Add NEWS entry.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60 #include "ada-exp.h"
61
62 /* Define whether or not the C operator '/' truncates towards zero for
63 differently signed operands (truncation direction is undefined in C).
64 Copied from valarith.c. */
65
66 #ifndef TRUNCATION_TOWARDS_ZERO
67 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
68 #endif
69
70 static struct type *desc_base_type (struct type *);
71
72 static struct type *desc_bounds_type (struct type *);
73
74 static struct value *desc_bounds (struct value *);
75
76 static int fat_pntr_bounds_bitpos (struct type *);
77
78 static int fat_pntr_bounds_bitsize (struct type *);
79
80 static struct type *desc_data_target_type (struct type *);
81
82 static struct value *desc_data (struct value *);
83
84 static int fat_pntr_data_bitpos (struct type *);
85
86 static int fat_pntr_data_bitsize (struct type *);
87
88 static struct value *desc_one_bound (struct value *, int, int);
89
90 static int desc_bound_bitpos (struct type *, int, int);
91
92 static int desc_bound_bitsize (struct type *, int, int);
93
94 static struct type *desc_index_type (struct type *, int);
95
96 static int desc_arity (struct type *);
97
98 static int ada_type_match (struct type *, struct type *, int);
99
100 static int ada_args_match (struct symbol *, struct value **, int);
101
102 static struct value *make_array_descriptor (struct type *, struct value *);
103
104 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
105 const struct block *,
106 const lookup_name_info &lookup_name,
107 domain_enum, struct objfile *);
108
109 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, int, int *);
113
114 static int is_nonfunction (const std::vector<struct block_symbol> &);
115
116 static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 struct symbol *,
118 const struct block *);
119
120 static int possible_user_operator_p (enum exp_opcode, struct value **);
121
122 static const char *ada_decoded_op_name (enum exp_opcode);
123
124 static int numeric_type_p (struct type *);
125
126 static int integer_type_p (struct type *);
127
128 static int scalar_type_p (struct type *);
129
130 static int discrete_type_p (struct type *);
131
132 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
133 int, int);
134
135 static struct type *ada_find_parallel_type_with_name (struct type *,
136 const char *);
137
138 static int is_dynamic_field (struct type *, int);
139
140 static struct type *to_fixed_variant_branch_type (struct type *,
141 const gdb_byte *,
142 CORE_ADDR, struct value *);
143
144 static struct type *to_fixed_array_type (struct type *, struct value *, int);
145
146 static struct type *to_fixed_range_type (struct type *, struct value *);
147
148 static struct type *to_static_fixed_type (struct type *);
149 static struct type *static_unwrap_type (struct type *type);
150
151 static struct value *unwrap_value (struct value *);
152
153 static struct type *constrained_packed_array_type (struct type *, long *);
154
155 static struct type *decode_constrained_packed_array_type (struct type *);
156
157 static long decode_packed_array_bitsize (struct type *);
158
159 static struct value *decode_constrained_packed_array (struct value *);
160
161 static int ada_is_unconstrained_packed_array_type (struct type *);
162
163 static struct value *value_subscript_packed (struct value *, int,
164 struct value **);
165
166 static struct value *coerce_unspec_val_to_type (struct value *,
167 struct type *);
168
169 static int lesseq_defined_than (struct symbol *, struct symbol *);
170
171 static int equiv_types (struct type *, struct type *);
172
173 static int is_name_suffix (const char *);
174
175 static int advance_wild_match (const char **, const char *, char);
176
177 static bool wild_match (const char *name, const char *patn);
178
179 static struct value *ada_coerce_ref (struct value *);
180
181 static LONGEST pos_atr (struct value *);
182
183 static struct value *val_atr (struct type *, LONGEST);
184
185 static struct symbol *standard_lookup (const char *, const struct block *,
186 domain_enum);
187
188 static struct value *ada_search_struct_field (const char *, struct value *, int,
189 struct type *);
190
191 static int find_struct_field (const char *, struct type *, int,
192 struct type **, int *, int *, int *, int *);
193
194 static int ada_resolve_function (std::vector<struct block_symbol> &,
195 struct value **, int, const char *,
196 struct type *, bool);
197
198 static int ada_is_direct_array_type (struct type *);
199
200 static struct value *ada_index_struct_field (int, struct value *, int,
201 struct type *);
202
203 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
204
205
206 static struct type *ada_find_any_type (const char *name);
207
208 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
209 (const lookup_name_info &lookup_name);
210
211 \f
212
213 /* The result of a symbol lookup to be stored in our symbol cache. */
214
215 struct cache_entry
216 {
217 /* The name used to perform the lookup. */
218 const char *name;
219 /* The namespace used during the lookup. */
220 domain_enum domain;
221 /* The symbol returned by the lookup, or NULL if no matching symbol
222 was found. */
223 struct symbol *sym;
224 /* The block where the symbol was found, or NULL if no matching
225 symbol was found. */
226 const struct block *block;
227 /* A pointer to the next entry with the same hash. */
228 struct cache_entry *next;
229 };
230
231 /* The Ada symbol cache, used to store the result of Ada-mode symbol
232 lookups in the course of executing the user's commands.
233
234 The cache is implemented using a simple, fixed-sized hash.
235 The size is fixed on the grounds that there are not likely to be
236 all that many symbols looked up during any given session, regardless
237 of the size of the symbol table. If we decide to go to a resizable
238 table, let's just use the stuff from libiberty instead. */
239
240 #define HASH_SIZE 1009
241
242 struct ada_symbol_cache
243 {
244 /* An obstack used to store the entries in our cache. */
245 struct auto_obstack cache_space;
246
247 /* The root of the hash table used to implement our symbol cache. */
248 struct cache_entry *root[HASH_SIZE] {};
249 };
250
251 /* Maximum-sized dynamic type. */
252 static unsigned int varsize_limit;
253
254 static const char ada_completer_word_break_characters[] =
255 #ifdef VMS
256 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
257 #else
258 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
259 #endif
260
261 /* The name of the symbol to use to get the name of the main subprogram. */
262 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
263 = "__gnat_ada_main_program_name";
264
265 /* Limit on the number of warnings to raise per expression evaluation. */
266 static int warning_limit = 2;
267
268 /* Number of warning messages issued; reset to 0 by cleanups after
269 expression evaluation. */
270 static int warnings_issued = 0;
271
272 static const char * const known_runtime_file_name_patterns[] = {
273 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
274 };
275
276 static const char * const known_auxiliary_function_name_patterns[] = {
277 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
278 };
279
280 /* Maintenance-related settings for this module. */
281
282 static struct cmd_list_element *maint_set_ada_cmdlist;
283 static struct cmd_list_element *maint_show_ada_cmdlist;
284
285 /* The "maintenance ada set/show ignore-descriptive-type" value. */
286
287 static bool ada_ignore_descriptive_types_p = false;
288
289 /* Inferior-specific data. */
290
291 /* Per-inferior data for this module. */
292
293 struct ada_inferior_data
294 {
295 /* The ada__tags__type_specific_data type, which is used when decoding
296 tagged types. With older versions of GNAT, this type was directly
297 accessible through a component ("tsd") in the object tag. But this
298 is no longer the case, so we cache it for each inferior. */
299 struct type *tsd_type = nullptr;
300
301 /* The exception_support_info data. This data is used to determine
302 how to implement support for Ada exception catchpoints in a given
303 inferior. */
304 const struct exception_support_info *exception_info = nullptr;
305 };
306
307 /* Our key to this module's inferior data. */
308 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
309
310 /* Return our inferior data for the given inferior (INF).
311
312 This function always returns a valid pointer to an allocated
313 ada_inferior_data structure. If INF's inferior data has not
314 been previously set, this functions creates a new one with all
315 fields set to zero, sets INF's inferior to it, and then returns
316 a pointer to that newly allocated ada_inferior_data. */
317
318 static struct ada_inferior_data *
319 get_ada_inferior_data (struct inferior *inf)
320 {
321 struct ada_inferior_data *data;
322
323 data = ada_inferior_data.get (inf);
324 if (data == NULL)
325 data = ada_inferior_data.emplace (inf);
326
327 return data;
328 }
329
330 /* Perform all necessary cleanups regarding our module's inferior data
331 that is required after the inferior INF just exited. */
332
333 static void
334 ada_inferior_exit (struct inferior *inf)
335 {
336 ada_inferior_data.clear (inf);
337 }
338
339
340 /* program-space-specific data. */
341
342 /* This module's per-program-space data. */
343 struct ada_pspace_data
344 {
345 /* The Ada symbol cache. */
346 std::unique_ptr<ada_symbol_cache> sym_cache;
347 };
348
349 /* Key to our per-program-space data. */
350 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
351
352 /* Return this module's data for the given program space (PSPACE).
353 If not is found, add a zero'ed one now.
354
355 This function always returns a valid object. */
356
357 static struct ada_pspace_data *
358 get_ada_pspace_data (struct program_space *pspace)
359 {
360 struct ada_pspace_data *data;
361
362 data = ada_pspace_data_handle.get (pspace);
363 if (data == NULL)
364 data = ada_pspace_data_handle.emplace (pspace);
365
366 return data;
367 }
368
369 /* Utilities */
370
371 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
372 all typedef layers have been peeled. Otherwise, return TYPE.
373
374 Normally, we really expect a typedef type to only have 1 typedef layer.
375 In other words, we really expect the target type of a typedef type to be
376 a non-typedef type. This is particularly true for Ada units, because
377 the language does not have a typedef vs not-typedef distinction.
378 In that respect, the Ada compiler has been trying to eliminate as many
379 typedef definitions in the debugging information, since they generally
380 do not bring any extra information (we still use typedef under certain
381 circumstances related mostly to the GNAT encoding).
382
383 Unfortunately, we have seen situations where the debugging information
384 generated by the compiler leads to such multiple typedef layers. For
385 instance, consider the following example with stabs:
386
387 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
388 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
389
390 This is an error in the debugging information which causes type
391 pck__float_array___XUP to be defined twice, and the second time,
392 it is defined as a typedef of a typedef.
393
394 This is on the fringe of legality as far as debugging information is
395 concerned, and certainly unexpected. But it is easy to handle these
396 situations correctly, so we can afford to be lenient in this case. */
397
398 static struct type *
399 ada_typedef_target_type (struct type *type)
400 {
401 while (type->code () == TYPE_CODE_TYPEDEF)
402 type = TYPE_TARGET_TYPE (type);
403 return type;
404 }
405
406 /* Given DECODED_NAME a string holding a symbol name in its
407 decoded form (ie using the Ada dotted notation), returns
408 its unqualified name. */
409
410 static const char *
411 ada_unqualified_name (const char *decoded_name)
412 {
413 const char *result;
414
415 /* If the decoded name starts with '<', it means that the encoded
416 name does not follow standard naming conventions, and thus that
417 it is not your typical Ada symbol name. Trying to unqualify it
418 is therefore pointless and possibly erroneous. */
419 if (decoded_name[0] == '<')
420 return decoded_name;
421
422 result = strrchr (decoded_name, '.');
423 if (result != NULL)
424 result++; /* Skip the dot... */
425 else
426 result = decoded_name;
427
428 return result;
429 }
430
431 /* Return a string starting with '<', followed by STR, and '>'. */
432
433 static std::string
434 add_angle_brackets (const char *str)
435 {
436 return string_printf ("<%s>", str);
437 }
438
439 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
440 suffix of FIELD_NAME beginning "___". */
441
442 static int
443 field_name_match (const char *field_name, const char *target)
444 {
445 int len = strlen (target);
446
447 return
448 (strncmp (field_name, target, len) == 0
449 && (field_name[len] == '\0'
450 || (startswith (field_name + len, "___")
451 && strcmp (field_name + strlen (field_name) - 6,
452 "___XVN") != 0)));
453 }
454
455
456 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
457 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
458 and return its index. This function also handles fields whose name
459 have ___ suffixes because the compiler sometimes alters their name
460 by adding such a suffix to represent fields with certain constraints.
461 If the field could not be found, return a negative number if
462 MAYBE_MISSING is set. Otherwise raise an error. */
463
464 int
465 ada_get_field_index (const struct type *type, const char *field_name,
466 int maybe_missing)
467 {
468 int fieldno;
469 struct type *struct_type = check_typedef ((struct type *) type);
470
471 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
472 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
473 return fieldno;
474
475 if (!maybe_missing)
476 error (_("Unable to find field %s in struct %s. Aborting"),
477 field_name, struct_type->name ());
478
479 return -1;
480 }
481
482 /* The length of the prefix of NAME prior to any "___" suffix. */
483
484 int
485 ada_name_prefix_len (const char *name)
486 {
487 if (name == NULL)
488 return 0;
489 else
490 {
491 const char *p = strstr (name, "___");
492
493 if (p == NULL)
494 return strlen (name);
495 else
496 return p - name;
497 }
498 }
499
500 /* Return non-zero if SUFFIX is a suffix of STR.
501 Return zero if STR is null. */
502
503 static int
504 is_suffix (const char *str, const char *suffix)
505 {
506 int len1, len2;
507
508 if (str == NULL)
509 return 0;
510 len1 = strlen (str);
511 len2 = strlen (suffix);
512 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
513 }
514
515 /* The contents of value VAL, treated as a value of type TYPE. The
516 result is an lval in memory if VAL is. */
517
518 static struct value *
519 coerce_unspec_val_to_type (struct value *val, struct type *type)
520 {
521 type = ada_check_typedef (type);
522 if (value_type (val) == type)
523 return val;
524 else
525 {
526 struct value *result;
527
528 /* Make sure that the object size is not unreasonable before
529 trying to allocate some memory for it. */
530 ada_ensure_varsize_limit (type);
531
532 if (value_optimized_out (val))
533 result = allocate_optimized_out_value (type);
534 else if (value_lazy (val)
535 /* Be careful not to make a lazy not_lval value. */
536 || (VALUE_LVAL (val) != not_lval
537 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
538 result = allocate_value_lazy (type);
539 else
540 {
541 result = allocate_value (type);
542 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
543 }
544 set_value_component_location (result, val);
545 set_value_bitsize (result, value_bitsize (val));
546 set_value_bitpos (result, value_bitpos (val));
547 if (VALUE_LVAL (result) == lval_memory)
548 set_value_address (result, value_address (val));
549 return result;
550 }
551 }
552
553 static const gdb_byte *
554 cond_offset_host (const gdb_byte *valaddr, long offset)
555 {
556 if (valaddr == NULL)
557 return NULL;
558 else
559 return valaddr + offset;
560 }
561
562 static CORE_ADDR
563 cond_offset_target (CORE_ADDR address, long offset)
564 {
565 if (address == 0)
566 return 0;
567 else
568 return address + offset;
569 }
570
571 /* Issue a warning (as for the definition of warning in utils.c, but
572 with exactly one argument rather than ...), unless the limit on the
573 number of warnings has passed during the evaluation of the current
574 expression. */
575
576 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
577 provided by "complaint". */
578 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
579
580 static void
581 lim_warning (const char *format, ...)
582 {
583 va_list args;
584
585 va_start (args, format);
586 warnings_issued += 1;
587 if (warnings_issued <= warning_limit)
588 vwarning (format, args);
589
590 va_end (args);
591 }
592
593 /* Issue an error if the size of an object of type T is unreasonable,
594 i.e. if it would be a bad idea to allocate a value of this type in
595 GDB. */
596
597 void
598 ada_ensure_varsize_limit (const struct type *type)
599 {
600 if (TYPE_LENGTH (type) > varsize_limit)
601 error (_("object size is larger than varsize-limit"));
602 }
603
604 /* Maximum value of a SIZE-byte signed integer type. */
605 static LONGEST
606 max_of_size (int size)
607 {
608 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
609
610 return top_bit | (top_bit - 1);
611 }
612
613 /* Minimum value of a SIZE-byte signed integer type. */
614 static LONGEST
615 min_of_size (int size)
616 {
617 return -max_of_size (size) - 1;
618 }
619
620 /* Maximum value of a SIZE-byte unsigned integer type. */
621 static ULONGEST
622 umax_of_size (int size)
623 {
624 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
625
626 return top_bit | (top_bit - 1);
627 }
628
629 /* Maximum value of integral type T, as a signed quantity. */
630 static LONGEST
631 max_of_type (struct type *t)
632 {
633 if (t->is_unsigned ())
634 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
635 else
636 return max_of_size (TYPE_LENGTH (t));
637 }
638
639 /* Minimum value of integral type T, as a signed quantity. */
640 static LONGEST
641 min_of_type (struct type *t)
642 {
643 if (t->is_unsigned ())
644 return 0;
645 else
646 return min_of_size (TYPE_LENGTH (t));
647 }
648
649 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
650 LONGEST
651 ada_discrete_type_high_bound (struct type *type)
652 {
653 type = resolve_dynamic_type (type, {}, 0);
654 switch (type->code ())
655 {
656 case TYPE_CODE_RANGE:
657 {
658 const dynamic_prop &high = type->bounds ()->high;
659
660 if (high.kind () == PROP_CONST)
661 return high.const_val ();
662 else
663 {
664 gdb_assert (high.kind () == PROP_UNDEFINED);
665
666 /* This happens when trying to evaluate a type's dynamic bound
667 without a live target. There is nothing relevant for us to
668 return here, so return 0. */
669 return 0;
670 }
671 }
672 case TYPE_CODE_ENUM:
673 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
674 case TYPE_CODE_BOOL:
675 return 1;
676 case TYPE_CODE_CHAR:
677 case TYPE_CODE_INT:
678 return max_of_type (type);
679 default:
680 error (_("Unexpected type in ada_discrete_type_high_bound."));
681 }
682 }
683
684 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
685 LONGEST
686 ada_discrete_type_low_bound (struct type *type)
687 {
688 type = resolve_dynamic_type (type, {}, 0);
689 switch (type->code ())
690 {
691 case TYPE_CODE_RANGE:
692 {
693 const dynamic_prop &low = type->bounds ()->low;
694
695 if (low.kind () == PROP_CONST)
696 return low.const_val ();
697 else
698 {
699 gdb_assert (low.kind () == PROP_UNDEFINED);
700
701 /* This happens when trying to evaluate a type's dynamic bound
702 without a live target. There is nothing relevant for us to
703 return here, so return 0. */
704 return 0;
705 }
706 }
707 case TYPE_CODE_ENUM:
708 return TYPE_FIELD_ENUMVAL (type, 0);
709 case TYPE_CODE_BOOL:
710 return 0;
711 case TYPE_CODE_CHAR:
712 case TYPE_CODE_INT:
713 return min_of_type (type);
714 default:
715 error (_("Unexpected type in ada_discrete_type_low_bound."));
716 }
717 }
718
719 /* The identity on non-range types. For range types, the underlying
720 non-range scalar type. */
721
722 static struct type *
723 get_base_type (struct type *type)
724 {
725 while (type != NULL && type->code () == TYPE_CODE_RANGE)
726 {
727 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
728 return type;
729 type = TYPE_TARGET_TYPE (type);
730 }
731 return type;
732 }
733
734 /* Return a decoded version of the given VALUE. This means returning
735 a value whose type is obtained by applying all the GNAT-specific
736 encodings, making the resulting type a static but standard description
737 of the initial type. */
738
739 struct value *
740 ada_get_decoded_value (struct value *value)
741 {
742 struct type *type = ada_check_typedef (value_type (value));
743
744 if (ada_is_array_descriptor_type (type)
745 || (ada_is_constrained_packed_array_type (type)
746 && type->code () != TYPE_CODE_PTR))
747 {
748 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
749 value = ada_coerce_to_simple_array_ptr (value);
750 else
751 value = ada_coerce_to_simple_array (value);
752 }
753 else
754 value = ada_to_fixed_value (value);
755
756 return value;
757 }
758
759 /* Same as ada_get_decoded_value, but with the given TYPE.
760 Because there is no associated actual value for this type,
761 the resulting type might be a best-effort approximation in
762 the case of dynamic types. */
763
764 struct type *
765 ada_get_decoded_type (struct type *type)
766 {
767 type = to_static_fixed_type (type);
768 if (ada_is_constrained_packed_array_type (type))
769 type = ada_coerce_to_simple_array_type (type);
770 return type;
771 }
772
773 \f
774
775 /* Language Selection */
776
777 /* If the main program is in Ada, return language_ada, otherwise return LANG
778 (the main program is in Ada iif the adainit symbol is found). */
779
780 static enum language
781 ada_update_initial_language (enum language lang)
782 {
783 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
784 return language_ada;
785
786 return lang;
787 }
788
789 /* If the main procedure is written in Ada, then return its name.
790 The result is good until the next call. Return NULL if the main
791 procedure doesn't appear to be in Ada. */
792
793 char *
794 ada_main_name (void)
795 {
796 struct bound_minimal_symbol msym;
797 static gdb::unique_xmalloc_ptr<char> main_program_name;
798
799 /* For Ada, the name of the main procedure is stored in a specific
800 string constant, generated by the binder. Look for that symbol,
801 extract its address, and then read that string. If we didn't find
802 that string, then most probably the main procedure is not written
803 in Ada. */
804 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
805
806 if (msym.minsym != NULL)
807 {
808 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
809 if (main_program_name_addr == 0)
810 error (_("Invalid address for Ada main program name."));
811
812 main_program_name = target_read_string (main_program_name_addr, 1024);
813 return main_program_name.get ();
814 }
815
816 /* The main procedure doesn't seem to be in Ada. */
817 return NULL;
818 }
819 \f
820 /* Symbols */
821
822 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
823 of NULLs. */
824
825 const struct ada_opname_map ada_opname_table[] = {
826 {"Oadd", "\"+\"", BINOP_ADD},
827 {"Osubtract", "\"-\"", BINOP_SUB},
828 {"Omultiply", "\"*\"", BINOP_MUL},
829 {"Odivide", "\"/\"", BINOP_DIV},
830 {"Omod", "\"mod\"", BINOP_MOD},
831 {"Orem", "\"rem\"", BINOP_REM},
832 {"Oexpon", "\"**\"", BINOP_EXP},
833 {"Olt", "\"<\"", BINOP_LESS},
834 {"Ole", "\"<=\"", BINOP_LEQ},
835 {"Ogt", "\">\"", BINOP_GTR},
836 {"Oge", "\">=\"", BINOP_GEQ},
837 {"Oeq", "\"=\"", BINOP_EQUAL},
838 {"One", "\"/=\"", BINOP_NOTEQUAL},
839 {"Oand", "\"and\"", BINOP_BITWISE_AND},
840 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
841 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
842 {"Oconcat", "\"&\"", BINOP_CONCAT},
843 {"Oabs", "\"abs\"", UNOP_ABS},
844 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
845 {"Oadd", "\"+\"", UNOP_PLUS},
846 {"Osubtract", "\"-\"", UNOP_NEG},
847 {NULL, NULL}
848 };
849
850 /* The "encoded" form of DECODED, according to GNAT conventions. If
851 THROW_ERRORS, throw an error if invalid operator name is found.
852 Otherwise, return the empty string in that case. */
853
854 static std::string
855 ada_encode_1 (const char *decoded, bool throw_errors)
856 {
857 if (decoded == NULL)
858 return {};
859
860 std::string encoding_buffer;
861 for (const char *p = decoded; *p != '\0'; p += 1)
862 {
863 if (*p == '.')
864 encoding_buffer.append ("__");
865 else if (*p == '"')
866 {
867 const struct ada_opname_map *mapping;
868
869 for (mapping = ada_opname_table;
870 mapping->encoded != NULL
871 && !startswith (p, mapping->decoded); mapping += 1)
872 ;
873 if (mapping->encoded == NULL)
874 {
875 if (throw_errors)
876 error (_("invalid Ada operator name: %s"), p);
877 else
878 return {};
879 }
880 encoding_buffer.append (mapping->encoded);
881 break;
882 }
883 else
884 encoding_buffer.push_back (*p);
885 }
886
887 return encoding_buffer;
888 }
889
890 /* The "encoded" form of DECODED, according to GNAT conventions. */
891
892 std::string
893 ada_encode (const char *decoded)
894 {
895 return ada_encode_1 (decoded, true);
896 }
897
898 /* Return NAME folded to lower case, or, if surrounded by single
899 quotes, unfolded, but with the quotes stripped away. Result good
900 to next call. */
901
902 static const char *
903 ada_fold_name (gdb::string_view name)
904 {
905 static std::string fold_storage;
906
907 if (!name.empty () && name[0] == '\'')
908 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
909 else
910 {
911 fold_storage = gdb::to_string (name);
912 for (int i = 0; i < name.size (); i += 1)
913 fold_storage[i] = tolower (fold_storage[i]);
914 }
915
916 return fold_storage.c_str ();
917 }
918
919 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
920
921 static int
922 is_lower_alphanum (const char c)
923 {
924 return (isdigit (c) || (isalpha (c) && islower (c)));
925 }
926
927 /* ENCODED is the linkage name of a symbol and LEN contains its length.
928 This function saves in LEN the length of that same symbol name but
929 without either of these suffixes:
930 . .{DIGIT}+
931 . ${DIGIT}+
932 . ___{DIGIT}+
933 . __{DIGIT}+.
934
935 These are suffixes introduced by the compiler for entities such as
936 nested subprogram for instance, in order to avoid name clashes.
937 They do not serve any purpose for the debugger. */
938
939 static void
940 ada_remove_trailing_digits (const char *encoded, int *len)
941 {
942 if (*len > 1 && isdigit (encoded[*len - 1]))
943 {
944 int i = *len - 2;
945
946 while (i > 0 && isdigit (encoded[i]))
947 i--;
948 if (i >= 0 && encoded[i] == '.')
949 *len = i;
950 else if (i >= 0 && encoded[i] == '$')
951 *len = i;
952 else if (i >= 2 && startswith (encoded + i - 2, "___"))
953 *len = i - 2;
954 else if (i >= 1 && startswith (encoded + i - 1, "__"))
955 *len = i - 1;
956 }
957 }
958
959 /* Remove the suffix introduced by the compiler for protected object
960 subprograms. */
961
962 static void
963 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
964 {
965 /* Remove trailing N. */
966
967 /* Protected entry subprograms are broken into two
968 separate subprograms: The first one is unprotected, and has
969 a 'N' suffix; the second is the protected version, and has
970 the 'P' suffix. The second calls the first one after handling
971 the protection. Since the P subprograms are internally generated,
972 we leave these names undecoded, giving the user a clue that this
973 entity is internal. */
974
975 if (*len > 1
976 && encoded[*len - 1] == 'N'
977 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
978 *len = *len - 1;
979 }
980
981 /* If ENCODED follows the GNAT entity encoding conventions, then return
982 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
983 replaced by ENCODED. */
984
985 std::string
986 ada_decode (const char *encoded)
987 {
988 int i, j;
989 int len0;
990 const char *p;
991 int at_start_name;
992 std::string decoded;
993
994 /* With function descriptors on PPC64, the value of a symbol named
995 ".FN", if it exists, is the entry point of the function "FN". */
996 if (encoded[0] == '.')
997 encoded += 1;
998
999 /* The name of the Ada main procedure starts with "_ada_".
1000 This prefix is not part of the decoded name, so skip this part
1001 if we see this prefix. */
1002 if (startswith (encoded, "_ada_"))
1003 encoded += 5;
1004
1005 /* If the name starts with '_', then it is not a properly encoded
1006 name, so do not attempt to decode it. Similarly, if the name
1007 starts with '<', the name should not be decoded. */
1008 if (encoded[0] == '_' || encoded[0] == '<')
1009 goto Suppress;
1010
1011 len0 = strlen (encoded);
1012
1013 ada_remove_trailing_digits (encoded, &len0);
1014 ada_remove_po_subprogram_suffix (encoded, &len0);
1015
1016 /* Remove the ___X.* suffix if present. Do not forget to verify that
1017 the suffix is located before the current "end" of ENCODED. We want
1018 to avoid re-matching parts of ENCODED that have previously been
1019 marked as discarded (by decrementing LEN0). */
1020 p = strstr (encoded, "___");
1021 if (p != NULL && p - encoded < len0 - 3)
1022 {
1023 if (p[3] == 'X')
1024 len0 = p - encoded;
1025 else
1026 goto Suppress;
1027 }
1028
1029 /* Remove any trailing TKB suffix. It tells us that this symbol
1030 is for the body of a task, but that information does not actually
1031 appear in the decoded name. */
1032
1033 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1034 len0 -= 3;
1035
1036 /* Remove any trailing TB suffix. The TB suffix is slightly different
1037 from the TKB suffix because it is used for non-anonymous task
1038 bodies. */
1039
1040 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1041 len0 -= 2;
1042
1043 /* Remove trailing "B" suffixes. */
1044 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1045
1046 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1047 len0 -= 1;
1048
1049 /* Make decoded big enough for possible expansion by operator name. */
1050
1051 decoded.resize (2 * len0 + 1, 'X');
1052
1053 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1054
1055 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1056 {
1057 i = len0 - 2;
1058 while ((i >= 0 && isdigit (encoded[i]))
1059 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1060 i -= 1;
1061 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1062 len0 = i - 1;
1063 else if (encoded[i] == '$')
1064 len0 = i;
1065 }
1066
1067 /* The first few characters that are not alphabetic are not part
1068 of any encoding we use, so we can copy them over verbatim. */
1069
1070 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1071 decoded[j] = encoded[i];
1072
1073 at_start_name = 1;
1074 while (i < len0)
1075 {
1076 /* Is this a symbol function? */
1077 if (at_start_name && encoded[i] == 'O')
1078 {
1079 int k;
1080
1081 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1082 {
1083 int op_len = strlen (ada_opname_table[k].encoded);
1084 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1085 op_len - 1) == 0)
1086 && !isalnum (encoded[i + op_len]))
1087 {
1088 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1089 at_start_name = 0;
1090 i += op_len;
1091 j += strlen (ada_opname_table[k].decoded);
1092 break;
1093 }
1094 }
1095 if (ada_opname_table[k].encoded != NULL)
1096 continue;
1097 }
1098 at_start_name = 0;
1099
1100 /* Replace "TK__" with "__", which will eventually be translated
1101 into "." (just below). */
1102
1103 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1104 i += 2;
1105
1106 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1107 be translated into "." (just below). These are internal names
1108 generated for anonymous blocks inside which our symbol is nested. */
1109
1110 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1111 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1112 && isdigit (encoded [i+4]))
1113 {
1114 int k = i + 5;
1115
1116 while (k < len0 && isdigit (encoded[k]))
1117 k++; /* Skip any extra digit. */
1118
1119 /* Double-check that the "__B_{DIGITS}+" sequence we found
1120 is indeed followed by "__". */
1121 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1122 i = k;
1123 }
1124
1125 /* Remove _E{DIGITS}+[sb] */
1126
1127 /* Just as for protected object subprograms, there are 2 categories
1128 of subprograms created by the compiler for each entry. The first
1129 one implements the actual entry code, and has a suffix following
1130 the convention above; the second one implements the barrier and
1131 uses the same convention as above, except that the 'E' is replaced
1132 by a 'B'.
1133
1134 Just as above, we do not decode the name of barrier functions
1135 to give the user a clue that the code he is debugging has been
1136 internally generated. */
1137
1138 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1139 && isdigit (encoded[i+2]))
1140 {
1141 int k = i + 3;
1142
1143 while (k < len0 && isdigit (encoded[k]))
1144 k++;
1145
1146 if (k < len0
1147 && (encoded[k] == 'b' || encoded[k] == 's'))
1148 {
1149 k++;
1150 /* Just as an extra precaution, make sure that if this
1151 suffix is followed by anything else, it is a '_'.
1152 Otherwise, we matched this sequence by accident. */
1153 if (k == len0
1154 || (k < len0 && encoded[k] == '_'))
1155 i = k;
1156 }
1157 }
1158
1159 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1160 the GNAT front-end in protected object subprograms. */
1161
1162 if (i < len0 + 3
1163 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1164 {
1165 /* Backtrack a bit up until we reach either the begining of
1166 the encoded name, or "__". Make sure that we only find
1167 digits or lowercase characters. */
1168 const char *ptr = encoded + i - 1;
1169
1170 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1171 ptr--;
1172 if (ptr < encoded
1173 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1174 i++;
1175 }
1176
1177 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1178 {
1179 /* This is a X[bn]* sequence not separated from the previous
1180 part of the name with a non-alpha-numeric character (in other
1181 words, immediately following an alpha-numeric character), then
1182 verify that it is placed at the end of the encoded name. If
1183 not, then the encoding is not valid and we should abort the
1184 decoding. Otherwise, just skip it, it is used in body-nested
1185 package names. */
1186 do
1187 i += 1;
1188 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1189 if (i < len0)
1190 goto Suppress;
1191 }
1192 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1193 {
1194 /* Replace '__' by '.'. */
1195 decoded[j] = '.';
1196 at_start_name = 1;
1197 i += 2;
1198 j += 1;
1199 }
1200 else
1201 {
1202 /* It's a character part of the decoded name, so just copy it
1203 over. */
1204 decoded[j] = encoded[i];
1205 i += 1;
1206 j += 1;
1207 }
1208 }
1209 decoded.resize (j);
1210
1211 /* Decoded names should never contain any uppercase character.
1212 Double-check this, and abort the decoding if we find one. */
1213
1214 for (i = 0; i < decoded.length(); ++i)
1215 if (isupper (decoded[i]) || decoded[i] == ' ')
1216 goto Suppress;
1217
1218 return decoded;
1219
1220 Suppress:
1221 if (encoded[0] == '<')
1222 decoded = encoded;
1223 else
1224 decoded = '<' + std::string(encoded) + '>';
1225 return decoded;
1226
1227 }
1228
1229 /* Table for keeping permanent unique copies of decoded names. Once
1230 allocated, names in this table are never released. While this is a
1231 storage leak, it should not be significant unless there are massive
1232 changes in the set of decoded names in successive versions of a
1233 symbol table loaded during a single session. */
1234 static struct htab *decoded_names_store;
1235
1236 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1237 in the language-specific part of GSYMBOL, if it has not been
1238 previously computed. Tries to save the decoded name in the same
1239 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1240 in any case, the decoded symbol has a lifetime at least that of
1241 GSYMBOL).
1242 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1243 const, but nevertheless modified to a semantically equivalent form
1244 when a decoded name is cached in it. */
1245
1246 const char *
1247 ada_decode_symbol (const struct general_symbol_info *arg)
1248 {
1249 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1250 const char **resultp =
1251 &gsymbol->language_specific.demangled_name;
1252
1253 if (!gsymbol->ada_mangled)
1254 {
1255 std::string decoded = ada_decode (gsymbol->linkage_name ());
1256 struct obstack *obstack = gsymbol->language_specific.obstack;
1257
1258 gsymbol->ada_mangled = 1;
1259
1260 if (obstack != NULL)
1261 *resultp = obstack_strdup (obstack, decoded.c_str ());
1262 else
1263 {
1264 /* Sometimes, we can't find a corresponding objfile, in
1265 which case, we put the result on the heap. Since we only
1266 decode when needed, we hope this usually does not cause a
1267 significant memory leak (FIXME). */
1268
1269 char **slot = (char **) htab_find_slot (decoded_names_store,
1270 decoded.c_str (), INSERT);
1271
1272 if (*slot == NULL)
1273 *slot = xstrdup (decoded.c_str ());
1274 *resultp = *slot;
1275 }
1276 }
1277
1278 return *resultp;
1279 }
1280
1281 static char *
1282 ada_la_decode (const char *encoded, int options)
1283 {
1284 return xstrdup (ada_decode (encoded).c_str ());
1285 }
1286
1287 \f
1288
1289 /* Arrays */
1290
1291 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1292 generated by the GNAT compiler to describe the index type used
1293 for each dimension of an array, check whether it follows the latest
1294 known encoding. If not, fix it up to conform to the latest encoding.
1295 Otherwise, do nothing. This function also does nothing if
1296 INDEX_DESC_TYPE is NULL.
1297
1298 The GNAT encoding used to describe the array index type evolved a bit.
1299 Initially, the information would be provided through the name of each
1300 field of the structure type only, while the type of these fields was
1301 described as unspecified and irrelevant. The debugger was then expected
1302 to perform a global type lookup using the name of that field in order
1303 to get access to the full index type description. Because these global
1304 lookups can be very expensive, the encoding was later enhanced to make
1305 the global lookup unnecessary by defining the field type as being
1306 the full index type description.
1307
1308 The purpose of this routine is to allow us to support older versions
1309 of the compiler by detecting the use of the older encoding, and by
1310 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1311 we essentially replace each field's meaningless type by the associated
1312 index subtype). */
1313
1314 void
1315 ada_fixup_array_indexes_type (struct type *index_desc_type)
1316 {
1317 int i;
1318
1319 if (index_desc_type == NULL)
1320 return;
1321 gdb_assert (index_desc_type->num_fields () > 0);
1322
1323 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1324 to check one field only, no need to check them all). If not, return
1325 now.
1326
1327 If our INDEX_DESC_TYPE was generated using the older encoding,
1328 the field type should be a meaningless integer type whose name
1329 is not equal to the field name. */
1330 if (index_desc_type->field (0).type ()->name () != NULL
1331 && strcmp (index_desc_type->field (0).type ()->name (),
1332 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1333 return;
1334
1335 /* Fixup each field of INDEX_DESC_TYPE. */
1336 for (i = 0; i < index_desc_type->num_fields (); i++)
1337 {
1338 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1339 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1340
1341 if (raw_type)
1342 index_desc_type->field (i).set_type (raw_type);
1343 }
1344 }
1345
1346 /* The desc_* routines return primitive portions of array descriptors
1347 (fat pointers). */
1348
1349 /* The descriptor or array type, if any, indicated by TYPE; removes
1350 level of indirection, if needed. */
1351
1352 static struct type *
1353 desc_base_type (struct type *type)
1354 {
1355 if (type == NULL)
1356 return NULL;
1357 type = ada_check_typedef (type);
1358 if (type->code () == TYPE_CODE_TYPEDEF)
1359 type = ada_typedef_target_type (type);
1360
1361 if (type != NULL
1362 && (type->code () == TYPE_CODE_PTR
1363 || type->code () == TYPE_CODE_REF))
1364 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1365 else
1366 return type;
1367 }
1368
1369 /* True iff TYPE indicates a "thin" array pointer type. */
1370
1371 static int
1372 is_thin_pntr (struct type *type)
1373 {
1374 return
1375 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1376 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1377 }
1378
1379 /* The descriptor type for thin pointer type TYPE. */
1380
1381 static struct type *
1382 thin_descriptor_type (struct type *type)
1383 {
1384 struct type *base_type = desc_base_type (type);
1385
1386 if (base_type == NULL)
1387 return NULL;
1388 if (is_suffix (ada_type_name (base_type), "___XVE"))
1389 return base_type;
1390 else
1391 {
1392 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1393
1394 if (alt_type == NULL)
1395 return base_type;
1396 else
1397 return alt_type;
1398 }
1399 }
1400
1401 /* A pointer to the array data for thin-pointer value VAL. */
1402
1403 static struct value *
1404 thin_data_pntr (struct value *val)
1405 {
1406 struct type *type = ada_check_typedef (value_type (val));
1407 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1408
1409 data_type = lookup_pointer_type (data_type);
1410
1411 if (type->code () == TYPE_CODE_PTR)
1412 return value_cast (data_type, value_copy (val));
1413 else
1414 return value_from_longest (data_type, value_address (val));
1415 }
1416
1417 /* True iff TYPE indicates a "thick" array pointer type. */
1418
1419 static int
1420 is_thick_pntr (struct type *type)
1421 {
1422 type = desc_base_type (type);
1423 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1424 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1425 }
1426
1427 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1428 pointer to one, the type of its bounds data; otherwise, NULL. */
1429
1430 static struct type *
1431 desc_bounds_type (struct type *type)
1432 {
1433 struct type *r;
1434
1435 type = desc_base_type (type);
1436
1437 if (type == NULL)
1438 return NULL;
1439 else if (is_thin_pntr (type))
1440 {
1441 type = thin_descriptor_type (type);
1442 if (type == NULL)
1443 return NULL;
1444 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1445 if (r != NULL)
1446 return ada_check_typedef (r);
1447 }
1448 else if (type->code () == TYPE_CODE_STRUCT)
1449 {
1450 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1451 if (r != NULL)
1452 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1453 }
1454 return NULL;
1455 }
1456
1457 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1458 one, a pointer to its bounds data. Otherwise NULL. */
1459
1460 static struct value *
1461 desc_bounds (struct value *arr)
1462 {
1463 struct type *type = ada_check_typedef (value_type (arr));
1464
1465 if (is_thin_pntr (type))
1466 {
1467 struct type *bounds_type =
1468 desc_bounds_type (thin_descriptor_type (type));
1469 LONGEST addr;
1470
1471 if (bounds_type == NULL)
1472 error (_("Bad GNAT array descriptor"));
1473
1474 /* NOTE: The following calculation is not really kosher, but
1475 since desc_type is an XVE-encoded type (and shouldn't be),
1476 the correct calculation is a real pain. FIXME (and fix GCC). */
1477 if (type->code () == TYPE_CODE_PTR)
1478 addr = value_as_long (arr);
1479 else
1480 addr = value_address (arr);
1481
1482 return
1483 value_from_longest (lookup_pointer_type (bounds_type),
1484 addr - TYPE_LENGTH (bounds_type));
1485 }
1486
1487 else if (is_thick_pntr (type))
1488 {
1489 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1490 _("Bad GNAT array descriptor"));
1491 struct type *p_bounds_type = value_type (p_bounds);
1492
1493 if (p_bounds_type
1494 && p_bounds_type->code () == TYPE_CODE_PTR)
1495 {
1496 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1497
1498 if (target_type->is_stub ())
1499 p_bounds = value_cast (lookup_pointer_type
1500 (ada_check_typedef (target_type)),
1501 p_bounds);
1502 }
1503 else
1504 error (_("Bad GNAT array descriptor"));
1505
1506 return p_bounds;
1507 }
1508 else
1509 return NULL;
1510 }
1511
1512 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1513 position of the field containing the address of the bounds data. */
1514
1515 static int
1516 fat_pntr_bounds_bitpos (struct type *type)
1517 {
1518 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1519 }
1520
1521 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1522 size of the field containing the address of the bounds data. */
1523
1524 static int
1525 fat_pntr_bounds_bitsize (struct type *type)
1526 {
1527 type = desc_base_type (type);
1528
1529 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1530 return TYPE_FIELD_BITSIZE (type, 1);
1531 else
1532 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1533 }
1534
1535 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1536 pointer to one, the type of its array data (a array-with-no-bounds type);
1537 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1538 data. */
1539
1540 static struct type *
1541 desc_data_target_type (struct type *type)
1542 {
1543 type = desc_base_type (type);
1544
1545 /* NOTE: The following is bogus; see comment in desc_bounds. */
1546 if (is_thin_pntr (type))
1547 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1548 else if (is_thick_pntr (type))
1549 {
1550 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1551
1552 if (data_type
1553 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1554 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1555 }
1556
1557 return NULL;
1558 }
1559
1560 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1561 its array data. */
1562
1563 static struct value *
1564 desc_data (struct value *arr)
1565 {
1566 struct type *type = value_type (arr);
1567
1568 if (is_thin_pntr (type))
1569 return thin_data_pntr (arr);
1570 else if (is_thick_pntr (type))
1571 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1572 _("Bad GNAT array descriptor"));
1573 else
1574 return NULL;
1575 }
1576
1577
1578 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1579 position of the field containing the address of the data. */
1580
1581 static int
1582 fat_pntr_data_bitpos (struct type *type)
1583 {
1584 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1585 }
1586
1587 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1588 size of the field containing the address of the data. */
1589
1590 static int
1591 fat_pntr_data_bitsize (struct type *type)
1592 {
1593 type = desc_base_type (type);
1594
1595 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1596 return TYPE_FIELD_BITSIZE (type, 0);
1597 else
1598 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1599 }
1600
1601 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1602 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1603 bound, if WHICH is 1. The first bound is I=1. */
1604
1605 static struct value *
1606 desc_one_bound (struct value *bounds, int i, int which)
1607 {
1608 char bound_name[20];
1609 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1610 which ? 'U' : 'L', i - 1);
1611 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1612 _("Bad GNAT array descriptor bounds"));
1613 }
1614
1615 /* If BOUNDS is an array-bounds structure type, return the bit position
1616 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1617 bound, if WHICH is 1. The first bound is I=1. */
1618
1619 static int
1620 desc_bound_bitpos (struct type *type, int i, int which)
1621 {
1622 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1623 }
1624
1625 /* If BOUNDS is an array-bounds structure type, return the bit field size
1626 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1627 bound, if WHICH is 1. The first bound is I=1. */
1628
1629 static int
1630 desc_bound_bitsize (struct type *type, int i, int which)
1631 {
1632 type = desc_base_type (type);
1633
1634 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1635 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1636 else
1637 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1638 }
1639
1640 /* If TYPE is the type of an array-bounds structure, the type of its
1641 Ith bound (numbering from 1). Otherwise, NULL. */
1642
1643 static struct type *
1644 desc_index_type (struct type *type, int i)
1645 {
1646 type = desc_base_type (type);
1647
1648 if (type->code () == TYPE_CODE_STRUCT)
1649 {
1650 char bound_name[20];
1651 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1652 return lookup_struct_elt_type (type, bound_name, 1);
1653 }
1654 else
1655 return NULL;
1656 }
1657
1658 /* The number of index positions in the array-bounds type TYPE.
1659 Return 0 if TYPE is NULL. */
1660
1661 static int
1662 desc_arity (struct type *type)
1663 {
1664 type = desc_base_type (type);
1665
1666 if (type != NULL)
1667 return type->num_fields () / 2;
1668 return 0;
1669 }
1670
1671 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1672 an array descriptor type (representing an unconstrained array
1673 type). */
1674
1675 static int
1676 ada_is_direct_array_type (struct type *type)
1677 {
1678 if (type == NULL)
1679 return 0;
1680 type = ada_check_typedef (type);
1681 return (type->code () == TYPE_CODE_ARRAY
1682 || ada_is_array_descriptor_type (type));
1683 }
1684
1685 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1686 * to one. */
1687
1688 static int
1689 ada_is_array_type (struct type *type)
1690 {
1691 while (type != NULL
1692 && (type->code () == TYPE_CODE_PTR
1693 || type->code () == TYPE_CODE_REF))
1694 type = TYPE_TARGET_TYPE (type);
1695 return ada_is_direct_array_type (type);
1696 }
1697
1698 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1699
1700 int
1701 ada_is_simple_array_type (struct type *type)
1702 {
1703 if (type == NULL)
1704 return 0;
1705 type = ada_check_typedef (type);
1706 return (type->code () == TYPE_CODE_ARRAY
1707 || (type->code () == TYPE_CODE_PTR
1708 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1709 == TYPE_CODE_ARRAY)));
1710 }
1711
1712 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1713
1714 int
1715 ada_is_array_descriptor_type (struct type *type)
1716 {
1717 struct type *data_type = desc_data_target_type (type);
1718
1719 if (type == NULL)
1720 return 0;
1721 type = ada_check_typedef (type);
1722 return (data_type != NULL
1723 && data_type->code () == TYPE_CODE_ARRAY
1724 && desc_arity (desc_bounds_type (type)) > 0);
1725 }
1726
1727 /* Non-zero iff type is a partially mal-formed GNAT array
1728 descriptor. FIXME: This is to compensate for some problems with
1729 debugging output from GNAT. Re-examine periodically to see if it
1730 is still needed. */
1731
1732 int
1733 ada_is_bogus_array_descriptor (struct type *type)
1734 {
1735 return
1736 type != NULL
1737 && type->code () == TYPE_CODE_STRUCT
1738 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1739 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1740 && !ada_is_array_descriptor_type (type);
1741 }
1742
1743
1744 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1745 (fat pointer) returns the type of the array data described---specifically,
1746 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1747 in from the descriptor; otherwise, they are left unspecified. If
1748 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1749 returns NULL. The result is simply the type of ARR if ARR is not
1750 a descriptor. */
1751
1752 static struct type *
1753 ada_type_of_array (struct value *arr, int bounds)
1754 {
1755 if (ada_is_constrained_packed_array_type (value_type (arr)))
1756 return decode_constrained_packed_array_type (value_type (arr));
1757
1758 if (!ada_is_array_descriptor_type (value_type (arr)))
1759 return value_type (arr);
1760
1761 if (!bounds)
1762 {
1763 struct type *array_type =
1764 ada_check_typedef (desc_data_target_type (value_type (arr)));
1765
1766 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1767 TYPE_FIELD_BITSIZE (array_type, 0) =
1768 decode_packed_array_bitsize (value_type (arr));
1769
1770 return array_type;
1771 }
1772 else
1773 {
1774 struct type *elt_type;
1775 int arity;
1776 struct value *descriptor;
1777
1778 elt_type = ada_array_element_type (value_type (arr), -1);
1779 arity = ada_array_arity (value_type (arr));
1780
1781 if (elt_type == NULL || arity == 0)
1782 return ada_check_typedef (value_type (arr));
1783
1784 descriptor = desc_bounds (arr);
1785 if (value_as_long (descriptor) == 0)
1786 return NULL;
1787 while (arity > 0)
1788 {
1789 struct type *range_type = alloc_type_copy (value_type (arr));
1790 struct type *array_type = alloc_type_copy (value_type (arr));
1791 struct value *low = desc_one_bound (descriptor, arity, 0);
1792 struct value *high = desc_one_bound (descriptor, arity, 1);
1793
1794 arity -= 1;
1795 create_static_range_type (range_type, value_type (low),
1796 longest_to_int (value_as_long (low)),
1797 longest_to_int (value_as_long (high)));
1798 elt_type = create_array_type (array_type, elt_type, range_type);
1799
1800 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1801 {
1802 /* We need to store the element packed bitsize, as well as
1803 recompute the array size, because it was previously
1804 computed based on the unpacked element size. */
1805 LONGEST lo = value_as_long (low);
1806 LONGEST hi = value_as_long (high);
1807
1808 TYPE_FIELD_BITSIZE (elt_type, 0) =
1809 decode_packed_array_bitsize (value_type (arr));
1810 /* If the array has no element, then the size is already
1811 zero, and does not need to be recomputed. */
1812 if (lo < hi)
1813 {
1814 int array_bitsize =
1815 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1816
1817 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1818 }
1819 }
1820 }
1821
1822 return lookup_pointer_type (elt_type);
1823 }
1824 }
1825
1826 /* If ARR does not represent an array, returns ARR unchanged.
