d0aea26837caeda3b01680b58178e33aa2d82d8f
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56
57 #include "psymtab.h"
58 #include "value.h"
59 #include "mi/mi-common.h"
60 #include "arch-utils.h"
61 #include "cli/cli-utils.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static struct type *desc_base_type (struct type *);
72
73 static struct type *desc_bounds_type (struct type *);
74
75 static struct value *desc_bounds (struct value *);
76
77 static int fat_pntr_bounds_bitpos (struct type *);
78
79 static int fat_pntr_bounds_bitsize (struct type *);
80
81 static struct type *desc_data_target_type (struct type *);
82
83 static struct value *desc_data (struct value *);
84
85 static int fat_pntr_data_bitpos (struct type *);
86
87 static int fat_pntr_data_bitsize (struct type *);
88
89 static struct value *desc_one_bound (struct value *, int, int);
90
91 static int desc_bound_bitpos (struct type *, int, int);
92
93 static int desc_bound_bitsize (struct type *, int, int);
94
95 static struct type *desc_index_type (struct type *, int);
96
97 static int desc_arity (struct type *);
98
99 static int ada_type_match (struct type *, struct type *, int);
100
101 static int ada_args_match (struct symbol *, struct value **, int);
102
103 static int full_match (const char *, const char *);
104
105 static struct value *make_array_descriptor (struct type *, struct value *);
106
107 static void ada_add_block_symbols (struct obstack *,
108 const struct block *, const char *,
109 domain_enum, struct objfile *, int);
110
111 static int is_nonfunction (struct ada_symbol_info *, int);
112
113 static void add_defn_to_vec (struct obstack *, struct symbol *,
114 const struct block *);
115
116 static int num_defns_collected (struct obstack *);
117
118 static struct ada_symbol_info *defns_collected (struct obstack *, int);
119
120 static struct value *resolve_subexp (struct expression **, int *, int,
121 struct type *);
122
123 static void replace_operator_with_call (struct expression **, int, int, int,
124 struct symbol *, const struct block *);
125
126 static int possible_user_operator_p (enum exp_opcode, struct value **);
127
128 static char *ada_op_name (enum exp_opcode);
129
130 static const char *ada_decoded_op_name (enum exp_opcode);
131
132 static int numeric_type_p (struct type *);
133
134 static int integer_type_p (struct type *);
135
136 static int scalar_type_p (struct type *);
137
138 static int discrete_type_p (struct type *);
139
140 static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145 static struct symbol *find_old_style_renaming_symbol (const char *,
146 const struct block *);
147
148 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
149 int, int, int *);
150
151 static struct value *evaluate_subexp_type (struct expression *, int *);
152
153 static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
156 static int is_dynamic_field (struct type *, int);
157
158 static struct type *to_fixed_variant_branch_type (struct type *,
159 const gdb_byte *,
160 CORE_ADDR, struct value *);
161
162 static struct type *to_fixed_array_type (struct type *, struct value *, int);
163
164 static struct type *to_fixed_range_type (struct type *, struct value *);
165
166 static struct type *to_static_fixed_type (struct type *);
167 static struct type *static_unwrap_type (struct type *type);
168
169 static struct value *unwrap_value (struct value *);
170
171 static struct type *constrained_packed_array_type (struct type *, long *);
172
173 static struct type *decode_constrained_packed_array_type (struct type *);
174
175 static long decode_packed_array_bitsize (struct type *);
176
177 static struct value *decode_constrained_packed_array (struct value *);
178
179 static int ada_is_packed_array_type (struct type *);
180
181 static int ada_is_unconstrained_packed_array_type (struct type *);
182
183 static struct value *value_subscript_packed (struct value *, int,
184 struct value **);
185
186 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
187
188 static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
190
191 static struct value *get_var_value (char *, char *);
192
193 static int lesseq_defined_than (struct symbol *, struct symbol *);
194
195 static int equiv_types (struct type *, struct type *);
196
197 static int is_name_suffix (const char *);
198
199 static int advance_wild_match (const char **, const char *, int);
200
201 static int wild_match (const char *, const char *);
202
203 static struct value *ada_coerce_ref (struct value *);
204
205 static LONGEST pos_atr (struct value *);
206
207 static struct value *value_pos_atr (struct type *, struct value *);
208
209 static struct value *value_val_atr (struct type *, struct value *);
210
211 static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
213
214 static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217 static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
220 static int find_struct_field (const char *, struct type *, int,
221 struct type **, int *, int *, int *, int *);
222
223 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
226 static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
230 static int ada_is_direct_array_type (struct type *);
231
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
234
235 static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238 static struct value *assign_aggregate (struct value *, struct value *,
239 struct expression *,
240 int *, enum noside);
241
242 static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247 static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253 static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264 static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
266
267 static struct type *ada_find_any_type (const char *name);
268 \f
269
270 /* The result of a symbol lookup to be stored in our symbol cache. */
271
272 struct cache_entry
273 {
274 /* The name used to perform the lookup. */
275 const char *name;
276 /* The namespace used during the lookup. */
277 domain_enum domain;
278 /* The symbol returned by the lookup, or NULL if no matching symbol
279 was found. */
280 struct symbol *sym;
281 /* The block where the symbol was found, or NULL if no matching
282 symbol was found. */
283 const struct block *block;
284 /* A pointer to the next entry with the same hash. */
285 struct cache_entry *next;
286 };
287
288 /* The Ada symbol cache, used to store the result of Ada-mode symbol
289 lookups in the course of executing the user's commands.
290
291 The cache is implemented using a simple, fixed-sized hash.
292 The size is fixed on the grounds that there are not likely to be
293 all that many symbols looked up during any given session, regardless
294 of the size of the symbol table. If we decide to go to a resizable
295 table, let's just use the stuff from libiberty instead. */
296
297 #define HASH_SIZE 1009
298
299 struct ada_symbol_cache
300 {
301 /* An obstack used to store the entries in our cache. */
302 struct obstack cache_space;
303
304 /* The root of the hash table used to implement our symbol cache. */
305 struct cache_entry *root[HASH_SIZE];
306 };
307
308 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
309
310 /* Maximum-sized dynamic type. */
311 static unsigned int varsize_limit;
312
313 /* FIXME: brobecker/2003-09-17: No longer a const because it is
314 returned by a function that does not return a const char *. */
315 static char *ada_completer_word_break_characters =
316 #ifdef VMS
317 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
318 #else
319 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
320 #endif
321
322 /* The name of the symbol to use to get the name of the main subprogram. */
323 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
324 = "__gnat_ada_main_program_name";
325
326 /* Limit on the number of warnings to raise per expression evaluation. */
327 static int warning_limit = 2;
328
329 /* Number of warning messages issued; reset to 0 by cleanups after
330 expression evaluation. */
331 static int warnings_issued = 0;
332
333 static const char *known_runtime_file_name_patterns[] = {
334 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
335 };
336
337 static const char *known_auxiliary_function_name_patterns[] = {
338 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
339 };
340
341 /* Space for allocating results of ada_lookup_symbol_list. */
342 static struct obstack symbol_list_obstack;
343
344 /* Maintenance-related settings for this module. */
345
346 static struct cmd_list_element *maint_set_ada_cmdlist;
347 static struct cmd_list_element *maint_show_ada_cmdlist;
348
349 /* Implement the "maintenance set ada" (prefix) command. */
350
351 static void
352 maint_set_ada_cmd (char *args, int from_tty)
353 {
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
356 }
357
358 /* Implement the "maintenance show ada" (prefix) command. */
359
360 static void
361 maint_show_ada_cmd (char *args, int from_tty)
362 {
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364 }
365
366 /* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368 static int ada_ignore_descriptive_types_p = 0;
369
370 /* Inferior-specific data. */
371
372 /* Per-inferior data for this module. */
373
374 struct ada_inferior_data
375 {
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
386 };
387
388 /* Our key to this module's inferior data. */
389 static const struct inferior_data *ada_inferior_data;
390
391 /* A cleanup routine for our inferior data. */
392 static void
393 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394 {
395 struct ada_inferior_data *data;
396
397 data = inferior_data (inf, ada_inferior_data);
398 if (data != NULL)
399 xfree (data);
400 }
401
402 /* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410 static struct ada_inferior_data *
411 get_ada_inferior_data (struct inferior *inf)
412 {
413 struct ada_inferior_data *data;
414
415 data = inferior_data (inf, ada_inferior_data);
416 if (data == NULL)
417 {
418 data = XCNEW (struct ada_inferior_data);
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423 }
424
425 /* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428 static void
429 ada_inferior_exit (struct inferior *inf)
430 {
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433 }
434
435
436 /* program-space-specific data. */
437
438 /* This module's per-program-space data. */
439 struct ada_pspace_data
440 {
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443 };
444
445 /* Key to our per-program-space data. */
446 static const struct program_space_data *ada_pspace_data_handle;
447
448 /* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453 static struct ada_pspace_data *
454 get_ada_pspace_data (struct program_space *pspace)
455 {
456 struct ada_pspace_data *data;
457
458 data = program_space_data (pspace, ada_pspace_data_handle);
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466 }
467
468 /* The cleanup callback for this module's per-program-space data. */
469
470 static void
471 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472 {
473 struct ada_pspace_data *pspace_data = data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478 }
479
480 /* Utilities */
481
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483 all typedef layers have been peeled. Otherwise, return TYPE.
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509 static struct type *
510 ada_typedef_target_type (struct type *type)
511 {
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515 }
516
517 /* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521 static const char *
522 ada_unqualified_name (const char *decoded_name)
523 {
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540 }
541
542 /* Return a string starting with '<', followed by STR, and '>'.
543 The result is good until the next call. */
544
545 static char *
546 add_angle_brackets (const char *str)
547 {
548 static char *result = NULL;
549
550 xfree (result);
551 result = xstrprintf ("<%s>", str);
552 return result;
553 }
554
555 static char *
556 ada_get_gdb_completer_word_break_characters (void)
557 {
558 return ada_completer_word_break_characters;
559 }
560
561 /* Print an array element index using the Ada syntax. */
562
563 static void
564 ada_print_array_index (struct value *index_value, struct ui_file *stream,
565 const struct value_print_options *options)
566 {
567 LA_VALUE_PRINT (index_value, stream, options);
568 fprintf_filtered (stream, " => ");
569 }
570
571 /* Assuming VECT points to an array of *SIZE objects of size
572 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
573 updating *SIZE as necessary and returning the (new) array. */
574
575 void *
576 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
577 {
578 if (*size < min_size)
579 {
580 *size *= 2;
581 if (*size < min_size)
582 *size = min_size;
583 vect = xrealloc (vect, *size * element_size);
584 }
585 return vect;
586 }
587
588 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
589 suffix of FIELD_NAME beginning "___". */
590
591 static int
592 field_name_match (const char *field_name, const char *target)
593 {
594 int len = strlen (target);
595
596 return
597 (strncmp (field_name, target, len) == 0
598 && (field_name[len] == '\0'
599 || (startswith (field_name + len, "___")
600 && strcmp (field_name + strlen (field_name) - 6,
601 "___XVN") != 0)));
602 }
603
604
605 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
606 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
607 and return its index. This function also handles fields whose name
608 have ___ suffixes because the compiler sometimes alters their name
609 by adding such a suffix to represent fields with certain constraints.
610 If the field could not be found, return a negative number if
611 MAYBE_MISSING is set. Otherwise raise an error. */
612
613 int
614 ada_get_field_index (const struct type *type, const char *field_name,
615 int maybe_missing)
616 {
617 int fieldno;
618 struct type *struct_type = check_typedef ((struct type *) type);
619
620 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
621 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
622 return fieldno;
623
624 if (!maybe_missing)
625 error (_("Unable to find field %s in struct %s. Aborting"),
626 field_name, TYPE_NAME (struct_type));
627
628 return -1;
629 }
630
631 /* The length of the prefix of NAME prior to any "___" suffix. */
632
633 int
634 ada_name_prefix_len (const char *name)
635 {
636 if (name == NULL)
637 return 0;
638 else
639 {
640 const char *p = strstr (name, "___");
641
642 if (p == NULL)
643 return strlen (name);
644 else
645 return p - name;
646 }
647 }
648
649 /* Return non-zero if SUFFIX is a suffix of STR.
650 Return zero if STR is null. */
651
652 static int
653 is_suffix (const char *str, const char *suffix)
654 {
655 int len1, len2;
656
657 if (str == NULL)
658 return 0;
659 len1 = strlen (str);
660 len2 = strlen (suffix);
661 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
662 }
663
664 /* The contents of value VAL, treated as a value of type TYPE. The
665 result is an lval in memory if VAL is. */
666
667 static struct value *
668 coerce_unspec_val_to_type (struct value *val, struct type *type)
669 {
670 type = ada_check_typedef (type);
671 if (value_type (val) == type)
672 return val;
673 else
674 {
675 struct value *result;
676
677 /* Make sure that the object size is not unreasonable before
678 trying to allocate some memory for it. */
679 ada_ensure_varsize_limit (type);
680
681 if (value_lazy (val)
682 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
683 result = allocate_value_lazy (type);
684 else
685 {
686 result = allocate_value (type);
687 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
688 }
689 set_value_component_location (result, val);
690 set_value_bitsize (result, value_bitsize (val));
691 set_value_bitpos (result, value_bitpos (val));
692 set_value_address (result, value_address (val));
693 return result;
694 }
695 }
696
697 static const gdb_byte *
698 cond_offset_host (const gdb_byte *valaddr, long offset)
699 {
700 if (valaddr == NULL)
701 return NULL;
702 else
703 return valaddr + offset;
704 }
705
706 static CORE_ADDR
707 cond_offset_target (CORE_ADDR address, long offset)
708 {
709 if (address == 0)
710 return 0;
711 else
712 return address + offset;
713 }
714
715 /* Issue a warning (as for the definition of warning in utils.c, but
716 with exactly one argument rather than ...), unless the limit on the
717 number of warnings has passed during the evaluation of the current
718 expression. */
719
720 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
721 provided by "complaint". */
722 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
723
724 static void
725 lim_warning (const char *format, ...)
726 {
727 va_list args;
728
729 va_start (args, format);
730 warnings_issued += 1;
731 if (warnings_issued <= warning_limit)
732 vwarning (format, args);
733
734 va_end (args);
735 }
736
737 /* Issue an error if the size of an object of type T is unreasonable,
738 i.e. if it would be a bad idea to allocate a value of this type in
739 GDB. */
740
741 void
742 ada_ensure_varsize_limit (const struct type *type)
743 {
744 if (TYPE_LENGTH (type) > varsize_limit)
745 error (_("object size is larger than varsize-limit"));
746 }
747
748 /* Maximum value of a SIZE-byte signed integer type. */
749 static LONGEST
750 max_of_size (int size)
751 {
752 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
753
754 return top_bit | (top_bit - 1);
755 }
756
757 /* Minimum value of a SIZE-byte signed integer type. */
758 static LONGEST
759 min_of_size (int size)
760 {
761 return -max_of_size (size) - 1;
762 }
763
764 /* Maximum value of a SIZE-byte unsigned integer type. */
765 static ULONGEST
766 umax_of_size (int size)
767 {
768 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
769
770 return top_bit | (top_bit - 1);
771 }
772
773 /* Maximum value of integral type T, as a signed quantity. */
774 static LONGEST
775 max_of_type (struct type *t)
776 {
777 if (TYPE_UNSIGNED (t))
778 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
779 else
780 return max_of_size (TYPE_LENGTH (t));
781 }
782
783 /* Minimum value of integral type T, as a signed quantity. */
784 static LONGEST
785 min_of_type (struct type *t)
786 {
787 if (TYPE_UNSIGNED (t))
788 return 0;
789 else
790 return min_of_size (TYPE_LENGTH (t));
791 }
792
793 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
794 LONGEST
795 ada_discrete_type_high_bound (struct type *type)
796 {
797 type = resolve_dynamic_type (type, NULL, 0);
798 switch (TYPE_CODE (type))
799 {
800 case TYPE_CODE_RANGE:
801 return TYPE_HIGH_BOUND (type);
802 case TYPE_CODE_ENUM:
803 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
804 case TYPE_CODE_BOOL:
805 return 1;
806 case TYPE_CODE_CHAR:
807 case TYPE_CODE_INT:
808 return max_of_type (type);
809 default:
810 error (_("Unexpected type in ada_discrete_type_high_bound."));
811 }
812 }
813
814 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
815 LONGEST
816 ada_discrete_type_low_bound (struct type *type)
817 {
818 type = resolve_dynamic_type (type, NULL, 0);
819 switch (TYPE_CODE (type))
820 {
821 case TYPE_CODE_RANGE:
822 return TYPE_LOW_BOUND (type);
823 case TYPE_CODE_ENUM:
824 return TYPE_FIELD_ENUMVAL (type, 0);
825 case TYPE_CODE_BOOL:
826 return 0;
827 case TYPE_CODE_CHAR:
828 case TYPE_CODE_INT:
829 return min_of_type (type);
830 default:
831 error (_("Unexpected type in ada_discrete_type_low_bound."));
832 }
833 }
834
835 /* The identity on non-range types. For range types, the underlying
836 non-range scalar type. */
837
838 static struct type *
839 get_base_type (struct type *type)
840 {
841 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
842 {
843 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
844 return type;
845 type = TYPE_TARGET_TYPE (type);
846 }
847 return type;
848 }
849
850 /* Return a decoded version of the given VALUE. This means returning
851 a value whose type is obtained by applying all the GNAT-specific
852 encondings, making the resulting type a static but standard description
853 of the initial type. */
854
855 struct value *
856 ada_get_decoded_value (struct value *value)
857 {
858 struct type *type = ada_check_typedef (value_type (value));
859
860 if (ada_is_array_descriptor_type (type)
861 || (ada_is_constrained_packed_array_type (type)
862 && TYPE_CODE (type) != TYPE_CODE_PTR))
863 {
864 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
865 value = ada_coerce_to_simple_array_ptr (value);
866 else
867 value = ada_coerce_to_simple_array (value);
868 }
869 else
870 value = ada_to_fixed_value (value);
871
872 return value;
873 }
874
875 /* Same as ada_get_decoded_value, but with the given TYPE.
876 Because there is no associated actual value for this type,
877 the resulting type might be a best-effort approximation in
878 the case of dynamic types. */
879
880 struct type *
881 ada_get_decoded_type (struct type *type)
882 {
883 type = to_static_fixed_type (type);
884 if (ada_is_constrained_packed_array_type (type))
885 type = ada_coerce_to_simple_array_type (type);
886 return type;
887 }
888
889 \f
890
891 /* Language Selection */
892
893 /* If the main program is in Ada, return language_ada, otherwise return LANG
894 (the main program is in Ada iif the adainit symbol is found). */
895
896 enum language
897 ada_update_initial_language (enum language lang)
898 {
899 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
900 (struct objfile *) NULL).minsym != NULL)
901 return language_ada;
902
903 return lang;
904 }
905
906 /* If the main procedure is written in Ada, then return its name.
907 The result is good until the next call. Return NULL if the main
908 procedure doesn't appear to be in Ada. */
909
910 char *
911 ada_main_name (void)
912 {
913 struct bound_minimal_symbol msym;
914 static char *main_program_name = NULL;
915
916 /* For Ada, the name of the main procedure is stored in a specific
917 string constant, generated by the binder. Look for that symbol,
918 extract its address, and then read that string. If we didn't find
919 that string, then most probably the main procedure is not written
920 in Ada. */
921 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
922
923 if (msym.minsym != NULL)
924 {
925 CORE_ADDR main_program_name_addr;
926 int err_code;
927
928 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
929 if (main_program_name_addr == 0)
930 error (_("Invalid address for Ada main program name."));
931
932 xfree (main_program_name);
933 target_read_string (main_program_name_addr, &main_program_name,
934 1024, &err_code);
935
936 if (err_code != 0)
937 return NULL;
938 return main_program_name;
939 }
940
941 /* The main procedure doesn't seem to be in Ada. */
942 return NULL;
943 }
944 \f
945 /* Symbols */
946
947 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
948 of NULLs. */
949
950 const struct ada_opname_map ada_opname_table[] = {
951 {"Oadd", "\"+\"", BINOP_ADD},
952 {"Osubtract", "\"-\"", BINOP_SUB},
953 {"Omultiply", "\"*\"", BINOP_MUL},
954 {"Odivide", "\"/\"", BINOP_DIV},
955 {"Omod", "\"mod\"", BINOP_MOD},
956 {"Orem", "\"rem\"", BINOP_REM},
957 {"Oexpon", "\"**\"", BINOP_EXP},
958 {"Olt", "\"<\"", BINOP_LESS},
959 {"Ole", "\"<=\"", BINOP_LEQ},
960 {"Ogt", "\">\"", BINOP_GTR},
961 {"Oge", "\">=\"", BINOP_GEQ},
962 {"Oeq", "\"=\"", BINOP_EQUAL},
963 {"One", "\"/=\"", BINOP_NOTEQUAL},
964 {"Oand", "\"and\"", BINOP_BITWISE_AND},
965 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
966 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
967 {"Oconcat", "\"&\"", BINOP_CONCAT},
968 {"Oabs", "\"abs\"", UNOP_ABS},
969 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
970 {"Oadd", "\"+\"", UNOP_PLUS},
971 {"Osubtract", "\"-\"", UNOP_NEG},
972 {NULL, NULL}
973 };
974
975 /* The "encoded" form of DECODED, according to GNAT conventions.
976 The result is valid until the next call to ada_encode. */
977
978 char *
979 ada_encode (const char *decoded)
980 {
981 static char *encoding_buffer = NULL;
982 static size_t encoding_buffer_size = 0;
983 const char *p;
984 int k;
985
986 if (decoded == NULL)
987 return NULL;
988
989 GROW_VECT (encoding_buffer, encoding_buffer_size,
990 2 * strlen (decoded) + 10);
991
992 k = 0;
993 for (p = decoded; *p != '\0'; p += 1)
994 {
995 if (*p == '.')
996 {
997 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
998 k += 2;
999 }
1000 else if (*p == '"')
1001 {
1002 const struct ada_opname_map *mapping;
1003
1004 for (mapping = ada_opname_table;
1005 mapping->encoded != NULL
1006 && !startswith (p, mapping->decoded); mapping += 1)
1007 ;
1008 if (mapping->encoded == NULL)
1009 error (_("invalid Ada operator name: %s"), p);
1010 strcpy (encoding_buffer + k, mapping->encoded);
1011 k += strlen (mapping->encoded);
1012 break;
1013 }
1014 else
1015 {
1016 encoding_buffer[k] = *p;
1017 k += 1;
1018 }
1019 }
1020
1021 encoding_buffer[k] = '\0';
1022 return encoding_buffer;
1023 }
1024
1025 /* Return NAME folded to lower case, or, if surrounded by single
1026 quotes, unfolded, but with the quotes stripped away. Result good
1027 to next call. */
1028
1029 char *
1030 ada_fold_name (const char *name)
1031 {
1032 static char *fold_buffer = NULL;
1033 static size_t fold_buffer_size = 0;
1034
1035 int len = strlen (name);
1036 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1037
1038 if (name[0] == '\'')
1039 {
1040 strncpy (fold_buffer, name + 1, len - 2);
1041 fold_buffer[len - 2] = '\000';
1042 }
1043 else
1044 {
1045 int i;
1046
1047 for (i = 0; i <= len; i += 1)
1048 fold_buffer[i] = tolower (name[i]);
1049 }
1050
1051 return fold_buffer;
1052 }
1053
1054 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1055
1056 static int
1057 is_lower_alphanum (const char c)
1058 {
1059 return (isdigit (c) || (isalpha (c) && islower (c)));
1060 }
1061
1062 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1063 This function saves in LEN the length of that same symbol name but
1064 without either of these suffixes:
1065 . .{DIGIT}+
1066 . ${DIGIT}+
1067 . ___{DIGIT}+
1068 . __{DIGIT}+.
1069
1070 These are suffixes introduced by the compiler for entities such as
1071 nested subprogram for instance, in order to avoid name clashes.
1072 They do not serve any purpose for the debugger. */
1073
1074 static void
1075 ada_remove_trailing_digits (const char *encoded, int *len)
1076 {
1077 if (*len > 1 && isdigit (encoded[*len - 1]))
1078 {
1079 int i = *len - 2;
1080
1081 while (i > 0 && isdigit (encoded[i]))
1082 i--;
1083 if (i >= 0 && encoded[i] == '.')
1084 *len = i;
1085 else if (i >= 0 && encoded[i] == '$')
1086 *len = i;
1087 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1088 *len = i - 2;
1089 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1090 *len = i - 1;
1091 }
1092 }
1093
1094 /* Remove the suffix introduced by the compiler for protected object
1095 subprograms. */
1096
1097 static void
1098 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1099 {
1100 /* Remove trailing N. */
1101
1102 /* Protected entry subprograms are broken into two
1103 separate subprograms: The first one is unprotected, and has
1104 a 'N' suffix; the second is the protected version, and has
1105 the 'P' suffix. The second calls the first one after handling
1106 the protection. Since the P subprograms are internally generated,
1107 we leave these names undecoded, giving the user a clue that this
1108 entity is internal. */
1109
1110 if (*len > 1
1111 && encoded[*len - 1] == 'N'
1112 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1113 *len = *len - 1;
1114 }
1115
1116 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1117
1118 static void
1119 ada_remove_Xbn_suffix (const char *encoded, int *len)
1120 {
1121 int i = *len - 1;
1122
1123 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1124 i--;
1125
1126 if (encoded[i] != 'X')
1127 return;
1128
1129 if (i == 0)
1130 return;
1131
1132 if (isalnum (encoded[i-1]))
1133 *len = i;
1134 }
1135
1136 /* If ENCODED follows the GNAT entity encoding conventions, then return
1137 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1138 replaced by ENCODED.
1139
1140 The resulting string is valid until the next call of ada_decode.
1141 If the string is unchanged by decoding, the original string pointer
1142 is returned. */
1143
1144 const char *
1145 ada_decode (const char *encoded)
1146 {
1147 int i, j;
1148 int len0;
1149 const char *p;
1150 char *decoded;
1151 int at_start_name;
1152 static char *decoding_buffer = NULL;
1153 static size_t decoding_buffer_size = 0;
1154
1155 /* The name of the Ada main procedure starts with "_ada_".
1156 This prefix is not part of the decoded name, so skip this part
1157 if we see this prefix. */
1158 if (startswith (encoded, "_ada_"))
1159 encoded += 5;
1160
1161 /* If the name starts with '_', then it is not a properly encoded
1162 name, so do not attempt to decode it. Similarly, if the name
1163 starts with '<', the name should not be decoded. */
1164 if (encoded[0] == '_' || encoded[0] == '<')
1165 goto Suppress;
1166
1167 len0 = strlen (encoded);
1168
1169 ada_remove_trailing_digits (encoded, &len0);
1170 ada_remove_po_subprogram_suffix (encoded, &len0);
1171
1172 /* Remove the ___X.* suffix if present. Do not forget to verify that
1173 the suffix is located before the current "end" of ENCODED. We want
1174 to avoid re-matching parts of ENCODED that have previously been
1175 marked as discarded (by decrementing LEN0). */
1176 p = strstr (encoded, "___");
1177 if (p != NULL && p - encoded < len0 - 3)
1178 {
1179 if (p[3] == 'X')
1180 len0 = p - encoded;
1181 else
1182 goto Suppress;
1183 }
1184
1185 /* Remove any trailing TKB suffix. It tells us that this symbol
1186 is for the body of a task, but that information does not actually
1187 appear in the decoded name. */
1188
1189 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1190 len0 -= 3;
1191
1192 /* Remove any trailing TB suffix. The TB suffix is slightly different
1193 from the TKB suffix because it is used for non-anonymous task
1194 bodies. */
1195
1196 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1197 len0 -= 2;
1198
1199 /* Remove trailing "B" suffixes. */
1200 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1201
1202 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1203 len0 -= 1;
1204
1205 /* Make decoded big enough for possible expansion by operator name. */
1206
1207 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1208 decoded = decoding_buffer;
1209
1210 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1211
1212 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1213 {
1214 i = len0 - 2;
1215 while ((i >= 0 && isdigit (encoded[i]))
1216 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1217 i -= 1;
1218 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1219 len0 = i - 1;
1220 else if (encoded[i] == '$')
1221 len0 = i;
1222 }
1223
1224 /* The first few characters that are not alphabetic are not part
1225 of any encoding we use, so we can copy them over verbatim. */
1226
1227 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1228 decoded[j] = encoded[i];
1229
1230 at_start_name = 1;
1231 while (i < len0)
1232 {
1233 /* Is this a symbol function? */
1234 if (at_start_name && encoded[i] == 'O')
1235 {
1236 int k;
1237
1238 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1239 {
1240 int op_len = strlen (ada_opname_table[k].encoded);
1241 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1242 op_len - 1) == 0)
1243 && !isalnum (encoded[i + op_len]))
1244 {
1245 strcpy (decoded + j, ada_opname_table[k].decoded);
1246 at_start_name = 0;
1247 i += op_len;
1248 j += strlen (ada_opname_table[k].decoded);
1249 break;
1250 }
1251 }
1252 if (ada_opname_table[k].encoded != NULL)
1253 continue;
1254 }
1255 at_start_name = 0;
1256
1257 /* Replace "TK__" with "__", which will eventually be translated
1258 into "." (just below). */
1259
1260 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1261 i += 2;
1262
1263 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1264 be translated into "." (just below). These are internal names
1265 generated for anonymous blocks inside which our symbol is nested. */
1266
1267 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1268 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1269 && isdigit (encoded [i+4]))
1270 {
1271 int k = i + 5;
1272
1273 while (k < len0 && isdigit (encoded[k]))
1274 k++; /* Skip any extra digit. */
1275
1276 /* Double-check that the "__B_{DIGITS}+" sequence we found
1277 is indeed followed by "__". */
1278 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1279 i = k;
1280 }
1281
1282 /* Remove _E{DIGITS}+[sb] */
1283
1284 /* Just as for protected object subprograms, there are 2 categories
1285 of subprograms created by the compiler for each entry. The first
1286 one implements the actual entry code, and has a suffix following
1287 the convention above; the second one implements the barrier and
1288 uses the same convention as above, except that the 'E' is replaced
1289 by a 'B'.
1290
1291 Just as above, we do not decode the name of barrier functions
1292 to give the user a clue that the code he is debugging has been
1293 internally generated. */
1294
1295 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1296 && isdigit (encoded[i+2]))
1297 {
1298 int k = i + 3;
1299
1300 while (k < len0 && isdigit (encoded[k]))
1301 k++;
1302
1303 if (k < len0
1304 && (encoded[k] == 'b' || encoded[k] == 's'))
1305 {
1306 k++;
1307 /* Just as an extra precaution, make sure that if this
1308 suffix is followed by anything else, it is a '_'.
1309 Otherwise, we matched this sequence by accident. */
1310 if (k == len0
1311 || (k < len0 && encoded[k] == '_'))
1312 i = k;
1313 }
1314 }
1315
1316 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1317 the GNAT front-end in protected object subprograms. */
1318
1319 if (i < len0 + 3
1320 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1321 {
1322 /* Backtrack a bit up until we reach either the begining of
1323 the encoded name, or "__". Make sure that we only find
1324 digits or lowercase characters. */
1325 const char *ptr = encoded + i - 1;
1326
1327 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1328 ptr--;
1329 if (ptr < encoded
1330 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1331 i++;
1332 }
1333
1334 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1335 {
1336 /* This is a X[bn]* sequence not separated from the previous
1337 part of the name with a non-alpha-numeric character (in other
1338 words, immediately following an alpha-numeric character), then
1339 verify that it is placed at the end of the encoded name. If
1340 not, then the encoding is not valid and we should abort the
1341 decoding. Otherwise, just skip it, it is used in body-nested
1342 package names. */
1343 do
1344 i += 1;
1345 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1346 if (i < len0)
1347 goto Suppress;
1348 }
1349 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1350 {
1351 /* Replace '__' by '.'. */
1352 decoded[j] = '.';
1353 at_start_name = 1;
1354 i += 2;
1355 j += 1;
1356 }
1357 else
1358 {
1359 /* It's a character part of the decoded name, so just copy it
1360 over. */
1361 decoded[j] = encoded[i];
1362 i += 1;
1363 j += 1;
1364 }
1365 }
1366 decoded[j] = '\000';
1367
1368 /* Decoded names should never contain any uppercase character.
1369 Double-check this, and abort the decoding if we find one. */
1370
1371 for (i = 0; decoded[i] != '\0'; i += 1)
1372 if (isupper (decoded[i]) || decoded[i] == ' ')
1373 goto Suppress;
1374
1375 if (strcmp (decoded, encoded) == 0)
1376 return encoded;
1377 else
1378 return decoded;
1379
1380 Suppress:
1381 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1382 decoded = decoding_buffer;
1383 if (encoded[0] == '<')
1384 strcpy (decoded, encoded);
1385 else
1386 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1387 return decoded;
1388
1389 }
1390
1391 /* Table for keeping permanent unique copies of decoded names. Once
1392 allocated, names in this table are never released. While this is a
1393 storage leak, it should not be significant unless there are massive
1394 changes in the set of decoded names in successive versions of a
1395 symbol table loaded during a single session. */
1396 static struct htab *decoded_names_store;
1397
1398 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1399 in the language-specific part of GSYMBOL, if it has not been
1400 previously computed. Tries to save the decoded name in the same
1401 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1402 in any case, the decoded symbol has a lifetime at least that of
1403 GSYMBOL).
1404 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1405 const, but nevertheless modified to a semantically equivalent form
1406 when a decoded name is cached in it. */
1407
1408 const char *
1409 ada_decode_symbol (const struct general_symbol_info *arg)
1410 {
1411 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1412 const char **resultp =
1413 &gsymbol->language_specific.mangled_lang.demangled_name;
1414
1415 if (!gsymbol->ada_mangled)
1416 {
1417 const char *decoded = ada_decode (gsymbol->name);
1418 struct obstack *obstack = gsymbol->language_specific.obstack;
1419
1420 gsymbol->ada_mangled = 1;
1421
1422 if (obstack != NULL)
1423 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1424 else
1425 {
1426 /* Sometimes, we can't find a corresponding objfile, in
1427 which case, we put the result on the heap. Since we only
1428 decode when needed, we hope this usually does not cause a
1429 significant memory leak (FIXME). */
1430
1431 char **slot = (char **) htab_find_slot (decoded_names_store,
1432 decoded, INSERT);
1433
1434 if (*slot == NULL)
1435 *slot = xstrdup (decoded);
1436 *resultp = *slot;
1437 }
1438 }
1439
1440 return *resultp;
1441 }
1442
1443 static char *
1444 ada_la_decode (const char *encoded, int options)
1445 {
1446 return xstrdup (ada_decode (encoded));
1447 }
1448
1449 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1450 suffixes that encode debugging information or leading _ada_ on
1451 SYM_NAME (see is_name_suffix commentary for the debugging
1452 information that is ignored). If WILD, then NAME need only match a
1453 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1454 either argument is NULL. */
1455
1456 static int
1457 match_name (const char *sym_name, const char *name, int wild)
1458 {
1459 if (sym_name == NULL || name == NULL)
1460 return 0;
1461 else if (wild)
1462 return wild_match (sym_name, name) == 0;
1463 else
1464 {
1465 int len_name = strlen (name);
1466
1467 return (strncmp (sym_name, name, len_name) == 0
1468 && is_name_suffix (sym_name + len_name))
1469 || (startswith (sym_name, "_ada_")
1470 && strncmp (sym_name + 5, name, len_name) == 0
1471 && is_name_suffix (sym_name + len_name + 5));
1472 }
1473 }
1474 \f
1475
1476 /* Arrays */
1477
1478 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1479 generated by the GNAT compiler to describe the index type used
1480 for each dimension of an array, check whether it follows the latest
1481 known encoding. If not, fix it up to conform to the latest encoding.
1482 Otherwise, do nothing. This function also does nothing if
1483 INDEX_DESC_TYPE is NULL.
1484
1485 The GNAT encoding used to describle the array index type evolved a bit.
1486 Initially, the information would be provided through the name of each
1487 field of the structure type only, while the type of these fields was
1488 described as unspecified and irrelevant. The debugger was then expected
1489 to perform a global type lookup using the name of that field in order
1490 to get access to the full index type description. Because these global
1491 lookups can be very expensive, the encoding was later enhanced to make
1492 the global lookup unnecessary by defining the field type as being
1493 the full index type description.
1494
1495 The purpose of this routine is to allow us to support older versions
1496 of the compiler by detecting the use of the older encoding, and by
1497 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1498 we essentially replace each field's meaningless type by the associated
1499 index subtype). */
1500
1501 void
1502 ada_fixup_array_indexes_type (struct type *index_desc_type)
1503 {
1504 int i;
1505
1506 if (index_desc_type == NULL)
1507 return;
1508 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1509
1510 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1511 to check one field only, no need to check them all). If not, return
1512 now.
1513
1514 If our INDEX_DESC_TYPE was generated using the older encoding,
1515 the field type should be a meaningless integer type whose name
1516 is not equal to the field name. */
1517 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1518 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1519 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1520 return;
1521
1522 /* Fixup each field of INDEX_DESC_TYPE. */
1523 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1524 {
1525 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1526 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1527
1528 if (raw_type)
1529 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1530 }
1531 }
1532
1533 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1534
1535 static char *bound_name[] = {
1536 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1537 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1538 };
1539
1540 /* Maximum number of array dimensions we are prepared to handle. */
1541
1542 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1543
1544
1545 /* The desc_* routines return primitive portions of array descriptors
1546 (fat pointers). */
1547
1548 /* The descriptor or array type, if any, indicated by TYPE; removes
1549 level of indirection, if needed. */
1550
1551 static struct type *
1552 desc_base_type (struct type *type)
1553 {
1554 if (type == NULL)
1555 return NULL;
1556 type = ada_check_typedef (type);
1557 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1558 type = ada_typedef_target_type (type);
1559
1560 if (type != NULL
1561 && (TYPE_CODE (type) == TYPE_CODE_PTR
1562 || TYPE_CODE (type) == TYPE_CODE_REF))
1563 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1564 else
1565 return type;
1566 }
1567
1568 /* True iff TYPE indicates a "thin" array pointer type. */
1569
1570 static int
1571 is_thin_pntr (struct type *type)
1572 {
1573 return
1574 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1575 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1576 }
1577
1578 /* The descriptor type for thin pointer type TYPE. */
1579
1580 static struct type *
1581 thin_descriptor_type (struct type *type)
1582 {
1583 struct type *base_type = desc_base_type (type);
1584
1585 if (base_type == NULL)
1586 return NULL;
1587 if (is_suffix (ada_type_name (base_type), "___XVE"))
1588 return base_type;
1589 else
1590 {
1591 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1592
1593 if (alt_type == NULL)
1594 return base_type;
1595 else
1596 return alt_type;
1597 }
1598 }
1599
1600 /* A pointer to the array data for thin-pointer value VAL. */
1601
1602 static struct value *
1603 thin_data_pntr (struct value *val)
1604 {
1605 struct type *type = ada_check_typedef (value_type (val));
1606 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1607
1608 data_type = lookup_pointer_type (data_type);
1609
1610 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1611 return value_cast (data_type, value_copy (val));
1612 else
1613 return value_from_longest (data_type, value_address (val));
1614 }
1615
1616 /* True iff TYPE indicates a "thick" array pointer type. */
1617
1618 static int
1619 is_thick_pntr (struct type *type)
1620 {
1621 type = desc_base_type (type);
1622 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1623 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1624 }
1625
1626 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1627 pointer to one, the type of its bounds data; otherwise, NULL. */
1628
1629 static struct type *
1630 desc_bounds_type (struct type *type)
1631 {
1632 struct type *r;
1633
1634 type = desc_base_type (type);
1635
1636 if (type == NULL)
1637 return NULL;
1638 else if (is_thin_pntr (type))
1639 {
1640 type = thin_descriptor_type (type);
1641 if (type == NULL)
1642 return NULL;
1643 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1644 if (r != NULL)
1645 return ada_check_typedef (r);
1646 }
1647 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1648 {
1649 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1650 if (r != NULL)
1651 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1652 }
1653 return NULL;
1654 }
1655
1656 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1657 one, a pointer to its bounds data. Otherwise NULL. */
1658
1659 static struct value *
1660 desc_bounds (struct value *arr)
1661 {
1662 struct type *type = ada_check_typedef (value_type (arr));
1663
1664 if (is_thin_pntr (type))
1665 {
1666 struct type *bounds_type =
1667 desc_bounds_type (thin_descriptor_type (type));
1668 LONGEST addr;
1669
1670 if (bounds_type == NULL)
1671 error (_("Bad GNAT array descriptor"));
1672
1673 /* NOTE: The following calculation is not really kosher, but
1674 since desc_type is an XVE-encoded type (and shouldn't be),
1675 the correct calculation is a real pain. FIXME (and fix GCC). */
1676 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1677 addr = value_as_long (arr);
1678 else
1679 addr = value_address (arr);
1680
1681 return
1682 value_from_longest (lookup_pointer_type (bounds_type),
1683 addr - TYPE_LENGTH (bounds_type));
1684 }
1685
1686 else if (is_thick_pntr (type))
1687 {
1688 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1689 _("Bad GNAT array descriptor"));
1690 struct type *p_bounds_type = value_type (p_bounds);
1691
1692 if (p_bounds_type
1693 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1694 {
1695 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1696
1697 if (TYPE_STUB (target_type))
1698 p_bounds = value_cast (lookup_pointer_type
1699 (ada_check_typedef (target_type)),
1700 p_bounds);
1701 }
1702 else
1703 error (_("Bad GNAT array descriptor"));
1704
1705 return p_bounds;
1706 }
1707 else
1708 return NULL;
1709 }
1710
1711 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1712 position of the field containing the address of the bounds data. */
1713
1714 static int
1715 fat_pntr_bounds_bitpos (struct type *type)
1716 {
1717 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1718 }
1719
1720 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1721 size of the field containing the address of the bounds data. */
1722
1723 static int
1724 fat_pntr_bounds_bitsize (struct type *type)
1725 {
1726 type = desc_base_type (type);
1727
1728 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1729 return TYPE_FIELD_BITSIZE (type, 1);
1730 else
1731 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1732 }
1733
1734 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1735 pointer to one, the type of its array data (a array-with-no-bounds type);
1736 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1737 data. */
1738
1739 static struct type *
1740 desc_data_target_type (struct type *type)
1741 {
1742 type = desc_base_type (type);
1743
1744 /* NOTE: The following is bogus; see comment in desc_bounds. */
1745 if (is_thin_pntr (type))
1746 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1747 else if (is_thick_pntr (type))
1748 {
1749 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1750
1751 if (data_type
1752 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1753 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1754 }
1755
1756 return NULL;
1757 }
1758
1759 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1760 its array data. */
1761
1762 static struct value *
1763 desc_data (struct value *arr)
1764 {
1765 struct type *type = value_type (arr);
1766
1767 if (is_thin_pntr (type))
1768 return thin_data_pntr (arr);
1769 else if (is_thick_pntr (type))
1770 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1771 _("Bad GNAT array descriptor"));
1772 else
1773 return NULL;
1774 }
1775
1776
1777 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1778 position of the field containing the address of the data. */
1779
1780 static int
1781 fat_pntr_data_bitpos (struct type *type)
1782 {
1783 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1784 }
1785
1786 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1787 size of the field containing the address of the data. */
1788
1789 static int
1790 fat_pntr_data_bitsize (struct type *type)
1791 {
1792 type = desc_base_type (type);
1793
1794 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1795 return TYPE_FIELD_BITSIZE (type, 0);
1796 else
1797 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1798 }
1799
1800 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1801 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1802 bound, if WHICH is 1. The first bound is I=1. */
1803
1804 static struct value *
1805 desc_one_bound (struct value *bounds, int i, int which)
1806 {
1807 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1808 _("Bad GNAT array descriptor bounds"));
1809 }
1810
1811 /* If BOUNDS is an array-bounds structure type, return the bit position
1812 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1813 bound, if WHICH is 1. The first bound is I=1. */
1814
1815 static int
1816 desc_bound_bitpos (struct type *type, int i, int which)
1817 {
1818 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1819 }
1820
1821 /* If BOUNDS is an array-bounds structure type, return the bit field size
1822 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1823 bound, if WHICH is 1. The first bound is I=1. */
1824
1825 static int
1826 desc_bound_bitsize (struct type *type, int i, int which)
1827 {
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1832 else
1833 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1834 }
1835
1836 /* If TYPE is the type of an array-bounds structure, the type of its
1837 Ith bound (numbering from 1). Otherwise, NULL. */
1838
1839 static struct type *
1840 desc_index_type (struct type *type, int i)
1841 {
1842 type = desc_base_type (type);
1843
1844 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1845 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1846 else
1847 return NULL;
1848 }
1849
1850 /* The number of index positions in the array-bounds type TYPE.
1851 Return 0 if TYPE is NULL. */
1852
1853 static int
1854 desc_arity (struct type *type)
1855 {
1856 type = desc_base_type (type);
1857
1858 if (type != NULL)
1859 return TYPE_NFIELDS (type) / 2;
1860 return 0;
1861 }
1862
1863 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1864 an array descriptor type (representing an unconstrained array
1865 type). */
1866
1867 static int
1868 ada_is_direct_array_type (struct type *type)
1869 {
1870 if (type == NULL)
1871 return 0;
1872 type = ada_check_typedef (type);
1873 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1874 || ada_is_array_descriptor_type (type));
1875 }
1876
1877 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1878 * to one. */
1879
1880 static int
1881 ada_is_array_type (struct type *type)
1882 {
1883 while (type != NULL
1884 && (TYPE_CODE (type) == TYPE_CODE_PTR
1885 || TYPE_CODE (type) == TYPE_CODE_REF))
1886 type = TYPE_TARGET_TYPE (type);
1887 return ada_is_direct_array_type (type);
1888 }
1889
1890 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1891
1892 int
1893 ada_is_simple_array_type (struct type *type)
1894 {
1895 if (type == NULL)
1896 return 0;
1897 type = ada_check_typedef (type);
1898 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1899 || (TYPE_CODE (type) == TYPE_CODE_PTR
1900 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1901 == TYPE_CODE_ARRAY));
1902 }
1903
1904 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1905
1906 int
1907 ada_is_array_descriptor_type (struct type *type)
1908 {
1909 struct type *data_type = desc_data_target_type (type);
1910
1911 if (type == NULL)
1912 return 0;
1913 type = ada_check_typedef (type);
1914 return (data_type != NULL
1915 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1916 && desc_arity (desc_bounds_type (type)) > 0);
1917 }
1918
1919 /* Non-zero iff type is a partially mal-formed GNAT array
1920 descriptor. FIXME: This is to compensate for some problems with
1921 debugging output from GNAT. Re-examine periodically to see if it
1922 is still needed. */
1923
1924 int
1925 ada_is_bogus_array_descriptor (struct type *type)
1926 {
1927 return
1928 type != NULL
1929 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1930 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1931 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1932 && !ada_is_array_descriptor_type (type);
1933 }
1934
1935
1936 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1937 (fat pointer) returns the type of the array data described---specifically,
1938 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1939 in from the descriptor; otherwise, they are left unspecified. If
1940 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1941 returns NULL. The result is simply the type of ARR if ARR is not
1942 a descriptor. */
1943 struct type *
1944 ada_type_of_array (struct value *arr, int bounds)
1945 {
1946 if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array_type (value_type (arr));
1948
1949 if (!ada_is_array_descriptor_type (value_type (arr)))
1950 return value_type (arr);
1951
1952 if (!bounds)
1953 {
1954 struct type *array_type =
1955 ada_check_typedef (desc_data_target_type (value_type (arr)));
1956
1957 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1958 TYPE_FIELD_BITSIZE (array_type, 0) =
1959 decode_packed_array_bitsize (value_type (arr));
1960
1961 return array_type;
1962 }
1963 else
1964 {
1965 struct type *elt_type;
1966 int arity;
1967 struct value *descriptor;
1968
1969 elt_type = ada_array_element_type (value_type (arr), -1);
1970 arity = ada_array_arity (value_type (arr));
1971
1972 if (elt_type == NULL || arity == 0)
1973 return ada_check_typedef (value_type (arr));
1974
1975 descriptor = desc_bounds (arr);
1976 if (value_as_long (descriptor) == 0)
1977 return NULL;
1978 while (arity > 0)
1979 {
1980 struct type *range_type = alloc_type_copy (value_type (arr));
1981 struct type *array_type = alloc_type_copy (value_type (arr));
1982 struct value *low = desc_one_bound (descriptor, arity, 0);
1983 struct value *high = desc_one_bound (descriptor, arity, 1);
1984
1985 arity -= 1;
1986 create_static_range_type (range_type, value_type (low),
1987 longest_to_int (value_as_long (low)),
1988 longest_to_int (value_as_long (high)));
1989 elt_type = create_array_type (array_type, elt_type, range_type);
1990
1991 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1992 {
1993 /* We need to store the element packed bitsize, as well as
1994 recompute the array size, because it was previously
1995 computed based on the unpacked element size. */
1996 LONGEST lo = value_as_long (low);
1997 LONGEST hi = value_as_long (high);
1998
1999 TYPE_FIELD_BITSIZE (elt_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2001 /* If the array has no element, then the size is already
2002 zero, and does not need to be recomputed. */
2003 if (lo < hi)
2004 {
2005 int array_bitsize =
2006 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2007
2008 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2009 }
2010 }
2011 }
2012
2013 return lookup_pointer_type (elt_type);
2014 }
2015 }
2016
2017 /* If ARR does not represent an array, returns ARR unchanged.
2018 Otherwise, returns either a standard GDB array with bounds set
2019 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2020 GDB array. Returns NULL if ARR is a null fat pointer. */
2021
2022 struct value *
2023 ada_coerce_to_simple_array_ptr (struct value *arr)
2024 {
2025 if (ada_is_array_descriptor_type (value_type (arr)))
2026 {
2027 struct type *arrType = ada_type_of_array (arr, 1);
2028
2029 if (arrType == NULL)
2030 return NULL;
2031 return value_cast (arrType, value_copy (desc_data (arr)));
2032 }
2033 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2034 return decode_constrained_packed_array (arr);
2035 else
2036 return arr;
2037 }
2038
2039 /* If ARR does not represent an array, returns ARR unchanged.
