex
);
12279 /* Ada catchpoints.
12281 In the case of catchpoints on Ada exceptions, the catchpoint will
12282 stop the target on every exception the program throws. When a user
12283 specifies the name of a specific exception, we translate this
12284 request into a condition expression (in text form), and then parse
12285 it into an expression stored in each of the catchpoint's locations.
12286 We then use this condition to check whether the exception that was
12287 raised is the one the user is interested in. If not, then the
12288 target is resumed again. We store the name of the requested
12289 exception, in order to be able to re-set the condition expression
12290 when symbols change. */
12292 /* An instance of this type is used to represent an Ada catchpoint
12293 breakpoint location. */
12295 class ada_catchpoint_location
: public bp_location
12298 ada_catchpoint_location (breakpoint
*owner
)
12299 : bp_location (owner
, bp_loc_software_breakpoint
)
12302 /* The condition that checks whether the exception that was raised
12303 is the specific exception the user specified on catchpoint
12305 expression_up excep_cond_expr
;
12308 /* An instance of this type is used to represent an Ada catchpoint. */
12310 struct ada_catchpoint
: public breakpoint
12312 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind
)
12317 /* The name of the specific exception the user specified. */
12318 std::string excep_string
;
12320 /* What kind of catchpoint this is. */
12321 enum ada_exception_catchpoint_kind m_kind
;
12324 /* Parse the exception condition string in the context of each of the
12325 catchpoint's locations, and store them for later evaluation. */
12328 create_excep_cond_exprs (struct ada_catchpoint
*c
,
12329 enum ada_exception_catchpoint_kind ex
)
12331 struct bp_location
*bl
;
12333 /* Nothing to do if there's no specific exception to catch. */
12334 if (c
->excep_string
.empty ())
12337 /* Same if there are no locations... */
12338 if (c
->loc
== NULL
)
12341 /* Compute the condition expression in text form, from the specific
12342 expection we want to catch. */
12343 std::string cond_string
12344 = ada_exception_catchpoint_cond_string (c
->excep_string
.c_str (), ex
);
12346 /* Iterate over all the catchpoint's locations, and parse an
12347 expression for each. */
12348 for (bl
= c
->loc
; bl
!= NULL
; bl
= bl
->next
)
12350 struct ada_catchpoint_location
*ada_loc
12351 = (struct ada_catchpoint_location
*) bl
;
12354 if (!bl
->shlib_disabled
)
12358 s
= cond_string
.c_str ();
12361 exp
= parse_exp_1 (&s
, bl
->address
,
12362 block_for_pc (bl
->address
),
12365 catch (const gdb_exception_error
&e
)
12367 warning (_("failed to reevaluate internal exception condition "
12368 "for catchpoint %d: %s"),
12369 c
->number
, e
.what ());
12373 ada_loc
->excep_cond_expr
= std::move (exp
);
12377 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12378 structure for all exception catchpoint kinds. */
12380 static struct bp_location
*
12381 allocate_location_exception (struct breakpoint
*self
)
12383 return new ada_catchpoint_location (self
);
12386 /* Implement the RE_SET method in the breakpoint_ops structure for all
12387 exception catchpoint kinds. */
12390 re_set_exception (struct breakpoint
*b
)
12392 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12394 /* Call the base class's method. This updates the catchpoint's
12396 bkpt_breakpoint_ops
.re_set (b
);
12398 /* Reparse the exception conditional expressions. One for each
12400 create_excep_cond_exprs (c
, c
->m_kind
);
12403 /* Returns true if we should stop for this breakpoint hit. If the
12404 user specified a specific exception, we only want to cause a stop
12405 if the program thrown that exception. */
12408 should_stop_exception (const struct bp_location
*bl
)
12410 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) bl
->owner
;
12411 const struct ada_catchpoint_location
*ada_loc
12412 = (const struct ada_catchpoint_location
*) bl
;
12415 struct internalvar
*var
= lookup_internalvar ("_ada_exception");
12416 if (c
->m_kind
== ada_catch_assert
)
12417 clear_internalvar (var
);
12424 if (c
->m_kind
== ada_catch_handlers
)
12425 expr
= ("GNAT_GCC_exception_Access(gcc_exception)"
12426 ".all.occurrence.id");
12430 struct value
*exc
= parse_and_eval (expr
);
12431 set_internalvar (var
, exc
);
12433 catch (const gdb_exception_error
&ex
)
12435 clear_internalvar (var
);
12439 /* With no specific exception, should always stop. */
12440 if (c
->excep_string
.empty ())
12443 if (ada_loc
->excep_cond_expr
== NULL
)
12445 /* We will have a NULL expression if back when we were creating
12446 the expressions, this location's had failed to parse. */
12453 struct value
*mark
;
12455 mark
= value_mark ();
12456 stop
= value_true (evaluate_expression (ada_loc
->excep_cond_expr
.get ()));
12457 value_free_to_mark (mark
);
12459 catch (const gdb_exception
&ex
)
12461 exception_fprintf (gdb_stderr
, ex
,
12462 _("Error in testing exception condition:\n"));
12468 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12469 for all exception catchpoint kinds. */
12472 check_status_exception (bpstat bs
)
12474 bs
->stop
= should_stop_exception (bs
->bp_location_at
);
12477 /* Implement the PRINT_IT method in the breakpoint_ops structure
12478 for all exception catchpoint kinds. */
12480 static enum print_stop_action
12481 print_it_exception (bpstat bs
)
12483 struct ui_out
*uiout
= current_uiout
;
12484 struct breakpoint
*b
= bs
->breakpoint_at
;
12486 annotate_catchpoint (b
->number
);
12488 if (uiout
->is_mi_like_p ())
12490 uiout
->field_string ("reason",
12491 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT
));
12492 uiout
->field_string ("disp", bpdisp_text (b
->disposition
));
12495 uiout
->text (b
->disposition
== disp_del
12496 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12497 uiout
->field_signed ("bkptno", b
->number
);
12498 uiout
->text (", ");
12500 /* ada_exception_name_addr relies on the selected frame being the
12501 current frame. Need to do this here because this function may be
12502 called more than once when printing a stop, and below, we'll
12503 select the first frame past the Ada run-time (see
12504 ada_find_printable_frame). */
12505 select_frame (get_current_frame ());
12507 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12510 case ada_catch_exception
:
12511 case ada_catch_exception_unhandled
:
12512 case ada_catch_handlers
:
12514 const CORE_ADDR addr
= ada_exception_name_addr (c
->m_kind
, b
);
12515 char exception_name
[256];
12519 read_memory (addr
, (gdb_byte
*) exception_name
,
12520 sizeof (exception_name
) - 1);
12521 exception_name
[sizeof (exception_name
) - 1] = '\0';
12525 /* For some reason, we were unable to read the exception
12526 name. This could happen if the Runtime was compiled
12527 without debugging info, for instance. In that case,
12528 just replace the exception name by the generic string
12529 "exception" - it will read as "an exception" in the
12530 notification we are about to print. */
12531 memcpy (exception_name
, "exception", sizeof ("exception"));
12533 /* In the case of unhandled exception breakpoints, we print
12534 the exception name as "unhandled EXCEPTION_NAME", to make
12535 it clearer to the user which kind of catchpoint just got
12536 hit. We used ui_out_text to make sure that this extra
12537 info does not pollute the exception name in the MI case. */
12538 if (c
->m_kind
== ada_catch_exception_unhandled
)
12539 uiout
->text ("unhandled ");
12540 uiout
->field_string ("exception-name", exception_name
);
12543 case ada_catch_assert
:
12544 /* In this case, the name of the exception is not really
12545 important. Just print "failed assertion" to make it clearer
12546 that his program just hit an assertion-failure catchpoint.
