daily update
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "exceptions.h"
49 #include "annotate.h"
50 #include "valprint.h"
51 #include "source.h"
52 #include "observer.h"
53 #include "vec.h"
54 #include "stack.h"
55 #include "gdb_vecs.h"
56 #include "typeprint.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static int is_nonfunction (struct ada_symbol_info *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct ada_symbol_info *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (struct expression **, int *, int,
122 struct type *);
123
124 static void replace_operator_with_call (struct expression **, int, int, int,
125 struct symbol *, const struct block *);
126
127 static int possible_user_operator_p (enum exp_opcode, struct value **);
128
129 static char *ada_op_name (enum exp_opcode);
130
131 static const char *ada_decoded_op_name (enum exp_opcode);
132
133 static int numeric_type_p (struct type *);
134
135 static int integer_type_p (struct type *);
136
137 static int scalar_type_p (struct type *);
138
139 static int discrete_type_p (struct type *);
140
141 static enum ada_renaming_category parse_old_style_renaming (struct type *,
142 const char **,
143 int *,
144 const char **);
145
146 static struct symbol *find_old_style_renaming_symbol (const char *,
147 const struct block *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
150 int, int, int *);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
188
189 static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
191
192 static struct value *get_var_value (char *, char *);
193
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
195
196 static int equiv_types (struct type *, struct type *);
197
198 static int is_name_suffix (const char *);
199
200 static int advance_wild_match (const char **, const char *, int);
201
202 static int wild_match (const char *, const char *);
203
204 static struct value *ada_coerce_ref (struct value *);
205
206 static LONGEST pos_atr (struct value *);
207
208 static struct value *value_pos_atr (struct type *, struct value *);
209
210 static struct value *value_val_atr (struct type *, struct value *);
211
212 static struct symbol *standard_lookup (const char *, const struct block *,
213 domain_enum);
214
215 static struct value *ada_search_struct_field (char *, struct value *, int,
216 struct type *);
217
218 static struct value *ada_value_primitive_field (struct value *, int, int,
219 struct type *);
220
221 static int find_struct_field (const char *, struct type *, int,
222 struct type **, int *, int *, int *, int *);
223
224 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 struct value *);
226
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231 static int ada_is_direct_array_type (struct type *);
232
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
235
236 static void check_size (const struct type *);
237
238 static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241 static struct value *assign_aggregate (struct value *, struct value *,
242 struct expression *,
243 int *, enum noside);
244
245 static void aggregate_assign_from_choices (struct value *, struct value *,
246 struct expression *,
247 int *, LONGEST *, int *,
248 int, LONGEST, LONGEST);
249
250 static void aggregate_assign_positional (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *, int,
253 LONGEST, LONGEST);
254
255
256 static void aggregate_assign_others (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int, LONGEST, LONGEST);
259
260
261 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
262
263
264 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
265 int *, enum noside);
266
267 static void ada_forward_operator_length (struct expression *, int, int *,
268 int *);
269
270 static struct type *ada_find_any_type (const char *name);
271 \f
272
273 /* The result of a symbol lookup to be stored in our symbol cache. */
274
275 struct cache_entry
276 {
277 /* The name used to perform the lookup. */
278 const char *name;
279 /* The namespace used during the lookup. */
280 domain_enum namespace;
281 /* The symbol returned by the lookup, or NULL if no matching symbol
282 was found. */
283 struct symbol *sym;
284 /* The block where the symbol was found, or NULL if no matching
285 symbol was found. */
286 const struct block *block;
287 /* A pointer to the next entry with the same hash. */
288 struct cache_entry *next;
289 };
290
291 /* The Ada symbol cache, used to store the result of Ada-mode symbol
292 lookups in the course of executing the user's commands.
293
294 The cache is implemented using a simple, fixed-sized hash.
295 The size is fixed on the grounds that there are not likely to be
296 all that many symbols looked up during any given session, regardless
297 of the size of the symbol table. If we decide to go to a resizable
298 table, let's just use the stuff from libiberty instead. */
299
300 #define HASH_SIZE 1009
301
302 struct ada_symbol_cache
303 {
304 /* An obstack used to store the entries in our cache. */
305 struct obstack cache_space;
306
307 /* The root of the hash table used to implement our symbol cache. */
308 struct cache_entry *root[HASH_SIZE];
309 };
310
311 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
312
313 /* Maximum-sized dynamic type. */
314 static unsigned int varsize_limit;
315
316 /* FIXME: brobecker/2003-09-17: No longer a const because it is
317 returned by a function that does not return a const char *. */
318 static char *ada_completer_word_break_characters =
319 #ifdef VMS
320 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321 #else
322 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
323 #endif
324
325 /* The name of the symbol to use to get the name of the main subprogram. */
326 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
327 = "__gnat_ada_main_program_name";
328
329 /* Limit on the number of warnings to raise per expression evaluation. */
330 static int warning_limit = 2;
331
332 /* Number of warning messages issued; reset to 0 by cleanups after
333 expression evaluation. */
334 static int warnings_issued = 0;
335
336 static const char *known_runtime_file_name_patterns[] = {
337 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
338 };
339
340 static const char *known_auxiliary_function_name_patterns[] = {
341 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
342 };
343
344 /* Space for allocating results of ada_lookup_symbol_list. */
345 static struct obstack symbol_list_obstack;
346
347 /* Maintenance-related settings for this module. */
348
349 static struct cmd_list_element *maint_set_ada_cmdlist;
350 static struct cmd_list_element *maint_show_ada_cmdlist;
351
352 /* Implement the "maintenance set ada" (prefix) command. */
353
354 static void
355 maint_set_ada_cmd (char *args, int from_tty)
356 {
357 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
358 gdb_stdout);
359 }
360
361 /* Implement the "maintenance show ada" (prefix) command. */
362
363 static void
364 maint_show_ada_cmd (char *args, int from_tty)
365 {
366 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
367 }
368
369 /* The "maintenance ada set/show ignore-descriptive-type" value. */
370
371 static int ada_ignore_descriptive_types_p = 0;
372
373 /* Inferior-specific data. */
374
375 /* Per-inferior data for this module. */
376
377 struct ada_inferior_data
378 {
379 /* The ada__tags__type_specific_data type, which is used when decoding
380 tagged types. With older versions of GNAT, this type was directly
381 accessible through a component ("tsd") in the object tag. But this
382 is no longer the case, so we cache it for each inferior. */
383 struct type *tsd_type;
384
385 /* The exception_support_info data. This data is used to determine
386 how to implement support for Ada exception catchpoints in a given
387 inferior. */
388 const struct exception_support_info *exception_info;
389 };
390
391 /* Our key to this module's inferior data. */
392 static const struct inferior_data *ada_inferior_data;
393
394 /* A cleanup routine for our inferior data. */
395 static void
396 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
397 {
398 struct ada_inferior_data *data;
399
400 data = inferior_data (inf, ada_inferior_data);
401 if (data != NULL)
402 xfree (data);
403 }
404
405 /* Return our inferior data for the given inferior (INF).
406
407 This function always returns a valid pointer to an allocated
408 ada_inferior_data structure. If INF's inferior data has not
409 been previously set, this functions creates a new one with all
410 fields set to zero, sets INF's inferior to it, and then returns
411 a pointer to that newly allocated ada_inferior_data. */
412
413 static struct ada_inferior_data *
414 get_ada_inferior_data (struct inferior *inf)
415 {
416 struct ada_inferior_data *data;
417
418 data = inferior_data (inf, ada_inferior_data);
419 if (data == NULL)
420 {
421 data = XCNEW (struct ada_inferior_data);
422 set_inferior_data (inf, ada_inferior_data, data);
423 }
424
425 return data;
426 }
427
428 /* Perform all necessary cleanups regarding our module's inferior data
429 that is required after the inferior INF just exited. */
430
431 static void
432 ada_inferior_exit (struct inferior *inf)
433 {
434 ada_inferior_data_cleanup (inf, NULL);
435 set_inferior_data (inf, ada_inferior_data, NULL);
436 }
437
438
439 /* program-space-specific data. */
440
441 /* This module's per-program-space data. */
442 struct ada_pspace_data
443 {
444 /* The Ada symbol cache. */
445 struct ada_symbol_cache *sym_cache;
446 };
447
448 /* Key to our per-program-space data. */
449 static const struct program_space_data *ada_pspace_data_handle;
450
451 /* Return this module's data for the given program space (PSPACE).
452 If not is found, add a zero'ed one now.
453
454 This function always returns a valid object. */
455
456 static struct ada_pspace_data *
457 get_ada_pspace_data (struct program_space *pspace)
458 {
459 struct ada_pspace_data *data;
460
461 data = program_space_data (pspace, ada_pspace_data_handle);
462 if (data == NULL)
463 {
464 data = XCNEW (struct ada_pspace_data);
465 set_program_space_data (pspace, ada_pspace_data_handle, data);
466 }
467
468 return data;
469 }
470
471 /* The cleanup callback for this module's per-program-space data. */
472
473 static void
474 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
475 {
476 struct ada_pspace_data *pspace_data = data;
477
478 if (pspace_data->sym_cache != NULL)
479 ada_free_symbol_cache (pspace_data->sym_cache);
480 xfree (pspace_data);
481 }
482
483 /* Utilities */
484
485 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
486 all typedef layers have been peeled. Otherwise, return TYPE.
487
488 Normally, we really expect a typedef type to only have 1 typedef layer.
489 In other words, we really expect the target type of a typedef type to be
490 a non-typedef type. This is particularly true for Ada units, because
491 the language does not have a typedef vs not-typedef distinction.
492 In that respect, the Ada compiler has been trying to eliminate as many
493 typedef definitions in the debugging information, since they generally
494 do not bring any extra information (we still use typedef under certain
495 circumstances related mostly to the GNAT encoding).
496
497 Unfortunately, we have seen situations where the debugging information
498 generated by the compiler leads to such multiple typedef layers. For
499 instance, consider the following example with stabs:
500
501 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
502 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
503
504 This is an error in the debugging information which causes type
505 pck__float_array___XUP to be defined twice, and the second time,
506 it is defined as a typedef of a typedef.
507
508 This is on the fringe of legality as far as debugging information is
509 concerned, and certainly unexpected. But it is easy to handle these
510 situations correctly, so we can afford to be lenient in this case. */
511
512 static struct type *
513 ada_typedef_target_type (struct type *type)
514 {
515 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
516 type = TYPE_TARGET_TYPE (type);
517 return type;
518 }
519
520 /* Given DECODED_NAME a string holding a symbol name in its
521 decoded form (ie using the Ada dotted notation), returns
522 its unqualified name. */
523
524 static const char *
525 ada_unqualified_name (const char *decoded_name)
526 {
527 const char *result = strrchr (decoded_name, '.');
528
529 if (result != NULL)
530 result++; /* Skip the dot... */
531 else
532 result = decoded_name;
533
534 return result;
535 }
536
537 /* Return a string starting with '<', followed by STR, and '>'.
538 The result is good until the next call. */
539
540 static char *
541 add_angle_brackets (const char *str)
542 {
543 static char *result = NULL;
544
545 xfree (result);
546 result = xstrprintf ("<%s>", str);
547 return result;
548 }
549
550 static char *
551 ada_get_gdb_completer_word_break_characters (void)
552 {
553 return ada_completer_word_break_characters;
554 }
555
556 /* Print an array element index using the Ada syntax. */
557
558 static void
559 ada_print_array_index (struct value *index_value, struct ui_file *stream,
560 const struct value_print_options *options)
561 {
562 LA_VALUE_PRINT (index_value, stream, options);
563 fprintf_filtered (stream, " => ");
564 }
565
566 /* Assuming VECT points to an array of *SIZE objects of size
567 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
568 updating *SIZE as necessary and returning the (new) array. */
569
570 void *
571 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
572 {
573 if (*size < min_size)
574 {
575 *size *= 2;
576 if (*size < min_size)
577 *size = min_size;
578 vect = xrealloc (vect, *size * element_size);
579 }
580 return vect;
581 }
582
583 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
584 suffix of FIELD_NAME beginning "___". */
585
586 static int
587 field_name_match (const char *field_name, const char *target)
588 {
589 int len = strlen (target);
590
591 return
592 (strncmp (field_name, target, len) == 0
593 && (field_name[len] == '\0'
594 || (strncmp (field_name + len, "___", 3) == 0
595 && strcmp (field_name + strlen (field_name) - 6,
596 "___XVN") != 0)));
597 }
598
599
600 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
601 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
602 and return its index. This function also handles fields whose name
603 have ___ suffixes because the compiler sometimes alters their name
604 by adding such a suffix to represent fields with certain constraints.
605 If the field could not be found, return a negative number if
606 MAYBE_MISSING is set. Otherwise raise an error. */
607
608 int
609 ada_get_field_index (const struct type *type, const char *field_name,
610 int maybe_missing)
611 {
612 int fieldno;
613 struct type *struct_type = check_typedef ((struct type *) type);
614
615 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
616 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
617 return fieldno;
618
619 if (!maybe_missing)
620 error (_("Unable to find field %s in struct %s. Aborting"),
621 field_name, TYPE_NAME (struct_type));
622
623 return -1;
624 }
625
626 /* The length of the prefix of NAME prior to any "___" suffix. */
627
628 int
629 ada_name_prefix_len (const char *name)
630 {
631 if (name == NULL)
632 return 0;
633 else
634 {
635 const char *p = strstr (name, "___");
636
637 if (p == NULL)
638 return strlen (name);
639 else
640 return p - name;
641 }
642 }
643
644 /* Return non-zero if SUFFIX is a suffix of STR.
645 Return zero if STR is null. */
646
647 static int
648 is_suffix (const char *str, const char *suffix)
649 {
650 int len1, len2;
651
652 if (str == NULL)
653 return 0;
654 len1 = strlen (str);
655 len2 = strlen (suffix);
656 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
657 }
658
659 /* The contents of value VAL, treated as a value of type TYPE. The
660 result is an lval in memory if VAL is. */
661
662 static struct value *
663 coerce_unspec_val_to_type (struct value *val, struct type *type)
664 {
665 type = ada_check_typedef (type);
666 if (value_type (val) == type)
667 return val;
668 else
669 {
670 struct value *result;
671
672 /* Make sure that the object size is not unreasonable before
673 trying to allocate some memory for it. */
674 check_size (type);
675
676 if (value_lazy (val)
677 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
678 result = allocate_value_lazy (type);
679 else
680 {
681 result = allocate_value (type);
682 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
683 }
684 set_value_component_location (result, val);
685 set_value_bitsize (result, value_bitsize (val));
686 set_value_bitpos (result, value_bitpos (val));
687 set_value_address (result, value_address (val));
688 return result;
689 }
690 }
691
692 static const gdb_byte *
693 cond_offset_host (const gdb_byte *valaddr, long offset)
694 {
695 if (valaddr == NULL)
696 return NULL;
697 else
698 return valaddr + offset;
699 }
700
701 static CORE_ADDR
702 cond_offset_target (CORE_ADDR address, long offset)
703 {
704 if (address == 0)
705 return 0;
706 else
707 return address + offset;
708 }
709
710 /* Issue a warning (as for the definition of warning in utils.c, but
711 with exactly one argument rather than ...), unless the limit on the
712 number of warnings has passed during the evaluation of the current
713 expression. */
714
715 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
716 provided by "complaint". */
717 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
718
719 static void
720 lim_warning (const char *format, ...)
721 {
722 va_list args;
723
724 va_start (args, format);
725 warnings_issued += 1;
726 if (warnings_issued <= warning_limit)
727 vwarning (format, args);
728
729 va_end (args);
730 }
731
732 /* Issue an error if the size of an object of type T is unreasonable,
733 i.e. if it would be a bad idea to allocate a value of this type in
734 GDB. */
735
736 static void
737 check_size (const struct type *type)
738 {
739 if (TYPE_LENGTH (type) > varsize_limit)
740 error (_("object size is larger than varsize-limit"));
741 }
742
743 /* Maximum value of a SIZE-byte signed integer type. */
744 static LONGEST
745 max_of_size (int size)
746 {
747 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
748
749 return top_bit | (top_bit - 1);
750 }
751
752 /* Minimum value of a SIZE-byte signed integer type. */
753 static LONGEST
754 min_of_size (int size)
755 {
756 return -max_of_size (size) - 1;
757 }
758
759 /* Maximum value of a SIZE-byte unsigned integer type. */
760 static ULONGEST
761 umax_of_size (int size)
762 {
763 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
764
765 return top_bit | (top_bit - 1);
766 }
767
768 /* Maximum value of integral type T, as a signed quantity. */
769 static LONGEST
770 max_of_type (struct type *t)
771 {
772 if (TYPE_UNSIGNED (t))
773 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
774 else
775 return max_of_size (TYPE_LENGTH (t));
776 }
777
778 /* Minimum value of integral type T, as a signed quantity. */
779 static LONGEST
780 min_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return 0;
784 else
785 return min_of_size (TYPE_LENGTH (t));
786 }
787
788 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
789 LONGEST
790 ada_discrete_type_high_bound (struct type *type)
791 {
792 type = resolve_dynamic_type (type, 0);
793 switch (TYPE_CODE (type))
794 {
795 case TYPE_CODE_RANGE:
796 return TYPE_HIGH_BOUND (type);
797 case TYPE_CODE_ENUM:
798 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
799 case TYPE_CODE_BOOL:
800 return 1;
801 case TYPE_CODE_CHAR:
802 case TYPE_CODE_INT:
803 return max_of_type (type);
804 default:
805 error (_("Unexpected type in ada_discrete_type_high_bound."));
806 }
807 }
808
809 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
810 LONGEST
811 ada_discrete_type_low_bound (struct type *type)
812 {
813 type = resolve_dynamic_type (type, 0);
814 switch (TYPE_CODE (type))
815 {
816 case TYPE_CODE_RANGE:
817 return TYPE_LOW_BOUND (type);
818 case TYPE_CODE_ENUM:
819 return TYPE_FIELD_ENUMVAL (type, 0);
820 case TYPE_CODE_BOOL:
821 return 0;
822 case TYPE_CODE_CHAR:
823 case TYPE_CODE_INT:
824 return min_of_type (type);
825 default:
826 error (_("Unexpected type in ada_discrete_type_low_bound."));
827 }
828 }
829
830 /* The identity on non-range types. For range types, the underlying
831 non-range scalar type. */
832
833 static struct type *
834 get_base_type (struct type *type)
835 {
836 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
837 {
838 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
839 return type;
840 type = TYPE_TARGET_TYPE (type);
841 }
842 return type;
843 }
844
845 /* Return a decoded version of the given VALUE. This means returning
846 a value whose type is obtained by applying all the GNAT-specific
847 encondings, making the resulting type a static but standard description
848 of the initial type. */
849
850 struct value *
851 ada_get_decoded_value (struct value *value)
852 {
853 struct type *type = ada_check_typedef (value_type (value));
854
855 if (ada_is_array_descriptor_type (type)
856 || (ada_is_constrained_packed_array_type (type)
857 && TYPE_CODE (type) != TYPE_CODE_PTR))
858 {
859 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
860 value = ada_coerce_to_simple_array_ptr (value);
861 else
862 value = ada_coerce_to_simple_array (value);
863 }
864 else
865 value = ada_to_fixed_value (value);
866
867 return value;
868 }
869
870 /* Same as ada_get_decoded_value, but with the given TYPE.
871 Because there is no associated actual value for this type,
872 the resulting type might be a best-effort approximation in
873 the case of dynamic types. */
874
875 struct type *
876 ada_get_decoded_type (struct type *type)
877 {
878 type = to_static_fixed_type (type);
879 if (ada_is_constrained_packed_array_type (type))
880 type = ada_coerce_to_simple_array_type (type);
881 return type;
882 }
883
884 \f
885
886 /* Language Selection */
887
888 /* If the main program is in Ada, return language_ada, otherwise return LANG
889 (the main program is in Ada iif the adainit symbol is found). */
890
891 enum language
892 ada_update_initial_language (enum language lang)
893 {
894 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
895 (struct objfile *) NULL).minsym != NULL)
896 return language_ada;
897
898 return lang;
899 }
900
901 /* If the main procedure is written in Ada, then return its name.
902 The result is good until the next call. Return NULL if the main
903 procedure doesn't appear to be in Ada. */
904
905 char *
906 ada_main_name (void)
907 {
908 struct bound_minimal_symbol msym;
909 static char *main_program_name = NULL;
910
911 /* For Ada, the name of the main procedure is stored in a specific
912 string constant, generated by the binder. Look for that symbol,
913 extract its address, and then read that string. If we didn't find
914 that string, then most probably the main procedure is not written
915 in Ada. */
916 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
917
918 if (msym.minsym != NULL)
919 {
920 CORE_ADDR main_program_name_addr;
921 int err_code;
922
923 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
924 if (main_program_name_addr == 0)
925 error (_("Invalid address for Ada main program name."));
926
927 xfree (main_program_name);
928 target_read_string (main_program_name_addr, &main_program_name,
929 1024, &err_code);
930
931 if (err_code != 0)
932 return NULL;
933 return main_program_name;
934 }
935
936 /* The main procedure doesn't seem to be in Ada. */
937 return NULL;
938 }
939 \f
940 /* Symbols */
941
942 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
943 of NULLs. */
944
945 const struct ada_opname_map ada_opname_table[] = {
946 {"Oadd", "\"+\"", BINOP_ADD},
947 {"Osubtract", "\"-\"", BINOP_SUB},
948 {"Omultiply", "\"*\"", BINOP_MUL},
949 {"Odivide", "\"/\"", BINOP_DIV},
950 {"Omod", "\"mod\"", BINOP_MOD},
951 {"Orem", "\"rem\"", BINOP_REM},
952 {"Oexpon", "\"**\"", BINOP_EXP},
953 {"Olt", "\"<\"", BINOP_LESS},
954 {"Ole", "\"<=\"", BINOP_LEQ},
955 {"Ogt", "\">\"", BINOP_GTR},
956 {"Oge", "\">=\"", BINOP_GEQ},
957 {"Oeq", "\"=\"", BINOP_EQUAL},
958 {"One", "\"/=\"", BINOP_NOTEQUAL},
959 {"Oand", "\"and\"", BINOP_BITWISE_AND},
960 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
961 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
962 {"Oconcat", "\"&\"", BINOP_CONCAT},
963 {"Oabs", "\"abs\"", UNOP_ABS},
964 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
965 {"Oadd", "\"+\"", UNOP_PLUS},
966 {"Osubtract", "\"-\"", UNOP_NEG},
967 {NULL, NULL}
968 };
969
970 /* The "encoded" form of DECODED, according to GNAT conventions.
971 The result is valid until the next call to ada_encode. */
972
973 char *
974 ada_encode (const char *decoded)
975 {
976 static char *encoding_buffer = NULL;
977 static size_t encoding_buffer_size = 0;
978 const char *p;
979 int k;
980
981 if (decoded == NULL)
982 return NULL;
983
984 GROW_VECT (encoding_buffer, encoding_buffer_size,
985 2 * strlen (decoded) + 10);
986
987 k = 0;
988 for (p = decoded; *p != '\0'; p += 1)
989 {
990 if (*p == '.')
991 {
992 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
993 k += 2;
994 }
995 else if (*p == '"')
996 {
997 const struct ada_opname_map *mapping;
998
999 for (mapping = ada_opname_table;
1000 mapping->encoded != NULL
1001 && strncmp (mapping->decoded, p,
1002 strlen (mapping->decoded)) != 0; mapping += 1)
1003 ;
1004 if (mapping->encoded == NULL)
1005 error (_("invalid Ada operator name: %s"), p);
1006 strcpy (encoding_buffer + k, mapping->encoded);
1007 k += strlen (mapping->encoded);
1008 break;
1009 }
1010 else
1011 {
1012 encoding_buffer[k] = *p;
1013 k += 1;
1014 }
1015 }
1016
1017 encoding_buffer[k] = '\0';
1018 return encoding_buffer;
1019 }
1020
1021 /* Return NAME folded to lower case, or, if surrounded by single
1022 quotes, unfolded, but with the quotes stripped away. Result good
1023 to next call. */
1024
1025 char *
1026 ada_fold_name (const char *name)
1027 {
1028 static char *fold_buffer = NULL;
1029 static size_t fold_buffer_size = 0;
1030
1031 int len = strlen (name);
1032 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1033
1034 if (name[0] == '\'')
1035 {
1036 strncpy (fold_buffer, name + 1, len - 2);
1037 fold_buffer[len - 2] = '\000';
1038 }
1039 else
1040 {
1041 int i;
1042
1043 for (i = 0; i <= len; i += 1)
1044 fold_buffer[i] = tolower (name[i]);
1045 }
1046
1047 return fold_buffer;
1048 }
1049
1050 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1051
1052 static int
1053 is_lower_alphanum (const char c)
1054 {
1055 return (isdigit (c) || (isalpha (c) && islower (c)));
1056 }
1057
1058 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1059 This function saves in LEN the length of that same symbol name but
1060 without either of these suffixes:
1061 . .{DIGIT}+
1062 . ${DIGIT}+
1063 . ___{DIGIT}+
1064 . __{DIGIT}+.
1065
1066 These are suffixes introduced by the compiler for entities such as
1067 nested subprogram for instance, in order to avoid name clashes.
1068 They do not serve any purpose for the debugger. */
1069
1070 static void
1071 ada_remove_trailing_digits (const char *encoded, int *len)
1072 {
1073 if (*len > 1 && isdigit (encoded[*len - 1]))
1074 {
1075 int i = *len - 2;
1076
1077 while (i > 0 && isdigit (encoded[i]))
1078 i--;
1079 if (i >= 0 && encoded[i] == '.')
1080 *len = i;
1081 else if (i >= 0 && encoded[i] == '$')
1082 *len = i;
1083 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1084 *len = i - 2;
1085 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1086 *len = i - 1;
1087 }
1088 }
1089
1090 /* Remove the suffix introduced by the compiler for protected object
1091 subprograms. */
1092
1093 static void
1094 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1095 {
1096 /* Remove trailing N. */
1097
1098 /* Protected entry subprograms are broken into two
1099 separate subprograms: The first one is unprotected, and has
1100 a 'N' suffix; the second is the protected version, and has
1101 the 'P' suffix. The second calls the first one after handling
1102 the protection. Since the P subprograms are internally generated,
1103 we leave these names undecoded, giving the user a clue that this
1104 entity is internal. */
1105
1106 if (*len > 1
1107 && encoded[*len - 1] == 'N'
1108 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1109 *len = *len - 1;
1110 }
1111
1112 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1113
1114 static void
1115 ada_remove_Xbn_suffix (const char *encoded, int *len)
1116 {
1117 int i = *len - 1;
1118
1119 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1120 i--;
1121
1122 if (encoded[i] != 'X')
1123 return;
1124
1125 if (i == 0)
1126 return;
1127
1128 if (isalnum (encoded[i-1]))
1129 *len = i;
1130 }
1131
1132 /* If ENCODED follows the GNAT entity encoding conventions, then return
1133 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1134 replaced by ENCODED.
1135
1136 The resulting string is valid until the next call of ada_decode.
1137 If the string is unchanged by decoding, the original string pointer
1138 is returned. */
1139
1140 const char *
1141 ada_decode (const char *encoded)
1142 {
1143 int i, j;
1144 int len0;
1145 const char *p;
1146 char *decoded;
1147 int at_start_name;
1148 static char *decoding_buffer = NULL;
1149 static size_t decoding_buffer_size = 0;
1150
1151 /* The name of the Ada main procedure starts with "_ada_".
1152 This prefix is not part of the decoded name, so skip this part
1153 if we see this prefix. */
1154 if (strncmp (encoded, "_ada_", 5) == 0)
1155 encoded += 5;
1156
1157 /* If the name starts with '_', then it is not a properly encoded
1158 name, so do not attempt to decode it. Similarly, if the name
1159 starts with '<', the name should not be decoded. */
1160 if (encoded[0] == '_' || encoded[0] == '<')
1161 goto Suppress;
1162
1163 len0 = strlen (encoded);
1164
1165 ada_remove_trailing_digits (encoded, &len0);
1166 ada_remove_po_subprogram_suffix (encoded, &len0);
1167
1168 /* Remove the ___X.* suffix if present. Do not forget to verify that
1169 the suffix is located before the current "end" of ENCODED. We want
1170 to avoid re-matching parts of ENCODED that have previously been
1171 marked as discarded (by decrementing LEN0). */
1172 p = strstr (encoded, "___");
1173 if (p != NULL && p - encoded < len0 - 3)
1174 {
1175 if (p[3] == 'X')
1176 len0 = p - encoded;
1177 else
1178 goto Suppress;
1179 }
1180
1181 /* Remove any trailing TKB suffix. It tells us that this symbol
1182 is for the body of a task, but that information does not actually
1183 appear in the decoded name. */
1184
1185 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1186 len0 -= 3;
1187
1188 /* Remove any trailing TB suffix. The TB suffix is slightly different
1189 from the TKB suffix because it is used for non-anonymous task
1190 bodies. */
1191
1192 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1193 len0 -= 2;
1194
1195 /* Remove trailing "B" suffixes. */
1196 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1197
1198 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1199 len0 -= 1;
1200
1201 /* Make decoded big enough for possible expansion by operator name. */
1202
1203 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1204 decoded = decoding_buffer;
1205
1206 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1207
1208 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1209 {
1210 i = len0 - 2;
1211 while ((i >= 0 && isdigit (encoded[i]))
1212 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1213 i -= 1;
1214 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1215 len0 = i - 1;
1216 else if (encoded[i] == '$')
1217 len0 = i;
1218 }
1219
1220 /* The first few characters that are not alphabetic are not part
1221 of any encoding we use, so we can copy them over verbatim. */
1222
1223 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1224 decoded[j] = encoded[i];
1225
1226 at_start_name = 1;
1227 while (i < len0)
1228 {
1229 /* Is this a symbol function? */
1230 if (at_start_name && encoded[i] == 'O')
1231 {
1232 int k;
1233
1234 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1235 {
1236 int op_len = strlen (ada_opname_table[k].encoded);
1237 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1238 op_len - 1) == 0)
1239 && !isalnum (encoded[i + op_len]))
1240 {
1241 strcpy (decoded + j, ada_opname_table[k].decoded);
1242 at_start_name = 0;
1243 i += op_len;
1244 j += strlen (ada_opname_table[k].decoded);
1245 break;
1246 }
1247 }
1248 if (ada_opname_table[k].encoded != NULL)
1249 continue;
1250 }
1251 at_start_name = 0;
1252
1253 /* Replace "TK__" with "__", which will eventually be translated
1254 into "." (just below). */
1255
1256 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1257 i += 2;
1258
1259 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1260 be translated into "." (just below). These are internal names
1261 generated for anonymous blocks inside which our symbol is nested. */
1262
1263 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1264 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1265 && isdigit (encoded [i+4]))
1266 {
1267 int k = i + 5;
1268
1269 while (k < len0 && isdigit (encoded[k]))
1270 k++; /* Skip any extra digit. */
1271
1272 /* Double-check that the "__B_{DIGITS}+" sequence we found
1273 is indeed followed by "__". */
1274 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1275 i = k;
1276 }
1277
1278 /* Remove _E{DIGITS}+[sb] */
1279
1280 /* Just as for protected object subprograms, there are 2 categories
1281 of subprograms created by the compiler for each entry. The first
1282 one implements the actual entry code, and has a suffix following
1283 the convention above; the second one implements the barrier and
1284 uses the same convention as above, except that the 'E' is replaced
1285 by a 'B'.
1286
1287 Just as above, we do not decode the name of barrier functions
1288 to give the user a clue that the code he is debugging has been
1289 internally generated. */
1290
1291 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1292 && isdigit (encoded[i+2]))
1293 {
1294 int k = i + 3;
1295
1296 while (k < len0 && isdigit (encoded[k]))
1297 k++;
1298
1299 if (k < len0
1300 && (encoded[k] == 'b' || encoded[k] == 's'))
1301 {
1302 k++;
1303 /* Just as an extra precaution, make sure that if this
1304 suffix is followed by anything else, it is a '_'.
1305 Otherwise, we matched this sequence by accident. */
1306 if (k == len0
1307 || (k < len0 && encoded[k] == '_'))
1308 i = k;
1309 }
1310 }
1311
1312 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1313 the GNAT front-end in protected object subprograms. */
1314
1315 if (i < len0 + 3
1316 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1317 {
1318 /* Backtrack a bit up until we reach either the begining of
1319 the encoded name, or "__". Make sure that we only find
1320 digits or lowercase characters. */
1321 const char *ptr = encoded + i - 1;
1322
1323 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1324 ptr--;
1325 if (ptr < encoded
1326 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1327 i++;
1328 }
1329
1330 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1331 {
1332 /* This is a X[bn]* sequence not separated from the previous
1333 part of the name with a non-alpha-numeric character (in other
1334 words, immediately following an alpha-numeric character), then
1335 verify that it is placed at the end of the encoded name. If
1336 not, then the encoding is not valid and we should abort the
1337 decoding. Otherwise, just skip it, it is used in body-nested
1338 package names. */
1339 do
1340 i += 1;
1341 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1342 if (i < len0)
1343 goto Suppress;
1344 }
1345 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1346 {
1347 /* Replace '__' by '.'. */
1348 decoded[j] = '.';
1349 at_start_name = 1;
1350 i += 2;
1351 j += 1;
1352 }
1353 else
1354 {
1355 /* It's a character part of the decoded name, so just copy it
1356 over. */
1357 decoded[j] = encoded[i];
1358 i += 1;
1359 j += 1;
1360 }
1361 }
1362 decoded[j] = '\000';
1363
1364 /* Decoded names should never contain any uppercase character.
1365 Double-check this, and abort the decoding if we find one. */
1366
1367 for (i = 0; decoded[i] != '\0'; i += 1)
1368 if (isupper (decoded[i]) || decoded[i] == ' ')
1369 goto Suppress;
1370
1371 if (strcmp (decoded, encoded) == 0)
1372 return encoded;
1373 else
1374 return decoded;
1375
1376 Suppress:
1377 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1378 decoded = decoding_buffer;
1379 if (encoded[0] == '<')
1380 strcpy (decoded, encoded);
1381 else
1382 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1383 return decoded;
1384
1385 }
1386
1387 /* Table for keeping permanent unique copies of decoded names. Once
1388 allocated, names in this table are never released. While this is a
1389 storage leak, it should not be significant unless there are massive
1390 changes in the set of decoded names in successive versions of a
1391 symbol table loaded during a single session. */
1392 static struct htab *decoded_names_store;
1393
1394 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1395 in the language-specific part of GSYMBOL, if it has not been
1396 previously computed. Tries to save the decoded name in the same
1397 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1398 in any case, the decoded symbol has a lifetime at least that of
1399 GSYMBOL).
1400 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1401 const, but nevertheless modified to a semantically equivalent form
1402 when a decoded name is cached in it. */
1403
1404 const char *
1405 ada_decode_symbol (const struct general_symbol_info *arg)
1406 {
1407 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1408 const char **resultp =
1409 &gsymbol->language_specific.mangled_lang.demangled_name;
1410
1411 if (!gsymbol->ada_mangled)
1412 {
1413 const char *decoded = ada_decode (gsymbol->name);
1414 struct obstack *obstack = gsymbol->language_specific.obstack;
1415
1416 gsymbol->ada_mangled = 1;
1417
1418 if (obstack != NULL)
1419 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1420 else
1421 {
1422 /* Sometimes, we can't find a corresponding objfile, in
1423 which case, we put the result on the heap. Since we only
1424 decode when needed, we hope this usually does not cause a
1425 significant memory leak (FIXME). */
1426
1427 char **slot = (char **) htab_find_slot (decoded_names_store,
1428 decoded, INSERT);
1429
1430 if (*slot == NULL)
1431 *slot = xstrdup (decoded);
1432 *resultp = *slot;
1433 }
1434 }
1435
1436 return *resultp;
1437 }
1438
1439 static char *
1440 ada_la_decode (const char *encoded, int options)
1441 {
1442 return xstrdup (ada_decode (encoded));
1443 }
1444
1445 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1446 suffixes that encode debugging information or leading _ada_ on
1447 SYM_NAME (see is_name_suffix commentary for the debugging
1448 information that is ignored). If WILD, then NAME need only match a
1449 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1450 either argument is NULL. */
1451
1452 static int
1453 match_name (const char *sym_name, const char *name, int wild)
1454 {
1455 if (sym_name == NULL || name == NULL)
1456 return 0;
1457 else if (wild)
1458 return wild_match (sym_name, name) == 0;
1459 else
1460 {
1461 int len_name = strlen (name);
1462
1463 return (strncmp (sym_name, name, len_name) == 0
1464 && is_name_suffix (sym_name + len_name))
1465 || (strncmp (sym_name, "_ada_", 5) == 0
1466 && strncmp (sym_name + 5, name, len_name) == 0
1467 && is_name_suffix (sym_name + len_name + 5));
1468 }
1469 }
1470 \f
1471
1472 /* Arrays */
1473
1474 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1475 generated by the GNAT compiler to describe the index type used
1476 for each dimension of an array, check whether it follows the latest
1477 known encoding. If not, fix it up to conform to the latest encoding.
1478 Otherwise, do nothing. This function also does nothing if
1479 INDEX_DESC_TYPE is NULL.
1480
1481 The GNAT encoding used to describle the array index type evolved a bit.
1482 Initially, the information would be provided through the name of each
1483 field of the structure type only, while the type of these fields was
1484 described as unspecified and irrelevant. The debugger was then expected
1485 to perform a global type lookup using the name of that field in order
1486 to get access to the full index type description. Because these global
1487 lookups can be very expensive, the encoding was later enhanced to make
1488 the global lookup unnecessary by defining the field type as being
1489 the full index type description.
1490
1491 The purpose of this routine is to allow us to support older versions
1492 of the compiler by detecting the use of the older encoding, and by
1493 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1494 we essentially replace each field's meaningless type by the associated
1495 index subtype). */
1496
1497 void
1498 ada_fixup_array_indexes_type (struct type *index_desc_type)
1499 {
1500 int i;
1501
1502 if (index_desc_type == NULL)
1503 return;
1504 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1505
1506 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1507 to check one field only, no need to check them all). If not, return
1508 now.
1509
1510 If our INDEX_DESC_TYPE was generated using the older encoding,
1511 the field type should be a meaningless integer type whose name
1512 is not equal to the field name. */
1513 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1514 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1515 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1516 return;
1517
1518 /* Fixup each field of INDEX_DESC_TYPE. */
1519 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1520 {
1521 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1522 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1523
1524 if (raw_type)
1525 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1526 }
1527 }
1528
1529 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1530
1531 static char *bound_name[] = {
1532 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1533 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1534 };
1535
1536 /* Maximum number of array dimensions we are prepared to handle. */
1537
1538 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1539
1540
1541 /* The desc_* routines return primitive portions of array descriptors
1542 (fat pointers). */
1543
1544 /* The descriptor or array type, if any, indicated by TYPE; removes
1545 level of indirection, if needed. */
1546
1547 static struct type *
1548 desc_base_type (struct type *type)
1549 {
1550 if (type == NULL)
1551 return NULL;
1552 type = ada_check_typedef (type);
1553 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1554 type = ada_typedef_target_type (type);
1555
1556 if (type != NULL
1557 && (TYPE_CODE (type) == TYPE_CODE_PTR
1558 || TYPE_CODE (type) == TYPE_CODE_REF))
1559 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1560 else
1561 return type;
1562 }
1563
1564 /* True iff TYPE indicates a "thin" array pointer type. */
1565
1566 static int
1567 is_thin_pntr (struct type *type)
1568 {
1569 return
1570 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1571 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1572 }
1573
1574 /* The descriptor type for thin pointer type TYPE. */
1575
1576 static struct type *
1577 thin_descriptor_type (struct type *type)
1578 {
1579 struct type *base_type = desc_base_type (type);
1580
1581 if (base_type == NULL)
1582 return NULL;
1583 if (is_suffix (ada_type_name (base_type), "___XVE"))
1584 return base_type;
1585 else
1586 {
1587 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1588
1589 if (alt_type == NULL)
1590 return base_type;
1591 else
1592 return alt_type;
1593 }
1594 }
1595
1596 /* A pointer to the array data for thin-pointer value VAL. */
1597
1598 static struct value *
1599 thin_data_pntr (struct value *val)
1600 {
1601 struct type *type = ada_check_typedef (value_type (val));
1602 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1603
1604 data_type = lookup_pointer_type (data_type);
1605
1606 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1607 return value_cast (data_type, value_copy (val));
1608 else
1609 return value_from_longest (data_type, value_address (val));
1610 }
1611
1612 /* True iff TYPE indicates a "thick" array pointer type. */
1613
1614 static int
1615 is_thick_pntr (struct type *type)
1616 {
1617 type = desc_base_type (type);
1618 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1619 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1620 }
1621
1622 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1623 pointer to one, the type of its bounds data; otherwise, NULL. */
1624
1625 static struct type *
1626 desc_bounds_type (struct type *type)
1627 {
1628 struct type *r;
1629
1630 type = desc_base_type (type);
1631
1632 if (type == NULL)
1633 return NULL;
1634 else if (is_thin_pntr (type))
1635 {
1636 type = thin_descriptor_type (type);
1637 if (type == NULL)
1638 return NULL;
1639 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1640 if (r != NULL)
1641 return ada_check_typedef (r);
1642 }
1643 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1644 {
1645 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1646 if (r != NULL)
1647 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1648 }
1649 return NULL;
1650 }
1651
1652 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1653 one, a pointer to its bounds data. Otherwise NULL. */
1654
1655 static struct value *
1656 desc_bounds (struct value *arr)
1657 {
1658 struct type *type = ada_check_typedef (value_type (arr));
1659
1660 if (is_thin_pntr (type))
1661 {
1662 struct type *bounds_type =
1663 desc_bounds_type (thin_descriptor_type (type));
1664 LONGEST addr;
1665
1666 if (bounds_type == NULL)
1667 error (_("Bad GNAT array descriptor"));
1668
1669 /* NOTE: The following calculation is not really kosher, but
1670 since desc_type is an XVE-encoded type (and shouldn't be),
1671 the correct calculation is a real pain. FIXME (and fix GCC). */
1672 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1673 addr = value_as_long (arr);
1674 else
1675 addr = value_address (arr);
1676
1677 return
1678 value_from_longest (lookup_pointer_type (bounds_type),
1679 addr - TYPE_LENGTH (bounds_type));
1680 }
1681
1682 else if (is_thick_pntr (type))
1683 {
1684 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1685 _("Bad GNAT array descriptor"));
1686 struct type *p_bounds_type = value_type (p_bounds);
1687
1688 if (p_bounds_type
1689 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1690 {
1691 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1692
1693 if (TYPE_STUB (target_type))
1694 p_bounds = value_cast (lookup_pointer_type
1695 (ada_check_typedef (target_type)),
1696 p_bounds);
1697 }
1698 else
1699 error (_("Bad GNAT array descriptor"));
1700
1701 return p_bounds;
1702 }
1703 else
1704 return NULL;
1705 }
1706
1707 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1708 position of the field containing the address of the bounds data. */
1709
1710 static int
1711 fat_pntr_bounds_bitpos (struct type *type)
1712 {
1713 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1714 }
1715
1716 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1717 size of the field containing the address of the bounds data. */
1718
1719 static int
1720 fat_pntr_bounds_bitsize (struct type *type)
1721 {
1722 type = desc_base_type (type);
1723
1724 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1725 return TYPE_FIELD_BITSIZE (type, 1);
1726 else
1727 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1728 }
1729
1730 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1731 pointer to one, the type of its array data (a array-with-no-bounds type);
1732 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1733 data. */
1734
1735 static struct type *
1736 desc_data_target_type (struct type *type)
1737 {
1738 type = desc_base_type (type);
1739
1740 /* NOTE: The following is bogus; see comment in desc_bounds. */
1741 if (is_thin_pntr (type))
1742 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1743 else if (is_thick_pntr (type))
1744 {
1745 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1746
1747 if (data_type
1748 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1749 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1750 }
1751
1752 return NULL;
1753 }
1754
1755 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1756 its array data. */
1757
1758 static struct value *
1759 desc_data (struct value *arr)
1760 {
1761 struct type *type = value_type (arr);
1762
1763 if (is_thin_pntr (type))
1764 return thin_data_pntr (arr);
1765 else if (is_thick_pntr (type))
1766 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1767 _("Bad GNAT array descriptor"));
1768 else
1769 return NULL;
1770 }
1771
1772
1773 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1774 position of the field containing the address of the data. */
1775
1776 static int
1777 fat_pntr_data_bitpos (struct type *type)
1778 {
1779 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1780 }
1781
1782 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1783 size of the field containing the address of the data. */
1784
1785 static int
1786 fat_pntr_data_bitsize (struct type *type)
1787 {
1788 type = desc_base_type (type);
1789
1790 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1791 return TYPE_FIELD_BITSIZE (type, 0);
1792 else
1793 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1794 }
1795
1796 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1797 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1798 bound, if WHICH is 1. The first bound is I=1. */
1799
1800 static struct value *
1801 desc_one_bound (struct value *bounds, int i, int which)
1802 {
1803 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1804 _("Bad GNAT array descriptor bounds"));
1805 }
1806
1807 /* If BOUNDS is an array-bounds structure type, return the bit position
1808 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1809 bound, if WHICH is 1. The first bound is I=1. */
1810
1811 static int
1812 desc_bound_bitpos (struct type *type, int i, int which)
1813 {
1814 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1815 }
1816
1817 /* If BOUNDS is an array-bounds structure type, return the bit field size
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1819 bound, if WHICH is 1. The first bound is I=1. */
1820
1821 static int
1822 desc_bound_bitsize (struct type *type, int i, int which)
1823 {
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1828 else
1829 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1830 }
1831
1832 /* If TYPE is the type of an array-bounds structure, the type of its
1833 Ith bound (numbering from 1). Otherwise, NULL. */
1834
1835 static struct type *
1836 desc_index_type (struct type *type, int i)
1837 {
1838 type = desc_base_type (type);
1839
1840 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1841 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1842 else
1843 return NULL;
1844 }
1845
1846 /* The number of index positions in the array-bounds type TYPE.
1847 Return 0 if TYPE is NULL. */
1848
1849 static int
1850 desc_arity (struct type *type)
1851 {
1852 type = desc_base_type (type);
1853
1854 if (type != NULL)
1855 return TYPE_NFIELDS (type) / 2;
1856 return 0;
1857 }
1858
1859 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1860 an array descriptor type (representing an unconstrained array
1861 type). */
1862
1863 static int
1864 ada_is_direct_array_type (struct type *type)
1865 {
1866 if (type == NULL)
1867 return 0;
1868 type = ada_check_typedef (type);
1869 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1870 || ada_is_array_descriptor_type (type));
1871 }
1872
1873 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1874 * to one. */
1875
1876 static int
1877 ada_is_array_type (struct type *type)
1878 {
1879 while (type != NULL
1880 && (TYPE_CODE (type) == TYPE_CODE_PTR
1881 || TYPE_CODE (type) == TYPE_CODE_REF))
1882 type = TYPE_TARGET_TYPE (type);
1883 return ada_is_direct_array_type (type);
1884 }
1885
1886 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1887
1888 int
1889 ada_is_simple_array_type (struct type *type)
1890 {
1891 if (type == NULL)
1892 return 0;
1893 type = ada_check_typedef (type);
1894 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1895 || (TYPE_CODE (type) == TYPE_CODE_PTR
1896 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1897 == TYPE_CODE_ARRAY));
1898 }
1899
1900 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1901
1902 int
1903 ada_is_array_descriptor_type (struct type *type)
1904 {
1905 struct type *data_type = desc_data_target_type (type);
1906
1907 if (type == NULL)
1908 return 0;
1909 type = ada_check_typedef (type);
1910 return (data_type != NULL
1911 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1912 && desc_arity (desc_bounds_type (type)) > 0);
1913 }
1914
1915 /* Non-zero iff type is a partially mal-formed GNAT array
1916 descriptor. FIXME: This is to compensate for some problems with
1917 debugging output from GNAT. Re-examine periodically to see if it
1918 is still needed. */
1919
1920 int
1921 ada_is_bogus_array_descriptor (struct type *type)
1922 {
1923 return
1924 type != NULL
1925 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1926 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1927 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1928 && !ada_is_array_descriptor_type (type);
1929 }
1930
1931
1932 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1933 (fat pointer) returns the type of the array data described---specifically,
1934 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1935 in from the descriptor; otherwise, they are left unspecified. If
1936 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1937 returns NULL. The result is simply the type of ARR if ARR is not
1938 a descriptor. */
1939 struct type *
1940 ada_type_of_array (struct value *arr, int bounds)
1941 {
1942 if (ada_is_constrained_packed_array_type (value_type (arr)))
1943 return decode_constrained_packed_array_type (value_type (arr));
1944
1945 if (!ada_is_array_descriptor_type (value_type (arr)))
1946 return value_type (arr);
1947
1948 if (!bounds)
1949 {
1950 struct type *array_type =
1951 ada_check_typedef (desc_data_target_type (value_type (arr)));
1952
1953 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1954 TYPE_FIELD_BITSIZE (array_type, 0) =
1955 decode_packed_array_bitsize (value_type (arr));
1956
1957 return array_type;
1958 }
1959 else
1960 {
1961 struct type *elt_type;
1962 int arity;
1963 struct value *descriptor;
1964
1965 elt_type = ada_array_element_type (value_type (arr), -1);
1966 arity = ada_array_arity (value_type (arr));
1967
1968 if (elt_type == NULL || arity == 0)
1969 return ada_check_typedef (value_type (arr));
1970
1971 descriptor = desc_bounds (arr);
1972 if (value_as_long (descriptor) == 0)
1973 return NULL;
1974 while (arity > 0)
1975 {
1976 struct type *range_type = alloc_type_copy (value_type (arr));
1977 struct type *array_type = alloc_type_copy (value_type (arr));
1978 struct value *low = desc_one_bound (descriptor, arity, 0);
1979 struct value *high = desc_one_bound (descriptor, arity, 1);
1980
1981 arity -= 1;
1982 create_static_range_type (range_type, value_type (low),
1983 longest_to_int (value_as_long (low)),
1984 longest_to_int (value_as_long (high)));
1985 elt_type = create_array_type (array_type, elt_type, range_type);
1986
1987 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1988 {
1989 /* We need to store the element packed bitsize, as well as
1990 recompute the array size, because it was previously
1991 computed based on the unpacked element size. */
1992 LONGEST lo = value_as_long (low);
1993 LONGEST hi = value_as_long (high);
1994
1995 TYPE_FIELD_BITSIZE (elt_type, 0) =
1996 decode_packed_array_bitsize (value_type (arr));
1997 /* If the array has no element, then the size is already
1998 zero, and does not need to be recomputed. */
1999 if (lo < hi)
2000 {
2001 int array_bitsize =
2002 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2003
2004 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2005 }
2006 }
2007 }
2008
2009 return lookup_pointer_type (elt_type);
2010 }
2011 }
2012
2013 /* If ARR does not represent an array, returns ARR unchanged.