1827 Otherwise, returns either a standard GDB array with bounds set
1828 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1829 GDB array. Returns NULL if ARR is a null fat pointer. */
1830
1831 struct value *
1832 ada_coerce_to_simple_array_ptr (struct value *arr)
1833 {
1834 if (ada_is_array_descriptor_type (value_type (arr)))
1835 {
1836 struct type *arrType = ada_type_of_array (arr, 1);
1837
1838 if (arrType == NULL)
1839 return NULL;
1840 return value_cast (arrType, value_copy (desc_data (arr)));
1841 }
1842 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1843 return decode_constrained_packed_array (arr);
1844 else
1845 return arr;
1846 }
1847
1848 /* If ARR does not represent an array, returns ARR unchanged.
1849 Otherwise, returns a standard GDB array describing ARR (which may
1850 be ARR itself if it already is in the proper form). */
1851
1852 struct value *
1853 ada_coerce_to_simple_array (struct value *arr)
1854 {
1855 if (ada_is_array_descriptor_type (value_type (arr)))
1856 {
1857 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1858
1859 if (arrVal == NULL)
1860 error (_("Bounds unavailable for null array pointer."));
1861 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1862 return value_ind (arrVal);
1863 }
1864 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1865 return decode_constrained_packed_array (arr);
1866 else
1867 return arr;
1868 }
1869
1870 /* If TYPE represents a GNAT array type, return it translated to an
1871 ordinary GDB array type (possibly with BITSIZE fields indicating
1872 packing). For other types, is the identity. */
1873
1874 struct type *
1875 ada_coerce_to_simple_array_type (struct type *type)
1876 {
1877 if (ada_is_constrained_packed_array_type (type))
1878 return decode_constrained_packed_array_type (type);
1879
1880 if (ada_is_array_descriptor_type (type))
1881 return ada_check_typedef (desc_data_target_type (type));
1882
1883 return type;
1884 }
1885
1886 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1887
1888 static int
1889 ada_is_gnat_encoded_packed_array_type (struct type *type)
1890 {
1891 if (type == NULL)
1892 return 0;
1893 type = desc_base_type (type);
1894 type = ada_check_typedef (type);
1895 return
1896 ada_type_name (type) != NULL
1897 && strstr (ada_type_name (type), "___XP") != NULL;
1898 }
1899
1900 /* Non-zero iff TYPE represents a standard GNAT constrained
1901 packed-array type. */
1902
1903 int
1904 ada_is_constrained_packed_array_type (struct type *type)
1905 {
1906 return ada_is_gnat_encoded_packed_array_type (type)
1907 && !ada_is_array_descriptor_type (type);
1908 }
1909
1910 /* Non-zero iff TYPE represents an array descriptor for a
1911 unconstrained packed-array type. */
1912
1913 static int
1914 ada_is_unconstrained_packed_array_type (struct type *type)
1915 {
1916 if (!ada_is_array_descriptor_type (type))
1917 return 0;
1918
1919 if (ada_is_gnat_encoded_packed_array_type (type))
1920 return 1;
1921
1922 /* If we saw GNAT encodings, then the above code is sufficient.
1923 However, with minimal encodings, we will just have a thick
1924 pointer instead. */
1925 if (is_thick_pntr (type))
1926 {
1927 type = desc_base_type (type);
1928 /* The structure's first field is a pointer to an array, so this
1929 fetches the array type. */
1930 type = TYPE_TARGET_TYPE (type->field (0).type ());
1931 /* Now we can see if the array elements are packed. */
1932 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1933 }
1934
1935 return 0;
1936 }
1937
1938 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
1939 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1940
1941 static bool
1942 ada_is_any_packed_array_type (struct type *type)
1943 {
1944 return (ada_is_constrained_packed_array_type (type)
1945 || (type->code () == TYPE_CODE_ARRAY
1946 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1947 }
1948
1949 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1950 return the size of its elements in bits. */
1951
1952 static long
1953 decode_packed_array_bitsize (struct type *type)
1954 {
1955 const char *raw_name;
1956 const char *tail;
1957 long bits;
1958
1959 /* Access to arrays implemented as fat pointers are encoded as a typedef
1960 of the fat pointer type. We need the name of the fat pointer type
1961 to do the decoding, so strip the typedef layer. */
1962 if (type->code () == TYPE_CODE_TYPEDEF)
1963 type = ada_typedef_target_type (type);
1964
1965 raw_name = ada_type_name (ada_check_typedef (type));
1966 if (!raw_name)
1967 raw_name = ada_type_name (desc_base_type (type));
1968
1969 if (!raw_name)
1970 return 0;
1971
1972 tail = strstr (raw_name, "___XP");
1973 if (tail == nullptr)
1974 {
1975 gdb_assert (is_thick_pntr (type));
1976 /* The structure's first field is a pointer to an array, so this
1977 fetches the array type. */
1978 type = TYPE_TARGET_TYPE (type->field (0).type ());
1979 /* Now we can see if the array elements are packed. */
1980 return TYPE_FIELD_BITSIZE (type, 0);
1981 }
1982
1983 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1984 {
1985 lim_warning
1986 (_("could not understand bit size information on packed array"));
1987 return 0;
1988 }
1989
1990 return bits;
1991 }
1992
1993 /* Given that TYPE is a standard GDB array type with all bounds filled
1994 in, and that the element size of its ultimate scalar constituents
1995 (that is, either its elements, or, if it is an array of arrays, its
1996 elements' elements, etc.) is *ELT_BITS, return an identical type,
1997 but with the bit sizes of its elements (and those of any
1998 constituent arrays) recorded in the BITSIZE components of its
1999 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2000 in bits.
2001
2002 Note that, for arrays whose index type has an XA encoding where
2003 a bound references a record discriminant, getting that discriminant,
2004 and therefore the actual value of that bound, is not possible
2005 because none of the given parameters gives us access to the record.
2006 This function assumes that it is OK in the context where it is being
2007 used to return an array whose bounds are still dynamic and where
2008 the length is arbitrary. */
2009
2010 static struct type *
2011 constrained_packed_array_type (struct type *type, long *elt_bits)
2012 {
2013 struct type *new_elt_type;
2014 struct type *new_type;
2015 struct type *index_type_desc;
2016 struct type *index_type;
2017 LONGEST low_bound, high_bound;
2018
2019 type = ada_check_typedef (type);
2020 if (type->code () != TYPE_CODE_ARRAY)
2021 return type;
2022
2023 index_type_desc = ada_find_parallel_type (type, "___XA");
2024 if (index_type_desc)
2025 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2026 NULL);
2027 else
2028 index_type = type->index_type ();
2029
2030 new_type = alloc_type_copy (type);
2031 new_elt_type =
2032 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2033 elt_bits);
2034 create_array_type (new_type, new_elt_type, index_type);
2035 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2036 new_type->set_name (ada_type_name (type));
2037
2038 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2039 && is_dynamic_type (check_typedef (index_type)))
2040 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2041 low_bound = high_bound = 0;
2042 if (high_bound < low_bound)
2043 *elt_bits = TYPE_LENGTH (new_type) = 0;
2044 else
2045 {
2046 *elt_bits *= (high_bound - low_bound + 1);
2047 TYPE_LENGTH (new_type) =
2048 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2049 }
2050
2051 new_type->set_is_fixed_instance (true);
2052 return new_type;
2053 }
2054
2055 /* The array type encoded by TYPE, where
2056 ada_is_constrained_packed_array_type (TYPE). */
2057
2058 static struct type *
2059 decode_constrained_packed_array_type (struct type *type)
2060 {
2061 const char *raw_name = ada_type_name (ada_check_typedef (type));
2062 char *name;
2063 const char *tail;
2064 struct type *shadow_type;
2065 long bits;
2066
2067 if (!raw_name)
2068 raw_name = ada_type_name (desc_base_type (type));
2069
2070 if (!raw_name)
2071 return NULL;
2072
2073 name = (char *) alloca (strlen (raw_name) + 1);
2074 tail = strstr (raw_name, "___XP");
2075 type = desc_base_type (type);
2076
2077 memcpy (name, raw_name, tail - raw_name);
2078 name[tail - raw_name] = '\000';
2079
2080 shadow_type = ada_find_parallel_type_with_name (type, name);
2081
2082 if (shadow_type == NULL)
2083 {
2084 lim_warning (_("could not find bounds information on packed array"));
2085 return NULL;
2086 }
2087 shadow_type = check_typedef (shadow_type);
2088
2089 if (shadow_type->code () != TYPE_CODE_ARRAY)
2090 {
2091 lim_warning (_("could not understand bounds "
2092 "information on packed array"));
2093 return NULL;
2094 }
2095
2096 bits = decode_packed_array_bitsize (type);
2097 return constrained_packed_array_type (shadow_type, &bits);
2098 }
2099
2100 /* Helper function for decode_constrained_packed_array. Set the field
2101 bitsize on a series of packed arrays. Returns the number of
2102 elements in TYPE. */
2103
2104 static LONGEST
2105 recursively_update_array_bitsize (struct type *type)
2106 {
2107 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2108
2109 LONGEST low, high;
2110 if (!get_discrete_bounds (type->index_type (), &low, &high)
2111 || low > high)
2112 return 0;
2113 LONGEST our_len = high - low + 1;
2114
2115 struct type *elt_type = TYPE_TARGET_TYPE (type);
2116 if (elt_type->code () == TYPE_CODE_ARRAY)
2117 {
2118 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2119 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2120 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2121
2122 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2123 / HOST_CHAR_BIT);
2124 }
2125
2126 return our_len;
2127 }
2128
2129 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2130 array, returns a simple array that denotes that array. Its type is a
2131 standard GDB array type except that the BITSIZEs of the array
2132 target types are set to the number of bits in each element, and the
2133 type length is set appropriately. */
2134
2135 static struct value *
2136 decode_constrained_packed_array (struct value *arr)
2137 {
2138 struct type *type;
2139
2140 /* If our value is a pointer, then dereference it. Likewise if
2141 the value is a reference. Make sure that this operation does not
2142 cause the target type to be fixed, as this would indirectly cause
2143 this array to be decoded. The rest of the routine assumes that
2144 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2145 and "value_ind" routines to perform the dereferencing, as opposed
2146 to using "ada_coerce_ref" or "ada_value_ind". */
2147 arr = coerce_ref (arr);
2148 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2149 arr = value_ind (arr);
2150
2151 type = decode_constrained_packed_array_type (value_type (arr));
2152 if (type == NULL)
2153 {
2154 error (_("can't unpack array"));
2155 return NULL;
2156 }
2157
2158 /* Decoding the packed array type could not correctly set the field
2159 bitsizes for any dimension except the innermost, because the
2160 bounds may be variable and were not passed to that function. So,
2161 we further resolve the array bounds here and then update the
2162 sizes. */
2163 const gdb_byte *valaddr = value_contents_for_printing (arr);
2164 CORE_ADDR address = value_address (arr);
2165 gdb::array_view<const gdb_byte> view
2166 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2167 type = resolve_dynamic_type (type, view, address);
2168 recursively_update_array_bitsize (type);
2169
2170 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2171 && ada_is_modular_type (value_type (arr)))
2172 {
2173 /* This is a (right-justified) modular type representing a packed
2174 array with no wrapper. In order to interpret the value through
2175 the (left-justified) packed array type we just built, we must
2176 first left-justify it. */
2177 int bit_size, bit_pos;
2178 ULONGEST mod;
2179
2180 mod = ada_modulus (value_type (arr)) - 1;
2181 bit_size = 0;
2182 while (mod > 0)
2183 {
2184 bit_size += 1;
2185 mod >>= 1;
2186 }
2187 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2188 arr = ada_value_primitive_packed_val (arr, NULL,
2189 bit_pos / HOST_CHAR_BIT,
2190 bit_pos % HOST_CHAR_BIT,
2191 bit_size,
2192 type);
2193 }
2194
2195 return coerce_unspec_val_to_type (arr, type);
2196 }
2197
2198
2199 /* The value of the element of packed array ARR at the ARITY indices
2200 given in IND. ARR must be a simple array. */
2201
2202 static struct value *
2203 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2204 {
2205 int i;
2206 int bits, elt_off, bit_off;
2207 long elt_total_bit_offset;
2208 struct type *elt_type;
2209 struct value *v;
2210
2211 bits = 0;
2212 elt_total_bit_offset = 0;
2213 elt_type = ada_check_typedef (value_type (arr));
2214 for (i = 0; i < arity; i += 1)
2215 {
2216 if (elt_type->code () != TYPE_CODE_ARRAY
2217 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2218 error
2219 (_("attempt to do packed indexing of "
2220 "something other than a packed array"));
2221 else
2222 {
2223 struct type *range_type = elt_type->index_type ();
2224 LONGEST lowerbound, upperbound;
2225 LONGEST idx;
2226
2227 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2228 {
2229 lim_warning (_("don't know bounds of array"));
2230 lowerbound = upperbound = 0;
2231 }
2232
2233 idx = pos_atr (ind[i]);
2234 if (idx < lowerbound || idx > upperbound)
2235 lim_warning (_("packed array index %ld out of bounds"),
2236 (long) idx);
2237 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2238 elt_total_bit_offset += (idx - lowerbound) * bits;
2239 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2240 }
2241 }
2242 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2243 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2244
2245 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2246 bits, elt_type);
2247 return v;
2248 }
2249
2250 /* Non-zero iff TYPE includes negative integer values. */
2251
2252 static int
2253 has_negatives (struct type *type)
2254 {
2255 switch (type->code ())
2256 {
2257 default:
2258 return 0;
2259 case TYPE_CODE_INT:
2260 return !type->is_unsigned ();
2261 case TYPE_CODE_RANGE:
2262 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2263 }
2264 }
2265
2266 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2267 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2268 the unpacked buffer.
2269
2270 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2271 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2272
2273 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2274 zero otherwise.
2275
2276 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2277
2278 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2279
2280 static void
2281 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2282 gdb_byte *unpacked, int unpacked_len,
2283 int is_big_endian, int is_signed_type,
2284 int is_scalar)
2285 {
2286 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2287 int src_idx; /* Index into the source area */
2288 int src_bytes_left; /* Number of source bytes left to process. */
2289 int srcBitsLeft; /* Number of source bits left to move */
2290 int unusedLS; /* Number of bits in next significant
2291 byte of source that are unused */
2292
2293 int unpacked_idx; /* Index into the unpacked buffer */
2294 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2295
2296 unsigned long accum; /* Staging area for bits being transferred */
2297 int accumSize; /* Number of meaningful bits in accum */
2298 unsigned char sign;
2299
2300 /* Transmit bytes from least to most significant; delta is the direction
2301 the indices move. */
2302 int delta = is_big_endian ? -1 : 1;
2303
2304 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2305 bits from SRC. .*/
2306 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2307 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2308 bit_size, unpacked_len);
2309
2310 srcBitsLeft = bit_size;
2311 src_bytes_left = src_len;
2312 unpacked_bytes_left = unpacked_len;
2313 sign = 0;
2314
2315 if (is_big_endian)
2316 {
2317 src_idx = src_len - 1;
2318 if (is_signed_type
2319 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2320 sign = ~0;
2321
2322 unusedLS =
2323 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2324 % HOST_CHAR_BIT;
2325
2326 if (is_scalar)
2327 {
2328 accumSize = 0;
2329 unpacked_idx = unpacked_len - 1;
2330 }
2331 else
2332 {
2333 /* Non-scalar values must be aligned at a byte boundary... */
2334 accumSize =
2335 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2336 /* ... And are placed at the beginning (most-significant) bytes
2337 of the target. */
2338 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2339 unpacked_bytes_left = unpacked_idx + 1;
2340 }
2341 }
2342 else
2343 {
2344 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2345
2346 src_idx = unpacked_idx = 0;
2347 unusedLS = bit_offset;
2348 accumSize = 0;
2349
2350 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2351 sign = ~0;
2352 }
2353
2354 accum = 0;
2355 while (src_bytes_left > 0)
2356 {
2357 /* Mask for removing bits of the next source byte that are not
2358 part of the value. */
2359 unsigned int unusedMSMask =
2360 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2361 1;
2362 /* Sign-extend bits for this byte. */
2363 unsigned int signMask = sign & ~unusedMSMask;
2364
2365 accum |=
2366 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2367 accumSize += HOST_CHAR_BIT - unusedLS;
2368 if (accumSize >= HOST_CHAR_BIT)
2369 {
2370 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2371 accumSize -= HOST_CHAR_BIT;
2372 accum >>= HOST_CHAR_BIT;
2373 unpacked_bytes_left -= 1;
2374 unpacked_idx += delta;
2375 }
2376 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2377 unusedLS = 0;
2378 src_bytes_left -= 1;
2379 src_idx += delta;
2380 }
2381 while (unpacked_bytes_left > 0)
2382 {
2383 accum |= sign << accumSize;
2384 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2385 accumSize -= HOST_CHAR_BIT;
2386 if (accumSize < 0)
2387 accumSize = 0;
2388 accum >>= HOST_CHAR_BIT;
2389 unpacked_bytes_left -= 1;
2390 unpacked_idx += delta;
2391 }
2392 }
2393
2394 /* Create a new value of type TYPE from the contents of OBJ starting
2395 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2396 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2397 assigning through the result will set the field fetched from.
2398 VALADDR is ignored unless OBJ is NULL, in which case,
2399 VALADDR+OFFSET must address the start of storage containing the
2400 packed value. The value returned in this case is never an lval.
2401 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2402
2403 struct value *
2404 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2405 long offset, int bit_offset, int bit_size,
2406 struct type *type)
2407 {
2408 struct value *v;
2409 const gdb_byte *src; /* First byte containing data to unpack */
2410 gdb_byte *unpacked;
2411 const int is_scalar = is_scalar_type (type);
2412 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2413 gdb::byte_vector staging;
2414
2415 type = ada_check_typedef (type);
2416
2417 if (obj == NULL)
2418 src = valaddr + offset;
2419 else
2420 src = value_contents (obj) + offset;
2421
2422 if (is_dynamic_type (type))
2423 {
2424 /* The length of TYPE might by dynamic, so we need to resolve
2425 TYPE in order to know its actual size, which we then use
2426 to create the contents buffer of the value we return.
2427 The difficulty is that the data containing our object is
2428 packed, and therefore maybe not at a byte boundary. So, what
2429 we do, is unpack the data into a byte-aligned buffer, and then
2430 use that buffer as our object's value for resolving the type. */
2431 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2432 staging.resize (staging_len);
2433
2434 ada_unpack_from_contents (src, bit_offset, bit_size,
2435 staging.data (), staging.size (),
2436 is_big_endian, has_negatives (type),
2437 is_scalar);
2438 type = resolve_dynamic_type (type, staging, 0);
2439 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2440 {
2441 /* This happens when the length of the object is dynamic,
2442 and is actually smaller than the space reserved for it.
2443 For instance, in an array of variant records, the bit_size
2444 we're given is the array stride, which is constant and
2445 normally equal to the maximum size of its element.
2446 But, in reality, each element only actually spans a portion
2447 of that stride. */
2448 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2449 }
2450 }
2451
2452 if (obj == NULL)
2453 {
2454 v = allocate_value (type);
2455 src = valaddr + offset;
2456 }
2457 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2458 {
2459 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2460 gdb_byte *buf;
2461
2462 v = value_at (type, value_address (obj) + offset);
2463 buf = (gdb_byte *) alloca (src_len);
2464 read_memory (value_address (v), buf, src_len);
2465 src = buf;
2466 }
2467 else
2468 {
2469 v = allocate_value (type);
2470 src = value_contents (obj) + offset;
2471 }
2472
2473 if (obj != NULL)
2474 {
2475 long new_offset = offset;
2476
2477 set_value_component_location (v, obj);
2478 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2479 set_value_bitsize (v, bit_size);
2480 if (value_bitpos (v) >= HOST_CHAR_BIT)
2481 {
2482 ++new_offset;
2483 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2484 }
2485 set_value_offset (v, new_offset);
2486
2487 /* Also set the parent value. This is needed when trying to
2488 assign a new value (in inferior memory). */
2489 set_value_parent (v, obj);
2490 }
2491 else
2492 set_value_bitsize (v, bit_size);
2493 unpacked = value_contents_writeable (v);
2494
2495 if (bit_size == 0)
2496 {
2497 memset (unpacked, 0, TYPE_LENGTH (type));
2498 return v;
2499 }
2500
2501 if (staging.size () == TYPE_LENGTH (type))
2502 {
2503 /* Small short-cut: If we've unpacked the data into a buffer
2504 of the same size as TYPE's length, then we can reuse that,
2505 instead of doing the unpacking again. */
2506 memcpy (unpacked, staging.data (), staging.size ());
2507 }
2508 else
2509 ada_unpack_from_contents (src, bit_offset, bit_size,
2510 unpacked, TYPE_LENGTH (type),
2511 is_big_endian, has_negatives (type), is_scalar);
2512
2513 return v;
2514 }
2515
2516 /* Store the contents of FROMVAL into the location of TOVAL.
2517 Return a new value with the location of TOVAL and contents of
2518 FROMVAL. Handles assignment into packed fields that have
2519 floating-point or non-scalar types. */
2520
2521 static struct value *
2522 ada_value_assign (struct value *toval, struct value *fromval)
2523 {
2524 struct type *type = value_type (toval);
2525 int bits = value_bitsize (toval);
2526
2527 toval = ada_coerce_ref (toval);
2528 fromval = ada_coerce_ref (fromval);
2529
2530 if (ada_is_direct_array_type (value_type (toval)))
2531 toval = ada_coerce_to_simple_array (toval);
2532 if (ada_is_direct_array_type (value_type (fromval)))
2533 fromval = ada_coerce_to_simple_array (fromval);
2534
2535 if (!deprecated_value_modifiable (toval))
2536 error (_("Left operand of assignment is not a modifiable lvalue."));
2537
2538 if (VALUE_LVAL (toval) == lval_memory
2539 && bits > 0
2540 && (type->code () == TYPE_CODE_FLT
2541 || type->code () == TYPE_CODE_STRUCT))
2542 {
2543 int len = (value_bitpos (toval)
2544 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2545 int from_size;
2546 gdb_byte *buffer = (gdb_byte *) alloca (len);
2547 struct value *val;
2548 CORE_ADDR to_addr = value_address (toval);
2549
2550 if (type->code () == TYPE_CODE_FLT)
2551 fromval = value_cast (type, fromval);
2552
2553 read_memory (to_addr, buffer, len);
2554 from_size = value_bitsize (fromval);
2555 if (from_size == 0)
2556 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2557
2558 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2559 ULONGEST from_offset = 0;
2560 if (is_big_endian && is_scalar_type (value_type (fromval)))
2561 from_offset = from_size - bits;
2562 copy_bitwise (buffer, value_bitpos (toval),
2563 value_contents (fromval), from_offset,
2564 bits, is_big_endian);
2565 write_memory_with_notification (to_addr, buffer, len);
2566
2567 val = value_copy (toval);
2568 memcpy (value_contents_raw (val), value_contents (fromval),
2569 TYPE_LENGTH (type));
2570 deprecated_set_value_type (val, type);
2571
2572 return val;
2573 }
2574
2575 return value_assign (toval, fromval);
2576 }
2577
2578
2579 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2580 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2581 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2582 COMPONENT, and not the inferior's memory. The current contents
2583 of COMPONENT are ignored.
2584
2585 Although not part of the initial design, this function also works
2586 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2587 had a null address, and COMPONENT had an address which is equal to
2588 its offset inside CONTAINER. */
2589
2590 static void
2591 value_assign_to_component (struct value *container, struct value *component,
2592 struct value *val)
2593 {
2594 LONGEST offset_in_container =
2595 (LONGEST) (value_address (component) - value_address (container));
2596 int bit_offset_in_container =
2597 value_bitpos (component) - value_bitpos (container);
2598 int bits;
2599
2600 val = value_cast (value_type (component), val);
2601
2602 if (value_bitsize (component) == 0)
2603 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2604 else
2605 bits = value_bitsize (component);
2606
2607 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2608 {
2609 int src_offset;
2610
2611 if (is_scalar_type (check_typedef (value_type (component))))
2612 src_offset
2613 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2614 else
2615 src_offset = 0;
2616 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2617 value_bitpos (container) + bit_offset_in_container,
2618 value_contents (val), src_offset, bits, 1);
2619 }
2620 else
2621 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2622 value_bitpos (container) + bit_offset_in_container,
2623 value_contents (val), 0, bits, 0);
2624 }
2625
2626 /* Determine if TYPE is an access to an unconstrained array. */
2627
2628 bool
2629 ada_is_access_to_unconstrained_array (struct type *type)
2630 {
2631 return (type->code () == TYPE_CODE_TYPEDEF
2632 && is_thick_pntr (ada_typedef_target_type (type)));
2633 }
2634
2635 /* The value of the element of array ARR at the ARITY indices given in IND.
2636 ARR may be either a simple array, GNAT array descriptor, or pointer
2637 thereto. */
2638
2639 struct value *
2640 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2641 {
2642 int k;
2643 struct value *elt;
2644 struct type *elt_type;
2645
2646 elt = ada_coerce_to_simple_array (arr);
2647
2648 elt_type = ada_check_typedef (value_type (elt));
2649 if (elt_type->code () == TYPE_CODE_ARRAY
2650 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2651 return value_subscript_packed (elt, arity, ind);
2652
2653 for (k = 0; k < arity; k += 1)
2654 {
2655 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2656
2657 if (elt_type->code () != TYPE_CODE_ARRAY)
2658 error (_("too many subscripts (%d expected)"), k);
2659
2660 elt = value_subscript (elt, pos_atr (ind[k]));
2661
2662 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2663 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2664 {
2665 /* The element is a typedef to an unconstrained array,
2666 except that the value_subscript call stripped the
2667 typedef layer. The typedef layer is GNAT's way to
2668 specify that the element is, at the source level, an
2669 access to the unconstrained array, rather than the
2670 unconstrained array. So, we need to restore that
2671 typedef layer, which we can do by forcing the element's
2672 type back to its original type. Otherwise, the returned
2673 value is going to be printed as the array, rather
2674 than as an access. Another symptom of the same issue
2675 would be that an expression trying to dereference the
2676 element would also be improperly rejected. */
2677 deprecated_set_value_type (elt, saved_elt_type);
2678 }
2679
2680 elt_type = ada_check_typedef (value_type (elt));
2681 }
2682
2683 return elt;
2684 }
2685
2686 /* Assuming ARR is a pointer to a GDB array, the value of the element
2687 of *ARR at the ARITY indices given in IND.
2688 Does not read the entire array into memory.
2689
2690 Note: Unlike what one would expect, this function is used instead of
2691 ada_value_subscript for basically all non-packed array types. The reason
2692 for this is that a side effect of doing our own pointer arithmetics instead
2693 of relying on value_subscript is that there is no implicit typedef peeling.
2694 This is important for arrays of array accesses, where it allows us to
2695 preserve the fact that the array's element is an array access, where the
2696 access part os encoded in a typedef layer. */
2697
2698 static struct value *
2699 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2700 {
2701 int k;
2702 struct value *array_ind = ada_value_ind (arr);
2703 struct type *type
2704 = check_typedef (value_enclosing_type (array_ind));
2705
2706 if (type->code () == TYPE_CODE_ARRAY
2707 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2708 return value_subscript_packed (array_ind, arity, ind);
2709
2710 for (k = 0; k < arity; k += 1)
2711 {
2712 LONGEST lwb, upb;
2713
2714 if (type->code () != TYPE_CODE_ARRAY)
2715 error (_("too many subscripts (%d expected)"), k);
2716 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2717 value_copy (arr));
2718 get_discrete_bounds (type->index_type (), &lwb, &upb);
2719 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2720 type = TYPE_TARGET_TYPE (type);
2721 }
2722
2723 return value_ind (arr);
2724 }
2725
2726 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2727 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2728 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2729 this array is LOW, as per Ada rules. */
2730 static struct value *
2731 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2732 int low, int high)
2733 {
2734 struct type *type0 = ada_check_typedef (type);
2735 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2736 struct type *index_type
2737 = create_static_range_type (NULL, base_index_type, low, high);
2738 struct type *slice_type = create_array_type_with_stride
2739 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2740 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2741 TYPE_FIELD_BITSIZE (type0, 0));
2742 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2743 gdb::optional<LONGEST> base_low_pos, low_pos;
2744 CORE_ADDR base;
2745
2746 low_pos = discrete_position (base_index_type, low);
2747 base_low_pos = discrete_position (base_index_type, base_low);
2748
2749 if (!low_pos.has_value () || !base_low_pos.has_value ())
2750 {
2751 warning (_("unable to get positions in slice, use bounds instead"));
2752 low_pos = low;
2753 base_low_pos = base_low;
2754 }
2755
2756 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2757 if (stride == 0)
2758 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2759
2760 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2761 return value_at_lazy (slice_type, base);
2762 }
2763
2764
2765 static struct value *
2766 ada_value_slice (struct value *array, int low, int high)
2767 {
2768 struct type *type = ada_check_typedef (value_type (array));
2769 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2770 struct type *index_type
2771 = create_static_range_type (NULL, type->index_type (), low, high);
2772 struct type *slice_type = create_array_type_with_stride
2773 (NULL, TYPE_TARGET_TYPE (type), index_type,
2774 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2775 TYPE_FIELD_BITSIZE (type, 0));
2776 gdb::optional<LONGEST> low_pos, high_pos;
2777
2778
2779 low_pos = discrete_position (base_index_type, low);
2780 high_pos = discrete_position (base_index_type, high);
2781
2782 if (!low_pos.has_value () || !high_pos.has_value ())
2783 {
2784 warning (_("unable to get positions in slice, use bounds instead"));
2785 low_pos = low;
2786 high_pos = high;
2787 }
2788
2789 return value_cast (slice_type,
2790 value_slice (array, low, *high_pos - *low_pos + 1));
2791 }
2792
2793 /* If type is a record type in the form of a standard GNAT array
2794 descriptor, returns the number of dimensions for type. If arr is a
2795 simple array, returns the number of "array of"s that prefix its
2796 type designation. Otherwise, returns 0. */
2797
2798 int
2799 ada_array_arity (struct type *type)
2800 {
2801 int arity;
2802
2803 if (type == NULL)
2804 return 0;
2805
2806 type = desc_base_type (type);
2807
2808 arity = 0;
2809 if (type->code () == TYPE_CODE_STRUCT)
2810 return desc_arity (desc_bounds_type (type));
2811 else
2812 while (type->code () == TYPE_CODE_ARRAY)
2813 {
2814 arity += 1;
2815 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2816 }
2817
2818 return arity;
2819 }
2820
2821 /* If TYPE is a record type in the form of a standard GNAT array
2822 descriptor or a simple array type, returns the element type for
2823 TYPE after indexing by NINDICES indices, or by all indices if
2824 NINDICES is -1. Otherwise, returns NULL. */
2825
2826 struct type *
2827 ada_array_element_type (struct type *type, int nindices)
2828 {
2829 type = desc_base_type (type);
2830
2831 if (type->code () == TYPE_CODE_STRUCT)
2832 {
2833 int k;
2834 struct type *p_array_type;
2835
2836 p_array_type = desc_data_target_type (type);
2837
2838 k = ada_array_arity (type);
2839 if (k == 0)
2840 return NULL;
2841
2842 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2843 if (nindices >= 0 && k > nindices)
2844 k = nindices;
2845 while (k > 0 && p_array_type != NULL)
2846 {
2847 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2848 k -= 1;
2849 }
2850 return p_array_type;
2851 }
2852 else if (type->code () == TYPE_CODE_ARRAY)
2853 {
2854 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2855 {
2856 type = TYPE_TARGET_TYPE (type);
2857 nindices -= 1;
2858 }
2859 return type;
2860 }
2861
2862 return NULL;
2863 }
2864
2865 /* See ada-lang.h. */
2866
2867 struct type *
2868 ada_index_type (struct type *type, int n, const char *name)
2869 {
2870 struct type *result_type;
2871
2872 type = desc_base_type (type);
2873
2874 if (n < 0 || n > ada_array_arity (type))
2875 error (_("invalid dimension number to '%s"), name);
2876
2877 if (ada_is_simple_array_type (type))
2878 {
2879 int i;
2880
2881 for (i = 1; i < n; i += 1)
2882 type = TYPE_TARGET_TYPE (type);
2883 result_type = TYPE_TARGET_TYPE (type->index_type ());
2884 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2885 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2886 perhaps stabsread.c would make more sense. */
2887 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2888 result_type = NULL;
2889 }
2890 else
2891 {
2892 result_type = desc_index_type (desc_bounds_type (type), n);
2893 if (result_type == NULL)
2894 error (_("attempt to take bound of something that is not an array"));
2895 }
2896
2897 return result_type;
2898 }
2899
2900 /* Given that arr is an array type, returns the lower bound of the
2901 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2902 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2903 array-descriptor type. It works for other arrays with bounds supplied
2904 by run-time quantities other than discriminants. */
2905
2906 static LONGEST
2907 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2908 {
2909 struct type *type, *index_type_desc, *index_type;
2910 int i;
2911
2912 gdb_assert (which == 0 || which == 1);
2913
2914 if (ada_is_constrained_packed_array_type (arr_type))
2915 arr_type = decode_constrained_packed_array_type (arr_type);
2916
2917 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2918 return (LONGEST) - which;
2919
2920 if (arr_type->code () == TYPE_CODE_PTR)
2921 type = TYPE_TARGET_TYPE (arr_type);
2922 else
2923 type = arr_type;
2924
2925 if (type->is_fixed_instance ())
2926 {
2927 /* The array has already been fixed, so we do not need to
2928 check the parallel ___XA type again. That encoding has
2929 already been applied, so ignore it now. */
2930 index_type_desc = NULL;
2931 }
2932 else
2933 {
2934 index_type_desc = ada_find_parallel_type (type, "___XA");
2935 ada_fixup_array_indexes_type (index_type_desc);
2936 }
2937
2938 if (index_type_desc != NULL)
2939 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2940 NULL);
2941 else
2942 {
2943 struct type *elt_type = check_typedef (type);
2944
2945 for (i = 1; i < n; i++)
2946 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2947
2948 index_type = elt_type->index_type ();
2949 }
2950
2951 return
2952 (LONGEST) (which == 0
2953 ? ada_discrete_type_low_bound (index_type)
2954 : ada_discrete_type_high_bound (index_type));
2955 }
2956
2957 /* Given that arr is an array value, returns the lower bound of the
2958 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2959 WHICH is 1. This routine will also work for arrays with bounds
2960 supplied by run-time quantities other than discriminants. */
2961
2962 static LONGEST
2963 ada_array_bound (struct value *arr, int n, int which)
2964 {
2965 struct type *arr_type;
2966
2967 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2968 arr = value_ind (arr);
2969 arr_type = value_enclosing_type (arr);
2970
2971 if (ada_is_constrained_packed_array_type (arr_type))
2972 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2973 else if (ada_is_simple_array_type (arr_type))
2974 return ada_array_bound_from_type (arr_type, n, which);
2975 else
2976 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2977 }
2978
2979 /* Given that arr is an array value, returns the length of the
2980 nth index. This routine will also work for arrays with bounds
2981 supplied by run-time quantities other than discriminants.
2982 Does not work for arrays indexed by enumeration types with representation
2983 clauses at the moment. */
2984
2985 static LONGEST
2986 ada_array_length (struct value *arr, int n)
2987 {
2988 struct type *arr_type, *index_type;
2989 int low, high;
2990
2991 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2992 arr = value_ind (arr);
2993 arr_type = value_enclosing_type (arr);
2994
2995 if (ada_is_constrained_packed_array_type (arr_type))
2996 return ada_array_length (decode_constrained_packed_array (arr), n);
2997
2998 if (ada_is_simple_array_type (arr_type))
2999 {
3000 low = ada_array_bound_from_type (arr_type, n, 0);
3001 high = ada_array_bound_from_type (arr_type, n, 1);
3002 }
3003 else
3004 {
3005 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3006 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3007 }
3008
3009 arr_type = check_typedef (arr_type);
3010 index_type = ada_index_type (arr_type, n, "length");
3011 if (index_type != NULL)
3012 {
3013 struct type *base_type;
3014 if (index_type->code () == TYPE_CODE_RANGE)
3015 base_type = TYPE_TARGET_TYPE (index_type);
3016 else
3017 base_type = index_type;
3018
3019 low = pos_atr (value_from_longest (base_type, low));
3020 high = pos_atr (value_from_longest (base_type, high));
3021 }
3022 return high - low + 1;
3023 }
3024
3025 /* An array whose type is that of ARR_TYPE (an array type), with
3026 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3027 less than LOW, then LOW-1 is used. */
3028
3029 static struct value *
3030 empty_array (struct type *arr_type, int low, int high)
3031 {
3032 struct type *arr_type0 = ada_check_typedef (arr_type);
3033 struct type *index_type
3034 = create_static_range_type
3035 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3036 high < low ? low - 1 : high);
3037 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3038
3039 return allocate_value (create_array_type (NULL, elt_type, index_type));
3040 }
3041 \f
3042
3043 /* Name resolution */
3044
3045 /* The "decoded" name for the user-definable Ada operator corresponding
3046 to OP. */
3047
3048 static const char *
3049 ada_decoded_op_name (enum exp_opcode op)
3050 {
3051 int i;
3052
3053 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3054 {
3055 if (ada_opname_table[i].op == op)
3056 return ada_opname_table[i].decoded;
3057 }
3058 error (_("Could not find operator name for opcode"));
3059 }
3060
3061 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3062 in a listing of choices during disambiguation (see sort_choices, below).
3063 The idea is that overloadings of a subprogram name from the
3064 same package should sort in their source order. We settle for ordering
3065 such symbols by their trailing number (__N or $N). */
3066
3067 static int
3068 encoded_ordered_before (const char *N0, const char *N1)
3069 {
3070 if (N1 == NULL)
3071 return 0;
3072 else if (N0 == NULL)
3073 return 1;
3074 else
3075 {
3076 int k0, k1;
3077
3078 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3079 ;
3080 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3081 ;
3082 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3083 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3084 {
3085 int n0, n1;
3086
3087 n0 = k0;
3088 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3089 n0 -= 1;
3090 n1 = k1;
3091 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3092 n1 -= 1;
3093 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3094 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3095 }
3096 return (strcmp (N0, N1) < 0);
3097 }
3098 }
3099
3100 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3101 encoded names. */
3102
3103 static void
3104 sort_choices (struct block_symbol syms[], int nsyms)
3105 {
3106 int i;
3107
3108 for (i = 1; i < nsyms; i += 1)
3109 {
3110 struct block_symbol sym = syms[i];
3111 int j;
3112
3113 for (j = i - 1; j >= 0; j -= 1)
3114 {
3115 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3116 sym.symbol->linkage_name ()))
3117 break;
3118 syms[j + 1] = syms[j];
3119 }
3120 syms[j + 1] = sym;
3121 }
3122 }
3123
3124 /* Whether GDB should display formals and return types for functions in the
3125 overloads selection menu. */
3126 static bool print_signatures = true;
3127
3128 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3129 all but functions, the signature is just the name of the symbol. For
3130 functions, this is the name of the function, the list of types for formals
3131 and the return type (if any). */
3132
3133 static void
3134 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3135 const struct type_print_options *flags)
3136 {
3137 struct type *type = SYMBOL_TYPE (sym);
3138
3139 fprintf_filtered (stream, "%s", sym->print_name ());
3140 if (!print_signatures
3141 || type == NULL
3142 || type->code () != TYPE_CODE_FUNC)
3143 return;
3144
3145 if (type->num_fields () > 0)
3146 {
3147 int i;
3148
3149 fprintf_filtered (stream, " (");
3150 for (i = 0; i < type->num_fields (); ++i)
3151 {
3152 if (i > 0)
3153 fprintf_filtered (stream, "; ");
3154 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3155 flags);
3156 }
3157 fprintf_filtered (stream, ")");
3158 }
3159 if (TYPE_TARGET_TYPE (type) != NULL
3160 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3161 {
3162 fprintf_filtered (stream, " return ");
3163 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3164 }
3165 }
3166
3167 /* Read and validate a set of numeric choices from the user in the
3168 range 0 .. N_CHOICES-1. Place the results in increasing
3169 order in CHOICES[0 .. N-1], and return N.
3170
3171 The user types choices as a sequence of numbers on one line
3172 separated by blanks, encoding them as follows:
3173
3174 + A choice of 0 means to cancel the selection, throwing an error.
3175 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3176 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3177
3178 The user is not allowed to choose more than MAX_RESULTS values.
3179
3180 ANNOTATION_SUFFIX, if present, is used to annotate the input
3181 prompts (for use with the -f switch). */
3182
3183 static int
3184 get_selections (int *choices, int n_choices, int max_results,
3185 int is_all_choice, const char *annotation_suffix)
3186 {
3187 const char *args;
3188 const char *prompt;
3189 int n_chosen;
3190 int first_choice = is_all_choice ? 2 : 1;
3191
3192 prompt = getenv ("PS2");
3193 if (prompt == NULL)
3194 prompt = "> ";
3195
3196 args = command_line_input (prompt, annotation_suffix);
3197
3198 if (args == NULL)
3199 error_no_arg (_("one or more choice numbers"));
3200
3201 n_chosen = 0;
3202
3203 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3204 order, as given in args. Choices are validated. */
3205 while (1)
3206 {
3207 char *args2;
3208 int choice, j;
3209
3210 args = skip_spaces (args);
3211 if (*args == '\0' && n_chosen == 0)
3212 error_no_arg (_("one or more choice numbers"));
3213 else if (*args == '\0')
3214 break;
3215
3216 choice = strtol (args, &args2, 10);
3217 if (args == args2 || choice < 0
3218 || choice > n_choices + first_choice - 1)
3219 error (_("Argument must be choice number"));
3220 args = args2;
3221
3222 if (choice == 0)
3223 error (_("cancelled"));
3224
3225 if (choice < first_choice)
3226 {
3227 n_chosen = n_choices;
3228 for (j = 0; j < n_choices; j += 1)
3229 choices[j] = j;
3230 break;
3231 }
3232 choice -= first_choice;
3233
3234 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3235 {
3236 }
3237
3238 if (j < 0 || choice != choices[j])
3239 {
3240 int k;
3241
3242 for (k = n_chosen - 1; k > j; k -= 1)
3243 choices[k + 1] = choices[k];
3244 choices[j + 1] = choice;
3245 n_chosen += 1;
3246 }
3247 }
3248
3249 if (n_chosen > max_results)
3250 error (_("Select no more than %d of the above"), max_results);
3251
3252 return n_chosen;
3253 }
3254
3255 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3256 by asking the user (if necessary), returning the number selected,
3257 and setting the first elements of SYMS items. Error if no symbols
3258 selected. */
3259
3260 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3261 to be re-integrated one of these days. */
3262
3263 static int
3264 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3265 {
3266 int i;
3267 int *chosen = XALLOCAVEC (int , nsyms);
3268 int n_chosen;
3269 int first_choice = (max_results == 1) ? 1 : 2;
3270 const char *select_mode = multiple_symbols_select_mode ();
3271
3272 if (max_results < 1)
3273 error (_("Request to select 0 symbols!"));
3274 if (nsyms <= 1)
3275 return nsyms;
3276
3277 if (select_mode == multiple_symbols_cancel)
3278 error (_("\
3279 canceled because the command is ambiguous\n\
3280 See set/show multiple-symbol."));
3281
3282 /* If select_mode is "all", then return all possible symbols.
3283 Only do that if more than one symbol can be selected, of course.
3284 Otherwise, display the menu as usual. */
3285 if (select_mode == multiple_symbols_all && max_results > 1)
3286 return nsyms;
3287
3288 printf_filtered (_("[0] cancel\n"));
3289 if (max_results > 1)
3290 printf_filtered (_("[1] all\n"));
3291
3292 sort_choices (syms, nsyms);
3293
3294 for (i = 0; i < nsyms; i += 1)
3295 {
3296 if (syms[i].symbol == NULL)
3297 continue;
3298
3299 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3300 {
3301 struct symtab_and_line sal =
3302 find_function_start_sal (syms[i].symbol, 1);
3303
3304 printf_filtered ("[%d] ", i + first_choice);
3305 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3306 &type_print_raw_options);
3307 if (sal.symtab == NULL)
3308 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3309 metadata_style.style ().ptr (), nullptr, sal.line);
3310 else
3311 printf_filtered
3312 (_(" at %ps:%d\n"),
3313 styled_string (file_name_style.style (),
3314 symtab_to_filename_for_display (sal.symtab)),
3315 sal.line);
3316 continue;
3317 }
3318 else
3319 {
3320 int is_enumeral =
3321 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3322 && SYMBOL_TYPE (syms[i].symbol) != NULL
3323 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3324 struct symtab *symtab = NULL;
3325
3326 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3327 symtab = symbol_symtab (syms[i].symbol);
3328
3329 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3330 {
3331 printf_filtered ("[%d] ", i + first_choice);
3332 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3333 &type_print_raw_options);
3334 printf_filtered (_(" at %s:%d\n"),
3335 symtab_to_filename_for_display (symtab),
3336 SYMBOL_LINE (syms[i].symbol));
3337 }
3338 else if (is_enumeral
3339 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3340 {
3341 printf_filtered (("[%d] "), i + first_choice);
3342 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3343 gdb_stdout, -1, 0, &type_print_raw_options);
3344 printf_filtered (_("'(%s) (enumeral)\n"),
3345 syms[i].symbol->print_name ());
3346 }
3347 else
3348 {
3349 printf_filtered ("[%d] ", i + first_choice);
3350 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3351 &type_print_raw_options);
3352
3353 if (symtab != NULL)
3354 printf_filtered (is_enumeral
3355 ? _(" in %s (enumeral)\n")
3356 : _(" at %s:?\n"),
3357 symtab_to_filename_for_display (symtab));
3358 else
3359 printf_filtered (is_enumeral
3360 ? _(" (enumeral)\n")
3361 : _(" at ?\n"));
3362 }
3363 }
3364 }
3365
3366 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3367 "overload-choice");
3368
3369 for (i = 0; i < n_chosen; i += 1)
3370 syms[i] = syms[chosen[i]];
3371
3372 return n_chosen;
3373 }
3374
3375 /* See ada-lang.h. */
3376
3377 block_symbol
3378 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3379 int nargs, value *argvec[])
3380 {
3381 if (possible_user_operator_p (op, argvec))
3382 {
3383 std::vector<struct block_symbol> candidates
3384 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3385 NULL, VAR_DOMAIN);
3386
3387 int i = ada_resolve_function (candidates, argvec,
3388 nargs, ada_decoded_op_name (op), NULL,
3389 parse_completion);
3390 if (i >= 0)
3391 return candidates[i];
3392 }
3393 return {};
3394 }
3395
3396 /* See ada-lang.h. */
3397
3398 block_symbol
3399 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3400 struct type *context_type,
3401 bool parse_completion,
3402 int nargs, value *argvec[],
3403 innermost_block_tracker *tracker)
3404 {
3405 std::vector<struct block_symbol> candidates
3406 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3407
3408 int i;
3409 if (candidates.size () == 1)
3410 i = 0;
3411 else
3412 {
3413 i = ada_resolve_function
3414 (candidates,
3415 argvec, nargs,
3416 sym->linkage_name (),
3417 context_type, parse_completion);
3418 if (i < 0)
3419 error (_("Could not find a match for %s"), sym->print_name ());
3420 }
3421
3422 tracker->update (candidates[i]);
3423 return candidates[i];
3424 }
3425
3426 /* See ada-lang.h. */
3427
3428 block_symbol
3429 ada_resolve_variable (struct symbol *sym, const struct block *block,
3430 struct type *context_type,
3431 bool parse_completion,
3432 int deprocedure_p,
3433 innermost_block_tracker *tracker)
3434 {
3435 std::vector<struct block_symbol> candidates
3436 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3437
3438 if (std::any_of (candidates.begin (),
3439 candidates.end (),
3440 [] (block_symbol &bsym)
3441 {
3442 switch (SYMBOL_CLASS (bsym.symbol))
3443 {
3444 case LOC_REGISTER:
3445 case LOC_ARG:
3446 case LOC_REF_ARG:
3447 case LOC_REGPARM_ADDR:
3448 case LOC_LOCAL:
3449 case LOC_COMPUTED:
3450 return true;
3451 default:
3452 return false;
3453 }
3454 }))
3455 {
3456 /* Types tend to get re-introduced locally, so if there
3457 are any local symbols that are not types, first filter
3458 out all types. */
3459 candidates.erase
3460 (std::remove_if
3461 (candidates.begin (),
3462 candidates.end (),
3463 [] (block_symbol &bsym)
3464 {
3465 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3466 }),
3467 candidates.end ());
3468 }
3469
3470 int i;
3471 if (candidates.empty ())
3472 error (_("No definition found for %s"), sym->print_name ());
3473 else if (candidates.size () == 1)
3474 i = 0;
3475 else if (deprocedure_p && !is_nonfunction (candidates))
3476 {
3477 i = ada_resolve_function
3478 (candidates, NULL, 0,
3479 sym->linkage_name (),
3480 context_type, parse_completion);
3481 if (i < 0)
3482 error (_("Could not find a match for %s"), sym->print_name ());
3483 }
3484 else
3485 {
3486 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3487 user_select_syms (candidates.data (), candidates.size (), 1);
3488 i = 0;
3489 }
3490
3491 tracker->update (candidates[i]);
3492 return candidates[i];
3493 }
3494
3495 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3496 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3497 a non-pointer. */
3498 /* The term "match" here is rather loose. The match is heuristic and
3499 liberal. */
3500
3501 static int
3502 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3503 {
3504 ftype = ada_check_typedef (ftype);
3505 atype = ada_check_typedef (atype);
3506
3507 if (ftype->code () == TYPE_CODE_REF)
3508 ftype = TYPE_TARGET_TYPE (ftype);
3509 if (atype->code () == TYPE_CODE_REF)
3510 atype = TYPE_TARGET_TYPE (atype);
3511
3512 switch (ftype->code ())
3513 {
3514 default:
3515 return ftype->code () == atype->code ();
3516 case TYPE_CODE_PTR:
3517 if (atype->code () == TYPE_CODE_PTR)
3518 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3519 TYPE_TARGET_TYPE (atype), 0);
3520 else
3521 return (may_deref
3522 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3523 case TYPE_CODE_INT:
3524 case TYPE_CODE_ENUM:
3525 case TYPE_CODE_RANGE:
3526 switch (atype->code ())
3527 {
3528 case TYPE_CODE_INT:
3529 case TYPE_CODE_ENUM:
3530 case TYPE_CODE_RANGE:
3531 return 1;
3532 default:
3533 return 0;
3534 }
3535
3536 case TYPE_CODE_ARRAY:
3537 return (atype->code () == TYPE_CODE_ARRAY
3538 || ada_is_array_descriptor_type (atype));
3539
3540 case TYPE_CODE_STRUCT:
3541 if (ada_is_array_descriptor_type (ftype))
3542 return (atype->code () == TYPE_CODE_ARRAY
3543 || ada_is_array_descriptor_type (atype));
3544 else
3545 return (atype->code () == TYPE_CODE_STRUCT
3546 && !ada_is_array_descriptor_type (atype));
3547
3548 case TYPE_CODE_UNION:
3549 case TYPE_CODE_FLT:
3550 return (atype->code () == ftype->code ());
3551 }
3552 }
3553
3554 /* Return non-zero if the formals of FUNC "sufficiently match" the
3555 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3556 may also be an enumeral, in which case it is treated as a 0-
3557 argument function. */
3558
3559 static int
3560 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3561 {
3562 int i;
3563 struct type *func_type = SYMBOL_TYPE (func);
3564
3565 if (SYMBOL_CLASS (func) == LOC_CONST
3566 && func_type->code () == TYPE_CODE_ENUM)
3567 return (n_actuals == 0);
3568 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3569 return 0;
3570
3571 if (func_type->num_fields () != n_actuals)
3572 return 0;
3573
3574 for (i = 0; i < n_actuals; i += 1)
3575 {
3576 if (actuals[i] == NULL)
3577 return 0;
3578 else
3579 {
3580 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3581 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3582
3583 if (!ada_type_match (ftype, atype, 1))
3584 return 0;
3585 }
3586 }
3587 return 1;
3588 }
3589
3590 /* False iff function type FUNC_TYPE definitely does not produce a value
3591 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3592 FUNC_TYPE is not a valid function type with a non-null return type
3593 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3594
3595 static int
3596 return_match (struct type *func_type, struct type *context_type)
3597 {
3598 struct type *return_type;
3599
3600 if (func_type == NULL)
3601 return 1;
3602
3603 if (func_type->code () == TYPE_CODE_FUNC)
3604 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3605 else
3606 return_type = get_base_type (func_type);
3607 if (return_type == NULL)
3608 return 1;
3609
3610 context_type = get_base_type (context_type);
3611
3612 if (return_type->code () == TYPE_CODE_ENUM)
3613 return context_type == NULL || return_type == context_type;
3614 else if (context_type == NULL)
3615 return return_type->code () != TYPE_CODE_VOID;
3616 else
3617 return return_type->code () == context_type->code ();
3618 }
3619
3620
3621 /* Returns the index in SYMS that contains the symbol for the
3622 function (if any) that matches the types of the NARGS arguments in
3623 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3624 that returns that type, then eliminate matches that don't. If
3625 CONTEXT_TYPE is void and there is at least one match that does not
3626 return void, eliminate all matches that do.
