*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58
59 #ifndef ADA_RETAIN_DOTS
60 #define ADA_RETAIN_DOTS 0
61 #endif
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
120
121 static int is_nonfunction (struct ada_symbol_info *, int);
122
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
125
126 static int num_defns_collected (struct obstack *);
127
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
129
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
132 domain_enum, int);
133
134 static struct symtab *symtab_for_sym (struct symbol *);
135
136 static struct value *resolve_subexp (struct expression **, int *, int,
137 struct type *);
138
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
141
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
143
144 static char *ada_op_name (enum exp_opcode);
145
146 static const char *ada_decoded_op_name (enum exp_opcode);
147
148 static int numeric_type_p (struct type *);
149
150 static int integer_type_p (struct type *);
151
152 static int scalar_type_p (struct type *);
153
154 static int discrete_type_p (struct type *);
155
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
157 const char **,
158 int *,
159 const char **);
160
161 static struct symbol *find_old_style_renaming_symbol (const char *,
162 struct block *);
163
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
165 int, int, int *);
166
167 static struct value *evaluate_subexp (struct type *, struct expression *,
168 int *, enum noside);
169
170 static struct value *evaluate_subexp_type (struct expression *, int *);
171
172 static int is_dynamic_field (struct type *, int);
173
174 static struct type *to_fixed_variant_branch_type (struct type *,
175 const gdb_byte *,
176 CORE_ADDR, struct value *);
177
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
179
180 static struct type *to_fixed_range_type (char *, struct value *,
181 struct objfile *);
182
183 static struct type *to_static_fixed_type (struct type *);
184
185 static struct value *unwrap_value (struct value *);
186
187 static struct type *packed_array_type (struct type *, long *);
188
189 static struct type *decode_packed_array_type (struct type *);
190
191 static struct value *decode_packed_array (struct value *);
192
193 static struct value *value_subscript_packed (struct value *, int,
194 struct value **);
195
196 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
197
198 static struct value *coerce_unspec_val_to_type (struct value *,
199 struct type *);
200
201 static struct value *get_var_value (char *, char *);
202
203 static int lesseq_defined_than (struct symbol *, struct symbol *);
204
205 static int equiv_types (struct type *, struct type *);
206
207 static int is_name_suffix (const char *);
208
209 static int wild_match (const char *, int, const char *);
210
211 static struct value *ada_coerce_ref (struct value *);
212
213 static LONGEST pos_atr (struct value *);
214
215 static struct value *value_pos_atr (struct value *);
216
217 static struct value *value_val_atr (struct type *, struct value *);
218
219 static struct symbol *standard_lookup (const char *, const struct block *,
220 domain_enum);
221
222 static struct value *ada_search_struct_field (char *, struct value *, int,
223 struct type *);
224
225 static struct value *ada_value_primitive_field (struct value *, int, int,
226 struct type *);
227
228 static int find_struct_field (char *, struct type *, int,
229 struct type **, int *, int *, int *, int *);
230
231 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
232 struct value *);
233
234 static struct value *ada_to_fixed_value (struct value *);
235
236 static int ada_resolve_function (struct ada_symbol_info *, int,
237 struct value **, int, const char *,
238 struct type *);
239
240 static struct value *ada_coerce_to_simple_array (struct value *);
241
242 static int ada_is_direct_array_type (struct type *);
243
244 static void ada_language_arch_info (struct gdbarch *,
245 struct language_arch_info *);
246
247 static void check_size (const struct type *);
248
249 static struct value *ada_index_struct_field (int, struct value *, int,
250 struct type *);
251
252 static struct value *assign_aggregate (struct value *, struct value *,
253 struct expression *, int *, enum noside);
254
255 static void aggregate_assign_from_choices (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *,
258 int, LONGEST, LONGEST);
259
260 static void aggregate_assign_positional (struct value *, struct value *,
261 struct expression *,
262 int *, LONGEST *, int *, int,
263 LONGEST, LONGEST);
264
265
266 static void aggregate_assign_others (struct value *, struct value *,
267 struct expression *,
268 int *, LONGEST *, int, LONGEST, LONGEST);
269
270
271 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
272
273
274 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
275 int *, enum noside);
276
277 static void ada_forward_operator_length (struct expression *, int, int *,
278 int *);
279 \f
280
281
282 /* Maximum-sized dynamic type. */
283 static unsigned int varsize_limit;
284
285 /* FIXME: brobecker/2003-09-17: No longer a const because it is
286 returned by a function that does not return a const char *. */
287 static char *ada_completer_word_break_characters =
288 #ifdef VMS
289 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
290 #else
291 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
292 #endif
293
294 /* The name of the symbol to use to get the name of the main subprogram. */
295 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
296 = "__gnat_ada_main_program_name";
297
298 /* Limit on the number of warnings to raise per expression evaluation. */
299 static int warning_limit = 2;
300
301 /* Number of warning messages issued; reset to 0 by cleanups after
302 expression evaluation. */
303 static int warnings_issued = 0;
304
305 static const char *known_runtime_file_name_patterns[] = {
306 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
307 };
308
309 static const char *known_auxiliary_function_name_patterns[] = {
310 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
311 };
312
313 /* Space for allocating results of ada_lookup_symbol_list. */
314 static struct obstack symbol_list_obstack;
315
316 /* Utilities */
317
318
319 static char *
320 ada_get_gdb_completer_word_break_characters (void)
321 {
322 return ada_completer_word_break_characters;
323 }
324
325 /* Print an array element index using the Ada syntax. */
326
327 static void
328 ada_print_array_index (struct value *index_value, struct ui_file *stream,
329 int format, enum val_prettyprint pretty)
330 {
331 LA_VALUE_PRINT (index_value, stream, format, pretty);
332 fprintf_filtered (stream, " => ");
333 }
334
335 /* Read the string located at ADDR from the inferior and store the
336 result into BUF. */
337
338 static void
339 extract_string (CORE_ADDR addr, char *buf)
340 {
341 int char_index = 0;
342
343 /* Loop, reading one byte at a time, until we reach the '\000'
344 end-of-string marker. */
345 do
346 {
347 target_read_memory (addr + char_index * sizeof (char),
348 buf + char_index * sizeof (char), sizeof (char));
349 char_index++;
350 }
351 while (buf[char_index - 1] != '\000');
352 }
353
354 /* Assuming VECT points to an array of *SIZE objects of size
355 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
356 updating *SIZE as necessary and returning the (new) array. */
357
358 void *
359 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
360 {
361 if (*size < min_size)
362 {
363 *size *= 2;
364 if (*size < min_size)
365 *size = min_size;
366 vect = xrealloc (vect, *size * element_size);
367 }
368 return vect;
369 }
370
371 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
372 suffix of FIELD_NAME beginning "___". */
373
374 static int
375 field_name_match (const char *field_name, const char *target)
376 {
377 int len = strlen (target);
378 return
379 (strncmp (field_name, target, len) == 0
380 && (field_name[len] == '\0'
381 || (strncmp (field_name + len, "___", 3) == 0
382 && strcmp (field_name + strlen (field_name) - 6,
383 "___XVN") != 0)));
384 }
385
386
387 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
388 FIELD_NAME, and return its index. This function also handles fields
389 whose name have ___ suffixes because the compiler sometimes alters
390 their name by adding such a suffix to represent fields with certain
391 constraints. If the field could not be found, return a negative
392 number if MAYBE_MISSING is set. Otherwise raise an error. */
393
394 int
395 ada_get_field_index (const struct type *type, const char *field_name,
396 int maybe_missing)
397 {
398 int fieldno;
399 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
400 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
401 return fieldno;
402
403 if (!maybe_missing)
404 error (_("Unable to find field %s in struct %s. Aborting"),
405 field_name, TYPE_NAME (type));
406
407 return -1;
408 }
409
410 /* The length of the prefix of NAME prior to any "___" suffix. */
411
412 int
413 ada_name_prefix_len (const char *name)
414 {
415 if (name == NULL)
416 return 0;
417 else
418 {
419 const char *p = strstr (name, "___");
420 if (p == NULL)
421 return strlen (name);
422 else
423 return p - name;
424 }
425 }
426
427 /* Return non-zero if SUFFIX is a suffix of STR.
428 Return zero if STR is null. */
429
430 static int
431 is_suffix (const char *str, const char *suffix)
432 {
433 int len1, len2;
434 if (str == NULL)
435 return 0;
436 len1 = strlen (str);
437 len2 = strlen (suffix);
438 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
439 }
440
441 /* Create a value of type TYPE whose contents come from VALADDR, if it
442 is non-null, and whose memory address (in the inferior) is
443 ADDRESS. */
444
445 struct value *
446 value_from_contents_and_address (struct type *type,
447 const gdb_byte *valaddr,
448 CORE_ADDR address)
449 {
450 struct value *v = allocate_value (type);
451 if (valaddr == NULL)
452 set_value_lazy (v, 1);
453 else
454 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
455 VALUE_ADDRESS (v) = address;
456 if (address != 0)
457 VALUE_LVAL (v) = lval_memory;
458 return v;
459 }
460
461 /* The contents of value VAL, treated as a value of type TYPE. The
462 result is an lval in memory if VAL is. */
463
464 static struct value *
465 coerce_unspec_val_to_type (struct value *val, struct type *type)
466 {
467 type = ada_check_typedef (type);
468 if (value_type (val) == type)
469 return val;
470 else
471 {
472 struct value *result;
473
474 /* Make sure that the object size is not unreasonable before
475 trying to allocate some memory for it. */
476 check_size (type);
477
478 result = allocate_value (type);
479 VALUE_LVAL (result) = VALUE_LVAL (val);
480 set_value_bitsize (result, value_bitsize (val));
481 set_value_bitpos (result, value_bitpos (val));
482 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
483 if (value_lazy (val)
484 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
485 set_value_lazy (result, 1);
486 else
487 memcpy (value_contents_raw (result), value_contents (val),
488 TYPE_LENGTH (type));
489 return result;
490 }
491 }
492
493 static const gdb_byte *
494 cond_offset_host (const gdb_byte *valaddr, long offset)
495 {
496 if (valaddr == NULL)
497 return NULL;
498 else
499 return valaddr + offset;
500 }
501
502 static CORE_ADDR
503 cond_offset_target (CORE_ADDR address, long offset)
504 {
505 if (address == 0)
506 return 0;
507 else
508 return address + offset;
509 }
510
511 /* Issue a warning (as for the definition of warning in utils.c, but
512 with exactly one argument rather than ...), unless the limit on the
513 number of warnings has passed during the evaluation of the current
514 expression. */
515
516 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
517 provided by "complaint". */
518 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
519
520 static void
521 lim_warning (const char *format, ...)
522 {
523 va_list args;
524 va_start (args, format);
525
526 warnings_issued += 1;
527 if (warnings_issued <= warning_limit)
528 vwarning (format, args);
529
530 va_end (args);
531 }
532
533 /* Issue an error if the size of an object of type T is unreasonable,
534 i.e. if it would be a bad idea to allocate a value of this type in
535 GDB. */
536
537 static void
538 check_size (const struct type *type)
539 {
540 if (TYPE_LENGTH (type) > varsize_limit)
541 error (_("object size is larger than varsize-limit"));
542 }
543
544
545 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
546 gdbtypes.h, but some of the necessary definitions in that file
547 seem to have gone missing. */
548
549 /* Maximum value of a SIZE-byte signed integer type. */
550 static LONGEST
551 max_of_size (int size)
552 {
553 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
554 return top_bit | (top_bit - 1);
555 }
556
557 /* Minimum value of a SIZE-byte signed integer type. */
558 static LONGEST
559 min_of_size (int size)
560 {
561 return -max_of_size (size) - 1;
562 }
563
564 /* Maximum value of a SIZE-byte unsigned integer type. */
565 static ULONGEST
566 umax_of_size (int size)
567 {
568 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
569 return top_bit | (top_bit - 1);
570 }
571
572 /* Maximum value of integral type T, as a signed quantity. */
573 static LONGEST
574 max_of_type (struct type *t)
575 {
576 if (TYPE_UNSIGNED (t))
577 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
578 else
579 return max_of_size (TYPE_LENGTH (t));
580 }
581
582 /* Minimum value of integral type T, as a signed quantity. */
583 static LONGEST
584 min_of_type (struct type *t)
585 {
586 if (TYPE_UNSIGNED (t))
587 return 0;
588 else
589 return min_of_size (TYPE_LENGTH (t));
590 }
591
592 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
593 static struct value *
594 discrete_type_high_bound (struct type *type)
595 {
596 switch (TYPE_CODE (type))
597 {
598 case TYPE_CODE_RANGE:
599 return value_from_longest (TYPE_TARGET_TYPE (type),
600 TYPE_HIGH_BOUND (type));
601 case TYPE_CODE_ENUM:
602 return
603 value_from_longest (type,
604 TYPE_FIELD_BITPOS (type,
605 TYPE_NFIELDS (type) - 1));
606 case TYPE_CODE_INT:
607 return value_from_longest (type, max_of_type (type));
608 default:
609 error (_("Unexpected type in discrete_type_high_bound."));
610 }
611 }
612
613 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
614 static struct value *
615 discrete_type_low_bound (struct type *type)
616 {
617 switch (TYPE_CODE (type))
618 {
619 case TYPE_CODE_RANGE:
620 return value_from_longest (TYPE_TARGET_TYPE (type),
621 TYPE_LOW_BOUND (type));
622 case TYPE_CODE_ENUM:
623 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
624 case TYPE_CODE_INT:
625 return value_from_longest (type, min_of_type (type));
626 default:
627 error (_("Unexpected type in discrete_type_low_bound."));
628 }
629 }
630
631 /* The identity on non-range types. For range types, the underlying
632 non-range scalar type. */
633
634 static struct type *
635 base_type (struct type *type)
636 {
637 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
638 {
639 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
640 return type;
641 type = TYPE_TARGET_TYPE (type);
642 }
643 return type;
644 }
645 \f
646
647 /* Language Selection */
648
649 /* If the main program is in Ada, return language_ada, otherwise return LANG
650 (the main program is in Ada iif the adainit symbol is found).
651
652 MAIN_PST is not used. */
653
654 enum language
655 ada_update_initial_language (enum language lang,
656 struct partial_symtab *main_pst)
657 {
658 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
659 (struct objfile *) NULL) != NULL)
660 return language_ada;
661
662 return lang;
663 }
664
665 /* If the main procedure is written in Ada, then return its name.
666 The result is good until the next call. Return NULL if the main
667 procedure doesn't appear to be in Ada. */
668
669 char *
670 ada_main_name (void)
671 {
672 struct minimal_symbol *msym;
673 CORE_ADDR main_program_name_addr;
674 static char main_program_name[1024];
675
676 /* For Ada, the name of the main procedure is stored in a specific
677 string constant, generated by the binder. Look for that symbol,
678 extract its address, and then read that string. If we didn't find
679 that string, then most probably the main procedure is not written
680 in Ada. */
681 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
682
683 if (msym != NULL)
684 {
685 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
686 if (main_program_name_addr == 0)
687 error (_("Invalid address for Ada main program name."));
688
689 extract_string (main_program_name_addr, main_program_name);
690 return main_program_name;
691 }
692
693 /* The main procedure doesn't seem to be in Ada. */
694 return NULL;
695 }
696 \f
697 /* Symbols */
698
699 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
700 of NULLs. */
701
702 const struct ada_opname_map ada_opname_table[] = {
703 {"Oadd", "\"+\"", BINOP_ADD},
704 {"Osubtract", "\"-\"", BINOP_SUB},
705 {"Omultiply", "\"*\"", BINOP_MUL},
706 {"Odivide", "\"/\"", BINOP_DIV},
707 {"Omod", "\"mod\"", BINOP_MOD},
708 {"Orem", "\"rem\"", BINOP_REM},
709 {"Oexpon", "\"**\"", BINOP_EXP},
710 {"Olt", "\"<\"", BINOP_LESS},
711 {"Ole", "\"<=\"", BINOP_LEQ},
712 {"Ogt", "\">\"", BINOP_GTR},
713 {"Oge", "\">=\"", BINOP_GEQ},
714 {"Oeq", "\"=\"", BINOP_EQUAL},
715 {"One", "\"/=\"", BINOP_NOTEQUAL},
716 {"Oand", "\"and\"", BINOP_BITWISE_AND},
717 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
718 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
719 {"Oconcat", "\"&\"", BINOP_CONCAT},
720 {"Oabs", "\"abs\"", UNOP_ABS},
721 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
722 {"Oadd", "\"+\"", UNOP_PLUS},
723 {"Osubtract", "\"-\"", UNOP_NEG},
724 {NULL, NULL}
725 };
726
727 /* Return non-zero if STR should be suppressed in info listings. */
728
729 static int
730 is_suppressed_name (const char *str)
731 {
732 if (strncmp (str, "_ada_", 5) == 0)
733 str += 5;
734 if (str[0] == '_' || str[0] == '\000')
735 return 1;
736 else
737 {
738 const char *p;
739 const char *suffix = strstr (str, "___");
740 if (suffix != NULL && suffix[3] != 'X')
741 return 1;
742 if (suffix == NULL)
743 suffix = str + strlen (str);
744 for (p = suffix - 1; p != str; p -= 1)
745 if (isupper (*p))
746 {
747 int i;
748 if (p[0] == 'X' && p[-1] != '_')
749 goto OK;
750 if (*p != 'O')
751 return 1;
752 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
753 if (strncmp (ada_opname_table[i].encoded, p,
754 strlen (ada_opname_table[i].encoded)) == 0)
755 goto OK;
756 return 1;
757 OK:;
758 }
759 return 0;
760 }
761 }
762
763 /* The "encoded" form of DECODED, according to GNAT conventions.
764 The result is valid until the next call to ada_encode. */
765
766 char *
767 ada_encode (const char *decoded)
768 {
769 static char *encoding_buffer = NULL;
770 static size_t encoding_buffer_size = 0;
771 const char *p;
772 int k;
773
774 if (decoded == NULL)
775 return NULL;
776
777 GROW_VECT (encoding_buffer, encoding_buffer_size,
778 2 * strlen (decoded) + 10);
779
780 k = 0;
781 for (p = decoded; *p != '\0'; p += 1)
782 {
783 if (!ADA_RETAIN_DOTS && *p == '.')
784 {
785 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
786 k += 2;
787 }
788 else if (*p == '"')
789 {
790 const struct ada_opname_map *mapping;
791
792 for (mapping = ada_opname_table;
793 mapping->encoded != NULL
794 && strncmp (mapping->decoded, p,
795 strlen (mapping->decoded)) != 0; mapping += 1)
796 ;
797 if (mapping->encoded == NULL)
798 error (_("invalid Ada operator name: %s"), p);
799 strcpy (encoding_buffer + k, mapping->encoded);
800 k += strlen (mapping->encoded);
801 break;
802 }
803 else
804 {
805 encoding_buffer[k] = *p;
806 k += 1;
807 }
808 }
809
810 encoding_buffer[k] = '\0';
811 return encoding_buffer;
812 }
813
814 /* Return NAME folded to lower case, or, if surrounded by single
815 quotes, unfolded, but with the quotes stripped away. Result good
816 to next call. */
817
818 char *
819 ada_fold_name (const char *name)
820 {
821 static char *fold_buffer = NULL;
822 static size_t fold_buffer_size = 0;
823
824 int len = strlen (name);
825 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
826
827 if (name[0] == '\'')
828 {
829 strncpy (fold_buffer, name + 1, len - 2);
830 fold_buffer[len - 2] = '\000';
831 }
832 else
833 {
834 int i;
835 for (i = 0; i <= len; i += 1)
836 fold_buffer[i] = tolower (name[i]);
837 }
838
839 return fold_buffer;
840 }
841
842 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
843
844 static int
845 is_lower_alphanum (const char c)
846 {
847 return (isdigit (c) || (isalpha (c) && islower (c)));
848 }
849
850 /* Decode:
851 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
852 These are suffixes introduced by GNAT5 to nested subprogram
853 names, and do not serve any purpose for the debugger.
854 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
855 . Discard final N if it follows a lowercase alphanumeric character
856 (protected object subprogram suffix)
857 . Convert other instances of embedded "__" to `.'.
858 . Discard leading _ada_.
859 . Convert operator names to the appropriate quoted symbols.
860 . Remove everything after first ___ if it is followed by
861 'X'.
862 . Replace TK__ with __, and a trailing B or TKB with nothing.
863 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
864 . Put symbols that should be suppressed in <...> brackets.
865 . Remove trailing X[bn]* suffix (indicating names in package bodies).
866
867 The resulting string is valid until the next call of ada_decode.
868 If the string is unchanged by demangling, the original string pointer
869 is returned. */
870
871 const char *
872 ada_decode (const char *encoded)
873 {
874 int i, j;
875 int len0;
876 const char *p;
877 char *decoded;
878 int at_start_name;
879 static char *decoding_buffer = NULL;
880 static size_t decoding_buffer_size = 0;
881
882 if (strncmp (encoded, "_ada_", 5) == 0)
883 encoded += 5;
884
885 if (encoded[0] == '_' || encoded[0] == '<')
886 goto Suppress;
887
888 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
889 len0 = strlen (encoded);
890 if (len0 > 1 && isdigit (encoded[len0 - 1]))
891 {
892 i = len0 - 2;
893 while (i > 0 && isdigit (encoded[i]))
894 i--;
895 if (i >= 0 && encoded[i] == '.')
896 len0 = i;
897 else if (i >= 0 && encoded[i] == '$')
898 len0 = i;
899 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
900 len0 = i - 2;
901 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
902 len0 = i - 1;
903 }
904
905 /* Remove trailing N. */
906
907 /* Protected entry subprograms are broken into two
908 separate subprograms: The first one is unprotected, and has
909 a 'N' suffix; the second is the protected version, and has
910 the 'P' suffix. The second calls the first one after handling
911 the protection. Since the P subprograms are internally generated,
912 we leave these names undecoded, giving the user a clue that this
913 entity is internal. */
914
915 if (len0 > 1
916 && encoded[len0 - 1] == 'N'
917 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
918 len0--;
919
920 /* Remove the ___X.* suffix if present. Do not forget to verify that
921 the suffix is located before the current "end" of ENCODED. We want
922 to avoid re-matching parts of ENCODED that have previously been
923 marked as discarded (by decrementing LEN0). */
924 p = strstr (encoded, "___");
925 if (p != NULL && p - encoded < len0 - 3)
926 {
927 if (p[3] == 'X')
928 len0 = p - encoded;
929 else
930 goto Suppress;
931 }
932
933 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
934 len0 -= 3;
935
936 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
937 len0 -= 1;
938
939 /* Make decoded big enough for possible expansion by operator name. */
940 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
941 decoded = decoding_buffer;
942
943 if (len0 > 1 && isdigit (encoded[len0 - 1]))
944 {
945 i = len0 - 2;
946 while ((i >= 0 && isdigit (encoded[i]))
947 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
948 i -= 1;
949 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
950 len0 = i - 1;
951 else if (encoded[i] == '$')
952 len0 = i;
953 }
954
955 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
956 decoded[j] = encoded[i];
957
958 at_start_name = 1;
959 while (i < len0)
960 {
961 if (at_start_name && encoded[i] == 'O')
962 {
963 int k;
964 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
965 {
966 int op_len = strlen (ada_opname_table[k].encoded);
967 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
968 op_len - 1) == 0)
969 && !isalnum (encoded[i + op_len]))
970 {
971 strcpy (decoded + j, ada_opname_table[k].decoded);
972 at_start_name = 0;
973 i += op_len;
974 j += strlen (ada_opname_table[k].decoded);
975 break;
976 }
977 }
978 if (ada_opname_table[k].encoded != NULL)
979 continue;
980 }
981 at_start_name = 0;
982
983 /* Replace "TK__" with "__", which will eventually be translated
984 into "." (just below). */
985
986 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
987 i += 2;
988
989 /* Remove _E{DIGITS}+[sb] */
990
991 /* Just as for protected object subprograms, there are 2 categories
992 of subprograms created by the compiler for each entry. The first
993 one implements the actual entry code, and has a suffix following
994 the convention above; the second one implements the barrier and
995 uses the same convention as above, except that the 'E' is replaced
996 by a 'B'.
997
998 Just as above, we do not decode the name of barrier functions
999 to give the user a clue that the code he is debugging has been
1000 internally generated. */
1001
1002 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1003 && isdigit (encoded[i+2]))
1004 {
1005 int k = i + 3;
1006
1007 while (k < len0 && isdigit (encoded[k]))
1008 k++;
1009
1010 if (k < len0
1011 && (encoded[k] == 'b' || encoded[k] == 's'))
1012 {
1013 k++;
1014 /* Just as an extra precaution, make sure that if this
1015 suffix is followed by anything else, it is a '_'.
1016 Otherwise, we matched this sequence by accident. */
1017 if (k == len0
1018 || (k < len0 && encoded[k] == '_'))
1019 i = k;
1020 }
1021 }
1022
1023 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1024 the GNAT front-end in protected object subprograms. */
1025
1026 if (i < len0 + 3
1027 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1028 {
1029 /* Backtrack a bit up until we reach either the begining of
1030 the encoded name, or "__". Make sure that we only find
1031 digits or lowercase characters. */
1032 const char *ptr = encoded + i - 1;
1033
1034 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1035 ptr--;
1036 if (ptr < encoded
1037 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1038 i++;
1039 }
1040
1041 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1042 {
1043 do
1044 i += 1;
1045 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1046 if (i < len0)
1047 goto Suppress;
1048 }
1049 else if (!ADA_RETAIN_DOTS
1050 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1051 {
1052 decoded[j] = '.';
1053 at_start_name = 1;
1054 i += 2;
1055 j += 1;
1056 }
1057 else
1058 {
1059 decoded[j] = encoded[i];
1060 i += 1;
1061 j += 1;
1062 }
1063 }
1064 decoded[j] = '\000';
1065
1066 for (i = 0; decoded[i] != '\0'; i += 1)
1067 if (isupper (decoded[i]) || decoded[i] == ' ')
1068 goto Suppress;
1069
1070 if (strcmp (decoded, encoded) == 0)
1071 return encoded;
1072 else
1073 return decoded;
1074
1075 Suppress:
1076 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1077 decoded = decoding_buffer;
1078 if (encoded[0] == '<')
1079 strcpy (decoded, encoded);
1080 else
1081 sprintf (decoded, "<%s>", encoded);
1082 return decoded;
1083
1084 }
1085
1086 /* Table for keeping permanent unique copies of decoded names. Once
1087 allocated, names in this table are never released. While this is a
1088 storage leak, it should not be significant unless there are massive
1089 changes in the set of decoded names in successive versions of a
1090 symbol table loaded during a single session. */
1091 static struct htab *decoded_names_store;
1092
1093 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1094 in the language-specific part of GSYMBOL, if it has not been
1095 previously computed. Tries to save the decoded name in the same
1096 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1097 in any case, the decoded symbol has a lifetime at least that of
1098 GSYMBOL).
1099 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1100 const, but nevertheless modified to a semantically equivalent form
1101 when a decoded name is cached in it.
1102 */
1103
1104 char *
1105 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1106 {
1107 char **resultp =
1108 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1109 if (*resultp == NULL)
1110 {
1111 const char *decoded = ada_decode (gsymbol->name);
1112 if (gsymbol->bfd_section != NULL)
1113 {
1114 bfd *obfd = gsymbol->bfd_section->owner;
1115 if (obfd != NULL)
1116 {
1117 struct objfile *objf;
1118 ALL_OBJFILES (objf)
1119 {
1120 if (obfd == objf->obfd)
1121 {
1122 *resultp = obsavestring (decoded, strlen (decoded),
1123 &objf->objfile_obstack);
1124 break;
1125 }
1126 }
1127 }
1128 }
1129 /* Sometimes, we can't find a corresponding objfile, in which
1130 case, we put the result on the heap. Since we only decode
1131 when needed, we hope this usually does not cause a
1132 significant memory leak (FIXME). */
1133 if (*resultp == NULL)
1134 {
1135 char **slot = (char **) htab_find_slot (decoded_names_store,
1136 decoded, INSERT);
1137 if (*slot == NULL)
1138 *slot = xstrdup (decoded);
1139 *resultp = *slot;
1140 }
1141 }
1142
1143 return *resultp;
1144 }
1145
1146 char *
1147 ada_la_decode (const char *encoded, int options)
1148 {
1149 return xstrdup (ada_decode (encoded));
1150 }
1151
1152 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1153 suffixes that encode debugging information or leading _ada_ on
1154 SYM_NAME (see is_name_suffix commentary for the debugging
1155 information that is ignored). If WILD, then NAME need only match a
1156 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1157 either argument is NULL. */
1158
1159 int
1160 ada_match_name (const char *sym_name, const char *name, int wild)
1161 {
1162 if (sym_name == NULL || name == NULL)
1163 return 0;
1164 else if (wild)
1165 return wild_match (name, strlen (name), sym_name);
1166 else
1167 {
1168 int len_name = strlen (name);
1169 return (strncmp (sym_name, name, len_name) == 0
1170 && is_name_suffix (sym_name + len_name))
1171 || (strncmp (sym_name, "_ada_", 5) == 0
1172 && strncmp (sym_name + 5, name, len_name) == 0
1173 && is_name_suffix (sym_name + len_name + 5));
1174 }
1175 }
1176
1177 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1178 suppressed in info listings. */
1179
1180 int
1181 ada_suppress_symbol_printing (struct symbol *sym)
1182 {
1183 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1184 return 1;
1185 else
1186 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1187 }
1188 \f
1189
1190 /* Arrays */
1191
1192 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1193
1194 static char *bound_name[] = {
1195 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1196 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1197 };
1198
1199 /* Maximum number of array dimensions we are prepared to handle. */
1200
1201 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1202
1203 /* Like modify_field, but allows bitpos > wordlength. */
1204
1205 static void
1206 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1207 {
1208 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1209 }
1210
1211
1212 /* The desc_* routines return primitive portions of array descriptors
1213 (fat pointers). */
1214
1215 /* The descriptor or array type, if any, indicated by TYPE; removes
1216 level of indirection, if needed. */
1217
1218 static struct type *
1219 desc_base_type (struct type *type)
1220 {
1221 if (type == NULL)
1222 return NULL;
1223 type = ada_check_typedef (type);
1224 if (type != NULL
1225 && (TYPE_CODE (type) == TYPE_CODE_PTR
1226 || TYPE_CODE (type) == TYPE_CODE_REF))
1227 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1228 else
1229 return type;
1230 }
1231
1232 /* True iff TYPE indicates a "thin" array pointer type. */
1233
1234 static int
1235 is_thin_pntr (struct type *type)
1236 {
1237 return
1238 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1239 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1240 }
1241
1242 /* The descriptor type for thin pointer type TYPE. */
1243
1244 static struct type *
1245 thin_descriptor_type (struct type *type)
1246 {
1247 struct type *base_type = desc_base_type (type);
1248 if (base_type == NULL)
1249 return NULL;
1250 if (is_suffix (ada_type_name (base_type), "___XVE"))
1251 return base_type;
1252 else
1253 {
1254 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1255 if (alt_type == NULL)
1256 return base_type;
1257 else
1258 return alt_type;
1259 }
1260 }
1261
1262 /* A pointer to the array data for thin-pointer value VAL. */
1263
1264 static struct value *
1265 thin_data_pntr (struct value *val)
1266 {
1267 struct type *type = value_type (val);
1268 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1269 return value_cast (desc_data_type (thin_descriptor_type (type)),
1270 value_copy (val));
1271 else
1272 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1273 VALUE_ADDRESS (val) + value_offset (val));
1274 }
1275
1276 /* True iff TYPE indicates a "thick" array pointer type. */
1277
1278 static int
1279 is_thick_pntr (struct type *type)
1280 {
1281 type = desc_base_type (type);
1282 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1283 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1284 }
1285
1286 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1287 pointer to one, the type of its bounds data; otherwise, NULL. */
1288
1289 static struct type *
1290 desc_bounds_type (struct type *type)
1291 {
1292 struct type *r;
1293
1294 type = desc_base_type (type);
1295
1296 if (type == NULL)
1297 return NULL;
1298 else if (is_thin_pntr (type))
1299 {
1300 type = thin_descriptor_type (type);
1301 if (type == NULL)
1302 return NULL;
1303 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1304 if (r != NULL)
1305 return ada_check_typedef (r);
1306 }
1307 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1308 {
1309 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1310 if (r != NULL)
1311 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1312 }
1313 return NULL;
1314 }
1315
1316 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1317 one, a pointer to its bounds data. Otherwise NULL. */
1318
1319 static struct value *
1320 desc_bounds (struct value *arr)
1321 {
1322 struct type *type = ada_check_typedef (value_type (arr));
1323 if (is_thin_pntr (type))
1324 {
1325 struct type *bounds_type =
1326 desc_bounds_type (thin_descriptor_type (type));
1327 LONGEST addr;
1328
1329 if (bounds_type == NULL)
1330 error (_("Bad GNAT array descriptor"));
1331
1332 /* NOTE: The following calculation is not really kosher, but
1333 since desc_type is an XVE-encoded type (and shouldn't be),
1334 the correct calculation is a real pain. FIXME (and fix GCC). */
1335 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1336 addr = value_as_long (arr);
1337 else
1338 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1339
1340 return
1341 value_from_longest (lookup_pointer_type (bounds_type),
1342 addr - TYPE_LENGTH (bounds_type));
1343 }
1344
1345 else if (is_thick_pntr (type))
1346 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1347 _("Bad GNAT array descriptor"));
1348 else
1349 return NULL;
1350 }
1351
1352 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1353 position of the field containing the address of the bounds data. */
1354
1355 static int
1356 fat_pntr_bounds_bitpos (struct type *type)
1357 {
1358 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1359 }
1360
1361 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1362 size of the field containing the address of the bounds data. */
1363
1364 static int
1365 fat_pntr_bounds_bitsize (struct type *type)
1366 {
1367 type = desc_base_type (type);
1368
1369 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1370 return TYPE_FIELD_BITSIZE (type, 1);
1371 else
1372 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1373 }
1374
1375 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1376 pointer to one, the type of its array data (a
1377 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1378 ada_type_of_array to get an array type with bounds data. */
1379
1380 static struct type *
1381 desc_data_type (struct type *type)
1382 {
1383 type = desc_base_type (type);
1384
1385 /* NOTE: The following is bogus; see comment in desc_bounds. */
1386 if (is_thin_pntr (type))
1387 return lookup_pointer_type
1388 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1389 else if (is_thick_pntr (type))
1390 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1391 else
1392 return NULL;
1393 }
1394
1395 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1396 its array data. */
1397
1398 static struct value *
1399 desc_data (struct value *arr)
1400 {
1401 struct type *type = value_type (arr);
1402 if (is_thin_pntr (type))
1403 return thin_data_pntr (arr);
1404 else if (is_thick_pntr (type))
1405 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1406 _("Bad GNAT array descriptor"));
1407 else
1408 return NULL;
1409 }
1410
1411
1412 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1413 position of the field containing the address of the data. */
1414
1415 static int
1416 fat_pntr_data_bitpos (struct type *type)
1417 {
1418 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1419 }
1420
1421 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1422 size of the field containing the address of the data. */
1423
1424 static int
1425 fat_pntr_data_bitsize (struct type *type)
1426 {
1427 type = desc_base_type (type);
1428
1429 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1430 return TYPE_FIELD_BITSIZE (type, 0);
1431 else
1432 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1433 }
1434
1435 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1436 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1437 bound, if WHICH is 1. The first bound is I=1. */
1438
1439 static struct value *
1440 desc_one_bound (struct value *bounds, int i, int which)
1441 {
1442 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1443 _("Bad GNAT array descriptor bounds"));
1444 }
1445
1446 /* If BOUNDS is an array-bounds structure type, return the bit position
1447 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1448 bound, if WHICH is 1. The first bound is I=1. */
1449
1450 static int
1451 desc_bound_bitpos (struct type *type, int i, int which)
1452 {
1453 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1454 }
1455
1456 /* If BOUNDS is an array-bounds structure type, return the bit field size
1457 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1458 bound, if WHICH is 1. The first bound is I=1. */
1459
1460 static int
1461 desc_bound_bitsize (struct type *type, int i, int which)
1462 {
1463 type = desc_base_type (type);
1464
1465 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1466 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1467 else
1468 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1469 }
1470
1471 /* If TYPE is the type of an array-bounds structure, the type of its
1472 Ith bound (numbering from 1). Otherwise, NULL. */
1473
1474 static struct type *
1475 desc_index_type (struct type *type, int i)
1476 {
1477 type = desc_base_type (type);
1478
1479 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1480 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1481 else
1482 return NULL;
1483 }
1484
1485 /* The number of index positions in the array-bounds type TYPE.