12547 We used ui_out_text because this info does not belong in
12549 uiout
->text ("failed assertion");
12553 gdb::unique_xmalloc_ptr
<char> exception_message
= ada_exception_message ();
12554 if (exception_message
!= NULL
)
12556 uiout
->text (" (");
12557 uiout
->field_string ("exception-message", exception_message
.get ());
12561 uiout
->text (" at ");
12562 ada_find_printable_frame (get_current_frame ());
12564 return PRINT_SRC_AND_LOC
;
12567 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12568 for all exception catchpoint kinds. */
12571 print_one_exception (struct breakpoint
*b
, struct bp_location
**last_loc
)
12573 struct ui_out
*uiout
= current_uiout
;
12574 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12575 struct value_print_options opts
;
12577 get_user_print_options (&opts
);
12579 if (opts
.addressprint
)
12580 uiout
->field_skip ("addr");
12582 annotate_field (5);
12585 case ada_catch_exception
:
12586 if (!c
->excep_string
.empty ())
12588 std::string msg
= string_printf (_("`%s' Ada exception"),
12589 c
->excep_string
.c_str ());
12591 uiout
->field_string ("what", msg
);
12594 uiout
->field_string ("what", "all Ada exceptions");
12598 case ada_catch_exception_unhandled
:
12599 uiout
->field_string ("what", "unhandled Ada exceptions");
12602 case ada_catch_handlers
:
12603 if (!c
->excep_string
.empty ())
12605 uiout
->field_fmt ("what",
12606 _("`%s' Ada exception handlers"),
12607 c
->excep_string
.c_str ());
12610 uiout
->field_string ("what", "all Ada exceptions handlers");
12613 case ada_catch_assert
:
12614 uiout
->field_string ("what", "failed Ada assertions");
12618 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12623 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12624 for all exception catchpoint kinds. */
12627 print_mention_exception (struct breakpoint
*b
)
12629 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12630 struct ui_out
*uiout
= current_uiout
;
12632 uiout
->text (b
->disposition
== disp_del
? _("Temporary catchpoint ")
12633 : _("Catchpoint "));
12634 uiout
->field_signed ("bkptno", b
->number
);
12635 uiout
->text (": ");
12639 case ada_catch_exception
:
12640 if (!c
->excep_string
.empty ())
12642 std::string info
= string_printf (_("`%s' Ada exception"),
12643 c
->excep_string
.c_str ());
12644 uiout
->text (info
.c_str ());
12647 uiout
->text (_("all Ada exceptions"));
12650 case ada_catch_exception_unhandled
:
12651 uiout
->text (_("unhandled Ada exceptions"));
12654 case ada_catch_handlers
:
12655 if (!c
->excep_string
.empty ())
12658 = string_printf (_("`%s' Ada exception handlers"),
12659 c
->excep_string
.c_str ());
12660 uiout
->text (info
.c_str ());
12663 uiout
->text (_("all Ada exceptions handlers"));
12666 case ada_catch_assert
:
12667 uiout
->text (_("failed Ada assertions"));
12671 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12676 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12677 for all exception catchpoint kinds. */
12680 print_recreate_exception (struct breakpoint
*b
, struct ui_file
*fp
)
12682 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12686 case ada_catch_exception
:
12687 fprintf_filtered (fp
, "catch exception");
12688 if (!c
->excep_string
.empty ())
12689 fprintf_filtered (fp
, " %s", c
->excep_string
.c_str ());
12692 case ada_catch_exception_unhandled
:
12693 fprintf_filtered (fp
, "catch exception unhandled");
12696 case ada_catch_handlers
:
12697 fprintf_filtered (fp
, "catch handlers");
12700 case ada_catch_assert
:
12701 fprintf_filtered (fp
, "catch assert");
12705 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12707 print_recreate_thread (b
, fp
);
12710 /* Virtual tables for various breakpoint types. */
12711 static struct breakpoint_ops catch_exception_breakpoint_ops
;
12712 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops
;
12713 static struct breakpoint_ops catch_assert_breakpoint_ops
;
12714 static struct breakpoint_ops catch_handlers_breakpoint_ops
;
12716 /* See ada-lang.h. */
12719 is_ada_exception_catchpoint (breakpoint
*bp
)
12721 return (bp
->ops
== &catch_exception_breakpoint_ops
12722 || bp
->ops
== &catch_exception_unhandled_breakpoint_ops
12723 || bp
->ops
== &catch_assert_breakpoint_ops
12724 || bp
->ops
== &catch_handlers_breakpoint_ops
);
12727 /* Split the arguments specified in a "catch exception" command.
12728 Set EX to the appropriate catchpoint type.
12729 Set EXCEP_STRING to the name of the specific exception if
12730 specified by the user.
12731 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12732 "catch handlers" command. False otherwise.
12733 If a condition is found at the end of the arguments, the condition
12734 expression is stored in COND_STRING (memory must be deallocated
12735 after use). Otherwise COND_STRING is set to NULL. */
12738 catch_ada_exception_command_split (const char *args
,
12739 bool is_catch_handlers_cmd
,
12740 enum ada_exception_catchpoint_kind
*ex
,
12741 std::string
*excep_string
,
12742 std::string
*cond_string
)
12744 std::string exception_name
;
12746 exception_name
= extract_arg (&args
);
12747 if (exception_name
== "if")
12749 /* This is not an exception name; this is the start of a condition
12750 expression for a catchpoint on all exceptions. So, "un-get"
12751 this token, and set exception_name to NULL. */
12752 exception_name
.clear ();
12756 /* Check to see if we have a condition. */
12758 args
= skip_spaces (args
);
12759 if (startswith (args
, "if")
12760 && (isspace (args
[2]) || args
[2] == '\0'))
12763 args
= skip_spaces (args
);
12765 if (args
[0] == '\0')
12766 error (_("Condition missing after `if' keyword"));
12767 *cond_string
= args
;
12769 args
+= strlen (args
);
12772 /* Check that we do not have any more arguments. Anything else
12775 if (args
[0] != '\0')
12776 error (_("Junk at end of expression"));
12778 if (is_catch_handlers_cmd
)
12780 /* Catch handling of exceptions. */
12781 *ex
= ada_catch_handlers
;
12782 *excep_string
= exception_name
;
12784 else if (exception_name
.empty ())
12786 /* Catch all exceptions. */
12787 *ex
= ada_catch_exception
;
12788 excep_string
->clear ();
12790 else if (exception_name
== "unhandled")
12792 /* Catch unhandled exceptions. */
12793 *ex
= ada_catch_exception_unhandled
;
12794 excep_string
->clear ();
12798 /* Catch a specific exception. */
12799 *ex
= ada_catch_exception
;
12800 *excep_string
= exception_name
;
12804 /* Return the name of the symbol on which we should break in order to
12805 implement a catchpoint of the EX kind. */
12807 static const char *
12808 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex
)
12810 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
12812 gdb_assert (data
->exception_info
!= NULL
);
12816 case ada_catch_exception
:
12817 return (data
->exception_info
->catch_exception_sym
);
12819 case ada_catch_exception_unhandled
:
12820 return (data
->exception_info
->catch_exception_unhandled_sym
);
12822 case ada_catch_assert
:
12823 return (data
->exception_info
->catch_assert_sym
);
12825 case ada_catch_handlers
:
12826 return (data
->exception_info
->catch_handlers_sym
);
12829 internal_error (__FILE__
, __LINE__
,
12830 _("unexpected catchpoint kind (%d)"), ex
);
12834 /* Return the breakpoint ops "virtual table" used for catchpoints
12837 static const struct breakpoint_ops
*
12838 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex
)
12842 case ada_catch_exception
:
12843 return (&catch_exception_breakpoint_ops
);
12845 case ada_catch_exception_unhandled
:
12846 return (&catch_exception_unhandled_breakpoint_ops
);
12848 case ada_catch_assert
:
12849 return (&catch_assert_breakpoint_ops
);
12851 case ada_catch_handlers
:
12852 return (&catch_handlers_breakpoint_ops
);
12855 internal_error (__FILE__
, __LINE__
,
12856 _("unexpected catchpoint kind (%d)"), ex
);
12860 /* Return the condition that will be used to match the current exception
12861 being raised with the exception that the user wants to catch. This
12862 assumes that this condition is used when the inferior just triggered
12863 an exception catchpoint.