3627
3628 Asks the user if there is more than one match remaining. Returns -1
3629 if there is no such symbol or none is selected. NAME is used
3630 solely for messages. May re-arrange and modify SYMS in
3631 the process; the index returned is for the modified vector. */
3632
3633 static int
3634 ada_resolve_function (std::vector<struct block_symbol> &syms,
3635 struct value **args, int nargs,
3636 const char *name, struct type *context_type,
3637 bool parse_completion)
3638 {
3639 int fallback;
3640 int k;
3641 int m; /* Number of hits */
3642
3643 m = 0;
3644 /* In the first pass of the loop, we only accept functions matching
3645 context_type. If none are found, we add a second pass of the loop
3646 where every function is accepted. */
3647 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3648 {
3649 for (k = 0; k < syms.size (); k += 1)
3650 {
3651 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3652
3653 if (ada_args_match (syms[k].symbol, args, nargs)
3654 && (fallback || return_match (type, context_type)))
3655 {
3656 syms[m] = syms[k];
3657 m += 1;
3658 }
3659 }
3660 }
3661
3662 /* If we got multiple matches, ask the user which one to use. Don't do this
3663 interactive thing during completion, though, as the purpose of the
3664 completion is providing a list of all possible matches. Prompting the
3665 user to filter it down would be completely unexpected in this case. */
3666 if (m == 0)
3667 return -1;
3668 else if (m > 1 && !parse_completion)
3669 {
3670 printf_filtered (_("Multiple matches for %s\n"), name);
3671 user_select_syms (syms.data (), m, 1);
3672 return 0;
3673 }
3674 return 0;
3675 }
3676
3677 /* Type-class predicates */
3678
3679 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3680 or FLOAT). */
3681
3682 static int
3683 numeric_type_p (struct type *type)
3684 {
3685 if (type == NULL)
3686 return 0;
3687 else
3688 {
3689 switch (type->code ())
3690 {
3691 case TYPE_CODE_INT:
3692 case TYPE_CODE_FLT:
3693 case TYPE_CODE_FIXED_POINT:
3694 return 1;
3695 case TYPE_CODE_RANGE:
3696 return (type == TYPE_TARGET_TYPE (type)
3697 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3698 default:
3699 return 0;
3700 }
3701 }
3702 }
3703
3704 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3705
3706 static int
3707 integer_type_p (struct type *type)
3708 {
3709 if (type == NULL)
3710 return 0;
3711 else
3712 {
3713 switch (type->code ())
3714 {
3715 case TYPE_CODE_INT:
3716 return 1;
3717 case TYPE_CODE_RANGE:
3718 return (type == TYPE_TARGET_TYPE (type)
3719 || integer_type_p (TYPE_TARGET_TYPE (type)));
3720 default:
3721 return 0;
3722 }
3723 }
3724 }
3725
3726 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3727
3728 static int
3729 scalar_type_p (struct type *type)
3730 {
3731 if (type == NULL)
3732 return 0;
3733 else
3734 {
3735 switch (type->code ())
3736 {
3737 case TYPE_CODE_INT:
3738 case TYPE_CODE_RANGE:
3739 case TYPE_CODE_ENUM:
3740 case TYPE_CODE_FLT:
3741 case TYPE_CODE_FIXED_POINT:
3742 return 1;
3743 default:
3744 return 0;
3745 }
3746 }
3747 }
3748
3749 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3750
3751 static int
3752 discrete_type_p (struct type *type)
3753 {
3754 if (type == NULL)
3755 return 0;
3756 else
3757 {
3758 switch (type->code ())
3759 {
3760 case TYPE_CODE_INT:
3761 case TYPE_CODE_RANGE:
3762 case TYPE_CODE_ENUM:
3763 case TYPE_CODE_BOOL:
3764 return 1;
3765 default:
3766 return 0;
3767 }
3768 }
3769 }
3770
3771 /* Returns non-zero if OP with operands in the vector ARGS could be
3772 a user-defined function. Errs on the side of pre-defined operators
3773 (i.e., result 0). */
3774
3775 static int
3776 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3777 {
3778 struct type *type0 =
3779 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3780 struct type *type1 =
3781 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3782
3783 if (type0 == NULL)
3784 return 0;
3785
3786 switch (op)
3787 {
3788 default:
3789 return 0;
3790
3791 case BINOP_ADD:
3792 case BINOP_SUB:
3793 case BINOP_MUL:
3794 case BINOP_DIV:
3795 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3796
3797 case BINOP_REM:
3798 case BINOP_MOD:
3799 case BINOP_BITWISE_AND:
3800 case BINOP_BITWISE_IOR:
3801 case BINOP_BITWISE_XOR:
3802 return (!(integer_type_p (type0) && integer_type_p (type1)));
3803
3804 case BINOP_EQUAL:
3805 case BINOP_NOTEQUAL:
3806 case BINOP_LESS:
3807 case BINOP_GTR:
3808 case BINOP_LEQ:
3809 case BINOP_GEQ:
3810 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3811
3812 case BINOP_CONCAT:
3813 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3814
3815 case BINOP_EXP:
3816 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3817
3818 case UNOP_NEG:
3819 case UNOP_PLUS:
3820 case UNOP_LOGICAL_NOT:
3821 case UNOP_ABS:
3822 return (!numeric_type_p (type0));
3823
3824 }
3825 }
3826 \f
3827 /* Renaming */
3828
3829 /* NOTES:
3830
3831 1. In the following, we assume that a renaming type's name may
3832 have an ___XD suffix. It would be nice if this went away at some
3833 point.
3834 2. We handle both the (old) purely type-based representation of
3835 renamings and the (new) variable-based encoding. At some point,
3836 it is devoutly to be hoped that the former goes away
3837 (FIXME: hilfinger-2007-07-09).
3838 3. Subprogram renamings are not implemented, although the XRS
3839 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3840
3841 /* If SYM encodes a renaming,
3842
3843 <renaming> renames <renamed entity>,
3844
3845 sets *LEN to the length of the renamed entity's name,
3846 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3847 the string describing the subcomponent selected from the renamed
3848 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3849 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3850 are undefined). Otherwise, returns a value indicating the category
3851 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3852 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3853 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3854 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3855 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3856 may be NULL, in which case they are not assigned.
3857
3858 [Currently, however, GCC does not generate subprogram renamings.] */
3859
3860 enum ada_renaming_category
3861 ada_parse_renaming (struct symbol *sym,
3862 const char **renamed_entity, int *len,
3863 const char **renaming_expr)
3864 {
3865 enum ada_renaming_category kind;
3866 const char *info;
3867 const char *suffix;
3868
3869 if (sym == NULL)
3870 return ADA_NOT_RENAMING;
3871 switch (SYMBOL_CLASS (sym))
3872 {
3873 default:
3874 return ADA_NOT_RENAMING;
3875 case LOC_LOCAL:
3876 case LOC_STATIC:
3877 case LOC_COMPUTED:
3878 case LOC_OPTIMIZED_OUT:
3879 info = strstr (sym->linkage_name (), "___XR");
3880 if (info == NULL)
3881 return ADA_NOT_RENAMING;
3882 switch (info[5])
3883 {
3884 case '_':
3885 kind = ADA_OBJECT_RENAMING;
3886 info += 6;
3887 break;
3888 case 'E':
3889 kind = ADA_EXCEPTION_RENAMING;
3890 info += 7;
3891 break;
3892 case 'P':
3893 kind = ADA_PACKAGE_RENAMING;
3894 info += 7;
3895 break;
3896 case 'S':
3897 kind = ADA_SUBPROGRAM_RENAMING;
3898 info += 7;
3899 break;
3900 default:
3901 return ADA_NOT_RENAMING;
3902 }
3903 }
3904
3905 if (renamed_entity != NULL)
3906 *renamed_entity = info;
3907 suffix = strstr (info, "___XE");
3908 if (suffix == NULL || suffix == info)
3909 return ADA_NOT_RENAMING;
3910 if (len != NULL)
3911 *len = strlen (info) - strlen (suffix);
3912 suffix += 5;
3913 if (renaming_expr != NULL)
3914 *renaming_expr = suffix;
3915 return kind;
3916 }
3917
3918 /* Compute the value of the given RENAMING_SYM, which is expected to
3919 be a symbol encoding a renaming expression. BLOCK is the block
3920 used to evaluate the renaming. */
3921
3922 static struct value *
3923 ada_read_renaming_var_value (struct symbol *renaming_sym,
3924 const struct block *block)
3925 {
3926 const char *sym_name;
3927
3928 sym_name = renaming_sym->linkage_name ();
3929 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3930 return evaluate_expression (expr.get ());
3931 }
3932 \f
3933
3934 /* Evaluation: Function Calls */
3935
3936 /* Return an lvalue containing the value VAL. This is the identity on
3937 lvalues, and otherwise has the side-effect of allocating memory
3938 in the inferior where a copy of the value contents is copied. */
3939
3940 static struct value *
3941 ensure_lval (struct value *val)
3942 {
3943 if (VALUE_LVAL (val) == not_lval
3944 || VALUE_LVAL (val) == lval_internalvar)
3945 {
3946 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3947 const CORE_ADDR addr =
3948 value_as_long (value_allocate_space_in_inferior (len));
3949
3950 VALUE_LVAL (val) = lval_memory;
3951 set_value_address (val, addr);
3952 write_memory (addr, value_contents (val), len);
3953 }
3954
3955 return val;
3956 }
3957
3958 /* Given ARG, a value of type (pointer or reference to a)*
3959 structure/union, extract the component named NAME from the ultimate
3960 target structure/union and return it as a value with its
3961 appropriate type.
3962
3963 The routine searches for NAME among all members of the structure itself
3964 and (recursively) among all members of any wrapper members
3965 (e.g., '_parent').
3966
3967 If NO_ERR, then simply return NULL in case of error, rather than
3968 calling error. */
3969
3970 static struct value *
3971 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
3972 {
3973 struct type *t, *t1;
3974 struct value *v;
3975 int check_tag;
3976
3977 v = NULL;
3978 t1 = t = ada_check_typedef (value_type (arg));
3979 if (t->code () == TYPE_CODE_REF)
3980 {
3981 t1 = TYPE_TARGET_TYPE (t);
3982 if (t1 == NULL)
3983 goto BadValue;
3984 t1 = ada_check_typedef (t1);
3985 if (t1->code () == TYPE_CODE_PTR)
3986 {
3987 arg = coerce_ref (arg);
3988 t = t1;
3989 }
3990 }
3991
3992 while (t->code () == TYPE_CODE_PTR)
3993 {
3994 t1 = TYPE_TARGET_TYPE (t);
3995 if (t1 == NULL)
3996 goto BadValue;
3997 t1 = ada_check_typedef (t1);
3998 if (t1->code () == TYPE_CODE_PTR)
3999 {
4000 arg = value_ind (arg);
4001 t = t1;
4002 }
4003 else
4004 break;
4005 }
4006
4007 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4008 goto BadValue;
4009
4010 if (t1 == t)
4011 v = ada_search_struct_field (name, arg, 0, t);
4012 else
4013 {
4014 int bit_offset, bit_size, byte_offset;
4015 struct type *field_type;
4016 CORE_ADDR address;
4017
4018 if (t->code () == TYPE_CODE_PTR)
4019 address = value_address (ada_value_ind (arg));
4020 else
4021 address = value_address (ada_coerce_ref (arg));
4022
4023 /* Check to see if this is a tagged type. We also need to handle
4024 the case where the type is a reference to a tagged type, but
4025 we have to be careful to exclude pointers to tagged types.
4026 The latter should be shown as usual (as a pointer), whereas
4027 a reference should mostly be transparent to the user. */
4028
4029 if (ada_is_tagged_type (t1, 0)
4030 || (t1->code () == TYPE_CODE_REF
4031 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4032 {
4033 /* We first try to find the searched field in the current type.
4034 If not found then let's look in the fixed type. */
4035
4036 if (!find_struct_field (name, t1, 0,
4037 &field_type, &byte_offset, &bit_offset,
4038 &bit_size, NULL))
4039 check_tag = 1;
4040 else
4041 check_tag = 0;
4042 }
4043 else
4044 check_tag = 0;
4045
4046 /* Convert to fixed type in all cases, so that we have proper
4047 offsets to each field in unconstrained record types. */
4048 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4049 address, NULL, check_tag);
4050
4051 /* Resolve the dynamic type as well. */
4052 arg = value_from_contents_and_address (t1, nullptr, address);
4053 t1 = value_type (arg);
4054
4055 if (find_struct_field (name, t1, 0,
4056 &field_type, &byte_offset, &bit_offset,
4057 &bit_size, NULL))
4058 {
4059 if (bit_size != 0)
4060 {
4061 if (t->code () == TYPE_CODE_REF)
4062 arg = ada_coerce_ref (arg);
4063 else
4064 arg = ada_value_ind (arg);
4065 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4066 bit_offset, bit_size,
4067 field_type);
4068 }
4069 else
4070 v = value_at_lazy (field_type, address + byte_offset);
4071 }
4072 }
4073
4074 if (v != NULL || no_err)
4075 return v;
4076 else
4077 error (_("There is no member named %s."), name);
4078
4079 BadValue:
4080 if (no_err)
4081 return NULL;
4082 else
4083 error (_("Attempt to extract a component of "
4084 "a value that is not a record."));
4085 }
4086
4087 /* Return the value ACTUAL, converted to be an appropriate value for a
4088 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4089 allocating any necessary descriptors (fat pointers), or copies of
4090 values not residing in memory, updating it as needed. */
4091
4092 struct value *
4093 ada_convert_actual (struct value *actual, struct type *formal_type0)
4094 {
4095 struct type *actual_type = ada_check_typedef (value_type (actual));
4096 struct type *formal_type = ada_check_typedef (formal_type0);
4097 struct type *formal_target =
4098 formal_type->code () == TYPE_CODE_PTR
4099 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4100 struct type *actual_target =
4101 actual_type->code () == TYPE_CODE_PTR
4102 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4103
4104 if (ada_is_array_descriptor_type (formal_target)
4105 && actual_target->code () == TYPE_CODE_ARRAY)
4106 return make_array_descriptor (formal_type, actual);
4107 else if (formal_type->code () == TYPE_CODE_PTR
4108 || formal_type->code () == TYPE_CODE_REF)
4109 {
4110 struct value *result;
4111
4112 if (formal_target->code () == TYPE_CODE_ARRAY
4113 && ada_is_array_descriptor_type (actual_target))
4114 result = desc_data (actual);
4115 else if (formal_type->code () != TYPE_CODE_PTR)
4116 {
4117 if (VALUE_LVAL (actual) != lval_memory)
4118 {
4119 struct value *val;
4120
4121 actual_type = ada_check_typedef (value_type (actual));
4122 val = allocate_value (actual_type);
4123 memcpy ((char *) value_contents_raw (val),
4124 (char *) value_contents (actual),
4125 TYPE_LENGTH (actual_type));
4126 actual = ensure_lval (val);
4127 }
4128 result = value_addr (actual);
4129 }
4130 else
4131 return actual;
4132 return value_cast_pointers (formal_type, result, 0);
4133 }
4134 else if (actual_type->code () == TYPE_CODE_PTR)
4135 return ada_value_ind (actual);
4136 else if (ada_is_aligner_type (formal_type))
4137 {
4138 /* We need to turn this parameter into an aligner type
4139 as well. */
4140 struct value *aligner = allocate_value (formal_type);
4141 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4142
4143 value_assign_to_component (aligner, component, actual);
4144 return aligner;
4145 }
4146
4147 return actual;
4148 }
4149
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155 static CORE_ADDR
4156 value_pointer (struct value *value, struct type *type)
4157 {
4158 unsigned len = TYPE_LENGTH (type);
4159 gdb_byte *buf = (gdb_byte *) alloca (len);
4160 CORE_ADDR addr;
4161
4162 addr = value_address (value);
4163 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4164 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4165 return addr;
4166 }
4167
4168
4169 /* Push a descriptor of type TYPE for array value ARR on the stack at
4170 *SP, updating *SP to reflect the new descriptor. Return either
4171 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4172 to-descriptor type rather than a descriptor type), a struct value *
4173 representing a pointer to this descriptor. */
4174
4175 static struct value *
4176 make_array_descriptor (struct type *type, struct value *arr)
4177 {
4178 struct type *bounds_type = desc_bounds_type (type);
4179 struct type *desc_type = desc_base_type (type);
4180 struct value *descriptor = allocate_value (desc_type);
4181 struct value *bounds = allocate_value (bounds_type);
4182 int i;
4183
4184 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4185 i > 0; i -= 1)
4186 {
4187 modify_field (value_type (bounds), value_contents_writeable (bounds),
4188 ada_array_bound (arr, i, 0),
4189 desc_bound_bitpos (bounds_type, i, 0),
4190 desc_bound_bitsize (bounds_type, i, 0));
4191 modify_field (value_type (bounds), value_contents_writeable (bounds),
4192 ada_array_bound (arr, i, 1),
4193 desc_bound_bitpos (bounds_type, i, 1),
4194 desc_bound_bitsize (bounds_type, i, 1));
4195 }
4196
4197 bounds = ensure_lval (bounds);
4198
4199 modify_field (value_type (descriptor),
4200 value_contents_writeable (descriptor),
4201 value_pointer (ensure_lval (arr),
4202 desc_type->field (0).type ()),
4203 fat_pntr_data_bitpos (desc_type),
4204 fat_pntr_data_bitsize (desc_type));
4205
4206 modify_field (value_type (descriptor),
4207 value_contents_writeable (descriptor),
4208 value_pointer (bounds,
4209 desc_type->field (1).type ()),
4210 fat_pntr_bounds_bitpos (desc_type),
4211 fat_pntr_bounds_bitsize (desc_type));
4212
4213 descriptor = ensure_lval (descriptor);
4214
4215 if (type->code () == TYPE_CODE_PTR)
4216 return value_addr (descriptor);
4217 else
4218 return descriptor;
4219 }
4220 \f
4221 /* Symbol Cache Module */
4222
4223 /* Performance measurements made as of 2010-01-15 indicate that
4224 this cache does bring some noticeable improvements. Depending
4225 on the type of entity being printed, the cache can make it as much
4226 as an order of magnitude faster than without it.
4227
4228 The descriptive type DWARF extension has significantly reduced
4229 the need for this cache, at least when DWARF is being used. However,
4230 even in this case, some expensive name-based symbol searches are still
4231 sometimes necessary - to find an XVZ variable, mostly. */
4232
4233 /* Return the symbol cache associated to the given program space PSPACE.
4234 If not allocated for this PSPACE yet, allocate and initialize one. */
4235
4236 static struct ada_symbol_cache *
4237 ada_get_symbol_cache (struct program_space *pspace)
4238 {
4239 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4240
4241 if (pspace_data->sym_cache == nullptr)
4242 pspace_data->sym_cache.reset (new ada_symbol_cache);
4243
4244 return pspace_data->sym_cache.get ();
4245 }
4246
4247 /* Clear all entries from the symbol cache. */
4248
4249 static void
4250 ada_clear_symbol_cache ()
4251 {
4252 struct ada_pspace_data *pspace_data
4253 = get_ada_pspace_data (current_program_space);
4254
4255 if (pspace_data->sym_cache != nullptr)
4256 pspace_data->sym_cache.reset ();
4257 }
4258
4259 /* Search our cache for an entry matching NAME and DOMAIN.
4260 Return it if found, or NULL otherwise. */
4261
4262 static struct cache_entry **
4263 find_entry (const char *name, domain_enum domain)
4264 {
4265 struct ada_symbol_cache *sym_cache
4266 = ada_get_symbol_cache (current_program_space);
4267 int h = msymbol_hash (name) % HASH_SIZE;
4268 struct cache_entry **e;
4269
4270 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4271 {
4272 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4273 return e;
4274 }
4275 return NULL;
4276 }
4277
4278 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4279 Return 1 if found, 0 otherwise.
4280
4281 If an entry was found and SYM is not NULL, set *SYM to the entry's
4282 SYM. Same principle for BLOCK if not NULL. */
4283
4284 static int
4285 lookup_cached_symbol (const char *name, domain_enum domain,
4286 struct symbol **sym, const struct block **block)
4287 {
4288 struct cache_entry **e = find_entry (name, domain);
4289
4290 if (e == NULL)
4291 return 0;
4292 if (sym != NULL)
4293 *sym = (*e)->sym;
4294 if (block != NULL)
4295 *block = (*e)->block;
4296 return 1;
4297 }
4298
4299 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4300 in domain DOMAIN, save this result in our symbol cache. */
4301
4302 static void
4303 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4304 const struct block *block)
4305 {
4306 struct ada_symbol_cache *sym_cache
4307 = ada_get_symbol_cache (current_program_space);
4308 int h;
4309 struct cache_entry *e;
4310
4311 /* Symbols for builtin types don't have a block.
4312 For now don't cache such symbols. */
4313 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4314 return;
4315
4316 /* If the symbol is a local symbol, then do not cache it, as a search
4317 for that symbol depends on the context. To determine whether
4318 the symbol is local or not, we check the block where we found it
4319 against the global and static blocks of its associated symtab. */
4320 if (sym
4321 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4322 GLOBAL_BLOCK) != block
4323 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4324 STATIC_BLOCK) != block)
4325 return;
4326
4327 h = msymbol_hash (name) % HASH_SIZE;
4328 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4329 e->next = sym_cache->root[h];
4330 sym_cache->root[h] = e;
4331 e->name = obstack_strdup (&sym_cache->cache_space, name);
4332 e->sym = sym;
4333 e->domain = domain;
4334 e->block = block;
4335 }
4336 \f
4337 /* Symbol Lookup */
4338
4339 /* Return the symbol name match type that should be used used when
4340 searching for all symbols matching LOOKUP_NAME.
4341
4342 LOOKUP_NAME is expected to be a symbol name after transformation
4343 for Ada lookups. */
4344
4345 static symbol_name_match_type
4346 name_match_type_from_name (const char *lookup_name)
4347 {
4348 return (strstr (lookup_name, "__") == NULL
4349 ? symbol_name_match_type::WILD
4350 : symbol_name_match_type::FULL);
4351 }
4352
4353 /* Return the result of a standard (literal, C-like) lookup of NAME in
4354 given DOMAIN, visible from lexical block BLOCK. */
4355
4356 static struct symbol *
4357 standard_lookup (const char *name, const struct block *block,
4358 domain_enum domain)
4359 {
4360 /* Initialize it just to avoid a GCC false warning. */
4361 struct block_symbol sym = {};
4362
4363 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4364 return sym.symbol;
4365 ada_lookup_encoded_symbol (name, block, domain, &sym);
4366 cache_symbol (name, domain, sym.symbol, sym.block);
4367 return sym.symbol;
4368 }
4369
4370
4371 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4372 in the symbol fields of SYMS. We treat enumerals as functions,
4373 since they contend in overloading in the same way. */
4374 static int
4375 is_nonfunction (const std::vector<struct block_symbol> &syms)
4376 {
4377 for (const block_symbol &sym : syms)
4378 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4379 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4380 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
4381 return 1;
4382
4383 return 0;
4384 }
4385
4386 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4387 struct types. Otherwise, they may not. */
4388
4389 static int
4390 equiv_types (struct type *type0, struct type *type1)
4391 {
4392 if (type0 == type1)
4393 return 1;
4394 if (type0 == NULL || type1 == NULL
4395 || type0->code () != type1->code ())
4396 return 0;
4397 if ((type0->code () == TYPE_CODE_STRUCT
4398 || type0->code () == TYPE_CODE_ENUM)
4399 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4400 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4401 return 1;
4402
4403 return 0;
4404 }
4405
4406 /* True iff SYM0 represents the same entity as SYM1, or one that is
4407 no more defined than that of SYM1. */
4408
4409 static int
4410 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4411 {
4412 if (sym0 == sym1)
4413 return 1;
4414 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4415 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4416 return 0;
4417
4418 switch (SYMBOL_CLASS (sym0))
4419 {
4420 case LOC_UNDEF:
4421 return 1;
4422 case LOC_TYPEDEF:
4423 {
4424 struct type *type0 = SYMBOL_TYPE (sym0);
4425 struct type *type1 = SYMBOL_TYPE (sym1);
4426 const char *name0 = sym0->linkage_name ();
4427 const char *name1 = sym1->linkage_name ();
4428 int len0 = strlen (name0);
4429
4430 return
4431 type0->code () == type1->code ()
4432 && (equiv_types (type0, type1)
4433 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4434 && startswith (name1 + len0, "___XV")));
4435 }
4436 case LOC_CONST:
4437 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4438 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4439
4440 case LOC_STATIC:
4441 {
4442 const char *name0 = sym0->linkage_name ();
4443 const char *name1 = sym1->linkage_name ();
4444 return (strcmp (name0, name1) == 0
4445 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4446 }
4447
4448 default:
4449 return 0;
4450 }
4451 }
4452
4453 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4454 records in RESULT. Do nothing if SYM is a duplicate. */
4455
4456 static void
4457 add_defn_to_vec (std::vector<struct block_symbol> &result,
4458 struct symbol *sym,
4459 const struct block *block)
4460 {
4461 /* Do not try to complete stub types, as the debugger is probably
4462 already scanning all symbols matching a certain name at the
4463 time when this function is called. Trying to replace the stub
4464 type by its associated full type will cause us to restart a scan
4465 which may lead to an infinite recursion. Instead, the client
4466 collecting the matching symbols will end up collecting several
4467 matches, with at least one of them complete. It can then filter
4468 out the stub ones if needed. */
4469
4470 for (int i = result.size () - 1; i >= 0; i -= 1)
4471 {
4472 if (lesseq_defined_than (sym, result[i].symbol))
4473 return;
4474 else if (lesseq_defined_than (result[i].symbol, sym))
4475 {
4476 result[i].symbol = sym;
4477 result[i].block = block;
4478 return;
4479 }
4480 }
4481
4482 struct block_symbol info;
4483 info.symbol = sym;
4484 info.block = block;
4485 result.push_back (info);
4486 }
4487
4488 /* Return a bound minimal symbol matching NAME according to Ada
4489 decoding rules. Returns an invalid symbol if there is no such
4490 minimal symbol. Names prefixed with "standard__" are handled
4491 specially: "standard__" is first stripped off, and only static and
4492 global symbols are searched. */
4493
4494 struct bound_minimal_symbol
4495 ada_lookup_simple_minsym (const char *name)
4496 {
4497 struct bound_minimal_symbol result;
4498
4499 memset (&result, 0, sizeof (result));
4500
4501 symbol_name_match_type match_type = name_match_type_from_name (name);
4502 lookup_name_info lookup_name (name, match_type);
4503
4504 symbol_name_matcher_ftype *match_name
4505 = ada_get_symbol_name_matcher (lookup_name);
4506
4507 for (objfile *objfile : current_program_space->objfiles ())
4508 {
4509 for (minimal_symbol *msymbol : objfile->msymbols ())
4510 {
4511 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4512 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4513 {
4514 result.minsym = msymbol;
4515 result.objfile = objfile;
4516 break;
4517 }
4518 }
4519 }
4520
4521 return result;
4522 }
4523
4524 /* For all subprograms that statically enclose the subprogram of the
4525 selected frame, add symbols matching identifier NAME in DOMAIN
4526 and their blocks to the list of data in RESULT, as for
4527 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4528 with a wildcard prefix. */
4529
4530 static void
4531 add_symbols_from_enclosing_procs (std::vector<struct block_symbol> &result,
4532 const lookup_name_info &lookup_name,
4533 domain_enum domain)
4534 {
4535 }
4536
4537 /* True if TYPE is definitely an artificial type supplied to a symbol
4538 for which no debugging information was given in the symbol file. */
4539
4540 static int
4541 is_nondebugging_type (struct type *type)
4542 {
4543 const char *name = ada_type_name (type);
4544
4545 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4546 }
4547
4548 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4549 that are deemed "identical" for practical purposes.
4550
4551 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4552 types and that their number of enumerals is identical (in other
4553 words, type1->num_fields () == type2->num_fields ()). */
4554
4555 static int
4556 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4557 {
4558 int i;
4559
4560 /* The heuristic we use here is fairly conservative. We consider
4561 that 2 enumerate types are identical if they have the same
4562 number of enumerals and that all enumerals have the same
4563 underlying value and name. */
4564
4565 /* All enums in the type should have an identical underlying value. */
4566 for (i = 0; i < type1->num_fields (); i++)
4567 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4568 return 0;
4569
4570 /* All enumerals should also have the same name (modulo any numerical
4571 suffix). */
4572 for (i = 0; i < type1->num_fields (); i++)
4573 {
4574 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4575 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4576 int len_1 = strlen (name_1);
4577 int len_2 = strlen (name_2);
4578
4579 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4580 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4581 if (len_1 != len_2
4582 || strncmp (TYPE_FIELD_NAME (type1, i),
4583 TYPE_FIELD_NAME (type2, i),
4584 len_1) != 0)
4585 return 0;
4586 }
4587
4588 return 1;
4589 }
4590
4591 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4592 that are deemed "identical" for practical purposes. Sometimes,
4593 enumerals are not strictly identical, but their types are so similar
4594 that they can be considered identical.
4595
4596 For instance, consider the following code:
4597
4598 type Color is (Black, Red, Green, Blue, White);
4599 type RGB_Color is new Color range Red .. Blue;
4600
4601 Type RGB_Color is a subrange of an implicit type which is a copy
4602 of type Color. If we call that implicit type RGB_ColorB ("B" is
4603 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4604 As a result, when an expression references any of the enumeral
4605 by name (Eg. "print green"), the expression is technically
4606 ambiguous and the user should be asked to disambiguate. But
4607 doing so would only hinder the user, since it wouldn't matter
4608 what choice he makes, the outcome would always be the same.
4609 So, for practical purposes, we consider them as the same. */
4610
4611 static int
4612 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4613 {
4614 int i;
4615
4616 /* Before performing a thorough comparison check of each type,
4617 we perform a series of inexpensive checks. We expect that these
4618 checks will quickly fail in the vast majority of cases, and thus
4619 help prevent the unnecessary use of a more expensive comparison.
4620 Said comparison also expects us to make some of these checks
4621 (see ada_identical_enum_types_p). */
4622
4623 /* Quick check: All symbols should have an enum type. */
4624 for (i = 0; i < syms.size (); i++)
4625 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4626 return 0;
4627
4628 /* Quick check: They should all have the same value. */
4629 for (i = 1; i < syms.size (); i++)
4630 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4631 return 0;
4632
4633 /* Quick check: They should all have the same number of enumerals. */
4634 for (i = 1; i < syms.size (); i++)
4635 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4636 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4637 return 0;
4638
4639 /* All the sanity checks passed, so we might have a set of
4640 identical enumeration types. Perform a more complete
4641 comparison of the type of each symbol. */
4642 for (i = 1; i < syms.size (); i++)
4643 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4644 SYMBOL_TYPE (syms[0].symbol)))
4645 return 0;
4646
4647 return 1;
4648 }
4649
4650 /* Remove any non-debugging symbols in SYMS that definitely
4651 duplicate other symbols in the list (The only case I know of where
4652 this happens is when object files containing stabs-in-ecoff are
4653 linked with files containing ordinary ecoff debugging symbols (or no
4654 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4655
4656 static void
4657 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4658 {
4659 int i, j;
4660
4661 /* We should never be called with less than 2 symbols, as there
4662 cannot be any extra symbol in that case. But it's easy to
4663 handle, since we have nothing to do in that case. */
4664 if (syms->size () < 2)
4665 return;
4666
4667 i = 0;
4668 while (i < syms->size ())
4669 {
4670 int remove_p = 0;
4671
4672 /* If two symbols have the same name and one of them is a stub type,
4673 the get rid of the stub. */
4674
4675 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4676 && (*syms)[i].symbol->linkage_name () != NULL)
4677 {
4678 for (j = 0; j < syms->size (); j++)
4679 {
4680 if (j != i
4681 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4682 && (*syms)[j].symbol->linkage_name () != NULL
4683 && strcmp ((*syms)[i].symbol->linkage_name (),
4684 (*syms)[j].symbol->linkage_name ()) == 0)
4685 remove_p = 1;
4686 }
4687 }
4688
4689 /* Two symbols with the same name, same class and same address
4690 should be identical. */
4691
4692 else if ((*syms)[i].symbol->linkage_name () != NULL
4693 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4694 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4695 {
4696 for (j = 0; j < syms->size (); j += 1)
4697 {
4698 if (i != j
4699 && (*syms)[j].symbol->linkage_name () != NULL
4700 && strcmp ((*syms)[i].symbol->linkage_name (),
4701 (*syms)[j].symbol->linkage_name ()) == 0
4702 && SYMBOL_CLASS ((*syms)[i].symbol)
4703 == SYMBOL_CLASS ((*syms)[j].symbol)
4704 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4705 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4706 remove_p = 1;
4707 }
4708 }
4709
4710 if (remove_p)
4711 syms->erase (syms->begin () + i);
4712 else
4713 i += 1;
4714 }
4715
4716 /* If all the remaining symbols are identical enumerals, then
4717 just keep the first one and discard the rest.
4718
4719 Unlike what we did previously, we do not discard any entry
4720 unless they are ALL identical. This is because the symbol
4721 comparison is not a strict comparison, but rather a practical
4722 comparison. If all symbols are considered identical, then
4723 we can just go ahead and use the first one and discard the rest.
4724 But if we cannot reduce the list to a single element, we have
4725 to ask the user to disambiguate anyways. And if we have to
4726 present a multiple-choice menu, it's less confusing if the list
4727 isn't missing some choices that were identical and yet distinct. */
4728 if (symbols_are_identical_enums (*syms))
4729 syms->resize (1);
4730 }
4731
4732 /* Given a type that corresponds to a renaming entity, use the type name
4733 to extract the scope (package name or function name, fully qualified,
4734 and following the GNAT encoding convention) where this renaming has been
4735 defined. */
4736
4737 static std::string
4738 xget_renaming_scope (struct type *renaming_type)
4739 {
4740 /* The renaming types adhere to the following convention:
4741 <scope>__<rename>___<XR extension>.
4742 So, to extract the scope, we search for the "___XR" extension,
4743 and then backtrack until we find the first "__". */
4744
4745 const char *name = renaming_type->name ();
4746 const char *suffix = strstr (name, "___XR");
4747 const char *last;
4748
4749 /* Now, backtrack a bit until we find the first "__". Start looking
4750 at suffix - 3, as the <rename> part is at least one character long. */
4751
4752 for (last = suffix - 3; last > name; last--)
4753 if (last[0] == '_' && last[1] == '_')
4754 break;
4755
4756 /* Make a copy of scope and return it. */
4757 return std::string (name, last);
4758 }
4759
4760 /* Return nonzero if NAME corresponds to a package name. */
4761
4762 static int
4763 is_package_name (const char *name)
4764 {
4765 /* Here, We take advantage of the fact that no symbols are generated
4766 for packages, while symbols are generated for each function.
4767 So the condition for NAME represent a package becomes equivalent
4768 to NAME not existing in our list of symbols. There is only one
4769 small complication with library-level functions (see below). */
4770
4771 /* If it is a function that has not been defined at library level,
4772 then we should be able to look it up in the symbols. */
4773 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4774 return 0;
4775
4776 /* Library-level function names start with "_ada_". See if function
4777 "_ada_" followed by NAME can be found. */
4778
4779 /* Do a quick check that NAME does not contain "__", since library-level
4780 functions names cannot contain "__" in them. */
4781 if (strstr (name, "__") != NULL)
4782 return 0;
4783
4784 std::string fun_name = string_printf ("_ada_%s", name);
4785
4786 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
4787 }
4788
4789 /* Return nonzero if SYM corresponds to a renaming entity that is
4790 not visible from FUNCTION_NAME. */
4791
4792 static int
4793 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4794 {
4795 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4796 return 0;
4797
4798 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4799
4800 /* If the rename has been defined in a package, then it is visible. */
4801 if (is_package_name (scope.c_str ()))
4802 return 0;
4803
4804 /* Check that the rename is in the current function scope by checking
4805 that its name starts with SCOPE. */
4806
4807 /* If the function name starts with "_ada_", it means that it is
4808 a library-level function. Strip this prefix before doing the
4809 comparison, as the encoding for the renaming does not contain
4810 this prefix. */
4811 if (startswith (function_name, "_ada_"))
4812 function_name += 5;
4813
4814 return !startswith (function_name, scope.c_str ());
4815 }
4816
4817 /* Remove entries from SYMS that corresponds to a renaming entity that
4818 is not visible from the function associated with CURRENT_BLOCK or
4819 that is superfluous due to the presence of more specific renaming
4820 information. Places surviving symbols in the initial entries of
4821 SYMS.
4822
4823 Rationale:
4824 First, in cases where an object renaming is implemented as a
4825 reference variable, GNAT may produce both the actual reference
4826 variable and the renaming encoding. In this case, we discard the
4827 latter.
4828
4829 Second, GNAT emits a type following a specified encoding for each renaming
4830 entity. Unfortunately, STABS currently does not support the definition
4831 of types that are local to a given lexical block, so all renamings types
4832 are emitted at library level. As a consequence, if an application
4833 contains two renaming entities using the same name, and a user tries to
4834 print the value of one of these entities, the result of the ada symbol
4835 lookup will also contain the wrong renaming type.
4836
4837 This function partially covers for this limitation by attempting to
4838 remove from the SYMS list renaming symbols that should be visible
4839 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4840 method with the current information available. The implementation
4841 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4842
4843 - When the user tries to print a rename in a function while there
4844 is another rename entity defined in a package: Normally, the
4845 rename in the function has precedence over the rename in the
4846 package, so the latter should be removed from the list. This is
4847 currently not the case.
4848
4849 - This function will incorrectly remove valid renames if
4850 the CURRENT_BLOCK corresponds to a function which symbol name
4851 has been changed by an "Export" pragma. As a consequence,
4852 the user will be unable to print such rename entities. */
4853
4854 static void
4855 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4856 const struct block *current_block)
4857 {
4858 struct symbol *current_function;
4859 const char *current_function_name;
4860 int i;
4861 int is_new_style_renaming;
4862
4863 /* If there is both a renaming foo___XR... encoded as a variable and
4864 a simple variable foo in the same block, discard the latter.
4865 First, zero out such symbols, then compress. */
4866 is_new_style_renaming = 0;
4867 for (i = 0; i < syms->size (); i += 1)
4868 {
4869 struct symbol *sym = (*syms)[i].symbol;
4870 const struct block *block = (*syms)[i].block;
4871 const char *name;
4872 const char *suffix;
4873
4874 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4875 continue;
4876 name = sym->linkage_name ();
4877 suffix = strstr (name, "___XR");
4878
4879 if (suffix != NULL)
4880 {
4881 int name_len = suffix - name;
4882 int j;
4883
4884 is_new_style_renaming = 1;
4885 for (j = 0; j < syms->size (); j += 1)
4886 if (i != j && (*syms)[j].symbol != NULL
4887 && strncmp (name, (*syms)[j].symbol->linkage_name (),
4888 name_len) == 0
4889 && block == (*syms)[j].block)
4890 (*syms)[j].symbol = NULL;
4891 }
4892 }
4893 if (is_new_style_renaming)
4894 {
4895 int j, k;
4896
4897 for (j = k = 0; j < syms->size (); j += 1)
4898 if ((*syms)[j].symbol != NULL)
4899 {
4900 (*syms)[k] = (*syms)[j];
4901 k += 1;
4902 }
4903 syms->resize (k);
4904 return;
4905 }
4906
4907 /* Extract the function name associated to CURRENT_BLOCK.
4908 Abort if unable to do so. */
4909
4910 if (current_block == NULL)
4911 return;
4912
4913 current_function = block_linkage_function (current_block);
4914 if (current_function == NULL)
4915 return;
4916
4917 current_function_name = current_function->linkage_name ();
4918 if (current_function_name == NULL)
4919 return;
4920
4921 /* Check each of the symbols, and remove it from the list if it is
4922 a type corresponding to a renaming that is out of the scope of
4923 the current block. */
4924
4925 i = 0;
4926 while (i < syms->size ())
4927 {
4928 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
4929 == ADA_OBJECT_RENAMING
4930 && old_renaming_is_invisible ((*syms)[i].symbol,
4931 current_function_name))
4932 syms->erase (syms->begin () + i);
4933 else
4934 i += 1;
4935 }
4936 }
4937
4938 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
4939 whose name and domain match NAME and DOMAIN respectively.
4940 If no match was found, then extend the search to "enclosing"
4941 routines (in other words, if we're inside a nested function,
4942 search the symbols defined inside the enclosing functions).
4943 If WILD_MATCH_P is nonzero, perform the naming matching in
4944 "wild" mode (see function "wild_match" for more info).
4945
4946 Note: This function assumes that RESULT has 0 (zero) element in it. */
4947
4948 static void
4949 ada_add_local_symbols (std::vector<struct block_symbol> &result,
4950 const lookup_name_info &lookup_name,
4951 const struct block *block, domain_enum domain)
4952 {
4953 int block_depth = 0;
4954
4955 while (block != NULL)
4956 {
4957 block_depth += 1;
4958 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4959
4960 /* If we found a non-function match, assume that's the one. */
4961 if (is_nonfunction (result))
4962 return;
4963
4964 block = BLOCK_SUPERBLOCK (block);
4965 }
4966
4967 /* If no luck so far, try to find NAME as a local symbol in some lexically
4968 enclosing subprogram. */
4969 if (result.empty () && block_depth > 2)
4970 add_symbols_from_enclosing_procs (result, lookup_name, domain);
4971 }
4972
4973 /* An object of this type is used as the user_data argument when
4974 calling the map_matching_symbols method. */
4975
4976 struct match_data
4977 {
4978 explicit match_data (std::vector<struct block_symbol> *rp)
4979 : resultp (rp)
4980 {
4981 }
4982 DISABLE_COPY_AND_ASSIGN (match_data);
4983
4984 struct objfile *objfile = nullptr;
4985 std::vector<struct block_symbol> *resultp;
4986 struct symbol *arg_sym = nullptr;
4987 bool found_sym = false;
4988 };
4989
4990 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
4991 to a list of symbols. DATA is a pointer to a struct match_data *
4992 containing the vector that collects the symbol list, the file that SYM
4993 must come from, a flag indicating whether a non-argument symbol has
4994 been found in the current block, and the last argument symbol
4995 passed in SYM within the current block (if any). When SYM is null,
4996 marking the end of a block, the argument symbol is added if no
4997 other has been found. */
4998
4999 static bool
5000 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5001 struct match_data *data)
5002 {
5003 const struct block *block = bsym->block;
5004 struct symbol *sym = bsym->symbol;
5005
5006 if (sym == NULL)
5007 {
5008 if (!data->found_sym && data->arg_sym != NULL)
5009 add_defn_to_vec (*data->resultp,
5010 fixup_symbol_section (data->arg_sym, data->objfile),
5011 block);
5012 data->found_sym = false;
5013 data->arg_sym = NULL;
5014 }
5015 else
5016 {
5017 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5018 return true;
5019 else if (SYMBOL_IS_ARGUMENT (sym))
5020 data->arg_sym = sym;
5021 else
5022 {
5023 data->found_sym = true;
5024 add_defn_to_vec (*data->resultp,
5025 fixup_symbol_section (sym, data->objfile),
5026 block);
5027 }
5028 }
5029 return true;
5030 }
5031
5032 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5033 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5034 symbols to RESULT. Return whether we found such symbols. */
5035
5036 static int
5037 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5038 const struct block *block,
5039 const lookup_name_info &lookup_name,
5040 domain_enum domain)
5041 {
5042 struct using_direct *renaming;
5043 int defns_mark = result.size ();
5044
5045 symbol_name_matcher_ftype *name_match
5046 = ada_get_symbol_name_matcher (lookup_name);
5047
5048 for (renaming = block_using (block);
5049 renaming != NULL;
5050 renaming = renaming->next)
5051 {
5052 const char *r_name;
5053
5054 /* Avoid infinite recursions: skip this renaming if we are actually
5055 already traversing it.
5056
5057 Currently, symbol lookup in Ada don't use the namespace machinery from
5058 C++/Fortran support: skip namespace imports that use them. */
5059 if (renaming->searched
5060 || (renaming->import_src != NULL
5061 && renaming->import_src[0] != '\0')
5062 || (renaming->import_dest != NULL
5063 && renaming->import_dest[0] != '\0'))
5064 continue;
5065 renaming->searched = 1;
5066
5067 /* TODO: here, we perform another name-based symbol lookup, which can
5068 pull its own multiple overloads. In theory, we should be able to do
5069 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5070 not a simple name. But in order to do this, we would need to enhance
5071 the DWARF reader to associate a symbol to this renaming, instead of a
5072 name. So, for now, we do something simpler: re-use the C++/Fortran
5073 namespace machinery. */
5074 r_name = (renaming->alias != NULL
5075 ? renaming->alias
5076 : renaming->declaration);
5077 if (name_match (r_name, lookup_name, NULL))
5078 {
5079 lookup_name_info decl_lookup_name (renaming->declaration,
5080 lookup_name.match_type ());
5081 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5082 1, NULL);
5083 }
5084 renaming->searched = 0;
5085 }
5086 return result.size () != defns_mark;
5087 }
5088
5089 /* Implements compare_names, but only applying the comparision using
5090 the given CASING. */
5091
5092 static int
5093 compare_names_with_case (const char *string1, const char *string2,
5094 enum case_sensitivity casing)
5095 {
5096 while (*string1 != '\0' && *string2 != '\0')
5097 {
5098 char c1, c2;
5099
5100 if (isspace (*string1) || isspace (*string2))
5101 return strcmp_iw_ordered (string1, string2);
5102
5103 if (casing == case_sensitive_off)
5104 {
5105 c1 = tolower (*string1);
5106 c2 = tolower (*string2);
5107 }
5108 else
5109 {
5110 c1 = *string1;
5111 c2 = *string2;
5112 }
5113 if (c1 != c2)
5114 break;
5115
5116 string1 += 1;
5117 string2 += 1;
5118 }
5119
5120 switch (*string1)
5121 {
5122 case '(':
5123 return strcmp_iw_ordered (string1, string2);
5124 case '_':
5125 if (*string2 == '\0')
5126 {
5127 if (is_name_suffix (string1))
5128 return 0;
5129 else
5130 return 1;
5131 }
5132 /* FALLTHROUGH */
5133 default:
5134 if (*string2 == '(')
5135 return strcmp_iw_ordered (string1, string2);
5136 else
5137 {
5138 if (casing == case_sensitive_off)
5139 return tolower (*string1) - tolower (*string2);
5140 else
5141 return *string1 - *string2;
5142 }
5143 }
5144 }
5145
5146 /* Compare STRING1 to STRING2, with results as for strcmp.
5147 Compatible with strcmp_iw_ordered in that...
5148
5149 strcmp_iw_ordered (STRING1, STRING2) <= 0
5150
5151 ... implies...