1486 Return 0 if TYPE is NULL. */
1487
1488 static int
1489 desc_arity (struct type *type)
1490 {
1491 type = desc_base_type (type);
1492
1493 if (type != NULL)
1494 return TYPE_NFIELDS (type) / 2;
1495 return 0;
1496 }
1497
1498 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1499 an array descriptor type (representing an unconstrained array
1500 type). */
1501
1502 static int
1503 ada_is_direct_array_type (struct type *type)
1504 {
1505 if (type == NULL)
1506 return 0;
1507 type = ada_check_typedef (type);
1508 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1509 || ada_is_array_descriptor_type (type));
1510 }
1511
1512 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1513 * to one. */
1514
1515 int
1516 ada_is_array_type (struct type *type)
1517 {
1518 while (type != NULL
1519 && (TYPE_CODE (type) == TYPE_CODE_PTR
1520 || TYPE_CODE (type) == TYPE_CODE_REF))
1521 type = TYPE_TARGET_TYPE (type);
1522 return ada_is_direct_array_type (type);
1523 }
1524
1525 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1526
1527 int
1528 ada_is_simple_array_type (struct type *type)
1529 {
1530 if (type == NULL)
1531 return 0;
1532 type = ada_check_typedef (type);
1533 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1534 || (TYPE_CODE (type) == TYPE_CODE_PTR
1535 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1536 }
1537
1538 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1539
1540 int
1541 ada_is_array_descriptor_type (struct type *type)
1542 {
1543 struct type *data_type = desc_data_type (type);
1544
1545 if (type == NULL)
1546 return 0;
1547 type = ada_check_typedef (type);
1548 return
1549 data_type != NULL
1550 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1551 && TYPE_TARGET_TYPE (data_type) != NULL
1552 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1553 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1554 && desc_arity (desc_bounds_type (type)) > 0;
1555 }
1556
1557 /* Non-zero iff type is a partially mal-formed GNAT array
1558 descriptor. FIXME: This is to compensate for some problems with
1559 debugging output from GNAT. Re-examine periodically to see if it
1560 is still needed. */
1561
1562 int
1563 ada_is_bogus_array_descriptor (struct type *type)
1564 {
1565 return
1566 type != NULL
1567 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1568 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1569 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1570 && !ada_is_array_descriptor_type (type);
1571 }
1572
1573
1574 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1575 (fat pointer) returns the type of the array data described---specifically,
1576 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1577 in from the descriptor; otherwise, they are left unspecified. If
1578 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1579 returns NULL. The result is simply the type of ARR if ARR is not
1580 a descriptor. */
1581 struct type *
1582 ada_type_of_array (struct value *arr, int bounds)
1583 {
1584 if (ada_is_packed_array_type (value_type (arr)))
1585 return decode_packed_array_type (value_type (arr));
1586
1587 if (!ada_is_array_descriptor_type (value_type (arr)))
1588 return value_type (arr);
1589
1590 if (!bounds)
1591 return
1592 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1593 else
1594 {
1595 struct type *elt_type;
1596 int arity;
1597 struct value *descriptor;
1598 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1599
1600 elt_type = ada_array_element_type (value_type (arr), -1);
1601 arity = ada_array_arity (value_type (arr));
1602
1603 if (elt_type == NULL || arity == 0)
1604 return ada_check_typedef (value_type (arr));
1605
1606 descriptor = desc_bounds (arr);
1607 if (value_as_long (descriptor) == 0)
1608 return NULL;
1609 while (arity > 0)
1610 {
1611 struct type *range_type = alloc_type (objf);
1612 struct type *array_type = alloc_type (objf);
1613 struct value *low = desc_one_bound (descriptor, arity, 0);
1614 struct value *high = desc_one_bound (descriptor, arity, 1);
1615 arity -= 1;
1616
1617 create_range_type (range_type, value_type (low),
1618 longest_to_int (value_as_long (low)),
1619 longest_to_int (value_as_long (high)));
1620 elt_type = create_array_type (array_type, elt_type, range_type);
1621 }
1622
1623 return lookup_pointer_type (elt_type);
1624 }
1625 }
1626
1627 /* If ARR does not represent an array, returns ARR unchanged.
1628 Otherwise, returns either a standard GDB array with bounds set
1629 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1630 GDB array. Returns NULL if ARR is a null fat pointer. */
1631
1632 struct value *
1633 ada_coerce_to_simple_array_ptr (struct value *arr)
1634 {
1635 if (ada_is_array_descriptor_type (value_type (arr)))
1636 {
1637 struct type *arrType = ada_type_of_array (arr, 1);
1638 if (arrType == NULL)
1639 return NULL;
1640 return value_cast (arrType, value_copy (desc_data (arr)));
1641 }
1642 else if (ada_is_packed_array_type (value_type (arr)))
1643 return decode_packed_array (arr);
1644 else
1645 return arr;
1646 }
1647
1648 /* If ARR does not represent an array, returns ARR unchanged.
1649 Otherwise, returns a standard GDB array describing ARR (which may
1650 be ARR itself if it already is in the proper form). */
1651
1652 static struct value *
1653 ada_coerce_to_simple_array (struct value *arr)
1654 {
1655 if (ada_is_array_descriptor_type (value_type (arr)))
1656 {
1657 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1658 if (arrVal == NULL)
1659 error (_("Bounds unavailable for null array pointer."));
1660 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1661 return value_ind (arrVal);
1662 }
1663 else if (ada_is_packed_array_type (value_type (arr)))
1664 return decode_packed_array (arr);
1665 else
1666 return arr;
1667 }
1668
1669 /* If TYPE represents a GNAT array type, return it translated to an
1670 ordinary GDB array type (possibly with BITSIZE fields indicating
1671 packing). For other types, is the identity. */
1672
1673 struct type *
1674 ada_coerce_to_simple_array_type (struct type *type)
1675 {
1676 struct value *mark = value_mark ();
1677 struct value *dummy = value_from_longest (builtin_type_long, 0);
1678 struct type *result;
1679 deprecated_set_value_type (dummy, type);
1680 result = ada_type_of_array (dummy, 0);
1681 value_free_to_mark (mark);
1682 return result;
1683 }
1684
1685 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1686
1687 int
1688 ada_is_packed_array_type (struct type *type)
1689 {
1690 if (type == NULL)
1691 return 0;
1692 type = desc_base_type (type);
1693 type = ada_check_typedef (type);
1694 return
1695 ada_type_name (type) != NULL
1696 && strstr (ada_type_name (type), "___XP") != NULL;
1697 }
1698
1699 /* Given that TYPE is a standard GDB array type with all bounds filled
1700 in, and that the element size of its ultimate scalar constituents
1701 (that is, either its elements, or, if it is an array of arrays, its
1702 elements' elements, etc.) is *ELT_BITS, return an identical type,
1703 but with the bit sizes of its elements (and those of any
1704 constituent arrays) recorded in the BITSIZE components of its
1705 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1706 in bits. */
1707
1708 static struct type *
1709 packed_array_type (struct type *type, long *elt_bits)
1710 {
1711 struct type *new_elt_type;
1712 struct type *new_type;
1713 LONGEST low_bound, high_bound;
1714
1715 type = ada_check_typedef (type);
1716 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1717 return type;
1718
1719 new_type = alloc_type (TYPE_OBJFILE (type));
1720 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1721 elt_bits);
1722 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1723 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1724 TYPE_NAME (new_type) = ada_type_name (type);
1725
1726 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1727 &low_bound, &high_bound) < 0)
1728 low_bound = high_bound = 0;
1729 if (high_bound < low_bound)
1730 *elt_bits = TYPE_LENGTH (new_type) = 0;
1731 else
1732 {
1733 *elt_bits *= (high_bound - low_bound + 1);
1734 TYPE_LENGTH (new_type) =
1735 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1736 }
1737
1738 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1739 return new_type;
1740 }
1741
1742 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1743
1744 static struct type *
1745 decode_packed_array_type (struct type *type)
1746 {
1747 struct symbol *sym;
1748 struct block **blocks;
1749 const char *raw_name = ada_type_name (ada_check_typedef (type));
1750 char *name = (char *) alloca (strlen (raw_name) + 1);
1751 char *tail = strstr (raw_name, "___XP");
1752 struct type *shadow_type;
1753 long bits;
1754 int i, n;
1755
1756 type = desc_base_type (type);
1757
1758 memcpy (name, raw_name, tail - raw_name);
1759 name[tail - raw_name] = '\000';
1760
1761 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1762 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1763 {
1764 lim_warning (_("could not find bounds information on packed array"));
1765 return NULL;
1766 }
1767 shadow_type = SYMBOL_TYPE (sym);
1768
1769 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1770 {
1771 lim_warning (_("could not understand bounds information on packed array"));
1772 return NULL;
1773 }
1774
1775 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1776 {
1777 lim_warning
1778 (_("could not understand bit size information on packed array"));
1779 return NULL;
1780 }
1781
1782 return packed_array_type (shadow_type, &bits);
1783 }
1784
1785 /* Given that ARR is a struct value *indicating a GNAT packed array,
1786 returns a simple array that denotes that array. Its type is a
1787 standard GDB array type except that the BITSIZEs of the array
1788 target types are set to the number of bits in each element, and the
1789 type length is set appropriately. */
1790
1791 static struct value *
1792 decode_packed_array (struct value *arr)
1793 {
1794 struct type *type;
1795
1796 arr = ada_coerce_ref (arr);
1797 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1798 arr = ada_value_ind (arr);
1799
1800 type = decode_packed_array_type (value_type (arr));
1801 if (type == NULL)
1802 {
1803 error (_("can't unpack array"));
1804 return NULL;
1805 }
1806
1807 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1808 {
1809 /* This is a (right-justified) modular type representing a packed
1810 array with no wrapper. In order to interpret the value through
1811 the (left-justified) packed array type we just built, we must
1812 first left-justify it. */
1813 int bit_size, bit_pos;
1814 ULONGEST mod;
1815
1816 mod = ada_modulus (value_type (arr)) - 1;
1817 bit_size = 0;
1818 while (mod > 0)
1819 {
1820 bit_size += 1;
1821 mod >>= 1;
1822 }
1823 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1824 arr = ada_value_primitive_packed_val (arr, NULL,
1825 bit_pos / HOST_CHAR_BIT,
1826 bit_pos % HOST_CHAR_BIT,
1827 bit_size,
1828 type);
1829 }
1830
1831 return coerce_unspec_val_to_type (arr, type);
1832 }
1833
1834
1835 /* The value of the element of packed array ARR at the ARITY indices
1836 given in IND. ARR must be a simple array. */
1837
1838 static struct value *
1839 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1840 {
1841 int i;
1842 int bits, elt_off, bit_off;
1843 long elt_total_bit_offset;
1844 struct type *elt_type;
1845 struct value *v;
1846
1847 bits = 0;
1848 elt_total_bit_offset = 0;
1849 elt_type = ada_check_typedef (value_type (arr));
1850 for (i = 0; i < arity; i += 1)
1851 {
1852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1853 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1854 error
1855 (_("attempt to do packed indexing of something other than a packed array"));
1856 else
1857 {
1858 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1859 LONGEST lowerbound, upperbound;
1860 LONGEST idx;
1861
1862 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1863 {
1864 lim_warning (_("don't know bounds of array"));
1865 lowerbound = upperbound = 0;
1866 }
1867
1868 idx = value_as_long (value_pos_atr (ind[i]));
1869 if (idx < lowerbound || idx > upperbound)
1870 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1871 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1872 elt_total_bit_offset += (idx - lowerbound) * bits;
1873 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1874 }
1875 }
1876 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1877 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1878
1879 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1880 bits, elt_type);
1881 return v;
1882 }
1883
1884 /* Non-zero iff TYPE includes negative integer values. */
1885
1886 static int
1887 has_negatives (struct type *type)
1888 {
1889 switch (TYPE_CODE (type))
1890 {
1891 default:
1892 return 0;
1893 case TYPE_CODE_INT:
1894 return !TYPE_UNSIGNED (type);
1895 case TYPE_CODE_RANGE:
1896 return TYPE_LOW_BOUND (type) < 0;
1897 }
1898 }
1899
1900
1901 /* Create a new value of type TYPE from the contents of OBJ starting
1902 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1903 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1904 assigning through the result will set the field fetched from.
1905 VALADDR is ignored unless OBJ is NULL, in which case,
1906 VALADDR+OFFSET must address the start of storage containing the
1907 packed value. The value returned in this case is never an lval.
1908 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1909
1910 struct value *
1911 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1912 long offset, int bit_offset, int bit_size,
1913 struct type *type)
1914 {
1915 struct value *v;
1916 int src, /* Index into the source area */
1917 targ, /* Index into the target area */
1918 srcBitsLeft, /* Number of source bits left to move */
1919 nsrc, ntarg, /* Number of source and target bytes */
1920 unusedLS, /* Number of bits in next significant
1921 byte of source that are unused */
1922 accumSize; /* Number of meaningful bits in accum */
1923 unsigned char *bytes; /* First byte containing data to unpack */
1924 unsigned char *unpacked;
1925 unsigned long accum; /* Staging area for bits being transferred */
1926 unsigned char sign;
1927 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1928 /* Transmit bytes from least to most significant; delta is the direction
1929 the indices move. */
1930 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1931
1932 type = ada_check_typedef (type);
1933
1934 if (obj == NULL)
1935 {
1936 v = allocate_value (type);
1937 bytes = (unsigned char *) (valaddr + offset);
1938 }
1939 else if (value_lazy (obj))
1940 {
1941 v = value_at (type,
1942 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1943 bytes = (unsigned char *) alloca (len);
1944 read_memory (VALUE_ADDRESS (v), bytes, len);
1945 }
1946 else
1947 {
1948 v = allocate_value (type);
1949 bytes = (unsigned char *) value_contents (obj) + offset;
1950 }
1951
1952 if (obj != NULL)
1953 {
1954 VALUE_LVAL (v) = VALUE_LVAL (obj);
1955 if (VALUE_LVAL (obj) == lval_internalvar)
1956 VALUE_LVAL (v) = lval_internalvar_component;
1957 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1958 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1959 set_value_bitsize (v, bit_size);
1960 if (value_bitpos (v) >= HOST_CHAR_BIT)
1961 {
1962 VALUE_ADDRESS (v) += 1;
1963 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1964 }
1965 }
1966 else
1967 set_value_bitsize (v, bit_size);
1968 unpacked = (unsigned char *) value_contents (v);
1969
1970 srcBitsLeft = bit_size;
1971 nsrc = len;
1972 ntarg = TYPE_LENGTH (type);
1973 sign = 0;
1974 if (bit_size == 0)
1975 {
1976 memset (unpacked, 0, TYPE_LENGTH (type));
1977 return v;
1978 }
1979 else if (BITS_BIG_ENDIAN)
1980 {
1981 src = len - 1;
1982 if (has_negatives (type)
1983 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1984 sign = ~0;
1985
1986 unusedLS =
1987 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1988 % HOST_CHAR_BIT;
1989
1990 switch (TYPE_CODE (type))
1991 {
1992 case TYPE_CODE_ARRAY:
1993 case TYPE_CODE_UNION:
1994 case TYPE_CODE_STRUCT:
1995 /* Non-scalar values must be aligned at a byte boundary... */
1996 accumSize =
1997 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1998 /* ... And are placed at the beginning (most-significant) bytes
1999 of the target. */
2000 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2001 break;
2002 default:
2003 accumSize = 0;
2004 targ = TYPE_LENGTH (type) - 1;
2005 break;
2006 }
2007 }
2008 else
2009 {
2010 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2011
2012 src = targ = 0;
2013 unusedLS = bit_offset;
2014 accumSize = 0;
2015
2016 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2017 sign = ~0;
2018 }
2019
2020 accum = 0;
2021 while (nsrc > 0)
2022 {
2023 /* Mask for removing bits of the next source byte that are not
2024 part of the value. */
2025 unsigned int unusedMSMask =
2026 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2027 1;
2028 /* Sign-extend bits for this byte. */
2029 unsigned int signMask = sign & ~unusedMSMask;
2030 accum |=
2031 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2032 accumSize += HOST_CHAR_BIT - unusedLS;
2033 if (accumSize >= HOST_CHAR_BIT)
2034 {
2035 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2036 accumSize -= HOST_CHAR_BIT;
2037 accum >>= HOST_CHAR_BIT;
2038 ntarg -= 1;
2039 targ += delta;
2040 }
2041 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2042 unusedLS = 0;
2043 nsrc -= 1;
2044 src += delta;
2045 }
2046 while (ntarg > 0)
2047 {
2048 accum |= sign << accumSize;
2049 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2050 accumSize -= HOST_CHAR_BIT;
2051 accum >>= HOST_CHAR_BIT;
2052 ntarg -= 1;
2053 targ += delta;
2054 }
2055
2056 return v;
2057 }
2058
2059 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2060 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2061 not overlap. */
2062 static void
2063 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2064 int src_offset, int n)
2065 {
2066 unsigned int accum, mask;
2067 int accum_bits, chunk_size;
2068
2069 target += targ_offset / HOST_CHAR_BIT;
2070 targ_offset %= HOST_CHAR_BIT;
2071 source += src_offset / HOST_CHAR_BIT;
2072 src_offset %= HOST_CHAR_BIT;
2073 if (BITS_BIG_ENDIAN)
2074 {
2075 accum = (unsigned char) *source;
2076 source += 1;
2077 accum_bits = HOST_CHAR_BIT - src_offset;
2078
2079 while (n > 0)
2080 {
2081 int unused_right;
2082 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2083 accum_bits += HOST_CHAR_BIT;
2084 source += 1;
2085 chunk_size = HOST_CHAR_BIT - targ_offset;
2086 if (chunk_size > n)
2087 chunk_size = n;
2088 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2089 mask = ((1 << chunk_size) - 1) << unused_right;
2090 *target =
2091 (*target & ~mask)
2092 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2093 n -= chunk_size;
2094 accum_bits -= chunk_size;
2095 target += 1;
2096 targ_offset = 0;
2097 }
2098 }
2099 else
2100 {
2101 accum = (unsigned char) *source >> src_offset;
2102 source += 1;
2103 accum_bits = HOST_CHAR_BIT - src_offset;
2104
2105 while (n > 0)
2106 {
2107 accum = accum + ((unsigned char) *source << accum_bits);
2108 accum_bits += HOST_CHAR_BIT;
2109 source += 1;
2110 chunk_size = HOST_CHAR_BIT - targ_offset;
2111 if (chunk_size > n)
2112 chunk_size = n;
2113 mask = ((1 << chunk_size) - 1) << targ_offset;
2114 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2115 n -= chunk_size;
2116 accum_bits -= chunk_size;
2117 accum >>= chunk_size;
2118 target += 1;
2119 targ_offset = 0;
2120 }
2121 }
2122 }
2123
2124 /* Store the contents of FROMVAL into the location of TOVAL.
2125 Return a new value with the location of TOVAL and contents of
2126 FROMVAL. Handles assignment into packed fields that have
2127 floating-point or non-scalar types. */
2128
2129 static struct value *
2130 ada_value_assign (struct value *toval, struct value *fromval)
2131 {
2132 struct type *type = value_type (toval);
2133 int bits = value_bitsize (toval);
2134
2135 toval = ada_coerce_ref (toval);
2136 fromval = ada_coerce_ref (fromval);
2137
2138 if (ada_is_direct_array_type (value_type (toval)))
2139 toval = ada_coerce_to_simple_array (toval);
2140 if (ada_is_direct_array_type (value_type (fromval)))
2141 fromval = ada_coerce_to_simple_array (fromval);
2142
2143 if (!deprecated_value_modifiable (toval))
2144 error (_("Left operand of assignment is not a modifiable lvalue."));
2145
2146 if (VALUE_LVAL (toval) == lval_memory
2147 && bits > 0
2148 && (TYPE_CODE (type) == TYPE_CODE_FLT
2149 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2150 {
2151 int len = (value_bitpos (toval)
2152 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2153 char *buffer = (char *) alloca (len);
2154 struct value *val;
2155 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2156
2157 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2158 fromval = value_cast (type, fromval);
2159
2160 read_memory (to_addr, buffer, len);
2161 if (BITS_BIG_ENDIAN)
2162 move_bits (buffer, value_bitpos (toval),
2163 value_contents (fromval),
2164 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2165 bits, bits);
2166 else
2167 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2168 0, bits);
2169 write_memory (to_addr, buffer, len);
2170 if (deprecated_memory_changed_hook)
2171 deprecated_memory_changed_hook (to_addr, len);
2172
2173 val = value_copy (toval);
2174 memcpy (value_contents_raw (val), value_contents (fromval),
2175 TYPE_LENGTH (type));
2176 deprecated_set_value_type (val, type);
2177
2178 return val;
2179 }
2180
2181 return value_assign (toval, fromval);
2182 }
2183
2184
2185 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2186 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2187 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2188 * COMPONENT, and not the inferior's memory. The current contents
2189 * of COMPONENT are ignored. */
2190 static void
2191 value_assign_to_component (struct value *container, struct value *component,
2192 struct value *val)
2193 {
2194 LONGEST offset_in_container =
2195 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2196 - VALUE_ADDRESS (container) - value_offset (container));
2197 int bit_offset_in_container =
2198 value_bitpos (component) - value_bitpos (container);
2199 int bits;
2200
2201 val = value_cast (value_type (component), val);
2202
2203 if (value_bitsize (component) == 0)
2204 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2205 else
2206 bits = value_bitsize (component);
2207
2208 if (BITS_BIG_ENDIAN)
2209 move_bits (value_contents_writeable (container) + offset_in_container,
2210 value_bitpos (container) + bit_offset_in_container,
2211 value_contents (val),
2212 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2213 bits);
2214 else
2215 move_bits (value_contents_writeable (container) + offset_in_container,
2216 value_bitpos (container) + bit_offset_in_container,
2217 value_contents (val), 0, bits);
2218 }
2219
2220 /* The value of the element of array ARR at the ARITY indices given in IND.
2221 ARR may be either a simple array, GNAT array descriptor, or pointer
2222 thereto. */
2223
2224 struct value *
2225 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2226 {
2227 int k;
2228 struct value *elt;
2229 struct type *elt_type;
2230
2231 elt = ada_coerce_to_simple_array (arr);
2232
2233 elt_type = ada_check_typedef (value_type (elt));
2234 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2235 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2236 return value_subscript_packed (elt, arity, ind);
2237
2238 for (k = 0; k < arity; k += 1)
2239 {
2240 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2241 error (_("too many subscripts (%d expected)"), k);
2242 elt = value_subscript (elt, value_pos_atr (ind[k]));
2243 }
2244 return elt;
2245 }
2246
2247 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2248 value of the element of *ARR at the ARITY indices given in
2249 IND. Does not read the entire array into memory. */
2250
2251 struct value *
2252 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2253 struct value **ind)
2254 {
2255 int k;
2256
2257 for (k = 0; k < arity; k += 1)
2258 {
2259 LONGEST lwb, upb;
2260 struct value *idx;
2261
2262 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2263 error (_("too many subscripts (%d expected)"), k);
2264 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2265 value_copy (arr));
2266 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2267 idx = value_pos_atr (ind[k]);
2268 if (lwb != 0)
2269 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2270 arr = value_add (arr, idx);
2271 type = TYPE_TARGET_TYPE (type);
2272 }
2273
2274 return value_ind (arr);
2275 }
2276
2277 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2278 actual type of ARRAY_PTR is ignored), returns a reference to
2279 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2280 bound of this array is LOW, as per Ada rules. */
2281 static struct value *
2282 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2283 int low, int high)
2284 {
2285 CORE_ADDR base = value_as_address (array_ptr)
2286 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2287 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2288 struct type *index_type =
2289 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2290 low, high);
2291 struct type *slice_type =
2292 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2293 return value_from_pointer (lookup_reference_type (slice_type), base);
2294 }
2295
2296
2297 static struct value *
2298 ada_value_slice (struct value *array, int low, int high)
2299 {
2300 struct type *type = value_type (array);
2301 struct type *index_type =
2302 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2303 struct type *slice_type =
2304 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2305 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2306 }
2307
2308 /* If type is a record type in the form of a standard GNAT array
2309 descriptor, returns the number of dimensions for type. If arr is a
2310 simple array, returns the number of "array of"s that prefix its
2311 type designation. Otherwise, returns 0. */
2312
2313 int
2314 ada_array_arity (struct type *type)
2315 {
2316 int arity;
2317
2318 if (type == NULL)
2319 return 0;
2320
2321 type = desc_base_type (type);
2322
2323 arity = 0;
2324 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2325 return desc_arity (desc_bounds_type (type));
2326 else
2327 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2328 {
2329 arity += 1;
2330 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2331 }
2332
2333 return arity;
2334 }
2335
2336 /* If TYPE is a record type in the form of a standard GNAT array
2337 descriptor or a simple array type, returns the element type for
2338 TYPE after indexing by NINDICES indices, or by all indices if
2339 NINDICES is -1. Otherwise, returns NULL. */
2340
2341 struct type *
2342 ada_array_element_type (struct type *type, int nindices)
2343 {
2344 type = desc_base_type (type);
2345
2346 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2347 {
2348 int k;
2349 struct type *p_array_type;
2350
2351 p_array_type = desc_data_type (type);
2352
2353 k = ada_array_arity (type);
2354 if (k == 0)
2355 return NULL;
2356
2357 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2358 if (nindices >= 0 && k > nindices)
2359 k = nindices;
2360 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2361 while (k > 0 && p_array_type != NULL)
2362 {
2363 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2364 k -= 1;
2365 }
2366 return p_array_type;
2367 }
2368 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2369 {
2370 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2371 {
2372 type = TYPE_TARGET_TYPE (type);
2373 nindices -= 1;
2374 }
2375 return type;
2376 }
2377
2378 return NULL;
2379 }
2380
2381 /* The type of nth index in arrays of given type (n numbering from 1).
2382 Does not examine memory. */
2383
2384 struct type *
2385 ada_index_type (struct type *type, int n)
2386 {
2387 struct type *result_type;
2388
2389 type = desc_base_type (type);
2390
2391 if (n > ada_array_arity (type))
2392 return NULL;
2393
2394 if (ada_is_simple_array_type (type))
2395 {
2396 int i;
2397
2398 for (i = 1; i < n; i += 1)
2399 type = TYPE_TARGET_TYPE (type);
2400 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2401 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2402 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2403 perhaps stabsread.c would make more sense. */
2404 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2405 result_type = builtin_type_int;
2406
2407 return result_type;
2408 }
2409 else
2410 return desc_index_type (desc_bounds_type (type), n);
2411 }
2412
2413 /* Given that arr is an array type, returns the lower bound of the
2414 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2415 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2416 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2417 bounds type. It works for other arrays with bounds supplied by
2418 run-time quantities other than discriminants. */
2419
2420 LONGEST
2421 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2422 struct type ** typep)
2423 {
2424 struct type *type;
2425 struct type *index_type_desc;
2426
2427 if (ada_is_packed_array_type (arr_type))
2428 arr_type = decode_packed_array_type (arr_type);
2429
2430 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2431 {
2432 if (typep != NULL)
2433 *typep = builtin_type_int;
2434 return (LONGEST) - which;
2435 }
2436
2437 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2438 type = TYPE_TARGET_TYPE (arr_type);
2439 else
2440 type = arr_type;
2441
2442 index_type_desc = ada_find_parallel_type (type, "___XA");
2443 if (index_type_desc == NULL)
2444 {
2445 struct type *range_type;
2446 struct type *index_type;
2447
2448 while (n > 1)
2449 {
2450 type = TYPE_TARGET_TYPE (type);
2451 n -= 1;
2452 }
2453
2454 range_type = TYPE_INDEX_TYPE (type);
2455 index_type = TYPE_TARGET_TYPE (range_type);
2456 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2457 index_type = builtin_type_long;
2458 if (typep != NULL)
2459 *typep = index_type;
2460 return
2461 (LONGEST) (which == 0
2462 ? TYPE_LOW_BOUND (range_type)
2463 : TYPE_HIGH_BOUND (range_type));
2464 }
2465 else
2466 {
2467 struct type *index_type =
2468 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2469 NULL, TYPE_OBJFILE (arr_type));
2470 if (typep != NULL)
2471 *typep = TYPE_TARGET_TYPE (index_type);
2472 return
2473 (LONGEST) (which == 0
2474 ? TYPE_LOW_BOUND (index_type)
2475 : TYPE_HIGH_BOUND (index_type));
2476 }
2477 }
2478
2479 /* Given that arr is an array value, returns the lower bound of the
2480 nth index (numbering from 1) if which is 0, and the upper bound if
2481 which is 1. This routine will also work for arrays with bounds
2482 supplied by run-time quantities other than discriminants. */
2483
2484 struct value *
2485 ada_array_bound (struct value *arr, int n, int which)
2486 {
2487 struct type *arr_type = value_type (arr);
2488
2489 if (ada_is_packed_array_type (arr_type))
2490 return ada_array_bound (decode_packed_array (arr), n, which);
2491 else if (ada_is_simple_array_type (arr_type))
2492 {
2493 struct type *type;
2494 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2495 return value_from_longest (type, v);
2496 }
2497 else
2498 return desc_one_bound (desc_bounds (arr), n, which);
2499 }
2500
2501 /* Given that arr is an array value, returns the length of the
2502 nth index. This routine will also work for arrays with bounds
2503 supplied by run-time quantities other than discriminants.