2040 Otherwise, returns a standard GDB array describing ARR (which may
2041 be ARR itself if it already is in the proper form). */
2042
2043 struct value *
2044 ada_coerce_to_simple_array (struct value *arr)
2045 {
2046 if (ada_is_array_descriptor_type (value_type (arr)))
2047 {
2048 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2049
2050 if (arrVal == NULL)
2051 error (_("Bounds unavailable for null array pointer."));
2052 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2053 return value_ind (arrVal);
2054 }
2055 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2056 return decode_constrained_packed_array (arr);
2057 else
2058 return arr;
2059 }
2060
2061 /* If TYPE represents a GNAT array type, return it translated to an
2062 ordinary GDB array type (possibly with BITSIZE fields indicating
2063 packing). For other types, is the identity. */
2064
2065 struct type *
2066 ada_coerce_to_simple_array_type (struct type *type)
2067 {
2068 if (ada_is_constrained_packed_array_type (type))
2069 return decode_constrained_packed_array_type (type);
2070
2071 if (ada_is_array_descriptor_type (type))
2072 return ada_check_typedef (desc_data_target_type (type));
2073
2074 return type;
2075 }
2076
2077 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2078
2079 static int
2080 ada_is_packed_array_type (struct type *type)
2081 {
2082 if (type == NULL)
2083 return 0;
2084 type = desc_base_type (type);
2085 type = ada_check_typedef (type);
2086 return
2087 ada_type_name (type) != NULL
2088 && strstr (ada_type_name (type), "___XP") != NULL;
2089 }
2090
2091 /* Non-zero iff TYPE represents a standard GNAT constrained
2092 packed-array type. */
2093
2094 int
2095 ada_is_constrained_packed_array_type (struct type *type)
2096 {
2097 return ada_is_packed_array_type (type)
2098 && !ada_is_array_descriptor_type (type);
2099 }
2100
2101 /* Non-zero iff TYPE represents an array descriptor for a
2102 unconstrained packed-array type. */
2103
2104 static int
2105 ada_is_unconstrained_packed_array_type (struct type *type)
2106 {
2107 return ada_is_packed_array_type (type)
2108 && ada_is_array_descriptor_type (type);
2109 }
2110
2111 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2112 return the size of its elements in bits. */
2113
2114 static long
2115 decode_packed_array_bitsize (struct type *type)
2116 {
2117 const char *raw_name;
2118 const char *tail;
2119 long bits;
2120
2121 /* Access to arrays implemented as fat pointers are encoded as a typedef
2122 of the fat pointer type. We need the name of the fat pointer type
2123 to do the decoding, so strip the typedef layer. */
2124 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2125 type = ada_typedef_target_type (type);
2126
2127 raw_name = ada_type_name (ada_check_typedef (type));
2128 if (!raw_name)
2129 raw_name = ada_type_name (desc_base_type (type));
2130
2131 if (!raw_name)
2132 return 0;
2133
2134 tail = strstr (raw_name, "___XP");
2135 gdb_assert (tail != NULL);
2136
2137 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2138 {
2139 lim_warning
2140 (_("could not understand bit size information on packed array"));
2141 return 0;
2142 }
2143
2144 return bits;
2145 }
2146
2147 /* Given that TYPE is a standard GDB array type with all bounds filled
2148 in, and that the element size of its ultimate scalar constituents
2149 (that is, either its elements, or, if it is an array of arrays, its
2150 elements' elements, etc.) is *ELT_BITS, return an identical type,
2151 but with the bit sizes of its elements (and those of any
2152 constituent arrays) recorded in the BITSIZE components of its
2153 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2154 in bits.
2155
2156 Note that, for arrays whose index type has an XA encoding where
2157 a bound references a record discriminant, getting that discriminant,
2158 and therefore the actual value of that bound, is not possible
2159 because none of the given parameters gives us access to the record.
2160 This function assumes that it is OK in the context where it is being
2161 used to return an array whose bounds are still dynamic and where
2162 the length is arbitrary. */
2163
2164 static struct type *
2165 constrained_packed_array_type (struct type *type, long *elt_bits)
2166 {
2167 struct type *new_elt_type;
2168 struct type *new_type;
2169 struct type *index_type_desc;
2170 struct type *index_type;
2171 LONGEST low_bound, high_bound;
2172
2173 type = ada_check_typedef (type);
2174 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2175 return type;
2176
2177 index_type_desc = ada_find_parallel_type (type, "___XA");
2178 if (index_type_desc)
2179 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2180 NULL);
2181 else
2182 index_type = TYPE_INDEX_TYPE (type);
2183
2184 new_type = alloc_type_copy (type);
2185 new_elt_type =
2186 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2187 elt_bits);
2188 create_array_type (new_type, new_elt_type, index_type);
2189 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2190 TYPE_NAME (new_type) = ada_type_name (type);
2191
2192 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2193 && is_dynamic_type (check_typedef (index_type)))
2194 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2195 low_bound = high_bound = 0;
2196 if (high_bound < low_bound)
2197 *elt_bits = TYPE_LENGTH (new_type) = 0;
2198 else
2199 {
2200 *elt_bits *= (high_bound - low_bound + 1);
2201 TYPE_LENGTH (new_type) =
2202 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2203 }
2204
2205 TYPE_FIXED_INSTANCE (new_type) = 1;
2206 return new_type;
2207 }
2208
2209 /* The array type encoded by TYPE, where
2210 ada_is_constrained_packed_array_type (TYPE). */
2211
2212 static struct type *
2213 decode_constrained_packed_array_type (struct type *type)
2214 {
2215 const char *raw_name = ada_type_name (ada_check_typedef (type));
2216 char *name;
2217 const char *tail;
2218 struct type *shadow_type;
2219 long bits;
2220
2221 if (!raw_name)
2222 raw_name = ada_type_name (desc_base_type (type));
2223
2224 if (!raw_name)
2225 return NULL;
2226
2227 name = (char *) alloca (strlen (raw_name) + 1);
2228 tail = strstr (raw_name, "___XP");
2229 type = desc_base_type (type);
2230
2231 memcpy (name, raw_name, tail - raw_name);
2232 name[tail - raw_name] = '\000';
2233
2234 shadow_type = ada_find_parallel_type_with_name (type, name);
2235
2236 if (shadow_type == NULL)
2237 {
2238 lim_warning (_("could not find bounds information on packed array"));
2239 return NULL;
2240 }
2241 CHECK_TYPEDEF (shadow_type);
2242
2243 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2244 {
2245 lim_warning (_("could not understand bounds "
2246 "information on packed array"));
2247 return NULL;
2248 }
2249
2250 bits = decode_packed_array_bitsize (type);
2251 return constrained_packed_array_type (shadow_type, &bits);
2252 }
2253
2254 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2255 array, returns a simple array that denotes that array. Its type is a
2256 standard GDB array type except that the BITSIZEs of the array
2257 target types are set to the number of bits in each element, and the
2258 type length is set appropriately. */
2259
2260 static struct value *
2261 decode_constrained_packed_array (struct value *arr)
2262 {
2263 struct type *type;
2264
2265 /* If our value is a pointer, then dereference it. Likewise if
2266 the value is a reference. Make sure that this operation does not
2267 cause the target type to be fixed, as this would indirectly cause
2268 this array to be decoded. The rest of the routine assumes that
2269 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2270 and "value_ind" routines to perform the dereferencing, as opposed
2271 to using "ada_coerce_ref" or "ada_value_ind". */
2272 arr = coerce_ref (arr);
2273 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2274 arr = value_ind (arr);
2275
2276 type = decode_constrained_packed_array_type (value_type (arr));
2277 if (type == NULL)
2278 {
2279 error (_("can't unpack array"));
2280 return NULL;
2281 }
2282
2283 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2284 && ada_is_modular_type (value_type (arr)))
2285 {
2286 /* This is a (right-justified) modular type representing a packed
2287 array with no wrapper. In order to interpret the value through
2288 the (left-justified) packed array type we just built, we must
2289 first left-justify it. */
2290 int bit_size, bit_pos;
2291 ULONGEST mod;
2292
2293 mod = ada_modulus (value_type (arr)) - 1;
2294 bit_size = 0;
2295 while (mod > 0)
2296 {
2297 bit_size += 1;
2298 mod >>= 1;
2299 }
2300 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2301 arr = ada_value_primitive_packed_val (arr, NULL,
2302 bit_pos / HOST_CHAR_BIT,
2303 bit_pos % HOST_CHAR_BIT,
2304 bit_size,
2305 type);
2306 }
2307
2308 return coerce_unspec_val_to_type (arr, type);
2309 }
2310
2311
2312 /* The value of the element of packed array ARR at the ARITY indices
2313 given in IND. ARR must be a simple array. */
2314
2315 static struct value *
2316 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2317 {
2318 int i;
2319 int bits, elt_off, bit_off;
2320 long elt_total_bit_offset;
2321 struct type *elt_type;
2322 struct value *v;
2323
2324 bits = 0;
2325 elt_total_bit_offset = 0;
2326 elt_type = ada_check_typedef (value_type (arr));
2327 for (i = 0; i < arity; i += 1)
2328 {
2329 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2330 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2331 error
2332 (_("attempt to do packed indexing of "
2333 "something other than a packed array"));
2334 else
2335 {
2336 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2337 LONGEST lowerbound, upperbound;
2338 LONGEST idx;
2339
2340 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2341 {
2342 lim_warning (_("don't know bounds of array"));
2343 lowerbound = upperbound = 0;
2344 }
2345
2346 idx = pos_atr (ind[i]);
2347 if (idx < lowerbound || idx > upperbound)
2348 lim_warning (_("packed array index %ld out of bounds"),
2349 (long) idx);
2350 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2351 elt_total_bit_offset += (idx - lowerbound) * bits;
2352 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2353 }
2354 }
2355 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2356 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2357
2358 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2359 bits, elt_type);
2360 return v;
2361 }
2362
2363 /* Non-zero iff TYPE includes negative integer values. */
2364
2365 static int
2366 has_negatives (struct type *type)
2367 {
2368 switch (TYPE_CODE (type))
2369 {
2370 default:
2371 return 0;
2372 case TYPE_CODE_INT:
2373 return !TYPE_UNSIGNED (type);
2374 case TYPE_CODE_RANGE:
2375 return TYPE_LOW_BOUND (type) < 0;
2376 }
2377 }
2378
2379
2380 /* Create a new value of type TYPE from the contents of OBJ starting
2381 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2382 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2383 assigning through the result will set the field fetched from.
2384 VALADDR is ignored unless OBJ is NULL, in which case,
2385 VALADDR+OFFSET must address the start of storage containing the
2386 packed value. The value returned in this case is never an lval.
2387 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2388
2389 struct value *
2390 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2391 long offset, int bit_offset, int bit_size,
2392 struct type *type)
2393 {
2394 struct value *v;
2395 int src, /* Index into the source area */
2396 targ, /* Index into the target area */
2397 srcBitsLeft, /* Number of source bits left to move */
2398 nsrc, ntarg, /* Number of source and target bytes */
2399 unusedLS, /* Number of bits in next significant
2400 byte of source that are unused */
2401 accumSize; /* Number of meaningful bits in accum */
2402 unsigned char *bytes; /* First byte containing data to unpack */
2403 unsigned char *unpacked;
2404 unsigned long accum; /* Staging area for bits being transferred */
2405 unsigned char sign;
2406 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2407 /* Transmit bytes from least to most significant; delta is the direction
2408 the indices move. */
2409 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2410
2411 type = ada_check_typedef (type);
2412
2413 if (obj == NULL)
2414 {
2415 v = allocate_value (type);
2416 bytes = (unsigned char *) (valaddr + offset);
2417 }
2418 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2419 {
2420 v = value_at (type, value_address (obj) + offset);
2421 type = value_type (v);
2422 if (TYPE_LENGTH (type) * HOST_CHAR_BIT < bit_size)
2423 {
2424 /* This can happen in the case of an array of dynamic objects,
2425 where the size of each element changes from element to element.
2426 In that case, we're initially given the array stride, but
2427 after resolving the element type, we find that its size is
2428 less than this stride. In that case, adjust bit_size to
2429 match TYPE's length, and recompute LEN accordingly. */
2430 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2431 len = TYPE_LENGTH (type) + (bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 }
2433 bytes = (unsigned char *) alloca (len);
2434 read_memory (value_address (v), bytes, len);
2435 }
2436 else
2437 {
2438 v = allocate_value (type);
2439 bytes = (unsigned char *) value_contents (obj) + offset;
2440 }
2441
2442 if (obj != NULL)
2443 {
2444 long new_offset = offset;
2445
2446 set_value_component_location (v, obj);
2447 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2448 set_value_bitsize (v, bit_size);
2449 if (value_bitpos (v) >= HOST_CHAR_BIT)
2450 {
2451 ++new_offset;
2452 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2453 }
2454 set_value_offset (v, new_offset);
2455
2456 /* Also set the parent value. This is needed when trying to
2457 assign a new value (in inferior memory). */
2458 set_value_parent (v, obj);
2459 }
2460 else
2461 set_value_bitsize (v, bit_size);
2462 unpacked = (unsigned char *) value_contents (v);
2463
2464 srcBitsLeft = bit_size;
2465 nsrc = len;
2466 ntarg = TYPE_LENGTH (type);
2467 sign = 0;
2468 if (bit_size == 0)
2469 {
2470 memset (unpacked, 0, TYPE_LENGTH (type));
2471 return v;
2472 }
2473 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2474 {
2475 src = len - 1;
2476 if (has_negatives (type)
2477 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2478 sign = ~0;
2479
2480 unusedLS =
2481 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2482 % HOST_CHAR_BIT;
2483
2484 switch (TYPE_CODE (type))
2485 {
2486 case TYPE_CODE_ARRAY:
2487 case TYPE_CODE_UNION:
2488 case TYPE_CODE_STRUCT:
2489 /* Non-scalar values must be aligned at a byte boundary... */
2490 accumSize =
2491 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2492 /* ... And are placed at the beginning (most-significant) bytes
2493 of the target. */
2494 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2495 ntarg = targ + 1;
2496 break;
2497 default:
2498 accumSize = 0;
2499 targ = TYPE_LENGTH (type) - 1;
2500 break;
2501 }
2502 }
2503 else
2504 {
2505 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2506
2507 src = targ = 0;
2508 unusedLS = bit_offset;
2509 accumSize = 0;
2510
2511 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2512 sign = ~0;
2513 }
2514
2515 accum = 0;
2516 while (nsrc > 0)
2517 {
2518 /* Mask for removing bits of the next source byte that are not
2519 part of the value. */
2520 unsigned int unusedMSMask =
2521 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2522 1;
2523 /* Sign-extend bits for this byte. */
2524 unsigned int signMask = sign & ~unusedMSMask;
2525
2526 accum |=
2527 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2528 accumSize += HOST_CHAR_BIT - unusedLS;
2529 if (accumSize >= HOST_CHAR_BIT)
2530 {
2531 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2532 accumSize -= HOST_CHAR_BIT;
2533 accum >>= HOST_CHAR_BIT;
2534 ntarg -= 1;
2535 targ += delta;
2536 }
2537 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2538 unusedLS = 0;
2539 nsrc -= 1;
2540 src += delta;
2541 }
2542 while (ntarg > 0)
2543 {
2544 accum |= sign << accumSize;
2545 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2546 accumSize -= HOST_CHAR_BIT;
2547 accum >>= HOST_CHAR_BIT;
2548 ntarg -= 1;
2549 targ += delta;
2550 }
2551
2552 return v;
2553 }
2554
2555 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2556 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2557 not overlap. */
2558 static void
2559 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2560 int src_offset, int n, int bits_big_endian_p)
2561 {
2562 unsigned int accum, mask;
2563 int accum_bits, chunk_size;
2564
2565 target += targ_offset / HOST_CHAR_BIT;
2566 targ_offset %= HOST_CHAR_BIT;
2567 source += src_offset / HOST_CHAR_BIT;
2568 src_offset %= HOST_CHAR_BIT;
2569 if (bits_big_endian_p)
2570 {
2571 accum = (unsigned char) *source;
2572 source += 1;
2573 accum_bits = HOST_CHAR_BIT - src_offset;
2574
2575 while (n > 0)
2576 {
2577 int unused_right;
2578
2579 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2580 accum_bits += HOST_CHAR_BIT;
2581 source += 1;
2582 chunk_size = HOST_CHAR_BIT - targ_offset;
2583 if (chunk_size > n)
2584 chunk_size = n;
2585 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2586 mask = ((1 << chunk_size) - 1) << unused_right;
2587 *target =
2588 (*target & ~mask)
2589 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2590 n -= chunk_size;
2591 accum_bits -= chunk_size;
2592 target += 1;
2593 targ_offset = 0;
2594 }
2595 }
2596 else
2597 {
2598 accum = (unsigned char) *source >> src_offset;
2599 source += 1;
2600 accum_bits = HOST_CHAR_BIT - src_offset;
2601
2602 while (n > 0)
2603 {
2604 accum = accum + ((unsigned char) *source << accum_bits);
2605 accum_bits += HOST_CHAR_BIT;
2606 source += 1;
2607 chunk_size = HOST_CHAR_BIT - targ_offset;
2608 if (chunk_size > n)
2609 chunk_size = n;
2610 mask = ((1 << chunk_size) - 1) << targ_offset;
2611 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2612 n -= chunk_size;
2613 accum_bits -= chunk_size;
2614 accum >>= chunk_size;
2615 target += 1;
2616 targ_offset = 0;
2617 }
2618 }
2619 }
2620
2621 /* Store the contents of FROMVAL into the location of TOVAL.
2622 Return a new value with the location of TOVAL and contents of
2623 FROMVAL. Handles assignment into packed fields that have
2624 floating-point or non-scalar types. */
2625
2626 static struct value *
2627 ada_value_assign (struct value *toval, struct value *fromval)
2628 {
2629 struct type *type = value_type (toval);
2630 int bits = value_bitsize (toval);
2631
2632 toval = ada_coerce_ref (toval);
2633 fromval = ada_coerce_ref (fromval);
2634
2635 if (ada_is_direct_array_type (value_type (toval)))
2636 toval = ada_coerce_to_simple_array (toval);
2637 if (ada_is_direct_array_type (value_type (fromval)))
2638 fromval = ada_coerce_to_simple_array (fromval);
2639
2640 if (!deprecated_value_modifiable (toval))
2641 error (_("Left operand of assignment is not a modifiable lvalue."));
2642
2643 if (VALUE_LVAL (toval) == lval_memory
2644 && bits > 0
2645 && (TYPE_CODE (type) == TYPE_CODE_FLT
2646 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2647 {
2648 int len = (value_bitpos (toval)
2649 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2650 int from_size;
2651 gdb_byte *buffer = alloca (len);
2652 struct value *val;
2653 CORE_ADDR to_addr = value_address (toval);
2654
2655 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2656 fromval = value_cast (type, fromval);
2657
2658 read_memory (to_addr, buffer, len);
2659 from_size = value_bitsize (fromval);
2660 if (from_size == 0)
2661 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2662 if (gdbarch_bits_big_endian (get_type_arch (type)))
2663 move_bits (buffer, value_bitpos (toval),
2664 value_contents (fromval), from_size - bits, bits, 1);
2665 else
2666 move_bits (buffer, value_bitpos (toval),
2667 value_contents (fromval), 0, bits, 0);
2668 write_memory_with_notification (to_addr, buffer, len);
2669
2670 val = value_copy (toval);
2671 memcpy (value_contents_raw (val), value_contents (fromval),
2672 TYPE_LENGTH (type));
2673 deprecated_set_value_type (val, type);
2674
2675 return val;
2676 }
2677
2678 return value_assign (toval, fromval);
2679 }
2680
2681
2682 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2683 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2684 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2685 * COMPONENT, and not the inferior's memory. The current contents
2686 * of COMPONENT are ignored. */
2687 static void
2688 value_assign_to_component (struct value *container, struct value *component,
2689 struct value *val)
2690 {
2691 LONGEST offset_in_container =
2692 (LONGEST) (value_address (component) - value_address (container));
2693 int bit_offset_in_container =
2694 value_bitpos (component) - value_bitpos (container);
2695 int bits;
2696
2697 val = value_cast (value_type (component), val);
2698
2699 if (value_bitsize (component) == 0)
2700 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2701 else
2702 bits = value_bitsize (component);
2703
2704 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2705 move_bits (value_contents_writeable (container) + offset_in_container,
2706 value_bitpos (container) + bit_offset_in_container,
2707 value_contents (val),
2708 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2709 bits, 1);
2710 else
2711 move_bits (value_contents_writeable (container) + offset_in_container,
2712 value_bitpos (container) + bit_offset_in_container,
2713 value_contents (val), 0, bits, 0);
2714 }
2715
2716 /* The value of the element of array ARR at the ARITY indices given in IND.
2717 ARR may be either a simple array, GNAT array descriptor, or pointer
2718 thereto. */
2719
2720 struct value *
2721 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2722 {
2723 int k;
2724 struct value *elt;
2725 struct type *elt_type;
2726
2727 elt = ada_coerce_to_simple_array (arr);
2728
2729 elt_type = ada_check_typedef (value_type (elt));
2730 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2731 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2732 return value_subscript_packed (elt, arity, ind);
2733
2734 for (k = 0; k < arity; k += 1)
2735 {
2736 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2737 error (_("too many subscripts (%d expected)"), k);
2738 elt = value_subscript (elt, pos_atr (ind[k]));
2739 }
2740 return elt;
2741 }
2742
2743 /* Assuming ARR is a pointer to a GDB array, the value of the element
2744 of *ARR at the ARITY indices given in IND.
2745 Does not read the entire array into memory. */
2746
2747 static struct value *
2748 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2749 {
2750 int k;
2751 struct type *type
2752 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
2753
2754 for (k = 0; k < arity; k += 1)
2755 {
2756 LONGEST lwb, upb;
2757
2758 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2759 error (_("too many subscripts (%d expected)"), k);
2760 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2761 value_copy (arr));
2762 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2763 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2764 type = TYPE_TARGET_TYPE (type);
2765 }
2766
2767 return value_ind (arr);
2768 }
2769
2770 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2771 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2772 elements starting at index LOW. The lower bound of this array is LOW, as
2773 per Ada rules. */
2774 static struct value *
2775 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2776 int low, int high)
2777 {
2778 struct type *type0 = ada_check_typedef (type);
2779 CORE_ADDR base = value_as_address (array_ptr)
2780 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2781 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2782 struct type *index_type
2783 = create_static_range_type (NULL,
2784 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2785 low, high);
2786 struct type *slice_type =
2787 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2788
2789 return value_at_lazy (slice_type, base);
2790 }
2791
2792
2793 static struct value *
2794 ada_value_slice (struct value *array, int low, int high)
2795 {
2796 struct type *type = ada_check_typedef (value_type (array));
2797 struct type *index_type
2798 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2799 struct type *slice_type =
2800 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2801
2802 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2803 }
2804
2805 /* If type is a record type in the form of a standard GNAT array
2806 descriptor, returns the number of dimensions for type. If arr is a
2807 simple array, returns the number of "array of"s that prefix its
2808 type designation. Otherwise, returns 0. */
2809
2810 int
2811 ada_array_arity (struct type *type)
2812 {
2813 int arity;
2814
2815 if (type == NULL)
2816 return 0;
2817
2818 type = desc_base_type (type);
2819
2820 arity = 0;
2821 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2822 return desc_arity (desc_bounds_type (type));
2823 else
2824 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2825 {
2826 arity += 1;
2827 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2828 }
2829
2830 return arity;
2831 }
2832
2833 /* If TYPE is a record type in the form of a standard GNAT array
2834 descriptor or a simple array type, returns the element type for
2835 TYPE after indexing by NINDICES indices, or by all indices if
2836 NINDICES is -1. Otherwise, returns NULL. */
2837
2838 struct type *
2839 ada_array_element_type (struct type *type, int nindices)
2840 {
2841 type = desc_base_type (type);
2842
2843 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2844 {
2845 int k;
2846 struct type *p_array_type;
2847
2848 p_array_type = desc_data_target_type (type);
2849
2850 k = ada_array_arity (type);
2851 if (k == 0)
2852 return NULL;
2853
2854 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2855 if (nindices >= 0 && k > nindices)
2856 k = nindices;
2857 while (k > 0 && p_array_type != NULL)
2858 {
2859 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2860 k -= 1;
2861 }
2862 return p_array_type;
2863 }
2864 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2865 {
2866 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2867 {
2868 type = TYPE_TARGET_TYPE (type);
2869 nindices -= 1;
2870 }
2871 return type;
2872 }
2873
2874 return NULL;
2875 }
2876
2877 /* The type of nth index in arrays of given type (n numbering from 1).
2878 Does not examine memory. Throws an error if N is invalid or TYPE
2879 is not an array type. NAME is the name of the Ada attribute being
2880 evaluated ('range, 'first, 'last, or 'length); it is used in building
2881 the error message. */
2882
2883 static struct type *
2884 ada_index_type (struct type *type, int n, const char *name)
2885 {
2886 struct type *result_type;
2887
2888 type = desc_base_type (type);
2889
2890 if (n < 0 || n > ada_array_arity (type))
2891 error (_("invalid dimension number to '%s"), name);
2892
2893 if (ada_is_simple_array_type (type))
2894 {
2895 int i;
2896
2897 for (i = 1; i < n; i += 1)
2898 type = TYPE_TARGET_TYPE (type);
2899 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2900 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2901 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2902 perhaps stabsread.c would make more sense. */
2903 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2904 result_type = NULL;
2905 }
2906 else
2907 {
2908 result_type = desc_index_type (desc_bounds_type (type), n);
2909 if (result_type == NULL)
2910 error (_("attempt to take bound of something that is not an array"));
2911 }
2912
2913 return result_type;
2914 }
2915
2916 /* Given that arr is an array type, returns the lower bound of the
2917 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2918 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2919 array-descriptor type. It works for other arrays with bounds supplied
2920 by run-time quantities other than discriminants. */
2921
2922 static LONGEST
2923 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2924 {
2925 struct type *type, *index_type_desc, *index_type;
2926 int i;
2927
2928 gdb_assert (which == 0 || which == 1);
2929
2930 if (ada_is_constrained_packed_array_type (arr_type))
2931 arr_type = decode_constrained_packed_array_type (arr_type);
2932
2933 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2934 return (LONGEST) - which;
2935
2936 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2937 type = TYPE_TARGET_TYPE (arr_type);
2938 else
2939 type = arr_type;
2940
2941 if (TYPE_FIXED_INSTANCE (type))
2942 {
2943 /* The array has already been fixed, so we do not need to
2944 check the parallel ___XA type again. That encoding has
2945 already been applied, so ignore it now. */
2946 index_type_desc = NULL;
2947 }
2948 else
2949 {
2950 index_type_desc = ada_find_parallel_type (type, "___XA");
2951 ada_fixup_array_indexes_type (index_type_desc);
2952 }
2953
2954 if (index_type_desc != NULL)
2955 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2956 NULL);
2957 else
2958 {
2959 struct type *elt_type = check_typedef (type);
2960
2961 for (i = 1; i < n; i++)
2962 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2963
2964 index_type = TYPE_INDEX_TYPE (elt_type);
2965 }
2966
2967 return
2968 (LONGEST) (which == 0
2969 ? ada_discrete_type_low_bound (index_type)
2970 : ada_discrete_type_high_bound (index_type));
2971 }
2972
2973 /* Given that arr is an array value, returns the lower bound of the
2974 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2975 WHICH is 1. This routine will also work for arrays with bounds
2976 supplied by run-time quantities other than discriminants. */
2977
2978 static LONGEST
2979 ada_array_bound (struct value *arr, int n, int which)
2980 {
2981 struct type *arr_type;
2982
2983 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2984 arr = value_ind (arr);
2985 arr_type = value_enclosing_type (arr);
2986
2987 if (ada_is_constrained_packed_array_type (arr_type))
2988 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2989 else if (ada_is_simple_array_type (arr_type))
2990 return ada_array_bound_from_type (arr_type, n, which);
2991 else
2992 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2993 }
2994
2995 /* Given that arr is an array value, returns the length of the
2996 nth index. This routine will also work for arrays with bounds
2997 supplied by run-time quantities other than discriminants.
2998 Does not work for arrays indexed by enumeration types with representation
2999 clauses at the moment. */
3000
3001 static LONGEST
3002 ada_array_length (struct value *arr, int n)
3003 {
3004 struct type *arr_type;
3005
3006 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3007 arr = value_ind (arr);
3008 arr_type = value_enclosing_type (arr);
3009
3010 if (ada_is_constrained_packed_array_type (arr_type))
3011 return ada_array_length (decode_constrained_packed_array (arr), n);
3012
3013 if (ada_is_simple_array_type (arr_type))
3014 return (ada_array_bound_from_type (arr_type, n, 1)
3015 - ada_array_bound_from_type (arr_type, n, 0) + 1);
3016 else
3017 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
3018 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
3019 }
3020
3021 /* An empty array whose type is that of ARR_TYPE (an array type),
3022 with bounds LOW to LOW-1. */
3023
3024 static struct value *
3025 empty_array (struct type *arr_type, int low)
3026 {
3027 struct type *arr_type0 = ada_check_typedef (arr_type);
3028 struct type *index_type
3029 = create_static_range_type
3030 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3031 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3032
3033 return allocate_value (create_array_type (NULL, elt_type, index_type));
3034 }
3035 \f
3036
3037 /* Name resolution */
3038
3039 /* The "decoded" name for the user-definable Ada operator corresponding
3040 to OP. */
3041
3042 static const char *
3043 ada_decoded_op_name (enum exp_opcode op)
3044 {
3045 int i;
3046
3047 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3048 {
3049 if (ada_opname_table[i].op == op)
3050 return ada_opname_table[i].decoded;
3051 }
3052 error (_("Could not find operator name for opcode"));
3053 }
3054
3055
3056 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3057 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3058 undefined namespace) and converts operators that are
3059 user-defined into appropriate function calls. If CONTEXT_TYPE is
3060 non-null, it provides a preferred result type [at the moment, only
3061 type void has any effect---causing procedures to be preferred over
3062 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3063 return type is preferred. May change (expand) *EXP. */
3064
3065 static void
3066 resolve (struct expression **expp, int void_context_p)
3067 {
3068 struct type *context_type = NULL;
3069 int pc = 0;
3070
3071 if (void_context_p)
3072 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3073
3074 resolve_subexp (expp, &pc, 1, context_type);
3075 }
3076
3077 /* Resolve the operator of the subexpression beginning at
3078 position *POS of *EXPP. "Resolving" consists of replacing
3079 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3080 with their resolutions, replacing built-in operators with
3081 function calls to user-defined operators, where appropriate, and,
3082 when DEPROCEDURE_P is non-zero, converting function-valued variables
3083 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3084 are as in ada_resolve, above. */
3085
3086 static struct value *
3087 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3088 struct type *context_type)
3089 {
3090 int pc = *pos;
3091 int i;
3092 struct expression *exp; /* Convenience: == *expp. */
3093 enum exp_opcode op = (*expp)->elts[pc].opcode;
3094 struct value **argvec; /* Vector of operand types (alloca'ed). */
3095 int nargs; /* Number of operands. */
3096 int oplen;
3097
3098 argvec = NULL;
3099 nargs = 0;
3100 exp = *expp;
3101
3102 /* Pass one: resolve operands, saving their types and updating *pos,
3103 if needed. */
3104 switch (op)
3105 {
3106 case OP_FUNCALL:
3107 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3108 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3109 *pos += 7;
3110 else
3111 {
3112 *pos += 3;
3113 resolve_subexp (expp, pos, 0, NULL);
3114 }
3115 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3116 break;
3117
3118 case UNOP_ADDR:
3119 *pos += 1;
3120 resolve_subexp (expp, pos, 0, NULL);
3121 break;
3122
3123 case UNOP_QUAL:
3124 *pos += 3;
3125 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3126 break;
3127
3128 case OP_ATR_MODULUS:
3129 case OP_ATR_SIZE:
3130 case OP_ATR_TAG:
3131 case OP_ATR_FIRST:
3132 case OP_ATR_LAST:
3133 case OP_ATR_LENGTH:
3134 case OP_ATR_POS:
3135 case OP_ATR_VAL:
3136 case OP_ATR_MIN:
3137 case OP_ATR_MAX:
3138 case TERNOP_IN_RANGE:
3139 case BINOP_IN_BOUNDS:
3140 case UNOP_IN_RANGE:
3141 case OP_AGGREGATE:
3142 case OP_OTHERS:
3143 case OP_CHOICES:
3144 case OP_POSITIONAL:
3145 case OP_DISCRETE_RANGE:
3146 case OP_NAME:
3147 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3148 *pos += oplen;
3149 break;
3150
3151 case BINOP_ASSIGN:
3152 {
3153 struct value *arg1;
3154
3155 *pos += 1;
3156 arg1 = resolve_subexp (expp, pos, 0, NULL);
3157 if (arg1 == NULL)
3158 resolve_subexp (expp, pos, 1, NULL);
3159 else
3160 resolve_subexp (expp, pos, 1, value_type (arg1));
3161 break;
3162 }
3163
3164 case UNOP_CAST:
3165 *pos += 3;
3166 nargs = 1;
3167 break;
3168
3169 case BINOP_ADD:
3170 case BINOP_SUB:
3171 case BINOP_MUL:
3172 case BINOP_DIV:
3173 case BINOP_REM:
3174 case BINOP_MOD:
3175 case BINOP_EXP:
3176 case BINOP_CONCAT:
3177 case BINOP_LOGICAL_AND:
3178 case BINOP_LOGICAL_OR:
3179 case BINOP_BITWISE_AND:
3180 case BINOP_BITWISE_IOR:
3181 case BINOP_BITWISE_XOR:
3182
3183 case BINOP_EQUAL:
3184 case BINOP_NOTEQUAL:
3185 case BINOP_LESS:
3186 case BINOP_GTR:
3187 case BINOP_LEQ:
3188 case BINOP_GEQ:
3189
3190 case BINOP_REPEAT:
3191 case BINOP_SUBSCRIPT:
3192 case BINOP_COMMA:
3193 *pos += 1;
3194 nargs = 2;
3195 break;
3196
3197 case UNOP_NEG:
3198 case UNOP_PLUS:
3199 case UNOP_LOGICAL_NOT:
3200 case UNOP_ABS:
3201 case UNOP_IND:
3202 *pos += 1;
3203 nargs = 1;
3204 break;
3205
3206 case OP_LONG:
3207 case OP_DOUBLE:
3208 case OP_VAR_VALUE:
3209 *pos += 4;
3210 break;
3211
3212 case OP_TYPE:
3213 case OP_BOOL:
3214 case OP_LAST:
3215 case OP_INTERNALVAR:
3216 *pos += 3;
3217 break;
3218
3219 case UNOP_MEMVAL:
3220 *pos += 3;
3221 nargs = 1;
3222 break;
3223
3224 case OP_REGISTER:
3225 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3226 break;
3227
3228 case STRUCTOP_STRUCT:
3229 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3230 nargs = 1;
3231 break;
3232
3233 case TERNOP_SLICE:
3234 *pos += 1;
3235 nargs = 3;
3236 break;
3237
3238 case OP_STRING:
3239 break;
3240
3241 default:
3242 error (_("Unexpected operator during name resolution"));
3243 }
3244
3245 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3246 for (i = 0; i < nargs; i += 1)
3247 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3248 argvec[i] = NULL;
3249 exp = *expp;
3250
3251 /* Pass two: perform any resolution on principal operator. */
3252 switch (op)
3253 {
3254 default:
3255 break;
3256
3257 case OP_VAR_VALUE:
3258 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3259 {
3260 struct ada_symbol_info *candidates;
3261 int n_candidates;
3262
3263 n_candidates =
3264 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3265 (exp->elts[pc + 2].symbol),
3266 exp->elts[pc + 1].block, VAR_DOMAIN,
3267 &candidates);
3268
3269 if (n_candidates > 1)
3270 {
3271 /* Types tend to get re-introduced locally, so if there
3272 are any local symbols that are not types, first filter
3273 out all types. */
3274 int j;
3275 for (j = 0; j < n_candidates; j += 1)
3276 switch (SYMBOL_CLASS (candidates[j].sym))
3277 {
3278 case LOC_REGISTER:
3279 case LOC_ARG:
3280 case LOC_REF_ARG:
3281 case LOC_REGPARM_ADDR:
3282 case LOC_LOCAL:
3283 case LOC_COMPUTED:
3284 goto FoundNonType;
3285 default:
3286 break;
3287 }
3288 FoundNonType:
3289 if (j < n_candidates)
3290 {
3291 j = 0;
3292 while (j < n_candidates)
3293 {
3294 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3295 {
3296 candidates[j] = candidates[n_candidates - 1];
3297 n_candidates -= 1;
3298 }
3299 else
3300 j += 1;
3301 }
3302 }
3303 }
3304
3305 if (n_candidates == 0)
3306 error (_("No definition found for %s"),
3307 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3308 else if (n_candidates == 1)
3309 i = 0;
3310 else if (deprocedure_p
3311 && !is_nonfunction (candidates, n_candidates))
3312 {
3313 i = ada_resolve_function
3314 (candidates, n_candidates, NULL, 0,
3315 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3316 context_type);
3317 if (i < 0)
3318 error (_("Could not find a match for %s"),
3319 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3320 }
3321 else
3322 {
3323 printf_filtered (_("Multiple matches for %s\n"),
3324 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3325 user_select_syms (candidates, n_candidates, 1);
3326 i = 0;
3327 }
3328
3329 exp->elts[pc + 1].block = candidates[i].block;
3330 exp->elts[pc + 2].symbol = candidates[i].sym;
3331 if (innermost_block == NULL
3332 || contained_in (candidates[i].block, innermost_block))
3333 innermost_block = candidates[i].block;
3334 }
3335
3336 if (deprocedure_p
3337 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3338 == TYPE_CODE_FUNC))
3339 {
3340 replace_operator_with_call (expp, pc, 0, 0,
3341 exp->elts[pc + 2].symbol,
3342 exp->elts[pc + 1].block);
3343 exp = *expp;
3344 }
3345 break;
3346
3347 case OP_FUNCALL:
3348 {
3349 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3350 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3351 {
3352 struct ada_symbol_info *candidates;
3353 int n_candidates;
3354
3355 n_candidates =
3356 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3357 (exp->elts[pc + 5].symbol),
3358 exp->elts[pc + 4].block, VAR_DOMAIN,
3359 &candidates);
3360 if (n_candidates == 1)
3361 i = 0;
3362 else
3363 {
3364 i = ada_resolve_function
3365 (candidates, n_candidates,
3366 argvec, nargs,
3367 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3368 context_type);
3369 if (i < 0)
3370 error (_("Could not find a match for %s"),
3371 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3372 }
3373
3374 exp->elts[pc + 4].block = candidates[i].block;
3375 exp->elts[pc + 5].symbol = candidates[i].sym;
3376 if (innermost_block == NULL
3377 || contained_in (candidates[i].block, innermost_block))
3378 innermost_block = candidates[i].block;
3379 }
3380 }
3381 break;
3382 case BINOP_ADD:
3383 case BINOP_SUB:
3384 case BINOP_MUL:
3385 case BINOP_DIV:
3386 case BINOP_REM:
3387 case BINOP_MOD:
3388 case BINOP_CONCAT:
3389 case BINOP_BITWISE_AND:
3390 case BINOP_BITWISE_IOR:
3391 case BINOP_BITWISE_XOR:
3392 case BINOP_EQUAL:
3393 case BINOP_NOTEQUAL:
3394 case BINOP_LESS:
3395 case BINOP_GTR:
3396 case BINOP_LEQ:
3397 case BINOP_GEQ:
3398 case BINOP_EXP:
3399 case UNOP_NEG:
3400 case UNOP_PLUS:
3401 case UNOP_LOGICAL_NOT:
3402 case UNOP_ABS:
3403 if (possible_user_operator_p (op, argvec))
3404 {
3405 struct ada_symbol_info *candidates;
3406 int n_candidates;
3407
3408 n_candidates =
3409 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3410 (struct block *) NULL, VAR_DOMAIN,
3411 &candidates);
3412 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3413 ada_decoded_op_name (op), NULL);
3414 if (i < 0)
3415 break;
3416
3417 replace_operator_with_call (expp, pc, nargs, 1,
3418 candidates[i].sym, candidates[i].block);
3419 exp = *expp;
3420 }
3421 break;
3422
3423 case OP_TYPE:
3424 case OP_REGISTER:
3425 return NULL;
3426 }
3427
3428 *pos = pc;
3429 return evaluate_subexp_type (exp, pos);
3430 }
3431
3432 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3433 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3434 a non-pointer. */
3435 /* The term "match" here is rather loose. The match is heuristic and
3436 liberal. */
3437
3438 static int
3439 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3440 {
3441 ftype = ada_check_typedef (ftype);
3442 atype = ada_check_typedef (atype);
3443
3444 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3445 ftype = TYPE_TARGET_TYPE (ftype);
3446 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3447 atype = TYPE_TARGET_TYPE (atype);
3448
3449 switch (TYPE_CODE (ftype))
3450 {
3451 default:
3452 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3453 case TYPE_CODE_PTR:
3454 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3455 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3456 TYPE_TARGET_TYPE (atype), 0);
3457 else
3458 return (may_deref
3459 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3460 case TYPE_CODE_INT:
3461 case TYPE_CODE_ENUM:
3462 case TYPE_CODE_RANGE:
3463 switch (TYPE_CODE (atype))
3464 {
3465 case TYPE_CODE_INT:
3466 case TYPE_CODE_ENUM:
3467 case TYPE_CODE_RANGE:
3468 return 1;
3469 default:
3470 return 0;
3471 }
3472
3473 case TYPE_CODE_ARRAY:
3474 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3475 || ada_is_array_descriptor_type (atype));
3476
3477 case TYPE_CODE_STRUCT:
3478 if (ada_is_array_descriptor_type (ftype))
3479 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3480 || ada_is_array_descriptor_type (atype));
3481 else
3482 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3483 && !ada_is_array_descriptor_type (atype));
3484
3485 case TYPE_CODE_UNION:
3486 case TYPE_CODE_FLT:
3487 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3488 }
3489 }
3490
3491 /* Return non-zero if the formals of FUNC "sufficiently match" the
3492 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3493 may also be an enumeral, in which case it is treated as a 0-
3494 argument function. */
3495
3496 static int
3497 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3498 {
3499 int i;
3500 struct type *func_type = SYMBOL_TYPE (func);
3501
3502 if (SYMBOL_CLASS (func) == LOC_CONST
3503 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3504 return (n_actuals == 0);
3505 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3506 return 0;
3507
3508 if (TYPE_NFIELDS (func_type) != n_actuals)
3509 return 0;
3510
3511 for (i = 0; i < n_actuals; i += 1)
3512 {
3513 if (actuals[i] == NULL)
3514 return 0;
3515 else
3516 {
3517 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3518 i));
3519 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3520
3521 if (!ada_type_match (ftype, atype, 1))
3522 return 0;
3523 }
3524 }
3525 return 1;
3526 }
3527
3528 /* False iff function type FUNC_TYPE definitely does not produce a value
3529 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3530 FUNC_TYPE is not a valid function type with a non-null return type
3531 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3532
3533 static int
3534 return_match (struct type *func_type, struct type *context_type)
3535 {
3536 struct type *return_type;
3537
3538 if (func_type == NULL)
3539 return 1;
3540
3541 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3542 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3543 else
3544 return_type = get_base_type (func_type);
3545 if (return_type == NULL)
3546 return 1;
3547
3548 context_type = get_base_type (context_type);
3549
3550 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3551 return context_type == NULL || return_type == context_type;
3552 else if (context_type == NULL)
3553 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3554 else
3555 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3556 }
3557
3558
3559 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3560 function (if any) that matches the types of the NARGS arguments in
3561 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3562 that returns that type, then eliminate matches that don't. If
3563 CONTEXT_TYPE is void and there is at least one match that does not
3564 return void, eliminate all matches that do.
3565
3566 Asks the user if there is more than one match remaining. Returns -1
3567 if there is no such symbol or none is selected. NAME is used
3568 solely for messages. May re-arrange and modify SYMS in
3569 the process; the index returned is for the modified vector. */
3570
3571 static int
3572 ada_resolve_function (struct ada_symbol_info syms[],
3573 int nsyms, struct value **args, int nargs,
3574 const char *name, struct type *context_type)
3575 {
3576 int fallback;
3577 int k;
3578 int m; /* Number of hits */
3579
3580 m = 0;
3581 /* In the first pass of the loop, we only accept functions matching
3582 context_type. If none are found, we add a second pass of the loop
3583 where every function is accepted. */
3584 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3585 {
3586 for (k = 0; k < nsyms; k += 1)
3587 {
3588 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3589
3590 if (ada_args_match (syms[k].sym, args, nargs)
3591 && (fallback || return_match (type, context_type)))
3592 {
3593 syms[m] = syms[k];
3594 m += 1;
3595 }
3596 }
3597 }
3598
3599 if (m == 0)
3600 return -1;
3601 else if (m > 1)
3602 {
3603 printf_filtered (_("Multiple matches for %s\n"), name);
3604 user_select_syms (syms, m, 1);
3605 return 0;
3606 }
3607 return 0;
3608 }
3609
3610 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3611 in a listing of choices during disambiguation (see sort_choices, below).
3612 The idea is that overloadings of a subprogram name from the
3613 same package should sort in their source order. We settle for ordering
3614 such symbols by their trailing number (__N or $N). */
3615
3616 static int
3617 encoded_ordered_before (const char *N0, const char *N1)
3618 {
3619 if (N1 == NULL)
3620 return 0;
3621 else if (N0 == NULL)
3622 return 1;
3623 else
3624 {
3625 int k0, k1;
3626
3627 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3628 ;
3629 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3630 ;
3631 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3632 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3633 {
3634 int n0, n1;
3635
3636 n0 = k0;
3637 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3638 n0 -= 1;
3639 n1 = k1;
3640 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3641 n1 -= 1;
3642 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3643 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3644 }
3645 return (strcmp (N0, N1) < 0);
3646 }
3647 }
3648
3649 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3650 encoded names. */
3651
3652 static void
3653 sort_choices (struct ada_symbol_info syms[], int nsyms)
3654 {
3655 int i;
3656
3657 for (i = 1; i < nsyms; i += 1)
3658 {
3659 struct ada_symbol_info sym = syms[i];
3660 int j;
3661
3662 for (j = i - 1; j >= 0; j -= 1)
3663 {
3664 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3665 SYMBOL_LINKAGE_NAME (sym.sym)))
3666 break;
3667 syms[j + 1] = syms[j];
3668 }
3669 syms[j + 1] = sym;
3670 }
3671 }
3672
3673 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3674 by asking the user (if necessary), returning the number selected,
3675 and setting the first elements of SYMS items. Error if no symbols
3676 selected. */
3677
3678 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3679 to be re-integrated one of these days. */
3680
3681 int
3682 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3683 {
3684 int i;
3685 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3686 int n_chosen;
3687 int first_choice = (max_results == 1) ? 1 : 2;
3688 const char *select_mode = multiple_symbols_select_mode ();
3689
3690 if (max_results < 1)
3691 error (_("Request to select 0 symbols!"));
3692 if (nsyms <= 1)
3693 return nsyms;
3694
3695 if (select_mode == multiple_symbols_cancel)
3696 error (_("\
3697 canceled because the command is ambiguous\n\
3698 See set/show multiple-symbol."));
3699
3700 /* If select_mode is "all", then return all possible symbols.
3701 Only do that if more than one symbol can be selected, of course.
3702 Otherwise, display the menu as usual. */
3703 if (select_mode == multiple_symbols_all && max_results > 1)
3704 return nsyms;
3705
3706 printf_unfiltered (_("[0] cancel\n"));
3707 if (max_results > 1)
3708 printf_unfiltered (_("[1] all\n"));
3709
3710 sort_choices (syms, nsyms);
3711
3712 for (i = 0; i < nsyms; i += 1)
3713 {
3714 if (syms[i].sym == NULL)
3715 continue;
3716
3717 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3718 {
3719 struct symtab_and_line sal =
3720 find_function_start_sal (syms[i].sym, 1);
3721
3722 if (sal.symtab == NULL)
3723 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3724 i + first_choice,
3725 SYMBOL_PRINT_NAME (syms[i].sym),
3726 sal.line);
3727 else
3728 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3729 SYMBOL_PRINT_NAME (syms[i].sym),
3730 symtab_to_filename_for_display (sal.symtab),
3731 sal.line);
3732 continue;
3733 }
3734 else
3735 {
3736 int is_enumeral =
3737 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3738 && SYMBOL_TYPE (syms[i].sym) != NULL
3739 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3740 struct symtab *symtab = NULL;
3741
3742 if (SYMBOL_OBJFILE_OWNED (syms[i].sym))
3743 symtab = symbol_symtab (syms[i].sym);
3744
3745 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3746 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3747 i + first_choice,
3748 SYMBOL_PRINT_NAME (syms[i].sym),
3749 symtab_to_filename_for_display (symtab),
3750 SYMBOL_LINE (syms[i].sym));
3751 else if (is_enumeral
3752 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3753 {
3754 printf_unfiltered (("[%d] "), i + first_choice);
3755 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3756 gdb_stdout, -1, 0, &type_print_raw_options);
3757 printf_unfiltered (_("'(%s) (enumeral)\n"),
3758 SYMBOL_PRINT_NAME (syms[i].sym));
3759 }
3760 else if (symtab != NULL)
3761 printf_unfiltered (is_enumeral
3762 ? _("[%d] %s in %s (enumeral)\n")
3763 : _("[%d] %s at %s:?\n"),
3764 i + first_choice,
3765 SYMBOL_PRINT_NAME (syms[i].sym),
3766 symtab_to_filename_for_display (symtab));
3767 else
3768 printf_unfiltered (is_enumeral
3769 ? _("[%d] %s (enumeral)\n")
3770 : _("[%d] %s at ?\n"),
3771 i + first_choice,
3772 SYMBOL_PRINT_NAME (syms[i].sym));
3773 }
3774 }
3775
3776 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3777 "overload-choice");
3778
3779 for (i = 0; i < n_chosen; i += 1)
3780 syms[i] = syms[chosen[i]];
3781
3782 return n_chosen;
3783 }
3784
3785 /* Read and validate a set of numeric choices from the user in the
3786 range 0 .. N_CHOICES-1. Place the results in increasing
3787 order in CHOICES[0 .. N-1], and return N.