2014 Otherwise, returns either a standard GDB array with bounds set
2015 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2016 GDB array. Returns NULL if ARR is a null fat pointer. */
2017
2018 struct value *
2019 ada_coerce_to_simple_array_ptr (struct value *arr)
2020 {
2021 if (ada_is_array_descriptor_type (value_type (arr)))
2022 {
2023 struct type *arrType = ada_type_of_array (arr, 1);
2024
2025 if (arrType == NULL)
2026 return NULL;
2027 return value_cast (arrType, value_copy (desc_data (arr)));
2028 }
2029 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2030 return decode_constrained_packed_array (arr);
2031 else
2032 return arr;
2033 }
2034
2035 /* If ARR does not represent an array, returns ARR unchanged.
2036 Otherwise, returns a standard GDB array describing ARR (which may
2037 be ARR itself if it already is in the proper form). */
2038
2039 struct value *
2040 ada_coerce_to_simple_array (struct value *arr)
2041 {
2042 if (ada_is_array_descriptor_type (value_type (arr)))
2043 {
2044 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2045
2046 if (arrVal == NULL)
2047 error (_("Bounds unavailable for null array pointer."));
2048 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
2049 return value_ind (arrVal);
2050 }
2051 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2052 return decode_constrained_packed_array (arr);
2053 else
2054 return arr;
2055 }
2056
2057 /* If TYPE represents a GNAT array type, return it translated to an
2058 ordinary GDB array type (possibly with BITSIZE fields indicating
2059 packing). For other types, is the identity. */
2060
2061 struct type *
2062 ada_coerce_to_simple_array_type (struct type *type)
2063 {
2064 if (ada_is_constrained_packed_array_type (type))
2065 return decode_constrained_packed_array_type (type);
2066
2067 if (ada_is_array_descriptor_type (type))
2068 return ada_check_typedef (desc_data_target_type (type));
2069
2070 return type;
2071 }
2072
2073 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2074
2075 static int
2076 ada_is_packed_array_type (struct type *type)
2077 {
2078 if (type == NULL)
2079 return 0;
2080 type = desc_base_type (type);
2081 type = ada_check_typedef (type);
2082 return
2083 ada_type_name (type) != NULL
2084 && strstr (ada_type_name (type), "___XP") != NULL;
2085 }
2086
2087 /* Non-zero iff TYPE represents a standard GNAT constrained
2088 packed-array type. */
2089
2090 int
2091 ada_is_constrained_packed_array_type (struct type *type)
2092 {
2093 return ada_is_packed_array_type (type)
2094 && !ada_is_array_descriptor_type (type);
2095 }
2096
2097 /* Non-zero iff TYPE represents an array descriptor for a
2098 unconstrained packed-array type. */
2099
2100 static int
2101 ada_is_unconstrained_packed_array_type (struct type *type)
2102 {
2103 return ada_is_packed_array_type (type)
2104 && ada_is_array_descriptor_type (type);
2105 }
2106
2107 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2108 return the size of its elements in bits. */
2109
2110 static long
2111 decode_packed_array_bitsize (struct type *type)
2112 {
2113 const char *raw_name;
2114 const char *tail;
2115 long bits;
2116
2117 /* Access to arrays implemented as fat pointers are encoded as a typedef
2118 of the fat pointer type. We need the name of the fat pointer type
2119 to do the decoding, so strip the typedef layer. */
2120 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2121 type = ada_typedef_target_type (type);
2122
2123 raw_name = ada_type_name (ada_check_typedef (type));
2124 if (!raw_name)
2125 raw_name = ada_type_name (desc_base_type (type));
2126
2127 if (!raw_name)
2128 return 0;
2129
2130 tail = strstr (raw_name, "___XP");
2131 gdb_assert (tail != NULL);
2132
2133 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2134 {
2135 lim_warning
2136 (_("could not understand bit size information on packed array"));
2137 return 0;
2138 }
2139
2140 return bits;
2141 }
2142
2143 /* Given that TYPE is a standard GDB array type with all bounds filled
2144 in, and that the element size of its ultimate scalar constituents
2145 (that is, either its elements, or, if it is an array of arrays, its
2146 elements' elements, etc.) is *ELT_BITS, return an identical type,
2147 but with the bit sizes of its elements (and those of any
2148 constituent arrays) recorded in the BITSIZE components of its
2149 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2150 in bits. */
2151
2152 static struct type *
2153 constrained_packed_array_type (struct type *type, long *elt_bits)
2154 {
2155 struct type *new_elt_type;
2156 struct type *new_type;
2157 struct type *index_type_desc;
2158 struct type *index_type;
2159 LONGEST low_bound, high_bound;
2160
2161 type = ada_check_typedef (type);
2162 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2163 return type;
2164
2165 index_type_desc = ada_find_parallel_type (type, "___XA");
2166 if (index_type_desc)
2167 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2168 NULL);
2169 else
2170 index_type = TYPE_INDEX_TYPE (type);
2171
2172 new_type = alloc_type_copy (type);
2173 new_elt_type =
2174 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2175 elt_bits);
2176 create_array_type (new_type, new_elt_type, index_type);
2177 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2178 TYPE_NAME (new_type) = ada_type_name (type);
2179
2180 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2181 low_bound = high_bound = 0;
2182 if (high_bound < low_bound)
2183 *elt_bits = TYPE_LENGTH (new_type) = 0;
2184 else
2185 {
2186 *elt_bits *= (high_bound - low_bound + 1);
2187 TYPE_LENGTH (new_type) =
2188 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2189 }
2190
2191 TYPE_FIXED_INSTANCE (new_type) = 1;
2192 return new_type;
2193 }
2194
2195 /* The array type encoded by TYPE, where
2196 ada_is_constrained_packed_array_type (TYPE). */
2197
2198 static struct type *
2199 decode_constrained_packed_array_type (struct type *type)
2200 {
2201 const char *raw_name = ada_type_name (ada_check_typedef (type));
2202 char *name;
2203 const char *tail;
2204 struct type *shadow_type;
2205 long bits;
2206
2207 if (!raw_name)
2208 raw_name = ada_type_name (desc_base_type (type));
2209
2210 if (!raw_name)
2211 return NULL;
2212
2213 name = (char *) alloca (strlen (raw_name) + 1);
2214 tail = strstr (raw_name, "___XP");
2215 type = desc_base_type (type);
2216
2217 memcpy (name, raw_name, tail - raw_name);
2218 name[tail - raw_name] = '\000';
2219
2220 shadow_type = ada_find_parallel_type_with_name (type, name);
2221
2222 if (shadow_type == NULL)
2223 {
2224 lim_warning (_("could not find bounds information on packed array"));
2225 return NULL;
2226 }
2227 CHECK_TYPEDEF (shadow_type);
2228
2229 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2230 {
2231 lim_warning (_("could not understand bounds "
2232 "information on packed array"));
2233 return NULL;
2234 }
2235
2236 bits = decode_packed_array_bitsize (type);
2237 return constrained_packed_array_type (shadow_type, &bits);
2238 }
2239
2240 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2241 array, returns a simple array that denotes that array. Its type is a
2242 standard GDB array type except that the BITSIZEs of the array
2243 target types are set to the number of bits in each element, and the
2244 type length is set appropriately. */
2245
2246 static struct value *
2247 decode_constrained_packed_array (struct value *arr)
2248 {
2249 struct type *type;
2250
2251 /* If our value is a pointer, then dereference it. Likewise if
2252 the value is a reference. Make sure that this operation does not
2253 cause the target type to be fixed, as this would indirectly cause
2254 this array to be decoded. The rest of the routine assumes that
2255 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2256 and "value_ind" routines to perform the dereferencing, as opposed
2257 to using "ada_coerce_ref" or "ada_value_ind". */
2258 arr = coerce_ref (arr);
2259 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2260 arr = value_ind (arr);
2261
2262 type = decode_constrained_packed_array_type (value_type (arr));
2263 if (type == NULL)
2264 {
2265 error (_("can't unpack array"));
2266 return NULL;
2267 }
2268
2269 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2270 && ada_is_modular_type (value_type (arr)))
2271 {
2272 /* This is a (right-justified) modular type representing a packed
2273 array with no wrapper. In order to interpret the value through
2274 the (left-justified) packed array type we just built, we must
2275 first left-justify it. */
2276 int bit_size, bit_pos;
2277 ULONGEST mod;
2278
2279 mod = ada_modulus (value_type (arr)) - 1;
2280 bit_size = 0;
2281 while (mod > 0)
2282 {
2283 bit_size += 1;
2284 mod >>= 1;
2285 }
2286 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2287 arr = ada_value_primitive_packed_val (arr, NULL,
2288 bit_pos / HOST_CHAR_BIT,
2289 bit_pos % HOST_CHAR_BIT,
2290 bit_size,
2291 type);
2292 }
2293
2294 return coerce_unspec_val_to_type (arr, type);
2295 }
2296
2297
2298 /* The value of the element of packed array ARR at the ARITY indices
2299 given in IND. ARR must be a simple array. */
2300
2301 static struct value *
2302 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2303 {
2304 int i;
2305 int bits, elt_off, bit_off;
2306 long elt_total_bit_offset;
2307 struct type *elt_type;
2308 struct value *v;
2309
2310 bits = 0;
2311 elt_total_bit_offset = 0;
2312 elt_type = ada_check_typedef (value_type (arr));
2313 for (i = 0; i < arity; i += 1)
2314 {
2315 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2316 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2317 error
2318 (_("attempt to do packed indexing of "
2319 "something other than a packed array"));
2320 else
2321 {
2322 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2323 LONGEST lowerbound, upperbound;
2324 LONGEST idx;
2325
2326 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2327 {
2328 lim_warning (_("don't know bounds of array"));
2329 lowerbound = upperbound = 0;
2330 }
2331
2332 idx = pos_atr (ind[i]);
2333 if (idx < lowerbound || idx > upperbound)
2334 lim_warning (_("packed array index %ld out of bounds"),
2335 (long) idx);
2336 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2337 elt_total_bit_offset += (idx - lowerbound) * bits;
2338 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2339 }
2340 }
2341 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2342 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2343
2344 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2345 bits, elt_type);
2346 return v;
2347 }
2348
2349 /* Non-zero iff TYPE includes negative integer values. */
2350
2351 static int
2352 has_negatives (struct type *type)
2353 {
2354 switch (TYPE_CODE (type))
2355 {
2356 default:
2357 return 0;
2358 case TYPE_CODE_INT:
2359 return !TYPE_UNSIGNED (type);
2360 case TYPE_CODE_RANGE:
2361 return TYPE_LOW_BOUND (type) < 0;
2362 }
2363 }
2364
2365
2366 /* Create a new value of type TYPE from the contents of OBJ starting
2367 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2368 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2369 assigning through the result will set the field fetched from.
2370 VALADDR is ignored unless OBJ is NULL, in which case,
2371 VALADDR+OFFSET must address the start of storage containing the
2372 packed value. The value returned in this case is never an lval.
2373 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2374
2375 struct value *
2376 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2377 long offset, int bit_offset, int bit_size,
2378 struct type *type)
2379 {
2380 struct value *v;
2381 int src, /* Index into the source area */
2382 targ, /* Index into the target area */
2383 srcBitsLeft, /* Number of source bits left to move */
2384 nsrc, ntarg, /* Number of source and target bytes */
2385 unusedLS, /* Number of bits in next significant
2386 byte of source that are unused */
2387 accumSize; /* Number of meaningful bits in accum */
2388 unsigned char *bytes; /* First byte containing data to unpack */
2389 unsigned char *unpacked;
2390 unsigned long accum; /* Staging area for bits being transferred */
2391 unsigned char sign;
2392 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2393 /* Transmit bytes from least to most significant; delta is the direction
2394 the indices move. */
2395 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2396
2397 type = ada_check_typedef (type);
2398
2399 if (obj == NULL)
2400 {
2401 v = allocate_value (type);
2402 bytes = (unsigned char *) (valaddr + offset);
2403 }
2404 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2405 {
2406 v = value_at (type, value_address (obj));
2407 type = value_type (v);
2408 bytes = (unsigned char *) alloca (len);
2409 read_memory (value_address (v) + offset, bytes, len);
2410 }
2411 else
2412 {
2413 v = allocate_value (type);
2414 bytes = (unsigned char *) value_contents (obj) + offset;
2415 }
2416
2417 if (obj != NULL)
2418 {
2419 long new_offset = offset;
2420
2421 set_value_component_location (v, obj);
2422 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2423 set_value_bitsize (v, bit_size);
2424 if (value_bitpos (v) >= HOST_CHAR_BIT)
2425 {
2426 ++new_offset;
2427 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2428 }
2429 set_value_offset (v, new_offset);
2430
2431 /* Also set the parent value. This is needed when trying to
2432 assign a new value (in inferior memory). */
2433 set_value_parent (v, obj);
2434 }
2435 else
2436 set_value_bitsize (v, bit_size);
2437 unpacked = (unsigned char *) value_contents (v);
2438
2439 srcBitsLeft = bit_size;
2440 nsrc = len;
2441 ntarg = TYPE_LENGTH (type);
2442 sign = 0;
2443 if (bit_size == 0)
2444 {
2445 memset (unpacked, 0, TYPE_LENGTH (type));
2446 return v;
2447 }
2448 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2449 {
2450 src = len - 1;
2451 if (has_negatives (type)
2452 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2453 sign = ~0;
2454
2455 unusedLS =
2456 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2457 % HOST_CHAR_BIT;
2458
2459 switch (TYPE_CODE (type))
2460 {
2461 case TYPE_CODE_ARRAY:
2462 case TYPE_CODE_UNION:
2463 case TYPE_CODE_STRUCT:
2464 /* Non-scalar values must be aligned at a byte boundary... */
2465 accumSize =
2466 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2467 /* ... And are placed at the beginning (most-significant) bytes
2468 of the target. */
2469 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2470 ntarg = targ + 1;
2471 break;
2472 default:
2473 accumSize = 0;
2474 targ = TYPE_LENGTH (type) - 1;
2475 break;
2476 }
2477 }
2478 else
2479 {
2480 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2481
2482 src = targ = 0;
2483 unusedLS = bit_offset;
2484 accumSize = 0;
2485
2486 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2487 sign = ~0;
2488 }
2489
2490 accum = 0;
2491 while (nsrc > 0)
2492 {
2493 /* Mask for removing bits of the next source byte that are not
2494 part of the value. */
2495 unsigned int unusedMSMask =
2496 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2497 1;
2498 /* Sign-extend bits for this byte. */
2499 unsigned int signMask = sign & ~unusedMSMask;
2500
2501 accum |=
2502 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2503 accumSize += HOST_CHAR_BIT - unusedLS;
2504 if (accumSize >= HOST_CHAR_BIT)
2505 {
2506 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2507 accumSize -= HOST_CHAR_BIT;
2508 accum >>= HOST_CHAR_BIT;
2509 ntarg -= 1;
2510 targ += delta;
2511 }
2512 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2513 unusedLS = 0;
2514 nsrc -= 1;
2515 src += delta;
2516 }
2517 while (ntarg > 0)
2518 {
2519 accum |= sign << accumSize;
2520 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2521 accumSize -= HOST_CHAR_BIT;
2522 accum >>= HOST_CHAR_BIT;
2523 ntarg -= 1;
2524 targ += delta;
2525 }
2526
2527 return v;
2528 }
2529
2530 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2531 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2532 not overlap. */
2533 static void
2534 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2535 int src_offset, int n, int bits_big_endian_p)
2536 {
2537 unsigned int accum, mask;
2538 int accum_bits, chunk_size;
2539
2540 target += targ_offset / HOST_CHAR_BIT;
2541 targ_offset %= HOST_CHAR_BIT;
2542 source += src_offset / HOST_CHAR_BIT;
2543 src_offset %= HOST_CHAR_BIT;
2544 if (bits_big_endian_p)
2545 {
2546 accum = (unsigned char) *source;
2547 source += 1;
2548 accum_bits = HOST_CHAR_BIT - src_offset;
2549
2550 while (n > 0)
2551 {
2552 int unused_right;
2553
2554 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2555 accum_bits += HOST_CHAR_BIT;
2556 source += 1;
2557 chunk_size = HOST_CHAR_BIT - targ_offset;
2558 if (chunk_size > n)
2559 chunk_size = n;
2560 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2561 mask = ((1 << chunk_size) - 1) << unused_right;
2562 *target =
2563 (*target & ~mask)
2564 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2565 n -= chunk_size;
2566 accum_bits -= chunk_size;
2567 target += 1;
2568 targ_offset = 0;
2569 }
2570 }
2571 else
2572 {
2573 accum = (unsigned char) *source >> src_offset;
2574 source += 1;
2575 accum_bits = HOST_CHAR_BIT - src_offset;
2576
2577 while (n > 0)
2578 {
2579 accum = accum + ((unsigned char) *source << accum_bits);
2580 accum_bits += HOST_CHAR_BIT;
2581 source += 1;
2582 chunk_size = HOST_CHAR_BIT - targ_offset;
2583 if (chunk_size > n)
2584 chunk_size = n;
2585 mask = ((1 << chunk_size) - 1) << targ_offset;
2586 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2587 n -= chunk_size;
2588 accum_bits -= chunk_size;
2589 accum >>= chunk_size;
2590 target += 1;
2591 targ_offset = 0;
2592 }
2593 }
2594 }
2595
2596 /* Store the contents of FROMVAL into the location of TOVAL.
2597 Return a new value with the location of TOVAL and contents of
2598 FROMVAL. Handles assignment into packed fields that have
2599 floating-point or non-scalar types. */
2600
2601 static struct value *
2602 ada_value_assign (struct value *toval, struct value *fromval)
2603 {
2604 struct type *type = value_type (toval);
2605 int bits = value_bitsize (toval);
2606
2607 toval = ada_coerce_ref (toval);
2608 fromval = ada_coerce_ref (fromval);
2609
2610 if (ada_is_direct_array_type (value_type (toval)))
2611 toval = ada_coerce_to_simple_array (toval);
2612 if (ada_is_direct_array_type (value_type (fromval)))
2613 fromval = ada_coerce_to_simple_array (fromval);
2614
2615 if (!deprecated_value_modifiable (toval))
2616 error (_("Left operand of assignment is not a modifiable lvalue."));
2617
2618 if (VALUE_LVAL (toval) == lval_memory
2619 && bits > 0
2620 && (TYPE_CODE (type) == TYPE_CODE_FLT
2621 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2622 {
2623 int len = (value_bitpos (toval)
2624 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2625 int from_size;
2626 gdb_byte *buffer = alloca (len);
2627 struct value *val;
2628 CORE_ADDR to_addr = value_address (toval);
2629
2630 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2631 fromval = value_cast (type, fromval);
2632
2633 read_memory (to_addr, buffer, len);
2634 from_size = value_bitsize (fromval);
2635 if (from_size == 0)
2636 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2637 if (gdbarch_bits_big_endian (get_type_arch (type)))
2638 move_bits (buffer, value_bitpos (toval),
2639 value_contents (fromval), from_size - bits, bits, 1);
2640 else
2641 move_bits (buffer, value_bitpos (toval),
2642 value_contents (fromval), 0, bits, 0);
2643 write_memory_with_notification (to_addr, buffer, len);
2644
2645 val = value_copy (toval);
2646 memcpy (value_contents_raw (val), value_contents (fromval),
2647 TYPE_LENGTH (type));
2648 deprecated_set_value_type (val, type);
2649
2650 return val;
2651 }
2652
2653 return value_assign (toval, fromval);
2654 }
2655
2656
2657 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2658 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2659 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2660 * COMPONENT, and not the inferior's memory. The current contents
2661 * of COMPONENT are ignored. */
2662 static void
2663 value_assign_to_component (struct value *container, struct value *component,
2664 struct value *val)
2665 {
2666 LONGEST offset_in_container =
2667 (LONGEST) (value_address (component) - value_address (container));
2668 int bit_offset_in_container =
2669 value_bitpos (component) - value_bitpos (container);
2670 int bits;
2671
2672 val = value_cast (value_type (component), val);
2673
2674 if (value_bitsize (component) == 0)
2675 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2676 else
2677 bits = value_bitsize (component);
2678
2679 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2680 move_bits (value_contents_writeable (container) + offset_in_container,
2681 value_bitpos (container) + bit_offset_in_container,
2682 value_contents (val),
2683 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2684 bits, 1);
2685 else
2686 move_bits (value_contents_writeable (container) + offset_in_container,
2687 value_bitpos (container) + bit_offset_in_container,
2688 value_contents (val), 0, bits, 0);
2689 }
2690
2691 /* The value of the element of array ARR at the ARITY indices given in IND.
2692 ARR may be either a simple array, GNAT array descriptor, or pointer
2693 thereto. */
2694
2695 struct value *
2696 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2697 {
2698 int k;
2699 struct value *elt;
2700 struct type *elt_type;
2701
2702 elt = ada_coerce_to_simple_array (arr);
2703
2704 elt_type = ada_check_typedef (value_type (elt));
2705 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2706 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2707 return value_subscript_packed (elt, arity, ind);
2708
2709 for (k = 0; k < arity; k += 1)
2710 {
2711 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2712 error (_("too many subscripts (%d expected)"), k);
2713 elt = value_subscript (elt, pos_atr (ind[k]));
2714 }
2715 return elt;
2716 }
2717
2718 /* Assuming ARR is a pointer to a GDB array, the value of the element
2719 of *ARR at the ARITY indices given in IND.
2720 Does not read the entire array into memory. */
2721
2722 static struct value *
2723 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2724 {
2725 int k;
2726 struct type *type
2727 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
2728
2729 for (k = 0; k < arity; k += 1)
2730 {
2731 LONGEST lwb, upb;
2732
2733 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2734 error (_("too many subscripts (%d expected)"), k);
2735 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2736 value_copy (arr));
2737 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2738 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2739 type = TYPE_TARGET_TYPE (type);
2740 }
2741
2742 return value_ind (arr);
2743 }
2744
2745 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2746 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2747 elements starting at index LOW. The lower bound of this array is LOW, as
2748 per Ada rules. */
2749 static struct value *
2750 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2751 int low, int high)
2752 {
2753 struct type *type0 = ada_check_typedef (type);
2754 CORE_ADDR base = value_as_address (array_ptr)
2755 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2756 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2757 struct type *index_type
2758 = create_static_range_type (NULL,
2759 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2760 low, high);
2761 struct type *slice_type =
2762 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2763
2764 return value_at_lazy (slice_type, base);
2765 }
2766
2767
2768 static struct value *
2769 ada_value_slice (struct value *array, int low, int high)
2770 {
2771 struct type *type = ada_check_typedef (value_type (array));
2772 struct type *index_type
2773 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2774 struct type *slice_type =
2775 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2776
2777 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2778 }
2779
2780 /* If type is a record type in the form of a standard GNAT array
2781 descriptor, returns the number of dimensions for type. If arr is a
2782 simple array, returns the number of "array of"s that prefix its
2783 type designation. Otherwise, returns 0. */
2784
2785 int
2786 ada_array_arity (struct type *type)
2787 {
2788 int arity;
2789
2790 if (type == NULL)
2791 return 0;
2792
2793 type = desc_base_type (type);
2794
2795 arity = 0;
2796 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2797 return desc_arity (desc_bounds_type (type));
2798 else
2799 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2800 {
2801 arity += 1;
2802 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2803 }
2804
2805 return arity;
2806 }
2807
2808 /* If TYPE is a record type in the form of a standard GNAT array
2809 descriptor or a simple array type, returns the element type for
2810 TYPE after indexing by NINDICES indices, or by all indices if
2811 NINDICES is -1. Otherwise, returns NULL. */
2812
2813 struct type *
2814 ada_array_element_type (struct type *type, int nindices)
2815 {
2816 type = desc_base_type (type);
2817
2818 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2819 {
2820 int k;
2821 struct type *p_array_type;
2822
2823 p_array_type = desc_data_target_type (type);
2824
2825 k = ada_array_arity (type);
2826 if (k == 0)
2827 return NULL;
2828
2829 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2830 if (nindices >= 0 && k > nindices)
2831 k = nindices;
2832 while (k > 0 && p_array_type != NULL)
2833 {
2834 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2835 k -= 1;
2836 }
2837 return p_array_type;
2838 }
2839 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2840 {
2841 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2842 {
2843 type = TYPE_TARGET_TYPE (type);
2844 nindices -= 1;
2845 }
2846 return type;
2847 }
2848
2849 return NULL;
2850 }
2851
2852 /* The type of nth index in arrays of given type (n numbering from 1).
2853 Does not examine memory. Throws an error if N is invalid or TYPE
2854 is not an array type. NAME is the name of the Ada attribute being
2855 evaluated ('range, 'first, 'last, or 'length); it is used in building
2856 the error message. */
2857
2858 static struct type *
2859 ada_index_type (struct type *type, int n, const char *name)
2860 {
2861 struct type *result_type;
2862
2863 type = desc_base_type (type);
2864
2865 if (n < 0 || n > ada_array_arity (type))
2866 error (_("invalid dimension number to '%s"), name);
2867
2868 if (ada_is_simple_array_type (type))
2869 {
2870 int i;
2871
2872 for (i = 1; i < n; i += 1)
2873 type = TYPE_TARGET_TYPE (type);
2874 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2875 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2876 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2877 perhaps stabsread.c would make more sense. */
2878 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2879 result_type = NULL;
2880 }
2881 else
2882 {
2883 result_type = desc_index_type (desc_bounds_type (type), n);
2884 if (result_type == NULL)
2885 error (_("attempt to take bound of something that is not an array"));
2886 }
2887
2888 return result_type;
2889 }
2890
2891 /* Given that arr is an array type, returns the lower bound of the
2892 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2893 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2894 array-descriptor type. It works for other arrays with bounds supplied
2895 by run-time quantities other than discriminants. */
2896
2897 static LONGEST
2898 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2899 {
2900 struct type *type, *index_type_desc, *index_type;
2901 int i;
2902
2903 gdb_assert (which == 0 || which == 1);
2904
2905 if (ada_is_constrained_packed_array_type (arr_type))
2906 arr_type = decode_constrained_packed_array_type (arr_type);
2907
2908 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2909 return (LONGEST) - which;
2910
2911 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2912 type = TYPE_TARGET_TYPE (arr_type);
2913 else
2914 type = arr_type;
2915
2916 index_type_desc = ada_find_parallel_type (type, "___XA");
2917 ada_fixup_array_indexes_type (index_type_desc);
2918 if (index_type_desc != NULL)
2919 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2920 NULL);
2921 else
2922 {
2923 struct type *elt_type = check_typedef (type);
2924
2925 for (i = 1; i < n; i++)
2926 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2927
2928 index_type = TYPE_INDEX_TYPE (elt_type);
2929 }
2930
2931 return
2932 (LONGEST) (which == 0
2933 ? ada_discrete_type_low_bound (index_type)
2934 : ada_discrete_type_high_bound (index_type));
2935 }
2936
2937 /* Given that arr is an array value, returns the lower bound of the
2938 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2939 WHICH is 1. This routine will also work for arrays with bounds
2940 supplied by run-time quantities other than discriminants. */
2941
2942 static LONGEST
2943 ada_array_bound (struct value *arr, int n, int which)
2944 {
2945 struct type *arr_type;
2946
2947 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2948 arr = value_ind (arr);
2949 arr_type = value_enclosing_type (arr);
2950
2951 if (ada_is_constrained_packed_array_type (arr_type))
2952 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2953 else if (ada_is_simple_array_type (arr_type))
2954 return ada_array_bound_from_type (arr_type, n, which);
2955 else
2956 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2957 }
2958
2959 /* Given that arr is an array value, returns the length of the
2960 nth index. This routine will also work for arrays with bounds
2961 supplied by run-time quantities other than discriminants.
2962 Does not work for arrays indexed by enumeration types with representation
2963 clauses at the moment. */
2964
2965 static LONGEST
2966 ada_array_length (struct value *arr, int n)
2967 {
2968 struct type *arr_type;
2969
2970 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2971 arr = value_ind (arr);
2972 arr_type = value_enclosing_type (arr);
2973
2974 if (ada_is_constrained_packed_array_type (arr_type))
2975 return ada_array_length (decode_constrained_packed_array (arr), n);
2976
2977 if (ada_is_simple_array_type (arr_type))
2978 return (ada_array_bound_from_type (arr_type, n, 1)
2979 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2980 else
2981 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2982 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2983 }
2984
2985 /* An empty array whose type is that of ARR_TYPE (an array type),
2986 with bounds LOW to LOW-1. */
2987
2988 static struct value *
2989 empty_array (struct type *arr_type, int low)
2990 {
2991 struct type *arr_type0 = ada_check_typedef (arr_type);
2992 struct type *index_type
2993 = create_static_range_type
2994 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
2995 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2996
2997 return allocate_value (create_array_type (NULL, elt_type, index_type));
2998 }
2999 \f
3000
3001 /* Name resolution */
3002
3003 /* The "decoded" name for the user-definable Ada operator corresponding
3004 to OP. */
3005
3006 static const char *
3007 ada_decoded_op_name (enum exp_opcode op)
3008 {
3009 int i;
3010
3011 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3012 {
3013 if (ada_opname_table[i].op == op)
3014 return ada_opname_table[i].decoded;
3015 }
3016 error (_("Could not find operator name for opcode"));
3017 }
3018
3019
3020 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3021 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3022 undefined namespace) and converts operators that are
3023 user-defined into appropriate function calls. If CONTEXT_TYPE is
3024 non-null, it provides a preferred result type [at the moment, only
3025 type void has any effect---causing procedures to be preferred over
3026 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3027 return type is preferred. May change (expand) *EXP. */
3028
3029 static void
3030 resolve (struct expression **expp, int void_context_p)
3031 {
3032 struct type *context_type = NULL;
3033 int pc = 0;
3034
3035 if (void_context_p)
3036 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3037
3038 resolve_subexp (expp, &pc, 1, context_type);
3039 }
3040
3041 /* Resolve the operator of the subexpression beginning at
3042 position *POS of *EXPP. "Resolving" consists of replacing
3043 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3044 with their resolutions, replacing built-in operators with
3045 function calls to user-defined operators, where appropriate, and,
3046 when DEPROCEDURE_P is non-zero, converting function-valued variables
3047 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3048 are as in ada_resolve, above. */
3049
3050 static struct value *
3051 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3052 struct type *context_type)
3053 {
3054 int pc = *pos;
3055 int i;
3056 struct expression *exp; /* Convenience: == *expp. */
3057 enum exp_opcode op = (*expp)->elts[pc].opcode;
3058 struct value **argvec; /* Vector of operand types (alloca'ed). */
3059 int nargs; /* Number of operands. */
3060 int oplen;
3061
3062 argvec = NULL;
3063 nargs = 0;
3064 exp = *expp;
3065
3066 /* Pass one: resolve operands, saving their types and updating *pos,
3067 if needed. */
3068 switch (op)
3069 {
3070 case OP_FUNCALL:
3071 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3072 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3073 *pos += 7;
3074 else
3075 {
3076 *pos += 3;
3077 resolve_subexp (expp, pos, 0, NULL);
3078 }
3079 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3080 break;
3081
3082 case UNOP_ADDR:
3083 *pos += 1;
3084 resolve_subexp (expp, pos, 0, NULL);
3085 break;
3086
3087 case UNOP_QUAL:
3088 *pos += 3;
3089 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3090 break;
3091
3092 case OP_ATR_MODULUS:
3093 case OP_ATR_SIZE:
3094 case OP_ATR_TAG:
3095 case OP_ATR_FIRST:
3096 case OP_ATR_LAST:
3097 case OP_ATR_LENGTH:
3098 case OP_ATR_POS:
3099 case OP_ATR_VAL:
3100 case OP_ATR_MIN:
3101 case OP_ATR_MAX:
3102 case TERNOP_IN_RANGE:
3103 case BINOP_IN_BOUNDS:
3104 case UNOP_IN_RANGE:
3105 case OP_AGGREGATE:
3106 case OP_OTHERS:
3107 case OP_CHOICES:
3108 case OP_POSITIONAL:
3109 case OP_DISCRETE_RANGE:
3110 case OP_NAME:
3111 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3112 *pos += oplen;
3113 break;
3114
3115 case BINOP_ASSIGN:
3116 {
3117 struct value *arg1;
3118
3119 *pos += 1;
3120 arg1 = resolve_subexp (expp, pos, 0, NULL);
3121 if (arg1 == NULL)
3122 resolve_subexp (expp, pos, 1, NULL);
3123 else
3124 resolve_subexp (expp, pos, 1, value_type (arg1));
3125 break;
3126 }
3127
3128 case UNOP_CAST:
3129 *pos += 3;
3130 nargs = 1;
3131 break;
3132
3133 case BINOP_ADD:
3134 case BINOP_SUB:
3135 case BINOP_MUL:
3136 case BINOP_DIV:
3137 case BINOP_REM:
3138 case BINOP_MOD:
3139 case BINOP_EXP:
3140 case BINOP_CONCAT:
3141 case BINOP_LOGICAL_AND:
3142 case BINOP_LOGICAL_OR:
3143 case BINOP_BITWISE_AND:
3144 case BINOP_BITWISE_IOR:
3145 case BINOP_BITWISE_XOR:
3146
3147 case BINOP_EQUAL:
3148 case BINOP_NOTEQUAL:
3149 case BINOP_LESS:
3150 case BINOP_GTR:
3151 case BINOP_LEQ:
3152 case BINOP_GEQ:
3153
3154 case BINOP_REPEAT:
3155 case BINOP_SUBSCRIPT:
3156 case BINOP_COMMA:
3157 *pos += 1;
3158 nargs = 2;
3159 break;
3160
3161 case UNOP_NEG:
3162 case UNOP_PLUS:
3163 case UNOP_LOGICAL_NOT:
3164 case UNOP_ABS:
3165 case UNOP_IND:
3166 *pos += 1;
3167 nargs = 1;
3168 break;
3169
3170 case OP_LONG:
3171 case OP_DOUBLE:
3172 case OP_VAR_VALUE:
3173 *pos += 4;
3174 break;
3175
3176 case OP_TYPE:
3177 case OP_BOOL:
3178 case OP_LAST:
3179 case OP_INTERNALVAR:
3180 *pos += 3;
3181 break;
3182
3183 case UNOP_MEMVAL:
3184 *pos += 3;
3185 nargs = 1;
3186 break;
3187
3188 case OP_REGISTER:
3189 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3190 break;
3191
3192 case STRUCTOP_STRUCT:
3193 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3194 nargs = 1;
3195 break;
3196
3197 case TERNOP_SLICE:
3198 *pos += 1;
3199 nargs = 3;
3200 break;
3201
3202 case OP_STRING:
3203 break;
3204
3205 default:
3206 error (_("Unexpected operator during name resolution"));
3207 }
3208
3209 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3210 for (i = 0; i < nargs; i += 1)
3211 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3212 argvec[i] = NULL;
3213 exp = *expp;
3214
3215 /* Pass two: perform any resolution on principal operator. */
3216 switch (op)
3217 {
3218 default:
3219 break;
3220
3221 case OP_VAR_VALUE:
3222 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3223 {
3224 struct ada_symbol_info *candidates;
3225 int n_candidates;
3226
3227 n_candidates =
3228 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3229 (exp->elts[pc + 2].symbol),
3230 exp->elts[pc + 1].block, VAR_DOMAIN,
3231 &candidates);
3232
3233 if (n_candidates > 1)
3234 {
3235 /* Types tend to get re-introduced locally, so if there
3236 are any local symbols that are not types, first filter
3237 out all types. */
3238 int j;
3239 for (j = 0; j < n_candidates; j += 1)
3240 switch (SYMBOL_CLASS (candidates[j].sym))
3241 {
3242 case LOC_REGISTER:
3243 case LOC_ARG:
3244 case LOC_REF_ARG:
3245 case LOC_REGPARM_ADDR:
3246 case LOC_LOCAL:
3247 case LOC_COMPUTED:
3248 goto FoundNonType;
3249 default:
3250 break;
3251 }
3252 FoundNonType:
3253 if (j < n_candidates)
3254 {
3255 j = 0;
3256 while (j < n_candidates)
3257 {
3258 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3259 {
3260 candidates[j] = candidates[n_candidates - 1];
3261 n_candidates -= 1;
3262 }
3263 else
3264 j += 1;
3265 }
3266 }
3267 }
3268
3269 if (n_candidates == 0)
3270 error (_("No definition found for %s"),
3271 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3272 else if (n_candidates == 1)
3273 i = 0;
3274 else if (deprocedure_p
3275 && !is_nonfunction (candidates, n_candidates))
3276 {
3277 i = ada_resolve_function
3278 (candidates, n_candidates, NULL, 0,
3279 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3280 context_type);
3281 if (i < 0)
3282 error (_("Could not find a match for %s"),
3283 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3284 }
3285 else
3286 {
3287 printf_filtered (_("Multiple matches for %s\n"),
3288 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3289 user_select_syms (candidates, n_candidates, 1);
3290 i = 0;
3291 }
3292
3293 exp->elts[pc + 1].block = candidates[i].block;
3294 exp->elts[pc + 2].symbol = candidates[i].sym;
3295 if (innermost_block == NULL
3296 || contained_in (candidates[i].block, innermost_block))
3297 innermost_block = candidates[i].block;
3298 }
3299
3300 if (deprocedure_p
3301 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3302 == TYPE_CODE_FUNC))
3303 {
3304 replace_operator_with_call (expp, pc, 0, 0,
3305 exp->elts[pc + 2].symbol,
3306 exp->elts[pc + 1].block);
3307 exp = *expp;
3308 }
3309 break;
3310
3311 case OP_FUNCALL:
3312 {
3313 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3314 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3315 {
3316 struct ada_symbol_info *candidates;
3317 int n_candidates;
3318
3319 n_candidates =
3320 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3321 (exp->elts[pc + 5].symbol),
3322 exp->elts[pc + 4].block, VAR_DOMAIN,
3323 &candidates);
3324 if (n_candidates == 1)
3325 i = 0;
3326 else
3327 {
3328 i = ada_resolve_function
3329 (candidates, n_candidates,
3330 argvec, nargs,
3331 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3332 context_type);
3333 if (i < 0)
3334 error (_("Could not find a match for %s"),
3335 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3336 }
3337
3338 exp->elts[pc + 4].block = candidates[i].block;
3339 exp->elts[pc + 5].symbol = candidates[i].sym;
3340 if (innermost_block == NULL
3341 || contained_in (candidates[i].block, innermost_block))
3342 innermost_block = candidates[i].block;
3343 }
3344 }
3345 break;
3346 case BINOP_ADD:
3347 case BINOP_SUB:
3348 case BINOP_MUL:
3349 case BINOP_DIV:
3350 case BINOP_REM:
3351 case BINOP_MOD:
3352 case BINOP_CONCAT:
3353 case BINOP_BITWISE_AND:
3354 case BINOP_BITWISE_IOR:
3355 case BINOP_BITWISE_XOR:
3356 case BINOP_EQUAL:
3357 case BINOP_NOTEQUAL:
3358 case BINOP_LESS:
3359 case BINOP_GTR:
3360 case BINOP_LEQ:
3361 case BINOP_GEQ:
3362 case BINOP_EXP:
3363 case UNOP_NEG:
3364 case UNOP_PLUS:
3365 case UNOP_LOGICAL_NOT:
3366 case UNOP_ABS:
3367 if (possible_user_operator_p (op, argvec))
3368 {
3369 struct ada_symbol_info *candidates;
3370 int n_candidates;
3371
3372 n_candidates =
3373 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3374 (struct block *) NULL, VAR_DOMAIN,
3375 &candidates);
3376 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3377 ada_decoded_op_name (op), NULL);
3378 if (i < 0)
3379 break;
3380
3381 replace_operator_with_call (expp, pc, nargs, 1,
3382 candidates[i].sym, candidates[i].block);
3383 exp = *expp;
3384 }
3385 break;
3386
3387 case OP_TYPE:
3388 case OP_REGISTER:
3389 return NULL;
3390 }
3391
3392 *pos = pc;
3393 return evaluate_subexp_type (exp, pos);
3394 }
3395
3396 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3397 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3398 a non-pointer. */
3399 /* The term "match" here is rather loose. The match is heuristic and
3400 liberal. */
3401
3402 static int
3403 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3404 {
3405 ftype = ada_check_typedef (ftype);
3406 atype = ada_check_typedef (atype);
3407
3408 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3409 ftype = TYPE_TARGET_TYPE (ftype);
3410 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3411 atype = TYPE_TARGET_TYPE (atype);
3412
3413 switch (TYPE_CODE (ftype))
3414 {
3415 default:
3416 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3417 case TYPE_CODE_PTR:
3418 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3419 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3420 TYPE_TARGET_TYPE (atype), 0);
3421 else
3422 return (may_deref
3423 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3424 case TYPE_CODE_INT:
3425 case TYPE_CODE_ENUM:
3426 case TYPE_CODE_RANGE:
3427 switch (TYPE_CODE (atype))
3428 {
3429 case TYPE_CODE_INT:
3430 case TYPE_CODE_ENUM:
3431 case TYPE_CODE_RANGE:
3432 return 1;
3433 default:
3434 return 0;
3435 }
3436
3437 case TYPE_CODE_ARRAY:
3438 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3439 || ada_is_array_descriptor_type (atype));
3440
3441 case TYPE_CODE_STRUCT:
3442 if (ada_is_array_descriptor_type (ftype))
3443 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3444 || ada_is_array_descriptor_type (atype));
3445 else
3446 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3447 && !ada_is_array_descriptor_type (atype));
3448
3449 case TYPE_CODE_UNION:
3450 case TYPE_CODE_FLT:
3451 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3452 }
3453 }
3454
3455 /* Return non-zero if the formals of FUNC "sufficiently match" the
3456 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3457 may also be an enumeral, in which case it is treated as a 0-
3458 argument function. */
3459
3460 static int
3461 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3462 {
3463 int i;
3464 struct type *func_type = SYMBOL_TYPE (func);
3465
3466 if (SYMBOL_CLASS (func) == LOC_CONST
3467 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3468 return (n_actuals == 0);
3469 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3470 return 0;
3471
3472 if (TYPE_NFIELDS (func_type) != n_actuals)
3473 return 0;
3474
3475 for (i = 0; i < n_actuals; i += 1)
3476 {
3477 if (actuals[i] == NULL)
3478 return 0;
3479 else
3480 {
3481 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3482 i));
3483 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3484
3485 if (!ada_type_match (ftype, atype, 1))
3486 return 0;
3487 }
3488 }
3489 return 1;
3490 }
3491
3492 /* False iff function type FUNC_TYPE definitely does not produce a value
3493 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3494 FUNC_TYPE is not a valid function type with a non-null return type
3495 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3496
3497 static int
3498 return_match (struct type *func_type, struct type *context_type)
3499 {
3500 struct type *return_type;
3501
3502 if (func_type == NULL)
3503 return 1;
3504
3505 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3506 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3507 else
3508 return_type = get_base_type (func_type);
3509 if (return_type == NULL)
3510 return 1;
3511
3512 context_type = get_base_type (context_type);
3513
3514 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3515 return context_type == NULL || return_type == context_type;
3516 else if (context_type == NULL)
3517 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3518 else
3519 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3520 }
3521
3522
3523 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3524 function (if any) that matches the types of the NARGS arguments in
3525 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3526 that returns that type, then eliminate matches that don't. If
3527 CONTEXT_TYPE is void and there is at least one match that does not
3528 return void, eliminate all matches that do.
3529
3530 Asks the user if there is more than one match remaining. Returns -1
3531 if there is no such symbol or none is selected. NAME is used
3532 solely for messages. May re-arrange and modify SYMS in
3533 the process; the index returned is for the modified vector. */
3534
3535 static int
3536 ada_resolve_function (struct ada_symbol_info syms[],
3537 int nsyms, struct value **args, int nargs,
3538 const char *name, struct type *context_type)
3539 {
3540 int fallback;
3541 int k;
3542 int m; /* Number of hits */
3543
3544 m = 0;
3545 /* In the first pass of the loop, we only accept functions matching
3546 context_type. If none are found, we add a second pass of the loop
3547 where every function is accepted. */
3548 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3549 {
3550 for (k = 0; k < nsyms; k += 1)
3551 {
3552 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3553
3554 if (ada_args_match (syms[k].sym, args, nargs)
3555 && (fallback || return_match (type, context_type)))
3556 {
3557 syms[m] = syms[k];
3558 m += 1;
3559 }
3560 }
3561 }
3562
3563 if (m == 0)
3564 return -1;
3565 else if (m > 1)
3566 {
3567 printf_filtered (_("Multiple matches for %s\n"), name);
3568 user_select_syms (syms, m, 1);
3569 return 0;
3570 }
3571 return 0;
3572 }
3573
3574 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3575 in a listing of choices during disambiguation (see sort_choices, below).
3576 The idea is that overloadings of a subprogram name from the
3577 same package should sort in their source order. We settle for ordering
3578 such symbols by their trailing number (__N or $N). */
3579
3580 static int
3581 encoded_ordered_before (const char *N0, const char *N1)
3582 {
3583 if (N1 == NULL)
3584 return 0;
3585 else if (N0 == NULL)
3586 return 1;
3587 else
3588 {
3589 int k0, k1;
3590
3591 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3592 ;
3593 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3594 ;
3595 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3596 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3597 {
3598 int n0, n1;
3599
3600 n0 = k0;
3601 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3602 n0 -= 1;
3603 n1 = k1;
3604 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3605 n1 -= 1;
3606 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3607 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3608 }
3609 return (strcmp (N0, N1) < 0);
3610 }
3611 }
3612
3613 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3614 encoded names. */
3615
3616 static void
3617 sort_choices (struct ada_symbol_info syms[], int nsyms)
3618 {
3619 int i;
3620
3621 for (i = 1; i < nsyms; i += 1)
3622 {
3623 struct ada_symbol_info sym = syms[i];
3624 int j;
3625
3626 for (j = i - 1; j >= 0; j -= 1)
3627 {
3628 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3629 SYMBOL_LINKAGE_NAME (sym.sym)))
3630 break;
3631 syms[j + 1] = syms[j];
3632 }
3633 syms[j + 1] = sym;
3634 }
3635 }
3636
3637 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3638 by asking the user (if necessary), returning the number selected,
3639 and setting the first elements of SYMS items. Error if no symbols
3640 selected. */
3641
3642 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3643 to be re-integrated one of these days. */
3644
3645 int
3646 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3647 {
3648 int i;
3649 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3650 int n_chosen;
3651 int first_choice = (max_results == 1) ? 1 : 2;
3652 const char *select_mode = multiple_symbols_select_mode ();
3653
3654 if (max_results < 1)
3655 error (_("Request to select 0 symbols!"));
3656 if (nsyms <= 1)
3657 return nsyms;
3658
3659 if (select_mode == multiple_symbols_cancel)
3660 error (_("\
3661 canceled because the command is ambiguous\n\
3662 See set/show multiple-symbol."));
3663
3664 /* If select_mode is "all", then return all possible symbols.