2504 Does not work for arrays indexed by enumeration types with representation
2505 clauses at the moment. */
2506
2507 struct value *
2508 ada_array_length (struct value *arr, int n)
2509 {
2510 struct type *arr_type = ada_check_typedef (value_type (arr));
2511
2512 if (ada_is_packed_array_type (arr_type))
2513 return ada_array_length (decode_packed_array (arr), n);
2514
2515 if (ada_is_simple_array_type (arr_type))
2516 {
2517 struct type *type;
2518 LONGEST v =
2519 ada_array_bound_from_type (arr_type, n, 1, &type) -
2520 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2521 return value_from_longest (type, v);
2522 }
2523 else
2524 return
2525 value_from_longest (builtin_type_int,
2526 value_as_long (desc_one_bound (desc_bounds (arr),
2527 n, 1))
2528 - value_as_long (desc_one_bound (desc_bounds (arr),
2529 n, 0)) + 1);
2530 }
2531
2532 /* An empty array whose type is that of ARR_TYPE (an array type),
2533 with bounds LOW to LOW-1. */
2534
2535 static struct value *
2536 empty_array (struct type *arr_type, int low)
2537 {
2538 struct type *index_type =
2539 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2540 low, low - 1);
2541 struct type *elt_type = ada_array_element_type (arr_type, 1);
2542 return allocate_value (create_array_type (NULL, elt_type, index_type));
2543 }
2544 \f
2545
2546 /* Name resolution */
2547
2548 /* The "decoded" name for the user-definable Ada operator corresponding
2549 to OP. */
2550
2551 static const char *
2552 ada_decoded_op_name (enum exp_opcode op)
2553 {
2554 int i;
2555
2556 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2557 {
2558 if (ada_opname_table[i].op == op)
2559 return ada_opname_table[i].decoded;
2560 }
2561 error (_("Could not find operator name for opcode"));
2562 }
2563
2564
2565 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2566 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2567 undefined namespace) and converts operators that are
2568 user-defined into appropriate function calls. If CONTEXT_TYPE is
2569 non-null, it provides a preferred result type [at the moment, only
2570 type void has any effect---causing procedures to be preferred over
2571 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2572 return type is preferred. May change (expand) *EXP. */
2573
2574 static void
2575 resolve (struct expression **expp, int void_context_p)
2576 {
2577 int pc;
2578 pc = 0;
2579 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2580 }
2581
2582 /* Resolve the operator of the subexpression beginning at
2583 position *POS of *EXPP. "Resolving" consists of replacing
2584 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2585 with their resolutions, replacing built-in operators with
2586 function calls to user-defined operators, where appropriate, and,
2587 when DEPROCEDURE_P is non-zero, converting function-valued variables
2588 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2589 are as in ada_resolve, above. */
2590
2591 static struct value *
2592 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2593 struct type *context_type)
2594 {
2595 int pc = *pos;
2596 int i;
2597 struct expression *exp; /* Convenience: == *expp. */
2598 enum exp_opcode op = (*expp)->elts[pc].opcode;
2599 struct value **argvec; /* Vector of operand types (alloca'ed). */
2600 int nargs; /* Number of operands. */
2601 int oplen;
2602
2603 argvec = NULL;
2604 nargs = 0;
2605 exp = *expp;
2606
2607 /* Pass one: resolve operands, saving their types and updating *pos,
2608 if needed. */
2609 switch (op)
2610 {
2611 case OP_FUNCALL:
2612 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2613 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2614 *pos += 7;
2615 else
2616 {
2617 *pos += 3;
2618 resolve_subexp (expp, pos, 0, NULL);
2619 }
2620 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2621 break;
2622
2623 case UNOP_ADDR:
2624 *pos += 1;
2625 resolve_subexp (expp, pos, 0, NULL);
2626 break;
2627
2628 case UNOP_QUAL:
2629 *pos += 3;
2630 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2631 break;
2632
2633 case OP_ATR_MODULUS:
2634 case OP_ATR_SIZE:
2635 case OP_ATR_TAG:
2636 case OP_ATR_FIRST:
2637 case OP_ATR_LAST:
2638 case OP_ATR_LENGTH:
2639 case OP_ATR_POS:
2640 case OP_ATR_VAL:
2641 case OP_ATR_MIN:
2642 case OP_ATR_MAX:
2643 case TERNOP_IN_RANGE:
2644 case BINOP_IN_BOUNDS:
2645 case UNOP_IN_RANGE:
2646 case OP_AGGREGATE:
2647 case OP_OTHERS:
2648 case OP_CHOICES:
2649 case OP_POSITIONAL:
2650 case OP_DISCRETE_RANGE:
2651 case OP_NAME:
2652 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2653 *pos += oplen;
2654 break;
2655
2656 case BINOP_ASSIGN:
2657 {
2658 struct value *arg1;
2659
2660 *pos += 1;
2661 arg1 = resolve_subexp (expp, pos, 0, NULL);
2662 if (arg1 == NULL)
2663 resolve_subexp (expp, pos, 1, NULL);
2664 else
2665 resolve_subexp (expp, pos, 1, value_type (arg1));
2666 break;
2667 }
2668
2669 case UNOP_CAST:
2670 *pos += 3;
2671 nargs = 1;
2672 break;
2673
2674 case BINOP_ADD:
2675 case BINOP_SUB:
2676 case BINOP_MUL:
2677 case BINOP_DIV:
2678 case BINOP_REM:
2679 case BINOP_MOD:
2680 case BINOP_EXP:
2681 case BINOP_CONCAT:
2682 case BINOP_LOGICAL_AND:
2683 case BINOP_LOGICAL_OR:
2684 case BINOP_BITWISE_AND:
2685 case BINOP_BITWISE_IOR:
2686 case BINOP_BITWISE_XOR:
2687
2688 case BINOP_EQUAL:
2689 case BINOP_NOTEQUAL:
2690 case BINOP_LESS:
2691 case BINOP_GTR:
2692 case BINOP_LEQ:
2693 case BINOP_GEQ:
2694
2695 case BINOP_REPEAT:
2696 case BINOP_SUBSCRIPT:
2697 case BINOP_COMMA:
2698 *pos += 1;
2699 nargs = 2;
2700 break;
2701
2702 case UNOP_NEG:
2703 case UNOP_PLUS:
2704 case UNOP_LOGICAL_NOT:
2705 case UNOP_ABS:
2706 case UNOP_IND:
2707 *pos += 1;
2708 nargs = 1;
2709 break;
2710
2711 case OP_LONG:
2712 case OP_DOUBLE:
2713 case OP_VAR_VALUE:
2714 *pos += 4;
2715 break;
2716
2717 case OP_TYPE:
2718 case OP_BOOL:
2719 case OP_LAST:
2720 case OP_INTERNALVAR:
2721 *pos += 3;
2722 break;
2723
2724 case UNOP_MEMVAL:
2725 *pos += 3;
2726 nargs = 1;
2727 break;
2728
2729 case OP_REGISTER:
2730 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2731 break;
2732
2733 case STRUCTOP_STRUCT:
2734 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2735 nargs = 1;
2736 break;
2737
2738 case TERNOP_SLICE:
2739 *pos += 1;
2740 nargs = 3;
2741 break;
2742
2743 case OP_STRING:
2744 break;
2745
2746 default:
2747 error (_("Unexpected operator during name resolution"));
2748 }
2749
2750 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2751 for (i = 0; i < nargs; i += 1)
2752 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2753 argvec[i] = NULL;
2754 exp = *expp;
2755
2756 /* Pass two: perform any resolution on principal operator. */
2757 switch (op)
2758 {
2759 default:
2760 break;
2761
2762 case OP_VAR_VALUE:
2763 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2764 {
2765 struct ada_symbol_info *candidates;
2766 int n_candidates;
2767
2768 n_candidates =
2769 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2770 (exp->elts[pc + 2].symbol),
2771 exp->elts[pc + 1].block, VAR_DOMAIN,
2772 &candidates);
2773
2774 if (n_candidates > 1)
2775 {
2776 /* Types tend to get re-introduced locally, so if there
2777 are any local symbols that are not types, first filter
2778 out all types. */
2779 int j;
2780 for (j = 0; j < n_candidates; j += 1)
2781 switch (SYMBOL_CLASS (candidates[j].sym))
2782 {
2783 case LOC_REGISTER:
2784 case LOC_ARG:
2785 case LOC_REF_ARG:
2786 case LOC_REGPARM:
2787 case LOC_REGPARM_ADDR:
2788 case LOC_LOCAL:
2789 case LOC_LOCAL_ARG:
2790 case LOC_BASEREG:
2791 case LOC_BASEREG_ARG:
2792 case LOC_COMPUTED:
2793 case LOC_COMPUTED_ARG:
2794 goto FoundNonType;
2795 default:
2796 break;
2797 }
2798 FoundNonType:
2799 if (j < n_candidates)
2800 {
2801 j = 0;
2802 while (j < n_candidates)
2803 {
2804 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2805 {
2806 candidates[j] = candidates[n_candidates - 1];
2807 n_candidates -= 1;
2808 }
2809 else
2810 j += 1;
2811 }
2812 }
2813 }
2814
2815 if (n_candidates == 0)
2816 error (_("No definition found for %s"),
2817 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2818 else if (n_candidates == 1)
2819 i = 0;
2820 else if (deprocedure_p
2821 && !is_nonfunction (candidates, n_candidates))
2822 {
2823 i = ada_resolve_function
2824 (candidates, n_candidates, NULL, 0,
2825 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2826 context_type);
2827 if (i < 0)
2828 error (_("Could not find a match for %s"),
2829 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2830 }
2831 else
2832 {
2833 printf_filtered (_("Multiple matches for %s\n"),
2834 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2835 user_select_syms (candidates, n_candidates, 1);
2836 i = 0;
2837 }
2838
2839 exp->elts[pc + 1].block = candidates[i].block;
2840 exp->elts[pc + 2].symbol = candidates[i].sym;
2841 if (innermost_block == NULL
2842 || contained_in (candidates[i].block, innermost_block))
2843 innermost_block = candidates[i].block;
2844 }
2845
2846 if (deprocedure_p
2847 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2848 == TYPE_CODE_FUNC))
2849 {
2850 replace_operator_with_call (expp, pc, 0, 0,
2851 exp->elts[pc + 2].symbol,
2852 exp->elts[pc + 1].block);
2853 exp = *expp;
2854 }
2855 break;
2856
2857 case OP_FUNCALL:
2858 {
2859 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2860 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2861 {
2862 struct ada_symbol_info *candidates;
2863 int n_candidates;
2864
2865 n_candidates =
2866 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2867 (exp->elts[pc + 5].symbol),
2868 exp->elts[pc + 4].block, VAR_DOMAIN,
2869 &candidates);
2870 if (n_candidates == 1)
2871 i = 0;
2872 else
2873 {
2874 i = ada_resolve_function
2875 (candidates, n_candidates,
2876 argvec, nargs,
2877 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2878 context_type);
2879 if (i < 0)
2880 error (_("Could not find a match for %s"),
2881 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2882 }
2883
2884 exp->elts[pc + 4].block = candidates[i].block;
2885 exp->elts[pc + 5].symbol = candidates[i].sym;
2886 if (innermost_block == NULL
2887 || contained_in (candidates[i].block, innermost_block))
2888 innermost_block = candidates[i].block;
2889 }
2890 }
2891 break;
2892 case BINOP_ADD:
2893 case BINOP_SUB:
2894 case BINOP_MUL:
2895 case BINOP_DIV:
2896 case BINOP_REM:
2897 case BINOP_MOD:
2898 case BINOP_CONCAT:
2899 case BINOP_BITWISE_AND:
2900 case BINOP_BITWISE_IOR:
2901 case BINOP_BITWISE_XOR:
2902 case BINOP_EQUAL:
2903 case BINOP_NOTEQUAL:
2904 case BINOP_LESS:
2905 case BINOP_GTR:
2906 case BINOP_LEQ:
2907 case BINOP_GEQ:
2908 case BINOP_EXP:
2909 case UNOP_NEG:
2910 case UNOP_PLUS:
2911 case UNOP_LOGICAL_NOT:
2912 case UNOP_ABS:
2913 if (possible_user_operator_p (op, argvec))
2914 {
2915 struct ada_symbol_info *candidates;
2916 int n_candidates;
2917
2918 n_candidates =
2919 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2920 (struct block *) NULL, VAR_DOMAIN,
2921 &candidates);
2922 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2923 ada_decoded_op_name (op), NULL);
2924 if (i < 0)
2925 break;
2926
2927 replace_operator_with_call (expp, pc, nargs, 1,
2928 candidates[i].sym, candidates[i].block);
2929 exp = *expp;
2930 }
2931 break;
2932
2933 case OP_TYPE:
2934 return NULL;
2935 }
2936
2937 *pos = pc;
2938 return evaluate_subexp_type (exp, pos);
2939 }
2940
2941 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2942 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2943 a non-pointer. A type of 'void' (which is never a valid expression type)
2944 by convention matches anything. */
2945 /* The term "match" here is rather loose. The match is heuristic and
2946 liberal. FIXME: TOO liberal, in fact. */
2947
2948 static int
2949 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2950 {
2951 ftype = ada_check_typedef (ftype);
2952 atype = ada_check_typedef (atype);
2953
2954 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2955 ftype = TYPE_TARGET_TYPE (ftype);
2956 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2957 atype = TYPE_TARGET_TYPE (atype);
2958
2959 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2960 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2961 return 1;
2962
2963 switch (TYPE_CODE (ftype))
2964 {
2965 default:
2966 return 1;
2967 case TYPE_CODE_PTR:
2968 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2969 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2970 TYPE_TARGET_TYPE (atype), 0);
2971 else
2972 return (may_deref
2973 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2974 case TYPE_CODE_INT:
2975 case TYPE_CODE_ENUM:
2976 case TYPE_CODE_RANGE:
2977 switch (TYPE_CODE (atype))
2978 {
2979 case TYPE_CODE_INT:
2980 case TYPE_CODE_ENUM:
2981 case TYPE_CODE_RANGE:
2982 return 1;
2983 default:
2984 return 0;
2985 }
2986
2987 case TYPE_CODE_ARRAY:
2988 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2989 || ada_is_array_descriptor_type (atype));
2990
2991 case TYPE_CODE_STRUCT:
2992 if (ada_is_array_descriptor_type (ftype))
2993 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2994 || ada_is_array_descriptor_type (atype));
2995 else
2996 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2997 && !ada_is_array_descriptor_type (atype));
2998
2999 case TYPE_CODE_UNION:
3000 case TYPE_CODE_FLT:
3001 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3002 }
3003 }
3004
3005 /* Return non-zero if the formals of FUNC "sufficiently match" the
3006 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3007 may also be an enumeral, in which case it is treated as a 0-
3008 argument function. */
3009
3010 static int
3011 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3012 {
3013 int i;
3014 struct type *func_type = SYMBOL_TYPE (func);
3015
3016 if (SYMBOL_CLASS (func) == LOC_CONST
3017 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3018 return (n_actuals == 0);
3019 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3020 return 0;
3021
3022 if (TYPE_NFIELDS (func_type) != n_actuals)
3023 return 0;
3024
3025 for (i = 0; i < n_actuals; i += 1)
3026 {
3027 if (actuals[i] == NULL)
3028 return 0;
3029 else
3030 {
3031 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3032 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3033
3034 if (!ada_type_match (ftype, atype, 1))
3035 return 0;
3036 }
3037 }
3038 return 1;
3039 }
3040
3041 /* False iff function type FUNC_TYPE definitely does not produce a value
3042 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3043 FUNC_TYPE is not a valid function type with a non-null return type
3044 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3045
3046 static int
3047 return_match (struct type *func_type, struct type *context_type)
3048 {
3049 struct type *return_type;
3050
3051 if (func_type == NULL)
3052 return 1;
3053
3054 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3055 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3056 else
3057 return_type = base_type (func_type);
3058 if (return_type == NULL)
3059 return 1;
3060
3061 context_type = base_type (context_type);
3062
3063 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3064 return context_type == NULL || return_type == context_type;
3065 else if (context_type == NULL)
3066 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3067 else
3068 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3069 }
3070
3071
3072 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3073 function (if any) that matches the types of the NARGS arguments in
3074 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3075 that returns that type, then eliminate matches that don't. If
3076 CONTEXT_TYPE is void and there is at least one match that does not
3077 return void, eliminate all matches that do.
3078
3079 Asks the user if there is more than one match remaining. Returns -1
3080 if there is no such symbol or none is selected. NAME is used
3081 solely for messages. May re-arrange and modify SYMS in
3082 the process; the index returned is for the modified vector. */
3083
3084 static int
3085 ada_resolve_function (struct ada_symbol_info syms[],
3086 int nsyms, struct value **args, int nargs,
3087 const char *name, struct type *context_type)
3088 {
3089 int k;
3090 int m; /* Number of hits */
3091 struct type *fallback;
3092 struct type *return_type;
3093
3094 return_type = context_type;
3095 if (context_type == NULL)
3096 fallback = builtin_type_void;
3097 else
3098 fallback = NULL;
3099
3100 m = 0;
3101 while (1)
3102 {
3103 for (k = 0; k < nsyms; k += 1)
3104 {
3105 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3106
3107 if (ada_args_match (syms[k].sym, args, nargs)
3108 && return_match (type, return_type))
3109 {
3110 syms[m] = syms[k];
3111 m += 1;
3112 }
3113 }
3114 if (m > 0 || return_type == fallback)
3115 break;
3116 else
3117 return_type = fallback;
3118 }
3119
3120 if (m == 0)
3121 return -1;
3122 else if (m > 1)
3123 {
3124 printf_filtered (_("Multiple matches for %s\n"), name);
3125 user_select_syms (syms, m, 1);
3126 return 0;
3127 }
3128 return 0;
3129 }
3130
3131 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3132 in a listing of choices during disambiguation (see sort_choices, below).
3133 The idea is that overloadings of a subprogram name from the
3134 same package should sort in their source order. We settle for ordering
3135 such symbols by their trailing number (__N or $N). */
3136
3137 static int
3138 encoded_ordered_before (char *N0, char *N1)
3139 {
3140 if (N1 == NULL)
3141 return 0;
3142 else if (N0 == NULL)
3143 return 1;
3144 else
3145 {
3146 int k0, k1;
3147 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3148 ;
3149 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3150 ;
3151 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3152 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3153 {
3154 int n0, n1;
3155 n0 = k0;
3156 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3157 n0 -= 1;
3158 n1 = k1;
3159 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3160 n1 -= 1;
3161 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3162 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3163 }
3164 return (strcmp (N0, N1) < 0);
3165 }
3166 }
3167
3168 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3169 encoded names. */
3170
3171 static void
3172 sort_choices (struct ada_symbol_info syms[], int nsyms)
3173 {
3174 int i;
3175 for (i = 1; i < nsyms; i += 1)
3176 {
3177 struct ada_symbol_info sym = syms[i];
3178 int j;
3179
3180 for (j = i - 1; j >= 0; j -= 1)
3181 {
3182 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3183 SYMBOL_LINKAGE_NAME (sym.sym)))
3184 break;
3185 syms[j + 1] = syms[j];
3186 }
3187 syms[j + 1] = sym;
3188 }
3189 }
3190
3191 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3192 by asking the user (if necessary), returning the number selected,
3193 and setting the first elements of SYMS items. Error if no symbols
3194 selected. */
3195
3196 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3197 to be re-integrated one of these days. */
3198
3199 int
3200 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3201 {
3202 int i;
3203 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3204 int n_chosen;
3205 int first_choice = (max_results == 1) ? 1 : 2;
3206
3207 if (max_results < 1)
3208 error (_("Request to select 0 symbols!"));
3209 if (nsyms <= 1)
3210 return nsyms;
3211
3212 printf_unfiltered (_("[0] cancel\n"));
3213 if (max_results > 1)
3214 printf_unfiltered (_("[1] all\n"));
3215
3216 sort_choices (syms, nsyms);
3217
3218 for (i = 0; i < nsyms; i += 1)
3219 {
3220 if (syms[i].sym == NULL)
3221 continue;
3222
3223 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3224 {
3225 struct symtab_and_line sal =
3226 find_function_start_sal (syms[i].sym, 1);
3227 if (sal.symtab == NULL)
3228 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3229 i + first_choice,
3230 SYMBOL_PRINT_NAME (syms[i].sym),
3231 sal.line);
3232 else
3233 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3234 SYMBOL_PRINT_NAME (syms[i].sym),
3235 sal.symtab->filename, sal.line);
3236 continue;
3237 }
3238 else
3239 {
3240 int is_enumeral =
3241 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3242 && SYMBOL_TYPE (syms[i].sym) != NULL
3243 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3244 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3245
3246 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3247 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3248 i + first_choice,
3249 SYMBOL_PRINT_NAME (syms[i].sym),
3250 symtab->filename, SYMBOL_LINE (syms[i].sym));
3251 else if (is_enumeral
3252 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3253 {
3254 printf_unfiltered (("[%d] "), i + first_choice);
3255 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3256 gdb_stdout, -1, 0);
3257 printf_unfiltered (_("'(%s) (enumeral)\n"),
3258 SYMBOL_PRINT_NAME (syms[i].sym));
3259 }
3260 else if (symtab != NULL)
3261 printf_unfiltered (is_enumeral
3262 ? _("[%d] %s in %s (enumeral)\n")
3263 : _("[%d] %s at %s:?\n"),
3264 i + first_choice,
3265 SYMBOL_PRINT_NAME (syms[i].sym),
3266 symtab->filename);
3267 else
3268 printf_unfiltered (is_enumeral
3269 ? _("[%d] %s (enumeral)\n")
3270 : _("[%d] %s at ?\n"),
3271 i + first_choice,
3272 SYMBOL_PRINT_NAME (syms[i].sym));
3273 }
3274 }
3275
3276 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3277 "overload-choice");
3278
3279 for (i = 0; i < n_chosen; i += 1)
3280 syms[i] = syms[chosen[i]];
3281
3282 return n_chosen;
3283 }
3284
3285 /* Read and validate a set of numeric choices from the user in the
3286 range 0 .. N_CHOICES-1. Place the results in increasing
3287 order in CHOICES[0 .. N-1], and return N.
3288
3289 The user types choices as a sequence of numbers on one line
3290 separated by blanks, encoding them as follows:
3291
3292 + A choice of 0 means to cancel the selection, throwing an error.
3293 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3294 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3295
3296 The user is not allowed to choose more than MAX_RESULTS values.
3297
3298 ANNOTATION_SUFFIX, if present, is used to annotate the input
3299 prompts (for use with the -f switch). */
3300
3301 int
3302 get_selections (int *choices, int n_choices, int max_results,
3303 int is_all_choice, char *annotation_suffix)
3304 {
3305 char *args;
3306 const char *prompt;
3307 int n_chosen;
3308 int first_choice = is_all_choice ? 2 : 1;
3309
3310 prompt = getenv ("PS2");
3311 if (prompt == NULL)
3312 prompt = ">";
3313
3314 printf_unfiltered (("%s "), prompt);
3315 gdb_flush (gdb_stdout);
3316
3317 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3318
3319 if (args == NULL)
3320 error_no_arg (_("one or more choice numbers"));
3321
3322 n_chosen = 0;
3323
3324 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3325 order, as given in args. Choices are validated. */
3326 while (1)
3327 {
3328 char *args2;
3329 int choice, j;
3330
3331 while (isspace (*args))
3332 args += 1;
3333 if (*args == '\0' && n_chosen == 0)
3334 error_no_arg (_("one or more choice numbers"));
3335 else if (*args == '\0')
3336 break;
3337
3338 choice = strtol (args, &args2, 10);
3339 if (args == args2 || choice < 0
3340 || choice > n_choices + first_choice - 1)
3341 error (_("Argument must be choice number"));
3342 args = args2;
3343
3344 if (choice == 0)
3345 error (_("cancelled"));
3346
3347 if (choice < first_choice)
3348 {
3349 n_chosen = n_choices;
3350 for (j = 0; j < n_choices; j += 1)
3351 choices[j] = j;
3352 break;
3353 }
3354 choice -= first_choice;
3355
3356 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3357 {
3358 }
3359
3360 if (j < 0 || choice != choices[j])
3361 {
3362 int k;
3363 for (k = n_chosen - 1; k > j; k -= 1)
3364 choices[k + 1] = choices[k];
3365 choices[j + 1] = choice;
3366 n_chosen += 1;
3367 }
3368 }
3369
3370 if (n_chosen > max_results)
3371 error (_("Select no more than %d of the above"), max_results);
3372
3373 return n_chosen;
3374 }
3375
3376 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3377 on the function identified by SYM and BLOCK, and taking NARGS
3378 arguments. Update *EXPP as needed to hold more space. */
3379
3380 static void
3381 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3382 int oplen, struct symbol *sym,
3383 struct block *block)
3384 {
3385 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3386 symbol, -oplen for operator being replaced). */
3387 struct expression *newexp = (struct expression *)
3388 xmalloc (sizeof (struct expression)
3389 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3390 struct expression *exp = *expp;
3391
3392 newexp->nelts = exp->nelts + 7 - oplen;
3393 newexp->language_defn = exp->language_defn;
3394 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3395 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3396 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3397
3398 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3399 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3400
3401 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3402 newexp->elts[pc + 4].block = block;
3403 newexp->elts[pc + 5].symbol = sym;
3404
3405 *expp = newexp;
3406 xfree (exp);
3407 }
3408
3409 /* Type-class predicates */
3410
3411 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3412 or FLOAT). */
3413
3414 static int
3415 numeric_type_p (struct type *type)
3416 {
3417 if (type == NULL)
3418 return 0;
3419 else
3420 {
3421 switch (TYPE_CODE (type))
3422 {
3423 case TYPE_CODE_INT:
3424 case TYPE_CODE_FLT:
3425 return 1;
3426 case TYPE_CODE_RANGE:
3427 return (type == TYPE_TARGET_TYPE (type)
3428 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3429 default:
3430 return 0;
3431 }
3432 }
3433 }
3434
3435 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3436
3437 static int
3438 integer_type_p (struct type *type)
3439 {
3440 if (type == NULL)
3441 return 0;
3442 else
3443 {
3444 switch (TYPE_CODE (type))
3445 {
3446 case TYPE_CODE_INT:
3447 return 1;
3448 case TYPE_CODE_RANGE:
3449 return (type == TYPE_TARGET_TYPE (type)
3450 || integer_type_p (TYPE_TARGET_TYPE (type)));
3451 default:
3452 return 0;
3453 }
3454 }
3455 }
3456
3457 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3458
3459 static int
3460 scalar_type_p (struct type *type)
3461 {
3462 if (type == NULL)
3463 return 0;
3464 else
3465 {
3466 switch (TYPE_CODE (type))
3467 {
3468 case TYPE_CODE_INT:
3469 case TYPE_CODE_RANGE:
3470 case TYPE_CODE_ENUM:
3471 case TYPE_CODE_FLT:
3472 return 1;
3473 default:
3474 return 0;
3475 }
3476 }
3477 }
3478
3479 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3480
3481 static int
3482 discrete_type_p (struct type *type)
3483 {
3484 if (type == NULL)
3485 return 0;
3486 else
3487 {
3488 switch (TYPE_CODE (type))
3489 {
3490 case TYPE_CODE_INT:
3491 case TYPE_CODE_RANGE:
3492 case TYPE_CODE_ENUM:
3493 return 1;
3494 default:
3495 return 0;
3496 }
3497 }
3498 }
3499
3500 /* Returns non-zero if OP with operands in the vector ARGS could be
3501 a user-defined function. Errs on the side of pre-defined operators
3502 (i.e., result 0). */
3503
3504 static int
3505 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3506 {
3507 struct type *type0 =
3508 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3509 struct type *type1 =
3510 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3511
3512 if (type0 == NULL)
3513 return 0;
3514
3515 switch (op)
3516 {
3517 default:
3518 return 0;
3519
3520 case BINOP_ADD:
3521 case BINOP_SUB:
3522 case BINOP_MUL:
3523 case BINOP_DIV:
3524 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3525
3526 case BINOP_REM:
3527 case BINOP_MOD:
3528 case BINOP_BITWISE_AND:
3529 case BINOP_BITWISE_IOR:
3530 case BINOP_BITWISE_XOR:
3531 return (!(integer_type_p (type0) && integer_type_p (type1)));
3532
3533 case BINOP_EQUAL:
3534 case BINOP_NOTEQUAL:
3535 case BINOP_LESS:
3536 case BINOP_GTR:
3537 case BINOP_LEQ:
3538 case BINOP_GEQ:
3539 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3540
3541 case BINOP_CONCAT:
3542 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3543
3544 case BINOP_EXP:
3545 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3546
3547 case UNOP_NEG:
3548 case UNOP_PLUS:
3549 case UNOP_LOGICAL_NOT:
3550 case UNOP_ABS:
3551 return (!numeric_type_p (type0));
3552
3553 }
3554 }
3555 \f
3556 /* Renaming */
3557
3558 /* NOTES:
3559
3560 1. In the following, we assume that a renaming type's name may
3561 have an ___XD suffix. It would be nice if this went away at some
3562 point.
3563 2. We handle both the (old) purely type-based representation of
3564 renamings and the (new) variable-based encoding. At some point,
3565 it is devoutly to be hoped that the former goes away
3566 (FIXME: hilfinger-2007-07-09).
3567 3. Subprogram renamings are not implemented, although the XRS
3568 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3569
3570 /* If SYM encodes a renaming,
3571
3572 <renaming> renames <renamed entity>,
3573
3574 sets *LEN to the length of the renamed entity's name,
3575 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3576 the string describing the subcomponent selected from the renamed
3577 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3578 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3579 are undefined). Otherwise, returns a value indicating the category
3580 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3581 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3582 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3583 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3584 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3585 may be NULL, in which case they are not assigned.
3586
3587 [Currently, however, GCC does not generate subprogram renamings.] */
3588
3589 enum ada_renaming_category
3590 ada_parse_renaming (struct symbol *sym,
3591 const char **renamed_entity, int *len,
3592 const char **renaming_expr)
3593 {
3594 enum ada_renaming_category kind;
3595 const char *info;
3596 const char *suffix;
3597
3598 if (sym == NULL)
3599 return ADA_NOT_RENAMING;
3600 switch (SYMBOL_CLASS (sym))
3601 {
3602 default:
3603 return ADA_NOT_RENAMING;
3604 case LOC_TYPEDEF:
3605 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3606 renamed_entity, len, renaming_expr);
3607 case LOC_LOCAL:
3608 case LOC_STATIC:
3609 case LOC_COMPUTED:
3610 case LOC_OPTIMIZED_OUT:
3611 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3612 if (info == NULL)
3613 return ADA_NOT_RENAMING;
3614 switch (info[5])
3615 {
3616 case '_':
3617 kind = ADA_OBJECT_RENAMING;
3618 info += 6;
3619 break;
3620 case 'E':
3621 kind = ADA_EXCEPTION_RENAMING;
3622 info += 7;
3623 break;
3624 case 'P':
3625 kind = ADA_PACKAGE_RENAMING;
3626 info += 7;
3627 break;
3628 case 'S':
3629 kind = ADA_SUBPROGRAM_RENAMING;
3630 info += 7;
3631 break;
3632 default:
3633 return ADA_NOT_RENAMING;
3634 }
3635 }
3636
3637 if (renamed_entity != NULL)
3638 *renamed_entity = info;
3639 suffix = strstr (info, "___XE");
3640 if (suffix == NULL || suffix == info)
3641 return ADA_NOT_RENAMING;
3642 if (len != NULL)
3643 *len = strlen (info) - strlen (suffix);
3644 suffix += 5;
3645 if (renaming_expr != NULL)
3646 *renaming_expr = suffix;
3647 return kind;
3648 }
3649
3650 /* Assuming TYPE encodes a renaming according to the old encoding in
3651 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3652 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3653 ADA_NOT_RENAMING otherwise. */
3654 static enum ada_renaming_category
3655 parse_old_style_renaming (struct type *type,
3656 const char **renamed_entity, int *len,
3657 const char **renaming_expr)
3658 {
3659 enum ada_renaming_category kind;
3660 const char *name;
3661 const char *info;
3662 const char *suffix;
3663
3664 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3665 || TYPE_NFIELDS (type) != 1)
3666 return ADA_NOT_RENAMING;
3667
3668 name = type_name_no_tag (type);
3669 if (name == NULL)
3670 return ADA_NOT_RENAMING;
3671
3672 name = strstr (name, "___XR");
3673 if (name == NULL)
3674 return ADA_NOT_RENAMING;
3675 switch (name[5])
3676 {
3677 case '\0':
3678 case '_':
3679 kind = ADA_OBJECT_RENAMING;
3680 break;
3681 case 'E':
3682 kind = ADA_EXCEPTION_RENAMING;
3683 break;
3684 case 'P':
3685 kind = ADA_PACKAGE_RENAMING;
3686 break;
3687 case 'S':
3688 kind = ADA_SUBPROGRAM_RENAMING;
3689 break;
3690 default:
3691 return ADA_NOT_RENAMING;
3692 }
3693
3694 info = TYPE_FIELD_NAME (type, 0);
3695 if (info == NULL)
3696 return ADA_NOT_RENAMING;
3697 if (renamed_entity != NULL)
3698 *renamed_entity = info;
3699 suffix = strstr (info, "___XE");
3700 if (renaming_expr != NULL)
3701 *renaming_expr = suffix + 5;
3702 if (suffix == NULL || suffix == info)
3703 return ADA_NOT_RENAMING;
3704 if (len != NULL)
3705 *len = suffix - info;
3706 return kind;
3707 }
3708
3709 \f
3710
3711 /* Evaluation: Function Calls */
3712
3713 /* Return an lvalue containing the value VAL. This is the identity on
3714 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3715 on the stack, using and updating *SP as the stack pointer, and
3716 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3717
3718 static struct value *
3719 ensure_lval (struct value *val, CORE_ADDR *sp)
3720 {
3721 if (! VALUE_LVAL (val))
3722 {
3723 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3724
3725 /* The following is taken from the structure-return code in
3726 call_function_by_hand. FIXME: Therefore, some refactoring seems
3727 indicated. */
3728 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3729 {
3730 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3731 reserving sufficient space. */
3732 *sp -= len;
3733 if (gdbarch_frame_align_p (current_gdbarch))
3734 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3735 VALUE_ADDRESS (val) = *sp;
3736 }
3737 else
3738 {
3739 /* Stack grows upward. Align the frame, allocate space, and
3740 then again, re-align the frame. */
3741 if (gdbarch_frame_align_p (current_gdbarch))
3742 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3743 VALUE_ADDRESS (val) = *sp;
3744 *sp += len;
3745 if (gdbarch_frame_align_p (current_gdbarch))
3746 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3747 }
3748
3749 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3750 }
3751
3752 return val;
3753 }
3754
3755 /* Return the value ACTUAL, converted to be an appropriate value for a
3756 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3757 allocating any necessary descriptors (fat pointers), or copies of
3758 values not residing in memory, updating it as needed. */
3759
3760 static struct value *
3761 convert_actual (struct value *actual, struct type *formal_type0,
3762 CORE_ADDR *sp)
3763 {
3764 struct type *actual_type = ada_check_typedef (value_type (actual));
3765 struct type *formal_type = ada_check_typedef (formal_type0);
3766 struct type *formal_target =
3767 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3768 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3769 struct type *actual_target =
3770 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3771 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3772
3773 if (ada_is_array_descriptor_type (formal_target)
3774 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3775 return make_array_descriptor (formal_type, actual, sp);
3776 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3777 {
3778 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3779 && ada_is_array_descriptor_type (actual_target))
3780 return desc_data (actual);
3781 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3782 {
3783 if (VALUE_LVAL (actual) != lval_memory)
3784 {
3785 struct value *val;
3786 actual_type = ada_check_typedef (value_type (actual));
3787 val = allocate_value (actual_type);
3788 memcpy ((char *) value_contents_raw (val),
3789 (char *) value_contents (actual),
3790 TYPE_LENGTH (actual_type));
3791 actual = ensure_lval (val, sp);
3792 }
3793 return value_addr (actual);
3794 }
3795 }
3796 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3797 return ada_value_ind (actual);
3798
3799 return actual;
3800 }
3801
3802
3803 /* Push a descriptor of type TYPE for array value ARR on the stack at
3804 *SP, updating *SP to reflect the new descriptor. Return either
3805 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3806 to-descriptor type rather than a descriptor type), a struct value *
3807 representing a pointer to this descriptor. */
3808
3809 static struct value *
3810 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3811 {
3812 struct type *bounds_type = desc_bounds_type (type);
3813 struct type *desc_type = desc_base_type (type);
3814 struct value *descriptor = allocate_value (desc_type);
3815 struct value *bounds = allocate_value (bounds_type);
3816 int i;
3817
3818 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3819 {
3820 modify_general_field (value_contents_writeable (bounds),
3821 value_as_long (ada_array_bound (arr, i, 0)),
3822 desc_bound_bitpos (bounds_type, i, 0),
3823 desc_bound_bitsize (bounds_type, i, 0));
3824 modify_general_field (value_contents_writeable (bounds),
3825 value_as_long (ada_array_bound (arr, i, 1)),
3826 desc_bound_bitpos (bounds_type, i, 1),
3827 desc_bound_bitsize (bounds_type, i, 1));
3828 }
3829
3830 bounds = ensure_lval (bounds, sp);
3831
3832 modify_general_field (value_contents_writeable (descriptor),
3833 VALUE_ADDRESS (ensure_lval (arr, sp)),
3834 fat_pntr_data_bitpos (desc_type),
3835 fat_pntr_data_bitsize (desc_type));
3836
3837 modify_general_field (value_contents_writeable (descriptor),
3838 VALUE_ADDRESS (bounds),
3839 fat_pntr_bounds_bitpos (desc_type),
3840 fat_pntr_bounds_bitsize (desc_type));
3841
3842 descriptor = ensure_lval (descriptor, sp);
3843
3844 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3845 return value_addr (descriptor);
3846 else
3847 return descriptor;
3848 }
3849
3850
3851 /* Assuming a dummy frame has been established on the target, perform any
3852 conversions needed for calling function FUNC on the NARGS actual
3853 parameters in ARGS, other than standard C conversions. Does
3854 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3855 does not match the number of arguments expected. Use *SP as a
3856 stack pointer for additional data that must be pushed, updating its
3857 value as needed. */
3858
3859 void
3860 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3861 CORE_ADDR *sp)
3862 {
3863 int i;
3864
3865 if (TYPE_NFIELDS (value_type (func)) == 0
3866 || nargs != TYPE_NFIELDS (value_type (func)))
3867 return;
3868
3869 for (i = 0; i < nargs; i += 1)
3870 args[i] =
3871 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3872 }
3873 \f
3874 /* Dummy definitions for an experimental caching module that is not
3875 * used in the public sources. */
3876
3877 static int
3878 lookup_cached_symbol (const char *name, domain_enum namespace,
3879 struct symbol **sym, struct block **block,
3880 struct symtab **symtab)
3881 {
3882 return 0;
3883 }
3884
3885 static void
3886 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3887 struct block *block, struct symtab *symtab)
3888 {
3889 }
3890 \f
3891 /* Symbol Lookup */
3892
3893 /* Return the result of a standard (literal, C-like) lookup of NAME in
3894 given DOMAIN, visible from lexical block BLOCK. */
3895
3896 static struct symbol *
3897 standard_lookup (const char *name, const struct block *block,
3898 domain_enum domain)
3899 {
3900 struct symbol *sym;
3901 struct symtab *symtab;
3902
3903 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3904 return sym;
3905 sym =
3906 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3907 cache_symbol (name, domain, sym, block_found, symtab);
3908 return sym;
3909 }
3910
3911
3912 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3913 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3914 since they contend in overloading in the same way. */
3915 static int
3916 is_nonfunction (struct ada_symbol_info syms[], int n)
3917 {
3918 int i;
3919
3920 for (i = 0; i < n; i += 1)
3921 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3922 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3923 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3924 return 1;
3925
3926 return 0;
3927 }
3928
3929 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3930 struct types. Otherwise, they may not. */
3931
3932 static int
3933 equiv_types (struct type *type0, struct type *type1)
3934 {
3935 if (type0 == type1)
3936 return 1;
3937 if (type0 == NULL || type1 == NULL
3938 || TYPE_CODE (type0) != TYPE_CODE (type1))
3939 return 0;
3940 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3941 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3942 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3943 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3944 return 1;
3945
3946 return 0;
3947 }
3948
3949 /* True iff SYM0 represents the same entity as SYM1, or one that is
3950 no more defined than that of SYM1. */
3951
3952 static int
3953 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3954 {
3955 if (sym0 == sym1)
3956 return 1;
3957 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3958 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3959 return 0;
3960
3961 switch (SYMBOL_CLASS (sym0))
3962 {
3963 case LOC_UNDEF:
3964 return 1;
3965 case LOC_TYPEDEF:
3966 {
3967 struct type *type0 = SYMBOL_TYPE (sym0);
3968 struct type *type1 = SYMBOL_TYPE (sym1);
3969 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3970 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3971 int len0 = strlen (name0);
3972 return
3973 TYPE_CODE (type0) == TYPE_CODE (type1)
3974 && (equiv_types (type0, type1)
3975 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3976 && strncmp (name1 + len0, "___XV", 5) == 0));
3977 }
3978 case LOC_CONST:
3979 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3980 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3981 default:
3982 return 0;
3983 }
3984 }
3985
3986 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3987 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3988
3989 static void
3990 add_defn_to_vec (struct obstack *obstackp,
3991 struct symbol *sym,
3992 struct block *block, struct symtab *symtab)
3993 {
3994 int i;
3995 size_t tmp;
3996 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3997
3998 /* Do not try to complete stub types, as the debugger is probably
3999 already scanning all symbols matching a certain name at the
4000 time when this function is called. Trying to replace the stub
4001 type by its associated full type will cause us to restart a scan
4002 which may lead to an infinite recursion. Instead, the client
4003 collecting the matching symbols will end up collecting several
4004 matches, with at least one of them complete. It can then filter
4005 out the stub ones if needed. */
4006
4007 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4008 {
4009 if (lesseq_defined_than (sym, prevDefns[i].sym))
4010 return;
4011 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4012 {
4013 prevDefns[i].sym = sym;
4014 prevDefns[i].block = block;
4015 prevDefns[i].symtab = symtab;
4016 return;
4017 }
4018 }
4019
4020 {
4021 struct ada_symbol_info info;
4022
4023 info.sym = sym;
4024 info.block = block;
4025 info.symtab = symtab;
4026 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4027 }
4028 }
4029
4030 /* Number of ada_symbol_info structures currently collected in
4031 current vector in *OBSTACKP. */
4032
4033 static int
4034 num_defns_collected (struct obstack *obstackp)
4035 {
4036 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4037 }
4038
4039 /* Vector of ada_symbol_info structures currently collected in current
4040 vector in *OBSTACKP. If FINISH, close off the vector and return
4041 its final address. */
4042
4043 static struct ada_symbol_info *
4044 defns_collected (struct obstack *obstackp, int finish)
4045 {
4046 if (finish)
4047 return obstack_finish (obstackp);
4048 else
4049 return (struct ada_symbol_info *) obstack_base (obstackp);
4050 }
4051
4052 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4053 Check the global symbols if GLOBAL, the static symbols if not.
4054 Do wild-card match if WILD. */
4055
4056 static struct partial_symbol *
4057 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4058 int global, domain_enum namespace, int wild)
4059 {
4060 struct partial_symbol **start;
4061 int name_len = strlen (name);
4062 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4063 int i;
4064
4065 if (length == 0)
4066 {
4067 return (NULL);
4068 }
4069
4070 start = (global ?