3788
3789 The user types choices as a sequence of numbers on one line
3790 separated by blanks, encoding them as follows:
3791
3792 + A choice of 0 means to cancel the selection, throwing an error.
3793 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3794 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3795
3796 The user is not allowed to choose more than MAX_RESULTS values.
3797
3798 ANNOTATION_SUFFIX, if present, is used to annotate the input
3799 prompts (for use with the -f switch). */
3800
3801 int
3802 get_selections (int *choices, int n_choices, int max_results,
3803 int is_all_choice, char *annotation_suffix)
3804 {
3805 char *args;
3806 char *prompt;
3807 int n_chosen;
3808 int first_choice = is_all_choice ? 2 : 1;
3809
3810 prompt = getenv ("PS2");
3811 if (prompt == NULL)
3812 prompt = "> ";
3813
3814 args = command_line_input (prompt, 0, annotation_suffix);
3815
3816 if (args == NULL)
3817 error_no_arg (_("one or more choice numbers"));
3818
3819 n_chosen = 0;
3820
3821 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3822 order, as given in args. Choices are validated. */
3823 while (1)
3824 {
3825 char *args2;
3826 int choice, j;
3827
3828 args = skip_spaces (args);
3829 if (*args == '\0' && n_chosen == 0)
3830 error_no_arg (_("one or more choice numbers"));
3831 else if (*args == '\0')
3832 break;
3833
3834 choice = strtol (args, &args2, 10);
3835 if (args == args2 || choice < 0
3836 || choice > n_choices + first_choice - 1)
3837 error (_("Argument must be choice number"));
3838 args = args2;
3839
3840 if (choice == 0)
3841 error (_("cancelled"));
3842
3843 if (choice < first_choice)
3844 {
3845 n_chosen = n_choices;
3846 for (j = 0; j < n_choices; j += 1)
3847 choices[j] = j;
3848 break;
3849 }
3850 choice -= first_choice;
3851
3852 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3853 {
3854 }
3855
3856 if (j < 0 || choice != choices[j])
3857 {
3858 int k;
3859
3860 for (k = n_chosen - 1; k > j; k -= 1)
3861 choices[k + 1] = choices[k];
3862 choices[j + 1] = choice;
3863 n_chosen += 1;
3864 }
3865 }
3866
3867 if (n_chosen > max_results)
3868 error (_("Select no more than %d of the above"), max_results);
3869
3870 return n_chosen;
3871 }
3872
3873 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3874 on the function identified by SYM and BLOCK, and taking NARGS
3875 arguments. Update *EXPP as needed to hold more space. */
3876
3877 static void
3878 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3879 int oplen, struct symbol *sym,
3880 const struct block *block)
3881 {
3882 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3883 symbol, -oplen for operator being replaced). */
3884 struct expression *newexp = (struct expression *)
3885 xzalloc (sizeof (struct expression)
3886 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3887 struct expression *exp = *expp;
3888
3889 newexp->nelts = exp->nelts + 7 - oplen;
3890 newexp->language_defn = exp->language_defn;
3891 newexp->gdbarch = exp->gdbarch;
3892 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3893 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3894 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3895
3896 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3897 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3898
3899 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3900 newexp->elts[pc + 4].block = block;
3901 newexp->elts[pc + 5].symbol = sym;
3902
3903 *expp = newexp;
3904 xfree (exp);
3905 }
3906
3907 /* Type-class predicates */
3908
3909 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3910 or FLOAT). */
3911
3912 static int
3913 numeric_type_p (struct type *type)
3914 {
3915 if (type == NULL)
3916 return 0;
3917 else
3918 {
3919 switch (TYPE_CODE (type))
3920 {
3921 case TYPE_CODE_INT:
3922 case TYPE_CODE_FLT:
3923 return 1;
3924 case TYPE_CODE_RANGE:
3925 return (type == TYPE_TARGET_TYPE (type)
3926 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3927 default:
3928 return 0;
3929 }
3930 }
3931 }
3932
3933 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3934
3935 static int
3936 integer_type_p (struct type *type)
3937 {
3938 if (type == NULL)
3939 return 0;
3940 else
3941 {
3942 switch (TYPE_CODE (type))
3943 {
3944 case TYPE_CODE_INT:
3945 return 1;
3946 case TYPE_CODE_RANGE:
3947 return (type == TYPE_TARGET_TYPE (type)
3948 || integer_type_p (TYPE_TARGET_TYPE (type)));
3949 default:
3950 return 0;
3951 }
3952 }
3953 }
3954
3955 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3956
3957 static int
3958 scalar_type_p (struct type *type)
3959 {
3960 if (type == NULL)
3961 return 0;
3962 else
3963 {
3964 switch (TYPE_CODE (type))
3965 {
3966 case TYPE_CODE_INT:
3967 case TYPE_CODE_RANGE:
3968 case TYPE_CODE_ENUM:
3969 case TYPE_CODE_FLT:
3970 return 1;
3971 default:
3972 return 0;
3973 }
3974 }
3975 }
3976
3977 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3978
3979 static int
3980 discrete_type_p (struct type *type)
3981 {
3982 if (type == NULL)
3983 return 0;
3984 else
3985 {
3986 switch (TYPE_CODE (type))
3987 {
3988 case TYPE_CODE_INT:
3989 case TYPE_CODE_RANGE:
3990 case TYPE_CODE_ENUM:
3991 case TYPE_CODE_BOOL:
3992 return 1;
3993 default:
3994 return 0;
3995 }
3996 }
3997 }
3998
3999 /* Returns non-zero if OP with operands in the vector ARGS could be
4000 a user-defined function. Errs on the side of pre-defined operators
4001 (i.e., result 0). */
4002
4003 static int
4004 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4005 {
4006 struct type *type0 =
4007 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4008 struct type *type1 =
4009 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4010
4011 if (type0 == NULL)
4012 return 0;
4013
4014 switch (op)
4015 {
4016 default:
4017 return 0;
4018
4019 case BINOP_ADD:
4020 case BINOP_SUB:
4021 case BINOP_MUL:
4022 case BINOP_DIV:
4023 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4024
4025 case BINOP_REM:
4026 case BINOP_MOD:
4027 case BINOP_BITWISE_AND:
4028 case BINOP_BITWISE_IOR:
4029 case BINOP_BITWISE_XOR:
4030 return (!(integer_type_p (type0) && integer_type_p (type1)));
4031
4032 case BINOP_EQUAL:
4033 case BINOP_NOTEQUAL:
4034 case BINOP_LESS:
4035 case BINOP_GTR:
4036 case BINOP_LEQ:
4037 case BINOP_GEQ:
4038 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4039
4040 case BINOP_CONCAT:
4041 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4042
4043 case BINOP_EXP:
4044 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4045
4046 case UNOP_NEG:
4047 case UNOP_PLUS:
4048 case UNOP_LOGICAL_NOT:
4049 case UNOP_ABS:
4050 return (!numeric_type_p (type0));
4051
4052 }
4053 }
4054 \f
4055 /* Renaming */
4056
4057 /* NOTES:
4058
4059 1. In the following, we assume that a renaming type's name may
4060 have an ___XD suffix. It would be nice if this went away at some
4061 point.
4062 2. We handle both the (old) purely type-based representation of
4063 renamings and the (new) variable-based encoding. At some point,
4064 it is devoutly to be hoped that the former goes away
4065 (FIXME: hilfinger-2007-07-09).
4066 3. Subprogram renamings are not implemented, although the XRS
4067 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4068
4069 /* If SYM encodes a renaming,
4070
4071 <renaming> renames <renamed entity>,
4072
4073 sets *LEN to the length of the renamed entity's name,
4074 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4075 the string describing the subcomponent selected from the renamed
4076 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4077 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4078 are undefined). Otherwise, returns a value indicating the category
4079 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4080 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4081 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4082 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4083 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4084 may be NULL, in which case they are not assigned.
4085
4086 [Currently, however, GCC does not generate subprogram renamings.] */
4087
4088 enum ada_renaming_category
4089 ada_parse_renaming (struct symbol *sym,
4090 const char **renamed_entity, int *len,
4091 const char **renaming_expr)
4092 {
4093 enum ada_renaming_category kind;
4094 const char *info;
4095 const char *suffix;
4096
4097 if (sym == NULL)
4098 return ADA_NOT_RENAMING;
4099 switch (SYMBOL_CLASS (sym))
4100 {
4101 default:
4102 return ADA_NOT_RENAMING;
4103 case LOC_TYPEDEF:
4104 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4105 renamed_entity, len, renaming_expr);
4106 case LOC_LOCAL:
4107 case LOC_STATIC:
4108 case LOC_COMPUTED:
4109 case LOC_OPTIMIZED_OUT:
4110 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4111 if (info == NULL)
4112 return ADA_NOT_RENAMING;
4113 switch (info[5])
4114 {
4115 case '_':
4116 kind = ADA_OBJECT_RENAMING;
4117 info += 6;
4118 break;
4119 case 'E':
4120 kind = ADA_EXCEPTION_RENAMING;
4121 info += 7;
4122 break;
4123 case 'P':
4124 kind = ADA_PACKAGE_RENAMING;
4125 info += 7;
4126 break;
4127 case 'S':
4128 kind = ADA_SUBPROGRAM_RENAMING;
4129 info += 7;
4130 break;
4131 default:
4132 return ADA_NOT_RENAMING;
4133 }
4134 }
4135
4136 if (renamed_entity != NULL)
4137 *renamed_entity = info;
4138 suffix = strstr (info, "___XE");
4139 if (suffix == NULL || suffix == info)
4140 return ADA_NOT_RENAMING;
4141 if (len != NULL)
4142 *len = strlen (info) - strlen (suffix);
4143 suffix += 5;
4144 if (renaming_expr != NULL)
4145 *renaming_expr = suffix;
4146 return kind;
4147 }
4148
4149 /* Assuming TYPE encodes a renaming according to the old encoding in
4150 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4151 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4152 ADA_NOT_RENAMING otherwise. */
4153 static enum ada_renaming_category
4154 parse_old_style_renaming (struct type *type,
4155 const char **renamed_entity, int *len,
4156 const char **renaming_expr)
4157 {
4158 enum ada_renaming_category kind;
4159 const char *name;
4160 const char *info;
4161 const char *suffix;
4162
4163 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4164 || TYPE_NFIELDS (type) != 1)
4165 return ADA_NOT_RENAMING;
4166
4167 name = type_name_no_tag (type);
4168 if (name == NULL)
4169 return ADA_NOT_RENAMING;
4170
4171 name = strstr (name, "___XR");
4172 if (name == NULL)
4173 return ADA_NOT_RENAMING;
4174 switch (name[5])
4175 {
4176 case '\0':
4177 case '_':
4178 kind = ADA_OBJECT_RENAMING;
4179 break;
4180 case 'E':
4181 kind = ADA_EXCEPTION_RENAMING;
4182 break;
4183 case 'P':
4184 kind = ADA_PACKAGE_RENAMING;
4185 break;
4186 case 'S':
4187 kind = ADA_SUBPROGRAM_RENAMING;
4188 break;
4189 default:
4190 return ADA_NOT_RENAMING;
4191 }
4192
4193 info = TYPE_FIELD_NAME (type, 0);
4194 if (info == NULL)
4195 return ADA_NOT_RENAMING;
4196 if (renamed_entity != NULL)
4197 *renamed_entity = info;
4198 suffix = strstr (info, "___XE");
4199 if (renaming_expr != NULL)
4200 *renaming_expr = suffix + 5;
4201 if (suffix == NULL || suffix == info)
4202 return ADA_NOT_RENAMING;
4203 if (len != NULL)
4204 *len = suffix - info;
4205 return kind;
4206 }
4207
4208 /* Compute the value of the given RENAMING_SYM, which is expected to
4209 be a symbol encoding a renaming expression. BLOCK is the block
4210 used to evaluate the renaming. */
4211
4212 static struct value *
4213 ada_read_renaming_var_value (struct symbol *renaming_sym,
4214 const struct block *block)
4215 {
4216 const char *sym_name;
4217 struct expression *expr;
4218 struct value *value;
4219 struct cleanup *old_chain = NULL;
4220
4221 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4222 expr = parse_exp_1 (&sym_name, 0, block, 0);
4223 old_chain = make_cleanup (free_current_contents, &expr);
4224 value = evaluate_expression (expr);
4225
4226 do_cleanups (old_chain);
4227 return value;
4228 }
4229 \f
4230
4231 /* Evaluation: Function Calls */
4232
4233 /* Return an lvalue containing the value VAL. This is the identity on
4234 lvalues, and otherwise has the side-effect of allocating memory
4235 in the inferior where a copy of the value contents is copied. */
4236
4237 static struct value *
4238 ensure_lval (struct value *val)
4239 {
4240 if (VALUE_LVAL (val) == not_lval
4241 || VALUE_LVAL (val) == lval_internalvar)
4242 {
4243 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4244 const CORE_ADDR addr =
4245 value_as_long (value_allocate_space_in_inferior (len));
4246
4247 set_value_address (val, addr);
4248 VALUE_LVAL (val) = lval_memory;
4249 write_memory (addr, value_contents (val), len);
4250 }
4251
4252 return val;
4253 }
4254
4255 /* Return the value ACTUAL, converted to be an appropriate value for a
4256 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4257 allocating any necessary descriptors (fat pointers), or copies of
4258 values not residing in memory, updating it as needed. */
4259
4260 struct value *
4261 ada_convert_actual (struct value *actual, struct type *formal_type0)
4262 {
4263 struct type *actual_type = ada_check_typedef (value_type (actual));
4264 struct type *formal_type = ada_check_typedef (formal_type0);
4265 struct type *formal_target =
4266 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4267 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4268 struct type *actual_target =
4269 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4270 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4271
4272 if (ada_is_array_descriptor_type (formal_target)
4273 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4274 return make_array_descriptor (formal_type, actual);
4275 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4276 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4277 {
4278 struct value *result;
4279
4280 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4281 && ada_is_array_descriptor_type (actual_target))
4282 result = desc_data (actual);
4283 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4284 {
4285 if (VALUE_LVAL (actual) != lval_memory)
4286 {
4287 struct value *val;
4288
4289 actual_type = ada_check_typedef (value_type (actual));
4290 val = allocate_value (actual_type);
4291 memcpy ((char *) value_contents_raw (val),
4292 (char *) value_contents (actual),
4293 TYPE_LENGTH (actual_type));
4294 actual = ensure_lval (val);
4295 }
4296 result = value_addr (actual);
4297 }
4298 else
4299 return actual;
4300 return value_cast_pointers (formal_type, result, 0);
4301 }
4302 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4303 return ada_value_ind (actual);
4304
4305 return actual;
4306 }
4307
4308 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4309 type TYPE. This is usually an inefficient no-op except on some targets
4310 (such as AVR) where the representation of a pointer and an address
4311 differs. */
4312
4313 static CORE_ADDR
4314 value_pointer (struct value *value, struct type *type)
4315 {
4316 struct gdbarch *gdbarch = get_type_arch (type);
4317 unsigned len = TYPE_LENGTH (type);
4318 gdb_byte *buf = alloca (len);
4319 CORE_ADDR addr;
4320
4321 addr = value_address (value);
4322 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4323 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4324 return addr;
4325 }
4326
4327
4328 /* Push a descriptor of type TYPE for array value ARR on the stack at
4329 *SP, updating *SP to reflect the new descriptor. Return either
4330 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4331 to-descriptor type rather than a descriptor type), a struct value *
4332 representing a pointer to this descriptor. */
4333
4334 static struct value *
4335 make_array_descriptor (struct type *type, struct value *arr)
4336 {
4337 struct type *bounds_type = desc_bounds_type (type);
4338 struct type *desc_type = desc_base_type (type);
4339 struct value *descriptor = allocate_value (desc_type);
4340 struct value *bounds = allocate_value (bounds_type);
4341 int i;
4342
4343 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4344 i > 0; i -= 1)
4345 {
4346 modify_field (value_type (bounds), value_contents_writeable (bounds),
4347 ada_array_bound (arr, i, 0),
4348 desc_bound_bitpos (bounds_type, i, 0),
4349 desc_bound_bitsize (bounds_type, i, 0));
4350 modify_field (value_type (bounds), value_contents_writeable (bounds),
4351 ada_array_bound (arr, i, 1),
4352 desc_bound_bitpos (bounds_type, i, 1),
4353 desc_bound_bitsize (bounds_type, i, 1));
4354 }
4355
4356 bounds = ensure_lval (bounds);
4357
4358 modify_field (value_type (descriptor),
4359 value_contents_writeable (descriptor),
4360 value_pointer (ensure_lval (arr),
4361 TYPE_FIELD_TYPE (desc_type, 0)),
4362 fat_pntr_data_bitpos (desc_type),
4363 fat_pntr_data_bitsize (desc_type));
4364
4365 modify_field (value_type (descriptor),
4366 value_contents_writeable (descriptor),
4367 value_pointer (bounds,
4368 TYPE_FIELD_TYPE (desc_type, 1)),
4369 fat_pntr_bounds_bitpos (desc_type),
4370 fat_pntr_bounds_bitsize (desc_type));
4371
4372 descriptor = ensure_lval (descriptor);
4373
4374 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4375 return value_addr (descriptor);
4376 else
4377 return descriptor;
4378 }
4379 \f
4380 /* Symbol Cache Module */
4381
4382 /* Performance measurements made as of 2010-01-15 indicate that
4383 this cache does bring some noticeable improvements. Depending
4384 on the type of entity being printed, the cache can make it as much
4385 as an order of magnitude faster than without it.
4386
4387 The descriptive type DWARF extension has significantly reduced
4388 the need for this cache, at least when DWARF is being used. However,
4389 even in this case, some expensive name-based symbol searches are still
4390 sometimes necessary - to find an XVZ variable, mostly. */
4391
4392 /* Initialize the contents of SYM_CACHE. */
4393
4394 static void
4395 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4396 {
4397 obstack_init (&sym_cache->cache_space);
4398 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4399 }
4400
4401 /* Free the memory used by SYM_CACHE. */
4402
4403 static void
4404 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4405 {
4406 obstack_free (&sym_cache->cache_space, NULL);
4407 xfree (sym_cache);
4408 }
4409
4410 /* Return the symbol cache associated to the given program space PSPACE.
4411 If not allocated for this PSPACE yet, allocate and initialize one. */
4412
4413 static struct ada_symbol_cache *
4414 ada_get_symbol_cache (struct program_space *pspace)
4415 {
4416 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4417
4418 if (pspace_data->sym_cache == NULL)
4419 {
4420 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4421 ada_init_symbol_cache (pspace_data->sym_cache);
4422 }
4423
4424 return pspace_data->sym_cache;
4425 }
4426
4427 /* Clear all entries from the symbol cache. */
4428
4429 static void
4430 ada_clear_symbol_cache (void)
4431 {
4432 struct ada_symbol_cache *sym_cache
4433 = ada_get_symbol_cache (current_program_space);
4434
4435 obstack_free (&sym_cache->cache_space, NULL);
4436 ada_init_symbol_cache (sym_cache);
4437 }
4438
4439 /* Search our cache for an entry matching NAME and DOMAIN.
4440 Return it if found, or NULL otherwise. */
4441
4442 static struct cache_entry **
4443 find_entry (const char *name, domain_enum domain)
4444 {
4445 struct ada_symbol_cache *sym_cache
4446 = ada_get_symbol_cache (current_program_space);
4447 int h = msymbol_hash (name) % HASH_SIZE;
4448 struct cache_entry **e;
4449
4450 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4451 {
4452 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4453 return e;
4454 }
4455 return NULL;
4456 }
4457
4458 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4459 Return 1 if found, 0 otherwise.
4460
4461 If an entry was found and SYM is not NULL, set *SYM to the entry's
4462 SYM. Same principle for BLOCK if not NULL. */
4463
4464 static int
4465 lookup_cached_symbol (const char *name, domain_enum domain,
4466 struct symbol **sym, const struct block **block)
4467 {
4468 struct cache_entry **e = find_entry (name, domain);
4469
4470 if (e == NULL)
4471 return 0;
4472 if (sym != NULL)
4473 *sym = (*e)->sym;
4474 if (block != NULL)
4475 *block = (*e)->block;
4476 return 1;
4477 }
4478
4479 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4480 in domain DOMAIN, save this result in our symbol cache. */
4481
4482 static void
4483 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4484 const struct block *block)
4485 {
4486 struct ada_symbol_cache *sym_cache
4487 = ada_get_symbol_cache (current_program_space);
4488 int h;
4489 char *copy;
4490 struct cache_entry *e;
4491
4492 /* Symbols for builtin types don't have a block.
4493 For now don't cache such symbols. */
4494 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4495 return;
4496
4497 /* If the symbol is a local symbol, then do not cache it, as a search
4498 for that symbol depends on the context. To determine whether
4499 the symbol is local or not, we check the block where we found it
4500 against the global and static blocks of its associated symtab. */
4501 if (sym
4502 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4503 GLOBAL_BLOCK) != block
4504 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4505 STATIC_BLOCK) != block)
4506 return;
4507
4508 h = msymbol_hash (name) % HASH_SIZE;
4509 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4510 sizeof (*e));
4511 e->next = sym_cache->root[h];
4512 sym_cache->root[h] = e;
4513 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4514 strcpy (copy, name);
4515 e->sym = sym;
4516 e->domain = domain;
4517 e->block = block;
4518 }
4519 \f
4520 /* Symbol Lookup */
4521
4522 /* Return nonzero if wild matching should be used when searching for
4523 all symbols matching LOOKUP_NAME.
4524
4525 LOOKUP_NAME is expected to be a symbol name after transformation
4526 for Ada lookups (see ada_name_for_lookup). */
4527
4528 static int
4529 should_use_wild_match (const char *lookup_name)
4530 {
4531 return (strstr (lookup_name, "__") == NULL);
4532 }
4533
4534 /* Return the result of a standard (literal, C-like) lookup of NAME in
4535 given DOMAIN, visible from lexical block BLOCK. */
4536
4537 static struct symbol *
4538 standard_lookup (const char *name, const struct block *block,
4539 domain_enum domain)
4540 {
4541 /* Initialize it just to avoid a GCC false warning. */
4542 struct symbol *sym = NULL;
4543
4544 if (lookup_cached_symbol (name, domain, &sym, NULL))
4545 return sym;
4546 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4547 cache_symbol (name, domain, sym, block_found);
4548 return sym;
4549 }
4550
4551
4552 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4553 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4554 since they contend in overloading in the same way. */
4555 static int
4556 is_nonfunction (struct ada_symbol_info syms[], int n)
4557 {
4558 int i;
4559
4560 for (i = 0; i < n; i += 1)
4561 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4562 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4563 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4564 return 1;
4565
4566 return 0;
4567 }
4568
4569 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4570 struct types. Otherwise, they may not. */
4571
4572 static int
4573 equiv_types (struct type *type0, struct type *type1)
4574 {
4575 if (type0 == type1)
4576 return 1;
4577 if (type0 == NULL || type1 == NULL
4578 || TYPE_CODE (type0) != TYPE_CODE (type1))
4579 return 0;
4580 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4581 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4582 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4583 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4584 return 1;
4585
4586 return 0;
4587 }
4588
4589 /* True iff SYM0 represents the same entity as SYM1, or one that is
4590 no more defined than that of SYM1. */
4591
4592 static int
4593 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4594 {
4595 if (sym0 == sym1)
4596 return 1;
4597 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4598 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4599 return 0;
4600
4601 switch (SYMBOL_CLASS (sym0))
4602 {
4603 case LOC_UNDEF:
4604 return 1;
4605 case LOC_TYPEDEF:
4606 {
4607 struct type *type0 = SYMBOL_TYPE (sym0);
4608 struct type *type1 = SYMBOL_TYPE (sym1);
4609 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4610 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4611 int len0 = strlen (name0);
4612
4613 return
4614 TYPE_CODE (type0) == TYPE_CODE (type1)
4615 && (equiv_types (type0, type1)
4616 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4617 && startswith (name1 + len0, "___XV")));
4618 }
4619 case LOC_CONST:
4620 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4621 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4622 default:
4623 return 0;
4624 }
4625 }
4626
4627 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4628 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4629
4630 static void
4631 add_defn_to_vec (struct obstack *obstackp,
4632 struct symbol *sym,
4633 const struct block *block)
4634 {
4635 int i;
4636 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4637
4638 /* Do not try to complete stub types, as the debugger is probably
4639 already scanning all symbols matching a certain name at the
4640 time when this function is called. Trying to replace the stub
4641 type by its associated full type will cause us to restart a scan
4642 which may lead to an infinite recursion. Instead, the client
4643 collecting the matching symbols will end up collecting several
4644 matches, with at least one of them complete. It can then filter
4645 out the stub ones if needed. */
4646
4647 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4648 {
4649 if (lesseq_defined_than (sym, prevDefns[i].sym))
4650 return;
4651 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4652 {
4653 prevDefns[i].sym = sym;
4654 prevDefns[i].block = block;
4655 return;
4656 }
4657 }
4658
4659 {
4660 struct ada_symbol_info info;
4661
4662 info.sym = sym;
4663 info.block = block;
4664 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4665 }
4666 }
4667
4668 /* Number of ada_symbol_info structures currently collected in
4669 current vector in *OBSTACKP. */
4670
4671 static int
4672 num_defns_collected (struct obstack *obstackp)
4673 {
4674 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4675 }
4676
4677 /* Vector of ada_symbol_info structures currently collected in current
4678 vector in *OBSTACKP. If FINISH, close off the vector and return
4679 its final address. */
4680
4681 static struct ada_symbol_info *
4682 defns_collected (struct obstack *obstackp, int finish)
4683 {
4684 if (finish)
4685 return obstack_finish (obstackp);
4686 else
4687 return (struct ada_symbol_info *) obstack_base (obstackp);
4688 }
4689
4690 /* Return a bound minimal symbol matching NAME according to Ada
4691 decoding rules. Returns an invalid symbol if there is no such
4692 minimal symbol. Names prefixed with "standard__" are handled
4693 specially: "standard__" is first stripped off, and only static and
4694 global symbols are searched. */
4695
4696 struct bound_minimal_symbol
4697 ada_lookup_simple_minsym (const char *name)
4698 {
4699 struct bound_minimal_symbol result;
4700 struct objfile *objfile;
4701 struct minimal_symbol *msymbol;
4702 const int wild_match_p = should_use_wild_match (name);
4703
4704 memset (&result, 0, sizeof (result));
4705
4706 /* Special case: If the user specifies a symbol name inside package
4707 Standard, do a non-wild matching of the symbol name without
4708 the "standard__" prefix. This was primarily introduced in order
4709 to allow the user to specifically access the standard exceptions
4710 using, for instance, Standard.Constraint_Error when Constraint_Error
4711 is ambiguous (due to the user defining its own Constraint_Error
4712 entity inside its program). */
4713 if (startswith (name, "standard__"))
4714 name += sizeof ("standard__") - 1;
4715
4716 ALL_MSYMBOLS (objfile, msymbol)
4717 {
4718 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4719 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4720 {
4721 result.minsym = msymbol;
4722 result.objfile = objfile;
4723 break;
4724 }
4725 }
4726
4727 return result;
4728 }
4729
4730 /* For all subprograms that statically enclose the subprogram of the
4731 selected frame, add symbols matching identifier NAME in DOMAIN
4732 and their blocks to the list of data in OBSTACKP, as for
4733 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4734 with a wildcard prefix. */
4735
4736 static void
4737 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4738 const char *name, domain_enum domain,
4739 int wild_match_p)
4740 {
4741 }
4742
4743 /* True if TYPE is definitely an artificial type supplied to a symbol
4744 for which no debugging information was given in the symbol file. */
4745
4746 static int
4747 is_nondebugging_type (struct type *type)
4748 {
4749 const char *name = ada_type_name (type);
4750
4751 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4752 }
4753
4754 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4755 that are deemed "identical" for practical purposes.
4756
4757 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4758 types and that their number of enumerals is identical (in other
4759 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4760
4761 static int
4762 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4763 {
4764 int i;
4765
4766 /* The heuristic we use here is fairly conservative. We consider
4767 that 2 enumerate types are identical if they have the same
4768 number of enumerals and that all enumerals have the same
4769 underlying value and name. */
4770
4771 /* All enums in the type should have an identical underlying value. */
4772 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4773 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4774 return 0;
4775
4776 /* All enumerals should also have the same name (modulo any numerical
4777 suffix). */
4778 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4779 {
4780 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4781 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4782 int len_1 = strlen (name_1);
4783 int len_2 = strlen (name_2);
4784
4785 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4786 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4787 if (len_1 != len_2
4788 || strncmp (TYPE_FIELD_NAME (type1, i),
4789 TYPE_FIELD_NAME (type2, i),
4790 len_1) != 0)
4791 return 0;
4792 }
4793
4794 return 1;
4795 }
4796
4797 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4798 that are deemed "identical" for practical purposes. Sometimes,
4799 enumerals are not strictly identical, but their types are so similar
4800 that they can be considered identical.
4801
4802 For instance, consider the following code:
4803
4804 type Color is (Black, Red, Green, Blue, White);
4805 type RGB_Color is new Color range Red .. Blue;
4806
4807 Type RGB_Color is a subrange of an implicit type which is a copy
4808 of type Color. If we call that implicit type RGB_ColorB ("B" is
4809 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4810 As a result, when an expression references any of the enumeral
4811 by name (Eg. "print green"), the expression is technically
4812 ambiguous and the user should be asked to disambiguate. But
4813 doing so would only hinder the user, since it wouldn't matter
4814 what choice he makes, the outcome would always be the same.
4815 So, for practical purposes, we consider them as the same. */
4816
4817 static int
4818 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4819 {
4820 int i;
4821
4822 /* Before performing a thorough comparison check of each type,
4823 we perform a series of inexpensive checks. We expect that these
4824 checks will quickly fail in the vast majority of cases, and thus
4825 help prevent the unnecessary use of a more expensive comparison.
4826 Said comparison also expects us to make some of these checks
4827 (see ada_identical_enum_types_p). */
4828
4829 /* Quick check: All symbols should have an enum type. */
4830 for (i = 0; i < nsyms; i++)
4831 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4832 return 0;
4833
4834 /* Quick check: They should all have the same value. */
4835 for (i = 1; i < nsyms; i++)
4836 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4837 return 0;
4838
4839 /* Quick check: They should all have the same number of enumerals. */
4840 for (i = 1; i < nsyms; i++)
4841 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4842 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4843 return 0;
4844
4845 /* All the sanity checks passed, so we might have a set of
4846 identical enumeration types. Perform a more complete
4847 comparison of the type of each symbol. */
4848 for (i = 1; i < nsyms; i++)
4849 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4850 SYMBOL_TYPE (syms[0].sym)))
4851 return 0;
4852
4853 return 1;
4854 }
4855
4856 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4857 duplicate other symbols in the list (The only case I know of where
4858 this happens is when object files containing stabs-in-ecoff are
4859 linked with files containing ordinary ecoff debugging symbols (or no
4860 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4861 Returns the number of items in the modified list. */
4862
4863 static int
4864 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4865 {
4866 int i, j;
4867
4868 /* We should never be called with less than 2 symbols, as there
4869 cannot be any extra symbol in that case. But it's easy to
4870 handle, since we have nothing to do in that case. */
4871 if (nsyms < 2)
4872 return nsyms;
4873
4874 i = 0;
4875 while (i < nsyms)
4876 {
4877 int remove_p = 0;
4878
4879 /* If two symbols have the same name and one of them is a stub type,
4880 the get rid of the stub. */
4881
4882 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4883 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4884 {
4885 for (j = 0; j < nsyms; j++)
4886 {
4887 if (j != i
4888 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4889 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4890 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4891 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4892 remove_p = 1;
4893 }
4894 }
4895
4896 /* Two symbols with the same name, same class and same address
4897 should be identical. */
4898
4899 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4900 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4901 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4902 {
4903 for (j = 0; j < nsyms; j += 1)
4904 {
4905 if (i != j
4906 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4907 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4908 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4909 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4910 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4911 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4912 remove_p = 1;
4913 }
4914 }
4915
4916 if (remove_p)
4917 {
4918 for (j = i + 1; j < nsyms; j += 1)
4919 syms[j - 1] = syms[j];
4920 nsyms -= 1;
4921 }
4922
4923 i += 1;
4924 }
4925
4926 /* If all the remaining symbols are identical enumerals, then
4927 just keep the first one and discard the rest.
4928
4929 Unlike what we did previously, we do not discard any entry
4930 unless they are ALL identical. This is because the symbol
4931 comparison is not a strict comparison, but rather a practical
4932 comparison. If all symbols are considered identical, then
4933 we can just go ahead and use the first one and discard the rest.
4934 But if we cannot reduce the list to a single element, we have
4935 to ask the user to disambiguate anyways. And if we have to
4936 present a multiple-choice menu, it's less confusing if the list
4937 isn't missing some choices that were identical and yet distinct. */
4938 if (symbols_are_identical_enums (syms, nsyms))
4939 nsyms = 1;
4940
4941 return nsyms;
4942 }
4943
4944 /* Given a type that corresponds to a renaming entity, use the type name
4945 to extract the scope (package name or function name, fully qualified,
4946 and following the GNAT encoding convention) where this renaming has been
4947 defined. The string returned needs to be deallocated after use. */
4948
4949 static char *
4950 xget_renaming_scope (struct type *renaming_type)
4951 {
4952 /* The renaming types adhere to the following convention:
4953 <scope>__<rename>___<XR extension>.
4954 So, to extract the scope, we search for the "___XR" extension,
4955 and then backtrack until we find the first "__". */
4956
4957 const char *name = type_name_no_tag (renaming_type);
4958 char *suffix = strstr (name, "___XR");
4959 char *last;
4960 int scope_len;
4961 char *scope;
4962
4963 /* Now, backtrack a bit until we find the first "__". Start looking
4964 at suffix - 3, as the <rename> part is at least one character long. */
4965
4966 for (last = suffix - 3; last > name; last--)
4967 if (last[0] == '_' && last[1] == '_')
4968 break;
4969
4970 /* Make a copy of scope and return it. */
4971
4972 scope_len = last - name;
4973 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4974
4975 strncpy (scope, name, scope_len);
4976 scope[scope_len] = '\0';
4977
4978 return scope;
4979 }
4980
4981 /* Return nonzero if NAME corresponds to a package name. */
4982
4983 static int
4984 is_package_name (const char *name)
4985 {
4986 /* Here, We take advantage of the fact that no symbols are generated
4987 for packages, while symbols are generated for each function.
4988 So the condition for NAME represent a package becomes equivalent
4989 to NAME not existing in our list of symbols. There is only one
4990 small complication with library-level functions (see below). */
4991
4992 char *fun_name;
4993
4994 /* If it is a function that has not been defined at library level,
4995 then we should be able to look it up in the symbols. */
4996 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4997 return 0;
4998
4999 /* Library-level function names start with "_ada_". See if function
5000 "_ada_" followed by NAME can be found. */
5001
5002 /* Do a quick check that NAME does not contain "__", since library-level
5003 functions names cannot contain "__" in them. */
5004 if (strstr (name, "__") != NULL)
5005 return 0;
5006
5007 fun_name = xstrprintf ("_ada_%s", name);
5008
5009 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5010 }
5011
5012 /* Return nonzero if SYM corresponds to a renaming entity that is
5013 not visible from FUNCTION_NAME. */
5014
5015 static int
5016 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5017 {
5018 char *scope;
5019 struct cleanup *old_chain;
5020
5021 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5022 return 0;
5023
5024 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5025 old_chain = make_cleanup (xfree, scope);
5026
5027 /* If the rename has been defined in a package, then it is visible. */
5028 if (is_package_name (scope))
5029 {
5030 do_cleanups (old_chain);
5031 return 0;
5032 }
5033
5034 /* Check that the rename is in the current function scope by checking
5035 that its name starts with SCOPE. */
5036
5037 /* If the function name starts with "_ada_", it means that it is
5038 a library-level function. Strip this prefix before doing the
5039 comparison, as the encoding for the renaming does not contain
5040 this prefix. */
5041 if (startswith (function_name, "_ada_"))
5042 function_name += 5;
5043
5044 {
5045 int is_invisible = !startswith (function_name, scope);
5046
5047 do_cleanups (old_chain);
5048 return is_invisible;
5049 }
5050 }
5051
5052 /* Remove entries from SYMS that corresponds to a renaming entity that
5053 is not visible from the function associated with CURRENT_BLOCK or
5054 that is superfluous due to the presence of more specific renaming
5055 information. Places surviving symbols in the initial entries of
5056 SYMS and returns the number of surviving symbols.
5057
5058 Rationale:
5059 First, in cases where an object renaming is implemented as a
5060 reference variable, GNAT may produce both the actual reference
5061 variable and the renaming encoding. In this case, we discard the
5062 latter.
5063
5064 Second, GNAT emits a type following a specified encoding for each renaming
5065 entity. Unfortunately, STABS currently does not support the definition
5066 of types that are local to a given lexical block, so all renamings types
5067 are emitted at library level. As a consequence, if an application
5068 contains two renaming entities using the same name, and a user tries to
5069 print the value of one of these entities, the result of the ada symbol
5070 lookup will also contain the wrong renaming type.
5071
5072 This function partially covers for this limitation by attempting to
5073 remove from the SYMS list renaming symbols that should be visible
5074 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5075 method with the current information available. The implementation
5076 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5077
5078 - When the user tries to print a rename in a function while there
5079 is another rename entity defined in a package: Normally, the
5080 rename in the function has precedence over the rename in the
5081 package, so the latter should be removed from the list. This is
5082 currently not the case.
5083
5084 - This function will incorrectly remove valid renames if
5085 the CURRENT_BLOCK corresponds to a function which symbol name
5086 has been changed by an "Export" pragma. As a consequence,
5087 the user will be unable to print such rename entities. */
5088
5089 static int
5090 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5091 int nsyms, const struct block *current_block)
5092 {
5093 struct symbol *current_function;
5094 const char *current_function_name;
5095 int i;
5096 int is_new_style_renaming;
5097
5098 /* If there is both a renaming foo___XR... encoded as a variable and
5099 a simple variable foo in the same block, discard the latter.
5100 First, zero out such symbols, then compress. */
5101 is_new_style_renaming = 0;
5102 for (i = 0; i < nsyms; i += 1)
5103 {
5104 struct symbol *sym = syms[i].sym;
5105 const struct block *block = syms[i].block;
5106 const char *name;
5107 const char *suffix;
5108
5109 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5110 continue;
5111 name = SYMBOL_LINKAGE_NAME (sym);
5112 suffix = strstr (name, "___XR");
5113
5114 if (suffix != NULL)
5115 {
5116 int name_len = suffix - name;
5117 int j;
5118
5119 is_new_style_renaming = 1;
5120 for (j = 0; j < nsyms; j += 1)
5121 if (i != j && syms[j].sym != NULL
5122 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5123 name_len) == 0
5124 && block == syms[j].block)
5125 syms[j].sym = NULL;
5126 }
5127 }
5128 if (is_new_style_renaming)
5129 {
5130 int j, k;
5131
5132 for (j = k = 0; j < nsyms; j += 1)
5133 if (syms[j].sym != NULL)
5134 {
5135 syms[k] = syms[j];
5136 k += 1;
5137 }
5138 return k;
5139 }
5140
5141 /* Extract the function name associated to CURRENT_BLOCK.
5142 Abort if unable to do so. */
5143
5144 if (current_block == NULL)
5145 return nsyms;
5146
5147 current_function = block_linkage_function (current_block);
5148 if (current_function == NULL)
5149 return nsyms;
5150
5151 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5152 if (current_function_name == NULL)
5153 return nsyms;
5154
5155 /* Check each of the symbols, and remove it from the list if it is
5156 a type corresponding to a renaming that is out of the scope of
5157 the current block. */
5158
5159 i = 0;
5160 while (i < nsyms)
5161 {
5162 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5163 == ADA_OBJECT_RENAMING
5164 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5165 {
5166 int j;
5167
5168 for (j = i + 1; j < nsyms; j += 1)
5169 syms[j - 1] = syms[j];
5170 nsyms -= 1;
5171 }
5172 else
5173 i += 1;
5174 }
5175
5176 return nsyms;
5177 }
5178
5179 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5180 whose name and domain match NAME and DOMAIN respectively.
5181 If no match was found, then extend the search to "enclosing"
5182 routines (in other words, if we're inside a nested function,
5183 search the symbols defined inside the enclosing functions).
5184 If WILD_MATCH_P is nonzero, perform the naming matching in
5185 "wild" mode (see function "wild_match" for more info).
5186
5187 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5188
5189 static void
5190 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5191 const struct block *block, domain_enum domain,
5192 int wild_match_p)
5193 {
5194 int block_depth = 0;
5195
5196 while (block != NULL)
5197 {
5198 block_depth += 1;
5199 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5200 wild_match_p);
5201
5202 /* If we found a non-function match, assume that's the one. */
5203 if (is_nonfunction (defns_collected (obstackp, 0),
5204 num_defns_collected (obstackp)))
5205 return;
5206
5207 block = BLOCK_SUPERBLOCK (block);
5208 }
5209
5210 /* If no luck so far, try to find NAME as a local symbol in some lexically
5211 enclosing subprogram. */
5212 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5213 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5214 }
5215
5216 /* An object of this type is used as the user_data argument when
5217 calling the map_matching_symbols method. */
5218
5219 struct match_data
5220 {
5221 struct objfile *objfile;
5222 struct obstack *obstackp;
5223 struct symbol *arg_sym;
5224 int found_sym;
5225 };
5226
5227 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5228 to a list of symbols. DATA0 is a pointer to a struct match_data *
5229 containing the obstack that collects the symbol list, the file that SYM
5230 must come from, a flag indicating whether a non-argument symbol has
5231 been found in the current block, and the last argument symbol
5232 passed in SYM within the current block (if any). When SYM is null,
5233 marking the end of a block, the argument symbol is added if no
5234 other has been found. */
5235
5236 static int
5237 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5238 {
5239 struct match_data *data = (struct match_data *) data0;
5240
5241 if (sym == NULL)
5242 {
5243 if (!data->found_sym && data->arg_sym != NULL)
5244 add_defn_to_vec (data->obstackp,
5245 fixup_symbol_section (data->arg_sym, data->objfile),
5246 block);
5247 data->found_sym = 0;
5248 data->arg_sym = NULL;
5249 }
5250 else
5251 {
5252 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5253 return 0;
5254 else if (SYMBOL_IS_ARGUMENT (sym))
5255 data->arg_sym = sym;
5256 else
5257 {
5258 data->found_sym = 1;
5259 add_defn_to_vec (data->obstackp,
5260 fixup_symbol_section (sym, data->objfile),
5261 block);
5262 }
5263 }
5264 return 0;
5265 }
5266
5267 /* Implements compare_names, but only applying the comparision using
5268 the given CASING. */
5269
5270 static int
5271 compare_names_with_case (const char *string1, const char *string2,
5272 enum case_sensitivity casing)
5273 {
5274 while (*string1 != '\0' && *string2 != '\0')
5275 {
5276 char c1, c2;
5277
5278 if (isspace (*string1) || isspace (*string2))
5279 return strcmp_iw_ordered (string1, string2);
5280
5281 if (casing == case_sensitive_off)
5282 {
5283 c1 = tolower (*string1);
5284 c2 = tolower (*string2);
5285 }
5286 else
5287 {
5288 c1 = *string1;
5289 c2 = *string2;
5290 }
5291 if (c1 != c2)
5292 break;
5293
5294 string1 += 1;
5295 string2 += 1;
5296 }
5297
5298 switch (*string1)
5299 {
5300 case '(':
5301 return strcmp_iw_ordered (string1, string2);
5302 case '_':
5303 if (*string2 == '\0')
5304 {
5305 if (is_name_suffix (string1))
5306 return 0;
5307 else
5308 return 1;
5309 }
5310 /* FALLTHROUGH */
5311 default:
5312 if (*string2 == '(')
5313 return strcmp_iw_ordered (string1, string2);
5314 else
5315 {
5316 if (casing == case_sensitive_off)
5317 return tolower (*string1) - tolower (*string2);
5318 else
5319 return *string1 - *string2;
5320 }
5321 }
5322 }
5323
5324 /* Compare STRING1 to STRING2, with results as for strcmp.
5325 Compatible with strcmp_iw_ordered in that...
5326
5327 strcmp_iw_ordered (STRING1, STRING2) <= 0
5328
5329 ... implies...
5330
5331 compare_names (STRING1, STRING2) <= 0
5332
5333 (they may differ as to what symbols compare equal). */
5334
5335 static int
5336 compare_names (const char *string1, const char *string2)
5337 {
5338 int result;
5339
5340 /* Similar to what strcmp_iw_ordered does, we need to perform
5341 a case-insensitive comparison first, and only resort to
5342 a second, case-sensitive, comparison if the first one was
5343 not sufficient to differentiate the two strings. */
5344
5345 result = compare_names_with_case (string1, string2, case_sensitive_off);
5346 if (result == 0)
5347 result = compare_names_with_case (string1, string2, case_sensitive_on);
5348
5349 return result;
5350 }
5351
5352 /* Add to OBSTACKP all non-local symbols whose name and domain match
5353 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5354 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5355
5356 static void
5357 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5358 domain_enum domain, int global,
5359 int is_wild_match)
5360 {
5361 struct objfile *objfile;
5362 struct match_data data;
5363
5364 memset (&data, 0, sizeof data);
5365 data.obstackp = obstackp;
5366
5367 ALL_OBJFILES (objfile)
5368 {
5369 data.objfile = objfile;
5370
5371 if (is_wild_match)
5372 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5373 aux_add_nonlocal_symbols, &data,
5374 wild_match, NULL);
5375 else
5376 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5377 aux_add_nonlocal_symbols, &data,
5378 full_match, compare_names);
5379 }
5380
5381 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5382 {
5383 ALL_OBJFILES (objfile)
5384 {
5385 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5386 strcpy (name1, "_ada_");
5387 strcpy (name1 + sizeof ("_ada_") - 1, name);
5388 data.objfile = objfile;
5389 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5390 global,
5391 aux_add_nonlocal_symbols,
5392 &data,
5393 full_match, compare_names);
5394 }
5395 }
5396 }
5397
5398 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5399 non-zero, enclosing scope and in global scopes, returning the number of
5400 matches.
5401 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5402 indicating the symbols found and the blocks and symbol tables (if
5403 any) in which they were found. This vector is transient---good only to
5404 the next call of ada_lookup_symbol_list.
5405
5406 When full_search is non-zero, any non-function/non-enumeral
5407 symbol match within the nest of blocks whose innermost member is BLOCK0,
5408 is the one match returned (no other matches in that or
5409 enclosing blocks is returned). If there are any matches in or
5410 surrounding BLOCK0, then these alone are returned.
5411
5412 Names prefixed with "standard__" are handled specially: "standard__"
5413 is first stripped off, and only static and global symbols are searched. */
5414
5415 static int
5416 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5417 domain_enum domain,
5418 struct ada_symbol_info **results,
5419 int full_search)
5420 {
5421 struct symbol *sym;
5422 const struct block *block;
5423 const char *name;
5424 const int wild_match_p = should_use_wild_match (name0);
5425 int syms_from_global_search = 0;
5426 int ndefns;
5427
5428 obstack_free (&symbol_list_obstack, NULL);
5429 obstack_init (&symbol_list_obstack);
5430
5431 /* Search specified block and its superiors. */
5432
5433 name = name0;
5434 block = block0;
5435
5436 /* Special case: If the user specifies a symbol name inside package
5437 Standard, do a non-wild matching of the symbol name without
5438 the "standard__" prefix. This was primarily introduced in order
5439 to allow the user to specifically access the standard exceptions
5440 using, for instance, Standard.Constraint_Error when Constraint_Error
5441 is ambiguous (due to the user defining its own Constraint_Error
5442 entity inside its program). */
5443 if (startswith (name0, "standard__"))
5444 {
5445 block = NULL;
5446 name = name0 + sizeof ("standard__") - 1;
5447 }
5448
5449 /* Check the non-global symbols. If we have ANY match, then we're done. */
5450
5451 if (block != NULL)
5452 {
5453 if (full_search)
5454 {
5455 ada_add_local_symbols (&symbol_list_obstack, name, block,
5456 domain, wild_match_p);
5457 }
5458 else
5459 {
5460 /* In the !full_search case we're are being called by
5461 ada_iterate_over_symbols, and we don't want to search
5462 superblocks. */
5463 ada_add_block_symbols (&symbol_list_obstack, block, name,
5464 domain, NULL, wild_match_p);
5465 }
5466 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5467 goto done;
5468 }
5469
5470 /* No non-global symbols found. Check our cache to see if we have
5471 already performed this search before. If we have, then return
5472 the same result. */
5473
5474 if (lookup_cached_symbol (name0, domain, &sym, &block))
5475 {
5476 if (sym != NULL)
5477 add_defn_to_vec (&symbol_list_obstack, sym, block);
5478 goto done;
5479 }
5480
5481 syms_from_global_search = 1;
5482
5483 /* Search symbols from all global blocks. */
5484
5485 add_nonlocal_symbols (&symbol_list_obstack, name, domain, 1,
5486 wild_match_p);
5487
5488 /* Now add symbols from all per-file blocks if we've gotten no hits
5489 (not strictly correct, but perhaps better than an error). */
5490
5491 if (num_defns_collected (&symbol_list_obstack) == 0)
5492 add_nonlocal_symbols (&symbol_list_obstack, name, domain, 0,
5493 wild_match_p);
5494
5495 done:
5496 ndefns = num_defns_collected (&symbol_list_obstack);
5497 *results = defns_collected (&symbol_list_obstack, 1);
5498
5499 ndefns = remove_extra_symbols (*results, ndefns);
5500
5501 if (ndefns == 0 && full_search && syms_from_global_search)
5502 cache_symbol (name0, domain, NULL, NULL);
5503
5504 if (ndefns == 1 && full_search && syms_from_global_search)
5505 cache_symbol (name0, domain, (*results)[0].sym, (*results)[0].block);
5506
5507 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5508
5509 return ndefns;
5510 }
5511
5512 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5513 in global scopes, returning the number of matches, and setting *RESULTS
5514 to a vector of (SYM,BLOCK) tuples.