3665 Only do that if more than one symbol can be selected, of course.
3666 Otherwise, display the menu as usual. */
3667 if (select_mode == multiple_symbols_all && max_results > 1)
3668 return nsyms;
3669
3670 printf_unfiltered (_("[0] cancel\n"));
3671 if (max_results > 1)
3672 printf_unfiltered (_("[1] all\n"));
3673
3674 sort_choices (syms, nsyms);
3675
3676 for (i = 0; i < nsyms; i += 1)
3677 {
3678 if (syms[i].sym == NULL)
3679 continue;
3680
3681 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3682 {
3683 struct symtab_and_line sal =
3684 find_function_start_sal (syms[i].sym, 1);
3685
3686 if (sal.symtab == NULL)
3687 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3688 i + first_choice,
3689 SYMBOL_PRINT_NAME (syms[i].sym),
3690 sal.line);
3691 else
3692 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3693 SYMBOL_PRINT_NAME (syms[i].sym),
3694 symtab_to_filename_for_display (sal.symtab),
3695 sal.line);
3696 continue;
3697 }
3698 else
3699 {
3700 int is_enumeral =
3701 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3702 && SYMBOL_TYPE (syms[i].sym) != NULL
3703 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3704 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3705
3706 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3707 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3708 i + first_choice,
3709 SYMBOL_PRINT_NAME (syms[i].sym),
3710 symtab_to_filename_for_display (symtab),
3711 SYMBOL_LINE (syms[i].sym));
3712 else if (is_enumeral
3713 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3714 {
3715 printf_unfiltered (("[%d] "), i + first_choice);
3716 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3717 gdb_stdout, -1, 0, &type_print_raw_options);
3718 printf_unfiltered (_("'(%s) (enumeral)\n"),
3719 SYMBOL_PRINT_NAME (syms[i].sym));
3720 }
3721 else if (symtab != NULL)
3722 printf_unfiltered (is_enumeral
3723 ? _("[%d] %s in %s (enumeral)\n")
3724 : _("[%d] %s at %s:?\n"),
3725 i + first_choice,
3726 SYMBOL_PRINT_NAME (syms[i].sym),
3727 symtab_to_filename_for_display (symtab));
3728 else
3729 printf_unfiltered (is_enumeral
3730 ? _("[%d] %s (enumeral)\n")
3731 : _("[%d] %s at ?\n"),
3732 i + first_choice,
3733 SYMBOL_PRINT_NAME (syms[i].sym));
3734 }
3735 }
3736
3737 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3738 "overload-choice");
3739
3740 for (i = 0; i < n_chosen; i += 1)
3741 syms[i] = syms[chosen[i]];
3742
3743 return n_chosen;
3744 }
3745
3746 /* Read and validate a set of numeric choices from the user in the
3747 range 0 .. N_CHOICES-1. Place the results in increasing
3748 order in CHOICES[0 .. N-1], and return N.
3749
3750 The user types choices as a sequence of numbers on one line
3751 separated by blanks, encoding them as follows:
3752
3753 + A choice of 0 means to cancel the selection, throwing an error.
3754 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3755 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3756
3757 The user is not allowed to choose more than MAX_RESULTS values.
3758
3759 ANNOTATION_SUFFIX, if present, is used to annotate the input
3760 prompts (for use with the -f switch). */
3761
3762 int
3763 get_selections (int *choices, int n_choices, int max_results,
3764 int is_all_choice, char *annotation_suffix)
3765 {
3766 char *args;
3767 char *prompt;
3768 int n_chosen;
3769 int first_choice = is_all_choice ? 2 : 1;
3770
3771 prompt = getenv ("PS2");
3772 if (prompt == NULL)
3773 prompt = "> ";
3774
3775 args = command_line_input (prompt, 0, annotation_suffix);
3776
3777 if (args == NULL)
3778 error_no_arg (_("one or more choice numbers"));
3779
3780 n_chosen = 0;
3781
3782 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3783 order, as given in args. Choices are validated. */
3784 while (1)
3785 {
3786 char *args2;
3787 int choice, j;
3788
3789 args = skip_spaces (args);
3790 if (*args == '\0' && n_chosen == 0)
3791 error_no_arg (_("one or more choice numbers"));
3792 else if (*args == '\0')
3793 break;
3794
3795 choice = strtol (args, &args2, 10);
3796 if (args == args2 || choice < 0
3797 || choice > n_choices + first_choice - 1)
3798 error (_("Argument must be choice number"));
3799 args = args2;
3800
3801 if (choice == 0)
3802 error (_("cancelled"));
3803
3804 if (choice < first_choice)
3805 {
3806 n_chosen = n_choices;
3807 for (j = 0; j < n_choices; j += 1)
3808 choices[j] = j;
3809 break;
3810 }
3811 choice -= first_choice;
3812
3813 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3814 {
3815 }
3816
3817 if (j < 0 || choice != choices[j])
3818 {
3819 int k;
3820
3821 for (k = n_chosen - 1; k > j; k -= 1)
3822 choices[k + 1] = choices[k];
3823 choices[j + 1] = choice;
3824 n_chosen += 1;
3825 }
3826 }
3827
3828 if (n_chosen > max_results)
3829 error (_("Select no more than %d of the above"), max_results);
3830
3831 return n_chosen;
3832 }
3833
3834 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3835 on the function identified by SYM and BLOCK, and taking NARGS
3836 arguments. Update *EXPP as needed to hold more space. */
3837
3838 static void
3839 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3840 int oplen, struct symbol *sym,
3841 const struct block *block)
3842 {
3843 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3844 symbol, -oplen for operator being replaced). */
3845 struct expression *newexp = (struct expression *)
3846 xzalloc (sizeof (struct expression)
3847 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3848 struct expression *exp = *expp;
3849
3850 newexp->nelts = exp->nelts + 7 - oplen;
3851 newexp->language_defn = exp->language_defn;
3852 newexp->gdbarch = exp->gdbarch;
3853 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3854 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3855 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3856
3857 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3858 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3859
3860 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3861 newexp->elts[pc + 4].block = block;
3862 newexp->elts[pc + 5].symbol = sym;
3863
3864 *expp = newexp;
3865 xfree (exp);
3866 }
3867
3868 /* Type-class predicates */
3869
3870 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3871 or FLOAT). */
3872
3873 static int
3874 numeric_type_p (struct type *type)
3875 {
3876 if (type == NULL)
3877 return 0;
3878 else
3879 {
3880 switch (TYPE_CODE (type))
3881 {
3882 case TYPE_CODE_INT:
3883 case TYPE_CODE_FLT:
3884 return 1;
3885 case TYPE_CODE_RANGE:
3886 return (type == TYPE_TARGET_TYPE (type)
3887 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3888 default:
3889 return 0;
3890 }
3891 }
3892 }
3893
3894 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3895
3896 static int
3897 integer_type_p (struct type *type)
3898 {
3899 if (type == NULL)
3900 return 0;
3901 else
3902 {
3903 switch (TYPE_CODE (type))
3904 {
3905 case TYPE_CODE_INT:
3906 return 1;
3907 case TYPE_CODE_RANGE:
3908 return (type == TYPE_TARGET_TYPE (type)
3909 || integer_type_p (TYPE_TARGET_TYPE (type)));
3910 default:
3911 return 0;
3912 }
3913 }
3914 }
3915
3916 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3917
3918 static int
3919 scalar_type_p (struct type *type)
3920 {
3921 if (type == NULL)
3922 return 0;
3923 else
3924 {
3925 switch (TYPE_CODE (type))
3926 {
3927 case TYPE_CODE_INT:
3928 case TYPE_CODE_RANGE:
3929 case TYPE_CODE_ENUM:
3930 case TYPE_CODE_FLT:
3931 return 1;
3932 default:
3933 return 0;
3934 }
3935 }
3936 }
3937
3938 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3939
3940 static int
3941 discrete_type_p (struct type *type)
3942 {
3943 if (type == NULL)
3944 return 0;
3945 else
3946 {
3947 switch (TYPE_CODE (type))
3948 {
3949 case TYPE_CODE_INT:
3950 case TYPE_CODE_RANGE:
3951 case TYPE_CODE_ENUM:
3952 case TYPE_CODE_BOOL:
3953 return 1;
3954 default:
3955 return 0;
3956 }
3957 }
3958 }
3959
3960 /* Returns non-zero if OP with operands in the vector ARGS could be
3961 a user-defined function. Errs on the side of pre-defined operators
3962 (i.e., result 0). */
3963
3964 static int
3965 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3966 {
3967 struct type *type0 =
3968 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3969 struct type *type1 =
3970 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3971
3972 if (type0 == NULL)
3973 return 0;
3974
3975 switch (op)
3976 {
3977 default:
3978 return 0;
3979
3980 case BINOP_ADD:
3981 case BINOP_SUB:
3982 case BINOP_MUL:
3983 case BINOP_DIV:
3984 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3985
3986 case BINOP_REM:
3987 case BINOP_MOD:
3988 case BINOP_BITWISE_AND:
3989 case BINOP_BITWISE_IOR:
3990 case BINOP_BITWISE_XOR:
3991 return (!(integer_type_p (type0) && integer_type_p (type1)));
3992
3993 case BINOP_EQUAL:
3994 case BINOP_NOTEQUAL:
3995 case BINOP_LESS:
3996 case BINOP_GTR:
3997 case BINOP_LEQ:
3998 case BINOP_GEQ:
3999 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4000
4001 case BINOP_CONCAT:
4002 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4003
4004 case BINOP_EXP:
4005 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4006
4007 case UNOP_NEG:
4008 case UNOP_PLUS:
4009 case UNOP_LOGICAL_NOT:
4010 case UNOP_ABS:
4011 return (!numeric_type_p (type0));
4012
4013 }
4014 }
4015 \f
4016 /* Renaming */
4017
4018 /* NOTES:
4019
4020 1. In the following, we assume that a renaming type's name may
4021 have an ___XD suffix. It would be nice if this went away at some
4022 point.
4023 2. We handle both the (old) purely type-based representation of
4024 renamings and the (new) variable-based encoding. At some point,
4025 it is devoutly to be hoped that the former goes away
4026 (FIXME: hilfinger-2007-07-09).
4027 3. Subprogram renamings are not implemented, although the XRS
4028 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4029
4030 /* If SYM encodes a renaming,
4031
4032 <renaming> renames <renamed entity>,
4033
4034 sets *LEN to the length of the renamed entity's name,
4035 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4036 the string describing the subcomponent selected from the renamed
4037 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4038 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4039 are undefined). Otherwise, returns a value indicating the category
4040 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4041 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4042 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4043 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4044 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4045 may be NULL, in which case they are not assigned.
4046
4047 [Currently, however, GCC does not generate subprogram renamings.] */
4048
4049 enum ada_renaming_category
4050 ada_parse_renaming (struct symbol *sym,
4051 const char **renamed_entity, int *len,
4052 const char **renaming_expr)
4053 {
4054 enum ada_renaming_category kind;
4055 const char *info;
4056 const char *suffix;
4057
4058 if (sym == NULL)
4059 return ADA_NOT_RENAMING;
4060 switch (SYMBOL_CLASS (sym))
4061 {
4062 default:
4063 return ADA_NOT_RENAMING;
4064 case LOC_TYPEDEF:
4065 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4066 renamed_entity, len, renaming_expr);
4067 case LOC_LOCAL:
4068 case LOC_STATIC:
4069 case LOC_COMPUTED:
4070 case LOC_OPTIMIZED_OUT:
4071 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4072 if (info == NULL)
4073 return ADA_NOT_RENAMING;
4074 switch (info[5])
4075 {
4076 case '_':
4077 kind = ADA_OBJECT_RENAMING;
4078 info += 6;
4079 break;
4080 case 'E':
4081 kind = ADA_EXCEPTION_RENAMING;
4082 info += 7;
4083 break;
4084 case 'P':
4085 kind = ADA_PACKAGE_RENAMING;
4086 info += 7;
4087 break;
4088 case 'S':
4089 kind = ADA_SUBPROGRAM_RENAMING;
4090 info += 7;
4091 break;
4092 default:
4093 return ADA_NOT_RENAMING;
4094 }
4095 }
4096
4097 if (renamed_entity != NULL)
4098 *renamed_entity = info;
4099 suffix = strstr (info, "___XE");
4100 if (suffix == NULL || suffix == info)
4101 return ADA_NOT_RENAMING;
4102 if (len != NULL)
4103 *len = strlen (info) - strlen (suffix);
4104 suffix += 5;
4105 if (renaming_expr != NULL)
4106 *renaming_expr = suffix;
4107 return kind;
4108 }
4109
4110 /* Assuming TYPE encodes a renaming according to the old encoding in
4111 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4112 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4113 ADA_NOT_RENAMING otherwise. */
4114 static enum ada_renaming_category
4115 parse_old_style_renaming (struct type *type,
4116 const char **renamed_entity, int *len,
4117 const char **renaming_expr)
4118 {
4119 enum ada_renaming_category kind;
4120 const char *name;
4121 const char *info;
4122 const char *suffix;
4123
4124 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4125 || TYPE_NFIELDS (type) != 1)
4126 return ADA_NOT_RENAMING;
4127
4128 name = type_name_no_tag (type);
4129 if (name == NULL)
4130 return ADA_NOT_RENAMING;
4131
4132 name = strstr (name, "___XR");
4133 if (name == NULL)
4134 return ADA_NOT_RENAMING;
4135 switch (name[5])
4136 {
4137 case '\0':
4138 case '_':
4139 kind = ADA_OBJECT_RENAMING;
4140 break;
4141 case 'E':
4142 kind = ADA_EXCEPTION_RENAMING;
4143 break;
4144 case 'P':
4145 kind = ADA_PACKAGE_RENAMING;
4146 break;
4147 case 'S':
4148 kind = ADA_SUBPROGRAM_RENAMING;
4149 break;
4150 default:
4151 return ADA_NOT_RENAMING;
4152 }
4153
4154 info = TYPE_FIELD_NAME (type, 0);
4155 if (info == NULL)
4156 return ADA_NOT_RENAMING;
4157 if (renamed_entity != NULL)
4158 *renamed_entity = info;
4159 suffix = strstr (info, "___XE");
4160 if (renaming_expr != NULL)
4161 *renaming_expr = suffix + 5;
4162 if (suffix == NULL || suffix == info)
4163 return ADA_NOT_RENAMING;
4164 if (len != NULL)
4165 *len = suffix - info;
4166 return kind;
4167 }
4168
4169 /* Compute the value of the given RENAMING_SYM, which is expected to
4170 be a symbol encoding a renaming expression. BLOCK is the block
4171 used to evaluate the renaming. */
4172
4173 static struct value *
4174 ada_read_renaming_var_value (struct symbol *renaming_sym,
4175 const struct block *block)
4176 {
4177 const char *sym_name;
4178 struct expression *expr;
4179 struct value *value;
4180 struct cleanup *old_chain = NULL;
4181
4182 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4183 expr = parse_exp_1 (&sym_name, 0, block, 0);
4184 old_chain = make_cleanup (free_current_contents, &expr);
4185 value = evaluate_expression (expr);
4186
4187 do_cleanups (old_chain);
4188 return value;
4189 }
4190 \f
4191
4192 /* Evaluation: Function Calls */
4193
4194 /* Return an lvalue containing the value VAL. This is the identity on
4195 lvalues, and otherwise has the side-effect of allocating memory
4196 in the inferior where a copy of the value contents is copied. */
4197
4198 static struct value *
4199 ensure_lval (struct value *val)
4200 {
4201 if (VALUE_LVAL (val) == not_lval
4202 || VALUE_LVAL (val) == lval_internalvar)
4203 {
4204 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4205 const CORE_ADDR addr =
4206 value_as_long (value_allocate_space_in_inferior (len));
4207
4208 set_value_address (val, addr);
4209 VALUE_LVAL (val) = lval_memory;
4210 write_memory (addr, value_contents (val), len);
4211 }
4212
4213 return val;
4214 }
4215
4216 /* Return the value ACTUAL, converted to be an appropriate value for a
4217 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4218 allocating any necessary descriptors (fat pointers), or copies of
4219 values not residing in memory, updating it as needed. */
4220
4221 struct value *
4222 ada_convert_actual (struct value *actual, struct type *formal_type0)
4223 {
4224 struct type *actual_type = ada_check_typedef (value_type (actual));
4225 struct type *formal_type = ada_check_typedef (formal_type0);
4226 struct type *formal_target =
4227 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4228 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4229 struct type *actual_target =
4230 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4231 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4232
4233 if (ada_is_array_descriptor_type (formal_target)
4234 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4235 return make_array_descriptor (formal_type, actual);
4236 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4237 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4238 {
4239 struct value *result;
4240
4241 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4242 && ada_is_array_descriptor_type (actual_target))
4243 result = desc_data (actual);
4244 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4245 {
4246 if (VALUE_LVAL (actual) != lval_memory)
4247 {
4248 struct value *val;
4249
4250 actual_type = ada_check_typedef (value_type (actual));
4251 val = allocate_value (actual_type);
4252 memcpy ((char *) value_contents_raw (val),
4253 (char *) value_contents (actual),
4254 TYPE_LENGTH (actual_type));
4255 actual = ensure_lval (val);
4256 }
4257 result = value_addr (actual);
4258 }
4259 else
4260 return actual;
4261 return value_cast_pointers (formal_type, result, 0);
4262 }
4263 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4264 return ada_value_ind (actual);
4265
4266 return actual;
4267 }
4268
4269 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4270 type TYPE. This is usually an inefficient no-op except on some targets
4271 (such as AVR) where the representation of a pointer and an address
4272 differs. */
4273
4274 static CORE_ADDR
4275 value_pointer (struct value *value, struct type *type)
4276 {
4277 struct gdbarch *gdbarch = get_type_arch (type);
4278 unsigned len = TYPE_LENGTH (type);
4279 gdb_byte *buf = alloca (len);
4280 CORE_ADDR addr;
4281
4282 addr = value_address (value);
4283 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4284 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4285 return addr;
4286 }
4287
4288
4289 /* Push a descriptor of type TYPE for array value ARR on the stack at
4290 *SP, updating *SP to reflect the new descriptor. Return either
4291 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4292 to-descriptor type rather than a descriptor type), a struct value *
4293 representing a pointer to this descriptor. */
4294
4295 static struct value *
4296 make_array_descriptor (struct type *type, struct value *arr)
4297 {
4298 struct type *bounds_type = desc_bounds_type (type);
4299 struct type *desc_type = desc_base_type (type);
4300 struct value *descriptor = allocate_value (desc_type);
4301 struct value *bounds = allocate_value (bounds_type);
4302 int i;
4303
4304 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4305 i > 0; i -= 1)
4306 {
4307 modify_field (value_type (bounds), value_contents_writeable (bounds),
4308 ada_array_bound (arr, i, 0),
4309 desc_bound_bitpos (bounds_type, i, 0),
4310 desc_bound_bitsize (bounds_type, i, 0));
4311 modify_field (value_type (bounds), value_contents_writeable (bounds),
4312 ada_array_bound (arr, i, 1),
4313 desc_bound_bitpos (bounds_type, i, 1),
4314 desc_bound_bitsize (bounds_type, i, 1));
4315 }
4316
4317 bounds = ensure_lval (bounds);
4318
4319 modify_field (value_type (descriptor),
4320 value_contents_writeable (descriptor),
4321 value_pointer (ensure_lval (arr),
4322 TYPE_FIELD_TYPE (desc_type, 0)),
4323 fat_pntr_data_bitpos (desc_type),
4324 fat_pntr_data_bitsize (desc_type));
4325
4326 modify_field (value_type (descriptor),
4327 value_contents_writeable (descriptor),
4328 value_pointer (bounds,
4329 TYPE_FIELD_TYPE (desc_type, 1)),
4330 fat_pntr_bounds_bitpos (desc_type),
4331 fat_pntr_bounds_bitsize (desc_type));
4332
4333 descriptor = ensure_lval (descriptor);
4334
4335 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4336 return value_addr (descriptor);
4337 else
4338 return descriptor;
4339 }
4340 \f
4341 /* Symbol Cache Module */
4342
4343 /* Performance measurements made as of 2010-01-15 indicate that
4344 this cache does bring some noticeable improvements. Depending
4345 on the type of entity being printed, the cache can make it as much
4346 as an order of magnitude faster than without it.
4347
4348 The descriptive type DWARF extension has significantly reduced
4349 the need for this cache, at least when DWARF is being used. However,
4350 even in this case, some expensive name-based symbol searches are still
4351 sometimes necessary - to find an XVZ variable, mostly. */
4352
4353 /* Initialize the contents of SYM_CACHE. */
4354
4355 static void
4356 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4357 {
4358 obstack_init (&sym_cache->cache_space);
4359 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4360 }
4361
4362 /* Free the memory used by SYM_CACHE. */
4363
4364 static void
4365 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4366 {
4367 obstack_free (&sym_cache->cache_space, NULL);
4368 xfree (sym_cache);
4369 }
4370
4371 /* Return the symbol cache associated to the given program space PSPACE.
4372 If not allocated for this PSPACE yet, allocate and initialize one. */
4373
4374 static struct ada_symbol_cache *
4375 ada_get_symbol_cache (struct program_space *pspace)
4376 {
4377 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4378 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4379
4380 if (sym_cache == NULL)
4381 {
4382 sym_cache = XCNEW (struct ada_symbol_cache);
4383 ada_init_symbol_cache (sym_cache);
4384 }
4385
4386 return sym_cache;
4387 }
4388
4389 /* Clear all entries from the symbol cache. */
4390
4391 static void
4392 ada_clear_symbol_cache (void)
4393 {
4394 struct ada_symbol_cache *sym_cache
4395 = ada_get_symbol_cache (current_program_space);
4396
4397 obstack_free (&sym_cache->cache_space, NULL);
4398 ada_init_symbol_cache (sym_cache);
4399 }
4400
4401 /* Search our cache for an entry matching NAME and NAMESPACE.
4402 Return it if found, or NULL otherwise. */
4403
4404 static struct cache_entry **
4405 find_entry (const char *name, domain_enum namespace)
4406 {
4407 struct ada_symbol_cache *sym_cache
4408 = ada_get_symbol_cache (current_program_space);
4409 int h = msymbol_hash (name) % HASH_SIZE;
4410 struct cache_entry **e;
4411
4412 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4413 {
4414 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4415 return e;
4416 }
4417 return NULL;
4418 }
4419
4420 /* Search the symbol cache for an entry matching NAME and NAMESPACE.
4421 Return 1 if found, 0 otherwise.
4422
4423 If an entry was found and SYM is not NULL, set *SYM to the entry's
4424 SYM. Same principle for BLOCK if not NULL. */
4425
4426 static int
4427 lookup_cached_symbol (const char *name, domain_enum namespace,
4428 struct symbol **sym, const struct block **block)
4429 {
4430 struct cache_entry **e = find_entry (name, namespace);
4431
4432 if (e == NULL)
4433 return 0;
4434 if (sym != NULL)
4435 *sym = (*e)->sym;
4436 if (block != NULL)
4437 *block = (*e)->block;
4438 return 1;
4439 }
4440
4441 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4442 in domain NAMESPACE, save this result in our symbol cache. */
4443
4444 static void
4445 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4446 const struct block *block)
4447 {
4448 struct ada_symbol_cache *sym_cache
4449 = ada_get_symbol_cache (current_program_space);
4450 int h;
4451 char *copy;
4452 struct cache_entry *e;
4453
4454 /* If the symbol is a local symbol, then do not cache it, as a search
4455 for that symbol depends on the context. To determine whether
4456 the symbol is local or not, we check the block where we found it
4457 against the global and static blocks of its associated symtab. */
4458 if (sym
4459 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4460 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4461 return;
4462
4463 h = msymbol_hash (name) % HASH_SIZE;
4464 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4465 sizeof (*e));
4466 e->next = sym_cache->root[h];
4467 sym_cache->root[h] = e;
4468 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4469 strcpy (copy, name);
4470 e->sym = sym;
4471 e->namespace = namespace;
4472 e->block = block;
4473 }
4474 \f
4475 /* Symbol Lookup */
4476
4477 /* Return nonzero if wild matching should be used when searching for
4478 all symbols matching LOOKUP_NAME.
4479
4480 LOOKUP_NAME is expected to be a symbol name after transformation
4481 for Ada lookups (see ada_name_for_lookup). */
4482
4483 static int
4484 should_use_wild_match (const char *lookup_name)
4485 {
4486 return (strstr (lookup_name, "__") == NULL);
4487 }
4488
4489 /* Return the result of a standard (literal, C-like) lookup of NAME in
4490 given DOMAIN, visible from lexical block BLOCK. */
4491
4492 static struct symbol *
4493 standard_lookup (const char *name, const struct block *block,
4494 domain_enum domain)
4495 {
4496 /* Initialize it just to avoid a GCC false warning. */
4497 struct symbol *sym = NULL;
4498
4499 if (lookup_cached_symbol (name, domain, &sym, NULL))
4500 return sym;
4501 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4502 cache_symbol (name, domain, sym, block_found);
4503 return sym;
4504 }
4505
4506
4507 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4508 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4509 since they contend in overloading in the same way. */
4510 static int
4511 is_nonfunction (struct ada_symbol_info syms[], int n)
4512 {
4513 int i;
4514
4515 for (i = 0; i < n; i += 1)
4516 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4517 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4518 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4519 return 1;
4520
4521 return 0;
4522 }
4523
4524 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4525 struct types. Otherwise, they may not. */
4526
4527 static int
4528 equiv_types (struct type *type0, struct type *type1)
4529 {
4530 if (type0 == type1)
4531 return 1;
4532 if (type0 == NULL || type1 == NULL
4533 || TYPE_CODE (type0) != TYPE_CODE (type1))
4534 return 0;
4535 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4536 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4537 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4538 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4539 return 1;
4540
4541 return 0;
4542 }
4543
4544 /* True iff SYM0 represents the same entity as SYM1, or one that is
4545 no more defined than that of SYM1. */
4546
4547 static int
4548 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4549 {
4550 if (sym0 == sym1)
4551 return 1;
4552 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4553 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4554 return 0;
4555
4556 switch (SYMBOL_CLASS (sym0))
4557 {
4558 case LOC_UNDEF:
4559 return 1;
4560 case LOC_TYPEDEF:
4561 {
4562 struct type *type0 = SYMBOL_TYPE (sym0);
4563 struct type *type1 = SYMBOL_TYPE (sym1);
4564 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4565 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4566 int len0 = strlen (name0);
4567
4568 return
4569 TYPE_CODE (type0) == TYPE_CODE (type1)
4570 && (equiv_types (type0, type1)
4571 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4572 && strncmp (name1 + len0, "___XV", 5) == 0));
4573 }
4574 case LOC_CONST:
4575 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4576 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4577 default:
4578 return 0;
4579 }
4580 }
4581
4582 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4583 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4584
4585 static void
4586 add_defn_to_vec (struct obstack *obstackp,
4587 struct symbol *sym,
4588 const struct block *block)
4589 {
4590 int i;
4591 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4592
4593 /* Do not try to complete stub types, as the debugger is probably
4594 already scanning all symbols matching a certain name at the
4595 time when this function is called. Trying to replace the stub
4596 type by its associated full type will cause us to restart a scan
4597 which may lead to an infinite recursion. Instead, the client
4598 collecting the matching symbols will end up collecting several
4599 matches, with at least one of them complete. It can then filter
4600 out the stub ones if needed. */
4601
4602 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4603 {
4604 if (lesseq_defined_than (sym, prevDefns[i].sym))
4605 return;
4606 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4607 {
4608 prevDefns[i].sym = sym;
4609 prevDefns[i].block = block;
4610 return;
4611 }
4612 }
4613
4614 {
4615 struct ada_symbol_info info;
4616
4617 info.sym = sym;
4618 info.block = block;
4619 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4620 }
4621 }
4622
4623 /* Number of ada_symbol_info structures currently collected in
4624 current vector in *OBSTACKP. */
4625
4626 static int
4627 num_defns_collected (struct obstack *obstackp)
4628 {
4629 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4630 }
4631
4632 /* Vector of ada_symbol_info structures currently collected in current
4633 vector in *OBSTACKP. If FINISH, close off the vector and return
4634 its final address. */
4635
4636 static struct ada_symbol_info *
4637 defns_collected (struct obstack *obstackp, int finish)
4638 {
4639 if (finish)
4640 return obstack_finish (obstackp);
4641 else
4642 return (struct ada_symbol_info *) obstack_base (obstackp);
4643 }
4644
4645 /* Return a bound minimal symbol matching NAME according to Ada
4646 decoding rules. Returns an invalid symbol if there is no such
4647 minimal symbol. Names prefixed with "standard__" are handled
4648 specially: "standard__" is first stripped off, and only static and
4649 global symbols are searched. */
4650
4651 struct bound_minimal_symbol
4652 ada_lookup_simple_minsym (const char *name)
4653 {
4654 struct bound_minimal_symbol result;
4655 struct objfile *objfile;
4656 struct minimal_symbol *msymbol;
4657 const int wild_match_p = should_use_wild_match (name);
4658
4659 memset (&result, 0, sizeof (result));
4660
4661 /* Special case: If the user specifies a symbol name inside package
4662 Standard, do a non-wild matching of the symbol name without
4663 the "standard__" prefix. This was primarily introduced in order
4664 to allow the user to specifically access the standard exceptions
4665 using, for instance, Standard.Constraint_Error when Constraint_Error
4666 is ambiguous (due to the user defining its own Constraint_Error
4667 entity inside its program). */
4668 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4669 name += sizeof ("standard__") - 1;
4670
4671 ALL_MSYMBOLS (objfile, msymbol)
4672 {
4673 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4674 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4675 {
4676 result.minsym = msymbol;
4677 result.objfile = objfile;
4678 break;
4679 }
4680 }
4681
4682 return result;
4683 }
4684
4685 /* For all subprograms that statically enclose the subprogram of the
4686 selected frame, add symbols matching identifier NAME in DOMAIN
4687 and their blocks to the list of data in OBSTACKP, as for
4688 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4689 with a wildcard prefix. */
4690
4691 static void
4692 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4693 const char *name, domain_enum namespace,
4694 int wild_match_p)
4695 {
4696 }
4697
4698 /* True if TYPE is definitely an artificial type supplied to a symbol
4699 for which no debugging information was given in the symbol file. */
4700
4701 static int
4702 is_nondebugging_type (struct type *type)
4703 {
4704 const char *name = ada_type_name (type);
4705
4706 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4707 }
4708
4709 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4710 that are deemed "identical" for practical purposes.
4711
4712 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4713 types and that their number of enumerals is identical (in other
4714 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4715
4716 static int
4717 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4718 {
4719 int i;
4720
4721 /* The heuristic we use here is fairly conservative. We consider
4722 that 2 enumerate types are identical if they have the same
4723 number of enumerals and that all enumerals have the same
4724 underlying value and name. */
4725
4726 /* All enums in the type should have an identical underlying value. */
4727 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4728 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4729 return 0;
4730
4731 /* All enumerals should also have the same name (modulo any numerical
4732 suffix). */
4733 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4734 {
4735 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4736 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4737 int len_1 = strlen (name_1);
4738 int len_2 = strlen (name_2);
4739
4740 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4741 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4742 if (len_1 != len_2
4743 || strncmp (TYPE_FIELD_NAME (type1, i),
4744 TYPE_FIELD_NAME (type2, i),
4745 len_1) != 0)
4746 return 0;
4747 }
4748
4749 return 1;
4750 }
4751
4752 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4753 that are deemed "identical" for practical purposes. Sometimes,
4754 enumerals are not strictly identical, but their types are so similar
4755 that they can be considered identical.
4756
4757 For instance, consider the following code:
4758
4759 type Color is (Black, Red, Green, Blue, White);
4760 type RGB_Color is new Color range Red .. Blue;
4761
4762 Type RGB_Color is a subrange of an implicit type which is a copy
4763 of type Color. If we call that implicit type RGB_ColorB ("B" is
4764 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4765 As a result, when an expression references any of the enumeral
4766 by name (Eg. "print green"), the expression is technically
4767 ambiguous and the user should be asked to disambiguate. But
4768 doing so would only hinder the user, since it wouldn't matter
4769 what choice he makes, the outcome would always be the same.
4770 So, for practical purposes, we consider them as the same. */
4771
4772 static int
4773 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4774 {
4775 int i;
4776
4777 /* Before performing a thorough comparison check of each type,
4778 we perform a series of inexpensive checks. We expect that these
4779 checks will quickly fail in the vast majority of cases, and thus
4780 help prevent the unnecessary use of a more expensive comparison.
4781 Said comparison also expects us to make some of these checks
4782 (see ada_identical_enum_types_p). */
4783
4784 /* Quick check: All symbols should have an enum type. */
4785 for (i = 0; i < nsyms; i++)
4786 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4787 return 0;
4788
4789 /* Quick check: They should all have the same value. */
4790 for (i = 1; i < nsyms; i++)
4791 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4792 return 0;
4793
4794 /* Quick check: They should all have the same number of enumerals. */
4795 for (i = 1; i < nsyms; i++)
4796 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4797 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4798 return 0;
4799
4800 /* All the sanity checks passed, so we might have a set of
4801 identical enumeration types. Perform a more complete
4802 comparison of the type of each symbol. */
4803 for (i = 1; i < nsyms; i++)
4804 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4805 SYMBOL_TYPE (syms[0].sym)))
4806 return 0;
4807
4808 return 1;
4809 }
4810
4811 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4812 duplicate other symbols in the list (The only case I know of where
4813 this happens is when object files containing stabs-in-ecoff are
4814 linked with files containing ordinary ecoff debugging symbols (or no
4815 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4816 Returns the number of items in the modified list. */
4817
4818 static int
4819 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4820 {
4821 int i, j;
4822
4823 /* We should never be called with less than 2 symbols, as there
4824 cannot be any extra symbol in that case. But it's easy to
4825 handle, since we have nothing to do in that case. */
4826 if (nsyms < 2)
4827 return nsyms;
4828
4829 i = 0;
4830 while (i < nsyms)
4831 {
4832 int remove_p = 0;
4833
4834 /* If two symbols have the same name and one of them is a stub type,
4835 the get rid of the stub. */
4836
4837 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4838 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4839 {
4840 for (j = 0; j < nsyms; j++)
4841 {
4842 if (j != i
4843 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4844 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4845 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4846 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4847 remove_p = 1;
4848 }
4849 }
4850
4851 /* Two symbols with the same name, same class and same address
4852 should be identical. */
4853
4854 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4855 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4856 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4857 {
4858 for (j = 0; j < nsyms; j += 1)
4859 {
4860 if (i != j
4861 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4862 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4863 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4864 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4865 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4866 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4867 remove_p = 1;
4868 }
4869 }
4870
4871 if (remove_p)
4872 {
4873 for (j = i + 1; j < nsyms; j += 1)
4874 syms[j - 1] = syms[j];
4875 nsyms -= 1;
4876 }
4877
4878 i += 1;
4879 }
4880
4881 /* If all the remaining symbols are identical enumerals, then
4882 just keep the first one and discard the rest.
4883
4884 Unlike what we did previously, we do not discard any entry
4885 unless they are ALL identical. This is because the symbol
4886 comparison is not a strict comparison, but rather a practical
4887 comparison. If all symbols are considered identical, then
4888 we can just go ahead and use the first one and discard the rest.
4889 But if we cannot reduce the list to a single element, we have
4890 to ask the user to disambiguate anyways. And if we have to
4891 present a multiple-choice menu, it's less confusing if the list
4892 isn't missing some choices that were identical and yet distinct. */
4893 if (symbols_are_identical_enums (syms, nsyms))
4894 nsyms = 1;
4895
4896 return nsyms;
4897 }
4898
4899 /* Given a type that corresponds to a renaming entity, use the type name
4900 to extract the scope (package name or function name, fully qualified,
4901 and following the GNAT encoding convention) where this renaming has been
4902 defined. The string returned needs to be deallocated after use. */
4903
4904 static char *
4905 xget_renaming_scope (struct type *renaming_type)
4906 {
4907 /* The renaming types adhere to the following convention:
4908 <scope>__<rename>___<XR extension>.
4909 So, to extract the scope, we search for the "___XR" extension,
4910 and then backtrack until we find the first "__". */
4911
4912 const char *name = type_name_no_tag (renaming_type);
4913 char *suffix = strstr (name, "___XR");
4914 char *last;
4915 int scope_len;
4916 char *scope;
4917
4918 /* Now, backtrack a bit until we find the first "__". Start looking
4919 at suffix - 3, as the <rename> part is at least one character long. */
4920
4921 for (last = suffix - 3; last > name; last--)
4922 if (last[0] == '_' && last[1] == '_')
4923 break;
4924
4925 /* Make a copy of scope and return it. */
4926
4927 scope_len = last - name;
4928 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4929
4930 strncpy (scope, name, scope_len);
4931 scope[scope_len] = '\0';
4932
4933 return scope;
4934 }
4935
4936 /* Return nonzero if NAME corresponds to a package name. */
4937
4938 static int
4939 is_package_name (const char *name)
4940 {
4941 /* Here, We take advantage of the fact that no symbols are generated
4942 for packages, while symbols are generated for each function.
4943 So the condition for NAME represent a package becomes equivalent
4944 to NAME not existing in our list of symbols. There is only one
4945 small complication with library-level functions (see below). */
4946
4947 char *fun_name;
4948
4949 /* If it is a function that has not been defined at library level,
4950 then we should be able to look it up in the symbols. */
4951 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4952 return 0;
4953
4954 /* Library-level function names start with "_ada_". See if function
4955 "_ada_" followed by NAME can be found. */
4956
4957 /* Do a quick check that NAME does not contain "__", since library-level
4958 functions names cannot contain "__" in them. */
4959 if (strstr (name, "__") != NULL)
4960 return 0;
4961
4962 fun_name = xstrprintf ("_ada_%s", name);
4963
4964 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4965 }
4966
4967 /* Return nonzero if SYM corresponds to a renaming entity that is
4968 not visible from FUNCTION_NAME. */
4969
4970 static int
4971 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4972 {
4973 char *scope;
4974 struct cleanup *old_chain;
4975
4976 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4977 return 0;
4978
4979 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4980 old_chain = make_cleanup (xfree, scope);
4981
4982 /* If the rename has been defined in a package, then it is visible. */
4983 if (is_package_name (scope))
4984 {
4985 do_cleanups (old_chain);
4986 return 0;
4987 }
4988
4989 /* Check that the rename is in the current function scope by checking
4990 that its name starts with SCOPE. */
4991
4992 /* If the function name starts with "_ada_", it means that it is
4993 a library-level function. Strip this prefix before doing the
4994 comparison, as the encoding for the renaming does not contain
4995 this prefix. */
4996 if (strncmp (function_name, "_ada_", 5) == 0)
4997 function_name += 5;
4998
4999 {
5000 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5001
5002 do_cleanups (old_chain);
5003 return is_invisible;
5004 }
5005 }
5006
5007 /* Remove entries from SYMS that corresponds to a renaming entity that
5008 is not visible from the function associated with CURRENT_BLOCK or
5009 that is superfluous due to the presence of more specific renaming
5010 information. Places surviving symbols in the initial entries of
5011 SYMS and returns the number of surviving symbols.
5012
5013 Rationale:
5014 First, in cases where an object renaming is implemented as a
5015 reference variable, GNAT may produce both the actual reference
5016 variable and the renaming encoding. In this case, we discard the
5017 latter.
5018
5019 Second, GNAT emits a type following a specified encoding for each renaming
5020 entity. Unfortunately, STABS currently does not support the definition
5021 of types that are local to a given lexical block, so all renamings types
5022 are emitted at library level. As a consequence, if an application
5023 contains two renaming entities using the same name, and a user tries to
5024 print the value of one of these entities, the result of the ada symbol
5025 lookup will also contain the wrong renaming type.
5026
5027 This function partially covers for this limitation by attempting to
5028 remove from the SYMS list renaming symbols that should be visible
5029 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5030 method with the current information available. The implementation
5031 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5032
5033 - When the user tries to print a rename in a function while there
5034 is another rename entity defined in a package: Normally, the
5035 rename in the function has precedence over the rename in the
5036 package, so the latter should be removed from the list. This is
5037 currently not the case.
5038
5039 - This function will incorrectly remove valid renames if
5040 the CURRENT_BLOCK corresponds to a function which symbol name
5041 has been changed by an "Export" pragma. As a consequence,
5042 the user will be unable to print such rename entities. */
5043
5044 static int
5045 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5046 int nsyms, const struct block *current_block)
5047 {
5048 struct symbol *current_function;
5049 const char *current_function_name;
5050 int i;
5051 int is_new_style_renaming;
5052
5053 /* If there is both a renaming foo___XR... encoded as a variable and
5054 a simple variable foo in the same block, discard the latter.
5055 First, zero out such symbols, then compress. */
5056 is_new_style_renaming = 0;
5057 for (i = 0; i < nsyms; i += 1)
5058 {
5059 struct symbol *sym = syms[i].sym;
5060 const struct block *block = syms[i].block;
5061 const char *name;
5062 const char *suffix;
5063
5064 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5065 continue;
5066 name = SYMBOL_LINKAGE_NAME (sym);
5067 suffix = strstr (name, "___XR");
5068
5069 if (suffix != NULL)
5070 {
5071 int name_len = suffix - name;
5072 int j;
5073
5074 is_new_style_renaming = 1;
5075 for (j = 0; j < nsyms; j += 1)
5076 if (i != j && syms[j].sym != NULL
5077 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5078 name_len) == 0
5079 && block == syms[j].block)
5080 syms[j].sym = NULL;
5081 }
5082 }
5083 if (is_new_style_renaming)
5084 {
5085 int j, k;
5086
5087 for (j = k = 0; j < nsyms; j += 1)
5088 if (syms[j].sym != NULL)
5089 {
5090 syms[k] = syms[j];
5091 k += 1;
5092 }
5093 return k;
5094 }
5095
5096 /* Extract the function name associated to CURRENT_BLOCK.
5097 Abort if unable to do so. */
5098
5099 if (current_block == NULL)
5100 return nsyms;
5101
5102 current_function = block_linkage_function (current_block);
5103 if (current_function == NULL)
5104 return nsyms;
5105
5106 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5107 if (current_function_name == NULL)
5108 return nsyms;
5109
5110 /* Check each of the symbols, and remove it from the list if it is
5111 a type corresponding to a renaming that is out of the scope of
5112 the current block. */
5113
5114 i = 0;
5115 while (i < nsyms)
5116 {
5117 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5118 == ADA_OBJECT_RENAMING
5119 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5120 {
5121 int j;
5122
5123 for (j = i + 1; j < nsyms; j += 1)
5124 syms[j - 1] = syms[j];
5125 nsyms -= 1;
5126 }
5127 else
5128 i += 1;
5129 }
5130
5131 return nsyms;
5132 }
5133
5134 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5135 whose name and domain match NAME and DOMAIN respectively.
5136 If no match was found, then extend the search to "enclosing"
5137 routines (in other words, if we're inside a nested function,
5138 search the symbols defined inside the enclosing functions).
5139 If WILD_MATCH_P is nonzero, perform the naming matching in
5140 "wild" mode (see function "wild_match" for more info).
5141
5142 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5143
5144 static void
5145 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5146 const struct block *block, domain_enum domain,
5147 int wild_match_p)
5148 {
5149 int block_depth = 0;
5150
5151 while (block != NULL)
5152 {
5153 block_depth += 1;
5154 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5155 wild_match_p);
5156
5157 /* If we found a non-function match, assume that's the one. */
5158 if (is_nonfunction (defns_collected (obstackp, 0),
5159 num_defns_collected (obstackp)))
5160 return;
5161
5162 block = BLOCK_SUPERBLOCK (block);
5163 }
5164
5165 /* If no luck so far, try to find NAME as a local symbol in some lexically
5166 enclosing subprogram. */
5167 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5168 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5169 }
5170
5171 /* An object of this type is used as the user_data argument when
5172 calling the map_matching_symbols method. */
5173
5174 struct match_data
5175 {
5176 struct objfile *objfile;
5177 struct obstack *obstackp;
5178 struct symbol *arg_sym;
5179 int found_sym;
5180 };
5181
5182 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5183 to a list of symbols. DATA0 is a pointer to a struct match_data *
5184 containing the obstack that collects the symbol list, the file that SYM
5185 must come from, a flag indicating whether a non-argument symbol has
5186 been found in the current block, and the last argument symbol
5187 passed in SYM within the current block (if any). When SYM is null,
5188 marking the end of a block, the argument symbol is added if no
5189 other has been found. */
5190
5191 static int
5192 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5193 {
5194 struct match_data *data = (struct match_data *) data0;
5195
5196 if (sym == NULL)
5197 {
5198 if (!data->found_sym && data->arg_sym != NULL)
5199 add_defn_to_vec (data->obstackp,
5200 fixup_symbol_section (data->arg_sym, data->objfile),
5201 block);
5202 data->found_sym = 0;
5203 data->arg_sym = NULL;
5204 }
5205 else
5206 {
5207 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5208 return 0;
5209 else if (SYMBOL_IS_ARGUMENT (sym))
5210 data->arg_sym = sym;
5211 else
5212 {
5213 data->found_sym = 1;
5214 add_defn_to_vec (data->obstackp,
5215 fixup_symbol_section (sym, data->objfile),
5216 block);
5217 }
5218 }
5219 return 0;
5220 }
5221
5222 /* Implements compare_names, but only applying the comparision using
5223 the given CASING. */
5224
5225 static int
5226 compare_names_with_case (const char *string1, const char *string2,
5227 enum case_sensitivity casing)
5228 {
5229 while (*string1 != '\0' && *string2 != '\0')
5230 {
5231 char c1, c2;
5232
5233 if (isspace (*string1) || isspace (*string2))
5234 return strcmp_iw_ordered (string1, string2);
5235
5236 if (casing == case_sensitive_off)
5237 {
5238 c1 = tolower (*string1);
5239 c2 = tolower (*string2);
5240 }
5241 else
5242 {
5243 c1 = *string1;
5244 c2 = *string2;
5245 }
5246 if (c1 != c2)
5247 break;
5248
5249 string1 += 1;
5250 string2 += 1;
5251 }
5252
5253 switch (*string1)
5254 {
5255 case '(':
5256 return strcmp_iw_ordered (string1, string2);
5257 case '_':
5258 if (*string2 == '\0')
5259 {
5260 if (is_name_suffix (string1))
5261 return 0;
5262 else
5263 return 1;
5264 }
5265 /* FALLTHROUGH */
5266 default:
5267 if (*string2 == '(')
5268 return strcmp_iw_ordered (string1, string2);
5269 else
5270 {
5271 if (casing == case_sensitive_off)
5272 return tolower (*string1) - tolower (*string2);
5273 else
5274 return *string1 - *string2;
5275 }
5276 }
5277 }
5278
5279 /* Compare STRING1 to STRING2, with results as for strcmp.
5280 Compatible with strcmp_iw_ordered in that...
5281
5282 strcmp_iw_ordered (STRING1, STRING2) <= 0
5283
5284 ... implies...
5285
5286 compare_names (STRING1, STRING2) <= 0
5287
5288 (they may differ as to what symbols compare equal). */
5289
5290 static int
5291 compare_names (const char *string1, const char *string2)
5292 {
5293 int result;
5294
5295 /* Similar to what strcmp_iw_ordered does, we need to perform
5296 a case-insensitive comparison first, and only resort to
5297 a second, case-sensitive, comparison if the first one was
5298 not sufficient to differentiate the two strings. */
5299
5300 result = compare_names_with_case (string1, string2, case_sensitive_off);
5301 if (result == 0)
5302 result = compare_names_with_case (string1, string2, case_sensitive_on);
5303
5304 return result;
5305 }
5306
5307 /* Add to OBSTACKP all non-local symbols whose name and domain match
5308 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5309 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5310
5311 static void
5312 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5313 domain_enum domain, int global,
5314 int is_wild_match)
5315 {
5316 struct objfile *objfile;
5317 struct match_data data;
5318
5319 memset (&data, 0, sizeof data);
5320 data.obstackp = obstackp;
5321
5322 ALL_OBJFILES (objfile)
5323 {
5324 data.objfile = objfile;
5325
5326 if (is_wild_match)
5327 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5328 aux_add_nonlocal_symbols, &data,
5329 wild_match, NULL);
5330 else
5331 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5332 aux_add_nonlocal_symbols, &data,
5333 full_match, compare_names);
5334 }
5335
5336 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5337 {
5338 ALL_OBJFILES (objfile)
5339 {
5340 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5341 strcpy (name1, "_ada_");
5342 strcpy (name1 + sizeof ("_ada_") - 1, name);
5343 data.objfile = objfile;
5344 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5345 global,
5346 aux_add_nonlocal_symbols,
5347 &data,
5348 full_match, compare_names);
5349 }
5350 }
5351 }
5352
5353 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5354 non-zero, enclosing scope and in global scopes, returning the number of
5355 matches.
5356 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5357 indicating the symbols found and the blocks and symbol tables (if
5358 any) in which they were found. This vector is transient---good only to
5359 the next call of ada_lookup_symbol_list.
5360
5361 When full_search is non-zero, any non-function/non-enumeral
5362 symbol match within the nest of blocks whose innermost member is BLOCK0,
5363 is the one match returned (no other matches in that or
5364 enclosing blocks is returned). If there are any matches in or
5365 surrounding BLOCK0, then these alone are returned.