4071 pst->objfile->global_psymbols.list + pst->globals_offset :
4072 pst->objfile->static_psymbols.list + pst->statics_offset);
4073
4074 if (wild)
4075 {
4076 for (i = 0; i < length; i += 1)
4077 {
4078 struct partial_symbol *psym = start[i];
4079
4080 if (SYMBOL_DOMAIN (psym) == namespace
4081 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4082 return psym;
4083 }
4084 return NULL;
4085 }
4086 else
4087 {
4088 if (global)
4089 {
4090 int U;
4091 i = 0;
4092 U = length - 1;
4093 while (U - i > 4)
4094 {
4095 int M = (U + i) >> 1;
4096 struct partial_symbol *psym = start[M];
4097 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4098 i = M + 1;
4099 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4100 U = M - 1;
4101 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4102 i = M + 1;
4103 else
4104 U = M;
4105 }
4106 }
4107 else
4108 i = 0;
4109
4110 while (i < length)
4111 {
4112 struct partial_symbol *psym = start[i];
4113
4114 if (SYMBOL_DOMAIN (psym) == namespace)
4115 {
4116 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4117
4118 if (cmp < 0)
4119 {
4120 if (global)
4121 break;
4122 }
4123 else if (cmp == 0
4124 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4125 + name_len))
4126 return psym;
4127 }
4128 i += 1;
4129 }
4130
4131 if (global)
4132 {
4133 int U;
4134 i = 0;
4135 U = length - 1;
4136 while (U - i > 4)
4137 {
4138 int M = (U + i) >> 1;
4139 struct partial_symbol *psym = start[M];
4140 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4141 i = M + 1;
4142 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4143 U = M - 1;
4144 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4145 i = M + 1;
4146 else
4147 U = M;
4148 }
4149 }
4150 else
4151 i = 0;
4152
4153 while (i < length)
4154 {
4155 struct partial_symbol *psym = start[i];
4156
4157 if (SYMBOL_DOMAIN (psym) == namespace)
4158 {
4159 int cmp;
4160
4161 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4162 if (cmp == 0)
4163 {
4164 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4165 if (cmp == 0)
4166 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4167 name_len);
4168 }
4169
4170 if (cmp < 0)
4171 {
4172 if (global)
4173 break;
4174 }
4175 else if (cmp == 0
4176 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4177 + name_len + 5))
4178 return psym;
4179 }
4180 i += 1;
4181 }
4182 }
4183 return NULL;
4184 }
4185
4186 /* Find a symbol table containing symbol SYM or NULL if none. */
4187
4188 static struct symtab *
4189 symtab_for_sym (struct symbol *sym)
4190 {
4191 struct symtab *s;
4192 struct objfile *objfile;
4193 struct block *b;
4194 struct symbol *tmp_sym;
4195 struct dict_iterator iter;
4196 int j;
4197
4198 ALL_PRIMARY_SYMTABS (objfile, s)
4199 {
4200 switch (SYMBOL_CLASS (sym))
4201 {
4202 case LOC_CONST:
4203 case LOC_STATIC:
4204 case LOC_TYPEDEF:
4205 case LOC_REGISTER:
4206 case LOC_LABEL:
4207 case LOC_BLOCK:
4208 case LOC_CONST_BYTES:
4209 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4210 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4211 return s;
4212 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4213 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4214 return s;
4215 break;
4216 default:
4217 break;
4218 }
4219 switch (SYMBOL_CLASS (sym))
4220 {
4221 case LOC_REGISTER:
4222 case LOC_ARG:
4223 case LOC_REF_ARG:
4224 case LOC_REGPARM:
4225 case LOC_REGPARM_ADDR:
4226 case LOC_LOCAL:
4227 case LOC_TYPEDEF:
4228 case LOC_LOCAL_ARG:
4229 case LOC_BASEREG:
4230 case LOC_BASEREG_ARG:
4231 case LOC_COMPUTED:
4232 case LOC_COMPUTED_ARG:
4233 for (j = FIRST_LOCAL_BLOCK;
4234 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4235 {
4236 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4237 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4238 return s;
4239 }
4240 break;
4241 default:
4242 break;
4243 }
4244 }
4245 return NULL;
4246 }
4247
4248 /* Return a minimal symbol matching NAME according to Ada decoding
4249 rules. Returns NULL if there is no such minimal symbol. Names
4250 prefixed with "standard__" are handled specially: "standard__" is
4251 first stripped off, and only static and global symbols are searched. */
4252
4253 struct minimal_symbol *
4254 ada_lookup_simple_minsym (const char *name)
4255 {
4256 struct objfile *objfile;
4257 struct minimal_symbol *msymbol;
4258 int wild_match;
4259
4260 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4261 {
4262 name += sizeof ("standard__") - 1;
4263 wild_match = 0;
4264 }
4265 else
4266 wild_match = (strstr (name, "__") == NULL);
4267
4268 ALL_MSYMBOLS (objfile, msymbol)
4269 {
4270 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4271 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4272 return msymbol;
4273 }
4274
4275 return NULL;
4276 }
4277
4278 /* For all subprograms that statically enclose the subprogram of the
4279 selected frame, add symbols matching identifier NAME in DOMAIN
4280 and their blocks to the list of data in OBSTACKP, as for
4281 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4282 wildcard prefix. */
4283
4284 static void
4285 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4286 const char *name, domain_enum namespace,
4287 int wild_match)
4288 {
4289 }
4290
4291 /* True if TYPE is definitely an artificial type supplied to a symbol
4292 for which no debugging information was given in the symbol file. */
4293
4294 static int
4295 is_nondebugging_type (struct type *type)
4296 {
4297 char *name = ada_type_name (type);
4298 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4299 }
4300
4301 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4302 duplicate other symbols in the list (The only case I know of where
4303 this happens is when object files containing stabs-in-ecoff are
4304 linked with files containing ordinary ecoff debugging symbols (or no
4305 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4306 Returns the number of items in the modified list. */
4307
4308 static int
4309 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4310 {
4311 int i, j;
4312
4313 i = 0;
4314 while (i < nsyms)
4315 {
4316 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4317 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4318 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4319 {
4320 for (j = 0; j < nsyms; j += 1)
4321 {
4322 if (i != j
4323 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4324 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4325 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4326 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4327 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4328 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4329 {
4330 int k;
4331 for (k = i + 1; k < nsyms; k += 1)
4332 syms[k - 1] = syms[k];
4333 nsyms -= 1;
4334 goto NextSymbol;
4335 }
4336 }
4337 }
4338 i += 1;
4339 NextSymbol:
4340 ;
4341 }
4342 return nsyms;
4343 }
4344
4345 /* Given a type that corresponds to a renaming entity, use the type name
4346 to extract the scope (package name or function name, fully qualified,
4347 and following the GNAT encoding convention) where this renaming has been
4348 defined. The string returned needs to be deallocated after use. */
4349
4350 static char *
4351 xget_renaming_scope (struct type *renaming_type)
4352 {
4353 /* The renaming types adhere to the following convention:
4354 <scope>__<rename>___<XR extension>.
4355 So, to extract the scope, we search for the "___XR" extension,
4356 and then backtrack until we find the first "__". */
4357
4358 const char *name = type_name_no_tag (renaming_type);
4359 char *suffix = strstr (name, "___XR");
4360 char *last;
4361 int scope_len;
4362 char *scope;
4363
4364 /* Now, backtrack a bit until we find the first "__". Start looking
4365 at suffix - 3, as the <rename> part is at least one character long. */
4366
4367 for (last = suffix - 3; last > name; last--)
4368 if (last[0] == '_' && last[1] == '_')
4369 break;
4370
4371 /* Make a copy of scope and return it. */
4372
4373 scope_len = last - name;
4374 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4375
4376 strncpy (scope, name, scope_len);
4377 scope[scope_len] = '\0';
4378
4379 return scope;
4380 }
4381
4382 /* Return nonzero if NAME corresponds to a package name. */
4383
4384 static int
4385 is_package_name (const char *name)
4386 {
4387 /* Here, We take advantage of the fact that no symbols are generated
4388 for packages, while symbols are generated for each function.
4389 So the condition for NAME represent a package becomes equivalent
4390 to NAME not existing in our list of symbols. There is only one
4391 small complication with library-level functions (see below). */
4392
4393 char *fun_name;
4394
4395 /* If it is a function that has not been defined at library level,
4396 then we should be able to look it up in the symbols. */
4397 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4398 return 0;
4399
4400 /* Library-level function names start with "_ada_". See if function
4401 "_ada_" followed by NAME can be found. */
4402
4403 /* Do a quick check that NAME does not contain "__", since library-level
4404 functions names cannot contain "__" in them. */
4405 if (strstr (name, "__") != NULL)
4406 return 0;
4407
4408 fun_name = xstrprintf ("_ada_%s", name);
4409
4410 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4411 }
4412
4413 /* Return nonzero if SYM corresponds to a renaming entity that is
4414 not visible from FUNCTION_NAME. */
4415
4416 static int
4417 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4418 {
4419 char *scope;
4420
4421 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4422 return 0;
4423
4424 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4425
4426 make_cleanup (xfree, scope);
4427
4428 /* If the rename has been defined in a package, then it is visible. */
4429 if (is_package_name (scope))
4430 return 0;
4431
4432 /* Check that the rename is in the current function scope by checking
4433 that its name starts with SCOPE. */
4434
4435 /* If the function name starts with "_ada_", it means that it is
4436 a library-level function. Strip this prefix before doing the
4437 comparison, as the encoding for the renaming does not contain
4438 this prefix. */
4439 if (strncmp (function_name, "_ada_", 5) == 0)
4440 function_name += 5;
4441
4442 return (strncmp (function_name, scope, strlen (scope)) != 0);
4443 }
4444
4445 /* Remove entries from SYMS that corresponds to a renaming entity that
4446 is not visible from the function associated with CURRENT_BLOCK or
4447 that is superfluous due to the presence of more specific renaming
4448 information. Places surviving symbols in the initial entries of
4449 SYMS and returns the number of surviving symbols.
4450
4451 Rationale:
4452 First, in cases where an object renaming is implemented as a
4453 reference variable, GNAT may produce both the actual reference
4454 variable and the renaming encoding. In this case, we discard the
4455 latter.
4456
4457 Second, GNAT emits a type following a specified encoding for each renaming
4458 entity. Unfortunately, STABS currently does not support the definition
4459 of types that are local to a given lexical block, so all renamings types
4460 are emitted at library level. As a consequence, if an application
4461 contains two renaming entities using the same name, and a user tries to
4462 print the value of one of these entities, the result of the ada symbol
4463 lookup will also contain the wrong renaming type.
4464
4465 This function partially covers for this limitation by attempting to
4466 remove from the SYMS list renaming symbols that should be visible
4467 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4468 method with the current information available. The implementation
4469 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4470
4471 - When the user tries to print a rename in a function while there
4472 is another rename entity defined in a package: Normally, the
4473 rename in the function has precedence over the rename in the
4474 package, so the latter should be removed from the list. This is
4475 currently not the case.
4476
4477 - This function will incorrectly remove valid renames if
4478 the CURRENT_BLOCK corresponds to a function which symbol name
4479 has been changed by an "Export" pragma. As a consequence,
4480 the user will be unable to print such rename entities. */
4481
4482 static int
4483 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4484 int nsyms, const struct block *current_block)
4485 {
4486 struct symbol *current_function;
4487 char *current_function_name;
4488 int i;
4489 int is_new_style_renaming;
4490
4491 /* If there is both a renaming foo___XR... encoded as a variable and
4492 a simple variable foo in the same block, discard the latter.
4493 First, zero out such symbols, then compress. */
4494 is_new_style_renaming = 0;
4495 for (i = 0; i < nsyms; i += 1)
4496 {
4497 struct symbol *sym = syms[i].sym;
4498 struct block *block = syms[i].block;
4499 const char *name;
4500 const char *suffix;
4501
4502 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4503 continue;
4504 name = SYMBOL_LINKAGE_NAME (sym);
4505 suffix = strstr (name, "___XR");
4506
4507 if (suffix != NULL)
4508 {
4509 int name_len = suffix - name;
4510 int j;
4511 is_new_style_renaming = 1;
4512 for (j = 0; j < nsyms; j += 1)
4513 if (i != j && syms[j].sym != NULL
4514 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4515 name_len) == 0
4516 && block == syms[j].block)
4517 syms[j].sym = NULL;
4518 }
4519 }
4520 if (is_new_style_renaming)
4521 {
4522 int j, k;
4523
4524 for (j = k = 0; j < nsyms; j += 1)
4525 if (syms[j].sym != NULL)
4526 {
4527 syms[k] = syms[j];
4528 k += 1;
4529 }
4530 return k;
4531 }
4532
4533 /* Extract the function name associated to CURRENT_BLOCK.
4534 Abort if unable to do so. */
4535
4536 if (current_block == NULL)
4537 return nsyms;
4538
4539 current_function = block_function (current_block);
4540 if (current_function == NULL)
4541 return nsyms;
4542
4543 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4544 if (current_function_name == NULL)
4545 return nsyms;
4546
4547 /* Check each of the symbols, and remove it from the list if it is
4548 a type corresponding to a renaming that is out of the scope of
4549 the current block. */
4550
4551 i = 0;
4552 while (i < nsyms)
4553 {
4554 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4555 == ADA_OBJECT_RENAMING
4556 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4557 {
4558 int j;
4559 for (j = i + 1; j < nsyms; j += 1)
4560 syms[j - 1] = syms[j];
4561 nsyms -= 1;
4562 }
4563 else
4564 i += 1;
4565 }
4566
4567 return nsyms;
4568 }
4569
4570 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4571 scope and in global scopes, returning the number of matches. Sets
4572 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4573 indicating the symbols found and the blocks and symbol tables (if
4574 any) in which they were found. This vector are transient---good only to
4575 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4576 symbol match within the nest of blocks whose innermost member is BLOCK0,
4577 is the one match returned (no other matches in that or
4578 enclosing blocks is returned). If there are any matches in or
4579 surrounding BLOCK0, then these alone are returned. Otherwise, the
4580 search extends to global and file-scope (static) symbol tables.
4581 Names prefixed with "standard__" are handled specially: "standard__"
4582 is first stripped off, and only static and global symbols are searched. */
4583
4584 int
4585 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4586 domain_enum namespace,
4587 struct ada_symbol_info **results)
4588 {
4589 struct symbol *sym;
4590 struct symtab *s;
4591 struct partial_symtab *ps;
4592 struct blockvector *bv;
4593 struct objfile *objfile;
4594 struct block *block;
4595 const char *name;
4596 struct minimal_symbol *msymbol;
4597 int wild_match;
4598 int cacheIfUnique;
4599 int block_depth;
4600 int ndefns;
4601
4602 obstack_free (&symbol_list_obstack, NULL);
4603 obstack_init (&symbol_list_obstack);
4604
4605 cacheIfUnique = 0;
4606
4607 /* Search specified block and its superiors. */
4608
4609 wild_match = (strstr (name0, "__") == NULL);
4610 name = name0;
4611 block = (struct block *) block0; /* FIXME: No cast ought to be
4612 needed, but adding const will
4613 have a cascade effect. */
4614 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4615 {
4616 wild_match = 0;
4617 block = NULL;
4618 name = name0 + sizeof ("standard__") - 1;
4619 }
4620
4621 block_depth = 0;
4622 while (block != NULL)
4623 {
4624 block_depth += 1;
4625 ada_add_block_symbols (&symbol_list_obstack, block, name,
4626 namespace, NULL, NULL, wild_match);
4627
4628 /* If we found a non-function match, assume that's the one. */
4629 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4630 num_defns_collected (&symbol_list_obstack)))
4631 goto done;
4632
4633 block = BLOCK_SUPERBLOCK (block);
4634 }
4635
4636 /* If no luck so far, try to find NAME as a local symbol in some lexically
4637 enclosing subprogram. */
4638 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4639 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4640 name, namespace, wild_match);
4641
4642 /* If we found ANY matches among non-global symbols, we're done. */
4643
4644 if (num_defns_collected (&symbol_list_obstack) > 0)
4645 goto done;
4646
4647 cacheIfUnique = 1;
4648 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4649 {
4650 if (sym != NULL)
4651 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4652 goto done;
4653 }
4654
4655 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4656 tables, and psymtab's. */
4657
4658 ALL_PRIMARY_SYMTABS (objfile, s)
4659 {
4660 QUIT;
4661 bv = BLOCKVECTOR (s);
4662 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4663 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4664 objfile, s, wild_match);
4665 }
4666
4667 if (namespace == VAR_DOMAIN)
4668 {
4669 ALL_MSYMBOLS (objfile, msymbol)
4670 {
4671 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4672 {
4673 switch (MSYMBOL_TYPE (msymbol))
4674 {
4675 case mst_solib_trampoline:
4676 break;
4677 default:
4678 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4679 if (s != NULL)
4680 {
4681 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4682 QUIT;
4683 bv = BLOCKVECTOR (s);
4684 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4685 ada_add_block_symbols (&symbol_list_obstack, block,
4686 SYMBOL_LINKAGE_NAME (msymbol),
4687 namespace, objfile, s, wild_match);
4688
4689 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4690 {
4691 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4692 ada_add_block_symbols (&symbol_list_obstack, block,
4693 SYMBOL_LINKAGE_NAME (msymbol),
4694 namespace, objfile, s,
4695 wild_match);
4696 }
4697 }
4698 }
4699 }
4700 }
4701 }
4702
4703 ALL_PSYMTABS (objfile, ps)
4704 {
4705 QUIT;
4706 if (!ps->readin
4707 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4708 {
4709 s = PSYMTAB_TO_SYMTAB (ps);
4710 if (!s->primary)
4711 continue;
4712 bv = BLOCKVECTOR (s);
4713 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4714 ada_add_block_symbols (&symbol_list_obstack, block, name,
4715 namespace, objfile, s, wild_match);
4716 }
4717 }
4718
4719 /* Now add symbols from all per-file blocks if we've gotten no hits
4720 (Not strictly correct, but perhaps better than an error).
4721 Do the symtabs first, then check the psymtabs. */
4722
4723 if (num_defns_collected (&symbol_list_obstack) == 0)
4724 {
4725
4726 ALL_PRIMARY_SYMTABS (objfile, s)
4727 {
4728 QUIT;
4729 bv = BLOCKVECTOR (s);
4730 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4731 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4732 objfile, s, wild_match);
4733 }
4734
4735 ALL_PSYMTABS (objfile, ps)
4736 {
4737 QUIT;
4738 if (!ps->readin
4739 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4740 {
4741 s = PSYMTAB_TO_SYMTAB (ps);
4742 bv = BLOCKVECTOR (s);
4743 if (!s->primary)
4744 continue;
4745 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4746 ada_add_block_symbols (&symbol_list_obstack, block, name,
4747 namespace, objfile, s, wild_match);
4748 }
4749 }
4750 }
4751
4752 done:
4753 ndefns = num_defns_collected (&symbol_list_obstack);
4754 *results = defns_collected (&symbol_list_obstack, 1);
4755
4756 ndefns = remove_extra_symbols (*results, ndefns);
4757
4758 if (ndefns == 0)
4759 cache_symbol (name0, namespace, NULL, NULL, NULL);
4760
4761 if (ndefns == 1 && cacheIfUnique)
4762 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4763 (*results)[0].symtab);
4764
4765 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4766
4767 return ndefns;
4768 }
4769
4770 struct symbol *
4771 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4772 domain_enum namespace,
4773 struct block **block_found, struct symtab **symtab)
4774 {
4775 struct ada_symbol_info *candidates;
4776 int n_candidates;
4777
4778 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4779
4780 if (n_candidates == 0)
4781 return NULL;
4782
4783 if (block_found != NULL)
4784 *block_found = candidates[0].block;
4785
4786 if (symtab != NULL)
4787 {
4788 *symtab = candidates[0].symtab;
4789 if (*symtab == NULL && candidates[0].block != NULL)
4790 {
4791 struct objfile *objfile;
4792 struct symtab *s;
4793 struct block *b;
4794 struct blockvector *bv;
4795
4796 /* Search the list of symtabs for one which contains the
4797 address of the start of this block. */
4798 ALL_PRIMARY_SYMTABS (objfile, s)
4799 {
4800 bv = BLOCKVECTOR (s);
4801 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4802 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4803 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4804 {
4805 *symtab = s;
4806 return fixup_symbol_section (candidates[0].sym, objfile);
4807 }
4808 }
4809 /* FIXME: brobecker/2004-11-12: I think that we should never
4810 reach this point. I don't see a reason why we would not
4811 find a symtab for a given block, so I suggest raising an
4812 internal_error exception here. Otherwise, we end up
4813 returning a symbol but no symtab, which certain parts of
4814 the code that rely (indirectly) on this function do not
4815 expect, eventually causing a SEGV. */
4816 return fixup_symbol_section (candidates[0].sym, NULL);
4817 }
4818 }
4819 return candidates[0].sym;
4820 }
4821
4822 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4823 scope and in global scopes, or NULL if none. NAME is folded and
4824 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4825 choosing the first symbol if there are multiple choices.
4826 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4827 table in which the symbol was found (in both cases, these
4828 assignments occur only if the pointers are non-null). */
4829 struct symbol *
4830 ada_lookup_symbol (const char *name, const struct block *block0,
4831 domain_enum namespace, int *is_a_field_of_this,
4832 struct symtab **symtab)
4833 {
4834 if (is_a_field_of_this != NULL)
4835 *is_a_field_of_this = 0;
4836
4837 return
4838 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4839 block0, namespace, NULL, symtab);
4840 }
4841
4842 static struct symbol *
4843 ada_lookup_symbol_nonlocal (const char *name,
4844 const char *linkage_name,
4845 const struct block *block,
4846 const domain_enum domain, struct symtab **symtab)
4847 {
4848 if (linkage_name == NULL)
4849 linkage_name = name;
4850 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4851 NULL, symtab);
4852 }
4853
4854
4855 /* True iff STR is a possible encoded suffix of a normal Ada name
4856 that is to be ignored for matching purposes. Suffixes of parallel
4857 names (e.g., XVE) are not included here. Currently, the possible suffixes
4858 are given by either of the regular expression:
4859
4860 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4861 as GNU/Linux]
4862 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4863 _E[0-9]+[bs]$ [protected object entry suffixes]
4864 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4865 */
4866
4867 static int
4868 is_name_suffix (const char *str)
4869 {
4870 int k;
4871 const char *matching;
4872 const int len = strlen (str);
4873
4874 /* (__[0-9]+)?\.[0-9]+ */
4875 matching = str;
4876 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4877 {
4878 matching += 3;
4879 while (isdigit (matching[0]))
4880 matching += 1;
4881 if (matching[0] == '\0')
4882 return 1;
4883 }
4884
4885 if (matching[0] == '.' || matching[0] == '$')
4886 {
4887 matching += 1;
4888 while (isdigit (matching[0]))
4889 matching += 1;
4890 if (matching[0] == '\0')
4891 return 1;
4892 }
4893
4894 /* ___[0-9]+ */
4895 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4896 {
4897 matching = str + 3;
4898 while (isdigit (matching[0]))
4899 matching += 1;
4900 if (matching[0] == '\0')
4901 return 1;
4902 }
4903
4904 #if 0
4905 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4906 with a N at the end. Unfortunately, the compiler uses the same
4907 convention for other internal types it creates. So treating
4908 all entity names that end with an "N" as a name suffix causes
4909 some regressions. For instance, consider the case of an enumerated
4910 type. To support the 'Image attribute, it creates an array whose
4911 name ends with N.
4912 Having a single character like this as a suffix carrying some
4913 information is a bit risky. Perhaps we should change the encoding
4914 to be something like "_N" instead. In the meantime, do not do
4915 the following check. */
4916 /* Protected Object Subprograms */
4917 if (len == 1 && str [0] == 'N')
4918 return 1;
4919 #endif
4920
4921 /* _E[0-9]+[bs]$ */
4922 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4923 {
4924 matching = str + 3;
4925 while (isdigit (matching[0]))
4926 matching += 1;
4927 if ((matching[0] == 'b' || matching[0] == 's')
4928 && matching [1] == '\0')
4929 return 1;
4930 }
4931
4932 /* ??? We should not modify STR directly, as we are doing below. This
4933 is fine in this case, but may become problematic later if we find
4934 that this alternative did not work, and want to try matching
4935 another one from the begining of STR. Since we modified it, we
4936 won't be able to find the begining of the string anymore! */
4937 if (str[0] == 'X')
4938 {
4939 str += 1;
4940 while (str[0] != '_' && str[0] != '\0')
4941 {
4942 if (str[0] != 'n' && str[0] != 'b')
4943 return 0;
4944 str += 1;
4945 }
4946 }
4947 if (str[0] == '\000')
4948 return 1;
4949 if (str[0] == '_')
4950 {
4951 if (str[1] != '_' || str[2] == '\000')
4952 return 0;
4953 if (str[2] == '_')
4954 {
4955 if (strcmp (str + 3, "JM") == 0)
4956 return 1;
4957 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4958 the LJM suffix in favor of the JM one. But we will
4959 still accept LJM as a valid suffix for a reasonable
4960 amount of time, just to allow ourselves to debug programs
4961 compiled using an older version of GNAT. */
4962 if (strcmp (str + 3, "LJM") == 0)
4963 return 1;
4964 if (str[3] != 'X')
4965 return 0;
4966 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4967 || str[4] == 'U' || str[4] == 'P')
4968 return 1;
4969 if (str[4] == 'R' && str[5] != 'T')
4970 return 1;
4971 return 0;
4972 }
4973 if (!isdigit (str[2]))
4974 return 0;
4975 for (k = 3; str[k] != '\0'; k += 1)
4976 if (!isdigit (str[k]) && str[k] != '_')
4977 return 0;
4978 return 1;
4979 }
4980 if (str[0] == '$' && isdigit (str[1]))
4981 {
4982 for (k = 2; str[k] != '\0'; k += 1)
4983 if (!isdigit (str[k]) && str[k] != '_')
4984 return 0;
4985 return 1;
4986 }
4987 return 0;
4988 }
4989
4990 /* Return nonzero if the given string starts with a dot ('.')
4991 followed by zero or more digits.
4992
4993 Note: brobecker/2003-11-10: A forward declaration has not been
4994 added at the begining of this file yet, because this function
4995 is only used to work around a problem found during wild matching
4996 when trying to match minimal symbol names against symbol names
4997 obtained from dwarf-2 data. This function is therefore currently
4998 only used in wild_match() and is likely to be deleted when the
4999 problem in dwarf-2 is fixed. */
5000
5001 static int
5002 is_dot_digits_suffix (const char *str)
5003 {
5004 if (str[0] != '.')
5005 return 0;
5006
5007 str++;
5008 while (isdigit (str[0]))
5009 str++;
5010 return (str[0] == '\0');
5011 }
5012
5013 /* Return non-zero if the string starting at NAME and ending before
5014 NAME_END contains no capital letters. */
5015
5016 static int
5017 is_valid_name_for_wild_match (const char *name0)
5018 {
5019 const char *decoded_name = ada_decode (name0);
5020 int i;
5021
5022 for (i=0; decoded_name[i] != '\0'; i++)
5023 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5024 return 0;
5025
5026 return 1;
5027 }
5028
5029 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5030 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5031 informational suffixes of NAME (i.e., for which is_name_suffix is
5032 true). */
5033
5034 static int
5035 wild_match (const char *patn0, int patn_len, const char *name0)
5036 {
5037 int name_len;
5038 char *name;
5039 char *name_start;
5040 char *patn;
5041
5042 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5043 stored in the symbol table for nested function names is sometimes
5044 different from the name of the associated entity stored in
5045 the dwarf-2 data: This is the case for nested subprograms, where
5046 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5047 while the symbol name from the dwarf-2 data does not.
5048
5049 Although the DWARF-2 standard documents that entity names stored
5050 in the dwarf-2 data should be identical to the name as seen in
5051 the source code, GNAT takes a different approach as we already use
5052 a special encoding mechanism to convey the information so that
5053 a C debugger can still use the information generated to debug
5054 Ada programs. A corollary is that the symbol names in the dwarf-2
5055 data should match the names found in the symbol table. I therefore
5056 consider this issue as a compiler defect.
5057
5058 Until the compiler is properly fixed, we work-around the problem
5059 by ignoring such suffixes during the match. We do so by making
5060 a copy of PATN0 and NAME0, and then by stripping such a suffix
5061 if present. We then perform the match on the resulting strings. */
5062 {
5063 char *dot;
5064 name_len = strlen (name0);
5065
5066 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5067 strcpy (name, name0);
5068 dot = strrchr (name, '.');
5069 if (dot != NULL && is_dot_digits_suffix (dot))
5070 *dot = '\0';
5071
5072 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5073 strncpy (patn, patn0, patn_len);
5074 patn[patn_len] = '\0';
5075 dot = strrchr (patn, '.');
5076 if (dot != NULL && is_dot_digits_suffix (dot))
5077 {
5078 *dot = '\0';
5079 patn_len = dot - patn;
5080 }
5081 }
5082
5083 /* Now perform the wild match. */
5084
5085 name_len = strlen (name);
5086 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5087 && strncmp (patn, name + 5, patn_len) == 0
5088 && is_name_suffix (name + patn_len + 5))
5089 return 1;
5090
5091 while (name_len >= patn_len)
5092 {
5093 if (strncmp (patn, name, patn_len) == 0
5094 && is_name_suffix (name + patn_len))
5095 return (name == name_start || is_valid_name_for_wild_match (name0));
5096 do
5097 {
5098 name += 1;
5099 name_len -= 1;
5100 }
5101 while (name_len > 0
5102 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5103 if (name_len <= 0)
5104 return 0;
5105 if (name[0] == '_')
5106 {
5107 if (!islower (name[2]))
5108 return 0;
5109 name += 2;
5110 name_len -= 2;
5111 }
5112 else
5113 {
5114 if (!islower (name[1]))
5115 return 0;
5116 name += 1;
5117 name_len -= 1;
5118 }
5119 }
5120
5121 return 0;
5122 }
5123
5124
5125 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5126 vector *defn_symbols, updating the list of symbols in OBSTACKP
5127 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5128 OBJFILE is the section containing BLOCK.
5129 SYMTAB is recorded with each symbol added. */
5130
5131 static void
5132 ada_add_block_symbols (struct obstack *obstackp,
5133 struct block *block, const char *name,
5134 domain_enum domain, struct objfile *objfile,
5135 struct symtab *symtab, int wild)
5136 {
5137 struct dict_iterator iter;
5138 int name_len = strlen (name);
5139 /* A matching argument symbol, if any. */
5140 struct symbol *arg_sym;
5141 /* Set true when we find a matching non-argument symbol. */
5142 int found_sym;
5143 struct symbol *sym;
5144
5145 arg_sym = NULL;
5146 found_sym = 0;
5147 if (wild)
5148 {
5149 struct symbol *sym;
5150 ALL_BLOCK_SYMBOLS (block, iter, sym)
5151 {
5152 if (SYMBOL_DOMAIN (sym) == domain
5153 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5154 {
5155 switch (SYMBOL_CLASS (sym))
5156 {
5157 case LOC_ARG:
5158 case LOC_LOCAL_ARG:
5159 case LOC_REF_ARG:
5160 case LOC_REGPARM:
5161 case LOC_REGPARM_ADDR:
5162 case LOC_BASEREG_ARG:
5163 case LOC_COMPUTED_ARG:
5164 arg_sym = sym;
5165 break;
5166 case LOC_UNRESOLVED:
5167 continue;
5168 default:
5169 found_sym = 1;
5170 add_defn_to_vec (obstackp,
5171 fixup_symbol_section (sym, objfile),
5172 block, symtab);
5173 break;
5174 }
5175 }
5176 }
5177 }
5178 else
5179 {
5180 ALL_BLOCK_SYMBOLS (block, iter, sym)
5181 {
5182 if (SYMBOL_DOMAIN (sym) == domain)
5183 {
5184 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5185 if (cmp == 0
5186 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5187 {
5188 switch (SYMBOL_CLASS (sym))
5189 {
5190 case LOC_ARG:
5191 case LOC_LOCAL_ARG:
5192 case LOC_REF_ARG:
5193 case LOC_REGPARM:
5194 case LOC_REGPARM_ADDR:
5195 case LOC_BASEREG_ARG:
5196 case LOC_COMPUTED_ARG:
5197 arg_sym = sym;
5198 break;
5199 case LOC_UNRESOLVED:
5200 break;
5201 default:
5202 found_sym = 1;
5203 add_defn_to_vec (obstackp,
5204 fixup_symbol_section (sym, objfile),
5205 block, symtab);
5206 break;
5207 }
5208 }
5209 }
5210 }
5211 }
5212
5213 if (!found_sym && arg_sym != NULL)
5214 {
5215 add_defn_to_vec (obstackp,
5216 fixup_symbol_section (arg_sym, objfile),
5217 block, symtab);
5218 }
5219
5220 if (!wild)
5221 {
5222 arg_sym = NULL;
5223 found_sym = 0;
5224
5225 ALL_BLOCK_SYMBOLS (block, iter, sym)
5226 {
5227 if (SYMBOL_DOMAIN (sym) == domain)
5228 {
5229 int cmp;
5230
5231 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5232 if (cmp == 0)
5233 {
5234 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5235 if (cmp == 0)
5236 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5237 name_len);
5238 }
5239
5240 if (cmp == 0
5241 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5242 {
5243 switch (SYMBOL_CLASS (sym))
5244 {
5245 case LOC_ARG:
5246 case LOC_LOCAL_ARG:
5247 case LOC_REF_ARG:
5248 case LOC_REGPARM:
5249 case LOC_REGPARM_ADDR:
5250 case LOC_BASEREG_ARG:
5251 case LOC_COMPUTED_ARG:
5252 arg_sym = sym;
5253 break;
5254 case LOC_UNRESOLVED:
5255 break;
5256 default:
5257 found_sym = 1;
5258 add_defn_to_vec (obstackp,
5259 fixup_symbol_section (sym, objfile),
5260 block, symtab);
5261 break;
5262 }
5263 }
5264 }
5265 }
5266
5267 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5268 They aren't parameters, right? */
5269 if (!found_sym && arg_sym != NULL)
5270 {
5271 add_defn_to_vec (obstackp,
5272 fixup_symbol_section (arg_sym, objfile),
5273 block, symtab);
5274 }
5275 }
5276 }
5277 \f
5278 /* Field Access */
5279
5280 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5281 to be invisible to users. */
5282
5283 int
5284 ada_is_ignored_field (struct type *type, int field_num)
5285 {
5286 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5287 return 1;
5288 else
5289 {
5290 const char *name = TYPE_FIELD_NAME (type, field_num);
5291 return (name == NULL
5292 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5293 }
5294 }
5295
5296 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5297 pointer or reference type whose ultimate target has a tag field. */
5298
5299 int
5300 ada_is_tagged_type (struct type *type, int refok)
5301 {
5302 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5303 }
5304
5305 /* True iff TYPE represents the type of X'Tag */
5306
5307 int
5308 ada_is_tag_type (struct type *type)
5309 {
5310 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5311 return 0;
5312 else
5313 {
5314 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5315 return (name != NULL
5316 && strcmp (name, "ada__tags__dispatch_table") == 0);
5317 }
5318 }
5319
5320 /* The type of the tag on VAL. */
5321
5322 struct type *
5323 ada_tag_type (struct value *val)
5324 {
5325 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5326 }
5327
5328 /* The value of the tag on VAL. */
5329
5330 struct value *
5331 ada_value_tag (struct value *val)
5332 {
5333 return ada_value_struct_elt (val, "_tag", 0);
5334 }
5335
5336 /* The value of the tag on the object of type TYPE whose contents are
5337 saved at VALADDR, if it is non-null, or is at memory address
5338 ADDRESS. */
5339
5340 static struct value *
5341 value_tag_from_contents_and_address (struct type *type,
5342 const gdb_byte *valaddr,
5343 CORE_ADDR address)
5344 {
5345 int tag_byte_offset, dummy1, dummy2;
5346 struct type *tag_type;
5347 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5348 NULL, NULL, NULL))
5349 {
5350 const gdb_byte *valaddr1 = ((valaddr == NULL)
5351 ? NULL
5352 : valaddr + tag_byte_offset);
5353 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5354
5355 return value_from_contents_and_address (tag_type, valaddr1, address1);
5356 }
5357 return NULL;
5358 }
5359
5360 static struct type *
5361 type_from_tag (struct value *tag)
5362 {
5363 const char *type_name = ada_tag_name (tag);
5364 if (type_name != NULL)
5365 return ada_find_any_type (ada_encode (type_name));
5366 return NULL;
5367 }
5368
5369 struct tag_args
5370 {
5371 struct value *tag;
5372 char *name;
5373 };
5374
5375
5376 static int ada_tag_name_1 (void *);
5377 static int ada_tag_name_2 (struct tag_args *);
5378
5379 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5380 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5381 The value stored in ARGS->name is valid until the next call to
5382 ada_tag_name_1. */
5383
5384 static int
5385 ada_tag_name_1 (void *args0)
5386 {
5387 struct tag_args *args = (struct tag_args *) args0;
5388 static char name[1024];
5389 char *p;
5390 struct value *val;
5391 args->name = NULL;
5392 val = ada_value_struct_elt (args->tag, "tsd", 1);
5393 if (val == NULL)
5394 return ada_tag_name_2 (args);
5395 val = ada_value_struct_elt (val, "expanded_name", 1);
5396 if (val == NULL)
5397 return 0;
5398 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5399 for (p = name; *p != '\0'; p += 1)
5400 if (isalpha (*p))
5401 *p = tolower (*p);
5402 args->name = name;
5403 return 0;
5404 }
5405
5406 /* Utility function for ada_tag_name_1 that tries the second
5407 representation for the dispatch table (in which there is no
5408 explicit 'tsd' field in the referent of the tag pointer, and instead
5409 the tsd pointer is stored just before the dispatch table. */
5410
5411 static int
5412 ada_tag_name_2 (struct tag_args *args)
5413 {
5414 struct type *info_type;
5415 static char name[1024];
5416 char *p;
5417 struct value *val, *valp;
5418
5419 args->name = NULL;
5420 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5421 if (info_type == NULL)
5422 return 0;
5423 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5424 valp = value_cast (info_type, args->tag);
5425 if (valp == NULL)
5426 return 0;
5427 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5428 if (val == NULL)
5429 return 0;
5430 val = ada_value_struct_elt (val, "expanded_name", 1);
5431 if (val == NULL)
5432 return 0;
5433 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5434 for (p = name; *p != '\0'; p += 1)
5435 if (isalpha (*p))
5436 *p = tolower (*p);
5437 args->name = name;
5438 return 0;
5439 }
5440
5441 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5442 * a C string. */
5443
5444 const char *
5445 ada_tag_name (struct value *tag)
5446 {
5447 struct tag_args args;
5448 if (!ada_is_tag_type (value_type (tag)))
5449 return NULL;
5450 args.tag = tag;
5451 args.name = NULL;
5452 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5453 return args.name;
5454 }
5455
5456 /* The parent type of TYPE, or NULL if none. */
5457
5458 struct type *
5459 ada_parent_type (struct type *type)
5460 {
5461 int i;
5462
5463 type = ada_check_typedef (type);
5464
5465 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5466 return NULL;
5467
5468 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5469 if (ada_is_parent_field (type, i))
5470 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5471
5472 return NULL;
5473 }
5474
5475 /* True iff field number FIELD_NUM of structure type TYPE contains the
5476 parent-type (inherited) fields of a derived type. Assumes TYPE is
5477 a structure type with at least FIELD_NUM+1 fields. */
5478
5479 int
5480 ada_is_parent_field (struct type *type, int field_num)
5481 {
5482 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5483 return (name != NULL
5484 && (strncmp (name, "PARENT", 6) == 0
5485 || strncmp (name, "_parent", 7) == 0));
5486 }
5487
5488 /* True iff field number FIELD_NUM of structure type TYPE is a
5489 transparent wrapper field (which should be silently traversed when doing
5490 field selection and flattened when printing). Assumes TYPE is a
5491 structure type with at least FIELD_NUM+1 fields. Such fields are always
5492 structures. */
5493
5494 int
5495 ada_is_wrapper_field (struct type *type, int field_num)
5496 {
5497 const char *name = TYPE_FIELD_NAME (type, field_num);
5498 return (name != NULL
5499 && (strncmp (name, "PARENT", 6) == 0
5500 || strcmp (name, "REP") == 0
5501 || strncmp (name, "_parent", 7) == 0
5502 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5503 }
5504
5505 /* True iff field number FIELD_NUM of structure or union type TYPE
5506 is a variant wrapper. Assumes TYPE is a structure type with at least
5507 FIELD_NUM+1 fields. */
5508
5509 int
5510 ada_is_variant_part (struct type *type, int field_num)
5511 {
5512 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5513 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5514 || (is_dynamic_field (type, field_num)
5515 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5516 == TYPE_CODE_UNION)));
5517 }
5518
5519 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5520 whose discriminants are contained in the record type OUTER_TYPE,
5521 returns the type of the controlling discriminant for the variant. */
5522
5523 struct type *
5524 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5525 {
5526 char *name = ada_variant_discrim_name (var_type);
5527 struct type *type =
5528 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5529 if (type == NULL)
5530 return builtin_type_int;
5531 else
5532 return type;
5533 }
5534
5535 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5536 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5537 represents a 'when others' clause; otherwise 0. */
5538
5539 int
5540 ada_is_others_clause (struct type *type, int field_num)
5541 {
5542 const char *name = TYPE_FIELD_NAME (type, field_num);
5543 return (name != NULL && name[0] == 'O');
5544 }
5545
5546 /* Assuming that TYPE0 is the type of the variant part of a record,
5547 returns the name of the discriminant controlling the variant.