5515 See ada_lookup_symbol_list_worker for further details. */
5516
5517 int
5518 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5519 domain_enum domain, struct ada_symbol_info **results)
5520 {
5521 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5522 }
5523
5524 /* Implementation of the la_iterate_over_symbols method. */
5525
5526 static void
5527 ada_iterate_over_symbols (const struct block *block,
5528 const char *name, domain_enum domain,
5529 symbol_found_callback_ftype *callback,
5530 void *data)
5531 {
5532 int ndefs, i;
5533 struct ada_symbol_info *results;
5534
5535 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5536 for (i = 0; i < ndefs; ++i)
5537 {
5538 if (! (*callback) (results[i].sym, data))
5539 break;
5540 }
5541 }
5542
5543 /* If NAME is the name of an entity, return a string that should
5544 be used to look that entity up in Ada units. This string should
5545 be deallocated after use using xfree.
5546
5547 NAME can have any form that the "break" or "print" commands might
5548 recognize. In other words, it does not have to be the "natural"
5549 name, or the "encoded" name. */
5550
5551 char *
5552 ada_name_for_lookup (const char *name)
5553 {
5554 char *canon;
5555 int nlen = strlen (name);
5556
5557 if (name[0] == '<' && name[nlen - 1] == '>')
5558 {
5559 canon = xmalloc (nlen - 1);
5560 memcpy (canon, name + 1, nlen - 2);
5561 canon[nlen - 2] = '\0';
5562 }
5563 else
5564 canon = xstrdup (ada_encode (ada_fold_name (name)));
5565 return canon;
5566 }
5567
5568 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5569 to 1, but choosing the first symbol found if there are multiple
5570 choices.
5571
5572 The result is stored in *INFO, which must be non-NULL.
5573 If no match is found, INFO->SYM is set to NULL. */
5574
5575 void
5576 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5577 domain_enum domain,
5578 struct ada_symbol_info *info)
5579 {
5580 struct ada_symbol_info *candidates;
5581 int n_candidates;
5582
5583 gdb_assert (info != NULL);
5584 memset (info, 0, sizeof (struct ada_symbol_info));
5585
5586 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5587 if (n_candidates == 0)
5588 return;
5589
5590 *info = candidates[0];
5591 info->sym = fixup_symbol_section (info->sym, NULL);
5592 }
5593
5594 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5595 scope and in global scopes, or NULL if none. NAME is folded and
5596 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5597 choosing the first symbol if there are multiple choices.
5598 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5599
5600 struct symbol *
5601 ada_lookup_symbol (const char *name, const struct block *block0,
5602 domain_enum domain, int *is_a_field_of_this)
5603 {
5604 struct ada_symbol_info info;
5605
5606 if (is_a_field_of_this != NULL)
5607 *is_a_field_of_this = 0;
5608
5609 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5610 block0, domain, &info);
5611 return info.sym;
5612 }
5613
5614 static struct symbol *
5615 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5616 const char *name,
5617 const struct block *block,
5618 const domain_enum domain)
5619 {
5620 struct symbol *sym;
5621
5622 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5623 if (sym != NULL)
5624 return sym;
5625
5626 /* If we haven't found a match at this point, try the primitive
5627 types. In other languages, this search is performed before
5628 searching for global symbols in order to short-circuit that
5629 global-symbol search if it happens that the name corresponds
5630 to a primitive type. But we cannot do the same in Ada, because
5631 it is perfectly legitimate for a program to declare a type which
5632 has the same name as a standard type. If looking up a type in
5633 that situation, we have traditionally ignored the primitive type
5634 in favor of user-defined types. This is why, unlike most other
5635 languages, we search the primitive types this late and only after
5636 having searched the global symbols without success. */
5637
5638 if (domain == VAR_DOMAIN)
5639 {
5640 struct gdbarch *gdbarch;
5641
5642 if (block == NULL)
5643 gdbarch = target_gdbarch ();
5644 else
5645 gdbarch = block_gdbarch (block);
5646 sym = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5647 if (sym != NULL)
5648 return sym;
5649 }
5650
5651 return NULL;
5652 }
5653
5654
5655 /* True iff STR is a possible encoded suffix of a normal Ada name
5656 that is to be ignored for matching purposes. Suffixes of parallel
5657 names (e.g., XVE) are not included here. Currently, the possible suffixes
5658 are given by any of the regular expressions:
5659
5660 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5661 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5662 TKB [subprogram suffix for task bodies]
5663 _E[0-9]+[bs]$ [protected object entry suffixes]
5664 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5665
5666 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5667 match is performed. This sequence is used to differentiate homonyms,
5668 is an optional part of a valid name suffix. */
5669
5670 static int
5671 is_name_suffix (const char *str)
5672 {
5673 int k;
5674 const char *matching;
5675 const int len = strlen (str);
5676
5677 /* Skip optional leading __[0-9]+. */
5678
5679 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5680 {
5681 str += 3;
5682 while (isdigit (str[0]))
5683 str += 1;
5684 }
5685
5686 /* [.$][0-9]+ */
5687
5688 if (str[0] == '.' || str[0] == '$')
5689 {
5690 matching = str + 1;
5691 while (isdigit (matching[0]))
5692 matching += 1;
5693 if (matching[0] == '\0')
5694 return 1;
5695 }
5696
5697 /* ___[0-9]+ */
5698
5699 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5700 {
5701 matching = str + 3;
5702 while (isdigit (matching[0]))
5703 matching += 1;
5704 if (matching[0] == '\0')
5705 return 1;
5706 }
5707
5708 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5709
5710 if (strcmp (str, "TKB") == 0)
5711 return 1;
5712
5713 #if 0
5714 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5715 with a N at the end. Unfortunately, the compiler uses the same
5716 convention for other internal types it creates. So treating
5717 all entity names that end with an "N" as a name suffix causes
5718 some regressions. For instance, consider the case of an enumerated
5719 type. To support the 'Image attribute, it creates an array whose
5720 name ends with N.
5721 Having a single character like this as a suffix carrying some
5722 information is a bit risky. Perhaps we should change the encoding
5723 to be something like "_N" instead. In the meantime, do not do
5724 the following check. */
5725 /* Protected Object Subprograms */
5726 if (len == 1 && str [0] == 'N')
5727 return 1;
5728 #endif
5729
5730 /* _E[0-9]+[bs]$ */
5731 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5732 {
5733 matching = str + 3;
5734 while (isdigit (matching[0]))
5735 matching += 1;
5736 if ((matching[0] == 'b' || matching[0] == 's')
5737 && matching [1] == '\0')
5738 return 1;
5739 }
5740
5741 /* ??? We should not modify STR directly, as we are doing below. This
5742 is fine in this case, but may become problematic later if we find
5743 that this alternative did not work, and want to try matching
5744 another one from the begining of STR. Since we modified it, we
5745 won't be able to find the begining of the string anymore! */
5746 if (str[0] == 'X')
5747 {
5748 str += 1;
5749 while (str[0] != '_' && str[0] != '\0')
5750 {
5751 if (str[0] != 'n' && str[0] != 'b')
5752 return 0;
5753 str += 1;
5754 }
5755 }
5756
5757 if (str[0] == '\000')
5758 return 1;
5759
5760 if (str[0] == '_')
5761 {
5762 if (str[1] != '_' || str[2] == '\000')
5763 return 0;
5764 if (str[2] == '_')
5765 {
5766 if (strcmp (str + 3, "JM") == 0)
5767 return 1;
5768 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5769 the LJM suffix in favor of the JM one. But we will
5770 still accept LJM as a valid suffix for a reasonable
5771 amount of time, just to allow ourselves to debug programs
5772 compiled using an older version of GNAT. */
5773 if (strcmp (str + 3, "LJM") == 0)
5774 return 1;
5775 if (str[3] != 'X')
5776 return 0;
5777 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5778 || str[4] == 'U' || str[4] == 'P')
5779 return 1;
5780 if (str[4] == 'R' && str[5] != 'T')
5781 return 1;
5782 return 0;
5783 }
5784 if (!isdigit (str[2]))
5785 return 0;
5786 for (k = 3; str[k] != '\0'; k += 1)
5787 if (!isdigit (str[k]) && str[k] != '_')
5788 return 0;
5789 return 1;
5790 }
5791 if (str[0] == '$' && isdigit (str[1]))
5792 {
5793 for (k = 2; str[k] != '\0'; k += 1)
5794 if (!isdigit (str[k]) && str[k] != '_')
5795 return 0;
5796 return 1;
5797 }
5798 return 0;
5799 }
5800
5801 /* Return non-zero if the string starting at NAME and ending before
5802 NAME_END contains no capital letters. */
5803
5804 static int
5805 is_valid_name_for_wild_match (const char *name0)
5806 {
5807 const char *decoded_name = ada_decode (name0);
5808 int i;
5809
5810 /* If the decoded name starts with an angle bracket, it means that
5811 NAME0 does not follow the GNAT encoding format. It should then
5812 not be allowed as a possible wild match. */
5813 if (decoded_name[0] == '<')
5814 return 0;
5815
5816 for (i=0; decoded_name[i] != '\0'; i++)
5817 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5818 return 0;
5819
5820 return 1;
5821 }
5822
5823 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5824 that could start a simple name. Assumes that *NAMEP points into
5825 the string beginning at NAME0. */
5826
5827 static int
5828 advance_wild_match (const char **namep, const char *name0, int target0)
5829 {
5830 const char *name = *namep;
5831
5832 while (1)
5833 {
5834 int t0, t1;
5835
5836 t0 = *name;
5837 if (t0 == '_')
5838 {
5839 t1 = name[1];
5840 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5841 {
5842 name += 1;
5843 if (name == name0 + 5 && startswith (name0, "_ada"))
5844 break;
5845 else
5846 name += 1;
5847 }
5848 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5849 || name[2] == target0))
5850 {
5851 name += 2;
5852 break;
5853 }
5854 else
5855 return 0;
5856 }
5857 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5858 name += 1;
5859 else
5860 return 0;
5861 }
5862
5863 *namep = name;
5864 return 1;
5865 }
5866
5867 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5868 informational suffixes of NAME (i.e., for which is_name_suffix is
5869 true). Assumes that PATN is a lower-cased Ada simple name. */
5870
5871 static int
5872 wild_match (const char *name, const char *patn)
5873 {
5874 const char *p;
5875 const char *name0 = name;
5876
5877 while (1)
5878 {
5879 const char *match = name;
5880
5881 if (*name == *patn)
5882 {
5883 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5884 if (*p != *name)
5885 break;
5886 if (*p == '\0' && is_name_suffix (name))
5887 return match != name0 && !is_valid_name_for_wild_match (name0);
5888
5889 if (name[-1] == '_')
5890 name -= 1;
5891 }
5892 if (!advance_wild_match (&name, name0, *patn))
5893 return 1;
5894 }
5895 }
5896
5897 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5898 informational suffix. */
5899
5900 static int
5901 full_match (const char *sym_name, const char *search_name)
5902 {
5903 return !match_name (sym_name, search_name, 0);
5904 }
5905
5906
5907 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5908 vector *defn_symbols, updating the list of symbols in OBSTACKP
5909 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5910 OBJFILE is the section containing BLOCK. */
5911
5912 static void
5913 ada_add_block_symbols (struct obstack *obstackp,
5914 const struct block *block, const char *name,
5915 domain_enum domain, struct objfile *objfile,
5916 int wild)
5917 {
5918 struct block_iterator iter;
5919 int name_len = strlen (name);
5920 /* A matching argument symbol, if any. */
5921 struct symbol *arg_sym;
5922 /* Set true when we find a matching non-argument symbol. */
5923 int found_sym;
5924 struct symbol *sym;
5925
5926 arg_sym = NULL;
5927 found_sym = 0;
5928 if (wild)
5929 {
5930 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5931 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5932 {
5933 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5934 SYMBOL_DOMAIN (sym), domain)
5935 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5936 {
5937 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5938 continue;
5939 else if (SYMBOL_IS_ARGUMENT (sym))
5940 arg_sym = sym;
5941 else
5942 {
5943 found_sym = 1;
5944 add_defn_to_vec (obstackp,
5945 fixup_symbol_section (sym, objfile),
5946 block);
5947 }
5948 }
5949 }
5950 }
5951 else
5952 {
5953 for (sym = block_iter_match_first (block, name, full_match, &iter);
5954 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5955 {
5956 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5957 SYMBOL_DOMAIN (sym), domain))
5958 {
5959 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5960 {
5961 if (SYMBOL_IS_ARGUMENT (sym))
5962 arg_sym = sym;
5963 else
5964 {
5965 found_sym = 1;
5966 add_defn_to_vec (obstackp,
5967 fixup_symbol_section (sym, objfile),
5968 block);
5969 }
5970 }
5971 }
5972 }
5973 }
5974
5975 if (!found_sym && arg_sym != NULL)
5976 {
5977 add_defn_to_vec (obstackp,
5978 fixup_symbol_section (arg_sym, objfile),
5979 block);
5980 }
5981
5982 if (!wild)
5983 {
5984 arg_sym = NULL;
5985 found_sym = 0;
5986
5987 ALL_BLOCK_SYMBOLS (block, iter, sym)
5988 {
5989 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5990 SYMBOL_DOMAIN (sym), domain))
5991 {
5992 int cmp;
5993
5994 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5995 if (cmp == 0)
5996 {
5997 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
5998 if (cmp == 0)
5999 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6000 name_len);
6001 }
6002
6003 if (cmp == 0
6004 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6005 {
6006 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6007 {
6008 if (SYMBOL_IS_ARGUMENT (sym))
6009 arg_sym = sym;
6010 else
6011 {
6012 found_sym = 1;
6013 add_defn_to_vec (obstackp,
6014 fixup_symbol_section (sym, objfile),
6015 block);
6016 }
6017 }
6018 }
6019 }
6020 }
6021
6022 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6023 They aren't parameters, right? */
6024 if (!found_sym && arg_sym != NULL)
6025 {
6026 add_defn_to_vec (obstackp,
6027 fixup_symbol_section (arg_sym, objfile),
6028 block);
6029 }
6030 }
6031 }
6032 \f
6033
6034 /* Symbol Completion */
6035
6036 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6037 name in a form that's appropriate for the completion. The result
6038 does not need to be deallocated, but is only good until the next call.
6039
6040 TEXT_LEN is equal to the length of TEXT.
6041 Perform a wild match if WILD_MATCH_P is set.
6042 ENCODED_P should be set if TEXT represents the start of a symbol name
6043 in its encoded form. */
6044
6045 static const char *
6046 symbol_completion_match (const char *sym_name,
6047 const char *text, int text_len,
6048 int wild_match_p, int encoded_p)
6049 {
6050 const int verbatim_match = (text[0] == '<');
6051 int match = 0;
6052
6053 if (verbatim_match)
6054 {
6055 /* Strip the leading angle bracket. */
6056 text = text + 1;
6057 text_len--;
6058 }
6059
6060 /* First, test against the fully qualified name of the symbol. */
6061
6062 if (strncmp (sym_name, text, text_len) == 0)
6063 match = 1;
6064
6065 if (match && !encoded_p)
6066 {
6067 /* One needed check before declaring a positive match is to verify
6068 that iff we are doing a verbatim match, the decoded version
6069 of the symbol name starts with '<'. Otherwise, this symbol name
6070 is not a suitable completion. */
6071 const char *sym_name_copy = sym_name;
6072 int has_angle_bracket;
6073
6074 sym_name = ada_decode (sym_name);
6075 has_angle_bracket = (sym_name[0] == '<');
6076 match = (has_angle_bracket == verbatim_match);
6077 sym_name = sym_name_copy;
6078 }
6079
6080 if (match && !verbatim_match)
6081 {
6082 /* When doing non-verbatim match, another check that needs to
6083 be done is to verify that the potentially matching symbol name
6084 does not include capital letters, because the ada-mode would
6085 not be able to understand these symbol names without the
6086 angle bracket notation. */
6087 const char *tmp;
6088
6089 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6090 if (*tmp != '\0')
6091 match = 0;
6092 }
6093
6094 /* Second: Try wild matching... */
6095
6096 if (!match && wild_match_p)
6097 {
6098 /* Since we are doing wild matching, this means that TEXT
6099 may represent an unqualified symbol name. We therefore must
6100 also compare TEXT against the unqualified name of the symbol. */
6101 sym_name = ada_unqualified_name (ada_decode (sym_name));
6102
6103 if (strncmp (sym_name, text, text_len) == 0)
6104 match = 1;
6105 }
6106
6107 /* Finally: If we found a mach, prepare the result to return. */
6108
6109 if (!match)
6110 return NULL;
6111
6112 if (verbatim_match)
6113 sym_name = add_angle_brackets (sym_name);
6114
6115 if (!encoded_p)
6116 sym_name = ada_decode (sym_name);
6117
6118 return sym_name;
6119 }
6120
6121 /* A companion function to ada_make_symbol_completion_list().
6122 Check if SYM_NAME represents a symbol which name would be suitable
6123 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6124 it is appended at the end of the given string vector SV.
6125
6126 ORIG_TEXT is the string original string from the user command
6127 that needs to be completed. WORD is the entire command on which
6128 completion should be performed. These two parameters are used to
6129 determine which part of the symbol name should be added to the
6130 completion vector.
6131 if WILD_MATCH_P is set, then wild matching is performed.
6132 ENCODED_P should be set if TEXT represents a symbol name in its
6133 encoded formed (in which case the completion should also be
6134 encoded). */
6135
6136 static void
6137 symbol_completion_add (VEC(char_ptr) **sv,
6138 const char *sym_name,
6139 const char *text, int text_len,
6140 const char *orig_text, const char *word,
6141 int wild_match_p, int encoded_p)
6142 {
6143 const char *match = symbol_completion_match (sym_name, text, text_len,
6144 wild_match_p, encoded_p);
6145 char *completion;
6146
6147 if (match == NULL)
6148 return;
6149
6150 /* We found a match, so add the appropriate completion to the given
6151 string vector. */
6152
6153 if (word == orig_text)
6154 {
6155 completion = xmalloc (strlen (match) + 5);
6156 strcpy (completion, match);
6157 }
6158 else if (word > orig_text)
6159 {
6160 /* Return some portion of sym_name. */
6161 completion = xmalloc (strlen (match) + 5);
6162 strcpy (completion, match + (word - orig_text));
6163 }
6164 else
6165 {
6166 /* Return some of ORIG_TEXT plus sym_name. */
6167 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6168 strncpy (completion, word, orig_text - word);
6169 completion[orig_text - word] = '\0';
6170 strcat (completion, match);
6171 }
6172
6173 VEC_safe_push (char_ptr, *sv, completion);
6174 }
6175
6176 /* An object of this type is passed as the user_data argument to the
6177 expand_symtabs_matching method. */
6178 struct add_partial_datum
6179 {
6180 VEC(char_ptr) **completions;
6181 const char *text;
6182 int text_len;
6183 const char *text0;
6184 const char *word;
6185 int wild_match;
6186 int encoded;
6187 };
6188
6189 /* A callback for expand_symtabs_matching. */
6190
6191 static int
6192 ada_complete_symbol_matcher (const char *name, void *user_data)
6193 {
6194 struct add_partial_datum *data = user_data;
6195
6196 return symbol_completion_match (name, data->text, data->text_len,
6197 data->wild_match, data->encoded) != NULL;
6198 }
6199
6200 /* Return a list of possible symbol names completing TEXT0. WORD is
6201 the entire command on which completion is made. */
6202
6203 static VEC (char_ptr) *
6204 ada_make_symbol_completion_list (const char *text0, const char *word,
6205 enum type_code code)
6206 {
6207 char *text;
6208 int text_len;
6209 int wild_match_p;
6210 int encoded_p;
6211 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6212 struct symbol *sym;
6213 struct compunit_symtab *s;
6214 struct minimal_symbol *msymbol;
6215 struct objfile *objfile;
6216 const struct block *b, *surrounding_static_block = 0;
6217 int i;
6218 struct block_iterator iter;
6219 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6220
6221 gdb_assert (code == TYPE_CODE_UNDEF);
6222
6223 if (text0[0] == '<')
6224 {
6225 text = xstrdup (text0);
6226 make_cleanup (xfree, text);
6227 text_len = strlen (text);
6228 wild_match_p = 0;
6229 encoded_p = 1;
6230 }
6231 else
6232 {
6233 text = xstrdup (ada_encode (text0));
6234 make_cleanup (xfree, text);
6235 text_len = strlen (text);
6236 for (i = 0; i < text_len; i++)
6237 text[i] = tolower (text[i]);
6238
6239 encoded_p = (strstr (text0, "__") != NULL);
6240 /* If the name contains a ".", then the user is entering a fully
6241 qualified entity name, and the match must not be done in wild
6242 mode. Similarly, if the user wants to complete what looks like
6243 an encoded name, the match must not be done in wild mode. */
6244 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6245 }
6246
6247 /* First, look at the partial symtab symbols. */
6248 {
6249 struct add_partial_datum data;
6250
6251 data.completions = &completions;
6252 data.text = text;
6253 data.text_len = text_len;
6254 data.text0 = text0;
6255 data.word = word;
6256 data.wild_match = wild_match_p;
6257 data.encoded = encoded_p;
6258 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6259 ALL_DOMAIN, &data);
6260 }
6261
6262 /* At this point scan through the misc symbol vectors and add each
6263 symbol you find to the list. Eventually we want to ignore
6264 anything that isn't a text symbol (everything else will be
6265 handled by the psymtab code above). */
6266
6267 ALL_MSYMBOLS (objfile, msymbol)
6268 {
6269 QUIT;
6270 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6271 text, text_len, text0, word, wild_match_p,
6272 encoded_p);
6273 }
6274
6275 /* Search upwards from currently selected frame (so that we can
6276 complete on local vars. */
6277
6278 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6279 {
6280 if (!BLOCK_SUPERBLOCK (b))
6281 surrounding_static_block = b; /* For elmin of dups */
6282
6283 ALL_BLOCK_SYMBOLS (b, iter, sym)
6284 {
6285 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6286 text, text_len, text0, word,
6287 wild_match_p, encoded_p);
6288 }
6289 }
6290
6291 /* Go through the symtabs and check the externs and statics for
6292 symbols which match. */
6293
6294 ALL_COMPUNITS (objfile, s)
6295 {
6296 QUIT;
6297 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6298 ALL_BLOCK_SYMBOLS (b, iter, sym)
6299 {
6300 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6301 text, text_len, text0, word,
6302 wild_match_p, encoded_p);
6303 }
6304 }
6305
6306 ALL_COMPUNITS (objfile, s)
6307 {
6308 QUIT;
6309 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6310 /* Don't do this block twice. */
6311 if (b == surrounding_static_block)
6312 continue;
6313 ALL_BLOCK_SYMBOLS (b, iter, sym)
6314 {
6315 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6316 text, text_len, text0, word,
6317 wild_match_p, encoded_p);
6318 }
6319 }
6320
6321 do_cleanups (old_chain);
6322 return completions;
6323 }
6324
6325 /* Field Access */
6326
6327 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6328 for tagged types. */
6329
6330 static int
6331 ada_is_dispatch_table_ptr_type (struct type *type)
6332 {
6333 const char *name;
6334
6335 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6336 return 0;
6337
6338 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6339 if (name == NULL)
6340 return 0;
6341
6342 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6343 }
6344
6345 /* Return non-zero if TYPE is an interface tag. */
6346
6347 static int
6348 ada_is_interface_tag (struct type *type)
6349 {
6350 const char *name = TYPE_NAME (type);
6351
6352 if (name == NULL)
6353 return 0;
6354
6355 return (strcmp (name, "ada__tags__interface_tag") == 0);
6356 }
6357
6358 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6359 to be invisible to users. */
6360
6361 int
6362 ada_is_ignored_field (struct type *type, int field_num)
6363 {
6364 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6365 return 1;
6366
6367 /* Check the name of that field. */
6368 {
6369 const char *name = TYPE_FIELD_NAME (type, field_num);
6370
6371 /* Anonymous field names should not be printed.
6372 brobecker/2007-02-20: I don't think this can actually happen
6373 but we don't want to print the value of annonymous fields anyway. */
6374 if (name == NULL)
6375 return 1;
6376
6377 /* Normally, fields whose name start with an underscore ("_")
6378 are fields that have been internally generated by the compiler,
6379 and thus should not be printed. The "_parent" field is special,
6380 however: This is a field internally generated by the compiler
6381 for tagged types, and it contains the components inherited from
6382 the parent type. This field should not be printed as is, but
6383 should not be ignored either. */
6384 if (name[0] == '_' && !startswith (name, "_parent"))
6385 return 1;
6386 }
6387
6388 /* If this is the dispatch table of a tagged type or an interface tag,
6389 then ignore. */
6390 if (ada_is_tagged_type (type, 1)
6391 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6392 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6393 return 1;
6394
6395 /* Not a special field, so it should not be ignored. */
6396 return 0;
6397 }
6398
6399 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6400 pointer or reference type whose ultimate target has a tag field. */
6401
6402 int
6403 ada_is_tagged_type (struct type *type, int refok)
6404 {
6405 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6406 }
6407
6408 /* True iff TYPE represents the type of X'Tag */
6409
6410 int
6411 ada_is_tag_type (struct type *type)
6412 {
6413 type = ada_check_typedef (type);
6414
6415 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6416 return 0;
6417 else
6418 {
6419 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6420
6421 return (name != NULL
6422 && strcmp (name, "ada__tags__dispatch_table") == 0);
6423 }
6424 }
6425
6426 /* The type of the tag on VAL. */
6427
6428 struct type *
6429 ada_tag_type (struct value *val)
6430 {
6431 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6432 }
6433
6434 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6435 retired at Ada 05). */
6436
6437 static int
6438 is_ada95_tag (struct value *tag)
6439 {
6440 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6441 }
6442
6443 /* The value of the tag on VAL. */
6444
6445 struct value *
6446 ada_value_tag (struct value *val)
6447 {
6448 return ada_value_struct_elt (val, "_tag", 0);
6449 }
6450
6451 /* The value of the tag on the object of type TYPE whose contents are
6452 saved at VALADDR, if it is non-null, or is at memory address
6453 ADDRESS. */
6454
6455 static struct value *
6456 value_tag_from_contents_and_address (struct type *type,
6457 const gdb_byte *valaddr,
6458 CORE_ADDR address)
6459 {
6460 int tag_byte_offset;
6461 struct type *tag_type;
6462
6463 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6464 NULL, NULL, NULL))
6465 {
6466 const gdb_byte *valaddr1 = ((valaddr == NULL)
6467 ? NULL
6468 : valaddr + tag_byte_offset);
6469 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6470
6471 return value_from_contents_and_address (tag_type, valaddr1, address1);
6472 }
6473 return NULL;
6474 }
6475
6476 static struct type *
6477 type_from_tag (struct value *tag)
6478 {
6479 const char *type_name = ada_tag_name (tag);
6480
6481 if (type_name != NULL)
6482 return ada_find_any_type (ada_encode (type_name));
6483 return NULL;
6484 }
6485
6486 /* Given a value OBJ of a tagged type, return a value of this
6487 type at the base address of the object. The base address, as
6488 defined in Ada.Tags, it is the address of the primary tag of
6489 the object, and therefore where the field values of its full
6490 view can be fetched. */
6491
6492 struct value *
6493 ada_tag_value_at_base_address (struct value *obj)
6494 {
6495 struct value *val;
6496 LONGEST offset_to_top = 0;
6497 struct type *ptr_type, *obj_type;
6498 struct value *tag;
6499 CORE_ADDR base_address;
6500
6501 obj_type = value_type (obj);
6502
6503 /* It is the responsability of the caller to deref pointers. */
6504
6505 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6506 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6507 return obj;
6508
6509 tag = ada_value_tag (obj);
6510 if (!tag)
6511 return obj;
6512
6513 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6514
6515 if (is_ada95_tag (tag))
6516 return obj;
6517
6518 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6519 ptr_type = lookup_pointer_type (ptr_type);
6520 val = value_cast (ptr_type, tag);
6521 if (!val)
6522 return obj;
6523
6524 /* It is perfectly possible that an exception be raised while
6525 trying to determine the base address, just like for the tag;
6526 see ada_tag_name for more details. We do not print the error
6527 message for the same reason. */
6528
6529 TRY
6530 {
6531 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6532 }
6533
6534 CATCH (e, RETURN_MASK_ERROR)
6535 {
6536 return obj;
6537 }
6538 END_CATCH
6539
6540 /* If offset is null, nothing to do. */
6541
6542 if (offset_to_top == 0)
6543 return obj;
6544
6545 /* -1 is a special case in Ada.Tags; however, what should be done
6546 is not quite clear from the documentation. So do nothing for
6547 now. */
6548
6549 if (offset_to_top == -1)
6550 return obj;
6551
6552 base_address = value_address (obj) - offset_to_top;
6553 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6554
6555 /* Make sure that we have a proper tag at the new address.
6556 Otherwise, offset_to_top is bogus (which can happen when
6557 the object is not initialized yet). */
6558
6559 if (!tag)
6560 return obj;
6561
6562 obj_type = type_from_tag (tag);
6563
6564 if (!obj_type)
6565 return obj;
6566
6567 return value_from_contents_and_address (obj_type, NULL, base_address);
6568 }
6569
6570 /* Return the "ada__tags__type_specific_data" type. */
6571
6572 static struct type *
6573 ada_get_tsd_type (struct inferior *inf)
6574 {
6575 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6576
6577 if (data->tsd_type == 0)
6578 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6579 return data->tsd_type;
6580 }
6581
6582 /* Return the TSD (type-specific data) associated to the given TAG.
6583 TAG is assumed to be the tag of a tagged-type entity.
6584
6585 May return NULL if we are unable to get the TSD. */
6586
6587 static struct value *
6588 ada_get_tsd_from_tag (struct value *tag)
6589 {
6590 struct value *val;
6591 struct type *type;
6592
6593 /* First option: The TSD is simply stored as a field of our TAG.
6594 Only older versions of GNAT would use this format, but we have
6595 to test it first, because there are no visible markers for
6596 the current approach except the absence of that field. */
6597
6598 val = ada_value_struct_elt (tag, "tsd", 1);
6599 if (val)
6600 return val;
6601
6602 /* Try the second representation for the dispatch table (in which
6603 there is no explicit 'tsd' field in the referent of the tag pointer,
6604 and instead the tsd pointer is stored just before the dispatch
6605 table. */
6606
6607 type = ada_get_tsd_type (current_inferior());
6608 if (type == NULL)
6609 return NULL;
6610 type = lookup_pointer_type (lookup_pointer_type (type));
6611 val = value_cast (type, tag);
6612 if (val == NULL)
6613 return NULL;
6614 return value_ind (value_ptradd (val, -1));
6615 }
6616
6617 /* Given the TSD of a tag (type-specific data), return a string
6618 containing the name of the associated type.
6619
6620 The returned value is good until the next call. May return NULL
6621 if we are unable to determine the tag name. */
6622
6623 static char *
6624 ada_tag_name_from_tsd (struct value *tsd)
6625 {
6626 static char name[1024];
6627 char *p;
6628 struct value *val;
6629
6630 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6631 if (val == NULL)
6632 return NULL;
6633 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6634 for (p = name; *p != '\0'; p += 1)
6635 if (isalpha (*p))
6636 *p = tolower (*p);
6637 return name;
6638 }
6639
6640 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6641 a C string.
6642
6643 Return NULL if the TAG is not an Ada tag, or if we were unable to
6644 determine the name of that tag. The result is good until the next
6645 call. */
6646
6647 const char *
6648 ada_tag_name (struct value *tag)
6649 {
6650 char *name = NULL;
6651
6652 if (!ada_is_tag_type (value_type (tag)))
6653 return NULL;
6654
6655 /* It is perfectly possible that an exception be raised while trying
6656 to determine the TAG's name, even under normal circumstances:
6657 The associated variable may be uninitialized or corrupted, for
6658 instance. We do not let any exception propagate past this point.
6659 instead we return NULL.
6660
6661 We also do not print the error message either (which often is very
6662 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6663 the caller print a more meaningful message if necessary. */
6664 TRY
6665 {
6666 struct value *tsd = ada_get_tsd_from_tag (tag);
6667
6668 if (tsd != NULL)
6669 name = ada_tag_name_from_tsd (tsd);
6670 }
6671 CATCH (e, RETURN_MASK_ERROR)
6672 {
6673 }
6674 END_CATCH
6675
6676 return name;
6677 }
6678
6679 /* The parent type of TYPE, or NULL if none. */
6680
6681 struct type *
6682 ada_parent_type (struct type *type)
6683 {
6684 int i;
6685
6686 type = ada_check_typedef (type);
6687
6688 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6689 return NULL;
6690
6691 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6692 if (ada_is_parent_field (type, i))
6693 {
6694 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6695
6696 /* If the _parent field is a pointer, then dereference it. */
6697 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6698 parent_type = TYPE_TARGET_TYPE (parent_type);
6699 /* If there is a parallel XVS type, get the actual base type. */
6700 parent_type = ada_get_base_type (parent_type);
6701
6702 return ada_check_typedef (parent_type);
6703 }
6704
6705 return NULL;
6706 }
6707
6708 /* True iff field number FIELD_NUM of structure type TYPE contains the
6709 parent-type (inherited) fields of a derived type. Assumes TYPE is
6710 a structure type with at least FIELD_NUM+1 fields. */
6711
6712 int
6713 ada_is_parent_field (struct type *type, int field_num)
6714 {
6715 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6716
6717 return (name != NULL
6718 && (startswith (name, "PARENT")
6719 || startswith (name, "_parent")));
6720 }
6721
6722 /* True iff field number FIELD_NUM of structure type TYPE is a
6723 transparent wrapper field (which should be silently traversed when doing
6724 field selection and flattened when printing). Assumes TYPE is a
6725 structure type with at least FIELD_NUM+1 fields. Such fields are always
6726 structures. */
6727
6728 int
6729 ada_is_wrapper_field (struct type *type, int field_num)
6730 {
6731 const char *name = TYPE_FIELD_NAME (type, field_num);
6732
6733 return (name != NULL
6734 && (startswith (name, "PARENT")
6735 || strcmp (name, "REP") == 0
6736 || startswith (name, "_parent")
6737 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6738 }
6739
6740 /* True iff field number FIELD_NUM of structure or union type TYPE
6741 is a variant wrapper. Assumes TYPE is a structure type with at least
6742 FIELD_NUM+1 fields. */
6743
6744 int
6745 ada_is_variant_part (struct type *type, int field_num)
6746 {
6747 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6748
6749 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6750 || (is_dynamic_field (type, field_num)
6751 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6752 == TYPE_CODE_UNION)));
6753 }
6754
6755 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6756 whose discriminants are contained in the record type OUTER_TYPE,
6757 returns the type of the controlling discriminant for the variant.
6758 May return NULL if the type could not be found. */
6759
6760 struct type *
6761 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6762 {
6763 char *name = ada_variant_discrim_name (var_type);
6764
6765 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6766 }
6767
6768 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6769 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6770 represents a 'when others' clause; otherwise 0. */
6771
6772 int
6773 ada_is_others_clause (struct type *type, int field_num)
6774 {
6775 const char *name = TYPE_FIELD_NAME (type, field_num);
6776
6777 return (name != NULL && name[0] == 'O');
6778 }
6779
6780 /* Assuming that TYPE0 is the type of the variant part of a record,
6781 returns the name of the discriminant controlling the variant.
6782 The value is valid until the next call to ada_variant_discrim_name. */
6783
6784 char *
6785 ada_variant_discrim_name (struct type *type0)
6786 {
6787 static char *result = NULL;
6788 static size_t result_len = 0;
6789 struct type *type;
6790 const char *name;
6791 const char *discrim_end;
6792 const char *discrim_start;
6793
6794 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6795 type = TYPE_TARGET_TYPE (type0);
6796 else
6797 type = type0;
6798
6799 name = ada_type_name (type);
6800
6801 if (name == NULL || name[0] == '\000')
6802 return "";
6803
6804 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6805 discrim_end -= 1)
6806 {
6807 if (startswith (discrim_end, "___XVN"))
6808 break;
6809 }
6810 if (discrim_end == name)
6811 return "";
6812
6813 for (discrim_start = discrim_end; discrim_start != name + 3;
6814 discrim_start -= 1)
6815 {
6816 if (discrim_start == name + 1)
6817 return "";
6818 if ((discrim_start > name + 3
6819 && startswith (discrim_start - 3, "___"))
6820 || discrim_start[-1] == '.')
6821 break;
6822 }
6823
6824 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6825 strncpy (result, discrim_start, discrim_end - discrim_start);
6826 result[discrim_end - discrim_start] = '\0';
6827 return result;
6828 }
6829
6830 /* Scan STR for a subtype-encoded number, beginning at position K.
6831 Put the position of the character just past the number scanned in
6832 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6833 Return 1 if there was a valid number at the given position, and 0
6834 otherwise. A "subtype-encoded" number consists of the absolute value
6835 in decimal, followed by the letter 'm' to indicate a negative number.
6836 Assumes 0m does not occur. */
6837
6838 int
6839 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6840 {
6841 ULONGEST RU;
6842
6843 if (!isdigit (str[k]))
6844 return 0;
6845
6846 /* Do it the hard way so as not to make any assumption about
6847 the relationship of unsigned long (%lu scan format code) and
6848 LONGEST. */
6849 RU = 0;
6850 while (isdigit (str[k]))
6851 {
6852 RU = RU * 10 + (str[k] - '0');
6853 k += 1;
6854 }
6855
6856 if (str[k] == 'm')
6857 {
6858 if (R != NULL)
6859 *R = (-(LONGEST) (RU - 1)) - 1;
6860 k += 1;
6861 }
6862 else if (R != NULL)
6863 *R = (LONGEST) RU;
6864
6865 /* NOTE on the above: Technically, C does not say what the results of
6866 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6867 number representable as a LONGEST (although either would probably work
6868 in most implementations). When RU>0, the locution in the then branch
6869 above is always equivalent to the negative of RU. */
6870
6871 if (new_k != NULL)
6872 *new_k = k;
6873 return 1;
6874 }
6875
6876 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6877 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6878 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6879
6880 int
6881 ada_in_variant (LONGEST val, struct type *type, int field_num)
6882 {
6883 const char *name = TYPE_FIELD_NAME (type, field_num);
6884 int p;
6885
6886 p = 0;
6887 while (1)
6888 {
6889 switch (name[p])
6890 {
6891 case '\0':
6892 return 0;
6893 case 'S':
6894 {
6895 LONGEST W;
6896
6897 if (!ada_scan_number (name, p + 1, &W, &p))
6898 return 0;
6899 if (val == W)
6900 return 1;
6901 break;
6902 }
6903 case 'R':
6904 {
6905 LONGEST L, U;
6906
6907 if (!ada_scan_number (name, p + 1, &L, &p)
6908 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6909 return 0;
6910 if (val >= L && val <= U)
6911 return 1;
6912 break;
6913 }
6914 case 'O':
6915 return 1;
6916 default:
6917 return 0;
6918 }
6919 }
6920 }
6921
6922 /* FIXME: Lots of redundancy below. Try to consolidate. */
6923
6924 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6925 ARG_TYPE, extract and return the value of one of its (non-static)
6926 fields. FIELDNO says which field. Differs from value_primitive_field
6927 only in that it can handle packed values of arbitrary type. */
6928
6929 static struct value *
6930 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6931 struct type *arg_type)
6932 {
6933 struct type *type;
6934
6935 arg_type = ada_check_typedef (arg_type);
6936 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6937
6938 /* Handle packed fields. */
6939
6940 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6941 {
6942 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6943 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6944
6945 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6946 offset + bit_pos / 8,
6947 bit_pos % 8, bit_size, type);
6948 }
6949 else
6950 return value_primitive_field (arg1, offset, fieldno, arg_type);
6951 }
6952
6953 /* Find field with name NAME in object of type TYPE. If found,
6954 set the following for each argument that is non-null:
6955 - *FIELD_TYPE_P to the field's type;
6956 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6957 an object of that type;
6958 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6959 - *BIT_SIZE_P to its size in bits if the field is packed, and
6960 0 otherwise;
6961 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6962 fields up to but not including the desired field, or by the total
6963 number of fields if not found. A NULL value of NAME never
6964 matches; the function just counts visible fields in this case.
6965
6966 Returns 1 if found, 0 otherwise. */
6967
6968 static int
6969 find_struct_field (const char *name, struct type *type, int offset,
6970 struct type **field_type_p,
6971 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6972 int *index_p)
6973 {
6974 int i;
6975
6976 type = ada_check_typedef (type);
6977
6978 if (field_type_p != NULL)
6979 *field_type_p = NULL;
6980 if (byte_offset_p != NULL)
6981 *byte_offset_p = 0;
6982 if (bit_offset_p != NULL)
6983 *bit_offset_p = 0;
6984 if (bit_size_p != NULL)
6985 *bit_size_p = 0;
6986
6987 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6988 {
6989 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6990 int fld_offset = offset + bit_pos / 8;
6991 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6992
6993 if (t_field_name == NULL)
6994 continue;
6995
6996 else if (name != NULL && field_name_match (t_field_name, name))
6997 {
6998 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6999
7000 if (field_type_p != NULL)
7001 *field_type_p = TYPE_FIELD_TYPE (type, i);
7002 if (byte_offset_p != NULL)
7003 *byte_offset_p = fld_offset;
7004 if (bit_offset_p != NULL)
7005 *bit_offset_p = bit_pos % 8;
7006 if (bit_size_p != NULL)
7007 *bit_size_p = bit_size;
7008 return 1;
7009 }
7010 else if (ada_is_wrapper_field (type, i))
7011 {
7012 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7013 field_type_p, byte_offset_p, bit_offset_p,
7014 bit_size_p, index_p))
7015 return 1;
7016 }
7017 else if (ada_is_variant_part (type, i))
7018 {
7019 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7020 fixed type?? */
7021 int j;
7022 struct type *field_type
7023 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7024
7025 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7026 {
7027 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7028 fld_offset
7029 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7030 field_type_p, byte_offset_p,
7031 bit_offset_p, bit_size_p, index_p))
7032 return 1;
7033 }
7034 }
7035 else if (index_p != NULL)
7036 *index_p += 1;
7037 }
7038 return 0;
7039 }
7040
7041 /* Number of user-visible fields in record type TYPE. */
7042
7043 static int
7044 num_visible_fields (struct type *type)
7045 {
7046 int n;
7047
7048 n = 0;
7049 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7050 return n;
7051 }
7052
7053 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7054 and search in it assuming it has (class) type TYPE.
7055 If found, return value, else return NULL.
7056
7057 Searches recursively through wrapper fields (e.g., '_parent'). */
7058
7059 static struct value *
7060 ada_search_struct_field (char *name, struct value *arg, int offset,
7061 struct type *type)
7062 {
7063 int i;
7064
7065 type = ada_check_typedef (type);
7066 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7067 {
7068 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7069
7070 if (t_field_name == NULL)
7071 continue;
7072
7073 else if (field_name_match (t_field_name, name))
7074 return ada_value_primitive_field (arg, offset, i, type);
7075
7076 else if (ada_is_wrapper_field (type, i))
7077 {
7078 struct value *v = /* Do not let indent join lines here. */
7079 ada_search_struct_field (name, arg,
7080 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7081 TYPE_FIELD_TYPE (type, i));
7082
7083 if (v != NULL)
7084 return v;
7085 }
7086
7087 else if (ada_is_variant_part (type, i))
7088 {
7089 /* PNH: Do we ever get here? See find_struct_field. */
7090 int j;
7091 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7092 i));
7093 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7094
7095 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7096 {
7097 struct value *v = ada_search_struct_field /* Force line
7098 break. */
7099 (name, arg,
7100 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7101 TYPE_FIELD_TYPE (field_type, j));
7102
7103 if (v != NULL)
7104 return v;
7105 }
7106 }
7107 }
7108 return NULL;
7109 }
7110
7111 static struct value *ada_index_struct_field_1 (int *, struct value *,
7112 int, struct type *);
7113
7114
7115 /* Return field #INDEX in ARG, where the index is that returned by
7116 * find_struct_field through its INDEX_P argument. Adjust the address
7117 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7118 * If found, return value, else return NULL. */
7119
7120 static struct value *
7121 ada_index_struct_field (int index, struct value *arg, int offset,
7122 struct type *type)
7123 {
7124 return ada_index_struct_field_1 (&index, arg, offset, type);
7125 }
7126
7127
7128 /* Auxiliary function for ada_index_struct_field. Like
7129 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7130 * *INDEX_P. */
7131
7132 static struct value *
7133 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7134 struct type *type)
7135 {
7136 int i;
7137 type = ada_check_typedef (type);
7138
7139 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7140 {
7141 if (TYPE_FIELD_NAME (type, i) == NULL)
7142 continue;
7143 else if (ada_is_wrapper_field (type, i))
7144 {
7145 struct value *v = /* Do not let indent join lines here. */
7146 ada_index_struct_field_1 (index_p, arg,
7147 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7148 TYPE_FIELD_TYPE (type, i));
7149
7150 if (v != NULL)
7151 return v;
7152 }
7153
7154 else if (ada_is_variant_part (type, i))
7155 {
7156 /* PNH: Do we ever get here? See ada_search_struct_field,
7157 find_struct_field. */
7158 error (_("Cannot assign this kind of variant record"));
7159 }
7160 else if (*index_p == 0)
7161 return ada_value_primitive_field (arg, offset, i, type);
7162 else
7163 *index_p -= 1;
7164 }
7165 return NULL;
7166 }
7167
7168 /* Given ARG, a value of type (pointer or reference to a)*
7169 structure/union, extract the component named NAME from the ultimate
7170 target structure/union and return it as a value with its
7171 appropriate type.
7172
7173 The routine searches for NAME among all members of the structure itself
7174 and (recursively) among all members of any wrapper members
7175 (e.g., '_parent').
7176
7177 If NO_ERR, then simply return NULL in case of error, rather than
7178 calling error. */
7179
7180 struct value *
7181 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7182 {
7183 struct type *t, *t1;
7184 struct value *v;
7185
7186 v = NULL;
7187 t1 = t = ada_check_typedef (value_type (arg));
7188 if (TYPE_CODE (t) == TYPE_CODE_REF)
7189 {
7190 t1 = TYPE_TARGET_TYPE (t);
7191 if (t1 == NULL)
7192 goto BadValue;
7193 t1 = ada_check_typedef (t1);
7194 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7195 {
7196 arg = coerce_ref (arg);
7197 t = t1;
7198 }
7199 }
7200
7201 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7202 {
7203 t1 = TYPE_TARGET_TYPE (t);
7204 if (t1 == NULL)
7205 goto BadValue;
7206 t1 = ada_check_typedef (t1);
7207 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7208 {
7209 arg = value_ind (arg);
7210 t = t1;
7211 }
7212 else
7213 break;
7214 }
7215
7216 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7217 goto BadValue;
7218
7219 if (t1 == t)
7220 v = ada_search_struct_field (name, arg, 0, t);
7221 else
7222 {
7223 int bit_offset, bit_size, byte_offset;
7224 struct type *field_type;
7225 CORE_ADDR address;
7226
7227 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7228 address = value_address (ada_value_ind (arg));
7229 else
7230 address = value_address (ada_coerce_ref (arg));
7231
7232 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7233 if (find_struct_field (name, t1, 0,
7234 &field_type, &byte_offset, &bit_offset,
7235 &bit_size, NULL))
7236 {
7237 if (bit_size != 0)
7238 {
7239 if (TYPE_CODE (t) == TYPE_CODE_REF)
7240 arg = ada_coerce_ref (arg);
7241 else
7242 arg = ada_value_ind (arg);
7243 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7244 bit_offset, bit_size,
7245 field_type);
7246 }
7247 else
7248 v = value_at_lazy (field_type, address + byte_offset);
7249 }
7250 }
7251
7252 if (v != NULL || no_err)
7253 return v;
7254 else
7255 error (_("There is no member named %s."), name);
7256
7257 BadValue:
7258 if (no_err)
7259 return NULL;
7260 else
7261 error (_("Attempt to extract a component of "
7262 "a value that is not a record."));
7263 }
7264
7265 /* Given a type TYPE, look up the type of the component of type named NAME.
7266 If DISPP is non-null, add its byte displacement from the beginning of a
7267 structure (pointed to by a value) of type TYPE to *DISPP (does not
7268 work for packed fields).
7269
7270 Matches any field whose name has NAME as a prefix, possibly
7271 followed by "___".
7272
7273 TYPE can be either a struct or union. If REFOK, TYPE may also
7274 be a (pointer or reference)+ to a struct or union, and the
7275 ultimate target type will be searched.