5152
5153 compare_names (STRING1, STRING2) <= 0
5154
5155 (they may differ as to what symbols compare equal). */
5156
5157 static int
5158 compare_names (const char *string1, const char *string2)
5159 {
5160 int result;
5161
5162 /* Similar to what strcmp_iw_ordered does, we need to perform
5163 a case-insensitive comparison first, and only resort to
5164 a second, case-sensitive, comparison if the first one was
5165 not sufficient to differentiate the two strings. */
5166
5167 result = compare_names_with_case (string1, string2, case_sensitive_off);
5168 if (result == 0)
5169 result = compare_names_with_case (string1, string2, case_sensitive_on);
5170
5171 return result;
5172 }
5173
5174 /* Convenience function to get at the Ada encoded lookup name for
5175 LOOKUP_NAME, as a C string. */
5176
5177 static const char *
5178 ada_lookup_name (const lookup_name_info &lookup_name)
5179 {
5180 return lookup_name.ada ().lookup_name ().c_str ();
5181 }
5182
5183 /* Add to RESULT all non-local symbols whose name and domain match
5184 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5185 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5186 symbols otherwise. */
5187
5188 static void
5189 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5190 const lookup_name_info &lookup_name,
5191 domain_enum domain, int global)
5192 {
5193 struct match_data data (&result);
5194
5195 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5196
5197 auto callback = [&] (struct block_symbol *bsym)
5198 {
5199 return aux_add_nonlocal_symbols (bsym, &data);
5200 };
5201
5202 for (objfile *objfile : current_program_space->objfiles ())
5203 {
5204 data.objfile = objfile;
5205
5206 objfile->map_matching_symbols (lookup_name, domain, global, callback,
5207 is_wild_match ? NULL : compare_names);
5208
5209 for (compunit_symtab *cu : objfile->compunits ())
5210 {
5211 const struct block *global_block
5212 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5213
5214 if (ada_add_block_renamings (result, global_block, lookup_name,
5215 domain))
5216 data.found_sym = true;
5217 }
5218 }
5219
5220 if (result.empty () && global && !is_wild_match)
5221 {
5222 const char *name = ada_lookup_name (lookup_name);
5223 std::string bracket_name = std::string ("<_ada_") + name + '>';
5224 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5225
5226 for (objfile *objfile : current_program_space->objfiles ())
5227 {
5228 data.objfile = objfile;
5229 objfile->map_matching_symbols (name1, domain, global, callback,
5230 compare_names);
5231 }
5232 }
5233 }
5234
5235 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5236 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5237 returning the number of matches. Add these to RESULT.
5238
5239 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5240 symbol match within the nest of blocks whose innermost member is BLOCK,
5241 is the one match returned (no other matches in that or
5242 enclosing blocks is returned). If there are any matches in or
5243 surrounding BLOCK, then these alone are returned.
5244
5245 Names prefixed with "standard__" are handled specially:
5246 "standard__" is first stripped off (by the lookup_name
5247 constructor), and only static and global symbols are searched.
5248
5249 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5250 to lookup global symbols. */
5251
5252 static void
5253 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5254 const struct block *block,
5255 const lookup_name_info &lookup_name,
5256 domain_enum domain,
5257 int full_search,
5258 int *made_global_lookup_p)
5259 {
5260 struct symbol *sym;
5261
5262 if (made_global_lookup_p)
5263 *made_global_lookup_p = 0;
5264
5265 /* Special case: If the user specifies a symbol name inside package
5266 Standard, do a non-wild matching of the symbol name without
5267 the "standard__" prefix. This was primarily introduced in order
5268 to allow the user to specifically access the standard exceptions
5269 using, for instance, Standard.Constraint_Error when Constraint_Error
5270 is ambiguous (due to the user defining its own Constraint_Error
5271 entity inside its program). */
5272 if (lookup_name.ada ().standard_p ())
5273 block = NULL;
5274
5275 /* Check the non-global symbols. If we have ANY match, then we're done. */
5276
5277 if (block != NULL)
5278 {
5279 if (full_search)
5280 ada_add_local_symbols (result, lookup_name, block, domain);
5281 else
5282 {
5283 /* In the !full_search case we're are being called by
5284 iterate_over_symbols, and we don't want to search
5285 superblocks. */
5286 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5287 }
5288 if (!result.empty () || !full_search)
5289 return;
5290 }
5291
5292 /* No non-global symbols found. Check our cache to see if we have
5293 already performed this search before. If we have, then return
5294 the same result. */
5295
5296 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5297 domain, &sym, &block))
5298 {
5299 if (sym != NULL)
5300 add_defn_to_vec (result, sym, block);
5301 return;
5302 }
5303
5304 if (made_global_lookup_p)
5305 *made_global_lookup_p = 1;
5306
5307 /* Search symbols from all global blocks. */
5308
5309 add_nonlocal_symbols (result, lookup_name, domain, 1);
5310
5311 /* Now add symbols from all per-file blocks if we've gotten no hits
5312 (not strictly correct, but perhaps better than an error). */
5313
5314 if (result.empty ())
5315 add_nonlocal_symbols (result, lookup_name, domain, 0);
5316 }
5317
5318 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5319 is non-zero, enclosing scope and in global scopes.
5320
5321 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5322 blocks and symbol tables (if any) in which they were found.
5323
5324 When full_search is non-zero, any non-function/non-enumeral
5325 symbol match within the nest of blocks whose innermost member is BLOCK,
5326 is the one match returned (no other matches in that or
5327 enclosing blocks is returned). If there are any matches in or
5328 surrounding BLOCK, then these alone are returned.
5329
5330 Names prefixed with "standard__" are handled specially: "standard__"
5331 is first stripped off, and only static and global symbols are searched. */
5332
5333 static std::vector<struct block_symbol>
5334 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5335 const struct block *block,
5336 domain_enum domain,
5337 int full_search)
5338 {
5339 int syms_from_global_search;
5340 std::vector<struct block_symbol> results;
5341
5342 ada_add_all_symbols (results, block, lookup_name,
5343 domain, full_search, &syms_from_global_search);
5344
5345 remove_extra_symbols (&results);
5346
5347 if (results.empty () && full_search && syms_from_global_search)
5348 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5349
5350 if (results.size () == 1 && full_search && syms_from_global_search)
5351 cache_symbol (ada_lookup_name (lookup_name), domain,
5352 results[0].symbol, results[0].block);
5353
5354 remove_irrelevant_renamings (&results, block);
5355 return results;
5356 }
5357
5358 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5359 in global scopes, returning (SYM,BLOCK) tuples.
5360
5361 See ada_lookup_symbol_list_worker for further details. */
5362
5363 std::vector<struct block_symbol>
5364 ada_lookup_symbol_list (const char *name, const struct block *block,
5365 domain_enum domain)
5366 {
5367 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5368 lookup_name_info lookup_name (name, name_match_type);
5369
5370 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5371 }
5372
5373 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5374 to 1, but choosing the first symbol found if there are multiple
5375 choices.
5376
5377 The result is stored in *INFO, which must be non-NULL.
5378 If no match is found, INFO->SYM is set to NULL. */
5379
5380 void
5381 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5382 domain_enum domain,
5383 struct block_symbol *info)
5384 {
5385 /* Since we already have an encoded name, wrap it in '<>' to force a
5386 verbatim match. Otherwise, if the name happens to not look like
5387 an encoded name (because it doesn't include a "__"),
5388 ada_lookup_name_info would re-encode/fold it again, and that
5389 would e.g., incorrectly lowercase object renaming names like
5390 "R28b" -> "r28b". */
5391 std::string verbatim = add_angle_brackets (name);
5392
5393 gdb_assert (info != NULL);
5394 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5395 }
5396
5397 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5398 scope and in global scopes, or NULL if none. NAME is folded and
5399 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5400 choosing the first symbol if there are multiple choices. */
5401
5402 struct block_symbol
5403 ada_lookup_symbol (const char *name, const struct block *block0,
5404 domain_enum domain)
5405 {
5406 std::vector<struct block_symbol> candidates
5407 = ada_lookup_symbol_list (name, block0, domain);
5408
5409 if (candidates.empty ())
5410 return {};
5411
5412 block_symbol info = candidates[0];
5413 info.symbol = fixup_symbol_section (info.symbol, NULL);
5414 return info;
5415 }
5416
5417
5418 /* True iff STR is a possible encoded suffix of a normal Ada name
5419 that is to be ignored for matching purposes. Suffixes of parallel
5420 names (e.g., XVE) are not included here. Currently, the possible suffixes
5421 are given by any of the regular expressions:
5422
5423 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5424 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5425 TKB [subprogram suffix for task bodies]
5426 _E[0-9]+[bs]$ [protected object entry suffixes]
5427 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5428
5429 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5430 match is performed. This sequence is used to differentiate homonyms,
5431 is an optional part of a valid name suffix. */
5432
5433 static int
5434 is_name_suffix (const char *str)
5435 {
5436 int k;
5437 const char *matching;
5438 const int len = strlen (str);
5439
5440 /* Skip optional leading __[0-9]+. */
5441
5442 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5443 {
5444 str += 3;
5445 while (isdigit (str[0]))
5446 str += 1;
5447 }
5448
5449 /* [.$][0-9]+ */
5450
5451 if (str[0] == '.' || str[0] == '$')
5452 {
5453 matching = str + 1;
5454 while (isdigit (matching[0]))
5455 matching += 1;
5456 if (matching[0] == '\0')
5457 return 1;
5458 }
5459
5460 /* ___[0-9]+ */
5461
5462 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5463 {
5464 matching = str + 3;
5465 while (isdigit (matching[0]))
5466 matching += 1;
5467 if (matching[0] == '\0')
5468 return 1;
5469 }
5470
5471 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5472
5473 if (strcmp (str, "TKB") == 0)
5474 return 1;
5475
5476 #if 0
5477 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5478 with a N at the end. Unfortunately, the compiler uses the same
5479 convention for other internal types it creates. So treating
5480 all entity names that end with an "N" as a name suffix causes
5481 some regressions. For instance, consider the case of an enumerated
5482 type. To support the 'Image attribute, it creates an array whose
5483 name ends with N.
5484 Having a single character like this as a suffix carrying some
5485 information is a bit risky. Perhaps we should change the encoding
5486 to be something like "_N" instead. In the meantime, do not do
5487 the following check. */
5488 /* Protected Object Subprograms */
5489 if (len == 1 && str [0] == 'N')
5490 return 1;
5491 #endif
5492
5493 /* _E[0-9]+[bs]$ */
5494 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5495 {
5496 matching = str + 3;
5497 while (isdigit (matching[0]))
5498 matching += 1;
5499 if ((matching[0] == 'b' || matching[0] == 's')
5500 && matching [1] == '\0')
5501 return 1;
5502 }
5503
5504 /* ??? We should not modify STR directly, as we are doing below. This
5505 is fine in this case, but may become problematic later if we find
5506 that this alternative did not work, and want to try matching
5507 another one from the begining of STR. Since we modified it, we
5508 won't be able to find the begining of the string anymore! */
5509 if (str[0] == 'X')
5510 {
5511 str += 1;
5512 while (str[0] != '_' && str[0] != '\0')
5513 {
5514 if (str[0] != 'n' && str[0] != 'b')
5515 return 0;
5516 str += 1;
5517 }
5518 }
5519
5520 if (str[0] == '\000')
5521 return 1;
5522
5523 if (str[0] == '_')
5524 {
5525 if (str[1] != '_' || str[2] == '\000')
5526 return 0;
5527 if (str[2] == '_')
5528 {
5529 if (strcmp (str + 3, "JM") == 0)
5530 return 1;
5531 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5532 the LJM suffix in favor of the JM one. But we will
5533 still accept LJM as a valid suffix for a reasonable
5534 amount of time, just to allow ourselves to debug programs
5535 compiled using an older version of GNAT. */
5536 if (strcmp (str + 3, "LJM") == 0)
5537 return 1;
5538 if (str[3] != 'X')
5539 return 0;
5540 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5541 || str[4] == 'U' || str[4] == 'P')
5542 return 1;
5543 if (str[4] == 'R' && str[5] != 'T')
5544 return 1;
5545 return 0;
5546 }
5547 if (!isdigit (str[2]))
5548 return 0;
5549 for (k = 3; str[k] != '\0'; k += 1)
5550 if (!isdigit (str[k]) && str[k] != '_')
5551 return 0;
5552 return 1;
5553 }
5554 if (str[0] == '$' && isdigit (str[1]))
5555 {
5556 for (k = 2; str[k] != '\0'; k += 1)
5557 if (!isdigit (str[k]) && str[k] != '_')
5558 return 0;
5559 return 1;
5560 }
5561 return 0;
5562 }
5563
5564 /* Return non-zero if the string starting at NAME and ending before
5565 NAME_END contains no capital letters. */
5566
5567 static int
5568 is_valid_name_for_wild_match (const char *name0)
5569 {
5570 std::string decoded_name = ada_decode (name0);
5571 int i;
5572
5573 /* If the decoded name starts with an angle bracket, it means that
5574 NAME0 does not follow the GNAT encoding format. It should then
5575 not be allowed as a possible wild match. */
5576 if (decoded_name[0] == '<')
5577 return 0;
5578
5579 for (i=0; decoded_name[i] != '\0'; i++)
5580 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5581 return 0;
5582
5583 return 1;
5584 }
5585
5586 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5587 character which could start a simple name. Assumes that *NAMEP points
5588 somewhere inside the string beginning at NAME0. */
5589
5590 static int
5591 advance_wild_match (const char **namep, const char *name0, char target0)
5592 {
5593 const char *name = *namep;
5594
5595 while (1)
5596 {
5597 char t0, t1;
5598
5599 t0 = *name;
5600 if (t0 == '_')
5601 {
5602 t1 = name[1];
5603 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5604 {
5605 name += 1;
5606 if (name == name0 + 5 && startswith (name0, "_ada"))
5607 break;
5608 else
5609 name += 1;
5610 }
5611 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5612 || name[2] == target0))
5613 {
5614 name += 2;
5615 break;
5616 }
5617 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5618 {
5619 /* Names like "pkg__B_N__name", where N is a number, are
5620 block-local. We can handle these by simply skipping
5621 the "B_" here. */
5622 name += 4;
5623 }
5624 else
5625 return 0;
5626 }
5627 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5628 name += 1;
5629 else
5630 return 0;
5631 }
5632
5633 *namep = name;
5634 return 1;
5635 }
5636
5637 /* Return true iff NAME encodes a name of the form prefix.PATN.
5638 Ignores any informational suffixes of NAME (i.e., for which
5639 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5640 simple name. */
5641
5642 static bool
5643 wild_match (const char *name, const char *patn)
5644 {
5645 const char *p;
5646 const char *name0 = name;
5647
5648 while (1)
5649 {
5650 const char *match = name;
5651
5652 if (*name == *patn)
5653 {
5654 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5655 if (*p != *name)
5656 break;
5657 if (*p == '\0' && is_name_suffix (name))
5658 return match == name0 || is_valid_name_for_wild_match (name0);
5659
5660 if (name[-1] == '_')
5661 name -= 1;
5662 }
5663 if (!advance_wild_match (&name, name0, *patn))
5664 return false;
5665 }
5666 }
5667
5668 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
5669 necessary). OBJFILE is the section containing BLOCK. */
5670
5671 static void
5672 ada_add_block_symbols (std::vector<struct block_symbol> &result,
5673 const struct block *block,
5674 const lookup_name_info &lookup_name,
5675 domain_enum domain, struct objfile *objfile)
5676 {
5677 struct block_iterator iter;
5678 /* A matching argument symbol, if any. */
5679 struct symbol *arg_sym;
5680 /* Set true when we find a matching non-argument symbol. */
5681 bool found_sym;
5682 struct symbol *sym;
5683
5684 arg_sym = NULL;
5685 found_sym = false;
5686 for (sym = block_iter_match_first (block, lookup_name, &iter);
5687 sym != NULL;
5688 sym = block_iter_match_next (lookup_name, &iter))
5689 {
5690 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
5691 {
5692 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5693 {
5694 if (SYMBOL_IS_ARGUMENT (sym))
5695 arg_sym = sym;
5696 else
5697 {
5698 found_sym = true;
5699 add_defn_to_vec (result,
5700 fixup_symbol_section (sym, objfile),
5701 block);
5702 }
5703 }
5704 }
5705 }
5706
5707 /* Handle renamings. */
5708
5709 if (ada_add_block_renamings (result, block, lookup_name, domain))
5710 found_sym = true;
5711
5712 if (!found_sym && arg_sym != NULL)
5713 {
5714 add_defn_to_vec (result,
5715 fixup_symbol_section (arg_sym, objfile),
5716 block);
5717 }
5718
5719 if (!lookup_name.ada ().wild_match_p ())
5720 {
5721 arg_sym = NULL;
5722 found_sym = false;
5723 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5724 const char *name = ada_lookup_name.c_str ();
5725 size_t name_len = ada_lookup_name.size ();
5726
5727 ALL_BLOCK_SYMBOLS (block, iter, sym)
5728 {
5729 if (symbol_matches_domain (sym->language (),
5730 SYMBOL_DOMAIN (sym), domain))
5731 {
5732 int cmp;
5733
5734 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5735 if (cmp == 0)
5736 {
5737 cmp = !startswith (sym->linkage_name (), "_ada_");
5738 if (cmp == 0)
5739 cmp = strncmp (name, sym->linkage_name () + 5,
5740 name_len);
5741 }
5742
5743 if (cmp == 0
5744 && is_name_suffix (sym->linkage_name () + name_len + 5))
5745 {
5746 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5747 {
5748 if (SYMBOL_IS_ARGUMENT (sym))
5749 arg_sym = sym;
5750 else
5751 {
5752 found_sym = true;
5753 add_defn_to_vec (result,
5754 fixup_symbol_section (sym, objfile),
5755 block);
5756 }
5757 }
5758 }
5759 }
5760 }
5761
5762 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5763 They aren't parameters, right? */
5764 if (!found_sym && arg_sym != NULL)
5765 {
5766 add_defn_to_vec (result,
5767 fixup_symbol_section (arg_sym, objfile),
5768 block);
5769 }
5770 }
5771 }
5772 \f
5773
5774 /* Symbol Completion */
5775
5776 /* See symtab.h. */
5777
5778 bool
5779 ada_lookup_name_info::matches
5780 (const char *sym_name,
5781 symbol_name_match_type match_type,
5782 completion_match_result *comp_match_res) const
5783 {
5784 bool match = false;
5785 const char *text = m_encoded_name.c_str ();
5786 size_t text_len = m_encoded_name.size ();
5787
5788 /* First, test against the fully qualified name of the symbol. */
5789
5790 if (strncmp (sym_name, text, text_len) == 0)
5791 match = true;
5792
5793 std::string decoded_name = ada_decode (sym_name);
5794 if (match && !m_encoded_p)
5795 {
5796 /* One needed check before declaring a positive match is to verify
5797 that iff we are doing a verbatim match, the decoded version
5798 of the symbol name starts with '<'. Otherwise, this symbol name
5799 is not a suitable completion. */
5800
5801 bool has_angle_bracket = (decoded_name[0] == '<');
5802 match = (has_angle_bracket == m_verbatim_p);
5803 }
5804
5805 if (match && !m_verbatim_p)
5806 {
5807 /* When doing non-verbatim match, another check that needs to
5808 be done is to verify that the potentially matching symbol name
5809 does not include capital letters, because the ada-mode would
5810 not be able to understand these symbol names without the
5811 angle bracket notation. */
5812 const char *tmp;
5813
5814 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5815 if (*tmp != '\0')
5816 match = false;
5817 }
5818
5819 /* Second: Try wild matching... */
5820
5821 if (!match && m_wild_match_p)
5822 {
5823 /* Since we are doing wild matching, this means that TEXT
5824 may represent an unqualified symbol name. We therefore must
5825 also compare TEXT against the unqualified name of the symbol. */
5826 sym_name = ada_unqualified_name (decoded_name.c_str ());
5827
5828 if (strncmp (sym_name, text, text_len) == 0)
5829 match = true;
5830 }
5831
5832 /* Finally: If we found a match, prepare the result to return. */
5833
5834 if (!match)
5835 return false;
5836
5837 if (comp_match_res != NULL)
5838 {
5839 std::string &match_str = comp_match_res->match.storage ();
5840
5841 if (!m_encoded_p)
5842 match_str = ada_decode (sym_name);
5843 else
5844 {
5845 if (m_verbatim_p)
5846 match_str = add_angle_brackets (sym_name);
5847 else
5848 match_str = sym_name;
5849
5850 }
5851
5852 comp_match_res->set_match (match_str.c_str ());
5853 }
5854
5855 return true;
5856 }
5857
5858 /* Field Access */
5859
5860 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5861 for tagged types. */
5862
5863 static int
5864 ada_is_dispatch_table_ptr_type (struct type *type)
5865 {
5866 const char *name;
5867
5868 if (type->code () != TYPE_CODE_PTR)
5869 return 0;
5870
5871 name = TYPE_TARGET_TYPE (type)->name ();
5872 if (name == NULL)
5873 return 0;
5874
5875 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5876 }
5877
5878 /* Return non-zero if TYPE is an interface tag. */
5879
5880 static int
5881 ada_is_interface_tag (struct type *type)
5882 {
5883 const char *name = type->name ();
5884
5885 if (name == NULL)
5886 return 0;
5887
5888 return (strcmp (name, "ada__tags__interface_tag") == 0);
5889 }
5890
5891 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5892 to be invisible to users. */
5893
5894 int
5895 ada_is_ignored_field (struct type *type, int field_num)
5896 {
5897 if (field_num < 0 || field_num > type->num_fields ())
5898 return 1;
5899
5900 /* Check the name of that field. */
5901 {
5902 const char *name = TYPE_FIELD_NAME (type, field_num);
5903
5904 /* Anonymous field names should not be printed.
5905 brobecker/2007-02-20: I don't think this can actually happen
5906 but we don't want to print the value of anonymous fields anyway. */
5907 if (name == NULL)
5908 return 1;
5909
5910 /* Normally, fields whose name start with an underscore ("_")
5911 are fields that have been internally generated by the compiler,
5912 and thus should not be printed. The "_parent" field is special,
5913 however: This is a field internally generated by the compiler
5914 for tagged types, and it contains the components inherited from
5915 the parent type. This field should not be printed as is, but
5916 should not be ignored either. */
5917 if (name[0] == '_' && !startswith (name, "_parent"))
5918 return 1;
5919 }
5920
5921 /* If this is the dispatch table of a tagged type or an interface tag,
5922 then ignore. */
5923 if (ada_is_tagged_type (type, 1)
5924 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5925 || ada_is_interface_tag (type->field (field_num).type ())))
5926 return 1;
5927
5928 /* Not a special field, so it should not be ignored. */
5929 return 0;
5930 }
5931
5932 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5933 pointer or reference type whose ultimate target has a tag field. */
5934
5935 int
5936 ada_is_tagged_type (struct type *type, int refok)
5937 {
5938 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
5939 }
5940
5941 /* True iff TYPE represents the type of X'Tag */
5942
5943 int
5944 ada_is_tag_type (struct type *type)
5945 {
5946 type = ada_check_typedef (type);
5947
5948 if (type == NULL || type->code () != TYPE_CODE_PTR)
5949 return 0;
5950 else
5951 {
5952 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5953
5954 return (name != NULL
5955 && strcmp (name, "ada__tags__dispatch_table") == 0);
5956 }
5957 }
5958
5959 /* The type of the tag on VAL. */
5960
5961 static struct type *
5962 ada_tag_type (struct value *val)
5963 {
5964 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
5965 }
5966
5967 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
5968 retired at Ada 05). */
5969
5970 static int
5971 is_ada95_tag (struct value *tag)
5972 {
5973 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
5974 }
5975
5976 /* The value of the tag on VAL. */
5977
5978 static struct value *
5979 ada_value_tag (struct value *val)
5980 {
5981 return ada_value_struct_elt (val, "_tag", 0);
5982 }
5983
5984 /* The value of the tag on the object of type TYPE whose contents are
5985 saved at VALADDR, if it is non-null, or is at memory address
5986 ADDRESS. */
5987
5988 static struct value *
5989 value_tag_from_contents_and_address (struct type *type,
5990 const gdb_byte *valaddr,
5991 CORE_ADDR address)
5992 {
5993 int tag_byte_offset;
5994 struct type *tag_type;
5995
5996 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5997 NULL, NULL, NULL))
5998 {
5999 const gdb_byte *valaddr1 = ((valaddr == NULL)
6000 ? NULL
6001 : valaddr + tag_byte_offset);
6002 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6003
6004 return value_from_contents_and_address (tag_type, valaddr1, address1);
6005 }
6006 return NULL;
6007 }
6008
6009 static struct type *
6010 type_from_tag (struct value *tag)
6011 {
6012 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6013
6014 if (type_name != NULL)
6015 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6016 return NULL;
6017 }
6018
6019 /* Given a value OBJ of a tagged type, return a value of this
6020 type at the base address of the object. The base address, as
6021 defined in Ada.Tags, it is the address of the primary tag of
6022 the object, and therefore where the field values of its full
6023 view can be fetched. */
6024
6025 struct value *
6026 ada_tag_value_at_base_address (struct value *obj)
6027 {
6028 struct value *val;
6029 LONGEST offset_to_top = 0;
6030 struct type *ptr_type, *obj_type;
6031 struct value *tag;
6032 CORE_ADDR base_address;
6033
6034 obj_type = value_type (obj);
6035
6036 /* It is the responsability of the caller to deref pointers. */
6037
6038 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6039 return obj;
6040
6041 tag = ada_value_tag (obj);
6042 if (!tag)
6043 return obj;
6044
6045 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6046
6047 if (is_ada95_tag (tag))
6048 return obj;
6049
6050 ptr_type = language_lookup_primitive_type
6051 (language_def (language_ada), target_gdbarch(), "storage_offset");
6052 ptr_type = lookup_pointer_type (ptr_type);
6053 val = value_cast (ptr_type, tag);
6054 if (!val)
6055 return obj;
6056
6057 /* It is perfectly possible that an exception be raised while
6058 trying to determine the base address, just like for the tag;
6059 see ada_tag_name for more details. We do not print the error
6060 message for the same reason. */
6061
6062 try
6063 {
6064 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6065 }
6066
6067 catch (const gdb_exception_error &e)
6068 {
6069 return obj;
6070 }
6071
6072 /* If offset is null, nothing to do. */
6073
6074 if (offset_to_top == 0)
6075 return obj;
6076
6077 /* -1 is a special case in Ada.Tags; however, what should be done
6078 is not quite clear from the documentation. So do nothing for
6079 now. */
6080
6081 if (offset_to_top == -1)
6082 return obj;
6083
6084 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6085 from the base address. This was however incompatible with
6086 C++ dispatch table: C++ uses a *negative* value to *add*
6087 to the base address. Ada's convention has therefore been
6088 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6089 use the same convention. Here, we support both cases by
6090 checking the sign of OFFSET_TO_TOP. */
6091
6092 if (offset_to_top > 0)
6093 offset_to_top = -offset_to_top;
6094
6095 base_address = value_address (obj) + offset_to_top;
6096 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6097
6098 /* Make sure that we have a proper tag at the new address.
6099 Otherwise, offset_to_top is bogus (which can happen when
6100 the object is not initialized yet). */
6101
6102 if (!tag)
6103 return obj;
6104
6105 obj_type = type_from_tag (tag);
6106
6107 if (!obj_type)
6108 return obj;
6109
6110 return value_from_contents_and_address (obj_type, NULL, base_address);
6111 }
6112
6113 /* Return the "ada__tags__type_specific_data" type. */
6114
6115 static struct type *
6116 ada_get_tsd_type (struct inferior *inf)
6117 {
6118 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6119
6120 if (data->tsd_type == 0)
6121 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6122 return data->tsd_type;
6123 }
6124
6125 /* Return the TSD (type-specific data) associated to the given TAG.
6126 TAG is assumed to be the tag of a tagged-type entity.
6127
6128 May return NULL if we are unable to get the TSD. */
6129
6130 static struct value *
6131 ada_get_tsd_from_tag (struct value *tag)
6132 {
6133 struct value *val;
6134 struct type *type;
6135
6136 /* First option: The TSD is simply stored as a field of our TAG.
6137 Only older versions of GNAT would use this format, but we have
6138 to test it first, because there are no visible markers for
6139 the current approach except the absence of that field. */
6140
6141 val = ada_value_struct_elt (tag, "tsd", 1);
6142 if (val)
6143 return val;
6144
6145 /* Try the second representation for the dispatch table (in which
6146 there is no explicit 'tsd' field in the referent of the tag pointer,
6147 and instead the tsd pointer is stored just before the dispatch
6148 table. */
6149
6150 type = ada_get_tsd_type (current_inferior());
6151 if (type == NULL)
6152 return NULL;
6153 type = lookup_pointer_type (lookup_pointer_type (type));
6154 val = value_cast (type, tag);
6155 if (val == NULL)
6156 return NULL;
6157 return value_ind (value_ptradd (val, -1));
6158 }
6159
6160 /* Given the TSD of a tag (type-specific data), return a string
6161 containing the name of the associated type.
6162
6163 May return NULL if we are unable to determine the tag name. */
6164
6165 static gdb::unique_xmalloc_ptr<char>
6166 ada_tag_name_from_tsd (struct value *tsd)
6167 {
6168 char *p;
6169 struct value *val;
6170
6171 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6172 if (val == NULL)
6173 return NULL;
6174 gdb::unique_xmalloc_ptr<char> buffer
6175 = target_read_string (value_as_address (val), INT_MAX);
6176 if (buffer == nullptr)
6177 return nullptr;
6178
6179 for (p = buffer.get (); *p != '\0'; ++p)
6180 {
6181 if (isalpha (*p))
6182 *p = tolower (*p);
6183 }
6184
6185 return buffer;
6186 }
6187
6188 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6189 a C string.
6190
6191 Return NULL if the TAG is not an Ada tag, or if we were unable to
6192 determine the name of that tag. */
6193
6194 gdb::unique_xmalloc_ptr<char>
6195 ada_tag_name (struct value *tag)
6196 {
6197 gdb::unique_xmalloc_ptr<char> name;
6198
6199 if (!ada_is_tag_type (value_type (tag)))
6200 return NULL;
6201
6202 /* It is perfectly possible that an exception be raised while trying
6203 to determine the TAG's name, even under normal circumstances:
6204 The associated variable may be uninitialized or corrupted, for
6205 instance. We do not let any exception propagate past this point.
6206 instead we return NULL.
6207
6208 We also do not print the error message either (which often is very
6209 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6210 the caller print a more meaningful message if necessary. */
6211 try
6212 {
6213 struct value *tsd = ada_get_tsd_from_tag (tag);
6214
6215 if (tsd != NULL)
6216 name = ada_tag_name_from_tsd (tsd);
6217 }
6218 catch (const gdb_exception_error &e)
6219 {
6220 }
6221
6222 return name;
6223 }
6224
6225 /* The parent type of TYPE, or NULL if none. */
6226
6227 struct type *
6228 ada_parent_type (struct type *type)
6229 {
6230 int i;
6231
6232 type = ada_check_typedef (type);
6233
6234 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6235 return NULL;
6236
6237 for (i = 0; i < type->num_fields (); i += 1)
6238 if (ada_is_parent_field (type, i))
6239 {
6240 struct type *parent_type = type->field (i).type ();
6241
6242 /* If the _parent field is a pointer, then dereference it. */
6243 if (parent_type->code () == TYPE_CODE_PTR)
6244 parent_type = TYPE_TARGET_TYPE (parent_type);
6245 /* If there is a parallel XVS type, get the actual base type. */
6246 parent_type = ada_get_base_type (parent_type);
6247
6248 return ada_check_typedef (parent_type);
6249 }
6250
6251 return NULL;
6252 }
6253
6254 /* True iff field number FIELD_NUM of structure type TYPE contains the
6255 parent-type (inherited) fields of a derived type. Assumes TYPE is
6256 a structure type with at least FIELD_NUM+1 fields. */
6257
6258 int
6259 ada_is_parent_field (struct type *type, int field_num)
6260 {
6261 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6262
6263 return (name != NULL
6264 && (startswith (name, "PARENT")
6265 || startswith (name, "_parent")));
6266 }
6267
6268 /* True iff field number FIELD_NUM of structure type TYPE is a
6269 transparent wrapper field (which should be silently traversed when doing
6270 field selection and flattened when printing). Assumes TYPE is a
6271 structure type with at least FIELD_NUM+1 fields. Such fields are always
6272 structures. */
6273
6274 int
6275 ada_is_wrapper_field (struct type *type, int field_num)
6276 {
6277 const char *name = TYPE_FIELD_NAME (type, field_num);
6278
6279 if (name != NULL && strcmp (name, "RETVAL") == 0)
6280 {
6281 /* This happens in functions with "out" or "in out" parameters
6282 which are passed by copy. For such functions, GNAT describes
6283 the function's return type as being a struct where the return
6284 value is in a field called RETVAL, and where the other "out"
6285 or "in out" parameters are fields of that struct. This is not
6286 a wrapper. */
6287 return 0;
6288 }
6289
6290 return (name != NULL
6291 && (startswith (name, "PARENT")
6292 || strcmp (name, "REP") == 0
6293 || startswith (name, "_parent")
6294 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6295 }
6296
6297 /* True iff field number FIELD_NUM of structure or union type TYPE
6298 is a variant wrapper. Assumes TYPE is a structure type with at least
6299 FIELD_NUM+1 fields. */
6300
6301 int
6302 ada_is_variant_part (struct type *type, int field_num)
6303 {
6304 /* Only Ada types are eligible. */
6305 if (!ADA_TYPE_P (type))
6306 return 0;
6307
6308 struct type *field_type = type->field (field_num).type ();
6309
6310 return (field_type->code () == TYPE_CODE_UNION
6311 || (is_dynamic_field (type, field_num)
6312 && (TYPE_TARGET_TYPE (field_type)->code ()
6313 == TYPE_CODE_UNION)));
6314 }
6315
6316 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6317 whose discriminants are contained in the record type OUTER_TYPE,
6318 returns the type of the controlling discriminant for the variant.
6319 May return NULL if the type could not be found. */
6320
6321 struct type *
6322 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6323 {
6324 const char *name = ada_variant_discrim_name (var_type);
6325
6326 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6327 }
6328
6329 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6330 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6331 represents a 'when others' clause; otherwise 0. */
6332
6333 static int
6334 ada_is_others_clause (struct type *type, int field_num)
6335 {
6336 const char *name = TYPE_FIELD_NAME (type, field_num);
6337
6338 return (name != NULL && name[0] == 'O');
6339 }
6340
6341 /* Assuming that TYPE0 is the type of the variant part of a record,
6342 returns the name of the discriminant controlling the variant.
6343 The value is valid until the next call to ada_variant_discrim_name. */
6344
6345 const char *
6346 ada_variant_discrim_name (struct type *type0)
6347 {
6348 static std::string result;
6349 struct type *type;
6350 const char *name;
6351 const char *discrim_end;
6352 const char *discrim_start;
6353
6354 if (type0->code () == TYPE_CODE_PTR)
6355 type = TYPE_TARGET_TYPE (type0);
6356 else
6357 type = type0;
6358
6359 name = ada_type_name (type);
6360
6361 if (name == NULL || name[0] == '\000')
6362 return "";
6363
6364 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6365 discrim_end -= 1)
6366 {
6367 if (startswith (discrim_end, "___XVN"))
6368 break;
6369 }
6370 if (discrim_end == name)
6371 return "";
6372
6373 for (discrim_start = discrim_end; discrim_start != name + 3;
6374 discrim_start -= 1)
6375 {
6376 if (discrim_start == name + 1)
6377 return "";
6378 if ((discrim_start > name + 3
6379 && startswith (discrim_start - 3, "___"))
6380 || discrim_start[-1] == '.')
6381 break;
6382 }
6383
6384 result = std::string (discrim_start, discrim_end - discrim_start);
6385 return result.c_str ();
6386 }
6387
6388 /* Scan STR for a subtype-encoded number, beginning at position K.
6389 Put the position of the character just past the number scanned in
6390 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6391 Return 1 if there was a valid number at the given position, and 0
6392 otherwise. A "subtype-encoded" number consists of the absolute value
6393 in decimal, followed by the letter 'm' to indicate a negative number.
6394 Assumes 0m does not occur. */
6395
6396 int
6397 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6398 {
6399 ULONGEST RU;
6400
6401 if (!isdigit (str[k]))
6402 return 0;
6403
6404 /* Do it the hard way so as not to make any assumption about
6405 the relationship of unsigned long (%lu scan format code) and
6406 LONGEST. */
6407 RU = 0;
6408 while (isdigit (str[k]))
6409 {
6410 RU = RU * 10 + (str[k] - '0');
6411 k += 1;
6412 }
6413
6414 if (str[k] == 'm')
6415 {
6416 if (R != NULL)
6417 *R = (-(LONGEST) (RU - 1)) - 1;
6418 k += 1;
6419 }
6420 else if (R != NULL)
6421 *R = (LONGEST) RU;
6422
6423 /* NOTE on the above: Technically, C does not say what the results of
6424 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6425 number representable as a LONGEST (although either would probably work
6426 in most implementations). When RU>0, the locution in the then branch
6427 above is always equivalent to the negative of RU. */
6428
6429 if (new_k != NULL)
6430 *new_k = k;
6431 return 1;
6432 }
6433
6434 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6435 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6436 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6437
6438 static int
6439 ada_in_variant (LONGEST val, struct type *type, int field_num)
6440 {
6441 const char *name = TYPE_FIELD_NAME (type, field_num);
6442 int p;
6443
6444 p = 0;
6445 while (1)
6446 {
6447 switch (name[p])
6448 {
6449 case '\0':
6450 return 0;
6451 case 'S':
6452 {
6453 LONGEST W;
6454
6455 if (!ada_scan_number (name, p + 1, &W, &p))
6456 return 0;
6457 if (val == W)
6458 return 1;
6459 break;
6460 }
6461 case 'R':
6462 {
6463 LONGEST L, U;
6464
6465 if (!ada_scan_number (name, p + 1, &L, &p)
6466 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6467 return 0;
6468 if (val >= L && val <= U)
6469 return 1;
6470 break;
6471 }
6472 case 'O':
6473 return 1;
6474 default:
6475 return 0;
6476 }
6477 }
6478 }
6479
6480 /* FIXME: Lots of redundancy below. Try to consolidate. */
6481
6482 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6483 ARG_TYPE, extract and return the value of one of its (non-static)
6484 fields. FIELDNO says which field. Differs from value_primitive_field
6485 only in that it can handle packed values of arbitrary type. */
6486
6487 struct value *
6488 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6489 struct type *arg_type)
6490 {
6491 struct type *type;
6492
6493 arg_type = ada_check_typedef (arg_type);
6494 type = arg_type->field (fieldno).type ();
6495
6496 /* Handle packed fields. It might be that the field is not packed
6497 relative to its containing structure, but the structure itself is
6498 packed; in this case we must take the bit-field path. */
6499 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6500 {
6501 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6502 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6503
6504 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6505 offset + bit_pos / 8,
6506 bit_pos % 8, bit_size, type);
6507 }
6508 else
6509 return value_primitive_field (arg1, offset, fieldno, arg_type);
6510 }
6511
6512 /* Find field with name NAME in object of type TYPE. If found,
6513 set the following for each argument that is non-null:
6514 - *FIELD_TYPE_P to the field's type;
6515 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6516 an object of that type;
6517 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6518 - *BIT_SIZE_P to its size in bits if the field is packed, and
6519 0 otherwise;
6520 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6521 fields up to but not including the desired field, or by the total
6522 number of fields if not found. A NULL value of NAME never
6523 matches; the function just counts visible fields in this case.
6524
6525 Notice that we need to handle when a tagged record hierarchy
6526 has some components with the same name, like in this scenario:
6527
6528 type Top_T is tagged record
6529 N : Integer := 1;
6530 U : Integer := 974;
6531 A : Integer := 48;
6532 end record;
6533
6534 type Middle_T is new Top.Top_T with record
6535 N : Character := 'a';
6536 C : Integer := 3;
6537 end record;
6538
6539 type Bottom_T is new Middle.Middle_T with record
6540 N : Float := 4.0;
6541 C : Character := '5';
6542 X : Integer := 6;
6543 A : Character := 'J';
6544 end record;
6545
6546 Let's say we now have a variable declared and initialized as follow:
6547
6548 TC : Top_A := new Bottom_T;
6549
6550 And then we use this variable to call this function
6551
6552 procedure Assign (Obj: in out Top_T; TV : Integer);
6553
6554 as follow:
6555
6556 Assign (Top_T (B), 12);
6557
6558 Now, we're in the debugger, and we're inside that procedure
6559 then and we want to print the value of obj.c:
6560
6561 Usually, the tagged record or one of the parent type owns the
6562 component to print and there's no issue but in this particular
6563 case, what does it mean to ask for Obj.C? Since the actual
6564 type for object is type Bottom_T, it could mean two things: type
6565 component C from the Middle_T view, but also component C from
6566 Bottom_T. So in that "undefined" case, when the component is
6567 not found in the non-resolved type (which includes all the
6568 components of the parent type), then resolve it and see if we
6569 get better luck once expanded.
6570
6571 In the case of homonyms in the derived tagged type, we don't
6572 guaranty anything, and pick the one that's easiest for us
6573 to program.
6574
6575 Returns 1 if found, 0 otherwise. */
6576
6577 static int
6578 find_struct_field (const char *name, struct type *type, int offset,
6579 struct type **field_type_p,
6580 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6581 int *index_p)
6582 {
6583 int i;
6584 int parent_offset = -1;
6585
6586 type = ada_check_typedef (type);
6587
6588 if (field_type_p != NULL)
6589 *field_type_p = NULL;
6590 if (byte_offset_p != NULL)
6591 *byte_offset_p = 0;
6592 if (bit_offset_p != NULL)
6593 *bit_offset_p = 0;
6594 if (bit_size_p != NULL)
6595 *bit_size_p = 0;
6596
6597 for (i = 0; i < type->num_fields (); i += 1)
6598 {
6599 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6600 int fld_offset = offset + bit_pos / 8;
6601 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6602
6603 if (t_field_name == NULL)
6604 continue;
6605
6606 else if (ada_is_parent_field (type, i))
6607 {
6608 /* This is a field pointing us to the parent type of a tagged
6609 type. As hinted in this function's documentation, we give
6610 preference to fields in the current record first, so what
6611 we do here is just record the index of this field before
6612 we skip it. If it turns out we couldn't find our field
6613 in the current record, then we'll get back to it and search
6614 inside it whether the field might exist in the parent. */
6615
6616 parent_offset = i;
6617 continue;
6618 }
6619
6620 else if (name != NULL && field_name_match (t_field_name, name))
6621 {
6622 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6623
6624 if (field_type_p != NULL)
6625 *field_type_p = type->field (i).type ();
6626 if (byte_offset_p != NULL)
6627 *byte_offset_p = fld_offset;
6628 if (bit_offset_p != NULL)
6629 *bit_offset_p = bit_pos % 8;
6630 if (bit_size_p != NULL)
6631 *bit_size_p = bit_size;
6632 return 1;
6633 }
6634 else if (ada_is_wrapper_field (type, i))
6635 {
6636 if (find_struct_field (name, type->field (i).type (), fld_offset,
6637 field_type_p, byte_offset_p, bit_offset_p,
6638 bit_size_p, index_p))
6639 return 1;
6640 }
6641 else if (ada_is_variant_part (type, i))
6642 {
6643 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6644 fixed type?? */
6645 int j;
6646 struct type *field_type
6647 = ada_check_typedef (type->field (i).type ());
6648
6649 for (j = 0; j < field_type->num_fields (); j += 1)
6650 {
6651 if (find_struct_field (name, field_type->field (j).type (),
6652 fld_offset
6653 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6654 field_type_p, byte_offset_p,
6655 bit_offset_p, bit_size_p, index_p))
6656 return 1;
6657 }
6658 }
6659 else if (index_p != NULL)
6660 *index_p += 1;
6661 }
6662
6663 /* Field not found so far. If this is a tagged type which
6664 has a parent, try finding that field in the parent now. */
6665
6666 if (parent_offset != -1)
6667 {
6668 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
6669 int fld_offset = offset + bit_pos / 8;
6670
6671 if (find_struct_field (name, type->field (parent_offset).type (),
6672 fld_offset, field_type_p, byte_offset_p,
6673 bit_offset_p, bit_size_p, index_p))
6674 return 1;
6675 }
6676
6677 return 0;
6678 }
6679
6680 /* Number of user-visible fields in record type TYPE. */
6681
6682 static int
6683 num_visible_fields (struct type *type)
6684 {
6685 int n;
6686
6687 n = 0;
6688 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6689 return n;
6690 }
6691
6692 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6693 and search in it assuming it has (class) type TYPE.
6694 If found, return value, else return NULL.
6695
6696 Searches recursively through wrapper fields (e.g., '_parent').
6697
6698 In the case of homonyms in the tagged types, please refer to the
6699 long explanation in find_struct_field's function documentation. */
6700
6701 static struct value *
6702 ada_search_struct_field (const char *name, struct value *arg, int offset,
6703 struct type *type)
6704 {
6705 int i;
6706 int parent_offset = -1;
6707
6708 type = ada_check_typedef (type);
6709 for (i = 0; i < type->num_fields (); i += 1)
6710 {
6711 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6712
6713 if (t_field_name == NULL)
6714 continue;
6715
6716 else if (ada_is_parent_field (type, i))
6717 {
6718 /* This is a field pointing us to the parent type of a tagged
6719 type. As hinted in this function's documentation, we give
6720 preference to fields in the current record first, so what
6721 we do here is just record the index of this field before
6722 we skip it. If it turns out we couldn't find our field
6723 in the current record, then we'll get back to it and search
6724 inside it whether the field might exist in the parent. */
6725
6726 parent_offset = i;
6727 continue;
6728 }
6729
6730 else if (field_name_match (t_field_name, name))
6731 return ada_value_primitive_field (arg, offset, i, type);
6732
6733 else if (ada_is_wrapper_field (type, i))
6734 {
6735 struct value *v = /* Do not let indent join lines here. */
6736 ada_search_struct_field (name, arg,
6737 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6738 type->field (i).type ());
6739
6740 if (v != NULL)
6741 return v;
6742 }
6743
6744 else if (ada_is_variant_part (type, i))
6745 {
6746 /* PNH: Do we ever get here? See find_struct_field. */
6747 int j;
6748 struct type *field_type = ada_check_typedef (type->field (i).type ());
6749 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6750
6751 for (j = 0; j < field_type->num_fields (); j += 1)
6752 {
6753 struct value *v = ada_search_struct_field /* Force line
6754 break. */
6755 (name, arg,
6756 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6757 field_type->field (j).type ());
6758
6759 if (v != NULL)
6760 return v;
6761 }
6762 }
6763 }
6764
6765 /* Field not found so far. If this is a tagged type which
6766 has a parent, try finding that field in the parent now. */
6767
6768 if (parent_offset != -1)
6769 {
6770 struct value *v = ada_search_struct_field (
6771 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
6772 type->field (parent_offset).type ());
6773
6774 if (v != NULL)
6775 return v;
6776 }
6777
6778 return NULL;
6779 }
6780
6781 static struct value *ada_index_struct_field_1 (int *, struct value *,
6782 int, struct type *);
6783
6784
6785 /* Return field #INDEX in ARG, where the index is that returned by
6786 * find_struct_field through its INDEX_P argument. Adjust the address
6787 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6788 * If found, return value, else return NULL. */
6789
6790 static struct value *
6791 ada_index_struct_field (int index, struct value *arg, int offset,
6792 struct type *type)
6793 {
6794 return ada_index_struct_field_1 (&index, arg, offset, type);
6795 }
6796
6797
6798 /* Auxiliary function for ada_index_struct_field. Like
6799 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6800 * *INDEX_P. */
6801
6802 static struct value *
6803 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6804 struct type *type)
6805 {
6806 int i;
6807 type = ada_check_typedef (type);
6808
6809 for (i = 0; i < type->num_fields (); i += 1)
6810 {
6811 if (TYPE_FIELD_NAME (type, i) == NULL)
6812 continue;
6813 else if (ada_is_wrapper_field (type, i))
6814 {
6815 struct value *v = /* Do not let indent join lines here. */
6816 ada_index_struct_field_1 (index_p, arg,
6817 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6818 type->field (i).type ());
6819
6820 if (v != NULL)
6821 return v;
6822 }
6823
6824 else if (ada_is_variant_part (type, i))
6825 {
6826 /* PNH: Do we ever get here? See ada_search_struct_field,
6827 find_struct_field. */
6828 error (_("Cannot assign this kind of variant record"));
6829 }
6830 else if (*index_p == 0)
6831 return ada_value_primitive_field (arg, offset, i, type);
6832 else
6833 *index_p -= 1;
6834 }
6835 return NULL;
6836 }
6837
6838 /* Return a string representation of type TYPE. */
6839
6840 static std::string
6841 type_as_string (struct type *type)
6842 {
6843 string_file tmp_stream;
6844
6845 type_print (type, "", &tmp_stream, -1);
6846
6847 return std::move (tmp_stream.string ());
6848 }
6849
6850 /* Given a type TYPE, look up the type of the component of type named NAME.
6851 If DISPP is non-null, add its byte displacement from the beginning of a
6852 structure (pointed to by a value) of type TYPE to *DISPP (does not
6853 work for packed fields).
6854
6855 Matches any field whose name has NAME as a prefix, possibly
6856 followed by "___".
6857
6858 TYPE can be either a struct or union. If REFOK, TYPE may also
6859 be a (pointer or reference)+ to a struct or union, and the
6860 ultimate target type will be searched.
6861
6862 Looks recursively into variant clauses and parent types.
6863
6864 In the case of homonyms in the tagged types, please refer to the
6865 long explanation in find_struct_field's function documentation.