5548 The value is valid until the next call to ada_variant_discrim_name. */
5549
5550 char *
5551 ada_variant_discrim_name (struct type *type0)
5552 {
5553 static char *result = NULL;
5554 static size_t result_len = 0;
5555 struct type *type;
5556 const char *name;
5557 const char *discrim_end;
5558 const char *discrim_start;
5559
5560 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5561 type = TYPE_TARGET_TYPE (type0);
5562 else
5563 type = type0;
5564
5565 name = ada_type_name (type);
5566
5567 if (name == NULL || name[0] == '\000')
5568 return "";
5569
5570 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5571 discrim_end -= 1)
5572 {
5573 if (strncmp (discrim_end, "___XVN", 6) == 0)
5574 break;
5575 }
5576 if (discrim_end == name)
5577 return "";
5578
5579 for (discrim_start = discrim_end; discrim_start != name + 3;
5580 discrim_start -= 1)
5581 {
5582 if (discrim_start == name + 1)
5583 return "";
5584 if ((discrim_start > name + 3
5585 && strncmp (discrim_start - 3, "___", 3) == 0)
5586 || discrim_start[-1] == '.')
5587 break;
5588 }
5589
5590 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5591 strncpy (result, discrim_start, discrim_end - discrim_start);
5592 result[discrim_end - discrim_start] = '\0';
5593 return result;
5594 }
5595
5596 /* Scan STR for a subtype-encoded number, beginning at position K.
5597 Put the position of the character just past the number scanned in
5598 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5599 Return 1 if there was a valid number at the given position, and 0
5600 otherwise. A "subtype-encoded" number consists of the absolute value
5601 in decimal, followed by the letter 'm' to indicate a negative number.
5602 Assumes 0m does not occur. */
5603
5604 int
5605 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5606 {
5607 ULONGEST RU;
5608
5609 if (!isdigit (str[k]))
5610 return 0;
5611
5612 /* Do it the hard way so as not to make any assumption about
5613 the relationship of unsigned long (%lu scan format code) and
5614 LONGEST. */
5615 RU = 0;
5616 while (isdigit (str[k]))
5617 {
5618 RU = RU * 10 + (str[k] - '0');
5619 k += 1;
5620 }
5621
5622 if (str[k] == 'm')
5623 {
5624 if (R != NULL)
5625 *R = (-(LONGEST) (RU - 1)) - 1;
5626 k += 1;
5627 }
5628 else if (R != NULL)
5629 *R = (LONGEST) RU;
5630
5631 /* NOTE on the above: Technically, C does not say what the results of
5632 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5633 number representable as a LONGEST (although either would probably work
5634 in most implementations). When RU>0, the locution in the then branch
5635 above is always equivalent to the negative of RU. */
5636
5637 if (new_k != NULL)
5638 *new_k = k;
5639 return 1;
5640 }
5641
5642 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5643 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5644 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5645
5646 int
5647 ada_in_variant (LONGEST val, struct type *type, int field_num)
5648 {
5649 const char *name = TYPE_FIELD_NAME (type, field_num);
5650 int p;
5651
5652 p = 0;
5653 while (1)
5654 {
5655 switch (name[p])
5656 {
5657 case '\0':
5658 return 0;
5659 case 'S':
5660 {
5661 LONGEST W;
5662 if (!ada_scan_number (name, p + 1, &W, &p))
5663 return 0;
5664 if (val == W)
5665 return 1;
5666 break;
5667 }
5668 case 'R':
5669 {
5670 LONGEST L, U;
5671 if (!ada_scan_number (name, p + 1, &L, &p)
5672 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5673 return 0;
5674 if (val >= L && val <= U)
5675 return 1;
5676 break;
5677 }
5678 case 'O':
5679 return 1;
5680 default:
5681 return 0;
5682 }
5683 }
5684 }
5685
5686 /* FIXME: Lots of redundancy below. Try to consolidate. */
5687
5688 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5689 ARG_TYPE, extract and return the value of one of its (non-static)
5690 fields. FIELDNO says which field. Differs from value_primitive_field
5691 only in that it can handle packed values of arbitrary type. */
5692
5693 static struct value *
5694 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5695 struct type *arg_type)
5696 {
5697 struct type *type;
5698
5699 arg_type = ada_check_typedef (arg_type);
5700 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5701
5702 /* Handle packed fields. */
5703
5704 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5705 {
5706 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5707 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5708
5709 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5710 offset + bit_pos / 8,
5711 bit_pos % 8, bit_size, type);
5712 }
5713 else
5714 return value_primitive_field (arg1, offset, fieldno, arg_type);
5715 }
5716
5717 /* Find field with name NAME in object of type TYPE. If found,
5718 set the following for each argument that is non-null:
5719 - *FIELD_TYPE_P to the field's type;
5720 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5721 an object of that type;
5722 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5723 - *BIT_SIZE_P to its size in bits if the field is packed, and
5724 0 otherwise;
5725 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5726 fields up to but not including the desired field, or by the total
5727 number of fields if not found. A NULL value of NAME never
5728 matches; the function just counts visible fields in this case.
5729
5730 Returns 1 if found, 0 otherwise. */
5731
5732 static int
5733 find_struct_field (char *name, struct type *type, int offset,
5734 struct type **field_type_p,
5735 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5736 int *index_p)
5737 {
5738 int i;
5739
5740 type = ada_check_typedef (type);
5741
5742 if (field_type_p != NULL)
5743 *field_type_p = NULL;
5744 if (byte_offset_p != NULL)
5745 *byte_offset_p = 0;
5746 if (bit_offset_p != NULL)
5747 *bit_offset_p = 0;
5748 if (bit_size_p != NULL)
5749 *bit_size_p = 0;
5750
5751 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5752 {
5753 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5754 int fld_offset = offset + bit_pos / 8;
5755 char *t_field_name = TYPE_FIELD_NAME (type, i);
5756
5757 if (t_field_name == NULL)
5758 continue;
5759
5760 else if (name != NULL && field_name_match (t_field_name, name))
5761 {
5762 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5763 if (field_type_p != NULL)
5764 *field_type_p = TYPE_FIELD_TYPE (type, i);
5765 if (byte_offset_p != NULL)
5766 *byte_offset_p = fld_offset;
5767 if (bit_offset_p != NULL)
5768 *bit_offset_p = bit_pos % 8;
5769 if (bit_size_p != NULL)
5770 *bit_size_p = bit_size;
5771 return 1;
5772 }
5773 else if (ada_is_wrapper_field (type, i))
5774 {
5775 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5776 field_type_p, byte_offset_p, bit_offset_p,
5777 bit_size_p, index_p))
5778 return 1;
5779 }
5780 else if (ada_is_variant_part (type, i))
5781 {
5782 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5783 fixed type?? */
5784 int j;
5785 struct type *field_type
5786 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5787
5788 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5789 {
5790 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5791 fld_offset
5792 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5793 field_type_p, byte_offset_p,
5794 bit_offset_p, bit_size_p, index_p))
5795 return 1;
5796 }
5797 }
5798 else if (index_p != NULL)
5799 *index_p += 1;
5800 }
5801 return 0;
5802 }
5803
5804 /* Number of user-visible fields in record type TYPE. */
5805
5806 static int
5807 num_visible_fields (struct type *type)
5808 {
5809 int n;
5810 n = 0;
5811 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5812 return n;
5813 }
5814
5815 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5816 and search in it assuming it has (class) type TYPE.
5817 If found, return value, else return NULL.
5818
5819 Searches recursively through wrapper fields (e.g., '_parent'). */
5820
5821 static struct value *
5822 ada_search_struct_field (char *name, struct value *arg, int offset,
5823 struct type *type)
5824 {
5825 int i;
5826 type = ada_check_typedef (type);
5827
5828 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5829 {
5830 char *t_field_name = TYPE_FIELD_NAME (type, i);
5831
5832 if (t_field_name == NULL)
5833 continue;
5834
5835 else if (field_name_match (t_field_name, name))
5836 return ada_value_primitive_field (arg, offset, i, type);
5837
5838 else if (ada_is_wrapper_field (type, i))
5839 {
5840 struct value *v = /* Do not let indent join lines here. */
5841 ada_search_struct_field (name, arg,
5842 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5843 TYPE_FIELD_TYPE (type, i));
5844 if (v != NULL)
5845 return v;
5846 }
5847
5848 else if (ada_is_variant_part (type, i))
5849 {
5850 /* PNH: Do we ever get here? See find_struct_field. */
5851 int j;
5852 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5853 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5854
5855 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5856 {
5857 struct value *v = ada_search_struct_field /* Force line break. */
5858 (name, arg,
5859 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5860 TYPE_FIELD_TYPE (field_type, j));
5861 if (v != NULL)
5862 return v;
5863 }
5864 }
5865 }
5866 return NULL;
5867 }
5868
5869 static struct value *ada_index_struct_field_1 (int *, struct value *,
5870 int, struct type *);
5871
5872
5873 /* Return field #INDEX in ARG, where the index is that returned by
5874 * find_struct_field through its INDEX_P argument. Adjust the address
5875 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5876 * If found, return value, else return NULL. */
5877
5878 static struct value *
5879 ada_index_struct_field (int index, struct value *arg, int offset,
5880 struct type *type)
5881 {
5882 return ada_index_struct_field_1 (&index, arg, offset, type);
5883 }
5884
5885
5886 /* Auxiliary function for ada_index_struct_field. Like
5887 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5888 * *INDEX_P. */
5889
5890 static struct value *
5891 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5892 struct type *type)
5893 {
5894 int i;
5895 type = ada_check_typedef (type);
5896
5897 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5898 {
5899 if (TYPE_FIELD_NAME (type, i) == NULL)
5900 continue;
5901 else if (ada_is_wrapper_field (type, i))
5902 {
5903 struct value *v = /* Do not let indent join lines here. */
5904 ada_index_struct_field_1 (index_p, arg,
5905 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5906 TYPE_FIELD_TYPE (type, i));
5907 if (v != NULL)
5908 return v;
5909 }
5910
5911 else if (ada_is_variant_part (type, i))
5912 {
5913 /* PNH: Do we ever get here? See ada_search_struct_field,
5914 find_struct_field. */
5915 error (_("Cannot assign this kind of variant record"));
5916 }
5917 else if (*index_p == 0)
5918 return ada_value_primitive_field (arg, offset, i, type);
5919 else
5920 *index_p -= 1;
5921 }
5922 return NULL;
5923 }
5924
5925 /* Given ARG, a value of type (pointer or reference to a)*
5926 structure/union, extract the component named NAME from the ultimate
5927 target structure/union and return it as a value with its
5928 appropriate type. If ARG is a pointer or reference and the field
5929 is not packed, returns a reference to the field, otherwise the
5930 value of the field (an lvalue if ARG is an lvalue).
5931
5932 The routine searches for NAME among all members of the structure itself
5933 and (recursively) among all members of any wrapper members
5934 (e.g., '_parent').
5935
5936 If NO_ERR, then simply return NULL in case of error, rather than
5937 calling error. */
5938
5939 struct value *
5940 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5941 {
5942 struct type *t, *t1;
5943 struct value *v;
5944
5945 v = NULL;
5946 t1 = t = ada_check_typedef (value_type (arg));
5947 if (TYPE_CODE (t) == TYPE_CODE_REF)
5948 {
5949 t1 = TYPE_TARGET_TYPE (t);
5950 if (t1 == NULL)
5951 goto BadValue;
5952 t1 = ada_check_typedef (t1);
5953 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5954 {
5955 arg = coerce_ref (arg);
5956 t = t1;
5957 }
5958 }
5959
5960 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5961 {
5962 t1 = TYPE_TARGET_TYPE (t);
5963 if (t1 == NULL)
5964 goto BadValue;
5965 t1 = ada_check_typedef (t1);
5966 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5967 {
5968 arg = value_ind (arg);
5969 t = t1;
5970 }
5971 else
5972 break;
5973 }
5974
5975 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5976 goto BadValue;
5977
5978 if (t1 == t)
5979 v = ada_search_struct_field (name, arg, 0, t);
5980 else
5981 {
5982 int bit_offset, bit_size, byte_offset;
5983 struct type *field_type;
5984 CORE_ADDR address;
5985
5986 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5987 address = value_as_address (arg);
5988 else
5989 address = unpack_pointer (t, value_contents (arg));
5990
5991 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5992 if (find_struct_field (name, t1, 0,
5993 &field_type, &byte_offset, &bit_offset,
5994 &bit_size, NULL))
5995 {
5996 if (bit_size != 0)
5997 {
5998 if (TYPE_CODE (t) == TYPE_CODE_REF)
5999 arg = ada_coerce_ref (arg);
6000 else
6001 arg = ada_value_ind (arg);
6002 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6003 bit_offset, bit_size,
6004 field_type);
6005 }
6006 else
6007 v = value_from_pointer (lookup_reference_type (field_type),
6008 address + byte_offset);
6009 }
6010 }
6011
6012 if (v != NULL || no_err)
6013 return v;
6014 else
6015 error (_("There is no member named %s."), name);
6016
6017 BadValue:
6018 if (no_err)
6019 return NULL;
6020 else
6021 error (_("Attempt to extract a component of a value that is not a record."));
6022 }
6023
6024 /* Given a type TYPE, look up the type of the component of type named NAME.
6025 If DISPP is non-null, add its byte displacement from the beginning of a
6026 structure (pointed to by a value) of type TYPE to *DISPP (does not
6027 work for packed fields).
6028
6029 Matches any field whose name has NAME as a prefix, possibly
6030 followed by "___".
6031
6032 TYPE can be either a struct or union. If REFOK, TYPE may also
6033 be a (pointer or reference)+ to a struct or union, and the
6034 ultimate target type will be searched.
6035
6036 Looks recursively into variant clauses and parent types.
6037
6038 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6039 TYPE is not a type of the right kind. */
6040
6041 static struct type *
6042 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6043 int noerr, int *dispp)
6044 {
6045 int i;
6046
6047 if (name == NULL)
6048 goto BadName;
6049
6050 if (refok && type != NULL)
6051 while (1)
6052 {
6053 type = ada_check_typedef (type);
6054 if (TYPE_CODE (type) != TYPE_CODE_PTR
6055 && TYPE_CODE (type) != TYPE_CODE_REF)
6056 break;
6057 type = TYPE_TARGET_TYPE (type);
6058 }
6059
6060 if (type == NULL
6061 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6062 && TYPE_CODE (type) != TYPE_CODE_UNION))
6063 {
6064 if (noerr)
6065 return NULL;
6066 else
6067 {
6068 target_terminal_ours ();
6069 gdb_flush (gdb_stdout);
6070 if (type == NULL)
6071 error (_("Type (null) is not a structure or union type"));
6072 else
6073 {
6074 /* XXX: type_sprint */
6075 fprintf_unfiltered (gdb_stderr, _("Type "));
6076 type_print (type, "", gdb_stderr, -1);
6077 error (_(" is not a structure or union type"));
6078 }
6079 }
6080 }
6081
6082 type = to_static_fixed_type (type);
6083
6084 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6085 {
6086 char *t_field_name = TYPE_FIELD_NAME (type, i);
6087 struct type *t;
6088 int disp;
6089
6090 if (t_field_name == NULL)
6091 continue;
6092
6093 else if (field_name_match (t_field_name, name))
6094 {
6095 if (dispp != NULL)
6096 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6097 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6098 }
6099
6100 else if (ada_is_wrapper_field (type, i))
6101 {
6102 disp = 0;
6103 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6104 0, 1, &disp);
6105 if (t != NULL)
6106 {
6107 if (dispp != NULL)
6108 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6109 return t;
6110 }
6111 }
6112
6113 else if (ada_is_variant_part (type, i))
6114 {
6115 int j;
6116 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6117
6118 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6119 {
6120 disp = 0;
6121 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6122 name, 0, 1, &disp);
6123 if (t != NULL)
6124 {
6125 if (dispp != NULL)
6126 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6127 return t;
6128 }
6129 }
6130 }
6131
6132 }
6133
6134 BadName:
6135 if (!noerr)
6136 {
6137 target_terminal_ours ();
6138 gdb_flush (gdb_stdout);
6139 if (name == NULL)
6140 {
6141 /* XXX: type_sprint */
6142 fprintf_unfiltered (gdb_stderr, _("Type "));
6143 type_print (type, "", gdb_stderr, -1);
6144 error (_(" has no component named <null>"));
6145 }
6146 else
6147 {
6148 /* XXX: type_sprint */
6149 fprintf_unfiltered (gdb_stderr, _("Type "));
6150 type_print (type, "", gdb_stderr, -1);
6151 error (_(" has no component named %s"), name);
6152 }
6153 }
6154
6155 return NULL;
6156 }
6157
6158 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6159 within a value of type OUTER_TYPE that is stored in GDB at
6160 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6161 numbering from 0) is applicable. Returns -1 if none are. */
6162
6163 int
6164 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6165 const gdb_byte *outer_valaddr)
6166 {
6167 int others_clause;
6168 int i;
6169 int disp;
6170 struct type *discrim_type;
6171 char *discrim_name = ada_variant_discrim_name (var_type);
6172 LONGEST discrim_val;
6173
6174 disp = 0;
6175 discrim_type =
6176 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6177 if (discrim_type == NULL)
6178 return -1;
6179 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6180
6181 others_clause = -1;
6182 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6183 {
6184 if (ada_is_others_clause (var_type, i))
6185 others_clause = i;
6186 else if (ada_in_variant (discrim_val, var_type, i))
6187 return i;
6188 }
6189
6190 return others_clause;
6191 }
6192 \f
6193
6194
6195 /* Dynamic-Sized Records */
6196
6197 /* Strategy: The type ostensibly attached to a value with dynamic size
6198 (i.e., a size that is not statically recorded in the debugging
6199 data) does not accurately reflect the size or layout of the value.
6200 Our strategy is to convert these values to values with accurate,
6201 conventional types that are constructed on the fly. */
6202
6203 /* There is a subtle and tricky problem here. In general, we cannot
6204 determine the size of dynamic records without its data. However,
6205 the 'struct value' data structure, which GDB uses to represent
6206 quantities in the inferior process (the target), requires the size
6207 of the type at the time of its allocation in order to reserve space
6208 for GDB's internal copy of the data. That's why the
6209 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6210 rather than struct value*s.
6211
6212 However, GDB's internal history variables ($1, $2, etc.) are
6213 struct value*s containing internal copies of the data that are not, in
6214 general, the same as the data at their corresponding addresses in
6215 the target. Fortunately, the types we give to these values are all
6216 conventional, fixed-size types (as per the strategy described
6217 above), so that we don't usually have to perform the
6218 'to_fixed_xxx_type' conversions to look at their values.
6219 Unfortunately, there is one exception: if one of the internal
6220 history variables is an array whose elements are unconstrained
6221 records, then we will need to create distinct fixed types for each
6222 element selected. */
6223
6224 /* The upshot of all of this is that many routines take a (type, host
6225 address, target address) triple as arguments to represent a value.
6226 The host address, if non-null, is supposed to contain an internal
6227 copy of the relevant data; otherwise, the program is to consult the
6228 target at the target address. */
6229
6230 /* Assuming that VAL0 represents a pointer value, the result of
6231 dereferencing it. Differs from value_ind in its treatment of
6232 dynamic-sized types. */
6233
6234 struct value *
6235 ada_value_ind (struct value *val0)
6236 {
6237 struct value *val = unwrap_value (value_ind (val0));
6238 return ada_to_fixed_value (val);
6239 }
6240
6241 /* The value resulting from dereferencing any "reference to"
6242 qualifiers on VAL0. */
6243
6244 static struct value *
6245 ada_coerce_ref (struct value *val0)
6246 {
6247 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6248 {
6249 struct value *val = val0;
6250 val = coerce_ref (val);
6251 val = unwrap_value (val);
6252 return ada_to_fixed_value (val);
6253 }
6254 else
6255 return val0;
6256 }
6257
6258 /* Return OFF rounded upward if necessary to a multiple of
6259 ALIGNMENT (a power of 2). */
6260
6261 static unsigned int
6262 align_value (unsigned int off, unsigned int alignment)
6263 {
6264 return (off + alignment - 1) & ~(alignment - 1);
6265 }
6266
6267 /* Return the bit alignment required for field #F of template type TYPE. */
6268
6269 static unsigned int
6270 field_alignment (struct type *type, int f)
6271 {
6272 const char *name = TYPE_FIELD_NAME (type, f);
6273 int len;
6274 int align_offset;
6275
6276 /* The field name should never be null, unless the debugging information
6277 is somehow malformed. In this case, we assume the field does not
6278 require any alignment. */
6279 if (name == NULL)
6280 return 1;
6281
6282 len = strlen (name);
6283
6284 if (!isdigit (name[len - 1]))
6285 return 1;
6286
6287 if (isdigit (name[len - 2]))
6288 align_offset = len - 2;
6289 else
6290 align_offset = len - 1;
6291
6292 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6293 return TARGET_CHAR_BIT;
6294
6295 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6296 }
6297
6298 /* Find a symbol named NAME. Ignores ambiguity. */
6299
6300 struct symbol *
6301 ada_find_any_symbol (const char *name)
6302 {
6303 struct symbol *sym;
6304
6305 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6306 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6307 return sym;
6308
6309 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6310 return sym;
6311 }
6312
6313 /* Find a type named NAME. Ignores ambiguity. */
6314
6315 struct type *
6316 ada_find_any_type (const char *name)
6317 {
6318 struct symbol *sym = ada_find_any_symbol (name);
6319
6320 if (sym != NULL)
6321 return SYMBOL_TYPE (sym);
6322
6323 return NULL;
6324 }
6325
6326 /* Given NAME and an associated BLOCK, search all symbols for
6327 NAME suffixed with "___XR", which is the ``renaming'' symbol
6328 associated to NAME. Return this symbol if found, return
6329 NULL otherwise. */
6330
6331 struct symbol *
6332 ada_find_renaming_symbol (const char *name, struct block *block)
6333 {
6334 struct symbol *sym;
6335
6336 sym = find_old_style_renaming_symbol (name, block);
6337
6338 if (sym != NULL)
6339 return sym;
6340
6341 /* Not right yet. FIXME pnh 7/20/2007. */
6342 sym = ada_find_any_symbol (name);
6343 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6344 return sym;
6345 else
6346 return NULL;
6347 }
6348
6349 static struct symbol *
6350 find_old_style_renaming_symbol (const char *name, struct block *block)
6351 {
6352 const struct symbol *function_sym = block_function (block);
6353 char *rename;
6354
6355 if (function_sym != NULL)
6356 {
6357 /* If the symbol is defined inside a function, NAME is not fully
6358 qualified. This means we need to prepend the function name
6359 as well as adding the ``___XR'' suffix to build the name of
6360 the associated renaming symbol. */
6361 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6362 /* Function names sometimes contain suffixes used
6363 for instance to qualify nested subprograms. When building
6364 the XR type name, we need to make sure that this suffix is
6365 not included. So do not include any suffix in the function
6366 name length below. */
6367 const int function_name_len = ada_name_prefix_len (function_name);
6368 const int rename_len = function_name_len + 2 /* "__" */
6369 + strlen (name) + 6 /* "___XR\0" */ ;
6370
6371 /* Strip the suffix if necessary. */
6372 function_name[function_name_len] = '\0';
6373
6374 /* Library-level functions are a special case, as GNAT adds
6375 a ``_ada_'' prefix to the function name to avoid namespace
6376 pollution. However, the renaming symbols themselves do not
6377 have this prefix, so we need to skip this prefix if present. */
6378 if (function_name_len > 5 /* "_ada_" */
6379 && strstr (function_name, "_ada_") == function_name)
6380 function_name = function_name + 5;
6381
6382 rename = (char *) alloca (rename_len * sizeof (char));
6383 sprintf (rename, "%s__%s___XR", function_name, name);
6384 }
6385 else
6386 {
6387 const int rename_len = strlen (name) + 6;
6388 rename = (char *) alloca (rename_len * sizeof (char));
6389 sprintf (rename, "%s___XR", name);
6390 }
6391
6392 return ada_find_any_symbol (rename);
6393 }
6394
6395 /* Because of GNAT encoding conventions, several GDB symbols may match a
6396 given type name. If the type denoted by TYPE0 is to be preferred to
6397 that of TYPE1 for purposes of type printing, return non-zero;
6398 otherwise return 0. */
6399
6400 int
6401 ada_prefer_type (struct type *type0, struct type *type1)
6402 {
6403 if (type1 == NULL)
6404 return 1;
6405 else if (type0 == NULL)
6406 return 0;
6407 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6408 return 1;
6409 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6410 return 0;
6411 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6412 return 1;
6413 else if (ada_is_packed_array_type (type0))
6414 return 1;
6415 else if (ada_is_array_descriptor_type (type0)
6416 && !ada_is_array_descriptor_type (type1))
6417 return 1;
6418 else
6419 {
6420 const char *type0_name = type_name_no_tag (type0);
6421 const char *type1_name = type_name_no_tag (type1);
6422
6423 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6424 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6425 return 1;
6426 }
6427 return 0;
6428 }
6429
6430 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6431 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6432
6433 char *
6434 ada_type_name (struct type *type)
6435 {
6436 if (type == NULL)
6437 return NULL;
6438 else if (TYPE_NAME (type) != NULL)
6439 return TYPE_NAME (type);
6440 else
6441 return TYPE_TAG_NAME (type);
6442 }
6443
6444 /* Find a parallel type to TYPE whose name is formed by appending
6445 SUFFIX to the name of TYPE. */
6446
6447 struct type *
6448 ada_find_parallel_type (struct type *type, const char *suffix)
6449 {
6450 static char *name;
6451 static size_t name_len = 0;
6452 int len;
6453 char *typename = ada_type_name (type);
6454
6455 if (typename == NULL)
6456 return NULL;
6457
6458 len = strlen (typename);
6459
6460 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6461
6462 strcpy (name, typename);
6463 strcpy (name + len, suffix);
6464
6465 return ada_find_any_type (name);
6466 }
6467
6468
6469 /* If TYPE is a variable-size record type, return the corresponding template
6470 type describing its fields. Otherwise, return NULL. */
6471
6472 static struct type *
6473 dynamic_template_type (struct type *type)
6474 {
6475 type = ada_check_typedef (type);
6476
6477 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6478 || ada_type_name (type) == NULL)
6479 return NULL;
6480 else
6481 {
6482 int len = strlen (ada_type_name (type));
6483 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6484 return type;
6485 else
6486 return ada_find_parallel_type (type, "___XVE");
6487 }
6488 }
6489
6490 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6491 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6492
6493 static int
6494 is_dynamic_field (struct type *templ_type, int field_num)
6495 {
6496 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6497 return name != NULL
6498 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6499 && strstr (name, "___XVL") != NULL;
6500 }
6501
6502 /* The index of the variant field of TYPE, or -1 if TYPE does not
6503 represent a variant record type. */
6504
6505 static int
6506 variant_field_index (struct type *type)
6507 {
6508 int f;
6509
6510 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6511 return -1;
6512
6513 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6514 {
6515 if (ada_is_variant_part (type, f))
6516 return f;
6517 }
6518 return -1;
6519 }
6520
6521 /* A record type with no fields. */
6522
6523 static struct type *
6524 empty_record (struct objfile *objfile)
6525 {
6526 struct type *type = alloc_type (objfile);
6527 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6528 TYPE_NFIELDS (type) = 0;
6529 TYPE_FIELDS (type) = NULL;
6530 TYPE_NAME (type) = "<empty>";
6531 TYPE_TAG_NAME (type) = NULL;
6532 TYPE_FLAGS (type) = 0;
6533 TYPE_LENGTH (type) = 0;
6534 return type;
6535 }
6536
6537 /* An ordinary record type (with fixed-length fields) that describes
6538 the value of type TYPE at VALADDR or ADDRESS (see comments at
6539 the beginning of this section) VAL according to GNAT conventions.
6540 DVAL0 should describe the (portion of a) record that contains any
6541 necessary discriminants. It should be NULL if value_type (VAL) is
6542 an outer-level type (i.e., as opposed to a branch of a variant.) A
6543 variant field (unless unchecked) is replaced by a particular branch
6544 of the variant.
6545
6546 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6547 length are not statically known are discarded. As a consequence,
6548 VALADDR, ADDRESS and DVAL0 are ignored.
6549
6550 NOTE: Limitations: For now, we assume that dynamic fields and
6551 variants occupy whole numbers of bytes. However, they need not be
6552 byte-aligned. */
6553
6554 struct type *
6555 ada_template_to_fixed_record_type_1 (struct type *type,
6556 const gdb_byte *valaddr,
6557 CORE_ADDR address, struct value *dval0,
6558 int keep_dynamic_fields)
6559 {
6560 struct value *mark = value_mark ();
6561 struct value *dval;
6562 struct type *rtype;
6563 int nfields, bit_len;
6564 int variant_field;
6565 long off;
6566 int fld_bit_len, bit_incr;
6567 int f;
6568
6569 /* Compute the number of fields in this record type that are going
6570 to be processed: unless keep_dynamic_fields, this includes only
6571 fields whose position and length are static will be processed. */
6572 if (keep_dynamic_fields)
6573 nfields = TYPE_NFIELDS (type);
6574 else
6575 {
6576 nfields = 0;
6577 while (nfields < TYPE_NFIELDS (type)
6578 && !ada_is_variant_part (type, nfields)
6579 && !is_dynamic_field (type, nfields))
6580 nfields++;
6581 }
6582
6583 rtype = alloc_type (TYPE_OBJFILE (type));
6584 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6585 INIT_CPLUS_SPECIFIC (rtype);
6586 TYPE_NFIELDS (rtype) = nfields;
6587 TYPE_FIELDS (rtype) = (struct field *)
6588 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6589 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6590 TYPE_NAME (rtype) = ada_type_name (type);
6591 TYPE_TAG_NAME (rtype) = NULL;
6592 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6593
6594 off = 0;
6595 bit_len = 0;
6596 variant_field = -1;
6597
6598 for (f = 0; f < nfields; f += 1)
6599 {
6600 off = align_value (off, field_alignment (type, f))
6601 + TYPE_FIELD_BITPOS (type, f);
6602 TYPE_FIELD_BITPOS (rtype, f) = off;
6603 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6604
6605 if (ada_is_variant_part (type, f))
6606 {
6607 variant_field = f;
6608 fld_bit_len = bit_incr = 0;
6609 }
6610 else if (is_dynamic_field (type, f))
6611 {
6612 if (dval0 == NULL)
6613 dval = value_from_contents_and_address (rtype, valaddr, address);
6614 else
6615 dval = dval0;
6616
6617 TYPE_FIELD_TYPE (rtype, f) =
6618 ada_to_fixed_type
6619 (ada_get_base_type
6620 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6621 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6622 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6623 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6624 bit_incr = fld_bit_len =
6625 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6626 }
6627 else
6628 {
6629 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6630 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6631 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6632 bit_incr = fld_bit_len =
6633 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6634 else
6635 bit_incr = fld_bit_len =
6636 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6637 }
6638 if (off + fld_bit_len > bit_len)
6639 bit_len = off + fld_bit_len;
6640 off += bit_incr;
6641 TYPE_LENGTH (rtype) =
6642 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6643 }
6644
6645 /* We handle the variant part, if any, at the end because of certain
6646 odd cases in which it is re-ordered so as NOT the last field of
6647 the record. This can happen in the presence of representation
6648 clauses. */
6649 if (variant_field >= 0)
6650 {
6651 struct type *branch_type;
6652
6653 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6654
6655 if (dval0 == NULL)
6656 dval = value_from_contents_and_address (rtype, valaddr, address);
6657 else
6658 dval = dval0;
6659
6660 branch_type =
6661 to_fixed_variant_branch_type
6662 (TYPE_FIELD_TYPE (type, variant_field),
6663 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6664 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6665 if (branch_type == NULL)
6666 {
6667 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6668 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6669 TYPE_NFIELDS (rtype) -= 1;
6670 }
6671 else
6672 {
6673 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6674 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6675 fld_bit_len =
6676 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6677 TARGET_CHAR_BIT;
6678 if (off + fld_bit_len > bit_len)
6679 bit_len = off + fld_bit_len;
6680 TYPE_LENGTH (rtype) =
6681 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6682 }
6683 }
6684
6685 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6686 should contain the alignment of that record, which should be a strictly
6687 positive value. If null or negative, then something is wrong, most
6688 probably in the debug info. In that case, we don't round up the size
6689 of the resulting type. If this record is not part of another structure,
6690 the current RTYPE length might be good enough for our purposes. */
6691 if (TYPE_LENGTH (type) <= 0)
6692 {
6693 if (TYPE_NAME (rtype))
6694 warning (_("Invalid type size for `%s' detected: %d."),
6695 TYPE_NAME (rtype), TYPE_LENGTH (type));
6696 else
6697 warning (_("Invalid type size for <unnamed> detected: %d."),
6698 TYPE_LENGTH (type));
6699 }
6700 else
6701 {
6702 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6703 TYPE_LENGTH (type));
6704 }
6705
6706 value_free_to_mark (mark);
6707 if (TYPE_LENGTH (rtype) > varsize_limit)
6708 error (_("record type with dynamic size is larger than varsize-limit"));
6709 return rtype;
6710 }
6711
6712 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6713 of 1. */
6714
6715 static struct type *
6716 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6717 CORE_ADDR address, struct value *dval0)
6718 {
6719 return ada_template_to_fixed_record_type_1 (type, valaddr,
6720 address, dval0, 1);
6721 }
6722
6723 /* An ordinary record type in which ___XVL-convention fields and
6724 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6725 static approximations, containing all possible fields. Uses
6726 no runtime values. Useless for use in values, but that's OK,
6727 since the results are used only for type determinations. Works on both
6728 structs and unions. Representation note: to save space, we memorize
6729 the result of this function in the TYPE_TARGET_TYPE of the
6730 template type. */
6731
6732 static struct type *
6733 template_to_static_fixed_type (struct type *type0)
6734 {
6735 struct type *type;
6736 int nfields;
6737 int f;
6738
6739 if (TYPE_TARGET_TYPE (type0) != NULL)
6740 return TYPE_TARGET_TYPE (type0);
6741
6742 nfields = TYPE_NFIELDS (type0);
6743 type = type0;
6744
6745 for (f = 0; f < nfields; f += 1)
6746 {
6747 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6748 struct type *new_type;
6749
6750 if (is_dynamic_field (type0, f))
6751 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6752 else
6753 new_type = to_static_fixed_type (field_type);
6754 if (type == type0 && new_type != field_type)
6755 {
6756 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6757 TYPE_CODE (type) = TYPE_CODE (type0);
6758 INIT_CPLUS_SPECIFIC (type);
6759 TYPE_NFIELDS (type) = nfields;
6760 TYPE_FIELDS (type) = (struct field *)
6761 TYPE_ALLOC (type, nfields * sizeof (struct field));
6762 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6763 sizeof (struct field) * nfields);
6764 TYPE_NAME (type) = ada_type_name (type0);
6765 TYPE_TAG_NAME (type) = NULL;
6766 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6767 TYPE_LENGTH (type) = 0;
6768 }
6769 TYPE_FIELD_TYPE (type, f) = new_type;
6770 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6771 }
6772 return type;
6773 }
6774
6775 /* Given an object of type TYPE whose contents are at VALADDR and
6776 whose address in memory is ADDRESS, returns a revision of TYPE --
6777 a non-dynamic-sized record with a variant part -- in which
6778 the variant part is replaced with the appropriate branch. Looks
6779 for discriminant values in DVAL0, which can be NULL if the record
6780 contains the necessary discriminant values. */
6781
6782 static struct type *
6783 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6784 CORE_ADDR address, struct value *dval0)
6785 {
6786 struct value *mark = value_mark ();
6787 struct value *dval;
6788 struct type *rtype;
6789 struct type *branch_type;
6790 int nfields = TYPE_NFIELDS (type);
6791 int variant_field = variant_field_index (type);
6792
6793 if (variant_field == -1)
6794 return type;
6795
6796 if (dval0 == NULL)
6797 dval = value_from_contents_and_address (type, valaddr, address);
6798 else
6799 dval = dval0;
6800
6801 rtype = alloc_type (TYPE_OBJFILE (type));
6802 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6803 INIT_CPLUS_SPECIFIC (rtype);
6804 TYPE_NFIELDS (rtype) = nfields;
6805 TYPE_FIELDS (rtype) =
6806 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6807 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6808 sizeof (struct field) * nfields);
6809 TYPE_NAME (rtype) = ada_type_name (type);
6810 TYPE_TAG_NAME (rtype) = NULL;
6811 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6812 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6813
6814 branch_type = to_fixed_variant_branch_type
6815 (TYPE_FIELD_TYPE (type, variant_field),
6816 cond_offset_host (valaddr,
6817 TYPE_FIELD_BITPOS (type, variant_field)
6818 / TARGET_CHAR_BIT),
6819 cond_offset_target (address,
6820 TYPE_FIELD_BITPOS (type, variant_field)
6821 / TARGET_CHAR_BIT), dval);
6822 if (branch_type == NULL)
6823 {
6824 int f;
6825 for (f = variant_field + 1; f < nfields; f += 1)
6826 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6827 TYPE_NFIELDS (rtype) -= 1;
6828 }
6829 else
6830 {
6831 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6832 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6833 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6834 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6835 }
6836 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6837
6838 value_free_to_mark (mark);
6839 return rtype;
6840 }
6841
6842 /* An ordinary record type (with fixed-length fields) that describes
6843 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6844 beginning of this section]. Any necessary discriminants' values
6845 should be in DVAL, a record value; it may be NULL if the object
6846 at ADDR itself contains any necessary discriminant values.