12864 EX: the type of catchpoints used for catching Ada exceptions. */
12867 ada_exception_catchpoint_cond_string (const char *excep_string
,
12868 enum ada_exception_catchpoint_kind ex
)
12871 bool is_standard_exc
= false;
12872 std::string result
;
12874 if (ex
== ada_catch_handlers
)
12876 /* For exception handlers catchpoints, the condition string does
12877 not use the same parameter as for the other exceptions. */
12878 result
= ("long_integer (GNAT_GCC_exception_Access"
12879 "(gcc_exception).all.occurrence.id)");
12882 result
= "long_integer (e)";
12884 /* The standard exceptions are a special case. They are defined in
12885 runtime units that have been compiled without debugging info; if
12886 EXCEP_STRING is the not-fully-qualified name of a standard
12887 exception (e.g. "constraint_error") then, during the evaluation
12888 of the condition expression, the symbol lookup on this name would
12889 *not* return this standard exception. The catchpoint condition
12890 may then be set only on user-defined exceptions which have the
12891 same not-fully-qualified name (e.g. my_package.constraint_error).
12893 To avoid this unexcepted behavior, these standard exceptions are
12894 systematically prefixed by "standard". This means that "catch
12895 exception constraint_error" is rewritten into "catch exception
12896 standard.constraint_error".
12898 If an exception named constraint_error is defined in another package of
12899 the inferior program, then the only way to specify this exception as a
12900 breakpoint condition is to use its fully-qualified named:
12901 e.g. my_package.constraint_error. */
12903 for (i
= 0; i
< sizeof (standard_exc
) / sizeof (char *); i
++)
12905 if (strcmp (standard_exc
[i
], excep_string
) == 0)
12907 is_standard_exc
= true;
12914 if (is_standard_exc
)
12915 string_appendf (result
, "long_integer (&standard.%s)", excep_string
);
12917 string_appendf (result
, "long_integer (&%s)", excep_string
);
12922 /* Return the symtab_and_line that should be used to insert an exception
12923 catchpoint of the TYPE kind.
12925 ADDR_STRING returns the name of the function where the real
12926 breakpoint that implements the catchpoints is set, depending on the
12927 type of catchpoint we need to create. */
12929 static struct symtab_and_line
12930 ada_exception_sal (enum ada_exception_catchpoint_kind ex
,
12931 std::string
*addr_string
, const struct breakpoint_ops
**ops
)
12933 const char *sym_name
;
12934 struct symbol
*sym
;
12936 /* First, find out which exception support info to use. */
12937 ada_exception_support_info_sniffer ();
12939 /* Then lookup the function on which we will break in order to catch
12940 the Ada exceptions requested by the user. */
12941 sym_name
= ada_exception_sym_name (ex
);
12942 sym
= standard_lookup (sym_name
, NULL
, VAR_DOMAIN
);
12945 error (_("Catchpoint symbol not found: %s"), sym_name
);
12947 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
12948 error (_("Unable to insert catchpoint. %s is not a function."), sym_name
);
12950 /* Set ADDR_STRING. */
12951 *addr_string
= sym_name
;
12954 *ops
= ada_exception_breakpoint_ops (ex
);
12956 return find_function_start_sal (sym
, 1);
12959 /* Create an Ada exception catchpoint.
12961 EX_KIND is the kind of exception catchpoint to be created.
12963 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12964 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12965 of the exception to which this catchpoint applies.
12967 COND_STRING, if not empty, is the catchpoint condition.
12969 TEMPFLAG, if nonzero, means that the underlying breakpoint
12970 should be temporary.
12972 FROM_TTY is the usual argument passed to all commands implementations. */
12975 create_ada_exception_catchpoint (struct gdbarch
*gdbarch
,
12976 enum ada_exception_catchpoint_kind ex_kind
,
12977 const std::string
&excep_string
,
12978 const std::string
&cond_string
,
12983 std::string addr_string
;
12984 const struct breakpoint_ops
*ops
= NULL
;
12985 struct symtab_and_line sal
= ada_exception_sal (ex_kind
, &addr_string
, &ops
);
12987 std::unique_ptr
<ada_catchpoint
> c (new ada_catchpoint (ex_kind
));
12988 init_ada_exception_breakpoint (c
.get (), gdbarch
, sal
, addr_string
.c_str (),
12989 ops
, tempflag
, disabled
, from_tty
);
12990 c
->excep_string
= excep_string
;
12991 create_excep_cond_exprs (c
.get (), ex_kind
);
12992 if (!cond_string
.empty ())
12993 set_breakpoint_condition (c
.get (), cond_string
.c_str (), from_tty
);
12994 install_breakpoint (0, std::move (c
), 1);
12997 /* Implement the "catch exception" command. */
13000 catch_ada_exception_command (const char *arg_entry
, int from_tty
,
13001 struct cmd_list_element
*command
)
13003 const char *arg
= arg_entry
;
13004 struct gdbarch
*gdbarch
= get_current_arch ();
13006 enum ada_exception_catchpoint_kind ex_kind
;
13007 std::string excep_string
;
13008 std::string cond_string
;
13010 tempflag
= get_cmd_context (command
) == CATCH_TEMPORARY
;
13014 catch_ada_exception_command_split (arg
, false, &ex_kind
, &excep_string
,
13016 create_ada_exception_catchpoint (gdbarch
, ex_kind
,
13017 excep_string
, cond_string
,
13018 tempflag
, 1 /* enabled */,
13022 /* Implement the "catch handlers" command. */
13025 catch_ada_handlers_command (const char *arg_entry
, int from_tty
,
13026 struct cmd_list_element
*command
)
13028 const char *arg
= arg_entry
;
13029 struct gdbarch
*gdbarch
= get_current_arch ();
13031 enum ada_exception_catchpoint_kind ex_kind
;
13032 std::string excep_string
;
13033 std::string cond_string
;
13035 tempflag
= get_cmd_context (command
) == CATCH_TEMPORARY
;
13039 catch_ada_exception_command_split (arg
, true, &ex_kind
, &excep_string
,
13041 create_ada_exception_catchpoint (gdbarch
, ex_kind
,
13042 excep_string
, cond_string
,
13043 tempflag
, 1 /* enabled */,
13047 /* Completion function for the Ada "catch" commands. */
13050 catch_ada_completer (struct cmd_list_element
*cmd
, completion_tracker
&tracker
,
13051 const char *text
, const char *word
)
13053 std::vector
<ada_exc_info
> exceptions
= ada_exceptions_list (NULL
);
13055 for (const ada_exc_info
&info
: exceptions
)
13057 if (startswith (info
.name
, word
))
13058 tracker
.add_completion (make_unique_xstrdup (info
.name
));
13062 /* Split the arguments specified in a "catch assert" command.
13064 ARGS contains the command's arguments (or the empty string if
13065 no arguments were passed).