6866
6867 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6868 TYPE is not a type of the right kind. */
6869
6870 static struct type *
6871 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
6872 int noerr)
6873 {
6874 int i;
6875 int parent_offset = -1;
6876
6877 if (name == NULL)
6878 goto BadName;
6879
6880 if (refok && type != NULL)
6881 while (1)
6882 {
6883 type = ada_check_typedef (type);
6884 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6885 break;
6886 type = TYPE_TARGET_TYPE (type);
6887 }
6888
6889 if (type == NULL
6890 || (type->code () != TYPE_CODE_STRUCT
6891 && type->code () != TYPE_CODE_UNION))
6892 {
6893 if (noerr)
6894 return NULL;
6895
6896 error (_("Type %s is not a structure or union type"),
6897 type != NULL ? type_as_string (type).c_str () : _("(null)"));
6898 }
6899
6900 type = to_static_fixed_type (type);
6901
6902 for (i = 0; i < type->num_fields (); i += 1)
6903 {
6904 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6905 struct type *t;
6906
6907 if (t_field_name == NULL)
6908 continue;
6909
6910 else if (ada_is_parent_field (type, i))
6911 {
6912 /* This is a field pointing us to the parent type of a tagged
6913 type. As hinted in this function's documentation, we give
6914 preference to fields in the current record first, so what
6915 we do here is just record the index of this field before
6916 we skip it. If it turns out we couldn't find our field
6917 in the current record, then we'll get back to it and search
6918 inside it whether the field might exist in the parent. */
6919
6920 parent_offset = i;
6921 continue;
6922 }
6923
6924 else if (field_name_match (t_field_name, name))
6925 return type->field (i).type ();
6926
6927 else if (ada_is_wrapper_field (type, i))
6928 {
6929 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
6930 0, 1);
6931 if (t != NULL)
6932 return t;
6933 }
6934
6935 else if (ada_is_variant_part (type, i))
6936 {
6937 int j;
6938 struct type *field_type = ada_check_typedef (type->field (i).type ());
6939
6940 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
6941 {
6942 /* FIXME pnh 2008/01/26: We check for a field that is
6943 NOT wrapped in a struct, since the compiler sometimes
6944 generates these for unchecked variant types. Revisit
6945 if the compiler changes this practice. */
6946 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6947
6948 if (v_field_name != NULL
6949 && field_name_match (v_field_name, name))
6950 t = field_type->field (j).type ();
6951 else
6952 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
6953 name, 0, 1);
6954
6955 if (t != NULL)
6956 return t;
6957 }
6958 }
6959
6960 }
6961
6962 /* Field not found so far. If this is a tagged type which
6963 has a parent, try finding that field in the parent now. */
6964
6965 if (parent_offset != -1)
6966 {
6967 struct type *t;
6968
6969 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
6970 name, 0, 1);
6971 if (t != NULL)
6972 return t;
6973 }
6974
6975 BadName:
6976 if (!noerr)
6977 {
6978 const char *name_str = name != NULL ? name : _("<null>");
6979
6980 error (_("Type %s has no component named %s"),
6981 type_as_string (type).c_str (), name_str);
6982 }
6983
6984 return NULL;
6985 }
6986
6987 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6988 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6989 represents an unchecked union (that is, the variant part of a
6990 record that is named in an Unchecked_Union pragma). */
6991
6992 static int
6993 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6994 {
6995 const char *discrim_name = ada_variant_discrim_name (var_type);
6996
6997 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
6998 }
6999
7000
7001 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7002 within OUTER, determine which variant clause (field number in VAR_TYPE,
7003 numbering from 0) is applicable. Returns -1 if none are. */
7004
7005 int
7006 ada_which_variant_applies (struct type *var_type, struct value *outer)
7007 {
7008 int others_clause;
7009 int i;
7010 const char *discrim_name = ada_variant_discrim_name (var_type);
7011 struct value *discrim;
7012 LONGEST discrim_val;
7013
7014 /* Using plain value_from_contents_and_address here causes problems
7015 because we will end up trying to resolve a type that is currently
7016 being constructed. */
7017 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7018 if (discrim == NULL)
7019 return -1;
7020 discrim_val = value_as_long (discrim);
7021
7022 others_clause = -1;
7023 for (i = 0; i < var_type->num_fields (); i += 1)
7024 {
7025 if (ada_is_others_clause (var_type, i))
7026 others_clause = i;
7027 else if (ada_in_variant (discrim_val, var_type, i))
7028 return i;
7029 }
7030
7031 return others_clause;
7032 }
7033 \f
7034
7035
7036 /* Dynamic-Sized Records */
7037
7038 /* Strategy: The type ostensibly attached to a value with dynamic size
7039 (i.e., a size that is not statically recorded in the debugging
7040 data) does not accurately reflect the size or layout of the value.
7041 Our strategy is to convert these values to values with accurate,
7042 conventional types that are constructed on the fly. */
7043
7044 /* There is a subtle and tricky problem here. In general, we cannot
7045 determine the size of dynamic records without its data. However,
7046 the 'struct value' data structure, which GDB uses to represent
7047 quantities in the inferior process (the target), requires the size
7048 of the type at the time of its allocation in order to reserve space
7049 for GDB's internal copy of the data. That's why the
7050 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7051 rather than struct value*s.
7052
7053 However, GDB's internal history variables ($1, $2, etc.) are
7054 struct value*s containing internal copies of the data that are not, in
7055 general, the same as the data at their corresponding addresses in
7056 the target. Fortunately, the types we give to these values are all
7057 conventional, fixed-size types (as per the strategy described
7058 above), so that we don't usually have to perform the
7059 'to_fixed_xxx_type' conversions to look at their values.
7060 Unfortunately, there is one exception: if one of the internal
7061 history variables is an array whose elements are unconstrained
7062 records, then we will need to create distinct fixed types for each
7063 element selected. */
7064
7065 /* The upshot of all of this is that many routines take a (type, host
7066 address, target address) triple as arguments to represent a value.
7067 The host address, if non-null, is supposed to contain an internal
7068 copy of the relevant data; otherwise, the program is to consult the
7069 target at the target address. */
7070
7071 /* Assuming that VAL0 represents a pointer value, the result of
7072 dereferencing it. Differs from value_ind in its treatment of
7073 dynamic-sized types. */
7074
7075 struct value *
7076 ada_value_ind (struct value *val0)
7077 {
7078 struct value *val = value_ind (val0);
7079
7080 if (ada_is_tagged_type (value_type (val), 0))
7081 val = ada_tag_value_at_base_address (val);
7082
7083 return ada_to_fixed_value (val);
7084 }
7085
7086 /* The value resulting from dereferencing any "reference to"
7087 qualifiers on VAL0. */
7088
7089 static struct value *
7090 ada_coerce_ref (struct value *val0)
7091 {
7092 if (value_type (val0)->code () == TYPE_CODE_REF)
7093 {
7094 struct value *val = val0;
7095
7096 val = coerce_ref (val);
7097
7098 if (ada_is_tagged_type (value_type (val), 0))
7099 val = ada_tag_value_at_base_address (val);
7100
7101 return ada_to_fixed_value (val);
7102 }
7103 else
7104 return val0;
7105 }
7106
7107 /* Return the bit alignment required for field #F of template type TYPE. */
7108
7109 static unsigned int
7110 field_alignment (struct type *type, int f)
7111 {
7112 const char *name = TYPE_FIELD_NAME (type, f);
7113 int len;
7114 int align_offset;
7115
7116 /* The field name should never be null, unless the debugging information
7117 is somehow malformed. In this case, we assume the field does not
7118 require any alignment. */
7119 if (name == NULL)
7120 return 1;
7121
7122 len = strlen (name);
7123
7124 if (!isdigit (name[len - 1]))
7125 return 1;
7126
7127 if (isdigit (name[len - 2]))
7128 align_offset = len - 2;
7129 else
7130 align_offset = len - 1;
7131
7132 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7133 return TARGET_CHAR_BIT;
7134
7135 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7136 }
7137
7138 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7139
7140 static struct symbol *
7141 ada_find_any_type_symbol (const char *name)
7142 {
7143 struct symbol *sym;
7144
7145 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7146 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7147 return sym;
7148
7149 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7150 return sym;
7151 }
7152
7153 /* Find a type named NAME. Ignores ambiguity. This routine will look
7154 solely for types defined by debug info, it will not search the GDB
7155 primitive types. */
7156
7157 static struct type *
7158 ada_find_any_type (const char *name)
7159 {
7160 struct symbol *sym = ada_find_any_type_symbol (name);
7161
7162 if (sym != NULL)
7163 return SYMBOL_TYPE (sym);
7164
7165 return NULL;
7166 }
7167
7168 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7169 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7170 symbol, in which case it is returned. Otherwise, this looks for
7171 symbols whose name is that of NAME_SYM suffixed with "___XR".
7172 Return symbol if found, and NULL otherwise. */
7173
7174 static bool
7175 ada_is_renaming_symbol (struct symbol *name_sym)
7176 {
7177 const char *name = name_sym->linkage_name ();
7178 return strstr (name, "___XR") != NULL;
7179 }
7180
7181 /* Because of GNAT encoding conventions, several GDB symbols may match a
7182 given type name. If the type denoted by TYPE0 is to be preferred to
7183 that of TYPE1 for purposes of type printing, return non-zero;
7184 otherwise return 0. */
7185
7186 int
7187 ada_prefer_type (struct type *type0, struct type *type1)
7188 {
7189 if (type1 == NULL)
7190 return 1;
7191 else if (type0 == NULL)
7192 return 0;
7193 else if (type1->code () == TYPE_CODE_VOID)
7194 return 1;
7195 else if (type0->code () == TYPE_CODE_VOID)
7196 return 0;
7197 else if (type1->name () == NULL && type0->name () != NULL)
7198 return 1;
7199 else if (ada_is_constrained_packed_array_type (type0))
7200 return 1;
7201 else if (ada_is_array_descriptor_type (type0)
7202 && !ada_is_array_descriptor_type (type1))
7203 return 1;
7204 else
7205 {
7206 const char *type0_name = type0->name ();
7207 const char *type1_name = type1->name ();
7208
7209 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7210 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7211 return 1;
7212 }
7213 return 0;
7214 }
7215
7216 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7217 null. */
7218
7219 const char *
7220 ada_type_name (struct type *type)
7221 {
7222 if (type == NULL)
7223 return NULL;
7224 return type->name ();
7225 }
7226
7227 /* Search the list of "descriptive" types associated to TYPE for a type
7228 whose name is NAME. */
7229
7230 static struct type *
7231 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7232 {
7233 struct type *result, *tmp;
7234
7235 if (ada_ignore_descriptive_types_p)
7236 return NULL;
7237
7238 /* If there no descriptive-type info, then there is no parallel type
7239 to be found. */
7240 if (!HAVE_GNAT_AUX_INFO (type))
7241 return NULL;
7242
7243 result = TYPE_DESCRIPTIVE_TYPE (type);
7244 while (result != NULL)
7245 {
7246 const char *result_name = ada_type_name (result);
7247
7248 if (result_name == NULL)
7249 {
7250 warning (_("unexpected null name on descriptive type"));
7251 return NULL;
7252 }
7253
7254 /* If the names match, stop. */
7255 if (strcmp (result_name, name) == 0)
7256 break;
7257
7258 /* Otherwise, look at the next item on the list, if any. */
7259 if (HAVE_GNAT_AUX_INFO (result))
7260 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7261 else
7262 tmp = NULL;
7263
7264 /* If not found either, try after having resolved the typedef. */
7265 if (tmp != NULL)
7266 result = tmp;
7267 else
7268 {
7269 result = check_typedef (result);
7270 if (HAVE_GNAT_AUX_INFO (result))
7271 result = TYPE_DESCRIPTIVE_TYPE (result);
7272 else
7273 result = NULL;
7274 }
7275 }
7276
7277 /* If we didn't find a match, see whether this is a packed array. With
7278 older compilers, the descriptive type information is either absent or
7279 irrelevant when it comes to packed arrays so the above lookup fails.
7280 Fall back to using a parallel lookup by name in this case. */
7281 if (result == NULL && ada_is_constrained_packed_array_type (type))
7282 return ada_find_any_type (name);
7283
7284 return result;
7285 }
7286
7287 /* Find a parallel type to TYPE with the specified NAME, using the
7288 descriptive type taken from the debugging information, if available,
7289 and otherwise using the (slower) name-based method. */
7290
7291 static struct type *
7292 ada_find_parallel_type_with_name (struct type *type, const char *name)
7293 {
7294 struct type *result = NULL;
7295
7296 if (HAVE_GNAT_AUX_INFO (type))
7297 result = find_parallel_type_by_descriptive_type (type, name);
7298 else
7299 result = ada_find_any_type (name);
7300
7301 return result;
7302 }
7303
7304 /* Same as above, but specify the name of the parallel type by appending
7305 SUFFIX to the name of TYPE. */
7306
7307 struct type *
7308 ada_find_parallel_type (struct type *type, const char *suffix)
7309 {
7310 char *name;
7311 const char *type_name = ada_type_name (type);
7312 int len;
7313
7314 if (type_name == NULL)
7315 return NULL;
7316
7317 len = strlen (type_name);
7318
7319 name = (char *) alloca (len + strlen (suffix) + 1);
7320
7321 strcpy (name, type_name);
7322 strcpy (name + len, suffix);
7323
7324 return ada_find_parallel_type_with_name (type, name);
7325 }
7326
7327 /* If TYPE is a variable-size record type, return the corresponding template
7328 type describing its fields. Otherwise, return NULL. */
7329
7330 static struct type *
7331 dynamic_template_type (struct type *type)
7332 {
7333 type = ada_check_typedef (type);
7334
7335 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7336 || ada_type_name (type) == NULL)
7337 return NULL;
7338 else
7339 {
7340 int len = strlen (ada_type_name (type));
7341
7342 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7343 return type;
7344 else
7345 return ada_find_parallel_type (type, "___XVE");
7346 }
7347 }
7348
7349 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7350 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7351
7352 static int
7353 is_dynamic_field (struct type *templ_type, int field_num)
7354 {
7355 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7356
7357 return name != NULL
7358 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7359 && strstr (name, "___XVL") != NULL;
7360 }
7361
7362 /* The index of the variant field of TYPE, or -1 if TYPE does not
7363 represent a variant record type. */
7364
7365 static int
7366 variant_field_index (struct type *type)
7367 {
7368 int f;
7369
7370 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7371 return -1;
7372
7373 for (f = 0; f < type->num_fields (); f += 1)
7374 {
7375 if (ada_is_variant_part (type, f))
7376 return f;
7377 }
7378 return -1;
7379 }
7380
7381 /* A record type with no fields. */
7382
7383 static struct type *
7384 empty_record (struct type *templ)
7385 {
7386 struct type *type = alloc_type_copy (templ);
7387
7388 type->set_code (TYPE_CODE_STRUCT);
7389 INIT_NONE_SPECIFIC (type);
7390 type->set_name ("<empty>");
7391 TYPE_LENGTH (type) = 0;
7392 return type;
7393 }
7394
7395 /* An ordinary record type (with fixed-length fields) that describes
7396 the value of type TYPE at VALADDR or ADDRESS (see comments at
7397 the beginning of this section) VAL according to GNAT conventions.
7398 DVAL0 should describe the (portion of a) record that contains any
7399 necessary discriminants. It should be NULL if value_type (VAL) is
7400 an outer-level type (i.e., as opposed to a branch of a variant.) A
7401 variant field (unless unchecked) is replaced by a particular branch
7402 of the variant.
7403
7404 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7405 length are not statically known are discarded. As a consequence,
7406 VALADDR, ADDRESS and DVAL0 are ignored.
7407
7408 NOTE: Limitations: For now, we assume that dynamic fields and
7409 variants occupy whole numbers of bytes. However, they need not be
7410 byte-aligned. */
7411
7412 struct type *
7413 ada_template_to_fixed_record_type_1 (struct type *type,
7414 const gdb_byte *valaddr,
7415 CORE_ADDR address, struct value *dval0,
7416 int keep_dynamic_fields)
7417 {
7418 struct value *mark = value_mark ();
7419 struct value *dval;
7420 struct type *rtype;
7421 int nfields, bit_len;
7422 int variant_field;
7423 long off;
7424 int fld_bit_len;
7425 int f;
7426
7427 /* Compute the number of fields in this record type that are going
7428 to be processed: unless keep_dynamic_fields, this includes only
7429 fields whose position and length are static will be processed. */
7430 if (keep_dynamic_fields)
7431 nfields = type->num_fields ();
7432 else
7433 {
7434 nfields = 0;
7435 while (nfields < type->num_fields ()
7436 && !ada_is_variant_part (type, nfields)
7437 && !is_dynamic_field (type, nfields))
7438 nfields++;
7439 }
7440
7441 rtype = alloc_type_copy (type);
7442 rtype->set_code (TYPE_CODE_STRUCT);
7443 INIT_NONE_SPECIFIC (rtype);
7444 rtype->set_num_fields (nfields);
7445 rtype->set_fields
7446 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7447 rtype->set_name (ada_type_name (type));
7448 rtype->set_is_fixed_instance (true);
7449
7450 off = 0;
7451 bit_len = 0;
7452 variant_field = -1;
7453
7454 for (f = 0; f < nfields; f += 1)
7455 {
7456 off = align_up (off, field_alignment (type, f))
7457 + TYPE_FIELD_BITPOS (type, f);
7458 SET_FIELD_BITPOS (rtype->field (f), off);
7459 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7460
7461 if (ada_is_variant_part (type, f))
7462 {
7463 variant_field = f;
7464 fld_bit_len = 0;
7465 }
7466 else if (is_dynamic_field (type, f))
7467 {
7468 const gdb_byte *field_valaddr = valaddr;
7469 CORE_ADDR field_address = address;
7470 struct type *field_type =
7471 TYPE_TARGET_TYPE (type->field (f).type ());
7472
7473 if (dval0 == NULL)
7474 {
7475 /* rtype's length is computed based on the run-time
7476 value of discriminants. If the discriminants are not
7477 initialized, the type size may be completely bogus and
7478 GDB may fail to allocate a value for it. So check the
7479 size first before creating the value. */
7480 ada_ensure_varsize_limit (rtype);
7481 /* Using plain value_from_contents_and_address here
7482 causes problems because we will end up trying to
7483 resolve a type that is currently being
7484 constructed. */
7485 dval = value_from_contents_and_address_unresolved (rtype,
7486 valaddr,
7487 address);
7488 rtype = value_type (dval);
7489 }
7490 else
7491 dval = dval0;
7492
7493 /* If the type referenced by this field is an aligner type, we need
7494 to unwrap that aligner type, because its size might not be set.
7495 Keeping the aligner type would cause us to compute the wrong
7496 size for this field, impacting the offset of the all the fields
7497 that follow this one. */
7498 if (ada_is_aligner_type (field_type))
7499 {
7500 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7501
7502 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7503 field_address = cond_offset_target (field_address, field_offset);
7504 field_type = ada_aligned_type (field_type);
7505 }
7506
7507 field_valaddr = cond_offset_host (field_valaddr,
7508 off / TARGET_CHAR_BIT);
7509 field_address = cond_offset_target (field_address,
7510 off / TARGET_CHAR_BIT);
7511
7512 /* Get the fixed type of the field. Note that, in this case,
7513 we do not want to get the real type out of the tag: if
7514 the current field is the parent part of a tagged record,
7515 we will get the tag of the object. Clearly wrong: the real
7516 type of the parent is not the real type of the child. We
7517 would end up in an infinite loop. */
7518 field_type = ada_get_base_type (field_type);
7519 field_type = ada_to_fixed_type (field_type, field_valaddr,
7520 field_address, dval, 0);
7521 /* If the field size is already larger than the maximum
7522 object size, then the record itself will necessarily
7523 be larger than the maximum object size. We need to make
7524 this check now, because the size might be so ridiculously
7525 large (due to an uninitialized variable in the inferior)
7526 that it would cause an overflow when adding it to the
7527 record size. */
7528 ada_ensure_varsize_limit (field_type);
7529
7530 rtype->field (f).set_type (field_type);
7531 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7532 /* The multiplication can potentially overflow. But because
7533 the field length has been size-checked just above, and
7534 assuming that the maximum size is a reasonable value,
7535 an overflow should not happen in practice. So rather than
7536 adding overflow recovery code to this already complex code,
7537 we just assume that it's not going to happen. */
7538 fld_bit_len =
7539 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7540 }
7541 else
7542 {
7543 /* Note: If this field's type is a typedef, it is important
7544 to preserve the typedef layer.
7545
7546 Otherwise, we might be transforming a typedef to a fat
7547 pointer (encoding a pointer to an unconstrained array),
7548 into a basic fat pointer (encoding an unconstrained
7549 array). As both types are implemented using the same
7550 structure, the typedef is the only clue which allows us
7551 to distinguish between the two options. Stripping it
7552 would prevent us from printing this field appropriately. */
7553 rtype->field (f).set_type (type->field (f).type ());
7554 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7555 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7556 fld_bit_len =
7557 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7558 else
7559 {
7560 struct type *field_type = type->field (f).type ();
7561
7562 /* We need to be careful of typedefs when computing
7563 the length of our field. If this is a typedef,
7564 get the length of the target type, not the length
7565 of the typedef. */
7566 if (field_type->code () == TYPE_CODE_TYPEDEF)
7567 field_type = ada_typedef_target_type (field_type);
7568
7569 fld_bit_len =
7570 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7571 }
7572 }
7573 if (off + fld_bit_len > bit_len)
7574 bit_len = off + fld_bit_len;
7575 off += fld_bit_len;
7576 TYPE_LENGTH (rtype) =
7577 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7578 }
7579
7580 /* We handle the variant part, if any, at the end because of certain
7581 odd cases in which it is re-ordered so as NOT to be the last field of
7582 the record. This can happen in the presence of representation
7583 clauses. */
7584 if (variant_field >= 0)
7585 {
7586 struct type *branch_type;
7587
7588 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7589
7590 if (dval0 == NULL)
7591 {
7592 /* Using plain value_from_contents_and_address here causes
7593 problems because we will end up trying to resolve a type
7594 that is currently being constructed. */
7595 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7596 address);
7597 rtype = value_type (dval);
7598 }
7599 else
7600 dval = dval0;
7601
7602 branch_type =
7603 to_fixed_variant_branch_type
7604 (type->field (variant_field).type (),
7605 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7606 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7607 if (branch_type == NULL)
7608 {
7609 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7610 rtype->field (f - 1) = rtype->field (f);
7611 rtype->set_num_fields (rtype->num_fields () - 1);
7612 }
7613 else
7614 {
7615 rtype->field (variant_field).set_type (branch_type);
7616 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7617 fld_bit_len =
7618 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7619 TARGET_CHAR_BIT;
7620 if (off + fld_bit_len > bit_len)
7621 bit_len = off + fld_bit_len;
7622 TYPE_LENGTH (rtype) =
7623 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7624 }
7625 }
7626
7627 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7628 should contain the alignment of that record, which should be a strictly
7629 positive value. If null or negative, then something is wrong, most
7630 probably in the debug info. In that case, we don't round up the size
7631 of the resulting type. If this record is not part of another structure,
7632 the current RTYPE length might be good enough for our purposes. */
7633 if (TYPE_LENGTH (type) <= 0)
7634 {
7635 if (rtype->name ())
7636 warning (_("Invalid type size for `%s' detected: %s."),
7637 rtype->name (), pulongest (TYPE_LENGTH (type)));
7638 else
7639 warning (_("Invalid type size for <unnamed> detected: %s."),
7640 pulongest (TYPE_LENGTH (type)));
7641 }
7642 else
7643 {
7644 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7645 TYPE_LENGTH (type));
7646 }
7647
7648 value_free_to_mark (mark);
7649 if (TYPE_LENGTH (rtype) > varsize_limit)
7650 error (_("record type with dynamic size is larger than varsize-limit"));
7651 return rtype;
7652 }
7653
7654 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7655 of 1. */
7656
7657 static struct type *
7658 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7659 CORE_ADDR address, struct value *dval0)
7660 {
7661 return ada_template_to_fixed_record_type_1 (type, valaddr,
7662 address, dval0, 1);
7663 }
7664
7665 /* An ordinary record type in which ___XVL-convention fields and
7666 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7667 static approximations, containing all possible fields. Uses
7668 no runtime values. Useless for use in values, but that's OK,
7669 since the results are used only for type determinations. Works on both
7670 structs and unions. Representation note: to save space, we memorize
7671 the result of this function in the TYPE_TARGET_TYPE of the
7672 template type. */
7673
7674 static struct type *
7675 template_to_static_fixed_type (struct type *type0)
7676 {
7677 struct type *type;
7678 int nfields;
7679 int f;
7680
7681 /* No need no do anything if the input type is already fixed. */
7682 if (type0->is_fixed_instance ())
7683 return type0;
7684
7685 /* Likewise if we already have computed the static approximation. */
7686 if (TYPE_TARGET_TYPE (type0) != NULL)
7687 return TYPE_TARGET_TYPE (type0);
7688
7689 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
7690 type = type0;
7691 nfields = type0->num_fields ();
7692
7693 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7694 recompute all over next time. */
7695 TYPE_TARGET_TYPE (type0) = type;
7696
7697 for (f = 0; f < nfields; f += 1)
7698 {
7699 struct type *field_type = type0->field (f).type ();
7700 struct type *new_type;
7701
7702 if (is_dynamic_field (type0, f))
7703 {
7704 field_type = ada_check_typedef (field_type);
7705 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7706 }
7707 else
7708 new_type = static_unwrap_type (field_type);
7709
7710 if (new_type != field_type)
7711 {
7712 /* Clone TYPE0 only the first time we get a new field type. */
7713 if (type == type0)
7714 {
7715 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7716 type->set_code (type0->code ());
7717 INIT_NONE_SPECIFIC (type);
7718 type->set_num_fields (nfields);
7719
7720 field *fields =
7721 ((struct field *)
7722 TYPE_ALLOC (type, nfields * sizeof (struct field)));
7723 memcpy (fields, type0->fields (),
7724 sizeof (struct field) * nfields);
7725 type->set_fields (fields);
7726
7727 type->set_name (ada_type_name (type0));
7728 type->set_is_fixed_instance (true);
7729 TYPE_LENGTH (type) = 0;
7730 }
7731 type->field (f).set_type (new_type);
7732 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7733 }
7734 }
7735
7736 return type;
7737 }
7738
7739 /* Given an object of type TYPE whose contents are at VALADDR and
7740 whose address in memory is ADDRESS, returns a revision of TYPE,
7741 which should be a non-dynamic-sized record, in which the variant
7742 part, if any, is replaced with the appropriate branch. Looks
7743 for discriminant values in DVAL0, which can be NULL if the record
7744 contains the necessary discriminant values. */
7745
7746 static struct type *
7747 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7748 CORE_ADDR address, struct value *dval0)
7749 {
7750 struct value *mark = value_mark ();
7751 struct value *dval;
7752 struct type *rtype;
7753 struct type *branch_type;
7754 int nfields = type->num_fields ();
7755 int variant_field = variant_field_index (type);
7756
7757 if (variant_field == -1)
7758 return type;
7759
7760 if (dval0 == NULL)
7761 {
7762 dval = value_from_contents_and_address (type, valaddr, address);
7763 type = value_type (dval);
7764 }
7765 else
7766 dval = dval0;
7767
7768 rtype = alloc_type_copy (type);
7769 rtype->set_code (TYPE_CODE_STRUCT);
7770 INIT_NONE_SPECIFIC (rtype);
7771 rtype->set_num_fields (nfields);
7772
7773 field *fields =
7774 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7775 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
7776 rtype->set_fields (fields);
7777
7778 rtype->set_name (ada_type_name (type));
7779 rtype->set_is_fixed_instance (true);
7780 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7781
7782 branch_type = to_fixed_variant_branch_type
7783 (type->field (variant_field).type (),
7784 cond_offset_host (valaddr,
7785 TYPE_FIELD_BITPOS (type, variant_field)
7786 / TARGET_CHAR_BIT),
7787 cond_offset_target (address,
7788 TYPE_FIELD_BITPOS (type, variant_field)
7789 / TARGET_CHAR_BIT), dval);
7790 if (branch_type == NULL)
7791 {
7792 int f;
7793
7794 for (f = variant_field + 1; f < nfields; f += 1)
7795 rtype->field (f - 1) = rtype->field (f);
7796 rtype->set_num_fields (rtype->num_fields () - 1);
7797 }
7798 else
7799 {
7800 rtype->field (variant_field).set_type (branch_type);
7801 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7802 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7803 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7804 }
7805 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
7806
7807 value_free_to_mark (mark);
7808 return rtype;
7809 }
7810
7811 /* An ordinary record type (with fixed-length fields) that describes
7812 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7813 beginning of this section]. Any necessary discriminants' values
7814 should be in DVAL, a record value; it may be NULL if the object
7815 at ADDR itself contains any necessary discriminant values.
7816 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7817 values from the record are needed. Except in the case that DVAL,
7818 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7819 unchecked) is replaced by a particular branch of the variant.
7820
7821 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7822 is questionable and may be removed. It can arise during the
7823 processing of an unconstrained-array-of-record type where all the
7824 variant branches have exactly the same size. This is because in
7825 such cases, the compiler does not bother to use the XVS convention
7826 when encoding the record. I am currently dubious of this
7827 shortcut and suspect the compiler should be altered. FIXME. */
7828
7829 static struct type *
7830 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7831 CORE_ADDR address, struct value *dval)
7832 {
7833 struct type *templ_type;
7834
7835 if (type0->is_fixed_instance ())
7836 return type0;
7837
7838 templ_type = dynamic_template_type (type0);
7839
7840 if (templ_type != NULL)
7841 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7842 else if (variant_field_index (type0) >= 0)
7843 {
7844 if (dval == NULL && valaddr == NULL && address == 0)
7845 return type0;
7846 return to_record_with_fixed_variant_part (type0, valaddr, address,
7847 dval);
7848 }
7849 else
7850 {
7851 type0->set_is_fixed_instance (true);
7852 return type0;
7853 }
7854
7855 }
7856
7857 /* An ordinary record type (with fixed-length fields) that describes
7858 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7859 union type. Any necessary discriminants' values should be in DVAL,
7860 a record value. That is, this routine selects the appropriate
7861 branch of the union at ADDR according to the discriminant value
7862 indicated in the union's type name. Returns VAR_TYPE0 itself if
7863 it represents a variant subject to a pragma Unchecked_Union. */
7864
7865 static struct type *
7866 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7867 CORE_ADDR address, struct value *dval)
7868 {
7869 int which;
7870 struct type *templ_type;
7871 struct type *var_type;
7872
7873 if (var_type0->code () == TYPE_CODE_PTR)
7874 var_type = TYPE_TARGET_TYPE (var_type0);
7875 else
7876 var_type = var_type0;
7877
7878 templ_type = ada_find_parallel_type (var_type, "___XVU");
7879
7880 if (templ_type != NULL)
7881 var_type = templ_type;
7882
7883 if (is_unchecked_variant (var_type, value_type (dval)))
7884 return var_type0;
7885 which = ada_which_variant_applies (var_type, dval);
7886
7887 if (which < 0)
7888 return empty_record (var_type);
7889 else if (is_dynamic_field (var_type, which))
7890 return to_fixed_record_type
7891 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
7892 valaddr, address, dval);
7893 else if (variant_field_index (var_type->field (which).type ()) >= 0)
7894 return
7895 to_fixed_record_type
7896 (var_type->field (which).type (), valaddr, address, dval);
7897 else
7898 return var_type->field (which).type ();
7899 }
7900
7901 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7902 ENCODING_TYPE, a type following the GNAT conventions for discrete
7903 type encodings, only carries redundant information. */
7904
7905 static int
7906 ada_is_redundant_range_encoding (struct type *range_type,
7907 struct type *encoding_type)
7908 {
7909 const char *bounds_str;
7910 int n;
7911 LONGEST lo, hi;
7912
7913 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
7914
7915 if (get_base_type (range_type)->code ()
7916 != get_base_type (encoding_type)->code ())
7917 {
7918 /* The compiler probably used a simple base type to describe
7919 the range type instead of the range's actual base type,
7920 expecting us to get the real base type from the encoding
7921 anyway. In this situation, the encoding cannot be ignored
7922 as redundant. */
7923 return 0;
7924 }
7925
7926 if (is_dynamic_type (range_type))
7927 return 0;
7928
7929 if (encoding_type->name () == NULL)
7930 return 0;
7931
7932 bounds_str = strstr (encoding_type->name (), "___XDLU_");
7933 if (bounds_str == NULL)
7934 return 0;
7935
7936 n = 8; /* Skip "___XDLU_". */
7937 if (!ada_scan_number (bounds_str, n, &lo, &n))
7938 return 0;
7939 if (range_type->bounds ()->low.const_val () != lo)
7940 return 0;
7941
7942 n += 2; /* Skip the "__" separator between the two bounds. */
7943 if (!ada_scan_number (bounds_str, n, &hi, &n))
7944 return 0;
7945 if (range_type->bounds ()->high.const_val () != hi)
7946 return 0;
7947
7948 return 1;
7949 }
7950
7951 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
7952 a type following the GNAT encoding for describing array type
7953 indices, only carries redundant information. */
7954
7955 static int
7956 ada_is_redundant_index_type_desc (struct type *array_type,
7957 struct type *desc_type)
7958 {
7959 struct type *this_layer = check_typedef (array_type);
7960 int i;
7961
7962 for (i = 0; i < desc_type->num_fields (); i++)
7963 {
7964 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
7965 desc_type->field (i).type ()))
7966 return 0;
7967 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
7968 }
7969
7970 return 1;
7971 }
7972
7973 /* Assuming that TYPE0 is an array type describing the type of a value
7974 at ADDR, and that DVAL describes a record containing any
7975 discriminants used in TYPE0, returns a type for the value that
7976 contains no dynamic components (that is, no components whose sizes
7977 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7978 true, gives an error message if the resulting type's size is over
7979 varsize_limit. */
7980
7981 static struct type *
7982 to_fixed_array_type (struct type *type0, struct value *dval,
7983 int ignore_too_big)
7984 {
7985 struct type *index_type_desc;
7986 struct type *result;
7987 int constrained_packed_array_p;
7988 static const char *xa_suffix = "___XA";
7989
7990 type0 = ada_check_typedef (type0);
7991 if (type0->is_fixed_instance ())
7992 return type0;
7993
7994 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7995 if (constrained_packed_array_p)
7996 {
7997 type0 = decode_constrained_packed_array_type (type0);
7998 if (type0 == nullptr)
7999 error (_("could not decode constrained packed array type"));
8000 }
8001
8002 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8003
8004 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8005 encoding suffixed with 'P' may still be generated. If so,
8006 it should be used to find the XA type. */
8007
8008 if (index_type_desc == NULL)
8009 {
8010 const char *type_name = ada_type_name (type0);
8011
8012 if (type_name != NULL)
8013 {
8014 const int len = strlen (type_name);
8015 char *name = (char *) alloca (len + strlen (xa_suffix));
8016
8017 if (type_name[len - 1] == 'P')
8018 {
8019 strcpy (name, type_name);
8020 strcpy (name + len - 1, xa_suffix);
8021 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8022 }
8023 }
8024 }
8025
8026 ada_fixup_array_indexes_type (index_type_desc);
8027 if (index_type_desc != NULL
8028 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8029 {
8030 /* Ignore this ___XA parallel type, as it does not bring any
8031 useful information. This allows us to avoid creating fixed
8032 versions of the array's index types, which would be identical
8033 to the original ones. This, in turn, can also help avoid
8034 the creation of fixed versions of the array itself. */
8035 index_type_desc = NULL;
8036 }
8037
8038 if (index_type_desc == NULL)
8039 {
8040 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8041
8042 /* NOTE: elt_type---the fixed version of elt_type0---should never
8043 depend on the contents of the array in properly constructed
8044 debugging data. */
8045 /* Create a fixed version of the array element type.
8046 We're not providing the address of an element here,
8047 and thus the actual object value cannot be inspected to do
8048 the conversion. This should not be a problem, since arrays of
8049 unconstrained objects are not allowed. In particular, all
8050 the elements of an array of a tagged type should all be of
8051 the same type specified in the debugging info. No need to
8052 consult the object tag. */
8053 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8054
8055 /* Make sure we always create a new array type when dealing with
8056 packed array types, since we're going to fix-up the array
8057 type length and element bitsize a little further down. */
8058 if (elt_type0 == elt_type && !constrained_packed_array_p)
8059 result = type0;
8060 else
8061 result = create_array_type (alloc_type_copy (type0),
8062 elt_type, type0->index_type ());
8063 }
8064 else
8065 {
8066 int i;
8067 struct type *elt_type0;
8068
8069 elt_type0 = type0;
8070 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8071 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8072
8073 /* NOTE: result---the fixed version of elt_type0---should never
8074 depend on the contents of the array in properly constructed
8075 debugging data. */
8076 /* Create a fixed version of the array element type.
8077 We're not providing the address of an element here,
8078 and thus the actual object value cannot be inspected to do
8079 the conversion. This should not be a problem, since arrays of
8080 unconstrained objects are not allowed. In particular, all
8081 the elements of an array of a tagged type should all be of
8082 the same type specified in the debugging info. No need to
8083 consult the object tag. */
8084 result =
8085 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8086
8087 elt_type0 = type0;
8088 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8089 {
8090 struct type *range_type =
8091 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8092
8093 result = create_array_type (alloc_type_copy (elt_type0),
8094 result, range_type);
8095 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8096 }
8097 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8098 error (_("array type with dynamic size is larger than varsize-limit"));
8099 }
8100
8101 /* We want to preserve the type name. This can be useful when
8102 trying to get the type name of a value that has already been
8103 printed (for instance, if the user did "print VAR; whatis $". */
8104 result->set_name (type0->name ());
8105
8106 if (constrained_packed_array_p)
8107 {
8108 /* So far, the resulting type has been created as if the original
8109 type was a regular (non-packed) array type. As a result, the
8110 bitsize of the array elements needs to be set again, and the array
8111 length needs to be recomputed based on that bitsize. */
8112 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8113 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8114
8115 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8116 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8117 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8118 TYPE_LENGTH (result)++;
8119 }
8120
8121 result->set_is_fixed_instance (true);
8122 return result;
8123 }
8124
8125
8126 /* A standard type (containing no dynamically sized components)
8127 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8128 DVAL describes a record containing any discriminants used in TYPE0,
8129 and may be NULL if there are none, or if the object of type TYPE at
8130 ADDRESS or in VALADDR contains these discriminants.
8131
8132 If CHECK_TAG is not null, in the case of tagged types, this function
8133 attempts to locate the object's tag and use it to compute the actual
8134 type. However, when ADDRESS is null, we cannot use it to determine the
8135 location of the tag, and therefore compute the tagged type's actual type.
8136 So we return the tagged type without consulting the tag. */
8137
8138 static struct type *
8139 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8140 CORE_ADDR address, struct value *dval, int check_tag)
8141 {
8142 type = ada_check_typedef (type);
8143
8144 /* Only un-fixed types need to be handled here. */
8145 if (!HAVE_GNAT_AUX_INFO (type))
8146 return type;
8147
8148 switch (type->code ())
8149 {
8150 default:
8151 return type;
8152 case TYPE_CODE_STRUCT:
8153 {
8154 struct type *static_type = to_static_fixed_type (type);
8155 struct type *fixed_record_type =
8156 to_fixed_record_type (type, valaddr, address, NULL);
8157
8158 /* If STATIC_TYPE is a tagged type and we know the object's address,
8159 then we can determine its tag, and compute the object's actual
8160 type from there. Note that we have to use the fixed record
8161 type (the parent part of the record may have dynamic fields
8162 and the way the location of _tag is expressed may depend on
8163 them). */
8164
8165 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8166 {
8167 struct value *tag =
8168 value_tag_from_contents_and_address
8169 (fixed_record_type,
8170 valaddr,
8171 address);
8172 struct type *real_type = type_from_tag (tag);
8173 struct value *obj =
8174 value_from_contents_and_address (fixed_record_type,
8175 valaddr,
8176 address);
8177 fixed_record_type = value_type (obj);
8178 if (real_type != NULL)
8179 return to_fixed_record_type
8180 (real_type, NULL,
8181 value_address (ada_tag_value_at_base_address (obj)), NULL);
8182 }
8183
8184 /* Check to see if there is a parallel ___XVZ variable.
8185 If there is, then it provides the actual size of our type. */
8186 else if (ada_type_name (fixed_record_type) != NULL)
8187 {
8188 const char *name = ada_type_name (fixed_record_type);
8189 char *xvz_name
8190 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8191 bool xvz_found = false;
8192 LONGEST size;
8193
8194 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8195 try
8196 {
8197 xvz_found = get_int_var_value (xvz_name, size);
8198 }
8199 catch (const gdb_exception_error &except)
8200 {
8201 /* We found the variable, but somehow failed to read
8202 its value. Rethrow the same error, but with a little
8203 bit more information, to help the user understand
8204 what went wrong (Eg: the variable might have been
8205 optimized out). */
8206 throw_error (except.error,
8207 _("unable to read value of %s (%s)"),
8208 xvz_name, except.what ());
8209 }
8210
8211 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8212 {
8213 fixed_record_type = copy_type (fixed_record_type);
8214 TYPE_LENGTH (fixed_record_type) = size;
8215
8216 /* The FIXED_RECORD_TYPE may have be a stub. We have
8217 observed this when the debugging info is STABS, and
8218 apparently it is something that is hard to fix.
8219
8220 In practice, we don't need the actual type definition
8221 at all, because the presence of the XVZ variable allows us
8222 to assume that there must be a XVS type as well, which we
8223 should be able to use later, when we need the actual type
8224 definition.
8225
8226 In the meantime, pretend that the "fixed" type we are
8227 returning is NOT a stub, because this can cause trouble
8228 when using this type to create new types targeting it.
8229 Indeed, the associated creation routines often check
8230 whether the target type is a stub and will try to replace
8231 it, thus using a type with the wrong size. This, in turn,
8232 might cause the new type to have the wrong size too.
8233 Consider the case of an array, for instance, where the size
8234 of the array is computed from the number of elements in
8235 our array multiplied by the size of its element. */
8236 fixed_record_type->set_is_stub (false);
8237 }
8238 }
8239 return fixed_record_type;
8240 }
8241 case TYPE_CODE_ARRAY:
8242 return to_fixed_array_type (type, dval, 1);
8243 case TYPE_CODE_UNION:
8244 if (dval == NULL)
8245 return type;
8246 else
8247 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8248 }
8249 }
8250
8251 /* The same as ada_to_fixed_type_1, except that it preserves the type
8252 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8253
8254 The typedef layer needs be preserved in order to differentiate between
8255 arrays and array pointers when both types are implemented using the same
8256 fat pointer. In the array pointer case, the pointer is encoded as
8257 a typedef of the pointer type. For instance, considering:
8258
8259 type String_Access is access String;
8260 S1 : String_Access := null;
8261
8262 To the debugger, S1 is defined as a typedef of type String. But
8263 to the user, it is a pointer. So if the user tries to print S1,
8264 we should not dereference the array, but print the array address
8265 instead.
8266
8267 If we didn't preserve the typedef layer, we would lose the fact that
8268 the type is to be presented as a pointer (needs de-reference before
8269 being printed). And we would also use the source-level type name. */
8270
8271 struct type *
8272 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8273 CORE_ADDR address, struct value *dval, int check_tag)
8274
8275 {
8276 struct type *fixed_type =
8277 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8278
8279 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8280 then preserve the typedef layer.
8281
8282 Implementation note: We can only check the main-type portion of
8283 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8284 from TYPE now returns a type that has the same instance flags
8285 as TYPE. For instance, if TYPE is a "typedef const", and its
8286 target type is a "struct", then the typedef elimination will return
8287 a "const" version of the target type. See check_typedef for more
8288 details about how the typedef layer elimination is done.
8289
8290 brobecker/2010-11-19: It seems to me that the only case where it is
8291 useful to preserve the typedef layer is when dealing with fat pointers.
8292 Perhaps, we could add a check for that and preserve the typedef layer
8293 only in that situation. But this seems unnecessary so far, probably
8294 because we call check_typedef/ada_check_typedef pretty much everywhere.
8295 */
8296 if (type->code () == TYPE_CODE_TYPEDEF
8297 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8298 == TYPE_MAIN_TYPE (fixed_type)))
8299 return type;
8300
8301 return fixed_type;
8302 }
8303
8304 /* A standard (static-sized) type corresponding as well as possible to
8305 TYPE0, but based on no runtime data. */
8306
8307 static struct type *
8308 to_static_fixed_type (struct type *type0)
8309 {
8310 struct type *type;
8311
8312 if (type0 == NULL)
8313 return NULL;
8314
8315 if (type0->is_fixed_instance ())
8316 return type0;
8317
8318 type0 = ada_check_typedef (type0);
8319
8320 switch (type0->code ())
8321 {
8322 default:
8323 return type0;
8324 case TYPE_CODE_STRUCT:
8325 type = dynamic_template_type (type0);
8326 if (type != NULL)
8327 return template_to_static_fixed_type (type);
8328 else
8329 return template_to_static_fixed_type (type0);
8330 case TYPE_CODE_UNION:
8331 type = ada_find_parallel_type (type0, "___XVU");
8332 if (type != NULL)
8333 return template_to_static_fixed_type (type);
8334 else
8335 return template_to_static_fixed_type (type0);
8336 }
8337 }
8338
8339 /* A static approximation of TYPE with all type wrappers removed. */
8340
8341 static struct type *
8342 static_unwrap_type (struct type *type)
8343 {
8344 if (ada_is_aligner_type (type))
8345 {
8346 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8347 if (ada_type_name (type1) == NULL)
8348 type1->set_name (ada_type_name (type));
8349
8350 return static_unwrap_type (type1);
8351 }
8352 else
8353 {
8354 struct type *raw_real_type = ada_get_base_type (type);
8355
8356 if (raw_real_type == type)
8357 return type;
8358 else
8359 return to_static_fixed_type (raw_real_type);
8360 }
8361 }
8362
8363 /* In some cases, incomplete and private types require
8364 cross-references that are not resolved as records (for example,
8365 type Foo;
8366 type FooP is access Foo;
8367 V: FooP;
8368 type Foo is array ...;
8369 ). In these cases, since there is no mechanism for producing
8370 cross-references to such types, we instead substitute for FooP a
8371 stub enumeration type that is nowhere resolved, and whose tag is
8372 the name of the actual type. Call these types "non-record stubs". */
8373
8374 /* A type equivalent to TYPE that is not a non-record stub, if one
8375 exists, otherwise TYPE. */
8376
8377 struct type *
8378 ada_check_typedef (struct type *type)
8379 {
8380 if (type == NULL)
8381 return NULL;
8382
8383 /* If our type is an access to an unconstrained array, which is encoded
8384 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8385 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8386 what allows us to distinguish between fat pointers that represent
8387 array types, and fat pointers that represent array access types
8388 (in both cases, the compiler implements them as fat pointers). */
8389 if (ada_is_access_to_unconstrained_array (type))
8390 return type;
8391
8392 type = check_typedef (type);
8393 if (type == NULL || type->code () != TYPE_CODE_ENUM
8394 || !type->is_stub ()
8395 || type->name () == NULL)
8396 return type;
8397 else
8398 {
8399 const char *name = type->name ();
8400 struct type *type1 = ada_find_any_type (name);
8401
8402 if (type1 == NULL)
8403 return type;
8404
8405 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8406 stubs pointing to arrays, as we don't create symbols for array
8407 types, only for the typedef-to-array types). If that's the case,
8408 strip the typedef layer. */
8409 if (type1->code () == TYPE_CODE_TYPEDEF)
8410 type1 = ada_check_typedef (type1);
8411
8412 return type1;
8413 }
8414 }
8415
8416 /* A value representing the data at VALADDR/ADDRESS as described by
8417 type TYPE0, but with a standard (static-sized) type that correctly
8418 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8419 type, then return VAL0 [this feature is simply to avoid redundant
8420 creation of struct values]. */
8421
8422 static struct value *
8423 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8424 struct value *val0)
8425 {
8426 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8427
8428 if (type == type0 && val0 != NULL)
8429 return val0;
8430
8431 if (VALUE_LVAL (val0) != lval_memory)
8432 {
8433 /* Our value does not live in memory; it could be a convenience
8434 variable, for instance. Create a not_lval value using val0's
8435 contents. */
8436 return value_from_contents (type, value_contents (val0));
8437 }
8438
8439 return value_from_contents_and_address (type, 0, address);
8440 }
8441
8442 /* A value representing VAL, but with a standard (static-sized) type
8443 that correctly describes it. Does not necessarily create a new
8444 value. */
8445
8446 struct value *
8447 ada_to_fixed_value (struct value *val)
8448 {
8449 val = unwrap_value (val);
8450 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8451 return val;
8452 }
8453 \f
8454
8455 /* Attributes */
8456
8457 /* Table mapping attribute numbers to names.
8458 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8459
8460 static const char * const attribute_names[] = {
8461 "<?>",
8462
8463 "first",
8464 "last",
8465 "length",
8466 "image",
8467 "max",
8468 "min",
8469 "modulus",
8470 "pos",
8471 "size",
8472 "tag",
8473 "val",
8474 0
8475 };
8476
8477 static const char *
8478 ada_attribute_name (enum exp_opcode n)
8479 {
8480 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8481 return attribute_names[n - OP_ATR_FIRST + 1];
8482 else
8483 return attribute_names[0];
8484 }
8485
8486 /* Evaluate the 'POS attribute applied to ARG. */
8487
8488 static LONGEST
8489 pos_atr (struct value *arg)
8490 {
8491 struct value *val = coerce_ref (arg);
8492 struct type *type = value_type (val);
8493
8494 if (!discrete_type_p (type))
8495 error (_("'POS only defined on discrete types"));
8496
8497 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8498 if (!result.has_value ())
8499 error (_("enumeration value is invalid: can't find 'POS"));
8500
8501 return *result;
8502 }
8503
8504 struct value *
8505 ada_pos_atr (struct type *expect_type,
8506 struct expression *exp,
8507 enum noside noside, enum exp_opcode op,
8508 struct value *arg)
8509 {
8510 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8511 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8512 return value_zero (type, not_lval);
8513 return value_from_longest (type, pos_atr (arg));
8514 }
8515
8516 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8517
8518 static struct value *
8519 val_atr (struct type *type, LONGEST val)
8520 {
8521 gdb_assert (discrete_type_p (type));
8522 if (type->code () == TYPE_CODE_RANGE)
8523 type = TYPE_TARGET_TYPE (type);
8524 if (type->code () == TYPE_CODE_ENUM)
8525 {
8526 if (val < 0 || val >= type->num_fields ())
8527 error (_("argument to 'VAL out of range"));
8528 val = TYPE_FIELD_ENUMVAL (type, val);
8529 }
8530 return value_from_longest (type, val);
8531 }
8532
8533 struct value *
8534 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8535 {
8536 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8537 return value_zero (type, not_lval);
8538
8539 if (!discrete_type_p (type))
8540 error (_("'VAL only defined on discrete types"));
8541 if (!integer_type_p (value_type (arg)))
8542 error (_("'VAL requires integral argument"));
8543
8544 return val_atr (type, value_as_long (arg));
8545 }
8546 \f
8547
8548 /* Evaluation */
8549
8550 /* True if TYPE appears to be an Ada character type.