5366
5367 Names prefixed with "standard__" are handled specially: "standard__"
5368 is first stripped off, and only static and global symbols are searched. */
5369
5370 static int
5371 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5372 domain_enum namespace,
5373 struct ada_symbol_info **results,
5374 int full_search)
5375 {
5376 struct symbol *sym;
5377 const struct block *block;
5378 const char *name;
5379 const int wild_match_p = should_use_wild_match (name0);
5380 int cacheIfUnique;
5381 int ndefns;
5382
5383 obstack_free (&symbol_list_obstack, NULL);
5384 obstack_init (&symbol_list_obstack);
5385
5386 cacheIfUnique = 0;
5387
5388 /* Search specified block and its superiors. */
5389
5390 name = name0;
5391 block = block0;
5392
5393 /* Special case: If the user specifies a symbol name inside package
5394 Standard, do a non-wild matching of the symbol name without
5395 the "standard__" prefix. This was primarily introduced in order
5396 to allow the user to specifically access the standard exceptions
5397 using, for instance, Standard.Constraint_Error when Constraint_Error
5398 is ambiguous (due to the user defining its own Constraint_Error
5399 entity inside its program). */
5400 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5401 {
5402 block = NULL;
5403 name = name0 + sizeof ("standard__") - 1;
5404 }
5405
5406 /* Check the non-global symbols. If we have ANY match, then we're done. */
5407
5408 if (block != NULL)
5409 {
5410 if (full_search)
5411 {
5412 ada_add_local_symbols (&symbol_list_obstack, name, block,
5413 namespace, wild_match_p);
5414 }
5415 else
5416 {
5417 /* In the !full_search case we're are being called by
5418 ada_iterate_over_symbols, and we don't want to search
5419 superblocks. */
5420 ada_add_block_symbols (&symbol_list_obstack, block, name,
5421 namespace, NULL, wild_match_p);
5422 }
5423 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5424 goto done;
5425 }
5426
5427 /* No non-global symbols found. Check our cache to see if we have
5428 already performed this search before. If we have, then return
5429 the same result. */
5430
5431 cacheIfUnique = 1;
5432 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5433 {
5434 if (sym != NULL)
5435 add_defn_to_vec (&symbol_list_obstack, sym, block);
5436 goto done;
5437 }
5438
5439 /* Search symbols from all global blocks. */
5440
5441 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5442 wild_match_p);
5443
5444 /* Now add symbols from all per-file blocks if we've gotten no hits
5445 (not strictly correct, but perhaps better than an error). */
5446
5447 if (num_defns_collected (&symbol_list_obstack) == 0)
5448 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5449 wild_match_p);
5450
5451 done:
5452 ndefns = num_defns_collected (&symbol_list_obstack);
5453 *results = defns_collected (&symbol_list_obstack, 1);
5454
5455 ndefns = remove_extra_symbols (*results, ndefns);
5456
5457 if (ndefns == 0 && full_search)
5458 cache_symbol (name0, namespace, NULL, NULL);
5459
5460 if (ndefns == 1 && full_search && cacheIfUnique)
5461 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5462
5463 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5464
5465 return ndefns;
5466 }
5467
5468 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5469 in global scopes, returning the number of matches, and setting *RESULTS
5470 to a vector of (SYM,BLOCK) tuples.
5471 See ada_lookup_symbol_list_worker for further details. */
5472
5473 int
5474 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5475 domain_enum domain, struct ada_symbol_info **results)
5476 {
5477 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5478 }
5479
5480 /* Implementation of the la_iterate_over_symbols method. */
5481
5482 static void
5483 ada_iterate_over_symbols (const struct block *block,
5484 const char *name, domain_enum domain,
5485 symbol_found_callback_ftype *callback,
5486 void *data)
5487 {
5488 int ndefs, i;
5489 struct ada_symbol_info *results;
5490
5491 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5492 for (i = 0; i < ndefs; ++i)
5493 {
5494 if (! (*callback) (results[i].sym, data))
5495 break;
5496 }
5497 }
5498
5499 /* If NAME is the name of an entity, return a string that should
5500 be used to look that entity up in Ada units. This string should
5501 be deallocated after use using xfree.
5502
5503 NAME can have any form that the "break" or "print" commands might
5504 recognize. In other words, it does not have to be the "natural"
5505 name, or the "encoded" name. */
5506
5507 char *
5508 ada_name_for_lookup (const char *name)
5509 {
5510 char *canon;
5511 int nlen = strlen (name);
5512
5513 if (name[0] == '<' && name[nlen - 1] == '>')
5514 {
5515 canon = xmalloc (nlen - 1);
5516 memcpy (canon, name + 1, nlen - 2);
5517 canon[nlen - 2] = '\0';
5518 }
5519 else
5520 canon = xstrdup (ada_encode (ada_fold_name (name)));
5521 return canon;
5522 }
5523
5524 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5525 to 1, but choosing the first symbol found if there are multiple
5526 choices.
5527
5528 The result is stored in *INFO, which must be non-NULL.
5529 If no match is found, INFO->SYM is set to NULL. */
5530
5531 void
5532 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5533 domain_enum namespace,
5534 struct ada_symbol_info *info)
5535 {
5536 struct ada_symbol_info *candidates;
5537 int n_candidates;
5538
5539 gdb_assert (info != NULL);
5540 memset (info, 0, sizeof (struct ada_symbol_info));
5541
5542 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5543 if (n_candidates == 0)
5544 return;
5545
5546 *info = candidates[0];
5547 info->sym = fixup_symbol_section (info->sym, NULL);
5548 }
5549
5550 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5551 scope and in global scopes, or NULL if none. NAME is folded and
5552 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5553 choosing the first symbol if there are multiple choices.
5554 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5555
5556 struct symbol *
5557 ada_lookup_symbol (const char *name, const struct block *block0,
5558 domain_enum namespace, int *is_a_field_of_this)
5559 {
5560 struct ada_symbol_info info;
5561
5562 if (is_a_field_of_this != NULL)
5563 *is_a_field_of_this = 0;
5564
5565 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5566 block0, namespace, &info);
5567 return info.sym;
5568 }
5569
5570 static struct symbol *
5571 ada_lookup_symbol_nonlocal (const char *name,
5572 const struct block *block,
5573 const domain_enum domain)
5574 {
5575 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5576 }
5577
5578
5579 /* True iff STR is a possible encoded suffix of a normal Ada name
5580 that is to be ignored for matching purposes. Suffixes of parallel
5581 names (e.g., XVE) are not included here. Currently, the possible suffixes
5582 are given by any of the regular expressions:
5583
5584 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5585 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5586 TKB [subprogram suffix for task bodies]
5587 _E[0-9]+[bs]$ [protected object entry suffixes]
5588 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5589
5590 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5591 match is performed. This sequence is used to differentiate homonyms,
5592 is an optional part of a valid name suffix. */
5593
5594 static int
5595 is_name_suffix (const char *str)
5596 {
5597 int k;
5598 const char *matching;
5599 const int len = strlen (str);
5600
5601 /* Skip optional leading __[0-9]+. */
5602
5603 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5604 {
5605 str += 3;
5606 while (isdigit (str[0]))
5607 str += 1;
5608 }
5609
5610 /* [.$][0-9]+ */
5611
5612 if (str[0] == '.' || str[0] == '$')
5613 {
5614 matching = str + 1;
5615 while (isdigit (matching[0]))
5616 matching += 1;
5617 if (matching[0] == '\0')
5618 return 1;
5619 }
5620
5621 /* ___[0-9]+ */
5622
5623 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5624 {
5625 matching = str + 3;
5626 while (isdigit (matching[0]))
5627 matching += 1;
5628 if (matching[0] == '\0')
5629 return 1;
5630 }
5631
5632 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5633
5634 if (strcmp (str, "TKB") == 0)
5635 return 1;
5636
5637 #if 0
5638 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5639 with a N at the end. Unfortunately, the compiler uses the same
5640 convention for other internal types it creates. So treating
5641 all entity names that end with an "N" as a name suffix causes
5642 some regressions. For instance, consider the case of an enumerated
5643 type. To support the 'Image attribute, it creates an array whose
5644 name ends with N.
5645 Having a single character like this as a suffix carrying some
5646 information is a bit risky. Perhaps we should change the encoding
5647 to be something like "_N" instead. In the meantime, do not do
5648 the following check. */
5649 /* Protected Object Subprograms */
5650 if (len == 1 && str [0] == 'N')
5651 return 1;
5652 #endif
5653
5654 /* _E[0-9]+[bs]$ */
5655 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5656 {
5657 matching = str + 3;
5658 while (isdigit (matching[0]))
5659 matching += 1;
5660 if ((matching[0] == 'b' || matching[0] == 's')
5661 && matching [1] == '\0')
5662 return 1;
5663 }
5664
5665 /* ??? We should not modify STR directly, as we are doing below. This
5666 is fine in this case, but may become problematic later if we find
5667 that this alternative did not work, and want to try matching
5668 another one from the begining of STR. Since we modified it, we
5669 won't be able to find the begining of the string anymore! */
5670 if (str[0] == 'X')
5671 {
5672 str += 1;
5673 while (str[0] != '_' && str[0] != '\0')
5674 {
5675 if (str[0] != 'n' && str[0] != 'b')
5676 return 0;
5677 str += 1;
5678 }
5679 }
5680
5681 if (str[0] == '\000')
5682 return 1;
5683
5684 if (str[0] == '_')
5685 {
5686 if (str[1] != '_' || str[2] == '\000')
5687 return 0;
5688 if (str[2] == '_')
5689 {
5690 if (strcmp (str + 3, "JM") == 0)
5691 return 1;
5692 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5693 the LJM suffix in favor of the JM one. But we will
5694 still accept LJM as a valid suffix for a reasonable
5695 amount of time, just to allow ourselves to debug programs
5696 compiled using an older version of GNAT. */
5697 if (strcmp (str + 3, "LJM") == 0)
5698 return 1;
5699 if (str[3] != 'X')
5700 return 0;
5701 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5702 || str[4] == 'U' || str[4] == 'P')
5703 return 1;
5704 if (str[4] == 'R' && str[5] != 'T')
5705 return 1;
5706 return 0;
5707 }
5708 if (!isdigit (str[2]))
5709 return 0;
5710 for (k = 3; str[k] != '\0'; k += 1)
5711 if (!isdigit (str[k]) && str[k] != '_')
5712 return 0;
5713 return 1;
5714 }
5715 if (str[0] == '$' && isdigit (str[1]))
5716 {
5717 for (k = 2; str[k] != '\0'; k += 1)
5718 if (!isdigit (str[k]) && str[k] != '_')
5719 return 0;
5720 return 1;
5721 }
5722 return 0;
5723 }
5724
5725 /* Return non-zero if the string starting at NAME and ending before
5726 NAME_END contains no capital letters. */
5727
5728 static int
5729 is_valid_name_for_wild_match (const char *name0)
5730 {
5731 const char *decoded_name = ada_decode (name0);
5732 int i;
5733
5734 /* If the decoded name starts with an angle bracket, it means that
5735 NAME0 does not follow the GNAT encoding format. It should then
5736 not be allowed as a possible wild match. */
5737 if (decoded_name[0] == '<')
5738 return 0;
5739
5740 for (i=0; decoded_name[i] != '\0'; i++)
5741 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5742 return 0;
5743
5744 return 1;
5745 }
5746
5747 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5748 that could start a simple name. Assumes that *NAMEP points into
5749 the string beginning at NAME0. */
5750
5751 static int
5752 advance_wild_match (const char **namep, const char *name0, int target0)
5753 {
5754 const char *name = *namep;
5755
5756 while (1)
5757 {
5758 int t0, t1;
5759
5760 t0 = *name;
5761 if (t0 == '_')
5762 {
5763 t1 = name[1];
5764 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5765 {
5766 name += 1;
5767 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5768 break;
5769 else
5770 name += 1;
5771 }
5772 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5773 || name[2] == target0))
5774 {
5775 name += 2;
5776 break;
5777 }
5778 else
5779 return 0;
5780 }
5781 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5782 name += 1;
5783 else
5784 return 0;
5785 }
5786
5787 *namep = name;
5788 return 1;
5789 }
5790
5791 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5792 informational suffixes of NAME (i.e., for which is_name_suffix is
5793 true). Assumes that PATN is a lower-cased Ada simple name. */
5794
5795 static int
5796 wild_match (const char *name, const char *patn)
5797 {
5798 const char *p;
5799 const char *name0 = name;
5800
5801 while (1)
5802 {
5803 const char *match = name;
5804
5805 if (*name == *patn)
5806 {
5807 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5808 if (*p != *name)
5809 break;
5810 if (*p == '\0' && is_name_suffix (name))
5811 return match != name0 && !is_valid_name_for_wild_match (name0);
5812
5813 if (name[-1] == '_')
5814 name -= 1;
5815 }
5816 if (!advance_wild_match (&name, name0, *patn))
5817 return 1;
5818 }
5819 }
5820
5821 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5822 informational suffix. */
5823
5824 static int
5825 full_match (const char *sym_name, const char *search_name)
5826 {
5827 return !match_name (sym_name, search_name, 0);
5828 }
5829
5830
5831 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5832 vector *defn_symbols, updating the list of symbols in OBSTACKP
5833 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5834 OBJFILE is the section containing BLOCK. */
5835
5836 static void
5837 ada_add_block_symbols (struct obstack *obstackp,
5838 const struct block *block, const char *name,
5839 domain_enum domain, struct objfile *objfile,
5840 int wild)
5841 {
5842 struct block_iterator iter;
5843 int name_len = strlen (name);
5844 /* A matching argument symbol, if any. */
5845 struct symbol *arg_sym;
5846 /* Set true when we find a matching non-argument symbol. */
5847 int found_sym;
5848 struct symbol *sym;
5849
5850 arg_sym = NULL;
5851 found_sym = 0;
5852 if (wild)
5853 {
5854 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5855 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5856 {
5857 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5858 SYMBOL_DOMAIN (sym), domain)
5859 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5860 {
5861 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5862 continue;
5863 else if (SYMBOL_IS_ARGUMENT (sym))
5864 arg_sym = sym;
5865 else
5866 {
5867 found_sym = 1;
5868 add_defn_to_vec (obstackp,
5869 fixup_symbol_section (sym, objfile),
5870 block);
5871 }
5872 }
5873 }
5874 }
5875 else
5876 {
5877 for (sym = block_iter_match_first (block, name, full_match, &iter);
5878 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5879 {
5880 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5881 SYMBOL_DOMAIN (sym), domain))
5882 {
5883 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5884 {
5885 if (SYMBOL_IS_ARGUMENT (sym))
5886 arg_sym = sym;
5887 else
5888 {
5889 found_sym = 1;
5890 add_defn_to_vec (obstackp,
5891 fixup_symbol_section (sym, objfile),
5892 block);
5893 }
5894 }
5895 }
5896 }
5897 }
5898
5899 if (!found_sym && arg_sym != NULL)
5900 {
5901 add_defn_to_vec (obstackp,
5902 fixup_symbol_section (arg_sym, objfile),
5903 block);
5904 }
5905
5906 if (!wild)
5907 {
5908 arg_sym = NULL;
5909 found_sym = 0;
5910
5911 ALL_BLOCK_SYMBOLS (block, iter, sym)
5912 {
5913 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5914 SYMBOL_DOMAIN (sym), domain))
5915 {
5916 int cmp;
5917
5918 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5919 if (cmp == 0)
5920 {
5921 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5922 if (cmp == 0)
5923 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5924 name_len);
5925 }
5926
5927 if (cmp == 0
5928 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5929 {
5930 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5931 {
5932 if (SYMBOL_IS_ARGUMENT (sym))
5933 arg_sym = sym;
5934 else
5935 {
5936 found_sym = 1;
5937 add_defn_to_vec (obstackp,
5938 fixup_symbol_section (sym, objfile),
5939 block);
5940 }
5941 }
5942 }
5943 }
5944 }
5945
5946 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5947 They aren't parameters, right? */
5948 if (!found_sym && arg_sym != NULL)
5949 {
5950 add_defn_to_vec (obstackp,
5951 fixup_symbol_section (arg_sym, objfile),
5952 block);
5953 }
5954 }
5955 }
5956 \f
5957
5958 /* Symbol Completion */
5959
5960 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5961 name in a form that's appropriate for the completion. The result
5962 does not need to be deallocated, but is only good until the next call.
5963
5964 TEXT_LEN is equal to the length of TEXT.
5965 Perform a wild match if WILD_MATCH_P is set.
5966 ENCODED_P should be set if TEXT represents the start of a symbol name
5967 in its encoded form. */
5968
5969 static const char *
5970 symbol_completion_match (const char *sym_name,
5971 const char *text, int text_len,
5972 int wild_match_p, int encoded_p)
5973 {
5974 const int verbatim_match = (text[0] == '<');
5975 int match = 0;
5976
5977 if (verbatim_match)
5978 {
5979 /* Strip the leading angle bracket. */
5980 text = text + 1;
5981 text_len--;
5982 }
5983
5984 /* First, test against the fully qualified name of the symbol. */
5985
5986 if (strncmp (sym_name, text, text_len) == 0)
5987 match = 1;
5988
5989 if (match && !encoded_p)
5990 {
5991 /* One needed check before declaring a positive match is to verify
5992 that iff we are doing a verbatim match, the decoded version
5993 of the symbol name starts with '<'. Otherwise, this symbol name
5994 is not a suitable completion. */
5995 const char *sym_name_copy = sym_name;
5996 int has_angle_bracket;
5997
5998 sym_name = ada_decode (sym_name);
5999 has_angle_bracket = (sym_name[0] == '<');
6000 match = (has_angle_bracket == verbatim_match);
6001 sym_name = sym_name_copy;
6002 }
6003
6004 if (match && !verbatim_match)
6005 {
6006 /* When doing non-verbatim match, another check that needs to
6007 be done is to verify that the potentially matching symbol name
6008 does not include capital letters, because the ada-mode would
6009 not be able to understand these symbol names without the
6010 angle bracket notation. */
6011 const char *tmp;
6012
6013 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6014 if (*tmp != '\0')
6015 match = 0;
6016 }
6017
6018 /* Second: Try wild matching... */
6019
6020 if (!match && wild_match_p)
6021 {
6022 /* Since we are doing wild matching, this means that TEXT
6023 may represent an unqualified symbol name. We therefore must
6024 also compare TEXT against the unqualified name of the symbol. */
6025 sym_name = ada_unqualified_name (ada_decode (sym_name));
6026
6027 if (strncmp (sym_name, text, text_len) == 0)
6028 match = 1;
6029 }
6030
6031 /* Finally: If we found a mach, prepare the result to return. */
6032
6033 if (!match)
6034 return NULL;
6035
6036 if (verbatim_match)
6037 sym_name = add_angle_brackets (sym_name);
6038
6039 if (!encoded_p)
6040 sym_name = ada_decode (sym_name);
6041
6042 return sym_name;
6043 }
6044
6045 /* A companion function to ada_make_symbol_completion_list().
6046 Check if SYM_NAME represents a symbol which name would be suitable
6047 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6048 it is appended at the end of the given string vector SV.
6049
6050 ORIG_TEXT is the string original string from the user command
6051 that needs to be completed. WORD is the entire command on which
6052 completion should be performed. These two parameters are used to
6053 determine which part of the symbol name should be added to the
6054 completion vector.
6055 if WILD_MATCH_P is set, then wild matching is performed.
6056 ENCODED_P should be set if TEXT represents a symbol name in its
6057 encoded formed (in which case the completion should also be
6058 encoded). */
6059
6060 static void
6061 symbol_completion_add (VEC(char_ptr) **sv,
6062 const char *sym_name,
6063 const char *text, int text_len,
6064 const char *orig_text, const char *word,
6065 int wild_match_p, int encoded_p)
6066 {
6067 const char *match = symbol_completion_match (sym_name, text, text_len,
6068 wild_match_p, encoded_p);
6069 char *completion;
6070
6071 if (match == NULL)
6072 return;
6073
6074 /* We found a match, so add the appropriate completion to the given
6075 string vector. */
6076
6077 if (word == orig_text)
6078 {
6079 completion = xmalloc (strlen (match) + 5);
6080 strcpy (completion, match);
6081 }
6082 else if (word > orig_text)
6083 {
6084 /* Return some portion of sym_name. */
6085 completion = xmalloc (strlen (match) + 5);
6086 strcpy (completion, match + (word - orig_text));
6087 }
6088 else
6089 {
6090 /* Return some of ORIG_TEXT plus sym_name. */
6091 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6092 strncpy (completion, word, orig_text - word);
6093 completion[orig_text - word] = '\0';
6094 strcat (completion, match);
6095 }
6096
6097 VEC_safe_push (char_ptr, *sv, completion);
6098 }
6099
6100 /* An object of this type is passed as the user_data argument to the
6101 expand_symtabs_matching method. */
6102 struct add_partial_datum
6103 {
6104 VEC(char_ptr) **completions;
6105 const char *text;
6106 int text_len;
6107 const char *text0;
6108 const char *word;
6109 int wild_match;
6110 int encoded;
6111 };
6112
6113 /* A callback for expand_symtabs_matching. */
6114
6115 static int
6116 ada_complete_symbol_matcher (const char *name, void *user_data)
6117 {
6118 struct add_partial_datum *data = user_data;
6119
6120 return symbol_completion_match (name, data->text, data->text_len,
6121 data->wild_match, data->encoded) != NULL;
6122 }
6123
6124 /* Return a list of possible symbol names completing TEXT0. WORD is
6125 the entire command on which completion is made. */
6126
6127 static VEC (char_ptr) *
6128 ada_make_symbol_completion_list (const char *text0, const char *word,
6129 enum type_code code)
6130 {
6131 char *text;
6132 int text_len;
6133 int wild_match_p;
6134 int encoded_p;
6135 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6136 struct symbol *sym;
6137 struct symtab *s;
6138 struct minimal_symbol *msymbol;
6139 struct objfile *objfile;
6140 const struct block *b, *surrounding_static_block = 0;
6141 int i;
6142 struct block_iterator iter;
6143 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6144
6145 gdb_assert (code == TYPE_CODE_UNDEF);
6146
6147 if (text0[0] == '<')
6148 {
6149 text = xstrdup (text0);
6150 make_cleanup (xfree, text);
6151 text_len = strlen (text);
6152 wild_match_p = 0;
6153 encoded_p = 1;
6154 }
6155 else
6156 {
6157 text = xstrdup (ada_encode (text0));
6158 make_cleanup (xfree, text);
6159 text_len = strlen (text);
6160 for (i = 0; i < text_len; i++)
6161 text[i] = tolower (text[i]);
6162
6163 encoded_p = (strstr (text0, "__") != NULL);
6164 /* If the name contains a ".", then the user is entering a fully
6165 qualified entity name, and the match must not be done in wild
6166 mode. Similarly, if the user wants to complete what looks like
6167 an encoded name, the match must not be done in wild mode. */
6168 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6169 }
6170
6171 /* First, look at the partial symtab symbols. */
6172 {
6173 struct add_partial_datum data;
6174
6175 data.completions = &completions;
6176 data.text = text;
6177 data.text_len = text_len;
6178 data.text0 = text0;
6179 data.word = word;
6180 data.wild_match = wild_match_p;
6181 data.encoded = encoded_p;
6182 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6183 &data);
6184 }
6185
6186 /* At this point scan through the misc symbol vectors and add each
6187 symbol you find to the list. Eventually we want to ignore
6188 anything that isn't a text symbol (everything else will be
6189 handled by the psymtab code above). */
6190
6191 ALL_MSYMBOLS (objfile, msymbol)
6192 {
6193 QUIT;
6194 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6195 text, text_len, text0, word, wild_match_p,
6196 encoded_p);
6197 }
6198
6199 /* Search upwards from currently selected frame (so that we can
6200 complete on local vars. */
6201
6202 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6203 {
6204 if (!BLOCK_SUPERBLOCK (b))
6205 surrounding_static_block = b; /* For elmin of dups */
6206
6207 ALL_BLOCK_SYMBOLS (b, iter, sym)
6208 {
6209 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6210 text, text_len, text0, word,
6211 wild_match_p, encoded_p);
6212 }
6213 }
6214
6215 /* Go through the symtabs and check the externs and statics for
6216 symbols which match. */
6217
6218 ALL_SYMTABS (objfile, s)
6219 {
6220 QUIT;
6221 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6222 ALL_BLOCK_SYMBOLS (b, iter, sym)
6223 {
6224 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6225 text, text_len, text0, word,
6226 wild_match_p, encoded_p);
6227 }
6228 }
6229
6230 ALL_SYMTABS (objfile, s)
6231 {
6232 QUIT;
6233 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6234 /* Don't do this block twice. */
6235 if (b == surrounding_static_block)
6236 continue;
6237 ALL_BLOCK_SYMBOLS (b, iter, sym)
6238 {
6239 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6240 text, text_len, text0, word,
6241 wild_match_p, encoded_p);
6242 }
6243 }
6244
6245 do_cleanups (old_chain);
6246 return completions;
6247 }
6248
6249 /* Field Access */
6250
6251 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6252 for tagged types. */
6253
6254 static int
6255 ada_is_dispatch_table_ptr_type (struct type *type)
6256 {
6257 const char *name;
6258
6259 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6260 return 0;
6261
6262 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6263 if (name == NULL)
6264 return 0;
6265
6266 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6267 }
6268
6269 /* Return non-zero if TYPE is an interface tag. */
6270
6271 static int
6272 ada_is_interface_tag (struct type *type)
6273 {
6274 const char *name = TYPE_NAME (type);
6275
6276 if (name == NULL)
6277 return 0;
6278
6279 return (strcmp (name, "ada__tags__interface_tag") == 0);
6280 }
6281
6282 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6283 to be invisible to users. */
6284
6285 int
6286 ada_is_ignored_field (struct type *type, int field_num)
6287 {
6288 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6289 return 1;
6290
6291 /* Check the name of that field. */
6292 {
6293 const char *name = TYPE_FIELD_NAME (type, field_num);
6294
6295 /* Anonymous field names should not be printed.
6296 brobecker/2007-02-20: I don't think this can actually happen
6297 but we don't want to print the value of annonymous fields anyway. */
6298 if (name == NULL)
6299 return 1;
6300
6301 /* Normally, fields whose name start with an underscore ("_")
6302 are fields that have been internally generated by the compiler,
6303 and thus should not be printed. The "_parent" field is special,
6304 however: This is a field internally generated by the compiler
6305 for tagged types, and it contains the components inherited from
6306 the parent type. This field should not be printed as is, but
6307 should not be ignored either. */
6308 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6309 return 1;
6310 }
6311
6312 /* If this is the dispatch table of a tagged type or an interface tag,
6313 then ignore. */
6314 if (ada_is_tagged_type (type, 1)
6315 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6316 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6317 return 1;
6318
6319 /* Not a special field, so it should not be ignored. */
6320 return 0;
6321 }
6322
6323 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6324 pointer or reference type whose ultimate target has a tag field. */
6325
6326 int
6327 ada_is_tagged_type (struct type *type, int refok)
6328 {
6329 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6330 }
6331
6332 /* True iff TYPE represents the type of X'Tag */
6333
6334 int
6335 ada_is_tag_type (struct type *type)
6336 {
6337 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6338 return 0;
6339 else
6340 {
6341 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6342
6343 return (name != NULL
6344 && strcmp (name, "ada__tags__dispatch_table") == 0);
6345 }
6346 }
6347
6348 /* The type of the tag on VAL. */
6349
6350 struct type *
6351 ada_tag_type (struct value *val)
6352 {
6353 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6354 }
6355
6356 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6357 retired at Ada 05). */
6358
6359 static int
6360 is_ada95_tag (struct value *tag)
6361 {
6362 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6363 }
6364
6365 /* The value of the tag on VAL. */
6366
6367 struct value *
6368 ada_value_tag (struct value *val)
6369 {
6370 return ada_value_struct_elt (val, "_tag", 0);
6371 }
6372
6373 /* The value of the tag on the object of type TYPE whose contents are
6374 saved at VALADDR, if it is non-null, or is at memory address
6375 ADDRESS. */
6376
6377 static struct value *
6378 value_tag_from_contents_and_address (struct type *type,
6379 const gdb_byte *valaddr,
6380 CORE_ADDR address)
6381 {
6382 int tag_byte_offset;
6383 struct type *tag_type;
6384
6385 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6386 NULL, NULL, NULL))
6387 {
6388 const gdb_byte *valaddr1 = ((valaddr == NULL)
6389 ? NULL
6390 : valaddr + tag_byte_offset);
6391 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6392
6393 return value_from_contents_and_address (tag_type, valaddr1, address1);
6394 }
6395 return NULL;
6396 }
6397
6398 static struct type *
6399 type_from_tag (struct value *tag)
6400 {
6401 const char *type_name = ada_tag_name (tag);
6402
6403 if (type_name != NULL)
6404 return ada_find_any_type (ada_encode (type_name));
6405 return NULL;
6406 }
6407
6408 /* Given a value OBJ of a tagged type, return a value of this
6409 type at the base address of the object. The base address, as
6410 defined in Ada.Tags, it is the address of the primary tag of
6411 the object, and therefore where the field values of its full
6412 view can be fetched. */
6413
6414 struct value *
6415 ada_tag_value_at_base_address (struct value *obj)
6416 {
6417 volatile struct gdb_exception e;
6418 struct value *val;
6419 LONGEST offset_to_top = 0;
6420 struct type *ptr_type, *obj_type;
6421 struct value *tag;
6422 CORE_ADDR base_address;
6423
6424 obj_type = value_type (obj);
6425
6426 /* It is the responsability of the caller to deref pointers. */
6427
6428 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6429 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6430 return obj;
6431
6432 tag = ada_value_tag (obj);
6433 if (!tag)
6434 return obj;
6435
6436 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6437
6438 if (is_ada95_tag (tag))
6439 return obj;
6440
6441 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6442 ptr_type = lookup_pointer_type (ptr_type);
6443 val = value_cast (ptr_type, tag);
6444 if (!val)
6445 return obj;
6446
6447 /* It is perfectly possible that an exception be raised while
6448 trying to determine the base address, just like for the tag;
6449 see ada_tag_name for more details. We do not print the error
6450 message for the same reason. */
6451
6452 TRY_CATCH (e, RETURN_MASK_ERROR)
6453 {
6454 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6455 }
6456
6457 if (e.reason < 0)
6458 return obj;
6459
6460 /* If offset is null, nothing to do. */
6461
6462 if (offset_to_top == 0)
6463 return obj;
6464
6465 /* -1 is a special case in Ada.Tags; however, what should be done
6466 is not quite clear from the documentation. So do nothing for
6467 now. */
6468
6469 if (offset_to_top == -1)
6470 return obj;
6471
6472 base_address = value_address (obj) - offset_to_top;
6473 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6474
6475 /* Make sure that we have a proper tag at the new address.
6476 Otherwise, offset_to_top is bogus (which can happen when
6477 the object is not initialized yet). */
6478
6479 if (!tag)
6480 return obj;
6481
6482 obj_type = type_from_tag (tag);
6483
6484 if (!obj_type)
6485 return obj;
6486
6487 return value_from_contents_and_address (obj_type, NULL, base_address);
6488 }
6489
6490 /* Return the "ada__tags__type_specific_data" type. */
6491
6492 static struct type *
6493 ada_get_tsd_type (struct inferior *inf)
6494 {
6495 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6496
6497 if (data->tsd_type == 0)
6498 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6499 return data->tsd_type;
6500 }
6501
6502 /* Return the TSD (type-specific data) associated to the given TAG.
6503 TAG is assumed to be the tag of a tagged-type entity.
6504
6505 May return NULL if we are unable to get the TSD. */
6506
6507 static struct value *
6508 ada_get_tsd_from_tag (struct value *tag)
6509 {
6510 struct value *val;
6511 struct type *type;
6512
6513 /* First option: The TSD is simply stored as a field of our TAG.
6514 Only older versions of GNAT would use this format, but we have
6515 to test it first, because there are no visible markers for
6516 the current approach except the absence of that field. */
6517
6518 val = ada_value_struct_elt (tag, "tsd", 1);
6519 if (val)
6520 return val;
6521
6522 /* Try the second representation for the dispatch table (in which
6523 there is no explicit 'tsd' field in the referent of the tag pointer,
6524 and instead the tsd pointer is stored just before the dispatch
6525 table. */
6526
6527 type = ada_get_tsd_type (current_inferior());
6528 if (type == NULL)
6529 return NULL;
6530 type = lookup_pointer_type (lookup_pointer_type (type));
6531 val = value_cast (type, tag);
6532 if (val == NULL)
6533 return NULL;
6534 return value_ind (value_ptradd (val, -1));
6535 }
6536
6537 /* Given the TSD of a tag (type-specific data), return a string
6538 containing the name of the associated type.
6539
6540 The returned value is good until the next call. May return NULL
6541 if we are unable to determine the tag name. */
6542
6543 static char *
6544 ada_tag_name_from_tsd (struct value *tsd)
6545 {
6546 static char name[1024];
6547 char *p;
6548 struct value *val;
6549
6550 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6551 if (val == NULL)
6552 return NULL;
6553 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6554 for (p = name; *p != '\0'; p += 1)
6555 if (isalpha (*p))
6556 *p = tolower (*p);
6557 return name;
6558 }
6559
6560 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6561 a C string.
6562
6563 Return NULL if the TAG is not an Ada tag, or if we were unable to
6564 determine the name of that tag. The result is good until the next
6565 call. */
6566
6567 const char *
6568 ada_tag_name (struct value *tag)
6569 {
6570 volatile struct gdb_exception e;
6571 char *name = NULL;
6572
6573 if (!ada_is_tag_type (value_type (tag)))
6574 return NULL;
6575
6576 /* It is perfectly possible that an exception be raised while trying
6577 to determine the TAG's name, even under normal circumstances:
6578 The associated variable may be uninitialized or corrupted, for
6579 instance. We do not let any exception propagate past this point.
6580 instead we return NULL.
6581
6582 We also do not print the error message either (which often is very
6583 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6584 the caller print a more meaningful message if necessary. */
6585 TRY_CATCH (e, RETURN_MASK_ERROR)
6586 {
6587 struct value *tsd = ada_get_tsd_from_tag (tag);
6588
6589 if (tsd != NULL)
6590 name = ada_tag_name_from_tsd (tsd);
6591 }
6592
6593 return name;
6594 }
6595
6596 /* The parent type of TYPE, or NULL if none. */
6597
6598 struct type *
6599 ada_parent_type (struct type *type)
6600 {
6601 int i;
6602
6603 type = ada_check_typedef (type);
6604
6605 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6606 return NULL;
6607
6608 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6609 if (ada_is_parent_field (type, i))
6610 {
6611 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6612
6613 /* If the _parent field is a pointer, then dereference it. */
6614 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6615 parent_type = TYPE_TARGET_TYPE (parent_type);
6616 /* If there is a parallel XVS type, get the actual base type. */
6617 parent_type = ada_get_base_type (parent_type);
6618
6619 return ada_check_typedef (parent_type);
6620 }
6621
6622 return NULL;
6623 }
6624
6625 /* True iff field number FIELD_NUM of structure type TYPE contains the
6626 parent-type (inherited) fields of a derived type. Assumes TYPE is
6627 a structure type with at least FIELD_NUM+1 fields. */
6628
6629 int
6630 ada_is_parent_field (struct type *type, int field_num)
6631 {
6632 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6633
6634 return (name != NULL
6635 && (strncmp (name, "PARENT", 6) == 0
6636 || strncmp (name, "_parent", 7) == 0));
6637 }
6638
6639 /* True iff field number FIELD_NUM of structure type TYPE is a
6640 transparent wrapper field (which should be silently traversed when doing
6641 field selection and flattened when printing). Assumes TYPE is a
6642 structure type with at least FIELD_NUM+1 fields. Such fields are always
6643 structures. */
6644
6645 int
6646 ada_is_wrapper_field (struct type *type, int field_num)
6647 {
6648 const char *name = TYPE_FIELD_NAME (type, field_num);
6649
6650 return (name != NULL
6651 && (strncmp (name, "PARENT", 6) == 0
6652 || strcmp (name, "REP") == 0
6653 || strncmp (name, "_parent", 7) == 0
6654 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6655 }
6656
6657 /* True iff field number FIELD_NUM of structure or union type TYPE
6658 is a variant wrapper. Assumes TYPE is a structure type with at least
6659 FIELD_NUM+1 fields. */
6660
6661 int
6662 ada_is_variant_part (struct type *type, int field_num)
6663 {
6664 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6665
6666 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6667 || (is_dynamic_field (type, field_num)
6668 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6669 == TYPE_CODE_UNION)));
6670 }
6671
6672 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6673 whose discriminants are contained in the record type OUTER_TYPE,
6674 returns the type of the controlling discriminant for the variant.
6675 May return NULL if the type could not be found. */
6676
6677 struct type *
6678 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6679 {
6680 char *name = ada_variant_discrim_name (var_type);
6681
6682 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6683 }
6684
6685 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6686 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6687 represents a 'when others' clause; otherwise 0. */
6688
6689 int
6690 ada_is_others_clause (struct type *type, int field_num)
6691 {
6692 const char *name = TYPE_FIELD_NAME (type, field_num);
6693
6694 return (name != NULL && name[0] == 'O');
6695 }
6696
6697 /* Assuming that TYPE0 is the type of the variant part of a record,
6698 returns the name of the discriminant controlling the variant.
6699 The value is valid until the next call to ada_variant_discrim_name. */
6700
6701 char *
6702 ada_variant_discrim_name (struct type *type0)
6703 {
6704 static char *result = NULL;
6705 static size_t result_len = 0;
6706 struct type *type;
6707 const char *name;
6708 const char *discrim_end;
6709 const char *discrim_start;
6710
6711 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6712 type = TYPE_TARGET_TYPE (type0);
6713 else
6714 type = type0;
6715
6716 name = ada_type_name (type);
6717
6718 if (name == NULL || name[0] == '\000')
6719 return "";
6720
6721 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6722 discrim_end -= 1)
6723 {
6724 if (strncmp (discrim_end, "___XVN", 6) == 0)
6725 break;
6726 }
6727 if (discrim_end == name)
6728 return "";
6729
6730 for (discrim_start = discrim_end; discrim_start != name + 3;
6731 discrim_start -= 1)
6732 {
6733 if (discrim_start == name + 1)
6734 return "";
6735 if ((discrim_start > name + 3
6736 && strncmp (discrim_start - 3, "___", 3) == 0)
6737 || discrim_start[-1] == '.')
6738 break;
6739 }
6740
6741 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6742 strncpy (result, discrim_start, discrim_end - discrim_start);
6743 result[discrim_end - discrim_start] = '\0';
6744 return result;
6745 }
6746
6747 /* Scan STR for a subtype-encoded number, beginning at position K.
6748 Put the position of the character just past the number scanned in
6749 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6750 Return 1 if there was a valid number at the given position, and 0
6751 otherwise. A "subtype-encoded" number consists of the absolute value
6752 in decimal, followed by the letter 'm' to indicate a negative number.
6753 Assumes 0m does not occur. */
6754
6755 int
6756 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6757 {
6758 ULONGEST RU;
6759
6760 if (!isdigit (str[k]))
6761 return 0;
6762
6763 /* Do it the hard way so as not to make any assumption about
6764 the relationship of unsigned long (%lu scan format code) and
6765 LONGEST. */
6766 RU = 0;
6767 while (isdigit (str[k]))
6768 {
6769 RU = RU * 10 + (str[k] - '0');
6770 k += 1;
6771 }
6772
6773 if (str[k] == 'm')
6774 {
6775 if (R != NULL)
6776 *R = (-(LONGEST) (RU - 1)) - 1;
6777 k += 1;
6778 }
6779 else if (R != NULL)
6780 *R = (LONGEST) RU;
6781
6782 /* NOTE on the above: Technically, C does not say what the results of
6783 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6784 number representable as a LONGEST (although either would probably work
6785 in most implementations). When RU>0, the locution in the then branch
6786 above is always equivalent to the negative of RU. */
6787
6788 if (new_k != NULL)
6789 *new_k = k;
6790 return 1;
6791 }
6792
6793 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6794 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6795 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6796
6797 int
6798 ada_in_variant (LONGEST val, struct type *type, int field_num)
6799 {
6800 const char *name = TYPE_FIELD_NAME (type, field_num);
6801 int p;
6802
6803 p = 0;
6804 while (1)
6805 {
6806 switch (name[p])
6807 {
6808 case '\0':
6809 return 0;
6810 case 'S':
6811 {
6812 LONGEST W;
6813
6814 if (!ada_scan_number (name, p + 1, &W, &p))
6815 return 0;
6816 if (val == W)
6817 return 1;
6818 break;
6819 }
6820 case 'R':
6821 {
6822 LONGEST L, U;
6823
6824 if (!ada_scan_number (name, p + 1, &L, &p)
6825 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6826 return 0;
6827 if (val >= L && val <= U)
6828 return 1;
6829 break;
6830 }
6831 case 'O':
6832 return 1;
6833 default:
6834 return 0;
6835 }
6836 }
6837 }
6838
6839 /* FIXME: Lots of redundancy below. Try to consolidate. */
6840
6841 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6842 ARG_TYPE, extract and return the value of one of its (non-static)
6843 fields. FIELDNO says which field. Differs from value_primitive_field
6844 only in that it can handle packed values of arbitrary type. */
6845
6846 static struct value *
6847 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6848 struct type *arg_type)
6849 {
6850 struct type *type;
6851
6852 arg_type = ada_check_typedef (arg_type);
6853 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6854
6855 /* Handle packed fields. */
6856
6857 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6858 {
6859 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6860 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6861
6862 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6863 offset + bit_pos / 8,
6864 bit_pos % 8, bit_size, type);
6865 }
6866 else
6867 return value_primitive_field (arg1, offset, fieldno, arg_type);
6868 }
6869
6870 /* Find field with name NAME in object of type TYPE. If found,
6871 set the following for each argument that is non-null:
6872 - *FIELD_TYPE_P to the field's type;
6873 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6874 an object of that type;
6875 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6876 - *BIT_SIZE_P to its size in bits if the field is packed, and
6877 0 otherwise;
6878 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6879 fields up to but not including the desired field, or by the total
6880 number of fields if not found. A NULL value of NAME never
6881 matches; the function just counts visible fields in this case.
6882
6883 Returns 1 if found, 0 otherwise. */
6884
6885 static int
6886 find_struct_field (const char *name, struct type *type, int offset,
6887 struct type **field_type_p,
6888 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6889 int *index_p)
6890 {
6891 int i;
6892
6893 type = ada_check_typedef (type);
6894
6895 if (field_type_p != NULL)
6896 *field_type_p = NULL;
6897 if (byte_offset_p != NULL)
6898 *byte_offset_p = 0;
6899 if (bit_offset_p != NULL)
6900 *bit_offset_p = 0;
6901 if (bit_size_p != NULL)
6902 *bit_size_p = 0;
6903
6904 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6905 {
6906 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6907 int fld_offset = offset + bit_pos / 8;
6908 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6909
6910 if (t_field_name == NULL)
6911 continue;
6912
6913 else if (name != NULL && field_name_match (t_field_name, name))
6914 {
6915 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6916
6917 if (field_type_p != NULL)
6918 *field_type_p = TYPE_FIELD_TYPE (type, i);
6919 if (byte_offset_p != NULL)
6920 *byte_offset_p = fld_offset;
6921 if (bit_offset_p != NULL)
6922 *bit_offset_p = bit_pos % 8;
6923 if (bit_size_p != NULL)
6924 *bit_size_p = bit_size;
6925 return 1;
6926 }
6927 else if (ada_is_wrapper_field (type, i))
6928 {
6929 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6930 field_type_p, byte_offset_p, bit_offset_p,
6931 bit_size_p, index_p))
6932 return 1;
6933 }
6934 else if (ada_is_variant_part (type, i))
6935 {
6936 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6937 fixed type?? */
6938 int j;
6939 struct type *field_type
6940 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6941
6942 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6943 {
6944 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6945 fld_offset
6946 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6947 field_type_p, byte_offset_p,
6948 bit_offset_p, bit_size_p, index_p))
6949 return 1;
6950 }
6951 }
6952 else if (index_p != NULL)
6953 *index_p += 1;
6954 }
6955 return 0;
6956 }
6957
6958 /* Number of user-visible fields in record type TYPE. */
6959
6960 static int
6961 num_visible_fields (struct type *type)
6962 {
6963 int n;
6964
6965 n = 0;
6966 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6967 return n;
6968 }
6969
6970 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6971 and search in it assuming it has (class) type TYPE.
6972 If found, return value, else return NULL.
6973
6974 Searches recursively through wrapper fields (e.g., '_parent'). */
6975
6976 static struct value *
6977 ada_search_struct_field (char *name, struct value *arg, int offset,
6978 struct type *type)
6979 {
6980 int i;
6981
6982 type = ada_check_typedef (type);
6983 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6984 {
6985 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6986
6987 if (t_field_name == NULL)
6988 continue;
6989
6990 else if (field_name_match (t_field_name, name))
6991 return ada_value_primitive_field (arg, offset, i, type);
6992
6993 else if (ada_is_wrapper_field (type, i))
6994 {
6995 struct value *v = /* Do not let indent join lines here. */
6996 ada_search_struct_field (name, arg,
6997 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6998 TYPE_FIELD_TYPE (type, i));
6999
7000 if (v != NULL)
7001 return v;
7002 }
7003
7004 else if (ada_is_variant_part (type, i))
7005 {
7006 /* PNH: Do we ever get here? See find_struct_field. */
7007 int j;
7008 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7009 i));
7010 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7011
7012 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7013 {
7014 struct value *v = ada_search_struct_field /* Force line
7015 break. */
7016 (name, arg,
7017 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7018 TYPE_FIELD_TYPE (field_type, j));
7019
7020 if (v != NULL)
7021 return v;
7022 }
7023 }
7024 }
7025 return NULL;
7026 }
7027
7028 static struct value *ada_index_struct_field_1 (int *, struct value *,
7029 int, struct type *);
7030
7031
7032 /* Return field #INDEX in ARG, where the index is that returned by
7033 * find_struct_field through its INDEX_P argument. Adjust the address
7034 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7035 * If found, return value, else return NULL. */
7036
7037 static struct value *
7038 ada_index_struct_field (int index, struct value *arg, int offset,
7039 struct type *type)
7040 {
7041 return ada_index_struct_field_1 (&index, arg, offset, type);
7042 }
7043
7044
7045 /* Auxiliary function for ada_index_struct_field. Like
7046 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7047 * *INDEX_P. */
7048
7049 static struct value *
7050 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7051 struct type *type)
7052 {
7053 int i;
7054 type = ada_check_typedef (type);
7055
7056 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7057 {
7058 if (TYPE_FIELD_NAME (type, i) == NULL)
7059 continue;
7060 else if (ada_is_wrapper_field (type, i))
7061 {
7062 struct value *v = /* Do not let indent join lines here. */
7063 ada_index_struct_field_1 (index_p, arg,
7064 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7065 TYPE_FIELD_TYPE (type, i));
7066
7067 if (v != NULL)
7068 return v;
7069 }
7070
7071 else if (ada_is_variant_part (type, i))
7072 {
7073 /* PNH: Do we ever get here? See ada_search_struct_field,
7074 find_struct_field. */
7075 error (_("Cannot assign this kind of variant record"));
7076 }
7077 else if (*index_p == 0)
7078 return ada_value_primitive_field (arg, offset, i, type);
7079 else
7080 *index_p -= 1;
7081 }
7082 return NULL;
7083 }
7084
7085 /* Given ARG, a value of type (pointer or reference to a)*
7086 structure/union, extract the component named NAME from the ultimate
7087 target structure/union and return it as a value with its
7088 appropriate type.
7089
7090 The routine searches for NAME among all members of the structure itself
7091 and (recursively) among all members of any wrapper members
7092 (e.g., '_parent').
7093
7094 If NO_ERR, then simply return NULL in case of error, rather than
7095 calling error. */
7096
7097 struct value *
7098 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7099 {
7100 struct type *t, *t1;
7101 struct value *v;
7102
7103 v = NULL;
7104 t1 = t = ada_check_typedef (value_type (arg));
7105 if (TYPE_CODE (t) == TYPE_CODE_REF)
7106 {
7107 t1 = TYPE_TARGET_TYPE (t);
7108 if (t1 == NULL)
7109 goto BadValue;
7110 t1 = ada_check_typedef (t1);
7111 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7112 {
7113 arg = coerce_ref (arg);
7114 t = t1;
7115 }
7116 }
7117
7118 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7119 {
7120 t1 = TYPE_TARGET_TYPE (t);
7121 if (t1 == NULL)
7122 goto BadValue;
7123 t1 = ada_check_typedef (t1);
7124 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7125 {
7126 arg = value_ind (arg);
7127 t = t1;
7128 }
7129 else
7130 break;
7131 }
7132
7133 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7134 goto BadValue;
7135
7136 if (t1 == t)
7137 v = ada_search_struct_field (name, arg, 0, t);
7138 else
7139 {
7140 int bit_offset, bit_size, byte_offset;
7141 struct type *field_type;
7142 CORE_ADDR address;
7143
7144 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7145 address = value_address (ada_value_ind (arg));
7146 else
7147 address = value_address (ada_coerce_ref (arg));
7148
7149 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7150 if (find_struct_field (name, t1, 0,
7151 &field_type, &byte_offset, &bit_offset,
7152 &bit_size, NULL))
7153 {
7154 if (bit_size != 0)
7155 {
7156 if (TYPE_CODE (t) == TYPE_CODE_REF)
7157 arg = ada_coerce_ref (arg);
7158 else
7159 arg = ada_value_ind (arg);
7160 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7161 bit_offset, bit_size,
7162 field_type);
7163 }
7164 else
7165 v = value_at_lazy (field_type, address + byte_offset);
7166 }
7167 }
7168
7169 if (v != NULL || no_err)
7170 return v;
7171 else
7172 error (_("There is no member named %s."), name);
7173
7174 BadValue:
7175 if (no_err)
7176 return NULL;
7177 else
7178 error (_("Attempt to extract a component of "
7179 "a value that is not a record."));
7180 }
7181
7182 /* Given a type TYPE, look up the type of the component of type named NAME.
7183 If DISPP is non-null, add its byte displacement from the beginning of a
7184 structure (pointed to by a value) of type TYPE to *DISPP (does not
7185 work for packed fields).
7186
7187 Matches any field whose name has NAME as a prefix, possibly
7188 followed by "___".