7276
7277 Looks recursively into variant clauses and parent types.
7278
7279 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7280 TYPE is not a type of the right kind. */
7281
7282 static struct type *
7283 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7284 int noerr, int *dispp)
7285 {
7286 int i;
7287
7288 if (name == NULL)
7289 goto BadName;
7290
7291 if (refok && type != NULL)
7292 while (1)
7293 {
7294 type = ada_check_typedef (type);
7295 if (TYPE_CODE (type) != TYPE_CODE_PTR
7296 && TYPE_CODE (type) != TYPE_CODE_REF)
7297 break;
7298 type = TYPE_TARGET_TYPE (type);
7299 }
7300
7301 if (type == NULL
7302 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7303 && TYPE_CODE (type) != TYPE_CODE_UNION))
7304 {
7305 if (noerr)
7306 return NULL;
7307 else
7308 {
7309 target_terminal_ours ();
7310 gdb_flush (gdb_stdout);
7311 if (type == NULL)
7312 error (_("Type (null) is not a structure or union type"));
7313 else
7314 {
7315 /* XXX: type_sprint */
7316 fprintf_unfiltered (gdb_stderr, _("Type "));
7317 type_print (type, "", gdb_stderr, -1);
7318 error (_(" is not a structure or union type"));
7319 }
7320 }
7321 }
7322
7323 type = to_static_fixed_type (type);
7324
7325 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7326 {
7327 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7328 struct type *t;
7329 int disp;
7330
7331 if (t_field_name == NULL)
7332 continue;
7333
7334 else if (field_name_match (t_field_name, name))
7335 {
7336 if (dispp != NULL)
7337 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7338 return TYPE_FIELD_TYPE (type, i);
7339 }
7340
7341 else if (ada_is_wrapper_field (type, i))
7342 {
7343 disp = 0;
7344 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7345 0, 1, &disp);
7346 if (t != NULL)
7347 {
7348 if (dispp != NULL)
7349 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7350 return t;
7351 }
7352 }
7353
7354 else if (ada_is_variant_part (type, i))
7355 {
7356 int j;
7357 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7358 i));
7359
7360 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7361 {
7362 /* FIXME pnh 2008/01/26: We check for a field that is
7363 NOT wrapped in a struct, since the compiler sometimes
7364 generates these for unchecked variant types. Revisit
7365 if the compiler changes this practice. */
7366 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7367 disp = 0;
7368 if (v_field_name != NULL
7369 && field_name_match (v_field_name, name))
7370 t = TYPE_FIELD_TYPE (field_type, j);
7371 else
7372 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7373 j),
7374 name, 0, 1, &disp);
7375
7376 if (t != NULL)
7377 {
7378 if (dispp != NULL)
7379 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7380 return t;
7381 }
7382 }
7383 }
7384
7385 }
7386
7387 BadName:
7388 if (!noerr)
7389 {
7390 target_terminal_ours ();
7391 gdb_flush (gdb_stdout);
7392 if (name == NULL)
7393 {
7394 /* XXX: type_sprint */
7395 fprintf_unfiltered (gdb_stderr, _("Type "));
7396 type_print (type, "", gdb_stderr, -1);
7397 error (_(" has no component named <null>"));
7398 }
7399 else
7400 {
7401 /* XXX: type_sprint */
7402 fprintf_unfiltered (gdb_stderr, _("Type "));
7403 type_print (type, "", gdb_stderr, -1);
7404 error (_(" has no component named %s"), name);
7405 }
7406 }
7407
7408 return NULL;
7409 }
7410
7411 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7412 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7413 represents an unchecked union (that is, the variant part of a
7414 record that is named in an Unchecked_Union pragma). */
7415
7416 static int
7417 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7418 {
7419 char *discrim_name = ada_variant_discrim_name (var_type);
7420
7421 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7422 == NULL);
7423 }
7424
7425
7426 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7427 within a value of type OUTER_TYPE that is stored in GDB at
7428 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7429 numbering from 0) is applicable. Returns -1 if none are. */
7430
7431 int
7432 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7433 const gdb_byte *outer_valaddr)
7434 {
7435 int others_clause;
7436 int i;
7437 char *discrim_name = ada_variant_discrim_name (var_type);
7438 struct value *outer;
7439 struct value *discrim;
7440 LONGEST discrim_val;
7441
7442 /* Using plain value_from_contents_and_address here causes problems
7443 because we will end up trying to resolve a type that is currently
7444 being constructed. */
7445 outer = value_from_contents_and_address_unresolved (outer_type,
7446 outer_valaddr, 0);
7447 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7448 if (discrim == NULL)
7449 return -1;
7450 discrim_val = value_as_long (discrim);
7451
7452 others_clause = -1;
7453 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7454 {
7455 if (ada_is_others_clause (var_type, i))
7456 others_clause = i;
7457 else if (ada_in_variant (discrim_val, var_type, i))
7458 return i;
7459 }
7460
7461 return others_clause;
7462 }
7463 \f
7464
7465
7466 /* Dynamic-Sized Records */
7467
7468 /* Strategy: The type ostensibly attached to a value with dynamic size
7469 (i.e., a size that is not statically recorded in the debugging
7470 data) does not accurately reflect the size or layout of the value.
7471 Our strategy is to convert these values to values with accurate,
7472 conventional types that are constructed on the fly. */
7473
7474 /* There is a subtle and tricky problem here. In general, we cannot
7475 determine the size of dynamic records without its data. However,
7476 the 'struct value' data structure, which GDB uses to represent
7477 quantities in the inferior process (the target), requires the size
7478 of the type at the time of its allocation in order to reserve space
7479 for GDB's internal copy of the data. That's why the
7480 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7481 rather than struct value*s.
7482
7483 However, GDB's internal history variables ($1, $2, etc.) are
7484 struct value*s containing internal copies of the data that are not, in
7485 general, the same as the data at their corresponding addresses in
7486 the target. Fortunately, the types we give to these values are all
7487 conventional, fixed-size types (as per the strategy described
7488 above), so that we don't usually have to perform the
7489 'to_fixed_xxx_type' conversions to look at their values.
7490 Unfortunately, there is one exception: if one of the internal
7491 history variables is an array whose elements are unconstrained
7492 records, then we will need to create distinct fixed types for each
7493 element selected. */
7494
7495 /* The upshot of all of this is that many routines take a (type, host
7496 address, target address) triple as arguments to represent a value.
7497 The host address, if non-null, is supposed to contain an internal
7498 copy of the relevant data; otherwise, the program is to consult the
7499 target at the target address. */
7500
7501 /* Assuming that VAL0 represents a pointer value, the result of
7502 dereferencing it. Differs from value_ind in its treatment of
7503 dynamic-sized types. */
7504
7505 struct value *
7506 ada_value_ind (struct value *val0)
7507 {
7508 struct value *val = value_ind (val0);
7509
7510 if (ada_is_tagged_type (value_type (val), 0))
7511 val = ada_tag_value_at_base_address (val);
7512
7513 return ada_to_fixed_value (val);
7514 }
7515
7516 /* The value resulting from dereferencing any "reference to"
7517 qualifiers on VAL0. */
7518
7519 static struct value *
7520 ada_coerce_ref (struct value *val0)
7521 {
7522 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7523 {
7524 struct value *val = val0;
7525
7526 val = coerce_ref (val);
7527
7528 if (ada_is_tagged_type (value_type (val), 0))
7529 val = ada_tag_value_at_base_address (val);
7530
7531 return ada_to_fixed_value (val);
7532 }
7533 else
7534 return val0;
7535 }
7536
7537 /* Return OFF rounded upward if necessary to a multiple of
7538 ALIGNMENT (a power of 2). */
7539
7540 static unsigned int
7541 align_value (unsigned int off, unsigned int alignment)
7542 {
7543 return (off + alignment - 1) & ~(alignment - 1);
7544 }
7545
7546 /* Return the bit alignment required for field #F of template type TYPE. */
7547
7548 static unsigned int
7549 field_alignment (struct type *type, int f)
7550 {
7551 const char *name = TYPE_FIELD_NAME (type, f);
7552 int len;
7553 int align_offset;
7554
7555 /* The field name should never be null, unless the debugging information
7556 is somehow malformed. In this case, we assume the field does not
7557 require any alignment. */
7558 if (name == NULL)
7559 return 1;
7560
7561 len = strlen (name);
7562
7563 if (!isdigit (name[len - 1]))
7564 return 1;
7565
7566 if (isdigit (name[len - 2]))
7567 align_offset = len - 2;
7568 else
7569 align_offset = len - 1;
7570
7571 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7572 return TARGET_CHAR_BIT;
7573
7574 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7575 }
7576
7577 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7578
7579 static struct symbol *
7580 ada_find_any_type_symbol (const char *name)
7581 {
7582 struct symbol *sym;
7583
7584 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7585 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7586 return sym;
7587
7588 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7589 return sym;
7590 }
7591
7592 /* Find a type named NAME. Ignores ambiguity. This routine will look
7593 solely for types defined by debug info, it will not search the GDB
7594 primitive types. */
7595
7596 static struct type *
7597 ada_find_any_type (const char *name)
7598 {
7599 struct symbol *sym = ada_find_any_type_symbol (name);
7600
7601 if (sym != NULL)
7602 return SYMBOL_TYPE (sym);
7603
7604 return NULL;
7605 }
7606
7607 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7608 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7609 symbol, in which case it is returned. Otherwise, this looks for
7610 symbols whose name is that of NAME_SYM suffixed with "___XR".
7611 Return symbol if found, and NULL otherwise. */
7612
7613 struct symbol *
7614 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7615 {
7616 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7617 struct symbol *sym;
7618
7619 if (strstr (name, "___XR") != NULL)
7620 return name_sym;
7621
7622 sym = find_old_style_renaming_symbol (name, block);
7623
7624 if (sym != NULL)
7625 return sym;
7626
7627 /* Not right yet. FIXME pnh 7/20/2007. */
7628 sym = ada_find_any_type_symbol (name);
7629 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7630 return sym;
7631 else
7632 return NULL;
7633 }
7634
7635 static struct symbol *
7636 find_old_style_renaming_symbol (const char *name, const struct block *block)
7637 {
7638 const struct symbol *function_sym = block_linkage_function (block);
7639 char *rename;
7640
7641 if (function_sym != NULL)
7642 {
7643 /* If the symbol is defined inside a function, NAME is not fully
7644 qualified. This means we need to prepend the function name
7645 as well as adding the ``___XR'' suffix to build the name of
7646 the associated renaming symbol. */
7647 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7648 /* Function names sometimes contain suffixes used
7649 for instance to qualify nested subprograms. When building
7650 the XR type name, we need to make sure that this suffix is
7651 not included. So do not include any suffix in the function
7652 name length below. */
7653 int function_name_len = ada_name_prefix_len (function_name);
7654 const int rename_len = function_name_len + 2 /* "__" */
7655 + strlen (name) + 6 /* "___XR\0" */ ;
7656
7657 /* Strip the suffix if necessary. */
7658 ada_remove_trailing_digits (function_name, &function_name_len);
7659 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7660 ada_remove_Xbn_suffix (function_name, &function_name_len);
7661
7662 /* Library-level functions are a special case, as GNAT adds
7663 a ``_ada_'' prefix to the function name to avoid namespace
7664 pollution. However, the renaming symbols themselves do not
7665 have this prefix, so we need to skip this prefix if present. */
7666 if (function_name_len > 5 /* "_ada_" */
7667 && strstr (function_name, "_ada_") == function_name)
7668 {
7669 function_name += 5;
7670 function_name_len -= 5;
7671 }
7672
7673 rename = (char *) alloca (rename_len * sizeof (char));
7674 strncpy (rename, function_name, function_name_len);
7675 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7676 "__%s___XR", name);
7677 }
7678 else
7679 {
7680 const int rename_len = strlen (name) + 6;
7681
7682 rename = (char *) alloca (rename_len * sizeof (char));
7683 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7684 }
7685
7686 return ada_find_any_type_symbol (rename);
7687 }
7688
7689 /* Because of GNAT encoding conventions, several GDB symbols may match a
7690 given type name. If the type denoted by TYPE0 is to be preferred to
7691 that of TYPE1 for purposes of type printing, return non-zero;
7692 otherwise return 0. */
7693
7694 int
7695 ada_prefer_type (struct type *type0, struct type *type1)
7696 {
7697 if (type1 == NULL)
7698 return 1;
7699 else if (type0 == NULL)
7700 return 0;
7701 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7702 return 1;
7703 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7704 return 0;
7705 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7706 return 1;
7707 else if (ada_is_constrained_packed_array_type (type0))
7708 return 1;
7709 else if (ada_is_array_descriptor_type (type0)
7710 && !ada_is_array_descriptor_type (type1))
7711 return 1;
7712 else
7713 {
7714 const char *type0_name = type_name_no_tag (type0);
7715 const char *type1_name = type_name_no_tag (type1);
7716
7717 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7718 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7719 return 1;
7720 }
7721 return 0;
7722 }
7723
7724 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7725 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7726
7727 const char *
7728 ada_type_name (struct type *type)
7729 {
7730 if (type == NULL)
7731 return NULL;
7732 else if (TYPE_NAME (type) != NULL)
7733 return TYPE_NAME (type);
7734 else
7735 return TYPE_TAG_NAME (type);
7736 }
7737
7738 /* Search the list of "descriptive" types associated to TYPE for a type
7739 whose name is NAME. */
7740
7741 static struct type *
7742 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7743 {
7744 struct type *result;
7745
7746 if (ada_ignore_descriptive_types_p)
7747 return NULL;
7748
7749 /* If there no descriptive-type info, then there is no parallel type
7750 to be found. */
7751 if (!HAVE_GNAT_AUX_INFO (type))
7752 return NULL;
7753
7754 result = TYPE_DESCRIPTIVE_TYPE (type);
7755 while (result != NULL)
7756 {
7757 const char *result_name = ada_type_name (result);
7758
7759 if (result_name == NULL)
7760 {
7761 warning (_("unexpected null name on descriptive type"));
7762 return NULL;
7763 }
7764
7765 /* If the names match, stop. */
7766 if (strcmp (result_name, name) == 0)
7767 break;
7768
7769 /* Otherwise, look at the next item on the list, if any. */
7770 if (HAVE_GNAT_AUX_INFO (result))
7771 result = TYPE_DESCRIPTIVE_TYPE (result);
7772 else
7773 result = NULL;
7774 }
7775
7776 /* If we didn't find a match, see whether this is a packed array. With
7777 older compilers, the descriptive type information is either absent or
7778 irrelevant when it comes to packed arrays so the above lookup fails.
7779 Fall back to using a parallel lookup by name in this case. */
7780 if (result == NULL && ada_is_constrained_packed_array_type (type))
7781 return ada_find_any_type (name);
7782
7783 return result;
7784 }
7785
7786 /* Find a parallel type to TYPE with the specified NAME, using the
7787 descriptive type taken from the debugging information, if available,
7788 and otherwise using the (slower) name-based method. */
7789
7790 static struct type *
7791 ada_find_parallel_type_with_name (struct type *type, const char *name)
7792 {
7793 struct type *result = NULL;
7794
7795 if (HAVE_GNAT_AUX_INFO (type))
7796 result = find_parallel_type_by_descriptive_type (type, name);
7797 else
7798 result = ada_find_any_type (name);
7799
7800 return result;
7801 }
7802
7803 /* Same as above, but specify the name of the parallel type by appending
7804 SUFFIX to the name of TYPE. */
7805
7806 struct type *
7807 ada_find_parallel_type (struct type *type, const char *suffix)
7808 {
7809 char *name;
7810 const char *type_name = ada_type_name (type);
7811 int len;
7812
7813 if (type_name == NULL)
7814 return NULL;
7815
7816 len = strlen (type_name);
7817
7818 name = (char *) alloca (len + strlen (suffix) + 1);
7819
7820 strcpy (name, type_name);
7821 strcpy (name + len, suffix);
7822
7823 return ada_find_parallel_type_with_name (type, name);
7824 }
7825
7826 /* If TYPE is a variable-size record type, return the corresponding template
7827 type describing its fields. Otherwise, return NULL. */
7828
7829 static struct type *
7830 dynamic_template_type (struct type *type)
7831 {
7832 type = ada_check_typedef (type);
7833
7834 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7835 || ada_type_name (type) == NULL)
7836 return NULL;
7837 else
7838 {
7839 int len = strlen (ada_type_name (type));
7840
7841 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7842 return type;
7843 else
7844 return ada_find_parallel_type (type, "___XVE");
7845 }
7846 }
7847
7848 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7849 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7850
7851 static int
7852 is_dynamic_field (struct type *templ_type, int field_num)
7853 {
7854 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7855
7856 return name != NULL
7857 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7858 && strstr (name, "___XVL") != NULL;
7859 }
7860
7861 /* The index of the variant field of TYPE, or -1 if TYPE does not
7862 represent a variant record type. */
7863
7864 static int
7865 variant_field_index (struct type *type)
7866 {
7867 int f;
7868
7869 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7870 return -1;
7871
7872 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7873 {
7874 if (ada_is_variant_part (type, f))
7875 return f;
7876 }
7877 return -1;
7878 }
7879
7880 /* A record type with no fields. */
7881
7882 static struct type *
7883 empty_record (struct type *templ)
7884 {
7885 struct type *type = alloc_type_copy (templ);
7886
7887 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7888 TYPE_NFIELDS (type) = 0;
7889 TYPE_FIELDS (type) = NULL;
7890 INIT_CPLUS_SPECIFIC (type);
7891 TYPE_NAME (type) = "<empty>";
7892 TYPE_TAG_NAME (type) = NULL;
7893 TYPE_LENGTH (type) = 0;
7894 return type;
7895 }
7896
7897 /* An ordinary record type (with fixed-length fields) that describes
7898 the value of type TYPE at VALADDR or ADDRESS (see comments at
7899 the beginning of this section) VAL according to GNAT conventions.
7900 DVAL0 should describe the (portion of a) record that contains any
7901 necessary discriminants. It should be NULL if value_type (VAL) is
7902 an outer-level type (i.e., as opposed to a branch of a variant.) A
7903 variant field (unless unchecked) is replaced by a particular branch
7904 of the variant.
7905
7906 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7907 length are not statically known are discarded. As a consequence,
7908 VALADDR, ADDRESS and DVAL0 are ignored.
7909
7910 NOTE: Limitations: For now, we assume that dynamic fields and
7911 variants occupy whole numbers of bytes. However, they need not be
7912 byte-aligned. */
7913
7914 struct type *
7915 ada_template_to_fixed_record_type_1 (struct type *type,
7916 const gdb_byte *valaddr,
7917 CORE_ADDR address, struct value *dval0,
7918 int keep_dynamic_fields)
7919 {
7920 struct value *mark = value_mark ();
7921 struct value *dval;
7922 struct type *rtype;
7923 int nfields, bit_len;
7924 int variant_field;
7925 long off;
7926 int fld_bit_len;
7927 int f;
7928
7929 /* Compute the number of fields in this record type that are going
7930 to be processed: unless keep_dynamic_fields, this includes only
7931 fields whose position and length are static will be processed. */
7932 if (keep_dynamic_fields)
7933 nfields = TYPE_NFIELDS (type);
7934 else
7935 {
7936 nfields = 0;
7937 while (nfields < TYPE_NFIELDS (type)
7938 && !ada_is_variant_part (type, nfields)
7939 && !is_dynamic_field (type, nfields))
7940 nfields++;
7941 }
7942
7943 rtype = alloc_type_copy (type);
7944 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7945 INIT_CPLUS_SPECIFIC (rtype);
7946 TYPE_NFIELDS (rtype) = nfields;
7947 TYPE_FIELDS (rtype) = (struct field *)
7948 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7949 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7950 TYPE_NAME (rtype) = ada_type_name (type);
7951 TYPE_TAG_NAME (rtype) = NULL;
7952 TYPE_FIXED_INSTANCE (rtype) = 1;
7953
7954 off = 0;
7955 bit_len = 0;
7956 variant_field = -1;
7957
7958 for (f = 0; f < nfields; f += 1)
7959 {
7960 off = align_value (off, field_alignment (type, f))
7961 + TYPE_FIELD_BITPOS (type, f);
7962 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7963 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7964
7965 if (ada_is_variant_part (type, f))
7966 {
7967 variant_field = f;
7968 fld_bit_len = 0;
7969 }
7970 else if (is_dynamic_field (type, f))
7971 {
7972 const gdb_byte *field_valaddr = valaddr;
7973 CORE_ADDR field_address = address;
7974 struct type *field_type =
7975 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7976
7977 if (dval0 == NULL)
7978 {
7979 /* rtype's length is computed based on the run-time
7980 value of discriminants. If the discriminants are not
7981 initialized, the type size may be completely bogus and
7982 GDB may fail to allocate a value for it. So check the
7983 size first before creating the value. */
7984 ada_ensure_varsize_limit (rtype);
7985 /* Using plain value_from_contents_and_address here
7986 causes problems because we will end up trying to
7987 resolve a type that is currently being
7988 constructed. */
7989 dval = value_from_contents_and_address_unresolved (rtype,
7990 valaddr,
7991 address);
7992 rtype = value_type (dval);
7993 }
7994 else
7995 dval = dval0;
7996
7997 /* If the type referenced by this field is an aligner type, we need
7998 to unwrap that aligner type, because its size might not be set.
7999 Keeping the aligner type would cause us to compute the wrong
8000 size for this field, impacting the offset of the all the fields
8001 that follow this one. */
8002 if (ada_is_aligner_type (field_type))
8003 {
8004 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8005
8006 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8007 field_address = cond_offset_target (field_address, field_offset);
8008 field_type = ada_aligned_type (field_type);
8009 }
8010
8011 field_valaddr = cond_offset_host (field_valaddr,
8012 off / TARGET_CHAR_BIT);
8013 field_address = cond_offset_target (field_address,
8014 off / TARGET_CHAR_BIT);
8015
8016 /* Get the fixed type of the field. Note that, in this case,
8017 we do not want to get the real type out of the tag: if
8018 the current field is the parent part of a tagged record,
8019 we will get the tag of the object. Clearly wrong: the real
8020 type of the parent is not the real type of the child. We
8021 would end up in an infinite loop. */
8022 field_type = ada_get_base_type (field_type);
8023 field_type = ada_to_fixed_type (field_type, field_valaddr,
8024 field_address, dval, 0);
8025 /* If the field size is already larger than the maximum
8026 object size, then the record itself will necessarily
8027 be larger than the maximum object size. We need to make
8028 this check now, because the size might be so ridiculously
8029 large (due to an uninitialized variable in the inferior)
8030 that it would cause an overflow when adding it to the
8031 record size. */
8032 ada_ensure_varsize_limit (field_type);
8033
8034 TYPE_FIELD_TYPE (rtype, f) = field_type;
8035 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8036 /* The multiplication can potentially overflow. But because
8037 the field length has been size-checked just above, and
8038 assuming that the maximum size is a reasonable value,
8039 an overflow should not happen in practice. So rather than
8040 adding overflow recovery code to this already complex code,
8041 we just assume that it's not going to happen. */
8042 fld_bit_len =
8043 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8044 }
8045 else
8046 {
8047 /* Note: If this field's type is a typedef, it is important
8048 to preserve the typedef layer.
8049
8050 Otherwise, we might be transforming a typedef to a fat
8051 pointer (encoding a pointer to an unconstrained array),
8052 into a basic fat pointer (encoding an unconstrained
8053 array). As both types are implemented using the same
8054 structure, the typedef is the only clue which allows us
8055 to distinguish between the two options. Stripping it
8056 would prevent us from printing this field appropriately. */
8057 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8058 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8059 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8060 fld_bit_len =
8061 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8062 else
8063 {
8064 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8065
8066 /* We need to be careful of typedefs when computing
8067 the length of our field. If this is a typedef,
8068 get the length of the target type, not the length
8069 of the typedef. */
8070 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8071 field_type = ada_typedef_target_type (field_type);
8072
8073 fld_bit_len =
8074 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8075 }
8076 }
8077 if (off + fld_bit_len > bit_len)
8078 bit_len = off + fld_bit_len;
8079 off += fld_bit_len;
8080 TYPE_LENGTH (rtype) =
8081 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8082 }
8083
8084 /* We handle the variant part, if any, at the end because of certain
8085 odd cases in which it is re-ordered so as NOT to be the last field of
8086 the record. This can happen in the presence of representation
8087 clauses. */
8088 if (variant_field >= 0)
8089 {
8090 struct type *branch_type;
8091
8092 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8093
8094 if (dval0 == NULL)
8095 {
8096 /* Using plain value_from_contents_and_address here causes
8097 problems because we will end up trying to resolve a type
8098 that is currently being constructed. */
8099 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8100 address);
8101 rtype = value_type (dval);
8102 }
8103 else
8104 dval = dval0;
8105
8106 branch_type =
8107 to_fixed_variant_branch_type
8108 (TYPE_FIELD_TYPE (type, variant_field),
8109 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8110 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8111 if (branch_type == NULL)
8112 {
8113 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8114 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8115 TYPE_NFIELDS (rtype) -= 1;
8116 }
8117 else
8118 {
8119 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8120 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8121 fld_bit_len =
8122 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8123 TARGET_CHAR_BIT;
8124 if (off + fld_bit_len > bit_len)
8125 bit_len = off + fld_bit_len;
8126 TYPE_LENGTH (rtype) =
8127 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8128 }
8129 }
8130
8131 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8132 should contain the alignment of that record, which should be a strictly
8133 positive value. If null or negative, then something is wrong, most
8134 probably in the debug info. In that case, we don't round up the size
8135 of the resulting type. If this record is not part of another structure,
8136 the current RTYPE length might be good enough for our purposes. */
8137 if (TYPE_LENGTH (type) <= 0)
8138 {
8139 if (TYPE_NAME (rtype))
8140 warning (_("Invalid type size for `%s' detected: %d."),
8141 TYPE_NAME (rtype), TYPE_LENGTH (type));
8142 else
8143 warning (_("Invalid type size for <unnamed> detected: %d."),
8144 TYPE_LENGTH (type));
8145 }
8146 else
8147 {
8148 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8149 TYPE_LENGTH (type));
8150 }
8151
8152 value_free_to_mark (mark);
8153 if (TYPE_LENGTH (rtype) > varsize_limit)
8154 error (_("record type with dynamic size is larger than varsize-limit"));
8155 return rtype;
8156 }
8157
8158 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8159 of 1. */
8160
8161 static struct type *
8162 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8163 CORE_ADDR address, struct value *dval0)
8164 {
8165 return ada_template_to_fixed_record_type_1 (type, valaddr,
8166 address, dval0, 1);
8167 }
8168
8169 /* An ordinary record type in which ___XVL-convention fields and
8170 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8171 static approximations, containing all possible fields. Uses
8172 no runtime values. Useless for use in values, but that's OK,
8173 since the results are used only for type determinations. Works on both
8174 structs and unions. Representation note: to save space, we memorize
8175 the result of this function in the TYPE_TARGET_TYPE of the
8176 template type. */
8177
8178 static struct type *
8179 template_to_static_fixed_type (struct type *type0)
8180 {
8181 struct type *type;
8182 int nfields;
8183 int f;
8184
8185 /* No need no do anything if the input type is already fixed. */
8186 if (TYPE_FIXED_INSTANCE (type0))
8187 return type0;
8188
8189 /* Likewise if we already have computed the static approximation. */
8190 if (TYPE_TARGET_TYPE (type0) != NULL)
8191 return TYPE_TARGET_TYPE (type0);
8192
8193 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8194 type = type0;
8195 nfields = TYPE_NFIELDS (type0);
8196
8197 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8198 recompute all over next time. */
8199 TYPE_TARGET_TYPE (type0) = type;
8200
8201 for (f = 0; f < nfields; f += 1)
8202 {
8203 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8204 struct type *new_type;
8205
8206 if (is_dynamic_field (type0, f))
8207 {
8208 field_type = ada_check_typedef (field_type);
8209 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8210 }
8211 else
8212 new_type = static_unwrap_type (field_type);
8213
8214 if (new_type != field_type)
8215 {
8216 /* Clone TYPE0 only the first time we get a new field type. */
8217 if (type == type0)
8218 {
8219 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8220 TYPE_CODE (type) = TYPE_CODE (type0);
8221 INIT_CPLUS_SPECIFIC (type);
8222 TYPE_NFIELDS (type) = nfields;
8223 TYPE_FIELDS (type) = (struct field *)
8224 TYPE_ALLOC (type, nfields * sizeof (struct field));
8225 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8226 sizeof (struct field) * nfields);
8227 TYPE_NAME (type) = ada_type_name (type0);
8228 TYPE_TAG_NAME (type) = NULL;
8229 TYPE_FIXED_INSTANCE (type) = 1;
8230 TYPE_LENGTH (type) = 0;
8231 }
8232 TYPE_FIELD_TYPE (type, f) = new_type;
8233 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8234 }
8235 }
8236
8237 return type;
8238 }
8239
8240 /* Given an object of type TYPE whose contents are at VALADDR and
8241 whose address in memory is ADDRESS, returns a revision of TYPE,
8242 which should be a non-dynamic-sized record, in which the variant
8243 part, if any, is replaced with the appropriate branch. Looks
8244 for discriminant values in DVAL0, which can be NULL if the record
8245 contains the necessary discriminant values. */
8246
8247 static struct type *
8248 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8249 CORE_ADDR address, struct value *dval0)
8250 {
8251 struct value *mark = value_mark ();
8252 struct value *dval;
8253 struct type *rtype;
8254 struct type *branch_type;
8255 int nfields = TYPE_NFIELDS (type);
8256 int variant_field = variant_field_index (type);
8257
8258 if (variant_field == -1)
8259 return type;
8260
8261 if (dval0 == NULL)
8262 {
8263 dval = value_from_contents_and_address (type, valaddr, address);
8264 type = value_type (dval);
8265 }
8266 else
8267 dval = dval0;
8268
8269 rtype = alloc_type_copy (type);
8270 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8271 INIT_CPLUS_SPECIFIC (rtype);
8272 TYPE_NFIELDS (rtype) = nfields;
8273 TYPE_FIELDS (rtype) =
8274 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8275 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8276 sizeof (struct field) * nfields);
8277 TYPE_NAME (rtype) = ada_type_name (type);
8278 TYPE_TAG_NAME (rtype) = NULL;
8279 TYPE_FIXED_INSTANCE (rtype) = 1;
8280 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8281
8282 branch_type = to_fixed_variant_branch_type
8283 (TYPE_FIELD_TYPE (type, variant_field),
8284 cond_offset_host (valaddr,
8285 TYPE_FIELD_BITPOS (type, variant_field)
8286 / TARGET_CHAR_BIT),
8287 cond_offset_target (address,
8288 TYPE_FIELD_BITPOS (type, variant_field)
8289 / TARGET_CHAR_BIT), dval);
8290 if (branch_type == NULL)
8291 {
8292 int f;
8293
8294 for (f = variant_field + 1; f < nfields; f += 1)
8295 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8296 TYPE_NFIELDS (rtype) -= 1;
8297 }
8298 else
8299 {
8300 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8301 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8302 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8303 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8304 }
8305 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8306
8307 value_free_to_mark (mark);
8308 return rtype;
8309 }
8310
8311 /* An ordinary record type (with fixed-length fields) that describes
8312 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8313 beginning of this section]. Any necessary discriminants' values
8314 should be in DVAL, a record value; it may be NULL if the object
8315 at ADDR itself contains any necessary discriminant values.
8316 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8317 values from the record are needed. Except in the case that DVAL,
8318 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8319 unchecked) is replaced by a particular branch of the variant.
8320
8321 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8322 is questionable and may be removed. It can arise during the
8323 processing of an unconstrained-array-of-record type where all the
8324 variant branches have exactly the same size. This is because in
8325 such cases, the compiler does not bother to use the XVS convention
8326 when encoding the record. I am currently dubious of this
8327 shortcut and suspect the compiler should be altered. FIXME. */
8328
8329 static struct type *
8330 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8331 CORE_ADDR address, struct value *dval)
8332 {
8333 struct type *templ_type;
8334
8335 if (TYPE_FIXED_INSTANCE (type0))
8336 return type0;
8337
8338 templ_type = dynamic_template_type (type0);
8339
8340 if (templ_type != NULL)
8341 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8342 else if (variant_field_index (type0) >= 0)
8343 {
8344 if (dval == NULL && valaddr == NULL && address == 0)
8345 return type0;
8346 return to_record_with_fixed_variant_part (type0, valaddr, address,
8347 dval);
8348 }
8349 else
8350 {
8351 TYPE_FIXED_INSTANCE (type0) = 1;
8352 return type0;
8353 }
8354
8355 }
8356
8357 /* An ordinary record type (with fixed-length fields) that describes
8358 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8359 union type. Any necessary discriminants' values should be in DVAL,
8360 a record value. That is, this routine selects the appropriate
8361 branch of the union at ADDR according to the discriminant value
8362 indicated in the union's type name. Returns VAR_TYPE0 itself if
8363 it represents a variant subject to a pragma Unchecked_Union. */
8364
8365 static struct type *
8366 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8367 CORE_ADDR address, struct value *dval)
8368 {
8369 int which;
8370 struct type *templ_type;
8371 struct type *var_type;
8372
8373 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8374 var_type = TYPE_TARGET_TYPE (var_type0);
8375 else
8376 var_type = var_type0;
8377
8378 templ_type = ada_find_parallel_type (var_type, "___XVU");
8379
8380 if (templ_type != NULL)
8381 var_type = templ_type;
8382
8383 if (is_unchecked_variant (var_type, value_type (dval)))
8384 return var_type0;
8385 which =
8386 ada_which_variant_applies (var_type,
8387 value_type (dval), value_contents (dval));
8388
8389 if (which < 0)
8390 return empty_record (var_type);
8391 else if (is_dynamic_field (var_type, which))
8392 return to_fixed_record_type
8393 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8394 valaddr, address, dval);
8395 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8396 return
8397 to_fixed_record_type
8398 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8399 else
8400 return TYPE_FIELD_TYPE (var_type, which);
8401 }
8402
8403 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8404 ENCODING_TYPE, a type following the GNAT conventions for discrete
8405 type encodings, only carries redundant information. */
8406
8407 static int
8408 ada_is_redundant_range_encoding (struct type *range_type,
8409 struct type *encoding_type)
8410 {
8411 struct type *fixed_range_type;
8412 char *bounds_str;
8413 int n;
8414 LONGEST lo, hi;
8415
8416 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8417
8418 if (TYPE_CODE (get_base_type (range_type))
8419 != TYPE_CODE (get_base_type (encoding_type)))
8420 {
8421 /* The compiler probably used a simple base type to describe
8422 the range type instead of the range's actual base type,
8423 expecting us to get the real base type from the encoding
8424 anyway. In this situation, the encoding cannot be ignored
8425 as redundant. */
8426 return 0;
8427 }
8428
8429 if (is_dynamic_type (range_type))
8430 return 0;
8431
8432 if (TYPE_NAME (encoding_type) == NULL)
8433 return 0;
8434
8435 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8436 if (bounds_str == NULL)
8437 return 0;
8438
8439 n = 8; /* Skip "___XDLU_". */
8440 if (!ada_scan_number (bounds_str, n, &lo, &n))
8441 return 0;
8442 if (TYPE_LOW_BOUND (range_type) != lo)
8443 return 0;
8444
8445 n += 2; /* Skip the "__" separator between the two bounds. */
8446 if (!ada_scan_number (bounds_str, n, &hi, &n))
8447 return 0;
8448 if (TYPE_HIGH_BOUND (range_type) != hi)
8449 return 0;
8450
8451 return 1;
8452 }
8453
8454 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8455 a type following the GNAT encoding for describing array type
8456 indices, only carries redundant information. */
8457
8458 static int
8459 ada_is_redundant_index_type_desc (struct type *array_type,
8460 struct type *desc_type)
8461 {
8462 struct type *this_layer = check_typedef (array_type);
8463 int i;
8464
8465 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8466 {
8467 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8468 TYPE_FIELD_TYPE (desc_type, i)))
8469 return 0;
8470 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8471 }
8472
8473 return 1;
8474 }
8475
8476 /* Assuming that TYPE0 is an array type describing the type of a value
8477 at ADDR, and that DVAL describes a record containing any
8478 discriminants used in TYPE0, returns a type for the value that
8479 contains no dynamic components (that is, no components whose sizes
8480 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8481 true, gives an error message if the resulting type's size is over
8482 varsize_limit. */
8483
8484 static struct type *
8485 to_fixed_array_type (struct type *type0, struct value *dval,
8486 int ignore_too_big)
8487 {
8488 struct type *index_type_desc;
8489 struct type *result;
8490 int constrained_packed_array_p;
8491
8492 type0 = ada_check_typedef (type0);
8493 if (TYPE_FIXED_INSTANCE (type0))
8494 return type0;
8495
8496 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8497 if (constrained_packed_array_p)
8498 type0 = decode_constrained_packed_array_type (type0);
8499
8500 index_type_desc = ada_find_parallel_type (type0, "___XA");
8501 ada_fixup_array_indexes_type (index_type_desc);
8502 if (index_type_desc != NULL
8503 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8504 {
8505 /* Ignore this ___XA parallel type, as it does not bring any
8506 useful information. This allows us to avoid creating fixed
8507 versions of the array's index types, which would be identical
8508 to the original ones. This, in turn, can also help avoid
8509 the creation of fixed versions of the array itself. */
8510 index_type_desc = NULL;
8511 }
8512
8513 if (index_type_desc == NULL)
8514 {
8515 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8516
8517 /* NOTE: elt_type---the fixed version of elt_type0---should never
8518 depend on the contents of the array in properly constructed
8519 debugging data. */
8520 /* Create a fixed version of the array element type.
8521 We're not providing the address of an element here,
8522 and thus the actual object value cannot be inspected to do
8523 the conversion. This should not be a problem, since arrays of
8524 unconstrained objects are not allowed. In particular, all
8525 the elements of an array of a tagged type should all be of
8526 the same type specified in the debugging info. No need to
8527 consult the object tag. */
8528 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8529
8530 /* Make sure we always create a new array type when dealing with
8531 packed array types, since we're going to fix-up the array
8532 type length and element bitsize a little further down. */
8533 if (elt_type0 == elt_type && !constrained_packed_array_p)
8534 result = type0;
8535 else
8536 result = create_array_type (alloc_type_copy (type0),
8537 elt_type, TYPE_INDEX_TYPE (type0));
8538 }
8539 else
8540 {
8541 int i;
8542 struct type *elt_type0;
8543
8544 elt_type0 = type0;
8545 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8546 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8547
8548 /* NOTE: result---the fixed version of elt_type0---should never
8549 depend on the contents of the array in properly constructed
8550 debugging data. */
8551 /* Create a fixed version of the array element type.
8552 We're not providing the address of an element here,
8553 and thus the actual object value cannot be inspected to do
8554 the conversion. This should not be a problem, since arrays of
8555 unconstrained objects are not allowed. In particular, all
8556 the elements of an array of a tagged type should all be of
8557 the same type specified in the debugging info. No need to
8558 consult the object tag. */
8559 result =
8560 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8561
8562 elt_type0 = type0;
8563 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8564 {
8565 struct type *range_type =
8566 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8567
8568 result = create_array_type (alloc_type_copy (elt_type0),
8569 result, range_type);
8570 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8571 }
8572 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8573 error (_("array type with dynamic size is larger than varsize-limit"));
8574 }
8575
8576 /* We want to preserve the type name. This can be useful when
8577 trying to get the type name of a value that has already been
8578 printed (for instance, if the user did "print VAR; whatis $". */
8579 TYPE_NAME (result) = TYPE_NAME (type0);
8580
8581 if (constrained_packed_array_p)
8582 {
8583 /* So far, the resulting type has been created as if the original
8584 type was a regular (non-packed) array type. As a result, the
8585 bitsize of the array elements needs to be set again, and the array
8586 length needs to be recomputed based on that bitsize. */
8587 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8588 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8589
8590 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8591 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8592 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8593 TYPE_LENGTH (result)++;
8594 }
8595
8596 TYPE_FIXED_INSTANCE (result) = 1;
8597 return result;
8598 }
8599
8600
8601 /* A standard type (containing no dynamically sized components)
8602 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8603 DVAL describes a record containing any discriminants used in TYPE0,
8604 and may be NULL if there are none, or if the object of type TYPE at
8605 ADDRESS or in VALADDR contains these discriminants.
8606
8607 If CHECK_TAG is not null, in the case of tagged types, this function
8608 attempts to locate the object's tag and use it to compute the actual
8609 type. However, when ADDRESS is null, we cannot use it to determine the
8610 location of the tag, and therefore compute the tagged type's actual type.
8611 So we return the tagged type without consulting the tag. */
8612
8613 static struct type *
8614 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8615 CORE_ADDR address, struct value *dval, int check_tag)
8616 {
8617 type = ada_check_typedef (type);
8618 switch (TYPE_CODE (type))
8619 {
8620 default:
8621 return type;
8622 case TYPE_CODE_STRUCT:
8623 {
8624 struct type *static_type = to_static_fixed_type (type);
8625 struct type *fixed_record_type =
8626 to_fixed_record_type (type, valaddr, address, NULL);
8627
8628 /* If STATIC_TYPE is a tagged type and we know the object's address,
8629 then we can determine its tag, and compute the object's actual
8630 type from there. Note that we have to use the fixed record
8631 type (the parent part of the record may have dynamic fields
8632 and the way the location of _tag is expressed may depend on
8633 them). */
8634
8635 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8636 {
8637 struct value *tag =
8638 value_tag_from_contents_and_address
8639 (fixed_record_type,
8640 valaddr,
8641 address);
8642 struct type *real_type = type_from_tag (tag);
8643 struct value *obj =
8644 value_from_contents_and_address (fixed_record_type,
8645 valaddr,
8646 address);
8647 fixed_record_type = value_type (obj);
8648 if (real_type != NULL)
8649 return to_fixed_record_type
8650 (real_type, NULL,
8651 value_address (ada_tag_value_at_base_address (obj)), NULL);
8652 }
8653
8654 /* Check to see if there is a parallel ___XVZ variable.
8655 If there is, then it provides the actual size of our type. */
8656 else if (ada_type_name (fixed_record_type) != NULL)
8657 {
8658 const char *name = ada_type_name (fixed_record_type);
8659 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8660 int xvz_found = 0;
8661 LONGEST size;
8662
8663 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8664 size = get_int_var_value (xvz_name, &xvz_found);
8665 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8666 {
8667 fixed_record_type = copy_type (fixed_record_type);
8668 TYPE_LENGTH (fixed_record_type) = size;
8669
8670 /* The FIXED_RECORD_TYPE may have be a stub. We have
8671 observed this when the debugging info is STABS, and
8672 apparently it is something that is hard to fix.
8673
8674 In practice, we don't need the actual type definition
8675 at all, because the presence of the XVZ variable allows us
8676 to assume that there must be a XVS type as well, which we
8677 should be able to use later, when we need the actual type
8678 definition.
8679
8680 In the meantime, pretend that the "fixed" type we are
8681 returning is NOT a stub, because this can cause trouble
8682 when using this type to create new types targeting it.
8683 Indeed, the associated creation routines often check
8684 whether the target type is a stub and will try to replace
8685 it, thus using a type with the wrong size. This, in turn,
8686 might cause the new type to have the wrong size too.
8687 Consider the case of an array, for instance, where the size
8688 of the array is computed from the number of elements in
8689 our array multiplied by the size of its element. */
8690 TYPE_STUB (fixed_record_type) = 0;
8691 }
8692 }
8693 return fixed_record_type;
8694 }
8695 case TYPE_CODE_ARRAY:
8696 return to_fixed_array_type (type, dval, 1);
8697 case TYPE_CODE_UNION:
8698 if (dval == NULL)
8699 return type;
8700 else
8701 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8702 }
8703 }
8704
8705 /* The same as ada_to_fixed_type_1, except that it preserves the type
8706 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8707
8708 The typedef layer needs be preserved in order to differentiate between
8709 arrays and array pointers when both types are implemented using the same
8710 fat pointer. In the array pointer case, the pointer is encoded as
8711 a typedef of the pointer type. For instance, considering:
8712
8713 type String_Access is access String;
8714 S1 : String_Access := null;
8715
8716 To the debugger, S1 is defined as a typedef of type String. But
8717 to the user, it is a pointer. So if the user tries to print S1,
8718 we should not dereference the array, but print the array address
8719 instead.
8720
8721 If we didn't preserve the typedef layer, we would lose the fact that
8722 the type is to be presented as a pointer (needs de-reference before
8723 being printed). And we would also use the source-level type name. */
8724
8725 struct type *
8726 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8727 CORE_ADDR address, struct value *dval, int check_tag)
8728
8729 {
8730 struct type *fixed_type =
8731 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8732
8733 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8734 then preserve the typedef layer.
8735
8736 Implementation note: We can only check the main-type portion of
8737 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8738 from TYPE now returns a type that has the same instance flags
8739 as TYPE. For instance, if TYPE is a "typedef const", and its
8740 target type is a "struct", then the typedef elimination will return
8741 a "const" version of the target type. See check_typedef for more
8742 details about how the typedef layer elimination is done.
8743
8744 brobecker/2010-11-19: It seems to me that the only case where it is
8745 useful to preserve the typedef layer is when dealing with fat pointers.
8746 Perhaps, we could add a check for that and preserve the typedef layer
8747 only in that situation. But this seems unecessary so far, probably
8748 because we call check_typedef/ada_check_typedef pretty much everywhere.
8749 */
8750 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8751 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8752 == TYPE_MAIN_TYPE (fixed_type)))
8753 return type;
8754
8755 return fixed_type;
8756 }
8757
8758 /* A standard (static-sized) type corresponding as well as possible to
8759 TYPE0, but based on no runtime data. */
8760
8761 static struct type *
8762 to_static_fixed_type (struct type *type0)
8763 {
8764 struct type *type;
8765
8766 if (type0 == NULL)
8767 return NULL;
8768
8769 if (TYPE_FIXED_INSTANCE (type0))
8770 return type0;
8771
8772 type0 = ada_check_typedef (type0);
8773
8774 switch (TYPE_CODE (type0))
8775 {
8776 default:
8777 return type0;
8778 case TYPE_CODE_STRUCT:
8779 type = dynamic_template_type (type0);
8780 if (type != NULL)
8781 return template_to_static_fixed_type (type);
8782 else
8783 return template_to_static_fixed_type (type0);
8784 case TYPE_CODE_UNION:
8785 type = ada_find_parallel_type (type0, "___XVU");
8786 if (type != NULL)
8787 return template_to_static_fixed_type (type);
8788 else
8789 return template_to_static_fixed_type (type0);
8790 }
8791 }
8792
8793 /* A static approximation of TYPE with all type wrappers removed. */
8794
8795 static struct type *
8796 static_unwrap_type (struct type *type)
8797 {
8798 if (ada_is_aligner_type (type))
8799 {
8800 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8801 if (ada_type_name (type1) == NULL)
8802 TYPE_NAME (type1) = ada_type_name (type);
8803
8804 return static_unwrap_type (type1);
8805 }
8806 else
8807 {
8808 struct type *raw_real_type = ada_get_base_type (type);
8809
8810 if (raw_real_type == type)
8811 return type;
8812 else
8813 return to_static_fixed_type (raw_real_type);
8814 }
8815 }
8816
8817 /* In some cases, incomplete and private types require
8818 cross-references that are not resolved as records (for example,
8819 type Foo;
8820 type FooP is access Foo;
8821 V: FooP;
8822 type Foo is array ...;
8823 ). In these cases, since there is no mechanism for producing
8824 cross-references to such types, we instead substitute for FooP a
8825 stub enumeration type that is nowhere resolved, and whose tag is
8826 the name of the actual type. Call these types "non-record stubs". */
8827
8828 /* A type equivalent to TYPE that is not a non-record stub, if one
8829 exists, otherwise TYPE. */
8830
8831 struct type *
8832 ada_check_typedef (struct type *type)
8833 {
8834 if (type == NULL)
8835 return NULL;
8836
8837 /* If our type is a typedef type of a fat pointer, then we're done.
8838 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8839 what allows us to distinguish between fat pointers that represent
8840 array types, and fat pointers that represent array access types
8841 (in both cases, the compiler implements them as fat pointers). */
8842 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8843 && is_thick_pntr (ada_typedef_target_type (type)))
8844 return type;
8845
8846 CHECK_TYPEDEF (type);
8847 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8848 || !TYPE_STUB (type)
8849 || TYPE_TAG_NAME (type) == NULL)
8850 return type;
8851 else
8852 {
8853 const char *name = TYPE_TAG_NAME (type);
8854 struct type *type1 = ada_find_any_type (name);
8855
8856 if (type1 == NULL)
8857 return type;
8858
8859 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8860 stubs pointing to arrays, as we don't create symbols for array
8861 types, only for the typedef-to-array types). If that's the case,
8862 strip the typedef layer. */
8863 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8864 type1 = ada_check_typedef (type1);
8865
8866 return type1;
8867 }
8868 }
8869
8870 /* A value representing the data at VALADDR/ADDRESS as described by
8871 type TYPE0, but with a standard (static-sized) type that correctly
8872 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8873 type, then return VAL0 [this feature is simply to avoid redundant
8874 creation of struct values]. */
8875
8876 static struct value *
8877 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8878 struct value *val0)
8879 {
8880 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8881
8882 if (type == type0 && val0 != NULL)
8883 return val0;
8884 else
8885 return value_from_contents_and_address (type, 0, address);
8886 }
8887
8888 /* A value representing VAL, but with a standard (static-sized) type
8889 that correctly describes it. Does not necessarily create a new
8890 value. */
8891
8892 struct value *
8893 ada_to_fixed_value (struct value *val)
8894 {
8895 val = unwrap_value (val);
8896 val = ada_to_fixed_value_create (value_type (val),
8897 value_address (val),
8898 val);
8899 return val;
8900 }
8901 \f
8902
8903 /* Attributes */
8904
8905 /* Table mapping attribute numbers to names.