13067 If ARGS contains a condition, set COND_STRING to that condition
13068 (the memory needs to be deallocated after use). */
13071 catch_ada_assert_command_split (const char *args
, std::string
&cond_string
)
13073 args
= skip_spaces (args
);
13075 /* Check whether a condition was provided. */
13076 if (startswith (args
, "if")
13077 && (isspace (args
[2]) || args
[2] == '\0'))
13080 args
= skip_spaces (args
);
13081 if (args
[0] == '\0')
13082 error (_("condition missing after `if' keyword"));
13083 cond_string
.assign (args
);
13086 /* Otherwise, there should be no other argument at the end of
13088 else if (args
[0] != '\0')
13089 error (_("Junk at end of arguments."));
13092 /* Implement the "catch assert" command. */
13095 catch_assert_command (const char *arg_entry
, int from_tty
,
13096 struct cmd_list_element
*command
)
13098 const char *arg
= arg_entry
;
13099 struct gdbarch
*gdbarch
= get_current_arch ();
13101 std::string cond_string
;
13103 tempflag
= get_cmd_context (command
) == CATCH_TEMPORARY
;
13107 catch_ada_assert_command_split (arg
, cond_string
);
13108 create_ada_exception_catchpoint (gdbarch
, ada_catch_assert
,
13110 tempflag
, 1 /* enabled */,
13114 /* Return non-zero if the symbol SYM is an Ada exception object. */
13117 ada_is_exception_sym (struct symbol
*sym
)
13119 const char *type_name
= TYPE_NAME (SYMBOL_TYPE (sym
));
13121 return (SYMBOL_CLASS (sym
) != LOC_TYPEDEF
13122 && SYMBOL_CLASS (sym
) != LOC_BLOCK
13123 && SYMBOL_CLASS (sym
) != LOC_CONST
13124 && SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
13125 && type_name
!= NULL
&& strcmp (type_name
, "exception") == 0);
13128 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13129 Ada exception object. This matches all exceptions except the ones
13130 defined by the Ada language. */
13133 ada_is_non_standard_exception_sym (struct symbol
*sym
)
13137 if (!ada_is_exception_sym (sym
))
13140 for (i
= 0; i
< ARRAY_SIZE (standard_exc
); i
++)
13141 if (strcmp (sym
->linkage_name (), standard_exc
[i
]) == 0)
13142 return 0; /* A standard exception. */
13144 /* Numeric_Error is also a standard exception, so exclude it.
13145 See the STANDARD_EXC description for more details as to why
13146 this exception is not listed in that array. */
13147 if (strcmp (sym
->linkage_name (), "numeric_error") == 0)
13153 /* A helper function for std::sort, comparing two struct ada_exc_info
13156 The comparison is determined first by exception name, and then
13157 by exception address. */
13160 ada_exc_info::operator< (const ada_exc_info
&other
) const
13164 result
= strcmp (name
, other
.name
);
13167 if (result
== 0 && addr
< other
.addr
)
13173 ada_exc_info::operator== (const ada_exc_info
&other
) const
13175 return addr
== other
.addr
&& strcmp (name
, other
.name
) == 0;
13178 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13179 routine, but keeping the first SKIP elements untouched.
13181 All duplicates are also removed. */
13184 sort_remove_dups_ada_exceptions_list (std::vector
<ada_exc_info
> *exceptions
,
13187 std::sort (exceptions
->begin () + skip
, exceptions
->end ());
13188 exceptions
->erase (std::unique (exceptions
->begin () + skip
, exceptions
->end ()),
13189 exceptions
->end ());
13192 /* Add all exceptions defined by the Ada standard whose name match
13193 a regular expression.
13195 If PREG is not NULL, then this regexp_t object is used to
13196 perform the symbol name matching. Otherwise, no name-based
13197 filtering is performed.
13199 EXCEPTIONS is a vector of exceptions to which matching exceptions
13203 ada_add_standard_exceptions (compiled_regex
*preg
,
13204 std::vector
<ada_exc_info
> *exceptions
)
13208 for (i
= 0; i
< ARRAY_SIZE (standard_exc
); i
++)
13211 || preg
->exec (standard_exc
[i
], 0, NULL
, 0) == 0)
13213 struct bound_minimal_symbol msymbol
13214 = ada_lookup_simple_minsym (standard_exc
[i
]);
13216 if (msymbol
.minsym
!= NULL
)
13218 struct ada_exc_info info
13219 = {standard_exc
[i
], BMSYMBOL_VALUE_ADDRESS (msymbol
)};
13221 exceptions
->push_back (info
);
13227 /* Add all Ada exceptions defined locally and accessible from the given
13230 If PREG is not NULL, then this regexp_t object is used to
13231 perform the symbol name matching. Otherwise, no name-based
13232 filtering is performed.
13234 EXCEPTIONS is a vector of exceptions to which matching exceptions
13238 ada_add_exceptions_from_frame (compiled_regex
*preg
,
13239 struct frame_info
*frame
,
13240 std::vector
<ada_exc_info
> *exceptions
)
13242 const struct block
*block
= get_frame_block (frame
, 0);
13246 struct block_iterator iter
;
13247 struct symbol
*sym
;
13249 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
13251 switch (SYMBOL_CLASS (sym
))
13258 if (ada_is_exception_sym (sym
))
13260 struct ada_exc_info info
= {sym
->print_name (),
13261 SYMBOL_VALUE_ADDRESS (sym
)};
13263 exceptions
->push_back (info
);
13267 if (BLOCK_FUNCTION (block
) != NULL
)
13269 block
= BLOCK_SUPERBLOCK (block
);
13273 /* Return true if NAME matches PREG or if PREG is NULL. */
13276 name_matches_regex (const char *name
, compiled_regex
*preg
)
13278 return (preg
== NULL
13279 || preg
->exec (ada_decode (name
).c_str (), 0, NULL
, 0) == 0);
13282 /* Add all exceptions defined globally whose name name match
13283 a regular expression, excluding standard exceptions.
13285 The reason we exclude standard exceptions is that they need
13286 to be handled separately: Standard exceptions are defined inside
13287 a runtime unit which is normally not compiled with debugging info,
13288 and thus usually do not show up in our symbol search. However,
13289 if the unit was in fact built with debugging info, we need to
13290 exclude them because they would duplicate the entry we found
13291 during the special loop that specifically searches for those
13292 standard exceptions.
13294 If PREG is not NULL, then this regexp_t object is used to
13295 perform the symbol name matching. Otherwise, no name-based
13296 filtering is performed.
13298 EXCEPTIONS is a vector of exceptions to which matching exceptions
13302 ada_add_global_exceptions (compiled_regex
*preg
,
13303 std::vector
<ada_exc_info
> *exceptions
)
13305 /* In Ada, the symbol "search name" is a linkage name, whereas the
13306 regular expression used to do the matching refers to the natural
13307 name. So match against the decoded name. */
13308 expand_symtabs_matching (NULL
,
13309 lookup_name_info::match_any (),
13310 [&] (const char *search_name
)
13312 std::string decoded
= ada_decode (search_name
);
13313 return name_matches_regex (decoded
.c_str (), preg
);
13318 for (objfile
*objfile
: current_program_space
->objfiles ())
13320 for (compunit_symtab
*s
: objfile
->compunits ())
13322 const struct blockvector
*bv
= COMPUNIT_BLOCKVECTOR (s
);
13325 for (i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; i
++)
13327 const struct block
*b
= BLOCKVECTOR_BLOCK (bv
, i
);
13328 struct block_iterator iter
;
13329 struct symbol
*sym
;
13331 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
13332 if (ada_is_non_standard_exception_sym (sym
)
13333 && name_matches_regex (sym
->natural_name (), preg
))
13335 struct ada_exc_info info
13336 = {sym
->print_name (), SYMBOL_VALUE_ADDRESS (sym
)};
13338 exceptions
->push_back (info
);
13345 /* Implements ada_exceptions_list with the regular expression passed
13346 as a regex_t, rather than a string.
13348 If not NULL, PREG is used to filter out exceptions whose names
13349 do not match. Otherwise, all exceptions are listed. */
13351 static std::vector
<ada_exc_info
>
13352 ada_exceptions_list_1 (compiled_regex
*preg
)
13354 std::vector
<ada_exc_info
> result
;
13357 /* First, list the known standard exceptions. These exceptions
13358 need to be handled separately, as they are usually defined in
13359 runtime units that have been compiled without debugging info. */
13361 ada_add_standard_exceptions (preg
, &result
);
13363 /* Next, find all exceptions whose scope is local and accessible
13364 from the currently selected frame. */
13366 if (has_stack_frames ())
13368 prev_len
= result
.size ();
13369 ada_add_exceptions_from_frame (preg
, get_selected_frame (NULL
),
13371 if (result
.size () > prev_len
)
13372 sort_remove_dups_ada_exceptions_list (&result
, prev_len
);
13375 /* Add all exceptions whose scope is global. */
13377 prev_len
= result
.size ();
13378 ada_add_global_exceptions (preg
, &result
);
13379 if (result
.size () > prev_len
)
13380 sort_remove_dups_ada_exceptions_list (&result
, prev_len
);
13385 /* Return a vector of ada_exc_info.