6847 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6848 values from the record are needed. Except in the case that DVAL,
6849 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6850 unchecked) is replaced by a particular branch of the variant.
6851
6852 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6853 is questionable and may be removed. It can arise during the
6854 processing of an unconstrained-array-of-record type where all the
6855 variant branches have exactly the same size. This is because in
6856 such cases, the compiler does not bother to use the XVS convention
6857 when encoding the record. I am currently dubious of this
6858 shortcut and suspect the compiler should be altered. FIXME. */
6859
6860 static struct type *
6861 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6862 CORE_ADDR address, struct value *dval)
6863 {
6864 struct type *templ_type;
6865
6866 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6867 return type0;
6868
6869 templ_type = dynamic_template_type (type0);
6870
6871 if (templ_type != NULL)
6872 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6873 else if (variant_field_index (type0) >= 0)
6874 {
6875 if (dval == NULL && valaddr == NULL && address == 0)
6876 return type0;
6877 return to_record_with_fixed_variant_part (type0, valaddr, address,
6878 dval);
6879 }
6880 else
6881 {
6882 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6883 return type0;
6884 }
6885
6886 }
6887
6888 /* An ordinary record type (with fixed-length fields) that describes
6889 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6890 union type. Any necessary discriminants' values should be in DVAL,
6891 a record value. That is, this routine selects the appropriate
6892 branch of the union at ADDR according to the discriminant value
6893 indicated in the union's type name. */
6894
6895 static struct type *
6896 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6897 CORE_ADDR address, struct value *dval)
6898 {
6899 int which;
6900 struct type *templ_type;
6901 struct type *var_type;
6902
6903 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6904 var_type = TYPE_TARGET_TYPE (var_type0);
6905 else
6906 var_type = var_type0;
6907
6908 templ_type = ada_find_parallel_type (var_type, "___XVU");
6909
6910 if (templ_type != NULL)
6911 var_type = templ_type;
6912
6913 which =
6914 ada_which_variant_applies (var_type,
6915 value_type (dval), value_contents (dval));
6916
6917 if (which < 0)
6918 return empty_record (TYPE_OBJFILE (var_type));
6919 else if (is_dynamic_field (var_type, which))
6920 return to_fixed_record_type
6921 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6922 valaddr, address, dval);
6923 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6924 return
6925 to_fixed_record_type
6926 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6927 else
6928 return TYPE_FIELD_TYPE (var_type, which);
6929 }
6930
6931 /* Assuming that TYPE0 is an array type describing the type of a value
6932 at ADDR, and that DVAL describes a record containing any
6933 discriminants used in TYPE0, returns a type for the value that
6934 contains no dynamic components (that is, no components whose sizes
6935 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6936 true, gives an error message if the resulting type's size is over
6937 varsize_limit. */
6938
6939 static struct type *
6940 to_fixed_array_type (struct type *type0, struct value *dval,
6941 int ignore_too_big)
6942 {
6943 struct type *index_type_desc;
6944 struct type *result;
6945
6946 if (ada_is_packed_array_type (type0) /* revisit? */
6947 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6948 return type0;
6949
6950 index_type_desc = ada_find_parallel_type (type0, "___XA");
6951 if (index_type_desc == NULL)
6952 {
6953 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6954 /* NOTE: elt_type---the fixed version of elt_type0---should never
6955 depend on the contents of the array in properly constructed
6956 debugging data. */
6957 /* Create a fixed version of the array element type.
6958 We're not providing the address of an element here,
6959 and thus the actual object value cannot be inspected to do
6960 the conversion. This should not be a problem, since arrays of
6961 unconstrained objects are not allowed. In particular, all
6962 the elements of an array of a tagged type should all be of
6963 the same type specified in the debugging info. No need to
6964 consult the object tag. */
6965 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6966
6967 if (elt_type0 == elt_type)
6968 result = type0;
6969 else
6970 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6971 elt_type, TYPE_INDEX_TYPE (type0));
6972 }
6973 else
6974 {
6975 int i;
6976 struct type *elt_type0;
6977
6978 elt_type0 = type0;
6979 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6980 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6981
6982 /* NOTE: result---the fixed version of elt_type0---should never
6983 depend on the contents of the array in properly constructed
6984 debugging data. */
6985 /* Create a fixed version of the array element type.
6986 We're not providing the address of an element here,
6987 and thus the actual object value cannot be inspected to do
6988 the conversion. This should not be a problem, since arrays of
6989 unconstrained objects are not allowed. In particular, all
6990 the elements of an array of a tagged type should all be of
6991 the same type specified in the debugging info. No need to
6992 consult the object tag. */
6993 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6994 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6995 {
6996 struct type *range_type =
6997 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6998 dval, TYPE_OBJFILE (type0));
6999 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7000 result, range_type);
7001 }
7002 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7003 error (_("array type with dynamic size is larger than varsize-limit"));
7004 }
7005
7006 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7007 return result;
7008 }
7009
7010
7011 /* A standard type (containing no dynamically sized components)
7012 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7013 DVAL describes a record containing any discriminants used in TYPE0,
7014 and may be NULL if there are none, or if the object of type TYPE at
7015 ADDRESS or in VALADDR contains these discriminants.
7016
7017 In the case of tagged types, this function attempts to locate the object's
7018 tag and use it to compute the actual type. However, when ADDRESS is null,
7019 we cannot use it to determine the location of the tag, and therefore
7020 compute the tagged type's actual type. So we return the tagged type
7021 without consulting the tag. */
7022
7023 struct type *
7024 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7025 CORE_ADDR address, struct value *dval)
7026 {
7027 type = ada_check_typedef (type);
7028 switch (TYPE_CODE (type))
7029 {
7030 default:
7031 return type;
7032 case TYPE_CODE_STRUCT:
7033 {
7034 struct type *static_type = to_static_fixed_type (type);
7035
7036 /* If STATIC_TYPE is a tagged type and we know the object's address,
7037 then we can determine its tag, and compute the object's actual
7038 type from there. */
7039
7040 if (address != 0 && ada_is_tagged_type (static_type, 0))
7041 {
7042 struct type *real_type =
7043 type_from_tag (value_tag_from_contents_and_address (static_type,
7044 valaddr,
7045 address));
7046 if (real_type != NULL)
7047 type = real_type;
7048 }
7049 return to_fixed_record_type (type, valaddr, address, NULL);
7050 }
7051 case TYPE_CODE_ARRAY:
7052 return to_fixed_array_type (type, dval, 1);
7053 case TYPE_CODE_UNION:
7054 if (dval == NULL)
7055 return type;
7056 else
7057 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7058 }
7059 }
7060
7061 /* A standard (static-sized) type corresponding as well as possible to
7062 TYPE0, but based on no runtime data. */
7063
7064 static struct type *
7065 to_static_fixed_type (struct type *type0)
7066 {
7067 struct type *type;
7068
7069 if (type0 == NULL)
7070 return NULL;
7071
7072 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7073 return type0;
7074
7075 type0 = ada_check_typedef (type0);
7076
7077 switch (TYPE_CODE (type0))
7078 {
7079 default:
7080 return type0;
7081 case TYPE_CODE_STRUCT:
7082 type = dynamic_template_type (type0);
7083 if (type != NULL)
7084 return template_to_static_fixed_type (type);
7085 else
7086 return template_to_static_fixed_type (type0);
7087 case TYPE_CODE_UNION:
7088 type = ada_find_parallel_type (type0, "___XVU");
7089 if (type != NULL)
7090 return template_to_static_fixed_type (type);
7091 else
7092 return template_to_static_fixed_type (type0);
7093 }
7094 }
7095
7096 /* A static approximation of TYPE with all type wrappers removed. */
7097
7098 static struct type *
7099 static_unwrap_type (struct type *type)
7100 {
7101 if (ada_is_aligner_type (type))
7102 {
7103 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7104 if (ada_type_name (type1) == NULL)
7105 TYPE_NAME (type1) = ada_type_name (type);
7106
7107 return static_unwrap_type (type1);
7108 }
7109 else
7110 {
7111 struct type *raw_real_type = ada_get_base_type (type);
7112 if (raw_real_type == type)
7113 return type;
7114 else
7115 return to_static_fixed_type (raw_real_type);
7116 }
7117 }
7118
7119 /* In some cases, incomplete and private types require
7120 cross-references that are not resolved as records (for example,
7121 type Foo;
7122 type FooP is access Foo;
7123 V: FooP;
7124 type Foo is array ...;
7125 ). In these cases, since there is no mechanism for producing
7126 cross-references to such types, we instead substitute for FooP a
7127 stub enumeration type that is nowhere resolved, and whose tag is
7128 the name of the actual type. Call these types "non-record stubs". */
7129
7130 /* A type equivalent to TYPE that is not a non-record stub, if one
7131 exists, otherwise TYPE. */
7132
7133 struct type *
7134 ada_check_typedef (struct type *type)
7135 {
7136 CHECK_TYPEDEF (type);
7137 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7138 || !TYPE_STUB (type)
7139 || TYPE_TAG_NAME (type) == NULL)
7140 return type;
7141 else
7142 {
7143 char *name = TYPE_TAG_NAME (type);
7144 struct type *type1 = ada_find_any_type (name);
7145 return (type1 == NULL) ? type : type1;
7146 }
7147 }
7148
7149 /* A value representing the data at VALADDR/ADDRESS as described by
7150 type TYPE0, but with a standard (static-sized) type that correctly
7151 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7152 type, then return VAL0 [this feature is simply to avoid redundant
7153 creation of struct values]. */
7154
7155 static struct value *
7156 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7157 struct value *val0)
7158 {
7159 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
7160 if (type == type0 && val0 != NULL)
7161 return val0;
7162 else
7163 return value_from_contents_and_address (type, 0, address);
7164 }
7165
7166 /* A value representing VAL, but with a standard (static-sized) type
7167 that correctly describes it. Does not necessarily create a new
7168 value. */
7169
7170 static struct value *
7171 ada_to_fixed_value (struct value *val)
7172 {
7173 return ada_to_fixed_value_create (value_type (val),
7174 VALUE_ADDRESS (val) + value_offset (val),
7175 val);
7176 }
7177
7178 /* A value representing VAL, but with a standard (static-sized) type
7179 chosen to approximate the real type of VAL as well as possible, but
7180 without consulting any runtime values. For Ada dynamic-sized
7181 types, therefore, the type of the result is likely to be inaccurate. */
7182
7183 struct value *
7184 ada_to_static_fixed_value (struct value *val)
7185 {
7186 struct type *type =
7187 to_static_fixed_type (static_unwrap_type (value_type (val)));
7188 if (type == value_type (val))
7189 return val;
7190 else
7191 return coerce_unspec_val_to_type (val, type);
7192 }
7193 \f
7194
7195 /* Attributes */
7196
7197 /* Table mapping attribute numbers to names.
7198 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7199
7200 static const char *attribute_names[] = {
7201 "<?>",
7202
7203 "first",
7204 "last",
7205 "length",
7206 "image",
7207 "max",
7208 "min",
7209 "modulus",
7210 "pos",
7211 "size",
7212 "tag",
7213 "val",
7214 0
7215 };
7216
7217 const char *
7218 ada_attribute_name (enum exp_opcode n)
7219 {
7220 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7221 return attribute_names[n - OP_ATR_FIRST + 1];
7222 else
7223 return attribute_names[0];
7224 }
7225
7226 /* Evaluate the 'POS attribute applied to ARG. */
7227
7228 static LONGEST
7229 pos_atr (struct value *arg)
7230 {
7231 struct type *type = value_type (arg);
7232
7233 if (!discrete_type_p (type))
7234 error (_("'POS only defined on discrete types"));
7235
7236 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7237 {
7238 int i;
7239 LONGEST v = value_as_long (arg);
7240
7241 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7242 {
7243 if (v == TYPE_FIELD_BITPOS (type, i))
7244 return i;
7245 }
7246 error (_("enumeration value is invalid: can't find 'POS"));
7247 }
7248 else
7249 return value_as_long (arg);
7250 }
7251
7252 static struct value *
7253 value_pos_atr (struct value *arg)
7254 {
7255 return value_from_longest (builtin_type_int, pos_atr (arg));
7256 }
7257
7258 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7259
7260 static struct value *
7261 value_val_atr (struct type *type, struct value *arg)
7262 {
7263 if (!discrete_type_p (type))
7264 error (_("'VAL only defined on discrete types"));
7265 if (!integer_type_p (value_type (arg)))
7266 error (_("'VAL requires integral argument"));
7267
7268 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7269 {
7270 long pos = value_as_long (arg);
7271 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7272 error (_("argument to 'VAL out of range"));
7273 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7274 }
7275 else
7276 return value_from_longest (type, value_as_long (arg));
7277 }
7278 \f
7279
7280 /* Evaluation */
7281
7282 /* True if TYPE appears to be an Ada character type.
7283 [At the moment, this is true only for Character and Wide_Character;
7284 It is a heuristic test that could stand improvement]. */
7285
7286 int
7287 ada_is_character_type (struct type *type)
7288 {
7289 const char *name = ada_type_name (type);
7290 return
7291 name != NULL
7292 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7293 || TYPE_CODE (type) == TYPE_CODE_INT
7294 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7295 && (strcmp (name, "character") == 0
7296 || strcmp (name, "wide_character") == 0
7297 || strcmp (name, "unsigned char") == 0);
7298 }
7299
7300 /* True if TYPE appears to be an Ada string type. */
7301
7302 int
7303 ada_is_string_type (struct type *type)
7304 {
7305 type = ada_check_typedef (type);
7306 if (type != NULL
7307 && TYPE_CODE (type) != TYPE_CODE_PTR
7308 && (ada_is_simple_array_type (type)
7309 || ada_is_array_descriptor_type (type))
7310 && ada_array_arity (type) == 1)
7311 {
7312 struct type *elttype = ada_array_element_type (type, 1);
7313
7314 return ada_is_character_type (elttype);
7315 }
7316 else
7317 return 0;
7318 }
7319
7320
7321 /* True if TYPE is a struct type introduced by the compiler to force the
7322 alignment of a value. Such types have a single field with a
7323 distinctive name. */
7324
7325 int
7326 ada_is_aligner_type (struct type *type)
7327 {
7328 type = ada_check_typedef (type);
7329
7330 /* If we can find a parallel XVS type, then the XVS type should
7331 be used instead of this type. And hence, this is not an aligner
7332 type. */
7333 if (ada_find_parallel_type (type, "___XVS") != NULL)
7334 return 0;
7335
7336 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7337 && TYPE_NFIELDS (type) == 1
7338 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7339 }
7340
7341 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7342 the parallel type. */
7343
7344 struct type *
7345 ada_get_base_type (struct type *raw_type)
7346 {
7347 struct type *real_type_namer;
7348 struct type *raw_real_type;
7349
7350 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7351 return raw_type;
7352
7353 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7354 if (real_type_namer == NULL
7355 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7356 || TYPE_NFIELDS (real_type_namer) != 1)
7357 return raw_type;
7358
7359 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7360 if (raw_real_type == NULL)
7361 return raw_type;
7362 else
7363 return raw_real_type;
7364 }
7365
7366 /* The type of value designated by TYPE, with all aligners removed. */
7367
7368 struct type *
7369 ada_aligned_type (struct type *type)
7370 {
7371 if (ada_is_aligner_type (type))
7372 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7373 else
7374 return ada_get_base_type (type);
7375 }
7376
7377
7378 /* The address of the aligned value in an object at address VALADDR
7379 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7380
7381 const gdb_byte *
7382 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7383 {
7384 if (ada_is_aligner_type (type))
7385 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7386 valaddr +
7387 TYPE_FIELD_BITPOS (type,
7388 0) / TARGET_CHAR_BIT);
7389 else
7390 return valaddr;
7391 }
7392
7393
7394
7395 /* The printed representation of an enumeration literal with encoded
7396 name NAME. The value is good to the next call of ada_enum_name. */
7397 const char *
7398 ada_enum_name (const char *name)
7399 {
7400 static char *result;
7401 static size_t result_len = 0;
7402 char *tmp;
7403
7404 /* First, unqualify the enumeration name:
7405 1. Search for the last '.' character. If we find one, then skip
7406 all the preceeding characters, the unqualified name starts
7407 right after that dot.
7408 2. Otherwise, we may be debugging on a target where the compiler
7409 translates dots into "__". Search forward for double underscores,
7410 but stop searching when we hit an overloading suffix, which is
7411 of the form "__" followed by digits. */
7412
7413 tmp = strrchr (name, '.');
7414 if (tmp != NULL)
7415 name = tmp + 1;
7416 else
7417 {
7418 while ((tmp = strstr (name, "__")) != NULL)
7419 {
7420 if (isdigit (tmp[2]))
7421 break;
7422 else
7423 name = tmp + 2;
7424 }
7425 }
7426
7427 if (name[0] == 'Q')
7428 {
7429 int v;
7430 if (name[1] == 'U' || name[1] == 'W')
7431 {
7432 if (sscanf (name + 2, "%x", &v) != 1)
7433 return name;
7434 }
7435 else
7436 return name;
7437
7438 GROW_VECT (result, result_len, 16);
7439 if (isascii (v) && isprint (v))
7440 sprintf (result, "'%c'", v);
7441 else if (name[1] == 'U')
7442 sprintf (result, "[\"%02x\"]", v);
7443 else
7444 sprintf (result, "[\"%04x\"]", v);
7445
7446 return result;
7447 }
7448 else
7449 {
7450 tmp = strstr (name, "__");
7451 if (tmp == NULL)
7452 tmp = strstr (name, "$");
7453 if (tmp != NULL)
7454 {
7455 GROW_VECT (result, result_len, tmp - name + 1);
7456 strncpy (result, name, tmp - name);
7457 result[tmp - name] = '\0';
7458 return result;
7459 }
7460
7461 return name;
7462 }
7463 }
7464
7465 static struct value *
7466 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7467 enum noside noside)
7468 {
7469 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7470 (expect_type, exp, pos, noside);
7471 }
7472
7473 /* Evaluate the subexpression of EXP starting at *POS as for
7474 evaluate_type, updating *POS to point just past the evaluated
7475 expression. */
7476
7477 static struct value *
7478 evaluate_subexp_type (struct expression *exp, int *pos)
7479 {
7480 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7481 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7482 }
7483
7484 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7485 value it wraps. */
7486
7487 static struct value *
7488 unwrap_value (struct value *val)
7489 {
7490 struct type *type = ada_check_typedef (value_type (val));
7491 if (ada_is_aligner_type (type))
7492 {
7493 struct value *v = value_struct_elt (&val, NULL, "F",
7494 NULL, "internal structure");
7495 struct type *val_type = ada_check_typedef (value_type (v));
7496 if (ada_type_name (val_type) == NULL)
7497 TYPE_NAME (val_type) = ada_type_name (type);
7498
7499 return unwrap_value (v);
7500 }
7501 else
7502 {
7503 struct type *raw_real_type =
7504 ada_check_typedef (ada_get_base_type (type));
7505
7506 if (type == raw_real_type)
7507 return val;
7508
7509 return
7510 coerce_unspec_val_to_type
7511 (val, ada_to_fixed_type (raw_real_type, 0,
7512 VALUE_ADDRESS (val) + value_offset (val),
7513 NULL));
7514 }
7515 }
7516
7517 static struct value *
7518 cast_to_fixed (struct type *type, struct value *arg)
7519 {
7520 LONGEST val;
7521
7522 if (type == value_type (arg))
7523 return arg;
7524 else if (ada_is_fixed_point_type (value_type (arg)))
7525 val = ada_float_to_fixed (type,
7526 ada_fixed_to_float (value_type (arg),
7527 value_as_long (arg)));
7528 else
7529 {
7530 DOUBLEST argd =
7531 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7532 val = ada_float_to_fixed (type, argd);
7533 }
7534
7535 return value_from_longest (type, val);
7536 }
7537
7538 static struct value *
7539 cast_from_fixed_to_double (struct value *arg)
7540 {
7541 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7542 value_as_long (arg));
7543 return value_from_double (builtin_type_double, val);
7544 }
7545
7546 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7547 return the converted value. */
7548
7549 static struct value *
7550 coerce_for_assign (struct type *type, struct value *val)
7551 {
7552 struct type *type2 = value_type (val);
7553 if (type == type2)
7554 return val;
7555
7556 type2 = ada_check_typedef (type2);
7557 type = ada_check_typedef (type);
7558
7559 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7560 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7561 {
7562 val = ada_value_ind (val);
7563 type2 = value_type (val);
7564 }
7565
7566 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7567 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7568 {
7569 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7570 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7571 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7572 error (_("Incompatible types in assignment"));
7573 deprecated_set_value_type (val, type);
7574 }
7575 return val;
7576 }
7577
7578 static struct value *
7579 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7580 {
7581 struct value *val;
7582 struct type *type1, *type2;
7583 LONGEST v, v1, v2;
7584
7585 arg1 = coerce_ref (arg1);
7586 arg2 = coerce_ref (arg2);
7587 type1 = base_type (ada_check_typedef (value_type (arg1)));
7588 type2 = base_type (ada_check_typedef (value_type (arg2)));
7589
7590 if (TYPE_CODE (type1) != TYPE_CODE_INT
7591 || TYPE_CODE (type2) != TYPE_CODE_INT)
7592 return value_binop (arg1, arg2, op);
7593
7594 switch (op)
7595 {
7596 case BINOP_MOD:
7597 case BINOP_DIV:
7598 case BINOP_REM:
7599 break;
7600 default:
7601 return value_binop (arg1, arg2, op);
7602 }
7603
7604 v2 = value_as_long (arg2);
7605 if (v2 == 0)
7606 error (_("second operand of %s must not be zero."), op_string (op));
7607
7608 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7609 return value_binop (arg1, arg2, op);
7610
7611 v1 = value_as_long (arg1);
7612 switch (op)
7613 {
7614 case BINOP_DIV:
7615 v = v1 / v2;
7616 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7617 v += v > 0 ? -1 : 1;
7618 break;
7619 case BINOP_REM:
7620 v = v1 % v2;
7621 if (v * v1 < 0)
7622 v -= v2;
7623 break;
7624 default:
7625 /* Should not reach this point. */
7626 v = 0;
7627 }
7628
7629 val = allocate_value (type1);
7630 store_unsigned_integer (value_contents_raw (val),
7631 TYPE_LENGTH (value_type (val)), v);
7632 return val;
7633 }
7634
7635 static int
7636 ada_value_equal (struct value *arg1, struct value *arg2)
7637 {
7638 if (ada_is_direct_array_type (value_type (arg1))
7639 || ada_is_direct_array_type (value_type (arg2)))
7640 {
7641 arg1 = ada_coerce_to_simple_array (arg1);
7642 arg2 = ada_coerce_to_simple_array (arg2);
7643 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7644 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7645 error (_("Attempt to compare array with non-array"));
7646 /* FIXME: The following works only for types whose
7647 representations use all bits (no padding or undefined bits)
7648 and do not have user-defined equality. */
7649 return
7650 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7651 && memcmp (value_contents (arg1), value_contents (arg2),
7652 TYPE_LENGTH (value_type (arg1))) == 0;
7653 }
7654 return value_equal (arg1, arg2);
7655 }
7656
7657 /* Total number of component associations in the aggregate starting at
7658 index PC in EXP. Assumes that index PC is the start of an
7659 OP_AGGREGATE. */
7660
7661 static int
7662 num_component_specs (struct expression *exp, int pc)
7663 {
7664 int n, m, i;
7665 m = exp->elts[pc + 1].longconst;
7666 pc += 3;
7667 n = 0;
7668 for (i = 0; i < m; i += 1)
7669 {
7670 switch (exp->elts[pc].opcode)
7671 {
7672 default:
7673 n += 1;
7674 break;
7675 case OP_CHOICES:
7676 n += exp->elts[pc + 1].longconst;
7677 break;
7678 }
7679 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7680 }
7681 return n;
7682 }
7683
7684 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7685 component of LHS (a simple array or a record), updating *POS past
7686 the expression, assuming that LHS is contained in CONTAINER. Does
7687 not modify the inferior's memory, nor does it modify LHS (unless
7688 LHS == CONTAINER). */
7689
7690 static void
7691 assign_component (struct value *container, struct value *lhs, LONGEST index,
7692 struct expression *exp, int *pos)
7693 {
7694 struct value *mark = value_mark ();
7695 struct value *elt;
7696 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7697 {
7698 struct value *index_val = value_from_longest (builtin_type_int, index);
7699 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7700 }
7701 else
7702 {
7703 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7704 elt = ada_to_fixed_value (unwrap_value (elt));
7705 }
7706
7707 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7708 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7709 else
7710 value_assign_to_component (container, elt,
7711 ada_evaluate_subexp (NULL, exp, pos,
7712 EVAL_NORMAL));
7713
7714 value_free_to_mark (mark);
7715 }
7716
7717 /* Assuming that LHS represents an lvalue having a record or array
7718 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7719 of that aggregate's value to LHS, advancing *POS past the
7720 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7721 lvalue containing LHS (possibly LHS itself). Does not modify
7722 the inferior's memory, nor does it modify the contents of
7723 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7724
7725 static struct value *
7726 assign_aggregate (struct value *container,
7727 struct value *lhs, struct expression *exp,
7728 int *pos, enum noside noside)
7729 {
7730 struct type *lhs_type;
7731 int n = exp->elts[*pos+1].longconst;
7732 LONGEST low_index, high_index;
7733 int num_specs;
7734 LONGEST *indices;
7735 int max_indices, num_indices;
7736 int is_array_aggregate;
7737 int i;
7738 struct value *mark = value_mark ();
7739
7740 *pos += 3;
7741 if (noside != EVAL_NORMAL)
7742 {
7743 int i;
7744 for (i = 0; i < n; i += 1)
7745 ada_evaluate_subexp (NULL, exp, pos, noside);
7746 return container;
7747 }
7748
7749 container = ada_coerce_ref (container);
7750 if (ada_is_direct_array_type (value_type (container)))
7751 container = ada_coerce_to_simple_array (container);
7752 lhs = ada_coerce_ref (lhs);
7753 if (!deprecated_value_modifiable (lhs))
7754 error (_("Left operand of assignment is not a modifiable lvalue."));
7755
7756 lhs_type = value_type (lhs);
7757 if (ada_is_direct_array_type (lhs_type))
7758 {
7759 lhs = ada_coerce_to_simple_array (lhs);
7760 lhs_type = value_type (lhs);
7761 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7762 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7763 is_array_aggregate = 1;
7764 }
7765 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7766 {
7767 low_index = 0;
7768 high_index = num_visible_fields (lhs_type) - 1;
7769 is_array_aggregate = 0;
7770 }
7771 else
7772 error (_("Left-hand side must be array or record."));
7773
7774 num_specs = num_component_specs (exp, *pos - 3);
7775 max_indices = 4 * num_specs + 4;
7776 indices = alloca (max_indices * sizeof (indices[0]));
7777 indices[0] = indices[1] = low_index - 1;
7778 indices[2] = indices[3] = high_index + 1;
7779 num_indices = 4;
7780
7781 for (i = 0; i < n; i += 1)
7782 {
7783 switch (exp->elts[*pos].opcode)
7784 {
7785 case OP_CHOICES:
7786 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7787 &num_indices, max_indices,
7788 low_index, high_index);
7789 break;
7790 case OP_POSITIONAL:
7791 aggregate_assign_positional (container, lhs, exp, pos, indices,
7792 &num_indices, max_indices,
7793 low_index, high_index);
7794 break;
7795 case OP_OTHERS:
7796 if (i != n-1)
7797 error (_("Misplaced 'others' clause"));
7798 aggregate_assign_others (container, lhs, exp, pos, indices,
7799 num_indices, low_index, high_index);
7800 break;
7801 default:
7802 error (_("Internal error: bad aggregate clause"));
7803 }
7804 }
7805
7806 return container;
7807 }
7808
7809 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7810 construct at *POS, updating *POS past the construct, given that
7811 the positions are relative to lower bound LOW, where HIGH is the
7812 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7813 updating *NUM_INDICES as needed. CONTAINER is as for
7814 assign_aggregate. */
7815 static void
7816 aggregate_assign_positional (struct value *container,
7817 struct value *lhs, struct expression *exp,
7818 int *pos, LONGEST *indices, int *num_indices,
7819 int max_indices, LONGEST low, LONGEST high)
7820 {
7821 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7822
7823 if (ind - 1 == high)
7824 warning (_("Extra components in aggregate ignored."));
7825 if (ind <= high)
7826 {
7827 add_component_interval (ind, ind, indices, num_indices, max_indices);
7828 *pos += 3;
7829 assign_component (container, lhs, ind, exp, pos);
7830 }
7831 else
7832 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7833 }
7834
7835 /* Assign into the components of LHS indexed by the OP_CHOICES
7836 construct at *POS, updating *POS past the construct, given that
7837 the allowable indices are LOW..HIGH. Record the indices assigned
7838 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7839 needed. CONTAINER is as for assign_aggregate. */
7840 static void
7841 aggregate_assign_from_choices (struct value *container,
7842 struct value *lhs, struct expression *exp,
7843 int *pos, LONGEST *indices, int *num_indices,
7844 int max_indices, LONGEST low, LONGEST high)
7845 {
7846 int j;
7847 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7848 int choice_pos, expr_pc;
7849 int is_array = ada_is_direct_array_type (value_type (lhs));
7850
7851 choice_pos = *pos += 3;
7852
7853 for (j = 0; j < n_choices; j += 1)
7854 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7855 expr_pc = *pos;
7856 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7857
7858 for (j = 0; j < n_choices; j += 1)
7859 {
7860 LONGEST lower, upper;
7861 enum exp_opcode op = exp->elts[choice_pos].opcode;
7862 if (op == OP_DISCRETE_RANGE)
7863 {
7864 choice_pos += 1;
7865 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7866 EVAL_NORMAL));
7867 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7868 EVAL_NORMAL));
7869 }
7870 else if (is_array)
7871 {
7872 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7873 EVAL_NORMAL));
7874 upper = lower;
7875 }
7876 else
7877 {
7878 int ind;
7879 char *name;
7880 switch (op)
7881 {
7882 case OP_NAME:
7883 name = &exp->elts[choice_pos + 2].string;
7884 break;
7885 case OP_VAR_VALUE:
7886 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7887 break;
7888 default:
7889 error (_("Invalid record component association."));
7890 }
7891 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7892 ind = 0;
7893 if (! find_struct_field (name, value_type (lhs), 0,
7894 NULL, NULL, NULL, NULL, &ind))
7895 error (_("Unknown component name: %s."), name);
7896 lower = upper = ind;
7897 }
7898
7899 if (lower <= upper && (lower < low || upper > high))
7900 error (_("Index in component association out of bounds."));
7901
7902 add_component_interval (lower, upper, indices, num_indices,
7903 max_indices);
7904 while (lower <= upper)
7905 {
7906 int pos1;
7907 pos1 = expr_pc;
7908 assign_component (container, lhs, lower, exp, &pos1);
7909 lower += 1;
7910 }
7911 }
7912 }
7913
7914 /* Assign the value of the expression in the OP_OTHERS construct in
7915 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7916 have not been previously assigned. The index intervals already assigned
7917 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7918 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7919 static void
7920 aggregate_assign_others (struct value *container,
7921 struct value *lhs, struct expression *exp,
7922 int *pos, LONGEST *indices, int num_indices,
7923 LONGEST low, LONGEST high)
7924 {
7925 int i;
7926 int expr_pc = *pos+1;
7927
7928 for (i = 0; i < num_indices - 2; i += 2)
7929 {
7930 LONGEST ind;
7931 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7932 {
7933 int pos;
7934 pos = expr_pc;
7935 assign_component (container, lhs, ind, exp, &pos);
7936 }
7937 }
7938 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7939 }
7940
7941 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7942 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7943 modifying *SIZE as needed. It is an error if *SIZE exceeds
7944 MAX_SIZE. The resulting intervals do not overlap. */
7945 static void
7946 add_component_interval (LONGEST low, LONGEST high,
7947 LONGEST* indices, int *size, int max_size)
7948 {
7949 int i, j;
7950 for (i = 0; i < *size; i += 2) {
7951 if (high >= indices[i] && low <= indices[i + 1])
7952 {
7953 int kh;
7954 for (kh = i + 2; kh < *size; kh += 2)
7955 if (high < indices[kh])
7956 break;
7957 if (low < indices[i])
7958 indices[i] = low;
7959 indices[i + 1] = indices[kh - 1];
7960 if (high > indices[i + 1])
7961 indices[i + 1] = high;
7962 memcpy (indices + i + 2, indices + kh, *size - kh);
7963 *size -= kh - i - 2;
7964 return;
7965 }
7966 else if (high < indices[i])
7967 break;
7968 }
7969
7970 if (*size == max_size)
7971 error (_("Internal error: miscounted aggregate components."));
7972 *size += 2;
7973 for (j = *size-1; j >= i+2; j -= 1)
7974 indices[j] = indices[j - 2];
7975 indices[i] = low;
7976 indices[i + 1] = high;
7977 }
7978
7979 static struct value *
7980 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7981 int *pos, enum noside noside)
7982 {
7983 enum exp_opcode op;
7984 int tem, tem2, tem3;
7985 int pc;
7986 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7987 struct type *type;
7988 int nargs, oplen;
7989 struct value **argvec;
7990
7991 pc = *pos;
7992 *pos += 1;
7993 op = exp->elts[pc].opcode;
7994
7995 switch (op)
7996 {
7997 default:
7998 *pos -= 1;
7999 return
8000 unwrap_value (evaluate_subexp_standard
8001 (expect_type, exp, pos, noside));
8002
8003 case OP_STRING:
8004 {
8005 struct value *result;
8006 *pos -= 1;
8007 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8008 /* The result type will have code OP_STRING, bashed there from
8009 OP_ARRAY. Bash it back. */
8010 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8011 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8012 return result;
8013 }
8014
8015 case UNOP_CAST:
8016 (*pos) += 2;
8017 type = exp->elts[pc + 1].type;
8018 arg1 = evaluate_subexp (type, exp, pos, noside);
8019 if (noside == EVAL_SKIP)
8020 goto nosideret;
8021 if (type != ada_check_typedef (value_type (arg1)))
8022 {
8023 if (ada_is_fixed_point_type (type))
8024 arg1 = cast_to_fixed (type, arg1);
8025 else if (ada_is_fixed_point_type (value_type (arg1)))
8026 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
8027 else if (VALUE_LVAL (arg1) == lval_memory)
8028 {
8029 /* This is in case of the really obscure (and undocumented,
8030 but apparently expected) case of (Foo) Bar.all, where Bar
8031 is an integer constant and Foo is a dynamic-sized type.