8906 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8907
8908 static const char *attribute_names[] = {
8909 "<?>",
8910
8911 "first",
8912 "last",
8913 "length",
8914 "image",
8915 "max",
8916 "min",
8917 "modulus",
8918 "pos",
8919 "size",
8920 "tag",
8921 "val",
8922 0
8923 };
8924
8925 const char *
8926 ada_attribute_name (enum exp_opcode n)
8927 {
8928 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8929 return attribute_names[n - OP_ATR_FIRST + 1];
8930 else
8931 return attribute_names[0];
8932 }
8933
8934 /* Evaluate the 'POS attribute applied to ARG. */
8935
8936 static LONGEST
8937 pos_atr (struct value *arg)
8938 {
8939 struct value *val = coerce_ref (arg);
8940 struct type *type = value_type (val);
8941
8942 if (!discrete_type_p (type))
8943 error (_("'POS only defined on discrete types"));
8944
8945 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8946 {
8947 int i;
8948 LONGEST v = value_as_long (val);
8949
8950 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8951 {
8952 if (v == TYPE_FIELD_ENUMVAL (type, i))
8953 return i;
8954 }
8955 error (_("enumeration value is invalid: can't find 'POS"));
8956 }
8957 else
8958 return value_as_long (val);
8959 }
8960
8961 static struct value *
8962 value_pos_atr (struct type *type, struct value *arg)
8963 {
8964 return value_from_longest (type, pos_atr (arg));
8965 }
8966
8967 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8968
8969 static struct value *
8970 value_val_atr (struct type *type, struct value *arg)
8971 {
8972 if (!discrete_type_p (type))
8973 error (_("'VAL only defined on discrete types"));
8974 if (!integer_type_p (value_type (arg)))
8975 error (_("'VAL requires integral argument"));
8976
8977 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8978 {
8979 long pos = value_as_long (arg);
8980
8981 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8982 error (_("argument to 'VAL out of range"));
8983 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8984 }
8985 else
8986 return value_from_longest (type, value_as_long (arg));
8987 }
8988 \f
8989
8990 /* Evaluation */
8991
8992 /* True if TYPE appears to be an Ada character type.
8993 [At the moment, this is true only for Character and Wide_Character;
8994 It is a heuristic test that could stand improvement]. */
8995
8996 int
8997 ada_is_character_type (struct type *type)
8998 {
8999 const char *name;
9000
9001 /* If the type code says it's a character, then assume it really is,
9002 and don't check any further. */
9003 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9004 return 1;
9005
9006 /* Otherwise, assume it's a character type iff it is a discrete type
9007 with a known character type name. */
9008 name = ada_type_name (type);
9009 return (name != NULL
9010 && (TYPE_CODE (type) == TYPE_CODE_INT
9011 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9012 && (strcmp (name, "character") == 0
9013 || strcmp (name, "wide_character") == 0
9014 || strcmp (name, "wide_wide_character") == 0
9015 || strcmp (name, "unsigned char") == 0));
9016 }
9017
9018 /* True if TYPE appears to be an Ada string type. */
9019
9020 int
9021 ada_is_string_type (struct type *type)
9022 {
9023 type = ada_check_typedef (type);
9024 if (type != NULL
9025 && TYPE_CODE (type) != TYPE_CODE_PTR
9026 && (ada_is_simple_array_type (type)
9027 || ada_is_array_descriptor_type (type))
9028 && ada_array_arity (type) == 1)
9029 {
9030 struct type *elttype = ada_array_element_type (type, 1);
9031
9032 return ada_is_character_type (elttype);
9033 }
9034 else
9035 return 0;
9036 }
9037
9038 /* The compiler sometimes provides a parallel XVS type for a given
9039 PAD type. Normally, it is safe to follow the PAD type directly,
9040 but older versions of the compiler have a bug that causes the offset
9041 of its "F" field to be wrong. Following that field in that case
9042 would lead to incorrect results, but this can be worked around
9043 by ignoring the PAD type and using the associated XVS type instead.
9044
9045 Set to True if the debugger should trust the contents of PAD types.
9046 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9047 static int trust_pad_over_xvs = 1;
9048
9049 /* True if TYPE is a struct type introduced by the compiler to force the
9050 alignment of a value. Such types have a single field with a
9051 distinctive name. */
9052
9053 int
9054 ada_is_aligner_type (struct type *type)
9055 {
9056 type = ada_check_typedef (type);
9057
9058 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9059 return 0;
9060
9061 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9062 && TYPE_NFIELDS (type) == 1
9063 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9064 }
9065
9066 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9067 the parallel type. */
9068
9069 struct type *
9070 ada_get_base_type (struct type *raw_type)
9071 {
9072 struct type *real_type_namer;
9073 struct type *raw_real_type;
9074
9075 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9076 return raw_type;
9077
9078 if (ada_is_aligner_type (raw_type))
9079 /* The encoding specifies that we should always use the aligner type.
9080 So, even if this aligner type has an associated XVS type, we should
9081 simply ignore it.
9082
9083 According to the compiler gurus, an XVS type parallel to an aligner
9084 type may exist because of a stabs limitation. In stabs, aligner
9085 types are empty because the field has a variable-sized type, and
9086 thus cannot actually be used as an aligner type. As a result,
9087 we need the associated parallel XVS type to decode the type.
9088 Since the policy in the compiler is to not change the internal
9089 representation based on the debugging info format, we sometimes
9090 end up having a redundant XVS type parallel to the aligner type. */
9091 return raw_type;
9092
9093 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9094 if (real_type_namer == NULL
9095 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9096 || TYPE_NFIELDS (real_type_namer) != 1)
9097 return raw_type;
9098
9099 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9100 {
9101 /* This is an older encoding form where the base type needs to be
9102 looked up by name. We prefer the newer enconding because it is
9103 more efficient. */
9104 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9105 if (raw_real_type == NULL)
9106 return raw_type;
9107 else
9108 return raw_real_type;
9109 }
9110
9111 /* The field in our XVS type is a reference to the base type. */
9112 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9113 }
9114
9115 /* The type of value designated by TYPE, with all aligners removed. */
9116
9117 struct type *
9118 ada_aligned_type (struct type *type)
9119 {
9120 if (ada_is_aligner_type (type))
9121 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9122 else
9123 return ada_get_base_type (type);
9124 }
9125
9126
9127 /* The address of the aligned value in an object at address VALADDR
9128 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9129
9130 const gdb_byte *
9131 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9132 {
9133 if (ada_is_aligner_type (type))
9134 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9135 valaddr +
9136 TYPE_FIELD_BITPOS (type,
9137 0) / TARGET_CHAR_BIT);
9138 else
9139 return valaddr;
9140 }
9141
9142
9143
9144 /* The printed representation of an enumeration literal with encoded
9145 name NAME. The value is good to the next call of ada_enum_name. */
9146 const char *
9147 ada_enum_name (const char *name)
9148 {
9149 static char *result;
9150 static size_t result_len = 0;
9151 char *tmp;
9152
9153 /* First, unqualify the enumeration name:
9154 1. Search for the last '.' character. If we find one, then skip
9155 all the preceding characters, the unqualified name starts
9156 right after that dot.
9157 2. Otherwise, we may be debugging on a target where the compiler
9158 translates dots into "__". Search forward for double underscores,
9159 but stop searching when we hit an overloading suffix, which is
9160 of the form "__" followed by digits. */
9161
9162 tmp = strrchr (name, '.');
9163 if (tmp != NULL)
9164 name = tmp + 1;
9165 else
9166 {
9167 while ((tmp = strstr (name, "__")) != NULL)
9168 {
9169 if (isdigit (tmp[2]))
9170 break;
9171 else
9172 name = tmp + 2;
9173 }
9174 }
9175
9176 if (name[0] == 'Q')
9177 {
9178 int v;
9179
9180 if (name[1] == 'U' || name[1] == 'W')
9181 {
9182 if (sscanf (name + 2, "%x", &v) != 1)
9183 return name;
9184 }
9185 else
9186 return name;
9187
9188 GROW_VECT (result, result_len, 16);
9189 if (isascii (v) && isprint (v))
9190 xsnprintf (result, result_len, "'%c'", v);
9191 else if (name[1] == 'U')
9192 xsnprintf (result, result_len, "[\"%02x\"]", v);
9193 else
9194 xsnprintf (result, result_len, "[\"%04x\"]", v);
9195
9196 return result;
9197 }
9198 else
9199 {
9200 tmp = strstr (name, "__");
9201 if (tmp == NULL)
9202 tmp = strstr (name, "$");
9203 if (tmp != NULL)
9204 {
9205 GROW_VECT (result, result_len, tmp - name + 1);
9206 strncpy (result, name, tmp - name);
9207 result[tmp - name] = '\0';
9208 return result;
9209 }
9210
9211 return name;
9212 }
9213 }
9214
9215 /* Evaluate the subexpression of EXP starting at *POS as for
9216 evaluate_type, updating *POS to point just past the evaluated
9217 expression. */
9218
9219 static struct value *
9220 evaluate_subexp_type (struct expression *exp, int *pos)
9221 {
9222 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9223 }
9224
9225 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9226 value it wraps. */
9227
9228 static struct value *
9229 unwrap_value (struct value *val)
9230 {
9231 struct type *type = ada_check_typedef (value_type (val));
9232
9233 if (ada_is_aligner_type (type))
9234 {
9235 struct value *v = ada_value_struct_elt (val, "F", 0);
9236 struct type *val_type = ada_check_typedef (value_type (v));
9237
9238 if (ada_type_name (val_type) == NULL)
9239 TYPE_NAME (val_type) = ada_type_name (type);
9240
9241 return unwrap_value (v);
9242 }
9243 else
9244 {
9245 struct type *raw_real_type =
9246 ada_check_typedef (ada_get_base_type (type));
9247
9248 /* If there is no parallel XVS or XVE type, then the value is
9249 already unwrapped. Return it without further modification. */
9250 if ((type == raw_real_type)
9251 && ada_find_parallel_type (type, "___XVE") == NULL)
9252 return val;
9253
9254 return
9255 coerce_unspec_val_to_type
9256 (val, ada_to_fixed_type (raw_real_type, 0,
9257 value_address (val),
9258 NULL, 1));
9259 }
9260 }
9261
9262 static struct value *
9263 cast_to_fixed (struct type *type, struct value *arg)
9264 {
9265 LONGEST val;
9266
9267 if (type == value_type (arg))
9268 return arg;
9269 else if (ada_is_fixed_point_type (value_type (arg)))
9270 val = ada_float_to_fixed (type,
9271 ada_fixed_to_float (value_type (arg),
9272 value_as_long (arg)));
9273 else
9274 {
9275 DOUBLEST argd = value_as_double (arg);
9276
9277 val = ada_float_to_fixed (type, argd);
9278 }
9279
9280 return value_from_longest (type, val);
9281 }
9282
9283 static struct value *
9284 cast_from_fixed (struct type *type, struct value *arg)
9285 {
9286 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9287 value_as_long (arg));
9288
9289 return value_from_double (type, val);
9290 }
9291
9292 /* Given two array types T1 and T2, return nonzero iff both arrays
9293 contain the same number of elements. */
9294
9295 static int
9296 ada_same_array_size_p (struct type *t1, struct type *t2)
9297 {
9298 LONGEST lo1, hi1, lo2, hi2;
9299
9300 /* Get the array bounds in order to verify that the size of
9301 the two arrays match. */
9302 if (!get_array_bounds (t1, &lo1, &hi1)
9303 || !get_array_bounds (t2, &lo2, &hi2))
9304 error (_("unable to determine array bounds"));
9305
9306 /* To make things easier for size comparison, normalize a bit
9307 the case of empty arrays by making sure that the difference
9308 between upper bound and lower bound is always -1. */
9309 if (lo1 > hi1)
9310 hi1 = lo1 - 1;
9311 if (lo2 > hi2)
9312 hi2 = lo2 - 1;
9313
9314 return (hi1 - lo1 == hi2 - lo2);
9315 }
9316
9317 /* Assuming that VAL is an array of integrals, and TYPE represents
9318 an array with the same number of elements, but with wider integral
9319 elements, return an array "casted" to TYPE. In practice, this
9320 means that the returned array is built by casting each element
9321 of the original array into TYPE's (wider) element type. */
9322
9323 static struct value *
9324 ada_promote_array_of_integrals (struct type *type, struct value *val)
9325 {
9326 struct type *elt_type = TYPE_TARGET_TYPE (type);
9327 LONGEST lo, hi;
9328 struct value *res;
9329 LONGEST i;
9330
9331 /* Verify that both val and type are arrays of scalars, and
9332 that the size of val's elements is smaller than the size
9333 of type's element. */
9334 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9335 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9336 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9337 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9338 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9339 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9340
9341 if (!get_array_bounds (type, &lo, &hi))
9342 error (_("unable to determine array bounds"));
9343
9344 res = allocate_value (type);
9345
9346 /* Promote each array element. */
9347 for (i = 0; i < hi - lo + 1; i++)
9348 {
9349 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9350
9351 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9352 value_contents_all (elt), TYPE_LENGTH (elt_type));
9353 }
9354
9355 return res;
9356 }
9357
9358 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9359 return the converted value. */
9360
9361 static struct value *
9362 coerce_for_assign (struct type *type, struct value *val)
9363 {
9364 struct type *type2 = value_type (val);
9365
9366 if (type == type2)
9367 return val;
9368
9369 type2 = ada_check_typedef (type2);
9370 type = ada_check_typedef (type);
9371
9372 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9373 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9374 {
9375 val = ada_value_ind (val);
9376 type2 = value_type (val);
9377 }
9378
9379 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9380 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9381 {
9382 if (!ada_same_array_size_p (type, type2))
9383 error (_("cannot assign arrays of different length"));
9384
9385 if (is_integral_type (TYPE_TARGET_TYPE (type))
9386 && is_integral_type (TYPE_TARGET_TYPE (type2))
9387 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9388 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9389 {
9390 /* Allow implicit promotion of the array elements to
9391 a wider type. */
9392 return ada_promote_array_of_integrals (type, val);
9393 }
9394
9395 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9396 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9397 error (_("Incompatible types in assignment"));
9398 deprecated_set_value_type (val, type);
9399 }
9400 return val;
9401 }
9402
9403 static struct value *
9404 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9405 {
9406 struct value *val;
9407 struct type *type1, *type2;
9408 LONGEST v, v1, v2;
9409
9410 arg1 = coerce_ref (arg1);
9411 arg2 = coerce_ref (arg2);
9412 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9413 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9414
9415 if (TYPE_CODE (type1) != TYPE_CODE_INT
9416 || TYPE_CODE (type2) != TYPE_CODE_INT)
9417 return value_binop (arg1, arg2, op);
9418
9419 switch (op)
9420 {
9421 case BINOP_MOD:
9422 case BINOP_DIV:
9423 case BINOP_REM:
9424 break;
9425 default:
9426 return value_binop (arg1, arg2, op);
9427 }
9428
9429 v2 = value_as_long (arg2);
9430 if (v2 == 0)
9431 error (_("second operand of %s must not be zero."), op_string (op));
9432
9433 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9434 return value_binop (arg1, arg2, op);
9435
9436 v1 = value_as_long (arg1);
9437 switch (op)
9438 {
9439 case BINOP_DIV:
9440 v = v1 / v2;
9441 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9442 v += v > 0 ? -1 : 1;
9443 break;
9444 case BINOP_REM:
9445 v = v1 % v2;
9446 if (v * v1 < 0)
9447 v -= v2;
9448 break;
9449 default:
9450 /* Should not reach this point. */
9451 v = 0;
9452 }
9453
9454 val = allocate_value (type1);
9455 store_unsigned_integer (value_contents_raw (val),
9456 TYPE_LENGTH (value_type (val)),
9457 gdbarch_byte_order (get_type_arch (type1)), v);
9458 return val;
9459 }
9460
9461 static int
9462 ada_value_equal (struct value *arg1, struct value *arg2)
9463 {
9464 if (ada_is_direct_array_type (value_type (arg1))
9465 || ada_is_direct_array_type (value_type (arg2)))
9466 {
9467 /* Automatically dereference any array reference before
9468 we attempt to perform the comparison. */
9469 arg1 = ada_coerce_ref (arg1);
9470 arg2 = ada_coerce_ref (arg2);
9471
9472 arg1 = ada_coerce_to_simple_array (arg1);
9473 arg2 = ada_coerce_to_simple_array (arg2);
9474 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9475 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9476 error (_("Attempt to compare array with non-array"));
9477 /* FIXME: The following works only for types whose
9478 representations use all bits (no padding or undefined bits)
9479 and do not have user-defined equality. */
9480 return
9481 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9482 && memcmp (value_contents (arg1), value_contents (arg2),
9483 TYPE_LENGTH (value_type (arg1))) == 0;
9484 }
9485 return value_equal (arg1, arg2);
9486 }
9487
9488 /* Total number of component associations in the aggregate starting at
9489 index PC in EXP. Assumes that index PC is the start of an
9490 OP_AGGREGATE. */
9491
9492 static int
9493 num_component_specs (struct expression *exp, int pc)
9494 {
9495 int n, m, i;
9496
9497 m = exp->elts[pc + 1].longconst;
9498 pc += 3;
9499 n = 0;
9500 for (i = 0; i < m; i += 1)
9501 {
9502 switch (exp->elts[pc].opcode)
9503 {
9504 default:
9505 n += 1;
9506 break;
9507 case OP_CHOICES:
9508 n += exp->elts[pc + 1].longconst;
9509 break;
9510 }
9511 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9512 }
9513 return n;
9514 }
9515
9516 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9517 component of LHS (a simple array or a record), updating *POS past
9518 the expression, assuming that LHS is contained in CONTAINER. Does
9519 not modify the inferior's memory, nor does it modify LHS (unless
9520 LHS == CONTAINER). */
9521
9522 static void
9523 assign_component (struct value *container, struct value *lhs, LONGEST index,
9524 struct expression *exp, int *pos)
9525 {
9526 struct value *mark = value_mark ();
9527 struct value *elt;
9528
9529 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9530 {
9531 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9532 struct value *index_val = value_from_longest (index_type, index);
9533
9534 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9535 }
9536 else
9537 {
9538 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9539 elt = ada_to_fixed_value (elt);
9540 }
9541
9542 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9543 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9544 else
9545 value_assign_to_component (container, elt,
9546 ada_evaluate_subexp (NULL, exp, pos,
9547 EVAL_NORMAL));
9548
9549 value_free_to_mark (mark);
9550 }
9551
9552 /* Assuming that LHS represents an lvalue having a record or array
9553 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9554 of that aggregate's value to LHS, advancing *POS past the
9555 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9556 lvalue containing LHS (possibly LHS itself). Does not modify
9557 the inferior's memory, nor does it modify the contents of
9558 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9559
9560 static struct value *
9561 assign_aggregate (struct value *container,
9562 struct value *lhs, struct expression *exp,
9563 int *pos, enum noside noside)
9564 {
9565 struct type *lhs_type;
9566 int n = exp->elts[*pos+1].longconst;
9567 LONGEST low_index, high_index;
9568 int num_specs;
9569 LONGEST *indices;
9570 int max_indices, num_indices;
9571 int i;
9572
9573 *pos += 3;
9574 if (noside != EVAL_NORMAL)
9575 {
9576 for (i = 0; i < n; i += 1)
9577 ada_evaluate_subexp (NULL, exp, pos, noside);
9578 return container;
9579 }
9580
9581 container = ada_coerce_ref (container);
9582 if (ada_is_direct_array_type (value_type (container)))
9583 container = ada_coerce_to_simple_array (container);
9584 lhs = ada_coerce_ref (lhs);
9585 if (!deprecated_value_modifiable (lhs))
9586 error (_("Left operand of assignment is not a modifiable lvalue."));
9587
9588 lhs_type = value_type (lhs);
9589 if (ada_is_direct_array_type (lhs_type))
9590 {
9591 lhs = ada_coerce_to_simple_array (lhs);
9592 lhs_type = value_type (lhs);
9593 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9594 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9595 }
9596 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9597 {
9598 low_index = 0;
9599 high_index = num_visible_fields (lhs_type) - 1;
9600 }
9601 else
9602 error (_("Left-hand side must be array or record."));
9603
9604 num_specs = num_component_specs (exp, *pos - 3);
9605 max_indices = 4 * num_specs + 4;
9606 indices = alloca (max_indices * sizeof (indices[0]));
9607 indices[0] = indices[1] = low_index - 1;
9608 indices[2] = indices[3] = high_index + 1;
9609 num_indices = 4;
9610
9611 for (i = 0; i < n; i += 1)
9612 {
9613 switch (exp->elts[*pos].opcode)
9614 {
9615 case OP_CHOICES:
9616 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9617 &num_indices, max_indices,
9618 low_index, high_index);
9619 break;
9620 case OP_POSITIONAL:
9621 aggregate_assign_positional (container, lhs, exp, pos, indices,
9622 &num_indices, max_indices,
9623 low_index, high_index);
9624 break;
9625 case OP_OTHERS:
9626 if (i != n-1)
9627 error (_("Misplaced 'others' clause"));
9628 aggregate_assign_others (container, lhs, exp, pos, indices,
9629 num_indices, low_index, high_index);
9630 break;
9631 default:
9632 error (_("Internal error: bad aggregate clause"));
9633 }
9634 }
9635
9636 return container;
9637 }
9638
9639 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9640 construct at *POS, updating *POS past the construct, given that
9641 the positions are relative to lower bound LOW, where HIGH is the
9642 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9643 updating *NUM_INDICES as needed. CONTAINER is as for
9644 assign_aggregate. */
9645 static void
9646 aggregate_assign_positional (struct value *container,
9647 struct value *lhs, struct expression *exp,
9648 int *pos, LONGEST *indices, int *num_indices,
9649 int max_indices, LONGEST low, LONGEST high)
9650 {
9651 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9652
9653 if (ind - 1 == high)
9654 warning (_("Extra components in aggregate ignored."));
9655 if (ind <= high)
9656 {
9657 add_component_interval (ind, ind, indices, num_indices, max_indices);
9658 *pos += 3;
9659 assign_component (container, lhs, ind, exp, pos);
9660 }
9661 else
9662 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9663 }
9664
9665 /* Assign into the components of LHS indexed by the OP_CHOICES
9666 construct at *POS, updating *POS past the construct, given that
9667 the allowable indices are LOW..HIGH. Record the indices assigned
9668 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9669 needed. CONTAINER is as for assign_aggregate. */
9670 static void
9671 aggregate_assign_from_choices (struct value *container,
9672 struct value *lhs, struct expression *exp,
9673 int *pos, LONGEST *indices, int *num_indices,
9674 int max_indices, LONGEST low, LONGEST high)
9675 {
9676 int j;
9677 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9678 int choice_pos, expr_pc;
9679 int is_array = ada_is_direct_array_type (value_type (lhs));
9680
9681 choice_pos = *pos += 3;
9682
9683 for (j = 0; j < n_choices; j += 1)
9684 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9685 expr_pc = *pos;
9686 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9687
9688 for (j = 0; j < n_choices; j += 1)
9689 {
9690 LONGEST lower, upper;
9691 enum exp_opcode op = exp->elts[choice_pos].opcode;
9692
9693 if (op == OP_DISCRETE_RANGE)
9694 {
9695 choice_pos += 1;
9696 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9697 EVAL_NORMAL));
9698 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9699 EVAL_NORMAL));
9700 }
9701 else if (is_array)
9702 {
9703 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9704 EVAL_NORMAL));
9705 upper = lower;
9706 }
9707 else
9708 {
9709 int ind;
9710 const char *name;
9711
9712 switch (op)
9713 {
9714 case OP_NAME:
9715 name = &exp->elts[choice_pos + 2].string;
9716 break;
9717 case OP_VAR_VALUE:
9718 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9719 break;
9720 default:
9721 error (_("Invalid record component association."));
9722 }
9723 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9724 ind = 0;
9725 if (! find_struct_field (name, value_type (lhs), 0,
9726 NULL, NULL, NULL, NULL, &ind))
9727 error (_("Unknown component name: %s."), name);
9728 lower = upper = ind;
9729 }
9730
9731 if (lower <= upper && (lower < low || upper > high))
9732 error (_("Index in component association out of bounds."));
9733
9734 add_component_interval (lower, upper, indices, num_indices,
9735 max_indices);
9736 while (lower <= upper)
9737 {
9738 int pos1;
9739
9740 pos1 = expr_pc;
9741 assign_component (container, lhs, lower, exp, &pos1);
9742 lower += 1;
9743 }
9744 }
9745 }
9746
9747 /* Assign the value of the expression in the OP_OTHERS construct in
9748 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9749 have not been previously assigned. The index intervals already assigned
9750 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9751 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9752 static void
9753 aggregate_assign_others (struct value *container,
9754 struct value *lhs, struct expression *exp,
9755 int *pos, LONGEST *indices, int num_indices,
9756 LONGEST low, LONGEST high)
9757 {
9758 int i;
9759 int expr_pc = *pos + 1;
9760
9761 for (i = 0; i < num_indices - 2; i += 2)
9762 {
9763 LONGEST ind;
9764
9765 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9766 {
9767 int localpos;
9768
9769 localpos = expr_pc;
9770 assign_component (container, lhs, ind, exp, &localpos);
9771 }
9772 }
9773 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9774 }
9775
9776 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9777 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9778 modifying *SIZE as needed. It is an error if *SIZE exceeds
9779 MAX_SIZE. The resulting intervals do not overlap. */
9780 static void
9781 add_component_interval (LONGEST low, LONGEST high,
9782 LONGEST* indices, int *size, int max_size)
9783 {
9784 int i, j;
9785
9786 for (i = 0; i < *size; i += 2) {
9787 if (high >= indices[i] && low <= indices[i + 1])
9788 {
9789 int kh;
9790
9791 for (kh = i + 2; kh < *size; kh += 2)
9792 if (high < indices[kh])
9793 break;
9794 if (low < indices[i])
9795 indices[i] = low;
9796 indices[i + 1] = indices[kh - 1];
9797 if (high > indices[i + 1])
9798 indices[i + 1] = high;
9799 memcpy (indices + i + 2, indices + kh, *size - kh);
9800 *size -= kh - i - 2;
9801 return;
9802 }
9803 else if (high < indices[i])
9804 break;
9805 }
9806
9807 if (*size == max_size)
9808 error (_("Internal error: miscounted aggregate components."));
9809 *size += 2;
9810 for (j = *size-1; j >= i+2; j -= 1)
9811 indices[j] = indices[j - 2];
9812 indices[i] = low;
9813 indices[i + 1] = high;
9814 }
9815
9816 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9817 is different. */
9818
9819 static struct value *
9820 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9821 {
9822 if (type == ada_check_typedef (value_type (arg2)))
9823 return arg2;
9824
9825 if (ada_is_fixed_point_type (type))
9826 return (cast_to_fixed (type, arg2));
9827
9828 if (ada_is_fixed_point_type (value_type (arg2)))
9829 return cast_from_fixed (type, arg2);
9830
9831 return value_cast (type, arg2);
9832 }
9833
9834 /* Evaluating Ada expressions, and printing their result.
9835 ------------------------------------------------------
9836
9837 1. Introduction:
9838 ----------------
9839
9840 We usually evaluate an Ada expression in order to print its value.
9841 We also evaluate an expression in order to print its type, which
9842 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9843 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9844 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9845 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9846 similar.
9847
9848 Evaluating expressions is a little more complicated for Ada entities
9849 than it is for entities in languages such as C. The main reason for
9850 this is that Ada provides types whose definition might be dynamic.
9851 One example of such types is variant records. Or another example
9852 would be an array whose bounds can only be known at run time.
9853
9854 The following description is a general guide as to what should be
9855 done (and what should NOT be done) in order to evaluate an expression
9856 involving such types, and when. This does not cover how the semantic
9857 information is encoded by GNAT as this is covered separatly. For the
9858 document used as the reference for the GNAT encoding, see exp_dbug.ads
9859 in the GNAT sources.
9860
9861 Ideally, we should embed each part of this description next to its
9862 associated code. Unfortunately, the amount of code is so vast right
9863 now that it's hard to see whether the code handling a particular
9864 situation might be duplicated or not. One day, when the code is
9865 cleaned up, this guide might become redundant with the comments
9866 inserted in the code, and we might want to remove it.
9867
9868 2. ``Fixing'' an Entity, the Simple Case:
9869 -----------------------------------------
9870
9871 When evaluating Ada expressions, the tricky issue is that they may
9872 reference entities whose type contents and size are not statically
9873 known. Consider for instance a variant record:
9874
9875 type Rec (Empty : Boolean := True) is record
9876 case Empty is
9877 when True => null;
9878 when False => Value : Integer;
9879 end case;
9880 end record;
9881 Yes : Rec := (Empty => False, Value => 1);
9882 No : Rec := (empty => True);
9883
9884 The size and contents of that record depends on the value of the
9885 descriminant (Rec.Empty). At this point, neither the debugging
9886 information nor the associated type structure in GDB are able to
9887 express such dynamic types. So what the debugger does is to create
9888 "fixed" versions of the type that applies to the specific object.
9889 We also informally refer to this opperation as "fixing" an object,
9890 which means creating its associated fixed type.
9891
9892 Example: when printing the value of variable "Yes" above, its fixed
9893 type would look like this:
9894
9895 type Rec is record
9896 Empty : Boolean;
9897 Value : Integer;
9898 end record;
9899
9900 On the other hand, if we printed the value of "No", its fixed type
9901 would become:
9902
9903 type Rec is record
9904 Empty : Boolean;
9905 end record;
9906
9907 Things become a little more complicated when trying to fix an entity
9908 with a dynamic type that directly contains another dynamic type,
9909 such as an array of variant records, for instance. There are
9910 two possible cases: Arrays, and records.
9911
9912 3. ``Fixing'' Arrays:
9913 ---------------------
9914
9915 The type structure in GDB describes an array in terms of its bounds,
9916 and the type of its elements. By design, all elements in the array
9917 have the same type and we cannot represent an array of variant elements
9918 using the current type structure in GDB. When fixing an array,
9919 we cannot fix the array element, as we would potentially need one
9920 fixed type per element of the array. As a result, the best we can do
9921 when fixing an array is to produce an array whose bounds and size
9922 are correct (allowing us to read it from memory), but without having
9923 touched its element type. Fixing each element will be done later,
9924 when (if) necessary.
9925
9926 Arrays are a little simpler to handle than records, because the same
9927 amount of memory is allocated for each element of the array, even if
9928 the amount of space actually used by each element differs from element
9929 to element. Consider for instance the following array of type Rec:
9930
9931 type Rec_Array is array (1 .. 2) of Rec;
9932
9933 The actual amount of memory occupied by each element might be different
9934 from element to element, depending on the value of their discriminant.
9935 But the amount of space reserved for each element in the array remains
9936 fixed regardless. So we simply need to compute that size using
9937 the debugging information available, from which we can then determine
9938 the array size (we multiply the number of elements of the array by
9939 the size of each element).
9940
9941 The simplest case is when we have an array of a constrained element
9942 type. For instance, consider the following type declarations:
9943
9944 type Bounded_String (Max_Size : Integer) is
9945 Length : Integer;
9946 Buffer : String (1 .. Max_Size);
9947 end record;
9948 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9949
9950 In this case, the compiler describes the array as an array of
9951 variable-size elements (identified by its XVS suffix) for which
9952 the size can be read in the parallel XVZ variable.
9953
9954 In the case of an array of an unconstrained element type, the compiler
9955 wraps the array element inside a private PAD type. This type should not
9956 be shown to the user, and must be "unwrap"'ed before printing. Note
9957 that we also use the adjective "aligner" in our code to designate
9958 these wrapper types.
9959
9960 In some cases, the size allocated for each element is statically
9961 known. In that case, the PAD type already has the correct size,
9962 and the array element should remain unfixed.
9963
9964 But there are cases when this size is not statically known.
9965 For instance, assuming that "Five" is an integer variable:
9966
9967 type Dynamic is array (1 .. Five) of Integer;
9968 type Wrapper (Has_Length : Boolean := False) is record
9969 Data : Dynamic;
9970 case Has_Length is
9971 when True => Length : Integer;
9972 when False => null;
9973 end case;
9974 end record;
9975 type Wrapper_Array is array (1 .. 2) of Wrapper;
9976
9977 Hello : Wrapper_Array := (others => (Has_Length => True,
9978 Data => (others => 17),
9979 Length => 1));
9980
9981
9982 The debugging info would describe variable Hello as being an
9983 array of a PAD type. The size of that PAD type is not statically
9984 known, but can be determined using a parallel XVZ variable.
9985 In that case, a copy of the PAD type with the correct size should
9986 be used for the fixed array.
9987
9988 3. ``Fixing'' record type objects:
9989 ----------------------------------
9990
9991 Things are slightly different from arrays in the case of dynamic
9992 record types. In this case, in order to compute the associated
9993 fixed type, we need to determine the size and offset of each of
9994 its components. This, in turn, requires us to compute the fixed
9995 type of each of these components.
9996
9997 Consider for instance the example:
9998
9999 type Bounded_String (Max_Size : Natural) is record
10000 Str : String (1 .. Max_Size);
10001 Length : Natural;
10002 end record;
10003 My_String : Bounded_String (Max_Size => 10);
10004
10005 In that case, the position of field "Length" depends on the size
10006 of field Str, which itself depends on the value of the Max_Size
10007 discriminant. In order to fix the type of variable My_String,
10008 we need to fix the type of field Str. Therefore, fixing a variant
10009 record requires us to fix each of its components.
10010
10011 However, if a component does not have a dynamic size, the component
10012 should not be fixed. In particular, fields that use a PAD type
10013 should not fixed. Here is an example where this might happen
10014 (assuming type Rec above):
10015
10016 type Container (Big : Boolean) is record
10017 First : Rec;
10018 After : Integer;
10019 case Big is
10020 when True => Another : Integer;
10021 when False => null;
10022 end case;
10023 end record;
10024 My_Container : Container := (Big => False,
10025 First => (Empty => True),
10026 After => 42);
10027
10028 In that example, the compiler creates a PAD type for component First,
10029 whose size is constant, and then positions the component After just
10030 right after it. The offset of component After is therefore constant
10031 in this case.
10032
10033 The debugger computes the position of each field based on an algorithm
10034 that uses, among other things, the actual position and size of the field
10035 preceding it. Let's now imagine that the user is trying to print
10036 the value of My_Container. If the type fixing was recursive, we would
10037 end up computing the offset of field After based on the size of the
10038 fixed version of field First. And since in our example First has
10039 only one actual field, the size of the fixed type is actually smaller
10040 than the amount of space allocated to that field, and thus we would
10041 compute the wrong offset of field After.
10042
10043 To make things more complicated, we need to watch out for dynamic
10044 components of variant records (identified by the ___XVL suffix in
10045 the component name). Even if the target type is a PAD type, the size
10046 of that type might not be statically known. So the PAD type needs
10047 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10048 we might end up with the wrong size for our component. This can be
10049 observed with the following type declarations:
10050
10051 type Octal is new Integer range 0 .. 7;
10052 type Octal_Array is array (Positive range <>) of Octal;
10053 pragma Pack (Octal_Array);
10054
10055 type Octal_Buffer (Size : Positive) is record
10056 Buffer : Octal_Array (1 .. Size);
10057 Length : Integer;
10058 end record;
10059
10060 In that case, Buffer is a PAD type whose size is unset and needs
10061 to be computed by fixing the unwrapped type.
10062
10063 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10064 ----------------------------------------------------------
10065
10066 Lastly, when should the sub-elements of an entity that remained unfixed
10067 thus far, be actually fixed?
10068
10069 The answer is: Only when referencing that element. For instance
10070 when selecting one component of a record, this specific component
10071 should be fixed at that point in time. Or when printing the value
10072 of a record, each component should be fixed before its value gets
10073 printed. Similarly for arrays, the element of the array should be
10074 fixed when printing each element of the array, or when extracting
10075 one element out of that array. On the other hand, fixing should
10076 not be performed on the elements when taking a slice of an array!
10077
10078 Note that one of the side-effects of miscomputing the offset and
10079 size of each field is that we end up also miscomputing the size
10080 of the containing type. This can have adverse results when computing
10081 the value of an entity. GDB fetches the value of an entity based
10082 on the size of its type, and thus a wrong size causes GDB to fetch
10083 the wrong amount of memory. In the case where the computed size is
10084 too small, GDB fetches too little data to print the value of our
10085 entiry. Results in this case as unpredicatble, as we usually read
10086 past the buffer containing the data =:-o. */
10087
10088 /* Implement the evaluate_exp routine in the exp_descriptor structure
10089 for the Ada language. */
10090
10091 static struct value *
10092 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10093 int *pos, enum noside noside)
10094 {
10095 enum exp_opcode op;
10096 int tem;
10097 int pc;
10098 int preeval_pos;
10099 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10100 struct type *type;
10101 int nargs, oplen;
10102 struct value **argvec;
10103
10104 pc = *pos;
10105 *pos += 1;
10106 op = exp->elts[pc].opcode;
10107
10108 switch (op)
10109 {
10110 default:
10111 *pos -= 1;
10112 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10113
10114 if (noside == EVAL_NORMAL)
10115 arg1 = unwrap_value (arg1);
10116
10117 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10118 then we need to perform the conversion manually, because
10119 evaluate_subexp_standard doesn't do it. This conversion is
10120 necessary in Ada because the different kinds of float/fixed
10121 types in Ada have different representations.
10122
10123 Similarly, we need to perform the conversion from OP_LONG
10124 ourselves. */
10125 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10126 arg1 = ada_value_cast (expect_type, arg1, noside);
10127
10128 return arg1;
10129
10130 case OP_STRING:
10131 {
10132 struct value *result;
10133
10134 *pos -= 1;
10135 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10136 /* The result type will have code OP_STRING, bashed there from
10137 OP_ARRAY. Bash it back. */
10138 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10139 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10140 return result;
10141 }
10142
10143 case UNOP_CAST:
10144 (*pos) += 2;
10145 type = exp->elts[pc + 1].type;
10146 arg1 = evaluate_subexp (type, exp, pos, noside);
10147 if (noside == EVAL_SKIP)
10148 goto nosideret;
10149 arg1 = ada_value_cast (type, arg1, noside);
10150 return arg1;
10151
10152 case UNOP_QUAL:
10153 (*pos) += 2;
10154 type = exp->elts[pc + 1].type;
10155 return ada_evaluate_subexp (type, exp, pos, noside);
10156
10157 case BINOP_ASSIGN:
10158 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10159 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10160 {
10161 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10162 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10163 return arg1;
10164 return ada_value_assign (arg1, arg1);
10165 }
10166 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10167 except if the lhs of our assignment is a convenience variable.
10168 In the case of assigning to a convenience variable, the lhs
10169 should be exactly the result of the evaluation of the rhs. */
10170 type = value_type (arg1);
10171 if (VALUE_LVAL (arg1) == lval_internalvar)
10172 type = NULL;
10173 arg2 = evaluate_subexp (type, exp, pos, noside);
10174 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10175 return arg1;
10176 if (ada_is_fixed_point_type (value_type (arg1)))
10177 arg2 = cast_to_fixed (value_type (arg1), arg2);
10178 else if (ada_is_fixed_point_type (value_type (arg2)))
10179 error
10180 (_("Fixed-point values must be assigned to fixed-point variables"));
10181 else
10182 arg2 = coerce_for_assign (value_type (arg1), arg2);
10183 return ada_value_assign (arg1, arg2);
10184
10185 case BINOP_ADD:
10186 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10187 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10188 if (noside == EVAL_SKIP)
10189 goto nosideret;
10190 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10191 return (value_from_longest
10192 (value_type (arg1),
10193 value_as_long (arg1) + value_as_long (arg2)));
10194 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10195 return (value_from_longest
10196 (value_type (arg2),
10197 value_as_long (arg1) + value_as_long (arg2)));
10198 if ((ada_is_fixed_point_type (value_type (arg1))
10199 || ada_is_fixed_point_type (value_type (arg2)))
10200 && value_type (arg1) != value_type (arg2))
10201 error (_("Operands of fixed-point addition must have the same type"));
10202 /* Do the addition, and cast the result to the type of the first
10203 argument. We cannot cast the result to a reference type, so if
10204 ARG1 is a reference type, find its underlying type. */
10205 type = value_type (arg1);
10206 while (TYPE_CODE (type) == TYPE_CODE_REF)
10207 type = TYPE_TARGET_TYPE (type);
10208 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10209 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10210
10211 case BINOP_SUB:
10212 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10213 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10214 if (noside == EVAL_SKIP)
10215 goto nosideret;
10216 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10217 return (value_from_longest
10218 (value_type (arg1),
10219 value_as_long (arg1) - value_as_long (arg2)));
10220 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10221 return (value_from_longest
10222 (value_type (arg2),
10223 value_as_long (arg1) - value_as_long (arg2)));
10224 if ((ada_is_fixed_point_type (value_type (arg1))
10225 || ada_is_fixed_point_type (value_type (arg2)))
10226 && value_type (arg1) != value_type (arg2))
10227 error (_("Operands of fixed-point subtraction "
10228 "must have the same type"));
10229 /* Do the substraction, and cast the result to the type of the first
10230 argument. We cannot cast the result to a reference type, so if
10231 ARG1 is a reference type, find its underlying type. */
10232 type = value_type (arg1);
10233 while (TYPE_CODE (type) == TYPE_CODE_REF)
10234 type = TYPE_TARGET_TYPE (type);
10235 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10236 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10237
10238 case BINOP_MUL:
10239 case BINOP_DIV:
10240 case BINOP_REM:
10241 case BINOP_MOD:
10242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10243 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10244 if (noside == EVAL_SKIP)
10245 goto nosideret;
10246 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10247 {
10248 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10249 return value_zero (value_type (arg1), not_lval);
10250 }
10251 else
10252 {
10253 type = builtin_type (exp->gdbarch)->builtin_double;
10254 if (ada_is_fixed_point_type (value_type (arg1)))
10255 arg1 = cast_from_fixed (type, arg1);
10256 if (ada_is_fixed_point_type (value_type (arg2)))
10257 arg2 = cast_from_fixed (type, arg2);
10258 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10259 return ada_value_binop (arg1, arg2, op);
10260 }
10261
10262 case BINOP_EQUAL:
10263 case BINOP_NOTEQUAL:
10264 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10265 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10266 if (noside == EVAL_SKIP)
10267 goto nosideret;
10268 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10269 tem = 0;
10270 else
10271 {
10272 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10273 tem = ada_value_equal (arg1, arg2);
10274 }
10275 if (op == BINOP_NOTEQUAL)
10276 tem = !tem;
10277 type = language_bool_type (exp->language_defn, exp->gdbarch);
10278 return value_from_longest (type, (LONGEST) tem);
10279
10280 case UNOP_NEG:
10281 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10282 if (noside == EVAL_SKIP)
10283 goto nosideret;
10284 else if (ada_is_fixed_point_type (value_type (arg1)))
10285 return value_cast (value_type (arg1), value_neg (arg1));
10286 else
10287 {
10288 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10289 return value_neg (arg1);
10290 }
10291
10292 case BINOP_LOGICAL_AND:
10293 case BINOP_LOGICAL_OR:
10294 case UNOP_LOGICAL_NOT:
10295 {
10296 struct value *val;
10297
10298 *pos -= 1;
10299 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10300 type = language_bool_type (exp->language_defn, exp->gdbarch);
10301 return value_cast (type, val);
10302 }
10303
10304 case BINOP_BITWISE_AND:
10305 case BINOP_BITWISE_IOR:
10306 case BINOP_BITWISE_XOR:
10307 {
10308 struct value *val;
10309
10310 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10311 *pos = pc;
10312 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10313
10314 return value_cast (value_type (arg1), val);
10315 }
10316
10317 case OP_VAR_VALUE:
10318 *pos -= 1;
10319
10320 if (noside == EVAL_SKIP)
10321 {
10322 *pos += 4;
10323 goto nosideret;
10324 }
10325
10326 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10327 /* Only encountered when an unresolved symbol occurs in a
10328 context other than a function call, in which case, it is
10329 invalid. */
10330 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10331 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10332
10333 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10334 {
10335 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10336 /* Check to see if this is a tagged type. We also need to handle
10337 the case where the type is a reference to a tagged type, but
10338 we have to be careful to exclude pointers to tagged types.
10339 The latter should be shown as usual (as a pointer), whereas
10340 a reference should mostly be transparent to the user. */
10341 if (ada_is_tagged_type (type, 0)
10342 || (TYPE_CODE (type) == TYPE_CODE_REF
10343 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10344 {
10345 /* Tagged types are a little special in the fact that the real
10346 type is dynamic and can only be determined by inspecting the
10347 object's tag. This means that we need to get the object's
10348 value first (EVAL_NORMAL) and then extract the actual object
10349 type from its tag.
10350
10351 Note that we cannot skip the final step where we extract
10352 the object type from its tag, because the EVAL_NORMAL phase
10353 results in dynamic components being resolved into fixed ones.
10354 This can cause problems when trying to print the type
10355 description of tagged types whose parent has a dynamic size:
10356 We use the type name of the "_parent" component in order
10357 to print the name of the ancestor type in the type description.
10358 If that component had a dynamic size, the resolution into
10359 a fixed type would result in the loss of that type name,
10360 thus preventing us from printing the name of the ancestor
10361 type in the type description. */
10362 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10363
10364 if (TYPE_CODE (type) != TYPE_CODE_REF)
10365 {
10366 struct type *actual_type;
10367
10368 actual_type = type_from_tag (ada_value_tag (arg1));
10369 if (actual_type == NULL)
10370 /* If, for some reason, we were unable to determine
10371 the actual type from the tag, then use the static
10372 approximation that we just computed as a fallback.
10373 This can happen if the debugging information is
10374 incomplete, for instance. */
10375 actual_type = type;
10376 return value_zero (actual_type, not_lval);
10377 }
10378 else
10379 {
10380 /* In the case of a ref, ada_coerce_ref takes care
10381 of determining the actual type. But the evaluation
10382 should return a ref as it should be valid to ask
10383 for its address; so rebuild a ref after coerce. */
10384 arg1 = ada_coerce_ref (arg1);
10385 return value_ref (arg1);
10386 }
10387 }
10388
10389 /* Records and unions for which GNAT encodings have been
10390 generated need to be statically fixed as well.
10391 Otherwise, non-static fixing produces a type where
10392 all dynamic properties are removed, which prevents "ptype"
10393 from being able to completely describe the type.