7189
7190 TYPE can be either a struct or union. If REFOK, TYPE may also
7191 be a (pointer or reference)+ to a struct or union, and the
7192 ultimate target type will be searched.
7193
7194 Looks recursively into variant clauses and parent types.
7195
7196 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7197 TYPE is not a type of the right kind. */
7198
7199 static struct type *
7200 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7201 int noerr, int *dispp)
7202 {
7203 int i;
7204
7205 if (name == NULL)
7206 goto BadName;
7207
7208 if (refok && type != NULL)
7209 while (1)
7210 {
7211 type = ada_check_typedef (type);
7212 if (TYPE_CODE (type) != TYPE_CODE_PTR
7213 && TYPE_CODE (type) != TYPE_CODE_REF)
7214 break;
7215 type = TYPE_TARGET_TYPE (type);
7216 }
7217
7218 if (type == NULL
7219 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7220 && TYPE_CODE (type) != TYPE_CODE_UNION))
7221 {
7222 if (noerr)
7223 return NULL;
7224 else
7225 {
7226 target_terminal_ours ();
7227 gdb_flush (gdb_stdout);
7228 if (type == NULL)
7229 error (_("Type (null) is not a structure or union type"));
7230 else
7231 {
7232 /* XXX: type_sprint */
7233 fprintf_unfiltered (gdb_stderr, _("Type "));
7234 type_print (type, "", gdb_stderr, -1);
7235 error (_(" is not a structure or union type"));
7236 }
7237 }
7238 }
7239
7240 type = to_static_fixed_type (type);
7241
7242 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7243 {
7244 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7245 struct type *t;
7246 int disp;
7247
7248 if (t_field_name == NULL)
7249 continue;
7250
7251 else if (field_name_match (t_field_name, name))
7252 {
7253 if (dispp != NULL)
7254 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7255 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7256 }
7257
7258 else if (ada_is_wrapper_field (type, i))
7259 {
7260 disp = 0;
7261 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7262 0, 1, &disp);
7263 if (t != NULL)
7264 {
7265 if (dispp != NULL)
7266 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7267 return t;
7268 }
7269 }
7270
7271 else if (ada_is_variant_part (type, i))
7272 {
7273 int j;
7274 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7275 i));
7276
7277 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7278 {
7279 /* FIXME pnh 2008/01/26: We check for a field that is
7280 NOT wrapped in a struct, since the compiler sometimes
7281 generates these for unchecked variant types. Revisit
7282 if the compiler changes this practice. */
7283 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7284 disp = 0;
7285 if (v_field_name != NULL
7286 && field_name_match (v_field_name, name))
7287 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7288 else
7289 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7290 j),
7291 name, 0, 1, &disp);
7292
7293 if (t != NULL)
7294 {
7295 if (dispp != NULL)
7296 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7297 return t;
7298 }
7299 }
7300 }
7301
7302 }
7303
7304 BadName:
7305 if (!noerr)
7306 {
7307 target_terminal_ours ();
7308 gdb_flush (gdb_stdout);
7309 if (name == NULL)
7310 {
7311 /* XXX: type_sprint */
7312 fprintf_unfiltered (gdb_stderr, _("Type "));
7313 type_print (type, "", gdb_stderr, -1);
7314 error (_(" has no component named <null>"));
7315 }
7316 else
7317 {
7318 /* XXX: type_sprint */
7319 fprintf_unfiltered (gdb_stderr, _("Type "));
7320 type_print (type, "", gdb_stderr, -1);
7321 error (_(" has no component named %s"), name);
7322 }
7323 }
7324
7325 return NULL;
7326 }
7327
7328 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7329 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7330 represents an unchecked union (that is, the variant part of a
7331 record that is named in an Unchecked_Union pragma). */
7332
7333 static int
7334 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7335 {
7336 char *discrim_name = ada_variant_discrim_name (var_type);
7337
7338 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7339 == NULL);
7340 }
7341
7342
7343 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7344 within a value of type OUTER_TYPE that is stored in GDB at
7345 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7346 numbering from 0) is applicable. Returns -1 if none are. */
7347
7348 int
7349 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7350 const gdb_byte *outer_valaddr)
7351 {
7352 int others_clause;
7353 int i;
7354 char *discrim_name = ada_variant_discrim_name (var_type);
7355 struct value *outer;
7356 struct value *discrim;
7357 LONGEST discrim_val;
7358
7359 /* Using plain value_from_contents_and_address here causes problems
7360 because we will end up trying to resolve a type that is currently
7361 being constructed. */
7362 outer = value_from_contents_and_address_unresolved (outer_type,
7363 outer_valaddr, 0);
7364 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7365 if (discrim == NULL)
7366 return -1;
7367 discrim_val = value_as_long (discrim);
7368
7369 others_clause = -1;
7370 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7371 {
7372 if (ada_is_others_clause (var_type, i))
7373 others_clause = i;
7374 else if (ada_in_variant (discrim_val, var_type, i))
7375 return i;
7376 }
7377
7378 return others_clause;
7379 }
7380 \f
7381
7382
7383 /* Dynamic-Sized Records */
7384
7385 /* Strategy: The type ostensibly attached to a value with dynamic size
7386 (i.e., a size that is not statically recorded in the debugging
7387 data) does not accurately reflect the size or layout of the value.
7388 Our strategy is to convert these values to values with accurate,
7389 conventional types that are constructed on the fly. */
7390
7391 /* There is a subtle and tricky problem here. In general, we cannot
7392 determine the size of dynamic records without its data. However,
7393 the 'struct value' data structure, which GDB uses to represent
7394 quantities in the inferior process (the target), requires the size
7395 of the type at the time of its allocation in order to reserve space
7396 for GDB's internal copy of the data. That's why the
7397 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7398 rather than struct value*s.
7399
7400 However, GDB's internal history variables ($1, $2, etc.) are
7401 struct value*s containing internal copies of the data that are not, in
7402 general, the same as the data at their corresponding addresses in
7403 the target. Fortunately, the types we give to these values are all
7404 conventional, fixed-size types (as per the strategy described
7405 above), so that we don't usually have to perform the
7406 'to_fixed_xxx_type' conversions to look at their values.
7407 Unfortunately, there is one exception: if one of the internal
7408 history variables is an array whose elements are unconstrained
7409 records, then we will need to create distinct fixed types for each
7410 element selected. */
7411
7412 /* The upshot of all of this is that many routines take a (type, host
7413 address, target address) triple as arguments to represent a value.
7414 The host address, if non-null, is supposed to contain an internal
7415 copy of the relevant data; otherwise, the program is to consult the
7416 target at the target address. */
7417
7418 /* Assuming that VAL0 represents a pointer value, the result of
7419 dereferencing it. Differs from value_ind in its treatment of
7420 dynamic-sized types. */
7421
7422 struct value *
7423 ada_value_ind (struct value *val0)
7424 {
7425 struct value *val = value_ind (val0);
7426
7427 if (ada_is_tagged_type (value_type (val), 0))
7428 val = ada_tag_value_at_base_address (val);
7429
7430 return ada_to_fixed_value (val);
7431 }
7432
7433 /* The value resulting from dereferencing any "reference to"
7434 qualifiers on VAL0. */
7435
7436 static struct value *
7437 ada_coerce_ref (struct value *val0)
7438 {
7439 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7440 {
7441 struct value *val = val0;
7442
7443 val = coerce_ref (val);
7444
7445 if (ada_is_tagged_type (value_type (val), 0))
7446 val = ada_tag_value_at_base_address (val);
7447
7448 return ada_to_fixed_value (val);
7449 }
7450 else
7451 return val0;
7452 }
7453
7454 /* Return OFF rounded upward if necessary to a multiple of
7455 ALIGNMENT (a power of 2). */
7456
7457 static unsigned int
7458 align_value (unsigned int off, unsigned int alignment)
7459 {
7460 return (off + alignment - 1) & ~(alignment - 1);
7461 }
7462
7463 /* Return the bit alignment required for field #F of template type TYPE. */
7464
7465 static unsigned int
7466 field_alignment (struct type *type, int f)
7467 {
7468 const char *name = TYPE_FIELD_NAME (type, f);
7469 int len;
7470 int align_offset;
7471
7472 /* The field name should never be null, unless the debugging information
7473 is somehow malformed. In this case, we assume the field does not
7474 require any alignment. */
7475 if (name == NULL)
7476 return 1;
7477
7478 len = strlen (name);
7479
7480 if (!isdigit (name[len - 1]))
7481 return 1;
7482
7483 if (isdigit (name[len - 2]))
7484 align_offset = len - 2;
7485 else
7486 align_offset = len - 1;
7487
7488 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7489 return TARGET_CHAR_BIT;
7490
7491 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7492 }
7493
7494 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7495
7496 static struct symbol *
7497 ada_find_any_type_symbol (const char *name)
7498 {
7499 struct symbol *sym;
7500
7501 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7502 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7503 return sym;
7504
7505 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7506 return sym;
7507 }
7508
7509 /* Find a type named NAME. Ignores ambiguity. This routine will look
7510 solely for types defined by debug info, it will not search the GDB
7511 primitive types. */
7512
7513 static struct type *
7514 ada_find_any_type (const char *name)
7515 {
7516 struct symbol *sym = ada_find_any_type_symbol (name);
7517
7518 if (sym != NULL)
7519 return SYMBOL_TYPE (sym);
7520
7521 return NULL;
7522 }
7523
7524 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7525 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7526 symbol, in which case it is returned. Otherwise, this looks for
7527 symbols whose name is that of NAME_SYM suffixed with "___XR".
7528 Return symbol if found, and NULL otherwise. */
7529
7530 struct symbol *
7531 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7532 {
7533 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7534 struct symbol *sym;
7535
7536 if (strstr (name, "___XR") != NULL)
7537 return name_sym;
7538
7539 sym = find_old_style_renaming_symbol (name, block);
7540
7541 if (sym != NULL)
7542 return sym;
7543
7544 /* Not right yet. FIXME pnh 7/20/2007. */
7545 sym = ada_find_any_type_symbol (name);
7546 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7547 return sym;
7548 else
7549 return NULL;
7550 }
7551
7552 static struct symbol *
7553 find_old_style_renaming_symbol (const char *name, const struct block *block)
7554 {
7555 const struct symbol *function_sym = block_linkage_function (block);
7556 char *rename;
7557
7558 if (function_sym != NULL)
7559 {
7560 /* If the symbol is defined inside a function, NAME is not fully
7561 qualified. This means we need to prepend the function name
7562 as well as adding the ``___XR'' suffix to build the name of
7563 the associated renaming symbol. */
7564 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7565 /* Function names sometimes contain suffixes used
7566 for instance to qualify nested subprograms. When building
7567 the XR type name, we need to make sure that this suffix is
7568 not included. So do not include any suffix in the function
7569 name length below. */
7570 int function_name_len = ada_name_prefix_len (function_name);
7571 const int rename_len = function_name_len + 2 /* "__" */
7572 + strlen (name) + 6 /* "___XR\0" */ ;
7573
7574 /* Strip the suffix if necessary. */
7575 ada_remove_trailing_digits (function_name, &function_name_len);
7576 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7577 ada_remove_Xbn_suffix (function_name, &function_name_len);
7578
7579 /* Library-level functions are a special case, as GNAT adds
7580 a ``_ada_'' prefix to the function name to avoid namespace
7581 pollution. However, the renaming symbols themselves do not
7582 have this prefix, so we need to skip this prefix if present. */
7583 if (function_name_len > 5 /* "_ada_" */
7584 && strstr (function_name, "_ada_") == function_name)
7585 {
7586 function_name += 5;
7587 function_name_len -= 5;
7588 }
7589
7590 rename = (char *) alloca (rename_len * sizeof (char));
7591 strncpy (rename, function_name, function_name_len);
7592 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7593 "__%s___XR", name);
7594 }
7595 else
7596 {
7597 const int rename_len = strlen (name) + 6;
7598
7599 rename = (char *) alloca (rename_len * sizeof (char));
7600 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7601 }
7602
7603 return ada_find_any_type_symbol (rename);
7604 }
7605
7606 /* Because of GNAT encoding conventions, several GDB symbols may match a
7607 given type name. If the type denoted by TYPE0 is to be preferred to
7608 that of TYPE1 for purposes of type printing, return non-zero;
7609 otherwise return 0. */
7610
7611 int
7612 ada_prefer_type (struct type *type0, struct type *type1)
7613 {
7614 if (type1 == NULL)
7615 return 1;
7616 else if (type0 == NULL)
7617 return 0;
7618 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7619 return 1;
7620 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7621 return 0;
7622 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7623 return 1;
7624 else if (ada_is_constrained_packed_array_type (type0))
7625 return 1;
7626 else if (ada_is_array_descriptor_type (type0)
7627 && !ada_is_array_descriptor_type (type1))
7628 return 1;
7629 else
7630 {
7631 const char *type0_name = type_name_no_tag (type0);
7632 const char *type1_name = type_name_no_tag (type1);
7633
7634 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7635 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7636 return 1;
7637 }
7638 return 0;
7639 }
7640
7641 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7642 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7643
7644 const char *
7645 ada_type_name (struct type *type)
7646 {
7647 if (type == NULL)
7648 return NULL;
7649 else if (TYPE_NAME (type) != NULL)
7650 return TYPE_NAME (type);
7651 else
7652 return TYPE_TAG_NAME (type);
7653 }
7654
7655 /* Search the list of "descriptive" types associated to TYPE for a type
7656 whose name is NAME. */
7657
7658 static struct type *
7659 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7660 {
7661 struct type *result;
7662
7663 if (ada_ignore_descriptive_types_p)
7664 return NULL;
7665
7666 /* If there no descriptive-type info, then there is no parallel type
7667 to be found. */
7668 if (!HAVE_GNAT_AUX_INFO (type))
7669 return NULL;
7670
7671 result = TYPE_DESCRIPTIVE_TYPE (type);
7672 while (result != NULL)
7673 {
7674 const char *result_name = ada_type_name (result);
7675
7676 if (result_name == NULL)
7677 {
7678 warning (_("unexpected null name on descriptive type"));
7679 return NULL;
7680 }
7681
7682 /* If the names match, stop. */
7683 if (strcmp (result_name, name) == 0)
7684 break;
7685
7686 /* Otherwise, look at the next item on the list, if any. */
7687 if (HAVE_GNAT_AUX_INFO (result))
7688 result = TYPE_DESCRIPTIVE_TYPE (result);
7689 else
7690 result = NULL;
7691 }
7692
7693 /* If we didn't find a match, see whether this is a packed array. With
7694 older compilers, the descriptive type information is either absent or
7695 irrelevant when it comes to packed arrays so the above lookup fails.
7696 Fall back to using a parallel lookup by name in this case. */
7697 if (result == NULL && ada_is_constrained_packed_array_type (type))
7698 return ada_find_any_type (name);
7699
7700 return result;
7701 }
7702
7703 /* Find a parallel type to TYPE with the specified NAME, using the
7704 descriptive type taken from the debugging information, if available,
7705 and otherwise using the (slower) name-based method. */
7706
7707 static struct type *
7708 ada_find_parallel_type_with_name (struct type *type, const char *name)
7709 {
7710 struct type *result = NULL;
7711
7712 if (HAVE_GNAT_AUX_INFO (type))
7713 result = find_parallel_type_by_descriptive_type (type, name);
7714 else
7715 result = ada_find_any_type (name);
7716
7717 return result;
7718 }
7719
7720 /* Same as above, but specify the name of the parallel type by appending
7721 SUFFIX to the name of TYPE. */
7722
7723 struct type *
7724 ada_find_parallel_type (struct type *type, const char *suffix)
7725 {
7726 char *name;
7727 const char *typename = ada_type_name (type);
7728 int len;
7729
7730 if (typename == NULL)
7731 return NULL;
7732
7733 len = strlen (typename);
7734
7735 name = (char *) alloca (len + strlen (suffix) + 1);
7736
7737 strcpy (name, typename);
7738 strcpy (name + len, suffix);
7739
7740 return ada_find_parallel_type_with_name (type, name);
7741 }
7742
7743 /* If TYPE is a variable-size record type, return the corresponding template
7744 type describing its fields. Otherwise, return NULL. */
7745
7746 static struct type *
7747 dynamic_template_type (struct type *type)
7748 {
7749 type = ada_check_typedef (type);
7750
7751 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7752 || ada_type_name (type) == NULL)
7753 return NULL;
7754 else
7755 {
7756 int len = strlen (ada_type_name (type));
7757
7758 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7759 return type;
7760 else
7761 return ada_find_parallel_type (type, "___XVE");
7762 }
7763 }
7764
7765 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7766 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7767
7768 static int
7769 is_dynamic_field (struct type *templ_type, int field_num)
7770 {
7771 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7772
7773 return name != NULL
7774 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7775 && strstr (name, "___XVL") != NULL;
7776 }
7777
7778 /* The index of the variant field of TYPE, or -1 if TYPE does not
7779 represent a variant record type. */
7780
7781 static int
7782 variant_field_index (struct type *type)
7783 {
7784 int f;
7785
7786 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7787 return -1;
7788
7789 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7790 {
7791 if (ada_is_variant_part (type, f))
7792 return f;
7793 }
7794 return -1;
7795 }
7796
7797 /* A record type with no fields. */
7798
7799 static struct type *
7800 empty_record (struct type *template)
7801 {
7802 struct type *type = alloc_type_copy (template);
7803
7804 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7805 TYPE_NFIELDS (type) = 0;
7806 TYPE_FIELDS (type) = NULL;
7807 INIT_CPLUS_SPECIFIC (type);
7808 TYPE_NAME (type) = "<empty>";
7809 TYPE_TAG_NAME (type) = NULL;
7810 TYPE_LENGTH (type) = 0;
7811 return type;
7812 }
7813
7814 /* An ordinary record type (with fixed-length fields) that describes
7815 the value of type TYPE at VALADDR or ADDRESS (see comments at
7816 the beginning of this section) VAL according to GNAT conventions.
7817 DVAL0 should describe the (portion of a) record that contains any
7818 necessary discriminants. It should be NULL if value_type (VAL) is
7819 an outer-level type (i.e., as opposed to a branch of a variant.) A
7820 variant field (unless unchecked) is replaced by a particular branch
7821 of the variant.
7822
7823 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7824 length are not statically known are discarded. As a consequence,
7825 VALADDR, ADDRESS and DVAL0 are ignored.
7826
7827 NOTE: Limitations: For now, we assume that dynamic fields and
7828 variants occupy whole numbers of bytes. However, they need not be
7829 byte-aligned. */
7830
7831 struct type *
7832 ada_template_to_fixed_record_type_1 (struct type *type,
7833 const gdb_byte *valaddr,
7834 CORE_ADDR address, struct value *dval0,
7835 int keep_dynamic_fields)
7836 {
7837 struct value *mark = value_mark ();
7838 struct value *dval;
7839 struct type *rtype;
7840 int nfields, bit_len;
7841 int variant_field;
7842 long off;
7843 int fld_bit_len;
7844 int f;
7845
7846 /* Compute the number of fields in this record type that are going
7847 to be processed: unless keep_dynamic_fields, this includes only
7848 fields whose position and length are static will be processed. */
7849 if (keep_dynamic_fields)
7850 nfields = TYPE_NFIELDS (type);
7851 else
7852 {
7853 nfields = 0;
7854 while (nfields < TYPE_NFIELDS (type)
7855 && !ada_is_variant_part (type, nfields)
7856 && !is_dynamic_field (type, nfields))
7857 nfields++;
7858 }
7859
7860 rtype = alloc_type_copy (type);
7861 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7862 INIT_CPLUS_SPECIFIC (rtype);
7863 TYPE_NFIELDS (rtype) = nfields;
7864 TYPE_FIELDS (rtype) = (struct field *)
7865 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7866 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7867 TYPE_NAME (rtype) = ada_type_name (type);
7868 TYPE_TAG_NAME (rtype) = NULL;
7869 TYPE_FIXED_INSTANCE (rtype) = 1;
7870
7871 off = 0;
7872 bit_len = 0;
7873 variant_field = -1;
7874
7875 for (f = 0; f < nfields; f += 1)
7876 {
7877 off = align_value (off, field_alignment (type, f))
7878 + TYPE_FIELD_BITPOS (type, f);
7879 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7880 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7881
7882 if (ada_is_variant_part (type, f))
7883 {
7884 variant_field = f;
7885 fld_bit_len = 0;
7886 }
7887 else if (is_dynamic_field (type, f))
7888 {
7889 const gdb_byte *field_valaddr = valaddr;
7890 CORE_ADDR field_address = address;
7891 struct type *field_type =
7892 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7893
7894 if (dval0 == NULL)
7895 {
7896 /* rtype's length is computed based on the run-time
7897 value of discriminants. If the discriminants are not
7898 initialized, the type size may be completely bogus and
7899 GDB may fail to allocate a value for it. So check the
7900 size first before creating the value. */
7901 check_size (rtype);
7902 /* Using plain value_from_contents_and_address here
7903 causes problems because we will end up trying to
7904 resolve a type that is currently being
7905 constructed. */
7906 dval = value_from_contents_and_address_unresolved (rtype,
7907 valaddr,
7908 address);
7909 rtype = value_type (dval);
7910 }
7911 else
7912 dval = dval0;
7913
7914 /* If the type referenced by this field is an aligner type, we need
7915 to unwrap that aligner type, because its size might not be set.
7916 Keeping the aligner type would cause us to compute the wrong
7917 size for this field, impacting the offset of the all the fields
7918 that follow this one. */
7919 if (ada_is_aligner_type (field_type))
7920 {
7921 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7922
7923 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7924 field_address = cond_offset_target (field_address, field_offset);
7925 field_type = ada_aligned_type (field_type);
7926 }
7927
7928 field_valaddr = cond_offset_host (field_valaddr,
7929 off / TARGET_CHAR_BIT);
7930 field_address = cond_offset_target (field_address,
7931 off / TARGET_CHAR_BIT);
7932
7933 /* Get the fixed type of the field. Note that, in this case,
7934 we do not want to get the real type out of the tag: if
7935 the current field is the parent part of a tagged record,
7936 we will get the tag of the object. Clearly wrong: the real
7937 type of the parent is not the real type of the child. We
7938 would end up in an infinite loop. */
7939 field_type = ada_get_base_type (field_type);
7940 field_type = ada_to_fixed_type (field_type, field_valaddr,
7941 field_address, dval, 0);
7942 /* If the field size is already larger than the maximum
7943 object size, then the record itself will necessarily
7944 be larger than the maximum object size. We need to make
7945 this check now, because the size might be so ridiculously
7946 large (due to an uninitialized variable in the inferior)
7947 that it would cause an overflow when adding it to the
7948 record size. */
7949 check_size (field_type);
7950
7951 TYPE_FIELD_TYPE (rtype, f) = field_type;
7952 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7953 /* The multiplication can potentially overflow. But because
7954 the field length has been size-checked just above, and
7955 assuming that the maximum size is a reasonable value,
7956 an overflow should not happen in practice. So rather than
7957 adding overflow recovery code to this already complex code,
7958 we just assume that it's not going to happen. */
7959 fld_bit_len =
7960 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7961 }
7962 else
7963 {
7964 /* Note: If this field's type is a typedef, it is important
7965 to preserve the typedef layer.
7966
7967 Otherwise, we might be transforming a typedef to a fat
7968 pointer (encoding a pointer to an unconstrained array),
7969 into a basic fat pointer (encoding an unconstrained
7970 array). As both types are implemented using the same
7971 structure, the typedef is the only clue which allows us
7972 to distinguish between the two options. Stripping it
7973 would prevent us from printing this field appropriately. */
7974 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7975 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7976 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7977 fld_bit_len =
7978 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7979 else
7980 {
7981 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7982
7983 /* We need to be careful of typedefs when computing
7984 the length of our field. If this is a typedef,
7985 get the length of the target type, not the length
7986 of the typedef. */
7987 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7988 field_type = ada_typedef_target_type (field_type);
7989
7990 fld_bit_len =
7991 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7992 }
7993 }
7994 if (off + fld_bit_len > bit_len)
7995 bit_len = off + fld_bit_len;
7996 off += fld_bit_len;
7997 TYPE_LENGTH (rtype) =
7998 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7999 }
8000
8001 /* We handle the variant part, if any, at the end because of certain
8002 odd cases in which it is re-ordered so as NOT to be the last field of
8003 the record. This can happen in the presence of representation
8004 clauses. */
8005 if (variant_field >= 0)
8006 {
8007 struct type *branch_type;
8008
8009 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8010
8011 if (dval0 == NULL)
8012 {
8013 /* Using plain value_from_contents_and_address here causes
8014 problems because we will end up trying to resolve a type
8015 that is currently being constructed. */
8016 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8017 address);
8018 rtype = value_type (dval);
8019 }
8020 else
8021 dval = dval0;
8022
8023 branch_type =
8024 to_fixed_variant_branch_type
8025 (TYPE_FIELD_TYPE (type, variant_field),
8026 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8027 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8028 if (branch_type == NULL)
8029 {
8030 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8031 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8032 TYPE_NFIELDS (rtype) -= 1;
8033 }
8034 else
8035 {
8036 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8037 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8038 fld_bit_len =
8039 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8040 TARGET_CHAR_BIT;
8041 if (off + fld_bit_len > bit_len)
8042 bit_len = off + fld_bit_len;
8043 TYPE_LENGTH (rtype) =
8044 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8045 }
8046 }
8047
8048 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8049 should contain the alignment of that record, which should be a strictly
8050 positive value. If null or negative, then something is wrong, most
8051 probably in the debug info. In that case, we don't round up the size
8052 of the resulting type. If this record is not part of another structure,
8053 the current RTYPE length might be good enough for our purposes. */
8054 if (TYPE_LENGTH (type) <= 0)
8055 {
8056 if (TYPE_NAME (rtype))
8057 warning (_("Invalid type size for `%s' detected: %d."),
8058 TYPE_NAME (rtype), TYPE_LENGTH (type));
8059 else
8060 warning (_("Invalid type size for <unnamed> detected: %d."),
8061 TYPE_LENGTH (type));
8062 }
8063 else
8064 {
8065 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8066 TYPE_LENGTH (type));
8067 }
8068
8069 value_free_to_mark (mark);
8070 if (TYPE_LENGTH (rtype) > varsize_limit)
8071 error (_("record type with dynamic size is larger than varsize-limit"));
8072 return rtype;
8073 }
8074
8075 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8076 of 1. */
8077
8078 static struct type *
8079 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8080 CORE_ADDR address, struct value *dval0)
8081 {
8082 return ada_template_to_fixed_record_type_1 (type, valaddr,
8083 address, dval0, 1);
8084 }
8085
8086 /* An ordinary record type in which ___XVL-convention fields and
8087 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8088 static approximations, containing all possible fields. Uses
8089 no runtime values. Useless for use in values, but that's OK,
8090 since the results are used only for type determinations. Works on both
8091 structs and unions. Representation note: to save space, we memorize
8092 the result of this function in the TYPE_TARGET_TYPE of the
8093 template type. */
8094
8095 static struct type *
8096 template_to_static_fixed_type (struct type *type0)
8097 {
8098 struct type *type;
8099 int nfields;
8100 int f;
8101
8102 if (TYPE_TARGET_TYPE (type0) != NULL)
8103 return TYPE_TARGET_TYPE (type0);
8104
8105 nfields = TYPE_NFIELDS (type0);
8106 type = type0;
8107
8108 for (f = 0; f < nfields; f += 1)
8109 {
8110 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
8111 struct type *new_type;
8112
8113 if (is_dynamic_field (type0, f))
8114 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8115 else
8116 new_type = static_unwrap_type (field_type);
8117 if (type == type0 && new_type != field_type)
8118 {
8119 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8120 TYPE_CODE (type) = TYPE_CODE (type0);
8121 INIT_CPLUS_SPECIFIC (type);
8122 TYPE_NFIELDS (type) = nfields;
8123 TYPE_FIELDS (type) = (struct field *)
8124 TYPE_ALLOC (type, nfields * sizeof (struct field));
8125 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8126 sizeof (struct field) * nfields);
8127 TYPE_NAME (type) = ada_type_name (type0);
8128 TYPE_TAG_NAME (type) = NULL;
8129 TYPE_FIXED_INSTANCE (type) = 1;
8130 TYPE_LENGTH (type) = 0;
8131 }
8132 TYPE_FIELD_TYPE (type, f) = new_type;
8133 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8134 }
8135 return type;
8136 }
8137
8138 /* Given an object of type TYPE whose contents are at VALADDR and
8139 whose address in memory is ADDRESS, returns a revision of TYPE,
8140 which should be a non-dynamic-sized record, in which the variant
8141 part, if any, is replaced with the appropriate branch. Looks
8142 for discriminant values in DVAL0, which can be NULL if the record
8143 contains the necessary discriminant values. */
8144
8145 static struct type *
8146 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8147 CORE_ADDR address, struct value *dval0)
8148 {
8149 struct value *mark = value_mark ();
8150 struct value *dval;
8151 struct type *rtype;
8152 struct type *branch_type;
8153 int nfields = TYPE_NFIELDS (type);
8154 int variant_field = variant_field_index (type);
8155
8156 if (variant_field == -1)
8157 return type;
8158
8159 if (dval0 == NULL)
8160 {
8161 dval = value_from_contents_and_address (type, valaddr, address);
8162 type = value_type (dval);
8163 }
8164 else
8165 dval = dval0;
8166
8167 rtype = alloc_type_copy (type);
8168 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8169 INIT_CPLUS_SPECIFIC (rtype);
8170 TYPE_NFIELDS (rtype) = nfields;
8171 TYPE_FIELDS (rtype) =
8172 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8173 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8174 sizeof (struct field) * nfields);
8175 TYPE_NAME (rtype) = ada_type_name (type);
8176 TYPE_TAG_NAME (rtype) = NULL;
8177 TYPE_FIXED_INSTANCE (rtype) = 1;
8178 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8179
8180 branch_type = to_fixed_variant_branch_type
8181 (TYPE_FIELD_TYPE (type, variant_field),
8182 cond_offset_host (valaddr,
8183 TYPE_FIELD_BITPOS (type, variant_field)
8184 / TARGET_CHAR_BIT),
8185 cond_offset_target (address,
8186 TYPE_FIELD_BITPOS (type, variant_field)
8187 / TARGET_CHAR_BIT), dval);
8188 if (branch_type == NULL)
8189 {
8190 int f;
8191
8192 for (f = variant_field + 1; f < nfields; f += 1)
8193 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8194 TYPE_NFIELDS (rtype) -= 1;
8195 }
8196 else
8197 {
8198 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8199 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8200 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8201 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8202 }
8203 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8204
8205 value_free_to_mark (mark);
8206 return rtype;
8207 }
8208
8209 /* An ordinary record type (with fixed-length fields) that describes
8210 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8211 beginning of this section]. Any necessary discriminants' values
8212 should be in DVAL, a record value; it may be NULL if the object
8213 at ADDR itself contains any necessary discriminant values.
8214 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8215 values from the record are needed. Except in the case that DVAL,
8216 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8217 unchecked) is replaced by a particular branch of the variant.
8218
8219 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8220 is questionable and may be removed. It can arise during the
8221 processing of an unconstrained-array-of-record type where all the
8222 variant branches have exactly the same size. This is because in
8223 such cases, the compiler does not bother to use the XVS convention
8224 when encoding the record. I am currently dubious of this
8225 shortcut and suspect the compiler should be altered. FIXME. */
8226
8227 static struct type *
8228 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8229 CORE_ADDR address, struct value *dval)
8230 {
8231 struct type *templ_type;
8232
8233 if (TYPE_FIXED_INSTANCE (type0))
8234 return type0;
8235
8236 templ_type = dynamic_template_type (type0);
8237
8238 if (templ_type != NULL)
8239 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8240 else if (variant_field_index (type0) >= 0)
8241 {
8242 if (dval == NULL && valaddr == NULL && address == 0)
8243 return type0;
8244 return to_record_with_fixed_variant_part (type0, valaddr, address,
8245 dval);
8246 }
8247 else
8248 {
8249 TYPE_FIXED_INSTANCE (type0) = 1;
8250 return type0;
8251 }
8252
8253 }
8254
8255 /* An ordinary record type (with fixed-length fields) that describes
8256 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8257 union type. Any necessary discriminants' values should be in DVAL,
8258 a record value. That is, this routine selects the appropriate
8259 branch of the union at ADDR according to the discriminant value
8260 indicated in the union's type name. Returns VAR_TYPE0 itself if
8261 it represents a variant subject to a pragma Unchecked_Union. */
8262
8263 static struct type *
8264 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8265 CORE_ADDR address, struct value *dval)
8266 {
8267 int which;
8268 struct type *templ_type;
8269 struct type *var_type;
8270
8271 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8272 var_type = TYPE_TARGET_TYPE (var_type0);
8273 else
8274 var_type = var_type0;
8275
8276 templ_type = ada_find_parallel_type (var_type, "___XVU");
8277
8278 if (templ_type != NULL)
8279 var_type = templ_type;
8280
8281 if (is_unchecked_variant (var_type, value_type (dval)))
8282 return var_type0;
8283 which =
8284 ada_which_variant_applies (var_type,
8285 value_type (dval), value_contents (dval));
8286
8287 if (which < 0)
8288 return empty_record (var_type);
8289 else if (is_dynamic_field (var_type, which))
8290 return to_fixed_record_type
8291 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8292 valaddr, address, dval);
8293 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8294 return
8295 to_fixed_record_type
8296 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8297 else
8298 return TYPE_FIELD_TYPE (var_type, which);
8299 }
8300
8301 /* Assuming that TYPE0 is an array type describing the type of a value
8302 at ADDR, and that DVAL describes a record containing any
8303 discriminants used in TYPE0, returns a type for the value that
8304 contains no dynamic components (that is, no components whose sizes
8305 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8306 true, gives an error message if the resulting type's size is over
8307 varsize_limit. */
8308
8309 static struct type *
8310 to_fixed_array_type (struct type *type0, struct value *dval,
8311 int ignore_too_big)
8312 {
8313 struct type *index_type_desc;
8314 struct type *result;
8315 int constrained_packed_array_p;
8316
8317 type0 = ada_check_typedef (type0);
8318 if (TYPE_FIXED_INSTANCE (type0))
8319 return type0;
8320
8321 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8322 if (constrained_packed_array_p)
8323 type0 = decode_constrained_packed_array_type (type0);
8324
8325 index_type_desc = ada_find_parallel_type (type0, "___XA");
8326 ada_fixup_array_indexes_type (index_type_desc);
8327 if (index_type_desc == NULL)
8328 {
8329 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8330
8331 /* NOTE: elt_type---the fixed version of elt_type0---should never
8332 depend on the contents of the array in properly constructed
8333 debugging data. */
8334 /* Create a fixed version of the array element type.
8335 We're not providing the address of an element here,
8336 and thus the actual object value cannot be inspected to do
8337 the conversion. This should not be a problem, since arrays of
8338 unconstrained objects are not allowed. In particular, all
8339 the elements of an array of a tagged type should all be of
8340 the same type specified in the debugging info. No need to
8341 consult the object tag. */
8342 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8343
8344 /* Make sure we always create a new array type when dealing with
8345 packed array types, since we're going to fix-up the array
8346 type length and element bitsize a little further down. */
8347 if (elt_type0 == elt_type && !constrained_packed_array_p)
8348 result = type0;
8349 else
8350 result = create_array_type (alloc_type_copy (type0),
8351 elt_type, TYPE_INDEX_TYPE (type0));
8352 }
8353 else
8354 {
8355 int i;
8356 struct type *elt_type0;
8357
8358 elt_type0 = type0;
8359 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8360 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8361
8362 /* NOTE: result---the fixed version of elt_type0---should never
8363 depend on the contents of the array in properly constructed
8364 debugging data. */
8365 /* Create a fixed version of the array element type.
8366 We're not providing the address of an element here,
8367 and thus the actual object value cannot be inspected to do
8368 the conversion. This should not be a problem, since arrays of
8369 unconstrained objects are not allowed. In particular, all
8370 the elements of an array of a tagged type should all be of
8371 the same type specified in the debugging info. No need to
8372 consult the object tag. */
8373 result =
8374 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8375
8376 elt_type0 = type0;
8377 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8378 {
8379 struct type *range_type =
8380 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8381
8382 result = create_array_type (alloc_type_copy (elt_type0),
8383 result, range_type);
8384 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8385 }
8386 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8387 error (_("array type with dynamic size is larger than varsize-limit"));
8388 }
8389
8390 /* We want to preserve the type name. This can be useful when
8391 trying to get the type name of a value that has already been
8392 printed (for instance, if the user did "print VAR; whatis $". */
8393 TYPE_NAME (result) = TYPE_NAME (type0);
8394
8395 if (constrained_packed_array_p)
8396 {
8397 /* So far, the resulting type has been created as if the original
8398 type was a regular (non-packed) array type. As a result, the
8399 bitsize of the array elements needs to be set again, and the array
8400 length needs to be recomputed based on that bitsize. */
8401 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8402 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8403
8404 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8405 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8406 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8407 TYPE_LENGTH (result)++;
8408 }
8409
8410 TYPE_FIXED_INSTANCE (result) = 1;
8411 return result;
8412 }
8413
8414
8415 /* A standard type (containing no dynamically sized components)
8416 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8417 DVAL describes a record containing any discriminants used in TYPE0,
8418 and may be NULL if there are none, or if the object of type TYPE at
8419 ADDRESS or in VALADDR contains these discriminants.
8420
8421 If CHECK_TAG is not null, in the case of tagged types, this function
8422 attempts to locate the object's tag and use it to compute the actual
8423 type. However, when ADDRESS is null, we cannot use it to determine the
8424 location of the tag, and therefore compute the tagged type's actual type.
8425 So we return the tagged type without consulting the tag. */
8426
8427 static struct type *
8428 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8429 CORE_ADDR address, struct value *dval, int check_tag)
8430 {
8431 type = ada_check_typedef (type);
8432 switch (TYPE_CODE (type))
8433 {
8434 default:
8435 return type;
8436 case TYPE_CODE_STRUCT:
8437 {
8438 struct type *static_type = to_static_fixed_type (type);
8439 struct type *fixed_record_type =
8440 to_fixed_record_type (type, valaddr, address, NULL);
8441
8442 /* If STATIC_TYPE is a tagged type and we know the object's address,
8443 then we can determine its tag, and compute the object's actual
8444 type from there. Note that we have to use the fixed record
8445 type (the parent part of the record may have dynamic fields
8446 and the way the location of _tag is expressed may depend on
8447 them). */
8448
8449 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8450 {
8451 struct value *tag =
8452 value_tag_from_contents_and_address
8453 (fixed_record_type,
8454 valaddr,
8455 address);
8456 struct type *real_type = type_from_tag (tag);
8457 struct value *obj =
8458 value_from_contents_and_address (fixed_record_type,
8459 valaddr,
8460 address);
8461 fixed_record_type = value_type (obj);
8462 if (real_type != NULL)
8463 return to_fixed_record_type
8464 (real_type, NULL,
8465 value_address (ada_tag_value_at_base_address (obj)), NULL);
8466 }
8467
8468 /* Check to see if there is a parallel ___XVZ variable.
8469 If there is, then it provides the actual size of our type. */
8470 else if (ada_type_name (fixed_record_type) != NULL)
8471 {
8472 const char *name = ada_type_name (fixed_record_type);
8473 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8474 int xvz_found = 0;
8475 LONGEST size;
8476
8477 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8478 size = get_int_var_value (xvz_name, &xvz_found);
8479 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8480 {
8481 fixed_record_type = copy_type (fixed_record_type);
8482 TYPE_LENGTH (fixed_record_type) = size;
8483
8484 /* The FIXED_RECORD_TYPE may have be a stub. We have
8485 observed this when the debugging info is STABS, and
8486 apparently it is something that is hard to fix.
8487
8488 In practice, we don't need the actual type definition
8489 at all, because the presence of the XVZ variable allows us
8490 to assume that there must be a XVS type as well, which we
8491 should be able to use later, when we need the actual type
8492 definition.
8493
8494 In the meantime, pretend that the "fixed" type we are
8495 returning is NOT a stub, because this can cause trouble
8496 when using this type to create new types targeting it.
8497 Indeed, the associated creation routines often check
8498 whether the target type is a stub and will try to replace
8499 it, thus using a type with the wrong size. This, in turn,
8500 might cause the new type to have the wrong size too.
8501 Consider the case of an array, for instance, where the size
8502 of the array is computed from the number of elements in
8503 our array multiplied by the size of its element. */
8504 TYPE_STUB (fixed_record_type) = 0;
8505 }
8506 }
8507 return fixed_record_type;
8508 }
8509 case TYPE_CODE_ARRAY:
8510 return to_fixed_array_type (type, dval, 1);
8511 case TYPE_CODE_UNION:
8512 if (dval == NULL)
8513 return type;
8514 else
8515 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8516 }
8517 }
8518
8519 /* The same as ada_to_fixed_type_1, except that it preserves the type
8520 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8521
8522 The typedef layer needs be preserved in order to differentiate between
8523 arrays and array pointers when both types are implemented using the same
8524 fat pointer. In the array pointer case, the pointer is encoded as
8525 a typedef of the pointer type. For instance, considering:
8526
8527 type String_Access is access String;
8528 S1 : String_Access := null;
8529
8530 To the debugger, S1 is defined as a typedef of type String. But
8531 to the user, it is a pointer. So if the user tries to print S1,
8532 we should not dereference the array, but print the array address
8533 instead.
8534
8535 If we didn't preserve the typedef layer, we would lose the fact that
8536 the type is to be presented as a pointer (needs de-reference before
8537 being printed). And we would also use the source-level type name. */
8538
8539 struct type *
8540 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8541 CORE_ADDR address, struct value *dval, int check_tag)
8542
8543 {
8544 struct type *fixed_type =
8545 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8546
8547 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8548 then preserve the typedef layer.
8549
8550 Implementation note: We can only check the main-type portion of
8551 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8552 from TYPE now returns a type that has the same instance flags
8553 as TYPE. For instance, if TYPE is a "typedef const", and its
8554 target type is a "struct", then the typedef elimination will return
8555 a "const" version of the target type. See check_typedef for more
8556 details about how the typedef layer elimination is done.
8557
8558 brobecker/2010-11-19: It seems to me that the only case where it is
8559 useful to preserve the typedef layer is when dealing with fat pointers.
8560 Perhaps, we could add a check for that and preserve the typedef layer
8561 only in that situation. But this seems unecessary so far, probably
8562 because we call check_typedef/ada_check_typedef pretty much everywhere.
8563 */
8564 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8565 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8566 == TYPE_MAIN_TYPE (fixed_type)))
8567 return type;
8568
8569 return fixed_type;
8570 }
8571
8572 /* A standard (static-sized) type corresponding as well as possible to
8573 TYPE0, but based on no runtime data. */
8574
8575 static struct type *
8576 to_static_fixed_type (struct type *type0)
8577 {
8578 struct type *type;
8579
8580 if (type0 == NULL)
8581 return NULL;
8582
8583 if (TYPE_FIXED_INSTANCE (type0))
8584 return type0;
8585
8586 type0 = ada_check_typedef (type0);
8587
8588 switch (TYPE_CODE (type0))
8589 {
8590 default:
8591 return type0;
8592 case TYPE_CODE_STRUCT:
8593 type = dynamic_template_type (type0);
8594 if (type != NULL)
8595 return template_to_static_fixed_type (type);
8596 else
8597 return template_to_static_fixed_type (type0);
8598 case TYPE_CODE_UNION:
8599 type = ada_find_parallel_type (type0, "___XVU");
8600 if (type != NULL)
8601 return template_to_static_fixed_type (type);
8602 else
8603 return template_to_static_fixed_type (type0);
8604 }
8605 }
8606
8607 /* A static approximation of TYPE with all type wrappers removed. */
8608
8609 static struct type *
8610 static_unwrap_type (struct type *type)
8611 {
8612 if (ada_is_aligner_type (type))
8613 {
8614 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8615 if (ada_type_name (type1) == NULL)
8616 TYPE_NAME (type1) = ada_type_name (type);
8617
8618 return static_unwrap_type (type1);
8619 }
8620 else
8621 {
8622 struct type *raw_real_type = ada_get_base_type (type);
8623
8624 if (raw_real_type == type)
8625 return type;
8626 else
8627 return to_static_fixed_type (raw_real_type);
8628 }
8629 }
8630
8631 /* In some cases, incomplete and private types require
8632 cross-references that are not resolved as records (for example,
8633 type Foo;
8634 type FooP is access Foo;
8635 V: FooP;
8636 type Foo is array ...;
8637 ). In these cases, since there is no mechanism for producing
8638 cross-references to such types, we instead substitute for FooP a
8639 stub enumeration type that is nowhere resolved, and whose tag is
8640 the name of the actual type. Call these types "non-record stubs". */
8641
8642 /* A type equivalent to TYPE that is not a non-record stub, if one
8643 exists, otherwise TYPE. */
8644
8645 struct type *
8646 ada_check_typedef (struct type *type)
8647 {
8648 if (type == NULL)
8649 return NULL;
8650
8651 /* If our type is a typedef type of a fat pointer, then we're done.
8652 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8653 what allows us to distinguish between fat pointers that represent
8654 array types, and fat pointers that represent array access types
8655 (in both cases, the compiler implements them as fat pointers). */
8656 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8657 && is_thick_pntr (ada_typedef_target_type (type)))
8658 return type;
8659
8660 CHECK_TYPEDEF (type);
8661 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8662 || !TYPE_STUB (type)
8663 || TYPE_TAG_NAME (type) == NULL)
8664 return type;
8665 else
8666 {
8667 const char *name = TYPE_TAG_NAME (type);
8668 struct type *type1 = ada_find_any_type (name);
8669
8670 if (type1 == NULL)
8671 return type;
8672
8673 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8674 stubs pointing to arrays, as we don't create symbols for array
8675 types, only for the typedef-to-array types). If that's the case,
8676 strip the typedef layer. */
8677 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8678 type1 = ada_check_typedef (type1);
8679
8680 return type1;
8681 }
8682 }
8683
8684 /* A value representing the data at VALADDR/ADDRESS as described by
8685 type TYPE0, but with a standard (static-sized) type that correctly
8686 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8687 type, then return VAL0 [this feature is simply to avoid redundant
8688 creation of struct values]. */
8689
8690 static struct value *
8691 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8692 struct value *val0)
8693 {
8694 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8695
8696 if (type == type0 && val0 != NULL)
8697 return val0;
8698 else
8699 return value_from_contents_and_address (type, 0, address);
8700 }
8701
8702 /* A value representing VAL, but with a standard (static-sized) type
8703 that correctly describes it. Does not necessarily create a new
8704 value. */
8705
8706 struct value *
8707 ada_to_fixed_value (struct value *val)
8708 {
8709 val = unwrap_value (val);
8710 val = ada_to_fixed_value_create (value_type (val),
8711 value_address (val),
8712 val);
8713 return val;
8714 }
8715 \f
8716
8717 /* Attributes */
8718
8719 /* Table mapping attribute numbers to names.
8720 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8721
8722 static const char *attribute_names[] = {
8723 "<?>",
8724
8725 "first",
8726 "last",
8727 "length",
8728 "image",
8729 "max",
8730 "min",
8731 "modulus",
8732 "pos",
8733 "size",
8734 "tag",
8735 "val",
8736 0
8737 };
8738
8739 const char *
8740 ada_attribute_name (enum exp_opcode n)
8741 {
8742 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8743 return attribute_names[n - OP_ATR_FIRST + 1];
8744 else
8745 return attribute_names[0];
8746 }
8747
8748 /* Evaluate the 'POS attribute applied to ARG. */
8749
8750 static LONGEST
8751 pos_atr (struct value *arg)
8752 {
8753 struct value *val = coerce_ref (arg);
8754 struct type *type = value_type (val);
8755
8756 if (!discrete_type_p (type))
8757 error (_("'POS only defined on discrete types"));
8758
8759 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8760 {
8761 int i;
8762 LONGEST v = value_as_long (val);
8763
8764 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8765 {
8766 if (v == TYPE_FIELD_ENUMVAL (type, i))
8767 return i;
8768 }
8769 error (_("enumeration value is invalid: can't find 'POS"));
8770 }
8771 else
8772 return value_as_long (val);
8773 }
8774
8775 static struct value *
8776 value_pos_atr (struct type *type, struct value *arg)
8777 {
8778 return value_from_longest (type, pos_atr (arg));
8779 }
8780
8781 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8782
8783 static struct value *
8784 value_val_atr (struct type *type, struct value *arg)
8785 {
8786 if (!discrete_type_p (type))
8787 error (_("'VAL only defined on discrete types"));
8788 if (!integer_type_p (value_type (arg)))
8789 error (_("'VAL requires integral argument"));
8790
8791 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8792 {
8793 long pos = value_as_long (arg);
8794
8795 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8796 error (_("argument to 'VAL out of range"));
8797 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8798 }
8799 else
8800 return value_from_longest (type, value_as_long (arg));
8801 }
8802 \f
8803
8804 /* Evaluation */
8805
8806 /* True if TYPE appears to be an Ada character type.