13387 If REGEXP is NULL, all exceptions are included in the result.
13388 Otherwise, it should contain a valid regular expression,
13389 and only the exceptions whose names match that regular expression
13390 are included in the result.
13392 The exceptions are sorted in the following order:
13393 - Standard exceptions (defined by the Ada language), in
13394 alphabetical order;
13395 - Exceptions only visible from the current frame, in
13396 alphabetical order;
13397 - Exceptions whose scope is global, in alphabetical order. */
13399 std::vector
<ada_exc_info
>
13400 ada_exceptions_list (const char *regexp
)
13402 if (regexp
== NULL
)
13403 return ada_exceptions_list_1 (NULL
);
13405 compiled_regex
reg (regexp
, REG_NOSUB
, _("invalid regular expression"));
13406 return ada_exceptions_list_1 (®
);
13409 /* Implement the "info exceptions" command. */
13412 info_exceptions_command (const char *regexp
, int from_tty
)
13414 struct gdbarch
*gdbarch
= get_current_arch ();
13416 std::vector
<ada_exc_info
> exceptions
= ada_exceptions_list (regexp
);
13418 if (regexp
!= NULL
)
13420 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp
);
13422 printf_filtered (_("All defined Ada exceptions:\n"));
13424 for (const ada_exc_info
&info
: exceptions
)
13425 printf_filtered ("%s: %s\n", info
.name
, paddress (gdbarch
, info
.addr
));
13429 /* Information about operators given special treatment in functions
13431 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13433 #define ADA_OPERATORS \
13434 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13435 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13436 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13437 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13438 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13439 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13440 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13441 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13442 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13443 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13444 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13445 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13446 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13447 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13448 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13449 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13450 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13451 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13452 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13455 ada_operator_length (const struct expression
*exp
, int pc
, int *oplenp
,
13458 switch (exp
->elts
[pc
- 1].opcode
)
13461 operator_length_standard (exp
, pc
, oplenp
, argsp
);
13464 #define OP_DEFN(op, len, args, binop) \
13465 case op: *oplenp = len; *argsp = args; break;
13471 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
);
13476 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
) + 1;
13481 /* Implementation of the exp_descriptor method operator_check. */
13484 ada_operator_check (struct expression
*exp
, int pos
,
13485 int (*objfile_func
) (struct objfile
*objfile
, void *data
),
13488 const union exp_element
*const elts
= exp
->elts
;
13489 struct type
*type
= NULL
;
13491 switch (elts
[pos
].opcode
)
13493 case UNOP_IN_RANGE
:
13495 type
= elts
[pos
+ 1].type
;
13499 return operator_check_standard (exp
, pos
, objfile_func
, data
);
13502 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13504 if (type
&& TYPE_OBJFILE (type
)
13505 && (*objfile_func
) (TYPE_OBJFILE (type
), data
))
13511 static const char *
13512 ada_op_name (enum exp_opcode opcode
)
13517 return op_name_standard (opcode
);
13519 #define OP_DEFN(op, len, args, binop) case op: return #op;
13524 return "OP_AGGREGATE";
13526 return "OP_CHOICES";
13532 /* As for operator_length, but assumes PC is pointing at the first
13533 element of the operator, and gives meaningful results only for the
13534 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13537 ada_forward_operator_length (struct expression
*exp
, int pc
,
13538 int *oplenp
, int *argsp
)
13540 switch (exp
->elts
[pc
].opcode
)
13543 *oplenp
= *argsp
= 0;
13546 #define OP_DEFN(op, len, args, binop) \
13547 case op: *oplenp = len; *argsp = args; break;
13553 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
13558 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
) + 1;
13564 int len
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
13566 *oplenp
= 4 + BYTES_TO_EXP_ELEM (len
+ 1);
13574 ada_dump_subexp_body (struct expression
*exp
, struct ui_file
*stream
, int elt
)
13576 enum exp_opcode op
= exp
->elts
[elt
].opcode
;
13581 ada_forward_operator_length (exp
, elt
, &oplen
, &nargs
);
13585 /* Ada attributes ('Foo). */
13588 case OP_ATR_LENGTH
:
13592 case OP_ATR_MODULUS
:
13599 case UNOP_IN_RANGE
:
13601 /* XXX: gdb_sprint_host_address, type_sprint */
13602 fprintf_filtered (stream
, _("Type @"));
13603 gdb_print_host_address (exp
->elts
[pc
+ 1].type
, stream
);
13604 fprintf_filtered (stream
, " (");
13605 type_print (exp
->elts
[pc
+ 1].type
, NULL
, stream
, 0);
13606 fprintf_filtered (stream
, ")");
13608 case BINOP_IN_BOUNDS
:
13609 fprintf_filtered (stream
, " (%d)",
13610 longest_to_int (exp
->elts
[pc
+ 2].longconst
));
13612 case TERNOP_IN_RANGE
:
13617 case OP_DISCRETE_RANGE
:
13618 case OP_POSITIONAL
:
13625 char *name
= &exp
->elts
[elt
+ 2].string
;
13626 int len
= longest_to_int (exp
->elts
[elt
+ 1].longconst
);
13628 fprintf_filtered (stream
, "Text: `%.*s'", len
, name
);
13633 return dump_subexp_body_standard (exp
, stream
, elt
);
13637 for (i
= 0; i
< nargs
; i
+= 1)
13638 elt
= dump_subexp (exp
, stream
, elt
);
13643 /* The Ada extension of print_subexp (q.v.). */
13646 ada_print_subexp (struct expression
*exp
, int *pos
,
13647 struct ui_file
*stream
, enum precedence prec
)
13649 int oplen
, nargs
, i
;
13651 enum exp_opcode op
= exp
->elts
[pc
].opcode
;
13653 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
13660 print_subexp_standard (exp
, pos
, stream
, prec
);
13664 fputs_filtered (exp
->elts
[pc
+ 2].symbol
->natural_name (), stream
);
13667 case BINOP_IN_BOUNDS
:
13668 /* XXX: sprint_subexp */
13669 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13670 fputs_filtered (" in ", stream
);
13671 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13672 fputs_filtered ("'range", stream
);
13673 if (exp
->elts
[pc
+ 1].longconst
> 1)
13674 fprintf_filtered (stream
, "(%ld)",
13675 (long) exp
->elts
[pc
+ 1].longconst
);
13678 case TERNOP_IN_RANGE
:
13679 if (prec
>= PREC_EQUAL
)
13680 fputs_filtered ("(", stream
);
13681 /* XXX: sprint_subexp */
13682 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13683 fputs_filtered (" in ", stream
);
13684 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
13685 fputs_filtered (" .. ", stream
);
13686 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
13687 if (prec
>= PREC_EQUAL
)
13688 fputs_filtered (")", stream
);
13693 case OP_ATR_LENGTH
:
13697 case OP_ATR_MODULUS
:
13702 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
13704 if (TYPE_CODE (exp
->elts
[*pos
+ 1].type
) != TYPE_CODE_VOID
)
13705 LA_PRINT_TYPE (exp
->elts
[*pos
+ 1].type
, "", stream
, 0, 0,
13706 &type_print_raw_options
);
13710 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13711 fprintf_filtered (stream
, "'%s", ada_attribute_name (op
));
13716 for (tem
= 1; tem
< nargs
; tem
+= 1)
13718 fputs_filtered ((tem
== 1) ? " (" : ", ", stream
);
13719 print_subexp (exp
, pos
, stream
, PREC_ABOVE_COMMA
);
13721 fputs_filtered (")", stream
);
13726 type_print (exp
->elts
[pc
+ 1].type
, "", stream
, 0);
13727 fputs_filtered ("'(", stream
);
13728 print_subexp (exp
, pos
, stream
, PREC_PREFIX
);
13729 fputs_filtered (")", stream
);
13732 case UNOP_IN_RANGE
:
13733 /* XXX: sprint_subexp */
13734 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13735 fputs_filtered (" in ", stream
);
13736 LA_PRINT_TYPE (exp
->elts
[pc
+ 1].type
, "", stream
, 1, 0,
13737 &type_print_raw_options
);
13740 case OP_DISCRETE_RANGE
:
13741 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13742 fputs_filtered ("..", stream
);
13743 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13747 fputs_filtered ("others => ", stream
);
13748 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13752 for (i
= 0; i
< nargs
-1; i
+= 1)
13755 fputs_filtered ("|", stream
);
13756 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13758 fputs_filtered (" => ", stream
);
13759 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13762 case OP_POSITIONAL
:
13763 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13767 fputs_filtered ("(", stream
);
13768 for (i
= 0; i
< nargs
; i
+= 1)
13771 fputs_filtered (", ", stream
);
13772 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13774 fputs_filtered (")", stream
);
13779 /* Table mapping opcodes into strings for printing operators
13780 and precedences of the operators. */
13782 static const struct op_print ada_op_print_tab
[] = {
13783 {":=", BINOP_ASSIGN
, PREC_ASSIGN
, 1},
13784 {"or else", BINOP_LOGICAL_OR
, PREC_LOGICAL_OR
, 0},
13785 {"and then", BINOP_LOGICAL_AND
, PREC_LOGICAL_AND
, 0},
13786 {"or", BINOP_BITWISE_IOR
, PREC_BITWISE_IOR
, 0},
13787 {"xor", BINOP_BITWISE_XOR
, PREC_BITWISE_XOR
, 0},
13788 {"and", BINOP_BITWISE_AND
, PREC_BITWISE_AND
, 0},
13789 {"=", BINOP_EQUAL
, PREC_EQUAL
, 0},
13790 {"/=", BINOP_NOTEQUAL
, PREC_EQUAL
, 0},
13791 {"<=", BINOP_LEQ
, PREC_ORDER
, 0},
13792 {">=", BINOP_GEQ
, PREC_ORDER
, 0},
13793 {">", BINOP_GTR
, PREC_ORDER
, 0},
13794 {"<", BINOP_LESS
, PREC_ORDER
, 0},
13795 {">>", BINOP_RSH
, PREC_SHIFT
, 0},
13796 {"<<", BINOP_LSH
, PREC_SHIFT
, 0},
13797 {"+", BINOP_ADD
, PREC_ADD
, 0},
13798 {"-", BINOP_SUB
, PREC_ADD
, 0},
13799 {"&", BINOP_CONCAT
, PREC_ADD
, 0},
13800 {"*", BINOP_MUL
, PREC_MUL
, 0},
13801 {"/", BINOP_DIV
, PREC_MUL
, 0},
13802 {"rem", BINOP_REM
, PREC_MUL
, 0},
13803 {"mod", BINOP_MOD
, PREC_MUL
, 0},
13804 {"**", BINOP_EXP
, PREC_REPEAT
, 0},
13805 {"@", BINOP_REPEAT
, PREC_REPEAT
, 0},
13806 {"-", UNOP_NEG
, PREC_PREFIX
, 0},
13807 {"+", UNOP_PLUS
, PREC_PREFIX
, 0},
13808 {"not ", UNOP_LOGICAL_NOT
, PREC_PREFIX
, 0},
13809 {"not ", UNOP_COMPLEMENT
, PREC_PREFIX
, 0},
13810 {"abs ", UNOP_ABS
, PREC_PREFIX
, 0},
13811 {".all", UNOP_IND
, PREC_SUFFIX
, 1},
13812 {"'access", UNOP_ADDR
, PREC_SUFFIX
, 1},
13813 {"'size", OP_ATR_SIZE
, PREC_SUFFIX
, 1},
13814 {NULL
, OP_NULL
, PREC_SUFFIX
, 0}
13817 enum ada_primitive_types
{
13818 ada_primitive_type_int
,
13819 ada_primitive_type_long
,
13820 ada_primitive_type_short
,
13821 ada_primitive_type_char
,
13822 ada_primitive_type_float
,
13823 ada_primitive_type_double
,
13824 ada_primitive_type_void
,
13825 ada_primitive_type_long_long
,
13826 ada_primitive_type_long_double
,
13827 ada_primitive_type_natural
,
13828 ada_primitive_type_positive
,
13829 ada_primitive_type_system_address
,
13830 ada_primitive_type_storage_offset
,
13831 nr_ada_primitive_types
13835 ada_language_arch_info (struct gdbarch
*gdbarch
,
13836 struct language_arch_info
*lai
)
13838 const struct builtin_type
*builtin
= builtin_type (gdbarch
);
13840 lai
->primitive_type_vector
13841 = GDBARCH_OBSTACK_CALLOC (gdbarch
, nr_ada_primitive_types
+ 1,
13844 lai
->primitive_type_vector
[ada_primitive_type_int
]
13845 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13847 lai
->primitive_type_vector
[ada_primitive_type_long
]
13848 = arch_integer_type (gdbarch
, gdbarch_long_bit (gdbarch
),
13849 0, "long_integer");
13850 lai
->primitive_type_vector
[ada_primitive_type_short
]
13851 = arch_integer_type (gdbarch
, gdbarch_short_bit (gdbarch
),
13852 0, "short_integer");
13853 lai
->string_char_type
13854 = lai
->primitive_type_vector
[ada_primitive_type_char
]
13855 = arch_character_type (gdbarch
, TARGET_CHAR_BIT
, 0, "character");
13856 lai
->primitive_type_vector
[ada_primitive_type_float
]
13857 = arch_float_type (gdbarch
, gdbarch_float_bit (gdbarch
),
13858 "float", gdbarch_float_format (gdbarch
));
13859 lai
->primitive_type_vector
[ada_primitive_type_double
]
13860 = arch_float_type (gdbarch
, gdbarch_double_bit (gdbarch
),
13861 "long_float", gdbarch_double_format (gdbarch
));
13862 lai
->primitive_type_vector
[ada_primitive_type_long_long
]
13863 = arch_integer_type (gdbarch
, gdbarch_long_long_bit (gdbarch
),
13864 0, "long_long_integer");
13865 lai
->primitive_type_vector
[ada_primitive_type_long_double
]
13866 = arch_float_type (gdbarch
, gdbarch_long_double_bit (gdbarch
),
13867 "long_long_float", gdbarch_long_double_format (gdbarch
));
13868 lai
->primitive_type_vector
[ada_primitive_type_natural
]
13869 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13871 lai
->primitive_type_vector
[ada_primitive_type_positive
]
13872 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13874 lai
->primitive_type_vector
[ada_primitive_type_void
]
13875 = builtin
->builtin_void
;
13877 lai
->primitive_type_vector
[ada_primitive_type_system_address
]
13878 = lookup_pointer_type (arch_type (gdbarch
, TYPE_CODE_VOID
, TARGET_CHAR_BIT
,
13880 TYPE_NAME (lai
->primitive_type_vector
[ada_primitive_type_system_address
])
13881 = "system__address";
13883 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13884 type. This is a signed integral type whose size is the same as
13885 the size of addresses. */
13887 unsigned int addr_length
= TYPE_LENGTH
13888 (lai
->primitive_type_vector
[ada_primitive_type_system_address
]);
13890 lai
->primitive_type_vector
[ada_primitive_type_storage_offset
]
13891 = arch_integer_type (gdbarch
, addr_length
* HOST_CHAR_BIT
, 0,
13895 lai
->bool_type_symbol
= NULL
;
13896 lai
->bool_type_default
= builtin
->builtin_bool
;
13899 /* Language vector */
13901 /* Not really used, but needed in the ada_language_defn. */
13904 emit_char (int c
, struct type
*type
, struct ui_file
*stream
, int quoter
)
13906 ada_emit_char (c
, type
, stream
, quoter
, 1);
13910 parse (struct parser_state
*ps
)
13912 warnings_issued
= 0;
13913 return ada_parse (ps
);
13916 static const struct exp_descriptor ada_exp_descriptor
= {
13918 ada_operator_length
,
13919 ada_operator_check
,
13921 ada_dump_subexp_body
,