10394 For instance, a case statement in a variant record would be
10395 replaced by the relevant components based on the actual
10396 value of the discriminants. */
10397 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10398 && dynamic_template_type (type) != NULL)
10399 || (TYPE_CODE (type) == TYPE_CODE_UNION
10400 && ada_find_parallel_type (type, "___XVU") != NULL))
10401 {
10402 *pos += 4;
10403 return value_zero (to_static_fixed_type (type), not_lval);
10404 }
10405 }
10406
10407 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10408 return ada_to_fixed_value (arg1);
10409
10410 case OP_FUNCALL:
10411 (*pos) += 2;
10412
10413 /* Allocate arg vector, including space for the function to be
10414 called in argvec[0] and a terminating NULL. */
10415 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10416 argvec =
10417 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10418
10419 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10420 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10421 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10422 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10423 else
10424 {
10425 for (tem = 0; tem <= nargs; tem += 1)
10426 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10427 argvec[tem] = 0;
10428
10429 if (noside == EVAL_SKIP)
10430 goto nosideret;
10431 }
10432
10433 if (ada_is_constrained_packed_array_type
10434 (desc_base_type (value_type (argvec[0]))))
10435 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10436 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10437 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10438 /* This is a packed array that has already been fixed, and
10439 therefore already coerced to a simple array. Nothing further
10440 to do. */
10441 ;
10442 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10443 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10444 && VALUE_LVAL (argvec[0]) == lval_memory))
10445 argvec[0] = value_addr (argvec[0]);
10446
10447 type = ada_check_typedef (value_type (argvec[0]));
10448
10449 /* Ada allows us to implicitly dereference arrays when subscripting
10450 them. So, if this is an array typedef (encoding use for array
10451 access types encoded as fat pointers), strip it now. */
10452 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10453 type = ada_typedef_target_type (type);
10454
10455 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10456 {
10457 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10458 {
10459 case TYPE_CODE_FUNC:
10460 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10461 break;
10462 case TYPE_CODE_ARRAY:
10463 break;
10464 case TYPE_CODE_STRUCT:
10465 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10466 argvec[0] = ada_value_ind (argvec[0]);
10467 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10468 break;
10469 default:
10470 error (_("cannot subscript or call something of type `%s'"),
10471 ada_type_name (value_type (argvec[0])));
10472 break;
10473 }
10474 }
10475
10476 switch (TYPE_CODE (type))
10477 {
10478 case TYPE_CODE_FUNC:
10479 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10480 {
10481 struct type *rtype = TYPE_TARGET_TYPE (type);
10482
10483 if (TYPE_GNU_IFUNC (type))
10484 return allocate_value (TYPE_TARGET_TYPE (rtype));
10485 return allocate_value (rtype);
10486 }
10487 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10488 case TYPE_CODE_INTERNAL_FUNCTION:
10489 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10490 /* We don't know anything about what the internal
10491 function might return, but we have to return
10492 something. */
10493 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10494 not_lval);
10495 else
10496 return call_internal_function (exp->gdbarch, exp->language_defn,
10497 argvec[0], nargs, argvec + 1);
10498
10499 case TYPE_CODE_STRUCT:
10500 {
10501 int arity;
10502
10503 arity = ada_array_arity (type);
10504 type = ada_array_element_type (type, nargs);
10505 if (type == NULL)
10506 error (_("cannot subscript or call a record"));
10507 if (arity != nargs)
10508 error (_("wrong number of subscripts; expecting %d"), arity);
10509 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10510 return value_zero (ada_aligned_type (type), lval_memory);
10511 return
10512 unwrap_value (ada_value_subscript
10513 (argvec[0], nargs, argvec + 1));
10514 }
10515 case TYPE_CODE_ARRAY:
10516 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10517 {
10518 type = ada_array_element_type (type, nargs);
10519 if (type == NULL)
10520 error (_("element type of array unknown"));
10521 else
10522 return value_zero (ada_aligned_type (type), lval_memory);
10523 }
10524 return
10525 unwrap_value (ada_value_subscript
10526 (ada_coerce_to_simple_array (argvec[0]),
10527 nargs, argvec + 1));
10528 case TYPE_CODE_PTR: /* Pointer to array */
10529 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10530 {
10531 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10532 type = ada_array_element_type (type, nargs);
10533 if (type == NULL)
10534 error (_("element type of array unknown"));
10535 else
10536 return value_zero (ada_aligned_type (type), lval_memory);
10537 }
10538 return
10539 unwrap_value (ada_value_ptr_subscript (argvec[0],
10540 nargs, argvec + 1));
10541
10542 default:
10543 error (_("Attempt to index or call something other than an "
10544 "array or function"));
10545 }
10546
10547 case TERNOP_SLICE:
10548 {
10549 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10550 struct value *low_bound_val =
10551 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10552 struct value *high_bound_val =
10553 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10554 LONGEST low_bound;
10555 LONGEST high_bound;
10556
10557 low_bound_val = coerce_ref (low_bound_val);
10558 high_bound_val = coerce_ref (high_bound_val);
10559 low_bound = pos_atr (low_bound_val);
10560 high_bound = pos_atr (high_bound_val);
10561
10562 if (noside == EVAL_SKIP)
10563 goto nosideret;
10564
10565 /* If this is a reference to an aligner type, then remove all
10566 the aligners. */
10567 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10568 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10569 TYPE_TARGET_TYPE (value_type (array)) =
10570 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10571
10572 if (ada_is_constrained_packed_array_type (value_type (array)))
10573 error (_("cannot slice a packed array"));
10574
10575 /* If this is a reference to an array or an array lvalue,
10576 convert to a pointer. */
10577 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10578 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10579 && VALUE_LVAL (array) == lval_memory))
10580 array = value_addr (array);
10581
10582 if (noside == EVAL_AVOID_SIDE_EFFECTS
10583 && ada_is_array_descriptor_type (ada_check_typedef
10584 (value_type (array))))
10585 return empty_array (ada_type_of_array (array, 0), low_bound);
10586
10587 array = ada_coerce_to_simple_array_ptr (array);
10588
10589 /* If we have more than one level of pointer indirection,
10590 dereference the value until we get only one level. */
10591 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10592 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10593 == TYPE_CODE_PTR))
10594 array = value_ind (array);
10595
10596 /* Make sure we really do have an array type before going further,
10597 to avoid a SEGV when trying to get the index type or the target
10598 type later down the road if the debug info generated by
10599 the compiler is incorrect or incomplete. */
10600 if (!ada_is_simple_array_type (value_type (array)))
10601 error (_("cannot take slice of non-array"));
10602
10603 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10604 == TYPE_CODE_PTR)
10605 {
10606 struct type *type0 = ada_check_typedef (value_type (array));
10607
10608 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10609 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10610 else
10611 {
10612 struct type *arr_type0 =
10613 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10614
10615 return ada_value_slice_from_ptr (array, arr_type0,
10616 longest_to_int (low_bound),
10617 longest_to_int (high_bound));
10618 }
10619 }
10620 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10621 return array;
10622 else if (high_bound < low_bound)
10623 return empty_array (value_type (array), low_bound);
10624 else
10625 return ada_value_slice (array, longest_to_int (low_bound),
10626 longest_to_int (high_bound));
10627 }
10628
10629 case UNOP_IN_RANGE:
10630 (*pos) += 2;
10631 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10632 type = check_typedef (exp->elts[pc + 1].type);
10633
10634 if (noside == EVAL_SKIP)
10635 goto nosideret;
10636
10637 switch (TYPE_CODE (type))
10638 {
10639 default:
10640 lim_warning (_("Membership test incompletely implemented; "
10641 "always returns true"));
10642 type = language_bool_type (exp->language_defn, exp->gdbarch);
10643 return value_from_longest (type, (LONGEST) 1);
10644
10645 case TYPE_CODE_RANGE:
10646 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10647 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10648 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10649 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10650 type = language_bool_type (exp->language_defn, exp->gdbarch);
10651 return
10652 value_from_longest (type,
10653 (value_less (arg1, arg3)
10654 || value_equal (arg1, arg3))
10655 && (value_less (arg2, arg1)
10656 || value_equal (arg2, arg1)));
10657 }
10658
10659 case BINOP_IN_BOUNDS:
10660 (*pos) += 2;
10661 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10662 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10663
10664 if (noside == EVAL_SKIP)
10665 goto nosideret;
10666
10667 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10668 {
10669 type = language_bool_type (exp->language_defn, exp->gdbarch);
10670 return value_zero (type, not_lval);
10671 }
10672
10673 tem = longest_to_int (exp->elts[pc + 1].longconst);
10674
10675 type = ada_index_type (value_type (arg2), tem, "range");
10676 if (!type)
10677 type = value_type (arg1);
10678
10679 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10680 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10681
10682 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10683 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10684 type = language_bool_type (exp->language_defn, exp->gdbarch);
10685 return
10686 value_from_longest (type,
10687 (value_less (arg1, arg3)
10688 || value_equal (arg1, arg3))
10689 && (value_less (arg2, arg1)
10690 || value_equal (arg2, arg1)));
10691
10692 case TERNOP_IN_RANGE:
10693 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10694 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10695 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10696
10697 if (noside == EVAL_SKIP)
10698 goto nosideret;
10699
10700 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10701 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10702 type = language_bool_type (exp->language_defn, exp->gdbarch);
10703 return
10704 value_from_longest (type,
10705 (value_less (arg1, arg3)
10706 || value_equal (arg1, arg3))
10707 && (value_less (arg2, arg1)
10708 || value_equal (arg2, arg1)));
10709
10710 case OP_ATR_FIRST:
10711 case OP_ATR_LAST:
10712 case OP_ATR_LENGTH:
10713 {
10714 struct type *type_arg;
10715
10716 if (exp->elts[*pos].opcode == OP_TYPE)
10717 {
10718 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10719 arg1 = NULL;
10720 type_arg = check_typedef (exp->elts[pc + 2].type);
10721 }
10722 else
10723 {
10724 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10725 type_arg = NULL;
10726 }
10727
10728 if (exp->elts[*pos].opcode != OP_LONG)
10729 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10730 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10731 *pos += 4;
10732
10733 if (noside == EVAL_SKIP)
10734 goto nosideret;
10735
10736 if (type_arg == NULL)
10737 {
10738 arg1 = ada_coerce_ref (arg1);
10739
10740 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10741 arg1 = ada_coerce_to_simple_array (arg1);
10742
10743 if (op == OP_ATR_LENGTH)
10744 type = builtin_type (exp->gdbarch)->builtin_int;
10745 else
10746 {
10747 type = ada_index_type (value_type (arg1), tem,
10748 ada_attribute_name (op));
10749 if (type == NULL)
10750 type = builtin_type (exp->gdbarch)->builtin_int;
10751 }
10752
10753 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10754 return allocate_value (type);
10755
10756 switch (op)
10757 {
10758 default: /* Should never happen. */
10759 error (_("unexpected attribute encountered"));
10760 case OP_ATR_FIRST:
10761 return value_from_longest
10762 (type, ada_array_bound (arg1, tem, 0));
10763 case OP_ATR_LAST:
10764 return value_from_longest
10765 (type, ada_array_bound (arg1, tem, 1));
10766 case OP_ATR_LENGTH:
10767 return value_from_longest
10768 (type, ada_array_length (arg1, tem));
10769 }
10770 }
10771 else if (discrete_type_p (type_arg))
10772 {
10773 struct type *range_type;
10774 const char *name = ada_type_name (type_arg);
10775
10776 range_type = NULL;
10777 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10778 range_type = to_fixed_range_type (type_arg, NULL);
10779 if (range_type == NULL)
10780 range_type = type_arg;
10781 switch (op)
10782 {
10783 default:
10784 error (_("unexpected attribute encountered"));
10785 case OP_ATR_FIRST:
10786 return value_from_longest
10787 (range_type, ada_discrete_type_low_bound (range_type));
10788 case OP_ATR_LAST:
10789 return value_from_longest
10790 (range_type, ada_discrete_type_high_bound (range_type));
10791 case OP_ATR_LENGTH:
10792 error (_("the 'length attribute applies only to array types"));
10793 }
10794 }
10795 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10796 error (_("unimplemented type attribute"));
10797 else
10798 {
10799 LONGEST low, high;
10800
10801 if (ada_is_constrained_packed_array_type (type_arg))
10802 type_arg = decode_constrained_packed_array_type (type_arg);
10803
10804 if (op == OP_ATR_LENGTH)
10805 type = builtin_type (exp->gdbarch)->builtin_int;
10806 else
10807 {
10808 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10809 if (type == NULL)
10810 type = builtin_type (exp->gdbarch)->builtin_int;
10811 }
10812
10813 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10814 return allocate_value (type);
10815
10816 switch (op)
10817 {
10818 default:
10819 error (_("unexpected attribute encountered"));
10820 case OP_ATR_FIRST:
10821 low = ada_array_bound_from_type (type_arg, tem, 0);
10822 return value_from_longest (type, low);
10823 case OP_ATR_LAST:
10824 high = ada_array_bound_from_type (type_arg, tem, 1);
10825 return value_from_longest (type, high);
10826 case OP_ATR_LENGTH:
10827 low = ada_array_bound_from_type (type_arg, tem, 0);
10828 high = ada_array_bound_from_type (type_arg, tem, 1);
10829 return value_from_longest (type, high - low + 1);
10830 }
10831 }
10832 }
10833
10834 case OP_ATR_TAG:
10835 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10836 if (noside == EVAL_SKIP)
10837 goto nosideret;
10838
10839 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10840 return value_zero (ada_tag_type (arg1), not_lval);
10841
10842 return ada_value_tag (arg1);
10843
10844 case OP_ATR_MIN:
10845 case OP_ATR_MAX:
10846 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10847 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10848 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10849 if (noside == EVAL_SKIP)
10850 goto nosideret;
10851 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10852 return value_zero (value_type (arg1), not_lval);
10853 else
10854 {
10855 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10856 return value_binop (arg1, arg2,
10857 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10858 }
10859
10860 case OP_ATR_MODULUS:
10861 {
10862 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10863
10864 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10865 if (noside == EVAL_SKIP)
10866 goto nosideret;
10867
10868 if (!ada_is_modular_type (type_arg))
10869 error (_("'modulus must be applied to modular type"));
10870
10871 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10872 ada_modulus (type_arg));
10873 }
10874
10875
10876 case OP_ATR_POS:
10877 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10878 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10879 if (noside == EVAL_SKIP)
10880 goto nosideret;
10881 type = builtin_type (exp->gdbarch)->builtin_int;
10882 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10883 return value_zero (type, not_lval);
10884 else
10885 return value_pos_atr (type, arg1);
10886
10887 case OP_ATR_SIZE:
10888 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10889 type = value_type (arg1);
10890
10891 /* If the argument is a reference, then dereference its type, since
10892 the user is really asking for the size of the actual object,
10893 not the size of the pointer. */
10894 if (TYPE_CODE (type) == TYPE_CODE_REF)
10895 type = TYPE_TARGET_TYPE (type);
10896
10897 if (noside == EVAL_SKIP)
10898 goto nosideret;
10899 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10900 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10901 else
10902 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10903 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10904
10905 case OP_ATR_VAL:
10906 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10907 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10908 type = exp->elts[pc + 2].type;
10909 if (noside == EVAL_SKIP)
10910 goto nosideret;
10911 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10912 return value_zero (type, not_lval);
10913 else
10914 return value_val_atr (type, arg1);
10915
10916 case BINOP_EXP:
10917 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10918 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10919 if (noside == EVAL_SKIP)
10920 goto nosideret;
10921 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10922 return value_zero (value_type (arg1), not_lval);
10923 else
10924 {
10925 /* For integer exponentiation operations,
10926 only promote the first argument. */
10927 if (is_integral_type (value_type (arg2)))
10928 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10929 else
10930 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10931
10932 return value_binop (arg1, arg2, op);
10933 }
10934
10935 case UNOP_PLUS:
10936 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10937 if (noside == EVAL_SKIP)
10938 goto nosideret;
10939 else
10940 return arg1;
10941
10942 case UNOP_ABS:
10943 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10944 if (noside == EVAL_SKIP)
10945 goto nosideret;
10946 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10947 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10948 return value_neg (arg1);
10949 else
10950 return arg1;
10951
10952 case UNOP_IND:
10953 preeval_pos = *pos;
10954 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10955 if (noside == EVAL_SKIP)
10956 goto nosideret;
10957 type = ada_check_typedef (value_type (arg1));
10958 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10959 {
10960 if (ada_is_array_descriptor_type (type))
10961 /* GDB allows dereferencing GNAT array descriptors. */
10962 {
10963 struct type *arrType = ada_type_of_array (arg1, 0);
10964
10965 if (arrType == NULL)
10966 error (_("Attempt to dereference null array pointer."));
10967 return value_at_lazy (arrType, 0);
10968 }
10969 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10970 || TYPE_CODE (type) == TYPE_CODE_REF
10971 /* In C you can dereference an array to get the 1st elt. */
10972 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10973 {
10974 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10975 only be determined by inspecting the object's tag.
10976 This means that we need to evaluate completely the
10977 expression in order to get its type. */
10978
10979 if ((TYPE_CODE (type) == TYPE_CODE_REF
10980 || TYPE_CODE (type) == TYPE_CODE_PTR)
10981 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10982 {
10983 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10984 EVAL_NORMAL);
10985 type = value_type (ada_value_ind (arg1));
10986 }
10987 else
10988 {
10989 type = to_static_fixed_type
10990 (ada_aligned_type
10991 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10992 }
10993 ada_ensure_varsize_limit (type);
10994 return value_zero (type, lval_memory);
10995 }
10996 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10997 {
10998 /* GDB allows dereferencing an int. */
10999 if (expect_type == NULL)
11000 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11001 lval_memory);
11002 else
11003 {
11004 expect_type =
11005 to_static_fixed_type (ada_aligned_type (expect_type));
11006 return value_zero (expect_type, lval_memory);
11007 }
11008 }
11009 else
11010 error (_("Attempt to take contents of a non-pointer value."));
11011 }
11012 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11013 type = ada_check_typedef (value_type (arg1));
11014
11015 if (TYPE_CODE (type) == TYPE_CODE_INT)
11016 /* GDB allows dereferencing an int. If we were given
11017 the expect_type, then use that as the target type.
11018 Otherwise, assume that the target type is an int. */
11019 {
11020 if (expect_type != NULL)
11021 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11022 arg1));
11023 else
11024 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11025 (CORE_ADDR) value_as_address (arg1));
11026 }
11027
11028 if (ada_is_array_descriptor_type (type))
11029 /* GDB allows dereferencing GNAT array descriptors. */
11030 return ada_coerce_to_simple_array (arg1);
11031 else
11032 return ada_value_ind (arg1);
11033
11034 case STRUCTOP_STRUCT:
11035 tem = longest_to_int (exp->elts[pc + 1].longconst);
11036 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11037 preeval_pos = *pos;
11038 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11039 if (noside == EVAL_SKIP)
11040 goto nosideret;
11041 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11042 {
11043 struct type *type1 = value_type (arg1);
11044
11045 if (ada_is_tagged_type (type1, 1))
11046 {
11047 type = ada_lookup_struct_elt_type (type1,
11048 &exp->elts[pc + 2].string,
11049 1, 1, NULL);
11050
11051 /* If the field is not found, check if it exists in the
11052 extension of this object's type. This means that we
11053 need to evaluate completely the expression. */
11054
11055 if (type == NULL)
11056 {
11057 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11058 EVAL_NORMAL);
11059 arg1 = ada_value_struct_elt (arg1,
11060 &exp->elts[pc + 2].string,
11061 0);
11062 arg1 = unwrap_value (arg1);
11063 type = value_type (ada_to_fixed_value (arg1));
11064 }
11065 }
11066 else
11067 type =
11068 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11069 0, NULL);
11070
11071 return value_zero (ada_aligned_type (type), lval_memory);
11072 }
11073 else
11074 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11075 arg1 = unwrap_value (arg1);
11076 return ada_to_fixed_value (arg1);
11077
11078 case OP_TYPE:
11079 /* The value is not supposed to be used. This is here to make it
11080 easier to accommodate expressions that contain types. */
11081 (*pos) += 2;
11082 if (noside == EVAL_SKIP)
11083 goto nosideret;
11084 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11085 return allocate_value (exp->elts[pc + 1].type);
11086 else
11087 error (_("Attempt to use a type name as an expression"));
11088
11089 case OP_AGGREGATE:
11090 case OP_CHOICES:
11091 case OP_OTHERS:
11092 case OP_DISCRETE_RANGE:
11093 case OP_POSITIONAL:
11094 case OP_NAME:
11095 if (noside == EVAL_NORMAL)
11096 switch (op)
11097 {
11098 case OP_NAME:
11099 error (_("Undefined name, ambiguous name, or renaming used in "
11100 "component association: %s."), &exp->elts[pc+2].string);
11101 case OP_AGGREGATE:
11102 error (_("Aggregates only allowed on the right of an assignment"));
11103 default:
11104 internal_error (__FILE__, __LINE__,
11105 _("aggregate apparently mangled"));
11106 }
11107
11108 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11109 *pos += oplen - 1;
11110 for (tem = 0; tem < nargs; tem += 1)
11111 ada_evaluate_subexp (NULL, exp, pos, noside);
11112 goto nosideret;
11113 }
11114
11115 nosideret:
11116 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11117 }
11118 \f
11119
11120 /* Fixed point */
11121
11122 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11123 type name that encodes the 'small and 'delta information.
11124 Otherwise, return NULL. */
11125
11126 static const char *
11127 fixed_type_info (struct type *type)
11128 {
11129 const char *name = ada_type_name (type);
11130 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11131
11132 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11133 {
11134 const char *tail = strstr (name, "___XF_");
11135
11136 if (tail == NULL)
11137 return NULL;
11138 else
11139 return tail + 5;
11140 }
11141 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11142 return fixed_type_info (TYPE_TARGET_TYPE (type));
11143 else
11144 return NULL;
11145 }
11146
11147 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11148
11149 int
11150 ada_is_fixed_point_type (struct type *type)
11151 {
11152 return fixed_type_info (type) != NULL;
11153 }
11154
11155 /* Return non-zero iff TYPE represents a System.Address type. */
11156
11157 int
11158 ada_is_system_address_type (struct type *type)
11159 {
11160 return (TYPE_NAME (type)
11161 && strcmp (TYPE_NAME (type), "system__address") == 0);
11162 }
11163
11164 /* Assuming that TYPE is the representation of an Ada fixed-point
11165 type, return its delta, or -1 if the type is malformed and the
11166 delta cannot be determined. */
11167
11168 DOUBLEST
11169 ada_delta (struct type *type)
11170 {
11171 const char *encoding = fixed_type_info (type);
11172 DOUBLEST num, den;
11173
11174 /* Strictly speaking, num and den are encoded as integer. However,
11175 they may not fit into a long, and they will have to be converted
11176 to DOUBLEST anyway. So scan them as DOUBLEST. */
11177 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11178 &num, &den) < 2)
11179 return -1.0;
11180 else
11181 return num / den;
11182 }
11183
11184 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11185 factor ('SMALL value) associated with the type. */
11186
11187 static DOUBLEST
11188 scaling_factor (struct type *type)
11189 {
11190 const char *encoding = fixed_type_info (type);
11191 DOUBLEST num0, den0, num1, den1;
11192 int n;
11193
11194 /* Strictly speaking, num's and den's are encoded as integer. However,
11195 they may not fit into a long, and they will have to be converted
11196 to DOUBLEST anyway. So scan them as DOUBLEST. */
11197 n = sscanf (encoding,
11198 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11199 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11200 &num0, &den0, &num1, &den1);
11201
11202 if (n < 2)
11203 return 1.0;
11204 else if (n == 4)
11205 return num1 / den1;
11206 else
11207 return num0 / den0;
11208 }
11209
11210
11211 /* Assuming that X is the representation of a value of fixed-point
11212 type TYPE, return its floating-point equivalent. */
11213
11214 DOUBLEST
11215 ada_fixed_to_float (struct type *type, LONGEST x)
11216 {
11217 return (DOUBLEST) x *scaling_factor (type);
11218 }
11219
11220 /* The representation of a fixed-point value of type TYPE
11221 corresponding to the value X. */
11222
11223 LONGEST
11224 ada_float_to_fixed (struct type *type, DOUBLEST x)
11225 {
11226 return (LONGEST) (x / scaling_factor (type) + 0.5);
11227 }
11228
11229 \f
11230
11231 /* Range types */
11232
11233 /* Scan STR beginning at position K for a discriminant name, and
11234 return the value of that discriminant field of DVAL in *PX. If
11235 PNEW_K is not null, put the position of the character beyond the
11236 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11237 not alter *PX and *PNEW_K if unsuccessful. */
11238
11239 static int
11240 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11241 int *pnew_k)
11242 {
11243 static char *bound_buffer = NULL;
11244 static size_t bound_buffer_len = 0;
11245 char *bound;
11246 char *pend;
11247 struct value *bound_val;
11248
11249 if (dval == NULL || str == NULL || str[k] == '\0')
11250 return 0;
11251
11252 pend = strstr (str + k, "__");
11253 if (pend == NULL)
11254 {
11255 bound = str + k;
11256 k += strlen (bound);
11257 }
11258 else
11259 {
11260 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11261 bound = bound_buffer;
11262 strncpy (bound_buffer, str + k, pend - (str + k));
11263 bound[pend - (str + k)] = '\0';
11264 k = pend - str;
11265 }
11266
11267 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11268 if (bound_val == NULL)
11269 return 0;
11270
11271 *px = value_as_long (bound_val);
11272 if (pnew_k != NULL)
11273 *pnew_k = k;
11274 return 1;
11275 }
11276
11277 /* Value of variable named NAME in the current environment. If
11278 no such variable found, then if ERR_MSG is null, returns 0, and
11279 otherwise causes an error with message ERR_MSG. */
11280
11281 static struct value *
11282 get_var_value (char *name, char *err_msg)
11283 {
11284 struct ada_symbol_info *syms;
11285 int nsyms;
11286
11287 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11288 &syms);
11289
11290 if (nsyms != 1)
11291 {
11292 if (err_msg == NULL)
11293 return 0;
11294 else
11295 error (("%s"), err_msg);
11296 }
11297
11298 return value_of_variable (syms[0].sym, syms[0].block);
11299 }
11300
11301 /* Value of integer variable named NAME in the current environment. If
11302 no such variable found, returns 0, and sets *FLAG to 0. If
11303 successful, sets *FLAG to 1. */
11304
11305 LONGEST
11306 get_int_var_value (char *name, int *flag)
11307 {
11308 struct value *var_val = get_var_value (name, 0);
11309
11310 if (var_val == 0)
11311 {
11312 if (flag != NULL)
11313 *flag = 0;
11314 return 0;
11315 }
11316 else
11317 {
11318 if (flag != NULL)
11319 *flag = 1;
11320 return value_as_long (var_val);
11321 }
11322 }
11323
11324
11325 /* Return a range type whose base type is that of the range type named
11326 NAME in the current environment, and whose bounds are calculated
11327 from NAME according to the GNAT range encoding conventions.
11328 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11329 corresponding range type from debug information; fall back to using it
11330 if symbol lookup fails. If a new type must be created, allocate it
11331 like ORIG_TYPE was. The bounds information, in general, is encoded
11332 in NAME, the base type given in the named range type. */
11333
11334 static struct type *
11335 to_fixed_range_type (struct type *raw_type, struct value *dval)
11336 {
11337 const char *name;
11338 struct type *base_type;
11339 char *subtype_info;
11340
11341 gdb_assert (raw_type != NULL);
11342 gdb_assert (TYPE_NAME (raw_type) != NULL);
11343
11344 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11345 base_type = TYPE_TARGET_TYPE (raw_type);
11346 else
11347 base_type = raw_type;
11348
11349 name = TYPE_NAME (raw_type);
11350 subtype_info = strstr (name, "___XD");
11351 if (subtype_info == NULL)
11352 {
11353 LONGEST L = ada_discrete_type_low_bound (raw_type);
11354 LONGEST U = ada_discrete_type_high_bound (raw_type);
11355
11356 if (L < INT_MIN || U > INT_MAX)
11357 return raw_type;
11358 else
11359 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11360 L, U);
11361 }
11362 else
11363 {
11364 static char *name_buf = NULL;
11365 static size_t name_len = 0;
11366 int prefix_len = subtype_info - name;
11367 LONGEST L, U;
11368 struct type *type;
11369 char *bounds_str;
11370 int n;
11371
11372 GROW_VECT (name_buf, name_len, prefix_len + 5);
11373 strncpy (name_buf, name, prefix_len);
11374 name_buf[prefix_len] = '\0';
11375
11376 subtype_info += 5;
11377 bounds_str = strchr (subtype_info, '_');
11378 n = 1;
11379
11380 if (*subtype_info == 'L')
11381 {
11382 if (!ada_scan_number (bounds_str, n, &L, &n)
11383 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11384 return raw_type;
11385 if (bounds_str[n] == '_')
11386 n += 2;
11387 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11388 n += 1;
11389 subtype_info += 1;
11390 }
11391 else
11392 {
11393 int ok;
11394
11395 strcpy (name_buf + prefix_len, "___L");
11396 L = get_int_var_value (name_buf, &ok);
11397 if (!ok)
11398 {
11399 lim_warning (_("Unknown lower bound, using 1."));
11400 L = 1;
11401 }
11402 }
11403
11404 if (*subtype_info == 'U')
11405 {
11406 if (!ada_scan_number (bounds_str, n, &U, &n)
11407 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11408 return raw_type;
11409 }
11410 else
11411 {
11412 int ok;
11413
11414 strcpy (name_buf + prefix_len, "___U");
11415 U = get_int_var_value (name_buf, &ok);
11416 if (!ok)
11417 {
11418 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11419 U = L;
11420 }
11421 }
11422
11423 type = create_static_range_type (alloc_type_copy (raw_type),
11424 base_type, L, U);
11425 TYPE_NAME (type) = name;
11426 return type;
11427 }
11428 }
11429
11430 /* True iff NAME is the name of a range type. */
11431
11432 int
11433 ada_is_range_type_name (const char *name)
11434 {
11435 return (name != NULL && strstr (name, "___XD"));
11436 }
11437 \f
11438
11439 /* Modular types */
11440
11441 /* True iff TYPE is an Ada modular type. */
11442
11443 int
11444 ada_is_modular_type (struct type *type)
11445 {
11446 struct type *subranged_type = get_base_type (type);
11447
11448 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11449 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11450 && TYPE_UNSIGNED (subranged_type));
11451 }
11452
11453 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11454
11455 ULONGEST
11456 ada_modulus (struct type *type)
11457 {
11458 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11459 }
11460 \f
11461
11462 /* Ada exception catchpoint support:
11463 ---------------------------------
11464
11465 We support 3 kinds of exception catchpoints:
11466 . catchpoints on Ada exceptions
11467 . catchpoints on unhandled Ada exceptions
11468 . catchpoints on failed assertions
11469
11470 Exceptions raised during failed assertions, or unhandled exceptions
11471 could perfectly be caught with the general catchpoint on Ada exceptions.
11472 However, we can easily differentiate these two special cases, and having
11473 the option to distinguish these two cases from the rest can be useful
11474 to zero-in on certain situations.
11475
11476 Exception catchpoints are a specialized form of breakpoint,
11477 since they rely on inserting breakpoints inside known routines
11478 of the GNAT runtime. The implementation therefore uses a standard
11479 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11480 of breakpoint_ops.
11481
11482 Support in the runtime for exception catchpoints have been changed
11483 a few times already, and these changes affect the implementation
11484 of these catchpoints. In order to be able to support several
11485 variants of the runtime, we use a sniffer that will determine
11486 the runtime variant used by the program being debugged. */
11487
11488 /* Ada's standard exceptions.
11489
11490 The Ada 83 standard also defined Numeric_Error. But there so many
11491 situations where it was unclear from the Ada 83 Reference Manual
11492 (RM) whether Constraint_Error or Numeric_Error should be raised,
11493 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11494 Interpretation saying that anytime the RM says that Numeric_Error
11495 should be raised, the implementation may raise Constraint_Error.
11496 Ada 95 went one step further and pretty much removed Numeric_Error
11497 from the list of standard exceptions (it made it a renaming of
11498 Constraint_Error, to help preserve compatibility when compiling
11499 an Ada83 compiler). As such, we do not include Numeric_Error from
11500 this list of standard exceptions. */
11501
11502 static char *standard_exc[] = {
11503 "constraint_error",
11504 "program_error",
11505 "storage_error",
11506 "tasking_error"
11507 };
11508
11509 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11510
11511 /* A structure that describes how to support exception catchpoints
11512 for a given executable. */
11513
11514 struct exception_support_info
11515 {
11516 /* The name of the symbol to break on in order to insert
11517 a catchpoint on exceptions. */
11518 const char *catch_exception_sym;
11519
11520 /* The name of the symbol to break on in order to insert
11521 a catchpoint on unhandled exceptions. */
11522 const char *catch_exception_unhandled_sym;
11523
11524 /* The name of the symbol to break on in order to insert
11525 a catchpoint on failed assertions. */
11526 const char *catch_assert_sym;
11527
11528 /* Assuming that the inferior just triggered an unhandled exception
11529 catchpoint, this function is responsible for returning the address
11530 in inferior memory where the name of that exception is stored.
11531 Return zero if the address could not be computed. */
11532 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11533 };
11534
11535 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11536 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11537
11538 /* The following exception support info structure describes how to
11539 implement exception catchpoints with the latest version of the
11540 Ada runtime (as of 2007-03-06). */
11541
11542 static const struct exception_support_info default_exception_support_info =
11543 {
11544 "__gnat_debug_raise_exception", /* catch_exception_sym */
11545 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11546 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11547 ada_unhandled_exception_name_addr
11548 };
11549
11550 /* The following exception support info structure describes how to
11551 implement exception catchpoints with a slightly older version
11552 of the Ada runtime. */
11553
11554 static const struct exception_support_info exception_support_info_fallback =
11555 {
11556 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11557 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11558 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11559 ada_unhandled_exception_name_addr_from_raise
11560 };
11561
11562 /* Return nonzero if we can detect the exception support routines
11563 described in EINFO.
11564
11565 This function errors out if an abnormal situation is detected
11566 (for instance, if we find the exception support routines, but
11567 that support is found to be incomplete). */
11568
11569 static int
11570 ada_has_this_exception_support (const struct exception_support_info *einfo)
11571 {
11572 struct symbol *sym;
11573
11574 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11575 that should be compiled with debugging information. As a result, we
11576 expect to find that symbol in the symtabs. */
11577
11578 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11579 if (sym == NULL)
11580 {
11581 /* Perhaps we did not find our symbol because the Ada runtime was
11582 compiled without debugging info, or simply stripped of it.
11583 It happens on some GNU/Linux distributions for instance, where
11584 users have to install a separate debug package in order to get
11585 the runtime's debugging info. In that situation, let the user
11586 know why we cannot insert an Ada exception catchpoint.
11587
11588 Note: Just for the purpose of inserting our Ada exception
11589 catchpoint, we could rely purely on the associated minimal symbol.
11590 But we would be operating in degraded mode anyway, since we are
11591 still lacking the debugging info needed later on to extract
11592 the name of the exception being raised (this name is printed in
11593 the catchpoint message, and is also used when trying to catch
11594 a specific exception). We do not handle this case for now. */
11595 struct bound_minimal_symbol msym
11596 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11597
11598 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11599 error (_("Your Ada runtime appears to be missing some debugging "
11600 "information.\nCannot insert Ada exception catchpoint "
11601 "in this configuration."));
11602
11603 return 0;
11604 }
11605
11606 /* Make sure that the symbol we found corresponds to a function. */
11607
11608 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11609 error (_("Symbol \"%s\" is not a function (class = %d)"),
11610 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11611
11612 return 1;
11613 }
11614
11615 /* Inspect the Ada runtime and determine which exception info structure
11616 should be used to provide support for exception catchpoints.
11617
11618 This function will always set the per-inferior exception_info,
11619 or raise an error. */
11620
11621 static void
11622 ada_exception_support_info_sniffer (void)
11623 {
11624 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11625
11626 /* If the exception info is already known, then no need to recompute it. */
11627 if (data->exception_info != NULL)
11628 return;
11629
11630 /* Check the latest (default) exception support info. */
11631 if (ada_has_this_exception_support (&default_exception_support_info))
11632 {
11633 data->exception_info = &default_exception_support_info;
11634 return;
11635 }
11636
11637 /* Try our fallback exception suport info. */
11638 if (ada_has_this_exception_support (&exception_support_info_fallback))
11639 {
11640 data->exception_info = &exception_support_info_fallback;
11641 return;
11642 }
11643
11644 /* Sometimes, it is normal for us to not be able to find the routine
11645 we are looking for. This happens when the program is linked with
11646 the shared version of the GNAT runtime, and the program has not been
11647 started yet. Inform the user of these two possible causes if
11648 applicable. */
11649
11650 if (ada_update_initial_language (language_unknown) != language_ada)
11651 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11652
11653 /* If the symbol does not exist, then check that the program is
11654 already started, to make sure that shared libraries have been
11655 loaded. If it is not started, this may mean that the symbol is
11656 in a shared library. */
11657
11658 if (ptid_get_pid (inferior_ptid) == 0)
11659 error (_("Unable to insert catchpoint. Try to start the program first."));
11660
11661 /* At this point, we know that we are debugging an Ada program and
11662 that the inferior has been started, but we still are not able to
11663 find the run-time symbols. That can mean that we are in
11664 configurable run time mode, or that a-except as been optimized
11665 out by the linker... In any case, at this point it is not worth
11666 supporting this feature. */
11667
11668 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11669 }
11670
11671 /* True iff FRAME is very likely to be that of a function that is
11672 part of the runtime system. This is all very heuristic, but is
11673 intended to be used as advice as to what frames are uninteresting
11674 to most users. */
11675
11676 static int
11677 is_known_support_routine (struct frame_info *frame)
11678 {
11679 struct symtab_and_line sal;
11680 char *func_name;
11681 enum language func_lang;
11682 int i;
11683 const char *fullname;
11684
11685 /* If this code does not have any debugging information (no symtab),
11686 This cannot be any user code. */
11687
11688 find_frame_sal (frame, &sal);
11689 if (sal.symtab == NULL)
11690 return 1;
11691
11692 /* If there is a symtab, but the associated source file cannot be
11693 located, then assume this is not user code: Selecting a frame
11694 for which we cannot display the code would not be very helpful
11695 for the user. This should also take care of case such as VxWorks
11696 where the kernel has some debugging info provided for a few units. */
11697
11698 fullname = symtab_to_fullname (sal.symtab);
11699 if (access (fullname, R_OK) != 0)
11700 return 1;
11701
11702 /* Check the unit filename againt the Ada runtime file naming.
11703 We also check the name of the objfile against the name of some
11704 known system libraries that sometimes come with debugging info
11705 too. */
11706
11707 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11708 {
11709 re_comp (known_runtime_file_name_patterns[i]);
11710 if (re_exec (lbasename (sal.symtab->filename)))
11711 return 1;
11712 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11713 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11714 return 1;
11715 }
11716
11717 /* Check whether the function is a GNAT-generated entity. */
11718
11719 find_frame_funname (frame, &func_name, &func_lang, NULL);
11720 if (func_name == NULL)
11721 return 1;
11722
11723 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11724 {
11725 re_comp (known_auxiliary_function_name_patterns[i]);
11726 if (re_exec (func_name))
11727 {
11728 xfree (func_name);
11729 return 1;
11730 }
11731 }
11732
11733 xfree (func_name);
11734 return 0;
11735 }
11736
11737 /* Find the first frame that contains debugging information and that is not
11738 part of the Ada run-time, starting from FI and moving upward. */
11739
11740 void
11741 ada_find_printable_frame (struct frame_info *fi)
11742 {
11743 for (; fi != NULL; fi = get_prev_frame (fi))
11744 {
11745 if (!is_known_support_routine (fi))
11746 {
11747 select_frame (fi);
11748 break;
11749 }
11750 }
11751
11752 }
11753
11754 /* Assuming that the inferior just triggered an unhandled exception
11755 catchpoint, return the address in inferior memory where the name
11756 of the exception is stored.
11757
11758 Return zero if the address could not be computed. */
11759
11760 static CORE_ADDR
11761 ada_unhandled_exception_name_addr (void)
11762 {
11763 return parse_and_eval_address ("e.full_name");
11764 }
11765
11766 /* Same as ada_unhandled_exception_name_addr, except that this function
11767 should be used when the inferior uses an older version of the runtime,
11768 where the exception name needs to be extracted from a specific frame
11769 several frames up in the callstack. */
11770
11771 static CORE_ADDR
11772 ada_unhandled_exception_name_addr_from_raise (void)
11773 {
11774 int frame_level;
11775 struct frame_info *fi;
11776 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11777 struct cleanup *old_chain;
11778
11779 /* To determine the name of this exception, we need to select
11780 the frame corresponding to RAISE_SYM_NAME. This frame is
11781 at least 3 levels up, so we simply skip the first 3 frames
11782 without checking the name of their associated function. */
11783 fi = get_current_frame ();
11784 for (frame_level = 0; frame_level < 3; frame_level += 1)
11785 if (fi != NULL)
11786 fi = get_prev_frame (fi);
11787
11788 old_chain = make_cleanup (null_cleanup, NULL);
11789 while (fi != NULL)
11790 {
11791 char *func_name;
11792 enum language func_lang;
11793
11794 find_frame_funname (fi, &func_name, &func_lang, NULL);
11795 if (func_name != NULL)
11796 {
11797 make_cleanup (xfree, func_name);
11798
11799 if (strcmp (func_name,
11800 data->exception_info->catch_exception_sym) == 0)
11801 break; /* We found the frame we were looking for... */
11802 fi = get_prev_frame (fi);
11803 }
11804 }
11805 do_cleanups (old_chain);
11806
11807 if (fi == NULL)
11808 return 0;
11809
11810 select_frame (fi);
11811 return parse_and_eval_address ("id.full_name");
11812 }
11813
11814 /* Assuming the inferior just triggered an Ada exception catchpoint
11815 (of any type), return the address in inferior memory where the name
11816 of the exception is stored, if applicable.
11817
11818 Return zero if the address could not be computed, or if not relevant. */
11819
11820 static CORE_ADDR
11821 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11822 struct breakpoint *b)
11823 {
11824 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11825
11826 switch (ex)
11827 {
11828 case ada_catch_exception:
11829 return (parse_and_eval_address ("e.full_name"));
11830 break;
11831
11832 case ada_catch_exception_unhandled:
11833 return data->exception_info->unhandled_exception_name_addr ();
11834 break;
11835
11836 case ada_catch_assert:
11837 return 0; /* Exception name is not relevant in this case. */
11838 break;
11839
11840 default:
11841 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11842 break;
11843 }
11844
11845 return 0; /* Should never be reached. */
11846 }
11847
11848 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11849 any error that ada_exception_name_addr_1 might cause to be thrown.
11850 When an error is intercepted, a warning with the error message is printed,
11851 and zero is returned. */
11852
11853 static CORE_ADDR
11854 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11855 struct breakpoint *b)
11856 {
11857 CORE_ADDR result = 0;
11858
11859 TRY
11860 {
11861 result = ada_exception_name_addr_1 (ex, b);
11862 }
11863
11864 CATCH (e, RETURN_MASK_ERROR)
11865 {
11866 warning (_("failed to get exception name: %s"), e.message);
11867 return 0;
11868 }
11869 END_CATCH
11870
11871 return result;
11872 }
11873
11874 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11875
11876 /* Ada catchpoints.
11877
11878 In the case of catchpoints on Ada exceptions, the catchpoint will
11879 stop the target on every exception the program throws. When a user
11880 specifies the name of a specific exception, we translate this
11881 request into a condition expression (in text form), and then parse
11882 it into an expression stored in each of the catchpoint's locations.
11883 We then use this condition to check whether the exception that was
11884 raised is the one the user is interested in. If not, then the
11885 target is resumed again. We store the name of the requested
11886 exception, in order to be able to re-set the condition expression
11887 when symbols change. */
11888
11889 /* An instance of this type is used to represent an Ada catchpoint
11890 breakpoint location. It includes a "struct bp_location" as a kind
11891 of base class; users downcast to "struct bp_location *" when
11892 needed. */
11893
11894 struct ada_catchpoint_location
11895 {
11896 /* The base class. */
11897 struct bp_location base;
11898
11899 /* The condition that checks whether the exception that was raised
11900 is the specific exception the user specified on catchpoint
11901 creation. */
11902 struct expression *excep_cond_expr;
11903 };
11904
11905 /* Implement the DTOR method in the bp_location_ops structure for all
11906 Ada exception catchpoint kinds. */
11907
11908 static void
11909 ada_catchpoint_location_dtor (struct bp_location *bl)
11910 {
11911 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11912
11913 xfree (al->excep_cond_expr);
11914 }
11915
11916 /* The vtable to be used in Ada catchpoint locations. */
11917
11918 static const struct bp_location_ops ada_catchpoint_location_ops =
11919 {
11920 ada_catchpoint_location_dtor
11921 };
11922
11923 /* An instance of this type is used to represent an Ada catchpoint.
11924 It includes a "struct breakpoint" as a kind of base class; users
11925 downcast to "struct breakpoint *" when needed. */
11926
11927 struct ada_catchpoint
11928 {
11929 /* The base class. */
11930 struct breakpoint base;
11931
11932 /* The name of the specific exception the user specified. */
11933 char *excep_string;
11934 };
11935
11936 /* Parse the exception condition string in the context of each of the
11937 catchpoint's locations, and store them for later evaluation. */
11938
11939 static void
11940 create_excep_cond_exprs (struct ada_catchpoint *c)
11941 {
11942 struct cleanup *old_chain;
11943 struct bp_location *bl;
11944 char *cond_string;
11945
11946 /* Nothing to do if there's no specific exception to catch. */
11947 if (c->excep_string == NULL)
11948 return;
11949
11950 /* Same if there are no locations... */
11951 if (c->base.loc == NULL)
11952 return;
11953
11954 /* Compute the condition expression in text form, from the specific
11955 expection we want to catch. */
11956 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11957 old_chain = make_cleanup (xfree, cond_string);
11958
11959 /* Iterate over all the catchpoint's locations, and parse an
11960 expression for each. */
11961 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11962 {
11963 struct ada_catchpoint_location *ada_loc
11964 = (struct ada_catchpoint_location *) bl;
11965 struct expression *exp = NULL;
11966
11967 if (!bl->shlib_disabled)
11968 {
11969 const char *s;
11970
11971 s = cond_string;
11972 TRY
11973 {
11974 exp = parse_exp_1 (&s, bl->address,
11975 block_for_pc (bl->address), 0);
11976 }
11977 CATCH (e, RETURN_MASK_ERROR)
11978 {
11979 warning (_("failed to reevaluate internal exception condition "
11980 "for catchpoint %d: %s"),
11981 c->base.number, e.message);
11982 /* There is a bug in GCC on sparc-solaris when building with
11983 optimization which causes EXP to change unexpectedly
11984 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11985 The problem should be fixed starting with GCC 4.9.
11986 In the meantime, work around it by forcing EXP back
11987 to NULL. */
11988 exp = NULL;
11989 }
11990 END_CATCH
11991 }
11992
11993 ada_loc->excep_cond_expr = exp;
11994 }
11995
11996 do_cleanups (old_chain);
11997 }
11998
11999 /* Implement the DTOR method in the breakpoint_ops structure for all
12000 exception catchpoint kinds. */
12001
12002 static void
12003 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12004 {
12005 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12006
12007 xfree (c->excep_string);
12008
12009 bkpt_breakpoint_ops.dtor (b);
12010 }
12011
12012 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12013 structure for all exception catchpoint kinds. */
12014
12015 static struct bp_location *
12016 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12017 struct breakpoint *self)
12018 {
12019 struct ada_catchpoint_location *loc;
12020
12021 loc = XNEW (struct ada_catchpoint_location);
12022 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12023 loc->excep_cond_expr = NULL;
12024 return &loc->base;
12025 }
12026
12027 /* Implement the RE_SET method in the breakpoint_ops structure for all
12028 exception catchpoint kinds. */
12029
12030 static void
12031 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12032 {
12033 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12034
12035 /* Call the base class's method. This updates the catchpoint's
12036 locations. */
12037 bkpt_breakpoint_ops.re_set (b);
12038
12039 /* Reparse the exception conditional expressions. One for each
12040 location. */
12041 create_excep_cond_exprs (c);
12042 }
12043
12044 /* Returns true if we should stop for this breakpoint hit. If the
12045 user specified a specific exception, we only want to cause a stop
12046 if the program thrown that exception. */
12047
12048 static int
12049 should_stop_exception (const struct bp_location *bl)
12050 {
12051 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12052 const struct ada_catchpoint_location *ada_loc
12053 = (const struct ada_catchpoint_location *) bl;
12054 int stop;
12055
12056 /* With no specific exception, should always stop. */
12057 if (c->excep_string == NULL)
12058 return 1;
12059
12060 if (ada_loc->excep_cond_expr == NULL)
12061 {
12062 /* We will have a NULL expression if back when we were creating
12063 the expressions, this location's had failed to parse. */
12064 return 1;
12065 }
12066
12067 stop = 1;
12068 TRY
12069 {
12070 struct value *mark;
12071
12072 mark = value_mark ();
12073 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12074 value_free_to_mark (mark);
12075 }
12076 CATCH (ex, RETURN_MASK_ALL)
12077 {
12078 exception_fprintf (gdb_stderr, ex,
12079 _("Error in testing exception condition:\n"));
12080 }
12081 END_CATCH
12082
12083 return stop;
12084 }
12085
12086 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12087 for all exception catchpoint kinds. */
12088
12089 static void
12090 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12091 {
12092 bs->stop = should_stop_exception (bs->bp_location_at);
12093 }
12094
12095 /* Implement the PRINT_IT method in the breakpoint_ops structure
12096 for all exception catchpoint kinds. */
12097
12098 static enum print_stop_action
12099 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12100 {
12101 struct ui_out *uiout = current_uiout;
12102 struct breakpoint *b = bs->breakpoint_at;
12103
12104 annotate_catchpoint (b->number);
12105
12106 if (ui_out_is_mi_like_p (uiout))
12107 {
12108 ui_out_field_string (uiout, "reason",
12109 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12110 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12111 }
12112
12113 ui_out_text (uiout,
12114 b->disposition == disp_del ? "\nTemporary catchpoint "
12115 : "\nCatchpoint ");
12116 ui_out_field_int (uiout, "bkptno", b->number);
12117 ui_out_text (uiout, ", ");
12118
12119 switch (ex)
12120 {
12121 case ada_catch_exception:
12122 case ada_catch_exception_unhandled:
12123 {
12124 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12125 char exception_name[256];
12126
12127 if (addr != 0)
12128 {
12129 read_memory (addr, (gdb_byte *) exception_name,
12130 sizeof (exception_name) - 1);
12131 exception_name [sizeof (exception_name) - 1] = '\0';
12132 }
12133 else
12134 {
12135 /* For some reason, we were unable to read the exception
12136 name. This could happen if the Runtime was compiled
12137 without debugging info, for instance. In that case,
12138 just replace the exception name by the generic string
12139 "exception" - it will read as "an exception" in the
12140 notification we are about to print. */
12141 memcpy (exception_name, "exception", sizeof ("exception"));
12142 }
12143 /* In the case of unhandled exception breakpoints, we print
12144 the exception name as "unhandled EXCEPTION_NAME", to make
12145 it clearer to the user which kind of catchpoint just got
12146 hit. We used ui_out_text to make sure that this extra
12147 info does not pollute the exception name in the MI case. */
12148 if (ex == ada_catch_exception_unhandled)
12149 ui_out_text (uiout, "unhandled ");
12150 ui_out_field_string (uiout, "exception-name", exception_name);
12151 }
12152 break;
12153 case ada_catch_assert:
12154 /* In this case, the name of the exception is not really
12155 important. Just print "failed assertion" to make it clearer
12156 that his program just hit an assertion-failure catchpoint.