8551 [At the moment, this is true only for Character and Wide_Character;
8552 It is a heuristic test that could stand improvement]. */
8553
8554 bool
8555 ada_is_character_type (struct type *type)
8556 {
8557 const char *name;
8558
8559 /* If the type code says it's a character, then assume it really is,
8560 and don't check any further. */
8561 if (type->code () == TYPE_CODE_CHAR)
8562 return true;
8563
8564 /* Otherwise, assume it's a character type iff it is a discrete type
8565 with a known character type name. */
8566 name = ada_type_name (type);
8567 return (name != NULL
8568 && (type->code () == TYPE_CODE_INT
8569 || type->code () == TYPE_CODE_RANGE)
8570 && (strcmp (name, "character") == 0
8571 || strcmp (name, "wide_character") == 0
8572 || strcmp (name, "wide_wide_character") == 0
8573 || strcmp (name, "unsigned char") == 0));
8574 }
8575
8576 /* True if TYPE appears to be an Ada string type. */
8577
8578 bool
8579 ada_is_string_type (struct type *type)
8580 {
8581 type = ada_check_typedef (type);
8582 if (type != NULL
8583 && type->code () != TYPE_CODE_PTR
8584 && (ada_is_simple_array_type (type)
8585 || ada_is_array_descriptor_type (type))
8586 && ada_array_arity (type) == 1)
8587 {
8588 struct type *elttype = ada_array_element_type (type, 1);
8589
8590 return ada_is_character_type (elttype);
8591 }
8592 else
8593 return false;
8594 }
8595
8596 /* The compiler sometimes provides a parallel XVS type for a given
8597 PAD type. Normally, it is safe to follow the PAD type directly,
8598 but older versions of the compiler have a bug that causes the offset
8599 of its "F" field to be wrong. Following that field in that case
8600 would lead to incorrect results, but this can be worked around
8601 by ignoring the PAD type and using the associated XVS type instead.
8602
8603 Set to True if the debugger should trust the contents of PAD types.
8604 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8605 static bool trust_pad_over_xvs = true;
8606
8607 /* True if TYPE is a struct type introduced by the compiler to force the
8608 alignment of a value. Such types have a single field with a
8609 distinctive name. */
8610
8611 int
8612 ada_is_aligner_type (struct type *type)
8613 {
8614 type = ada_check_typedef (type);
8615
8616 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8617 return 0;
8618
8619 return (type->code () == TYPE_CODE_STRUCT
8620 && type->num_fields () == 1
8621 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8622 }
8623
8624 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8625 the parallel type. */
8626
8627 struct type *
8628 ada_get_base_type (struct type *raw_type)
8629 {
8630 struct type *real_type_namer;
8631 struct type *raw_real_type;
8632
8633 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8634 return raw_type;
8635
8636 if (ada_is_aligner_type (raw_type))
8637 /* The encoding specifies that we should always use the aligner type.
8638 So, even if this aligner type has an associated XVS type, we should
8639 simply ignore it.
8640
8641 According to the compiler gurus, an XVS type parallel to an aligner
8642 type may exist because of a stabs limitation. In stabs, aligner
8643 types are empty because the field has a variable-sized type, and
8644 thus cannot actually be used as an aligner type. As a result,
8645 we need the associated parallel XVS type to decode the type.
8646 Since the policy in the compiler is to not change the internal
8647 representation based on the debugging info format, we sometimes
8648 end up having a redundant XVS type parallel to the aligner type. */
8649 return raw_type;
8650
8651 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8652 if (real_type_namer == NULL
8653 || real_type_namer->code () != TYPE_CODE_STRUCT
8654 || real_type_namer->num_fields () != 1)
8655 return raw_type;
8656
8657 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8658 {
8659 /* This is an older encoding form where the base type needs to be
8660 looked up by name. We prefer the newer encoding because it is
8661 more efficient. */
8662 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8663 if (raw_real_type == NULL)
8664 return raw_type;
8665 else
8666 return raw_real_type;
8667 }
8668
8669 /* The field in our XVS type is a reference to the base type. */
8670 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
8671 }
8672
8673 /* The type of value designated by TYPE, with all aligners removed. */
8674
8675 struct type *
8676 ada_aligned_type (struct type *type)
8677 {
8678 if (ada_is_aligner_type (type))
8679 return ada_aligned_type (type->field (0).type ());
8680 else
8681 return ada_get_base_type (type);
8682 }
8683
8684
8685 /* The address of the aligned value in an object at address VALADDR
8686 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8687
8688 const gdb_byte *
8689 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8690 {
8691 if (ada_is_aligner_type (type))
8692 return ada_aligned_value_addr (type->field (0).type (),
8693 valaddr +
8694 TYPE_FIELD_BITPOS (type,
8695 0) / TARGET_CHAR_BIT);
8696 else
8697 return valaddr;
8698 }
8699
8700
8701
8702 /* The printed representation of an enumeration literal with encoded
8703 name NAME. The value is good to the next call of ada_enum_name. */
8704 const char *
8705 ada_enum_name (const char *name)
8706 {
8707 static std::string storage;
8708 const char *tmp;
8709
8710 /* First, unqualify the enumeration name:
8711 1. Search for the last '.' character. If we find one, then skip
8712 all the preceding characters, the unqualified name starts
8713 right after that dot.
8714 2. Otherwise, we may be debugging on a target where the compiler
8715 translates dots into "__". Search forward for double underscores,
8716 but stop searching when we hit an overloading suffix, which is
8717 of the form "__" followed by digits. */
8718
8719 tmp = strrchr (name, '.');
8720 if (tmp != NULL)
8721 name = tmp + 1;
8722 else
8723 {
8724 while ((tmp = strstr (name, "__")) != NULL)
8725 {
8726 if (isdigit (tmp[2]))
8727 break;
8728 else
8729 name = tmp + 2;
8730 }
8731 }
8732
8733 if (name[0] == 'Q')
8734 {
8735 int v;
8736
8737 if (name[1] == 'U' || name[1] == 'W')
8738 {
8739 if (sscanf (name + 2, "%x", &v) != 1)
8740 return name;
8741 }
8742 else if (((name[1] >= '0' && name[1] <= '9')
8743 || (name[1] >= 'a' && name[1] <= 'z'))
8744 && name[2] == '\0')
8745 {
8746 storage = string_printf ("'%c'", name[1]);
8747 return storage.c_str ();
8748 }
8749 else
8750 return name;
8751
8752 if (isascii (v) && isprint (v))
8753 storage = string_printf ("'%c'", v);
8754 else if (name[1] == 'U')
8755 storage = string_printf ("[\"%02x\"]", v);
8756 else
8757 storage = string_printf ("[\"%04x\"]", v);
8758
8759 return storage.c_str ();
8760 }
8761 else
8762 {
8763 tmp = strstr (name, "__");
8764 if (tmp == NULL)
8765 tmp = strstr (name, "$");
8766 if (tmp != NULL)
8767 {
8768 storage = std::string (name, tmp - name);
8769 return storage.c_str ();
8770 }
8771
8772 return name;
8773 }
8774 }
8775
8776 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8777 value it wraps. */
8778
8779 static struct value *
8780 unwrap_value (struct value *val)
8781 {
8782 struct type *type = ada_check_typedef (value_type (val));
8783
8784 if (ada_is_aligner_type (type))
8785 {
8786 struct value *v = ada_value_struct_elt (val, "F", 0);
8787 struct type *val_type = ada_check_typedef (value_type (v));
8788
8789 if (ada_type_name (val_type) == NULL)
8790 val_type->set_name (ada_type_name (type));
8791
8792 return unwrap_value (v);
8793 }
8794 else
8795 {
8796 struct type *raw_real_type =
8797 ada_check_typedef (ada_get_base_type (type));
8798
8799 /* If there is no parallel XVS or XVE type, then the value is
8800 already unwrapped. Return it without further modification. */
8801 if ((type == raw_real_type)
8802 && ada_find_parallel_type (type, "___XVE") == NULL)
8803 return val;
8804
8805 return
8806 coerce_unspec_val_to_type
8807 (val, ada_to_fixed_type (raw_real_type, 0,
8808 value_address (val),
8809 NULL, 1));
8810 }
8811 }
8812
8813 /* Given two array types T1 and T2, return nonzero iff both arrays
8814 contain the same number of elements. */
8815
8816 static int
8817 ada_same_array_size_p (struct type *t1, struct type *t2)
8818 {
8819 LONGEST lo1, hi1, lo2, hi2;
8820
8821 /* Get the array bounds in order to verify that the size of
8822 the two arrays match. */
8823 if (!get_array_bounds (t1, &lo1, &hi1)
8824 || !get_array_bounds (t2, &lo2, &hi2))
8825 error (_("unable to determine array bounds"));
8826
8827 /* To make things easier for size comparison, normalize a bit
8828 the case of empty arrays by making sure that the difference
8829 between upper bound and lower bound is always -1. */
8830 if (lo1 > hi1)
8831 hi1 = lo1 - 1;
8832 if (lo2 > hi2)
8833 hi2 = lo2 - 1;
8834
8835 return (hi1 - lo1 == hi2 - lo2);
8836 }
8837
8838 /* Assuming that VAL is an array of integrals, and TYPE represents
8839 an array with the same number of elements, but with wider integral
8840 elements, return an array "casted" to TYPE. In practice, this
8841 means that the returned array is built by casting each element
8842 of the original array into TYPE's (wider) element type. */
8843
8844 static struct value *
8845 ada_promote_array_of_integrals (struct type *type, struct value *val)
8846 {
8847 struct type *elt_type = TYPE_TARGET_TYPE (type);
8848 LONGEST lo, hi;
8849 struct value *res;
8850 LONGEST i;
8851
8852 /* Verify that both val and type are arrays of scalars, and
8853 that the size of val's elements is smaller than the size
8854 of type's element. */
8855 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8856 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8857 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
8858 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8859 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8860 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8861
8862 if (!get_array_bounds (type, &lo, &hi))
8863 error (_("unable to determine array bounds"));
8864
8865 res = allocate_value (type);
8866
8867 /* Promote each array element. */
8868 for (i = 0; i < hi - lo + 1; i++)
8869 {
8870 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8871
8872 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8873 value_contents_all (elt), TYPE_LENGTH (elt_type));
8874 }
8875
8876 return res;
8877 }
8878
8879 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8880 return the converted value. */
8881
8882 static struct value *
8883 coerce_for_assign (struct type *type, struct value *val)
8884 {
8885 struct type *type2 = value_type (val);
8886
8887 if (type == type2)
8888 return val;
8889
8890 type2 = ada_check_typedef (type2);
8891 type = ada_check_typedef (type);
8892
8893 if (type2->code () == TYPE_CODE_PTR
8894 && type->code () == TYPE_CODE_ARRAY)
8895 {
8896 val = ada_value_ind (val);
8897 type2 = value_type (val);
8898 }
8899
8900 if (type2->code () == TYPE_CODE_ARRAY
8901 && type->code () == TYPE_CODE_ARRAY)
8902 {
8903 if (!ada_same_array_size_p (type, type2))
8904 error (_("cannot assign arrays of different length"));
8905
8906 if (is_integral_type (TYPE_TARGET_TYPE (type))
8907 && is_integral_type (TYPE_TARGET_TYPE (type2))
8908 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8909 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8910 {
8911 /* Allow implicit promotion of the array elements to
8912 a wider type. */
8913 return ada_promote_array_of_integrals (type, val);
8914 }
8915
8916 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8917 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8918 error (_("Incompatible types in assignment"));
8919 deprecated_set_value_type (val, type);
8920 }
8921 return val;
8922 }
8923
8924 static struct value *
8925 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8926 {
8927 struct value *val;
8928 struct type *type1, *type2;
8929 LONGEST v, v1, v2;
8930
8931 arg1 = coerce_ref (arg1);
8932 arg2 = coerce_ref (arg2);
8933 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8934 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8935
8936 if (type1->code () != TYPE_CODE_INT
8937 || type2->code () != TYPE_CODE_INT)
8938 return value_binop (arg1, arg2, op);
8939
8940 switch (op)
8941 {
8942 case BINOP_MOD:
8943 case BINOP_DIV:
8944 case BINOP_REM:
8945 break;
8946 default:
8947 return value_binop (arg1, arg2, op);
8948 }
8949
8950 v2 = value_as_long (arg2);
8951 if (v2 == 0)
8952 {
8953 const char *name;
8954 if (op == BINOP_MOD)
8955 name = "mod";
8956 else if (op == BINOP_DIV)
8957 name = "/";
8958 else
8959 {
8960 gdb_assert (op == BINOP_REM);
8961 name = "rem";
8962 }
8963
8964 error (_("second operand of %s must not be zero."), name);
8965 }
8966
8967 if (type1->is_unsigned () || op == BINOP_MOD)
8968 return value_binop (arg1, arg2, op);
8969
8970 v1 = value_as_long (arg1);
8971 switch (op)
8972 {
8973 case BINOP_DIV:
8974 v = v1 / v2;
8975 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8976 v += v > 0 ? -1 : 1;
8977 break;
8978 case BINOP_REM:
8979 v = v1 % v2;
8980 if (v * v1 < 0)
8981 v -= v2;
8982 break;
8983 default:
8984 /* Should not reach this point. */
8985 v = 0;
8986 }
8987
8988 val = allocate_value (type1);
8989 store_unsigned_integer (value_contents_raw (val),
8990 TYPE_LENGTH (value_type (val)),
8991 type_byte_order (type1), v);
8992 return val;
8993 }
8994
8995 static int
8996 ada_value_equal (struct value *arg1, struct value *arg2)
8997 {
8998 if (ada_is_direct_array_type (value_type (arg1))
8999 || ada_is_direct_array_type (value_type (arg2)))
9000 {
9001 struct type *arg1_type, *arg2_type;
9002
9003 /* Automatically dereference any array reference before
9004 we attempt to perform the comparison. */
9005 arg1 = ada_coerce_ref (arg1);
9006 arg2 = ada_coerce_ref (arg2);
9007
9008 arg1 = ada_coerce_to_simple_array (arg1);
9009 arg2 = ada_coerce_to_simple_array (arg2);
9010
9011 arg1_type = ada_check_typedef (value_type (arg1));
9012 arg2_type = ada_check_typedef (value_type (arg2));
9013
9014 if (arg1_type->code () != TYPE_CODE_ARRAY
9015 || arg2_type->code () != TYPE_CODE_ARRAY)
9016 error (_("Attempt to compare array with non-array"));
9017 /* FIXME: The following works only for types whose
9018 representations use all bits (no padding or undefined bits)
9019 and do not have user-defined equality. */
9020 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9021 && memcmp (value_contents (arg1), value_contents (arg2),
9022 TYPE_LENGTH (arg1_type)) == 0);
9023 }
9024 return value_equal (arg1, arg2);
9025 }
9026
9027 namespace expr
9028 {
9029
9030 bool
9031 check_objfile (const std::unique_ptr<ada_component> &comp,
9032 struct objfile *objfile)
9033 {
9034 return comp->uses_objfile (objfile);
9035 }
9036
9037 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9038 component of LHS (a simple array or a record). Does not modify the
9039 inferior's memory, nor does it modify LHS (unless LHS ==
9040 CONTAINER). */
9041
9042 static void
9043 assign_component (struct value *container, struct value *lhs, LONGEST index,
9044 struct expression *exp, operation_up &arg)
9045 {
9046 scoped_value_mark mark;
9047
9048 struct value *elt;
9049 struct type *lhs_type = check_typedef (value_type (lhs));
9050
9051 if (lhs_type->code () == TYPE_CODE_ARRAY)
9052 {
9053 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9054 struct value *index_val = value_from_longest (index_type, index);
9055
9056 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9057 }
9058 else
9059 {
9060 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9061 elt = ada_to_fixed_value (elt);
9062 }
9063
9064 ada_aggregate_operation *ag_op
9065 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9066 if (ag_op != nullptr)
9067 ag_op->assign_aggregate (container, elt, exp);
9068 else
9069 value_assign_to_component (container, elt,
9070 arg->evaluate (nullptr, exp,
9071 EVAL_NORMAL));
9072 }
9073
9074 bool
9075 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9076 {
9077 for (const auto &item : m_components)
9078 if (item->uses_objfile (objfile))
9079 return true;
9080 return false;
9081 }
9082
9083 void
9084 ada_aggregate_component::dump (ui_file *stream, int depth)
9085 {
9086 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9087 for (const auto &item : m_components)
9088 item->dump (stream, depth + 1);
9089 }
9090
9091 void
9092 ada_aggregate_component::assign (struct value *container,
9093 struct value *lhs, struct expression *exp,
9094 std::vector<LONGEST> &indices,
9095 LONGEST low, LONGEST high)
9096 {
9097 for (auto &item : m_components)
9098 item->assign (container, lhs, exp, indices, low, high);
9099 }
9100
9101 /* See ada-exp.h. */
9102
9103 value *
9104 ada_aggregate_operation::assign_aggregate (struct value *container,
9105 struct value *lhs,
9106 struct expression *exp)
9107 {
9108 struct type *lhs_type;
9109 LONGEST low_index, high_index;
9110
9111 container = ada_coerce_ref (container);
9112 if (ada_is_direct_array_type (value_type (container)))
9113 container = ada_coerce_to_simple_array (container);
9114 lhs = ada_coerce_ref (lhs);
9115 if (!deprecated_value_modifiable (lhs))
9116 error (_("Left operand of assignment is not a modifiable lvalue."));
9117
9118 lhs_type = check_typedef (value_type (lhs));
9119 if (ada_is_direct_array_type (lhs_type))
9120 {
9121 lhs = ada_coerce_to_simple_array (lhs);
9122 lhs_type = check_typedef (value_type (lhs));
9123 low_index = lhs_type->bounds ()->low.const_val ();
9124 high_index = lhs_type->bounds ()->high.const_val ();
9125 }
9126 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9127 {
9128 low_index = 0;
9129 high_index = num_visible_fields (lhs_type) - 1;
9130 }
9131 else
9132 error (_("Left-hand side must be array or record."));
9133
9134 std::vector<LONGEST> indices (4);
9135 indices[0] = indices[1] = low_index - 1;
9136 indices[2] = indices[3] = high_index + 1;
9137
9138 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9139 low_index, high_index);
9140
9141 return container;
9142 }
9143
9144 bool
9145 ada_positional_component::uses_objfile (struct objfile *objfile)
9146 {
9147 return m_op->uses_objfile (objfile);
9148 }
9149
9150 void
9151 ada_positional_component::dump (ui_file *stream, int depth)
9152 {
9153 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9154 depth, "", m_index);
9155 m_op->dump (stream, depth + 1);
9156 }
9157
9158 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9159 construct, given that the positions are relative to lower bound
9160 LOW, where HIGH is the upper bound. Record the position in
9161 INDICES. CONTAINER is as for assign_aggregate. */
9162 void
9163 ada_positional_component::assign (struct value *container,
9164 struct value *lhs, struct expression *exp,
9165 std::vector<LONGEST> &indices,
9166 LONGEST low, LONGEST high)
9167 {
9168 LONGEST ind = m_index + low;
9169
9170 if (ind - 1 == high)
9171 warning (_("Extra components in aggregate ignored."));
9172 if (ind <= high)
9173 {
9174 add_component_interval (ind, ind, indices);
9175 assign_component (container, lhs, ind, exp, m_op);
9176 }
9177 }
9178
9179 bool
9180 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9181 {
9182 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9183 }
9184
9185 void
9186 ada_discrete_range_association::dump (ui_file *stream, int depth)
9187 {
9188 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9189 m_low->dump (stream, depth + 1);
9190 m_high->dump (stream, depth + 1);
9191 }
9192
9193 void
9194 ada_discrete_range_association::assign (struct value *container,
9195 struct value *lhs,
9196 struct expression *exp,
9197 std::vector<LONGEST> &indices,
9198 LONGEST low, LONGEST high,
9199 operation_up &op)
9200 {
9201 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9202 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9203
9204 if (lower <= upper && (lower < low || upper > high))
9205 error (_("Index in component association out of bounds."));
9206
9207 add_component_interval (lower, upper, indices);
9208 while (lower <= upper)
9209 {
9210 assign_component (container, lhs, lower, exp, op);
9211 lower += 1;
9212 }
9213 }
9214
9215 bool
9216 ada_name_association::uses_objfile (struct objfile *objfile)
9217 {
9218 return m_val->uses_objfile (objfile);
9219 }
9220
9221 void
9222 ada_name_association::dump (ui_file *stream, int depth)
9223 {
9224 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9225 m_val->dump (stream, depth + 1);
9226 }
9227
9228 void
9229 ada_name_association::assign (struct value *container,
9230 struct value *lhs,
9231 struct expression *exp,
9232 std::vector<LONGEST> &indices,
9233 LONGEST low, LONGEST high,
9234 operation_up &op)
9235 {
9236 int index;
9237
9238 if (ada_is_direct_array_type (value_type (lhs)))
9239 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9240 EVAL_NORMAL)));
9241 else
9242 {
9243 ada_string_operation *strop
9244 = dynamic_cast<ada_string_operation *> (m_val.get ());
9245
9246 const char *name;
9247 if (strop != nullptr)
9248 name = strop->get_name ();
9249 else
9250 {
9251 ada_var_value_operation *vvo
9252 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9253 if (vvo != nullptr)
9254 error (_("Invalid record component association."));
9255 name = vvo->get_symbol ()->natural_name ();
9256 }
9257
9258 index = 0;
9259 if (! find_struct_field (name, value_type (lhs), 0,
9260 NULL, NULL, NULL, NULL, &index))
9261 error (_("Unknown component name: %s."), name);
9262 }
9263
9264 add_component_interval (index, index, indices);
9265 assign_component (container, lhs, index, exp, op);
9266 }
9267
9268 bool
9269 ada_choices_component::uses_objfile (struct objfile *objfile)
9270 {
9271 if (m_op->uses_objfile (objfile))
9272 return true;
9273 for (const auto &item : m_assocs)
9274 if (item->uses_objfile (objfile))
9275 return true;
9276 return false;
9277 }
9278
9279 void
9280 ada_choices_component::dump (ui_file *stream, int depth)
9281 {
9282 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9283 m_op->dump (stream, depth + 1);
9284 for (const auto &item : m_assocs)
9285 item->dump (stream, depth + 1);
9286 }
9287
9288 /* Assign into the components of LHS indexed by the OP_CHOICES
9289 construct at *POS, updating *POS past the construct, given that
9290 the allowable indices are LOW..HIGH. Record the indices assigned
9291 to in INDICES. CONTAINER is as for assign_aggregate. */
9292 void
9293 ada_choices_component::assign (struct value *container,
9294 struct value *lhs, struct expression *exp,
9295 std::vector<LONGEST> &indices,
9296 LONGEST low, LONGEST high)
9297 {
9298 for (auto &item : m_assocs)
9299 item->assign (container, lhs, exp, indices, low, high, m_op);
9300 }
9301
9302 bool
9303 ada_others_component::uses_objfile (struct objfile *objfile)
9304 {
9305 return m_op->uses_objfile (objfile);
9306 }
9307
9308 void
9309 ada_others_component::dump (ui_file *stream, int depth)
9310 {
9311 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9312 m_op->dump (stream, depth + 1);
9313 }
9314
9315 /* Assign the value of the expression in the OP_OTHERS construct in
9316 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9317 have not been previously assigned. The index intervals already assigned
9318 are in INDICES. CONTAINER is as for assign_aggregate. */
9319 void
9320 ada_others_component::assign (struct value *container,
9321 struct value *lhs, struct expression *exp,
9322 std::vector<LONGEST> &indices,
9323 LONGEST low, LONGEST high)
9324 {
9325 int num_indices = indices.size ();
9326 for (int i = 0; i < num_indices - 2; i += 2)
9327 {
9328 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9329 assign_component (container, lhs, ind, exp, m_op);
9330 }
9331 }
9332
9333 struct value *
9334 ada_assign_operation::evaluate (struct type *expect_type,
9335 struct expression *exp,
9336 enum noside noside)
9337 {
9338 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9339
9340 ada_aggregate_operation *ag_op
9341 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9342 if (ag_op != nullptr)
9343 {
9344 if (noside != EVAL_NORMAL)
9345 return arg1;
9346
9347 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9348 return ada_value_assign (arg1, arg1);
9349 }
9350 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9351 except if the lhs of our assignment is a convenience variable.
9352 In the case of assigning to a convenience variable, the lhs
9353 should be exactly the result of the evaluation of the rhs. */
9354 struct type *type = value_type (arg1);
9355 if (VALUE_LVAL (arg1) == lval_internalvar)
9356 type = NULL;
9357 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9358 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9359 return arg1;
9360 if (VALUE_LVAL (arg1) == lval_internalvar)
9361 {
9362 /* Nothing. */
9363 }
9364 else
9365 arg2 = coerce_for_assign (value_type (arg1), arg2);
9366 return ada_value_assign (arg1, arg2);
9367 }
9368
9369 } /* namespace expr */
9370
9371 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9372 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9373 overlap. */
9374 static void
9375 add_component_interval (LONGEST low, LONGEST high,
9376 std::vector<LONGEST> &indices)
9377 {
9378 int i, j;
9379
9380 int size = indices.size ();
9381 for (i = 0; i < size; i += 2) {
9382 if (high >= indices[i] && low <= indices[i + 1])
9383 {
9384 int kh;
9385
9386 for (kh = i + 2; kh < size; kh += 2)
9387 if (high < indices[kh])
9388 break;
9389 if (low < indices[i])
9390 indices[i] = low;
9391 indices[i + 1] = indices[kh - 1];
9392 if (high > indices[i + 1])
9393 indices[i + 1] = high;
9394 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9395 indices.resize (kh - i - 2);
9396 return;
9397 }
9398 else if (high < indices[i])
9399 break;
9400 }
9401
9402 indices.resize (indices.size () + 2);
9403 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9404 indices[j] = indices[j - 2];
9405 indices[i] = low;
9406 indices[i + 1] = high;
9407 }
9408
9409 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9410 is different. */
9411
9412 static struct value *
9413 ada_value_cast (struct type *type, struct value *arg2)
9414 {
9415 if (type == ada_check_typedef (value_type (arg2)))
9416 return arg2;
9417
9418 return value_cast (type, arg2);
9419 }
9420
9421 /* Evaluating Ada expressions, and printing their result.
9422 ------------------------------------------------------
9423
9424 1. Introduction:
9425 ----------------
9426
9427 We usually evaluate an Ada expression in order to print its value.
9428 We also evaluate an expression in order to print its type, which
9429 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9430 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9431 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9432 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9433 similar.
9434
9435 Evaluating expressions is a little more complicated for Ada entities
9436 than it is for entities in languages such as C. The main reason for
9437 this is that Ada provides types whose definition might be dynamic.
9438 One example of such types is variant records. Or another example
9439 would be an array whose bounds can only be known at run time.
9440
9441 The following description is a general guide as to what should be
9442 done (and what should NOT be done) in order to evaluate an expression
9443 involving such types, and when. This does not cover how the semantic
9444 information is encoded by GNAT as this is covered separatly. For the
9445 document used as the reference for the GNAT encoding, see exp_dbug.ads
9446 in the GNAT sources.
9447
9448 Ideally, we should embed each part of this description next to its
9449 associated code. Unfortunately, the amount of code is so vast right
9450 now that it's hard to see whether the code handling a particular
9451 situation might be duplicated or not. One day, when the code is
9452 cleaned up, this guide might become redundant with the comments
9453 inserted in the code, and we might want to remove it.
9454
9455 2. ``Fixing'' an Entity, the Simple Case:
9456 -----------------------------------------
9457
9458 When evaluating Ada expressions, the tricky issue is that they may
9459 reference entities whose type contents and size are not statically
9460 known. Consider for instance a variant record:
9461
9462 type Rec (Empty : Boolean := True) is record
9463 case Empty is
9464 when True => null;
9465 when False => Value : Integer;
9466 end case;
9467 end record;
9468 Yes : Rec := (Empty => False, Value => 1);
9469 No : Rec := (empty => True);
9470
9471 The size and contents of that record depends on the value of the
9472 descriminant (Rec.Empty). At this point, neither the debugging
9473 information nor the associated type structure in GDB are able to
9474 express such dynamic types. So what the debugger does is to create
9475 "fixed" versions of the type that applies to the specific object.
9476 We also informally refer to this operation as "fixing" an object,
9477 which means creating its associated fixed type.
9478
9479 Example: when printing the value of variable "Yes" above, its fixed
9480 type would look like this:
9481
9482 type Rec is record
9483 Empty : Boolean;
9484 Value : Integer;
9485 end record;
9486
9487 On the other hand, if we printed the value of "No", its fixed type
9488 would become:
9489
9490 type Rec is record
9491 Empty : Boolean;
9492 end record;
9493
9494 Things become a little more complicated when trying to fix an entity
9495 with a dynamic type that directly contains another dynamic type,
9496 such as an array of variant records, for instance. There are
9497 two possible cases: Arrays, and records.
9498
9499 3. ``Fixing'' Arrays:
9500 ---------------------
9501
9502 The type structure in GDB describes an array in terms of its bounds,
9503 and the type of its elements. By design, all elements in the array
9504 have the same type and we cannot represent an array of variant elements
9505 using the current type structure in GDB. When fixing an array,
9506 we cannot fix the array element, as we would potentially need one
9507 fixed type per element of the array. As a result, the best we can do
9508 when fixing an array is to produce an array whose bounds and size
9509 are correct (allowing us to read it from memory), but without having
9510 touched its element type. Fixing each element will be done later,
9511 when (if) necessary.
9512
9513 Arrays are a little simpler to handle than records, because the same
9514 amount of memory is allocated for each element of the array, even if
9515 the amount of space actually used by each element differs from element
9516 to element. Consider for instance the following array of type Rec:
9517
9518 type Rec_Array is array (1 .. 2) of Rec;
9519
9520 The actual amount of memory occupied by each element might be different
9521 from element to element, depending on the value of their discriminant.
9522 But the amount of space reserved for each element in the array remains
9523 fixed regardless. So we simply need to compute that size using
9524 the debugging information available, from which we can then determine
9525 the array size (we multiply the number of elements of the array by
9526 the size of each element).
9527
9528 The simplest case is when we have an array of a constrained element
9529 type. For instance, consider the following type declarations:
9530
9531 type Bounded_String (Max_Size : Integer) is
9532 Length : Integer;
9533 Buffer : String (1 .. Max_Size);
9534 end record;
9535 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9536
9537 In this case, the compiler describes the array as an array of
9538 variable-size elements (identified by its XVS suffix) for which
9539 the size can be read in the parallel XVZ variable.
9540
9541 In the case of an array of an unconstrained element type, the compiler
9542 wraps the array element inside a private PAD type. This type should not
9543 be shown to the user, and must be "unwrap"'ed before printing. Note
9544 that we also use the adjective "aligner" in our code to designate
9545 these wrapper types.
9546
9547 In some cases, the size allocated for each element is statically
9548 known. In that case, the PAD type already has the correct size,
9549 and the array element should remain unfixed.
9550
9551 But there are cases when this size is not statically known.
9552 For instance, assuming that "Five" is an integer variable:
9553
9554 type Dynamic is array (1 .. Five) of Integer;
9555 type Wrapper (Has_Length : Boolean := False) is record
9556 Data : Dynamic;
9557 case Has_Length is
9558 when True => Length : Integer;
9559 when False => null;
9560 end case;
9561 end record;
9562 type Wrapper_Array is array (1 .. 2) of Wrapper;
9563
9564 Hello : Wrapper_Array := (others => (Has_Length => True,
9565 Data => (others => 17),
9566 Length => 1));
9567
9568
9569 The debugging info would describe variable Hello as being an
9570 array of a PAD type. The size of that PAD type is not statically
9571 known, but can be determined using a parallel XVZ variable.
9572 In that case, a copy of the PAD type with the correct size should
9573 be used for the fixed array.
9574
9575 3. ``Fixing'' record type objects:
9576 ----------------------------------
9577
9578 Things are slightly different from arrays in the case of dynamic
9579 record types. In this case, in order to compute the associated
9580 fixed type, we need to determine the size and offset of each of
9581 its components. This, in turn, requires us to compute the fixed
9582 type of each of these components.
9583
9584 Consider for instance the example:
9585
9586 type Bounded_String (Max_Size : Natural) is record
9587 Str : String (1 .. Max_Size);
9588 Length : Natural;
9589 end record;
9590 My_String : Bounded_String (Max_Size => 10);
9591
9592 In that case, the position of field "Length" depends on the size
9593 of field Str, which itself depends on the value of the Max_Size
9594 discriminant. In order to fix the type of variable My_String,
9595 we need to fix the type of field Str. Therefore, fixing a variant
9596 record requires us to fix each of its components.
9597
9598 However, if a component does not have a dynamic size, the component
9599 should not be fixed. In particular, fields that use a PAD type
9600 should not fixed. Here is an example where this might happen
9601 (assuming type Rec above):
9602
9603 type Container (Big : Boolean) is record
9604 First : Rec;
9605 After : Integer;
9606 case Big is
9607 when True => Another : Integer;
9608 when False => null;
9609 end case;
9610 end record;
9611 My_Container : Container := (Big => False,
9612 First => (Empty => True),
9613 After => 42);
9614
9615 In that example, the compiler creates a PAD type for component First,
9616 whose size is constant, and then positions the component After just
9617 right after it. The offset of component After is therefore constant
9618 in this case.
9619
9620 The debugger computes the position of each field based on an algorithm
9621 that uses, among other things, the actual position and size of the field
9622 preceding it. Let's now imagine that the user is trying to print
9623 the value of My_Container. If the type fixing was recursive, we would
9624 end up computing the offset of field After based on the size of the
9625 fixed version of field First. And since in our example First has
9626 only one actual field, the size of the fixed type is actually smaller
9627 than the amount of space allocated to that field, and thus we would
9628 compute the wrong offset of field After.
9629
9630 To make things more complicated, we need to watch out for dynamic
9631 components of variant records (identified by the ___XVL suffix in
9632 the component name). Even if the target type is a PAD type, the size
9633 of that type might not be statically known. So the PAD type needs
9634 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9635 we might end up with the wrong size for our component. This can be
9636 observed with the following type declarations:
9637
9638 type Octal is new Integer range 0 .. 7;
9639 type Octal_Array is array (Positive range <>) of Octal;
9640 pragma Pack (Octal_Array);
9641
9642 type Octal_Buffer (Size : Positive) is record
9643 Buffer : Octal_Array (1 .. Size);
9644 Length : Integer;
9645 end record;
9646
9647 In that case, Buffer is a PAD type whose size is unset and needs
9648 to be computed by fixing the unwrapped type.
9649
9650 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9651 ----------------------------------------------------------
9652
9653 Lastly, when should the sub-elements of an entity that remained unfixed
9654 thus far, be actually fixed?
9655
9656 The answer is: Only when referencing that element. For instance
9657 when selecting one component of a record, this specific component
9658 should be fixed at that point in time. Or when printing the value
9659 of a record, each component should be fixed before its value gets
9660 printed. Similarly for arrays, the element of the array should be
9661 fixed when printing each element of the array, or when extracting
9662 one element out of that array. On the other hand, fixing should
9663 not be performed on the elements when taking a slice of an array!
9664
9665 Note that one of the side effects of miscomputing the offset and
9666 size of each field is that we end up also miscomputing the size
9667 of the containing type. This can have adverse results when computing
9668 the value of an entity. GDB fetches the value of an entity based
9669 on the size of its type, and thus a wrong size causes GDB to fetch
9670 the wrong amount of memory. In the case where the computed size is
9671 too small, GDB fetches too little data to print the value of our
9672 entity. Results in this case are unpredictable, as we usually read
9673 past the buffer containing the data =:-o. */
9674
9675 /* A helper function for TERNOP_IN_RANGE. */
9676
9677 static value *
9678 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9679 enum noside noside,
9680 value *arg1, value *arg2, value *arg3)
9681 {
9682 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9683 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9684 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9685 return
9686 value_from_longest (type,
9687 (value_less (arg1, arg3)
9688 || value_equal (arg1, arg3))
9689 && (value_less (arg2, arg1)
9690 || value_equal (arg2, arg1)));
9691 }
9692
9693 /* A helper function for UNOP_NEG. */
9694
9695 value *
9696 ada_unop_neg (struct type *expect_type,
9697 struct expression *exp,
9698 enum noside noside, enum exp_opcode op,
9699 struct value *arg1)
9700 {
9701 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9702 return value_neg (arg1);
9703 }
9704
9705 /* A helper function for UNOP_IN_RANGE. */
9706
9707 value *
9708 ada_unop_in_range (struct type *expect_type,
9709 struct expression *exp,
9710 enum noside noside, enum exp_opcode op,
9711 struct value *arg1, struct type *type)
9712 {
9713 struct value *arg2, *arg3;
9714 switch (type->code ())
9715 {
9716 default:
9717 lim_warning (_("Membership test incompletely implemented; "
9718 "always returns true"));
9719 type = language_bool_type (exp->language_defn, exp->gdbarch);
9720 return value_from_longest (type, (LONGEST) 1);
9721
9722 case TYPE_CODE_RANGE:
9723 arg2 = value_from_longest (type,
9724 type->bounds ()->low.const_val ());
9725 arg3 = value_from_longest (type,
9726 type->bounds ()->high.const_val ());
9727 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9729 type = language_bool_type (exp->language_defn, exp->gdbarch);
9730 return
9731 value_from_longest (type,
9732 (value_less (arg1, arg3)
9733 || value_equal (arg1, arg3))
9734 && (value_less (arg2, arg1)
9735 || value_equal (arg2, arg1)));
9736 }
9737 }
9738
9739 /* A helper function for OP_ATR_TAG. */
9740
9741 value *
9742 ada_atr_tag (struct type *expect_type,
9743 struct expression *exp,
9744 enum noside noside, enum exp_opcode op,
9745 struct value *arg1)
9746 {
9747 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9748 return value_zero (ada_tag_type (arg1), not_lval);
9749
9750 return ada_value_tag (arg1);
9751 }
9752
9753 /* A helper function for OP_ATR_SIZE. */
9754
9755 value *
9756 ada_atr_size (struct type *expect_type,
9757 struct expression *exp,
9758 enum noside noside, enum exp_opcode op,
9759 struct value *arg1)
9760 {
9761 struct type *type = value_type (arg1);
9762
9763 /* If the argument is a reference, then dereference its type, since
9764 the user is really asking for the size of the actual object,
9765 not the size of the pointer. */
9766 if (type->code () == TYPE_CODE_REF)
9767 type = TYPE_TARGET_TYPE (type);
9768
9769 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9770 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9771 else
9772 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9773 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9774 }
9775
9776 /* A helper function for UNOP_ABS. */
9777
9778 value *
9779 ada_abs (struct type *expect_type,
9780 struct expression *exp,
9781 enum noside noside, enum exp_opcode op,
9782 struct value *arg1)
9783 {
9784 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9785 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9786 return value_neg (arg1);
9787 else
9788 return arg1;
9789 }
9790
9791 /* A helper function for BINOP_MUL. */
9792
9793 value *
9794 ada_mult_binop (struct type *expect_type,
9795 struct expression *exp,
9796 enum noside noside, enum exp_opcode op,
9797 struct value *arg1, struct value *arg2)
9798 {
9799 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9800 {
9801 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9802 return value_zero (value_type (arg1), not_lval);
9803 }
9804 else
9805 {
9806 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9807 return ada_value_binop (arg1, arg2, op);
9808 }
9809 }
9810
9811 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9812
9813 value *
9814 ada_equal_binop (struct type *expect_type,
9815 struct expression *exp,
9816 enum noside noside, enum exp_opcode op,
9817 struct value *arg1, struct value *arg2)
9818 {
9819 int tem;
9820 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9821 tem = 0;
9822 else
9823 {
9824 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9825 tem = ada_value_equal (arg1, arg2);
9826 }
9827 if (op == BINOP_NOTEQUAL)
9828 tem = !tem;
9829 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9830 return value_from_longest (type, (LONGEST) tem);
9831 }
9832
9833 /* A helper function for TERNOP_SLICE. */
9834
9835 value *
9836 ada_ternop_slice (struct expression *exp,
9837 enum noside noside,
9838 struct value *array, struct value *low_bound_val,
9839 struct value *high_bound_val)
9840 {
9841 LONGEST low_bound;
9842 LONGEST high_bound;
9843
9844 low_bound_val = coerce_ref (low_bound_val);
9845 high_bound_val = coerce_ref (high_bound_val);
9846 low_bound = value_as_long (low_bound_val);
9847 high_bound = value_as_long (high_bound_val);
9848
9849 /* If this is a reference to an aligner type, then remove all
9850 the aligners. */
9851 if (value_type (array)->code () == TYPE_CODE_REF
9852 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9853 TYPE_TARGET_TYPE (value_type (array)) =
9854 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9855
9856 if (ada_is_any_packed_array_type (value_type (array)))
9857 error (_("cannot slice a packed array"));
9858
9859 /* If this is a reference to an array or an array lvalue,
9860 convert to a pointer. */
9861 if (value_type (array)->code () == TYPE_CODE_REF
9862 || (value_type (array)->code () == TYPE_CODE_ARRAY
9863 && VALUE_LVAL (array) == lval_memory))
9864 array = value_addr (array);
9865
9866 if (noside == EVAL_AVOID_SIDE_EFFECTS
9867 && ada_is_array_descriptor_type (ada_check_typedef
9868 (value_type (array))))
9869 return empty_array (ada_type_of_array (array, 0), low_bound,
9870 high_bound);
9871
9872 array = ada_coerce_to_simple_array_ptr (array);
9873
9874 /* If we have more than one level of pointer indirection,
9875 dereference the value until we get only one level. */
9876 while (value_type (array)->code () == TYPE_CODE_PTR
9877 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9878 == TYPE_CODE_PTR))
9879 array = value_ind (array);
9880
9881 /* Make sure we really do have an array type before going further,
9882 to avoid a SEGV when trying to get the index type or the target
9883 type later down the road if the debug info generated by
9884 the compiler is incorrect or incomplete. */
9885 if (!ada_is_simple_array_type (value_type (array)))
9886 error (_("cannot take slice of non-array"));
9887
9888 if (ada_check_typedef (value_type (array))->code ()
9889 == TYPE_CODE_PTR)
9890 {
9891 struct type *type0 = ada_check_typedef (value_type (array));
9892
9893 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9894 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9895 else
9896 {
9897 struct type *arr_type0 =
9898 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9899
9900 return ada_value_slice_from_ptr (array, arr_type0,
9901 longest_to_int (low_bound),
9902 longest_to_int (high_bound));
9903 }
9904 }
9905 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9906 return array;
9907 else if (high_bound < low_bound)
9908 return empty_array (value_type (array), low_bound, high_bound);
9909 else
9910 return ada_value_slice (array, longest_to_int (low_bound),
9911 longest_to_int (high_bound));
9912 }
9913
9914 /* A helper function for BINOP_IN_BOUNDS. */
9915
9916 value *
9917 ada_binop_in_bounds (struct expression *exp, enum noside noside,
9918 struct value *arg1, struct value *arg2, int n)
9919 {
9920 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9921 {
9922 struct type *type = language_bool_type (exp->language_defn,
9923 exp->gdbarch);
9924 return value_zero (type, not_lval);
9925 }
9926
9927 struct type *type = ada_index_type (value_type (arg2), n, "range");
9928 if (!type)
9929 type = value_type (arg1);
9930
9931 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9932 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9933
9934 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9935 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9936 type = language_bool_type (exp->language_defn, exp->gdbarch);
9937 return value_from_longest (type,
9938 (value_less (arg1, arg3)
9939 || value_equal (arg1, arg3))
9940 && (value_less (arg2, arg1)
9941 || value_equal (arg2, arg1)));
9942 }
9943
9944 /* A helper function for some attribute operations. */
9945
9946 static value *
9947 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
9948 struct value *arg1, struct type *type_arg, int tem)
9949 {
9950 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9951 {
9952 if (type_arg == NULL)
9953 type_arg = value_type (arg1);
9954
9955 if (ada_is_constrained_packed_array_type (type_arg))
9956 type_arg = decode_constrained_packed_array_type (type_arg);
9957
9958 if (!discrete_type_p (type_arg))
9959 {
9960 switch (op)
9961 {
9962 default: /* Should never happen. */
9963 error (_("unexpected attribute encountered"));
9964 case OP_ATR_FIRST:
9965 case OP_ATR_LAST:
9966 type_arg = ada_index_type (type_arg, tem,
9967 ada_attribute_name (op));
9968 break;
9969 case OP_ATR_LENGTH:
9970 type_arg = builtin_type (exp->gdbarch)->builtin_int;
9971 break;
9972 }
9973 }
9974
9975 return value_zero (type_arg, not_lval);
9976 }
9977 else if (type_arg == NULL)
9978 {
9979 arg1 = ada_coerce_ref (arg1);
9980
9981 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9982 arg1 = ada_coerce_to_simple_array (arg1);
9983
9984 struct type *type;
9985 if (op == OP_ATR_LENGTH)
9986 type = builtin_type (exp->gdbarch)->builtin_int;
9987 else
9988 {
9989 type = ada_index_type (value_type (arg1), tem,
9990 ada_attribute_name (op));
9991 if (type == NULL)
9992 type = builtin_type (exp->gdbarch)->builtin_int;
9993 }
9994
9995 switch (op)
9996 {
9997 default: /* Should never happen. */
9998 error (_("unexpected attribute encountered"));
9999 case OP_ATR_FIRST:
10000 return value_from_longest
10001 (type, ada_array_bound (arg1, tem, 0));
10002 case OP_ATR_LAST:
10003 return value_from_longest
10004 (type, ada_array_bound (arg1, tem, 1));
10005 case OP_ATR_LENGTH:
10006 return value_from_longest
10007 (type, ada_array_length (arg1, tem));
10008 }
10009 }
10010 else if (discrete_type_p (type_arg))
10011 {
10012 struct type *range_type;
10013 const char *name = ada_type_name (type_arg);
10014
10015 range_type = NULL;
10016 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10017 range_type = to_fixed_range_type (type_arg, NULL);
10018 if (range_type == NULL)
10019 range_type = type_arg;
10020 switch (op)
10021 {
10022 default:
10023 error (_("unexpected attribute encountered"));
10024 case OP_ATR_FIRST:
10025 return value_from_longest
10026 (range_type, ada_discrete_type_low_bound (range_type));
10027 case OP_ATR_LAST:
10028 return value_from_longest
10029 (range_type, ada_discrete_type_high_bound (range_type));
10030 case OP_ATR_LENGTH:
10031 error (_("the 'length attribute applies only to array types"));
10032 }
10033 }
10034 else if (type_arg->code () == TYPE_CODE_FLT)
10035 error (_("unimplemented type attribute"));
10036 else
10037 {
10038 LONGEST low, high;
10039
10040 if (ada_is_constrained_packed_array_type (type_arg))
10041 type_arg = decode_constrained_packed_array_type (type_arg);
10042
10043 struct type *type;
10044 if (op == OP_ATR_LENGTH)
10045 type = builtin_type (exp->gdbarch)->builtin_int;
10046 else
10047 {
10048 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10049 if (type == NULL)
10050 type = builtin_type (exp->gdbarch)->builtin_int;
10051 }
10052
10053 switch (op)
10054 {
10055 default:
10056 error (_("unexpected attribute encountered"));
10057 case OP_ATR_FIRST:
10058 low = ada_array_bound_from_type (type_arg, tem, 0);
10059 return value_from_longest (type, low);
10060 case OP_ATR_LAST:
10061 high = ada_array_bound_from_type (type_arg, tem, 1);
10062 return value_from_longest (type, high);
10063 case OP_ATR_LENGTH:
10064 low = ada_array_bound_from_type (type_arg, tem, 0);
10065 high = ada_array_bound_from_type (type_arg, tem, 1);
10066 return value_from_longest (type, high - low + 1);
10067 }
10068 }
10069 }
10070
10071 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10072
10073 struct value *
10074 ada_binop_minmax (struct type *expect_type,
10075 struct expression *exp,
10076 enum noside noside, enum exp_opcode op,
10077 struct value *arg1, struct value *arg2)
10078 {
10079 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10080 return value_zero (value_type (arg1), not_lval);
10081 else
10082 {
10083 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10084 return value_binop (arg1, arg2, op);
10085 }
10086 }
10087
10088 /* A helper function for BINOP_EXP. */
10089
10090 struct value *
10091 ada_binop_exp (struct type *expect_type,
10092 struct expression *exp,
10093 enum noside noside, enum exp_opcode op,
10094 struct value *arg1, struct value *arg2)
10095 {
10096 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10097 return value_zero (value_type (arg1), not_lval);
10098 else
10099 {
10100 /* For integer exponentiation operations,
10101 only promote the first argument. */
10102 if (is_integral_type (value_type (arg2)))
10103 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10104 else
10105 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10106
10107 return value_binop (arg1, arg2, op);
10108 }
10109 }
10110
10111 namespace expr
10112 {
10113
10114 value *
10115 ada_wrapped_operation::evaluate (struct type *expect_type,
10116 struct expression *exp,
10117 enum noside noside)
10118 {
10119 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10120 if (noside == EVAL_NORMAL)
10121 result = unwrap_value (result);
10122
10123 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10124 then we need to perform the conversion manually, because
10125 evaluate_subexp_standard doesn't do it. This conversion is
10126 necessary in Ada because the different kinds of float/fixed
10127 types in Ada have different representations.
10128
10129 Similarly, we need to perform the conversion from OP_LONG
10130 ourselves. */
10131 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10132 result = ada_value_cast (expect_type, result);
10133
10134 return result;
10135 }
10136
10137 value *
10138 ada_string_operation::evaluate (struct type *expect_type,
10139 struct expression *exp,
10140 enum noside noside)
10141 {
10142 value *result = string_operation::evaluate (expect_type, exp, noside);
10143 /* The result type will have code OP_STRING, bashed there from
10144 OP_ARRAY. Bash it back. */
10145 if (value_type (result)->code () == TYPE_CODE_STRING)
10146 value_type (result)->set_code (TYPE_CODE_ARRAY);
10147 return result;
10148 }
10149
10150 value *
10151 ada_qual_operation::evaluate (struct type *expect_type,
10152 struct expression *exp,
10153 enum noside noside)
10154 {
10155 struct type *type = std::get<1> (m_storage);
10156 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10157 }
10158
10159 value *
10160 ada_ternop_range_operation::evaluate (struct type *expect_type,
10161 struct expression *exp,
10162 enum noside noside)
10163 {
10164 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10165 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10166 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10167 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10168 }
10169
10170 value *
10171 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10172 struct expression *exp,
10173 enum noside noside)
10174 {
10175 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10176 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10177
10178 auto do_op = [=] (LONGEST x, LONGEST y)
10179 {
10180 if (std::get<0> (m_storage) == BINOP_ADD)
10181 return x + y;
10182 return x - y;
10183 };
10184
10185 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10186 return (value_from_longest
10187 (value_type (arg1),
10188 do_op (value_as_long (arg1), value_as_long (arg2))));
10189 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10190 return (value_from_longest
10191 (value_type (arg2),
10192 do_op (value_as_long (arg1), value_as_long (arg2))));
10193 /* Preserve the original type for use by the range case below.