13922 ada_evaluate_subexp
13925 /* symbol_name_matcher_ftype adapter for wild_match. */
13928 do_wild_match (const char *symbol_search_name
,
13929 const lookup_name_info
&lookup_name
,
13930 completion_match_result
*comp_match_res
)
13932 return wild_match (symbol_search_name
, ada_lookup_name (lookup_name
));
13935 /* symbol_name_matcher_ftype adapter for full_match. */
13938 do_full_match (const char *symbol_search_name
,
13939 const lookup_name_info
&lookup_name
,
13940 completion_match_result
*comp_match_res
)
13942 return full_match (symbol_search_name
, ada_lookup_name (lookup_name
));
13945 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13948 do_exact_match (const char *symbol_search_name
,
13949 const lookup_name_info
&lookup_name
,
13950 completion_match_result
*comp_match_res
)
13952 return strcmp (symbol_search_name
, ada_lookup_name (lookup_name
)) == 0;
13955 /* Build the Ada lookup name for LOOKUP_NAME. */
13957 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info
&lookup_name
)
13959 const std::string
&user_name
= lookup_name
.name ();
13961 if (user_name
[0] == '<')
13963 if (user_name
.back () == '>')
13964 m_encoded_name
= user_name
.substr (1, user_name
.size () - 2);
13966 m_encoded_name
= user_name
.substr (1, user_name
.size () - 1);
13967 m_encoded_p
= true;
13968 m_verbatim_p
= true;
13969 m_wild_match_p
= false;
13970 m_standard_p
= false;
13974 m_verbatim_p
= false;
13976 m_encoded_p
= user_name
.find ("__") != std::string::npos
;
13980 const char *folded
= ada_fold_name (user_name
.c_str ());
13981 const char *encoded
= ada_encode_1 (folded
, false);
13982 if (encoded
!= NULL
)
13983 m_encoded_name
= encoded
;
13985 m_encoded_name
= user_name
;
13988 m_encoded_name
= user_name
;
13990 /* Handle the 'package Standard' special case. See description
13991 of m_standard_p. */
13992 if (startswith (m_encoded_name
.c_str (), "standard__"))
13994 m_encoded_name
= m_encoded_name
.substr (sizeof ("standard__") - 1);
13995 m_standard_p
= true;
13998 m_standard_p
= false;
14000 /* If the name contains a ".", then the user is entering a fully
14001 qualified entity name, and the match must not be done in wild
14002 mode. Similarly, if the user wants to complete what looks
14003 like an encoded name, the match must not be done in wild
14004 mode. Also, in the standard__ special case always do
14005 non-wild matching. */
14007 = (lookup_name
.match_type () != symbol_name_match_type::FULL
14010 && user_name
.find ('.') == std::string::npos
);
14014 /* symbol_name_matcher_ftype method for Ada. This only handles
14015 completion mode. */
14018 ada_symbol_name_matches (const char *symbol_search_name
,
14019 const lookup_name_info
&lookup_name
,
14020 completion_match_result
*comp_match_res
)
14022 return lookup_name
.ada ().matches (symbol_search_name
,
14023 lookup_name
.match_type (),
14027 /* A name matcher that matches the symbol name exactly, with
14031 literal_symbol_name_matcher (const char *symbol_search_name
,
14032 const lookup_name_info
&lookup_name
,
14033 completion_match_result
*comp_match_res
)
14035 const std::string
&name
= lookup_name
.name ();
14037 int cmp
= (lookup_name
.completion_mode ()
14038 ? strncmp (symbol_search_name
, name
.c_str (), name
.size ())
14039 : strcmp (symbol_search_name
, name
.c_str ()));
14042 if (comp_match_res
!= NULL
)
14043 comp_match_res
->set_match (symbol_search_name
);
14050 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14053 static symbol_name_matcher_ftype
*
14054 ada_get_symbol_name_matcher (const lookup_name_info
&lookup_name
)
14056 if (lookup_name
.match_type () == symbol_name_match_type::SEARCH_NAME
)
14057 return literal_symbol_name_matcher
;
14059 if (lookup_name
.completion_mode ())
14060 return ada_symbol_name_matches
;
14063 if (lookup_name
.ada ().wild_match_p ())
14064 return do_wild_match
;
14065 else if (lookup_name
.ada ().verbatim_p ())
14066 return do_exact_match
;
14068 return do_full_match
;
14072 /* Implement the "la_read_var_value" language_defn method for Ada. */
14074 static struct value
*
14075 ada_read_var_value (struct symbol
*var
, const struct block
*var_block
,
14076 struct frame_info
*frame
)
14078 /* The only case where default_read_var_value is not sufficient
14079 is when VAR is a renaming... */
14080 if (frame
!= nullptr)
14082 const struct block
*frame_block
= get_frame_block (frame
, NULL
);
14083 if (frame_block
!= nullptr && ada_is_renaming_symbol (var
))
14084 return ada_read_renaming_var_value (var
, frame_block
);
14087 /* This is a typical case where we expect the default_read_var_value
14088 function to work. */
14089 return default_read_var_value (var
, var_block
, frame
);
14092 static const char *ada_extensions
[] =
14094 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14097 extern const struct language_defn ada_language_defn
= {
14098 "ada", /* Language name */
14102 case_sensitive_on
, /* Yes, Ada is case-insensitive, but
14103 that's not quite what this means. */
14105 macro_expansion_no
,
14107 &ada_exp_descriptor
,
14110 ada_printchar
, /* Print a character constant */
14111 ada_printstr
, /* Function to print string constant */
14112 emit_char
, /* Function to print single char (not used) */
14113 ada_print_type
, /* Print a type using appropriate syntax */
14114 ada_print_typedef
, /* Print a typedef using appropriate syntax */
14115 ada_val_print
, /* Print a value using appropriate syntax */
14116 ada_value_print
, /* Print a top-level value */
14117 ada_read_var_value
, /* la_read_var_value */
14118 NULL
, /* Language specific skip_trampoline */
14119 NULL
, /* name_of_this */
14120 true, /* la_store_sym_names_in_linkage_form_p */
14121 ada_lookup_symbol_nonlocal
, /* Looking up non-local symbols. */
14122 basic_lookup_transparent_type
, /* lookup_transparent_type */
14123 ada_la_decode
, /* Language specific symbol demangler */
14124 ada_sniff_from_mangled_name
,
14125 NULL
, /* Language specific
14126 class_name_from_physname */
14127 ada_op_print_tab
, /* expression operators for printing */
14128 0, /* c-style arrays */
14129 1, /* String lower bound */
14130 ada_get_gdb_completer_word_break_characters
,
14131 ada_collect_symbol_completion_matches
,
14132 ada_language_arch_info
,
14133 ada_print_array_index
,
14134 default_pass_by_reference
,
14135 ada_watch_location_expression
,
14136 ada_get_symbol_name_matcher
, /* la_get_symbol_name_matcher */
14137 ada_iterate_over_symbols
,
14138 default_search_name_hash
,
14142 ada_is_string_type
,
14143 "(...)" /* la_struct_too_deep_ellipsis */
14146 /* Command-list for the "set/show ada" prefix command. */
14147 static struct cmd_list_element
*set_ada_list
;
14148 static struct cmd_list_element
*show_ada_list
;
14150 /* Implement the "set ada" prefix command. */
14153 set_ada_command (const char *arg
, int from_tty
)
14155 printf_unfiltered (_(\
14156 "\"set ada\" must be followed by the name of a setting.\n"));
14157 help_list (set_ada_list
, "set ada ", all_commands
, gdb_stdout
);
14160 /* Implement the "show ada" prefix command. */
14163 show_ada_command (const char *args
, int from_tty
)
14165 cmd_show_list (show_ada_list