12157 We used ui_out_text because this info does not belong in
12158 the MI output. */
12159 ui_out_text (uiout, "failed assertion");
12160 break;
12161 }
12162 ui_out_text (uiout, " at ");
12163 ada_find_printable_frame (get_current_frame ());
12164
12165 return PRINT_SRC_AND_LOC;
12166 }
12167
12168 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12169 for all exception catchpoint kinds. */
12170
12171 static void
12172 print_one_exception (enum ada_exception_catchpoint_kind ex,
12173 struct breakpoint *b, struct bp_location **last_loc)
12174 {
12175 struct ui_out *uiout = current_uiout;
12176 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12177 struct value_print_options opts;
12178
12179 get_user_print_options (&opts);
12180 if (opts.addressprint)
12181 {
12182 annotate_field (4);
12183 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12184 }
12185
12186 annotate_field (5);
12187 *last_loc = b->loc;
12188 switch (ex)
12189 {
12190 case ada_catch_exception:
12191 if (c->excep_string != NULL)
12192 {
12193 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12194
12195 ui_out_field_string (uiout, "what", msg);
12196 xfree (msg);
12197 }
12198 else
12199 ui_out_field_string (uiout, "what", "all Ada exceptions");
12200
12201 break;
12202
12203 case ada_catch_exception_unhandled:
12204 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12205 break;
12206
12207 case ada_catch_assert:
12208 ui_out_field_string (uiout, "what", "failed Ada assertions");
12209 break;
12210
12211 default:
12212 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12213 break;
12214 }
12215 }
12216
12217 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12218 for all exception catchpoint kinds. */
12219
12220 static void
12221 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12222 struct breakpoint *b)
12223 {
12224 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12225 struct ui_out *uiout = current_uiout;
12226
12227 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12228 : _("Catchpoint "));
12229 ui_out_field_int (uiout, "bkptno", b->number);
12230 ui_out_text (uiout, ": ");
12231
12232 switch (ex)
12233 {
12234 case ada_catch_exception:
12235 if (c->excep_string != NULL)
12236 {
12237 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12238 struct cleanup *old_chain = make_cleanup (xfree, info);
12239
12240 ui_out_text (uiout, info);
12241 do_cleanups (old_chain);
12242 }
12243 else
12244 ui_out_text (uiout, _("all Ada exceptions"));
12245 break;
12246
12247 case ada_catch_exception_unhandled:
12248 ui_out_text (uiout, _("unhandled Ada exceptions"));
12249 break;
12250
12251 case ada_catch_assert:
12252 ui_out_text (uiout, _("failed Ada assertions"));
12253 break;
12254
12255 default:
12256 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12257 break;
12258 }
12259 }
12260
12261 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12262 for all exception catchpoint kinds. */
12263
12264 static void
12265 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12266 struct breakpoint *b, struct ui_file *fp)
12267 {
12268 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12269
12270 switch (ex)
12271 {
12272 case ada_catch_exception:
12273 fprintf_filtered (fp, "catch exception");
12274 if (c->excep_string != NULL)
12275 fprintf_filtered (fp, " %s", c->excep_string);
12276 break;
12277
12278 case ada_catch_exception_unhandled:
12279 fprintf_filtered (fp, "catch exception unhandled");
12280 break;
12281
12282 case ada_catch_assert:
12283 fprintf_filtered (fp, "catch assert");
12284 break;
12285
12286 default:
12287 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12288 }
12289 print_recreate_thread (b, fp);
12290 }
12291
12292 /* Virtual table for "catch exception" breakpoints. */
12293
12294 static void
12295 dtor_catch_exception (struct breakpoint *b)
12296 {
12297 dtor_exception (ada_catch_exception, b);
12298 }
12299
12300 static struct bp_location *
12301 allocate_location_catch_exception (struct breakpoint *self)
12302 {
12303 return allocate_location_exception (ada_catch_exception, self);
12304 }
12305
12306 static void
12307 re_set_catch_exception (struct breakpoint *b)
12308 {
12309 re_set_exception (ada_catch_exception, b);
12310 }
12311
12312 static void
12313 check_status_catch_exception (bpstat bs)
12314 {
12315 check_status_exception (ada_catch_exception, bs);
12316 }
12317
12318 static enum print_stop_action
12319 print_it_catch_exception (bpstat bs)
12320 {
12321 return print_it_exception (ada_catch_exception, bs);
12322 }
12323
12324 static void
12325 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12326 {
12327 print_one_exception (ada_catch_exception, b, last_loc);
12328 }
12329
12330 static void
12331 print_mention_catch_exception (struct breakpoint *b)
12332 {
12333 print_mention_exception (ada_catch_exception, b);
12334 }
12335
12336 static void
12337 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12338 {
12339 print_recreate_exception (ada_catch_exception, b, fp);
12340 }
12341
12342 static struct breakpoint_ops catch_exception_breakpoint_ops;
12343
12344 /* Virtual table for "catch exception unhandled" breakpoints. */
12345
12346 static void
12347 dtor_catch_exception_unhandled (struct breakpoint *b)
12348 {
12349 dtor_exception (ada_catch_exception_unhandled, b);
12350 }
12351
12352 static struct bp_location *
12353 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12354 {
12355 return allocate_location_exception (ada_catch_exception_unhandled, self);
12356 }
12357
12358 static void
12359 re_set_catch_exception_unhandled (struct breakpoint *b)
12360 {
12361 re_set_exception (ada_catch_exception_unhandled, b);
12362 }
12363
12364 static void
12365 check_status_catch_exception_unhandled (bpstat bs)
12366 {
12367 check_status_exception (ada_catch_exception_unhandled, bs);
12368 }
12369
12370 static enum print_stop_action
12371 print_it_catch_exception_unhandled (bpstat bs)
12372 {
12373 return print_it_exception (ada_catch_exception_unhandled, bs);
12374 }
12375
12376 static void
12377 print_one_catch_exception_unhandled (struct breakpoint *b,
12378 struct bp_location **last_loc)
12379 {
12380 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12381 }
12382
12383 static void
12384 print_mention_catch_exception_unhandled (struct breakpoint *b)
12385 {
12386 print_mention_exception (ada_catch_exception_unhandled, b);
12387 }
12388
12389 static void
12390 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12391 struct ui_file *fp)
12392 {
12393 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12394 }
12395
12396 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12397
12398 /* Virtual table for "catch assert" breakpoints. */
12399
12400 static void
12401 dtor_catch_assert (struct breakpoint *b)
12402 {
12403 dtor_exception (ada_catch_assert, b);
12404 }
12405
12406 static struct bp_location *
12407 allocate_location_catch_assert (struct breakpoint *self)
12408 {
12409 return allocate_location_exception (ada_catch_assert, self);
12410 }
12411
12412 static void
12413 re_set_catch_assert (struct breakpoint *b)
12414 {
12415 re_set_exception (ada_catch_assert, b);
12416 }
12417
12418 static void
12419 check_status_catch_assert (bpstat bs)
12420 {
12421 check_status_exception (ada_catch_assert, bs);
12422 }
12423
12424 static enum print_stop_action
12425 print_it_catch_assert (bpstat bs)
12426 {
12427 return print_it_exception (ada_catch_assert, bs);
12428 }
12429
12430 static void
12431 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12432 {
12433 print_one_exception (ada_catch_assert, b, last_loc);
12434 }
12435
12436 static void
12437 print_mention_catch_assert (struct breakpoint *b)
12438 {
12439 print_mention_exception (ada_catch_assert, b);
12440 }
12441
12442 static void
12443 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12444 {
12445 print_recreate_exception (ada_catch_assert, b, fp);
12446 }
12447
12448 static struct breakpoint_ops catch_assert_breakpoint_ops;
12449
12450 /* Return a newly allocated copy of the first space-separated token
12451 in ARGSP, and then adjust ARGSP to point immediately after that
12452 token.
12453
12454 Return NULL if ARGPS does not contain any more tokens. */
12455
12456 static char *
12457 ada_get_next_arg (char **argsp)
12458 {
12459 char *args = *argsp;
12460 char *end;
12461 char *result;
12462
12463 args = skip_spaces (args);
12464 if (args[0] == '\0')
12465 return NULL; /* No more arguments. */
12466
12467 /* Find the end of the current argument. */
12468
12469 end = skip_to_space (args);
12470
12471 /* Adjust ARGSP to point to the start of the next argument. */
12472
12473 *argsp = end;
12474
12475 /* Make a copy of the current argument and return it. */
12476
12477 result = xmalloc (end - args + 1);
12478 strncpy (result, args, end - args);
12479 result[end - args] = '\0';
12480
12481 return result;
12482 }
12483
12484 /* Split the arguments specified in a "catch exception" command.
12485 Set EX to the appropriate catchpoint type.
12486 Set EXCEP_STRING to the name of the specific exception if
12487 specified by the user.
12488 If a condition is found at the end of the arguments, the condition
12489 expression is stored in COND_STRING (memory must be deallocated
12490 after use). Otherwise COND_STRING is set to NULL. */
12491
12492 static void
12493 catch_ada_exception_command_split (char *args,
12494 enum ada_exception_catchpoint_kind *ex,
12495 char **excep_string,
12496 char **cond_string)
12497 {
12498 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12499 char *exception_name;
12500 char *cond = NULL;
12501
12502 exception_name = ada_get_next_arg (&args);
12503 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12504 {
12505 /* This is not an exception name; this is the start of a condition
12506 expression for a catchpoint on all exceptions. So, "un-get"
12507 this token, and set exception_name to NULL. */
12508 xfree (exception_name);
12509 exception_name = NULL;
12510 args -= 2;
12511 }
12512 make_cleanup (xfree, exception_name);
12513
12514 /* Check to see if we have a condition. */
12515
12516 args = skip_spaces (args);
12517 if (startswith (args, "if")
12518 && (isspace (args[2]) || args[2] == '\0'))
12519 {
12520 args += 2;
12521 args = skip_spaces (args);
12522
12523 if (args[0] == '\0')
12524 error (_("Condition missing after `if' keyword"));
12525 cond = xstrdup (args);
12526 make_cleanup (xfree, cond);
12527
12528 args += strlen (args);
12529 }
12530
12531 /* Check that we do not have any more arguments. Anything else
12532 is unexpected. */
12533
12534 if (args[0] != '\0')
12535 error (_("Junk at end of expression"));
12536
12537 discard_cleanups (old_chain);
12538
12539 if (exception_name == NULL)
12540 {
12541 /* Catch all exceptions. */
12542 *ex = ada_catch_exception;
12543 *excep_string = NULL;
12544 }
12545 else if (strcmp (exception_name, "unhandled") == 0)
12546 {
12547 /* Catch unhandled exceptions. */
12548 *ex = ada_catch_exception_unhandled;
12549 *excep_string = NULL;
12550 }
12551 else
12552 {
12553 /* Catch a specific exception. */
12554 *ex = ada_catch_exception;
12555 *excep_string = exception_name;
12556 }
12557 *cond_string = cond;
12558 }
12559
12560 /* Return the name of the symbol on which we should break in order to
12561 implement a catchpoint of the EX kind. */
12562
12563 static const char *
12564 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12565 {
12566 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12567
12568 gdb_assert (data->exception_info != NULL);
12569
12570 switch (ex)
12571 {
12572 case ada_catch_exception:
12573 return (data->exception_info->catch_exception_sym);
12574 break;
12575 case ada_catch_exception_unhandled:
12576 return (data->exception_info->catch_exception_unhandled_sym);
12577 break;
12578 case ada_catch_assert:
12579 return (data->exception_info->catch_assert_sym);
12580 break;
12581 default:
12582 internal_error (__FILE__, __LINE__,
12583 _("unexpected catchpoint kind (%d)"), ex);
12584 }
12585 }
12586
12587 /* Return the breakpoint ops "virtual table" used for catchpoints
12588 of the EX kind. */
12589
12590 static const struct breakpoint_ops *
12591 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12592 {
12593 switch (ex)
12594 {
12595 case ada_catch_exception:
12596 return (&catch_exception_breakpoint_ops);
12597 break;
12598 case ada_catch_exception_unhandled:
12599 return (&catch_exception_unhandled_breakpoint_ops);
12600 break;
12601 case ada_catch_assert:
12602 return (&catch_assert_breakpoint_ops);
12603 break;
12604 default:
12605 internal_error (__FILE__, __LINE__,
12606 _("unexpected catchpoint kind (%d)"), ex);
12607 }
12608 }
12609
12610 /* Return the condition that will be used to match the current exception
12611 being raised with the exception that the user wants to catch. This
12612 assumes that this condition is used when the inferior just triggered
12613 an exception catchpoint.
12614
12615 The string returned is a newly allocated string that needs to be
12616 deallocated later. */
12617
12618 static char *
12619 ada_exception_catchpoint_cond_string (const char *excep_string)
12620 {
12621 int i;
12622
12623 /* The standard exceptions are a special case. They are defined in
12624 runtime units that have been compiled without debugging info; if
12625 EXCEP_STRING is the not-fully-qualified name of a standard
12626 exception (e.g. "constraint_error") then, during the evaluation
12627 of the condition expression, the symbol lookup on this name would
12628 *not* return this standard exception. The catchpoint condition
12629 may then be set only on user-defined exceptions which have the
12630 same not-fully-qualified name (e.g. my_package.constraint_error).
12631
12632 To avoid this unexcepted behavior, these standard exceptions are
12633 systematically prefixed by "standard". This means that "catch
12634 exception constraint_error" is rewritten into "catch exception
12635 standard.constraint_error".
12636
12637 If an exception named contraint_error is defined in another package of
12638 the inferior program, then the only way to specify this exception as a
12639 breakpoint condition is to use its fully-qualified named:
12640 e.g. my_package.constraint_error. */
12641
12642 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12643 {
12644 if (strcmp (standard_exc [i], excep_string) == 0)
12645 {
12646 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12647 excep_string);
12648 }
12649 }
12650 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12651 }
12652
12653 /* Return the symtab_and_line that should be used to insert an exception
12654 catchpoint of the TYPE kind.
12655
12656 EXCEP_STRING should contain the name of a specific exception that
12657 the catchpoint should catch, or NULL otherwise.
12658
12659 ADDR_STRING returns the name of the function where the real
12660 breakpoint that implements the catchpoints is set, depending on the
12661 type of catchpoint we need to create. */
12662
12663 static struct symtab_and_line
12664 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12665 char **addr_string, const struct breakpoint_ops **ops)
12666 {
12667 const char *sym_name;
12668 struct symbol *sym;
12669
12670 /* First, find out which exception support info to use. */
12671 ada_exception_support_info_sniffer ();
12672
12673 /* Then lookup the function on which we will break in order to catch
12674 the Ada exceptions requested by the user. */
12675 sym_name = ada_exception_sym_name (ex);
12676 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12677
12678 /* We can assume that SYM is not NULL at this stage. If the symbol
12679 did not exist, ada_exception_support_info_sniffer would have
12680 raised an exception.
12681
12682 Also, ada_exception_support_info_sniffer should have already
12683 verified that SYM is a function symbol. */
12684 gdb_assert (sym != NULL);
12685 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12686
12687 /* Set ADDR_STRING. */
12688 *addr_string = xstrdup (sym_name);
12689
12690 /* Set OPS. */
12691 *ops = ada_exception_breakpoint_ops (ex);
12692
12693 return find_function_start_sal (sym, 1);
12694 }
12695
12696 /* Create an Ada exception catchpoint.
12697
12698 EX_KIND is the kind of exception catchpoint to be created.
12699
12700 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12701 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12702 of the exception to which this catchpoint applies. When not NULL,
12703 the string must be allocated on the heap, and its deallocation
12704 is no longer the responsibility of the caller.
12705
12706 COND_STRING, if not NULL, is the catchpoint condition. This string
12707 must be allocated on the heap, and its deallocation is no longer
12708 the responsibility of the caller.
12709
12710 TEMPFLAG, if nonzero, means that the underlying breakpoint
12711 should be temporary.
12712
12713 FROM_TTY is the usual argument passed to all commands implementations. */
12714
12715 void
12716 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12717 enum ada_exception_catchpoint_kind ex_kind,
12718 char *excep_string,
12719 char *cond_string,
12720 int tempflag,
12721 int disabled,
12722 int from_tty)
12723 {
12724 struct ada_catchpoint *c;
12725 char *addr_string = NULL;
12726 const struct breakpoint_ops *ops = NULL;
12727 struct symtab_and_line sal
12728 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12729
12730 c = XNEW (struct ada_catchpoint);
12731 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12732 ops, tempflag, disabled, from_tty);
12733 c->excep_string = excep_string;
12734 create_excep_cond_exprs (c);
12735 if (cond_string != NULL)
12736 set_breakpoint_condition (&c->base, cond_string, from_tty);
12737 install_breakpoint (0, &c->base, 1);
12738 }
12739
12740 /* Implement the "catch exception" command. */
12741
12742 static void
12743 catch_ada_exception_command (char *arg, int from_tty,
12744 struct cmd_list_element *command)
12745 {
12746 struct gdbarch *gdbarch = get_current_arch ();
12747 int tempflag;
12748 enum ada_exception_catchpoint_kind ex_kind;
12749 char *excep_string = NULL;
12750 char *cond_string = NULL;
12751
12752 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12753
12754 if (!arg)
12755 arg = "";
12756 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12757 &cond_string);
12758 create_ada_exception_catchpoint (gdbarch, ex_kind,
12759 excep_string, cond_string,
12760 tempflag, 1 /* enabled */,
12761 from_tty);
12762 }
12763
12764 /* Split the arguments specified in a "catch assert" command.
12765
12766 ARGS contains the command's arguments (or the empty string if
12767 no arguments were passed).
12768
12769 If ARGS contains a condition, set COND_STRING to that condition
12770 (the memory needs to be deallocated after use). */
12771
12772 static void
12773 catch_ada_assert_command_split (char *args, char **cond_string)
12774 {
12775 args = skip_spaces (args);
12776
12777 /* Check whether a condition was provided. */
12778 if (startswith (args, "if")
12779 && (isspace (args[2]) || args[2] == '\0'))
12780 {
12781 args += 2;
12782 args = skip_spaces (args);
12783 if (args[0] == '\0')
12784 error (_("condition missing after `if' keyword"));
12785 *cond_string = xstrdup (args);
12786 }
12787
12788 /* Otherwise, there should be no other argument at the end of
12789 the command. */
12790 else if (args[0] != '\0')
12791 error (_("Junk at end of arguments."));
12792 }
12793
12794 /* Implement the "catch assert" command. */
12795
12796 static void
12797 catch_assert_command (char *arg, int from_tty,
12798 struct cmd_list_element *command)
12799 {
12800 struct gdbarch *gdbarch = get_current_arch ();
12801 int tempflag;
12802 char *cond_string = NULL;
12803
12804 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12805
12806 if (!arg)
12807 arg = "";
12808 catch_ada_assert_command_split (arg, &cond_string);
12809 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12810 NULL, cond_string,
12811 tempflag, 1 /* enabled */,
12812 from_tty);
12813 }
12814
12815 /* Return non-zero if the symbol SYM is an Ada exception object. */
12816
12817 static int
12818 ada_is_exception_sym (struct symbol *sym)
12819 {
12820 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12821
12822 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12823 && SYMBOL_CLASS (sym) != LOC_BLOCK
12824 && SYMBOL_CLASS (sym) != LOC_CONST
12825 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12826 && type_name != NULL && strcmp (type_name, "exception") == 0);
12827 }
12828
12829 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12830 Ada exception object. This matches all exceptions except the ones
12831 defined by the Ada language. */
12832
12833 static int
12834 ada_is_non_standard_exception_sym (struct symbol *sym)
12835 {
12836 int i;
12837
12838 if (!ada_is_exception_sym (sym))
12839 return 0;
12840
12841 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12842 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12843 return 0; /* A standard exception. */
12844
12845 /* Numeric_Error is also a standard exception, so exclude it.
12846 See the STANDARD_EXC description for more details as to why
12847 this exception is not listed in that array. */
12848 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12849 return 0;
12850
12851 return 1;
12852 }
12853
12854 /* A helper function for qsort, comparing two struct ada_exc_info
12855 objects.
12856
12857 The comparison is determined first by exception name, and then
12858 by exception address. */
12859
12860 static int
12861 compare_ada_exception_info (const void *a, const void *b)
12862 {
12863 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12864 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12865 int result;
12866
12867 result = strcmp (exc_a->name, exc_b->name);
12868 if (result != 0)
12869 return result;
12870
12871 if (exc_a->addr < exc_b->addr)
12872 return -1;
12873 if (exc_a->addr > exc_b->addr)
12874 return 1;
12875
12876 return 0;
12877 }
12878
12879 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12880 routine, but keeping the first SKIP elements untouched.
12881
12882 All duplicates are also removed. */
12883
12884 static void
12885 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12886 int skip)
12887 {
12888 struct ada_exc_info *to_sort
12889 = VEC_address (ada_exc_info, *exceptions) + skip;
12890 int to_sort_len
12891 = VEC_length (ada_exc_info, *exceptions) - skip;
12892 int i, j;
12893
12894 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12895 compare_ada_exception_info);
12896
12897 for (i = 1, j = 1; i < to_sort_len; i++)
12898 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12899 to_sort[j++] = to_sort[i];
12900 to_sort_len = j;
12901 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12902 }
12903
12904 /* A function intended as the "name_matcher" callback in the struct
12905 quick_symbol_functions' expand_symtabs_matching method.
12906
12907 SEARCH_NAME is the symbol's search name.
12908
12909 If USER_DATA is not NULL, it is a pointer to a regext_t object
12910 used to match the symbol (by natural name). Otherwise, when USER_DATA
12911 is null, no filtering is performed, and all symbols are a positive
12912 match. */
12913
12914 static int
12915 ada_exc_search_name_matches (const char *search_name, void *user_data)
12916 {
12917 regex_t *preg = user_data;
12918
12919 if (preg == NULL)
12920 return 1;
12921
12922 /* In Ada, the symbol "search name" is a linkage name, whereas
12923 the regular expression used to do the matching refers to
12924 the natural name. So match against the decoded name. */
12925 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12926 }
12927
12928 /* Add all exceptions defined by the Ada standard whose name match
12929 a regular expression.
12930
12931 If PREG is not NULL, then this regexp_t object is used to
12932 perform the symbol name matching. Otherwise, no name-based
12933 filtering is performed.
12934
12935 EXCEPTIONS is a vector of exceptions to which matching exceptions
12936 gets pushed. */
12937
12938 static void
12939 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12940 {
12941 int i;
12942
12943 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12944 {
12945 if (preg == NULL
12946 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12947 {
12948 struct bound_minimal_symbol msymbol
12949 = ada_lookup_simple_minsym (standard_exc[i]);
12950
12951 if (msymbol.minsym != NULL)
12952 {
12953 struct ada_exc_info info
12954 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12955
12956 VEC_safe_push (ada_exc_info, *exceptions, &info);
12957 }
12958 }
12959 }
12960 }
12961
12962 /* Add all Ada exceptions defined locally and accessible from the given
12963 FRAME.
12964
12965 If PREG is not NULL, then this regexp_t object is used to
12966 perform the symbol name matching. Otherwise, no name-based
12967 filtering is performed.
12968
12969 EXCEPTIONS is a vector of exceptions to which matching exceptions
12970 gets pushed. */
12971
12972 static void
12973 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12974 VEC(ada_exc_info) **exceptions)
12975 {
12976 const struct block *block = get_frame_block (frame, 0);
12977
12978 while (block != 0)
12979 {
12980 struct block_iterator iter;
12981 struct symbol *sym;
12982
12983 ALL_BLOCK_SYMBOLS (block, iter, sym)
12984 {
12985 switch (SYMBOL_CLASS (sym))
12986 {
12987 case LOC_TYPEDEF:
12988 case LOC_BLOCK:
12989 case LOC_CONST:
12990 break;
12991 default:
12992 if (ada_is_exception_sym (sym))
12993 {
12994 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12995 SYMBOL_VALUE_ADDRESS (sym)};
12996
12997 VEC_safe_push (ada_exc_info, *exceptions, &info);
12998 }
12999 }
13000 }
13001 if (BLOCK_FUNCTION (block) != NULL)
13002 break;
13003 block = BLOCK_SUPERBLOCK (block);
13004 }
13005 }
13006
13007 /* Add all exceptions defined globally whose name name match
13008 a regular expression, excluding standard exceptions.
13009
13010 The reason we exclude standard exceptions is that they need
13011 to be handled separately: Standard exceptions are defined inside
13012 a runtime unit which is normally not compiled with debugging info,
13013 and thus usually do not show up in our symbol search. However,
13014 if the unit was in fact built with debugging info, we need to
13015 exclude them because they would duplicate the entry we found
13016 during the special loop that specifically searches for those
13017 standard exceptions.
13018
13019 If PREG is not NULL, then this regexp_t object is used to
13020 perform the symbol name matching. Otherwise, no name-based
13021 filtering is performed.
13022
13023 EXCEPTIONS is a vector of exceptions to which matching exceptions
13024 gets pushed. */
13025
13026 static void
13027 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13028 {
13029 struct objfile *objfile;
13030 struct compunit_symtab *s;
13031
13032 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13033 VARIABLES_DOMAIN, preg);
13034
13035 ALL_COMPUNITS (objfile, s)
13036 {
13037 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13038 int i;
13039
13040 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13041 {
13042 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13043 struct block_iterator iter;
13044 struct symbol *sym;
13045
13046 ALL_BLOCK_SYMBOLS (b, iter, sym)
13047 if (ada_is_non_standard_exception_sym (sym)
13048 && (preg == NULL
13049 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13050 0, NULL, 0) == 0))
13051 {
13052 struct ada_exc_info info
13053 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13054
13055 VEC_safe_push (ada_exc_info, *exceptions, &info);
13056 }
13057 }
13058 }
13059 }
13060
13061 /* Implements ada_exceptions_list with the regular expression passed
13062 as a regex_t, rather than a string.
13063
13064 If not NULL, PREG is used to filter out exceptions whose names
13065 do not match. Otherwise, all exceptions are listed. */
13066
13067 static VEC(ada_exc_info) *
13068 ada_exceptions_list_1 (regex_t *preg)
13069 {
13070 VEC(ada_exc_info) *result = NULL;
13071 struct cleanup *old_chain
13072 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13073 int prev_len;
13074
13075 /* First, list the known standard exceptions. These exceptions
13076 need to be handled separately, as they are usually defined in
13077 runtime units that have been compiled without debugging info. */
13078
13079 ada_add_standard_exceptions (preg, &result);
13080
13081 /* Next, find all exceptions whose scope is local and accessible
13082 from the currently selected frame. */
13083
13084 if (has_stack_frames ())
13085 {
13086 prev_len = VEC_length (ada_exc_info, result);
13087 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13088 &result);
13089 if (VEC_length (ada_exc_info, result) > prev_len)
13090 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13091 }
13092
13093 /* Add all exceptions whose scope is global. */
13094
13095 prev_len = VEC_length (ada_exc_info, result);
13096 ada_add_global_exceptions (preg, &result);
13097 if (VEC_length (ada_exc_info, result) > prev_len)
13098 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13099
13100 discard_cleanups (old_chain);
13101 return result;
13102 }
13103
13104 /* Return a vector of ada_exc_info.
13105
13106 If REGEXP is NULL, all exceptions are included in the result.
13107 Otherwise, it should contain a valid regular expression,
13108 and only the exceptions whose names match that regular expression
13109 are included in the result.
13110
13111 The exceptions are sorted in the following order:
13112 - Standard exceptions (defined by the Ada language), in
13113 alphabetical order;
13114 - Exceptions only visible from the current frame, in
13115 alphabetical order;
13116 - Exceptions whose scope is global, in alphabetical order. */
13117
13118 VEC(ada_exc_info) *
13119 ada_exceptions_list (const char *regexp)
13120 {
13121 VEC(ada_exc_info) *result = NULL;
13122 struct cleanup *old_chain = NULL;
13123 regex_t reg;
13124
13125 if (regexp != NULL)
13126 old_chain = compile_rx_or_error (&reg, regexp,
13127 _("invalid regular expression"));
13128
13129 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13130
13131 if (old_chain != NULL)
13132 do_cleanups (old_chain);
13133 return result;
13134 }
13135
13136 /* Implement the "info exceptions" command. */
13137
13138 static void
13139 info_exceptions_command (char *regexp, int from_tty)
13140 {
13141 VEC(ada_exc_info) *exceptions;
13142 struct cleanup *cleanup;
13143 struct gdbarch *gdbarch = get_current_arch ();
13144 int ix;
13145 struct ada_exc_info *info;
13146
13147 exceptions = ada_exceptions_list (regexp);
13148 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13149
13150 if (regexp != NULL)
13151 printf_filtered
13152 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13153 else
13154 printf_filtered (_("All defined Ada exceptions:\n"));
13155
13156 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13157 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13158
13159 do_cleanups (cleanup);
13160 }
13161
13162 /* Operators */
13163 /* Information about operators given special treatment in functions
13164 below. */
13165 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13166
13167 #define ADA_OPERATORS \
13168 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13169 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13170 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13171 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13172 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13173 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13174 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13175 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13176 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13177 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13178 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13179 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13180 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13181 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13182 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13183 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13184 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13185 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13186 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13187
13188 static void
13189 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13190 int *argsp)
13191 {
13192 switch (exp->elts[pc - 1].opcode)
13193 {
13194 default:
13195 operator_length_standard (exp, pc, oplenp, argsp);
13196 break;
13197
13198 #define OP_DEFN(op, len, args, binop) \
13199 case op: *oplenp = len; *argsp = args; break;
13200 ADA_OPERATORS;
13201 #undef OP_DEFN
13202
13203 case OP_AGGREGATE:
13204 *oplenp = 3;
13205 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13206 break;
13207
13208 case OP_CHOICES:
13209 *oplenp = 3;
13210 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13211 break;
13212 }
13213 }
13214
13215 /* Implementation of the exp_descriptor method operator_check. */
13216
13217 static int
13218 ada_operator_check (struct expression *exp, int pos,
13219 int (*objfile_func) (struct objfile *objfile, void *data),
13220 void *data)
13221 {
13222 const union exp_element *const elts = exp->elts;
13223 struct type *type = NULL;
13224
13225 switch (elts[pos].opcode)
13226 {
13227 case UNOP_IN_RANGE:
13228 case UNOP_QUAL:
13229 type = elts[pos + 1].type;
13230 break;
13231
13232 default:
13233 return operator_check_standard (exp, pos, objfile_func, data);
13234 }
13235
13236 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13237
13238 if (type && TYPE_OBJFILE (type)
13239 && (*objfile_func) (TYPE_OBJFILE (type), data))
13240 return 1;
13241
13242 return 0;
13243 }
13244
13245 static char *
13246 ada_op_name (enum exp_opcode opcode)
13247 {
13248 switch (opcode)
13249 {
13250 default:
13251 return op_name_standard (opcode);
13252
13253 #define OP_DEFN(op, len, args, binop) case op: return #op;
13254 ADA_OPERATORS;
13255 #undef OP_DEFN
13256
13257 case OP_AGGREGATE:
13258 return "OP_AGGREGATE";
13259 case OP_CHOICES:
13260 return "OP_CHOICES";
13261 case OP_NAME:
13262 return "OP_NAME";
13263 }
13264 }
13265
13266 /* As for operator_length, but assumes PC is pointing at the first
13267 element of the operator, and gives meaningful results only for the
13268 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13269
13270 static void
13271 ada_forward_operator_length (struct expression *exp, int pc,
13272 int *oplenp, int *argsp)
13273 {
13274 switch (exp->elts[pc].opcode)
13275 {
13276 default:
13277 *oplenp = *argsp = 0;
13278 break;
13279
13280 #define OP_DEFN(op, len, args, binop) \
13281 case op: *oplenp = len; *argsp = args; break;
13282 ADA_OPERATORS;
13283 #undef OP_DEFN
13284
13285 case OP_AGGREGATE:
13286 *oplenp = 3;
13287 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13288 break;
13289
13290 case OP_CHOICES:
13291 *oplenp = 3;
13292 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13293 break;
13294
13295 case OP_STRING:
13296 case OP_NAME:
13297 {
13298 int len = longest_to_int (exp->elts[pc + 1].longconst);
13299
13300 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13301 *argsp = 0;
13302 break;
13303 }
13304 }
13305 }
13306
13307 static int
13308 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13309 {
13310 enum exp_opcode op = exp->elts[elt].opcode;
13311 int oplen, nargs;
13312 int pc = elt;
13313 int i;
13314
13315 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13316
13317 switch (op)
13318 {
13319 /* Ada attributes ('Foo). */
13320 case OP_ATR_FIRST:
13321 case OP_ATR_LAST:
13322 case OP_ATR_LENGTH:
13323 case OP_ATR_IMAGE:
13324 case OP_ATR_MAX:
13325 case OP_ATR_MIN:
13326 case OP_ATR_MODULUS:
13327 case OP_ATR_POS:
13328 case OP_ATR_SIZE:
13329 case OP_ATR_TAG:
13330 case OP_ATR_VAL:
13331 break;
13332
13333 case UNOP_IN_RANGE:
13334 case UNOP_QUAL:
13335 /* XXX: gdb_sprint_host_address, type_sprint */
13336 fprintf_filtered (stream, _("Type @"));
13337 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13338 fprintf_filtered (stream, " (");
13339 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13340 fprintf_filtered (stream, ")");
13341 break;
13342 case BINOP_IN_BOUNDS:
13343 fprintf_filtered (stream, " (%d)",
13344 longest_to_int (exp->elts[pc + 2].longconst));
13345 break;
13346 case TERNOP_IN_RANGE:
13347 break;
13348
13349 case OP_AGGREGATE:
13350 case OP_OTHERS:
13351 case OP_DISCRETE_RANGE:
13352 case OP_POSITIONAL:
13353 case OP_CHOICES:
13354 break;
13355
13356 case OP_NAME:
13357 case OP_STRING:
13358 {
13359 char *name = &exp->elts[elt + 2].string;
13360 int len = longest_to_int (exp->elts[elt + 1].longconst);
13361
13362 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13363 break;
13364 }
13365
13366 default:
13367 return dump_subexp_body_standard (exp, stream, elt);
13368 }
13369
13370 elt += oplen;
13371 for (i = 0; i < nargs; i += 1)
13372 elt = dump_subexp (exp, stream, elt);
13373
13374 return elt;
13375 }
13376
13377 /* The Ada extension of print_subexp (q.v.). */
13378
13379 static void
13380 ada_print_subexp (struct expression *exp, int *pos,
13381 struct ui_file *stream, enum precedence prec)
13382 {
13383 int oplen, nargs, i;
13384 int pc = *pos;
13385 enum exp_opcode op = exp->elts[pc].opcode;
13386
13387 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13388
13389 *pos += oplen;
13390 switch (op)
13391 {
13392 default:
13393 *pos -= oplen;
13394 print_subexp_standard (exp, pos, stream, prec);
13395 return;
13396
13397 case OP_VAR_VALUE:
13398 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13399 return;
13400
13401 case BINOP_IN_BOUNDS:
13402 /* XXX: sprint_subexp */
13403 print_subexp (exp, pos, stream, PREC_SUFFIX);
13404 fputs_filtered (" in ", stream);
13405 print_subexp (exp, pos, stream, PREC_SUFFIX);
13406 fputs_filtered ("'range", stream);
13407 if (exp->elts[pc + 1].longconst > 1)
13408 fprintf_filtered (stream, "(%ld)",
13409 (long) exp->elts[pc + 1].longconst);
13410 return;
13411
13412 case TERNOP_IN_RANGE:
13413 if (prec >= PREC_EQUAL)
13414 fputs_filtered ("(", stream);
13415 /* XXX: sprint_subexp */
13416 print_subexp (exp, pos, stream, PREC_SUFFIX);
13417 fputs_filtered (" in ", stream);
13418 print_subexp (exp, pos, stream, PREC_EQUAL);
13419 fputs_filtered (" .. ", stream);
13420 print_subexp (exp, pos, stream, PREC_EQUAL);
13421 if (prec >= PREC_EQUAL)
13422 fputs_filtered (")", stream);
13423 return;
13424
13425 case OP_ATR_FIRST:
13426 case OP_ATR_LAST:
13427 case OP_ATR_LENGTH:
13428 case OP_ATR_IMAGE:
13429 case OP_ATR_MAX:
13430 case OP_ATR_MIN:
13431 case OP_ATR_MODULUS:
13432 case OP_ATR_POS:
13433 case OP_ATR_SIZE:
13434 case OP_ATR_TAG:
13435 case OP_ATR_VAL:
13436 if (exp->elts[*pos].opcode == OP_TYPE)
13437 {
13438 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13439 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13440 &type_print_raw_options);
13441 *pos += 3;
13442 }
13443 else
13444 print_subexp (exp, pos, stream, PREC_SUFFIX);
13445 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13446 if (nargs > 1)
13447 {
13448 int tem;
13449
13450 for (tem = 1; tem < nargs; tem += 1)
13451 {
13452 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13453 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13454 }
13455 fputs_filtered (")", stream);
13456 }
13457 return;
13458
13459 case UNOP_QUAL:
13460 type_print (exp->elts[pc + 1].type, "", stream, 0);
13461 fputs_filtered ("'(", stream);
13462 print_subexp (exp, pos, stream, PREC_PREFIX);
13463 fputs_filtered (")", stream);
13464 return;
13465
13466 case UNOP_IN_RANGE:
13467 /* XXX: sprint_subexp */
13468 print_subexp (exp, pos, stream, PREC_SUFFIX);
13469 fputs_filtered (" in ", stream);
13470 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13471 &type_print_raw_options);
13472 return;
13473
13474 case OP_DISCRETE_RANGE:
13475 print_subexp (exp, pos, stream, PREC_SUFFIX);
13476 fputs_filtered ("..", stream);
13477 print_subexp (exp, pos, stream, PREC_SUFFIX);
13478 return;
13479
13480 case OP_OTHERS:
13481 fputs_filtered ("others => ", stream);
13482 print_subexp (exp, pos, stream, PREC_SUFFIX);
13483 return;
13484
13485 case OP_CHOICES:
13486 for (i = 0; i < nargs-1; i += 1)
13487 {
13488 if (i > 0)
13489 fputs_filtered ("|", stream);
13490 print_subexp (exp, pos, stream, PREC_SUFFIX);
13491 }
13492 fputs_filtered (" => ", stream);
13493 print_subexp (exp, pos, stream, PREC_SUFFIX);
13494 return;
13495
13496 case OP_POSITIONAL:
13497 print_subexp (exp, pos, stream, PREC_SUFFIX);
13498 return;
13499
13500 case OP_AGGREGATE:
13501 fputs_filtered ("(", stream);
13502 for (i = 0; i < nargs; i += 1)
13503 {
13504 if (i > 0)
13505 fputs_filtered (", ", stream);
13506 print_subexp (exp, pos, stream, PREC_SUFFIX);
13507 }
13508 fputs_filtered (")", stream);
13509 return;
13510 }
13511 }
13512
13513 /* Table mapping opcodes into strings for printing operators
13514 and precedences of the operators. */
13515
13516 static const struct op_print ada_op_print_tab[] = {
13517 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13518 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13519 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13520 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13521 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13522 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13523 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13524 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13525 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13526 {">=", BINOP_GEQ, PREC_ORDER, 0},
13527 {">", BINOP_GTR, PREC_ORDER, 0},
13528 {"<", BINOP_LESS, PREC_ORDER, 0},
13529 {">>", BINOP_RSH, PREC_SHIFT, 0},
13530 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13531 {"+", BINOP_ADD, PREC_ADD, 0},
13532 {"-", BINOP_SUB, PREC_ADD, 0},
13533 {"&", BINOP_CONCAT, PREC_ADD, 0},
13534 {"*", BINOP_MUL, PREC_MUL, 0},
13535 {"/", BINOP_DIV, PREC_MUL, 0},
13536 {"rem", BINOP_REM, PREC_MUL, 0},
13537 {"mod", BINOP_MOD, PREC_MUL, 0},
13538 {"**", BINOP_EXP, PREC_REPEAT, 0},
13539 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13540 {"-", UNOP_NEG, PREC_PREFIX, 0},
13541 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13542 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13543 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13544 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13545 {".all", UNOP_IND, PREC_SUFFIX, 1},
13546 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13547 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13548 {NULL, 0, 0, 0}
13549 };
13550 \f
13551 enum ada_primitive_types {
13552 ada_primitive_type_int,
13553 ada_primitive_type_long,
13554 ada_primitive_type_short,
13555 ada_primitive_type_char,
13556 ada_primitive_type_float,
13557 ada_primitive_type_double,
13558 ada_primitive_type_void,
13559 ada_primitive_type_long_long,
13560 ada_primitive_type_long_double,
13561 ada_primitive_type_natural,
13562 ada_primitive_type_positive,
13563 ada_primitive_type_system_address,
13564 nr_ada_primitive_types
13565 };
13566
13567 static void
13568 ada_language_arch_info (struct gdbarch *gdbarch,
13569 struct language_arch_info *lai)
13570 {
13571 const struct builtin_type *builtin = builtin_type (gdbarch);
13572
13573 lai->primitive_type_vector
13574 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13575 struct type *);
13576
13577 lai->primitive_type_vector [ada_primitive_type_int]
13578 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13579 0, "integer");
13580 lai->primitive_type_vector [ada_primitive_type_long]
13581 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13582 0, "long_integer");
13583 lai->primitive_type_vector [ada_primitive_type_short]
13584 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13585 0, "short_integer");
13586 lai->string_char_type
13587 = lai->primitive_type_vector [ada_primitive_type_char]
13588 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13589 lai->primitive_type_vector [ada_primitive_type_float]
13590 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13591 "float", NULL);
13592 lai->primitive_type_vector [ada_primitive_type_double]
13593 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13594 "long_float", NULL);
13595 lai->primitive_type_vector [ada_primitive_type_long_long]
13596 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13597 0, "long_long_integer");
13598 lai->primitive_type_vector [ada_primitive_type_long_double]
13599 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13600 "long_long_float", NULL);
13601 lai->primitive_type_vector [ada_primitive_type_natural]
13602 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13603 0, "natural");
13604 lai->primitive_type_vector [ada_primitive_type_positive]
13605 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13606 0, "positive");
13607 lai->primitive_type_vector [ada_primitive_type_void]
13608 = builtin->builtin_void;
13609
13610 lai->primitive_type_vector [ada_primitive_type_system_address]
13611 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13612 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13613 = "system__address";
13614
13615 lai->bool_type_symbol = NULL;
13616 lai->bool_type_default = builtin->builtin_bool;
13617 }
13618 \f
13619 /* Language vector */
13620
13621 /* Not really used, but needed in the ada_language_defn. */
13622
13623 static void
13624 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13625 {
13626 ada_emit_char (c, type, stream, quoter, 1);
13627 }
13628
13629 static int
13630 parse (struct parser_state *ps)
13631 {
13632 warnings_issued = 0;
13633 return ada_parse (ps);
13634 }
13635
13636 static const struct exp_descriptor ada_exp_descriptor = {
13637 ada_print_subexp,
13638 ada_operator_length,
13639 ada_operator_check,
13640 ada_op_name,
13641 ada_dump_subexp_body,
13642 ada_evaluate_subexp
13643 };
13644
13645 /* Implement the "la_get_symbol_name_cmp" language_defn method
13646 for Ada. */
13647
13648 static symbol_name_cmp_ftype
13649 ada_get_symbol_name_cmp (const char *lookup_name)
13650 {
13651 if (should_use_wild_match (lookup_name))
13652 return wild_match;
13653 else
13654 return compare_names;
13655 }
13656
13657 /* Implement the "la_read_var_value" language_defn method for Ada. */
13658
13659 static struct value *
13660 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13661 {
13662 const struct block *frame_block = NULL;
13663 struct symbol *renaming_sym = NULL;
13664
13665 /* The only case where default_read_var_value is not sufficient
13666 is when VAR is a renaming... */
13667 if (frame)
13668 frame_block = get_frame_block (frame, NULL);
13669 if (frame_block)
13670 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13671 if (renaming_sym != NULL)
13672 return ada_read_renaming_var_value (renaming_sym, frame_block);
13673
13674 /* This is a typical case where we expect the default_read_var_value
13675 function to work. */
13676 return default_read_var_value (var, frame);
13677 }
13678
13679 const struct language_defn ada_language_defn = {
13680 "ada", /* Language name */
13681 "Ada",
13682 language_ada,
13683 range_check_off,
13684 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13685 that's not quite what this means. */
13686 array_row_major,
13687 macro_expansion_no,
13688 &ada_exp_descriptor,
13689 parse,
13690 ada_error,
13691 resolve,
13692 ada_printchar, /* Print a character constant */
13693 ada_printstr, /* Function to print string constant */
13694 emit_char, /* Function to print single char (not used) */
13695 ada_print_type, /* Print a type using appropriate syntax */
13696 ada_print_typedef, /* Print a typedef using appropriate syntax */
13697 ada_val_print, /* Print a value using appropriate syntax */
13698 ada_value_print, /* Print a top-level value */
13699 ada_read_var_value, /* la_read_var_value */
13700 NULL, /* Language specific skip_trampoline */
13701 NULL, /* name_of_this */
13702 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13703 basic_lookup_transparent_type, /* lookup_transparent_type */
13704 ada_la_decode, /* Language specific symbol demangler */
13705 NULL, /* Language specific
13706 class_name_from_physname */
13707 ada_op_print_tab, /* expression operators for printing */
13708 0, /* c-style arrays */
13709 1, /* String lower bound */
13710 ada_get_gdb_completer_word_break_characters,
13711 ada_make_symbol_completion_list,
13712 ada_language_arch_info,
13713 ada_print_array_index,
13714 default_pass_by_reference,
13715 c_get_string,
13716 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13717 ada_iterate_over_symbols,
13718 &ada_varobj_ops,
13719 NULL,
13720 NULL,
13721 LANG_MAGIC
13722 };
13723
13724 /* Provide a prototype to silence -Wmissing-prototypes. */
13725 extern initialize_file_ftype _initialize_ada_language;
13726
13727 /* Command-list for the "set/show ada" prefix command. */
13728 static struct cmd_list_element *set_ada_list;
13729 static struct cmd_list_element *show_ada_list;
13730
13731 /* Implement the "set ada" prefix command. */
13732
13733 static void
13734 set_ada_command (char *arg, int from_tty)
13735 {
13736 printf_unfiltered (_(\
13737 "\"set ada\" must be followed by the name of a setting.\n"));
13738 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13739 }
13740
13741 /* Implement the "show ada" prefix command. */
13742
13743 static void
13744 show_ada_command (char *args, int from_tty)
13745 {
13746 cmd_show_list (show_ada_list, from_tty, "");
13747 }
13748
13749 static void
13750 initialize_ada_catchpoint_ops (void)
13751 {
13752 struct breakpoint_ops *ops;
13753
13754 initialize_breakpoint_ops ();
13755
13756 ops = &catch_exception_breakpoint_ops;
13757 *ops = bkpt_breakpoint_ops;
13758 ops->dtor = dtor_catch_exception;
13759 ops->allocate_location = allocate_location_catch_exception;
13760 ops->re_set = re_set_catch_exception;
13761 ops->check_status = check_status_catch_exception;
13762 ops->print_it = print_it_catch_exception;
13763 ops->print_one = print_one_catch_exception;
13764 ops->print_mention = print_mention_catch_exception;
13765 ops->print_recreate = print_recreate_catch_exception;
13766
13767 ops = &catch_exception_unhandled_breakpoint_ops;
13768 *ops = bkpt_breakpoint_ops;
13769 ops->dtor = dtor_catch_exception_unhandled;
13770 ops->allocate_location = allocate_location_catch_exception_unhandled;
13771 ops->re_set = re_set_catch_exception_unhandled;
13772 ops->check_status = check_status_catch_exception_unhandled;
13773 ops->print_it = print_it_catch_exception_unhandled;
13774 ops->print_one = print_one_catch_exception_unhandled;
13775 ops->print_mention = print_mention_catch_exception_unhandled;
13776 ops->print_recreate = print_recreate_catch_exception_unhandled;
13777
13778 ops = &catch_assert_breakpoint_ops;
13779 *ops = bkpt_breakpoint_ops;
13780 ops->dtor = dtor_catch_assert;
13781 ops->allocate_location = allocate_location_catch_assert;
13782 ops->re_set = re_set_catch_assert;
13783 ops->check_status = check_status_catch_assert;
13784 ops->print_it = print_it_catch_assert;
13785 ops->print_one = print_one_catch_assert;
13786 ops->print_mention = print_mention_catch_assert;
13787 ops->print_recreate = print_recreate_catch_assert;
13788 }
13789
13790 /* This module's 'new_objfile' observer. */
13791
13792 static void
13793 ada_new_objfile_observer (struct objfile *objfile)
13794 {
13795 ada_clear_symbol_cache ();
13796 }
13797
13798 /* This module's 'free_objfile' observer. */
13799
13800 static void
13801 ada_free_objfile_observer (struct objfile *objfile)
13802 {
13803 ada_clear_symbol_cache ();
13804 }
13805
13806 void
13807 _initialize_ada_language (void)
13808 {
13809 add_language (&ada_language_defn);
13810
13811 initialize_ada_catchpoint_ops ();
13812
13813 add_prefix_cmd ("ada", no_class, set_ada_command,
13814 _("Prefix command for changing Ada-specfic settings"),
13815 &set_ada_list, "set ada ", 0, &setlist);
13816
13817 add_prefix_cmd ("ada", no_class, show_ada_command,
13818 _("Generic command for showing Ada-specific settings."),
13819 &show_ada_list, "show ada ", 0, &showlist);
13820
13821 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13822 &trust_pad_over_xvs, _("\
13823 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13824 Show whether an optimization trusting PAD types over XVS types is activated"),
13825 _("\
13826 This is related to the encoding used by the GNAT compiler. The debugger\n\
13827 should normally trust the contents of PAD types, but certain older versions\n\
13828 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13829 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13830 work around this bug. It is always safe to turn this option \"off\", but\n\
13831 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13832 this option to \"off\" unless necessary."),
13833 NULL, NULL, &set_ada_list, &show_ada_list);
13834
13835 add_catch_command ("exception", _("\
13836 Catch Ada exceptions, when raised.\n\
13837 With an argument, catch only exceptions with the given name."),
13838 catch_ada_exception_command,
13839 NULL,
13840 CATCH_PERMANENT,
13841 CATCH_TEMPORARY);
13842 add_catch_command ("assert", _("\
13843 Catch failed Ada assertions, when raised.\n\
13844 With an argument, catch only exceptions with the given name."),
13845 catch_assert_command,
13846 NULL,
13847 CATCH_PERMANENT,
13848 CATCH_TEMPORARY);
13849
13850 varsize_limit = 65536;
13851
13852 add_info ("exceptions", info_exceptions_command,
13853 _("\
13854 List all Ada exception names.\n\
13855 If a regular expression is passed as an argument, only those matching\n\
13856 the regular expression are listed."));
13857
13858 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13859 _("Set Ada maintenance-related variables."),
13860 &maint_set_ada_cmdlist, "maintenance set ada ",
13861 0/*allow-unknown*/, &maintenance_set_cmdlist);
13862
13863 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13864 _("Show Ada maintenance-related variables"),
13865 &maint_show_ada_cmdlist, "maintenance show ada ",
13866 0/*allow-unknown*/, &maintenance_show_cmdlist);
13867
13868 add_setshow_boolean_cmd
13869 ("ignore-descriptive-types", class_maintenance,
13870 &ada_ignore_descriptive_types_p,
13871 _("Set whether descriptive types generated by GNAT should be ignored."),
13872 _("Show whether descriptive types generated by GNAT should be ignored."),
13873 _("\
13874 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13875 DWARF attribute."),
13876 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13877
13878 obstack_init (&symbol_list_obstack);
13879
13880 decoded_names_store = htab_create_alloc
13881 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13882 NULL, xcalloc, xfree);
13883
13884 /* The ada-lang observers. */
13885 observer_attach_new_objfile (ada_new_objfile_observer);
13886 observer_attach_free_objfile (ada_free_objfile_observer);
13887 observer_attach_inferior_exit (ada_inferior_exit);
13888
13889 /* Setup various context-specific data. */
13890 ada_inferior_data
13891 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13892 ada_pspace_data_handle
13893 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13894 }
This page took 0.358137 seconds and 4 git commands to generate.