8032 If we don't do this, ARG1 will simply be relabeled with
8033 TYPE. */
8034 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8035 return value_zero (to_static_fixed_type (type), not_lval);
8036 arg1 =
8037 ada_to_fixed_value_create
8038 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
8039 }
8040 else
8041 arg1 = value_cast (type, arg1);
8042 }
8043 return arg1;
8044
8045 case UNOP_QUAL:
8046 (*pos) += 2;
8047 type = exp->elts[pc + 1].type;
8048 return ada_evaluate_subexp (type, exp, pos, noside);
8049
8050 case BINOP_ASSIGN:
8051 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8052 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8053 {
8054 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8055 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8056 return arg1;
8057 return ada_value_assign (arg1, arg1);
8058 }
8059 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8060 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8061 return arg1;
8062 if (ada_is_fixed_point_type (value_type (arg1)))
8063 arg2 = cast_to_fixed (value_type (arg1), arg2);
8064 else if (ada_is_fixed_point_type (value_type (arg2)))
8065 error
8066 (_("Fixed-point values must be assigned to fixed-point variables"));
8067 else
8068 arg2 = coerce_for_assign (value_type (arg1), arg2);
8069 return ada_value_assign (arg1, arg2);
8070
8071 case BINOP_ADD:
8072 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8073 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8074 if (noside == EVAL_SKIP)
8075 goto nosideret;
8076 if ((ada_is_fixed_point_type (value_type (arg1))
8077 || ada_is_fixed_point_type (value_type (arg2)))
8078 && value_type (arg1) != value_type (arg2))
8079 error (_("Operands of fixed-point addition must have the same type"));
8080 return value_cast (value_type (arg1), value_add (arg1, arg2));
8081
8082 case BINOP_SUB:
8083 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8084 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8085 if (noside == EVAL_SKIP)
8086 goto nosideret;
8087 if ((ada_is_fixed_point_type (value_type (arg1))
8088 || ada_is_fixed_point_type (value_type (arg2)))
8089 && value_type (arg1) != value_type (arg2))
8090 error (_("Operands of fixed-point subtraction must have the same type"));
8091 return value_cast (value_type (arg1), value_sub (arg1, arg2));
8092
8093 case BINOP_MUL:
8094 case BINOP_DIV:
8095 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8096 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8097 if (noside == EVAL_SKIP)
8098 goto nosideret;
8099 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8100 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8101 return value_zero (value_type (arg1), not_lval);
8102 else
8103 {
8104 if (ada_is_fixed_point_type (value_type (arg1)))
8105 arg1 = cast_from_fixed_to_double (arg1);
8106 if (ada_is_fixed_point_type (value_type (arg2)))
8107 arg2 = cast_from_fixed_to_double (arg2);
8108 return ada_value_binop (arg1, arg2, op);
8109 }
8110
8111 case BINOP_REM:
8112 case BINOP_MOD:
8113 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8114 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8115 if (noside == EVAL_SKIP)
8116 goto nosideret;
8117 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8118 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8119 return value_zero (value_type (arg1), not_lval);
8120 else
8121 return ada_value_binop (arg1, arg2, op);
8122
8123 case BINOP_EQUAL:
8124 case BINOP_NOTEQUAL:
8125 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8126 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8127 if (noside == EVAL_SKIP)
8128 goto nosideret;
8129 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8130 tem = 0;
8131 else
8132 tem = ada_value_equal (arg1, arg2);
8133 if (op == BINOP_NOTEQUAL)
8134 tem = !tem;
8135 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8136
8137 case UNOP_NEG:
8138 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8139 if (noside == EVAL_SKIP)
8140 goto nosideret;
8141 else if (ada_is_fixed_point_type (value_type (arg1)))
8142 return value_cast (value_type (arg1), value_neg (arg1));
8143 else
8144 return value_neg (arg1);
8145
8146 case OP_VAR_VALUE:
8147 *pos -= 1;
8148 if (noside == EVAL_SKIP)
8149 {
8150 *pos += 4;
8151 goto nosideret;
8152 }
8153 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8154 /* Only encountered when an unresolved symbol occurs in a
8155 context other than a function call, in which case, it is
8156 invalid. */
8157 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8158 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8159 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8160 {
8161 *pos += 4;
8162 return value_zero
8163 (to_static_fixed_type
8164 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8165 not_lval);
8166 }
8167 else
8168 {
8169 arg1 =
8170 unwrap_value (evaluate_subexp_standard
8171 (expect_type, exp, pos, noside));
8172 return ada_to_fixed_value (arg1);
8173 }
8174
8175 case OP_FUNCALL:
8176 (*pos) += 2;
8177
8178 /* Allocate arg vector, including space for the function to be
8179 called in argvec[0] and a terminating NULL. */
8180 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8181 argvec =
8182 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8183
8184 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8185 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8186 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8187 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8188 else
8189 {
8190 for (tem = 0; tem <= nargs; tem += 1)
8191 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8192 argvec[tem] = 0;
8193
8194 if (noside == EVAL_SKIP)
8195 goto nosideret;
8196 }
8197
8198 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8199 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8200 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8201 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8202 && VALUE_LVAL (argvec[0]) == lval_memory))
8203 argvec[0] = value_addr (argvec[0]);
8204
8205 type = ada_check_typedef (value_type (argvec[0]));
8206 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8207 {
8208 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8209 {
8210 case TYPE_CODE_FUNC:
8211 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8212 break;
8213 case TYPE_CODE_ARRAY:
8214 break;
8215 case TYPE_CODE_STRUCT:
8216 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8217 argvec[0] = ada_value_ind (argvec[0]);
8218 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8219 break;
8220 default:
8221 error (_("cannot subscript or call something of type `%s'"),
8222 ada_type_name (value_type (argvec[0])));
8223 break;
8224 }
8225 }
8226
8227 switch (TYPE_CODE (type))
8228 {
8229 case TYPE_CODE_FUNC:
8230 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8231 return allocate_value (TYPE_TARGET_TYPE (type));
8232 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8233 case TYPE_CODE_STRUCT:
8234 {
8235 int arity;
8236
8237 arity = ada_array_arity (type);
8238 type = ada_array_element_type (type, nargs);
8239 if (type == NULL)
8240 error (_("cannot subscript or call a record"));
8241 if (arity != nargs)
8242 error (_("wrong number of subscripts; expecting %d"), arity);
8243 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8244 return allocate_value (ada_aligned_type (type));
8245 return
8246 unwrap_value (ada_value_subscript
8247 (argvec[0], nargs, argvec + 1));
8248 }
8249 case TYPE_CODE_ARRAY:
8250 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8251 {
8252 type = ada_array_element_type (type, nargs);
8253 if (type == NULL)
8254 error (_("element type of array unknown"));
8255 else
8256 return allocate_value (ada_aligned_type (type));
8257 }
8258 return
8259 unwrap_value (ada_value_subscript
8260 (ada_coerce_to_simple_array (argvec[0]),
8261 nargs, argvec + 1));
8262 case TYPE_CODE_PTR: /* Pointer to array */
8263 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8264 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8265 {
8266 type = ada_array_element_type (type, nargs);
8267 if (type == NULL)
8268 error (_("element type of array unknown"));
8269 else
8270 return allocate_value (ada_aligned_type (type));
8271 }
8272 return
8273 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8274 nargs, argvec + 1));
8275
8276 default:
8277 error (_("Attempt to index or call something other than an "
8278 "array or function"));
8279 }
8280
8281 case TERNOP_SLICE:
8282 {
8283 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8284 struct value *low_bound_val =
8285 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8286 struct value *high_bound_val =
8287 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8288 LONGEST low_bound;
8289 LONGEST high_bound;
8290 low_bound_val = coerce_ref (low_bound_val);
8291 high_bound_val = coerce_ref (high_bound_val);
8292 low_bound = pos_atr (low_bound_val);
8293 high_bound = pos_atr (high_bound_val);
8294
8295 if (noside == EVAL_SKIP)
8296 goto nosideret;
8297
8298 /* If this is a reference to an aligner type, then remove all
8299 the aligners. */
8300 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8301 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8302 TYPE_TARGET_TYPE (value_type (array)) =
8303 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8304
8305 if (ada_is_packed_array_type (value_type (array)))
8306 error (_("cannot slice a packed array"));
8307
8308 /* If this is a reference to an array or an array lvalue,
8309 convert to a pointer. */
8310 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8311 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8312 && VALUE_LVAL (array) == lval_memory))
8313 array = value_addr (array);
8314
8315 if (noside == EVAL_AVOID_SIDE_EFFECTS
8316 && ada_is_array_descriptor_type (ada_check_typedef
8317 (value_type (array))))
8318 return empty_array (ada_type_of_array (array, 0), low_bound);
8319
8320 array = ada_coerce_to_simple_array_ptr (array);
8321
8322 /* If we have more than one level of pointer indirection,
8323 dereference the value until we get only one level. */
8324 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8325 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8326 == TYPE_CODE_PTR))
8327 array = value_ind (array);
8328
8329 /* Make sure we really do have an array type before going further,
8330 to avoid a SEGV when trying to get the index type or the target
8331 type later down the road if the debug info generated by
8332 the compiler is incorrect or incomplete. */
8333 if (!ada_is_simple_array_type (value_type (array)))
8334 error (_("cannot take slice of non-array"));
8335
8336 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8337 {
8338 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8339 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8340 low_bound);
8341 else
8342 {
8343 struct type *arr_type0 =
8344 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8345 NULL, 1);
8346 return ada_value_slice_ptr (array, arr_type0,
8347 longest_to_int (low_bound),
8348 longest_to_int (high_bound));
8349 }
8350 }
8351 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8352 return array;
8353 else if (high_bound < low_bound)
8354 return empty_array (value_type (array), low_bound);
8355 else
8356 return ada_value_slice (array, longest_to_int (low_bound),
8357 longest_to_int (high_bound));
8358 }
8359
8360 case UNOP_IN_RANGE:
8361 (*pos) += 2;
8362 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8363 type = exp->elts[pc + 1].type;
8364
8365 if (noside == EVAL_SKIP)
8366 goto nosideret;
8367
8368 switch (TYPE_CODE (type))
8369 {
8370 default:
8371 lim_warning (_("Membership test incompletely implemented; "
8372 "always returns true"));
8373 return value_from_longest (builtin_type_int, (LONGEST) 1);
8374
8375 case TYPE_CODE_RANGE:
8376 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8377 arg3 = value_from_longest (builtin_type_int,
8378 TYPE_HIGH_BOUND (type));
8379 return
8380 value_from_longest (builtin_type_int,
8381 (value_less (arg1, arg3)
8382 || value_equal (arg1, arg3))
8383 && (value_less (arg2, arg1)
8384 || value_equal (arg2, arg1)));
8385 }
8386
8387 case BINOP_IN_BOUNDS:
8388 (*pos) += 2;
8389 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8390 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8391
8392 if (noside == EVAL_SKIP)
8393 goto nosideret;
8394
8395 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8396 return value_zero (builtin_type_int, not_lval);
8397
8398 tem = longest_to_int (exp->elts[pc + 1].longconst);
8399
8400 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8401 error (_("invalid dimension number to 'range"));
8402
8403 arg3 = ada_array_bound (arg2, tem, 1);
8404 arg2 = ada_array_bound (arg2, tem, 0);
8405
8406 return
8407 value_from_longest (builtin_type_int,
8408 (value_less (arg1, arg3)
8409 || value_equal (arg1, arg3))
8410 && (value_less (arg2, arg1)
8411 || value_equal (arg2, arg1)));
8412
8413 case TERNOP_IN_RANGE:
8414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8415 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8416 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8417
8418 if (noside == EVAL_SKIP)
8419 goto nosideret;
8420
8421 return
8422 value_from_longest (builtin_type_int,
8423 (value_less (arg1, arg3)
8424 || value_equal (arg1, arg3))
8425 && (value_less (arg2, arg1)
8426 || value_equal (arg2, arg1)));
8427
8428 case OP_ATR_FIRST:
8429 case OP_ATR_LAST:
8430 case OP_ATR_LENGTH:
8431 {
8432 struct type *type_arg;
8433 if (exp->elts[*pos].opcode == OP_TYPE)
8434 {
8435 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8436 arg1 = NULL;
8437 type_arg = exp->elts[pc + 2].type;
8438 }
8439 else
8440 {
8441 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8442 type_arg = NULL;
8443 }
8444
8445 if (exp->elts[*pos].opcode != OP_LONG)
8446 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8447 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8448 *pos += 4;
8449
8450 if (noside == EVAL_SKIP)
8451 goto nosideret;
8452
8453 if (type_arg == NULL)
8454 {
8455 arg1 = ada_coerce_ref (arg1);
8456
8457 if (ada_is_packed_array_type (value_type (arg1)))
8458 arg1 = ada_coerce_to_simple_array (arg1);
8459
8460 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8461 error (_("invalid dimension number to '%s"),
8462 ada_attribute_name (op));
8463
8464 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8465 {
8466 type = ada_index_type (value_type (arg1), tem);
8467 if (type == NULL)
8468 error
8469 (_("attempt to take bound of something that is not an array"));
8470 return allocate_value (type);
8471 }
8472
8473 switch (op)
8474 {
8475 default: /* Should never happen. */
8476 error (_("unexpected attribute encountered"));
8477 case OP_ATR_FIRST:
8478 return ada_array_bound (arg1, tem, 0);
8479 case OP_ATR_LAST:
8480 return ada_array_bound (arg1, tem, 1);
8481 case OP_ATR_LENGTH:
8482 return ada_array_length (arg1, tem);
8483 }
8484 }
8485 else if (discrete_type_p (type_arg))
8486 {
8487 struct type *range_type;
8488 char *name = ada_type_name (type_arg);
8489 range_type = NULL;
8490 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8491 range_type =
8492 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8493 if (range_type == NULL)
8494 range_type = type_arg;
8495 switch (op)
8496 {
8497 default:
8498 error (_("unexpected attribute encountered"));
8499 case OP_ATR_FIRST:
8500 return discrete_type_low_bound (range_type);
8501 case OP_ATR_LAST:
8502 return discrete_type_high_bound (range_type);
8503 case OP_ATR_LENGTH:
8504 error (_("the 'length attribute applies only to array types"));
8505 }
8506 }
8507 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8508 error (_("unimplemented type attribute"));
8509 else
8510 {
8511 LONGEST low, high;
8512
8513 if (ada_is_packed_array_type (type_arg))
8514 type_arg = decode_packed_array_type (type_arg);
8515
8516 if (tem < 1 || tem > ada_array_arity (type_arg))
8517 error (_("invalid dimension number to '%s"),
8518 ada_attribute_name (op));
8519
8520 type = ada_index_type (type_arg, tem);
8521 if (type == NULL)
8522 error
8523 (_("attempt to take bound of something that is not an array"));
8524 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8525 return allocate_value (type);
8526
8527 switch (op)
8528 {
8529 default:
8530 error (_("unexpected attribute encountered"));
8531 case OP_ATR_FIRST:
8532 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8533 return value_from_longest (type, low);
8534 case OP_ATR_LAST:
8535 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8536 return value_from_longest (type, high);
8537 case OP_ATR_LENGTH:
8538 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8539 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8540 return value_from_longest (type, high - low + 1);
8541 }
8542 }
8543 }
8544
8545 case OP_ATR_TAG:
8546 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8547 if (noside == EVAL_SKIP)
8548 goto nosideret;
8549
8550 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8551 return value_zero (ada_tag_type (arg1), not_lval);
8552
8553 return ada_value_tag (arg1);
8554
8555 case OP_ATR_MIN:
8556 case OP_ATR_MAX:
8557 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8558 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8559 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8560 if (noside == EVAL_SKIP)
8561 goto nosideret;
8562 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8563 return value_zero (value_type (arg1), not_lval);
8564 else
8565 return value_binop (arg1, arg2,
8566 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8567
8568 case OP_ATR_MODULUS:
8569 {
8570 struct type *type_arg = exp->elts[pc + 2].type;
8571 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8572
8573 if (noside == EVAL_SKIP)
8574 goto nosideret;
8575
8576 if (!ada_is_modular_type (type_arg))
8577 error (_("'modulus must be applied to modular type"));
8578
8579 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8580 ada_modulus (type_arg));
8581 }
8582
8583
8584 case OP_ATR_POS:
8585 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8586 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8587 if (noside == EVAL_SKIP)
8588 goto nosideret;
8589 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8590 return value_zero (builtin_type_int, not_lval);
8591 else
8592 return value_pos_atr (arg1);
8593
8594 case OP_ATR_SIZE:
8595 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8596 if (noside == EVAL_SKIP)
8597 goto nosideret;
8598 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8599 return value_zero (builtin_type_int, not_lval);
8600 else
8601 return value_from_longest (builtin_type_int,
8602 TARGET_CHAR_BIT
8603 * TYPE_LENGTH (value_type (arg1)));
8604
8605 case OP_ATR_VAL:
8606 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8607 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8608 type = exp->elts[pc + 2].type;
8609 if (noside == EVAL_SKIP)
8610 goto nosideret;
8611 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8612 return value_zero (type, not_lval);
8613 else
8614 return value_val_atr (type, arg1);
8615
8616 case BINOP_EXP:
8617 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8618 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8619 if (noside == EVAL_SKIP)
8620 goto nosideret;
8621 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8622 return value_zero (value_type (arg1), not_lval);
8623 else
8624 return value_binop (arg1, arg2, op);
8625
8626 case UNOP_PLUS:
8627 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8628 if (noside == EVAL_SKIP)
8629 goto nosideret;
8630 else
8631 return arg1;
8632
8633 case UNOP_ABS:
8634 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8635 if (noside == EVAL_SKIP)
8636 goto nosideret;
8637 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8638 return value_neg (arg1);
8639 else
8640 return arg1;
8641
8642 case UNOP_IND:
8643 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8644 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8645 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8646 if (noside == EVAL_SKIP)
8647 goto nosideret;
8648 type = ada_check_typedef (value_type (arg1));
8649 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8650 {
8651 if (ada_is_array_descriptor_type (type))
8652 /* GDB allows dereferencing GNAT array descriptors. */
8653 {
8654 struct type *arrType = ada_type_of_array (arg1, 0);
8655 if (arrType == NULL)
8656 error (_("Attempt to dereference null array pointer."));
8657 return value_at_lazy (arrType, 0);
8658 }
8659 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8660 || TYPE_CODE (type) == TYPE_CODE_REF
8661 /* In C you can dereference an array to get the 1st elt. */
8662 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8663 {
8664 type = to_static_fixed_type
8665 (ada_aligned_type
8666 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8667 check_size (type);
8668 return value_zero (type, lval_memory);
8669 }
8670 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8671 /* GDB allows dereferencing an int. */
8672 return value_zero (builtin_type_int, lval_memory);
8673 else
8674 error (_("Attempt to take contents of a non-pointer value."));
8675 }
8676 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8677 type = ada_check_typedef (value_type (arg1));
8678
8679 if (ada_is_array_descriptor_type (type))
8680 /* GDB allows dereferencing GNAT array descriptors. */
8681 return ada_coerce_to_simple_array (arg1);
8682 else
8683 return ada_value_ind (arg1);
8684
8685 case STRUCTOP_STRUCT:
8686 tem = longest_to_int (exp->elts[pc + 1].longconst);
8687 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8688 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8689 if (noside == EVAL_SKIP)
8690 goto nosideret;
8691 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8692 {
8693 struct type *type1 = value_type (arg1);
8694 if (ada_is_tagged_type (type1, 1))
8695 {
8696 type = ada_lookup_struct_elt_type (type1,
8697 &exp->elts[pc + 2].string,
8698 1, 1, NULL);
8699 if (type == NULL)
8700 /* In this case, we assume that the field COULD exist
8701 in some extension of the type. Return an object of
8702 "type" void, which will match any formal
8703 (see ada_type_match). */
8704 return value_zero (builtin_type_void, lval_memory);
8705 }
8706 else
8707 type =
8708 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8709 0, NULL);
8710
8711 return value_zero (ada_aligned_type (type), lval_memory);
8712 }
8713 else
8714 return
8715 ada_to_fixed_value (unwrap_value
8716 (ada_value_struct_elt
8717 (arg1, &exp->elts[pc + 2].string, 0)));
8718 case OP_TYPE:
8719 /* The value is not supposed to be used. This is here to make it
8720 easier to accommodate expressions that contain types. */
8721 (*pos) += 2;
8722 if (noside == EVAL_SKIP)
8723 goto nosideret;
8724 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8725 return allocate_value (exp->elts[pc + 1].type);
8726 else
8727 error (_("Attempt to use a type name as an expression"));
8728
8729 case OP_AGGREGATE:
8730 case OP_CHOICES:
8731 case OP_OTHERS:
8732 case OP_DISCRETE_RANGE:
8733 case OP_POSITIONAL:
8734 case OP_NAME:
8735 if (noside == EVAL_NORMAL)
8736 switch (op)
8737 {
8738 case OP_NAME:
8739 error (_("Undefined name, ambiguous name, or renaming used in "
8740 "component association: %s."), &exp->elts[pc+2].string);
8741 case OP_AGGREGATE:
8742 error (_("Aggregates only allowed on the right of an assignment"));
8743 default:
8744 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8745 }
8746
8747 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8748 *pos += oplen - 1;
8749 for (tem = 0; tem < nargs; tem += 1)
8750 ada_evaluate_subexp (NULL, exp, pos, noside);
8751 goto nosideret;
8752 }
8753
8754 nosideret:
8755 return value_from_longest (builtin_type_long, (LONGEST) 1);
8756 }
8757 \f
8758
8759 /* Fixed point */
8760
8761 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8762 type name that encodes the 'small and 'delta information.
8763 Otherwise, return NULL. */
8764
8765 static const char *
8766 fixed_type_info (struct type *type)
8767 {
8768 const char *name = ada_type_name (type);
8769 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8770
8771 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8772 {
8773 const char *tail = strstr (name, "___XF_");
8774 if (tail == NULL)
8775 return NULL;
8776 else
8777 return tail + 5;
8778 }
8779 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8780 return fixed_type_info (TYPE_TARGET_TYPE (type));
8781 else
8782 return NULL;
8783 }
8784
8785 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8786
8787 int
8788 ada_is_fixed_point_type (struct type *type)
8789 {
8790 return fixed_type_info (type) != NULL;
8791 }
8792
8793 /* Return non-zero iff TYPE represents a System.Address type. */
8794
8795 int
8796 ada_is_system_address_type (struct type *type)
8797 {
8798 return (TYPE_NAME (type)
8799 && strcmp (TYPE_NAME (type), "system__address") == 0);
8800 }
8801
8802 /* Assuming that TYPE is the representation of an Ada fixed-point
8803 type, return its delta, or -1 if the type is malformed and the
8804 delta cannot be determined. */
8805
8806 DOUBLEST
8807 ada_delta (struct type *type)
8808 {
8809 const char *encoding = fixed_type_info (type);
8810 long num, den;
8811
8812 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8813 return -1.0;
8814 else
8815 return (DOUBLEST) num / (DOUBLEST) den;
8816 }
8817
8818 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8819 factor ('SMALL value) associated with the type. */
8820
8821 static DOUBLEST
8822 scaling_factor (struct type *type)
8823 {
8824 const char *encoding = fixed_type_info (type);
8825 unsigned long num0, den0, num1, den1;
8826 int n;
8827
8828 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8829
8830 if (n < 2)
8831 return 1.0;
8832 else if (n == 4)
8833 return (DOUBLEST) num1 / (DOUBLEST) den1;
8834 else
8835 return (DOUBLEST) num0 / (DOUBLEST) den0;
8836 }
8837
8838
8839 /* Assuming that X is the representation of a value of fixed-point
8840 type TYPE, return its floating-point equivalent. */
8841
8842 DOUBLEST
8843 ada_fixed_to_float (struct type *type, LONGEST x)
8844 {
8845 return (DOUBLEST) x *scaling_factor (type);
8846 }
8847
8848 /* The representation of a fixed-point value of type TYPE
8849 corresponding to the value X. */
8850
8851 LONGEST
8852 ada_float_to_fixed (struct type *type, DOUBLEST x)
8853 {
8854 return (LONGEST) (x / scaling_factor (type) + 0.5);
8855 }
8856
8857
8858 /* VAX floating formats */
8859
8860 /* Non-zero iff TYPE represents one of the special VAX floating-point
8861 types. */
8862
8863 int
8864 ada_is_vax_floating_type (struct type *type)
8865 {
8866 int name_len =
8867 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8868 return
8869 name_len > 6
8870 && (TYPE_CODE (type) == TYPE_CODE_INT
8871 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8872 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8873 }
8874
8875 /* The type of special VAX floating-point type this is, assuming
8876 ada_is_vax_floating_point. */
8877
8878 int
8879 ada_vax_float_type_suffix (struct type *type)
8880 {
8881 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8882 }
8883
8884 /* A value representing the special debugging function that outputs
8885 VAX floating-point values of the type represented by TYPE. Assumes
8886 ada_is_vax_floating_type (TYPE). */
8887
8888 struct value *
8889 ada_vax_float_print_function (struct type *type)
8890 {
8891 switch (ada_vax_float_type_suffix (type))
8892 {
8893 case 'F':
8894 return get_var_value ("DEBUG_STRING_F", 0);
8895 case 'D':
8896 return get_var_value ("DEBUG_STRING_D", 0);
8897 case 'G':
8898 return get_var_value ("DEBUG_STRING_G", 0);
8899 default:
8900 error (_("invalid VAX floating-point type"));
8901 }
8902 }
8903 \f
8904
8905 /* Range types */
8906
8907 /* Scan STR beginning at position K for a discriminant name, and
8908 return the value of that discriminant field of DVAL in *PX. If
8909 PNEW_K is not null, put the position of the character beyond the
8910 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8911 not alter *PX and *PNEW_K if unsuccessful. */
8912
8913 static int
8914 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8915 int *pnew_k)
8916 {
8917 static char *bound_buffer = NULL;
8918 static size_t bound_buffer_len = 0;
8919 char *bound;
8920 char *pend;
8921 struct value *bound_val;
8922
8923 if (dval == NULL || str == NULL || str[k] == '\0')
8924 return 0;
8925
8926 pend = strstr (str + k, "__");
8927 if (pend == NULL)
8928 {
8929 bound = str + k;
8930 k += strlen (bound);
8931 }
8932 else
8933 {
8934 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8935 bound = bound_buffer;
8936 strncpy (bound_buffer, str + k, pend - (str + k));
8937 bound[pend - (str + k)] = '\0';
8938 k = pend - str;
8939 }
8940
8941 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8942 if (bound_val == NULL)
8943 return 0;
8944
8945 *px = value_as_long (bound_val);
8946 if (pnew_k != NULL)
8947 *pnew_k = k;
8948 return 1;
8949 }
8950
8951 /* Value of variable named NAME in the current environment. If
8952 no such variable found, then if ERR_MSG is null, returns 0, and
8953 otherwise causes an error with message ERR_MSG. */
8954
8955 static struct value *
8956 get_var_value (char *name, char *err_msg)
8957 {
8958 struct ada_symbol_info *syms;
8959 int nsyms;
8960
8961 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8962 &syms);
8963
8964 if (nsyms != 1)
8965 {
8966 if (err_msg == NULL)
8967 return 0;
8968 else
8969 error (("%s"), err_msg);
8970 }
8971
8972 return value_of_variable (syms[0].sym, syms[0].block);
8973 }
8974
8975 /* Value of integer variable named NAME in the current environment. If
8976 no such variable found, returns 0, and sets *FLAG to 0. If
8977 successful, sets *FLAG to 1. */
8978
8979 LONGEST
8980 get_int_var_value (char *name, int *flag)
8981 {
8982 struct value *var_val = get_var_value (name, 0);
8983
8984 if (var_val == 0)
8985 {
8986 if (flag != NULL)
8987 *flag = 0;
8988 return 0;
8989 }
8990 else
8991 {
8992 if (flag != NULL)
8993 *flag = 1;
8994 return value_as_long (var_val);
8995 }
8996 }
8997
8998
8999 /* Return a range type whose base type is that of the range type named
9000 NAME in the current environment, and whose bounds are calculated
9001 from NAME according to the GNAT range encoding conventions.
9002 Extract discriminant values, if needed, from DVAL. If a new type
9003 must be created, allocate in OBJFILE's space. The bounds
9004 information, in general, is encoded in NAME, the base type given in
9005 the named range type. */
9006
9007 static struct type *
9008 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9009 {
9010 struct type *raw_type = ada_find_any_type (name);
9011 struct type *base_type;
9012 char *subtype_info;
9013
9014 if (raw_type == NULL)
9015 base_type = builtin_type_int;
9016 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9017 base_type = TYPE_TARGET_TYPE (raw_type);
9018 else
9019 base_type = raw_type;
9020
9021 subtype_info = strstr (name, "___XD");
9022 if (subtype_info == NULL)
9023 return raw_type;
9024 else
9025 {
9026 static char *name_buf = NULL;
9027 static size_t name_len = 0;
9028 int prefix_len = subtype_info - name;
9029 LONGEST L, U;
9030 struct type *type;
9031 char *bounds_str;
9032 int n;
9033
9034 GROW_VECT (name_buf, name_len, prefix_len + 5);
9035 strncpy (name_buf, name, prefix_len);
9036 name_buf[prefix_len] = '\0';
9037
9038 subtype_info += 5;
9039 bounds_str = strchr (subtype_info, '_');
9040 n = 1;
9041
9042 if (*subtype_info == 'L')
9043 {
9044 if (!ada_scan_number (bounds_str, n, &L, &n)
9045 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9046 return raw_type;
9047 if (bounds_str[n] == '_')
9048 n += 2;
9049 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9050 n += 1;
9051 subtype_info += 1;
9052 }
9053 else
9054 {
9055 int ok;
9056 strcpy (name_buf + prefix_len, "___L");
9057 L = get_int_var_value (name_buf, &ok);
9058 if (!ok)
9059 {
9060 lim_warning (_("Unknown lower bound, using 1."));
9061 L = 1;
9062 }
9063 }
9064
9065 if (*subtype_info == 'U')
9066 {
9067 if (!ada_scan_number (bounds_str, n, &U, &n)
9068 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9069 return raw_type;
9070 }
9071 else
9072 {
9073 int ok;
9074 strcpy (name_buf + prefix_len, "___U");
9075 U = get_int_var_value (name_buf, &ok);
9076 if (!ok)
9077 {
9078 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9079 U = L;
9080 }
9081 }
9082
9083 if (objfile == NULL)
9084 objfile = TYPE_OBJFILE (base_type);
9085 type = create_range_type (alloc_type (objfile), base_type, L, U);
9086 TYPE_NAME (type) = name;
9087 return type;
9088 }
9089 }
9090
9091 /* True iff NAME is the name of a range type. */
9092
9093 int
9094 ada_is_range_type_name (const char *name)
9095 {
9096 return (name != NULL && strstr (name, "___XD"));
9097 }
9098 \f
9099
9100 /* Modular types */
9101
9102 /* True iff TYPE is an Ada modular type. */
9103
9104 int
9105 ada_is_modular_type (struct type *type)
9106 {
9107 struct type *subranged_type = base_type (type);
9108
9109 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9110 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9111 && TYPE_UNSIGNED (subranged_type));
9112 }
9113
9114 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9115
9116 ULONGEST
9117 ada_modulus (struct type * type)
9118 {
9119 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9120 }
9121 \f
9122
9123 /* Ada exception catchpoint support:
9124 ---------------------------------
9125
9126 We support 3 kinds of exception catchpoints:
9127 . catchpoints on Ada exceptions
9128 . catchpoints on unhandled Ada exceptions
9129 . catchpoints on failed assertions
9130
9131 Exceptions raised during failed assertions, or unhandled exceptions
9132 could perfectly be caught with the general catchpoint on Ada exceptions.
9133 However, we can easily differentiate these two special cases, and having
9134 the option to distinguish these two cases from the rest can be useful
9135 to zero-in on certain situations.
9136
9137 Exception catchpoints are a specialized form of breakpoint,
9138 since they rely on inserting breakpoints inside known routines
9139 of the GNAT runtime. The implementation therefore uses a standard
9140 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9141 of breakpoint_ops.
9142
9143 Support in the runtime for exception catchpoints have been changed
9144 a few times already, and these changes affect the implementation
9145 of these catchpoints. In order to be able to support several
9146 variants of the runtime, we use a sniffer that will determine
9147 the runtime variant used by the program being debugged.
9148
9149 At this time, we do not support the use of conditions on Ada exception
9150 catchpoints. The COND and COND_STRING fields are therefore set
9151 to NULL (most of the time, see below).
9152
9153 Conditions where EXP_STRING, COND, and COND_STRING are used:
9154
9155 When a user specifies the name of a specific exception in the case
9156 of catchpoints on Ada exceptions, we store the name of that exception
9157 in the EXP_STRING. We then translate this request into an actual
9158 condition stored in COND_STRING, and then parse it into an expression
9159 stored in COND. */
9160
9161 /* The different types of catchpoints that we introduced for catching
9162 Ada exceptions. */
9163
9164 enum exception_catchpoint_kind
9165 {
9166 ex_catch_exception,
9167 ex_catch_exception_unhandled,
9168 ex_catch_assert
9169 };
9170
9171 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9172
9173 /* A structure that describes how to support exception catchpoints
9174 for a given executable. */
9175
9176 struct exception_support_info
9177 {
9178 /* The name of the symbol to break on in order to insert
9179 a catchpoint on exceptions. */
9180 const char *catch_exception_sym;
9181
9182 /* The name of the symbol to break on in order to insert
9183 a catchpoint on unhandled exceptions. */
9184 const char *catch_exception_unhandled_sym;
9185
9186 /* The name of the symbol to break on in order to insert
9187 a catchpoint on failed assertions. */
9188 const char *catch_assert_sym;
9189
9190 /* Assuming that the inferior just triggered an unhandled exception
9191 catchpoint, this function is responsible for returning the address
9192 in inferior memory where the name of that exception is stored.
9193 Return zero if the address could not be computed. */
9194 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9195 };
9196
9197 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9198 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9199
9200 /* The following exception support info structure describes how to
9201 implement exception catchpoints with the latest version of the
9202 Ada runtime (as of 2007-03-06). */
9203
9204 static const struct exception_support_info default_exception_support_info =
9205 {
9206 "__gnat_debug_raise_exception", /* catch_exception_sym */
9207 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9208 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9209 ada_unhandled_exception_name_addr
9210 };
9211
9212 /* The following exception support info structure describes how to
9213 implement exception catchpoints with a slightly older version
9214 of the Ada runtime. */
9215
9216 static const struct exception_support_info exception_support_info_fallback =
9217 {
9218 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9219 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9220 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9221 ada_unhandled_exception_name_addr_from_raise
9222 };
9223
9224 /* For each executable, we sniff which exception info structure to use
9225 and cache it in the following global variable. */
9226
9227 static const struct exception_support_info *exception_info = NULL;
9228
9229 /* Inspect the Ada runtime and determine which exception info structure
9230 should be used to provide support for exception catchpoints.