10194 We cannot cast the result to a reference type, so if ARG1 is
10195 a reference type, find its underlying type. */
10196 struct type *type = value_type (arg1);
10197 while (type->code () == TYPE_CODE_REF)
10198 type = TYPE_TARGET_TYPE (type);
10199 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10200 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10201 /* We need to special-case the result with a range.
10202 This is done for the benefit of "ptype". gdb's Ada support
10203 historically used the LHS to set the result type here, so
10204 preserve this behavior. */
10205 if (type->code () == TYPE_CODE_RANGE)
10206 arg1 = value_cast (type, arg1);
10207 return arg1;
10208 }
10209
10210 value *
10211 ada_unop_atr_operation::evaluate (struct type *expect_type,
10212 struct expression *exp,
10213 enum noside noside)
10214 {
10215 struct type *type_arg = nullptr;
10216 value *val = nullptr;
10217
10218 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10219 {
10220 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10221 EVAL_AVOID_SIDE_EFFECTS);
10222 type_arg = value_type (tem);
10223 }
10224 else
10225 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10226
10227 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10228 val, type_arg, std::get<2> (m_storage));
10229 }
10230
10231 value *
10232 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10233 struct expression *exp,
10234 enum noside noside)
10235 {
10236 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10237 return value_zero (expect_type, not_lval);
10238
10239 const bound_minimal_symbol &b = std::get<0> (m_storage);
10240 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10241
10242 val = ada_value_cast (expect_type, val);
10243
10244 /* Follow the Ada language semantics that do not allow taking
10245 an address of the result of a cast (view conversion in Ada). */
10246 if (VALUE_LVAL (val) == lval_memory)
10247 {
10248 if (value_lazy (val))
10249 value_fetch_lazy (val);
10250 VALUE_LVAL (val) = not_lval;
10251 }
10252 return val;
10253 }
10254
10255 value *
10256 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10257 struct expression *exp,
10258 enum noside noside)
10259 {
10260 value *val = evaluate_var_value (noside,
10261 std::get<1> (m_storage),
10262 std::get<0> (m_storage));
10263
10264 val = ada_value_cast (expect_type, val);
10265
10266 /* Follow the Ada language semantics that do not allow taking
10267 an address of the result of a cast (view conversion in Ada). */
10268 if (VALUE_LVAL (val) == lval_memory)
10269 {
10270 if (value_lazy (val))
10271 value_fetch_lazy (val);
10272 VALUE_LVAL (val) = not_lval;
10273 }
10274 return val;
10275 }
10276
10277 value *
10278 ada_var_value_operation::evaluate (struct type *expect_type,
10279 struct expression *exp,
10280 enum noside noside)
10281 {
10282 symbol *sym = std::get<0> (m_storage);
10283
10284 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10285 /* Only encountered when an unresolved symbol occurs in a
10286 context other than a function call, in which case, it is
10287 invalid. */
10288 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10289 sym->print_name ());
10290
10291 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10292 {
10293 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10294 /* Check to see if this is a tagged type. We also need to handle
10295 the case where the type is a reference to a tagged type, but
10296 we have to be careful to exclude pointers to tagged types.
10297 The latter should be shown as usual (as a pointer), whereas
10298 a reference should mostly be transparent to the user. */
10299 if (ada_is_tagged_type (type, 0)
10300 || (type->code () == TYPE_CODE_REF
10301 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10302 {
10303 /* Tagged types are a little special in the fact that the real
10304 type is dynamic and can only be determined by inspecting the
10305 object's tag. This means that we need to get the object's
10306 value first (EVAL_NORMAL) and then extract the actual object
10307 type from its tag.
10308
10309 Note that we cannot skip the final step where we extract
10310 the object type from its tag, because the EVAL_NORMAL phase
10311 results in dynamic components being resolved into fixed ones.
10312 This can cause problems when trying to print the type
10313 description of tagged types whose parent has a dynamic size:
10314 We use the type name of the "_parent" component in order
10315 to print the name of the ancestor type in the type description.
10316 If that component had a dynamic size, the resolution into
10317 a fixed type would result in the loss of that type name,
10318 thus preventing us from printing the name of the ancestor
10319 type in the type description. */
10320 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10321
10322 if (type->code () != TYPE_CODE_REF)
10323 {
10324 struct type *actual_type;
10325
10326 actual_type = type_from_tag (ada_value_tag (arg1));
10327 if (actual_type == NULL)
10328 /* If, for some reason, we were unable to determine
10329 the actual type from the tag, then use the static
10330 approximation that we just computed as a fallback.
10331 This can happen if the debugging information is
10332 incomplete, for instance. */
10333 actual_type = type;
10334 return value_zero (actual_type, not_lval);
10335 }
10336 else
10337 {
10338 /* In the case of a ref, ada_coerce_ref takes care
10339 of determining the actual type. But the evaluation
10340 should return a ref as it should be valid to ask
10341 for its address; so rebuild a ref after coerce. */
10342 arg1 = ada_coerce_ref (arg1);
10343 return value_ref (arg1, TYPE_CODE_REF);
10344 }
10345 }
10346
10347 /* Records and unions for which GNAT encodings have been
10348 generated need to be statically fixed as well.
10349 Otherwise, non-static fixing produces a type where
10350 all dynamic properties are removed, which prevents "ptype"
10351 from being able to completely describe the type.
10352 For instance, a case statement in a variant record would be
10353 replaced by the relevant components based on the actual
10354 value of the discriminants. */
10355 if ((type->code () == TYPE_CODE_STRUCT
10356 && dynamic_template_type (type) != NULL)
10357 || (type->code () == TYPE_CODE_UNION
10358 && ada_find_parallel_type (type, "___XVU") != NULL))
10359 return value_zero (to_static_fixed_type (type), not_lval);
10360 }
10361
10362 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10363 return ada_to_fixed_value (arg1);
10364 }
10365
10366 bool
10367 ada_var_value_operation::resolve (struct expression *exp,
10368 bool deprocedure_p,
10369 bool parse_completion,
10370 innermost_block_tracker *tracker,
10371 struct type *context_type)
10372 {
10373 symbol *sym = std::get<0> (m_storage);
10374 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10375 {
10376 block_symbol resolved
10377 = ada_resolve_variable (sym, std::get<1> (m_storage),
10378 context_type, parse_completion,
10379 deprocedure_p, tracker);
10380 std::get<0> (m_storage) = resolved.symbol;
10381 std::get<1> (m_storage) = resolved.block;
10382 }
10383
10384 if (deprocedure_p
10385 && SYMBOL_TYPE (std::get<0> (m_storage))->code () == TYPE_CODE_FUNC)
10386 return true;
10387
10388 return false;
10389 }
10390
10391 value *
10392 ada_atr_val_operation::evaluate (struct type *expect_type,
10393 struct expression *exp,
10394 enum noside noside)
10395 {
10396 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10397 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10398 }
10399
10400 value *
10401 ada_unop_ind_operation::evaluate (struct type *expect_type,
10402 struct expression *exp,
10403 enum noside noside)
10404 {
10405 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10406
10407 struct type *type = ada_check_typedef (value_type (arg1));
10408 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10409 {
10410 if (ada_is_array_descriptor_type (type))
10411 /* GDB allows dereferencing GNAT array descriptors. */
10412 {
10413 struct type *arrType = ada_type_of_array (arg1, 0);
10414
10415 if (arrType == NULL)
10416 error (_("Attempt to dereference null array pointer."));
10417 return value_at_lazy (arrType, 0);
10418 }
10419 else if (type->code () == TYPE_CODE_PTR
10420 || type->code () == TYPE_CODE_REF
10421 /* In C you can dereference an array to get the 1st elt. */
10422 || type->code () == TYPE_CODE_ARRAY)
10423 {
10424 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10425 only be determined by inspecting the object's tag.
10426 This means that we need to evaluate completely the
10427 expression in order to get its type. */
10428
10429 if ((type->code () == TYPE_CODE_REF
10430 || type->code () == TYPE_CODE_PTR)
10431 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10432 {
10433 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10434 EVAL_NORMAL);
10435 type = value_type (ada_value_ind (arg1));
10436 }
10437 else
10438 {
10439 type = to_static_fixed_type
10440 (ada_aligned_type
10441 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10442 }
10443 ada_ensure_varsize_limit (type);
10444 return value_zero (type, lval_memory);
10445 }
10446 else if (type->code () == TYPE_CODE_INT)
10447 {
10448 /* GDB allows dereferencing an int. */
10449 if (expect_type == NULL)
10450 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10451 lval_memory);
10452 else
10453 {
10454 expect_type =
10455 to_static_fixed_type (ada_aligned_type (expect_type));
10456 return value_zero (expect_type, lval_memory);
10457 }
10458 }
10459 else
10460 error (_("Attempt to take contents of a non-pointer value."));
10461 }
10462 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10463 type = ada_check_typedef (value_type (arg1));
10464
10465 if (type->code () == TYPE_CODE_INT)
10466 /* GDB allows dereferencing an int. If we were given
10467 the expect_type, then use that as the target type.
10468 Otherwise, assume that the target type is an int. */
10469 {
10470 if (expect_type != NULL)
10471 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10472 arg1));
10473 else
10474 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10475 (CORE_ADDR) value_as_address (arg1));
10476 }
10477
10478 struct type *target_type = (to_static_fixed_type
10479 (ada_aligned_type
10480 (ada_check_typedef (TYPE_TARGET_TYPE (type)))));
10481 ada_ensure_varsize_limit (target_type);
10482
10483 if (ada_is_array_descriptor_type (type))
10484 /* GDB allows dereferencing GNAT array descriptors. */
10485 return ada_coerce_to_simple_array (arg1);
10486 else
10487 return ada_value_ind (arg1);
10488 }
10489
10490 value *
10491 ada_structop_operation::evaluate (struct type *expect_type,
10492 struct expression *exp,
10493 enum noside noside)
10494 {
10495 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10496 const char *str = std::get<1> (m_storage).c_str ();
10497 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10498 {
10499 struct type *type;
10500 struct type *type1 = value_type (arg1);
10501
10502 if (ada_is_tagged_type (type1, 1))
10503 {
10504 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10505
10506 /* If the field is not found, check if it exists in the
10507 extension of this object's type. This means that we
10508 need to evaluate completely the expression. */
10509
10510 if (type == NULL)
10511 {
10512 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10513 EVAL_NORMAL);
10514 arg1 = ada_value_struct_elt (arg1, str, 0);
10515 arg1 = unwrap_value (arg1);
10516 type = value_type (ada_to_fixed_value (arg1));
10517 }
10518 }
10519 else
10520 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10521
10522 return value_zero (ada_aligned_type (type), lval_memory);
10523 }
10524 else
10525 {
10526 arg1 = ada_value_struct_elt (arg1, str, 0);
10527 arg1 = unwrap_value (arg1);
10528 return ada_to_fixed_value (arg1);
10529 }
10530 }
10531
10532 value *
10533 ada_funcall_operation::evaluate (struct type *expect_type,
10534 struct expression *exp,
10535 enum noside noside)
10536 {
10537 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10538 int nargs = args_up.size ();
10539 std::vector<value *> argvec (nargs);
10540 operation_up &callee_op = std::get<0> (m_storage);
10541
10542 ada_var_value_operation *avv
10543 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10544 if (avv != nullptr
10545 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10546 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10547 avv->get_symbol ()->print_name ());
10548
10549 value *callee = callee_op->evaluate (nullptr, exp, noside);
10550 for (int i = 0; i < args_up.size (); ++i)
10551 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10552
10553 if (ada_is_constrained_packed_array_type
10554 (desc_base_type (value_type (callee))))
10555 callee = ada_coerce_to_simple_array (callee);
10556 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10557 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10558 /* This is a packed array that has already been fixed, and
10559 therefore already coerced to a simple array. Nothing further
10560 to do. */
10561 ;
10562 else if (value_type (callee)->code () == TYPE_CODE_REF)
10563 {
10564 /* Make sure we dereference references so that all the code below
10565 feels like it's really handling the referenced value. Wrapping
10566 types (for alignment) may be there, so make sure we strip them as
10567 well. */
10568 callee = ada_to_fixed_value (coerce_ref (callee));
10569 }
10570 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10571 && VALUE_LVAL (callee) == lval_memory)
10572 callee = value_addr (callee);
10573
10574 struct type *type = ada_check_typedef (value_type (callee));
10575
10576 /* Ada allows us to implicitly dereference arrays when subscripting
10577 them. So, if this is an array typedef (encoding use for array
10578 access types encoded as fat pointers), strip it now. */
10579 if (type->code () == TYPE_CODE_TYPEDEF)
10580 type = ada_typedef_target_type (type);
10581
10582 if (type->code () == TYPE_CODE_PTR)
10583 {
10584 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10585 {
10586 case TYPE_CODE_FUNC:
10587 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10588 break;
10589 case TYPE_CODE_ARRAY:
10590 break;
10591 case TYPE_CODE_STRUCT:
10592 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10593 callee = ada_value_ind (callee);
10594 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10595 break;
10596 default:
10597 error (_("cannot subscript or call something of type `%s'"),
10598 ada_type_name (value_type (callee)));
10599 break;
10600 }
10601 }
10602
10603 switch (type->code ())
10604 {
10605 case TYPE_CODE_FUNC:
10606 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10607 {
10608 if (TYPE_TARGET_TYPE (type) == NULL)
10609 error_call_unknown_return_type (NULL);
10610 return allocate_value (TYPE_TARGET_TYPE (type));
10611 }
10612 return call_function_by_hand (callee, NULL, argvec);
10613 case TYPE_CODE_INTERNAL_FUNCTION:
10614 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10615 /* We don't know anything about what the internal
10616 function might return, but we have to return
10617 something. */
10618 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10619 not_lval);
10620 else
10621 return call_internal_function (exp->gdbarch, exp->language_defn,
10622 callee, nargs,
10623 argvec.data ());
10624
10625 case TYPE_CODE_STRUCT:
10626 {
10627 int arity;
10628
10629 arity = ada_array_arity (type);
10630 type = ada_array_element_type (type, nargs);
10631 if (type == NULL)
10632 error (_("cannot subscript or call a record"));
10633 if (arity != nargs)
10634 error (_("wrong number of subscripts; expecting %d"), arity);
10635 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10636 return value_zero (ada_aligned_type (type), lval_memory);
10637 return
10638 unwrap_value (ada_value_subscript
10639 (callee, nargs, argvec.data ()));
10640 }
10641 case TYPE_CODE_ARRAY:
10642 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10643 {
10644 type = ada_array_element_type (type, nargs);
10645 if (type == NULL)
10646 error (_("element type of array unknown"));
10647 else
10648 return value_zero (ada_aligned_type (type), lval_memory);
10649 }
10650 return
10651 unwrap_value (ada_value_subscript
10652 (ada_coerce_to_simple_array (callee),
10653 nargs, argvec.data ()));
10654 case TYPE_CODE_PTR: /* Pointer to array */
10655 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10656 {
10657 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10658 type = ada_array_element_type (type, nargs);
10659 if (type == NULL)
10660 error (_("element type of array unknown"));
10661 else
10662 return value_zero (ada_aligned_type (type), lval_memory);
10663 }
10664 return
10665 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10666 argvec.data ()));
10667
10668 default:
10669 error (_("Attempt to index or call something other than an "
10670 "array or function"));
10671 }
10672 }
10673
10674 bool
10675 ada_funcall_operation::resolve (struct expression *exp,
10676 bool deprocedure_p,
10677 bool parse_completion,
10678 innermost_block_tracker *tracker,
10679 struct type *context_type)
10680 {
10681 operation_up &callee_op = std::get<0> (m_storage);
10682
10683 ada_var_value_operation *avv
10684 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10685 if (avv == nullptr)
10686 return false;
10687
10688 symbol *sym = avv->get_symbol ();
10689 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10690 return false;
10691
10692 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10693 int nargs = args_up.size ();
10694 std::vector<value *> argvec (nargs);
10695
10696 for (int i = 0; i < args_up.size (); ++i)
10697 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
10698
10699 const block *block = avv->get_block ();
10700 block_symbol resolved
10701 = ada_resolve_funcall (sym, block,
10702 context_type, parse_completion,
10703 nargs, argvec.data (),
10704 tracker);
10705
10706 std::get<0> (m_storage)
10707 = make_operation<ada_var_value_operation> (resolved.symbol,
10708 resolved.block);
10709 return false;
10710 }
10711
10712 bool
10713 ada_ternop_slice_operation::resolve (struct expression *exp,
10714 bool deprocedure_p,
10715 bool parse_completion,
10716 innermost_block_tracker *tracker,
10717 struct type *context_type)
10718 {
10719 /* Historically this check was done during resolution, so we
10720 continue that here. */
10721 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10722 EVAL_AVOID_SIDE_EFFECTS);
10723 if (ada_is_any_packed_array_type (value_type (v)))
10724 error (_("cannot slice a packed array"));
10725 return false;
10726 }
10727
10728 }
10729
10730 \f
10731
10732 /* Return non-zero iff TYPE represents a System.Address type. */
10733
10734 int
10735 ada_is_system_address_type (struct type *type)
10736 {
10737 return (type->name () && strcmp (type->name (), "system__address") == 0);
10738 }
10739
10740 \f
10741
10742 /* Range types */
10743
10744 /* Scan STR beginning at position K for a discriminant name, and
10745 return the value of that discriminant field of DVAL in *PX. If
10746 PNEW_K is not null, put the position of the character beyond the
10747 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10748 not alter *PX and *PNEW_K if unsuccessful. */
10749
10750 static int
10751 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
10752 int *pnew_k)
10753 {
10754 static std::string storage;
10755 const char *pstart, *pend, *bound;
10756 struct value *bound_val;
10757
10758 if (dval == NULL || str == NULL || str[k] == '\0')
10759 return 0;
10760
10761 pstart = str + k;
10762 pend = strstr (pstart, "__");
10763 if (pend == NULL)
10764 {
10765 bound = pstart;
10766 k += strlen (bound);
10767 }
10768 else
10769 {
10770 int len = pend - pstart;
10771
10772 /* Strip __ and beyond. */
10773 storage = std::string (pstart, len);
10774 bound = storage.c_str ();
10775 k = pend - str;
10776 }
10777
10778 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10779 if (bound_val == NULL)
10780 return 0;
10781
10782 *px = value_as_long (bound_val);
10783 if (pnew_k != NULL)
10784 *pnew_k = k;
10785 return 1;
10786 }
10787
10788 /* Value of variable named NAME. Only exact matches are considered.
10789 If no such variable found, then if ERR_MSG is null, returns 0, and
10790 otherwise causes an error with message ERR_MSG. */
10791
10792 static struct value *
10793 get_var_value (const char *name, const char *err_msg)
10794 {
10795 std::string quoted_name = add_angle_brackets (name);
10796
10797 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
10798
10799 std::vector<struct block_symbol> syms
10800 = ada_lookup_symbol_list_worker (lookup_name,
10801 get_selected_block (0),
10802 VAR_DOMAIN, 1);
10803
10804 if (syms.size () != 1)
10805 {
10806 if (err_msg == NULL)
10807 return 0;
10808 else
10809 error (("%s"), err_msg);
10810 }
10811
10812 return value_of_variable (syms[0].symbol, syms[0].block);
10813 }
10814
10815 /* Value of integer variable named NAME in the current environment.
10816 If no such variable is found, returns false. Otherwise, sets VALUE
10817 to the variable's value and returns true. */
10818
10819 bool
10820 get_int_var_value (const char *name, LONGEST &value)
10821 {
10822 struct value *var_val = get_var_value (name, 0);
10823
10824 if (var_val == 0)
10825 return false;
10826
10827 value = value_as_long (var_val);
10828 return true;
10829 }
10830
10831
10832 /* Return a range type whose base type is that of the range type named
10833 NAME in the current environment, and whose bounds are calculated
10834 from NAME according to the GNAT range encoding conventions.
10835 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10836 corresponding range type from debug information; fall back to using it
10837 if symbol lookup fails. If a new type must be created, allocate it
10838 like ORIG_TYPE was. The bounds information, in general, is encoded
10839 in NAME, the base type given in the named range type. */
10840
10841 static struct type *
10842 to_fixed_range_type (struct type *raw_type, struct value *dval)
10843 {
10844 const char *name;
10845 struct type *base_type;
10846 const char *subtype_info;
10847
10848 gdb_assert (raw_type != NULL);
10849 gdb_assert (raw_type->name () != NULL);
10850
10851 if (raw_type->code () == TYPE_CODE_RANGE)
10852 base_type = TYPE_TARGET_TYPE (raw_type);
10853 else
10854 base_type = raw_type;
10855
10856 name = raw_type->name ();
10857 subtype_info = strstr (name, "___XD");
10858 if (subtype_info == NULL)
10859 {
10860 LONGEST L = ada_discrete_type_low_bound (raw_type);
10861 LONGEST U = ada_discrete_type_high_bound (raw_type);
10862
10863 if (L < INT_MIN || U > INT_MAX)
10864 return raw_type;
10865 else
10866 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10867 L, U);
10868 }
10869 else
10870 {
10871 int prefix_len = subtype_info - name;
10872 LONGEST L, U;
10873 struct type *type;
10874 const char *bounds_str;
10875 int n;
10876
10877 subtype_info += 5;
10878 bounds_str = strchr (subtype_info, '_');
10879 n = 1;
10880
10881 if (*subtype_info == 'L')
10882 {
10883 if (!ada_scan_number (bounds_str, n, &L, &n)
10884 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10885 return raw_type;
10886 if (bounds_str[n] == '_')
10887 n += 2;
10888 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10889 n += 1;
10890 subtype_info += 1;
10891 }
10892 else
10893 {
10894 std::string name_buf = std::string (name, prefix_len) + "___L";
10895 if (!get_int_var_value (name_buf.c_str (), L))
10896 {
10897 lim_warning (_("Unknown lower bound, using 1."));
10898 L = 1;
10899 }
10900 }
10901
10902 if (*subtype_info == 'U')
10903 {
10904 if (!ada_scan_number (bounds_str, n, &U, &n)
10905 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10906 return raw_type;
10907 }
10908 else
10909 {
10910 std::string name_buf = std::string (name, prefix_len) + "___U";
10911 if (!get_int_var_value (name_buf.c_str (), U))
10912 {
10913 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10914 U = L;
10915 }
10916 }
10917
10918 type = create_static_range_type (alloc_type_copy (raw_type),
10919 base_type, L, U);
10920 /* create_static_range_type alters the resulting type's length
10921 to match the size of the base_type, which is not what we want.
10922 Set it back to the original range type's length. */
10923 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
10924 type->set_name (name);
10925 return type;
10926 }
10927 }
10928
10929 /* True iff NAME is the name of a range type. */
10930
10931 int
10932 ada_is_range_type_name (const char *name)
10933 {
10934 return (name != NULL && strstr (name, "___XD"));
10935 }
10936 \f
10937
10938 /* Modular types */
10939
10940 /* True iff TYPE is an Ada modular type. */
10941
10942 int
10943 ada_is_modular_type (struct type *type)
10944 {
10945 struct type *subranged_type = get_base_type (type);
10946
10947 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
10948 && subranged_type->code () == TYPE_CODE_INT
10949 && subranged_type->is_unsigned ());
10950 }
10951
10952 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10953
10954 ULONGEST
10955 ada_modulus (struct type *type)
10956 {
10957 const dynamic_prop &high = type->bounds ()->high;
10958
10959 if (high.kind () == PROP_CONST)
10960 return (ULONGEST) high.const_val () + 1;
10961
10962 /* If TYPE is unresolved, the high bound might be a location list. Return
10963 0, for lack of a better value to return. */
10964 return 0;
10965 }
10966 \f
10967
10968 /* Ada exception catchpoint support:
10969 ---------------------------------
10970
10971 We support 3 kinds of exception catchpoints:
10972 . catchpoints on Ada exceptions
10973 . catchpoints on unhandled Ada exceptions
10974 . catchpoints on failed assertions
10975
10976 Exceptions raised during failed assertions, or unhandled exceptions
10977 could perfectly be caught with the general catchpoint on Ada exceptions.
10978 However, we can easily differentiate these two special cases, and having
10979 the option to distinguish these two cases from the rest can be useful
10980 to zero-in on certain situations.
10981
10982 Exception catchpoints are a specialized form of breakpoint,
10983 since they rely on inserting breakpoints inside known routines
10984 of the GNAT runtime. The implementation therefore uses a standard
10985 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10986 of breakpoint_ops.
10987
10988 Support in the runtime for exception catchpoints have been changed
10989 a few times already, and these changes affect the implementation
10990 of these catchpoints. In order to be able to support several
10991 variants of the runtime, we use a sniffer that will determine
10992 the runtime variant used by the program being debugged. */
10993
10994 /* Ada's standard exceptions.
10995
10996 The Ada 83 standard also defined Numeric_Error. But there so many
10997 situations where it was unclear from the Ada 83 Reference Manual
10998 (RM) whether Constraint_Error or Numeric_Error should be raised,
10999 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11000 Interpretation saying that anytime the RM says that Numeric_Error
11001 should be raised, the implementation may raise Constraint_Error.
11002 Ada 95 went one step further and pretty much removed Numeric_Error
11003 from the list of standard exceptions (it made it a renaming of
11004 Constraint_Error, to help preserve compatibility when compiling
11005 an Ada83 compiler). As such, we do not include Numeric_Error from
11006 this list of standard exceptions. */
11007
11008 static const char * const standard_exc[] = {
11009 "constraint_error",
11010 "program_error",
11011 "storage_error",
11012 "tasking_error"
11013 };
11014
11015 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11016
11017 /* A structure that describes how to support exception catchpoints
11018 for a given executable. */
11019
11020 struct exception_support_info
11021 {
11022 /* The name of the symbol to break on in order to insert
11023 a catchpoint on exceptions. */
11024 const char *catch_exception_sym;
11025
11026 /* The name of the symbol to break on in order to insert
11027 a catchpoint on unhandled exceptions. */
11028 const char *catch_exception_unhandled_sym;
11029
11030 /* The name of the symbol to break on in order to insert
11031 a catchpoint on failed assertions. */
11032 const char *catch_assert_sym;
11033
11034 /* The name of the symbol to break on in order to insert
11035 a catchpoint on exception handling. */
11036 const char *catch_handlers_sym;
11037
11038 /* Assuming that the inferior just triggered an unhandled exception
11039 catchpoint, this function is responsible for returning the address
11040 in inferior memory where the name of that exception is stored.
11041 Return zero if the address could not be computed. */
11042 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11043 };
11044
11045 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11046 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11047
11048 /* The following exception support info structure describes how to
11049 implement exception catchpoints with the latest version of the
11050 Ada runtime (as of 2019-08-??). */
11051
11052 static const struct exception_support_info default_exception_support_info =
11053 {
11054 "__gnat_debug_raise_exception", /* catch_exception_sym */
11055 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11056 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11057 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11058 ada_unhandled_exception_name_addr
11059 };
11060
11061 /* The following exception support info structure describes how to
11062 implement exception catchpoints with an earlier version of the
11063 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11064
11065 static const struct exception_support_info exception_support_info_v0 =
11066 {
11067 "__gnat_debug_raise_exception", /* catch_exception_sym */
11068 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11069 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11070 "__gnat_begin_handler", /* catch_handlers_sym */
11071 ada_unhandled_exception_name_addr
11072 };
11073
11074 /* The following exception support info structure describes how to
11075 implement exception catchpoints with a slightly older version
11076 of the Ada runtime. */
11077
11078 static const struct exception_support_info exception_support_info_fallback =
11079 {
11080 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11081 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11082 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11083 "__gnat_begin_handler", /* catch_handlers_sym */
11084 ada_unhandled_exception_name_addr_from_raise
11085 };
11086
11087 /* Return nonzero if we can detect the exception support routines
11088 described in EINFO.
11089
11090 This function errors out if an abnormal situation is detected
11091 (for instance, if we find the exception support routines, but
11092 that support is found to be incomplete). */
11093
11094 static int
11095 ada_has_this_exception_support (const struct exception_support_info *einfo)
11096 {
11097 struct symbol *sym;
11098
11099 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11100 that should be compiled with debugging information. As a result, we
11101 expect to find that symbol in the symtabs. */
11102
11103 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11104 if (sym == NULL)
11105 {
11106 /* Perhaps we did not find our symbol because the Ada runtime was
11107 compiled without debugging info, or simply stripped of it.
11108 It happens on some GNU/Linux distributions for instance, where
11109 users have to install a separate debug package in order to get
11110 the runtime's debugging info. In that situation, let the user
11111 know why we cannot insert an Ada exception catchpoint.
11112
11113 Note: Just for the purpose of inserting our Ada exception
11114 catchpoint, we could rely purely on the associated minimal symbol.
11115 But we would be operating in degraded mode anyway, since we are
11116 still lacking the debugging info needed later on to extract
11117 the name of the exception being raised (this name is printed in
11118 the catchpoint message, and is also used when trying to catch
11119 a specific exception). We do not handle this case for now. */
11120 struct bound_minimal_symbol msym
11121 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11122
11123 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11124 error (_("Your Ada runtime appears to be missing some debugging "
11125 "information.\nCannot insert Ada exception catchpoint "
11126 "in this configuration."));
11127
11128 return 0;
11129 }
11130
11131 /* Make sure that the symbol we found corresponds to a function. */
11132
11133 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11134 {
11135 error (_("Symbol \"%s\" is not a function (class = %d)"),
11136 sym->linkage_name (), SYMBOL_CLASS (sym));
11137 return 0;
11138 }
11139
11140 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11141 if (sym == NULL)
11142 {
11143 struct bound_minimal_symbol msym
11144 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11145
11146 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11147 error (_("Your Ada runtime appears to be missing some debugging "
11148 "information.\nCannot insert Ada exception catchpoint "
11149 "in this configuration."));
11150
11151 return 0;
11152 }
11153
11154 /* Make sure that the symbol we found corresponds to a function. */
11155
11156 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11157 {
11158 error (_("Symbol \"%s\" is not a function (class = %d)"),
11159 sym->linkage_name (), SYMBOL_CLASS (sym));
11160 return 0;
11161 }
11162
11163 return 1;
11164 }
11165
11166 /* Inspect the Ada runtime and determine which exception info structure
11167 should be used to provide support for exception catchpoints.
11168
11169 This function will always set the per-inferior exception_info,
11170 or raise an error. */
11171
11172 static void
11173 ada_exception_support_info_sniffer (void)
11174 {
11175 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11176
11177 /* If the exception info is already known, then no need to recompute it. */
11178 if (data->exception_info != NULL)
11179 return;
11180
11181 /* Check the latest (default) exception support info. */
11182 if (ada_has_this_exception_support (&default_exception_support_info))
11183 {
11184 data->exception_info = &default_exception_support_info;
11185 return;
11186 }
11187
11188 /* Try the v0 exception suport info. */
11189 if (ada_has_this_exception_support (&exception_support_info_v0))
11190 {
11191 data->exception_info = &exception_support_info_v0;
11192 return;
11193 }
11194
11195 /* Try our fallback exception suport info. */
11196 if (ada_has_this_exception_support (&exception_support_info_fallback))
11197 {
11198 data->exception_info = &exception_support_info_fallback;
11199 return;
11200 }
11201
11202 /* Sometimes, it is normal for us to not be able to find the routine
11203 we are looking for. This happens when the program is linked with
11204 the shared version of the GNAT runtime, and the program has not been
11205 started yet. Inform the user of these two possible causes if
11206 applicable. */
11207
11208 if (ada_update_initial_language (language_unknown) != language_ada)
11209 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11210
11211 /* If the symbol does not exist, then check that the program is
11212 already started, to make sure that shared libraries have been
11213 loaded. If it is not started, this may mean that the symbol is
11214 in a shared library. */
11215
11216 if (inferior_ptid.pid () == 0)
11217 error (_("Unable to insert catchpoint. Try to start the program first."));
11218
11219 /* At this point, we know that we are debugging an Ada program and
11220 that the inferior has been started, but we still are not able to
11221 find the run-time symbols. That can mean that we are in
11222 configurable run time mode, or that a-except as been optimized
11223 out by the linker... In any case, at this point it is not worth
11224 supporting this feature. */
11225
11226 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11227 }
11228
11229 /* True iff FRAME is very likely to be that of a function that is
11230 part of the runtime system. This is all very heuristic, but is
11231 intended to be used as advice as to what frames are uninteresting
11232 to most users. */
11233
11234 static int
11235 is_known_support_routine (struct frame_info *frame)
11236 {
11237 enum language func_lang;
11238 int i;
11239 const char *fullname;
11240
11241 /* If this code does not have any debugging information (no symtab),
11242 This cannot be any user code. */
11243
11244 symtab_and_line sal = find_frame_sal (frame);
11245 if (sal.symtab == NULL)
11246 return 1;
11247
11248 /* If there is a symtab, but the associated source file cannot be
11249 located, then assume this is not user code: Selecting a frame
11250 for which we cannot display the code would not be very helpful
11251 for the user. This should also take care of case such as VxWorks
11252 where the kernel has some debugging info provided for a few units. */
11253
11254 fullname = symtab_to_fullname (sal.symtab);
11255 if (access (fullname, R_OK) != 0)
11256 return 1;
11257
11258 /* Check the unit filename against the Ada runtime file naming.
11259 We also check the name of the objfile against the name of some
11260 known system libraries that sometimes come with debugging info
11261 too. */
11262
11263 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11264 {
11265 re_comp (known_runtime_file_name_patterns[i]);
11266 if (re_exec (lbasename (sal.symtab->filename)))
11267 return 1;
11268 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11269 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11270 return 1;
11271 }
11272
11273 /* Check whether the function is a GNAT-generated entity. */
11274
11275 gdb::unique_xmalloc_ptr<char> func_name
11276 = find_frame_funname (frame, &func_lang, NULL);
11277 if (func_name == NULL)
11278 return 1;
11279
11280 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11281 {
11282 re_comp (known_auxiliary_function_name_patterns[i]);
11283 if (re_exec (func_name.get ()))
11284 return 1;
11285 }
11286
11287 return 0;
11288 }
11289
11290 /* Find the first frame that contains debugging information and that is not
11291 part of the Ada run-time, starting from FI and moving upward. */
11292
11293 void
11294 ada_find_printable_frame (struct frame_info *fi)
11295 {
11296 for (; fi != NULL; fi = get_prev_frame (fi))
11297 {
11298 if (!is_known_support_routine (fi))
11299 {
11300 select_frame (fi);
11301 break;
11302 }
11303 }
11304
11305 }
11306
11307 /* Assuming that the inferior just triggered an unhandled exception
11308 catchpoint, return the address in inferior memory where the name
11309 of the exception is stored.
11310
11311 Return zero if the address could not be computed. */
11312
11313 static CORE_ADDR
11314 ada_unhandled_exception_name_addr (void)
11315 {
11316 return parse_and_eval_address ("e.full_name");
11317 }
11318
11319 /* Same as ada_unhandled_exception_name_addr, except that this function
11320 should be used when the inferior uses an older version of the runtime,
11321 where the exception name needs to be extracted from a specific frame
11322 several frames up in the callstack. */
11323
11324 static CORE_ADDR
11325 ada_unhandled_exception_name_addr_from_raise (void)
11326 {
11327 int frame_level;
11328 struct frame_info *fi;
11329 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11330
11331 /* To determine the name of this exception, we need to select
11332 the frame corresponding to RAISE_SYM_NAME. This frame is
11333 at least 3 levels up, so we simply skip the first 3 frames
11334 without checking the name of their associated function. */
11335 fi = get_current_frame ();
11336 for (frame_level = 0; frame_level < 3; frame_level += 1)
11337 if (fi != NULL)
11338 fi = get_prev_frame (fi);
11339
11340 while (fi != NULL)
11341 {
11342 enum language func_lang;
11343
11344 gdb::unique_xmalloc_ptr<char> func_name
11345 = find_frame_funname (fi, &func_lang, NULL);
11346 if (func_name != NULL)
11347 {
11348 if (strcmp (func_name.get (),
11349 data->exception_info->catch_exception_sym) == 0)
11350 break; /* We found the frame we were looking for... */
11351 }
11352 fi = get_prev_frame (fi);
11353 }
11354
11355 if (fi == NULL)
11356 return 0;
11357
11358 select_frame (fi);
11359 return parse_and_eval_address ("id.full_name");
11360 }
11361
11362 /* Assuming the inferior just triggered an Ada exception catchpoint
11363 (of any type), return the address in inferior memory where the name
11364 of the exception is stored, if applicable.
11365
11366 Assumes the selected frame is the current frame.
11367
11368 Return zero if the address could not be computed, or if not relevant. */
11369
11370 static CORE_ADDR
11371 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11372 struct breakpoint *b)
11373 {
11374 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11375
11376 switch (ex)
11377 {
11378 case ada_catch_exception:
11379 return (parse_and_eval_address ("e.full_name"));
11380 break;
11381
11382 case ada_catch_exception_unhandled:
11383 return data->exception_info->unhandled_exception_name_addr ();
11384 break;
11385
11386 case ada_catch_handlers:
11387 return 0; /* The runtimes does not provide access to the exception
11388 name. */
11389 break;
11390
11391 case ada_catch_assert:
11392 return 0; /* Exception name is not relevant in this case. */
11393 break;
11394
11395 default:
11396 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11397 break;
11398 }
11399
11400 return 0; /* Should never be reached. */
11401 }
11402
11403 /* Assuming the inferior is stopped at an exception catchpoint,
11404 return the message which was associated to the exception, if
11405 available. Return NULL if the message could not be retrieved.
11406
11407 Note: The exception message can be associated to an exception
11408 either through the use of the Raise_Exception function, or
11409 more simply (Ada 2005 and later), via:
11410
11411 raise Exception_Name with "exception message";
11412
11413 */
11414
11415 static gdb::unique_xmalloc_ptr<char>
11416 ada_exception_message_1 (void)
11417 {
11418 struct value *e_msg_val;
11419 int e_msg_len;
11420
11421 /* For runtimes that support this feature, the exception message
11422 is passed as an unbounded string argument called "message". */
11423 e_msg_val = parse_and_eval ("message");
11424 if (e_msg_val == NULL)
11425 return NULL; /* Exception message not supported. */
11426
11427 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11428 gdb_assert (e_msg_val != NULL);
11429 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11430
11431 /* If the message string is empty, then treat it as if there was
11432 no exception message. */
11433 if (e_msg_len <= 0)
11434 return NULL;
11435
11436 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11437 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11438 e_msg_len);
11439 e_msg.get ()[e_msg_len] = '\0';
11440
11441 return e_msg;
11442 }
11443
11444 /* Same as ada_exception_message_1, except that all exceptions are
11445 contained here (returning NULL instead). */
11446
11447 static gdb::unique_xmalloc_ptr<char>
11448 ada_exception_message (void)
11449 {
11450 gdb::unique_xmalloc_ptr<char> e_msg;
11451
11452 try
11453 {
11454 e_msg = ada_exception_message_1 ();
11455 }
11456 catch (const gdb_exception_error &e)
11457 {
11458 e_msg.reset (nullptr);
11459 }
11460
11461 return e_msg;
11462 }
11463
11464 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11465 any error that ada_exception_name_addr_1 might cause to be thrown.
11466 When an error is intercepted, a warning with the error message is printed,
11467 and zero is returned. */
11468
11469 static CORE_ADDR
11470 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11471 struct breakpoint *b)
11472 {
11473 CORE_ADDR result = 0;
11474
11475 try
11476 {
11477 result = ada_exception_name_addr_1 (ex, b);
11478 }
11479
11480 catch (const gdb_exception_error &e)
11481 {
11482 warning (_("failed to get exception name: %s"), e.what ());
11483 return 0;
11484 }
11485
11486 return result;
11487 }
11488
11489 static std::string ada_exception_catchpoint_cond_string
11490 (const char *excep_string,
11491 enum ada_exception_catchpoint_kind ex);
11492
11493 /* Ada catchpoints.
11494
11495 In the case of catchpoints on Ada exceptions, the catchpoint will
11496 stop the target on every exception the program throws. When a user
11497 specifies the name of a specific exception, we translate this
11498 request into a condition expression (in text form), and then parse
11499 it into an expression stored in each of the catchpoint's locations.
11500 We then use this condition to check whether the exception that was
11501 raised is the one the user is interested in. If not, then the
11502 target is resumed again. We store the name of the requested
11503 exception, in order to be able to re-set the condition expression
11504 when symbols change. */
11505
11506 /* An instance of this type is used to represent an Ada catchpoint
11507 breakpoint location. */
11508
11509 class ada_catchpoint_location : public bp_location
11510 {
11511 public:
11512 ada_catchpoint_location (breakpoint *owner)
11513 : bp_location (owner, bp_loc_software_breakpoint)
11514 {}
11515
11516 /* The condition that checks whether the exception that was raised
11517 is the specific exception the user specified on catchpoint
11518 creation. */
11519 expression_up excep_cond_expr;
11520 };
11521
11522 /* An instance of this type is used to represent an Ada catchpoint. */
11523
11524 struct ada_catchpoint : public breakpoint
11525 {
11526 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11527 : m_kind (kind)
11528 {
11529 }
11530
11531 /* The name of the specific exception the user specified. */
11532 std::string excep_string;
11533
11534 /* What kind of catchpoint this is. */
11535 enum ada_exception_catchpoint_kind m_kind;
11536 };
11537
11538 /* Parse the exception condition string in the context of each of the
11539 catchpoint's locations, and store them for later evaluation. */
11540
11541 static void
11542 create_excep_cond_exprs (struct ada_catchpoint *c,
11543 enum ada_exception_catchpoint_kind ex)
11544 {
11545 struct bp_location *bl;
11546
11547 /* Nothing to do if there's no specific exception to catch. */
11548 if (c->excep_string.empty ())
11549 return;
11550
11551 /* Same if there are no locations... */
11552 if (c->loc == NULL)
11553 return;
11554
11555 /* Compute the condition expression in text form, from the specific
11556 expection we want to catch. */
11557 std::string cond_string
11558 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
11559
11560 /* Iterate over all the catchpoint's locations, and parse an
11561 expression for each. */
11562 for (bl = c->loc; bl != NULL; bl = bl->next)
11563 {
11564 struct ada_catchpoint_location *ada_loc
11565 = (struct ada_catchpoint_location *) bl;
11566 expression_up exp;
11567
11568 if (!bl->shlib_disabled)
11569 {
11570 const char *s;
11571
11572 s = cond_string.c_str ();
11573 try
11574 {
11575 exp = parse_exp_1 (&s, bl->address,
11576 block_for_pc (bl->address),
11577 0);
11578 }
11579 catch (const gdb_exception_error &e)
11580 {
11581 warning (_("failed to reevaluate internal exception condition "
11582 "for catchpoint %d: %s"),
11583 c->number, e.what ());
11584 }
11585 }
11586
11587 ada_loc->excep_cond_expr = std::move (exp);
11588 }
11589 }
11590
11591 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11592 structure for all exception catchpoint kinds. */
11593
11594 static struct bp_location *
11595 allocate_location_exception (struct breakpoint *self)
11596 {
11597 return new ada_catchpoint_location (self);
11598 }
11599
11600 /* Implement the RE_SET method in the breakpoint_ops structure for all
11601 exception catchpoint kinds. */
11602
11603 static void
11604 re_set_exception (struct breakpoint *b)
11605 {
11606 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11607
11608 /* Call the base class's method. This updates the catchpoint's
11609 locations. */
11610 bkpt_breakpoint_ops.re_set (b);
11611
11612 /* Reparse the exception conditional expressions. One for each
11613 location. */
11614 create_excep_cond_exprs (c, c->m_kind);
11615 }
11616
11617 /* Returns true if we should stop for this breakpoint hit. If the
11618 user specified a specific exception, we only want to cause a stop
11619 if the program thrown that exception. */
11620
11621 static int
11622 should_stop_exception (const struct bp_location *bl)
11623 {
11624 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11625 const struct ada_catchpoint_location *ada_loc
11626 = (const struct ada_catchpoint_location *) bl;
11627 int stop;
11628
11629 struct internalvar *var = lookup_internalvar ("_ada_exception");
11630 if (c->m_kind == ada_catch_assert)
11631 clear_internalvar (var);
11632 else
11633 {
11634 try
11635 {
11636 const char *expr;
11637
11638 if (c->m_kind == ada_catch_handlers)
11639 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11640 ".all.occurrence.id");
11641 else
11642 expr = "e";
11643
11644 struct value *exc = parse_and_eval (expr);
11645 set_internalvar (var, exc);
11646 }
11647 catch (const gdb_exception_error &ex)
11648 {
11649 clear_internalvar (var);
11650 }
11651 }
11652
11653 /* With no specific exception, should always stop. */
11654 if (c->excep_string.empty ())
11655 return 1;
11656
11657 if (ada_loc->excep_cond_expr == NULL)
11658 {
11659 /* We will have a NULL expression if back when we were creating
11660 the expressions, this location's had failed to parse. */
11661 return 1;
11662 }
11663
11664 stop = 1;
11665 try
11666 {
11667 struct value *mark;
11668
11669 mark = value_mark ();
11670 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
11671 value_free_to_mark (mark);
11672 }
11673 catch (const gdb_exception &ex)
11674 {
11675 exception_fprintf (gdb_stderr, ex,
11676 _("Error in testing exception condition:\n"));
11677 }
11678
11679 return stop;
11680 }
11681
11682 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11683 for all exception catchpoint kinds. */
11684
11685 static void
11686 check_status_exception (bpstat bs)
11687 {
11688 bs->stop = should_stop_exception (bs->bp_location_at.get ());
11689 }
11690
11691 /* Implement the PRINT_IT method in the breakpoint_ops structure
11692 for all exception catchpoint kinds. */
11693
11694 static enum print_stop_action
11695 print_it_exception (bpstat bs)
11696 {
11697 struct ui_out *uiout = current_uiout;
11698 struct breakpoint *b = bs->breakpoint_at;
11699
11700 annotate_catchpoint (b->number);
11701
11702 if (uiout->is_mi_like_p ())
11703 {
11704 uiout->field_string ("reason",
11705 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11706 uiout->field_string ("disp", bpdisp_text (b->disposition));
11707 }
11708
11709 uiout->text (b->disposition == disp_del
11710 ? "\nTemporary catchpoint " : "\nCatchpoint ");
11711 uiout->field_signed ("bkptno", b->number);
11712 uiout->text (", ");
11713
11714 /* ada_exception_name_addr relies on the selected frame being the
11715 current frame. Need to do this here because this function may be
11716 called more than once when printing a stop, and below, we'll
11717 select the first frame past the Ada run-time (see
11718 ada_find_printable_frame). */
11719 select_frame (get_current_frame ());
11720
11721 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11722 switch (c->m_kind)
11723 {
11724 case ada_catch_exception:
11725 case ada_catch_exception_unhandled:
11726 case ada_catch_handlers:
11727 {
11728 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
11729 char exception_name[256];
11730
11731 if (addr != 0)
11732 {
11733 read_memory (addr, (gdb_byte *) exception_name,
11734 sizeof (exception_name) - 1);
11735 exception_name [sizeof (exception_name) - 1] = '\0';
11736 }
11737 else
11738 {
11739 /* For some reason, we were unable to read the exception
11740 name. This could happen if the Runtime was compiled
11741 without debugging info, for instance. In that case,
11742 just replace the exception name by the generic string
11743 "exception" - it will read as "an exception" in the
11744 notification we are about to print. */
11745 memcpy (exception_name, "exception", sizeof ("exception"));
11746 }
11747 /* In the case of unhandled exception breakpoints, we print
11748 the exception name as "unhandled EXCEPTION_NAME", to make
11749 it clearer to the user which kind of catchpoint just got
11750 hit. We used ui_out_text to make sure that this extra
11751 info does not pollute the exception name in the MI case. */
11752 if (c->m_kind == ada_catch_exception_unhandled)
11753 uiout->text ("unhandled ");
11754 uiout->field_string ("exception-name", exception_name);
11755 }
11756 break;
11757 case ada_catch_assert:
11758 /* In this case, the name of the exception is not really
11759 important. Just print "failed assertion" to make it clearer
11760 that his program just hit an assertion-failure catchpoint.