8807 [At the moment, this is true only for Character and Wide_Character;
8808 It is a heuristic test that could stand improvement]. */
8809
8810 int
8811 ada_is_character_type (struct type *type)
8812 {
8813 const char *name;
8814
8815 /* If the type code says it's a character, then assume it really is,
8816 and don't check any further. */
8817 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8818 return 1;
8819
8820 /* Otherwise, assume it's a character type iff it is a discrete type
8821 with a known character type name. */
8822 name = ada_type_name (type);
8823 return (name != NULL
8824 && (TYPE_CODE (type) == TYPE_CODE_INT
8825 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8826 && (strcmp (name, "character") == 0
8827 || strcmp (name, "wide_character") == 0
8828 || strcmp (name, "wide_wide_character") == 0
8829 || strcmp (name, "unsigned char") == 0));
8830 }
8831
8832 /* True if TYPE appears to be an Ada string type. */
8833
8834 int
8835 ada_is_string_type (struct type *type)
8836 {
8837 type = ada_check_typedef (type);
8838 if (type != NULL
8839 && TYPE_CODE (type) != TYPE_CODE_PTR
8840 && (ada_is_simple_array_type (type)
8841 || ada_is_array_descriptor_type (type))
8842 && ada_array_arity (type) == 1)
8843 {
8844 struct type *elttype = ada_array_element_type (type, 1);
8845
8846 return ada_is_character_type (elttype);
8847 }
8848 else
8849 return 0;
8850 }
8851
8852 /* The compiler sometimes provides a parallel XVS type for a given
8853 PAD type. Normally, it is safe to follow the PAD type directly,
8854 but older versions of the compiler have a bug that causes the offset
8855 of its "F" field to be wrong. Following that field in that case
8856 would lead to incorrect results, but this can be worked around
8857 by ignoring the PAD type and using the associated XVS type instead.
8858
8859 Set to True if the debugger should trust the contents of PAD types.
8860 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8861 static int trust_pad_over_xvs = 1;
8862
8863 /* True if TYPE is a struct type introduced by the compiler to force the
8864 alignment of a value. Such types have a single field with a
8865 distinctive name. */
8866
8867 int
8868 ada_is_aligner_type (struct type *type)
8869 {
8870 type = ada_check_typedef (type);
8871
8872 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8873 return 0;
8874
8875 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8876 && TYPE_NFIELDS (type) == 1
8877 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8878 }
8879
8880 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8881 the parallel type. */
8882
8883 struct type *
8884 ada_get_base_type (struct type *raw_type)
8885 {
8886 struct type *real_type_namer;
8887 struct type *raw_real_type;
8888
8889 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8890 return raw_type;
8891
8892 if (ada_is_aligner_type (raw_type))
8893 /* The encoding specifies that we should always use the aligner type.
8894 So, even if this aligner type has an associated XVS type, we should
8895 simply ignore it.
8896
8897 According to the compiler gurus, an XVS type parallel to an aligner
8898 type may exist because of a stabs limitation. In stabs, aligner
8899 types are empty because the field has a variable-sized type, and
8900 thus cannot actually be used as an aligner type. As a result,
8901 we need the associated parallel XVS type to decode the type.
8902 Since the policy in the compiler is to not change the internal
8903 representation based on the debugging info format, we sometimes
8904 end up having a redundant XVS type parallel to the aligner type. */
8905 return raw_type;
8906
8907 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8908 if (real_type_namer == NULL
8909 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8910 || TYPE_NFIELDS (real_type_namer) != 1)
8911 return raw_type;
8912
8913 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8914 {
8915 /* This is an older encoding form where the base type needs to be
8916 looked up by name. We prefer the newer enconding because it is
8917 more efficient. */
8918 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8919 if (raw_real_type == NULL)
8920 return raw_type;
8921 else
8922 return raw_real_type;
8923 }
8924
8925 /* The field in our XVS type is a reference to the base type. */
8926 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8927 }
8928
8929 /* The type of value designated by TYPE, with all aligners removed. */
8930
8931 struct type *
8932 ada_aligned_type (struct type *type)
8933 {
8934 if (ada_is_aligner_type (type))
8935 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8936 else
8937 return ada_get_base_type (type);
8938 }
8939
8940
8941 /* The address of the aligned value in an object at address VALADDR
8942 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8943
8944 const gdb_byte *
8945 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8946 {
8947 if (ada_is_aligner_type (type))
8948 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8949 valaddr +
8950 TYPE_FIELD_BITPOS (type,
8951 0) / TARGET_CHAR_BIT);
8952 else
8953 return valaddr;
8954 }
8955
8956
8957
8958 /* The printed representation of an enumeration literal with encoded
8959 name NAME. The value is good to the next call of ada_enum_name. */
8960 const char *
8961 ada_enum_name (const char *name)
8962 {
8963 static char *result;
8964 static size_t result_len = 0;
8965 char *tmp;
8966
8967 /* First, unqualify the enumeration name:
8968 1. Search for the last '.' character. If we find one, then skip
8969 all the preceding characters, the unqualified name starts
8970 right after that dot.
8971 2. Otherwise, we may be debugging on a target where the compiler
8972 translates dots into "__". Search forward for double underscores,
8973 but stop searching when we hit an overloading suffix, which is
8974 of the form "__" followed by digits. */
8975
8976 tmp = strrchr (name, '.');
8977 if (tmp != NULL)
8978 name = tmp + 1;
8979 else
8980 {
8981 while ((tmp = strstr (name, "__")) != NULL)
8982 {
8983 if (isdigit (tmp[2]))
8984 break;
8985 else
8986 name = tmp + 2;
8987 }
8988 }
8989
8990 if (name[0] == 'Q')
8991 {
8992 int v;
8993
8994 if (name[1] == 'U' || name[1] == 'W')
8995 {
8996 if (sscanf (name + 2, "%x", &v) != 1)
8997 return name;
8998 }
8999 else
9000 return name;
9001
9002 GROW_VECT (result, result_len, 16);
9003 if (isascii (v) && isprint (v))
9004 xsnprintf (result, result_len, "'%c'", v);
9005 else if (name[1] == 'U')
9006 xsnprintf (result, result_len, "[\"%02x\"]", v);
9007 else
9008 xsnprintf (result, result_len, "[\"%04x\"]", v);
9009
9010 return result;
9011 }
9012 else
9013 {
9014 tmp = strstr (name, "__");
9015 if (tmp == NULL)
9016 tmp = strstr (name, "$");
9017 if (tmp != NULL)
9018 {
9019 GROW_VECT (result, result_len, tmp - name + 1);
9020 strncpy (result, name, tmp - name);
9021 result[tmp - name] = '\0';
9022 return result;
9023 }
9024
9025 return name;
9026 }
9027 }
9028
9029 /* Evaluate the subexpression of EXP starting at *POS as for
9030 evaluate_type, updating *POS to point just past the evaluated
9031 expression. */
9032
9033 static struct value *
9034 evaluate_subexp_type (struct expression *exp, int *pos)
9035 {
9036 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9037 }
9038
9039 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9040 value it wraps. */
9041
9042 static struct value *
9043 unwrap_value (struct value *val)
9044 {
9045 struct type *type = ada_check_typedef (value_type (val));
9046
9047 if (ada_is_aligner_type (type))
9048 {
9049 struct value *v = ada_value_struct_elt (val, "F", 0);
9050 struct type *val_type = ada_check_typedef (value_type (v));
9051
9052 if (ada_type_name (val_type) == NULL)
9053 TYPE_NAME (val_type) = ada_type_name (type);
9054
9055 return unwrap_value (v);
9056 }
9057 else
9058 {
9059 struct type *raw_real_type =
9060 ada_check_typedef (ada_get_base_type (type));
9061
9062 /* If there is no parallel XVS or XVE type, then the value is
9063 already unwrapped. Return it without further modification. */
9064 if ((type == raw_real_type)
9065 && ada_find_parallel_type (type, "___XVE") == NULL)
9066 return val;
9067
9068 return
9069 coerce_unspec_val_to_type
9070 (val, ada_to_fixed_type (raw_real_type, 0,
9071 value_address (val),
9072 NULL, 1));
9073 }
9074 }
9075
9076 static struct value *
9077 cast_to_fixed (struct type *type, struct value *arg)
9078 {
9079 LONGEST val;
9080
9081 if (type == value_type (arg))
9082 return arg;
9083 else if (ada_is_fixed_point_type (value_type (arg)))
9084 val = ada_float_to_fixed (type,
9085 ada_fixed_to_float (value_type (arg),
9086 value_as_long (arg)));
9087 else
9088 {
9089 DOUBLEST argd = value_as_double (arg);
9090
9091 val = ada_float_to_fixed (type, argd);
9092 }
9093
9094 return value_from_longest (type, val);
9095 }
9096
9097 static struct value *
9098 cast_from_fixed (struct type *type, struct value *arg)
9099 {
9100 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9101 value_as_long (arg));
9102
9103 return value_from_double (type, val);
9104 }
9105
9106 /* Given two array types T1 and T2, return nonzero iff both arrays
9107 contain the same number of elements. */
9108
9109 static int
9110 ada_same_array_size_p (struct type *t1, struct type *t2)
9111 {
9112 LONGEST lo1, hi1, lo2, hi2;
9113
9114 /* Get the array bounds in order to verify that the size of
9115 the two arrays match. */
9116 if (!get_array_bounds (t1, &lo1, &hi1)
9117 || !get_array_bounds (t2, &lo2, &hi2))
9118 error (_("unable to determine array bounds"));
9119
9120 /* To make things easier for size comparison, normalize a bit
9121 the case of empty arrays by making sure that the difference
9122 between upper bound and lower bound is always -1. */
9123 if (lo1 > hi1)
9124 hi1 = lo1 - 1;
9125 if (lo2 > hi2)
9126 hi2 = lo2 - 1;
9127
9128 return (hi1 - lo1 == hi2 - lo2);
9129 }
9130
9131 /* Assuming that VAL is an array of integrals, and TYPE represents
9132 an array with the same number of elements, but with wider integral
9133 elements, return an array "casted" to TYPE. In practice, this
9134 means that the returned array is built by casting each element
9135 of the original array into TYPE's (wider) element type. */
9136
9137 static struct value *
9138 ada_promote_array_of_integrals (struct type *type, struct value *val)
9139 {
9140 struct type *elt_type = TYPE_TARGET_TYPE (type);
9141 LONGEST lo, hi;
9142 struct value *res;
9143 LONGEST i;
9144
9145 /* Verify that both val and type are arrays of scalars, and
9146 that the size of val's elements is smaller than the size
9147 of type's element. */
9148 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9149 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9150 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9151 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9152 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9153 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9154
9155 if (!get_array_bounds (type, &lo, &hi))
9156 error (_("unable to determine array bounds"));
9157
9158 res = allocate_value (type);
9159
9160 /* Promote each array element. */
9161 for (i = 0; i < hi - lo + 1; i++)
9162 {
9163 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9164
9165 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9166 value_contents_all (elt), TYPE_LENGTH (elt_type));
9167 }
9168
9169 return res;
9170 }
9171
9172 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9173 return the converted value. */
9174
9175 static struct value *
9176 coerce_for_assign (struct type *type, struct value *val)
9177 {
9178 struct type *type2 = value_type (val);
9179
9180 if (type == type2)
9181 return val;
9182
9183 type2 = ada_check_typedef (type2);
9184 type = ada_check_typedef (type);
9185
9186 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9187 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9188 {
9189 val = ada_value_ind (val);
9190 type2 = value_type (val);
9191 }
9192
9193 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9194 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9195 {
9196 if (!ada_same_array_size_p (type, type2))
9197 error (_("cannot assign arrays of different length"));
9198
9199 if (is_integral_type (TYPE_TARGET_TYPE (type))
9200 && is_integral_type (TYPE_TARGET_TYPE (type2))
9201 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9202 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9203 {
9204 /* Allow implicit promotion of the array elements to
9205 a wider type. */
9206 return ada_promote_array_of_integrals (type, val);
9207 }
9208
9209 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9210 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9211 error (_("Incompatible types in assignment"));
9212 deprecated_set_value_type (val, type);
9213 }
9214 return val;
9215 }
9216
9217 static struct value *
9218 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9219 {
9220 struct value *val;
9221 struct type *type1, *type2;
9222 LONGEST v, v1, v2;
9223
9224 arg1 = coerce_ref (arg1);
9225 arg2 = coerce_ref (arg2);
9226 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9227 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9228
9229 if (TYPE_CODE (type1) != TYPE_CODE_INT
9230 || TYPE_CODE (type2) != TYPE_CODE_INT)
9231 return value_binop (arg1, arg2, op);
9232
9233 switch (op)
9234 {
9235 case BINOP_MOD:
9236 case BINOP_DIV:
9237 case BINOP_REM:
9238 break;
9239 default:
9240 return value_binop (arg1, arg2, op);
9241 }
9242
9243 v2 = value_as_long (arg2);
9244 if (v2 == 0)
9245 error (_("second operand of %s must not be zero."), op_string (op));
9246
9247 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9248 return value_binop (arg1, arg2, op);
9249
9250 v1 = value_as_long (arg1);
9251 switch (op)
9252 {
9253 case BINOP_DIV:
9254 v = v1 / v2;
9255 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9256 v += v > 0 ? -1 : 1;
9257 break;
9258 case BINOP_REM:
9259 v = v1 % v2;
9260 if (v * v1 < 0)
9261 v -= v2;
9262 break;
9263 default:
9264 /* Should not reach this point. */
9265 v = 0;
9266 }
9267
9268 val = allocate_value (type1);
9269 store_unsigned_integer (value_contents_raw (val),
9270 TYPE_LENGTH (value_type (val)),
9271 gdbarch_byte_order (get_type_arch (type1)), v);
9272 return val;
9273 }
9274
9275 static int
9276 ada_value_equal (struct value *arg1, struct value *arg2)
9277 {
9278 if (ada_is_direct_array_type (value_type (arg1))
9279 || ada_is_direct_array_type (value_type (arg2)))
9280 {
9281 /* Automatically dereference any array reference before
9282 we attempt to perform the comparison. */
9283 arg1 = ada_coerce_ref (arg1);
9284 arg2 = ada_coerce_ref (arg2);
9285
9286 arg1 = ada_coerce_to_simple_array (arg1);
9287 arg2 = ada_coerce_to_simple_array (arg2);
9288 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9289 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9290 error (_("Attempt to compare array with non-array"));
9291 /* FIXME: The following works only for types whose
9292 representations use all bits (no padding or undefined bits)
9293 and do not have user-defined equality. */
9294 return
9295 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9296 && memcmp (value_contents (arg1), value_contents (arg2),
9297 TYPE_LENGTH (value_type (arg1))) == 0;
9298 }
9299 return value_equal (arg1, arg2);
9300 }
9301
9302 /* Total number of component associations in the aggregate starting at
9303 index PC in EXP. Assumes that index PC is the start of an
9304 OP_AGGREGATE. */
9305
9306 static int
9307 num_component_specs (struct expression *exp, int pc)
9308 {
9309 int n, m, i;
9310
9311 m = exp->elts[pc + 1].longconst;
9312 pc += 3;
9313 n = 0;
9314 for (i = 0; i < m; i += 1)
9315 {
9316 switch (exp->elts[pc].opcode)
9317 {
9318 default:
9319 n += 1;
9320 break;
9321 case OP_CHOICES:
9322 n += exp->elts[pc + 1].longconst;
9323 break;
9324 }
9325 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9326 }
9327 return n;
9328 }
9329
9330 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9331 component of LHS (a simple array or a record), updating *POS past
9332 the expression, assuming that LHS is contained in CONTAINER. Does
9333 not modify the inferior's memory, nor does it modify LHS (unless
9334 LHS == CONTAINER). */
9335
9336 static void
9337 assign_component (struct value *container, struct value *lhs, LONGEST index,
9338 struct expression *exp, int *pos)
9339 {
9340 struct value *mark = value_mark ();
9341 struct value *elt;
9342
9343 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9344 {
9345 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9346 struct value *index_val = value_from_longest (index_type, index);
9347
9348 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9349 }
9350 else
9351 {
9352 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9353 elt = ada_to_fixed_value (elt);
9354 }
9355
9356 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9357 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9358 else
9359 value_assign_to_component (container, elt,
9360 ada_evaluate_subexp (NULL, exp, pos,
9361 EVAL_NORMAL));
9362
9363 value_free_to_mark (mark);
9364 }
9365
9366 /* Assuming that LHS represents an lvalue having a record or array
9367 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9368 of that aggregate's value to LHS, advancing *POS past the
9369 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9370 lvalue containing LHS (possibly LHS itself). Does not modify
9371 the inferior's memory, nor does it modify the contents of
9372 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9373
9374 static struct value *
9375 assign_aggregate (struct value *container,
9376 struct value *lhs, struct expression *exp,
9377 int *pos, enum noside noside)
9378 {
9379 struct type *lhs_type;
9380 int n = exp->elts[*pos+1].longconst;
9381 LONGEST low_index, high_index;
9382 int num_specs;
9383 LONGEST *indices;
9384 int max_indices, num_indices;
9385 int i;
9386
9387 *pos += 3;
9388 if (noside != EVAL_NORMAL)
9389 {
9390 for (i = 0; i < n; i += 1)
9391 ada_evaluate_subexp (NULL, exp, pos, noside);
9392 return container;
9393 }
9394
9395 container = ada_coerce_ref (container);
9396 if (ada_is_direct_array_type (value_type (container)))
9397 container = ada_coerce_to_simple_array (container);
9398 lhs = ada_coerce_ref (lhs);
9399 if (!deprecated_value_modifiable (lhs))
9400 error (_("Left operand of assignment is not a modifiable lvalue."));
9401
9402 lhs_type = value_type (lhs);
9403 if (ada_is_direct_array_type (lhs_type))
9404 {
9405 lhs = ada_coerce_to_simple_array (lhs);
9406 lhs_type = value_type (lhs);
9407 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9408 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9409 }
9410 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9411 {
9412 low_index = 0;
9413 high_index = num_visible_fields (lhs_type) - 1;
9414 }
9415 else
9416 error (_("Left-hand side must be array or record."));
9417
9418 num_specs = num_component_specs (exp, *pos - 3);
9419 max_indices = 4 * num_specs + 4;
9420 indices = alloca (max_indices * sizeof (indices[0]));
9421 indices[0] = indices[1] = low_index - 1;
9422 indices[2] = indices[3] = high_index + 1;
9423 num_indices = 4;
9424
9425 for (i = 0; i < n; i += 1)
9426 {
9427 switch (exp->elts[*pos].opcode)
9428 {
9429 case OP_CHOICES:
9430 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9431 &num_indices, max_indices,
9432 low_index, high_index);
9433 break;
9434 case OP_POSITIONAL:
9435 aggregate_assign_positional (container, lhs, exp, pos, indices,
9436 &num_indices, max_indices,
9437 low_index, high_index);
9438 break;
9439 case OP_OTHERS:
9440 if (i != n-1)
9441 error (_("Misplaced 'others' clause"));
9442 aggregate_assign_others (container, lhs, exp, pos, indices,
9443 num_indices, low_index, high_index);
9444 break;
9445 default:
9446 error (_("Internal error: bad aggregate clause"));
9447 }
9448 }
9449
9450 return container;
9451 }
9452
9453 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9454 construct at *POS, updating *POS past the construct, given that
9455 the positions are relative to lower bound LOW, where HIGH is the
9456 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9457 updating *NUM_INDICES as needed. CONTAINER is as for
9458 assign_aggregate. */
9459 static void
9460 aggregate_assign_positional (struct value *container,
9461 struct value *lhs, struct expression *exp,
9462 int *pos, LONGEST *indices, int *num_indices,
9463 int max_indices, LONGEST low, LONGEST high)
9464 {
9465 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9466
9467 if (ind - 1 == high)
9468 warning (_("Extra components in aggregate ignored."));
9469 if (ind <= high)
9470 {
9471 add_component_interval (ind, ind, indices, num_indices, max_indices);
9472 *pos += 3;
9473 assign_component (container, lhs, ind, exp, pos);
9474 }
9475 else
9476 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9477 }
9478
9479 /* Assign into the components of LHS indexed by the OP_CHOICES
9480 construct at *POS, updating *POS past the construct, given that
9481 the allowable indices are LOW..HIGH. Record the indices assigned
9482 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9483 needed. CONTAINER is as for assign_aggregate. */
9484 static void
9485 aggregate_assign_from_choices (struct value *container,
9486 struct value *lhs, struct expression *exp,
9487 int *pos, LONGEST *indices, int *num_indices,
9488 int max_indices, LONGEST low, LONGEST high)
9489 {
9490 int j;
9491 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9492 int choice_pos, expr_pc;
9493 int is_array = ada_is_direct_array_type (value_type (lhs));
9494
9495 choice_pos = *pos += 3;
9496
9497 for (j = 0; j < n_choices; j += 1)
9498 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9499 expr_pc = *pos;
9500 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9501
9502 for (j = 0; j < n_choices; j += 1)
9503 {
9504 LONGEST lower, upper;
9505 enum exp_opcode op = exp->elts[choice_pos].opcode;
9506
9507 if (op == OP_DISCRETE_RANGE)
9508 {
9509 choice_pos += 1;
9510 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9511 EVAL_NORMAL));
9512 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9513 EVAL_NORMAL));
9514 }
9515 else if (is_array)
9516 {
9517 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9518 EVAL_NORMAL));
9519 upper = lower;
9520 }
9521 else
9522 {
9523 int ind;
9524 const char *name;
9525
9526 switch (op)
9527 {
9528 case OP_NAME:
9529 name = &exp->elts[choice_pos + 2].string;
9530 break;
9531 case OP_VAR_VALUE:
9532 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9533 break;
9534 default:
9535 error (_("Invalid record component association."));
9536 }
9537 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9538 ind = 0;
9539 if (! find_struct_field (name, value_type (lhs), 0,
9540 NULL, NULL, NULL, NULL, &ind))
9541 error (_("Unknown component name: %s."), name);
9542 lower = upper = ind;
9543 }
9544
9545 if (lower <= upper && (lower < low || upper > high))
9546 error (_("Index in component association out of bounds."));
9547
9548 add_component_interval (lower, upper, indices, num_indices,
9549 max_indices);
9550 while (lower <= upper)
9551 {
9552 int pos1;
9553
9554 pos1 = expr_pc;
9555 assign_component (container, lhs, lower, exp, &pos1);
9556 lower += 1;
9557 }
9558 }
9559 }
9560
9561 /* Assign the value of the expression in the OP_OTHERS construct in
9562 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9563 have not been previously assigned. The index intervals already assigned
9564 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9565 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9566 static void
9567 aggregate_assign_others (struct value *container,
9568 struct value *lhs, struct expression *exp,
9569 int *pos, LONGEST *indices, int num_indices,
9570 LONGEST low, LONGEST high)
9571 {
9572 int i;
9573 int expr_pc = *pos + 1;
9574
9575 for (i = 0; i < num_indices - 2; i += 2)
9576 {
9577 LONGEST ind;
9578
9579 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9580 {
9581 int localpos;
9582
9583 localpos = expr_pc;
9584 assign_component (container, lhs, ind, exp, &localpos);
9585 }
9586 }
9587 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9588 }
9589
9590 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9591 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9592 modifying *SIZE as needed. It is an error if *SIZE exceeds
9593 MAX_SIZE. The resulting intervals do not overlap. */
9594 static void
9595 add_component_interval (LONGEST low, LONGEST high,
9596 LONGEST* indices, int *size, int max_size)
9597 {
9598 int i, j;
9599
9600 for (i = 0; i < *size; i += 2) {
9601 if (high >= indices[i] && low <= indices[i + 1])
9602 {
9603 int kh;
9604
9605 for (kh = i + 2; kh < *size; kh += 2)
9606 if (high < indices[kh])
9607 break;
9608 if (low < indices[i])
9609 indices[i] = low;
9610 indices[i + 1] = indices[kh - 1];
9611 if (high > indices[i + 1])
9612 indices[i + 1] = high;
9613 memcpy (indices + i + 2, indices + kh, *size - kh);
9614 *size -= kh - i - 2;
9615 return;
9616 }
9617 else if (high < indices[i])
9618 break;
9619 }
9620
9621 if (*size == max_size)
9622 error (_("Internal error: miscounted aggregate components."));
9623 *size += 2;
9624 for (j = *size-1; j >= i+2; j -= 1)
9625 indices[j] = indices[j - 2];
9626 indices[i] = low;
9627 indices[i + 1] = high;
9628 }
9629
9630 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9631 is different. */
9632
9633 static struct value *
9634 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9635 {
9636 if (type == ada_check_typedef (value_type (arg2)))
9637 return arg2;
9638
9639 if (ada_is_fixed_point_type (type))
9640 return (cast_to_fixed (type, arg2));
9641
9642 if (ada_is_fixed_point_type (value_type (arg2)))
9643 return cast_from_fixed (type, arg2);
9644
9645 return value_cast (type, arg2);
9646 }
9647
9648 /* Evaluating Ada expressions, and printing their result.
9649 ------------------------------------------------------
9650
9651 1. Introduction:
9652 ----------------
9653
9654 We usually evaluate an Ada expression in order to print its value.
9655 We also evaluate an expression in order to print its type, which
9656 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9657 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9658 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9659 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9660 similar.
9661
9662 Evaluating expressions is a little more complicated for Ada entities
9663 than it is for entities in languages such as C. The main reason for
9664 this is that Ada provides types whose definition might be dynamic.
9665 One example of such types is variant records. Or another example
9666 would be an array whose bounds can only be known at run time.
9667
9668 The following description is a general guide as to what should be
9669 done (and what should NOT be done) in order to evaluate an expression
9670 involving such types, and when. This does not cover how the semantic
9671 information is encoded by GNAT as this is covered separatly. For the
9672 document used as the reference for the GNAT encoding, see exp_dbug.ads
9673 in the GNAT sources.
9674
9675 Ideally, we should embed each part of this description next to its
9676 associated code. Unfortunately, the amount of code is so vast right
9677 now that it's hard to see whether the code handling a particular
9678 situation might be duplicated or not. One day, when the code is
9679 cleaned up, this guide might become redundant with the comments
9680 inserted in the code, and we might want to remove it.
9681
9682 2. ``Fixing'' an Entity, the Simple Case:
9683 -----------------------------------------
9684
9685 When evaluating Ada expressions, the tricky issue is that they may
9686 reference entities whose type contents and size are not statically
9687 known. Consider for instance a variant record:
9688
9689 type Rec (Empty : Boolean := True) is record
9690 case Empty is
9691 when True => null;
9692 when False => Value : Integer;
9693 end case;
9694 end record;
9695 Yes : Rec := (Empty => False, Value => 1);
9696 No : Rec := (empty => True);
9697
9698 The size and contents of that record depends on the value of the
9699 descriminant (Rec.Empty). At this point, neither the debugging
9700 information nor the associated type structure in GDB are able to
9701 express such dynamic types. So what the debugger does is to create
9702 "fixed" versions of the type that applies to the specific object.
9703 We also informally refer to this opperation as "fixing" an object,
9704 which means creating its associated fixed type.
9705
9706 Example: when printing the value of variable "Yes" above, its fixed
9707 type would look like this:
9708
9709 type Rec is record
9710 Empty : Boolean;
9711 Value : Integer;
9712 end record;
9713
9714 On the other hand, if we printed the value of "No", its fixed type
9715 would become:
9716
9717 type Rec is record
9718 Empty : Boolean;
9719 end record;
9720
9721 Things become a little more complicated when trying to fix an entity
9722 with a dynamic type that directly contains another dynamic type,
9723 such as an array of variant records, for instance. There are
9724 two possible cases: Arrays, and records.
9725
9726 3. ``Fixing'' Arrays:
9727 ---------------------
9728
9729 The type structure in GDB describes an array in terms of its bounds,
9730 and the type of its elements. By design, all elements in the array
9731 have the same type and we cannot represent an array of variant elements
9732 using the current type structure in GDB. When fixing an array,
9733 we cannot fix the array element, as we would potentially need one
9734 fixed type per element of the array. As a result, the best we can do
9735 when fixing an array is to produce an array whose bounds and size
9736 are correct (allowing us to read it from memory), but without having
9737 touched its element type. Fixing each element will be done later,
9738 when (if) necessary.
9739
9740 Arrays are a little simpler to handle than records, because the same
9741 amount of memory is allocated for each element of the array, even if
9742 the amount of space actually used by each element differs from element
9743 to element. Consider for instance the following array of type Rec:
9744
9745 type Rec_Array is array (1 .. 2) of Rec;
9746
9747 The actual amount of memory occupied by each element might be different
9748 from element to element, depending on the value of their discriminant.
9749 But the amount of space reserved for each element in the array remains
9750 fixed regardless. So we simply need to compute that size using
9751 the debugging information available, from which we can then determine
9752 the array size (we multiply the number of elements of the array by
9753 the size of each element).
9754
9755 The simplest case is when we have an array of a constrained element
9756 type. For instance, consider the following type declarations:
9757
9758 type Bounded_String (Max_Size : Integer) is
9759 Length : Integer;
9760 Buffer : String (1 .. Max_Size);
9761 end record;
9762 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9763
9764 In this case, the compiler describes the array as an array of
9765 variable-size elements (identified by its XVS suffix) for which
9766 the size can be read in the parallel XVZ variable.
9767
9768 In the case of an array of an unconstrained element type, the compiler
9769 wraps the array element inside a private PAD type. This type should not
9770 be shown to the user, and must be "unwrap"'ed before printing. Note
9771 that we also use the adjective "aligner" in our code to designate
9772 these wrapper types.
9773
9774 In some cases, the size allocated for each element is statically
9775 known. In that case, the PAD type already has the correct size,
9776 and the array element should remain unfixed.
9777
9778 But there are cases when this size is not statically known.
9779 For instance, assuming that "Five" is an integer variable:
9780
9781 type Dynamic is array (1 .. Five) of Integer;
9782 type Wrapper (Has_Length : Boolean := False) is record
9783 Data : Dynamic;
9784 case Has_Length is
9785 when True => Length : Integer;
9786 when False => null;
9787 end case;
9788 end record;
9789 type Wrapper_Array is array (1 .. 2) of Wrapper;
9790
9791 Hello : Wrapper_Array := (others => (Has_Length => True,
9792 Data => (others => 17),
9793 Length => 1));
9794
9795
9796 The debugging info would describe variable Hello as being an
9797 array of a PAD type. The size of that PAD type is not statically
9798 known, but can be determined using a parallel XVZ variable.
9799 In that case, a copy of the PAD type with the correct size should
9800 be used for the fixed array.
9801
9802 3. ``Fixing'' record type objects:
9803 ----------------------------------
9804
9805 Things are slightly different from arrays in the case of dynamic
9806 record types. In this case, in order to compute the associated
9807 fixed type, we need to determine the size and offset of each of
9808 its components. This, in turn, requires us to compute the fixed
9809 type of each of these components.
9810
9811 Consider for instance the example:
9812
9813 type Bounded_String (Max_Size : Natural) is record
9814 Str : String (1 .. Max_Size);
9815 Length : Natural;
9816 end record;
9817 My_String : Bounded_String (Max_Size => 10);
9818
9819 In that case, the position of field "Length" depends on the size
9820 of field Str, which itself depends on the value of the Max_Size
9821 discriminant. In order to fix the type of variable My_String,
9822 we need to fix the type of field Str. Therefore, fixing a variant
9823 record requires us to fix each of its components.
9824
9825 However, if a component does not have a dynamic size, the component
9826 should not be fixed. In particular, fields that use a PAD type
9827 should not fixed. Here is an example where this might happen
9828 (assuming type Rec above):
9829
9830 type Container (Big : Boolean) is record
9831 First : Rec;
9832 After : Integer;
9833 case Big is
9834 when True => Another : Integer;
9835 when False => null;
9836 end case;
9837 end record;
9838 My_Container : Container := (Big => False,
9839 First => (Empty => True),
9840 After => 42);
9841
9842 In that example, the compiler creates a PAD type for component First,
9843 whose size is constant, and then positions the component After just
9844 right after it. The offset of component After is therefore constant
9845 in this case.
9846
9847 The debugger computes the position of each field based on an algorithm
9848 that uses, among other things, the actual position and size of the field
9849 preceding it. Let's now imagine that the user is trying to print
9850 the value of My_Container. If the type fixing was recursive, we would
9851 end up computing the offset of field After based on the size of the
9852 fixed version of field First. And since in our example First has
9853 only one actual field, the size of the fixed type is actually smaller
9854 than the amount of space allocated to that field, and thus we would
9855 compute the wrong offset of field After.
9856
9857 To make things more complicated, we need to watch out for dynamic
9858 components of variant records (identified by the ___XVL suffix in
9859 the component name). Even if the target type is a PAD type, the size
9860 of that type might not be statically known. So the PAD type needs
9861 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9862 we might end up with the wrong size for our component. This can be
9863 observed with the following type declarations:
9864
9865 type Octal is new Integer range 0 .. 7;
9866 type Octal_Array is array (Positive range <>) of Octal;
9867 pragma Pack (Octal_Array);
9868
9869 type Octal_Buffer (Size : Positive) is record
9870 Buffer : Octal_Array (1 .. Size);
9871 Length : Integer;
9872 end record;
9873
9874 In that case, Buffer is a PAD type whose size is unset and needs
9875 to be computed by fixing the unwrapped type.
9876
9877 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9878 ----------------------------------------------------------
9879
9880 Lastly, when should the sub-elements of an entity that remained unfixed
9881 thus far, be actually fixed?
9882
9883 The answer is: Only when referencing that element. For instance
9884 when selecting one component of a record, this specific component
9885 should be fixed at that point in time. Or when printing the value
9886 of a record, each component should be fixed before its value gets
9887 printed. Similarly for arrays, the element of the array should be
9888 fixed when printing each element of the array, or when extracting
9889 one element out of that array. On the other hand, fixing should
9890 not be performed on the elements when taking a slice of an array!
9891
9892 Note that one of the side-effects of miscomputing the offset and
9893 size of each field is that we end up also miscomputing the size
9894 of the containing type. This can have adverse results when computing
9895 the value of an entity. GDB fetches the value of an entity based
9896 on the size of its type, and thus a wrong size causes GDB to fetch
9897 the wrong amount of memory. In the case where the computed size is
9898 too small, GDB fetches too little data to print the value of our
9899 entiry. Results in this case as unpredicatble, as we usually read
9900 past the buffer containing the data =:-o. */
9901
9902 /* Implement the evaluate_exp routine in the exp_descriptor structure
9903 for the Ada language. */
9904
9905 static struct value *
9906 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9907 int *pos, enum noside noside)
9908 {
9909 enum exp_opcode op;
9910 int tem;
9911 int pc;
9912 int preeval_pos;
9913 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9914 struct type *type;
9915 int nargs, oplen;
9916 struct value **argvec;
9917
9918 pc = *pos;
9919 *pos += 1;
9920 op = exp->elts[pc].opcode;
9921
9922 switch (op)
9923 {
9924 default:
9925 *pos -= 1;
9926 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9927
9928 if (noside == EVAL_NORMAL)
9929 arg1 = unwrap_value (arg1);
9930
9931 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9932 then we need to perform the conversion manually, because
9933 evaluate_subexp_standard doesn't do it. This conversion is
9934 necessary in Ada because the different kinds of float/fixed
9935 types in Ada have different representations.
9936
9937 Similarly, we need to perform the conversion from OP_LONG
9938 ourselves. */
9939 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9940 arg1 = ada_value_cast (expect_type, arg1, noside);
9941
9942 return arg1;
9943
9944 case OP_STRING:
9945 {
9946 struct value *result;
9947
9948 *pos -= 1;
9949 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9950 /* The result type will have code OP_STRING, bashed there from
9951 OP_ARRAY. Bash it back. */
9952 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9953 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9954 return result;
9955 }
9956
9957 case UNOP_CAST:
9958 (*pos) += 2;
9959 type = exp->elts[pc + 1].type;
9960 arg1 = evaluate_subexp (type, exp, pos, noside);
9961 if (noside == EVAL_SKIP)
9962 goto nosideret;
9963 arg1 = ada_value_cast (type, arg1, noside);
9964 return arg1;
9965
9966 case UNOP_QUAL:
9967 (*pos) += 2;
9968 type = exp->elts[pc + 1].type;
9969 return ada_evaluate_subexp (type, exp, pos, noside);
9970
9971 case BINOP_ASSIGN:
9972 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9973 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9974 {
9975 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9976 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9977 return arg1;
9978 return ada_value_assign (arg1, arg1);
9979 }
9980 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9981 except if the lhs of our assignment is a convenience variable.
9982 In the case of assigning to a convenience variable, the lhs
9983 should be exactly the result of the evaluation of the rhs. */
9984 type = value_type (arg1);
9985 if (VALUE_LVAL (arg1) == lval_internalvar)
9986 type = NULL;
9987 arg2 = evaluate_subexp (type, exp, pos, noside);
9988 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9989 return arg1;
9990 if (ada_is_fixed_point_type (value_type (arg1)))
9991 arg2 = cast_to_fixed (value_type (arg1), arg2);
9992 else if (ada_is_fixed_point_type (value_type (arg2)))
9993 error
9994 (_("Fixed-point values must be assigned to fixed-point variables"));
9995 else
9996 arg2 = coerce_for_assign (value_type (arg1), arg2);
9997 return ada_value_assign (arg1, arg2);
9998
9999 case BINOP_ADD:
10000 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10001 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10002 if (noside == EVAL_SKIP)
10003 goto nosideret;
10004 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10005 return (value_from_longest
10006 (value_type (arg1),
10007 value_as_long (arg1) + value_as_long (arg2)));
10008 if ((ada_is_fixed_point_type (value_type (arg1))
10009 || ada_is_fixed_point_type (value_type (arg2)))
10010 && value_type (arg1) != value_type (arg2))
10011 error (_("Operands of fixed-point addition must have the same type"));
10012 /* Do the addition, and cast the result to the type of the first
10013 argument. We cannot cast the result to a reference type, so if
10014 ARG1 is a reference type, find its underlying type. */
10015 type = value_type (arg1);
10016 while (TYPE_CODE (type) == TYPE_CODE_REF)
10017 type = TYPE_TARGET_TYPE (type);
10018 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10019 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10020
10021 case BINOP_SUB:
10022 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10023 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10024 if (noside == EVAL_SKIP)
10025 goto nosideret;
10026 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10027 return (value_from_longest
10028 (value_type (arg1),
10029 value_as_long (arg1) - value_as_long (arg2)));
10030 if ((ada_is_fixed_point_type (value_type (arg1))
10031 || ada_is_fixed_point_type (value_type (arg2)))
10032 && value_type (arg1) != value_type (arg2))
10033 error (_("Operands of fixed-point subtraction "
10034 "must have the same type"));
10035 /* Do the substraction, and cast the result to the type of the first
10036 argument. We cannot cast the result to a reference type, so if
10037 ARG1 is a reference type, find its underlying type. */
10038 type = value_type (arg1);
10039 while (TYPE_CODE (type) == TYPE_CODE_REF)
10040 type = TYPE_TARGET_TYPE (type);
10041 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10042 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10043
10044 case BINOP_MUL:
10045 case BINOP_DIV:
10046 case BINOP_REM:
10047 case BINOP_MOD:
10048 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10049 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10050 if (noside == EVAL_SKIP)
10051 goto nosideret;
10052 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10053 {
10054 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10055 return value_zero (value_type (arg1), not_lval);
10056 }
10057 else
10058 {
10059 type = builtin_type (exp->gdbarch)->builtin_double;
10060 if (ada_is_fixed_point_type (value_type (arg1)))
10061 arg1 = cast_from_fixed (type, arg1);
10062 if (ada_is_fixed_point_type (value_type (arg2)))
10063 arg2 = cast_from_fixed (type, arg2);
10064 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10065 return ada_value_binop (arg1, arg2, op);
10066 }
10067
10068 case BINOP_EQUAL:
10069 case BINOP_NOTEQUAL:
10070 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10071 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10072 if (noside == EVAL_SKIP)
10073 goto nosideret;
10074 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10075 tem = 0;
10076 else
10077 {
10078 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10079 tem = ada_value_equal (arg1, arg2);
10080 }
10081 if (op == BINOP_NOTEQUAL)
10082 tem = !tem;
10083 type = language_bool_type (exp->language_defn, exp->gdbarch);
10084 return value_from_longest (type, (LONGEST) tem);
10085
10086 case UNOP_NEG:
10087 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10088 if (noside == EVAL_SKIP)
10089 goto nosideret;
10090 else if (ada_is_fixed_point_type (value_type (arg1)))
10091 return value_cast (value_type (arg1), value_neg (arg1));
10092 else
10093 {
10094 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10095 return value_neg (arg1);
10096 }
10097
10098 case BINOP_LOGICAL_AND:
10099 case BINOP_LOGICAL_OR:
10100 case UNOP_LOGICAL_NOT:
10101 {
10102 struct value *val;
10103
10104 *pos -= 1;
10105 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10106 type = language_bool_type (exp->language_defn, exp->gdbarch);
10107 return value_cast (type, val);
10108 }
10109
10110 case BINOP_BITWISE_AND:
10111 case BINOP_BITWISE_IOR:
10112 case BINOP_BITWISE_XOR:
10113 {
10114 struct value *val;
10115
10116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10117 *pos = pc;
10118 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10119
10120 return value_cast (value_type (arg1), val);
10121 }
10122
10123 case OP_VAR_VALUE:
10124 *pos -= 1;
10125
10126 if (noside == EVAL_SKIP)
10127 {
10128 *pos += 4;
10129 goto nosideret;
10130 }
10131
10132 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10133 /* Only encountered when an unresolved symbol occurs in a
10134 context other than a function call, in which case, it is
10135 invalid. */
10136 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10137 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10138
10139 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10140 {
10141 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10142 /* Check to see if this is a tagged type. We also need to handle
10143 the case where the type is a reference to a tagged type, but
10144 we have to be careful to exclude pointers to tagged types.
10145 The latter should be shown as usual (as a pointer), whereas
10146 a reference should mostly be transparent to the user. */
10147 if (ada_is_tagged_type (type, 0)
10148 || (TYPE_CODE (type) == TYPE_CODE_REF
10149 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10150 {
10151 /* Tagged types are a little special in the fact that the real
10152 type is dynamic and can only be determined by inspecting the
10153 object's tag. This means that we need to get the object's
10154 value first (EVAL_NORMAL) and then extract the actual object
10155 type from its tag.
10156
10157 Note that we cannot skip the final step where we extract
10158 the object type from its tag, because the EVAL_NORMAL phase
10159 results in dynamic components being resolved into fixed ones.
10160 This can cause problems when trying to print the type
10161 description of tagged types whose parent has a dynamic size:
10162 We use the type name of the "_parent" component in order
10163 to print the name of the ancestor type in the type description.
10164 If that component had a dynamic size, the resolution into
10165 a fixed type would result in the loss of that type name,
10166 thus preventing us from printing the name of the ancestor
10167 type in the type description. */
10168 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10169
10170 if (TYPE_CODE (type) != TYPE_CODE_REF)
10171 {
10172 struct type *actual_type;
10173
10174 actual_type = type_from_tag (ada_value_tag (arg1));
10175 if (actual_type == NULL)
10176 /* If, for some reason, we were unable to determine
10177 the actual type from the tag, then use the static
10178 approximation that we just computed as a fallback.
10179 This can happen if the debugging information is
10180 incomplete, for instance. */
10181 actual_type = type;
10182 return value_zero (actual_type, not_lval);
10183 }
10184 else
10185 {
10186 /* In the case of a ref, ada_coerce_ref takes care
10187 of determining the actual type. But the evaluation
10188 should return a ref as it should be valid to ask
10189 for its address; so rebuild a ref after coerce. */
10190 arg1 = ada_coerce_ref (arg1);
10191 return value_ref (arg1);
10192 }
10193 }
10194
10195 /* Records and unions for which GNAT encodings have been
10196 generated need to be statically fixed as well.
10197 Otherwise, non-static fixing produces a type where
10198 all dynamic properties are removed, which prevents "ptype"
10199 from being able to completely describe the type.