9231
9232 This function will always set exception_info, or raise an error. */
9233
9234 static void
9235 ada_exception_support_info_sniffer (void)
9236 {
9237 struct symbol *sym;
9238
9239 /* If the exception info is already known, then no need to recompute it. */
9240 if (exception_info != NULL)
9241 return;
9242
9243 /* Check the latest (default) exception support info. */
9244 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9245 NULL, VAR_DOMAIN);
9246 if (sym != NULL)
9247 {
9248 exception_info = &default_exception_support_info;
9249 return;
9250 }
9251
9252 /* Try our fallback exception suport info. */
9253 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9254 NULL, VAR_DOMAIN);
9255 if (sym != NULL)
9256 {
9257 exception_info = &exception_support_info_fallback;
9258 return;
9259 }
9260
9261 /* Sometimes, it is normal for us to not be able to find the routine
9262 we are looking for. This happens when the program is linked with
9263 the shared version of the GNAT runtime, and the program has not been
9264 started yet. Inform the user of these two possible causes if
9265 applicable. */
9266
9267 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9268 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9269
9270 /* If the symbol does not exist, then check that the program is
9271 already started, to make sure that shared libraries have been
9272 loaded. If it is not started, this may mean that the symbol is
9273 in a shared library. */
9274
9275 if (ptid_get_pid (inferior_ptid) == 0)
9276 error (_("Unable to insert catchpoint. Try to start the program first."));
9277
9278 /* At this point, we know that we are debugging an Ada program and
9279 that the inferior has been started, but we still are not able to
9280 find the run-time symbols. That can mean that we are in
9281 configurable run time mode, or that a-except as been optimized
9282 out by the linker... In any case, at this point it is not worth
9283 supporting this feature. */
9284
9285 error (_("Cannot insert catchpoints in this configuration."));
9286 }
9287
9288 /* An observer of "executable_changed" events.
9289 Its role is to clear certain cached values that need to be recomputed
9290 each time a new executable is loaded by GDB. */
9291
9292 static void
9293 ada_executable_changed_observer (void *unused)
9294 {
9295 /* If the executable changed, then it is possible that the Ada runtime
9296 is different. So we need to invalidate the exception support info
9297 cache. */
9298 exception_info = NULL;
9299 }
9300
9301 /* Return the name of the function at PC, NULL if could not find it.
9302 This function only checks the debugging information, not the symbol
9303 table. */
9304
9305 static char *
9306 function_name_from_pc (CORE_ADDR pc)
9307 {
9308 char *func_name;
9309
9310 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9311 return NULL;
9312
9313 return func_name;
9314 }
9315
9316 /* True iff FRAME is very likely to be that of a function that is
9317 part of the runtime system. This is all very heuristic, but is
9318 intended to be used as advice as to what frames are uninteresting
9319 to most users. */
9320
9321 static int
9322 is_known_support_routine (struct frame_info *frame)
9323 {
9324 struct symtab_and_line sal;
9325 char *func_name;
9326 int i;
9327
9328 /* If this code does not have any debugging information (no symtab),
9329 This cannot be any user code. */
9330
9331 find_frame_sal (frame, &sal);
9332 if (sal.symtab == NULL)
9333 return 1;
9334
9335 /* If there is a symtab, but the associated source file cannot be
9336 located, then assume this is not user code: Selecting a frame
9337 for which we cannot display the code would not be very helpful
9338 for the user. This should also take care of case such as VxWorks
9339 where the kernel has some debugging info provided for a few units. */
9340
9341 if (symtab_to_fullname (sal.symtab) == NULL)
9342 return 1;
9343
9344 /* Check the unit filename againt the Ada runtime file naming.
9345 We also check the name of the objfile against the name of some
9346 known system libraries that sometimes come with debugging info
9347 too. */
9348
9349 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9350 {
9351 re_comp (known_runtime_file_name_patterns[i]);
9352 if (re_exec (sal.symtab->filename))
9353 return 1;
9354 if (sal.symtab->objfile != NULL
9355 && re_exec (sal.symtab->objfile->name))
9356 return 1;
9357 }
9358
9359 /* Check whether the function is a GNAT-generated entity. */
9360
9361 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9362 if (func_name == NULL)
9363 return 1;
9364
9365 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9366 {
9367 re_comp (known_auxiliary_function_name_patterns[i]);
9368 if (re_exec (func_name))
9369 return 1;
9370 }
9371
9372 return 0;
9373 }
9374
9375 /* Find the first frame that contains debugging information and that is not
9376 part of the Ada run-time, starting from FI and moving upward. */
9377
9378 static void
9379 ada_find_printable_frame (struct frame_info *fi)
9380 {
9381 for (; fi != NULL; fi = get_prev_frame (fi))
9382 {
9383 if (!is_known_support_routine (fi))
9384 {
9385 select_frame (fi);
9386 break;
9387 }
9388 }
9389
9390 }
9391
9392 /* Assuming that the inferior just triggered an unhandled exception
9393 catchpoint, return the address in inferior memory where the name
9394 of the exception is stored.
9395
9396 Return zero if the address could not be computed. */
9397
9398 static CORE_ADDR
9399 ada_unhandled_exception_name_addr (void)
9400 {
9401 return parse_and_eval_address ("e.full_name");
9402 }
9403
9404 /* Same as ada_unhandled_exception_name_addr, except that this function
9405 should be used when the inferior uses an older version of the runtime,
9406 where the exception name needs to be extracted from a specific frame
9407 several frames up in the callstack. */
9408
9409 static CORE_ADDR
9410 ada_unhandled_exception_name_addr_from_raise (void)
9411 {
9412 int frame_level;
9413 struct frame_info *fi;
9414
9415 /* To determine the name of this exception, we need to select
9416 the frame corresponding to RAISE_SYM_NAME. This frame is
9417 at least 3 levels up, so we simply skip the first 3 frames
9418 without checking the name of their associated function. */
9419 fi = get_current_frame ();
9420 for (frame_level = 0; frame_level < 3; frame_level += 1)
9421 if (fi != NULL)
9422 fi = get_prev_frame (fi);
9423
9424 while (fi != NULL)
9425 {
9426 const char *func_name =
9427 function_name_from_pc (get_frame_address_in_block (fi));
9428 if (func_name != NULL
9429 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9430 break; /* We found the frame we were looking for... */
9431 fi = get_prev_frame (fi);
9432 }
9433
9434 if (fi == NULL)
9435 return 0;
9436
9437 select_frame (fi);
9438 return parse_and_eval_address ("id.full_name");
9439 }
9440
9441 /* Assuming the inferior just triggered an Ada exception catchpoint
9442 (of any type), return the address in inferior memory where the name
9443 of the exception is stored, if applicable.
9444
9445 Return zero if the address could not be computed, or if not relevant. */
9446
9447 static CORE_ADDR
9448 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9449 struct breakpoint *b)
9450 {
9451 switch (ex)
9452 {
9453 case ex_catch_exception:
9454 return (parse_and_eval_address ("e.full_name"));
9455 break;
9456
9457 case ex_catch_exception_unhandled:
9458 return exception_info->unhandled_exception_name_addr ();
9459 break;
9460
9461 case ex_catch_assert:
9462 return 0; /* Exception name is not relevant in this case. */
9463 break;
9464
9465 default:
9466 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9467 break;
9468 }
9469
9470 return 0; /* Should never be reached. */
9471 }
9472
9473 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9474 any error that ada_exception_name_addr_1 might cause to be thrown.
9475 When an error is intercepted, a warning with the error message is printed,
9476 and zero is returned. */
9477
9478 static CORE_ADDR
9479 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9480 struct breakpoint *b)
9481 {
9482 struct gdb_exception e;
9483 CORE_ADDR result = 0;
9484
9485 TRY_CATCH (e, RETURN_MASK_ERROR)
9486 {
9487 result = ada_exception_name_addr_1 (ex, b);
9488 }
9489
9490 if (e.reason < 0)
9491 {
9492 warning (_("failed to get exception name: %s"), e.message);
9493 return 0;
9494 }
9495
9496 return result;
9497 }
9498
9499 /* Implement the PRINT_IT method in the breakpoint_ops structure
9500 for all exception catchpoint kinds. */
9501
9502 static enum print_stop_action
9503 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9504 {
9505 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9506 char exception_name[256];
9507
9508 if (addr != 0)
9509 {
9510 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9511 exception_name [sizeof (exception_name) - 1] = '\0';
9512 }
9513
9514 ada_find_printable_frame (get_current_frame ());
9515
9516 annotate_catchpoint (b->number);
9517 switch (ex)
9518 {
9519 case ex_catch_exception:
9520 if (addr != 0)
9521 printf_filtered (_("\nCatchpoint %d, %s at "),
9522 b->number, exception_name);
9523 else
9524 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9525 break;
9526 case ex_catch_exception_unhandled:
9527 if (addr != 0)
9528 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9529 b->number, exception_name);
9530 else
9531 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9532 b->number);
9533 break;
9534 case ex_catch_assert:
9535 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9536 b->number);
9537 break;
9538 }
9539
9540 return PRINT_SRC_AND_LOC;
9541 }
9542
9543 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9544 for all exception catchpoint kinds. */
9545
9546 static void
9547 print_one_exception (enum exception_catchpoint_kind ex,
9548 struct breakpoint *b, CORE_ADDR *last_addr)
9549 {
9550 if (addressprint)
9551 {
9552 annotate_field (4);
9553 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9554 }
9555
9556 annotate_field (5);
9557 *last_addr = b->loc->address;
9558 switch (ex)
9559 {
9560 case ex_catch_exception:
9561 if (b->exp_string != NULL)
9562 {
9563 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9564
9565 ui_out_field_string (uiout, "what", msg);
9566 xfree (msg);
9567 }
9568 else
9569 ui_out_field_string (uiout, "what", "all Ada exceptions");
9570
9571 break;
9572
9573 case ex_catch_exception_unhandled:
9574 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9575 break;
9576
9577 case ex_catch_assert:
9578 ui_out_field_string (uiout, "what", "failed Ada assertions");
9579 break;
9580
9581 default:
9582 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9583 break;
9584 }
9585 }
9586
9587 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9588 for all exception catchpoint kinds. */
9589
9590 static void
9591 print_mention_exception (enum exception_catchpoint_kind ex,
9592 struct breakpoint *b)
9593 {
9594 switch (ex)
9595 {
9596 case ex_catch_exception:
9597 if (b->exp_string != NULL)
9598 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9599 b->number, b->exp_string);
9600 else
9601 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9602
9603 break;
9604
9605 case ex_catch_exception_unhandled:
9606 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9607 b->number);
9608 break;
9609
9610 case ex_catch_assert:
9611 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9612 break;
9613
9614 default:
9615 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9616 break;
9617 }
9618 }
9619
9620 /* Virtual table for "catch exception" breakpoints. */
9621
9622 static enum print_stop_action
9623 print_it_catch_exception (struct breakpoint *b)
9624 {
9625 return print_it_exception (ex_catch_exception, b);
9626 }
9627
9628 static void
9629 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9630 {
9631 print_one_exception (ex_catch_exception, b, last_addr);
9632 }
9633
9634 static void
9635 print_mention_catch_exception (struct breakpoint *b)
9636 {
9637 print_mention_exception (ex_catch_exception, b);
9638 }
9639
9640 static struct breakpoint_ops catch_exception_breakpoint_ops =
9641 {
9642 print_it_catch_exception,
9643 print_one_catch_exception,
9644 print_mention_catch_exception
9645 };
9646
9647 /* Virtual table for "catch exception unhandled" breakpoints. */
9648
9649 static enum print_stop_action
9650 print_it_catch_exception_unhandled (struct breakpoint *b)
9651 {
9652 return print_it_exception (ex_catch_exception_unhandled, b);
9653 }
9654
9655 static void
9656 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9657 {
9658 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9659 }
9660
9661 static void
9662 print_mention_catch_exception_unhandled (struct breakpoint *b)
9663 {
9664 print_mention_exception (ex_catch_exception_unhandled, b);
9665 }
9666
9667 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9668 print_it_catch_exception_unhandled,
9669 print_one_catch_exception_unhandled,
9670 print_mention_catch_exception_unhandled
9671 };
9672
9673 /* Virtual table for "catch assert" breakpoints. */
9674
9675 static enum print_stop_action
9676 print_it_catch_assert (struct breakpoint *b)
9677 {
9678 return print_it_exception (ex_catch_assert, b);
9679 }
9680
9681 static void
9682 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9683 {
9684 print_one_exception (ex_catch_assert, b, last_addr);
9685 }
9686
9687 static void
9688 print_mention_catch_assert (struct breakpoint *b)
9689 {
9690 print_mention_exception (ex_catch_assert, b);
9691 }
9692
9693 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9694 print_it_catch_assert,
9695 print_one_catch_assert,
9696 print_mention_catch_assert
9697 };
9698
9699 /* Return non-zero if B is an Ada exception catchpoint. */
9700
9701 int
9702 ada_exception_catchpoint_p (struct breakpoint *b)
9703 {
9704 return (b->ops == &catch_exception_breakpoint_ops
9705 || b->ops == &catch_exception_unhandled_breakpoint_ops
9706 || b->ops == &catch_assert_breakpoint_ops);
9707 }
9708
9709 /* Return a newly allocated copy of the first space-separated token
9710 in ARGSP, and then adjust ARGSP to point immediately after that
9711 token.
9712
9713 Return NULL if ARGPS does not contain any more tokens. */
9714
9715 static char *
9716 ada_get_next_arg (char **argsp)
9717 {
9718 char *args = *argsp;
9719 char *end;
9720 char *result;
9721
9722 /* Skip any leading white space. */
9723
9724 while (isspace (*args))
9725 args++;
9726
9727 if (args[0] == '\0')
9728 return NULL; /* No more arguments. */
9729
9730 /* Find the end of the current argument. */
9731
9732 end = args;
9733 while (*end != '\0' && !isspace (*end))
9734 end++;
9735
9736 /* Adjust ARGSP to point to the start of the next argument. */
9737
9738 *argsp = end;
9739
9740 /* Make a copy of the current argument and return it. */
9741
9742 result = xmalloc (end - args + 1);
9743 strncpy (result, args, end - args);
9744 result[end - args] = '\0';
9745
9746 return result;
9747 }
9748
9749 /* Split the arguments specified in a "catch exception" command.
9750 Set EX to the appropriate catchpoint type.
9751 Set EXP_STRING to the name of the specific exception if
9752 specified by the user. */
9753
9754 static void
9755 catch_ada_exception_command_split (char *args,
9756 enum exception_catchpoint_kind *ex,
9757 char **exp_string)
9758 {
9759 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9760 char *exception_name;
9761
9762 exception_name = ada_get_next_arg (&args);
9763 make_cleanup (xfree, exception_name);
9764
9765 /* Check that we do not have any more arguments. Anything else
9766 is unexpected. */
9767
9768 while (isspace (*args))
9769 args++;
9770
9771 if (args[0] != '\0')
9772 error (_("Junk at end of expression"));
9773
9774 discard_cleanups (old_chain);
9775
9776 if (exception_name == NULL)
9777 {
9778 /* Catch all exceptions. */
9779 *ex = ex_catch_exception;
9780 *exp_string = NULL;
9781 }
9782 else if (strcmp (exception_name, "unhandled") == 0)
9783 {
9784 /* Catch unhandled exceptions. */
9785 *ex = ex_catch_exception_unhandled;
9786 *exp_string = NULL;
9787 }
9788 else
9789 {
9790 /* Catch a specific exception. */
9791 *ex = ex_catch_exception;
9792 *exp_string = exception_name;
9793 }
9794 }
9795
9796 /* Return the name of the symbol on which we should break in order to
9797 implement a catchpoint of the EX kind. */
9798
9799 static const char *
9800 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9801 {
9802 gdb_assert (exception_info != NULL);
9803
9804 switch (ex)
9805 {
9806 case ex_catch_exception:
9807 return (exception_info->catch_exception_sym);
9808 break;
9809 case ex_catch_exception_unhandled:
9810 return (exception_info->catch_exception_unhandled_sym);
9811 break;
9812 case ex_catch_assert:
9813 return (exception_info->catch_assert_sym);
9814 break;
9815 default:
9816 internal_error (__FILE__, __LINE__,
9817 _("unexpected catchpoint kind (%d)"), ex);
9818 }
9819 }
9820
9821 /* Return the breakpoint ops "virtual table" used for catchpoints
9822 of the EX kind. */
9823
9824 static struct breakpoint_ops *
9825 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9826 {
9827 switch (ex)
9828 {
9829 case ex_catch_exception:
9830 return (&catch_exception_breakpoint_ops);
9831 break;
9832 case ex_catch_exception_unhandled:
9833 return (&catch_exception_unhandled_breakpoint_ops);
9834 break;
9835 case ex_catch_assert:
9836 return (&catch_assert_breakpoint_ops);
9837 break;
9838 default:
9839 internal_error (__FILE__, __LINE__,
9840 _("unexpected catchpoint kind (%d)"), ex);
9841 }
9842 }
9843
9844 /* Return the condition that will be used to match the current exception
9845 being raised with the exception that the user wants to catch. This
9846 assumes that this condition is used when the inferior just triggered
9847 an exception catchpoint.
9848
9849 The string returned is a newly allocated string that needs to be
9850 deallocated later. */
9851
9852 static char *
9853 ada_exception_catchpoint_cond_string (const char *exp_string)
9854 {
9855 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9856 }
9857
9858 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9859
9860 static struct expression *
9861 ada_parse_catchpoint_condition (char *cond_string,
9862 struct symtab_and_line sal)
9863 {
9864 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9865 }
9866
9867 /* Return the symtab_and_line that should be used to insert an exception
9868 catchpoint of the TYPE kind.
9869
9870 EX_STRING should contain the name of a specific exception
9871 that the catchpoint should catch, or NULL otherwise.
9872
9873 The idea behind all the remaining parameters is that their names match
9874 the name of certain fields in the breakpoint structure that are used to
9875 handle exception catchpoints. This function returns the value to which
9876 these fields should be set, depending on the type of catchpoint we need
9877 to create.
9878
9879 If COND and COND_STRING are both non-NULL, any value they might
9880 hold will be free'ed, and then replaced by newly allocated ones.
9881 These parameters are left untouched otherwise. */
9882
9883 static struct symtab_and_line
9884 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9885 char **addr_string, char **cond_string,
9886 struct expression **cond, struct breakpoint_ops **ops)
9887 {
9888 const char *sym_name;
9889 struct symbol *sym;
9890 struct symtab_and_line sal;
9891
9892 /* First, find out which exception support info to use. */
9893 ada_exception_support_info_sniffer ();
9894
9895 /* Then lookup the function on which we will break in order to catch
9896 the Ada exceptions requested by the user. */
9897
9898 sym_name = ada_exception_sym_name (ex);
9899 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9900
9901 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9902 that should be compiled with debugging information. As a result, we
9903 expect to find that symbol in the symtabs. If we don't find it, then
9904 the target most likely does not support Ada exceptions, or we cannot
9905 insert exception breakpoints yet, because the GNAT runtime hasn't been
9906 loaded yet. */
9907
9908 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9909 in such a way that no debugging information is produced for the symbol
9910 we are looking for. In this case, we could search the minimal symbols
9911 as a fall-back mechanism. This would still be operating in degraded
9912 mode, however, as we would still be missing the debugging information
9913 that is needed in order to extract the name of the exception being
9914 raised (this name is printed in the catchpoint message, and is also
9915 used when trying to catch a specific exception). We do not handle
9916 this case for now. */
9917
9918 if (sym == NULL)
9919 error (_("Unable to break on '%s' in this configuration."), sym_name);
9920
9921 /* Make sure that the symbol we found corresponds to a function. */
9922 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9923 error (_("Symbol \"%s\" is not a function (class = %d)"),
9924 sym_name, SYMBOL_CLASS (sym));
9925
9926 sal = find_function_start_sal (sym, 1);
9927
9928 /* Set ADDR_STRING. */
9929
9930 *addr_string = xstrdup (sym_name);
9931
9932 /* Set the COND and COND_STRING (if not NULL). */
9933
9934 if (cond_string != NULL && cond != NULL)
9935 {
9936 if (*cond_string != NULL)
9937 {
9938 xfree (*cond_string);
9939 *cond_string = NULL;
9940 }
9941 if (*cond != NULL)
9942 {
9943 xfree (*cond);
9944 *cond = NULL;
9945 }
9946 if (exp_string != NULL)
9947 {
9948 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9949 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9950 }
9951 }
9952
9953 /* Set OPS. */
9954 *ops = ada_exception_breakpoint_ops (ex);
9955
9956 return sal;
9957 }
9958
9959 /* Parse the arguments (ARGS) of the "catch exception" command.
9960
9961 Set TYPE to the appropriate exception catchpoint type.
9962 If the user asked the catchpoint to catch only a specific
9963 exception, then save the exception name in ADDR_STRING.
9964
9965 See ada_exception_sal for a description of all the remaining
9966 function arguments of this function. */
9967
9968 struct symtab_and_line
9969 ada_decode_exception_location (char *args, char **addr_string,
9970 char **exp_string, char **cond_string,
9971 struct expression **cond,
9972 struct breakpoint_ops **ops)
9973 {
9974 enum exception_catchpoint_kind ex;
9975
9976 catch_ada_exception_command_split (args, &ex, exp_string);
9977 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9978 cond, ops);
9979 }
9980
9981 struct symtab_and_line
9982 ada_decode_assert_location (char *args, char **addr_string,
9983 struct breakpoint_ops **ops)
9984 {
9985 /* Check that no argument where provided at the end of the command. */
9986
9987 if (args != NULL)
9988 {
9989 while (isspace (*args))
9990 args++;
9991 if (*args != '\0')
9992 error (_("Junk at end of arguments."));
9993 }
9994
9995 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9996 ops);
9997 }
9998
9999 /* Operators */
10000 /* Information about operators given special treatment in functions
10001 below. */
10002 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10003
10004 #define ADA_OPERATORS \
10005 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10006 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10007 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10008 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10009 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10010 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10011 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10012 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10013 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10014 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10015 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10016 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10017 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10018 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10019 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10020 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10021 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10022 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10023 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10024
10025 static void
10026 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10027 {
10028 switch (exp->elts[pc - 1].opcode)
10029 {
10030 default:
10031 operator_length_standard (exp, pc, oplenp, argsp);
10032 break;
10033
10034 #define OP_DEFN(op, len, args, binop) \
10035 case op: *oplenp = len; *argsp = args; break;
10036 ADA_OPERATORS;
10037 #undef OP_DEFN
10038
10039 case OP_AGGREGATE:
10040 *oplenp = 3;
10041 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10042 break;
10043
10044 case OP_CHOICES:
10045 *oplenp = 3;
10046 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10047 break;
10048 }
10049 }
10050
10051 static char *
10052 ada_op_name (enum exp_opcode opcode)
10053 {
10054 switch (opcode)
10055 {
10056 default:
10057 return op_name_standard (opcode);
10058
10059 #define OP_DEFN(op, len, args, binop) case op: return #op;
10060 ADA_OPERATORS;
10061 #undef OP_DEFN
10062
10063 case OP_AGGREGATE:
10064 return "OP_AGGREGATE";
10065 case OP_CHOICES:
10066 return "OP_CHOICES";
10067 case OP_NAME:
10068 return "OP_NAME";
10069 }
10070 }
10071
10072 /* As for operator_length, but assumes PC is pointing at the first
10073 element of the operator, and gives meaningful results only for the
10074 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10075
10076 static void
10077 ada_forward_operator_length (struct expression *exp, int pc,
10078 int *oplenp, int *argsp)
10079 {
10080 switch (exp->elts[pc].opcode)
10081 {
10082 default:
10083 *oplenp = *argsp = 0;
10084 break;
10085
10086 #define OP_DEFN(op, len, args, binop) \
10087 case op: *oplenp = len; *argsp = args; break;
10088 ADA_OPERATORS;
10089 #undef OP_DEFN
10090
10091 case OP_AGGREGATE:
10092 *oplenp = 3;
10093 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10094 break;
10095
10096 case OP_CHOICES:
10097 *oplenp = 3;
10098 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10099 break;
10100
10101 case OP_STRING:
10102 case OP_NAME:
10103 {
10104 int len = longest_to_int (exp->elts[pc + 1].longconst);
10105 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10106 *argsp = 0;
10107 break;
10108 }
10109 }
10110 }
10111
10112 static int
10113 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10114 {
10115 enum exp_opcode op = exp->elts[elt].opcode;
10116 int oplen, nargs;
10117 int pc = elt;
10118 int i;
10119
10120 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10121
10122 switch (op)
10123 {
10124 /* Ada attributes ('Foo). */
10125 case OP_ATR_FIRST:
10126 case OP_ATR_LAST:
10127 case OP_ATR_LENGTH:
10128 case OP_ATR_IMAGE:
10129 case OP_ATR_MAX:
10130 case OP_ATR_MIN:
10131 case OP_ATR_MODULUS:
10132 case OP_ATR_POS:
10133 case OP_ATR_SIZE:
10134 case OP_ATR_TAG:
10135 case OP_ATR_VAL:
10136 break;
10137
10138 case UNOP_IN_RANGE:
10139 case UNOP_QUAL:
10140 /* XXX: gdb_sprint_host_address, type_sprint */
10141 fprintf_filtered (stream, _("Type @"));
10142 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10143 fprintf_filtered (stream, " (");
10144 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10145 fprintf_filtered (stream, ")");
10146 break;
10147 case BINOP_IN_BOUNDS:
10148 fprintf_filtered (stream, " (%d)",
10149 longest_to_int (exp->elts[pc + 2].longconst));
10150 break;
10151 case TERNOP_IN_RANGE:
10152 break;
10153
10154 case OP_AGGREGATE:
10155 case OP_OTHERS:
10156 case OP_DISCRETE_RANGE:
10157 case OP_POSITIONAL:
10158 case OP_CHOICES:
10159 break;
10160
10161 case OP_NAME:
10162 case OP_STRING:
10163 {
10164 char *name = &exp->elts[elt + 2].string;
10165 int len = longest_to_int (exp->elts[elt + 1].longconst);
10166 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10167 break;
10168 }
10169
10170 default:
10171 return dump_subexp_body_standard (exp, stream, elt);
10172 }
10173
10174 elt += oplen;
10175 for (i = 0; i < nargs; i += 1)
10176 elt = dump_subexp (exp, stream, elt);
10177
10178 return elt;
10179 }
10180
10181 /* The Ada extension of print_subexp (q.v.). */
10182
10183 static void
10184 ada_print_subexp (struct expression *exp, int *pos,
10185 struct ui_file *stream, enum precedence prec)
10186 {
10187 int oplen, nargs, i;
10188 int pc = *pos;
10189 enum exp_opcode op = exp->elts[pc].opcode;
10190
10191 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10192
10193 *pos += oplen;
10194 switch (op)
10195 {
10196 default:
10197 *pos -= oplen;
10198 print_subexp_standard (exp, pos, stream, prec);
10199 return;
10200
10201 case OP_VAR_VALUE:
10202 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10203 return;
10204
10205 case BINOP_IN_BOUNDS:
10206 /* XXX: sprint_subexp */
10207 print_subexp (exp, pos, stream, PREC_SUFFIX);
10208 fputs_filtered (" in ", stream);
10209 print_subexp (exp, pos, stream, PREC_SUFFIX);
10210 fputs_filtered ("'range", stream);
10211 if (exp->elts[pc + 1].longconst > 1)
10212 fprintf_filtered (stream, "(%ld)",
10213 (long) exp->elts[pc + 1].longconst);
10214 return;
10215
10216 case TERNOP_IN_RANGE:
10217 if (prec >= PREC_EQUAL)
10218 fputs_filtered ("(", stream);
10219 /* XXX: sprint_subexp */
10220 print_subexp (exp, pos, stream, PREC_SUFFIX);
10221 fputs_filtered (" in ", stream);
10222 print_subexp (exp, pos, stream, PREC_EQUAL);
10223 fputs_filtered (" .. ", stream);
10224 print_subexp (exp, pos, stream, PREC_EQUAL);
10225 if (prec >= PREC_EQUAL)
10226 fputs_filtered (")", stream);
10227 return;
10228
10229 case OP_ATR_FIRST:
10230 case OP_ATR_LAST:
10231 case OP_ATR_LENGTH:
10232 case OP_ATR_IMAGE:
10233 case OP_ATR_MAX:
10234 case OP_ATR_MIN:
10235 case OP_ATR_MODULUS:
10236 case OP_ATR_POS:
10237 case OP_ATR_SIZE:
10238 case OP_ATR_TAG:
10239 case OP_ATR_VAL:
10240 if (exp->elts[*pos].opcode == OP_TYPE)
10241 {
10242 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10243 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10244 *pos += 3;
10245 }
10246 else
10247 print_subexp (exp, pos, stream, PREC_SUFFIX);
10248 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10249 if (nargs > 1)
10250 {
10251 int tem;
10252 for (tem = 1; tem < nargs; tem += 1)
10253 {
10254 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10255 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10256 }
10257 fputs_filtered (")", stream);
10258 }
10259 return;
10260
10261 case UNOP_QUAL:
10262 type_print (exp->elts[pc + 1].type, "", stream, 0);
10263 fputs_filtered ("'(", stream);
10264 print_subexp (exp, pos, stream, PREC_PREFIX);
10265 fputs_filtered (")", stream);
10266 return;
10267
10268 case UNOP_IN_RANGE:
10269 /* XXX: sprint_subexp */
10270 print_subexp (exp, pos, stream, PREC_SUFFIX);
10271 fputs_filtered (" in ", stream);
10272 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10273 return;
10274
10275 case OP_DISCRETE_RANGE:
10276 print_subexp (exp, pos, stream, PREC_SUFFIX);
10277 fputs_filtered ("..", stream);
10278 print_subexp (exp, pos, stream, PREC_SUFFIX);
10279 return;
10280
10281 case OP_OTHERS:
10282 fputs_filtered ("others => ", stream);
10283 print_subexp (exp, pos, stream, PREC_SUFFIX);
10284 return;
10285
10286 case OP_CHOICES:
10287 for (i = 0; i < nargs-1; i += 1)
10288 {
10289 if (i > 0)
10290 fputs_filtered ("|", stream);
10291 print_subexp (exp, pos, stream, PREC_SUFFIX);
10292 }
10293 fputs_filtered (" => ", stream);
10294 print_subexp (exp, pos, stream, PREC_SUFFIX);
10295 return;
10296
10297 case OP_POSITIONAL:
10298 print_subexp (exp, pos, stream, PREC_SUFFIX);
10299 return;
10300
10301 case OP_AGGREGATE:
10302 fputs_filtered ("(", stream);
10303 for (i = 0; i < nargs; i += 1)
10304 {
10305 if (i > 0)
10306 fputs_filtered (", ", stream);
10307 print_subexp (exp, pos, stream, PREC_SUFFIX);
10308 }
10309 fputs_filtered (")", stream);
10310 return;
10311 }
10312 }
10313
10314 /* Table mapping opcodes into strings for printing operators
10315 and precedences of the operators. */
10316
10317 static const struct op_print ada_op_print_tab[] = {
10318 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10319 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10320 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10321 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10322 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10323 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10324 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10325 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10326 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10327 {">=", BINOP_GEQ, PREC_ORDER, 0},
10328 {">", BINOP_GTR, PREC_ORDER, 0},
10329 {"<", BINOP_LESS, PREC_ORDER, 0},
10330 {">>", BINOP_RSH, PREC_SHIFT, 0},
10331 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10332 {"+", BINOP_ADD, PREC_ADD, 0},
10333 {"-", BINOP_SUB, PREC_ADD, 0},
10334 {"&", BINOP_CONCAT, PREC_ADD, 0},
10335 {"*", BINOP_MUL, PREC_MUL, 0},
10336 {"/", BINOP_DIV, PREC_MUL, 0},
10337 {"rem", BINOP_REM, PREC_MUL, 0},
10338 {"mod", BINOP_MOD, PREC_MUL, 0},
10339 {"**", BINOP_EXP, PREC_REPEAT, 0},
10340 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10341 {"-", UNOP_NEG, PREC_PREFIX, 0},
10342 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10343 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10344 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10345 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10346 {".all", UNOP_IND, PREC_SUFFIX, 1},
10347 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10348 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10349 {NULL, 0, 0, 0}
10350 };
10351 \f
10352 enum ada_primitive_types {
10353 ada_primitive_type_int,
10354 ada_primitive_type_long,
10355 ada_primitive_type_short,
10356 ada_primitive_type_char,
10357 ada_primitive_type_float,
10358 ada_primitive_type_double,
10359 ada_primitive_type_void,
10360 ada_primitive_type_long_long,
10361 ada_primitive_type_long_double,
10362 ada_primitive_type_natural,
10363 ada_primitive_type_positive,
10364 ada_primitive_type_system_address,
10365 nr_ada_primitive_types
10366 };
10367
10368 static void
10369 ada_language_arch_info (struct gdbarch *gdbarch,
10370 struct language_arch_info *lai)
10371 {
10372 const struct builtin_type *builtin = builtin_type (gdbarch);
10373 lai->primitive_type_vector
10374 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10375 struct type *);
10376 lai->primitive_type_vector [ada_primitive_type_int] =
10377 init_type (TYPE_CODE_INT,
10378 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10379 0, "integer", (struct objfile *) NULL);
10380 lai->primitive_type_vector [ada_primitive_type_long] =
10381 init_type (TYPE_CODE_INT,
10382 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10383 0, "long_integer", (struct objfile *) NULL);
10384 lai->primitive_type_vector [ada_primitive_type_short] =
10385 init_type (TYPE_CODE_INT,
10386 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10387 0, "short_integer", (struct objfile *) NULL);
10388 lai->string_char_type =
10389 lai->primitive_type_vector [ada_primitive_type_char] =
10390 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10391 0, "character", (struct objfile *) NULL);
10392 lai->primitive_type_vector [ada_primitive_type_float] =
10393 init_type (TYPE_CODE_FLT,
10394 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10395 0, "float", (struct objfile *) NULL);
10396 lai->primitive_type_vector [ada_primitive_type_double] =
10397 init_type (TYPE_CODE_FLT,
10398 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10399 0, "long_float", (struct objfile *) NULL);
10400 lai->primitive_type_vector [ada_primitive_type_long_long] =
10401 init_type (TYPE_CODE_INT,
10402 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10403 0, "long_long_integer", (struct objfile *) NULL);
10404 lai->primitive_type_vector [ada_primitive_type_long_double] =
10405 init_type (TYPE_CODE_FLT,
10406 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10407 0, "long_long_float", (struct objfile *) NULL);
10408 lai->primitive_type_vector [ada_primitive_type_natural] =
10409 init_type (TYPE_CODE_INT,
10410 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10411 0, "natural", (struct objfile *) NULL);
10412 lai->primitive_type_vector [ada_primitive_type_positive] =
10413 init_type (TYPE_CODE_INT,
10414 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10415 0, "positive", (struct objfile *) NULL);
10416 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10417
10418 lai->primitive_type_vector [ada_primitive_type_system_address] =
10419 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10420 (struct objfile *) NULL));
10421 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10422 = "system__address";
10423 }
10424 \f
10425 /* Language vector */
10426
10427 /* Not really used, but needed in the ada_language_defn. */
10428
10429 static void
10430 emit_char (int c, struct ui_file *stream, int quoter)
10431 {
10432 ada_emit_char (c, stream, quoter, 1);
10433 }
10434
10435 static int
10436 parse (void)
10437 {
10438 warnings_issued = 0;
10439 return ada_parse ();
10440 }
10441
10442 static const struct exp_descriptor ada_exp_descriptor = {
10443 ada_print_subexp,
10444 ada_operator_length,
10445 ada_op_name,
10446 ada_dump_subexp_body,
10447 ada_evaluate_subexp
10448 };
10449
10450 const struct language_defn ada_language_defn = {
10451 "ada", /* Language name */
10452 language_ada,
10453 range_check_off,
10454 type_check_off,
10455 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10456 that's not quite what this means. */
10457 array_row_major,
10458 &ada_exp_descriptor,
10459 parse,
10460 ada_error,
10461 resolve,
10462 ada_printchar, /* Print a character constant */
10463 ada_printstr, /* Function to print string constant */
10464 emit_char, /* Function to print single char (not used) */
10465 ada_print_type, /* Print a type using appropriate syntax */
10466 ada_val_print, /* Print a value using appropriate syntax */
10467 ada_value_print, /* Print a top-level value */
10468 NULL, /* Language specific skip_trampoline */
10469 NULL, /* value_of_this */
10470 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10471 basic_lookup_transparent_type, /* lookup_transparent_type */
10472 ada_la_decode, /* Language specific symbol demangler */
10473 NULL, /* Language specific class_name_from_physname */
10474 ada_op_print_tab, /* expression operators for printing */
10475 0, /* c-style arrays */
10476 1, /* String lower bound */
10477 ada_get_gdb_completer_word_break_characters,
10478 ada_language_arch_info,
10479 ada_print_array_index,
10480 default_pass_by_reference,
10481 LANG_MAGIC
10482 };
10483
10484 void
10485 _initialize_ada_language (void)
10486 {
10487 add_language (&ada_language_defn);
10488
10489 varsize_limit = 65536;
10490
10491 obstack_init (&symbol_list_obstack);
10492
10493 decoded_names_store = htab_create_alloc
10494 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10495 NULL, xcalloc, xfree);
10496 }
This page took 0.266337 seconds and 4 git commands to generate.