, from_tty
, "");
14169 initialize_ada_catchpoint_ops (void)
14171 struct breakpoint_ops
*ops
;
14173 initialize_breakpoint_ops ();
14175 ops
= &catch_exception_breakpoint_ops
;
14176 *ops
= bkpt_breakpoint_ops
;
14177 ops
->allocate_location
= allocate_location_exception
;
14178 ops
->re_set
= re_set_exception
;
14179 ops
->check_status
= check_status_exception
;
14180 ops
->print_it
= print_it_exception
;
14181 ops
->print_one
= print_one_exception
;
14182 ops
->print_mention
= print_mention_exception
;
14183 ops
->print_recreate
= print_recreate_exception
;
14185 ops
= &catch_exception_unhandled_breakpoint_ops
;
14186 *ops
= bkpt_breakpoint_ops
;
14187 ops
->allocate_location
= allocate_location_exception
;
14188 ops
->re_set
= re_set_exception
;
14189 ops
->check_status
= check_status_exception
;
14190 ops
->print_it
= print_it_exception
;
14191 ops
->print_one
= print_one_exception
;
14192 ops
->print_mention
= print_mention_exception
;
14193 ops
->print_recreate
= print_recreate_exception
;
14195 ops
= &catch_assert_breakpoint_ops
;
14196 *ops
= bkpt_breakpoint_ops
;
14197 ops
->allocate_location
= allocate_location_exception
;
14198 ops
->re_set
= re_set_exception
;
14199 ops
->check_status
= check_status_exception
;
14200 ops
->print_it
= print_it_exception
;
14201 ops
->print_one
= print_one_exception
;
14202 ops
->print_mention
= print_mention_exception
;
14203 ops
->print_recreate
= print_recreate_exception
;
14205 ops
= &catch_handlers_breakpoint_ops
;
14206 *ops
= bkpt_breakpoint_ops
;
14207 ops
->allocate_location
= allocate_location_exception
;
14208 ops
->re_set
= re_set_exception
;
14209 ops
->check_status
= check_status_exception
;
14210 ops
->print_it
= print_it_exception
;
14211 ops
->print_one
= print_one_exception
;
14212 ops
->print_mention
= print_mention_exception
;
14213 ops
->print_recreate
= print_recreate_exception
;
14216 /* This module's 'new_objfile' observer. */
14219 ada_new_objfile_observer (struct objfile
*objfile
)
14221 ada_clear_symbol_cache ();
14224 /* This module's 'free_objfile' observer. */
14227 ada_free_objfile_observer (struct objfile
*objfile
)
14229 ada_clear_symbol_cache ();
14233 _initialize_ada_language (void)
14235 initialize_ada_catchpoint_ops ();
14237 add_prefix_cmd ("ada", no_class
, set_ada_command
,
14238 _("Prefix command for changing Ada-specific settings."),
14239 &set_ada_list
, "set ada ", 0, &setlist
);
14241 add_prefix_cmd ("ada", no_class
, show_ada_command
,
14242 _("Generic command for showing Ada-specific settings."),
14243 &show_ada_list
, "show ada ", 0, &showlist
);
14245 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure
,
14246 &trust_pad_over_xvs
, _("\
14247 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14248 Show whether an optimization trusting PAD types over XVS types is activated."),
14250 This is related to the encoding used by the GNAT compiler. The debugger\n\
14251 should normally trust the contents of PAD types, but certain older versions\n\
14252 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14253 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14254 work around this bug. It is always safe to turn this option \"off\", but\n\
14255 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14256 this option to \"off\" unless necessary."),
14257 NULL
, NULL
, &set_ada_list
, &show_ada_list
);
14259 add_setshow_boolean_cmd ("print-signatures", class_vars
,
14260 &print_signatures
, _("\
14261 Enable or disable the output of formal and return types for functions in the \
14262 overloads selection menu."), _("\
14263 Show whether the output of formal and return types for functions in the \
14264 overloads selection menu is activated."),
14265 NULL
, NULL
, NULL
, &set_ada_list
, &show_ada_list
);
14267 add_catch_command ("exception", _("\
14268 Catch Ada exceptions, when raised.\n\
14269 Usage: catch exception [ARG] [if CONDITION]\n\
14270 Without any argument, stop when any Ada exception is raised.\n\
14271 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14272 being raised does not have a handler (and will therefore lead to the task's\n\
14274 Otherwise, the catchpoint only stops when the name of the exception being\n\
14275 raised is the same as ARG.\n\
14276 CONDITION is a boolean expression that is evaluated to see whether the\n\
14277 exception should cause a stop."),
14278 catch_ada_exception_command
,
14279 catch_ada_completer
,
14283 add_catch_command ("handlers", _("\
14284 Catch Ada exceptions, when handled.\n\
14285 Usage: catch handlers [ARG] [if CONDITION]\n\
14286 Without any argument, stop when any Ada exception is handled.\n\
14287 With an argument, catch only exceptions with the given name.\n\
14288 CONDITION is a boolean expression that is evaluated to see whether the\n\
14289 exception should cause a stop."),
14290 catch_ada_handlers_command
,
14291 catch_ada_completer
,
14294 add_catch_command ("assert", _("\
14295 Catch failed Ada assertions, when raised.\n\
14296 Usage: catch assert [if CONDITION]\n\
14297 CONDITION is a boolean expression that is evaluated to see whether the\n\
14298 exception should cause a stop."),
14299 catch_assert_command
,
14304 varsize_limit
= 65536;
14305 add_setshow_uinteger_cmd ("varsize-limit", class_support
,
14306 &varsize_limit
, _("\
14307 Set the maximum number of bytes allowed in a variable-size object."), _("\
14308 Show the maximum number of bytes allowed in a variable-size object."), _("\
14309 Attempts to access an object whose size is not a compile-time constant\n\
14310 and exceeds this limit will cause an error."),
14311 NULL
, NULL
, &setlist
, &showlist
);
14313 add_info ("exceptions", info_exceptions_command
,
14315 List all Ada exception names.\n\
14316 Usage: info exceptions [REGEXP]\n\
14317 If a regular expression is passed as an argument, only those matching\n\
14318 the regular expression are listed."));
14320 add_prefix_cmd ("ada", class_maintenance
, maint_set_ada_cmd
,
14321 _("Set Ada maintenance-related variables."),
14322 &maint_set_ada_cmdlist
, "maintenance set ada ",
14323 0/*allow-unknown*/, &maintenance_set_cmdlist
);
14325 add_prefix_cmd ("ada", class_maintenance
, maint_show_ada_cmd
,
14326 _("Show Ada maintenance-related variables."),
14327 &maint_show_ada_cmdlist
, "maintenance show ada ",
14328 0/*allow-unknown*/, &maintenance_show_cmdlist
);
14330 add_setshow_boolean_cmd
14331 ("ignore-descriptive-types", class_maintenance
,
14332 &ada_ignore_descriptive_types_p
,
14333 _("Set whether descriptive types generated by GNAT should be ignored."),
14334 _("Show whether descriptive types generated by GNAT should be ignored."),
14336 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14337 DWARF attribute."),
14338 NULL
, NULL
, &maint_set_ada_cmdlist
, &maint_show_ada_cmdlist
);
14340 decoded_names_store
= htab_create_alloc (256, htab_hash_string
, streq_hash
,
14341 NULL
, xcalloc
, xfree
);
14343 /* The ada-lang observers. */
14344 gdb::observers::new_objfile
.attach (ada_new_objfile_observer
);
14345 gdb::observers::free_objfile
.attach (ada_free_objfile_observer
);
14346 gdb::observers::inferior_exit
.attach (ada_inferior_exit
);