11761 We used ui_out_text because this info does not belong in
11762 the MI output. */
11763 uiout->text ("failed assertion");
11764 break;
11765 }
11766
11767 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
11768 if (exception_message != NULL)
11769 {
11770 uiout->text (" (");
11771 uiout->field_string ("exception-message", exception_message.get ());
11772 uiout->text (")");
11773 }
11774
11775 uiout->text (" at ");
11776 ada_find_printable_frame (get_current_frame ());
11777
11778 return PRINT_SRC_AND_LOC;
11779 }
11780
11781 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11782 for all exception catchpoint kinds. */
11783
11784 static void
11785 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
11786 {
11787 struct ui_out *uiout = current_uiout;
11788 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11789 struct value_print_options opts;
11790
11791 get_user_print_options (&opts);
11792
11793 if (opts.addressprint)
11794 uiout->field_skip ("addr");
11795
11796 annotate_field (5);
11797 switch (c->m_kind)
11798 {
11799 case ada_catch_exception:
11800 if (!c->excep_string.empty ())
11801 {
11802 std::string msg = string_printf (_("`%s' Ada exception"),
11803 c->excep_string.c_str ());
11804
11805 uiout->field_string ("what", msg);
11806 }
11807 else
11808 uiout->field_string ("what", "all Ada exceptions");
11809
11810 break;
11811
11812 case ada_catch_exception_unhandled:
11813 uiout->field_string ("what", "unhandled Ada exceptions");
11814 break;
11815
11816 case ada_catch_handlers:
11817 if (!c->excep_string.empty ())
11818 {
11819 uiout->field_fmt ("what",
11820 _("`%s' Ada exception handlers"),
11821 c->excep_string.c_str ());
11822 }
11823 else
11824 uiout->field_string ("what", "all Ada exceptions handlers");
11825 break;
11826
11827 case ada_catch_assert:
11828 uiout->field_string ("what", "failed Ada assertions");
11829 break;
11830
11831 default:
11832 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11833 break;
11834 }
11835 }
11836
11837 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11838 for all exception catchpoint kinds. */
11839
11840 static void
11841 print_mention_exception (struct breakpoint *b)
11842 {
11843 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11844 struct ui_out *uiout = current_uiout;
11845
11846 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
11847 : _("Catchpoint "));
11848 uiout->field_signed ("bkptno", b->number);
11849 uiout->text (": ");
11850
11851 switch (c->m_kind)
11852 {
11853 case ada_catch_exception:
11854 if (!c->excep_string.empty ())
11855 {
11856 std::string info = string_printf (_("`%s' Ada exception"),
11857 c->excep_string.c_str ());
11858 uiout->text (info.c_str ());
11859 }
11860 else
11861 uiout->text (_("all Ada exceptions"));
11862 break;
11863
11864 case ada_catch_exception_unhandled:
11865 uiout->text (_("unhandled Ada exceptions"));
11866 break;
11867
11868 case ada_catch_handlers:
11869 if (!c->excep_string.empty ())
11870 {
11871 std::string info
11872 = string_printf (_("`%s' Ada exception handlers"),
11873 c->excep_string.c_str ());
11874 uiout->text (info.c_str ());
11875 }
11876 else
11877 uiout->text (_("all Ada exceptions handlers"));
11878 break;
11879
11880 case ada_catch_assert:
11881 uiout->text (_("failed Ada assertions"));
11882 break;
11883
11884 default:
11885 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11886 break;
11887 }
11888 }
11889
11890 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11891 for all exception catchpoint kinds. */
11892
11893 static void
11894 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
11895 {
11896 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11897
11898 switch (c->m_kind)
11899 {
11900 case ada_catch_exception:
11901 fprintf_filtered (fp, "catch exception");
11902 if (!c->excep_string.empty ())
11903 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
11904 break;
11905
11906 case ada_catch_exception_unhandled:
11907 fprintf_filtered (fp, "catch exception unhandled");
11908 break;
11909
11910 case ada_catch_handlers:
11911 fprintf_filtered (fp, "catch handlers");
11912 break;
11913
11914 case ada_catch_assert:
11915 fprintf_filtered (fp, "catch assert");
11916 break;
11917
11918 default:
11919 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11920 }
11921 print_recreate_thread (b, fp);
11922 }
11923
11924 /* Virtual tables for various breakpoint types. */
11925 static struct breakpoint_ops catch_exception_breakpoint_ops;
11926 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11927 static struct breakpoint_ops catch_assert_breakpoint_ops;
11928 static struct breakpoint_ops catch_handlers_breakpoint_ops;
11929
11930 /* See ada-lang.h. */
11931
11932 bool
11933 is_ada_exception_catchpoint (breakpoint *bp)
11934 {
11935 return (bp->ops == &catch_exception_breakpoint_ops
11936 || bp->ops == &catch_exception_unhandled_breakpoint_ops
11937 || bp->ops == &catch_assert_breakpoint_ops
11938 || bp->ops == &catch_handlers_breakpoint_ops);
11939 }
11940
11941 /* Split the arguments specified in a "catch exception" command.
11942 Set EX to the appropriate catchpoint type.
11943 Set EXCEP_STRING to the name of the specific exception if
11944 specified by the user.
11945 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
11946 "catch handlers" command. False otherwise.
11947 If a condition is found at the end of the arguments, the condition
11948 expression is stored in COND_STRING (memory must be deallocated
11949 after use). Otherwise COND_STRING is set to NULL. */
11950
11951 static void
11952 catch_ada_exception_command_split (const char *args,
11953 bool is_catch_handlers_cmd,
11954 enum ada_exception_catchpoint_kind *ex,
11955 std::string *excep_string,
11956 std::string *cond_string)
11957 {
11958 std::string exception_name;
11959
11960 exception_name = extract_arg (&args);
11961 if (exception_name == "if")
11962 {
11963 /* This is not an exception name; this is the start of a condition
11964 expression for a catchpoint on all exceptions. So, "un-get"
11965 this token, and set exception_name to NULL. */
11966 exception_name.clear ();
11967 args -= 2;
11968 }
11969
11970 /* Check to see if we have a condition. */
11971
11972 args = skip_spaces (args);
11973 if (startswith (args, "if")
11974 && (isspace (args[2]) || args[2] == '\0'))
11975 {
11976 args += 2;
11977 args = skip_spaces (args);
11978
11979 if (args[0] == '\0')
11980 error (_("Condition missing after `if' keyword"));
11981 *cond_string = args;
11982
11983 args += strlen (args);
11984 }
11985
11986 /* Check that we do not have any more arguments. Anything else
11987 is unexpected. */
11988
11989 if (args[0] != '\0')
11990 error (_("Junk at end of expression"));
11991
11992 if (is_catch_handlers_cmd)
11993 {
11994 /* Catch handling of exceptions. */
11995 *ex = ada_catch_handlers;
11996 *excep_string = exception_name;
11997 }
11998 else if (exception_name.empty ())
11999 {
12000 /* Catch all exceptions. */
12001 *ex = ada_catch_exception;
12002 excep_string->clear ();
12003 }
12004 else if (exception_name == "unhandled")
12005 {
12006 /* Catch unhandled exceptions. */
12007 *ex = ada_catch_exception_unhandled;
12008 excep_string->clear ();
12009 }
12010 else
12011 {
12012 /* Catch a specific exception. */
12013 *ex = ada_catch_exception;
12014 *excep_string = exception_name;
12015 }
12016 }
12017
12018 /* Return the name of the symbol on which we should break in order to
12019 implement a catchpoint of the EX kind. */
12020
12021 static const char *
12022 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12023 {
12024 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12025
12026 gdb_assert (data->exception_info != NULL);
12027
12028 switch (ex)
12029 {
12030 case ada_catch_exception:
12031 return (data->exception_info->catch_exception_sym);
12032 break;
12033 case ada_catch_exception_unhandled:
12034 return (data->exception_info->catch_exception_unhandled_sym);
12035 break;
12036 case ada_catch_assert:
12037 return (data->exception_info->catch_assert_sym);
12038 break;
12039 case ada_catch_handlers:
12040 return (data->exception_info->catch_handlers_sym);
12041 break;
12042 default:
12043 internal_error (__FILE__, __LINE__,
12044 _("unexpected catchpoint kind (%d)"), ex);
12045 }
12046 }
12047
12048 /* Return the breakpoint ops "virtual table" used for catchpoints
12049 of the EX kind. */
12050
12051 static const struct breakpoint_ops *
12052 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12053 {
12054 switch (ex)
12055 {
12056 case ada_catch_exception:
12057 return (&catch_exception_breakpoint_ops);
12058 break;
12059 case ada_catch_exception_unhandled:
12060 return (&catch_exception_unhandled_breakpoint_ops);
12061 break;
12062 case ada_catch_assert:
12063 return (&catch_assert_breakpoint_ops);
12064 break;
12065 case ada_catch_handlers:
12066 return (&catch_handlers_breakpoint_ops);
12067 break;
12068 default:
12069 internal_error (__FILE__, __LINE__,
12070 _("unexpected catchpoint kind (%d)"), ex);
12071 }
12072 }
12073
12074 /* Return the condition that will be used to match the current exception
12075 being raised with the exception that the user wants to catch. This
12076 assumes that this condition is used when the inferior just triggered
12077 an exception catchpoint.
12078 EX: the type of catchpoints used for catching Ada exceptions. */
12079
12080 static std::string
12081 ada_exception_catchpoint_cond_string (const char *excep_string,
12082 enum ada_exception_catchpoint_kind ex)
12083 {
12084 int i;
12085 bool is_standard_exc = false;
12086 std::string result;
12087
12088 if (ex == ada_catch_handlers)
12089 {
12090 /* For exception handlers catchpoints, the condition string does
12091 not use the same parameter as for the other exceptions. */
12092 result = ("long_integer (GNAT_GCC_exception_Access"
12093 "(gcc_exception).all.occurrence.id)");
12094 }
12095 else
12096 result = "long_integer (e)";
12097
12098 /* The standard exceptions are a special case. They are defined in
12099 runtime units that have been compiled without debugging info; if
12100 EXCEP_STRING is the not-fully-qualified name of a standard
12101 exception (e.g. "constraint_error") then, during the evaluation
12102 of the condition expression, the symbol lookup on this name would
12103 *not* return this standard exception. The catchpoint condition
12104 may then be set only on user-defined exceptions which have the
12105 same not-fully-qualified name (e.g. my_package.constraint_error).
12106
12107 To avoid this unexcepted behavior, these standard exceptions are
12108 systematically prefixed by "standard". This means that "catch
12109 exception constraint_error" is rewritten into "catch exception
12110 standard.constraint_error".
12111
12112 If an exception named constraint_error is defined in another package of
12113 the inferior program, then the only way to specify this exception as a
12114 breakpoint condition is to use its fully-qualified named:
12115 e.g. my_package.constraint_error. */
12116
12117 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12118 {
12119 if (strcmp (standard_exc [i], excep_string) == 0)
12120 {
12121 is_standard_exc = true;
12122 break;
12123 }
12124 }
12125
12126 result += " = ";
12127
12128 if (is_standard_exc)
12129 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12130 else
12131 string_appendf (result, "long_integer (&%s)", excep_string);
12132
12133 return result;
12134 }
12135
12136 /* Return the symtab_and_line that should be used to insert an exception
12137 catchpoint of the TYPE kind.
12138
12139 ADDR_STRING returns the name of the function where the real
12140 breakpoint that implements the catchpoints is set, depending on the
12141 type of catchpoint we need to create. */
12142
12143 static struct symtab_and_line
12144 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12145 std::string *addr_string, const struct breakpoint_ops **ops)
12146 {
12147 const char *sym_name;
12148 struct symbol *sym;
12149
12150 /* First, find out which exception support info to use. */
12151 ada_exception_support_info_sniffer ();
12152
12153 /* Then lookup the function on which we will break in order to catch
12154 the Ada exceptions requested by the user. */
12155 sym_name = ada_exception_sym_name (ex);
12156 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12157
12158 if (sym == NULL)
12159 error (_("Catchpoint symbol not found: %s"), sym_name);
12160
12161 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12162 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12163
12164 /* Set ADDR_STRING. */
12165 *addr_string = sym_name;
12166
12167 /* Set OPS. */
12168 *ops = ada_exception_breakpoint_ops (ex);
12169
12170 return find_function_start_sal (sym, 1);
12171 }
12172
12173 /* Create an Ada exception catchpoint.
12174
12175 EX_KIND is the kind of exception catchpoint to be created.
12176
12177 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12178 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12179 of the exception to which this catchpoint applies.
12180
12181 COND_STRING, if not empty, is the catchpoint condition.
12182
12183 TEMPFLAG, if nonzero, means that the underlying breakpoint
12184 should be temporary.
12185
12186 FROM_TTY is the usual argument passed to all commands implementations. */
12187
12188 void
12189 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12190 enum ada_exception_catchpoint_kind ex_kind,
12191 const std::string &excep_string,
12192 const std::string &cond_string,
12193 int tempflag,
12194 int disabled,
12195 int from_tty)
12196 {
12197 std::string addr_string;
12198 const struct breakpoint_ops *ops = NULL;
12199 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12200
12201 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12202 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12203 ops, tempflag, disabled, from_tty);
12204 c->excep_string = excep_string;
12205 create_excep_cond_exprs (c.get (), ex_kind);
12206 if (!cond_string.empty ())
12207 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12208 install_breakpoint (0, std::move (c), 1);
12209 }
12210
12211 /* Implement the "catch exception" command. */
12212
12213 static void
12214 catch_ada_exception_command (const char *arg_entry, int from_tty,
12215 struct cmd_list_element *command)
12216 {
12217 const char *arg = arg_entry;
12218 struct gdbarch *gdbarch = get_current_arch ();
12219 int tempflag;
12220 enum ada_exception_catchpoint_kind ex_kind;
12221 std::string excep_string;
12222 std::string cond_string;
12223
12224 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12225
12226 if (!arg)
12227 arg = "";
12228 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12229 &cond_string);
12230 create_ada_exception_catchpoint (gdbarch, ex_kind,
12231 excep_string, cond_string,
12232 tempflag, 1 /* enabled */,
12233 from_tty);
12234 }
12235
12236 /* Implement the "catch handlers" command. */
12237
12238 static void
12239 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12240 struct cmd_list_element *command)
12241 {
12242 const char *arg = arg_entry;
12243 struct gdbarch *gdbarch = get_current_arch ();
12244 int tempflag;
12245 enum ada_exception_catchpoint_kind ex_kind;
12246 std::string excep_string;
12247 std::string cond_string;
12248
12249 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12250
12251 if (!arg)
12252 arg = "";
12253 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12254 &cond_string);
12255 create_ada_exception_catchpoint (gdbarch, ex_kind,
12256 excep_string, cond_string,
12257 tempflag, 1 /* enabled */,
12258 from_tty);
12259 }
12260
12261 /* Completion function for the Ada "catch" commands. */
12262
12263 static void
12264 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12265 const char *text, const char *word)
12266 {
12267 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12268
12269 for (const ada_exc_info &info : exceptions)
12270 {
12271 if (startswith (info.name, word))
12272 tracker.add_completion (make_unique_xstrdup (info.name));
12273 }
12274 }
12275
12276 /* Split the arguments specified in a "catch assert" command.
12277
12278 ARGS contains the command's arguments (or the empty string if
12279 no arguments were passed).
12280
12281 If ARGS contains a condition, set COND_STRING to that condition
12282 (the memory needs to be deallocated after use). */
12283
12284 static void
12285 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12286 {
12287 args = skip_spaces (args);
12288
12289 /* Check whether a condition was provided. */
12290 if (startswith (args, "if")
12291 && (isspace (args[2]) || args[2] == '\0'))
12292 {
12293 args += 2;
12294 args = skip_spaces (args);
12295 if (args[0] == '\0')
12296 error (_("condition missing after `if' keyword"));
12297 cond_string.assign (args);
12298 }
12299
12300 /* Otherwise, there should be no other argument at the end of
12301 the command. */
12302 else if (args[0] != '\0')
12303 error (_("Junk at end of arguments."));
12304 }
12305
12306 /* Implement the "catch assert" command. */
12307
12308 static void
12309 catch_assert_command (const char *arg_entry, int from_tty,
12310 struct cmd_list_element *command)
12311 {
12312 const char *arg = arg_entry;
12313 struct gdbarch *gdbarch = get_current_arch ();
12314 int tempflag;
12315 std::string cond_string;
12316
12317 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12318
12319 if (!arg)
12320 arg = "";
12321 catch_ada_assert_command_split (arg, cond_string);
12322 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12323 "", cond_string,
12324 tempflag, 1 /* enabled */,
12325 from_tty);
12326 }
12327
12328 /* Return non-zero if the symbol SYM is an Ada exception object. */
12329
12330 static int
12331 ada_is_exception_sym (struct symbol *sym)
12332 {
12333 const char *type_name = SYMBOL_TYPE (sym)->name ();
12334
12335 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12336 && SYMBOL_CLASS (sym) != LOC_BLOCK
12337 && SYMBOL_CLASS (sym) != LOC_CONST
12338 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12339 && type_name != NULL && strcmp (type_name, "exception") == 0);
12340 }
12341
12342 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12343 Ada exception object. This matches all exceptions except the ones
12344 defined by the Ada language. */
12345
12346 static int
12347 ada_is_non_standard_exception_sym (struct symbol *sym)
12348 {
12349 int i;
12350
12351 if (!ada_is_exception_sym (sym))
12352 return 0;
12353
12354 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12355 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12356 return 0; /* A standard exception. */
12357
12358 /* Numeric_Error is also a standard exception, so exclude it.
12359 See the STANDARD_EXC description for more details as to why
12360 this exception is not listed in that array. */
12361 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12362 return 0;
12363
12364 return 1;
12365 }
12366
12367 /* A helper function for std::sort, comparing two struct ada_exc_info
12368 objects.
12369
12370 The comparison is determined first by exception name, and then
12371 by exception address. */
12372
12373 bool
12374 ada_exc_info::operator< (const ada_exc_info &other) const
12375 {
12376 int result;
12377
12378 result = strcmp (name, other.name);
12379 if (result < 0)
12380 return true;
12381 if (result == 0 && addr < other.addr)
12382 return true;
12383 return false;
12384 }
12385
12386 bool
12387 ada_exc_info::operator== (const ada_exc_info &other) const
12388 {
12389 return addr == other.addr && strcmp (name, other.name) == 0;
12390 }
12391
12392 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12393 routine, but keeping the first SKIP elements untouched.
12394
12395 All duplicates are also removed. */
12396
12397 static void
12398 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12399 int skip)
12400 {
12401 std::sort (exceptions->begin () + skip, exceptions->end ());
12402 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12403 exceptions->end ());
12404 }
12405
12406 /* Add all exceptions defined by the Ada standard whose name match
12407 a regular expression.
12408
12409 If PREG is not NULL, then this regexp_t object is used to
12410 perform the symbol name matching. Otherwise, no name-based
12411 filtering is performed.
12412
12413 EXCEPTIONS is a vector of exceptions to which matching exceptions
12414 gets pushed. */
12415
12416 static void
12417 ada_add_standard_exceptions (compiled_regex *preg,
12418 std::vector<ada_exc_info> *exceptions)
12419 {
12420 int i;
12421
12422 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12423 {
12424 if (preg == NULL
12425 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12426 {
12427 struct bound_minimal_symbol msymbol
12428 = ada_lookup_simple_minsym (standard_exc[i]);
12429
12430 if (msymbol.minsym != NULL)
12431 {
12432 struct ada_exc_info info
12433 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12434
12435 exceptions->push_back (info);
12436 }
12437 }
12438 }
12439 }
12440
12441 /* Add all Ada exceptions defined locally and accessible from the given
12442 FRAME.
12443
12444 If PREG is not NULL, then this regexp_t object is used to
12445 perform the symbol name matching. Otherwise, no name-based
12446 filtering is performed.
12447
12448 EXCEPTIONS is a vector of exceptions to which matching exceptions
12449 gets pushed. */
12450
12451 static void
12452 ada_add_exceptions_from_frame (compiled_regex *preg,
12453 struct frame_info *frame,
12454 std::vector<ada_exc_info> *exceptions)
12455 {
12456 const struct block *block = get_frame_block (frame, 0);
12457
12458 while (block != 0)
12459 {
12460 struct block_iterator iter;
12461 struct symbol *sym;
12462
12463 ALL_BLOCK_SYMBOLS (block, iter, sym)
12464 {
12465 switch (SYMBOL_CLASS (sym))
12466 {
12467 case LOC_TYPEDEF:
12468 case LOC_BLOCK:
12469 case LOC_CONST:
12470 break;
12471 default:
12472 if (ada_is_exception_sym (sym))
12473 {
12474 struct ada_exc_info info = {sym->print_name (),
12475 SYMBOL_VALUE_ADDRESS (sym)};
12476
12477 exceptions->push_back (info);
12478 }
12479 }
12480 }
12481 if (BLOCK_FUNCTION (block) != NULL)
12482 break;
12483 block = BLOCK_SUPERBLOCK (block);
12484 }
12485 }
12486
12487 /* Return true if NAME matches PREG or if PREG is NULL. */
12488
12489 static bool
12490 name_matches_regex (const char *name, compiled_regex *preg)
12491 {
12492 return (preg == NULL
12493 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12494 }
12495
12496 /* Add all exceptions defined globally whose name name match
12497 a regular expression, excluding standard exceptions.
12498
12499 The reason we exclude standard exceptions is that they need
12500 to be handled separately: Standard exceptions are defined inside
12501 a runtime unit which is normally not compiled with debugging info,
12502 and thus usually do not show up in our symbol search. However,
12503 if the unit was in fact built with debugging info, we need to
12504 exclude them because they would duplicate the entry we found
12505 during the special loop that specifically searches for those
12506 standard exceptions.
12507
12508 If PREG is not NULL, then this regexp_t object is used to
12509 perform the symbol name matching. Otherwise, no name-based
12510 filtering is performed.
12511
12512 EXCEPTIONS is a vector of exceptions to which matching exceptions
12513 gets pushed. */
12514
12515 static void
12516 ada_add_global_exceptions (compiled_regex *preg,
12517 std::vector<ada_exc_info> *exceptions)
12518 {
12519 /* In Ada, the symbol "search name" is a linkage name, whereas the
12520 regular expression used to do the matching refers to the natural
12521 name. So match against the decoded name. */
12522 expand_symtabs_matching (NULL,
12523 lookup_name_info::match_any (),
12524 [&] (const char *search_name)
12525 {
12526 std::string decoded = ada_decode (search_name);
12527 return name_matches_regex (decoded.c_str (), preg);
12528 },
12529 NULL,
12530 VARIABLES_DOMAIN);
12531
12532 for (objfile *objfile : current_program_space->objfiles ())
12533 {
12534 for (compunit_symtab *s : objfile->compunits ())
12535 {
12536 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12537 int i;
12538
12539 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12540 {
12541 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12542 struct block_iterator iter;
12543 struct symbol *sym;
12544
12545 ALL_BLOCK_SYMBOLS (b, iter, sym)
12546 if (ada_is_non_standard_exception_sym (sym)
12547 && name_matches_regex (sym->natural_name (), preg))
12548 {
12549 struct ada_exc_info info
12550 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
12551
12552 exceptions->push_back (info);
12553 }
12554 }
12555 }
12556 }
12557 }
12558
12559 /* Implements ada_exceptions_list with the regular expression passed
12560 as a regex_t, rather than a string.
12561
12562 If not NULL, PREG is used to filter out exceptions whose names
12563 do not match. Otherwise, all exceptions are listed. */
12564
12565 static std::vector<ada_exc_info>
12566 ada_exceptions_list_1 (compiled_regex *preg)
12567 {
12568 std::vector<ada_exc_info> result;
12569 int prev_len;
12570
12571 /* First, list the known standard exceptions. These exceptions
12572 need to be handled separately, as they are usually defined in
12573 runtime units that have been compiled without debugging info. */
12574
12575 ada_add_standard_exceptions (preg, &result);
12576
12577 /* Next, find all exceptions whose scope is local and accessible
12578 from the currently selected frame. */
12579
12580 if (has_stack_frames ())
12581 {
12582 prev_len = result.size ();
12583 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12584 &result);
12585 if (result.size () > prev_len)
12586 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12587 }
12588
12589 /* Add all exceptions whose scope is global. */
12590
12591 prev_len = result.size ();
12592 ada_add_global_exceptions (preg, &result);
12593 if (result.size () > prev_len)
12594 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12595
12596 return result;
12597 }
12598
12599 /* Return a vector of ada_exc_info.
12600
12601 If REGEXP is NULL, all exceptions are included in the result.
12602 Otherwise, it should contain a valid regular expression,
12603 and only the exceptions whose names match that regular expression
12604 are included in the result.
12605
12606 The exceptions are sorted in the following order:
12607 - Standard exceptions (defined by the Ada language), in
12608 alphabetical order;
12609 - Exceptions only visible from the current frame, in
12610 alphabetical order;
12611 - Exceptions whose scope is global, in alphabetical order. */
12612
12613 std::vector<ada_exc_info>
12614 ada_exceptions_list (const char *regexp)
12615 {
12616 if (regexp == NULL)
12617 return ada_exceptions_list_1 (NULL);
12618
12619 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12620 return ada_exceptions_list_1 (&reg);
12621 }
12622
12623 /* Implement the "info exceptions" command. */
12624
12625 static void
12626 info_exceptions_command (const char *regexp, int from_tty)
12627 {
12628 struct gdbarch *gdbarch = get_current_arch ();
12629
12630 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
12631
12632 if (regexp != NULL)
12633 printf_filtered
12634 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12635 else
12636 printf_filtered (_("All defined Ada exceptions:\n"));
12637
12638 for (const ada_exc_info &info : exceptions)
12639 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
12640 }
12641
12642 \f
12643 /* Language vector */
12644
12645 /* symbol_name_matcher_ftype adapter for wild_match. */
12646
12647 static bool
12648 do_wild_match (const char *symbol_search_name,
12649 const lookup_name_info &lookup_name,
12650 completion_match_result *comp_match_res)
12651 {
12652 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12653 }
12654
12655 /* symbol_name_matcher_ftype adapter for full_match. */
12656
12657 static bool
12658 do_full_match (const char *symbol_search_name,
12659 const lookup_name_info &lookup_name,
12660 completion_match_result *comp_match_res)
12661 {
12662 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12663
12664 /* If both symbols start with "_ada_", just let the loop below
12665 handle the comparison. However, if only the symbol name starts
12666 with "_ada_", skip the prefix and let the match proceed as
12667 usual. */
12668 if (startswith (symbol_search_name, "_ada_")
12669 && !startswith (lname, "_ada"))
12670 symbol_search_name += 5;
12671
12672 int uscore_count = 0;
12673 while (*lname != '\0')
12674 {
12675 if (*symbol_search_name != *lname)
12676 {
12677 if (*symbol_search_name == 'B' && uscore_count == 2
12678 && symbol_search_name[1] == '_')
12679 {
12680 symbol_search_name += 2;
12681 while (isdigit (*symbol_search_name))
12682 ++symbol_search_name;
12683 if (symbol_search_name[0] == '_'
12684 && symbol_search_name[1] == '_')
12685 {
12686 symbol_search_name += 2;
12687 continue;
12688 }
12689 }
12690 return false;
12691 }
12692
12693 if (*symbol_search_name == '_')
12694 ++uscore_count;
12695 else
12696 uscore_count = 0;
12697
12698 ++symbol_search_name;
12699 ++lname;
12700 }
12701
12702 return is_name_suffix (symbol_search_name);
12703 }
12704
12705 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
12706
12707 static bool
12708 do_exact_match (const char *symbol_search_name,
12709 const lookup_name_info &lookup_name,
12710 completion_match_result *comp_match_res)
12711 {
12712 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12713 }
12714
12715 /* Build the Ada lookup name for LOOKUP_NAME. */
12716
12717 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12718 {
12719 gdb::string_view user_name = lookup_name.name ();
12720
12721 if (!user_name.empty () && user_name[0] == '<')
12722 {
12723 if (user_name.back () == '>')
12724 m_encoded_name
12725 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
12726 else
12727 m_encoded_name
12728 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
12729 m_encoded_p = true;
12730 m_verbatim_p = true;
12731 m_wild_match_p = false;
12732 m_standard_p = false;
12733 }
12734 else
12735 {
12736 m_verbatim_p = false;
12737
12738 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
12739
12740 if (!m_encoded_p)
12741 {
12742 const char *folded = ada_fold_name (user_name);
12743 m_encoded_name = ada_encode_1 (folded, false);
12744 if (m_encoded_name.empty ())
12745 m_encoded_name = gdb::to_string (user_name);
12746 }
12747 else
12748 m_encoded_name = gdb::to_string (user_name);
12749
12750 /* Handle the 'package Standard' special case. See description
12751 of m_standard_p. */
12752 if (startswith (m_encoded_name.c_str (), "standard__"))
12753 {
12754 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12755 m_standard_p = true;
12756 }
12757 else
12758 m_standard_p = false;
12759
12760 /* If the name contains a ".", then the user is entering a fully
12761 qualified entity name, and the match must not be done in wild
12762 mode. Similarly, if the user wants to complete what looks
12763 like an encoded name, the match must not be done in wild
12764 mode. Also, in the standard__ special case always do
12765 non-wild matching. */
12766 m_wild_match_p
12767 = (lookup_name.match_type () != symbol_name_match_type::FULL
12768 && !m_encoded_p
12769 && !m_standard_p
12770 && user_name.find ('.') == std::string::npos);
12771 }
12772 }
12773
12774 /* symbol_name_matcher_ftype method for Ada. This only handles
12775 completion mode. */
12776
12777 static bool
12778 ada_symbol_name_matches (const char *symbol_search_name,
12779 const lookup_name_info &lookup_name,
12780 completion_match_result *comp_match_res)
12781 {
12782 return lookup_name.ada ().matches (symbol_search_name,
12783 lookup_name.match_type (),
12784 comp_match_res);
12785 }
12786
12787 /* A name matcher that matches the symbol name exactly, with
12788 strcmp. */
12789
12790 static bool
12791 literal_symbol_name_matcher (const char *symbol_search_name,
12792 const lookup_name_info &lookup_name,
12793 completion_match_result *comp_match_res)
12794 {
12795 gdb::string_view name_view = lookup_name.name ();
12796
12797 if (lookup_name.completion_mode ()
12798 ? (strncmp (symbol_search_name, name_view.data (),
12799 name_view.size ()) == 0)
12800 : symbol_search_name == name_view)
12801 {
12802 if (comp_match_res != NULL)
12803 comp_match_res->set_match (symbol_search_name);
12804 return true;
12805 }
12806 else
12807 return false;
12808 }
12809
12810 /* Implement the "get_symbol_name_matcher" language_defn method for
12811 Ada. */
12812
12813 static symbol_name_matcher_ftype *
12814 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12815 {
12816 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12817 return literal_symbol_name_matcher;
12818
12819 if (lookup_name.completion_mode ())
12820 return ada_symbol_name_matches;
12821 else
12822 {
12823 if (lookup_name.ada ().wild_match_p ())
12824 return do_wild_match;
12825 else if (lookup_name.ada ().verbatim_p ())
12826 return do_exact_match;
12827 else
12828 return do_full_match;
12829 }
12830 }
12831
12832 /* Class representing the Ada language. */
12833
12834 class ada_language : public language_defn
12835 {
12836 public:
12837 ada_language ()
12838 : language_defn (language_ada)
12839 { /* Nothing. */ }
12840
12841 /* See language.h. */
12842
12843 const char *name () const override
12844 { return "ada"; }
12845
12846 /* See language.h. */
12847
12848 const char *natural_name () const override
12849 { return "Ada"; }
12850
12851 /* See language.h. */
12852
12853 const std::vector<const char *> &filename_extensions () const override
12854 {
12855 static const std::vector<const char *> extensions
12856 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12857 return extensions;
12858 }
12859
12860 /* Print an array element index using the Ada syntax. */
12861
12862 void print_array_index (struct type *index_type,
12863 LONGEST index,
12864 struct ui_file *stream,
12865 const value_print_options *options) const override
12866 {
12867 struct value *index_value = val_atr (index_type, index);
12868
12869 value_print (index_value, stream, options);
12870 fprintf_filtered (stream, " => ");
12871 }
12872
12873 /* Implement the "read_var_value" language_defn method for Ada. */
12874
12875 struct value *read_var_value (struct symbol *var,
12876 const struct block *var_block,
12877 struct frame_info *frame) const override
12878 {
12879 /* The only case where default_read_var_value is not sufficient
12880 is when VAR is a renaming... */
12881 if (frame != nullptr)
12882 {
12883 const struct block *frame_block = get_frame_block (frame, NULL);
12884 if (frame_block != nullptr && ada_is_renaming_symbol (var))
12885 return ada_read_renaming_var_value (var, frame_block);
12886 }
12887
12888 /* This is a typical case where we expect the default_read_var_value
12889 function to work. */
12890 return language_defn::read_var_value (var, var_block, frame);
12891 }
12892
12893 /* See language.h. */
12894 void language_arch_info (struct gdbarch *gdbarch,
12895 struct language_arch_info *lai) const override
12896 {
12897 const struct builtin_type *builtin = builtin_type (gdbarch);
12898
12899 /* Helper function to allow shorter lines below. */
12900 auto add = [&] (struct type *t)
12901 {
12902 lai->add_primitive_type (t);
12903 };
12904
12905 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12906 0, "integer"));
12907 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12908 0, "long_integer"));
12909 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12910 0, "short_integer"));
12911 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
12912 0, "character");
12913 lai->set_string_char_type (char_type);
12914 add (char_type);
12915 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12916 "float", gdbarch_float_format (gdbarch)));
12917 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12918 "long_float", gdbarch_double_format (gdbarch)));
12919 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12920 0, "long_long_integer"));
12921 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
12922 "long_long_float",
12923 gdbarch_long_double_format (gdbarch)));
12924 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12925 0, "natural"));
12926 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12927 0, "positive"));
12928 add (builtin->builtin_void);
12929
12930 struct type *system_addr_ptr
12931 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
12932 "void"));
12933 system_addr_ptr->set_name ("system__address");
12934 add (system_addr_ptr);
12935
12936 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
12937 type. This is a signed integral type whose size is the same as
12938 the size of addresses. */
12939 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
12940 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
12941 "storage_offset"));
12942
12943 lai->set_bool_type (builtin->builtin_bool);
12944 }
12945
12946 /* See language.h. */
12947
12948 bool iterate_over_symbols
12949 (const struct block *block, const lookup_name_info &name,
12950 domain_enum domain,
12951 gdb::function_view<symbol_found_callback_ftype> callback) const override
12952 {
12953 std::vector<struct block_symbol> results
12954 = ada_lookup_symbol_list_worker (name, block, domain, 0);
12955 for (block_symbol &sym : results)
12956 {
12957 if (!callback (&sym))
12958 return false;
12959 }
12960
12961 return true;
12962 }
12963
12964 /* See language.h. */
12965 bool sniff_from_mangled_name (const char *mangled,
12966 char **out) const override
12967 {
12968 std::string demangled = ada_decode (mangled);
12969
12970 *out = NULL;
12971
12972 if (demangled != mangled && demangled[0] != '<')
12973 {
12974 /* Set the gsymbol language to Ada, but still return 0.
12975 Two reasons for that:
12976
12977 1. For Ada, we prefer computing the symbol's decoded name
12978 on the fly rather than pre-compute it, in order to save
12979 memory (Ada projects are typically very large).
12980
12981 2. There are some areas in the definition of the GNAT
12982 encoding where, with a bit of bad luck, we might be able
12983 to decode a non-Ada symbol, generating an incorrect
12984 demangled name (Eg: names ending with "TB" for instance
12985 are identified as task bodies and so stripped from
12986 the decoded name returned).
12987
12988 Returning true, here, but not setting *DEMANGLED, helps us get
12989 a little bit of the best of both worlds. Because we're last,
12990 we should not affect any of the other languages that were
12991 able to demangle the symbol before us; we get to correctly
12992 tag Ada symbols as such; and even if we incorrectly tagged a
12993 non-Ada symbol, which should be rare, any routing through the
12994 Ada language should be transparent (Ada tries to behave much
12995 like C/C++ with non-Ada symbols). */
12996 return true;
12997 }
12998
12999 return false;
13000 }
13001
13002 /* See language.h. */
13003
13004 char *demangle_symbol (const char *mangled, int options) const override
13005 {
13006 return ada_la_decode (mangled, options);
13007 }
13008
13009 /* See language.h. */
13010
13011 void print_type (struct type *type, const char *varstring,
13012 struct ui_file *stream, int show, int level,
13013 const struct type_print_options *flags) const override
13014 {
13015 ada_print_type (type, varstring, stream, show, level, flags);
13016 }
13017
13018 /* See language.h. */
13019
13020 const char *word_break_characters (void) const override
13021 {
13022 return ada_completer_word_break_characters;
13023 }
13024
13025 /* See language.h. */
13026
13027 void collect_symbol_completion_matches (completion_tracker &tracker,
13028 complete_symbol_mode mode,
13029 symbol_name_match_type name_match_type,
13030 const char *text, const char *word,
13031 enum type_code code) const override
13032 {
13033 struct symbol *sym;
13034 const struct block *b, *surrounding_static_block = 0;
13035 struct block_iterator iter;
13036
13037 gdb_assert (code == TYPE_CODE_UNDEF);
13038
13039 lookup_name_info lookup_name (text, name_match_type, true);
13040
13041 /* First, look at the partial symtab symbols. */
13042 expand_symtabs_matching (NULL,
13043 lookup_name,
13044 NULL,
13045 NULL,
13046 ALL_DOMAIN);
13047
13048 /* At this point scan through the misc symbol vectors and add each
13049 symbol you find to the list. Eventually we want to ignore
13050 anything that isn't a text symbol (everything else will be
13051 handled by the psymtab code above). */
13052
13053 for (objfile *objfile : current_program_space->objfiles ())
13054 {
13055 for (minimal_symbol *msymbol : objfile->msymbols ())
13056 {
13057 QUIT;
13058
13059 if (completion_skip_symbol (mode, msymbol))
13060 continue;
13061
13062 language symbol_language = msymbol->language ();
13063
13064 /* Ada minimal symbols won't have their language set to Ada. If
13065 we let completion_list_add_name compare using the
13066 default/C-like matcher, then when completing e.g., symbols in a
13067 package named "pck", we'd match internal Ada symbols like
13068 "pckS", which are invalid in an Ada expression, unless you wrap
13069 them in '<' '>' to request a verbatim match.
13070
13071 Unfortunately, some Ada encoded names successfully demangle as
13072 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13073 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13074 with the wrong language set. Paper over that issue here. */
13075 if (symbol_language == language_auto
13076 || symbol_language == language_cplus)
13077 symbol_language = language_ada;
13078
13079 completion_list_add_name (tracker,
13080 symbol_language,
13081 msymbol->linkage_name (),
13082 lookup_name, text, word);
13083 }
13084 }
13085
13086 /* Search upwards from currently selected frame (so that we can
13087 complete on local vars. */
13088
13089 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13090 {
13091 if (!BLOCK_SUPERBLOCK (b))
13092 surrounding_static_block = b; /* For elmin of dups */
13093
13094 ALL_BLOCK_SYMBOLS (b, iter, sym)
13095 {
13096 if (completion_skip_symbol (mode, sym))
13097 continue;
13098
13099 completion_list_add_name (tracker,
13100 sym->language (),
13101 sym->linkage_name (),
13102 lookup_name, text, word);
13103 }
13104 }
13105
13106 /* Go through the symtabs and check the externs and statics for
13107 symbols which match. */
13108
13109 for (objfile *objfile : current_program_space->objfiles ())
13110 {
13111 for (compunit_symtab *s : objfile->compunits ())
13112 {
13113 QUIT;
13114 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13115 ALL_BLOCK_SYMBOLS (b, iter, sym)
13116 {
13117 if (completion_skip_symbol (mode, sym))
13118 continue;
13119
13120 completion_list_add_name (tracker,
13121 sym->language (),
13122 sym->linkage_name (),
13123 lookup_name, text, word);
13124 }
13125 }
13126 }
13127
13128 for (objfile *objfile : current_program_space->objfiles ())
13129 {
13130 for (compunit_symtab *s : objfile->compunits ())
13131 {
13132 QUIT;
13133 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13134 /* Don't do this block twice. */
13135 if (b == surrounding_static_block)
13136 continue;
13137 ALL_BLOCK_SYMBOLS (b, iter, sym)
13138 {
13139 if (completion_skip_symbol (mode, sym))
13140 continue;
13141
13142 completion_list_add_name (tracker,
13143 sym->language (),
13144 sym->linkage_name (),
13145 lookup_name, text, word);
13146 }
13147 }
13148 }
13149 }
13150
13151 /* See language.h. */
13152
13153 gdb::unique_xmalloc_ptr<char> watch_location_expression
13154 (struct type *type, CORE_ADDR addr) const override
13155 {
13156 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13157 std::string name = type_to_string (type);
13158 return gdb::unique_xmalloc_ptr<char>
13159 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
13160 }
13161
13162 /* See language.h. */
13163
13164 void value_print (struct value *val, struct ui_file *stream,
13165 const struct value_print_options *options) const override
13166 {
13167 return ada_value_print (val, stream, options);
13168 }
13169
13170 /* See language.h. */
13171
13172 void value_print_inner
13173 (struct value *val, struct ui_file *stream, int recurse,
13174 const struct value_print_options *options) const override
13175 {
13176 return ada_value_print_inner (val, stream, recurse, options);
13177 }
13178
13179 /* See language.h. */
13180
13181 struct block_symbol lookup_symbol_nonlocal
13182 (const char *name, const struct block *block,
13183 const domain_enum domain) const override
13184 {
13185 struct block_symbol sym;
13186
13187 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13188 if (sym.symbol != NULL)
13189 return sym;
13190
13191 /* If we haven't found a match at this point, try the primitive
13192 types. In other languages, this search is performed before
13193 searching for global symbols in order to short-circuit that
13194 global-symbol search if it happens that the name corresponds
13195 to a primitive type. But we cannot do the same in Ada, because
13196 it is perfectly legitimate for a program to declare a type which
13197 has the same name as a standard type. If looking up a type in
13198 that situation, we have traditionally ignored the primitive type
13199 in favor of user-defined types. This is why, unlike most other
13200 languages, we search the primitive types this late and only after
13201 having searched the global symbols without success. */
13202
13203 if (domain == VAR_DOMAIN)
13204 {
13205 struct gdbarch *gdbarch;
13206
13207 if (block == NULL)
13208 gdbarch = target_gdbarch ();
13209 else
13210 gdbarch = block_gdbarch (block);
13211 sym.symbol
13212 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13213 if (sym.symbol != NULL)
13214 return sym;
13215 }
13216
13217 return {};
13218 }
13219
13220 /* See language.h. */
13221
13222 int parser (struct parser_state *ps) const override
13223 {
13224 warnings_issued = 0;
13225 return ada_parse (ps);
13226 }
13227
13228 /* See language.h. */
13229
13230 void emitchar (int ch, struct type *chtype,
13231 struct ui_file *stream, int quoter) const override
13232 {
13233 ada_emit_char (ch, chtype, stream, quoter, 1);
13234 }
13235
13236 /* See language.h. */
13237
13238 void printchar (int ch, struct type *chtype,
13239 struct ui_file *stream) const override
13240 {
13241 ada_printchar (ch, chtype, stream);
13242 }
13243
13244 /* See language.h. */
13245
13246 void printstr (struct ui_file *stream, struct type *elttype,
13247 const gdb_byte *string, unsigned int length,
13248 const char *encoding, int force_ellipses,
13249 const struct value_print_options *options) const override
13250 {
13251 ada_printstr (stream, elttype, string, length, encoding,
13252 force_ellipses, options);
13253 }
13254
13255 /* See language.h. */
13256
13257 void print_typedef (struct type *type, struct symbol *new_symbol,
13258 struct ui_file *stream) const override
13259 {
13260 ada_print_typedef (type, new_symbol, stream);
13261 }
13262
13263 /* See language.h. */
13264
13265 bool is_string_type_p (struct type *type) const override
13266 {
13267 return ada_is_string_type (type);
13268 }
13269
13270 /* See language.h. */
13271
13272 const char *struct_too_deep_ellipsis () const override
13273 { return "(...)"; }
13274
13275 /* See language.h. */
13276
13277 bool c_style_arrays_p () const override
13278 { return false; }
13279
13280 /* See language.h. */
13281
13282 bool store_sym_names_in_linkage_form_p () const override
13283 { return true; }
13284
13285 /* See language.h. */
13286
13287 const struct lang_varobj_ops *varobj_ops () const override
13288 { return &ada_varobj_ops; }
13289
13290 protected:
13291 /* See language.h. */
13292
13293 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13294 (const lookup_name_info &lookup_name) const override
13295 {
13296 return ada_get_symbol_name_matcher (lookup_name);
13297 }
13298 };
13299
13300 /* Single instance of the Ada language class. */
13301
13302 static ada_language ada_language_defn;
13303
13304 /* Command-list for the "set/show ada" prefix command. */
13305 static struct cmd_list_element *set_ada_list;
13306 static struct cmd_list_element *show_ada_list;
13307
13308 static void
13309 initialize_ada_catchpoint_ops (void)
13310 {
13311 struct breakpoint_ops *ops;
13312
13313 initialize_breakpoint_ops ();
13314
13315 ops = &catch_exception_breakpoint_ops;
13316 *ops = bkpt_breakpoint_ops;
13317 ops->allocate_location = allocate_location_exception;
13318 ops->re_set = re_set_exception;
13319 ops->check_status = check_status_exception;
13320 ops->print_it = print_it_exception;
13321 ops->print_one = print_one_exception;
13322 ops->print_mention = print_mention_exception;
13323 ops->print_recreate = print_recreate_exception;
13324
13325 ops = &catch_exception_unhandled_breakpoint_ops;
13326 *ops = bkpt_breakpoint_ops;
13327 ops->allocate_location = allocate_location_exception;
13328 ops->re_set = re_set_exception;
13329 ops->check_status = check_status_exception;
13330 ops->print_it = print_it_exception;
13331 ops->print_one = print_one_exception;
13332 ops->print_mention = print_mention_exception;
13333 ops->print_recreate = print_recreate_exception;
13334
13335 ops = &catch_assert_breakpoint_ops;
13336 *ops = bkpt_breakpoint_ops;
13337 ops->allocate_location = allocate_location_exception;
13338 ops->re_set = re_set_exception;
13339 ops->check_status = check_status_exception;
13340 ops->print_it = print_it_exception;
13341 ops->print_one = print_one_exception;
13342 ops->print_mention = print_mention_exception;
13343 ops->print_recreate = print_recreate_exception;
13344
13345 ops = &catch_handlers_breakpoint_ops;
13346 *ops = bkpt_breakpoint_ops;
13347 ops->allocate_location = allocate_location_exception;
13348 ops->re_set = re_set_exception;
13349 ops->check_status = check_status_exception;
13350 ops->print_it = print_it_exception;
13351 ops->print_one = print_one_exception;
13352 ops->print_mention = print_mention_exception;
13353 ops->print_recreate = print_recreate_exception;
13354 }
13355
13356 /* This module's 'new_objfile' observer. */
13357
13358 static void
13359 ada_new_objfile_observer (struct objfile *objfile)
13360 {
13361 ada_clear_symbol_cache ();
13362 }
13363
13364 /* This module's 'free_objfile' observer. */
13365
13366 static void
13367 ada_free_objfile_observer (struct objfile *objfile)
13368 {
13369 ada_clear_symbol_cache ();
13370 }
13371
13372 void _initialize_ada_language ();
13373 void
13374 _initialize_ada_language ()
13375 {
13376 initialize_ada_catchpoint_ops ();
13377
13378 add_basic_prefix_cmd ("ada", no_class,
13379 _("Prefix command for changing Ada-specific settings."),
13380 &set_ada_list, "set ada ", 0, &setlist);
13381
13382 add_show_prefix_cmd ("ada", no_class,
13383 _("Generic command for showing Ada-specific settings."),
13384 &show_ada_list, "show ada ", 0, &showlist);
13385
13386 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13387 &trust_pad_over_xvs, _("\
13388 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13389 Show whether an optimization trusting PAD types over XVS types is activated."),
13390 _("\
13391 This is related to the encoding used by the GNAT compiler. The debugger\n\
13392 should normally trust the contents of PAD types, but certain older versions\n\
13393 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13394 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13395 work around this bug. It is always safe to turn this option \"off\", but\n\
13396 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13397 this option to \"off\" unless necessary."),
13398 NULL, NULL, &set_ada_list, &show_ada_list);
13399
13400 add_setshow_boolean_cmd ("print-signatures", class_vars,
13401 &print_signatures, _("\
13402 Enable or disable the output of formal and return types for functions in the \
13403 overloads selection menu."), _("\
13404 Show whether the output of formal and return types for functions in the \
13405 overloads selection menu is activated."),
13406 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13407
13408 add_catch_command ("exception", _("\
13409 Catch Ada exceptions, when raised.\n\
13410 Usage: catch exception [ARG] [if CONDITION]\n\
13411 Without any argument, stop when any Ada exception is raised.\n\
13412 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13413 being raised does not have a handler (and will therefore lead to the task's\n\
13414 termination).\n\
13415 Otherwise, the catchpoint only stops when the name of the exception being\n\
13416 raised is the same as ARG.\n\
13417 CONDITION is a boolean expression that is evaluated to see whether the\n\
13418 exception should cause a stop."),
13419 catch_ada_exception_command,
13420 catch_ada_completer,
13421 CATCH_PERMANENT,
13422 CATCH_TEMPORARY);
13423
13424 add_catch_command ("handlers", _("\
13425 Catch Ada exceptions, when handled.\n\
13426 Usage: catch handlers [ARG] [if CONDITION]\n\
13427 Without any argument, stop when any Ada exception is handled.\n\
13428 With an argument, catch only exceptions with the given name.\n\
13429 CONDITION is a boolean expression that is evaluated to see whether the\n\
13430 exception should cause a stop."),
13431 catch_ada_handlers_command,
13432 catch_ada_completer,
13433 CATCH_PERMANENT,
13434 CATCH_TEMPORARY);
13435 add_catch_command ("assert", _("\
13436 Catch failed Ada assertions, when raised.\n\
13437 Usage: catch assert [if CONDITION]\n\
13438 CONDITION is a boolean expression that is evaluated to see whether the\n\
13439 exception should cause a stop."),
13440 catch_assert_command,
13441 NULL,
13442 CATCH_PERMANENT,
13443 CATCH_TEMPORARY);
13444
13445 varsize_limit = 65536;
13446 add_setshow_uinteger_cmd ("varsize-limit", class_support,
13447 &varsize_limit, _("\
13448 Set the maximum number of bytes allowed in a variable-size object."), _("\
13449 Show the maximum number of bytes allowed in a variable-size object."), _("\
13450 Attempts to access an object whose size is not a compile-time constant\n\
13451 and exceeds this limit will cause an error."),
13452 NULL, NULL, &setlist, &showlist);
13453
13454 add_info ("exceptions", info_exceptions_command,
13455 _("\
13456 List all Ada exception names.\n\
13457 Usage: info exceptions [REGEXP]\n\
13458 If a regular expression is passed as an argument, only those matching\n\
13459 the regular expression are listed."));
13460
13461 add_basic_prefix_cmd ("ada", class_maintenance,
13462 _("Set Ada maintenance-related variables."),
13463 &maint_set_ada_cmdlist, "maintenance set ada ",
13464 0/*allow-unknown*/, &maintenance_set_cmdlist);
13465
13466 add_show_prefix_cmd ("ada", class_maintenance,
13467 _("Show Ada maintenance-related variables."),
13468 &maint_show_ada_cmdlist, "maintenance show ada ",
13469 0/*allow-unknown*/, &maintenance_show_cmdlist);
13470
13471 add_setshow_boolean_cmd
13472 ("ignore-descriptive-types", class_maintenance,
13473 &ada_ignore_descriptive_types_p,
13474 _("Set whether descriptive types generated by GNAT should be ignored."),
13475 _("Show whether descriptive types generated by GNAT should be ignored."),
13476 _("\
13477 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13478 DWARF attribute."),
13479 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13480
13481 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
13482 NULL, xcalloc, xfree);
13483
13484 /* The ada-lang observers. */
13485 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
13486 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
13487 gdb::observers::inferior_exit.attach (ada_inferior_exit);
13488 }
This page took 0.313183 seconds and 4 git commands to generate.