10200 For instance, a case statement in a variant record would be
10201 replaced by the relevant components based on the actual
10202 value of the discriminants. */
10203 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10204 && dynamic_template_type (type) != NULL)
10205 || (TYPE_CODE (type) == TYPE_CODE_UNION
10206 && ada_find_parallel_type (type, "___XVU") != NULL))
10207 {
10208 *pos += 4;
10209 return value_zero (to_static_fixed_type (type), not_lval);
10210 }
10211 }
10212
10213 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10214 return ada_to_fixed_value (arg1);
10215
10216 case OP_FUNCALL:
10217 (*pos) += 2;
10218
10219 /* Allocate arg vector, including space for the function to be
10220 called in argvec[0] and a terminating NULL. */
10221 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10222 argvec =
10223 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10224
10225 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10226 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10227 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10228 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10229 else
10230 {
10231 for (tem = 0; tem <= nargs; tem += 1)
10232 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10233 argvec[tem] = 0;
10234
10235 if (noside == EVAL_SKIP)
10236 goto nosideret;
10237 }
10238
10239 if (ada_is_constrained_packed_array_type
10240 (desc_base_type (value_type (argvec[0]))))
10241 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10242 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10243 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10244 /* This is a packed array that has already been fixed, and
10245 therefore already coerced to a simple array. Nothing further
10246 to do. */
10247 ;
10248 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10249 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10250 && VALUE_LVAL (argvec[0]) == lval_memory))
10251 argvec[0] = value_addr (argvec[0]);
10252
10253 type = ada_check_typedef (value_type (argvec[0]));
10254
10255 /* Ada allows us to implicitly dereference arrays when subscripting
10256 them. So, if this is an array typedef (encoding use for array
10257 access types encoded as fat pointers), strip it now. */
10258 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10259 type = ada_typedef_target_type (type);
10260
10261 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10262 {
10263 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10264 {
10265 case TYPE_CODE_FUNC:
10266 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10267 break;
10268 case TYPE_CODE_ARRAY:
10269 break;
10270 case TYPE_CODE_STRUCT:
10271 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10272 argvec[0] = ada_value_ind (argvec[0]);
10273 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10274 break;
10275 default:
10276 error (_("cannot subscript or call something of type `%s'"),
10277 ada_type_name (value_type (argvec[0])));
10278 break;
10279 }
10280 }
10281
10282 switch (TYPE_CODE (type))
10283 {
10284 case TYPE_CODE_FUNC:
10285 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10286 {
10287 struct type *rtype = TYPE_TARGET_TYPE (type);
10288
10289 if (TYPE_GNU_IFUNC (type))
10290 return allocate_value (TYPE_TARGET_TYPE (rtype));
10291 return allocate_value (rtype);
10292 }
10293 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10294 case TYPE_CODE_INTERNAL_FUNCTION:
10295 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10296 /* We don't know anything about what the internal
10297 function might return, but we have to return
10298 something. */
10299 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10300 not_lval);
10301 else
10302 return call_internal_function (exp->gdbarch, exp->language_defn,
10303 argvec[0], nargs, argvec + 1);
10304
10305 case TYPE_CODE_STRUCT:
10306 {
10307 int arity;
10308
10309 arity = ada_array_arity (type);
10310 type = ada_array_element_type (type, nargs);
10311 if (type == NULL)
10312 error (_("cannot subscript or call a record"));
10313 if (arity != nargs)
10314 error (_("wrong number of subscripts; expecting %d"), arity);
10315 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10316 return value_zero (ada_aligned_type (type), lval_memory);
10317 return
10318 unwrap_value (ada_value_subscript
10319 (argvec[0], nargs, argvec + 1));
10320 }
10321 case TYPE_CODE_ARRAY:
10322 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10323 {
10324 type = ada_array_element_type (type, nargs);
10325 if (type == NULL)
10326 error (_("element type of array unknown"));
10327 else
10328 return value_zero (ada_aligned_type (type), lval_memory);
10329 }
10330 return
10331 unwrap_value (ada_value_subscript
10332 (ada_coerce_to_simple_array (argvec[0]),
10333 nargs, argvec + 1));
10334 case TYPE_CODE_PTR: /* Pointer to array */
10335 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10336 {
10337 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10338 type = ada_array_element_type (type, nargs);
10339 if (type == NULL)
10340 error (_("element type of array unknown"));
10341 else
10342 return value_zero (ada_aligned_type (type), lval_memory);
10343 }
10344 return
10345 unwrap_value (ada_value_ptr_subscript (argvec[0],
10346 nargs, argvec + 1));
10347
10348 default:
10349 error (_("Attempt to index or call something other than an "
10350 "array or function"));
10351 }
10352
10353 case TERNOP_SLICE:
10354 {
10355 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10356 struct value *low_bound_val =
10357 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10358 struct value *high_bound_val =
10359 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10360 LONGEST low_bound;
10361 LONGEST high_bound;
10362
10363 low_bound_val = coerce_ref (low_bound_val);
10364 high_bound_val = coerce_ref (high_bound_val);
10365 low_bound = pos_atr (low_bound_val);
10366 high_bound = pos_atr (high_bound_val);
10367
10368 if (noside == EVAL_SKIP)
10369 goto nosideret;
10370
10371 /* If this is a reference to an aligner type, then remove all
10372 the aligners. */
10373 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10374 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10375 TYPE_TARGET_TYPE (value_type (array)) =
10376 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10377
10378 if (ada_is_constrained_packed_array_type (value_type (array)))
10379 error (_("cannot slice a packed array"));
10380
10381 /* If this is a reference to an array or an array lvalue,
10382 convert to a pointer. */
10383 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10384 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10385 && VALUE_LVAL (array) == lval_memory))
10386 array = value_addr (array);
10387
10388 if (noside == EVAL_AVOID_SIDE_EFFECTS
10389 && ada_is_array_descriptor_type (ada_check_typedef
10390 (value_type (array))))
10391 return empty_array (ada_type_of_array (array, 0), low_bound);
10392
10393 array = ada_coerce_to_simple_array_ptr (array);
10394
10395 /* If we have more than one level of pointer indirection,
10396 dereference the value until we get only one level. */
10397 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10398 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10399 == TYPE_CODE_PTR))
10400 array = value_ind (array);
10401
10402 /* Make sure we really do have an array type before going further,
10403 to avoid a SEGV when trying to get the index type or the target
10404 type later down the road if the debug info generated by
10405 the compiler is incorrect or incomplete. */
10406 if (!ada_is_simple_array_type (value_type (array)))
10407 error (_("cannot take slice of non-array"));
10408
10409 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10410 == TYPE_CODE_PTR)
10411 {
10412 struct type *type0 = ada_check_typedef (value_type (array));
10413
10414 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10415 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10416 else
10417 {
10418 struct type *arr_type0 =
10419 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10420
10421 return ada_value_slice_from_ptr (array, arr_type0,
10422 longest_to_int (low_bound),
10423 longest_to_int (high_bound));
10424 }
10425 }
10426 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10427 return array;
10428 else if (high_bound < low_bound)
10429 return empty_array (value_type (array), low_bound);
10430 else
10431 return ada_value_slice (array, longest_to_int (low_bound),
10432 longest_to_int (high_bound));
10433 }
10434
10435 case UNOP_IN_RANGE:
10436 (*pos) += 2;
10437 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10438 type = check_typedef (exp->elts[pc + 1].type);
10439
10440 if (noside == EVAL_SKIP)
10441 goto nosideret;
10442
10443 switch (TYPE_CODE (type))
10444 {
10445 default:
10446 lim_warning (_("Membership test incompletely implemented; "
10447 "always returns true"));
10448 type = language_bool_type (exp->language_defn, exp->gdbarch);
10449 return value_from_longest (type, (LONGEST) 1);
10450
10451 case TYPE_CODE_RANGE:
10452 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10453 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10454 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10455 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10456 type = language_bool_type (exp->language_defn, exp->gdbarch);
10457 return
10458 value_from_longest (type,
10459 (value_less (arg1, arg3)
10460 || value_equal (arg1, arg3))
10461 && (value_less (arg2, arg1)
10462 || value_equal (arg2, arg1)));
10463 }
10464
10465 case BINOP_IN_BOUNDS:
10466 (*pos) += 2;
10467 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10468 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10469
10470 if (noside == EVAL_SKIP)
10471 goto nosideret;
10472
10473 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10474 {
10475 type = language_bool_type (exp->language_defn, exp->gdbarch);
10476 return value_zero (type, not_lval);
10477 }
10478
10479 tem = longest_to_int (exp->elts[pc + 1].longconst);
10480
10481 type = ada_index_type (value_type (arg2), tem, "range");
10482 if (!type)
10483 type = value_type (arg1);
10484
10485 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10486 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10487
10488 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10489 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10490 type = language_bool_type (exp->language_defn, exp->gdbarch);
10491 return
10492 value_from_longest (type,
10493 (value_less (arg1, arg3)
10494 || value_equal (arg1, arg3))
10495 && (value_less (arg2, arg1)
10496 || value_equal (arg2, arg1)));
10497
10498 case TERNOP_IN_RANGE:
10499 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10500 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10501 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10502
10503 if (noside == EVAL_SKIP)
10504 goto nosideret;
10505
10506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10507 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10508 type = language_bool_type (exp->language_defn, exp->gdbarch);
10509 return
10510 value_from_longest (type,
10511 (value_less (arg1, arg3)
10512 || value_equal (arg1, arg3))
10513 && (value_less (arg2, arg1)
10514 || value_equal (arg2, arg1)));
10515
10516 case OP_ATR_FIRST:
10517 case OP_ATR_LAST:
10518 case OP_ATR_LENGTH:
10519 {
10520 struct type *type_arg;
10521
10522 if (exp->elts[*pos].opcode == OP_TYPE)
10523 {
10524 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10525 arg1 = NULL;
10526 type_arg = check_typedef (exp->elts[pc + 2].type);
10527 }
10528 else
10529 {
10530 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10531 type_arg = NULL;
10532 }
10533
10534 if (exp->elts[*pos].opcode != OP_LONG)
10535 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10536 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10537 *pos += 4;
10538
10539 if (noside == EVAL_SKIP)
10540 goto nosideret;
10541
10542 if (type_arg == NULL)
10543 {
10544 arg1 = ada_coerce_ref (arg1);
10545
10546 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10547 arg1 = ada_coerce_to_simple_array (arg1);
10548
10549 if (op == OP_ATR_LENGTH)
10550 type = builtin_type (exp->gdbarch)->builtin_int;
10551 else
10552 {
10553 type = ada_index_type (value_type (arg1), tem,
10554 ada_attribute_name (op));
10555 if (type == NULL)
10556 type = builtin_type (exp->gdbarch)->builtin_int;
10557 }
10558
10559 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10560 return allocate_value (type);
10561
10562 switch (op)
10563 {
10564 default: /* Should never happen. */
10565 error (_("unexpected attribute encountered"));
10566 case OP_ATR_FIRST:
10567 return value_from_longest
10568 (type, ada_array_bound (arg1, tem, 0));
10569 case OP_ATR_LAST:
10570 return value_from_longest
10571 (type, ada_array_bound (arg1, tem, 1));
10572 case OP_ATR_LENGTH:
10573 return value_from_longest
10574 (type, ada_array_length (arg1, tem));
10575 }
10576 }
10577 else if (discrete_type_p (type_arg))
10578 {
10579 struct type *range_type;
10580 const char *name = ada_type_name (type_arg);
10581
10582 range_type = NULL;
10583 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10584 range_type = to_fixed_range_type (type_arg, NULL);
10585 if (range_type == NULL)
10586 range_type = type_arg;
10587 switch (op)
10588 {
10589 default:
10590 error (_("unexpected attribute encountered"));
10591 case OP_ATR_FIRST:
10592 return value_from_longest
10593 (range_type, ada_discrete_type_low_bound (range_type));
10594 case OP_ATR_LAST:
10595 return value_from_longest
10596 (range_type, ada_discrete_type_high_bound (range_type));
10597 case OP_ATR_LENGTH:
10598 error (_("the 'length attribute applies only to array types"));
10599 }
10600 }
10601 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10602 error (_("unimplemented type attribute"));
10603 else
10604 {
10605 LONGEST low, high;
10606
10607 if (ada_is_constrained_packed_array_type (type_arg))
10608 type_arg = decode_constrained_packed_array_type (type_arg);
10609
10610 if (op == OP_ATR_LENGTH)
10611 type = builtin_type (exp->gdbarch)->builtin_int;
10612 else
10613 {
10614 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10615 if (type == NULL)
10616 type = builtin_type (exp->gdbarch)->builtin_int;
10617 }
10618
10619 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10620 return allocate_value (type);
10621
10622 switch (op)
10623 {
10624 default:
10625 error (_("unexpected attribute encountered"));
10626 case OP_ATR_FIRST:
10627 low = ada_array_bound_from_type (type_arg, tem, 0);
10628 return value_from_longest (type, low);
10629 case OP_ATR_LAST:
10630 high = ada_array_bound_from_type (type_arg, tem, 1);
10631 return value_from_longest (type, high);
10632 case OP_ATR_LENGTH:
10633 low = ada_array_bound_from_type (type_arg, tem, 0);
10634 high = ada_array_bound_from_type (type_arg, tem, 1);
10635 return value_from_longest (type, high - low + 1);
10636 }
10637 }
10638 }
10639
10640 case OP_ATR_TAG:
10641 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10642 if (noside == EVAL_SKIP)
10643 goto nosideret;
10644
10645 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10646 return value_zero (ada_tag_type (arg1), not_lval);
10647
10648 return ada_value_tag (arg1);
10649
10650 case OP_ATR_MIN:
10651 case OP_ATR_MAX:
10652 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10653 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10654 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10655 if (noside == EVAL_SKIP)
10656 goto nosideret;
10657 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10658 return value_zero (value_type (arg1), not_lval);
10659 else
10660 {
10661 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10662 return value_binop (arg1, arg2,
10663 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10664 }
10665
10666 case OP_ATR_MODULUS:
10667 {
10668 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10669
10670 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10671 if (noside == EVAL_SKIP)
10672 goto nosideret;
10673
10674 if (!ada_is_modular_type (type_arg))
10675 error (_("'modulus must be applied to modular type"));
10676
10677 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10678 ada_modulus (type_arg));
10679 }
10680
10681
10682 case OP_ATR_POS:
10683 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10684 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10685 if (noside == EVAL_SKIP)
10686 goto nosideret;
10687 type = builtin_type (exp->gdbarch)->builtin_int;
10688 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10689 return value_zero (type, not_lval);
10690 else
10691 return value_pos_atr (type, arg1);
10692
10693 case OP_ATR_SIZE:
10694 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10695 type = value_type (arg1);
10696
10697 /* If the argument is a reference, then dereference its type, since
10698 the user is really asking for the size of the actual object,
10699 not the size of the pointer. */
10700 if (TYPE_CODE (type) == TYPE_CODE_REF)
10701 type = TYPE_TARGET_TYPE (type);
10702
10703 if (noside == EVAL_SKIP)
10704 goto nosideret;
10705 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10706 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10707 else
10708 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10709 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10710
10711 case OP_ATR_VAL:
10712 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10713 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10714 type = exp->elts[pc + 2].type;
10715 if (noside == EVAL_SKIP)
10716 goto nosideret;
10717 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10718 return value_zero (type, not_lval);
10719 else
10720 return value_val_atr (type, arg1);
10721
10722 case BINOP_EXP:
10723 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10724 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10725 if (noside == EVAL_SKIP)
10726 goto nosideret;
10727 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10728 return value_zero (value_type (arg1), not_lval);
10729 else
10730 {
10731 /* For integer exponentiation operations,
10732 only promote the first argument. */
10733 if (is_integral_type (value_type (arg2)))
10734 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10735 else
10736 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10737
10738 return value_binop (arg1, arg2, op);
10739 }
10740
10741 case UNOP_PLUS:
10742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10743 if (noside == EVAL_SKIP)
10744 goto nosideret;
10745 else
10746 return arg1;
10747
10748 case UNOP_ABS:
10749 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10750 if (noside == EVAL_SKIP)
10751 goto nosideret;
10752 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10753 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10754 return value_neg (arg1);
10755 else
10756 return arg1;
10757
10758 case UNOP_IND:
10759 preeval_pos = *pos;
10760 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10761 if (noside == EVAL_SKIP)
10762 goto nosideret;
10763 type = ada_check_typedef (value_type (arg1));
10764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10765 {
10766 if (ada_is_array_descriptor_type (type))
10767 /* GDB allows dereferencing GNAT array descriptors. */
10768 {
10769 struct type *arrType = ada_type_of_array (arg1, 0);
10770
10771 if (arrType == NULL)
10772 error (_("Attempt to dereference null array pointer."));
10773 return value_at_lazy (arrType, 0);
10774 }
10775 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10776 || TYPE_CODE (type) == TYPE_CODE_REF
10777 /* In C you can dereference an array to get the 1st elt. */
10778 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10779 {
10780 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10781 only be determined by inspecting the object's tag.
10782 This means that we need to evaluate completely the
10783 expression in order to get its type. */
10784
10785 if ((TYPE_CODE (type) == TYPE_CODE_REF
10786 || TYPE_CODE (type) == TYPE_CODE_PTR)
10787 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10788 {
10789 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10790 EVAL_NORMAL);
10791 type = value_type (ada_value_ind (arg1));
10792 }
10793 else
10794 {
10795 type = to_static_fixed_type
10796 (ada_aligned_type
10797 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10798 }
10799 check_size (type);
10800 return value_zero (type, lval_memory);
10801 }
10802 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10803 {
10804 /* GDB allows dereferencing an int. */
10805 if (expect_type == NULL)
10806 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10807 lval_memory);
10808 else
10809 {
10810 expect_type =
10811 to_static_fixed_type (ada_aligned_type (expect_type));
10812 return value_zero (expect_type, lval_memory);
10813 }
10814 }
10815 else
10816 error (_("Attempt to take contents of a non-pointer value."));
10817 }
10818 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10819 type = ada_check_typedef (value_type (arg1));
10820
10821 if (TYPE_CODE (type) == TYPE_CODE_INT)
10822 /* GDB allows dereferencing an int. If we were given
10823 the expect_type, then use that as the target type.
10824 Otherwise, assume that the target type is an int. */
10825 {
10826 if (expect_type != NULL)
10827 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10828 arg1));
10829 else
10830 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10831 (CORE_ADDR) value_as_address (arg1));
10832 }
10833
10834 if (ada_is_array_descriptor_type (type))
10835 /* GDB allows dereferencing GNAT array descriptors. */
10836 return ada_coerce_to_simple_array (arg1);
10837 else
10838 return ada_value_ind (arg1);
10839
10840 case STRUCTOP_STRUCT:
10841 tem = longest_to_int (exp->elts[pc + 1].longconst);
10842 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10843 preeval_pos = *pos;
10844 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10845 if (noside == EVAL_SKIP)
10846 goto nosideret;
10847 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10848 {
10849 struct type *type1 = value_type (arg1);
10850
10851 if (ada_is_tagged_type (type1, 1))
10852 {
10853 type = ada_lookup_struct_elt_type (type1,
10854 &exp->elts[pc + 2].string,
10855 1, 1, NULL);
10856
10857 /* If the field is not found, check if it exists in the
10858 extension of this object's type. This means that we
10859 need to evaluate completely the expression. */
10860
10861 if (type == NULL)
10862 {
10863 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10864 EVAL_NORMAL);
10865 arg1 = ada_value_struct_elt (arg1,
10866 &exp->elts[pc + 2].string,
10867 0);
10868 arg1 = unwrap_value (arg1);
10869 type = value_type (ada_to_fixed_value (arg1));
10870 }
10871 }
10872 else
10873 type =
10874 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10875 0, NULL);
10876
10877 return value_zero (ada_aligned_type (type), lval_memory);
10878 }
10879 else
10880 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10881 arg1 = unwrap_value (arg1);
10882 return ada_to_fixed_value (arg1);
10883
10884 case OP_TYPE:
10885 /* The value is not supposed to be used. This is here to make it
10886 easier to accommodate expressions that contain types. */
10887 (*pos) += 2;
10888 if (noside == EVAL_SKIP)
10889 goto nosideret;
10890 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10891 return allocate_value (exp->elts[pc + 1].type);
10892 else
10893 error (_("Attempt to use a type name as an expression"));
10894
10895 case OP_AGGREGATE:
10896 case OP_CHOICES:
10897 case OP_OTHERS:
10898 case OP_DISCRETE_RANGE:
10899 case OP_POSITIONAL:
10900 case OP_NAME:
10901 if (noside == EVAL_NORMAL)
10902 switch (op)
10903 {
10904 case OP_NAME:
10905 error (_("Undefined name, ambiguous name, or renaming used in "
10906 "component association: %s."), &exp->elts[pc+2].string);
10907 case OP_AGGREGATE:
10908 error (_("Aggregates only allowed on the right of an assignment"));
10909 default:
10910 internal_error (__FILE__, __LINE__,
10911 _("aggregate apparently mangled"));
10912 }
10913
10914 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10915 *pos += oplen - 1;
10916 for (tem = 0; tem < nargs; tem += 1)
10917 ada_evaluate_subexp (NULL, exp, pos, noside);
10918 goto nosideret;
10919 }
10920
10921 nosideret:
10922 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10923 }
10924 \f
10925
10926 /* Fixed point */
10927
10928 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10929 type name that encodes the 'small and 'delta information.
10930 Otherwise, return NULL. */
10931
10932 static const char *
10933 fixed_type_info (struct type *type)
10934 {
10935 const char *name = ada_type_name (type);
10936 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10937
10938 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10939 {
10940 const char *tail = strstr (name, "___XF_");
10941
10942 if (tail == NULL)
10943 return NULL;
10944 else
10945 return tail + 5;
10946 }
10947 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10948 return fixed_type_info (TYPE_TARGET_TYPE (type));
10949 else
10950 return NULL;
10951 }
10952
10953 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10954
10955 int
10956 ada_is_fixed_point_type (struct type *type)
10957 {
10958 return fixed_type_info (type) != NULL;
10959 }
10960
10961 /* Return non-zero iff TYPE represents a System.Address type. */
10962
10963 int
10964 ada_is_system_address_type (struct type *type)
10965 {
10966 return (TYPE_NAME (type)
10967 && strcmp (TYPE_NAME (type), "system__address") == 0);
10968 }
10969
10970 /* Assuming that TYPE is the representation of an Ada fixed-point
10971 type, return its delta, or -1 if the type is malformed and the
10972 delta cannot be determined. */
10973
10974 DOUBLEST
10975 ada_delta (struct type *type)
10976 {
10977 const char *encoding = fixed_type_info (type);
10978 DOUBLEST num, den;
10979
10980 /* Strictly speaking, num and den are encoded as integer. However,
10981 they may not fit into a long, and they will have to be converted
10982 to DOUBLEST anyway. So scan them as DOUBLEST. */
10983 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10984 &num, &den) < 2)
10985 return -1.0;
10986 else
10987 return num / den;
10988 }
10989
10990 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10991 factor ('SMALL value) associated with the type. */
10992
10993 static DOUBLEST
10994 scaling_factor (struct type *type)
10995 {
10996 const char *encoding = fixed_type_info (type);
10997 DOUBLEST num0, den0, num1, den1;
10998 int n;
10999
11000 /* Strictly speaking, num's and den's are encoded as integer. However,
11001 they may not fit into a long, and they will have to be converted
11002 to DOUBLEST anyway. So scan them as DOUBLEST. */
11003 n = sscanf (encoding,
11004 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11005 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11006 &num0, &den0, &num1, &den1);
11007
11008 if (n < 2)
11009 return 1.0;
11010 else if (n == 4)
11011 return num1 / den1;
11012 else
11013 return num0 / den0;
11014 }
11015
11016
11017 /* Assuming that X is the representation of a value of fixed-point
11018 type TYPE, return its floating-point equivalent. */
11019
11020 DOUBLEST
11021 ada_fixed_to_float (struct type *type, LONGEST x)
11022 {
11023 return (DOUBLEST) x *scaling_factor (type);
11024 }
11025
11026 /* The representation of a fixed-point value of type TYPE
11027 corresponding to the value X. */
11028
11029 LONGEST
11030 ada_float_to_fixed (struct type *type, DOUBLEST x)
11031 {
11032 return (LONGEST) (x / scaling_factor (type) + 0.5);
11033 }
11034
11035 \f
11036
11037 /* Range types */
11038
11039 /* Scan STR beginning at position K for a discriminant name, and
11040 return the value of that discriminant field of DVAL in *PX. If
11041 PNEW_K is not null, put the position of the character beyond the
11042 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11043 not alter *PX and *PNEW_K if unsuccessful. */
11044
11045 static int
11046 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11047 int *pnew_k)
11048 {
11049 static char *bound_buffer = NULL;
11050 static size_t bound_buffer_len = 0;
11051 char *bound;
11052 char *pend;
11053 struct value *bound_val;
11054
11055 if (dval == NULL || str == NULL || str[k] == '\0')
11056 return 0;
11057
11058 pend = strstr (str + k, "__");
11059 if (pend == NULL)
11060 {
11061 bound = str + k;
11062 k += strlen (bound);
11063 }
11064 else
11065 {
11066 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11067 bound = bound_buffer;
11068 strncpy (bound_buffer, str + k, pend - (str + k));
11069 bound[pend - (str + k)] = '\0';
11070 k = pend - str;
11071 }
11072
11073 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11074 if (bound_val == NULL)
11075 return 0;
11076
11077 *px = value_as_long (bound_val);
11078 if (pnew_k != NULL)
11079 *pnew_k = k;
11080 return 1;
11081 }
11082
11083 /* Value of variable named NAME in the current environment. If
11084 no such variable found, then if ERR_MSG is null, returns 0, and
11085 otherwise causes an error with message ERR_MSG. */
11086
11087 static struct value *
11088 get_var_value (char *name, char *err_msg)
11089 {
11090 struct ada_symbol_info *syms;
11091 int nsyms;
11092
11093 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11094 &syms);
11095
11096 if (nsyms != 1)
11097 {
11098 if (err_msg == NULL)
11099 return 0;
11100 else
11101 error (("%s"), err_msg);
11102 }
11103
11104 return value_of_variable (syms[0].sym, syms[0].block);
11105 }
11106
11107 /* Value of integer variable named NAME in the current environment. If
11108 no such variable found, returns 0, and sets *FLAG to 0. If
11109 successful, sets *FLAG to 1. */
11110
11111 LONGEST
11112 get_int_var_value (char *name, int *flag)
11113 {
11114 struct value *var_val = get_var_value (name, 0);
11115
11116 if (var_val == 0)
11117 {
11118 if (flag != NULL)
11119 *flag = 0;
11120 return 0;
11121 }
11122 else
11123 {
11124 if (flag != NULL)
11125 *flag = 1;
11126 return value_as_long (var_val);
11127 }
11128 }
11129
11130
11131 /* Return a range type whose base type is that of the range type named
11132 NAME in the current environment, and whose bounds are calculated
11133 from NAME according to the GNAT range encoding conventions.
11134 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11135 corresponding range type from debug information; fall back to using it
11136 if symbol lookup fails. If a new type must be created, allocate it
11137 like ORIG_TYPE was. The bounds information, in general, is encoded
11138 in NAME, the base type given in the named range type. */
11139
11140 static struct type *
11141 to_fixed_range_type (struct type *raw_type, struct value *dval)
11142 {
11143 const char *name;
11144 struct type *base_type;
11145 char *subtype_info;
11146
11147 gdb_assert (raw_type != NULL);
11148 gdb_assert (TYPE_NAME (raw_type) != NULL);
11149
11150 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11151 base_type = TYPE_TARGET_TYPE (raw_type);
11152 else
11153 base_type = raw_type;
11154
11155 name = TYPE_NAME (raw_type);
11156 subtype_info = strstr (name, "___XD");
11157 if (subtype_info == NULL)
11158 {
11159 LONGEST L = ada_discrete_type_low_bound (raw_type);
11160 LONGEST U = ada_discrete_type_high_bound (raw_type);
11161
11162 if (L < INT_MIN || U > INT_MAX)
11163 return raw_type;
11164 else
11165 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11166 L, U);
11167 }
11168 else
11169 {
11170 static char *name_buf = NULL;
11171 static size_t name_len = 0;
11172 int prefix_len = subtype_info - name;
11173 LONGEST L, U;
11174 struct type *type;
11175 char *bounds_str;
11176 int n;
11177
11178 GROW_VECT (name_buf, name_len, prefix_len + 5);
11179 strncpy (name_buf, name, prefix_len);
11180 name_buf[prefix_len] = '\0';
11181
11182 subtype_info += 5;
11183 bounds_str = strchr (subtype_info, '_');
11184 n = 1;
11185
11186 if (*subtype_info == 'L')
11187 {
11188 if (!ada_scan_number (bounds_str, n, &L, &n)
11189 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11190 return raw_type;
11191 if (bounds_str[n] == '_')
11192 n += 2;
11193 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11194 n += 1;
11195 subtype_info += 1;
11196 }
11197 else
11198 {
11199 int ok;
11200
11201 strcpy (name_buf + prefix_len, "___L");
11202 L = get_int_var_value (name_buf, &ok);
11203 if (!ok)
11204 {
11205 lim_warning (_("Unknown lower bound, using 1."));
11206 L = 1;
11207 }
11208 }
11209
11210 if (*subtype_info == 'U')
11211 {
11212 if (!ada_scan_number (bounds_str, n, &U, &n)
11213 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11214 return raw_type;
11215 }
11216 else
11217 {
11218 int ok;
11219
11220 strcpy (name_buf + prefix_len, "___U");
11221 U = get_int_var_value (name_buf, &ok);
11222 if (!ok)
11223 {
11224 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11225 U = L;
11226 }
11227 }
11228
11229 type = create_static_range_type (alloc_type_copy (raw_type),
11230 base_type, L, U);
11231 TYPE_NAME (type) = name;
11232 return type;
11233 }
11234 }
11235
11236 /* True iff NAME is the name of a range type. */
11237
11238 int
11239 ada_is_range_type_name (const char *name)
11240 {
11241 return (name != NULL && strstr (name, "___XD"));
11242 }
11243 \f
11244
11245 /* Modular types */
11246
11247 /* True iff TYPE is an Ada modular type. */
11248
11249 int
11250 ada_is_modular_type (struct type *type)
11251 {
11252 struct type *subranged_type = get_base_type (type);
11253
11254 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11255 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11256 && TYPE_UNSIGNED (subranged_type));
11257 }
11258
11259 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11260
11261 ULONGEST
11262 ada_modulus (struct type *type)
11263 {
11264 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11265 }
11266 \f
11267
11268 /* Ada exception catchpoint support:
11269 ---------------------------------
11270
11271 We support 3 kinds of exception catchpoints:
11272 . catchpoints on Ada exceptions
11273 . catchpoints on unhandled Ada exceptions
11274 . catchpoints on failed assertions
11275
11276 Exceptions raised during failed assertions, or unhandled exceptions
11277 could perfectly be caught with the general catchpoint on Ada exceptions.
11278 However, we can easily differentiate these two special cases, and having
11279 the option to distinguish these two cases from the rest can be useful
11280 to zero-in on certain situations.
11281
11282 Exception catchpoints are a specialized form of breakpoint,
11283 since they rely on inserting breakpoints inside known routines
11284 of the GNAT runtime. The implementation therefore uses a standard
11285 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11286 of breakpoint_ops.
11287
11288 Support in the runtime for exception catchpoints have been changed
11289 a few times already, and these changes affect the implementation
11290 of these catchpoints. In order to be able to support several
11291 variants of the runtime, we use a sniffer that will determine
11292 the runtime variant used by the program being debugged. */
11293
11294 /* Ada's standard exceptions.
11295
11296 The Ada 83 standard also defined Numeric_Error. But there so many
11297 situations where it was unclear from the Ada 83 Reference Manual
11298 (RM) whether Constraint_Error or Numeric_Error should be raised,
11299 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11300 Interpretation saying that anytime the RM says that Numeric_Error
11301 should be raised, the implementation may raise Constraint_Error.
11302 Ada 95 went one step further and pretty much removed Numeric_Error
11303 from the list of standard exceptions (it made it a renaming of
11304 Constraint_Error, to help preserve compatibility when compiling
11305 an Ada83 compiler). As such, we do not include Numeric_Error from
11306 this list of standard exceptions. */
11307
11308 static char *standard_exc[] = {
11309 "constraint_error",
11310 "program_error",
11311 "storage_error",
11312 "tasking_error"
11313 };
11314
11315 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11316
11317 /* A structure that describes how to support exception catchpoints
11318 for a given executable. */
11319
11320 struct exception_support_info
11321 {
11322 /* The name of the symbol to break on in order to insert
11323 a catchpoint on exceptions. */
11324 const char *catch_exception_sym;
11325
11326 /* The name of the symbol to break on in order to insert
11327 a catchpoint on unhandled exceptions. */
11328 const char *catch_exception_unhandled_sym;
11329
11330 /* The name of the symbol to break on in order to insert
11331 a catchpoint on failed assertions. */
11332 const char *catch_assert_sym;
11333
11334 /* Assuming that the inferior just triggered an unhandled exception
11335 catchpoint, this function is responsible for returning the address
11336 in inferior memory where the name of that exception is stored.
11337 Return zero if the address could not be computed. */
11338 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11339 };
11340
11341 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11342 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11343
11344 /* The following exception support info structure describes how to
11345 implement exception catchpoints with the latest version of the
11346 Ada runtime (as of 2007-03-06). */
11347
11348 static const struct exception_support_info default_exception_support_info =
11349 {
11350 "__gnat_debug_raise_exception", /* catch_exception_sym */
11351 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11352 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11353 ada_unhandled_exception_name_addr
11354 };
11355
11356 /* The following exception support info structure describes how to
11357 implement exception catchpoints with a slightly older version
11358 of the Ada runtime. */
11359
11360 static const struct exception_support_info exception_support_info_fallback =
11361 {
11362 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11363 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11364 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11365 ada_unhandled_exception_name_addr_from_raise
11366 };
11367
11368 /* Return nonzero if we can detect the exception support routines
11369 described in EINFO.
11370
11371 This function errors out if an abnormal situation is detected
11372 (for instance, if we find the exception support routines, but
11373 that support is found to be incomplete). */
11374
11375 static int
11376 ada_has_this_exception_support (const struct exception_support_info *einfo)
11377 {
11378 struct symbol *sym;
11379
11380 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11381 that should be compiled with debugging information. As a result, we
11382 expect to find that symbol in the symtabs. */
11383
11384 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11385 if (sym == NULL)
11386 {
11387 /* Perhaps we did not find our symbol because the Ada runtime was
11388 compiled without debugging info, or simply stripped of it.
11389 It happens on some GNU/Linux distributions for instance, where
11390 users have to install a separate debug package in order to get
11391 the runtime's debugging info. In that situation, let the user
11392 know why we cannot insert an Ada exception catchpoint.
11393
11394 Note: Just for the purpose of inserting our Ada exception
11395 catchpoint, we could rely purely on the associated minimal symbol.
11396 But we would be operating in degraded mode anyway, since we are
11397 still lacking the debugging info needed later on to extract
11398 the name of the exception being raised (this name is printed in
11399 the catchpoint message, and is also used when trying to catch
11400 a specific exception). We do not handle this case for now. */
11401 struct bound_minimal_symbol msym
11402 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11403
11404 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11405 error (_("Your Ada runtime appears to be missing some debugging "
11406 "information.\nCannot insert Ada exception catchpoint "
11407 "in this configuration."));
11408
11409 return 0;
11410 }
11411
11412 /* Make sure that the symbol we found corresponds to a function. */
11413
11414 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11415 error (_("Symbol \"%s\" is not a function (class = %d)"),
11416 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11417
11418 return 1;
11419 }
11420
11421 /* Inspect the Ada runtime and determine which exception info structure
11422 should be used to provide support for exception catchpoints.
11423
11424 This function will always set the per-inferior exception_info,
11425 or raise an error. */
11426
11427 static void
11428 ada_exception_support_info_sniffer (void)
11429 {
11430 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11431
11432 /* If the exception info is already known, then no need to recompute it. */
11433 if (data->exception_info != NULL)
11434 return;
11435
11436 /* Check the latest (default) exception support info. */
11437 if (ada_has_this_exception_support (&default_exception_support_info))
11438 {
11439 data->exception_info = &default_exception_support_info;
11440 return;
11441 }
11442
11443 /* Try our fallback exception suport info. */
11444 if (ada_has_this_exception_support (&exception_support_info_fallback))
11445 {
11446 data->exception_info = &exception_support_info_fallback;
11447 return;
11448 }
11449
11450 /* Sometimes, it is normal for us to not be able to find the routine
11451 we are looking for. This happens when the program is linked with
11452 the shared version of the GNAT runtime, and the program has not been
11453 started yet. Inform the user of these two possible causes if
11454 applicable. */
11455
11456 if (ada_update_initial_language (language_unknown) != language_ada)
11457 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11458
11459 /* If the symbol does not exist, then check that the program is
11460 already started, to make sure that shared libraries have been
11461 loaded. If it is not started, this may mean that the symbol is
11462 in a shared library. */
11463
11464 if (ptid_get_pid (inferior_ptid) == 0)
11465 error (_("Unable to insert catchpoint. Try to start the program first."));
11466
11467 /* At this point, we know that we are debugging an Ada program and
11468 that the inferior has been started, but we still are not able to
11469 find the run-time symbols. That can mean that we are in
11470 configurable run time mode, or that a-except as been optimized
11471 out by the linker... In any case, at this point it is not worth
11472 supporting this feature. */
11473
11474 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11475 }
11476
11477 /* True iff FRAME is very likely to be that of a function that is
11478 part of the runtime system. This is all very heuristic, but is
11479 intended to be used as advice as to what frames are uninteresting
11480 to most users. */
11481
11482 static int
11483 is_known_support_routine (struct frame_info *frame)
11484 {
11485 struct symtab_and_line sal;
11486 char *func_name;
11487 enum language func_lang;
11488 int i;
11489 const char *fullname;
11490
11491 /* If this code does not have any debugging information (no symtab),
11492 This cannot be any user code. */
11493
11494 find_frame_sal (frame, &sal);
11495 if (sal.symtab == NULL)
11496 return 1;
11497
11498 /* If there is a symtab, but the associated source file cannot be
11499 located, then assume this is not user code: Selecting a frame
11500 for which we cannot display the code would not be very helpful
11501 for the user. This should also take care of case such as VxWorks
11502 where the kernel has some debugging info provided for a few units. */
11503
11504 fullname = symtab_to_fullname (sal.symtab);
11505 if (access (fullname, R_OK) != 0)
11506 return 1;
11507
11508 /* Check the unit filename againt the Ada runtime file naming.
11509 We also check the name of the objfile against the name of some
11510 known system libraries that sometimes come with debugging info
11511 too. */
11512
11513 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11514 {
11515 re_comp (known_runtime_file_name_patterns[i]);
11516 if (re_exec (lbasename (sal.symtab->filename)))
11517 return 1;
11518 if (sal.symtab->objfile != NULL
11519 && re_exec (objfile_name (sal.symtab->objfile)))
11520 return 1;
11521 }
11522
11523 /* Check whether the function is a GNAT-generated entity. */
11524
11525 find_frame_funname (frame, &func_name, &func_lang, NULL);
11526 if (func_name == NULL)
11527 return 1;
11528
11529 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11530 {
11531 re_comp (known_auxiliary_function_name_patterns[i]);
11532 if (re_exec (func_name))
11533 {
11534 xfree (func_name);
11535 return 1;
11536 }
11537 }
11538
11539 xfree (func_name);
11540 return 0;
11541 }
11542
11543 /* Find the first frame that contains debugging information and that is not
11544 part of the Ada run-time, starting from FI and moving upward. */
11545
11546 void
11547 ada_find_printable_frame (struct frame_info *fi)
11548 {
11549 for (; fi != NULL; fi = get_prev_frame (fi))
11550 {
11551 if (!is_known_support_routine (fi))
11552 {
11553 select_frame (fi);
11554 break;
11555 }
11556 }
11557
11558 }
11559
11560 /* Assuming that the inferior just triggered an unhandled exception
11561 catchpoint, return the address in inferior memory where the name
11562 of the exception is stored.
11563
11564 Return zero if the address could not be computed. */
11565
11566 static CORE_ADDR
11567 ada_unhandled_exception_name_addr (void)
11568 {
11569 return parse_and_eval_address ("e.full_name");
11570 }
11571
11572 /* Same as ada_unhandled_exception_name_addr, except that this function
11573 should be used when the inferior uses an older version of the runtime,
11574 where the exception name needs to be extracted from a specific frame
11575 several frames up in the callstack. */
11576
11577 static CORE_ADDR
11578 ada_unhandled_exception_name_addr_from_raise (void)
11579 {
11580 int frame_level;
11581 struct frame_info *fi;
11582 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11583 struct cleanup *old_chain;
11584
11585 /* To determine the name of this exception, we need to select
11586 the frame corresponding to RAISE_SYM_NAME. This frame is
11587 at least 3 levels up, so we simply skip the first 3 frames
11588 without checking the name of their associated function. */
11589 fi = get_current_frame ();
11590 for (frame_level = 0; frame_level < 3; frame_level += 1)
11591 if (fi != NULL)
11592 fi = get_prev_frame (fi);
11593
11594 old_chain = make_cleanup (null_cleanup, NULL);
11595 while (fi != NULL)
11596 {
11597 char *func_name;
11598 enum language func_lang;
11599
11600 find_frame_funname (fi, &func_name, &func_lang, NULL);
11601 if (func_name != NULL)
11602 {
11603 make_cleanup (xfree, func_name);
11604
11605 if (strcmp (func_name,
11606 data->exception_info->catch_exception_sym) == 0)
11607 break; /* We found the frame we were looking for... */
11608 fi = get_prev_frame (fi);
11609 }
11610 }
11611 do_cleanups (old_chain);
11612
11613 if (fi == NULL)
11614 return 0;
11615
11616 select_frame (fi);
11617 return parse_and_eval_address ("id.full_name");
11618 }
11619
11620 /* Assuming the inferior just triggered an Ada exception catchpoint
11621 (of any type), return the address in inferior memory where the name
11622 of the exception is stored, if applicable.
11623
11624 Return zero if the address could not be computed, or if not relevant. */
11625
11626 static CORE_ADDR
11627 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11628 struct breakpoint *b)
11629 {
11630 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11631
11632 switch (ex)
11633 {
11634 case ada_catch_exception:
11635 return (parse_and_eval_address ("e.full_name"));
11636 break;
11637
11638 case ada_catch_exception_unhandled:
11639 return data->exception_info->unhandled_exception_name_addr ();
11640 break;
11641
11642 case ada_catch_assert:
11643 return 0; /* Exception name is not relevant in this case. */
11644 break;
11645
11646 default:
11647 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11648 break;
11649 }
11650
11651 return 0; /* Should never be reached. */
11652 }
11653
11654 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11655 any error that ada_exception_name_addr_1 might cause to be thrown.
11656 When an error is intercepted, a warning with the error message is printed,
11657 and zero is returned. */
11658
11659 static CORE_ADDR
11660 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11661 struct breakpoint *b)
11662 {
11663 volatile struct gdb_exception e;
11664 CORE_ADDR result = 0;
11665
11666 TRY_CATCH (e, RETURN_MASK_ERROR)
11667 {
11668 result = ada_exception_name_addr_1 (ex, b);
11669 }
11670
11671 if (e.reason < 0)
11672 {
11673 warning (_("failed to get exception name: %s"), e.message);
11674 return 0;
11675 }
11676
11677 return result;
11678 }
11679
11680 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11681
11682 /* Ada catchpoints.
11683
11684 In the case of catchpoints on Ada exceptions, the catchpoint will
11685 stop the target on every exception the program throws. When a user
11686 specifies the name of a specific exception, we translate this
11687 request into a condition expression (in text form), and then parse
11688 it into an expression stored in each of the catchpoint's locations.
11689 We then use this condition to check whether the exception that was
11690 raised is the one the user is interested in. If not, then the
11691 target is resumed again. We store the name of the requested
11692 exception, in order to be able to re-set the condition expression
11693 when symbols change. */
11694
11695 /* An instance of this type is used to represent an Ada catchpoint
11696 breakpoint location. It includes a "struct bp_location" as a kind
11697 of base class; users downcast to "struct bp_location *" when
11698 needed. */
11699
11700 struct ada_catchpoint_location
11701 {
11702 /* The base class. */
11703 struct bp_location base;
11704
11705 /* The condition that checks whether the exception that was raised
11706 is the specific exception the user specified on catchpoint
11707 creation. */
11708 struct expression *excep_cond_expr;
11709 };
11710
11711 /* Implement the DTOR method in the bp_location_ops structure for all
11712 Ada exception catchpoint kinds. */
11713
11714 static void
11715 ada_catchpoint_location_dtor (struct bp_location *bl)
11716 {
11717 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11718
11719 xfree (al->excep_cond_expr);
11720 }
11721
11722 /* The vtable to be used in Ada catchpoint locations. */
11723
11724 static const struct bp_location_ops ada_catchpoint_location_ops =
11725 {
11726 ada_catchpoint_location_dtor
11727 };
11728
11729 /* An instance of this type is used to represent an Ada catchpoint.
11730 It includes a "struct breakpoint" as a kind of base class; users
11731 downcast to "struct breakpoint *" when needed. */
11732
11733 struct ada_catchpoint
11734 {
11735 /* The base class. */
11736 struct breakpoint base;
11737
11738 /* The name of the specific exception the user specified. */
11739 char *excep_string;
11740 };
11741
11742 /* Parse the exception condition string in the context of each of the
11743 catchpoint's locations, and store them for later evaluation. */
11744
11745 static void
11746 create_excep_cond_exprs (struct ada_catchpoint *c)
11747 {
11748 struct cleanup *old_chain;
11749 struct bp_location *bl;
11750 char *cond_string;
11751
11752 /* Nothing to do if there's no specific exception to catch. */
11753 if (c->excep_string == NULL)
11754 return;
11755
11756 /* Same if there are no locations... */
11757 if (c->base.loc == NULL)
11758 return;
11759
11760 /* Compute the condition expression in text form, from the specific
11761 expection we want to catch. */
11762 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11763 old_chain = make_cleanup (xfree, cond_string);
11764
11765 /* Iterate over all the catchpoint's locations, and parse an
11766 expression for each. */
11767 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11768 {
11769 struct ada_catchpoint_location *ada_loc
11770 = (struct ada_catchpoint_location *) bl;
11771 struct expression *exp = NULL;
11772
11773 if (!bl->shlib_disabled)
11774 {
11775 volatile struct gdb_exception e;
11776 const char *s;
11777
11778 s = cond_string;
11779 TRY_CATCH (e, RETURN_MASK_ERROR)
11780 {
11781 exp = parse_exp_1 (&s, bl->address,
11782 block_for_pc (bl->address), 0);
11783 }
11784 if (e.reason < 0)
11785 {
11786 warning (_("failed to reevaluate internal exception condition "
11787 "for catchpoint %d: %s"),
11788 c->base.number, e.message);
11789 /* There is a bug in GCC on sparc-solaris when building with
11790 optimization which causes EXP to change unexpectedly
11791 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11792 The problem should be fixed starting with GCC 4.9.
11793 In the meantime, work around it by forcing EXP back
11794 to NULL. */
11795 exp = NULL;
11796 }
11797 }
11798
11799 ada_loc->excep_cond_expr = exp;
11800 }
11801
11802 do_cleanups (old_chain);
11803 }
11804
11805 /* Implement the DTOR method in the breakpoint_ops structure for all
11806 exception catchpoint kinds. */
11807
11808 static void
11809 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11810 {
11811 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11812
11813 xfree (c->excep_string);
11814
11815 bkpt_breakpoint_ops.dtor (b);
11816 }
11817
11818 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11819 structure for all exception catchpoint kinds. */
11820
11821 static struct bp_location *
11822 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11823 struct breakpoint *self)
11824 {
11825 struct ada_catchpoint_location *loc;
11826
11827 loc = XNEW (struct ada_catchpoint_location);
11828 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11829 loc->excep_cond_expr = NULL;
11830 return &loc->base;
11831 }
11832
11833 /* Implement the RE_SET method in the breakpoint_ops structure for all
11834 exception catchpoint kinds. */
11835
11836 static void
11837 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11838 {
11839 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11840
11841 /* Call the base class's method. This updates the catchpoint's
11842 locations. */
11843 bkpt_breakpoint_ops.re_set (b);
11844
11845 /* Reparse the exception conditional expressions. One for each
11846 location. */
11847 create_excep_cond_exprs (c);
11848 }
11849
11850 /* Returns true if we should stop for this breakpoint hit. If the
11851 user specified a specific exception, we only want to cause a stop
11852 if the program thrown that exception. */
11853
11854 static int
11855 should_stop_exception (const struct bp_location *bl)
11856 {
11857 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11858 const struct ada_catchpoint_location *ada_loc
11859 = (const struct ada_catchpoint_location *) bl;
11860 volatile struct gdb_exception ex;
11861 int stop;
11862
11863 /* With no specific exception, should always stop. */
11864 if (c->excep_string == NULL)
11865 return 1;
11866
11867 if (ada_loc->excep_cond_expr == NULL)
11868 {
11869 /* We will have a NULL expression if back when we were creating
11870 the expressions, this location's had failed to parse. */
11871 return 1;
11872 }
11873
11874 stop = 1;
11875 TRY_CATCH (ex, RETURN_MASK_ALL)
11876 {
11877 struct value *mark;
11878
11879 mark = value_mark ();
11880 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11881 value_free_to_mark (mark);
11882 }
11883 if (ex.reason < 0)
11884 exception_fprintf (gdb_stderr, ex,
11885 _("Error in testing exception condition:\n"));
11886 return stop;
11887 }
11888
11889 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11890 for all exception catchpoint kinds. */
11891
11892 static void
11893 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11894 {
11895 bs->stop = should_stop_exception (bs->bp_location_at);
11896 }
11897
11898 /* Implement the PRINT_IT method in the breakpoint_ops structure
11899 for all exception catchpoint kinds. */
11900
11901 static enum print_stop_action
11902 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11903 {
11904 struct ui_out *uiout = current_uiout;
11905 struct breakpoint *b = bs->breakpoint_at;
11906
11907 annotate_catchpoint (b->number);
11908
11909 if (ui_out_is_mi_like_p (uiout))
11910 {
11911 ui_out_field_string (uiout, "reason",
11912 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11913 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11914 }
11915
11916 ui_out_text (uiout,
11917 b->disposition == disp_del ? "\nTemporary catchpoint "
11918 : "\nCatchpoint ");
11919 ui_out_field_int (uiout, "bkptno", b->number);
11920 ui_out_text (uiout, ", ");
11921
11922 switch (ex)
11923 {
11924 case ada_catch_exception:
11925 case ada_catch_exception_unhandled:
11926 {
11927 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11928 char exception_name[256];
11929
11930 if (addr != 0)
11931 {
11932 read_memory (addr, (gdb_byte *) exception_name,
11933 sizeof (exception_name) - 1);
11934 exception_name [sizeof (exception_name) - 1] = '\0';
11935 }
11936 else
11937 {
11938 /* For some reason, we were unable to read the exception
11939 name. This could happen if the Runtime was compiled
11940 without debugging info, for instance. In that case,
11941 just replace the exception name by the generic string
11942 "exception" - it will read as "an exception" in the
11943 notification we are about to print. */
11944 memcpy (exception_name, "exception", sizeof ("exception"));
11945 }
11946 /* In the case of unhandled exception breakpoints, we print
11947 the exception name as "unhandled EXCEPTION_NAME", to make
11948 it clearer to the user which kind of catchpoint just got
11949 hit. We used ui_out_text to make sure that this extra
11950 info does not pollute the exception name in the MI case. */
11951 if (ex == ada_catch_exception_unhandled)
11952 ui_out_text (uiout, "unhandled ");
11953 ui_out_field_string (uiout, "exception-name", exception_name);
11954 }
11955 break;
11956 case ada_catch_assert:
11957 /* In this case, the name of the exception is not really
11958 important. Just print "failed assertion" to make it clearer
11959 that his program just hit an assertion-failure catchpoint.
11960 We used ui_out_text because this info does not belong in
11961 the MI output. */
11962 ui_out_text (uiout, "failed assertion");
11963 break;
11964 }
11965 ui_out_text (uiout, " at ");
11966 ada_find_printable_frame (get_current_frame ());
11967
11968 return PRINT_SRC_AND_LOC;
11969 }
11970
11971 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11972 for all exception catchpoint kinds. */
11973
11974 static void
11975 print_one_exception (enum ada_exception_catchpoint_kind ex,
11976 struct breakpoint *b, struct bp_location **last_loc)
11977 {
11978 struct ui_out *uiout = current_uiout;
11979 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11980 struct value_print_options opts;
11981
11982 get_user_print_options (&opts);
11983 if (opts.addressprint)
11984 {
11985 annotate_field (4);
11986 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11987 }
11988
11989 annotate_field (5);
11990 *last_loc = b->loc;
11991 switch (ex)
11992 {
11993 case ada_catch_exception:
11994 if (c->excep_string != NULL)
11995 {
11996 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11997
11998 ui_out_field_string (uiout, "what", msg);
11999 xfree (msg);
12000 }
12001 else
12002 ui_out_field_string (uiout, "what", "all Ada exceptions");
12003
12004 break;
12005
12006 case ada_catch_exception_unhandled:
12007 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12008 break;
12009
12010 case ada_catch_assert:
12011 ui_out_field_string (uiout, "what", "failed Ada assertions");
12012 break;
12013
12014 default:
12015 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12016 break;
12017 }
12018 }
12019
12020 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12021 for all exception catchpoint kinds. */
12022
12023 static void
12024 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12025 struct breakpoint *b)
12026 {
12027 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12028 struct ui_out *uiout = current_uiout;
12029
12030 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12031 : _("Catchpoint "));
12032 ui_out_field_int (uiout, "bkptno", b->number);
12033 ui_out_text (uiout, ": ");
12034
12035 switch (ex)
12036 {
12037 case ada_catch_exception:
12038 if (c->excep_string != NULL)
12039 {
12040 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12041 struct cleanup *old_chain = make_cleanup (xfree, info);
12042
12043 ui_out_text (uiout, info);
12044 do_cleanups (old_chain);
12045 }
12046 else
12047 ui_out_text (uiout, _("all Ada exceptions"));
12048 break;
12049
12050 case ada_catch_exception_unhandled:
12051 ui_out_text (uiout, _("unhandled Ada exceptions"));
12052 break;
12053
12054 case ada_catch_assert:
12055 ui_out_text (uiout, _("failed Ada assertions"));
12056 break;
12057
12058 default:
12059 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12060 break;
12061 }
12062 }
12063
12064 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12065 for all exception catchpoint kinds. */
12066
12067 static void
12068 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12069 struct breakpoint *b, struct ui_file *fp)
12070 {
12071 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12072
12073 switch (ex)
12074 {
12075 case ada_catch_exception:
12076 fprintf_filtered (fp, "catch exception");
12077 if (c->excep_string != NULL)
12078 fprintf_filtered (fp, " %s", c->excep_string);
12079 break;
12080
12081 case ada_catch_exception_unhandled:
12082 fprintf_filtered (fp, "catch exception unhandled");
12083 break;
12084
12085 case ada_catch_assert:
12086 fprintf_filtered (fp, "catch assert");
12087 break;
12088
12089 default:
12090 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12091 }
12092 print_recreate_thread (b, fp);
12093 }
12094
12095 /* Virtual table for "catch exception" breakpoints. */
12096
12097 static void
12098 dtor_catch_exception (struct breakpoint *b)
12099 {
12100 dtor_exception (ada_catch_exception, b);
12101 }
12102
12103 static struct bp_location *
12104 allocate_location_catch_exception (struct breakpoint *self)
12105 {
12106 return allocate_location_exception (ada_catch_exception, self);
12107 }
12108
12109 static void
12110 re_set_catch_exception (struct breakpoint *b)
12111 {
12112 re_set_exception (ada_catch_exception, b);
12113 }
12114
12115 static void
12116 check_status_catch_exception (bpstat bs)
12117 {
12118 check_status_exception (ada_catch_exception, bs);
12119 }
12120
12121 static enum print_stop_action
12122 print_it_catch_exception (bpstat bs)
12123 {
12124 return print_it_exception (ada_catch_exception, bs);
12125 }
12126
12127 static void
12128 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12129 {
12130 print_one_exception (ada_catch_exception, b, last_loc);
12131 }
12132
12133 static void
12134 print_mention_catch_exception (struct breakpoint *b)
12135 {
12136 print_mention_exception (ada_catch_exception, b);
12137 }
12138
12139 static void
12140 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12141 {
12142 print_recreate_exception (ada_catch_exception, b, fp);
12143 }
12144
12145 static struct breakpoint_ops catch_exception_breakpoint_ops;
12146
12147 /* Virtual table for "catch exception unhandled" breakpoints. */
12148
12149 static void
12150 dtor_catch_exception_unhandled (struct breakpoint *b)
12151 {
12152 dtor_exception (ada_catch_exception_unhandled, b);
12153 }
12154
12155 static struct bp_location *
12156 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12157 {
12158 return allocate_location_exception (ada_catch_exception_unhandled, self);
12159 }
12160
12161 static void
12162 re_set_catch_exception_unhandled (struct breakpoint *b)
12163 {
12164 re_set_exception (ada_catch_exception_unhandled, b);
12165 }
12166
12167 static void
12168 check_status_catch_exception_unhandled (bpstat bs)
12169 {
12170 check_status_exception (ada_catch_exception_unhandled, bs);
12171 }
12172
12173 static enum print_stop_action
12174 print_it_catch_exception_unhandled (bpstat bs)
12175 {
12176 return print_it_exception (ada_catch_exception_unhandled, bs);
12177 }
12178
12179 static void
12180 print_one_catch_exception_unhandled (struct breakpoint *b,
12181 struct bp_location **last_loc)
12182 {
12183 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12184 }
12185
12186 static void
12187 print_mention_catch_exception_unhandled (struct breakpoint *b)
12188 {
12189 print_mention_exception (ada_catch_exception_unhandled, b);
12190 }
12191
12192 static void
12193 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12194 struct ui_file *fp)
12195 {
12196 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12197 }
12198
12199 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12200
12201 /* Virtual table for "catch assert" breakpoints. */
12202
12203 static void
12204 dtor_catch_assert (struct breakpoint *b)
12205 {
12206 dtor_exception (ada_catch_assert, b);
12207 }
12208
12209 static struct bp_location *
12210 allocate_location_catch_assert (struct breakpoint *self)
12211 {
12212 return allocate_location_exception (ada_catch_assert, self);
12213 }
12214
12215 static void
12216 re_set_catch_assert (struct breakpoint *b)
12217 {
12218 re_set_exception (ada_catch_assert, b);
12219 }
12220
12221 static void
12222 check_status_catch_assert (bpstat bs)
12223 {
12224 check_status_exception (ada_catch_assert, bs);
12225 }
12226
12227 static enum print_stop_action
12228 print_it_catch_assert (bpstat bs)
12229 {
12230 return print_it_exception (ada_catch_assert, bs);
12231 }
12232
12233 static void
12234 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12235 {
12236 print_one_exception (ada_catch_assert, b, last_loc);
12237 }
12238
12239 static void
12240 print_mention_catch_assert (struct breakpoint *b)
12241 {
12242 print_mention_exception (ada_catch_assert, b);
12243 }
12244
12245 static void
12246 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12247 {
12248 print_recreate_exception (ada_catch_assert, b, fp);
12249 }
12250
12251 static struct breakpoint_ops catch_assert_breakpoint_ops;
12252
12253 /* Return a newly allocated copy of the first space-separated token
12254 in ARGSP, and then adjust ARGSP to point immediately after that
12255 token.
12256
12257 Return NULL if ARGPS does not contain any more tokens. */
12258
12259 static char *
12260 ada_get_next_arg (char **argsp)
12261 {
12262 char *args = *argsp;
12263 char *end;
12264 char *result;
12265
12266 args = skip_spaces (args);
12267 if (args[0] == '\0')
12268 return NULL; /* No more arguments. */
12269
12270 /* Find the end of the current argument. */
12271
12272 end = skip_to_space (args);
12273
12274 /* Adjust ARGSP to point to the start of the next argument. */
12275
12276 *argsp = end;
12277
12278 /* Make a copy of the current argument and return it. */
12279
12280 result = xmalloc (end - args + 1);
12281 strncpy (result, args, end - args);
12282 result[end - args] = '\0';
12283
12284 return result;
12285 }
12286
12287 /* Split the arguments specified in a "catch exception" command.
12288 Set EX to the appropriate catchpoint type.
12289 Set EXCEP_STRING to the name of the specific exception if
12290 specified by the user.
12291 If a condition is found at the end of the arguments, the condition
12292 expression is stored in COND_STRING (memory must be deallocated
12293 after use). Otherwise COND_STRING is set to NULL. */
12294
12295 static void
12296 catch_ada_exception_command_split (char *args,
12297 enum ada_exception_catchpoint_kind *ex,
12298 char **excep_string,
12299 char **cond_string)
12300 {
12301 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12302 char *exception_name;
12303 char *cond = NULL;
12304
12305 exception_name = ada_get_next_arg (&args);
12306 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12307 {
12308 /* This is not an exception name; this is the start of a condition
12309 expression for a catchpoint on all exceptions. So, "un-get"
12310 this token, and set exception_name to NULL. */
12311 xfree (exception_name);
12312 exception_name = NULL;
12313 args -= 2;
12314 }
12315 make_cleanup (xfree, exception_name);
12316
12317 /* Check to see if we have a condition. */
12318
12319 args = skip_spaces (args);
12320 if (strncmp (args, "if", 2) == 0
12321 && (isspace (args[2]) || args[2] == '\0'))
12322 {
12323 args += 2;
12324 args = skip_spaces (args);
12325
12326 if (args[0] == '\0')
12327 error (_("Condition missing after `if' keyword"));
12328 cond = xstrdup (args);
12329 make_cleanup (xfree, cond);
12330
12331 args += strlen (args);
12332 }
12333
12334 /* Check that we do not have any more arguments. Anything else
12335 is unexpected. */
12336
12337 if (args[0] != '\0')
12338 error (_("Junk at end of expression"));
12339
12340 discard_cleanups (old_chain);
12341
12342 if (exception_name == NULL)
12343 {
12344 /* Catch all exceptions. */
12345 *ex = ada_catch_exception;
12346 *excep_string = NULL;
12347 }
12348 else if (strcmp (exception_name, "unhandled") == 0)
12349 {
12350 /* Catch unhandled exceptions. */
12351 *ex = ada_catch_exception_unhandled;
12352 *excep_string = NULL;
12353 }
12354 else
12355 {
12356 /* Catch a specific exception. */
12357 *ex = ada_catch_exception;
12358 *excep_string = exception_name;
12359 }
12360 *cond_string = cond;
12361 }
12362
12363 /* Return the name of the symbol on which we should break in order to
12364 implement a catchpoint of the EX kind. */
12365
12366 static const char *
12367 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12368 {
12369 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12370
12371 gdb_assert (data->exception_info != NULL);
12372
12373 switch (ex)
12374 {
12375 case ada_catch_exception:
12376 return (data->exception_info->catch_exception_sym);
12377 break;
12378 case ada_catch_exception_unhandled:
12379 return (data->exception_info->catch_exception_unhandled_sym);
12380 break;
12381 case ada_catch_assert:
12382 return (data->exception_info->catch_assert_sym);
12383 break;
12384 default:
12385 internal_error (__FILE__, __LINE__,
12386 _("unexpected catchpoint kind (%d)"), ex);
12387 }
12388 }
12389
12390 /* Return the breakpoint ops "virtual table" used for catchpoints
12391 of the EX kind. */
12392
12393 static const struct breakpoint_ops *
12394 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12395 {
12396 switch (ex)
12397 {
12398 case ada_catch_exception:
12399 return (&catch_exception_breakpoint_ops);
12400 break;
12401 case ada_catch_exception_unhandled:
12402 return (&catch_exception_unhandled_breakpoint_ops);
12403 break;
12404 case ada_catch_assert:
12405 return (&catch_assert_breakpoint_ops);
12406 break;
12407 default:
12408 internal_error (__FILE__, __LINE__,
12409 _("unexpected catchpoint kind (%d)"), ex);
12410 }
12411 }
12412
12413 /* Return the condition that will be used to match the current exception
12414 being raised with the exception that the user wants to catch. This
12415 assumes that this condition is used when the inferior just triggered
12416 an exception catchpoint.
12417
12418 The string returned is a newly allocated string that needs to be
12419 deallocated later. */
12420
12421 static char *
12422 ada_exception_catchpoint_cond_string (const char *excep_string)
12423 {
12424 int i;
12425
12426 /* The standard exceptions are a special case. They are defined in
12427 runtime units that have been compiled without debugging info; if
12428 EXCEP_STRING is the not-fully-qualified name of a standard
12429 exception (e.g. "constraint_error") then, during the evaluation
12430 of the condition expression, the symbol lookup on this name would
12431 *not* return this standard exception. The catchpoint condition
12432 may then be set only on user-defined exceptions which have the
12433 same not-fully-qualified name (e.g. my_package.constraint_error).
12434
12435 To avoid this unexcepted behavior, these standard exceptions are
12436 systematically prefixed by "standard". This means that "catch
12437 exception constraint_error" is rewritten into "catch exception
12438 standard.constraint_error".
12439
12440 If an exception named contraint_error is defined in another package of
12441 the inferior program, then the only way to specify this exception as a
12442 breakpoint condition is to use its fully-qualified named:
12443 e.g. my_package.constraint_error. */
12444
12445 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12446 {
12447 if (strcmp (standard_exc [i], excep_string) == 0)
12448 {
12449 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12450 excep_string);
12451 }
12452 }
12453 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12454 }
12455
12456 /* Return the symtab_and_line that should be used to insert an exception
12457 catchpoint of the TYPE kind.
12458
12459 EXCEP_STRING should contain the name of a specific exception that
12460 the catchpoint should catch, or NULL otherwise.
12461
12462 ADDR_STRING returns the name of the function where the real
12463 breakpoint that implements the catchpoints is set, depending on the
12464 type of catchpoint we need to create. */
12465
12466 static struct symtab_and_line
12467 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12468 char **addr_string, const struct breakpoint_ops **ops)
12469 {
12470 const char *sym_name;
12471 struct symbol *sym;
12472
12473 /* First, find out which exception support info to use. */
12474 ada_exception_support_info_sniffer ();
12475
12476 /* Then lookup the function on which we will break in order to catch
12477 the Ada exceptions requested by the user. */
12478 sym_name = ada_exception_sym_name (ex);
12479 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12480
12481 /* We can assume that SYM is not NULL at this stage. If the symbol
12482 did not exist, ada_exception_support_info_sniffer would have
12483 raised an exception.
12484
12485 Also, ada_exception_support_info_sniffer should have already
12486 verified that SYM is a function symbol. */
12487 gdb_assert (sym != NULL);
12488 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12489
12490 /* Set ADDR_STRING. */
12491 *addr_string = xstrdup (sym_name);
12492
12493 /* Set OPS. */
12494 *ops = ada_exception_breakpoint_ops (ex);
12495
12496 return find_function_start_sal (sym, 1);
12497 }
12498
12499 /* Create an Ada exception catchpoint.
12500
12501 EX_KIND is the kind of exception catchpoint to be created.
12502
12503 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12504 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12505 of the exception to which this catchpoint applies. When not NULL,
12506 the string must be allocated on the heap, and its deallocation
12507 is no longer the responsibility of the caller.
12508
12509 COND_STRING, if not NULL, is the catchpoint condition. This string
12510 must be allocated on the heap, and its deallocation is no longer
12511 the responsibility of the caller.
12512
12513 TEMPFLAG, if nonzero, means that the underlying breakpoint
12514 should be temporary.
12515
12516 FROM_TTY is the usual argument passed to all commands implementations. */
12517
12518 void
12519 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12520 enum ada_exception_catchpoint_kind ex_kind,
12521 char *excep_string,
12522 char *cond_string,
12523 int tempflag,
12524 int disabled,
12525 int from_tty)
12526 {
12527 struct ada_catchpoint *c;
12528 char *addr_string = NULL;
12529 const struct breakpoint_ops *ops = NULL;
12530 struct symtab_and_line sal
12531 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12532
12533 c = XNEW (struct ada_catchpoint);
12534 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12535 ops, tempflag, disabled, from_tty);
12536 c->excep_string = excep_string;
12537 create_excep_cond_exprs (c);
12538 if (cond_string != NULL)
12539 set_breakpoint_condition (&c->base, cond_string, from_tty);
12540 install_breakpoint (0, &c->base, 1);
12541 }
12542
12543 /* Implement the "catch exception" command. */
12544
12545 static void
12546 catch_ada_exception_command (char *arg, int from_tty,
12547 struct cmd_list_element *command)
12548 {
12549 struct gdbarch *gdbarch = get_current_arch ();
12550 int tempflag;
12551 enum ada_exception_catchpoint_kind ex_kind;
12552 char *excep_string = NULL;
12553 char *cond_string = NULL;
12554
12555 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12556
12557 if (!arg)
12558 arg = "";
12559 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12560 &cond_string);
12561 create_ada_exception_catchpoint (gdbarch, ex_kind,
12562 excep_string, cond_string,
12563 tempflag, 1 /* enabled */,
12564 from_tty);
12565 }
12566
12567 /* Split the arguments specified in a "catch assert" command.
12568
12569 ARGS contains the command's arguments (or the empty string if
12570 no arguments were passed).
12571
12572 If ARGS contains a condition, set COND_STRING to that condition
12573 (the memory needs to be deallocated after use). */
12574
12575 static void
12576 catch_ada_assert_command_split (char *args, char **cond_string)
12577 {
12578 args = skip_spaces (args);
12579
12580 /* Check whether a condition was provided. */
12581 if (strncmp (args, "if", 2) == 0
12582 && (isspace (args[2]) || args[2] == '\0'))
12583 {
12584 args += 2;
12585 args = skip_spaces (args);
12586 if (args[0] == '\0')
12587 error (_("condition missing after `if' keyword"));
12588 *cond_string = xstrdup (args);
12589 }
12590
12591 /* Otherwise, there should be no other argument at the end of
12592 the command. */
12593 else if (args[0] != '\0')
12594 error (_("Junk at end of arguments."));
12595 }
12596
12597 /* Implement the "catch assert" command. */
12598
12599 static void
12600 catch_assert_command (char *arg, int from_tty,
12601 struct cmd_list_element *command)
12602 {
12603 struct gdbarch *gdbarch = get_current_arch ();
12604 int tempflag;
12605 char *cond_string = NULL;
12606
12607 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12608
12609 if (!arg)
12610 arg = "";
12611 catch_ada_assert_command_split (arg, &cond_string);
12612 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12613 NULL, cond_string,
12614 tempflag, 1 /* enabled */,
12615 from_tty);
12616 }
12617
12618 /* Return non-zero if the symbol SYM is an Ada exception object. */
12619
12620 static int
12621 ada_is_exception_sym (struct symbol *sym)
12622 {
12623 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12624
12625 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12626 && SYMBOL_CLASS (sym) != LOC_BLOCK
12627 && SYMBOL_CLASS (sym) != LOC_CONST
12628 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12629 && type_name != NULL && strcmp (type_name, "exception") == 0);
12630 }
12631
12632 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12633 Ada exception object. This matches all exceptions except the ones
12634 defined by the Ada language. */
12635
12636 static int
12637 ada_is_non_standard_exception_sym (struct symbol *sym)
12638 {
12639 int i;
12640
12641 if (!ada_is_exception_sym (sym))
12642 return 0;
12643
12644 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12645 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12646 return 0; /* A standard exception. */
12647
12648 /* Numeric_Error is also a standard exception, so exclude it.
12649 See the STANDARD_EXC description for more details as to why
12650 this exception is not listed in that array. */
12651 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12652 return 0;
12653
12654 return 1;
12655 }
12656
12657 /* A helper function for qsort, comparing two struct ada_exc_info
12658 objects.
12659
12660 The comparison is determined first by exception name, and then
12661 by exception address. */
12662
12663 static int
12664 compare_ada_exception_info (const void *a, const void *b)
12665 {
12666 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12667 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12668 int result;
12669
12670 result = strcmp (exc_a->name, exc_b->name);
12671 if (result != 0)
12672 return result;
12673
12674 if (exc_a->addr < exc_b->addr)
12675 return -1;
12676 if (exc_a->addr > exc_b->addr)
12677 return 1;
12678
12679 return 0;
12680 }
12681
12682 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12683 routine, but keeping the first SKIP elements untouched.
12684
12685 All duplicates are also removed. */
12686
12687 static void
12688 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12689 int skip)
12690 {
12691 struct ada_exc_info *to_sort
12692 = VEC_address (ada_exc_info, *exceptions) + skip;
12693 int to_sort_len
12694 = VEC_length (ada_exc_info, *exceptions) - skip;
12695 int i, j;
12696
12697 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12698 compare_ada_exception_info);
12699
12700 for (i = 1, j = 1; i < to_sort_len; i++)
12701 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12702 to_sort[j++] = to_sort[i];
12703 to_sort_len = j;
12704 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12705 }
12706
12707 /* A function intended as the "name_matcher" callback in the struct
12708 quick_symbol_functions' expand_symtabs_matching method.
12709
12710 SEARCH_NAME is the symbol's search name.
12711
12712 If USER_DATA is not NULL, it is a pointer to a regext_t object
12713 used to match the symbol (by natural name). Otherwise, when USER_DATA
12714 is null, no filtering is performed, and all symbols are a positive
12715 match. */
12716
12717 static int
12718 ada_exc_search_name_matches (const char *search_name, void *user_data)
12719 {
12720 regex_t *preg = user_data;
12721
12722 if (preg == NULL)
12723 return 1;
12724
12725 /* In Ada, the symbol "search name" is a linkage name, whereas
12726 the regular expression used to do the matching refers to
12727 the natural name. So match against the decoded name. */
12728 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12729 }
12730
12731 /* Add all exceptions defined by the Ada standard whose name match
12732 a regular expression.
12733
12734 If PREG is not NULL, then this regexp_t object is used to
12735 perform the symbol name matching. Otherwise, no name-based
12736 filtering is performed.
12737
12738 EXCEPTIONS is a vector of exceptions to which matching exceptions
12739 gets pushed. */
12740
12741 static void
12742 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12743 {
12744 int i;
12745
12746 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12747 {
12748 if (preg == NULL
12749 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12750 {
12751 struct bound_minimal_symbol msymbol
12752 = ada_lookup_simple_minsym (standard_exc[i]);
12753
12754 if (msymbol.minsym != NULL)
12755 {
12756 struct ada_exc_info info
12757 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12758
12759 VEC_safe_push (ada_exc_info, *exceptions, &info);
12760 }
12761 }
12762 }
12763 }
12764
12765 /* Add all Ada exceptions defined locally and accessible from the given
12766 FRAME.
12767
12768 If PREG is not NULL, then this regexp_t object is used to
12769 perform the symbol name matching. Otherwise, no name-based
12770 filtering is performed.
12771
12772 EXCEPTIONS is a vector of exceptions to which matching exceptions
12773 gets pushed. */
12774
12775 static void
12776 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12777 VEC(ada_exc_info) **exceptions)
12778 {
12779 const struct block *block = get_frame_block (frame, 0);
12780
12781 while (block != 0)
12782 {
12783 struct block_iterator iter;
12784 struct symbol *sym;
12785
12786 ALL_BLOCK_SYMBOLS (block, iter, sym)
12787 {
12788 switch (SYMBOL_CLASS (sym))
12789 {
12790 case LOC_TYPEDEF:
12791 case LOC_BLOCK:
12792 case LOC_CONST:
12793 break;
12794 default:
12795 if (ada_is_exception_sym (sym))
12796 {
12797 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12798 SYMBOL_VALUE_ADDRESS (sym)};
12799
12800 VEC_safe_push (ada_exc_info, *exceptions, &info);
12801 }
12802 }
12803 }
12804 if (BLOCK_FUNCTION (block) != NULL)
12805 break;
12806 block = BLOCK_SUPERBLOCK (block);
12807 }
12808 }
12809
12810 /* Add all exceptions defined globally whose name name match
12811 a regular expression, excluding standard exceptions.
12812
12813 The reason we exclude standard exceptions is that they need
12814 to be handled separately: Standard exceptions are defined inside
12815 a runtime unit which is normally not compiled with debugging info,
12816 and thus usually do not show up in our symbol search. However,
12817 if the unit was in fact built with debugging info, we need to
12818 exclude them because they would duplicate the entry we found
12819 during the special loop that specifically searches for those
12820 standard exceptions.
12821
12822 If PREG is not NULL, then this regexp_t object is used to
12823 perform the symbol name matching. Otherwise, no name-based
12824 filtering is performed.
12825
12826 EXCEPTIONS is a vector of exceptions to which matching exceptions
12827 gets pushed. */
12828
12829 static void
12830 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12831 {
12832 struct objfile *objfile;
12833 struct symtab *s;
12834
12835 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12836 VARIABLES_DOMAIN, preg);
12837
12838 ALL_PRIMARY_SYMTABS (objfile, s)
12839 {
12840 const struct blockvector *bv = BLOCKVECTOR (s);
12841 int i;
12842
12843 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12844 {
12845 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12846 struct block_iterator iter;
12847 struct symbol *sym;
12848
12849 ALL_BLOCK_SYMBOLS (b, iter, sym)
12850 if (ada_is_non_standard_exception_sym (sym)
12851 && (preg == NULL
12852 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12853 0, NULL, 0) == 0))
12854 {
12855 struct ada_exc_info info
12856 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12857
12858 VEC_safe_push (ada_exc_info, *exceptions, &info);
12859 }
12860 }
12861 }
12862 }
12863
12864 /* Implements ada_exceptions_list with the regular expression passed
12865 as a regex_t, rather than a string.
12866
12867 If not NULL, PREG is used to filter out exceptions whose names
12868 do not match. Otherwise, all exceptions are listed. */
12869
12870 static VEC(ada_exc_info) *
12871 ada_exceptions_list_1 (regex_t *preg)
12872 {
12873 VEC(ada_exc_info) *result = NULL;
12874 struct cleanup *old_chain
12875 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12876 int prev_len;
12877
12878 /* First, list the known standard exceptions. These exceptions
12879 need to be handled separately, as they are usually defined in
12880 runtime units that have been compiled without debugging info. */
12881
12882 ada_add_standard_exceptions (preg, &result);
12883
12884 /* Next, find all exceptions whose scope is local and accessible
12885 from the currently selected frame. */
12886
12887 if (has_stack_frames ())
12888 {
12889 prev_len = VEC_length (ada_exc_info, result);
12890 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12891 &result);
12892 if (VEC_length (ada_exc_info, result) > prev_len)
12893 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12894 }
12895
12896 /* Add all exceptions whose scope is global. */
12897
12898 prev_len = VEC_length (ada_exc_info, result);
12899 ada_add_global_exceptions (preg, &result);
12900 if (VEC_length (ada_exc_info, result) > prev_len)
12901 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12902
12903 discard_cleanups (old_chain);
12904 return result;
12905 }
12906
12907 /* Return a vector of ada_exc_info.
12908
12909 If REGEXP is NULL, all exceptions are included in the result.
12910 Otherwise, it should contain a valid regular expression,
12911 and only the exceptions whose names match that regular expression
12912 are included in the result.
12913
12914 The exceptions are sorted in the following order:
12915 - Standard exceptions (defined by the Ada language), in
12916 alphabetical order;
12917 - Exceptions only visible from the current frame, in
12918 alphabetical order;
12919 - Exceptions whose scope is global, in alphabetical order. */
12920
12921 VEC(ada_exc_info) *
12922 ada_exceptions_list (const char *regexp)
12923 {
12924 VEC(ada_exc_info) *result = NULL;
12925 struct cleanup *old_chain = NULL;
12926 regex_t reg;
12927
12928 if (regexp != NULL)
12929 old_chain = compile_rx_or_error (&reg, regexp,
12930 _("invalid regular expression"));
12931
12932 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12933
12934 if (old_chain != NULL)
12935 do_cleanups (old_chain);
12936 return result;
12937 }
12938
12939 /* Implement the "info exceptions" command. */
12940
12941 static void
12942 info_exceptions_command (char *regexp, int from_tty)
12943 {
12944 VEC(ada_exc_info) *exceptions;
12945 struct cleanup *cleanup;
12946 struct gdbarch *gdbarch = get_current_arch ();
12947 int ix;
12948 struct ada_exc_info *info;
12949
12950 exceptions = ada_exceptions_list (regexp);
12951 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12952
12953 if (regexp != NULL)
12954 printf_filtered
12955 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12956 else
12957 printf_filtered (_("All defined Ada exceptions:\n"));
12958
12959 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12960 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12961
12962 do_cleanups (cleanup);
12963 }
12964
12965 /* Operators */
12966 /* Information about operators given special treatment in functions
12967 below. */
12968 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12969
12970 #define ADA_OPERATORS \
12971 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12972 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12973 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12974 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12975 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12976 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12977 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12978 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12979 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12980 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12981 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12982 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12983 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12984 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12985 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12986 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12987 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12988 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12989 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12990
12991 static void
12992 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12993 int *argsp)
12994 {
12995 switch (exp->elts[pc - 1].opcode)
12996 {
12997 default:
12998 operator_length_standard (exp, pc, oplenp, argsp);
12999 break;
13000
13001 #define OP_DEFN(op, len, args, binop) \
13002 case op: *oplenp = len; *argsp = args; break;
13003 ADA_OPERATORS;
13004 #undef OP_DEFN
13005
13006 case OP_AGGREGATE:
13007 *oplenp = 3;
13008 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13009 break;
13010
13011 case OP_CHOICES:
13012 *oplenp = 3;
13013 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13014 break;
13015 }
13016 }
13017
13018 /* Implementation of the exp_descriptor method operator_check. */
13019
13020 static int
13021 ada_operator_check (struct expression *exp, int pos,
13022 int (*objfile_func) (struct objfile *objfile, void *data),
13023 void *data)
13024 {
13025 const union exp_element *const elts = exp->elts;
13026 struct type *type = NULL;
13027
13028 switch (elts[pos].opcode)
13029 {
13030 case UNOP_IN_RANGE:
13031 case UNOP_QUAL:
13032 type = elts[pos + 1].type;
13033 break;
13034
13035 default:
13036 return operator_check_standard (exp, pos, objfile_func, data);
13037 }
13038
13039 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13040
13041 if (type && TYPE_OBJFILE (type)
13042 && (*objfile_func) (TYPE_OBJFILE (type), data))
13043 return 1;
13044
13045 return 0;
13046 }
13047
13048 static char *
13049 ada_op_name (enum exp_opcode opcode)
13050 {
13051 switch (opcode)
13052 {
13053 default:
13054 return op_name_standard (opcode);
13055
13056 #define OP_DEFN(op, len, args, binop) case op: return #op;
13057 ADA_OPERATORS;
13058 #undef OP_DEFN
13059
13060 case OP_AGGREGATE:
13061 return "OP_AGGREGATE";
13062 case OP_CHOICES:
13063 return "OP_CHOICES";
13064 case OP_NAME:
13065 return "OP_NAME";
13066 }
13067 }
13068
13069 /* As for operator_length, but assumes PC is pointing at the first
13070 element of the operator, and gives meaningful results only for the
13071 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13072
13073 static void
13074 ada_forward_operator_length (struct expression *exp, int pc,
13075 int *oplenp, int *argsp)
13076 {
13077 switch (exp->elts[pc].opcode)
13078 {
13079 default:
13080 *oplenp = *argsp = 0;
13081 break;
13082
13083 #define OP_DEFN(op, len, args, binop) \
13084 case op: *oplenp = len; *argsp = args; break;
13085 ADA_OPERATORS;
13086 #undef OP_DEFN
13087
13088 case OP_AGGREGATE:
13089 *oplenp = 3;
13090 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13091 break;
13092
13093 case OP_CHOICES:
13094 *oplenp = 3;
13095 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13096 break;
13097
13098 case OP_STRING:
13099 case OP_NAME:
13100 {
13101 int len = longest_to_int (exp->elts[pc + 1].longconst);
13102
13103 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13104 *argsp = 0;
13105 break;
13106 }
13107 }
13108 }
13109
13110 static int
13111 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13112 {
13113 enum exp_opcode op = exp->elts[elt].opcode;
13114 int oplen, nargs;
13115 int pc = elt;
13116 int i;
13117
13118 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13119
13120 switch (op)
13121 {
13122 /* Ada attributes ('Foo). */
13123 case OP_ATR_FIRST:
13124 case OP_ATR_LAST:
13125 case OP_ATR_LENGTH:
13126 case OP_ATR_IMAGE:
13127 case OP_ATR_MAX:
13128 case OP_ATR_MIN:
13129 case OP_ATR_MODULUS:
13130 case OP_ATR_POS:
13131 case OP_ATR_SIZE:
13132 case OP_ATR_TAG:
13133 case OP_ATR_VAL:
13134 break;
13135
13136 case UNOP_IN_RANGE:
13137 case UNOP_QUAL:
13138 /* XXX: gdb_sprint_host_address, type_sprint */
13139 fprintf_filtered (stream, _("Type @"));
13140 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13141 fprintf_filtered (stream, " (");
13142 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13143 fprintf_filtered (stream, ")");
13144 break;
13145 case BINOP_IN_BOUNDS:
13146 fprintf_filtered (stream, " (%d)",
13147 longest_to_int (exp->elts[pc + 2].longconst));
13148 break;
13149 case TERNOP_IN_RANGE:
13150 break;
13151
13152 case OP_AGGREGATE:
13153 case OP_OTHERS:
13154 case OP_DISCRETE_RANGE:
13155 case OP_POSITIONAL:
13156 case OP_CHOICES:
13157 break;
13158
13159 case OP_NAME:
13160 case OP_STRING:
13161 {
13162 char *name = &exp->elts[elt + 2].string;
13163 int len = longest_to_int (exp->elts[elt + 1].longconst);
13164
13165 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13166 break;
13167 }
13168
13169 default:
13170 return dump_subexp_body_standard (exp, stream, elt);
13171 }
13172
13173 elt += oplen;
13174 for (i = 0; i < nargs; i += 1)
13175 elt = dump_subexp (exp, stream, elt);
13176
13177 return elt;
13178 }
13179
13180 /* The Ada extension of print_subexp (q.v.). */
13181
13182 static void
13183 ada_print_subexp (struct expression *exp, int *pos,
13184 struct ui_file *stream, enum precedence prec)
13185 {
13186 int oplen, nargs, i;
13187 int pc = *pos;
13188 enum exp_opcode op = exp->elts[pc].opcode;
13189
13190 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13191
13192 *pos += oplen;
13193 switch (op)
13194 {
13195 default:
13196 *pos -= oplen;
13197 print_subexp_standard (exp, pos, stream, prec);
13198 return;
13199
13200 case OP_VAR_VALUE:
13201 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13202 return;
13203
13204 case BINOP_IN_BOUNDS:
13205 /* XXX: sprint_subexp */
13206 print_subexp (exp, pos, stream, PREC_SUFFIX);
13207 fputs_filtered (" in ", stream);
13208 print_subexp (exp, pos, stream, PREC_SUFFIX);
13209 fputs_filtered ("'range", stream);
13210 if (exp->elts[pc + 1].longconst > 1)
13211 fprintf_filtered (stream, "(%ld)",
13212 (long) exp->elts[pc + 1].longconst);
13213 return;
13214
13215 case TERNOP_IN_RANGE:
13216 if (prec >= PREC_EQUAL)
13217 fputs_filtered ("(", stream);
13218 /* XXX: sprint_subexp */
13219 print_subexp (exp, pos, stream, PREC_SUFFIX);
13220 fputs_filtered (" in ", stream);
13221 print_subexp (exp, pos, stream, PREC_EQUAL);
13222 fputs_filtered (" .. ", stream);
13223 print_subexp (exp, pos, stream, PREC_EQUAL);
13224 if (prec >= PREC_EQUAL)
13225 fputs_filtered (")", stream);
13226 return;
13227
13228 case OP_ATR_FIRST:
13229 case OP_ATR_LAST:
13230 case OP_ATR_LENGTH:
13231 case OP_ATR_IMAGE:
13232 case OP_ATR_MAX:
13233 case OP_ATR_MIN:
13234 case OP_ATR_MODULUS:
13235 case OP_ATR_POS:
13236 case OP_ATR_SIZE:
13237 case OP_ATR_TAG:
13238 case OP_ATR_VAL:
13239 if (exp->elts[*pos].opcode == OP_TYPE)
13240 {
13241 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13242 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13243 &type_print_raw_options);
13244 *pos += 3;
13245 }
13246 else
13247 print_subexp (exp, pos, stream, PREC_SUFFIX);
13248 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13249 if (nargs > 1)
13250 {
13251 int tem;
13252
13253 for (tem = 1; tem < nargs; tem += 1)
13254 {
13255 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13256 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13257 }
13258 fputs_filtered (")", stream);
13259 }
13260 return;
13261
13262 case UNOP_QUAL:
13263 type_print (exp->elts[pc + 1].type, "", stream, 0);
13264 fputs_filtered ("'(", stream);
13265 print_subexp (exp, pos, stream, PREC_PREFIX);
13266 fputs_filtered (")", stream);
13267 return;
13268
13269 case UNOP_IN_RANGE:
13270 /* XXX: sprint_subexp */
13271 print_subexp (exp, pos, stream, PREC_SUFFIX);
13272 fputs_filtered (" in ", stream);
13273 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13274 &type_print_raw_options);
13275 return;
13276
13277 case OP_DISCRETE_RANGE:
13278 print_subexp (exp, pos, stream, PREC_SUFFIX);
13279 fputs_filtered ("..", stream);
13280 print_subexp (exp, pos, stream, PREC_SUFFIX);
13281 return;
13282
13283 case OP_OTHERS:
13284 fputs_filtered ("others => ", stream);
13285 print_subexp (exp, pos, stream, PREC_SUFFIX);
13286 return;
13287
13288 case OP_CHOICES:
13289 for (i = 0; i < nargs-1; i += 1)
13290 {
13291 if (i > 0)
13292 fputs_filtered ("|", stream);
13293 print_subexp (exp, pos, stream, PREC_SUFFIX);
13294 }
13295 fputs_filtered (" => ", stream);
13296 print_subexp (exp, pos, stream, PREC_SUFFIX);
13297 return;
13298
13299 case OP_POSITIONAL:
13300 print_subexp (exp, pos, stream, PREC_SUFFIX);
13301 return;
13302
13303 case OP_AGGREGATE:
13304 fputs_filtered ("(", stream);
13305 for (i = 0; i < nargs; i += 1)
13306 {
13307 if (i > 0)
13308 fputs_filtered (", ", stream);
13309 print_subexp (exp, pos, stream, PREC_SUFFIX);
13310 }
13311 fputs_filtered (")", stream);
13312 return;
13313 }
13314 }
13315
13316 /* Table mapping opcodes into strings for printing operators
13317 and precedences of the operators. */
13318
13319 static const struct op_print ada_op_print_tab[] = {
13320 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13321 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13322 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13323 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13324 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13325 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13326 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13327 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13328 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13329 {">=", BINOP_GEQ, PREC_ORDER, 0},
13330 {">", BINOP_GTR, PREC_ORDER, 0},
13331 {"<", BINOP_LESS, PREC_ORDER, 0},
13332 {">>", BINOP_RSH, PREC_SHIFT, 0},
13333 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13334 {"+", BINOP_ADD, PREC_ADD, 0},
13335 {"-", BINOP_SUB, PREC_ADD, 0},
13336 {"&", BINOP_CONCAT, PREC_ADD, 0},
13337 {"*", BINOP_MUL, PREC_MUL, 0},
13338 {"/", BINOP_DIV, PREC_MUL, 0},
13339 {"rem", BINOP_REM, PREC_MUL, 0},
13340 {"mod", BINOP_MOD, PREC_MUL, 0},
13341 {"**", BINOP_EXP, PREC_REPEAT, 0},
13342 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13343 {"-", UNOP_NEG, PREC_PREFIX, 0},
13344 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13345 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13346 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13347 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13348 {".all", UNOP_IND, PREC_SUFFIX, 1},
13349 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13350 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13351 {NULL, 0, 0, 0}
13352 };
13353 \f
13354 enum ada_primitive_types {
13355 ada_primitive_type_int,
13356 ada_primitive_type_long,
13357 ada_primitive_type_short,
13358 ada_primitive_type_char,
13359 ada_primitive_type_float,
13360 ada_primitive_type_double,
13361 ada_primitive_type_void,
13362 ada_primitive_type_long_long,
13363 ada_primitive_type_long_double,
13364 ada_primitive_type_natural,
13365 ada_primitive_type_positive,
13366 ada_primitive_type_system_address,
13367 nr_ada_primitive_types
13368 };
13369
13370 static void
13371 ada_language_arch_info (struct gdbarch *gdbarch,
13372 struct language_arch_info *lai)
13373 {
13374 const struct builtin_type *builtin = builtin_type (gdbarch);
13375
13376 lai->primitive_type_vector
13377 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13378 struct type *);
13379
13380 lai->primitive_type_vector [ada_primitive_type_int]
13381 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13382 0, "integer");
13383 lai->primitive_type_vector [ada_primitive_type_long]
13384 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13385 0, "long_integer");
13386 lai->primitive_type_vector [ada_primitive_type_short]
13387 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13388 0, "short_integer");
13389 lai->string_char_type
13390 = lai->primitive_type_vector [ada_primitive_type_char]
13391 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13392 lai->primitive_type_vector [ada_primitive_type_float]
13393 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13394 "float", NULL);
13395 lai->primitive_type_vector [ada_primitive_type_double]
13396 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13397 "long_float", NULL);
13398 lai->primitive_type_vector [ada_primitive_type_long_long]
13399 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13400 0, "long_long_integer");
13401 lai->primitive_type_vector [ada_primitive_type_long_double]
13402 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13403 "long_long_float", NULL);
13404 lai->primitive_type_vector [ada_primitive_type_natural]
13405 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13406 0, "natural");
13407 lai->primitive_type_vector [ada_primitive_type_positive]
13408 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13409 0, "positive");
13410 lai->primitive_type_vector [ada_primitive_type_void]
13411 = builtin->builtin_void;
13412
13413 lai->primitive_type_vector [ada_primitive_type_system_address]
13414 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13415 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13416 = "system__address";
13417
13418 lai->bool_type_symbol = NULL;
13419 lai->bool_type_default = builtin->builtin_bool;
13420 }
13421 \f
13422 /* Language vector */
13423
13424 /* Not really used, but needed in the ada_language_defn. */
13425
13426 static void
13427 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13428 {
13429 ada_emit_char (c, type, stream, quoter, 1);
13430 }
13431
13432 static int
13433 parse (struct parser_state *ps)
13434 {
13435 warnings_issued = 0;
13436 return ada_parse (ps);
13437 }
13438
13439 static const struct exp_descriptor ada_exp_descriptor = {
13440 ada_print_subexp,
13441 ada_operator_length,
13442 ada_operator_check,
13443 ada_op_name,
13444 ada_dump_subexp_body,
13445 ada_evaluate_subexp
13446 };
13447
13448 /* Implement the "la_get_symbol_name_cmp" language_defn method
13449 for Ada. */
13450
13451 static symbol_name_cmp_ftype
13452 ada_get_symbol_name_cmp (const char *lookup_name)
13453 {
13454 if (should_use_wild_match (lookup_name))
13455 return wild_match;
13456 else
13457 return compare_names;
13458 }
13459
13460 /* Implement the "la_read_var_value" language_defn method for Ada. */
13461
13462 static struct value *
13463 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13464 {
13465 const struct block *frame_block = NULL;
13466 struct symbol *renaming_sym = NULL;
13467
13468 /* The only case where default_read_var_value is not sufficient
13469 is when VAR is a renaming... */
13470 if (frame)
13471 frame_block = get_frame_block (frame, NULL);
13472 if (frame_block)
13473 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13474 if (renaming_sym != NULL)
13475 return ada_read_renaming_var_value (renaming_sym, frame_block);
13476
13477 /* This is a typical case where we expect the default_read_var_value
13478 function to work. */
13479 return default_read_var_value (var, frame);
13480 }
13481
13482 const struct language_defn ada_language_defn = {
13483 "ada", /* Language name */
13484 "Ada",
13485 language_ada,
13486 range_check_off,
13487 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13488 that's not quite what this means. */
13489 array_row_major,
13490 macro_expansion_no,
13491 &ada_exp_descriptor,
13492 parse,
13493 ada_error,
13494 resolve,
13495 ada_printchar, /* Print a character constant */
13496 ada_printstr, /* Function to print string constant */
13497 emit_char, /* Function to print single char (not used) */
13498 ada_print_type, /* Print a type using appropriate syntax */
13499 ada_print_typedef, /* Print a typedef using appropriate syntax */
13500 ada_val_print, /* Print a value using appropriate syntax */
13501 ada_value_print, /* Print a top-level value */
13502 ada_read_var_value, /* la_read_var_value */
13503 NULL, /* Language specific skip_trampoline */
13504 NULL, /* name_of_this */
13505 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13506 basic_lookup_transparent_type, /* lookup_transparent_type */
13507 ada_la_decode, /* Language specific symbol demangler */
13508 NULL, /* Language specific
13509 class_name_from_physname */
13510 ada_op_print_tab, /* expression operators for printing */
13511 0, /* c-style arrays */
13512 1, /* String lower bound */
13513 ada_get_gdb_completer_word_break_characters,
13514 ada_make_symbol_completion_list,
13515 ada_language_arch_info,
13516 ada_print_array_index,
13517 default_pass_by_reference,
13518 c_get_string,
13519 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13520 ada_iterate_over_symbols,
13521 &ada_varobj_ops,
13522 LANG_MAGIC
13523 };
13524
13525 /* Provide a prototype to silence -Wmissing-prototypes. */
13526 extern initialize_file_ftype _initialize_ada_language;
13527
13528 /* Command-list for the "set/show ada" prefix command. */
13529 static struct cmd_list_element *set_ada_list;
13530 static struct cmd_list_element *show_ada_list;
13531
13532 /* Implement the "set ada" prefix command. */
13533
13534 static void
13535 set_ada_command (char *arg, int from_tty)
13536 {
13537 printf_unfiltered (_(\
13538 "\"set ada\" must be followed by the name of a setting.\n"));
13539 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13540 }
13541
13542 /* Implement the "show ada" prefix command. */
13543
13544 static void
13545 show_ada_command (char *args, int from_tty)
13546 {
13547 cmd_show_list (show_ada_list, from_tty, "");
13548 }
13549
13550 static void
13551 initialize_ada_catchpoint_ops (void)
13552 {
13553 struct breakpoint_ops *ops;
13554
13555 initialize_breakpoint_ops ();
13556
13557 ops = &catch_exception_breakpoint_ops;
13558 *ops = bkpt_breakpoint_ops;
13559 ops->dtor = dtor_catch_exception;
13560 ops->allocate_location = allocate_location_catch_exception;
13561 ops->re_set = re_set_catch_exception;
13562 ops->check_status = check_status_catch_exception;
13563 ops->print_it = print_it_catch_exception;
13564 ops->print_one = print_one_catch_exception;
13565 ops->print_mention = print_mention_catch_exception;
13566 ops->print_recreate = print_recreate_catch_exception;
13567
13568 ops = &catch_exception_unhandled_breakpoint_ops;
13569 *ops = bkpt_breakpoint_ops;
13570 ops->dtor = dtor_catch_exception_unhandled;
13571 ops->allocate_location = allocate_location_catch_exception_unhandled;
13572 ops->re_set = re_set_catch_exception_unhandled;
13573 ops->check_status = check_status_catch_exception_unhandled;
13574 ops->print_it = print_it_catch_exception_unhandled;
13575 ops->print_one = print_one_catch_exception_unhandled;
13576 ops->print_mention = print_mention_catch_exception_unhandled;
13577 ops->print_recreate = print_recreate_catch_exception_unhandled;
13578
13579 ops = &catch_assert_breakpoint_ops;
13580 *ops = bkpt_breakpoint_ops;
13581 ops->dtor = dtor_catch_assert;
13582 ops->allocate_location = allocate_location_catch_assert;
13583 ops->re_set = re_set_catch_assert;
13584 ops->check_status = check_status_catch_assert;
13585 ops->print_it = print_it_catch_assert;
13586 ops->print_one = print_one_catch_assert;
13587 ops->print_mention = print_mention_catch_assert;
13588 ops->print_recreate = print_recreate_catch_assert;
13589 }
13590
13591 /* This module's 'new_objfile' observer. */
13592
13593 static void
13594 ada_new_objfile_observer (struct objfile *objfile)
13595 {
13596 ada_clear_symbol_cache ();
13597 }
13598
13599 /* This module's 'free_objfile' observer. */
13600
13601 static void
13602 ada_free_objfile_observer (struct objfile *objfile)
13603 {
13604 ada_clear_symbol_cache ();
13605 }
13606
13607 void
13608 _initialize_ada_language (void)
13609 {
13610 add_language (&ada_language_defn);
13611
13612 initialize_ada_catchpoint_ops ();
13613
13614 add_prefix_cmd ("ada", no_class, set_ada_command,
13615 _("Prefix command for changing Ada-specfic settings"),
13616 &set_ada_list, "set ada ", 0, &setlist);
13617
13618 add_prefix_cmd ("ada", no_class, show_ada_command,
13619 _("Generic command for showing Ada-specific settings."),
13620 &show_ada_list, "show ada ", 0, &showlist);
13621
13622 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13623 &trust_pad_over_xvs, _("\
13624 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13625 Show whether an optimization trusting PAD types over XVS types is activated"),
13626 _("\
13627 This is related to the encoding used by the GNAT compiler. The debugger\n\
13628 should normally trust the contents of PAD types, but certain older versions\n\
13629 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13630 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13631 work around this bug. It is always safe to turn this option \"off\", but\n\
13632 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13633 this option to \"off\" unless necessary."),
13634 NULL, NULL, &set_ada_list, &show_ada_list);
13635
13636 add_catch_command ("exception", _("\
13637 Catch Ada exceptions, when raised.\n\
13638 With an argument, catch only exceptions with the given name."),
13639 catch_ada_exception_command,
13640 NULL,
13641 CATCH_PERMANENT,
13642 CATCH_TEMPORARY);
13643 add_catch_command ("assert", _("\
13644 Catch failed Ada assertions, when raised.\n\
13645 With an argument, catch only exceptions with the given name."),
13646 catch_assert_command,
13647 NULL,
13648 CATCH_PERMANENT,
13649 CATCH_TEMPORARY);
13650
13651 varsize_limit = 65536;
13652
13653 add_info ("exceptions", info_exceptions_command,
13654 _("\
13655 List all Ada exception names.\n\
13656 If a regular expression is passed as an argument, only those matching\n\
13657 the regular expression are listed."));
13658
13659 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13660 _("Set Ada maintenance-related variables."),
13661 &maint_set_ada_cmdlist, "maintenance set ada ",
13662 0/*allow-unknown*/, &maintenance_set_cmdlist);
13663
13664 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13665 _("Show Ada maintenance-related variables"),
13666 &maint_show_ada_cmdlist, "maintenance show ada ",
13667 0/*allow-unknown*/, &maintenance_show_cmdlist);
13668
13669 add_setshow_boolean_cmd
13670 ("ignore-descriptive-types", class_maintenance,
13671 &ada_ignore_descriptive_types_p,
13672 _("Set whether descriptive types generated by GNAT should be ignored."),
13673 _("Show whether descriptive types generated by GNAT should be ignored."),
13674 _("\
13675 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13676 DWARF attribute."),
13677 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13678
13679 obstack_init (&symbol_list_obstack);
13680
13681 decoded_names_store = htab_create_alloc
13682 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13683 NULL, xcalloc, xfree);
13684
13685 /* The ada-lang observers. */
13686 observer_attach_new_objfile (ada_new_objfile_observer);
13687 observer_attach_free_objfile (ada_free_objfile_observer);
13688 observer_attach_inferior_exit (ada_inferior_exit);
13689
13690 /* Setup various context-specific data. */
13691 ada_inferior_data
13692 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13693 ada_pspace_data_handle
13694 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13695 }
This page took 0.338368 seconds and 4 git commands to generate.